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“Turbulence is the most important unsolved problem of classical physics.”

Richard P. Feynman, The Feynman Lectures on Physics, 1964
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Motivation

Throughout the centuries, many prestigious physicists and mathematicians have tried to
describe the dynamics of turbulent flows and predict their evolution (for a historical overview,
see e.g Lumley & Yaglom 2001 and Davidson et al. 2011). In fluid dynamics, the term
“turbulence” usually describes a special state of a continuous medium in which many
interacting degrees of freedom are excited, leading to strong and chaotic temporal and spatial
fluctuations in velocity, pressure and other flow properties. This behavior can be found in the
atmospheric flows determining our weather and climate, water flows in rivers and oceans,
right down to the coffee we drink and the air we breathe (Shaw 2003, Bodenschatz et al.
2010, Naveira Garabato et al. 2004, Shraiman & Siggia 2000). Accordingly, turbulent flows
are of large interest from a practical viewpoint and many studies are conducted on the effect
of turbulence on drag, combustion, and sedimentation, to name only a few. From a more
fundamental perspective, the high number of excited degrees of freedom in a turbulent flow
lead to a complex physical state far from equilibrium, not characterizable with the tools of
equilibrium statistical mechanics. New theoretical approaches are needed to describe the
multitude of fascinating phenomena observed in experimental and natural flows.

One of those phenomena is the time irreversibility of turbulent flows. This can be easily
seen when comparing the mixing of substances in turbulent and Stokes flow. If a blotch of
colored corn syrup is injected into a Couette cell filled with corn syrup and the inner cylinder
is rotated, the two components are spread into thin layers. The formation of the layers can
be easily reversed, however, by turning the inner cylinder the other way around until the
blotch has recollected at its original position, with just a slight blurring due to diffusion
(Heller 1960). If milk is stirred into coffee, on the other hand, turbulent flow generates
much more complicated, interwoven layer structures of the two substances (Ottino 1989b,
Dimotakis 2005). Reversing the stirring direction will not untangle the produced layers but
rather enhance the complexity of their structure, and the initial condition of two unmixed
fluids can never be reproduced. The irreversibility of turbulent flows arises from instabilities
that lead to a flux of energy through scales. For a three-dimensional flow, the spatial scale
at which energy is injected, L, is much larger than the scale at which it is dissipated, η .
Therefore, energy is transported from large to small scales with a constant transfer rate ε > 0
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6 Motivation

in a cascade-like manner (Frisch 1995). A time-reversal transformation, t→−t, leads to a
change of direction of this energy flux, showing that turbulent flows are not symmetric in
time.

Since mixing is a good indicator for the irreversibility of a flow, it seems natural to use
the dispersion of particle clusters as a tool to analyze time asymmetry. The simplest case
is the dispersion of a set of two particles, called relative dispersion (for an overview, see
e.g. Sawford 2001, Salazar & Collins 2009). Many investigations have been conducted
concerning this topic, most of them focusing on the mean squared separation forwards in
time, 〈R(t)2〉, where R(t) is the separation vector between the two particles for time t > 0
and all pairs start with an initial separation |R(0)|= R0. For an initial separation much larger
than the dissipative scale, but still smaller than the injection scale, η � R0� L, Batchelor
(1952) showed that for very short times the mean squared separation grows as

〈R(t)2〉 ∝ (εR0)
2
3 t2.

This expression communicates the idea that particles initially continue their path ballistically
according to x(t) ≈ x(0)+ v(0)t. This leads to a quadratic, and thus symmetric, depen-
dence on time. For later times, when η � R0� |R(t)| � L, it is expected that the mean
squared separation grows according to Richardson scaling (Richardson 1926, Obukhov 1941,
Batchelor 1952)

〈R(t)2〉= gεt3,

where g is the Richardson constant. Due to the cubic dependence on time, this scaling law
is sensitive to a time asymmetry of the flow and it is assumed that there are two different
constants g f and gb for dispersion forwards (t > 0) and backwards in time (t < 0), respectively
(Sawford et al. 2005). First experimental and numerical studies on the time asymmetry in
relative dispersion indeed indicated that particles separate faster backwards than forwards in
time (Sawford et al. 2005, Berg et al. 2006, Bragg et al. 2014). This finding was attributed
to Richardson scaling, and attempts were made to obtain values for g f and gb. Richardson
scaling is notoriously hard to observe, however, and a rigorous, mathematical explanation
for the observed enhancement backwards in time is still lacking.

It is thus crucial to find a theoretical, reliable connection between the observed time
asymmetry in particle dispersion and the intrinsic time irreversibility of turbulent flows
due to the energy cascade. In this thesis, I show that this connection can be found by
investigating the evolution of clusters of two and four particles at very short times. I confirm
my theoretical findings with experimental data conducted in a turbulent water flow produced
by two counterrotating propellers. Additionally, I explore how a change of the energy
cascade, induced by the addition of minute amounts of polymers to the flow, is reflected
in the particle dispersion. Using experimental data, I confirm the theoretical framework
recently proposed by Xi et al. (2013) which suggests that the polymer-flow interactions
severely alter the energy cascade as soon as the energy dissipated by the polymers equals the
kinetic energy transfer of the turbulence. I then present experimental data showing that the
addition of polymers to the flow has a significant impact on time asymmetry in both two-
and four-particle dispersion.
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Chapter 1 provides a brief introduction into the field of turbulence, including a more
detailed section about multi-particle dispersion forwards and backwards in time. The
experimental setup and data-evaluation techniques are explained in chapter 2. Afterwards,
the results on two-particle dispersion and four-particle dispersion are given in chapters 3
and 4, respectively. In chapter 5, the impact of polymers on the energy cascade is discussed
and results for particle dispersion in this scenario are shown. Finally, the presented results
are evaluated in chapter 6 and some promising further research possibilities are highlighted.

Parts of this thesis have been published in Physical Review Letters (Jucha et al. 2014).





CHAPTER 1

Introduction and Theory

This chapter aims to convey the underlying theoretical concepts and the current state of
research in the field of turbulent multi-particle dispersion. Some of these concepts are well
known in the turbulence community and are described in detail in e.g. Monin & Yaglom
(2007), Frisch (1995), Argyris et al. (2010), or Pope (2000). Wherever possible, however, I
will rely on the excellent and historically important texts by Richardson (1922), Kolmogorov
(1941a,b), and Batchelor (1950) in order to present these ideas.

Section 1.1 describes the governing equations of a turbulent flow and explains the necessity
of a statistical description. Section 1.2 focuses on the famous theory of Kolmogorov (Kol-
mogorov 1941a) and the underlying picture of the turbulence energy cascade. In section 1.3,
different aspects of turbulent dispersion for two or more fluid particles are described and
current theoretical and experimental findings are presented.

1.1. The Governing Equations

The first fundamental assumption when dealing with fluid dynamics is the continuum ap-
proximation. This assumption implies that the fluid fills space continuously and that its
composition of molecules and ions can be neglected. This approximation is valid as long
as the smallest scales of the flow are much larger than the mean free path in the fluid, a
condition satisfied by the majority of flows. In a strongly turbulent cumulus cloud, e.g., the
smallest scales of the flow are of the order of η ≈ 10−3 m and thus some orders of magnitude
larger than the typical mean free path1. Using the continuum approximation, the equations
for fluid motion can be derived from first principles.

1The smallest turbulent scale is estimated from measurements in atmospheric clouds at an altitude of approx.
2000 m (Siebert et al. 2006). The atmospheric pressure at this height is about 65 kPa for a sea-surface
temperature of 288 K and an average molecular mass of the atmosphere of 0.02897 kg/mole, leading to a
mean free path of λ ≈ 10−7 m.

9



10 Chapter 1. Introduction and Theory

1.1.1. The Navier-Stokes Equations

The evolution of a fluid element is governed by two conservation laws: the conservation of
mass and the conservation of momentum. Mass conservation leads to the continuity equation

∂

∂ t
ρ(x, t)+∇ · (ρ(x, t)u(x, t)) = 0, (1.1)

with ρ(x, t) being the density of the fluid element and u(x, t) being its velocity. Momentum
conservation, together with the second Newtonian theorem, results in

d
dt

(ρ(x, t)u(x, t)) =
(

∂

∂ t
+u(x, t) ·∇

)
(ρ(x, t)u(x, t)) = ∇ ·σ(x, t)+ρ(x, t)f(x, t), (1.2)

with the stress tensor σ(x, t) and f(x, t) being the body force (e.g. gravity or the Coriolis
force).

Most natural flows exhibit incompressibility, meaning that the density remains constant
along fluid trajectories, according to ∂

∂ t ρ(x, t)+(u(x, t) ·∇)ρ(x, t) = 0. In the case of low-
intensity water flows, where only very small Mach numbers are reached, it is justified to even
assume a constant density, ρ(x, t)≡ ρ , throughout the flow. For the rest of this thesis, the
density is assumed to be constant if not stated otherwise. In this case, the above equations
simplify to

∇ ·u(x, t) = 0, (1.3)

ρ

(
∂

∂ t
+u(x, t) ·∇

)
u(x, t) = ∇ ·σ(x, t)+ρf(x, t). (1.4)

For an incompressible viscous fluid, the stress tensor is given by

σi j(x, t) =−p(x, t)δi j +µ

(
∂ui(x, t)

∂x j
+

∂u j(x, t)
∂xi

)
, (1.5)

where p(x, t) is the scalar pressure field, µ is the dynamic viscosity, and δi j is the Kronecker
delta. With this stress tensor and equation (1.4), one obtains the Navier-Stokes equations
(Navier 1827, Stokes 1845) for a fluid with constant density:

ρ

(
∂

∂ t
u(x, t)+(u(x, t) ·∇)u(x, t)

)
=−∇p(x, t)+µ4u(x, t)+ρf(x, t). (1.6)

Together with the continuity equation (1.3) and initial as well as boundary conditions, the
Navier-Stokes equations fully describe a fluid flow. It is informative to non-dimensionalize
equation (1.6) by introducing the new variables

x′ = x/L, u′ = u/U, t ′ = t U/L, p′ = p/(ρU2) and f′ = fL/U2, (1.7)

with L and U being the characteristic length scale and velocity of the flow. Inserting the new
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variables into equation (1.6), dividing by U2/L and omitting the primes, one obtains

∂

∂ t
u(x, t)+(u(x, t) ·∇)u(x, t) =−∇p(x, t)+

1
Re
4u(x, t)+ f(x, t). (1.8)

The only free parameter in equation (1.8) is the Reynolds number, Re = UL
ν

, with the
kinematic viscosity ν = µ/ρ (Reynolds 1883). For very small Reynolds numbers, Re. 1,
the viscous term is dominating and the flow is purely laminar, i.e. all stream lines are in
parallel. For Re & 103, on the other hand, the viscous damping term is very weak and
turbulence can evolve (Reynolds 1883, Avila et al. 2011). For turbulent, atmospheric flows
one can find Reynolds numbers as high as Re≈ 108−109.

The Navier-Stokes equations are nonlinear and, due to the pressure term, also non-local.
For turbulent flows, for which the damping term, 1

Re4u(x, t), becomes relatively weal
due to a high Reynolds number, this leads to a phenomenon called deterministic chaos:
Tiny differences in the initial conditions lead to very different outcomes, making the flow
unpredictable (see e.g. Lorenz 1963). Only averaged quantities can be reproduced reliably,
showing the necessity of a statistical approach to turbulence.

1.1.2. Statistical Description of Turbulence
A natural first attempt for a statistical description of turbulent flows is the averaging of the
Navier-Stokes equations in order to obtain an expression for the mean flow. This was first
done by Reynolds (1895) using a time average. In this section, I will use an ensemble average
instead, but the concept remains the same.

Let us assume several independent statistical events, e.g. repetitions of the same experi-
ment, where for each event a random variable x is measured. The ensemble average of x is
then defined as

〈x〉= lim
N→∞

1
N

N

∑
n=1

xn, (1.9)

with xn being the values of x for the different events. Due to the chaotic behavior of turbulent
flow, the velocity field u(x, t) can be taken as such a random variable, more precisely a
random field. Using the ensemble average, one can split the velocity field into a mean value
and a fluctuating component in the form

u(x, t) = ū(x, t)+u′(x, t), (1.10)

with ū(x, t) = 〈u(x, t)〉. From this definition, it directly follows that 〈ū(x, t)〉= ū(x, t) and
〈u′(x, t)〉 = 0. Inserting the above decomposition into the continuity and Navier-Stokes
equations (1.3) and (1.8) and taking the ensemble average leads to

∇ · ū(x, t) = 0,
∂

∂ t
ū(x, t)+(ū(x, t) ·∇)ū(x, t)+ 〈(u′(x, t) ·∇)u′(x, t)〉=−∇〈p(x, t)〉+ 1

Re
4ū(x, t)+ 〈f(x, t)〉.

This new set of four equations comprises seven variables. Aside from the mean flow variables
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ū(x, t) and 〈p(x, t)〉, the last term on the left hand side depends quadratically on the velocity
fluctuations u′(x, t). It is usually written in the form

〈(u′(x, t) ·∇)u′(x, t)〉i = ∑
j

∂

∂x j
〈u′j(x, t)u′i(x, t)〉, (1.11)

where the components of 〈u′j(x, t)u′i(x, t)〉 are known as the Reynolds stresses. Determining
the mean velocity ū(x, t) thus requires the knowledge of the second moment of the velocity
fluctuations, meaning that the equations for ū(x, t) are not closed. This closure problem
prevents a statistical description of turbulence solely based on the Navier-Stokes equations
(Kraichnan 1961), and some modeling is required in order to formulate results (for an
overview, see e.g. Pope 2000, chap. 10-14).

1.2. Kolmogorov’s Theory (1941)
The works published by Kolmogorov in 1941 are amongst the most important achievements
in turbulence research (Frisch 1995). He built the foundation of today’s understanding of
turbulent flow and provided one of the few exact results derived from the Navier-Stokes
equations.

Kolmogorov refined the picture of the turbulence energy cascade, first promoted by
Richardson (1922), and used it as a foundation for his work (Kolmogorov 1941a). According
to this picture, energy injected into a three-dimensional (3D) turbulent flow will form eddies2

of some large scale L (e.g. the size of a propeller stirring the fluid). These eddies break up
into smaller eddies, thereby transferring their energy to smaller scales with an energy transfer
rate ε . This process continues until a length scale η is reached at which viscous dissipation
dominates (figure 1.1). Kolmogorov further assumed that a statistical decoupling happens
during this energy transfer. As a consequence, eddies much smaller than the injection scale
L should be unaffected by the nature of the injection. From this he concluded his first
hypothesis of similarity:

Statistical quantities depending only on the smallest scales of the flow are
fully determined by the energy transfer rate ε and the kinetic viscosity ν .3

It follows directly that these quantities need to be homogeneous and isotropic because any
preference of orientation of the largest eddies is lost at the small scales4. Using only ε and
ν , one is also able to construct universal time, length, and velocity scales, the Kolmogorov
microscales:

η =

(
ν3

ε

) 1
4

, τη =
(

ν

ε

) 1
2
, uη = (νε)

1
4 . (1.12)

2An eddy is to be understood as “a component of motion with a certain length scale, i.e. an arbitrary flow
pattern characterized by size alone” (Batchelor 1950). It is not to be confused with a whirl as seen near a drain.

3Due to the mathematical nature of the original hypotheses in (Kolmogorov 1941a), a more verbose formulation
is chosen here.

4The concept of isotropic turbulence and its usefulness to compute exact relations had already been presented
earlier in the important works of Taylor (1935) and Von Kármán & Howarth (1938).
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L

η

ε

Figure 1.1.: Sketch of the energy cascade as used by Kolmogorov (1941a).

By construction, these are the scales corresponding to the smallest eddies of the flow with a
Reynolds number of Reη =

uη η

ν
= 1. While η represents the size of the eddies, τη gives the

eddy turn-over time and uη the resulting characteristic velocity. Changes of the flow along
distances much smaller than η or during time intervals much shorter than τη are assumed to
be smooth and differentiable. The scale ratio between the large energy containing eddies and
the small dissipative eddies is known to grow as L/η ∝ Re

3
4 and TL/τη ∝ Re

1
2 with TL being

the eddy turn-over time of the large eddies. For very strong turbulence, and thus very high
Reynolds number, the scale separation L/η becomes very large. In this case, Kolmogorov
suggested that there exists a range of scales, η � r� L, which is unaffected both by the
large scales and by dissipation. This leads to his second hypothesis of similarity:

For very large Reynolds numbers, there exists an intermediate range of
scales for which any statistical quantity is fully determined by the scale r
and the energy transfer rate ε .

This intermediate range of scales, the inertial range, is therefore independent of the underly-
ing conditions of the flow field (i.e. forcing, geometry, and viscosity) and should yield the
same statistics for all flows with the same energy transfer rate. This conclusion is of major
importance to the entire field of turbulence research, since it allows the comparison of results
obtained from different flows.

Starting from these two hypotheses, one can use dimensional analysis to obtain some
useful results for the limit of Re→ ∞. For the hypotheses to be applicable, however, the
statistical quantities under consideration need to be assignable to a certain scale. A good
choice for such a quantity are the longitudinal structure functions,

Sp(r) =
〈(

(u(x+ r, t)−u(x, t)) ·r
r

)p〉
, (1.13)

with p being a positive integer. Due to homogeneity, the structure functions depend only on
the separation vector r, while isotropy can be used to further simplify this dependence to
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the absolute value r = |r|. Using the second hypothesis and dimensional analysis, it can be
shown that

Sp(r) ∝ (εr)
p
3 . (1.14)

For the special case of p = 3, Kolmogorov even derived an exact result from the Navier-
Stokes equations (Kolmogorov 1941b). Only assuming homogeneity and isotropy, he showed
that in the limit of infinite Reynolds number, the third order structure function behaves as

S3(r) =−
4
5

εr, (1.15)

where r is in the inertial range. This 4/5-law is one of the few exact results in turbulence
research and therefore plays an important role in the description of turbulence5.

It was later shown that an alternative formulation to the 4/5-law can be obtained by
looking at the derivative of the squared relative velocity

1
2
〈 d
dt

[u(x+ r, t)−u(x, t)]2〉= 〈[u(x+ r, t)−u(x, t)] · [a(x+ r, t)−a(x, t)]〉=−2ε.

(1.16)
This result is exact for a homogeneous flow at a high Reynolds number and with r in the
inertial range (Mann et al. 1999, Falkovich et al. 2001, Pumir et al. 2001). Since I will
use equation (1.16) frequently in this thesis, I will from now on use the short notation
〈δu ·δa〉=−2ε whenever referring to this expression.

1.3. Turbulent Dispersion
Another area of turbulence research in which the theory of Kolmogorov can be put to great
use is turbulent dispersion. The separation statistics of clusters of n particles in a turbulent
flow are of crucial importance for the understanding of many fundamental processes, like
the spreading of clouds or turbulent mixing (Sawford 2001, Ottino 1989a). Furthermore, as
opposed to single particle diffusion, the characteristic length scale of a cluster of particles
dominates the statistics thereof so that Kolmogorov’s theory can be applied (Batchelor
1950). The easiest case, the separation of pairs, of course plays a special role in theoretical,
experimental, and numerical investigations (Sawford 2001, Salazar & Collins 2009).

1.3.1. Eulerian and Lagrangian Descriptions of Turbulence
Studying particle separation requires to follow particle trajectories through a flow. This
is best done by the so-called Lagrangian decription of turbulence (Yeung 2002, Toschi &
Bodenschatz 2009). As opposed to the Eulerian framework in which the flow field is given
at fixed points in space and time, the Lagrangian framework describes flow properties along
the trajectories of fluid particles. Here, I use the term fluid particle, or fluid element, to
describe a single point in the fluid continuum which follows the velocity field. It is an abstract

5It is known for many years that the scaling law in equation (1.14) is actually not exact for p 6= 3 due to
intermittency effects. For a longer discussion of this topic see e.g. (Frisch 1995, chap. 8).
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mathematical concept, not to be confused with e.g. a molecule. If such a fluid particle starts
at a position y at time t = 0, then its position at a later time t will be denoted by X(t|y,0)
with X(0|y,0) = y. By construction, the velocity of a fluid particle is always identical to the
velocity field at its position, that is, d

dt X(t|y,0) = U(t|y,0) = u(X(t|y,0), t). Experimentally,
tracer particles with the same density as the fluid and a diameter d� η much smaller than
the Kolmogorov scale can be treated as fluid particles.

1.3.2. Pair Dispersion

The displacement statistics of a pair of fluid particles can be described by the probability
density function (p.d.f.) P(x1,x2, t|y1,y2,0) of finding the particles at positions x1 and x2 at
time t under the condition that they have been at positions y1 and y2 at time t = 0 (Batchelor
1952). In the Lagrangian notation introduced above, this means that X(t|y1,0) = x1 and
X(t|y2,0) = x2. Separating the relative positioning R = x2−x1 and R0 = y2−y1 from the
general movement M = x1− y1, we obtain the more useful p.d.f. P(M,R, t|R0,0), where
the dependence on the initial positions y1 and y2 is omitted under the assumption of a
homogeneous flow. In many cases, as for example the growth of a particle cloud, the
collective motion of the two particles is of no interest, and the separation p.d.f.

Pr(R, t|R0,0) =
∫

P(M,R, t|R0,0)dM (1.17)

provides an adequate description. For an isotropic homogeneous flow, the first moment of
this p.d.f. vanishes and the second moment is given by

〈
[X(t|y1,0)−X(t|y2,0)]

2
〉
≡ 〈R(t)2〉=

∫
R2Pr(R, t|R0,0)dR. (1.18)

This second moment, the mean squared separation, gives the relative dispersion of the two
fluid particles and its evolution can be written in the very general form

d
dt

〈
R(t)2〉= F(R0, t), (1.19)

where, due to the assumption of homogeneity and isotropy, the function F can only depend
on the absolute value R0 = |R0| of the initial separation. With this, Kolmogorov’s hypotheses
can be applied to learn more about the function F and I will loosely follow Batchelor (1950)
for this procedure.

As a prerequisite for the first similarity hypothesis, |R(t)| needs to be much smaller than
the energy injection scale L, which results in the requirement that t and R0 be “not too large.”
Under these conditions, equation (1.19) can be expressed more precisely as

d
dt

〈
R(t)2〉= νF

(
R0ε

1
4

ν
3
4

,
tε

1
2

ν
1
2

)
, (1.20)

where the arguments of F are now dimensionless. In the case where R0, and thus |R(t)|, is in
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the inertial range, the second similarity hypothesis states that F can only depend on ε and
the involved time and spatial scales. This leads to

d
dt

〈
R(t)2〉= εt2F

(
R0

ε
1
2 t

3
2

)
, (1.21)

where the only constructible dimensionless variable depends on both R0 and t. Aside from
restricting R0, we can of course also constrain the time variable:

very small t : The mean squared separation can always be rewritten in terms of the particle
velocities as

d
dt

〈
R(t)2〉= 2

〈(
R(0)+

∫ t

0
V(t ′)dt ′

)
·V(t)

〉
, (1.22)

with V(t) =U(t|y1,0)−U(t|y2,0) being the relative velocity between the two particles.
In his original work, Batchelor (1950) assumed the initial separation and the velocity to
be uncorrelated, so that 〈R(0) ·V(t)〉 can be set to zero. Furthermore, in the limit where
t is very small, one finds that V(t ′)≈ V(t)≈ V(0) within the limits of the integration.
This should be valid as long as the two velocities are still strongly correlated, meaning

that t� t0, where t0 =
(
R2

0/ε
) 1

3 is the characteristic Kolmogorov time for an eddy of
size R0

6. For R0 in the inertial range, equation (1.21) then reduces to

d
dt

〈
R(t)2〉≈ 2t

〈
V(0)2〉= 2

11
3

C2(εR0)
2
3 t. (1.23)

This scaling law for the particle separation is known as Batchelor scaling. Note that the
prescribed linearity in time as a result of t being small, together with the assumption
of R0 being in the inertial range, are sufficient to completely determine F up to an
unknown constant C2.

intermediate t: For a sufficiently high Reynolds number and R0 in the inertial range, there
is a range of intermediate times, t > t0, for which |R(t)| is still in the inertial range but
much larger than the initial separation. In this case, one can argue that d

dt

〈
R(t)2

〉
does

not depend on the exact value of R0, so that equation (1.21) simplifies to

d
dt

〈
R(t)2〉≈ 3gεt2. (1.24)

Again, the evolution of the pair separation is fully determined except for a constant g,
termed Richardson constant. Equation (1.24) is respectively known as the Richardson-
Obukhov law (Richardson 1926, Obukhov 1941).

Apart from these early findings, another more recent consideration shall be presented here.
As mentioned above, Batchelor (1950) assumed the initial separation and relative velocity to

6One can also think of t0 as the eddy-turn-over time of an eddy of size R0. After one turn-over, the eddy looses
its coherence and the velocities of two fluid particles belonging to the eddy become uncorrelated.
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be uncorrelated. Without this assumption, equation (1.23) changes to

d
dt

〈
R(t)2〉≈ 2〈R(0) ·V(0)〉+2t

〈
V(0)2〉

≈ 2〈R(0) ·V(0)〉+C2(εR0)
2
3 t, (1.25)

which can be re-expressed in the form of the mean squared change of separation

d
dt

〈
δR2(t)

〉
≡ d

dt

〈
[R(t)−R(0)]2

〉
≈C2(εR0)

2
3 t. (1.26)

For a perfectly homogeneous and isotropic flow, equation (1.24) and equation (1.26) are
identical. There is some evidence, however, that for real flows, both experimentally and
numerically, this condition is only approximately fulfilled. In this case, the mean squared
change of separation shows much clearer scaling than the original expression by Batchelor
and should be used instead (Ouellette et al. 2006b). The Richardson-Obukhov law, on the
other hand, is identical for both the mean squared separation and the mean squared change of
separation since an independence from the initial separation was assumed in the derivation.

Please note that in the Lagrangian notation, the relation for 〈δu ·δa〉 in equation (1.16)
can be conveniently written as

1
2

〈
d
dt

V(t)2
∣∣∣
t=0

〉
= 〈V(0) ·A(0)〉=−2ε, (1.27)

where A(t) = d
dt V(t) is the relative acceleration between the two particles. This expression

can be understood as the Lagrangian equivalent of the 4/5-law.

1.3.3. Backward Dispersion
I have thus far focused on the dispersion of particle pairs over time that start with some
fixed initial separation. Naming this process forward dispersion, one can distinguish another
concept, where a fixed separation is prescribed at a later time and the dispersion of particle
pairs prior to that time is analyzed. This is called backward dispersion. As shown above, the
forward dispersion of a pair of fluid particles is given by 〈R(t)2〉 = ∫

R2Pr(R, t|R0,0)dR,
with Pr(R, t|R0,0) being the probability that X(t|y2,0)−X(t|y1,0) = R for y2− y1 = R0.
Accordingly, the backward dispersion can be written as

〈R(−t)2〉=
∫

R2Pr(R,− t|R0,0)dR =
∫

R2Pr(R0, t|R,0)dR, (1.28)

where stationarity and incompressibility7 of the flow are used for the second equality. The
alternative formulations in equation (1.28) correspond to the two notions that the particle
pair is either tracked from its initial condition backwards in time towards an earlier state, or

7For an incompressible flow, it can be shown that the displacement probability of two particles
obeys P(x1,x2, t|y1,y2,0) = P(y1,y2,0|x1,x2, t) (Lundgren 1981), which directly leads to Pr(R, t|R0,0) =
Pr(R0,0|R, t).
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R(−t)

R(0)
R(t)

Figure 1.2.: Sketch of the relative motion of two fluid particles with a fixed separation
|R(0)| = R0 at t = 0. If the particles are located inside a cloud of material at t = 0,
forward dispersion captures the dispersion of the cloud with time while backward
dispersion is connected to the concentration field at t = 0.

from an earlier state towards a fixed end state. Both interpretations are equally useful and
show an important difference to forward dispersion as illustrated in figure 1.2. Assuming
that the fluid particles are part of a material cloud at t = 0, forward dispersion describes
the spreading of the cloud whereas backward dispersion describes its formation. The latter
provides valuable information about how advected material coming from different locations
of a flow is brought together, which is apparently closely connected to scalar concentration
fields and turbulent mixing (Corrsin 1952, Durbin 1980, Frisch et al. 1999, Thomson 2003,
Celani et al. 2004, Sawford et al. 2005).

While forward dispersion has been studied extensively since the early works of Taylor
(1922) and Richardson (1926), backward dispersion has only recently become focus of
turbulence research. For the relative dispersion of fluid particles with an initial separation
R0 in the inertial range, recent studies found that dispersion happens faster backwards in
time than forwards (Sawford et al. 2005, Berg et al. 2006, Bragg et al. 2014). Sawford et al.
(2005) proposed that this time asymmetry can be captured by extending Richardson scaling
towards the backward case with

R2(t) =

{
R2

0 +g f εt3 for t > 0
R2

0 +gbε|t|3 for t < 0,
(1.29)

where the two scaling constants have been experimentally measured to be g f = 0.55 and
gb = 1.15 (Berg et al. 2006). The reliability of these result will be discussed later in this
thesis.
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1.3.4. Multi-Particle Dispersion

In recent years, new experimental techniques and ever-growing computer clusters have
enabled us to go beyond pair statistics and take first steps in the direction of multi-particle
dispersion (Chertkov et al. 1999, Falkovich et al. 2001, Biferale et al. 2005, Lüthi et al. 2007,
Hackl et al. 2011, Xu et al. 2011, Pumir et al. 2013). This overview will be restricted to
the theoretical essentials for describing n-particle dispersion with a focus on n = 4. Further
developments and ideas will be covered in chapter 4 as well as the discussion section of this
thesis.

The major benefit of looking at clusters of n > 2 fluid particles is that beyond the size of
the cluster, there is a multitude of additional shape information. In order to capture all of this
information, a clever description of the cluster is needed. In a homogeneous, d-dimensional
flow, a cloud of n particles can be described by a set of n−1 position vectors. In the field of
turbulence research, the usual notation for this set of vectors is

ρ
(m)(t) =

√
m

m+1

[
X(t|y(m+1),0)− 1

m

m

∑
l=1

X(t,y(l),0))

]
, m ∈ {1,2,...,n−1}, (1.30)

with ρ(m) being the mth ρ-vector. One can now construct a d× (n−1) matrix

P(t) =
(

ρ
(1)(t)ρ(2)(t)...ρ(n−1)(t)

)
, (1.31)

which contains the full geometrical information of the cluster. The singular value decompo-
sition of P(t) is then given by

P = U(t)diag(σ1(t),σ2(t), ...,σmin(d,n−1)(T ))WT (t). (1.32)

Here, W(t) is an (n− 1)× (n− 1) orthogonal matrix and gives the orientation in pseudo-
space, a vector space spanned by the numbering of the ρ-vectors. The singular values, σi,
contain the elongation of the cluster along different axes, and the d×d orthogonal matrix
U(t) gives the orientation in real space. In an isotropic flow, the orientation of the cluster
in real space does not matter, so that the full cluster can be described by min(d,n) singular
values and (n−1)(n−2)/2 Euler angles in pseudo-space. Since P does not transform as a
tensor, however, it is helpful to define the moment of inertia or shape tensor,

G(t)i j =
n

∑
a=1

ρ
(a)
i (t)ρ(a)

j (t) = (P(t)PT (t))i j, (1.33)

with i, j ∈ {1,2,...,d} being spatial indices8. The eigenvalues gi(t) of the shape tensor are
given by the squares of the singular values of P(t) and thus must be real and non-negative.
With this definition, the shape of any cluster of n particles can be fully described by the

8Instead of the shape tensor, one can also define the dispersion tensor C(t) = PT (t)P(t) =
W(t)diag(σ2

1 ,σ
2
2 , ...,σ

2
min(d,n−1))W

T (t). It has the same eigenvalues as G(t) and serves the same purpose
(Hackl et al. 2011).
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eigenvalues of the shape tensor together with (n−1)(n−2)/2 Euler angles. It is helpful to
sort the eigenvalues by size, with g1(t)≥ g2(t)≥ ...≥ gn−1(t).

The size of the cluster can be described by the radius of gyration, which is defined as the
squared distances of the individual particles from the center of mass of the cluster, Xcom(t).
In terms of the shape tensor, the radius of gyration is simply given by

R2(t) = ∑
m

(
X(t|y(m),0)−Xcom(t)

)2
= tr(G(t)) = ∑

i
gi(t). (1.34)

Four-Particle Clusters

A cluster of four particles in a 3D flow is of particular interest. Four points, forming a
tetrahedron, is the minimum constellation needed to describe a 3D volume. The number of
needed ρ-vectors to span the tetrahedron is given by n−1 = 3 and equals the dimension of
the flow. The ρ- vectors are given by

ρ
(1)(t) =

√
1
2

[
X(t|y(2),0)−X(t|y(1),0)

]
,

ρ
(2)(t) =

√
2
3

[
X(t|y(3),0)− 1

2
X(t|y(1),0)− 1

2
X(t|y(2),0)

]
,

ρ
(3)(t) =

√
3
4

[
X(t|y(4),0)− 1

3
X(t|y(1),0)− 1

3
X(t|y(2),0)− 1

3
X(t|y(3),0)

]
.

(1.35)

Figure 1.3 shows the special configuration of a regular tetrahedron, together with the cor-
responding ρ-vectors. For a regular tetrahedron, all edges have the same length l and the
ρ-vectors are perpendicular to each other with ρ(n) ·ρ(m) = l2

2 δnm, where δnm is the Kronecker
delta.

Due to (n−1) = d = 3, one finds that there are exactly three eigenvalues g1 ≥ g2 ≥ g3 and
three Euler angles needed to fully describe the tetrahedron. The eigenvalues alone suffice for
some classification:

• For g1 = g2 = g3 the tetrahedron is regular.

• For g1 ≈ g2� g3 the tetrahedron is close to two-dimensional (2D) (“pancake-like”).

• For g1� g2 ≈ g3 the tetrahedron is close to one-dimensional (1D) (“needle-like”).

Recently, it was found that tetrahedra starting with a regular shape with edge length l� L
at t = 0 deform into elongated pancake-like shapes with g1 > g2� g3 at later times (Pumir
et al. 2000, Biferale et al. 2005, Xu et al. 2008). This deformation can be explained by
the concept of the perceived velocity gradient tensor (Chertkov et al. 1999). In analogy to
the usual velocity gradient tensor, Ai j(x, t) = ∂ui(x,t)

∂x j
, the perceived velocity gradient tensor,

M(t), is defined over the four points of a tetrahedron by

v(a)(t) = ρ
(a)(t)T M(t), (1.36)
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l

X(t|y(1),0) X(t|y(2),0)

X(t|y(3),0)

X(t|y(4),0)

ρ(1)(t)

ρ(2)(t)

ρ(3)(t)

Figure 1.3.: A regular tetrahedron formed by a cluster of four fluid particles. All edges have
the same length, l. Three ρ-vectors are needed to fully describe the tetrahedron in a
homogeneous flow.

with v(a)(t) = d
dt ρ(a)(t) being the change in the ρ-vectors. From this, a perceived rate of

strain and perceived rate of rotation tensor can be derived as

S(t) =
1
2
[M(t)+M(t)T ] and Ω(t) =

1
2
[M(t)−M(t)T ]. (1.37)

For l in the dissipative range, these quantities are identical to the usual rate of strain and rate
of rotation tensors, SA(x, t) and ΩA(x, t), respectively. For an incompressible flow, one can
show that the velocity gradient tensor, and thus also the rate of strain tensor, are traceless,
that is tr(A(t)) = tr(SA(t)) = 0. This leads to the fact that the largest eigenvalue of SA(t),
s1, is positive and the smallest one, s3, is negative. Most importantly, however, Betchov
(1956) showed that, on average, the intermediate eigenvalue 〈s2〉 is positive as well. As a
consequence, there exist two straining directions and one compressing direction for most of
the time, leading to a coplanar transformation of a fluid element. Even though this result was
derived for the dissipative range, it was also confirmed both experimentally and numerically
for the perceived rate of strain tensor, S(t), with a somewhat smaller but still positive value of
〈s2〉 (Lüthi et al. 2007, Xu et al. 2008, Pumir et al. 2013). Consequently, also for tetrahedra
in the inertial range, a deformation into co-planar structures is expected.

Aside from the qualitative results for the shape deformation, a universal behavior of the
shape eigenvalues was observed. If time is rescaled with τη , for R0 in the dissipative range,
or t0, for R0 in the inertial range, the obtained results for various values of initial separation
and Reynolds number collapse onto one curve (Pumir et al. 2000, Xu et al. 2008). Here,

t0 =
(
l2/ε

) 1
3 is again the characteristic time for an eddy of size l. Furthermore, in analogy to

pair dispersion, a Richardson t3 scaling is expected for the eigenvalues gi and for the radius
of gyration 〈R2(t)〉 at times t� τη . So far, however, this scaling behavior was not observed
unambiguously (Pumir et al. 2000, Biferale et al. 2005, Xu et al. 2008).





CHAPTER 2

Experimental Methods

All experimental datasets used in this thesis were obtained by optical Lagrangian Particle
Tracking (LPT)1. In this measurement technique, a fluid flow is seeded with tracer particles,
whose motion is recorded from at least two angles. From the obtained videos, the trajectories
of the tracer particles in 3D space are then reconstructed (Maas et al. 1993, Malik et al.
1993). This reconstruction requires accurate, fast, and noise-robust algorithms, which are
explained in detail in section 2.1. Once the particles have been tracked, the velocity and
acceleration of the flow are computed along each trajectory. This step requires some care,
and the procedure is explained in section 2.2.

The experimental setup considered in this thesis consists of a turbulent water flow produced
by two counter-rotating propellers. As tracer particles, I used polystyrene microspheres
which were illuminated by a strong laser and then recorded by three high-speed cameras.
This setup, as well as the experimental procedure to record the videos, is described in detail
in section 2.3. Section 2.4 presents the datasets used in this thesis by means of their recording
parameters and some derived quantities (e.g. the Reynolds number) and section 2.5 covers
the topic of measurement uncertainties. All further data processing will be discussed in the
results part of this work.

2.1. Lagrangian Particle Tracking
Over many decades, Eulerian measurement techniques have provided a host of information
on turbulent flows. The most widely used technique is surely hot-wire anemometry, in which
the flow speed of a fluid is obtained at a single point in space by measuring the amount
of heat that is carried away from a small heated wire (King 1914). More suited for the

1Another often-used term is Particle Tracking Velocimetry (PTV). Historically, however, this term was used
for a technique measuring a Eulerian flow field (Adrian 1991), so that LPT should be used in order to avoid
ambiguities.
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analysis of flow patterns is particle image velocimetry (PIV). In the standard implementation
of this technique, a 2D area of a densely seeded flow is illuminated by a laser sheet, and two
pictures are taken in fast succession. These pictures are then divided into subareas, and the
correlation between the corresponding subareas of both images is computed. This can be
used to reconstruct the flow field at one instance in time (Adrian 1991).

It is apparent that, despite the importance of these techniques for understanding turbulent
flow, they do not provide a full picture. Especially for intrinsically Lagrangian phenomena
like turbulent mixing or dispersion, studying the trajectories of fluid particles moving with the
flow can provide great additional insight. Due to this, Lagrangian measurement techniques
like LPT were developed. While optical LPT systems have been employed for more than 50
years (Chiu & Rib 1956), widespread use only started in the early 1990’s, when high-speed
cameras and digital image processing allowed for high temporal and spatial resolution and
automated data processing.

Indeed, the right choice of data processing algorithms for reconstructing the particle
trajectories is at the core of LPT measurements and crucial to its accuracy. The trajectory
reconstruction can be split into three steps:

• Finding the particle centers on the image plane of each camera.

• Matching the particle centers from all cameras to reconstruct 3D particle positions.

• Tracking the particles in time.

In the next sections, I will describe each of these steps in detail and explain which algorithms
were used for analyzing the recorded data. All three steps are implemented in a C++
particle-tracking code2. I loosely follow Ouellette et al. (2006a).

2.1.1. Particle Center Finding
In order to successfully reconstruct as many particle trajectories as possible, it is most crucial
to locate the particles on the camera image planes with high precision. The search algorithm
must thus identify the particle centers with subpixel accuracy at non-vanishing noise levels
and with low computational costs. Furthermore, overlapping particles must be distinguished.

The scattered light of a particle that is illuminated by a bright light source will be repre-
sented by a certain intensity profile on each of the camera image planes. Figure 2.1 shows an
image recorded by one of the high-speed cameras, as well as two close-up views. If particles
are close to each other or behind each other from the perspective of one of the cameras, the
intensity profiles will overlap and build a cluster of bright pixels with several local maxima
on the image plane of this camera. I will use the common assumption that each intensity
maximum corresponds to one particle.

For the case of particles with an arbitrary intensity profile, a simple, weighted average
can be used to obtain the particle centers. To do this, however, pixel clusters with more
than one intensity maximum need to be separated into subgroups in order to distinguish

2I would like to acknowledge that all C++ codes for the LPT procedure presented in this section were written
by Nicholas T. Ouellette and Haitao Xu (Ouellette et al. 2006a, Xu 2008).
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Figure 2.1.: A subsection of 320×320 pixels from a frame of a recorded video. The image
displays approximately an area of (5 cm)2. For better visibility, the color map is rescaled
to the lowest 64 gray values. The original video has 640×640 pixels and 256 gray
values (8 bit). Close-up views of the intensity profile for a single particle (top) and for
two overlapping particles (bottom) are shown on the right. Each pixel is labeled with its
gray value and red circles indicate the intensity maxima. For each of the pictures on the
right, one center finding method is sketched exemplarily. For the single particle profile,
the pixels used for the Gaussian fit method are labeled in red (horizontal) and yellow
(vertical). For the two overlapping particle profiles, the edges of the pixel subgroups as
used for the weighted average method are shown in green.
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the overlapping particle intensity profiles. Following Maas et al. (1993), this devision can
be accomplished by assuming that the light intensity of a particle profile should decrease
monotonically. The pixels with the lowest intensity are assigned to the neighboring pixel
with the highest intensity (see figure 2.1). For every subgroup, corresponding each to one
particle, a weighted average can be applied. With ∑p being the sum over all pixels of a
subgroup around an intensity maximum, the particle center is given by

xc =
∑p xpI(xp)

∑p I(xp)
. (2.1)

This center-finding method is very fast and has an acceptable robustness to noise, but it
comes at the cost of poor resolution (Ouellette et al. 2006a).

If a functional expression for the particle intensity profile were known, a corresponding
fit would of course yield a much better result for the particle center. Despite the lack of
such an exact functional expression, it was shown that the intensity profile of a spherical
particle can be approximated well by a 2D Gaussian function (Westerweel 1993, section 2.5).
Since a Gaussian profile has only one intensity maximum, fitting 2D Gaussian profiles to
each maximum of a group of bright pixels already distinguishes overlapping particles, and a
separate step to split the cluster into subgroups is not needed. A 2D Gaussian fit, however, is
computationally expensive and needs a high number of involved pixels to produce accurate
results. A minimum of five pixels are needed to determine all fit parameters. It was shown by
Ouellette et al. (2006a) that two 1D Gaussian functions, one for the horizontal and another
for the vertical particle position, yield similar or better results for a noisy image (see also
Cowen & Monismith 1997). Additionally, when limiting the fits to the intensity maximum
and its closest horizontal and vertical neighbors, an analytical solution can be found. Fitting
the intensity profile

I(xi) =
I0√
2πσ

exp

[
−1

2

(
xi− xc

σ

)2
]

(2.2)

to the intensities of the pixels at positions xi ∈ {x1,x2,x3} (see figure 2.1), one obtains for the
particle center in this direction

xc =
1
2
(x2

1− x2
2) ln[I(x2)/I(x3)]− (x2

2− x2
3) ln[I(x1)/I(x2)]

(x1− x2) ln[I(x2)/I(x3)]− (x2− x3) ln[I(x1)/I(x2)]
. (2.3)

Since the intensities I(xi) are digitized, e.g. with I(xi) ∈ {0,..,255} for an 8-bit image, the
logarithms in equation (2.3) can be precomputed once and reused as often as needed during
the image processing. Fitting the intensity profile with two 1D Gaussian functions thus leads
to a very efficient image analysis with excellent results. Therefore, this center finding method
was used for all datasets presented in this thesis.
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2.1.2. Calibration
In order to reconstruct the 3D coordinates of the particles from their center points on the
image planes, it is necessary to know where a certain point in the measurement volume would
appear on the different camera image planes. For this purpose, a relation between the world
(or laboratory) coordinates of a point and its image coordinates needs to be established. This
can be accomplished by executing a calibration procedure before each series of recordings.
For the work presented in this thesis, a calibration method developed by Tsai (1987) was
used which shall be briefly explained here. The procedure can be divided into four steps.

Step 1: From world coordinates to camera coordinates
The world coordinate of a point P in the measurement volume shall be given by
xw = (xw,yw,zw)

T , where the origin, Ow, and the orientation of the world reference
frame can be arbitrarily chosen. One now defines a new 3D coordinate system, whose
origin Oc is at the optical center of the camera and whose xy-plane is parallel to the
camera image plane. In this camera reference frame, the coordinates of the point P are
given by

xc = R ·xw +T, (2.4)

where R is a rotation matrix and T = (Tx,Ty,Tz)
T a translation vector. This transforma-

tion requires the knowledge of six external parameters, three Euler angles for R and
the three components of T , in order to describe the arrangement of the camera system.

Step 2: Undistorted projection onto the image plane
Assuming an ideal pinhole camera with an effective focal length f , the projection of
the point P onto the image plane yields

(
xu

yu

)
=

f
zc

(
xc

yc

)
, (2.5)

with xu and yu being the undistorted image coordinates. The effective focal length f is
given by the distance between the image plane and the optical center Oc.

Step 3: Adding distortion
In addition to the projection in step 2, every real camera system introduces some level
of distortion. The resulting distorted image plane coordinates can be written as

(
xd
yd

)
+

(
Dx

Dy

)
=

(
xu

yu

)
, (2.6)

with some general distortion functions Dx(xd) and Dy(xd). According to Tsai (1987),
the full camera distortion can be well approximated by the leading order term of a
purely radial distortion, so that Dx ≈ κr2xd and Dy ≈ κr2yd with r2 = x2

d + y2
d . The

distorted image plane coordinates are thus given by
(

xd
yd

)
(1+κr2) =

(
xu

yu

)
=

f
zc

(
xc

yc

)
, (2.7)
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where equation (2.5) was used at the second equality. Equation (2.7) contains two
intrinsic parameters, the effective focal length, f , and the distortion parameter, κ .

Step 4: From image coordinates to computer coordinates
The last step deals with the transformation from the image plane coordinates to the
computer image coordinates as stored by the camera. Allowing different spacings be-
tween the pixels in the horizontal and vertical direction, the final computer coordinates
are given by (

x f

y f

)
=

(
sx xd

yd

)
. (2.8)

For an ideal pixel array, the parameter sx should equal unity. In this case, sx can be
used later as a measure for the accuracy of the calibration. Note that Tsai (1987)
introduces several more parameters for the transformation in equation (2.8), some of
which can be absorbed into the effective focal length while some others do not apply
to the cameras used here.

Joining steps one through four, the relation between the world coordinates of point P and its
coordinates (x f ,y f ) on the recorded computer image is given by

1
sx
(1+κr2) x f = f

Rx ·xw +Tx

Rz ·xw +Tz
, (2.9)

(1+κr2) y f = f
Ry ·xw +Ty

Rz ·xw +Tz
, (2.10)

with r2 = (
1
s

x f )
2 + y2

f , (2.11)

using the notation R = (Rx,Ry,Rz)
T . Tsai (1987) pointed out that the lack of tangential

distortion, as given by step 3, leads to great simplifications in solving the above equations.
Since a pure radial distortion does not change the direction of the vector xu on the image
plane and, by construction, (xu,yu) has the same orientation as (xc,yc), one finds that xd and
(xc,yc) must be parallel. This leads to the mathematical requirement of a vanishing cross
product, xd×xc = xdyc− ydxc = 0, called the radial alignment constraint. In terms of the
world and computer coordinates, this cross product can be rewritten as

1
sx

x f (Ry ·xw +Ty)− y f (Rx ·xw +Tx) = 0. (2.12)

With the correct choice of variables, this expression can be cast into a set of linear equations
with

(−xdxw, ydxw, yd) ·




Ry/Ty

sxRx/Tx

sxTx/Ty


= xd . (2.13)

For known world and computer coordinates of enough points P, the full rotation matrix, as
well as the parameters Tx, Ty, and sx, can be determined. The remaining parameters, Tz, f ,
and κ , can then be obtained by iteratively solving equations (2.9) and (2.10).
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2.1.3. 3D Matching

After a relation between laboratory and image coordinates has been established, the matching
procedure is straightforward (see figure 2.2). For each particle center found on the image
plane of camera 1, the line of possible positions in the measurement volume is calculated.
With some tolerance band, this line is then projected onto all other cameras. For each particle
center within this band, this particle’s line of possible positions is then calculated as well.
The minimum distance for all possible combinations of particle positions is calculated and
the best hit is considered as the real particle position.

Please note that with this method ambiguities can arise from particles that, in the coordinate
system of one of the cameras, are right behind each other and are thus projected onto the
same point on the image plane of this camera. These ambiguities arise especially for high
particle-seeding densities, and they can only be resolved by using more than two cameras
(usually three or four). Furthermore, Maas et al. (1993) pointed out that more cameras also
lead to a better accuracy of the particle coordinates.

d1
d2

Figure 2.2.: Reconstruction of the 3D particle coordinates from the particle centers on the
image planes of two cameras. The green line is the line of possible positions for one
particle center on the left image plane, which is then projected onto the right image
plane (green band). For each particle center in the band, a line of possible positions
is constructed as well (blue lines). The “real particle position” is chosen to be that
combination of possible particle positions from both image planes for which the distance
di is smallest (circle).
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2.1.4. Particle Tracking

There are multiple algorithms for tracking particles in time, all with different advantages and
disadvantages. In Ouellette et al. (2006a), several of these algorithms were compared, and a
four-frame, predictive algorithm showed the best performance for a numerically-simulated
turbulent flow. This method is implemented in the particle-tracking code used for this thesis
and shall be explained briefly.

The first two time steps of a particle trajectory are linked together by the nearest neighbor
method (see figure 2.3(a)). Then, for any time step n with particle coordinates xn, the
position of the particle at time step n+1 is estimated according to x̃n+1 = xn + ṽn∆t, where
ṽn is a velocity computed from the frames n and n−1, and ∆t is the time lapse between two
frames. For each particle occurrence in the vicinity of this hypothetical position, a particle
position at time step n+2 is then estimated as x̃n+2 = xn+ ṽn(2∆t)+ 1

2 ãn(2∆t)2, where ãn is
an acceleration computed from the frames n−1 to n+1. For the continuation of a track, the
particle position at time step n+1 for which the prediction at n+2 is closest to a measured
particle position is picked (see figure 2.3(b)). The other considered positions are rejected
and the algorithm proceeds with the next time step. This algorithm can handle occasional
loss of the particle image for up to three frames.

n

n-1

(a) Nearest Neighbor

n

n-1

(b) Four-Frame Best Estimate

Figure 2.3.: Sketch of the used tracking algorithm. Black circles and black lines represent
already connected particle positions. Gray circles indicate possible particle positions
at time step n+ 1, while red circles indicate possible particle positions at time step
n+2. Open black circles indicate estimated particle positions and large dashed circles
represent the corresponding search area. The arrows indicate the chosen particle
positions at time step n+1. Adapted from Ouellette (2006) with friendly permission.
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T

Figure 2.4.: Sketch of the reconnection of a broken trajectory. A broken trajectory (black
line) and two hypothetical continuations (green and yellow lines) are shown. Each dot
on those lines represents one particle position. For each hypothetical continuation, it is
checked if the distance in position-velocity space is smaller than a certain search radius
(sketched as green and yellow cones). From the continuations fulfilling this condition
- here only the green one - the continuation with the shortest distance is chosen. The
missing points between the broken trajectory and its continuation are spanned by linear
interpolation (red dashed line).

If an ambiguity appears during the tracking process, the track is stopped at the current
frame and a new track is started at the next frame. The same happens if a particle is lost
for more than three frames due to insufficient illumination. Some of these broken tracks
can be reconnected after the completion of the main tracking process. In this thesis, an
algorithm similar to the one described by Xu (2008) is used. For each trajectory, the position
and velocity for the first and last frame are used to reconnect tracks in position-velocity
space. Starting with a trajectory i, for which the position and velocity at the end point
te
i are given by xe

i and ue
i , respectively, each other trajectory j with a starting point ts

j
and 0 < ts

j− te
i < T is taken as a hypothetical continuation. The chosen maximum search

time T must be smaller than the time in which the average distance traveled by a particle
equals the average separation between the particles in the flow. For each hypothetical
continuation j, the trajectory i is extrapolated linearly for times te

i < t < ts
j . The extrapolated

position and velocity at time t are given by xp
i (t) = xe

i +
1
2(u

e
i + us

j)(t − te
i ) and up

i (t) =
ue

i , respectively3. The distance in position-velocity space at time ts
j is then computed

with di j =
√
|xp

i (t
s
j)−xs

j|2 +[|up
i (t j)−us

j|(ts
j− te

i )]
2. From all hypothetical continuations

which fulfill the condition di j < dm(t), the one with the smallest distance di j is chosen (see

3Xu (2008) showed that a more advanced computation method of up
i (t) using the acceleration at time te

i slightly
improves the reconnection procedure if the accelerations are well resolved.
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figure 2.4). Here, the search radius grows with time as dm(t) = δx+ dmax−δx
T (t− te

i ), where
the search radius at t = te

i , δx, is given by the uncertainty of the position measurement. If
two hypothetical continuations yield the same distance in position-velocity space, the one
with an earlier starting point ts

j is picked. Once a continuation is chosen, the missing particle
positions between the initial trajectory and its continuation are filled by linear interpolation.
The interpolated points are marked accordingly in the data file.

All trajectories, reconnected or not, are stored in a specific binary data format, with each
file containing all trajectories from one video (see appendix C.2).

2.2. Velocity and Acceleration Computation

After the completion of the tracking procedure, the particle velocities and accelerations can
be computed along the trajectories. For ideal tracer particles, these coincide with the flow
velocity and acceleration at the particle position. Since the particle tracks are only known
at discrete time steps (i.e. every frame), there are several options to obtain differentiated
quantities: Approximating the derivatives by finite differences; fitting the trajectory and
differentiating the resulting function; or using a convolution with a specified kernel. While
finite difference methods are very sensitive to noise, Voth et al. (2002) showed that parabolic
fitting shows good results, provided that the correct length scale for the fit is chosen. The
same holds true for the Gaussian convolution method, which is used in this thesis (Mordant
et al. 2004).

For a Lebesgue integrable function f (s) ∈ L1(R), the convolution with a Gaussian kernel
g(s) = 1

σ
√

2π
exp[−1

2(
s
σ
)2] is given by

( f ∗g)(s)≡
∫

∞

−∞

f (s− τ)g(τ)dτ. (2.14)

This convolution smooths out the function f (s) by averaging over all values of f (s+ τ),
where the weighting decreases with |τ|. For the derivative of the convoluted function, it can
be shown that

( f ∗g)′ = f ′ ∗g = f ∗g′, (2.15)

so that taking the derivative of f (s) and subsequently performing a simple smoothing is
equivalent to convoluting f (s) with a differentiated kernel.

For a discrete function f [n] with n ∈ N, the convolution is defined as

( f ∗g)[n]≡
M

∑
m=−M

f [n−m]g[m], (2.16)

where g[m] now represents a discretized convolution kernel with a finite support m ∈
{−M,−M+1, ...,M} and the normalization condition ∑m g[m] = 1. In those circumstances
where no functional expression of f [n] is known, the second term in equation (2.15) can be
used to obtain the derivative of f [n] for a known kernel g[n]. For this purpose, the functional
expression of the convolution kernel needs to be differentiated, discretized over a finite
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support, and then correctly normalized. For a Gaussian kernel g(s), discretization leads to

g[n] =
1

∑n exp[−( n
w)

2]
exp[−( n

w
)2] for n ∈

{
− l

2
,− l

2
+1, ...,

l
2

}
, (2.17)

where w is the filter width, corresponding to
√

2σ , and l is the length of the support, hence-
forth referred to as filter length. A usual choice for the filter length is l = 3w, corresponding
to about 4.2σ . The prefactor in equation (2.17) ensures that the kernel is properly normalized,
with (1∗g[n]) = 1. The corresponding derivatives are then given by

g′[n] =
n

∑n−n2 exp[−( n
w)

2]
exp[−( n

w
)2] (2.18)

and g′′[n] =
1

∑n
n2

2 g′′0[n]− 1
l ∑n g′′0[n]∑n

n2

2

(
g′′0[n]−

1
l ∑

n
g′′0[n]

)
, (2.19)

with g′′0[n] = [1−2( n
w)

2]exp[−( n
w)

2]. The first derivative is normalized such that (n∗g′) = 1
and (1∗g′) = 0, while (n2

2 ∗g′′) = 1 and (1∗g′′) = 0 for the second derivative.
Figure 2.5 (a) shows a discretized Gaussian kernel, as well as its first and second deriva-

tive, in comparison with the continuous case. An application to a noisy test function is
shown in figure 2.5 (b) and illustrates an overall good result. Only the extrema are slightly
underestimated, which is to be expected from a smoothing kernel. Figure 2.5 (b) also reveals
that, by construction, the derivatives cannot be computed for the last l/2 points at each end
of the dataset due to the length of the kernel.

The next important step is to find the best filter length for the convolution kernel. It can be
easily deduced from figure 2.5 (b) that for an overly short filter length, in this case e.g. l = 3,
noise has a dominant contribution to the derivatives. On the other hand, if the filter length is
too long, e.g. l = 30, finer variations of the data are lost to the smoothing. Analyzing the root
mean square (rms) acceleration for a turbulent flow as a function of the temporal filter length
τ f = lδ t, where δ t is the time between two frames, Voth et al. (2002) found that no range of
τ f exists for which the result is independent of τ f (see figure 2.6). They showed, however,
that an approximate exponential behavior can be observed for large τ f , while a τ

−5/2
f scaling

due to uncorrelated Gaussian noise is dominant at small τ f . Even though there is no filter
length for which the noise contribution is zero and no information is lost to smoothing, there
exists a crossover of the two effects where the contribution due to noise becomes small and
the loss of information is still acceptable. This is where τ f is chosen, the exact value being
worked out individually for each dataset. All trajectories of all videos of one measurement
are then stored in a single binary file, the velacc-file, containing the full information about
position, velocity and acceleration of the tracer particles (see appendix C.3).

Once the particle velocity and acceleration have been computed for all trajectories, some
Eulerian flow properties are derived, e.g. the velocity and acceleration moments as well as
the structure functions Sp(r). Note that in the present case of a homogeneous, stationary
flow, all relative quantities are statistically independent of position, x, and time, t, so that the
average can be taken over all particle pairs which have a separation |R|= R0±∆R0 at any
point in time.
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Figure 2.5.: (a) Discretized Gaussian convolution kernel ( ) and its first ( ) and second ( )
derivative. The corresponding continuous kernels are represented by solid lines. The
filter length is l = 15 and the width is w = 5. (b) For an analytical test function f (n)
(black line), a corresponding noisy, discrete function f [n] ( ) was generated. The first
( ) and second ( ) derivatives were then obtained with the convolution kernels shown in
(a). The blue and cyan lines represent the true derivatives of f (n).
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Figure 2.6.: Plot of the rms acceleration in the x direction of a real dataset as a function of
the temporal filter length. The ideal filter length is close to the crossover of the shown
exponential fit for short τ f and the power-law fit for large τ f .
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From the flow statistics, one then calculates the energy transfer rate ε , the energy injection
scale L, the Reynolds number, and the Kolmogorov microscales η and τη . There are several
options to compute the energy transfer rate. In section 1.2, it was shown that for an isotropic
flow at the limit of infinite Reynolds number, the third-order longitudinal structure function
is exactly given by S3(r) = −4

5 εr and the second-order longitudinal structure function is
approximately S2(r) =C2(εr)

2
3 with the Kolmogorov constant C2 ≈ 2.1 (Sreenivasan 1995).

Furthermore, for a homogeneous flow, 〈δu ·δa〉=−2ε as given in equation (1.16). With ε

and the rms velocity u′ = 〈1
3 u2〉 1

2 , the energy injection scale is simply given as L = u′3
ε

, and
for the Taylor scale Reynolds number4, one finds

Rλ =

√
15

u′4

νε
. (2.20)

The Kolmogorov microscales are then computed as defined by equation (1.12): η = (ν3/ε)
1
4

and τη = (ν/ε)
1
2 .

2.3. Experimental Setup
The experimental setup consists mainly of three parts: A flow chamber, a laser for illu-
mination, and three high-speed cameras with corresponding computational periphery, all
depicted in figure 2.7. I will describe these hardware components briefly in section 2.3.1. The
general measurement routine is described in section 2.3.2 and an overview of the calibration
procedure is given in section 2.3.3.

2.3.1. Hardware
Three Phantom V12.1 high-speed cameras from Vision Research were used to obtain videos
of the tracer particles. At a resolution of 640x640 pixels, videos can be taken at frame rates
of up to 20000 frames per second (FPS). Since the cameras only contain an internal storage
capacity of 8 GB, it is necessary to download the videos after a short recording time. For this
purpose, the cameras are connected to a network switch via a 1 Gbit/s Ethernet connection.
From there, the data is transferred via a glass fiber cable to the in-house Linux cluster. With
a download rate between 40 and 50 MB/s, a video with a length of 1 s takes approximately
1 min to download.

For the illumination of the tracer particles, two different lasers with very similar specifica-
tions were used, of which only one will be described here: the Mirage 100DY from DDC
Technologies5. It is a frequency doubled Nd:YAG laser with a wavelength of 532 nm, used
in a Q-switched mode with a pulse repetition rate of around 20 kHz. The laser is used at its

4For homogeneous, isotropic flows, the Taylor scale Reynolds number, Rλ = u′λ
ν

, is often the preferred
parameter to describe the flow. This is due to the fact that Rλ depends on the Taylor scale, λ =

√
15νu′2/ε ,

which was historically easier to measure than the integral length scale, L (see e.g. Pope 2000, chapter 6.3).
5The other laser was a self-built replicate of the Mirage 100DY, constructed by Haitao Xu, Fabio Di Lorenzo
and myself. It generated a similar output power at the same wavelength and pulse rate.



36 Chapter 2. Experimental Methods

5 cm

Laser beam

Camera 1

Camera 2

Camera 3

Figure 2.7.: A picture of the experimental setup. The lines of sight of the cameras are shown
in white while the path of the laser beam is sketched in green. The inset shows one of
the propellers.

highest power output of P = 38.0±1.0 W. After exiting the laser head, the laser beam is
collimated, expanded, and guided to an entrance window of the flow chamber (see figure 2.7).

The body of the flow chamber consists of a stainless steel cylinder with an inner diameter
of 48 cm and a height of 58 cm. Two circular glass windows with a diameter of 11 cm serve
as entrance and exit points for the laser beam, thus forming an upper limit to the illuminable
area. The laser beam passes horizontally through the center of the cylinder. Four windows,
one each above, below, to the left, and to the right of the exit window, allow optical access of
up to four cameras. For this thesis, cameras were positioned in front of all but the top window
(see figure 2.7). A last access point is mounted at the side of the tank for maintenance
purposes. All windows consist of two parallel sheets of glass, joined by simple glass spacers.
While one sheet seals the tank, the other is positioned further inside, close to the inner tank
surface. Water can enter the volume between the two sheets but the flow velocity in this
region is close to zero. This way, the breaking of the rotational symmetry of the cylinder due
to the window flanges is minimized.

The tank is closed by two cooling plates at the top and bottom. The plates have an
internal spiral channel that is connected to an external chiller (ThermoFlex 2500 by Thermo
Scientific) in order to keep the fluid temperature at a constant value of 20.5±0.5◦C. A
thermometer in the top plate continuously measures the temperature inside the tank. Several
tubes are connected to the top and bottom plates to fill or drain the tank and filter the water.
Water may also be recirculated by a pump from the top to the bottom of the tank through an
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Figure 2.8.: Sketch of the flow chamber with the stainless steel cylinder removed. The
flow field is shown by the colored arrows. The dashed circle in the center indicates the
measurement area.

open reservoir. This way, bubbles can be removed and substances like additives or tracer
particles can be introduced into the flow. Two counter-rotating propellers at the top and
bottom of the cylinder produce the desired flow field. They have a disk-like shape with
eight symmetrically distributed vanes (see insert in figure 2.7) and a total diameter of 25 cm.
Between the propellers and the cylinder wall, eight plastic inserts are installed to suppress
a large-scale, rotational flow. The propellers are powered by two 7.5 kW-motors and their
rotation frequency is varied from 0.50 Hz to 1.10 Hz for the experiments shown in this work.
The rotation frequency is recorded by proximity sensors at each propeller shaft. The error
bounds on the frequency measurement are ±0.01 Hz. Figure 2.8 shows the characteristic
flow field, a so-called Von Kármán Swirling Flow (for an overview see e.g Nore et al. 2003,
and references therein). At the center region of the tank, where our observation area is
positioned, the mean velocity field is negligible, while turbulent fluctuations are strong. Due
to the finite size of the laser entrance window, the diameter of the observation area cannot
exceed 9−10 cm.

2.3.2. Data Collection

As described above, due to the limited internal storage of the cameras, only short videos
can be recorded, and they must be download before proceeding with the next recording.
It is thus beneficial to automate a repeating recording scheme and to use the download
time for preprocessing. To this end, three nodes of the in-house Linux cluster are used to
download and preprocess the videos, which are then stored on the cluster’s internal hard
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drives. A server runs on each node to control communication with the cameras. A sketch of
the network is shown in figure 2.9.

During the experiment, a master computer is used to control the cameras, the laser, and
the communication with the nodes on the cluster. At the beginning of each video, the master
computer opens the shutter of the laser via a relay and, after a short delay of approximately
2 s, sends the start signal to the cameras. The delay allows the laser intensity to stabilize6.
The cameras and laser are synchronized by a frequency generator. The frequency signal to
the cameras is divided by a factor of either two or three, leading to multiple laser pulses per
frame. The frequency signal to the laser, on the other hand, is delayed by 5 µs to ensure
that no laser pulse is lost between frames. After a preset time of recording, usually 1 s, the
computer sends the stop signal to the cameras and closes the shutter. Then, the download of
the videos to the cluster nodes is started. To do so, each node communicates with one of the
cameras.

PC

relay

Switch

FG

cam 0

cam 1

cam 2

Laser
Q-Switch

Shutter

Cluster
node 1

node 2

node 3

glas fiber

delayed1:n

Figure 2.9.: Sketch of the network connecting the laser, the cameras, and the computers.
Controlled by a computer (PC), a relay opens the shutter of the laser and, after some
seconds, the PC starts the recording of a video. A frequency generator synchronizes
the laser pulses with the start of each video frame. There are multiple laser pulses per
frame with the first pulse shortly after the start of the frame. The recorded video can
then be downloaded to the cluster where it is preprocessed and stored.

The cameras return the videos in a format providing a gray value for each pixel. For
an 8 bit grayscale image, as used in this thesis, this results in a file size of approximately
400 kB per frame for a resolution of 640x640 pixels. Since the images are sparse, a lot of
space can be conserved by rewriting them in another format. For this purpose the videos
are transformed during the download into the .gmv format (Göttingen Movie format, see
appendix C.1). In the .gmv format, only bright pixels with an intensity above a chosen
threshold7 are stored, together with the pixel coordinates. Each bright pixel thus needs 24 bit

6Since the pumping of the optical medium continues while the shutter is closed, the first pulse after opening the
shutter has a very high intensity and the optical medium becomes nearly depleted. From there on, the laser
intensity oscillates for some time until it stabilizes at a constant pulse intensity.

7The threshold is set according to the intensity histogram of a short test video recorded at the beginning of an
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of storage (16 bit for the coordinates, 8 bit for the intensity), compared to 8 bit of storage for
each of the 409600 pixels of the uncompressed videos.

After completion of the download on all three nodes, the recording of a new video is
initiated by the master computer.

2.3.3. Calibration

In section 2.1.2, the theoretical concept of the calibration procedure was described. In
order to obtain the calibration parameters from equations (2.9), (2.10), and (2.13), the world
and computer coordinates of several points in the measurement volume must be recorded.
Experimentally, this is achieved by inserting a dot patterned mask into the center of the
tank. The mask is positioned parallel to the symmetry axis of the tank and perpendicular to
the laser path, thus defining the yz-plane of the world reference frame. Figure 2.10 shows
images as recorded by the three cameras. Using a micrometer screw, the mask is then moved
along the xw direction, taking images at fixed intervals. The coordinates of at least one
hundred points, distributed in the whole intended observation volume, are recorded during
one calibration measurement, leading to an over-determination of the calibration equations
and thus very high precision.

(a) Camera 1 (b) Camera 2 (c) Camera 3

Figure 2.10.: Calibration images from all three cameras with the mask being positioned at
xw = 0. The three large, black dots are for orientation purposes inside the regular dot
pattern. The dot pattern has a spacing of 7.62 mm in both the horizontal and vertical
direction. Labeling of the cameras is according to figure 2.7.

2.4. Datasets
For this thesis, several datasets were recorded and, together with an already existing dataset,
evaluated with respect to the dispersion of particle clusters, forwards and backwards in time.
These datasets are briefly presented below, concerning both their experimental parameters
and statistical properties.

experiment. This threshold is then used for all subsequent videos of that experiment.
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As a fluid, deionized water was used, either pure or with minute amounts of added
polyacrylamide. The effect of the added polymer will be discussed in detail in chapter 5. The
kinematic viscosity of the pure deionized water is given by ν = 0.99710−6 m2

s at 20◦C 8.
Datasets were recorded at three different propeller frequencies and three different con-

centrations of polyacrylamide. A set of two measurements was performed for each of the
nine flow configurations: one with a small and one with a large measurement volume. The
large measurement volume allows to track particle positions for a long time while the small
measurement volume yields higher resolution data, usable for computing time derivatives and
other high-precision quantities like the energy transfer rate. Table 2.1 shows the recording
parameters for the small and large measurement volume as well as the already existing
dataset.

∅V [ cm] resolution δx [ µm] δ t [ ms] d [ µm]

small Volume 2.7 640x640 10 0.10 45
large Volume 8.0 640x640 50 0.14 80

existing data9 5.0 256x256 40 0.04 25

Table 2.1.: Experimental recording parameters for the used datasets. The diameter of the
measurement volume, ∅V , is estimated by fitting the largest possible sphere into the
area visible by all three cameras. The accuracy of the 3D center finding is given by
δx, which is obtained from the calibration measurement. For more than 90% of the 3D
calibration points, the maximum distance between the projections from the different
cameras is smaller than δx. The time lapse between two successive frames, δ t, is a
measure for the temporal resolution. The mean diameter of the tracer particles, d, is
given in the last column.

As discussed in section 2.2, there are three ways to compute the energy transfer rate.
One can use the structure functions, S2(r) = C2(εr)

2
3 and S3(r) = −4

5 εr, or the relation
〈δu ·δa〉 = −2ε . For the functional expressions of the structure functions, homogeneity,
isotropy, and a very large Reynolds number were assumed. For 〈δu ·δa〉, on the other hand,
only homogeneity is required and it was shown experimentally that moderate Reynolds
numbers are sufficient (see Ouellette et al. 2006b, Figure 7).

The experimental flow studied in this thesis is only approximately isotropic and homo-
geneous, with the magnitude of the mean flow being up to 20 % of the magnitude of the
turbulent velocity fluctuations in the measurement volume (see appendix B.1). Furthermore,
only moderate Reynolds numbers are reached. This suggests that 〈δu ·δa〉 should yield the
best result for the energy transfer rate, ε . Figure 2.11 shows all three ways to obtain ε for a
dataset with a propeller frequency of 0.9 Hz and without polymers. The measured quantities

8The kinematic viscosity of the polymer solutions is close to the one of the water case. It’s exact value is
unimportant, however, since it is not needed for any further calculation.

9This dataset was recorded by Nicholas Ouellette at a previous version of the French Washing Machine
described above. For further information see (Ouellette 2006).
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Figure 2.11.: Three different ways to obtain the energy transfer rate. The shown dataset
corresponds to a flow with a propeller frequency of 0.9 Hz and without polymers. The
horizontal line depicts the mean value of −1

2〈δu ·δa〉 in the range 50η ≤ r ≤ 1
5 L.

are compensated in such a way that they should show a plateau with height ε in the inertial
range. It can be clearly seen that, while the structure functions do not display a plateau,
〈δu ·δa〉 shows a constant, if somewhat noisy, value for ε over a range of scales. The energy
transfer rates for all flow configurations studied in this thesis were thus obtained by fitting
a horizontal line to the plateau of the compensated expression for 〈δu ·δa〉 in the range
50η ≤ r ≤ 1

5 L, using the data from the small measurement volume10. The uncertainty on
the energy transfer rate is estimated to be 10 % (see section 2.5). Please note, however, that
the mean flow becomes more dominant with an increasing distance from the tank center, so
that the mean energy transfer rate measured from the large measurement volume experiment
can differ up to 20 % from the small measurement volume experiment11. On the other
hand, due to the larger volume, finite volume effects are smaller and the plateau of 〈δu ·δa〉
extends beyond 20 mm (∼ L/3), indicating the true extend of the inertial range. All n-particle
statistics discussed in this theses have initial particle separations in the such defined inertial
range. Since the statistics of n-particle clusters increase with an increasing separation of

10For the already existing dataset, the fit range was 50η ≤ r ≤ 1
10 L. For the cases with added polymers, the

lower bound of the fit range was increased to account for a shift of the plateau to higher values. Furthermore,
since η may not be a valid quantity for the polymers, the bounds were chosen in an uncompensated way with
the lower bound in the range 9−13 mm and the upper bound at approximately 16 mm.

11 The measured rms velocity has an estimated uncertainty of only 3 % while the rms velocities obtained from
the small and large measurement volume can differ up to 10 %.
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the particles (as long as the separation is smaller than approximately half the diameter of
the measurement volume), I chose to study clusters with initial particle separations of 14,
16 and 18 mm for the large measurement volume, and with initial separations of 8, 10, 12
and 14 mm for the small volume12. This way, I ensure that my results are best possibly
statistically resolved with the only drawback that the overlap in scales between the large and
small measurement volume results is small.

With ν and ε known, further quantities can be computed as explained in section 2.2.
Table 2.2 finally summarizes the most important properties of the analyzed flows.

f [ Hz] c [ ppm] 13 u′ [ m/s] ε [ m2/s3] Rλ L [ mm] η [ µm] τη [ ms]

0.50±0.01 0 0.079 8.4 10−3 270 59 104 10.9
0.90±0.01 0 0.144 5.3 10−2 350 54 66 4.4
1.10±0.01 0 0.174 9.0 10−2 390 57 58 3.3

0.50±0.01 5.0+0.5
−0.2 0.074 (5.5 10−3)

0.90±0.01 5.0+0.5
−0.2 0.129 3.2 10−2 not defined

1.1±0.01 5.0+0.7
−0.2 0.164 6.7 10−2

0.50±0.01 10.0±0.3 0.062 (3.0 10−3)
0.90±0.01 10.0±0.3 0.126 2.8 10−2 not defined
1.10±0.01 10.0+0.4

−0.3 0.151 5.7 10−2

3.50±0.01 0 0.430 0.87 690 91 33 1.1

Table 2.2.: Physical properties of the used datasets: Propeller frequency f , polymer concen-
tration c, rms velocity u′, energy transfer rate ε , Taylor scale Reynolds number Rλ , and
Kolmogorov microscales η and τη . The error bounds for f and c are given in the table.
The uncertainties for u′ and ε are given by 4u′

u′ = 3% and 4ε

ε
= 10%, respectively, lead-

ing to 4Rλ

Rλ
= 8 %, 4L

L = 13 %, 4η

η
= 3 % and 4τη

τη
= 5 %. For the 0.5 Hz datasets with

added polymers, 〈δu ·δa〉 doesn’t show a convincing plateau anymore. The ε-values
for these datasets have thus to be treated with caution (see appendix A.1). The Reynolds
number and Kolmogorov microscales are computed for all three propeller frequencies
for the water case and then adopted without change for the flows with added polymers.
The physical parameters for the already existing dataset, given in the last row, have been
computed in the same way.

12The already existing dataset is only used in the case of four-particle clusters. There, initial separations of
12 mm, 14 mm, and 16 mm are studied.

13The varying error bounds for the concentration are due to a gradual improvement of the funneling procedure.
The bounds shown here are for the large volume measurements. The small volume measurements, conducted
afterwards, have error bounds of ±0.3 ppm for both concentrations. For more details see chapter 5.
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2.5. Measurement Uncertainties
A rigorous calculation of the measurement uncertainties of the presented results is not feasible
with standard methods. This is due to a complicated confounding of different uncertainties,
as well as a lack of statistical independence between individual measurements, from now on
called realizations. There are three main sources for uncertainties:

1. Every 3D position comes with a measurement error of the order of δx (see table 2.1).

2. Smoothing the trajectory with a Gaussian kernel, as described in section 2.2, picks up
the position error and introduces a slight systematic error towards smaller amplitudes
of the trajectory.

3. Each studied quantity is computed from the positions of one or more particles and
then averaged over many realizations. This introduces a statistical uncertainty. If
each realization was taken from another recorded video, they would all be statistically
independent and the mean value would be Gaussian distributed according to the law
of large numbers. For a turbulent flow, however, the number of realizations averaged
over must be very large in order to achieve a statistical convergence. Therefore, all
realizations from each video must be used in order to collect sufficient data in a realistic
timespan. This renders the realizations statistically dependent and the mean value is
not necessarily Gaussian distributed.

As an example for the effect of these sources on the uncertainty of a measured quantity, I
present a thorough analysis of the energy transfer rate obtained from 〈δu ·δa〉 as was shown
in figure 2.11. The three sources of uncertainties stated above are discussed in the given
order, and an optimistic and a very conservative estimate will be discussed. Quantities with a
possible uncertainty are marked with a tilde while true values are written without.

1. The measured position of a particle at frame k can be written as x̃[k] = x[k]+ ξx[k]
with ξx[k] the measurement error at frame k. The absolute value of ξx[k] should be of
the order of the accuracy of the 3D center finding. For the dataset shown in figure 2.11,
this is δx = 10 µm (see table 2.1).

2. For 〈δu ·δa〉, both the velocity as well as the acceleration need to be computed from
the particle positions. According to section 2.2, this is accomplished by using a
convolution with the respective derivative of a Gaussian kernel. For the velocity at
frame k, one obtains

ũ[k] =
1
δ t

M

∑
m=−M

x̃[k−m]g′[m] (2.21)

=
1
δ t

M

∑
m=−M

x[k−m]g′[m]+
1
δ t

M

∑
m=−M

ξx[k−m]g′[m], (2.22)

where the notation for the position error from above was used at the second equality.
The first term in equation (2.22) leads to the true value of the velocity plus an error
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due to the filtering process which I will write as ξu, f [k]. The second term picks up the
position errors and transforms them into a cumulated error, ξu,x[k]. The error due to
filtering, ξu, f , is unknown. However, using numerical data, Ouellette (2006) showed
that its effect on the velocity variance is less than 1 % for a large range of filter lengths
and can thus be neglected. The cumulated position error, ξu,x, on the other hand,
can be estimated analytically under the assumption that the position error is white in
time and stationary, meaning that 〈ξx[k+n] ·ξx[k+m]〉= (δx)2δnm with δnm being the
Kronecker delta. The variance of the cumulated position error is then given by

〈ξ 2
u,x〉

1
2 =

δx
δ t

(
M

∑
m=−M

−m2e−
m2

w2

)−1( M

∑
m=−M

m2e−2 n2

w2

) 1
2

= 0.0024
m
s
, (2.23)

where the parameters for the dataset in figure 2.11 were used at the second equality:
δx = 10 µm, δ t = 0.10 ms, M = 15, and w = 10. The obtained cumulated position
error corresponds to approximately 2% of u′. For the acceleration one finds similarly

〈ξ 2
a,x〉

1
2 =

δx
(δ t)2

(
M

∑
m=−M

m2

2
g′′0[m]−

M

∑
m=−M

m2

2

M

∑
m=−M

g′′0[m]

)−1




M

∑
m=−M

[
g′′0[m]− 1

2M+1

M

∑
m=−M

g′′0[m]

]2



1
2

= 5.9
m
s2 , (2.24)

which is of the order of 20% of the rms acceleration. The filtering error for the
acceleration, ξa, f , is unknown but assumed to be negligible as for the velocity case.
Therefore, one obtains ũ(x̃,t)≈ u(x̃,t)+ξu,x(x̃,t) and ã(x̃,t)≈ a(x̃,t)+ξa,x(x̃,t).

3. Averaging over many pairs with a certain separation ri yields

ε̃(ri) =−
1
2
〈[ũ(x̃+ r̃,t)− ũ(x̃,t)] · [ã(x̃+ r̃,t)− ã(x̃,t)]〉|r̃|=ri

=−1
2
〈[u(x̃+ r̃,t)−u(x̃,t)] · [a(x̃+ r̃,t)−a(x̃,t)]〉|r̃|=ri

+ 〈[ξu,x(x̃+ r̃,t)−ξu,x(x̃,t)] · [a(x̃+ r̃,t)−a(x̃,t)]〉|r̃|=ri

+ 〈[u(x̃+ r̃,t)−u(x̃,t)] · [ξa,x(x̃+ r̃,t)−ξa,x(x̃,t)]〉|r̃|=ri

+ 〈[ξu,x(x̃+ r̃,t)−ξu,x(x̃,t)] · [ξa,x(x̃+ r̃,t)−ξa,x(x̃,t)]〉|r̃|=ri , (2.25)

where the average 〈 · 〉|r̃|=ri is taken over pairs with a separation between ri and ri +δ ri.
For the data shown in figure 2.11, the bin width, δ ri, was chosen to be 0.5 mm. It can
be assumed that the correlation between the cumulated position error for the velocity,
ξu,x, and the acceleration is negligible, and the same for ξa,x and the velocity. For the
last term, containing the mixed correlation between the cumulated position errors, an
analytical result can be found, again assuming that the position errors are white in
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time. One finds that

〈ξu,x ·ξa,x〉=
(δx)2

(δ t)3

M

∑
m=−M

g′[m]g′′[m] = 0, (2.26)

where the last equality holds because (g′[m]g′′[m]) is asymmetric in m and the sum is
over a symmetric interval. Even if the position errors are not perfectly white in time
but rather have a short but finite correlation time, the above mixed term remains small.
With these assumptions, equation (2.25) can be simplified to

ε̃(ri) =−
1
2
〈[u(x+ r,t)−u(x,t)] · [a(x+ r,t)−a(x,t)]〉|r|=ri . (2.27)

Here, I made also use of the fact that the deviations of the measured position vector,
x̃, and separation vector, r̃, from the true values has a vanishing effect on the result
due to homogeneity and the large bin size, δ ri. Note that the easy solution found in
equation (2.27) is the exception and not the rule. For any squared quantity, like e.g.
the squared relative velocity, 〈[ũ(x̃+ r̃,t)− ũ(x̃,t)]2〉|r̃|=ri , the term with the squared
uncertainties does not vanish but leads to a systematic error towards larger values.

For an ensemble of N statistically independent realizations, the uncertainty of the
average in equation (2.27) is given by

σε(ri)=
1√
N

〈[
−1

2

(
[u(x+ r,t)−u(x,t)] · [a(x+ r,t)−a(x,t)]

)
|r|=ri, j

− ε̃(ri)

]2
〉 1

2

.

(2.28)
A very optimistic estimate would be to say that all averaged over realizations of particle
pairs are statistically independent, leading to N = O

(
106
)

for the data set studied
here. This is not true, however, since realizations from the same video can be strongly
correlated, depending on how far they are apart in space and time. A much more
conservative approach would thus be to only allow one (randomly chosen) realization
per video, leading to N = 400. It is clear that statistical convergence at this small
number of realizations is very poor. Figure 2.12 shows the results for ε̃(ri) for both
cases. Open black circles and red error bars correspond to N =O

(
106
)

while filled
black circles and blue error bars correspond to N = 400. The error bars represent
2σε(ri), so that they should include the true value in 95.4 % of the cases. Figure 2.12
reveals that both methods agree with each other within the given errors. While the
N = 400 case clearly shows a severe lack of statistical convergence, however, the
N =O

(
106
)

case seems well converged but its error bars are utterly underestimated.
They do not even cover the fluctuations of the curve. As a result, the average value
of the case with N = O

(
106
)

should be trusted, but its true uncertainties, σε(ri),
must be somewhere between these two extremes. Since the true uncertainties remain
unknown, any display of error bars is misleading because it does not represent the
actual uncertainty of the shown value. I will thus refrain from showing error bars in
this thesis.
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One is left with the problem to find the value and uncertainty of the mean energy transfer
rate, ε̃ . Using the data points from the N = O

(
106
)

case, the value of ε̃ is given by
ε̃ = 1

K ∑
K
i=1 ε̃(ri) = 0.05264 m2

s3 , with K the number of bins averaged over. Taking error
propagation into account, the uncertainty is given by

σε =
1
K

(
K

∑
i=1

σε(ri)
2

) 1
2

. (2.29)

When using the case with N = O
(
106
)

realizations, one obtains σε = 0.00006 m2

s3 which
corresponds to a relative uncertainty of 0.1 %. On the other hand, for N = 400, one finds
σε = 0.02 m2

s3 , leading to a relative uncertainty of 37 %. These results reinforce the finding
from above that neither the conservative nor the optimistic estimate for the uncertainties
are very realistic. The total width of the curve fluctuations in the inertial range might
provide a more accurate estimate for the uncertainty of ε . The standard deviation from

the mean is given by σscatter =
( 1

K−1 ∑
K
i=1(ε̃(ri)− ε̃)2

) 1
2 . I will thus use 4σscatter = 0.005 m2

s3 ,
covering more than 99.99 % of the fluctuations, as an estimate for the uncertainty of ε̃ . This
corresponds to a relative uncertainty of 10 %, as was stated above.
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(a) Optimistic Estimate
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Figure 2.12.: Two ways to estimate the uncertainty for the energy transfer rate computed
from 〈δu ·δa〉. The shown dataset corresponds to a flow with a propeller frequency
of 0.9 Hz and without polymers. a) Data points ( ) and red error bars are computed
from N = O

(
106
)

realizations, assuming that they are all independent. The black
horizontal line represents the mean value of the compensated squared relative velocities
in the range 50η ≤ r ≤ 1

5 L. b) Data points ( ) and blue error bars are computed from
N = 400 realizations, taking only one realization from each video to ensure statistical
independence. For comparison, the results from a) are shown as well.



CHAPTER 3

Two-Particle Dispersion

In this chapter, I analyze the relative dispersion of a pair of tracer particles with respect
to the time asymmetry induced by the irreversibility of turbulent flow. In section 3.1, I
use a short-time expansion to obtain a mathematical connection between the mean squared
relative separation of a particle pair and the derivative of the squared relative velocity. I
briefly explain how this connection can be understood in terms of the irreversibility of the
energy cascade and how it determines the time asymmetry observed in pair dispersion. In
section 3.2, I describe how the recorded particle track data is analyzed in order to obtain
the required time-dependent pair statistics and in section 3.3, I present the experimental
results and compare them with data from direct numerical simulation (DNS)1. Furthermore,
I discuss how the finite size of the observation volume leads to a bias of the recorded data
and explain which quantities are least affected.

3.1. Short-Time Expansion

Due to the elusive nature of Richardson scaling (Bourgoin et al. 2006, Salazar & Collins 2009,
Bragg et al. 2014), it seems prudent to focus on the short-time behavior of pair dispersion
instead. For this purpose, I examine the mean squared relative separation of pairs of tracer
particles,

〈
δR2(t)

〉
=
〈
[R(t)−R(0)]2

〉
, where the average is taken over all pairs with the

same initial separation |R(0)|= R0. In this thesis, R0 is always chosen to be in the inertial
range.

Recalling that the separation vector for a pair of particles is defined as R(t) = X(t|y2,0)−
X(t|y1,0), the short-time evolution of the mean squared relative separation can be expressed

1The numerical data was provided by Alain Pumir from the École Normale Supérieure, Lyon, and was also
used in our joint paper (Jucha et al. 2014). For more details see section 3.3.

47
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by the Taylor series around t = 0 as

〈δR(t)2〉= 〈V(0)2〉t2 + 〈V(0) ·A(0)〉t3 +O
(
t4) . (3.1)

Here, V(0) = u(y2,0)− u(y1,0) is the initial relative velocity between the particles and
A(0) = a(y2,0)− a(y1,0) is the initial relative acceleration. In the case of an isotropic
turbulent flow, the first term on the right hand side corresponds to Batchelor scaling and can
be replaced by 11

3 C2(εR0)
2
3 t2, in accordance with equation (1.23). Furthermore, the second

term can be recognized to be the Lagrangian expression for 〈δu ·δa〉, with

〈V(0) ·A(0)〉= 1
2

〈
d
dt

V(t)2
∣∣∣
t=0

〉
=−2ε, (3.2)

as shown in equation (1.27). With this, equation (3.1) can be conveniently written as

〈δR(t)2〉= 11
3

C2(εR0)
2
3 t2−2εt3 +O

(
t4) . (3.3)

Equation (3.3) can be non-dimensionalized with the use of the initial separation, R0, and the
characteristic time scale for that separation, t0 =

(
R2

0/ε
)1/3, leading to

〈δR(t)2〉
R2

0
=

11
3

C2

(
t
t0

)2

−2
(

t
t0

)3

+O
(
t4) . (3.4)

At very short times, the first term on the right hand side in equation (3.4) dominates the
separation of the particle pair. This term is equivalent to Batchelor scaling and, due to
being quadratic in time, does not reveal any irreversibility of the flow. The next term in the
expansion is the first to break time symmetry by having an odd power in time. This can
be easily seen when explicitly rewriting equation (3.4) for the case of backward dispersion
(t→−t),

〈δR(−t)2〉
R2

0
=

11
3

C2

(
t
t0

)2

+2
(

t
t0

)3

+O
(
t4) . (3.5)

Studying equation (3.2) again, one finds that the t3 term arises from the fact that in a turbulent
flow, the derivative of the squared relative velocity does not vanish, as it would be the case
for a velocity field that is delta-correlated in time. Instead, for a pair separation in the inertial
range and at high Reynolds numbers, the initial change in the squared relative velocity is
fully determined by the rate of the energy flux through scales, ε . The first term to break time
symmetry can thus be directly linked to the turbulence energy cascade. For a 3D turbulent
flow, energy is transported from large to small scales, leading to an energy transfer rate
ε > 0. Equations (3.4) and (3.5) thus predict that the short-time particle separation forwards
in time (t > 0) is diminished while the separation backwards in time (t < 0) is enhanced by
the energy cascade in comparison to the case where ε = 0.

It is interesting to note that all previous studies on the asymmetry between forward and
backward dispersion also observed a faster separation backwards in time (Sawford 2001,
Berg et al. 2006, Bragg et al. 2014). These studies were however concerned with the
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evolution at much larger times, corresponding to the Richardson regime, so that the obtained
observations cannot be traced back to equation (3.5).

Aside from the time asymmetry, another interesting aspect of the short-time approach
is the timespan for which the Taylor series remains valid. If all terms of the expansion in
equation (3.4) could be written as functions of t/t0 with prefactors of order one, as is the
case for the first two terms, the Taylor series would converge for times t < at0, with a also an
order one constant. However, it can be shown that only terms with odd powers of time can
be consequently written in this form. For the even terms, starting at t4, τη is the dominant
time-scale, leading to a severe reduction of the radius of convergence (Frishman 2013, a
detailed proof is shown in appendix A.2). Due to the different convergence radii of the odd
and even terms, I define the symmetric and antisymmetric functions

Fs(t) =
〈δR(t)2 +δR(−t)2〉

2R2
0

=
〈V(0)2〉

R2
0

t2 +O
(
t4)= 11

3
C2

(
t
t0

)2

+O
(
t4) , (3.6)

Fa(t) =
〈δR(t)2−δR(−t)2〉

2R2
0

=
〈V(0) ·A(0)〉

R2
0

t3 +O
(
t5)=−2

(
t
t0

)3

+O
(
t5) . (3.7)

Note that while Fa(t) converges for t . t0, the radius of convergence of Fs(t) cannot be
easily computed but is most probably of the order of τη . Furthermore, only Fa(t) contributes
to the breaking of the time symmetry.

3.2. Data Analysis

In order to compute all relevant pair statistics from the recorded datasets, a C++ code written
by myself was used to successively analyze the particle tracks from all videos stored in one
velocity-acceleration file (see appendix C.3). For each video, a nested loop identifies all
particle trajectories with a temporal overlap (i.e. shared frames). If a pair with an overlap is
found, the separation |R| between the two particles is computed for all shared frames. For
each frame k for which R0−4R0 ≤ |R| ≤ R0 +4R0, with a fixed tolerance ∆R0, the pair
statistics of all shared frames are stored with frame k corresponding to t = 0 (figure 3.1).
In the case that more than one frame fulfills the condition R0−4R0 ≤ |R| ≤ R0 +4R0,
the statistics of the particle pair are stored several times, always with a different frame
corresponding to t = 0. This increases statistics while eliminating any possible bias due to
the choice of frame k. This process is repeated until the final statistics contain the information
of all possible trajectory pairs from all videos recorded for an experiment. The computed
quantities are the mean squared relative separation (as well as some variations of it), the mean
squared relative velocity, and the mean relative velocity-acceleration correlation, 〈δu ·δa〉.

The tolerance on the initial separation,4R0, is chosen to be 5 % of the value of R0 for all
experimental datasets. Furthermore, in order to ensure that all shown results are statistically
well converged, only datasets with more than 107 observed pairs at t = 0 are shown. The
time evolution is only shown up to a time t at which the number of observed pairs drops
below 106.
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|R|
R0±4R0

k

−5δ t −4δ t −3δ t −2δ t −1δ t 1δ t 2δ t 3δ t 4δ t 5δ tt = 0
... ...

Histogram

store in
histogram

Figure 3.1.: Sketch of how each pair of trajectories is analyzed. The separation |R| is
compared with R0±4R0 for all temporally overlapping frames of the two trajectories.
For each frame in which |R| falls into the specified range (here frame k), the pair
statistics of all overlapping frames are stored in a histogram with frame k defining t = 0.

3.3. Experimental Results
Figure 3.2 shows the experimental results for 〈δR(t)2〉 and 〈δR(−t)2〉 plotted over |t|/t0 and
compensated by both R2

0
11
3 C2(t/t0)2, according to equation (3.4), and 〈V(0)2〉t2, according

to equation (3.1). Data at three different Reynolds numbers and several initial separations in
the inertial range are shown. It can be noticed that in both cases the forward and backward
dispersion show a plateau at a value near unity, after which the forward dispersion data
drops below the backward dispersion data, exactly as predicted. While a collapse can be
seen for the general case in figure 3.2(b), the same is not true in figure 3.2(a) for which the
measured mean squared dispersion is compensated according to the formula for an isotropic
flow. The value for C2 seems not to be constant over the range of initial separations studied
here and its real value is somewhat larger than the used value of C2 = 2.1. This is due to
the fact that the studied flow is not perfectly isotropic (see appendix B.1). Especially at the
borders of the measurement volume, the mean flow has a non-negligible magnitude. It is
therefore not surprising that the more general case in figure 3.2(b) leads to a much clearer
collapse. Another observation that can be made from the good collapse in figure 3.2(b) is
that t0 seems indeed to be the correct scale for the time axis. Especially the good agreement
among the different curves of the point in time at which they deviate from the plateau is a
strong validation of this.

Although the results seem to agree well with the theoretical prediction, one major differ-
ence can be seen. While equation (3.5) predicts that the t3 term leads to an enhancement of
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(a) Isotropy Assumed
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Figure 3.2.: Mean squared separation 〈δR(t)2〉/R2
0 forwards and backwards in time as

a function of |t|/t0. For Rλ = 390, the initial separations are 241 η ( ), 276 η ( )
and 310 η ( ). For Rλ = 350, the initial separations are 212 η ( ), 242 η ( ) and
273 η ( ), and for Rλ = 270, they are 135 η ( ), 154 η ( ) and 173 η ( ). Filled and
open symbols represent the results forwards (t > 0) and backwards in time (t < 0),
respectively. (a) The mean squared separation is compensated assuming an isotropic
flow with C2 = 2.1. (b) The mean squared separation is compensated according to the
more general equation (3.1).

backward dispersion over the t2 behavior, figure 3.2(b) shows that the backward dispersion
never actually rises above unity. This inconsistency with the theoretical prediction can be
explained by a bias of the recorded data due the finite size of the measurement volume.
A finite observation volume always entails a finite observation time of the studied tracer
particles. This observation time is not equal for all particles because particles with a larger
velocity cross the volume more quickly than slower particles do. The same holds true for
particle pairs. A large relative velocity V(t) usually leads to a short observation time and vice
versa2. Consequently, the number of statistics varies with time in a biased manner, meaning
that at later times only slowly separating particles remain. For an ensemble average over
an arbitrary, time-dependent function, 〈k(t)〉, it thus matters whether the average is taken
over all pairs observed at time t or for example over those pairs observed at time t ′ > t as
illustrated in figure 3.3. Taking this time dependence into account, such an ensemble average
shall be written as 〈 · 〉t in the following, where the subscript t denotes the time at which the
ensemble is chosen. Experimentally, the average of the mean squared separation at time t
is taken over all trajectories observed at time t, so that in the new notation equation (3.1) is

2There exists of course the case that a slowly separating particle pair starts very close to the boundary of
the observation volume, thus also leading to a short observation time. The starting position at time t = 0 is
independent of the kinetic properties of the particle pair, however, and thus does not contribute to any form of
bias.
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Volume
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Figure 3.3.: Sketch of the effect of a finite measurement volume on the average over an
ensemble of pair trajectories. Examples for individual pair trajectories are shown in
black. The dashed part of the trajectory is not visible in the case of a finite observation
volume. The blue and red line show the average over many pairs for the cases of an
infinite and finite observation volume, respectively.

given by
〈δR(t)2〉t = 〈V(0)2〉t t2 + 〈V(0) ·A(0)〉t t3 +O

(
t4) . (3.8)

It becomes directly clear that the right hand side is changed in a significant manner. If all
pairs could be tracked indefinitely, the averages over the velocity and acceleration at time
t = 0 should be constant. In the case of a finite observation volume, however, these averages
become functions of time, always corresponding to the ensemble of particle pairs observed
at time t. One can explicitly capture this time dependence by defining

〈δR(t)2〉t = 〈V(0)2〉0 f1(t)t2 + 〈V(0) ·A(0)〉0 f2(t)t3 +O
(
t4) , (3.9)

with the bias functions f1(t) and f2(t) obeying f1(0) = f2(0) = 1 by construction. The aver-
ages 〈V(0)2〉0 and 〈V(0) ·A(0)〉0 are taken over all pairs observed at t = 0 and correspond to
the case of an infinite measurement volume. The bias is thereby shifted completely into the
functions fi(t). By following each individual particle pair for the same duration forwards and
backwards in time, i.e. t ∈ [−t1, t1], the bias functions can be made exactly time-symmetric,
since at any time t ≥ 0 one obtains the same ensemble of pairs as at time −t. For the
experimental data presented in this thesis, it can be found that both bias functions decrease
with time and that 0.9. fi(t). 1.0 for |t|< 0.1t0, thus only leading to an error of up to 10%
in each term (see figure 3.4). Since the first term in the expansion in equation (3.9) is itself
much larger than the second term, a 10% error on the first term however fully obscures the
effect of the second one. This is exactly what is observed in figure 3.2. Although the split
between forward an backward dispersion due to the t3 term can be observed, the enhancement
of the backward dispersion above the t2 behavior is masked by the decreasing value of f1(t).
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Figure 3.4.: Bias functions f1(t) and f2(t) as obtained from the time-dependent averages
〈V(0)2〉t and 〈V(0) ·A(0)〉t , respectively. The horizontal dashed line indicates an
influence of the bias functions of 10 %. Datasets and color code are identical to those
shown in figure 3.2 on page 51.

One way to solve this problem is to subtract the t2 term before averaging and then add an
unbiased t2 term according to

〈δR(t)2−V(0)2t2〉t + 〈V(0)2〉0 t2 = 〈V(0)2〉0 t2 + 〈V(0) ·A(0)〉0 f2(t)t3 +O
(
t4) . (3.10)

The leading term on the right hand side thus remains unbiased, allowing the effect of
the t3 term to be visible. Figure 3.5 shows the mean squared separation corrected in this
way, compensated by the squared relative velocity. One can nicely see how the backward
dispersion is corrected towards higher values and even rises slightly above the plateau while
the forward dispersion remains clearly below it, as it was predicted.

An even cleaner way of coping with the finite volume bias is to look directly at the
symmetric and antisymmetric functions, Fs

t (t) and Fa
t (t), for a biased measurement:

Fs
t (t) =

〈δR(t)2 +δR(−t)2〉t
2R2

0
=
〈V(0)2〉0

R2
0

f1(t)t2 +O
(
t4) (3.11)

and Fa
t (t) =

〈δR(t)2−δR(−t)2〉t
2R2

0
=
〈V(0) ·A(0)〉0

R2
0

f2(t)t3 +O
(
t5)

=−2 f2(t)
(

t
t0

)3

+O
(
t5) . (3.12)

Here, the time symmetry of the bias functions was used to ensure the full cancellation of the
odd or even terms, respectively. Even though both Fs

t (t) and Fa
t (t) still experience the effect

of the bias functions, Fa
t (t) shows the symmetry-breaking t3-term now at leading order with

only a small diminishing effect of the bias function by less than 10% for t < 0.1t0. Figure 3.6
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Figure 3.5.: Experimental results for the bias-corrected mean squared separation. Filled and
open symbols represent forwards and backwards dispersion, respectively. Datasets and
color code are identical to those shown in figure 3.2 on page 51.

shows the asymmetric function, Fa
t (t) compensated by −2(t/t0)

3, for the same experimental
data as above. All curves show plateaus up to 0.1t0 and then drop together. The heights of the
plateaus deviate less than 25 % from unity. Taking into account the large 10 % uncertainty
of the energy transfer rate (measured for the small measurement volume), together with the
even larger uncertainty of adopting this value for the large measurement volume, the results
in figure 3.6 are in good agreement with the theoretical prediction.

For comparison, the mean squared change of separation was also computed from DNS
data at a similar Reynolds number, Rλ = 300, and a scale separation between largest and
smallest scales of L/η = 250. The DNS data was kindly provided by Alain Pumir from the
École Normale Supérieure de Lyon and was also published in Jucha et al. (2014). For the
DNS, the Navier-Stokes equations were solved directly with a standard pseudo-spectral code
(described e.g. in Voßkuhle et al. 2013) for periodic boundary conditions. More than 3 ·104

fluid particle trajectories were processed. Figure 3.7 shows a comparison of the experimental
and numerical results for the compensated Fa

t (t). Due to the strong uncertainties of the
energy transfer rates, the directly measured value of 〈V(0) ·A(0)〉0 is used for compensation.
Very good agreement between the experimental and numerical data can be found. Only
at larger times, t & 0.2t0, the experimental data drops slightly faster than the numerical
data. This difference may be attributed to the residual finite volume bias that only affects
the experimental but not the DNS data. All data sets show a rapid decrease towards zero
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Figure 3.6.: Experimental results for the odd terms of the mean squared separation, compen-
sated to yield a plateau with a height of one. Datasets and color code are identical to
those shown in figure 3.2 on page 51.

at sufficiently long times. This is the expected behavior, since the two particles forming
the pair become uncorrelated over time and no difference between forward and backward
dispersion should remain. For intermediate times, however, a Richardson-like scaling is
expected (Sawford 2001, Berg et al. 2006, Bragg et al. 2014). Following equation (1.29),
the difference between forward and backward dispersion in a Richardson-scaling regime is
given by

Fa
t (t) =

〈δR(t)2−δR(−t)2〉t
2R2

0

Richardson
=

1
2
(g f −gb)

(
t
t0

)3

, (3.13)

where a value of g f −gb ≈−0.6 has been proposed by Berg et al. (2006) based on measure-
ments at Rλ = 170. In figure 3.7, another plateau with a height of−1

4(g f −gb)≈ 0.15 should
thus be visible, where I used the fact that 〈V(0) ·A(0)〉0 =−2ε . The numerical data clearly
drops below this point without any indication of a plateau. The experimental data shown
here does not reach that far since only times with more than 106 observed pairs are shown.
Lowering this very strict cut-off to 104, a very rapid drop below 0.15 with no indication of a
plateau is revealed (see appendix A.3). Even though a plateau at −1

4(g f −gb)≈ 0.15 is not
observed, it cannot be ruled out that a plateau for a much smaller value of (g f −gb) might
exist. This result will be discussed in greater detail in chapter 6.

Thus far, I found that the intrinsic time irreversibility of turbulent flows can be tested by
exploring the mean squared change of separation of a pair of tracer particles. Focusing on
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Figure 3.7.: Experimental and numerical results for the odd terms of the compensated mean
squared change of separation. Datasets and color code for the experimental data are
identical to those shown in figure 3.2 on page 51. For the DNS data at Rλ = 300, the
initial separations are 19 η ( ), 38 η ( ), 58 η ( ), 77 η ( ), 92 η ( ) and 123 η

( ). The dashed horizontal line indicates the prediction by Richardson scaling as
proposed by Berg et al. (2006).

the short-time behavior, I confirmed that pair-dispersion is faster backwards than forwards
in time and I showed that this asymmetry is directly connected to the directionality of the
turbulence energy cascade. It can be first seen for the t3 term and, if properly normalized, is
fully determined by the value of the energy transfer rate.

Although the results presented in this chapter are precise and significant, the effect of
the symmetry breaking is only small. In the next chapter, I will discuss a much stronger
manifestation of the intrinsic time irreversibility of turbulence by analyzing the shape
deformation of clusters of four particles. I will show that the symmetry-breaking term there
appears at first order in time and thus has a much larger effect.



CHAPTER 4

Four-Particle Dispersion

In this chapter, I analyze the effect of the intrinsic time irreversibility of turbulent flows on the
shape deformation of clusters of four particles. In analogy to chapter 3, I perform a short-time
expansion for the size and shape properties of the cluster in section 4.1. In section 4.2, I
briefly explain how the recorded videos are evaluated and I present the experimental results
in section 4.3. Again, a comparison with DNS data provided by Alain Pumir from École
Normale Supérieure de Lyon will be shown.

4.1. Short-Time Expansion

Following section 1.3.4, the shape tensor for a cluster of four particles, a tetrahedron, is given
by

G(t)i j =
3

∑
a=1

ρ
(a)
i (t)ρ(a)

j (t), (4.1)

with the form of the ρ-vectors, ρ(a)(t), specified in equation (1.35). The shape tensor is fully
specified by its three eigenvalues, gi(t), and three Euler angles. No easy relation exists to
obtain the Euler angles, but the eigenvalues, sorted by size such that g1 ≥ g2 ≥ g3, suffice
for a classification of the shape of the tetrahedron (see section 1.3.4). Furthermore, the size
of the tetrahedron is described by the trace of the shape tensor in the form of the radius of
gyration as given in equation (1.34).

In order to study the evolution of the shape tensor, an equation of motion needs to be
derived. Introducing the velocities v(a)(t) = d

dt ρ(a)(t) as the change of the ρ-vectors with

57
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time, and taking the time derivative of equation (4.1), one finds

d
dt

G(t)i j =
3

∑
a=1

ρ
(a)
i (t)v(a)j (t)+

3

∑
a=1

v(a)i (t)ρ(a)
j (t) (4.2)

=
3

∑
a=1

ρ
(a)
i (t)

[
3

∑
k=1

ρ
(a)
k (t)Mk j(t)

]
+

3

∑
a=1

[
3

∑
k=1

ρ
(a)
k (t)Mki(t)

]
ρ
(a)
j (t). (4.3)

At the second equality, the definition of the perceived velocity gradient tensor, v(a)(t) =
ρ(a)(t)T M(t), from equation (1.36) was used. Reinserting equation (4.1), one finally obtains

d
dt

G(t) = G(t) ·M(t)+MT (t) ·G(t). (4.4)

This equation of motion links the shape evolution of a tetrahedron to the surrounding flow
field. It can be solved for short times by expanding both the shape tensor and the perceived
velocity gradient tensor around t = 0 with

G(t) = G0 +G1 t +G2
t2

2
+G3

t3

6
+O

(
t4) , (4.5)

M(t) = M0 +M1 t +M2
t2

2
+M3

t3

6
+O

(
t4) , (4.6)

where Gn =
d
dt G(t)

∣∣
t=0 and Mn =

d
dt M(t)

∣∣
t=0. As an initial condition, an isotropic tetrahe-

dron with edge length l is assumed, so that G(0) = G0 =
l2

2 1. Inserting the above Taylor
series into equation (4.4) and comparing the left- and right-hand side for each order in t, one
finds

G0 =
l2

2
1 (initial condition), (4.7)

G1 = MT
0 G0 +G0M0 =

l2

2

(
MT

0 +M0

)
, (4.8)

G2 = MT
1 G0 +G0M1 +MT

0 G1 +G1M0

=
l2

2

(
MT

1 +M1 +(MT
0 )

2 +2MT
0 M0 +M2

0

)
, (4.9)

G3 = MT
2 G0 +G0M2 +2MT

1 G1 +2G1M1 +MT
0 G2 +G2M0

=
l2

2

(
MT

2 +M2 +(MT
0 )

3 +3(MT
0 )

2M0 +3MT
0 M2

0 +M3
0 +2MT

1 MT
0

+MT
0 MT

1 +2M0M1 +M1M0 +3MT
1 M0 +3MT

0 M1

)
. (4.10)

One can further simplify the above results by using the perceived rate of strain tensor,
S(t) = 1

2(M(t)+MT (t)), and the perceived rate of rotation tensor, Ω(t) = 1
2(M(t)−MT (t)).

Expanding both around t = 0, the nth derivatives at t = 0 are then given by Sn =
1
2(Mn+MT

n )
and Ωn =

1
2(Mn−MT

n ), respectively. The short-time evolution of the shape tensor can then
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be written as

G(t) =
l2

2

(
1+2S0 t +(2S1 +4S2

0 +2[S0,Ω0]) t2 +(2S2 +8S3
0 +6[S2

0,Ω0]

+2[[S0,Ω0],Ω0]+6S0 ·S1 +6S1 ·S0 +2[S1,Ω0]+4[S0,Ω1]) t3 +O
(
t4)). (4.11)

Here, I introduced the commutator [A,B] = A ·B−B ·A, and made use of the fact that the
perceived rate of strain tensor is symmetric, ST

n = Sn, while the perceived rate of rotation
tensor is antisymmetric, ΩT

n =−Ωn.

Now, the size of the tetrahedron, expressed by the radius of gyration, can be easily obtained
by taking the trace of the shape tensor. With equation (4.11), one finds

〈R2(t)〉= 〈tr(G(t))〉= l2

2

(
3+2〈tr(S2

0)〉t2 +

(
4
3
〈tr(S3

0)〉+2〈tr(S0 ·S1)〉
)

t3 +O
(
t4)
)
.

(4.12)
This result can be obtained by keeping in mind that the diagonal elements of commutators
are always zero. Furthermore, I used the circumstance that, on average, the perceived
rate of strain tensor is traceless, 〈tr(Si)〉 ≈ 0, even though this is not true for each single
realization. This can be understood when first thinking of the real velocity gradient tensor,
Ai j(x,t) = ∂ui(x,t)

∂x j
, whose trace is zero due to the incompressibility of the flow, ∑i Aii(x,t) =

∇ ·u(x,t) = 0. The same is then of course also true for the real rate of strain tensor since it is
defined as the sum of the velocity gradient tensor and its transpose. It is important to note
here that if a tensor is traceless at all times, it directly follows that all its time derivatives are
traceless as well. One can now imagine a perceived rate of strain tensor which is defined
over all points of the surface of a sphere. Such a tensor is clearly traceless as well because
the volume of the sphere is conserved and the incompressibility argument still applies. For a
perceived rate of strain tensor defined over only four points forming a tetrahedron, on the
other hand, the trace is not always zero since the volume of the tetrahedron is not conserved.
If one averages over many regular tetrahedra with the same size, however, the corner points
of the tetrahedra sample the surface of a sphere, thus approximating the case above. For
sufficiently many realizations, the average 〈tr(S0)〉 thus vanishes. Assuming that the same
holds true for a very short time range around zero in which the tetrahedra remain basically
undeformed, |t| . τη , it directly follows that the derivatives of the strain tensor at t = 0,
〈tr(Si)〉, are traceless too.

Aside from the approach using the shape tensor, the radius of gyration can also be
expressed directly in terms of particle velocities and accelerations, similar to chapter 3. With
Xcom(t) = 1

4 ∑
4
m=1 X(t|y(m),0), the definition for the radius of gyration in equation (1.34) can

be rewritten as

R2(t) =
1
4

4

∑
a=1

4

∑
b6=a
|X(t|y(a),0)−X(t|y(b),0)|2, (4.13)

which is just the average over the edge lengths of the tetrahedron. For an initially regular
tetrahedron, with all edges of the length l, an average over sufficiently many tetrahedra then
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leads to
〈R2(t)〉= 6

4
〈R2

pair(t)〉, (4.14)

where 〈R2
pair(t)〉 is the mean squared separation between two particles with an initial sep-

aration of l. The above result was obtained by noting that all six edges can be interpreted
as individual pairs of particles, all with the same statistical properties and initial conditions.
This implies that studying the size evolution of tetrahedra does not provide more information
than studying pair dispersion does.

Much more promising is the study of the shape deformation of the volume spanned by
the tetrahedron since it is intrinsic to 3D objects and cannot be observed for two-particle
statistics. As discussed earlier, the shape of a tetrahedron can be well characterized by the
eigenvalues gi of the shape tensor. In order to obtain those, the shape tensor needs to be
diagonalized. Since G(t) is symmetric and real, there always exists a real rotation matrix
U(t), such that

GD(t) = U(t) ·G(t) ·UT (t) (4.15)

is diagonal and GD
ii (t) = gi(t). All real rotation matrices are orthogonal, so that U(t) ·UT (t) =

1 and thus d
dt U(t) = R(t) ·U(t), with a real antisymmetric matrix R(t) for which RT (t) =

−R(t). Similarly to the shape tensor, one can thus expand the rotation matrix U(t) in a
Taylor series around t = 0 and express it through the antisymmetric matrix R(t) with

U(t) =
[
1+R0 t +(R1 +R2

0)
t2

2
+(R2 +2R1 ·R0 +R0 ·R1 +R3

0)
t3

6
+O

(
t4)
]

U(0).

(4.16)
Here, Rn =

dn

dtn R(t)
∣∣
t=0 with RT

n =−Rn for all n. One can now use equation (4.15) to obtain
the diagonalized shape tensor. After some lengthy calculation, see appendix A.4, one finds

GD(t) =
l2

2

(
1+2S0t +

(
2D(S1)+4S2

0
) t2

2
+
(

2D(S2)+8S3
0 +12D(S0 ·S1)

+4D(R2
0 ·S0)−4D(R0 ·S0 ·R0)+8D(R0 ·S1)

) t3

6
+O

(
t4)). (4.17)

Here, D(X) indicates that only the diagonal elements of the matrix X are used. Furthermore,
all matrices in equation (4.17) are in the eigenframe of the perceived rate of strain tensor
at t = 0, S0. Denoting the eigenvalues of S0 with si, sorted such that s1 ≥ s2 ≥ s3, the
eigenvalues of the shape tensor are given by

〈gi(t)〉=
l2

2

(
1+2〈si〉t + 〈S1,ii +2s2

i 〉t2 +
〈1

3
S2,ii +

4
3

s3
i +2(S0 ·S1)ii

+
2
3
(R2

0 ·S0)ii−
2
3
(R0 ·S0 ·R0)ii +

4
3
(R0 ·S1)ii

〉
t3 +O

(
t4)). (4.18)

It was discussed in section 1.3.4, that the eigenvalues of the perceived rate of strain tensor
behave similarly to the eigenvalues of the real rate of strain tensor, in the sense that 〈s1〉>
〈s2〉> 0 > 〈s3〉 (Lüthi et al. 2007, Xu et al. 2008, Pumir et al. 2013).
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Figure 4.1.: average eigenvalues of the perceived rate of strain tensor, 〈si〉, as obtained from
a regular tetrahedron with edge length l. The eigenvalues are non-dimensionalized
with the characteristic time scale of an eddy of size l, t0 = (l2/ε)1/3. Open symbols
represent experimental data sets with Reynolds numbers Rλ = 690 ( ), Rλ = 390 ( ),
Rλ = 350 ( ), and Rλ = 270 ( ). DNS data at Rλ = 300 ( ) is shown as well (see
section 3.3 for details).

Figure 4.1 shows the averaged eigenvalues of the perceived rate of strain tensor, 〈si〉, as
obtained from the data presented in this thesis. It can be seen that the intermediate eigenvalue
is indeed positive, and furthermore, that when the eigenvalues are non-dimensionalized with
t0 = (l2/ε)1/3, they seem to be independent of Reynolds number and initial edge length of
the tetrahedron. Therefore, mean values over all datasets are obtained with the additional
requirement that the perceived rate of strain tensor is traceless on average. Most of the
fluctuation of the points around the mean values can be attributed to the large uncertainties
of ε and l, introduced through t0. The fact that the intermediate eigenvalue, 〈s2〉, is non-
zero leads to a strong time asymmetry of the evolution of the eigenvalues gi(t), as will be
discussed in detail in section 4.3.

4.2. Data Analysis
The starting point for the analysis of the recorded videos with respect to tetrahedra evolution
is again the velocity-acceleration file in which the trajectories of all recoded videos of one
measurement are stored (see appendix C.3). A C++ code written by Haitao Xu is used to
search for tetrahedra that, at least at one point in time, are regular with a prescribed edge
length l. This searching algorithm is analogous to the one described in section 3.2 with
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the sole difference that each possible set of four, instead of two, particles is tested. As a
consequence, the time needed to search for tetrahedra is proportional to N4, where N is the
number of particles in one frame. Because this search algorithm is very time-consuming, it
is performed in an isolated program and the found tetrahedra trajectories, the trajectories of
the four particles spanning a tetrahedron, are stored into binary files. The corresponding file
format is given in appendix C.4, where each file contains all tetrahedra trajectories of one
recorded video.

These tetrahedra files are then processed by two evaluation programs written by myself,
one to compute relevant quantities concerning the shape deformation and one to compute
statistics of the perceived velocity gradient tensor. The shape deformation quantities are
computed for the large measurement volume experiments due to their longer observation
time, and the statistics of the perceived velocity gradient tensor are obtained from the small
measurement volume experiments due to their higher spatial resolution.

Some of the large measurement volume datasets presented so far do not contain enough
tetrahedra trajectories for sufficient statistical resolution. Displaying only datasets with more
than 105 observed tetrahedra at t = 0, the remaining datasets are Rλ = 350 (l = 273 η) and
Rλ = 270 (l = 135 η , 154 η , and 135 η). Therefore, the already existing dataset at Rλ = 690
(l = 364 η , 424 η , and 485 η) will be used as well in order to replace the Rλ = 390 dataset.
The number of observed tetrahedra drops quickly with time, however, so only points with
more than 5 ·104 observed tetrahedra are shown. Furthermore, the tetrahedra trajectories will
not be symmetrized around t = 0, as was done for the pair statistics. This means that each
trajectory can be seen for a different number of frames forwards and backwards in time, thus
increasing the number of statistics at larger times significantly. As a drawback, the finite
volume bias is not time-symmetric anymore. For the small measurement volume datasets, all
datasets show sufficient statistical convergence and can be used.

In order to analyze the shape deformation, the shape tensor is first computed according to
equation (4.1) for every tetrahedron and every frame. If the determinant of the shape tensor
is larger than a chosen minimal value, det(G(t))≥ 5 ·10−5, a singular value decomposition
is used to obtain the eigenvalues. The minimal value of the determinant is required to ensure
the convergence of the algorithm for the singular value decomposition. The eigenvalues are
sorted by size according to g1 ≥ g2 ≥ g3 for each single frame. Further computed quantities
are the radius of gyration, the mean squared change of separation as well as the mean squared
relative velocity.

For the statistics of the perceived velocity gradient tensor, the procedure is slightly more
complicated because all matrices have to be transformed into the eigenframe of S0. In a first
loop through all frames of one tetrahedron trajectory, the perceived velocity gradient tensor is
computed for every frame by means of equation (1.36), using a singular value decomposition
with the requirement that det(M(t))≥ 5 ·10−5. Furthermore, the perceived rate of strain and
rate of rotation tensor are obtained as the symmetric and antisymmetric part of the perceived
velocity gradient tensor. The eigenvalues and eigenvectors of the perceived rate of strain
tensor, S(t), are computed using a Householder reduction. In a second loop through all
frames, the just computed eigenvectors of S(0) = S0 are used to transform S(t) and Ω(t)
into the correct eigenframe. Finally, a histogram is generated from all tetrahedra trajectories
of one measurement for the following quantities: 〈si〉, 〈s2

i 〉, 〈s3
i 〉, 〈D(S1)i〉, 〈D(S0 ·S1)i〉 and
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Figure 4.2.: The average radius of gyration computed for tetrahedra (filled symbols) and pairs
(lines). For Rλ = 350, the initial edge lengths l, or respectively the initial separations
R0, are 212η ( , only for pairs), 242η ( , only for pairs), and 273η ( , ). For
Rλ = 270, the initial edge lengths and separations are 135η ( , ), 154η ( , ), and
173η ( , ).

several traces of interest. For the time derivative, S1, a Gaussian filter with width τη and
length 3τη is applied to the perceived rate of strain tensor, S(t). Only then a transformation
into the eigenframe of S0 is performed. I would like to stress that the width and length of the
filter kernel were chosen solely by intuition since a clear decision aid as used earlier (see
figure 2.6) was not found. As a consequence, the precision of S1 is uncertain.

4.3. Experimental Results
Figure 4.2 shows the size evolution of tetrahedra in comparison to the mean squared separa-
tion of particle pairs for the same flow and the same initial separation (resp. edge length). It
can be seen that the results for tetrahedra and pairs agree within 5%, confirming that the size
evolution of tetrahedra and the separation evolution of pairs provide the same information.
One also finds that the fluctuations of the tetrahedra datasets are a bit larger due to the strong
reduction in statistics, with approximately 20-times less realizations than seen for pairs. The
tetrahedra statistics therefore do not reach the same accuracy as the pair statistics, especially
at later times. As a consequence, the very small t3 effect is hardly detectable. As shown in
section 4.1, however, the shape evolution of tetrahedra exhibits symmetry-breaking already
at first order in t. This is a much larger effect, and it can be well analyzed with the obtained
tetrahedra data and will be the focus of the following analysis.
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Figure 4.3.: Experimental results for the eigenvalues of the shape tensor, G(t), obtained
from initially nearly regular tetrahedra with edge length l. The eigenvalues are non-
dimensionalized with l2, and the variation range of the edge length, ∆l/l, is as large as
10%. For Rλ = 690, the initial edge lengths are l = 364 η ( ), 424 η ( ), and 485 η ( ).
For Rλ = 350, l = 273 η ( ) and for Rλ = 270, l = 135 η ( ), 154 η ( ), and 173 η

( ) are shown. A theoretical prediction up to order t2 as obtained from equation (4.18)
is shown for comparison ( ). For this prediction, measured strain quantities from the
small measurement volume dataset at Rλ = 350 and l = 182 η were used. More details
can be found in the text.

Figure 4.3 shows the experimental results for the evolution of the eigenvalues gi(t) as a
function of time, for both positive and negative times, together with the theoretical prediction
up to order t2. For the theoretical prediction, the measured strain quantities 〈si〉, 〈S1,ii〉,
and 〈s2

i 〉 from the small measurement volume dataset with Rλ = 350 and l = 182 η have
been inserted into equation (4.18). Only the first two orders in time could be used since the
parameters needed for the t3-term could not be fully resolved by the available data. Strain
parameters from different initial separations and Reynolds numbers differ little and yield
the same theoretical predictions. A complete list of the obtained strain quantities is given in
appendix B.2.

It can be seen that, despite the large variation of the presented datasets concerning Reynolds
number and initial edge length, all datasets collapse very well. The theoretical prediction
agrees with the experimental results for 0.08t0 . |t| . 0.2t0. Discrepancies are observed
for very short and very large times. The latter can be attributed to the negligence of the
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Figure 4.4.: Effect of the variations of the edge length, ∆l/l, on the evolution of the eigen-
values of the shape tensor G(t). Lines show numerical results for the eigenvalues of
the shape tensor obtained from initially (nearly) regular tetrahedra with edge length l.
The variations of the edge length, ∆l/l, are varied from 0% to 10%. For ∆l/l = 0%,
the Reynolds number is Rλ = 430 and the initial edge length is l = 167 η . For the
other curves, Rλ = 300 and l = 123 η . An experimental dataset at Rλ = 690 with
l = 364 η ( ) and the theoretical prediction up to order t2 ( ) are shown for compari-
son.

t3-term as well as the unknown and possibly large uncertainty of the first time derivative
of the strain tensor, S1. The discrepancy at very short times is due to a deviation of the
experimental initial conditions from the regular shape assumed in the theoretical prediction
in equation (4.18). For an initially regular tetrahedron, all three eigenvalues should have
a value of l2

2 at t = 0, as shown by the theory curve in figure 4.3. This is not the case for
the shown experimental data, however, because the tetrahedra found experimentally are
not perfectly regular. As stated earlier, in order to obtain sufficient statistical convergence,
the lengths of the edges of a tetrahedron only need to fall into the range [0.9l,1.1l] for the
tetrahedron to be counted as regular. Therefore, the three shape eigenvalues can deviate
by a fair amount from the prescribed value. However, the initial eigenvectors of the shape
tensor are randomly distributed and have no reason to be correlated with the eigenvectors
of the perceived rate of strain tensor. Therefore, the tetrahedra deformation at t = 0 only
influences the evolution of the gi(t) for a very short time after which the theoretical behavior
described in equation (4.18) is recovered. This was carefully confirmed by using DNS data
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Figure 4.5.: Probability distribution of the measured shape eigenvalues gi(t) at t = 0, normal-
ized by the radius of gyration. The computed histogram covers the whole shown volume
with a bin size of (0.005)3. Only points with non-vanishing probabilities are depicted.
The shown dataset was recorded at Rλ = 690 and with l = 364 η . The variation of the
edge length, ∆l/l, is 10%.

at Rλ = 4301 and Rλ = 3002. Figure 4.4 shows the evolution of initially (nearly) regular
tetrahedra, with the acceptance range for the initial edge lengths varied from 0% (perfectly
regular) to 10% (experimental conditions). For comparison, an experimental dataset and the
theoretical prediction are shown in the same plot. One finds that the experimental data agrees
very well with the DNS dataset with ∆l/l = 10%, while the DNS dataset with ∆l/l = 0%
corresponds to the expected theoretical behavior for perfectly regular tetrahedra. It can be
seen that after t/t0 ≈ 0.08, all experimental and DNS curves with different ∆l/l agree with
each other.

It is educational to also look at the full p.d.f. of the eigenvalues gi(t) instead of only
their mean value. Figure 4.5 shows the initial distribution of the three eigenvalues. Due
to ∑gi(t) = R2(t), only two of the three eigenvalues are independent. For the normalized
shape eigenvalues, gi(t)

R2(t) , one therefore finds that all possible combinations have to be

1This dataset was obtained by using a numerical simulation of a turbulent flow field from the Johns Hopkins
University database (Li et al. 2008, Yu et al. 2012), and seeding it with regular tetrahedra. Then, the evolution
of the particle positions forwards and backwards in time was computed and the desired statistics were obtained.
This was done by Alain Pumir from École Normale Supérieure de Lyon.

2This is the same DNS dataset as used in section 3.3.
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Figure 4.6.: Evolution of the probability distribution of the measured shape eigenvalues
gi(t) at t = 0, projected onto the triangular plane to which the shape configurations
are confined. The special cases of regular (g1 = g2 = g3), pancake-shaped (g3 =
0) and needle-shaped (g2 = g3 = 0) tetrahedra can be found at the corners of the
triangle. Evolution forwards and backwards in time is shown in the top and bottom
row, respectively. The computed histogram has a bin size of (0.005)2. Only points with
non-vanishing probabilities are depicted. The shown dataset was recorded at Rλ = 690
and with l = 364 η . The variation of the edge length, ∆l/l, is 10%.

on the plane g1(t)
R2(t) +

g2(t)
R2(t) +

g3(t)
R2(t) = 1, where 0 ≤ gi(t)

R2(t) ≤ 1. Due to the sorting of the
eigenvalues, g1(t) ≥ g2(t) ≥ g3(t), the plane of possible combinations is further reduced
to a triangular surface, depicted in blue in figure 4.5. While a regular tetrahedron has
g1(t)
R2(t) =

g2(t)
R2(t) =

g3(t)
R2(t) =

1
3 (the upper corner of the triangle), one can see that the distribution

of the initial shape of the tetrahedra peaks a little away from this symmetry point.
In order to see the time evolution of the shape p.d.f. more clearly, it is useful to only display

the plane onto which the shape configurations are confined. This is done in figure 4.6, where
the new variables, g1(t)−g3(t)

R(0)2 and 0.5(g1(t)+g3(t))−g2(t)
R(0)2 , are two orthogonal vectors spanning the

plane. It can be seen that both forwards and backwards in time, the shape of the tetrahedra
become nearly coplanar with the distinction that for t < 0 the values of (g1− g3)/R2 are
larger. This means that for negative times, the coplanar shape is slightly more needle-like than
for t > 0. Similar findings were also reported by other studies (Pumir et al. 2000, Biferale
et al. 2005, Xu et al. 2008, Hackl et al. 2011), but with a different choice of projection plane.

This observed time asymmetry can also be seen from the mean eigenvalues of the shape
tensor, as shown in figure 4.3 and figure 4.4. As discussed earlier, the major influence
on the short time evolution of the eigenvalues gi(t) stems from the eigenvalues of the
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perceived rate of strain tensor at t = 0, si(0). More explicitly, at first order in t, one has
〈gi(t)〉= l2

2

(
1+2〈si〉t +O

(
t2
))

. It is furthermore crucial to note that 〈s2〉> 0. Due to the
sorting of the shape eigenvalues by size, it is clear that 〈g1(t)〉 grows with 〈s1〉 for t > 0,
while it grows with 〈−s3〉 for t < 0. The total asymmetry amounts to the difference between
the two, with

〈g1(t)−g1(−t)〉
l2(t/t0)

= 〈s1 + s3〉t0 +O (t) =−〈s2〉t0 +O (t) , (4.19)

where I used that 〈s1 + s2 + s3〉= 0. Note that the eigenvalues of the strain tensor have been
non-dimensionalized with t0 in order to make them independent of Reynolds number and
initial edge length. An analogous expression can be found for the third eigenvalue, 〈g3(t)〉.
It is important to note that the asymmetry found in equation (4.19) is a direct consequence of
the non-zero intermediate eigenvalue of the perceived rate of strain tensor. It does not occur
in artificial flows with Gaussian or otherwise time-symmetric flow profiles, but reflects an
intrinsic property of turbulent flows.

An even larger time asymmetry can be found for the intermediate eigenvalue of the shape
tensor, for which

〈g2(t)−g2(−t)〉
l2(t/t0)

= 〈s2 + s2〉t0 +O (t) = 2〈s2〉t0 +O (t) . (4.20)

Figure 4.7 shows relation (4.20) as a function of time for all analyzed experimental and
numerical datasets. The solid horizontal line represents the value 2〈s2〉t0 = 0.42 as obtained
from figure 4.1. It can be seen that while for very short times, t < 0.05t0, all curves with a
non vanishing variation of the edge length, ∆l

l 6= 0, show a steeply rising slope, a plateau is
observed for intermediate times with a value close to the prediction. The wide extension of
the plateau might be explained by the argument that by taking the difference 〈g2(t)−g2(−t)〉,
all higher order terms with an even power in t, especially the t2-term, cancel out3. Therefore,
the dominating, non-vanishing t-term is followed by a much weaker t3-term. Similar to the
two-particle case, it can be shown that all odd terms have an intrinsic timescale of t0, so that
the t3-term only becomes important at t ≈ t +0. The fact that all experimental curves stay
slightly below the predicted plateau height might be attributed to the finite volume effect.
Since the trajectories are not symmetrized around t = 0 and fast separating tetrahedra are
tracked for shorter periods than slowly separating tetrahedra, some of the asymmetry is lost
at later times. In figure 3.4, I showed that the impact of the bias becomes of the order of
10 % at t/t0 ≈ 0.1. Therefore, also taking into account the measurement uncertainty of ε , a
plateau at values 10 to 20 % below the theoretical prediction is reasonable. In total, figure 4.7
confirms the theoretical prediction that the asymmetry of the evolution of the intermediate
eigenvalue of the shape tensor to leading order is given by 2〈s2〉, even for tetrahedra which

3In contrast to the two-particle case in chapter 3, the observation length of the tetrahedra trajectories forwards
and backwards in time were not symmetrized. Therefore, the bias effect due to the finite measurement
volume is not fully time-symmetric and cannot be expected to cancel out exactly when taking the difference
〈g2(t)−g2(−t)〉. Since the focus is on the non-vanishing first-order term, however, the finite volume bias is
assumed to have no qualitative effect on the presented tetrahedra data.
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Figure 4.7.: Asymmetry of the intermediate shape eigenvalue, compensated by t/t0. For
experimental data at Rλ = 690, the initial edge lengths are l = 364 η ( ), 424 η ( ),
and 485 η ( ), for Rλ = 350, l = 273 η ( ) and for Rλ = 270, l = 135 η ( ), 154 η

( ), and 173 η ( ). Solid lines represent DNS data at Rλ = 300 with l = 123 η . The
variations of the edge length, ∆l/l, are 10% ( ), 5% ( ) and 2.5% ( ). The dashed
line represents DNS data at Rλ = 430 with an initial edge length of exactly l = 167 η

(∆l/l = 0%, ). The horizontal gray line depicts the value of 2〈s2〉t0 = 0.42 from
figure 4.1.

are only approximately regular at t = 0.
So far, I studied the time asymmetry in pair dispersion and in the shape evolution of

tetrahedra. I found that in both cases, the observed asymmetry is directly linked to intrinsic
properties of turbulent flows. For pair dispersion, the symmetry-breaking t3 term was found
to be directly proportional to the energy transfer rate of the turbulence energy cascade. For
tetrahedra, I found that symmetry breaking already occurs at leading order in t due to a
non-vanishing intermediate eigenvalue, s2, of the perceived rate of strain tensor. As discussed
by Betchov (1956) for the true strain tensor in the dissipative range, the non-zero value
of s2 arises directly from a positive, non-zero viscous term. It seems plausible that this
relation carries over to some extent into the inertial range, therefore linking the asymmetry
in tetrahedra deformation to the energy cascade. As a next step, it thus seems prudent to
change the energy cascade and analyze how this affects the observed time asymmetry. This
change of the energy cascade will be realized by adding minute amounts of polymers to the
flow, as will be discussed in detail in the next chapter.





CHAPTER 5

The Effect of Polymers

It is known for more than sixty years (Toms 1948) that the addition of minute amounts of
polymers to a turbulent flow, even as low as some parts per million, strongly reduces the drag
as shown in figure 5.1. Partly owing to the great usefulness of this finding, especially for
the reduction in power consumption when pumping fluids through pipes, a lot of research
has been focused in this direction (a comprehensive overview can e.g. be found in Lumley
1969, Hoyt 1972, Virk 1975, White & Mungal 2008, Procaccia et al. 2008). The underlying
fundamental processes of this effect are, however, still unclear.

Long-chain polymers usually possess a high degree of flexibility and, in their basic state,
coil up to an approximately spherical shape. In a turbulent flow, the polymers become
stretched and some of the kinetic energy of the fluid is stored in the elastic degrees of
freedom of the polymer. Since the stretched polymers are still much smaller than the
Kolmogorov length scale and only minute amounts are added, it is a great puzzle how they
can so profoundly alter the properties of the flow.

In this chapter, I study the effect of polymers on a turbulent flow as observed from the
dispersion of clusters of two and four particles. In section 5.1, I briefly describe how
the polymer solution was produced and filled into the tank. In section 5.2, I present some
important theories on polymer-flow interactions and show experimental results for the explicit
flow considered in this thesis. In sections 5.3 and 5.4, I finally show how polymer-flow
interactions can be analyzed with the methods introduced in the previous two chapters.

5.1. Preparation of the Experiment

In order to study the effect of polymers on the flow, the cylindrical tank of the experimental
setup is first filled with deionized water and then a high-concentration polymer solution
is added so that the resulting mixture had the desired polymer concentration. For the
concentrated polymer solution, small amounts of polyacrylamide with a molecular weight

71
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Figure 5.1.: This picture shows two water jets from identical fire hoses. Both hoses were
aligned at the same angle and, for pure water, produced jets of equal reach. Then, a
diluted solution with 30 ppm of high molecular weight poly(ethylene oxide) was used
for the left hose. As a result, the jet exited at a higher speed, was more coherent, and
had a significantly enhanced reach. (Reprinted from Bailey & Koleske 1976, chap. 4, p.
81.)

of 18 ·106 u (Polysciences 18522) are mixed into a specified amount of deionized water
(1−2 liters) with a stirrer. For the first minute, the rotation rate of the stirrer is set to 450 rpm,
then it is decreased to 300 rpm and the solution is stirred for another approximately 30 min.
This way, a good dispersion of the polymers is achieved without exerting too much force
on the polymer chains for them to break. This is important since the length of the polymers
is a determining factor for the influence of the polymers on the flow properties. Then, the
polymer solution is filled into bottles and rotated slowly over night (figure 5.2(a)). Due to
the long and slow mixing, the polymers disperse very well in the solution, building only very
few clumps of entangled polymers. It is expected that these clumps dissolve at the latest
when the concentrated polymer solution is mixed into the 120 l of the tank content and the
clumps are exposed to the turbulent flow.

The polymer solution is filled into the tank through the small bucket on the top-plate
(figure 5.2(b)). The little pump connected to the bucket is not used to pump the polymer
solution into the tank since the polymer chains could be damaged. Instead, some of the
deionized water in the tank is drained through a valve in the bottom plate so that the polymer
solution in the bucket is sucked in. When filling the polymer solution into the bucket, some
rest amount of deionized water, Vb = 400±10 ml, needs to remain in the bucket to avoid
that air is sucked into the tank. It is assumed, that when filling in the polymer solution,
the rest amount of water is always drained first. Since this is not certain, the remaining
water in the bucket poses a large source of uncertainty in the determination of the polymer
concentration in the tank. In order to reduce this error, the amount of the remaining water
in the bucket is reduced to Vb = 200±10 ml by inserting a large, heavy weight into the
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10 cm

(a) Rotation Device

10 cm

(b) Bucket

Figure 5.2.: (a) Picture of the self-built rotation device, used for gently mixing highly
concentrated polymer solution. (b) Picture of the small bucket mounted on top of the
tank. The bucket can be used for introducing substances into the tank via small tubes
connected to the top and bottom plate of the tank. If the water level in the bucket drops
below a certain level, marked “dead volume”, air bubbles may enter the tank.

bucket, thus displacing some of the water1. Furthermore, after draining the first full bucket
of solution into the tank, the bucket is filled with the remaining solution which is stirred
carefully into the remainder of the first filling. This way, the worst possible case, namely
that no residual water is drained, is replaced by the case that only a small part of the water,
corresponding to a well mixed solution, is not drained.

The amount of polyacrylamide in the tank, min, is finally given by

min = mpol

(
1− Vw

V

)
, (5.1)

with mpol the amount of polymers in the concentrated polymer solution, V the amount of
water used for the concentrated polymer solution and Vw the amount of the remaining water
in the bucket that is also drained into the tank. In the expected case that all the residual water
is drained, one has Vw = Vb. The value of Vw can however vary between Vw = Vb +10 ml,
taking into account the measurement uncertainty of Vb, and Vw = VbV

V+Vb
, corresponding to

the worst case in which the solution is well mixed, and a small fraction of the water is not
drained2. The error bounds on Vw are thus given by ∆Vw =

+10 ml
−V 2

b /(V+Vb)
. With an accuracy

for the weight measurement of ∆mpol = 0.005 g and for the volume of the mixing water of
∆V = 50 ml, the measurement error on the amount of polymers inserted into the tank is given
by

∆min =

∣∣∣∣
V −Vw

V
∆mpol

∣∣∣∣+
∣∣∣∣mpol

Vw ∆V
V 2

∣∣∣∣+
∣∣∣∣mpol

∆Vw

V

∣∣∣∣ . (5.2)

1This was only done after some time. For the first two datasets, it was Vb = 400 ml.
2Here, the small uncertainty of Vb is neglected.
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The error on the concentration is then simply given by

∆c/c = |∆min/(Vtank ρw)|+ |min/(V 2
tank ρw)∆Vtank|, (5.3)

with Vtank = 120±2 l the full volume of the tank and ρw the density of water (assumed to be
exact). The resulting concentration errors for the individual datasets are given in table 2.2.

Aside from the added polymers, the measurement procedure is exactly as described in
chapter 2.

5.2. Effect of Polymers on the Energy Cascade
Flexible polymer chains in a turbulent flow are stretched by straining regions of the flow
(Tabor & De Gennes 1986, De Gennes 1986, Smith et al. 1999), thus removing some of the
energy from the flow field and storing it in the elastic degrees of freedom of the polymers
(see figure 5.3). This energy is then released at the size scale of the polymers, which is much
smaller than the Kolmogorov scale η . With this known, the question arises of how objects of
such a small size can have such a profound influence on the flow properties as observed in
experimental studies. This is even more puzzling taking into consideration the very small
amounts of polymers needed to obtain an effect (only a few parts per million).

(a) Coiled state (b) Stretched state

Figure 5.3.: Sketch of the transition from a coiled to a stretched state of a single polymer
molecule due to a straining flow pattern.

The first to propose a well accepted explanation to this riddle was Lumley (1969) who
reasoned that one has to look at the time scales involved, not at the length scales. He argued
that the polymers can be stretched by all eddies with time scales τr faster than the relaxation
time τp of the polymer, where τp is the time that a stretched polymer chain needs to relax
back into its energetically preferable coil configuration (Zimm 1956). For a linear polymer
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chain with N monomers of length a, the relaxation time can be given by τp ≈ µ

kT (N
3
5 a)3,

with k = 1.38 ·10−23 J/K being the Boltzmann constant, and µ and T the dynamic viscosity
and temperature of the solution. From Lumley’s time-criterion, one then obtains a maximum
eddy size r∗ ∝ (ετ3

p)
1
2 below which polymer-flow interactions could occur. This length scale

is much larger than the Kolmogorov scale, thus providing some explanation for the large
effect of polymers on the flow. Lumley, however, did not incorporate the effect of different
polymer concentrations.

About a decade later, de Gennes and Tabor constructed a more complete model (De Gennes
1986, Tabor & De Gennes 1986). They suggested that for r < r∗, which are those scales
involved in polymer stretching according to Lumley, the polymer elastic energy per volume is
given by Ee(r) ∝ cpkT (r∗/r)

5n
2 with cp being the number of polymer chains per unit volume

and n being an unknown constant3. They then argued that below a scale r∗∗, at which the
polymer elastic energy equals the turbulence kinetic energy,

Ee(r∗∗) = Ek(r∗∗) = ρu2(r∗∗), (5.4)

the turbulence energy cascade will be truncated since most of the energy is absorbed by the
polymers. This scale is obtained from equation (5.4) to be

r∗∗ ∝

(
kT cp

ρ
ε
(5n/4−2/3)

τ
15n/4
p

)1/(2/3+5n/2)

. (5.5)

Note that the resulting scale r∗∗ is naturally always smaller than the Lumley scale r∗.
According to this theory, the turbulent energy cascade is thus assumed to be unchanged at

scales larger than r∗∗. This, however, contradicts the initial assumption of the theory that
polymers gain elastic energy from all eddies with sizes r < r∗, ergo including eddies in the
range r∗∗ < r < r∗, and thereby already remove some kinetic energy from the flow at scales
larger than r∗∗. Xi et al. (2013) concluded from this that it is not the energy balance itself
one should look at but the balance of energy flux. Assuming that the characteristic polymer
time scale to dissipate energy is τp, they defined the elastic energy flux as

εp(r) ∝
Ee(r)
ρτp

∝
kT cp

ρτp

(
r∗

r

)5n/2

. (5.6)

One can then derive a new length scale rε at which the turbulent energy flux, ε , equals the
energy flux due to the polymers, εp(r). This scale is given by

rε = A
(

kT
ρ

)2/(5n)

c2/(5n)
p ε

1/2−2/(5n)
τ

3/2−2/(5n)
p , (5.7)

where A is an unknown proportionality constant that depends on the polymer type. They
showed that experimentally measured second order structure functions at different polymer

3The expression for the polymer elastic energy is derived based on polymers in elongational laminar flow fields
under the assumption that the stretching behavior of the polymers is similar in a turbulent flow (De Gennes
1986).
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concentrations and Reynolds numbers can be made collapse on one curve when the spatial
scale is normalized with rε , indicating that this is indeed the right length scale for the problem.
Furthermore, for the constants n and A, they obtain n = 1.0± 0.2 and A = 101± 17 (for
polyacrylamide) (Xi et al. 2013).

In this thesis, I do not use the second order structure function but 〈δu ·δa〉 = −2ε

as a measure for the energy flux. Nevertheless, the above arguments should still hold.
Figure 5.4 shows the curves for −1

2〈δu ·δa〉 as functions of r for datasets with different
polymer concentrations. All shown datasets were recorded at a propeller frequency of 0.9 Hz,
corresponding to a Reynolds number of Rλ = 350 for the water case. One observes that
−1

2〈δu ·δa〉 decreases at all resolvable scales with increasing polymer concentration. In
principle, the difference between the curves with and without polymers is a measure for the
elastic energy flux εp(r). However, the polymers can also interfere with the energy injection
into the flow due to boundary effects, and they have been shown to reduce large-scale velocity
fluctuations (Ouellette et al. 2009, Xi et al. 2013). Since these boundary and large-scale
effects are not the focus of this study, the reduction of the overall turbulence energy flux is
taken into account by defining a different value of ε for each curve, using a horizontal fit to
the plateau in the inertial range4.
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Figure 5.4.: Measured values for −1
2〈δu ·δa〉 as a function of scale for three different

polymer concentrations. All three data sets are recorded with the same propeller
frequency of 0.9 Hz, corresponding to the pure water dataset with Rλ = 350 and η =
0.058 mm. Solid horizontal lines represent the fit to obtain ε .

4The resulting values for all polymer datasets are given in table 2.2.
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Figure 5.5 (a) shows the same datasets rescaled by the heights of the plateaus. Furthermore,
datasets at Rλ = 390 were processed in the same way and are also shown here. The datasets
at Rλ = 270 will be omitted in this chapter because 〈δu ·δa〉 shows no sufficient plateau
anymore if polymers are added (see appendix A.1 for the respective figures and a discussion).
Now, the difference between the water-dataset and the different polymer-datasets indeed
provides a measure for εp(r). A shift of the onset of the plateau to higher scales with
increasing polymer concentration is clearly visible here. In comparison, the effect due to the
small difference in the Reynolds numbers is negligible. The general decrease of the plateau
height and its shift to higher scales have also been seen for similar studies on the second
order structure function (Ouellette et al. 2009, Xi et al. 2013). Further studies also observed
a suppression of the small scales when adding polymers (Tong et al. 1992, Bonn et al. 1993,
Liberzon et al. 2005, 2006, Berti et al. 2006, Crawford et al. 2008)
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Figure 5.5.: (a) Measured values for −1
2〈δu ·δa〉 rescaled with the respective value of ε as

a function of scale for three different polymer concentrations. Datasets recorded with a
propeller frequency of 1.1 Hz, corresponding to Rλ = 390, are shown as circles ( , , ).
Datasets with a propeller frequency of 0.9 Hz, corresponding to Rλ = 350, are shown
as stars ( , , ). (b) Here, the spatial scale is compensated by rε and only datasets
with added polymers are shown.

As a next step, I rescale r with rε as suggested by Xi et al. (2013). For the polyacrylamide
used in this study, the radius of gyration of a polymer chain is given by Rg = N

3
5 a = 0.5 µm.

At T = 293 K and with a dynamic viscosity of of water of µ(20◦C) = 1.0 ·10−3 Pas, this
leads to a polymer relaxation time of τp = 43 ms. Using the respective ε from the plateau
fits and the measured values of A = 101 and n = 1.0 from Xi et al. (2013), one finds

Rλ = 350 : rε(5 ppm) = 7.6 mm=̂115 η , rε(10 ppm) = 10.0 mm=̂152 η ,

Rλ = 390 : rε(5 ppm) = 8.2 mm=̂141 η , rε(10 ppm) = 10.7 mm=̂184 η ,

where the values for η where obtained from the water datasets with the respective Reynolds
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number. The results are shown in figure 5.5 (b). Please note that for the case without
polymers, no rε is defined so that these datasets are not shown. One finds a very good
collapse for the different polymer concentrations, with the plateau being reached at r≈ 1.2rε

for all datasets. These results support the theory by Xi et al. (2013) and confirm the values
for A and n.

It should be stated that the theory used here is based on the assumption that for all scales
below the Lumley scale r∗, which is by construction much larger than the scale rε , some of
the kinetic energy flux of the flow is diverted into the scale-dependent elastic energy flux
of the polymers, εp(r). Only above the Lumley scale, which in our case is assumed to lie
at scales beyond the analyzed range, 〈δu ·δa〉 should yield the unchanged, constant energy
transfer rate ε . As a consequence, the plateaus shown in figure 5.5 should not be perfectly
flat but are indeed believed to exhibit a small increase with growing scales, meaning that a
small r/rε dependence of the datasets can remain, especially for scales at the lower boundary
of the plateau. A second consequence is a possibly slightly too low value for ε since the fit
to 〈δu ·δa〉 is done in a region where 〈δu ·δa〉 did not yet reach its true plateau value. This
difference is assumed to be negligible small in comparison to the overall uncertainty on ε of
10 %, however.

So far, I found that adding small amounts of polymers has a noticeable effect on the energy
transfer of the studied flow. This effect can be explained by a “redirection” of some of the
kinetic energy flux of the flow to small scales by elastic stretching and relaxation of the
polymers. In the next two sections, I want to analyze how this effect influences the dispersion
of clusters of two and four particles.

5.3. Two-Particle Dispersion
As discussed in detail in chapter 3, the time asymmetry in pair dispersion can be studied by
looking at the antisymmetric function

Fa
t (t) =

〈δR(t)2−δR(−t)2〉t
2R2

0
=
〈V(0) ·A(0)〉0

R2
0

f2(t)t3 +O
(
t5)

=−2 f2(t)
(

t
t0

)3

+O
(
t5) , (5.8)

with t0 =
(

R2
0

ε

) 1
3
. Figure 5.6 shows the experimental results, where lines indicate the pure

water case, and symbols indicate polymer concentrations of 5 ppm (a) and 10 ppm (b). As
motivated in the previous section, different values for ε for the polymer datasets were used.
All curves are again compensated with 〈V(0)·A(0)〉0

R2
0

t3, leading to a fixed plateau height of
exactly one.

It can be seen that all curves for a certain polymer concentration nearly collapse on top
of each other, with a possibly weak dependence on r/rε , while there is a clear difference
between the cases with and without polymers. For water, most curves show a plateau up to
t ≈ 0.05t0, whereas the datasets with added polymers deviate already at t ≈ 0.005t0, a factor
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Figure 5.6.: Time-asymmetry in pair dispersion as seen from the compensated antisymmetric
function Fa

t (t) for two different polymer concentrations (symbols), 5 ppm (a) and
10 ppm (b), in comparison to the water case (lines). Datasets at three different propeller
frequencies ( 0.5 Hz ↔ Rλ = 270, 0.9 Hz ↔ Rλ = 350, 1.1 Hz ↔ Rλ = 390) are
shown. For the datasets with added polymers, different initial separations of 14 mm,
16 mm, and 18 mm are shown. In terms of the scale rε defined in the previous section,
the initial edge lengths for a concentration of 5 ppm and Rλ = 390 are R0 = 1.7 rε ( ),
2.0rε ( ), and 2.2rε ( ) and for Rλ = 350 they are R0 = 1.8rε ( ), 2.1rε ( ), and
2.4rε ( ). For a concentration of 10 ppm, the initial edge lengths for Rλ = 390 are
R0 = 1.3rε ( ), 1.5rε ( ), and 1.7rε ( ) and for Rλ = 350 they are R0 = 1.4rε ( ),
1.6rε ( ), and 1.8rε ( ). For the water case, the same datasets as in figure 3.6 on
page 55 are shown, but they are all colored blue for better contrast to the polymer
datasets ( , , ).

of 10 earlier. For the two different polymer concentrations, on the other hand, no significant
difference can be observed.

These observations can have several reasons. One argument could be that the effect is
caused artificially by using different ε-values for the water and polymer datasets, leading to
different values of t0 and thus of the deviation time. This argument can easily be refuted by
noting that the difference between ε0ppm and ε10ppm for the same propeller frequency is at
most a factor of two. Since t0 ∝ ε−

1
3 , this leads to t0,10ppm ≈ 1.3 t0,0ppm, which is much too

small to explain the observed effect5.
Assuming that ε is chosen sufficiently precisely, the only other possibility is that the higher

order terms, notably the t5-term, are changed by the polymer-flow interaction. This change
can be in terms of a modified prefactor or in the form of a new timescale. So far, I based my
explanations of the convergence radius of the used Taylor-Expansion fully on the assumption

5The same reasoning of course also dismisses the measurement error on ε as an explanation.
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that, in a turbulent flow, two-point functions do only involve the time-scale t0 (Frishman
2013). With the addition of polymers, this assumption might not be valid anymore and the
convergence of the Taylor expansion, especially of the odd terms, could be severely reduced.
If the addition of polymers indeed introduces a new timescale, figure 5.6 indicates that this
timescale, compensated by t0, weakly depends on r/rε . The lacking difference between the
two polymer concentrations also suggests that there is a critical concentration smaller than
5 ppm beyond which any further addition of polymers does not lead to a change as long as
the scales under consideration are chosen in the plateau range of 〈δu ·δa〉 and the corrected
value for ε is used. This roughly agrees with the findings of Ouellette et al. (2009) who see a
critical concentration around 5 ppm, using the same polymer type. Within the uncertainties
of the concentration measurements, it is reasonable to assume that the datasets presented
here are both above the critical concentration observed by Ouellette et al. (2009).

Looking at the much richer statistics of four-particle clusters can help to gain further inside
in this complex problem.

5.4. Four-Particle Dispersion
Since it was shown in section 4.3 that the size evolution of initially regular tetrahedra does
not offer any additional information in comparison to pair dispersion, I will directly proceed
with the analysis of the eigenvalues of the shape tensor. Figure 5.7 shows the evolution of
eigenvalues 〈gi(t)〉, compensated with the initial edge length squared, as a function of t/t0
for polymer concentrations of 5 ppm (a) and 10 ppm (b). For the computation of t0, the value
for ε as obtained from the fit to 〈δu ·δa〉 was used again. In figure 5.7, a small difference
between the cases with and without polymers can be observed. While the curves for 〈g1(t)〉
and 〈g3(t)〉 agree within the scatter of the curves, the intermediate eigenvalue suggests that
the datasets with polymers (symbols) show a slightly enhanced slope at t = 0 compared to
the datasets without polymers (blue lines), indicating a higher value of 〈s2〉.

In order to verify this finding, figure 5.8 shows the strain eigenvalues for datasets with
added polymers (symbols) and the average strain eigenvalues for datasets without polymers
as obtained from figure 4.1 (blue lines). For the polymer datasets, a slight dependence on
rε is visible, especially for 10 ppm. As discussed earlier, such a small r/rε dependence is
expected for initial edge lengths at the beginning of the plateau of 〈δu ·δa〉 since εp(r) at
these scales is non-zero and leads to a deviation of 〈δu ·δa〉 from its final value. As a result,
a scale dependent t0(r) arises which becomes smaller for increasing length scales. Since
the same value for t0 is used for different l, however, the absolute values of all eigenvalues
〈si〉t0 seem to grow with increasing scales. Due to this, no horizontal fit for an average value
was performed. In the analyzed range of scales, Figure 5.8(a) confirms that the addition
of polymers leads to a higher intermediate eigenvalue 〈s2〉, and shows that the absolute
values of 〈s1〉 and 〈s3〉 become smaller. It can be observed that the eigenvalues 〈s1〉 and 〈s3〉
approach the values of the water case for increasing length scales. This might be a reason
why this effect was not observable in figure 5.7. Since the value of 〈s1〉 rises slower than 〈s3〉
drops, the intermediate eigenvalue 〈s2〉 also needs to increase slightly, thus getting further
away from the value 0.21 obtained for pure water (see figure 5.8(b)). With 〈s1〉 and 〈s3〉
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Figure 5.7.: Eigenvalues of the shape tensor, G(t), obtained from initially nearly regular
tetrahedra with edge length l. The eigenvalues are non-dimensionalized with l, where the
variation range of the edge length, ∆l/l, is 10%. Datasets with a polymer concentration
of 5 ppm (a) and 10 ppm (b) are shown in comparison to the pure water case. For the
polymer datasets, different initial edge lengths of 14 mm, 16 mm, and 18 mm are shown.
In terms of the scale rε defined in the previous section, the initial edge lengths for a
concentration of 5 ppm and Rλ = 390 are l = 2.0rε ( ) and 2.2rε ( ) and for Rλ = 350
they are l = 1.8rε ( ), 2.1rε ( ), and 2.4rε ( ). For a concentration of 10 ppm, the
initial edge lengths for Rλ = 390 are l = 1.3rε ( ), 1.5rε ( ), and 1.7rε ( ) and for
Rλ = 350 they are l = 1.4rε ( ), 1.6rε ( ), and 1.8rε ( ). All water datasets are shown
in blue for a better contrast ( , , ). See figure 4.3 for a color coded version and a
listing of the used initial edge lengths.
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approaching the water case, however, the value of 〈s2〉 is also bound to return to a value of
0.21 at sufficiently large scales. As a consequence, there needs to be a maximum value of
〈s2〉 at some intermediate scale. Furthermore, the close-up in figure 5.8(b) suggests that
there might be a dependence of 〈s2〉 on the polymer concentration. The large difference
between the water and polymer datasets can also be seen more clearly.
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Figure 5.8.: Eigenvalues of the perceived rate of strain tensor for datasets with added
polymers for two different Reynolds numbers: Rλ = 390 ( , ) and Rλ = 350 ( , ).
Datasets with a polymer concentration of 5 ppm are shown as filled symbols, datasets
with 10 ppm as open symbols. Blue lines indicate the value for the pure water case as
obtained from figure 4.1. Only initial separations inside the plateau range of 〈δu ·δa〉
for the small measurement volume are shown. For a list of all values, see appendix B.2.

The observed increase of the intermediate eigenvalue of the perceived rate of strain
tensor should also result in an enhancement of the time asymmetry of the evolution of
the intermediate shape eigenvalue 〈g2(t)〉, as already indicated in figure 5.7. For a better
display of this asymmetry, figure 5.9 shows the difference 〈g2(t)− g2(−t)〉 compensated
with l2(t/t0). The same datasets as in figure 5.7 are shown. As discussed in section 4.3, the
studied quantity should display plateaus with heights of 2〈s2〉. Since a rε -dependence was
observed for the datasets with added polymers, no unique plateau height but rather a range
of plateaus is expected. One finds that for all datasets, a steep rise at short times, being a
remnant of the fact that the studied tetrahedra are only nearly regular at t = 0, is followed
by the expected stable plateau at larger times. As before, the difference between the pure
water case and the polymer cases is apparent. For the datasets with 5 ppm and 10 ppm of
added polymers, however, one finds a large scatter of the different curves but no systematic
variation with rε or polymer concentration. This might be explained with the deviations
from a regular shape at t ≈ 0. It was found in the previous section that there is a strong
influence of polymers on the short time evolution of pair dispersion as early as t ≈ 0.01t0.
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These early times are very strongly affected by the shape deformations at t = 0, and possible
trends concerning polymer concentration and rε -dependence could be obscured.
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Figure 5.9.: Time asymmetry in the intermediate eigenvalue of the shape tensor for three
different polymer concentrations. The same datasets as in figure 5.7 on page 81 are
shown. The gray horizontal lines represents the expected plateau height for the water
case.

In summary, I find that polymers increase the time-asymmetry in the shape evolution
of tetrahedra, specifically in the intermediate eigenvalue of the shape tensor. As for the
pair dispersion, a convincing trend that the effect becomes stronger with rising polymer
concentration could not be seen. This indicates again that a critical polymer concentration
below 5 ppm exists, above which no further changes to the time-asymmetry in particle
dispersion can be observed. A slight dependence on r/rε was observed, however. Further
experimental runs with more tetrahedra trajectories can help to strengthen the results by
increasing the overall statistical resolution and, with a stricter bound on the initial deformation
of the tetrahedra, by decreasing the deviation from the theoretical prediction at small times.





CHAPTER 6

Discussion and Perspectives

The time irreversibility of turbulent flows is an indicator for their non-equilibrium character,
and a better understanding of this connection is important to obtain a complete picture of
turbulence. Even though it was already observed a decade ago that pairs of tracer particles
separate faster backwards than forwards in time (Sawford et al. 2005, Berg et al. 2006, Bragg
et al. 2014), a rigorous explanation for this behavior was not given.

In chapter 3 of this thesis, I showed that the short-time evolution of the relative separation
of a pair of tracer particles with an initial separation in the inertial range is given by

〈δR(t)2〉= 〈V(0)2〉t2 + 〈V(0) ·A(0)〉t3 +O
(
t4)

=
11
3

C2(εR0)
2
3 t2−2εt3 +O

(
t4) ,

where the first line is a purely kinematic expression, valid for a large range of flows, and
the second line corresponds to homogeneous, isotropic turbulence. In the latter case, the
time-asymmetric cubic term is found to be directly proportional to the energy flux through
scales, ε . For a 3D turbulent flow, the energy cascade goes from large to small scales, leading
to a positive value of the energy transfer rate ε and thus, according to the above formula, to a
faster separation backwards than forwards in time. This agrees with the previous findings
and was also confirmed in chapter 3 using both experimental and numerical data.

Future studies on the time-asymmetry in pair-dispersion in 2D turbulent flows could
provide a good way to further test the presented results. For 2D turbulence, it is known that
there exists a range of scales with an inverse energy cascade. In this range, the energy transfer
rate is negative, meaning that energy is transported from small to large scales (Kraichnan
1967, Tabeling 2002, Boffetta & Ecke 2012). For ε < 0, the above theoretical relation
predicts that the separation of a pair of tracers grows faster forwards than backwards in time,
contrary to the 3D case. An observation of this effect would further strengthen the results
presented in this thesis.
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Another important conclusion that can be drawn from the above relation is that a clear,
time-asymmetric behavior in pair dispersion can already be observed at very short times, long
before Richardson scaling is observable. In earlier attempts to explain the observed time-
asymmetry, it was stated that at larger times, the relative separation of a particle pair should
grow according to Richardson scaling, 〈δR(t)2〉= g f/bεt3, but with different constants g f

and gb for the evolution forwards and backwards in time (Sawford et al. 2005, Berg et al.
2006, Salazar & Collins 2009). Plotting the difference between the evolution backwards and
forwards in time and dividing by εt3 should thus lead to two plateaus: For the short-time
evolution one expects a plateau with height 4, while for later times a plateau with a height of
(gb−g f ) should be visible. Berg et al. (2006) extracted a value of (gb−g f ) = 0.6 from their
experimental data at Rλ = 172 by using a controversial time-shifting procedure (Ouellette
2006, pp. 144-145). Even though the Reynolds numbers used in this thesis are much larger,
all presented experimental and numerical datasets only showed a clear plateau for the short-
time evolution and then quickly dropped below a value of 0.6 without the indication of a
second plateau. It cannot be fully ruled out however, that a second plateau at a much smaller
value of (gb−g f ) might exist. Further experiments with longer observation times are needed
to reliably test for the existence of a second plateau at later times.

While the symmetry-breaking term in pair dispersion was found to behave like t3, the
time-symmetry in the shape evolution of clusters of four particles is already broken by a
term linear in time. Using the perceived rate of strain tensor as defined by Chertkov et al.
(1999), I showed in chapter 4 that the evolution of the eigenvalues of the shape tensor can be
expressed by

〈gi(t)〉=
l2

2

(
1+2〈si〉t + 〈S1,ii +2s2

i 〉t2 +
〈1

3
S2,ii +

4
3

s3
i +2(S0 ·S1)ii

+
2
3
(R2

0 ·S0)ii−
2
3
(R0 ·S0 ·R0)ii +

4
3
(R0 ·S1)ii

〉
t3 +O

(
t4)),

where both the eigenvalues of the shape tensor, 〈gi(t)〉, and the eigenvalues of the perceived
rate of strain tensor, 〈si〉, are sorted by size. Here, the symmetry-breaking, linear term is
proportional to the eigenvalues of the perceived rate of strain tensor which, similarly to the
true rate of strain tensor, obey 〈s1〉> 〈s2〉>≥ 0 > 〈s3〉. If the intermediate eigenvalue equals
zero, as it is e.g. the case for a Gaussian flow field, the shape evolution is time-symmetric.
For the turbulent flow and the range of tetrahedra sizes studied in this thesis, however, the
intermediate eigenvalue was found to have a value of 〈s2〉t0 = 0.21, with t0 being the timescale
corresponding to the size of the tetrahedron. The predicted asymmetry of 〈gi(t)−gi(−t)〉=
2l2〈s2〉t was observed with experimental and numerical data for intermediate times. For very
short times, the fact that the experimentally observed tetrahedra are not perfectly regular,
as was assumed in the theoretical derivation, obscures the effect. Only a drastic increase in
tracked tetrahedra can alleviate this problem by allowing a stricter selection of the initial
shape at t = 0. Further high-precision experiments are therefore desirable.

Another attractive continuation of this work is the study of single-particle statistics. While
simple Lagrangian velocity increments of the type 〈(U(t + τ|y,0)−U(t|y,0))n〉 can be shown
to be invariant under time reversal (Falkovich et al. 2012), it was recently found that the
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kinetic energy of single tracer particles indeed captures the irreversibility of the flow (Xu et al.
2014). Furthermore, the same behavior was observed for 2D and 3D turbulence. This implies
that the time-asymmetry observed in single-particle statistics might be directly connected to
energy dissipation, and not, as it was shown for multi-particle statistics in this thesis, to the
flux of energy through scales. It will be of great interest to find the relation and differences
between the time irreversibility observed in single- and multi-particle dispersion.

In chapter 5, I lastly studied what effect a change to the energy cascade, induced by the
addition of small amounts of polyacrylamide, might have on the time-asymmetry in the
above processes. Since polymers not only influence the bulk flow but also hamper the energy
injection into the flow due to drag reduction effects at the propellers, for each dataset with
added polymers, the energy transfer rate was obtained by a fit to the plateau of 〈δu ·δa〉. I
then confirmed that the length scale rε , introduced by Xi et al. (2013), at which the turbulence
energy flux and the elastic energy flux through the polymers are equally strong, is able to
collapse all datasets with added polymers onto a single curve. Looking at the dispersion of
two particles and rescaling everything with the measured value of ε , a distinct difference
between the water and polymer datasets could be observed whereas the results for two
different polymer concentrations, 5 ppm and 10 ppm, agreed within the uncertainty of the
data. This implies that there is a critical polymer concentration smaller than 5 ppm above
which different polymer concentrations lead to the same effect, as long as everything is
normalized correctly and the chosen initial separations are in the inertial range. Furthermore,
the main difference between the water and polymer cases consisted of an earlier deviation
from the t3 scaling. I argued that this early deviation could be caused by the introduction of
a new time scale which affects the higher order terms.

For the shape deformation of tetrahedra under the influence of added polymers, I found
a significant enhancement of the time-asymmetry for the dilute polymer solutions. For the
two different polymer concentrations, a small difference in the intermediate eigenvalue of
the perceived rate of strain tensor was observed. This difference was not reflected in the
asymmetry shown by 〈gi(t)−gi(−t)〉, however. Under the assumption that polymers indeed
introduce a new time scale, the expected effect should be visible at small times. As discussed
before, the shape evolution at very short times is again obscured by the small deformations
of the tetrahedra at t = 0. Further measurements with a stricter shape selection at t = 0 can
help to increase the non-obscured range of scales and help to investigate the existence of a
new time scale. Additionally, experiments at different polymer concentrations, especially
below the supposed critical concentration of approximately 5 ppm, are needed to clarify the
existence of a critical concentration and its exact value.

In summary, the theoretical and experimental results obtained in this thesis open new ways
to investigate turbulent flows and reveal many new questions to be answered.
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A. Supplementary Figures and Derivations
This appendix contains supplemental plots as well as detailed versions of arguments and
derivations that are indispensable parts of this thesis but were moved to the appendix for
better readability of the main text.

A.1. Measuring ε for Rλ = 270
The figure below shows 〈δu ·δa〉 for three different polymer concentrations at Rλ = 270
(a) and for comparison also at Rλ = 350 (b). Horizontal lines show the fits to obtain the
energy transfer rate. While nice plateaus can be seen for all three datasets with the higher
Reynolds number in figure (b), the datasets with the lower Reynolds number show only very
short plateaus. For the pure water case, the plateau is very noisy and, since the Kolmogorov
length scale η is very large for this dataset (η = 104 µm), the fit extends into the range
where the influence due to the finite volume of the measurement volume interferes with it
(approximately r & 10 mm). However, one can argue that the obtained value of ε should
remain valid with only a slightly increased uncertainty. Adding polymers however, the
plateau is shifted towards larger scales (as explained in section 5.2) making the influence of
the finite measurement volume more dominant. It is not certain that the true plateau height
is ever reached before the diminishing effect of the finite observation volume takes over.
The datasets at Rλ = 270 with added polymers will thus only be used in cases where the
measured value of ε does not have a significant impact.
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Figure A.1.: Fits to obtain the energy transfer rate ε from 〈δu ·δa〉=−2ε for two different
Reynolds numbers: Rλ = 270↔ 0.5 Hz (a) and Rλ = 350↔ 0.9 Hz. Three different
polymer concentrations are shown with black circles for 0 ppm (pure water), magenta
circles for 5 ppm, and cyan circles for 10 ppm. Fits are indicated by horizontal lines.

A.2. Convergence Radius of the Short-Time Expansion for the Mean
Squared Change of Separation

This appendix presents a more detailed version of a proof by Anna Frishman from the
Weizmann Institute of Science, Israel (Frishman 2013). It is founded on many fruitful
discussions we had about this topic.

The Taylor expansion for the mean squared change of separation around t = 0, as shown
in equation (3.1), can be written in a more systematic form as

〈δR(t)2〉=
[
2
〈

V(0)2
〉]

t=0

t2

2
+

[
3

d
dt

〈
V(t)2

〉]

t=0
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+

[
8
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dt

〉
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+
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+10

d
dt

〈
V(t) · d

2V(t)
dt2

〉]

t=0

t5

120
+O

(
t6) , (A.1)

where the first five orders have been computed explicitly. Here, V(t) is the relative velocity
between the particles. In order to determine the radius of convergence of this series, it is
educating to first investigate which time scales can appear. It is intuitively clear that for
any two-point function, a function depending on the separation R between two points, the
Kolmogorov time t0 of an eddy of this size is the relevant time scale. Another quantity that
may appear is τη , which is the defining time scale of spatial derivatives and which can be
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several orders of magnitude smaller than t0. In equation (A.1), τη enters through the squared
relative acceleration

〈(
dV(t)/dt

)2〉 in the t4 term. Using the Navier-Stokes equations, it can
be shown that this correlation function contains expressions only depending on the spatial
derivatives of single-particle velocities, thus introducing τη . The same happens for many
higher order terms, therefore reducing the convergence radius of the full series to approxi-
mately τη . One can show, however, that a series of only the odd terms in equation (A.1) has
a much larger convergence radius of approximately t0. For this purpose, we will show that
the odd terms do not contain single-point functions.

Let us assume we have a statistical quantity that does not explicitly depend on the particle
separation R(t),

〈F [V(t), d
dt V(t), . . .]〉

=
∫

PR(t)[V(t), d
dt V(t), . . .] F [V(t), d

dt V(t), . . .] dV(t) d
( d

dt V(t)
)
. . . . (A.2)

There still persists an implicit dependence on R(t) through the p.d.f. of the velocity deriva-
tives, PR(t)[V(t), d

dt V(t), . . .]. For a stationary, incompressible and homogeneous flow, the
full time derivative at t = 0 for such a quantity can be written as

d
dt

〈
F [V(t), d

dt V(t), . . .]
〉∣∣∣

t=0
=

3

∑
i=1

d
dRi(t)

〈
Vi(t) F [V(t), d

dt V(t), . . .]
〉∣∣∣

t=0
. (A.3)

This means, that even for the case where F(V, d
dt V, . . .) contains contributions from single

point functions, they will not contribute to the time derivative since they are, by definition,
independent of R(t). As a consequence, any term in equation (A.1) which can be expressed
solely by total time derivatives is free of single point functions and thus introduces a time
scale t0 and not τη . At a first glance, it can be seen that this is both true for the t3 and the t5

term, and we can show analytically that this is also true for any other odd term. For the nth
term in equation (A.1), the prefactor is given by
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(A.4)

It can be seen that all but the very last term are already in the form of equation (A.3), meaning
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that they do not introduce single-point functions. The last term apparently still depends on
δR(t) and thus needs further investigation. Taking the final derivative, one finds

d
dt

〈
δR(t) · dn−2

dtn−2 V(t)
〉∣∣∣

t=0
=
〈
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〉∣∣∣

t=0
+
〈

δR(t) · dn−1

dtn−1 V(t)
〉∣∣∣

t=0
, (A.5)

where the second term vanishes for t = 0 since δR(0) = 0 by definition. It remains to explore
if the first term can be written as a total derivative according to equation (A.3). Using the
product rule, one finds

〈
V(t) · dn−2

dtn−2 V(t)
〉
=

d
dt

〈
V(t) · dn−3

dtn−3 V(t)
〉
−
〈 d

dt
V(t) · dn−3

dtn−3 V(t)
〉
, (A.6)

where the product rule can be applied again to the last term and so forth. For n being even,
this process finds an end when the last term has the form

〈( d(n−2)/2

dt(n−2)/2 V(t)
)2〉

, (A.7)

which can not be rewritten as a total derivative. For n being odd however, at the end of this
procedure the last term is given by

〈 d(n−1)/2−1

dt(n−1)/2−1 V(t) · d(n−1)/2

dt(n−1)/2 V(t)
〉
=

1
2

d
dt

〈( d(n−1)/2

dt(n−1)/2 V(t)
)2〉

, (A.8)

which has the form (A.3). As a result we find that every odd term in the expansion in
equation (A.1) can be written exclusively in terms of total derivatives of the form (A.3), so
that an expansion of only the odd terms must have a radius of convergence of the order of t0.
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A.3. Elusive Richardson Scaling in Pair Dispersion
This figure shows the same data as figure 3.7, with the only difference that for the experimen-
tal datasets, all points with more than 104 observed pairs are shown (instead of 106) in order
to observe the evolution at later times. It can be seen that the data drops rapidly towards zero
and always stays below the numerical datasets.
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Figure A.2.: Experimental and numerical results for the odd terms of the compensated mean
squared change of separation. For experimental data at Rλ = 390, the initial separations
are 241 η ( ), 276 η ( ) and 310 η ( ). For Rλ = 350, the initial separations are 212 η

( ), 242 η ( ) and 273 η ( ), and for Rλ = 270, they are 135 η ( ), 154 η ( ) and
173 η ( ). For the DNS data at Rλ = 300, the initial separations are 19 η ( ), 38 η

( ), 58 η ( ), 77 η ( ), 92 η ( ) and 123 η ( ). The dashed horizontal line
indicates the prediction by Richardson scaling as proposed by Berg et al. (2006).



94 Appendix

A.4. Diagonal Form of the Shape Tensor

Following section 4.1, the short time evolution of the shape tensor is given by

G(t) =
l2

2

(
1+2S0 t +(2S1 +4S2

0 +2[S0,Ω0]) t2 +(2S2 +8S3
0 +6[S2

0,Ω0]

+2[[S0,Ω0],Ω0]+6S0 ·S1 +6S1 ·S0 +2[S1,Ω0]+4[S0,Ω1]) t3 +O
(
t4)). (A.9)

With the rotation matrix U(t), the shape tensor can be diagonalized as

GD(t) = U(t)G(t)UT (t) = diagonal. (A.10)

Using that rotation matrices are orthogonal, U(t)UT (t) = 1, one finds d
dt U(t) = R(t)U(t)

with RT (t) = −R(t). Expanding U(t) in a Taylor series around t = 0 and expressing it
through the antisymmetric matrix R(t) leads to

U(t) =
[
1+R0t +(R1 +R2

0)
t2

2
+(R2 +2R1 ·R0 +R0 ·R1 +R3

0)
t3

6
+O

(
t4)
]

U0. (A.11)

where Rn = dn

dtn R(t)|t=0 with RT
n = −Rn for all n. I again use the short notation for the

Taylor expansions,

G(t) = G0 +G1t +G2
t2

2
+G3

t3

6
+O

(
t4) (A.12)

and GD(t) = GD
0 +GD

1 t +GD
2

t2

2
+GD

3
t3

6
+O

(
t4) , (A.13)

and insert them together with equation (A.11) into equation (A.10). Below, each order in
t is analyzed separately to obtain the missing Gn. Thereby, all appearing terms of the type
RnU01UT

0 +U01UT
0 RT

n = Rn +RT
n = 0 are directly omitted.

Zeroth Order

GD
0 = U0G0UT

0 = U0
l2

2
1UT

0 =
l2

2
U0UT

0 =
l2

2
1. (A.14)

First Order

GD
1 = U0G1UT

0 = l2U0S0UT
0 . (A.15)

Here, U0 must be chosen such that GD
1 is diagonal, which corresponds to a rotation into the

eigenframe of S0. In all higher order terms discussed below, each term is framed by U0 and
UT

0 . Therefore, I will omit U0 from now on and expect every term to be understood in the
eigenframe of S0.
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Second Order

GD
2 = G2−2[G1,R0]

=
l2

2
(2S1 +4S2

0 +2[S0,Ω0])−4
l2

2
[S0,R0] (A.16)

where [S0,R0] = S0 ·R0−R0 ·S0 is purely off-diagonal. With the right choice of R0, this
term can thus be used to cancel any off-diagonal terms in equation (A.16). Since all matrices
are given in the eigenframe of S0, one finds that S2

0 is diagonal whereas [S0,Ω0] is purely
off-diagonal. The derivative of the perceived rate of strain tensor, S1, can have diagonal and
off-diagonal terms. Denoting the diagonal part of a general matrix A by D(A), noting that
D(AT ) =D(A), the condition on R0 for GD

2 to be diagonal is given by

4[S0,R0] = 2(S1−D(S1))+2[S0,Ω0]. (A.17)

Choosing R0 such that equation (A.17) is fulfilled, the second order for the diagonalized
shape tensor is found to be

GD
2 = l2D(S1)+2l2S2

0. (A.18)

Third Order

GD
3 = G3 +3R0 ·G2 +3G2 ·RT

0 +6R0 ·G1 ·RT
0 +3(R1 +R2

0) ·G1 +3G1 ·(R1 +R2
0)

T

= G3−3[G2,R0]−3[G1,R1]+3
(
R2

0 ·G1 +G1 ·R2
0−2R0 ·G1 ·R0

)
. (A.19)

Since G1 is diagonal in the eigenframe of S0 and R1 is antisymmetric, the commutator
[G1,R1] is purely off-diagonal and can be used to eliminate all other off-diagonal terms.
Similar to equation (A.17), a condition for R1 can be derived. I will omit this step here and
just assume this condition to be fulfilled. One then finds that

GD
3 =D(G3)−3D([G2,R0]+3D(R2

0 ·G1 +G1 ·R2
0−2R0 ·G1 ·R0). (A.20)

In more detail, the first term is given by

D(G3)=
l2

2
(
2D(S2)+8S3

0 +4D(S0 ·Ω2
0)−4D(Ω0 ·S0 ·Ω0)+12D(S0 ·S1)+4D(S1 ·Ω0)

)
,

and for the second term one finds

D([G2,R0]) =
l2

2
(
D([GD

2 ,R0])+4D([[S0,R0],R0]) = 8D(R2
0 ·S0)−8D(R0 ·S0 ·R0)

)
,
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where I used at the second equality that [GD
2 ,R0] is purely off-diagonal. The last term in

equation (A.20) finally yields

D(R2
0 ·G1 +G1 ·R2

0−2R0 ·G1 ·R0) =
l2

2
(
4D(R2

0 ·S0)−4D(R0 ·S0 ·R0)
)
.

The complete third order term of the diagonalized shape tensor is thus given by

GD
3 =

l2

2
(
2D(S2)+8S3

0 +12D(S0 ·S1)+4D(S0 ·Ω2
0)−4D(Ω0 ·S0 ·Ω0)+4D(S1 ·Ω0)

−12D(R2
0 ·S0)+12D(R0 ·S0 ·R0)

)

=
l2

2
(
2D(S2)+8S3

0 +12D(S0 ·S1)+4D(R2
0 ·S0)−4D(R0 ·S0 ·R0)+8D(R0 ·S1)

)
,

(A.21)

where I used equation (A.17) in the second line.
The full diagonalized shape tensor is now obtained by inserting the above results into

equation (A.13).



B. Flow Properties 97

B. Flow Properties
In this appendix, some properties of the experimental flow are presented. In appendix B.1,
the homogeneity and isotropy of the flow are studied. Appendix B.2 gives an overview of
the properties of the perceived velocity gradient tensor for all datasets.

B.1. Isotropy and Homogeneity
In order to measure the isotropy and homogeneity of the flow, the mean velocity field was
computed by dividing the whole measurement volume into several bins and time-averaging
over the velocities of all tracer particles detected in each bin. The time average was taken over
all videos in one experiment, corresponding to approximately seven hours, and is denoted by
an overline.

The figures below show the absolute value (figures a, c, e) and direction (figures b, d, f)
of the radial velocity, normalized by the r.m.s radial velocity at the origin, (u2

x +u2
y)

1/2
∣∣
O.

Cuts at three different heights are shown (z = 20 mm, 0 mm, and −20 mm) with all tracer
particles within z±5 mm taken into account. The large measurement volume dataset with
Reynolds number Rλ = 350 was chosen representatively.

One finds that the deviations of the r.m.s. radial velocity from its value at the origin are
below 20% in most of the measurement volume. Close to the borders of the measurement
volume, the values are lowest. Part of this effect could be an artifact of the low statistics in
this region (all bins with at least 100 detected particles are shown). In the vector plots, a
directional flow towards negative x-values can be seen. This indicates that the windows (prob-
ably especially the flanges of the top and bottom window) disturb the rotational symmetry of
the flow.

It can thus be seen that while the flow shows sufficient homogeneity, especially for the
small measurement volume datasets with a measurement volume diameter of only 27 mm,
isotropy cannot be assumed.
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Figure B.1.: Root mean square value (left) and direction (right) of the radial velocity at three
different heights, normalized by the r.m.s value at the origin. The large measurement
volume dataset at Rλ = 350 is shown. See text for more details.
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B.2. Perceived Velocity Gradient Tensor
In this appendix, several quantities derived from the perceived velocity gradient tensor are
presented. Different initial separations for all datasets have been analyzed, only using the
small measurement volume data and tetrahedra fulfilling the regularity condition1. The
results are summarized in table 6.1 for flows without added polymers and tables 6.2 and 6.3
for flows with a polymer concentration of 5 ppm and 10 ppm, respectively.

dataset 0.5 Hz↔ Rλ = 270 0.9 Hz↔ Rλ = 350 1.1 Hz↔ Rλ = 390
R0 8mm 10mm 12mm 8mm 10mm 12mm 8mm 10mm 12mm
R0/η 77 96 115 121 152 182 138 172 207
〈s1〉 t0 2.27 2.26 2.30 2.17 2.21 2.23 2.21 2.25 2.28
〈s2〉 t0 0.22 0.22 0.24 0.21 0.22 0.23 0.21 0.22 0.23
〈s3〉 t0 -2.44 -2.49 -2.54 -2.36 -2.42 -2.45 -2.42 -2.46 -2.49
〈tr(S0)〉 t0 0.05 0.00 -0.01 0.01 0.01 0.02 0.01 0.02 0.01
〈s2

1〉 t2
0 6.41 6.37 6.56 5.90 6.11 6.22 6.16 6.33 6.43

〈s2
2〉 t2

0 0.94 0.93 0.97 0.87 0.89 0.92 0.90 0.93 0.95
〈s2

3〉 t2
0 7.85 8.10 8.39 7.40 7.72 7.86 7.72 7.92 8.09

〈tr(S2
0)〉 t2

0 15.20 15.40 15.92 14.16 14.72 14.99 14.79 15.19 15.46
〈tr(S0)

2〉 t2
0 4.26 4.28 4.39 4.05 4.13 4.21 4.18 4.30 4.36

〈s3
1〉 t3

0 21.54 21.12 21.98 19.08 19.98 20.42 20.36 21.03 21.31
〈s3

2〉 t3
0 0.58 0.63 0.64 0.52 0.56 0.61 0.54 0.59 0.59

〈s3
3〉 t3

0 -30.66 -31.72 -33.08 -28.21 -29.59 -30.20 -29.87 -30.69 -31.44
〈tr(S3

0)〉 t3
0 -8.53 -9.98 -10.46 -8.61 -9.05 -9.17 -8.97 -9.08 -9.53

〈tr(S0)tr(S2
0)〉 t3

0 -1.78 -2.53 -2.68 -2.30 -2.35 -2.15 -2.37 -2.17 -2.44
〈(S0 ·S1)11〉 t3

0 -7.62 -6.50 -6.99 -6.14 -6.36 -6.36 -7.43 -7.38 -7.77
〈(S0 ·S1)22〉 t3

0 -0.05 0.04 0.08 0.12 0.05 0.02 0.04 0.02 0.06
〈(S0 ·S1)33〉 t3

0 9.58 9.30 10.07 9.32 9.36 8.95 9.87 10.30 10.53
〈tr(S0 ·S1)〉 t3

0 1.91 2.84 3.16 3.31 3.05 2.61 2.49 2.94 2.82
〈tr(S0)tr(S1)〉 t3

0 0.07 0.81 0.69 1.42 0.70 0.27 0.64 0.59 0.56
〈tr(Ω2

0)〉 t2
0 -9.98 -10.49 -10.59 -9.62 -9.96 -10.05 -10.16 -10.50 -10.58

〈tr(S0 ·Ω2
0)〉 t3

0 1.38 1.82 2.04 1.57 1.77 1.80 1.62 1.85 1.93
〈tr(S0)tr(Ω2

0)〉 t3
0 -1.16 -0.64 -0.37 -0.64 -0.32 -0.48 -0.52 -0.55 -0.52

〈tr(Ω0 ·Ω1)〉 t3
0 -0.98 -1.18 -0.07 -0.47 -1.18 -0.85 -0.46 -1.37 -1.45

Table 6.1.: Quantities derived from the perceived velocity gradient tensor for datasets with
no added polymers (0 ppm). For time derivatives such as S1 and Ω1, a Gaussian
convolution filter was used with a filter length of 3τη and a width of τη .

1The dataset with Rλ = 690 was omitted since it only consists of a large measurement volume dataset.
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dataset 0.9 Hz↔ Rλ = 350 1.1 Hz↔ Rλ = 390
R0 8mm♦ 10mm 12mm 14mm 8mm♦ 10mm 12mm 14mm
R0/rε 1.1♦ 1.3 1.6 1.8 1.0♦ 1.2 1.5 1.7
〈s1〉 t0 1.77 1.89 1.98 2.03 1.87 1.99 2.08 2.13
〈s2〉 t0 0.26 0.29 0.30 0.31 0.28 0.29 0.31 0.32
〈s3〉 t0 -2.05 -2.16 -2.24 -2.29 -2.13 -2.25 -2.34 -2.37
〈tr(S0)〉 t0 -0.03 0.03 0.03 0.05 0.02 0.02 0.04 0.07
〈s2

1〉 t2
0 3.85 4.37 4.76 5.01 4.32 4.85 5.26 5.51

〈s2
2〉 t2

0 0.51 0.60 0.65 0.70 0.58 0.67 0.73 0.77
〈s2

3〉 t2
0 5.28 5.87 6.35 6.61 5.74 6.41 6.90 7.11

〈tr(S2
0)〉 t2

0 9.64 10.83 11.76 12.33 10.64 11.92 12.89 13.38
〈tr(S0)

2〉 t2
0 1.46 1.82 2.12 2.35 1.74 2.13 2.44 2.74

〈s3
1〉 t3

0 9.97 11.94 13.45 14.45 11.88 14.01 15.73 16.75
〈s3

2〉 t3
0 0.38 0.48 0.54 0.59 0.46 0.56 0.60 0.66

〈s3
3〉 t3

0 -16.27 -19.00 -21.34 -22.63 -18.62 -21.73 -24.12 -25.18
〈tr(S3

0)〉 t3
0 -5.92 -6.57 -7.36 -7.59 -6.28 -7.17 -7.79 -7.76

〈tr(S0)tr(S2
0)〉 t3

0 -0.53 -0.17 -0.37 -0.19 -0.26 -0.24 -0.21 0.13
〈(S0 ·S1)11〉 t3

0 -2.33 -2.62 -2.89 -3.17 -2.72 -3.29 -3.82 -3.74
〈(S0 ·S1)22〉 t3

0 0.06 0.14 0.18 0.22 0.15 0.25 0.26 0.21
〈(S0 ·S1)33〉 t3

0 3.49 3.81 3.98 4.58 3.45 4.40 5.55 5.71
〈tr(S0 ·S1)〉 t3

0 1.23 1.33 1.28 1.62 0.88 1.35 1.99 2.18
〈tr(S0)tr(S1)〉 t3

0 -0.29 -0.49 -0.30 -0.39 -0.51 -0.23 -0.14 0.20
〈tr(Ω2

0)〉 t2
0 -6.86 -7.71 -8.22 -8.56 -8.01 -8.89 -9.46 -9.70

〈tr(S0 ·Ω2
0)〉 t3

0 1.65 1.74 1.92 1.90 1.80 2.02 2.15 2.11
〈tr(S0)tr(Ω2

0)〉 t3
0 0.19 -0.43 -0.43 -0.86 -0.20 -0.43 -0.58 -0.91

〈tr(Ω0 ·Ω1)〉 t3
0 -1.03 -0.97 -0.82 -0.67 -0.96 -1.15 -1.43 -0.89

Table 6.2.: Quantities derived from the perceived velocity gradient tensor for datasets with a
polymer concentration of 5 ppm. For time derivatives such as S1 and Ω1, a Gaussian
convolution filter was used with a filter length of 3τη and a width of τη , with τη taken
from the corresponding dataset without polymers. Initial separations marked with a
diamond (♦) lie outside the plateau range of the energy transfer rate of the respective
dataset. The used value of t0, however, is always based on the plateau value.



B. Flow Properties 101

dataset 0.9 Hz↔ Rλ = 350 1.1 Hz↔ Rλ = 390
R0 8mm♦ 10mm♦ 12mm 14mm 8mm♦ 10mm♦ 12mm 14mm
R0/rε 0.8♦ 1♦ 1.2 1.4 0.7♦ 0.9♦ 1.1 1.3
〈s1〉 t0 1.70 1.85 1.98 2.07 1.67 1.81 1.93 2.03
〈s2〉 t0 0.27 0.30 0.33 0.35 0.28 0.30 0.32 0.34
〈s3〉 t0 -1.97 -2.15 -2.29 -2.40 -1.93 -2.10 -2.23 -2.33
〈tr(S0)〉 t0 0.01 0.00 0.02 0.02 0.01 0.01 0.02 0.03
〈s2

1〉 t2
0 3.60 4.22 4.78 5.21 3.45 4.04 4.56 5.00

〈s2
2〉 t2

0 0.44 0.53 0.62 0.69 0.44 0.53 0.61 0.68
〈s2

3〉 t2
0 4.84 5.78 6.53 7.13 4.71 5.53 6.19 6.77

〈tr(S2
0)〉 t2

0 8.88 10.54 11.92 13.03 8.60 10.10 11.35 12.45
〈tr(S0)

2〉 t2
0 1.12 1.35 1.58 1.98 1.12 1.14 1.71 1.88

〈s3
1〉 t3

0 9.11 11.45 13.31 15.36 8.60 10.76 12.77 14.56
〈s3

2〉 t3
0 0.34 0.45 0.55 0.64 0.35 0.45 0.53 0.61

〈s3
3〉 t3

0 -14.20 -18.40 -21.97 -24.92 -13.73 -17.33 -20.35 -23.16
〈tr(S3

0)〉 t3
0 -4.74 -6.51 -7.80 -8.92 -4.78 -6.12 -7.05 -7.99

〈tr(S0)tr(S2
0)〉 t3

0 0.28 0.10 0.16 -0.04 0.15 0.10 0.14 0.09
〈(S0 ·S1)11〉 t3

0 -1.82 -2.30 -2.81 -2.94 -1.95 -2.30 -2.82 -2.90
〈(S0 ·S1)22〉 t3

0 0.11 0.14 0.16 0.23 0.10 0.15 0.19 0.20
〈(S0 ·S1)33〉 t3

0 2.35 2.93 3.24 3.84 2.21 2.95 3.60 3.78
〈tr(S0 ·S1)〉 t3

0 0.65 0.78 0.59 1.13 0.35 0.80 0.97 1.08
〈tr(S0)tr(S1)〉 t3

0 -0.55 -0.55 -0.67 -0.54 -0.54 -0.48 -0.54 -0.54
t2
0 〈tr(Ω2

0)〉 -6.81 -7.76 -8.45 -9.48 -6.69 -7.76 -8.68 -9.23
t3
0 〈tr(S0 ·Ω2

0)〉 1.54 2.01 2.30 2.76 1.48 1.85 2.15 2.42
t3
0 〈tr(S0)tr(Ω2

0)〉 -0.10 -0.07 -0.07 -0.24 -0.10 -0.12 -0.25 -0.30
t3
0 〈tr(Ω0 ·Ω1)〉 -0.88 -1.27 -1.13 -1.55 -0.76 -1.15 -1.21 -1.33

Table 6.3.: Quantities derived from the perceived velocity gradient tensor for datasets with a
polymer concentration of 10 ppm. For time derivatives such as S1 and Ω1, a Gaussian
convolution filter was used with a filter length of 3τη and a width of τη , with τη taken
from the corresponding dataset without polymers. Initial separations marked with a
diamond (♦) lie outside the plateau range of the energy transfer rate of the respective
dataset. The used value of t0, however, is always based on the plateau value.
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C. Data Formats
In this appendix, the used binary data formats are presented. Each line represents a variable
that is written to the binary file in the order given below if not indicated otherwise by the
comments. The first column gives the C++ data type and length of a variable, the second
column gives its name. Double slashes “// ” indicate comments. As an example,
u n s i g n e d i n t [ 5 ] t e s t ; / / numbers one t o f i v e

would mean that the array “test” is made of five positive integers which contain the numbers
from one to five.

C.1. Göttingen Movie (.gmv)

/ / h e a d e r
c h a r [ 5 ] moviecode ; / / t h e movie i d e n t i f i c a t i o n s t r i n g , c u r r e n t l y " gmv01 "
c h a r [ 3 ] a l g ; / / t h e compress ion−a l g o r i t h m s t r i n g , c u r r e n t l y " i j I " o r " i i I "
u n s i g n e d s h o r t i n t n c o l s ; / / # o f columns , wid th o f t h e image
u n s i g n e d s h o r t i n t nrows ; / / # o f rows i n t h e image , h e i g h t o f t h e image
u n s i g n e d i n t n f r ames ; / / t o t a l # o f f r a me s i n t h e movie
f l o a t f s ; / / f rame r a t e i n f r am es p e r second
u n s i g n e d i n t e x p o s u r e ; / / e x p o s u r e i n mic rosecond
u n s i g n e d i n t t h r e s h o l d ; / / i n t e n s i t y t h r e s h o l d f o r s p a r s i f i c a t i o n
c h a r [ 4 0 ] r e s e r v e d ; / / r e s e r v e d f o r f u t u r e deve lopment

/ / b l ack−r e f e r e n c e frame , uncompressed
u n s i g n e d c h a r bk [ n c o l s ∗nrows ] ;

/ / I f t h e " i j I " f o r m a t i s chosen :
/ / f i r s t f rame
i n t np ix ; / / number o f b r i g h t p i x e l s on t h i s f rame
/ / f i r s t p i x e l
u n s i g n e d s h o r t i n t j ; / / row number o f t h e p i x e l
u n s i g n e d s h o r t i n t i ; / / column number o f t h e p i x e l
u n s i g n e d c h a r I ; / / i n t e n s i t y o f t h e p i x e l
/ / r e p e a t f o r a l l p i x e l s o f t h i s f rame
/ / r e p e a t f o r a l l f r a me s

/ / I f t h e " i i I " f o r m a t i s chosen :
/ / f i r s t frame , f i r s t p i x e l
u n s i g n e d i n t i j ; / / p i x e l number : j = i j / n c o l s , i = i j%n c o l s
u n s i g n e d c h a r I ; / / i n t e n s i t y o f t h e p i x e l
/ / r e p e a t f o r a l l p i x e l s o f t h i s f rame
u n s i g n e d i n t FrameEndCode ; / / FrameEndCode = 0xFFFFFFFF
/ / r e p e a t f o r a l l f r a me s

C.2. Trajectory Data Format

/ / h e a d e r
c h a r [ 5 ] "TRACK" ; / / t h e ID code f o r a t r a c k f i l e
u n s i g n e d long i n t n t r k s ; / / number o f t r a c k s i n t h i s f i l e
f l o a t f s ; / / f rame r a t e i n f r am es p e r second
u n s i g n e d long i n t e x p o s u r e ; / / e x p o s u r e i n mic rosecond
u n s i g n e d c h a r t h r e s h o l d ; / / a v e r a g e o f t h e t h r e s h o l d s used
u n s i g n e d c h a r i n t e r p l _ m a x ; / / max number o f i n t e r p o l a t i o n p o i n t s
u n s i g n e d s h o r t i n t m i n _ t r k _ l e n ; / / min t r a c k l e n g t h t o save
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/ / f i r s t t r a c k
u n s i g n e d long i n t n p o i n t s ; / / f rame number o f t h i s p o i n t
/ / f i r s t p o i n t
u n s i g n e d long i n t f rame ; / / f rame number o f t h i s p o i n t
f l o a t x ; / / c o o r d i n a t e s i n l a b f rame [mm]
f l o a t y ;
f l o a t z ;
f l o a t s igmax ; / / w id th o f G a u s s i a n f i t
f l o a t s igmay ;
u n s i g n e d c h a r I ; / / i n t e n s i t y peak ( a v e r a g e )
c h a r i n t e r p 1 ; / / =1 means t h i s i s an i n t e r p o l a t i o n p o i n t
/ / r e p e a t f o r a l l p o i n t s o f t h i s t r a c k
/ / r e p e a t f o r a l l t r a c k s

C.3. Velocity-Acceleration Data Format

/ / h e a d e r
c h a r [ 6 ] v f i l e c o d e ; / / c u r r e n t l y ’VA0002 ’
u n s i g n e d s h o r t i n t nmovies ; / / t o t a l number o f movies
u n s i g n e d i n t v e l _ t o t ; / / t o t a l number o f d a t a p o i n t s
c h a r f i l t e r t y p e ; / / e i t h e r G a u s s i a n f i l t e r i n g o r p a r a b o l i c f i t
i n t v e l f i l t e r l e n g t h ; / / l e n g t h o f t h e k e r n e l
do ub l e v e l f i l t e r w i d t h ; / / w id th o f t h e k e r n e l ( on ly f o r G a u s s i a n f i l t e r i n g )
i n t a c c f i l t e r l e n g t h ; / / l e n g t h o f t h e k e r n e l
do ub l e a c c f i l t e r w i d t h ; / / w id th o f t h e k e r n e l ( on ly f o r G a u s s i a n f i l t e r i n g )

/ / f i r s t movie
u n s i g n e d s h o r t i n t n t r k f i l e ; / / number o f t h i s movie
u n s i g n e d i n t o f f s e t ; / / o f f s e t t o t h e n e x t movie
u n s i g n e d i n t v e l _ s a v e d ; / / number o f d a t a p o i n t s i n t h i s movie
u n s i g n e d i n t t r k _ s a v e d ; / / number o f t r a c k s i n t h i s movie

/ / f i r s t t r a c k
u n s i g n e d i n t n p t s ; / / number o f p o i n t s i n t h i s t r a c k
u n s i g n e d i n t n s t a r t i n g ; / / f rame number o f s t a r t i n g p o i n t

/ / f i r s t p o i n t
u n s i g n e d c h a r a c c D e f i n e d ; / / number o f i n t e r p o l a t e d p o s i t i o n s used f o r c a l c u l a t i o n
f l o a t x ; / / c o o r d i n a t e s i n l a b f rame [mm]
f l o a t y ;
f l o a t z ;
f l o a t vx ; / / v e l o c i t y [m/ s ]
f l o a t vy ;
f l o a t vz ;
f l o a t ax ; / / a c c e l a r a t i o n [m/ s ^2 ]
f l o a t ay ;
f l o a t az ;
/ / r e p e a t f o r a l l p o i n t s o f t h i s t r a c k
/ / r e p e a t f o r a l l t r a c k s o f t h i s movie
/ / r e p e a t f o r a l l movies

C.4. Tetrahedra Data Format

/ / h e a d e r
c h a r [ 7 ] f i l e c o d e ; / / a s t r i n g " t e t r a d s " as t o i d e n t i f y t h e f i l e
u n s i g n e d s h o r t i n t nmov ; / / movie number
do ub l e r0 ; / / t e t r a d edge l e n g t h i n mm
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do ub l e dr0 ; / / t o l e r a n c e o f edge l e n g t h i n mm
i n t n t e t r a d T r a j ; / / number o f " t e t r a d t r a j e c t o r i e s "
i n t n t e t r a d s ; / / t o t a l number o f t e t r a d s o b s e r v e d
i n t n t r k m i n ; / / min " l e n g t h " o f a t r a j e c t o r y t o be saved
i n t m a x I n t e r p ; / / max # of i n t e r p l p t s used f o r ve l−acc c a l c .
c h a r [ 5 6 ] r e s e r v e d ; / / 56 Bytes o f s p a c e r e s e r v e d f o r f u t u r e use

/ / f i r s t t r a j e c t o r y
u n s i g n e d i n t n f s t a r t ; / / s t a r t i n g f rame number
u n s i g n e d i n t np1 ; / / p a r t i c l e numbers o f t h e f o u r v e r t i c e s
u n s i g n e d i n t np2 ;
u n s i g n e d i n t np3 ;
u n s i g n e d i n t np4 ;
u n s i g n e d i n t n f r ames ; / / number o f f r am e s t h e t e t r a d was seen

/ / f i r s t f rame
c h a r f l a g ; / / i n f o r m a t i o n coded i n b i t s 0−4 of t h i s p a r a m e t e r
/ / b i t 0 : t h e t e t r a d i s n e a r l y i s o t r o p i c (1 = yes ; 0 = no )
/ / b i t 1−4: t h e v e l o c i t y o f t h i s v e r t e x i n v o l v e s more t h a n
/ / m a x I n t e r p i n t e r p o l a t e d p o i n t s (1 = yes ; 0 = no )
f l o a t [ 3 ] Xp1 ; / / p o s i t i o n v e c t o r ( x , y , z ) o f v e r t e x 1 , i n [mm]
f l o a t [ 3 ] up1 ; / / v e l o c i t y v e c t o r ( ux , uy , uz ) o f v e r t e x 1 , i n [m/ s ]
f l o a t [ 3 ] Xp2 ; / / p o s i t i o n and v e l o c i t y v e c t o r s o f v e r t e x 2
f l o a t [ 3 ] up2 ;
1
f l o a t [ 3 ] Xp3 ; / / p o s i t i o n and v e l o c i t y v e c t o r s o f v e r t e x 3
f l o a t [ 3 ] up3 ;
f l o a t [ 3 ] Xp4 ; / / p o s i t i o n and v e l o c i t y v e c t o r s o f v e r t e x 4
f l o a t [ 3 ] up4 ;
/ / r e p e a t f o r a l l f r a me s o f t h i s t r a j e c t o r y
/ / r e p e a t f o r a l l t r a j e c t o r i e s
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