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Abstract 

There are over 100,000 human diseases of which only around 10,000 are known to be 

monogenic, resulting from modification in a single gene. Many multifactorial diseases, such as 

cancer and lung cancer in particular, are outcomes of the interplay between genetic and 

environmental factors. It is well known that smoking is the major environmental risk factor in 

lung cancer. 

In recent years, great progress in genotyping technology and cost control has enabled 

researchers to perform large-scale association studies, involving thousands of individuals 

genotyped on millions of markers. To date, genome-wide association studies (GWAS) have 

identified hundreds of genetic risk factors in complex diseases. However, the detected variants 

explain only a small part of the total heritability. Unexplained phenotypic variance may be 

partly attributed to undetected gene-environment (G×E) interactions. Therefore, there has been 

a rapid evolution in the development of statistical tools to discover biologically credible G×E 

interactions in a genome-wide context. 

The analysis of G×E interactions remains one of the greatest challenges in the post-genome-

wide-association-studies era. Uncovered population stratification in large association and 

interaction studies may lead to false positive results or masks true signals via under (over)-

estimation of the true effects. In this dissertation, we began by evaluating the robustness or the 

magnitude of the bias due to population stratification in case-control studies of G×E interaction. 

A simple equation was derived to measure the population stratification bias of the interaction 

effect for the case-control estimator of G×E interaction. 

Another great challenge to G×E interaction research remains the ability to maintain adequate 

power, while accounting for gene-environment (G-E) correlation in the source population. G-

E correlation occurs when exposure to the environmental condition depends on the individual’s 

genotype or vice versa, irrespective of the disease status of that individual. The empirical 

hierarchical Bayes approach to G×E interaction (EHB-GECHI) benefits from greater power than 

the classical case-control test, while accounting for population based G-E correlation. We 

developed extensions of EHB-GECHI with respect to covariate adjustment, general exposure 

and genotype and to performance under an additive mode of inheritance. 

In this dissertation, we finally introduce an alternative to EHB-GECHI which is computationally 

more efficient, using a more stable model to obtain the posterior estimates of G-E correlation 
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in controls. Incorporating a parametric Bayes inference framework, with a normal distribution 

in a hierarchical model, we developed an approach that corrects for G-E correlations, gathering 

information across all markers simultaneously (as does EHB-GECHI). We named it the 

empirical hierarchical Bayes approach for G×E interaction EHB-GENN. Our simulation study 

demonstrates that EHB-GENN controls type I error better than EHB-GECHI while remaining 

powerful. 

The last objective of this thesis is to consider the joint tests for genetic marginal and G×E 

interaction effects. Previous studies suggest that G×E interactions might help to detect genetic 

variants missed by a test for association with main effects. Specifically, some SNPs may have 

a moderate genetic and a G×E interaction effect and thus joint tests for marginal association 

and G×E interaction were developed to gain additional power over tests of main effects. Here 

we present how EHB-GENN can be adopted for joint testing, resulting in the EHB-GENN
J test. 

The application of EHB-GENN and joint tests on four lung cancer GWASs from the 

ILCCO/TRICL consortia is presented and the results are discussed. We detected known 

markers for lung cancer, e.g. rs1051730 in CHRNA3, rs8034191 in AGPHD1 and suggestive 

signals, e.g. rs7982922 in ENOX1, rs2736100 in TERT, applying joint tests, using either case-

control, case-only, MUK-EB or EHB-GENN for the G×E interaction component. 
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Chapter 1 

1. Introduction 

Charles Darwin in his opus “On the Origin of Species” stated that there are two factors 

responsible for biological variation-“the nature of the organism and the nature of the 

conditions” (Darwin 1869). Darwin represents the idea of genes and environment as being two 

forces acting synergistically to design our individual characteristics. Nowadays, it is well 

known that most of the multifactorial human traits and diseases, such as asthma, diabetes, 

cardiovascular diseases, depression, rheumatoid arthritis, and cancer, result from a complex 

interplay of the individual genetic and various environmental factors. 

Cancer is the leading cause of worldwide mortality. All cancer forms together were responsible 

for 8.2 million deaths and 14.1 million new cancer cases around the globe in 2012 (WHO) 

(http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx). Even though the cancer mortality rate 

has continued to decline within the last two decades, the prognosis remains poor (Jemal, Simard 

et al. 2013). In the European Union, the predicted number of cancer deaths for 2013 is 1.3 

million (Malvezzi, Bertuccio et al. 2013) 

Lung cancer is the most lethal malignant disease, having caused 1.37 million deaths worldwide 

annually according to figures from 2008 (WHO) (World Health Organization Report on the 

Global Tobacco Epidemic, 2008). Lung cancer alone is responsible for more cancer-related 

deaths than breast, prostate, and colon cancers together (Jemal, Siegel et al. 2008). In Germany, 

it is the third most common cancer type after prostate, colon, and breast cancers. According to 

the population-based cancer registries in Germany, 35,040 men and 17,030 women newly 

developed lung cancer in 2010 (Krebsregister and (GEKID) 2013). Lung cancer is a complex 

disease of the uncontrolled cancer cell growth in tissues of the lung. Lung cancer is classified 

in two main types: small cell (SCLC) and the more common non-small cell (NSCLC) lung 
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cancer. These two types differ in their growth rates and are treated differently. The most 

abundant of the three histological forms of NSCLC is adenocarcinoma, which is also the most 

common type of lung cancer in lifelong non-smokers, so-called “never smokers” (Subramanian 

and Govindan 2007). 

Various environmental factors may affect the risk of lung cancer development, such as 

exposure to tobacco smoke, radon, asbestos, arsenic, diesel exhaust, silica, and chromium. 

Lung cancer in non-smokers may occur due to a combination of genetic factors (Gorlova, Weng 

et al. 2007) with radon (Catelinois, Rogel et al. 2006), asbestos (O'Reilly, McLaughlin et al. 

2007) and air pollution (Chiu, Cheng et al. 2006, Coyle, Minahjuddin et al. 2006, Kabir, 

Bennett et al. 2007), including second-hand smoke (WHO , Smoking and and Health 2006). 

In USA, the major environmental risk factor for lung cancer is exposure to tobacco smoke. 

Smoking contributes to 80% and 90% of lung cancer deaths in women and men, respectively 

(US Department of Health and Human Services, 2004). In Germany, 90% of lung cancer cases 

in men and 60% in women are attributed to active smoking (Robert Koch-Institut und die 

Gesellschaft der epidemiologischen Krebsregister in Deutschland e.V. 2012). 

However, not only smoking alone increases the risk of developing lung cancer. Nowadays, it 

is well recognized that genetic factors also play a role in lung cancer development. Single 

nucleotide polymorphisms (SNPs) in a number of genome regions have been reported as being 

associated with lung cancer. Mutations in the genes CHRNA5, CHRNA5, CHRNB4 located on 

chromosome 15q25.1 (Amos, Wu et al. 2008, Hung, Christiani et al. 2008, Thorgeirsson, Geller 

et al. 2008), SNPs on chromosome 5p13.3 (McKay, Hung et al. 2008, Wang, Broderick et al. 

2008, Landi, Chatterjee et al. 2009), mutations in BAT3 on chromosome 6p21.33 (Wang, 

Broderick et al. 2008), RAD52 on 12p13.3 (Shi, Chatterjee et al. 2012), and in the 

CDKN2A/CDKN2B genes on chromosome 9p21.3 (Timofeeva, Hung et al. 2012) were 

discovered to affect the risk of lung cancer in genome-wide association studies (GWAS). Even 

http://en.wikipedia.org/wiki/Lung_cancer
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though active smoking is the lead environmental risk factor in lung cancer, only 10% of heavy 

smokers are known to develop the disease (Sauter, Rosenberger et al. 2008). This together with 

the discovery of genetic causes of the disease suggests that the inter-individual genetic 

variability affects the metabolism of tobacco-smoke carcinogens and leads to risk modification 

for some groups (Matakidou, Eisen et al. 2005, Amos 2007, Sun, Schiller et al. 2007). 

Therefore, studies of G×E interactions play an important role in public health, especially in the 

context of cancer research. They may further help to understand the nature of many complex 

diseases (Thomas 2010a, Thomas 2010b) and more specifically of the above lung cancer, for 

which smoking has such a considerable impact. 

The initial completion and ongoing development of the International HapMap Project 

(International HapMap Consortium 2003, International HapMap Consortium 2005) and 

Human Genome Project (International Human Genome Sequencing Consortium 2004) lists 

human genetic variation at millions of polymorphic locations in several human populations, 

supporting more powerful association study designs. Recent advances in genotyping 

technologies, together with a significant reduction in the associated costs, has enabled 

researchers to genotype millions of common and rare single nucleotide polymorphisms (SNPs) 

both rapidly and accurately (International HapMap Consortium 2005, Frazer, Murray et al. 

2009, Spencer, Su et al. 2009). A direct consequence is the opportunity to perform genome-

wide association studies (GWAS), investigating the role of individual genetic variability in the 

etiology of complex diseases such as cancer. The genome-wide association study was 

originally designed to investigate DNA variations associated with common diseases (Hardy 

and Singleton 2009, Manolio, Collins et al. 2009). Nowadays, a new generation of GeneChips 

(Affymetrix) and BeadChips (Illumina) not only target common and rare SNPs but also known 

copy number variations (CNV), based on the maps available for the human genome (Redon, 

Ishikawa et al. 2006, McCarroll 2008, Itsara, Cooper et al. 2009). Recently, a lot of effort was 
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undertaken in developing methods for low-cost whole-genome next generation sequencing 

(NGS) (Mardis 2008, Schuster 2008, von Bubnoff 2008), which will capture even more rare 

variants, previously missing. 

In addition to the technological advances in the field, genetic association studies and studies of 

gene-environment interactions can benefit from improvements in study design and the 

development of novel statistical approaches. In the following, I list statistical methods 

commonly used in G×E interaction studies for a case-control design. Consider a case-control 

study with a total of N individuals. Let G denote a genotype, E denote the exposure variable, 

and D the disease outcome variable. Many of the existing association tests including interaction 

tests are based on logistic regression models such as 

logit (P(D = 1| G)) = α0 + βGG+ βZZt
     (1.1) 

logit (P(D = 1| G, E)) = α0CC + βG_CCG + βE_CCE + βCCG×E+ βZCCZt
 (1.2) 

Equation (1.1) models the association between D and G, therefore βG = 0 tests for the presence 

of a genetic main effect, while equation (1.2) includes genetic, environmental, and G×E 

interaction effects. Both (1.1) and (1.2) are adjusted for the covariate Z. 

The classic case-control (CC) method for G×E interactions estimates the corresponding 

coefficient βCC per SNP, which is equal to the natural logarithm of the odds ratio for G×E 

interaction from a logistic regression model (1.2). 

The case-control test analyzes G×E interaction as departure from the multiplicative odds ratio 

model. It is often underpowered to detect G×E interactions, especially in situations in which 

genetic and environmental factors are rare and the interaction effect is weak (Mukherjee, Ahn 

et al. 2012). 
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Some researchers have addressed the lower power issue of the case-control test for G×E 

interactions by developing statistical tools designed to increase power to detect such 

associations besides marginal genetic effects. One powerful proposal is the case-only design, 

in which tests for G×E interaction are performed without considering controls (Piegorsch, 

Weinberg et al. 1994, Khoury and Flanders 1996). Under the assumption of the absence of 

population-based gene-environment correlation (G-E), the case-only (CO) test provides a valid 

procedure to test for G×E interaction, characterized by the more precise estimate of G×E 

interaction and therefore more powerful alternative to the CC test. As proposed by the case-

only method, under G-E independence the odds ratio of G×E interaction can be estimated using 

information only from cases (Piegorsch, Weinberg et al. 1994). However, when the assumption 

of G-E independence is violated, the CO test produces a large number of false positive results; 

in other words the CO test has a highly inflated type I error rate. 

Generally, on genome-wide level one would expect to see only a small number of genes and 

therefore a moderate number of SNPs with true detectable G-E correlation. However, this may 

be different for diseases such as lung cancer with a strong behavioral component. It is also well 

known that population stratification leads to such spurious dependence between genotype and 

environment in the general population (Thomas 2010a). Therefore, in the presence of 

population stratification thousands of markers may induce population-based G-E correlation. 

These correlations result from the difference in the  genetic origin of individuals, i.e. 

differences in minor allele frequencies across the subgroups and cultural differences leading to 

the specific behavior and favor of the specific exposures, resulting in differences in the 

environment distribution. Since confounding owing to the population stratification leads to 

biased G×E effect estimates, it is important to control for the ancestry covariates in the analyses 

(Bhattacharjee, Wang et al. 2010). 
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In recent years, further methods to test for G×E interaction have been proposed, aiming to 

increase the power while keeping type I error at the nominal 5% level, mainly exploiting the 

assumption of G-E independence or trying to account for G-E correlation. 

The two-step approach to scan for G×E interactions was developed by Murcray in 2009 

(Murcray, Lewinger et al. 2009), which we will refer to as Murcray’s two-step test (MUR). 

During the first step, the approach screens for G-E correlation in the combined sample of cases 

and controls. Then only a subset of SNPs that exceed a given significance threshold in step one 

is selected and tested for G×E interaction in step two. This test combines power protection 

from bias of the case-control estimator in a two-step procedure with the test statistics being 

independent from each other. A disadvantage of MUR is that the power of the first step depends 

on the case-control ratio. A large number of controls compared to cases leads to a decrease in 

power in step one and hence a loss of power for the overall procedure (Murcray, Lewinger et 

al. 2011). 

The empirical Bayes type shrinkage estimator (MUK-EB) proposed by Mukherjee and 

Chatterjee (Mukherjee, Ahn et al. 2008, Mukherjee and Chatterjee 2008) combines the robust 

case-control estimator with the efficient case-only estimator in a single Bayes type shrinkage 

estimator. This estimator is approximately robust to the presence of G-E correlation in the 

source population and performs comparably to the case-control estimator under large 

departures from independence. This method does not strictly adhere to nominal type I error 

rate level under violation of the G-E independence assumption and moderate sample size. 

However, it does maintain a smaller mean squared error (MSE) compared to the other 

estimators listed above irrespective of the true state of the G-E correlation. 

Recently Sohns and colleagues developed the empirical hierarchical Bayes approach to G×E 

interaction (EHB-GECHI) (Sohns 2012, Sohns, Viktorova et al. 2013). EHB-GECHI is based on 

a two-level hierarchical model with a parametric distribution assigned to the parameters during 
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both stages; the chi distribution and a mixture distribution with the point mass at zero. EHB-

GECHI does not require the assumption of G-E independence. In fact, the approach estimates 

the G-E correlation effect by borrowing information across all SNPs. 

The EHB-GECHI test has inflated type I error in the presence of a large number of G-E 

correlations. The approach is therefore not recommended for significance testing. EHB-GECHI 

is however proposed as a powerful ranking method to identify biologically plausible signals 

worth further detailed investigation (Sohns, Viktorova et al. 2013). “Rank power” is defined as 

the percentage of simulated replicates in which the true interacting SNP is within the top 

ranking positions, according to the absolute value of the corresponding test statistics, for 

example top 25 (Sohns, Viktorova et al. 2013). EHB-GECHI was shown to be the most powerful 

procedure in most of the cases in terms of rank power (Kuo and Zaykin 2011) when compared 

to the other G×E methods listed above. 

 All the approaches discussed above were designed specifically to study G×E interactions and 

therefore do not involve the estimation of genetic marginal or joint effects. Nevertheless, it is 

also interesting to know if G×E interaction may help to uncover additional genetic variants 

associated with disease, markers with moderate G×E interaction and main effects.  This idea is 

based on the belief that even though a disease locus only modifies the disease risk in presence 

of the environment, the locus may still have a detectable marginal effect on the disease (Clayton 

and McKeigue 2001). Joint tests were recently investigated by some research groups in terms 

of achieved power and type I error (Chatterjee, Kalaylioglu et al. 2006, Kraft, Yen et al. 2007, 

Dai, Logsdon et al. 2012). Joint tests are performed to address simultaneous testing for the 

presence of a genetic main effect combined with a test for G×E interaction (Vanderweele, Ko 

et al. 2013). 
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Genome-wide studies of G×E interactions are challenging, since there are many pitfalls that 

can arise. We attempted to address some of these pitfalls. As a rule of thumb in case-control 

samples, the detection of an interaction requires a sample size at least four times larger than 

that required for the detection of a main effect of comparable size (Smith and Day 1984). 

Therefore, non-homogeneity of the study sample usually arises as an issue. The presence of 

population stratification in the study sample is the first problem in studies of G×E interactions, 

as it leads to a loss of power to identify true signals, spurious association signals, and can mask 

true associations. Principal component analysis (PCA) is currently the most powerful 

procedure to correct for population stratification in genetic main effects case-control GWASs 

(Price, Patterson et al. 2006). PCA was also shown to be an attractive approach to correct for 

the bias in studies of gene-gene (G-G) interactions (Bhattacharjee, Wang et al. 2010). In case-

control studies of G×E interactions, we investigated the bias due to population stratification, 

deriving an analytical measure of the population stratification bias for case-control studies of 

G×E interactions. PCA was performed to correct for population stratification. We proposed 

PCA as a useful tool to correct for population stratification bias in GWAS of G×E interactions. 

Another prominent problem in the study of G×E interactions is the occurrence of population-

based G-E correlation for as many as thousands of markers. In a genome-wide context, the 

assumption of G-E independence cannot be surely stated and therefore statistical tools need to 

be able to relax this constraint. In this dissertation, we generalized the originally proposed 

EHB-GECHI method in three important ways: with respect to covariate adjustment; 

performance under the additive risk model assumption; and regarding applications with 

multilevel or continuous exposure, or genotype variables. However, some limitations remain, 

such as, for example, the complexity of the EHB-GECHI method and its relatively poor 

performance in the GWAS context and last but not least the inappropriateness of the approach 

to significance testing. Therefore, we proposed an alternative empirical hierarchical Bayes 
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approach for G×E interactions, naming it EHB-GENN. All three extensions mentioned above 

are valid in our modified EHB-GENN. Just as its predecessor EHB-GECHI, this novel approach 

does not require any assumption of independence between genotype and environment in the 

general population. It is characterized by a smaller number of hyperparameters requiring 

estimation on the dataset and by the ability to derive an exact equation for the posterior variance 

of the statistics. The asymptotic distribution of EHB-GENN test statistics is available as well. 

We propose EHB-GENN as a powerful tool keeping type I error rate at an approximately 

nominal level in contrast to EHB-GECHI and MUK-EB in samples in which a large number of 

G-E correlation signals with moderate to large effect size are suspected to occur. Moreover, to 

address the joint testing issue, we constructed a joint test EHB-GENN
J similar to that proposed 

by Dai and colleagues (Dai, Logsdon et al. 2012). 

This thesis is motivated by lung cancer GWAS data from the International Lung and Cancer 

Consortium (ILCCO) and the Transdisciplinary Research in Cancer of the Lung (TRICL) 

consortium and is illustrated on four GWASs (Holle, Happich et al. 2005, Wichmann, Gieger 

et al. 2005, Amos, Wu et al. 2008, Hung, Christiani et al. 2008, Hung, McKay et al. 2008, 

Sauter, Rosenberger et al. 2008, Wang, Broderick et al. 2008) with smoking as the exposure 

factor. On analysis, we searched for G×E interactions applying the EHB-GENN approach. 

Findings following the application of competing methods on the same data including EHB-

GECHI can be found in (Sohns 2012, Sohns, Viktorova et al. 2013). The discovery and 

understanding of G×E interactions clearly is a key to the future of personalized medicine. Novel 

findings in this area of research will very likely prove to be a direct benefit to public health, as 

they have the potential to lead to the future development of individualized treatments. 

This dissertation is structured as follows: Chapter 2 includes a review of the literature and 

presents the necessary definitions and methods. Chapter 3 discusses issues concerning bias 

resulting from population stratification in studies of G×E interaction. A simple equation is 
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presented to evaluate the degree of population stratification bias in case-control studies of G×E 

interaction. A description and the results of the calculation as well as a simulation study are 

presented. The advantage of applying PCA to correct for population stratification in G×E 

interaction studies is discussed. Chapter 4 introduces the EHB-GECHI approach (Sohns 2012, 

Sohns, Viktorova et al. 2013) and describes limitations of the originally proposed method. 

Newly developed generalizations of the EHB-GECHI method are also presented in this chapter. 

Chapter 5 introduces our alternative approach “Empirical hierarchical Bayes approach for G×E 

(EHB-GENN)” to studies of G×E interaction in the presence of many population-based G-E 

correlation signals with moderate to strong effect size. A description and the results of a 

simulation study comparing EHB-GENN versus other G×E interaction methods are presented. 

The same chapter describes the joint tests for genetic main and G×E interaction effects. Joint 

tests as proposed in (Dai, Logsdon et al. 2012) are described. Similarly, a joint EHB-GENN
J 

test was built. In Chapter 6, we present the lung cancer analyses and results. We applied EHB-

GENN and four joint tests on four GWASs from the ILCCO/TRICL consortia. The data are 

described and the methods and results of these genome-wide studies are discussed. The thesis 

is concluded by Chapter 7 with a discussion and suggestions of future research questions in 

this field. 



11 

 

Chapter 2 

2. Fundamentals of Human Genetics and Association Studies 

This chapter reviews basic concepts of population genetics as well as case-control genetic 

association and gene-environment interaction (G×E) studies. This chapter also presents the 

necessary definitions and principles to understand the main challenges in the area of case-

control genome-wide G×E interaction studies and our approach to addressing some of them. 

The statistical methods described in this chapter are standard methods to analyze G×E 

interactions in genome-wide association studies (GWAS) for a case-control design. Later in 

this thesis, these methods are employed in a comparative performance evaluation of our novel 

EHB-GENN approach to studies of G×E interaction, and are applied to analyze lung cancer 

GWAS data. 

 

2.1. Population Genetics 

 

2.1.1. Hardy-Weinberg Equilibrium 

A keystone of population genetics is outlined in the Hardy-Weinberg law, a principle 

independently formulated by G.H. Hardy and W. Weinberg in 1908. The Hardy-Weinberg law 

relies on the assumption of random mating in a population. A random mating represents the 

situation, in which a mating occurs between individuals at random and implies absence of 

selection. The Hardy-Weinberg law describes the mathematical relationship between 

frequencies of alleles and frequencies of genotypes in a population at a locus (l). To illustrate 

the law, assume that qA and qa are the corresponding frequencies of alleles A and a at a biallelic 

locus l, so that qA+qa=1. The Hardy-Weinberg law postulates that in a random mating 

population the allele and genotype frequencies are in stable equilibrium, which is called Hardy-
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Weinberg Equilibrium (HWE). The frequencies of the corresponding genotypes AA, Aa and aa 

are qA
2, 2qAqa, and qa

2, respectively. It indicates that the frequencies remain stable from 

generation to generation. On the other hand, allele frequencies can be derived from genotype 

frequencies under HWE by allele counting. 

To check if population allele and genotype frequencies satisfy HWE, a χ2 -test can be 

performed, which compares expected genotype frequencies derived from allele frequencies 

with those observed. Deviation from HWE may suggest e.g. the presence of selection or 

admixture of different populations. All markers, including single nucleotide polymorphisms 

(SNPs), are often tested for HWE during the quality control (QC) steps to avoid possible 

genotyping errors. Only control samples are used when testing for deviations from HWE. The 

threshold for declaring SNPs to be outside HWE varies significantly among studies; p-values 

between 0.001 and 5×10-8 (Zeggini and Morris 2010) are common depending on the number 

of SNPs under consideration. 

 

2.1.2. Minor Allele Frequency 

The minor allele frequency (MAF) refers to the frequency at which the least common allele 

occurs in a population or in the sample at hand. The frequency of alleles in the population can 

be estimated from their frequencies in a reference population, such as HapMap samples 

(International HapMap Consortium, Frazer et al. 2007). More often, MAF is estimated on the 

data on hand, and thus is only representative of cases or of controls. One of the alleles appears 

less frequently than the other and therefore is called minor allele. For a locus that is in Hardy-

Weinberg Equilibrium in a diploid population, an allele that is at a frequency of 0.3 will be 

present in 51% of the population [1 - (1 - 0.3)2] and absent in 49% of the population [(1 - 0.3)2]. 

Low MAF leads to poor performance of the genotype-calling algorithms (Weale 2010). 
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Therefore, during quality control of the data, it is reasonable to exclude markers with a MAF 

≤ 5% from further consideration depending on the sample size (Ziegler, König et al. 2008). 

 

2.1.3. Linkage Disequilibrium 

Genetic linkage represents violation of Mendel’s Second Law, the law of independent 

assortment of genes, and is reflected in segregation of alleles at loci located close to each other 

on the same chromosome. Under independence, the frequency of haplotypes, for close loci 

defined as pairs of alleles at different loci on the same gamete, is the product of their respective 

allele frequencies. Therefore, when an excess or deficiency of some haplotypes exist, the loci 

are said to be in linkage disequilibrium (LD) (Khoury, Beaty et al. 1993). In other words, LD 

may be defined as an existing correlation between alleles located at nearby loci, owing to the 

possible joint inheritance (Ardlie, Kruglyak et al. 2002). For simplicity, assume that we have 

only two loci l1 and l2 with corresponding alleles A/a and C/c and allele frequencies qA, qa, qC, 

qc. Four haplotypes can be present for these two loci: AC, Ac, aC, and ac, with corresponding 

frequencies qAC, qAc, qaC, and qac. Hence, l1 and l2 are in equilibrium if  

qAC = qAqC, qAc = qAqc, qaC = qaqC, qac = qaqc.  

LD can be measured by the disequilibrium coefficient DAC = qAC - qAqC, which deviates from 0 

in the presence of LD. Another measure of LD, which does not depend on the allele frequency 

is the squared correlation coefficient, r2 (Ardlie, Kruglyak et al. 2002). It is defined as 

r2=D2/( qAqaqCqc)  

and ranges from 0 to 1. The HapMap database (http://www.hapmap.org) provides LD 

information across the whole human genome including the position of recombination hotspots 

(Zeggini and Morris 2010). 

http://www.hapmap.org/
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2.1.4. Population Stratification 

A confounder is a variable that is not itself the object of a study, but is associated with the 

phenotype and at the same time with the variable under consideration. For example, a person’s 

ethnicity can be a confounder associated with the marker allele under investigation. If the 

confounder is the ethnic affiliation of the individual, this is termed confounding by ethnicity or 

population stratification (PS) (Ziegler and König 2006). PS in case-control studies can occur 

when cases and controls are sampled from different populations in different proportions and 

the allele frequencies of genetic markers, often SNPs, are distributed unequally in these 

populations (Ziegler and König 2006). 

Population stratification can act as a confounder when the genetic effect is assumed to be 

uniform across admixed subpopulations. On the other hand, PS can act as an effect modifier 

when the existing genetic effect is different in the subpopulations. In other words, the 

homogeneity of genetic effects in all subpopulations is assumed for a confounder, whereas for 

an effect modifier, heterogeneity across subpopulations is present. In addition to producing 

false-positives, population stratification might also mask a true association, thus reducing the 

power to detect a genetic effect (Ziegler and König 2006). 

To test for the presence of population stratification in the study sample, Pritchard and 

Rosenberg (Pritchard and Rosenberg 1999) proposed to select randomly a set M of neutral 

markers in linkage equilibrium and construct χ2-statistics for each marker, testing for 

association between the phenotype and the marker. Then, the sum of all statistics (χ𝑙
2, l=1..M) 

is formed χ𝑃𝑆
2 = ∑ χ𝑙

2𝑀
𝑙=1  and it is asymptotically distributed as χ2 with M degrees of freedom 

(df) under the null hypothesis. Failure to reject the null hypothesis by this test means that the 

sample is assumed to be homogeneous. 
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There are three well-known approaches in the literature to test for association in case-control 

studies while adjusting for unobserved population stratification. The first approach is the 

method of Genomic Control (GC), proposed by Devlin and Roeder (Devlin and Roeder 1999). 

The idea of GC is to use additionally genotyped marker loci (“null loci”) to estimate empirically 

the variance inflation under the null hypothesis of no association. For this, an inflation factor λ 

is estimated as 

 𝜆̂ =
𝑚𝑒𝑑𝑖𝑎𝑛(𝜒1

2,𝜒2
2,…𝜒𝑀

2 )

0.4549
,  

in which 0.4549 is the median of the χ1𝑑𝑓
2  distribution. It is assumed that this remains constant 

across the genome. Then, the test statistic for any locus l is corrected to χ𝑙
2/𝜆̂. 

The second approach proposed is the structured association (SA), (Pritchard, Stephens et al. 

2000, Pritchard, Stephens et al. 2000). SA is a two-step procedure. The first step involves 

inferring details of the population structure from the sample using unlinked loci. The number 

of subpopulations and allele frequencies in each of them, as well as the mixed genetic ancestry 

of each individual are estimated employing a Monte-Carlo method at this step. In the second 

step, the information obtained is used to test for association within subpopulations (Ziegler and 

König 2006). Several different SA methods were subsequently proposed, for example as in 

(Köhler and Bickeböller 2006). 

The third approach to correct for population stratification, which is applicable to genome-wide 

association case-control studies, is based on principal component analysis (PCA) and was 

proposed by Price and colleagues (Price, Patterson et al. 2006). To perform a PCA, more than 

10,000 SNPs are necessary for the principal components estimation. The analysis is therefore 

only applicable in the GWAS context. The advantage of PCA over GC or SA is that the ancestry 

adjustment is performed per SNP. This allows us to correct for both false positive and false 
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negative associations (Weale 2010). Nowadays, PCA is the most commonly used and the most 

appropriate method to correct for PS in genetic association studies. We implemented PCA to 

account for population stratification in our study and as such, it is explained in more detail 

below. 

 

2.1.5. Principal Component Analysis 

Principal component analysis is a method of data dimensionality reduction. It is a roadmap of 

how to transform a large set of related variables into a new smaller set of independent variables 

to reveal hidden substructure in the original data. The main idea of PCA is that most of the 

variance in the original dependent variables, in the GWAS context genotypes, can be explained 

by a significantly smaller number of independent variables, termed principal components. 

Principal components are ordered according to the amount of the variance in the full set of 

original variance that they explain. 

PCA can be performed on case-control data and can be summarized in the following steps. Let 

a GWAS dataset be coded in the form of a large n×m matrix with one row i=1,...,n for an 

individual and one column j=1,…,m for every SNP. Each cell ij of the original data matrix is 

the genotype of individual i at a particular SNP j, coded as (0,1,2) according to the minor allele 

count (gij). 

Step 1 Normalize the original n×m matrix by subtracting column means and dividing by 

standard deviation. 

Step 2 Calculate the covariance matrix for the normalized data variables. Assume Σ to be the 

m×m covariance matrix of M=(m1…mm), so that Σjj’=cov(mj,mj’), where mj  =(g1j…gnj)t is a jth 

SNP column-vector, j=1,…,m, j’=1,…,m, gij is each cell entry in n×m matrix. 
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Step 3 Calculate the eigenvectors and eigenvalues of Σ. To do so, let a1∈ℝM be the first 

eigenvector and λ to be an eigenvalue, then we search for the vector maximizing 

 𝑣𝑎𝑟(𝑎1
𝑡 𝑀) = 𝑎1

𝑡 𝛴𝑎1 

with 𝑎1
𝑡𝑎1 = 1. This defines an optimization problem with one constraint and can be solved 

using the method of Lagrange multipliers. Consider the function 

 𝑎1
𝑡 𝛴𝑎1 = 𝜆(𝑎1

𝑡 𝑎1 − 1) 

where λ is a constant termed the Lagrange multiplier. Differentiating the equation above with 

respect to a1 leads to 𝛴𝑎1 − 𝜆𝑎1 = (𝛴 − 𝜆𝐼𝑀)𝑎1 = 0, with IM being the M×M identity matrix. 

From this it follows that λ is an eigenvalue of Σ and a1 is corresponding eigenvector. From the 

above and the fact that λ ∈ ℝ , the equation below follows 

 𝑎1
𝑡 𝛴𝑎1 = 𝑎1

𝑡 𝜆𝑎1 = 𝜆𝑎1
𝑡 𝑎1 = 𝜆. 

Therefore, λ is the largest eigenvalue of Σ and a1 is the first eigenvector, explaining the largest 

proportion of variance. Once a1 is derived, the transformation 𝑎1
𝑡 𝑀 yields the first principal 

component. To obtain the second, third and finally mth principal components, we proceed in 

the same manner, choosing vector a2∈ℝM maximizing the variance, such that 𝑎2
𝑡 𝑀 and 𝑎1

𝑡 𝑀 are 

uncorrelated, i.e. orthogonal. Then, 𝑎2
𝑡 𝑀…𝑎𝑀

𝑡 𝑀 are m principal components. Mathematically 

speaking, this process is equivalent to a singular value decomposition of the original data 

matrix. In 2006, Price and colleagues demonstrated in application on case-control genetic data 

that the inclusion of the set of significant principal components as covariates into the analysis 

corrects for population stratification in genome-wide association studies, of the genetic main 

effect (Price, Patterson et al. 2006). PCA for GWAS data is integrated in the EIGENSOFT 

software package (Patterson, Price et al. 2006). 
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2.2. Case-Control Association Studies 

 

2.2.1. Genome-Wide Association Studies 

In a case-control design, the aim of a GWAS is to compare genetic variants in cases to those in 

controls and answer the question as to whether there is any association of these variants with 

the outcome status (cases/controls) (Witte 2010). Even though there is an increasing tendency 

to apply GWA methodologies to population-based cohorts, most published GWASs employ 

the case-control design (McCarthy, Abecasis et al. 2008). Genetic variation in such studies is 

often measured using single nucleotide polymorphisms (SNPs). GWASs are possible 

nowadays because millions of SNPs in the human genome have been identified. 

 

2.2.2. Measures of Association  

Consider the following data representation in an epidemiological study. Let G=(0, 1, 2) 

represent the minor allele count for an individual genotype. Let D denote the disease status 

with 1 for cases and 0 for controls. Let nij denote the number of subjects with D=i, G=j and N 

is the total number of individuals. Replacing any subscript with a dot (.) denotes summation 

over the subscript. We can summarize our data for each SNP in Table 2.1. 

Table 2.1 Data representation in a case-control study with a SNP 

 G=0 G=1 G=2  

D=1 n1 n11 n12 n1. 

D=0 n0 n01 n02 n0. 

 n.0 n.1 n.2 N 

 

The most common measure of association between a categorical characteristic and a disease 

the “relative risk” (RR) of a member with the characteristic developing the disease compared 

to a member without this characteristic. For example, genetic association represents association 
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between a specific genotype and the disease and can be measured by the relative risk of a person 

with such a genotype developing the disease compared to a person with the reference genotype. 

To identify risk factors for disease development, the risks of contracting or developing the 

disease among people exposed to potential risk factors, such as genotype or environment, and 

those of an unexposed individual, such as wild-type genotype or absence of environment, are 

related to each other. The corresponding measure of risk is the relative risk.  

The relative risk is the probability that a member of an exposed group will develop a disease 

(D=1) relative to the probability that a member of an unexposed group will develop that same 

disease. 

 𝑅𝑅 =  
𝑃(𝑑𝑖𝑠𝑒𝑎𝑠𝑒|𝑒𝑥𝑝𝑜𝑠𝑒𝑑)

𝑃(𝑑𝑖𝑠𝑒𝑎𝑠𝑒|𝑛𝑜𝑛−𝑒𝑥𝑝𝑜𝑠𝑒𝑑)
 

There are three different penetrances rg =P(D=1|G=g), g=0,1,2, that can be estimated by  

 𝑟̂0 =
𝑛10

𝑛.0
,  𝑟̂1 =

𝑛11

𝑛.1
,  𝑟̂2 =

𝑛12

𝑛.2
 , 

from the data presented in Table 2.1, where a penetrance is the disease risk given a specific 

genotype. Therefore the genotype relative risks compared to the G=0 reference genotype are 

defined as: 

𝑅𝑅𝐺=1 =
𝑃(𝐷=1|𝐺=1)

𝑃(𝐷=1|𝐺=0)
 and 𝑅𝑅𝐺=2 =

𝑃(𝐷=1|𝐺=2)

𝑃(𝐷=1|𝐺=0)
 

can be estimated by 

 𝑅𝑅̂𝐺=1 =
𝑟̂1

𝑟̂0
=

𝑛11

𝑛.1
/

𝑛10

𝑛.0
 and 𝑅𝑅̂𝐺=2 =

𝑟̂2

𝑟̂0
=

𝑛12

𝑛.2
/

𝑛10

𝑛.0
. 

The genetic risk of a specific mode of inheritance is defined according to the relationship 

between the corresponding genotype RRs. 
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The dominant mode of inheritance satisfies   RRG=2=RRG=1>1. 

The co-dominant mode of inheritance satisfies RRG=2≠RRG=1>1. 

The recessive mode of inheritance satisfies   RRG=2>1, RRG=1=1. 

The additive mode of inheritance satisfies   RRG=2=(2RRG=1 - 1)>1 (additive scale). 

The multiplicative mode of inheritance satisfies  RRG=2=(RRG=1)2>1. 

In a prospective cohort study, the numbers of individuals in the exposed and non-exposed 

groups are representative of the whole population. This is not the case in retrospective case-

control studies, since the number of individuals in each group is decided upon by the 

investigator and can therefore differ from the population case-control ratio. It is therefore 

impossible to estimate risks and thus relative risks from case-control data directly. However, 

association can then be measured by the so-called odds ratio (OR). 

If an event takes place with probability P, the odds in favor of that event are P to (1-P). The 

odds ratio relates two odds to each other. In our example, OR is the odds of exposed individuals 

among cases divided by the odds of exposed individuals among controls: 

 𝑂𝑅 =  
𝑃(𝑒𝑥𝑝𝑜𝑠𝑒𝑑|𝑑𝑖𝑠𝑒𝑎𝑠𝑒)/(1−𝑃(𝑒𝑥𝑝𝑜𝑠𝑒𝑑 |𝑑𝑖𝑠𝑒𝑎𝑠𝑒))

𝑃(𝑒𝑥𝑝𝑜𝑠𝑒𝑑|𝑛𝑜𝑛 − 𝑑𝑖𝑠𝑒𝑎𝑠𝑒)/(1−𝑃(𝑒𝑥𝑝𝑜𝑠𝑒𝑑|𝑛𝑜𝑛 − 𝑑𝑖𝑠𝑒𝑎𝑠𝑒))
  

For the data in Table 2.1, ORG=1 and ORG=2 can be estimated by 

𝑂𝑅̂𝐺=1 =
𝑛11

𝑛01
/

𝑛10

𝑛00
 and 𝑂𝑅̂𝐺=2 =

𝑛12

𝑛02
/

𝑛10

𝑛00
. 

Generally, OR overestimates RR when RR>1 and underestimates it when RR<1. The two 

converge with decreasing disease prevalence. Under the assumption of a rare disease in the 

population, OR is a good approximation of RR and is therefore often implemented in case-
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control studies. In practice, even with a disease prevalence of 10%, scientists estimate 𝑂𝑅̂ from 

the data collected by a case-control study and use it to approximate RR. 

 

2.2.3. Case-Control and Case-Only Studies 

In a case-control study, sampling data are collected retrospectively and conditional on the 

disease status of the individuals. The common practice in association studies is to analyze such 

data ignoring the fact of the retrospective nature of the sampling. In 1956, Cornfield 

demonstrated that prospective and retrospective odds ratios are equivalent. Therefore, odds 

ratios estimation based on the case-control data is valid as according to (Cornfield 1956). 

The efficiency of the approach was established in two other research papers by Andersen 

(Andersen 1970) and Prentice and Pyke (Prentice and Pyke 1979). They demonstrated that 

classic prospective analysis of the case-control data yields the correct maximum-likelihood 

estimates of the odds ratio parameter under the retrospective sampling design when the 

distribution of the underlying covariates is nonparametric. 

Later, in 1994, Piegorsch and colleagues proposed the case-only approach to estimate the G×E 

interaction effect (Piegorsch, Weinberg et al. 1994).  Under the population-based G-E 

independence assumption, it was shown that efficient estimates of G×E interaction for the 

categorical exposure and binary genotype variables can be derived through logistic regression 

in a case-only approach (Piegorsch, Weinberg et al. 1994, Umbach and Weinberg 1997). The 

CO approach was later extended to continuous environment and categorical genotype variables 

employing logistic, ordinal, and multinomial regression techniques (Albert, Ratnasinghe et al. 

2001, Armstrong 2003, Cheng 2006). 
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2.2.4. Single Nucleotide Polymorphism 

Molecular markers revealing polymorphisms at the deoxyribonucleic acid (DNA) level are 

essential in human genetic studies. Over the last ten years, the revolution in biological science, 

advanced genotyping and sequencing technologies, together with a substantial reduction in 

their cost, have enabled the research community grow significantly in terms of knowledge 

regarding genetic and genomic variation, as more and more genomes have been sequenced. 

One of the essential steps towards greater knowledge was the completion of the Human 

Genome Project in 2003 (Collins, Green et al. 2003). As a consequence of this, great progress 

in the discovery of genes influencing the risks of contracting and/or developing monogenic and 

complex human diseases has been made (Johnson 2009). The post-genome era is beginning to 

unravel the function of the human genome and explain how the circa 21,000 human genes 

interact with each other and the environmental conditions. Comparison of genomic DNA 

sequences in a variety of people reveals many positions at which two or sometimes more 

different nucleotide bases can be observed (Syvanen 2001). Such variation at a single position 

of a DNA sequence is called a single nucleotide polymorphism, or simply SNP. SNPs are very 

abundant in the human genome and are estimated to appear approximately once within every 

thousand bases (Sachidanandam, Weissman et al. 2001, Syvanen 2001, Venter, Adams et al. 

2001). The effect of a SNP on a phenotype depends on the genome position at which the SNP 

occurs, be it a non-coding region or the coding region of a gene or its regulatory region. 

Multifactorial human diseases do not follow a simple Mendelian mode of inheritance, but are 

the result of the complex interplay between a number of genetic and environmental factors 

(Buselmaier and Tariverdian 1999, Thomas and Kejariwal 2004). There is increasing evidence 

that many complex diseases demonstrate association with various SNPs and a number of 

environmental factors. Identifying the molecular causes of multifactorial diseases has become 

the focus of many researchers. Association studies are rapidly gaining ground for human traits, 
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with the human Haplotype Map Project (International HapMap Consortium 2003) being funded 

to support these findings (Thomas and Kejariwal 2004). 

 

2.2.5. Gene-Environment Interaction and Gene-Environment Correlation 

The vast majority of common diseases occur as a result of the complex interplay between 

genetic and environmental factors. In genetic studies, gene-environment interaction (G×E) is 

present when genetic and environmental factors interact to cause a disease. In other words, the 

effect of the genotype and particular environment together on the disease risk differs from the 

separate effects of these factors (Ober and Vercelli 2011). For example, in cancer biology the 

susceptibility to particular external toxic elements depends on the efficiency of the DNA repair 

process, which can be different among the people with a different genetic signature. Another 

example is individual response to drug therapy or nutrition. Genetics may affect the response 

to a particular medication via drug metabolism and can also lead to medication or therapy 

intolerance (Hunter 2005). So far, numerous gene-environment associations with various 

complex diseases have been discovered through candidate gene or genome-wide association 

studies. For example, the GST superfamily polymorphisms have been demonstrated to be 

associated with an elevated risk of smoking-related lung cancers (Haugen, Ryberg et al. 2000, 

Raimondi, Paracchini et al. 2006). It was also demonstrated that female smokers develop a 

substantially higher expression level of CYP1A1 in the lung when compared to males (Haugen, 

Ryberg et al. 2000). The variant alleles of the NAT2 gene increase the risk of colorectal cancer 

only in combination with red meat consumption (Chen, Stampfer et al. 1998). Furthermore, 

variants of the MC1R gene, responsible for skin color, combined with UV radiation result in 

an increased skin cancer risk (Rees 2004), while on their own the genetic and environmental 

factors have no effect on the disease risk. 
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To understand the scope of this dissertation, it is of at most importance to distinguish between 

G×E interaction and gene-environment (G-E) correlation in the source population. In this 

dissertation, G×E interaction will always refer to gene-environment interaction and G-E 

correlation to gene-environment correlation. Population-based G-E correlation occurs when 

exposure to the environmental condition depends on an individual’s genotype or vice versa, 

irrespective of the disease status of the individual. This can be either causal or spurious. An 

example of a causal G-E correlation would be smoking addiction genes, which favor smoking, 

such as GPR51 and CYPR51 (Caporaso, Gu et al. 2009), or the genes GABRA2 and ADH1C 

correlated with alcohol addiction (Online Mendelian Inheritance in Man 2012). Generally, one 

would expect only a small number of genes to have a true causal G-E correlation, detectable 

on a genome-wide level. However, this can be different for some diseases such as lung cancer 

for which many SNPs may correlate with nicotine addiction. It is also well known that 

population stratification leads to a spurious dependence between genotype and environment in 

a general population, owing to non-causal mechanisms (Thomas, Lewinger et al. 2012), and 

may lead to a large number of G-E correlations. Understanding the difference between G×E 

interaction and G-E correlation is crucial to this dissertation. It is therefore important to 

separate these two terms. However, G×E interaction and G-E correlation are not mutually 

exclusive in reality and can occur simultaneously. 

To introduce the approach to measure G×E interaction and G-E correlation in case-control 

studies, we restrict to the binary disease (D), a binary exposure (E) and the three level genotype 

(G) variables. As previously introduced, let G=(0, 1, 2) be an individual genotype. Let E denote 

an exposure variable with 1 for exposed subjects and 0 otherwise. Let D denote the disease 

status with 1 for cases and 0 for controls. Let nijk denote the number of subjects with D=i, G=j 

and E=k and N is the total number of individuals. Then, data for each SNP may be presented 

in a 2×6 contingency table (Table 2.2). 
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Table 2.2 Data representation in a case-control study with a SNP and a single environment as 

factor 

 E=1 E=0  

 G=0 G=1 G=2 G=0 G=1 G=2  

D=1 n101 n111 n121 n100 n110 n120 n1.. 

D=0 n001 n011 n021 n000 n010 n020 n0.. 

 n.01 n.11 n.21 n.00 n.10 n.20 N 

 

The observed vector of cell counts for cases in the sub table n1=(n121, n111, n101, n120, n110, n100) 

and respectively for controls n0=(n021, n011, n001, n020, n010, n000) can be seen as realizations from 

two independent multinomial distributions n1∼MN(n1, p1) and n0 ∼MN(n0, p0), where p1=(p121, 

p111, p101, p120, p110, p100) and p0=(p021, p011, p001, p020, p010, p000) are the cell probabilities of the 

underlying case-control population. Then the following ORs per SNP may be calculated: 

𝑂𝑅𝐺=1 =
𝑝110

𝑝010
/

𝑝100

𝑝000
 and 𝑂𝑅𝐺=2 =

𝑝120

𝑝020
/

𝑝100

𝑝000
 for the genetic main effect, when E=0 

𝑂𝑅𝐸 =
𝑝101

𝑝001
/

𝑝100

𝑝000
 environmental main effect, at the reference genotype level G=0 

𝑂𝑅𝐺=1𝐸 =
𝑝111

𝑝011
/

𝑝100

𝑝000
 and 𝑂𝑅𝐺=2𝐸 =

𝑝121

𝑝021
/

𝑝100

𝑝000
 joint effect of genotype and 

environment. 

Assuming a multiplicative risk model, G×E can be measured as follows 

𝑂𝑅𝐺×𝐸 =
𝑂𝑅𝐺𝐸

𝑂𝑅𝐺𝑂𝑅𝐸

 

Where ORG is for G=1 or 2, likewise for ORGE. 

𝑂𝑅𝐺×𝐸 ∈ (-∞,∞) and 𝑂𝑅𝐺×𝐸 {
> 1 
= 1
< 1

positive G × E, increasing disease risk
no G × E

negative G × E, decreasing disease risk
 

Gene-environment correlation separately within cases or controls, respectively, can also be 

measured employing ORs, which we denote ORcases and ORcontrols from now on 
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𝑂𝑅𝑐𝑎𝑠𝑒𝑠|𝐺=1 =
𝑝111

𝑝110

𝑝100

𝑝101
 and 𝑂𝑅𝑐𝑎𝑠𝑒𝑠|𝐺=2 =

𝑝121

𝑝120

𝑝100

𝑝101
  

𝑂𝑅𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠|𝐺=1 =
𝑝011

𝑝010

𝑝000

𝑝001
 and 𝑂𝑅𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠|𝐺=2 =

𝑝021

𝑝020

𝑝000

𝑝001
  

If G-E correlation is absent for a SNP in cases or in controls, then ORcontrols=1 or ORcases=1 for 

that SNP. As before, departure from 1 indicates the presence of G×E interaction. 

It is very important for this thesis that G×E can be expressed by the ORs measuring G-E 

correlation within cases and within controls as 

𝑂𝑅𝐺×𝐸 =
𝑂𝑅𝐺𝐸

𝑂𝑅𝐺𝑂𝑅𝐸
=

𝑝111𝑝000

𝑝100𝑝011
𝑝110𝑝000

𝑝100𝑝010

𝑝101𝑝000

𝑝100𝑝001

=

𝑝111𝑝100

𝑝110𝑝101
𝑝011𝑝000

𝑝001𝑝010

=
𝑂𝑅𝑐𝑎𝑠𝑒𝑠

𝑂𝑅𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠
. 

Therefore, if ORG×E = 1, G×E is absent if 𝑂𝑅𝑐𝑎𝑠𝑒𝑠= 𝑂𝑅𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 = 1 or if 𝑂𝑅𝑐𝑎𝑠𝑒𝑠 =

 𝑂𝑅𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 ≠ 1. And G×E is present if 𝑂𝑅𝑐𝑎𝑠𝑒𝑠 ≠ 1 and 𝑂𝑅𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 = 1 or if 𝑂𝑅𝑐𝑎𝑠𝑒𝑠 ≠

𝑂𝑅𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 and 𝑂𝑅𝑐𝑎𝑠𝑒𝑠 ≠ 1. We say that G-E correlation is present in a source population if 

𝑂𝑅𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 ≠ 1 and this correlation is independent from the respective disease status of the 

individual. If the prevalence of the disease is small, i.e. the disease is rare in the population, 

ORcontrols in the presence of G×E and absence of population G-E converges to 1 (Schmidt and 

Schaid 1999). 

Generally, ORs of genetic main effect, environmental main effect, and G×E interaction can be 

estimated via logistic regression models. Assume we want to model the probability P(D=1|G,E) 

for a SNP and a single environment ( data as in Table 2.2). 

𝑙𝑜𝑔𝑖𝑡(P(D = 1|G, E)) = log (
P(D = 1|G, E)

P(D = 0|G, E)
) = 𝛼 + 𝛽𝐸 + 𝛽𝐺 + 𝛽𝐺×𝐸𝐺𝐸, (2.1) 

where βE=log(ORE), βG=log(ORG), and βG×E =log(ORG×E). 

The OR of the G-E correlation in cases and controls can also be modeled via logistic regression. 
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 𝑙𝑜𝑔𝑖𝑡(P(E = 1|G, D = 1)) = log (
P(E = 1|G, D = 1)

P(E = 0|G, D = 1)
) = 𝛼𝑐𝑎𝑠𝑒𝑠 + 𝛽𝑐𝑎𝑠𝑒𝑠𝐺 and

 (2.2) 

 𝑙𝑜𝑔𝑖𝑡(P(E = 1|G, D = 0)) = log (
P(E = 1|G, D = 0)

P(E = 0|G, D = 0)
) = 𝛼𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 + 𝛽𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝐺,

 (2.3) 

where βcases=log(ORcases) and βcontrols=log(ORcontrols). 

It is easy to see from the previous page that G×E interaction can be measured 

 𝛽𝐺×𝐸 = log(𝛹) = 𝑙𝑜𝑔 (
𝑂𝑅𝑐𝑎𝑠𝑒𝑠

𝑂𝑅𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠
) = 𝛽𝑐𝑎𝑠𝑒𝑠 − 𝛽𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠.   (2.4) 

Equation (2.4) is crucial to this dissertation. 

The βs can be estimated from the data by the maximum likelihood estimates (MLE) 𝛽̂, which 

would then approximately follow a normal distribution, by 

𝛽̂𝐺=(1,2) = 𝑙𝑜𝑔 (
𝑛1𝐺0𝑛000

𝑛0𝐺0𝑛100
)  ∼ 𝑁(𝛽𝐺 , 𝜎𝐺

2),  with 𝜎𝐺
2 = ∑ ∑

1

𝑛𝐷𝐺0
𝐺𝐷   

𝛽̂𝐸           = 𝑙𝑜𝑔 (
𝑛101𝑛000

𝑛100𝑛001
) ∼ 𝑁(𝛽𝐸 , 𝜎𝐸

2),  with 𝜎𝐸
2 = ∑ ∑

1

𝑛𝐷0𝐸
𝐸𝐷  

𝛽̂𝑐𝑎𝑠𝑒𝑠     = 𝑙𝑜𝑔 (
𝑛1𝐺1𝑛100

𝑛1𝐺0𝑛101
) ∼ 𝑁(𝛽𝑐𝑎𝑠𝑒𝑠, 𝜎𝑐𝑎𝑠𝑒𝑠

2 ), with 𝜎𝑐𝑎𝑠𝑒𝑠
2 = ∑ ∑

1

𝑛1𝐺𝐸
𝐸𝐺  

𝛽̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 = 𝑙𝑜𝑔 (
𝑛0𝐺1𝑛000

𝑛0𝐺0𝑛001
) ∼ 𝑁(𝛽𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠, 𝜎𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠

2 ),  with 𝜎𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠
2 = ∑ ∑

1

𝑛0𝐺𝐸
𝐸𝐺  

And finally, 

𝛽̂𝐺×𝐸        = 𝑙𝑜𝑔 (
𝑛1𝐺1𝑛100

𝑛1𝐺0𝑛101
/

𝑛0𝐺1𝑛000

𝑛0𝐺0𝑛001
) = 𝛽̂𝑐𝑎𝑠𝑒𝑠 − 𝛽̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 ∼ 𝑁(𝛽𝐺×𝐸, 𝜎𝐺×𝐸

2 ), 

with 𝜎𝐺×𝐸
2 = ∑ ∑ ∑

1

𝑛𝐷𝐺𝐸
𝐸𝐺𝐷 =  𝜎𝑐𝑎𝑠𝑒𝑠

2 + 𝜎𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠
2 . 
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Logistic regression is a very flexible approach in association studies and is therefore is widely 

used in genetic main effect, environmental main effect, and G×E and gene-gene interaction 

(G×G) studies. It allows for adjusted analysis by simple inclusion of additional covariables.  

For a binary disease outcome such as case-control status, most existing association tests, 

including interaction tests, are based on logistic regression models. To test for the presence of 

G×E interaction for a SNP, one needs to construct a test statistic testing whether the null 

hypothesis (H0) is followed for each SNP. 

H0: 𝛽𝐺×𝐸= 0, no G×E interaction at the SNP 

The corresponding 𝛽̂𝐺×𝐸 can be estimated from the data. 

 

2.2.6.  Statistical Tests for G×E Interaction in Case-Control Genome-Wide Association 

Studies 

 

Case-Control Test 

The classic case-control test (CC) for G×E interaction tests H0 using the standard Wald-type 

test statistics, constructed for each SNP. This test statistic, TCC, is distributed in an 

approximately standard normal fashion. 

𝑇𝐶𝐶 =
𝛽̂𝐺×𝐸

𝜎𝐺×𝐸
=

𝛽̂𝑐𝑎𝑠𝑒𝑠 − 𝛽̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠

√𝜎𝑐𝑎𝑠𝑒𝑠
2 + 𝜎𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠

2
∼ 𝑁 (𝛽𝐺×𝐸  ,1) 

 

 

Case-Only Test 
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Piegorsch and colleagues proposed the case-only test (CO) for gene-environment interaction, 

seeking to achieve greater power than the case-control test (Piegorsch, Weinberg et al. 1994). 

They used equation (2.4) as a basis for their estimator of G×E interaction and additionally 

introduced two critical constraints to construct a valid test. They assume that the disease of 

interest is rare in the population and that G-E correlation is absent, i.e. genotypes and 

environment are independent and thus ORcontrols=1 => βcontrols=0. These assumptions allow the 

construction of a test statistic, which is distributed as N(0,1) under H0, and is characterized by 

a reduced variance and is therefore more powerful than the case-control test.   

𝑇𝐶𝑂 =
𝛽̂𝑐𝑎𝑠𝑒𝑠

𝜎𝑐𝑎𝑠𝑒𝑠

=
𝛽̂𝑐𝑎𝑠𝑒𝑠

√𝜎𝑐𝑎𝑠𝑒𝑠
2

∼ 𝑁 (𝛽𝐺×𝐸 ,1) 

However, when the assumptions are violated, the case-only method leads to biased estimates 

and TCO has highly inflated type I error rate. Thus, testing for significance is no longer 

trustworthy. 

 

Mukherjee’s Shrinkage Estimator 

Mukherjee and Chatterjee proposed another method to test for G×E interaction, relying on 

empirical Bayes models (please refer to empirical Bayes in the subsequent sections). They 

named the G×E interaction estimator based on their approach an empirical Bayes type 

shrinkage estimator for G×E and introduced the corresponding test statistic (MUK-EB), 

(Mukherjee and Chatterjee 2008). The MUK-EB estimator combines the robust case-control 

and powerful case-only estimators into a single estimator as 

𝛽̂𝑀𝑈𝐾−𝐸𝐵 = (1 − 𝐵)𝛽̂𝑐𝑎𝑠𝑒𝑠 + 𝐵𝛽̂𝐺×𝐸 . 
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The weight B is chosen according to the evidence in the data on the G-E correlation. If G-E is 

present in the controls then B→1 and 𝛽̂𝑀𝑈𝐾−𝐸𝐵 converges to 𝛽̂𝐺×𝐸. When no evidence of G-E 

is present, then B→0 and 𝛽̂𝑀𝑈𝐾−𝐸𝐵 converges to 𝛽̂𝑐𝑎𝑠𝑒𝑠. 

To derive the shrinkage factor B, Mukherjee and Chatterjee demonstrated that the G-E 

correlation for each SNP can be modeled by the use of 𝛽̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠. They used a variance 

parameter τ2 representing the degree of uncertainty with respect to G-E correlation per SNP. 

𝛽̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠  | 𝛽𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠  ∼  𝑁(𝛽𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠, (𝜎𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠)2)   

𝛽𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 | 𝜏2    ∼ 𝑁(0, 𝜏2)    

and estimate the parameter τ2, by 𝜏̂2 = 𝛽̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠
2 . 

Therefore  

𝛽̂𝑀𝑈𝐾−𝐸𝐵 =
(𝜎𝐺×𝐸̂)2

𝜏̂2 +(𝜎̂𝐺×𝐸)2
𝛽̂𝑐𝑎𝑠𝑒𝑠 +

𝜏̂2 

𝜏̂2 +(𝜎𝐺×𝐸̂)2
𝛽̂𝐺×𝐸 .    

This estimator, even though derived from the Bayesian perspective, is neither Bayes nor 

empirical Bayes, but a pure function of the observed data. 

The variance is estimated by the following term: 

𝜎𝑀𝑈𝐾−𝐸𝐵 = 𝜎𝑐𝑎𝑠𝑒𝑠
2 + (

𝛽̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠
2 (𝛽̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠

2 + 3𝜎𝐺×𝐸
2 )

(𝛽̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠
2 + 𝜎𝐺×𝐸

2 )
2 )

2

𝜎𝐺×𝐸
2  

The Wald-type test statistic can be constructed for MUK-EB as follows 

𝑇𝑀𝑈𝐾−𝐸𝐵 =
𝛽̂𝑀𝑈𝐾−𝐸𝐵

𝜎𝑀𝑈𝐾−𝐸𝐵
∼ 𝑁 (𝛽𝐺×𝐸 ,1) 

The MUK-EB test was shown to be more powerful than the case-only test. At the same time 

the type I error for MUK-EB is substantially less inflated as for the case-only test, which makes 

the test applicable to significance testing in the presence of G-E correlation (Mukherjee and 
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Chatterjee 2008). However, the type I error of MUK-EB can still be inflated in the presence of 

a large number of G-E correlations in the source population (Mukherjee, Ahn et al. 2008). 

 

Murcray’s Two Step Approach 

Murcray and colleagues introduced a two-step procedure to test for G×E interaction (MUR). 

At the first step, they proposed to screen for the correlation between genotype and environment 

irrespective of the disease status by 

 𝑙𝑜𝑔𝑖𝑡(P(E = 1|G)) = 𝛼𝑎𝑙𝑙 + 𝛽𝑎𝑙𝑙𝐺 

Therefore, 𝑂𝑅𝑎𝑙𝑙 =
(𝑝100 +𝑝000 )(𝑝1𝐺1 +𝑝0𝐺1 )

(𝑝101 +𝑝001 )(𝑝1𝐺0 +𝑝0𝐺0 )
, for G=1 or 2 and data from Table 2.2. 

The maximum likelihood estimate (MLE) of βall, 

𝛽̂𝑎𝑙𝑙 = 𝑙𝑜𝑔 (
(𝑛100+𝑝000 )(𝑛1𝐺1+𝑛0𝐺1)

(𝑛101+𝑛001)(𝑛1𝐺0+𝑛0𝐺0)
) ∼N(βall ,𝜎𝑎𝑙𝑙

2 ), 𝜎𝑎𝑙𝑙
2 = ∑ ∑

1

(𝑛0𝐺𝐸+𝑛1𝐺𝐸)𝐸𝐺 . 

The first step test statistic is 

𝑇𝑀𝑈𝑅 =
𝛽̂𝑎𝑙𝑙

𝜎𝑎𝑙𝑙

∼ 𝑁(𝛽𝑎𝑙𝑙, 1) 

Only SNPs passing the first step proceed to the second step, meaning only those SNPs with 

𝛽̂𝑎𝑙𝑙  significantly different from zero. At the second step of the MUR procedure, SNPs passed 

on from step one are tested for G×E interaction using the classic case-control test. Since steps 

one and two are independent, the overall procedure provides a valid test for interaction 

(Murcray, Lewinger et al. 2009). Furthermore, given that a substantially reduced number of 

SNPs is passed to the second level compared to the CC or CO test, the common Bonferroni 

multiple testing adjustments are performed based on that number of second level SNPs, leading 

to the power gain over the CC test. However, the power of the test depends on the case-control 
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ratio. An excess number of controls compared to cases leads to an overall loss in power for the 

MUR method. Nevertheless, Murcray’s two step method keeps type I error at the nominal level. 
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Chapter 3 

3. Population Stratification in Studies of G×E Interaction 

A large number of naturally occurring populations are heterogeneous and stratified, meaning 

that a population is composed of discrete homogeneous subpopulations or continuous 

admixture is present. These subpopulations have possibly different ethnic backgrounds and 

therefore different genetic makeup as well as environmental exposures. For such admixed 

populations with uncovered substructure, the assumption of G-E independence is often violated 

as a result of confounding or effect modification. However, within a specific substratum, the 

assumption of independence may still hold. 

Quite a few statistical methods have been proposed to estimate G×E interaction in large-scale 

case-control studies, including those described in Chapter 2. However, not all of the proposed 

methods are robust to the presence of hidden substructure in the study sample, such as 

population stratification. As a consequence, their performance often leads to biased effect 

estimates. Unfortunately, population stratification (PS) is not easily identifiable and is hard to 

control for using classic approaches such as matching or stratified analysis. The extent of 

population stratification bias depends on certain characteristics of the study sample, 

specifically on the number of admixed ethnicities, differences in genotype and exposure 

frequencies, and differences in disease prevalence across the strata. 

In the following, we derive an equation to measure the theoretical population stratification bias 

of G×E interaction in a case-control design. We investigated the magnitude of the bias due to 

population stratification for G×E interaction in case-control studies and compared estimates of 

G×E interaction to the genetic main effect estimates and to the case-only estimates of 

interaction in terms of robustness to the presence of PS. An analytical study of various realistic 

situations was performed to measure population stratification bias using our derived equation. 
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We named this measure of bias the confounding interaction ratio for case-control estimator of 

G×E interaction (CIRCC). We used equations derived earlier to evaluate the bias of the genetic 

main effect by the so-called confounding rate ratio (CRR) (Lee and Wang 2008) and of G×E 

interaction in a case-only design by the confounding interaction ratio for the case-only 

estimator of G×E interaction (CIRCO) (Wang and Lee 2008). 

Furthermore, we compared four common methods for G×E interaction (Chapter 2) in terms of 

their robustness to the presence of population stratification in the study sample. We performed 

a simulation study for a set of different scenarios admixing similar or more divergent sub-

populations. The EHB-GECHI approach was compared to CC, CO MUK-EB (see Chapter 1). 

We also evaluated the ability of principal component analysis (PCA) (Price, Patterson et al. 

2006) as integrated in the EIGENSOFT statistical package to correct for population 

stratification bias in studies of G×E interaction. 

 

3.1. Measures of Population Stratification Bias 

 

3.1.1. Notation 

Assume, that a study population consists of j = 1 … J discrete subpopulations. Let E(E) and 

G(G) denote the presence (absence) of the exposure and of the susceptibility genotype for a 

person. We define pj to be the prevalence of the environment E, qj to be the frequency of the 

susceptible genotype G, and bj to be the background disease risk (a risk for non-carriers of the 

risk allele, unexposed to the environment in subpopulation j). Then, ej =
pj

1−pj
 denote the 

exposure prevalence odds and gj =
qj

1−qj
 denotes the genotype frequency odds. Let nj denote 

the total number of individuals in the jth subgroup. Note that in Section 3.1 we consider the 



35 

 

situation of collecting all individuals (cases and controls) from the entire population. This gives 

us the opportunity to estimate risk in the case-control or the case-only study settings instead of 

operating only with odds ratios. Please note that certain notation is redefined newly for each 

section of this dissertation and is valid only for that particular section. 

 

3.1.2. Confounding Rate Ratio for Case-Control Design and Confounding Interaction 

Ratio for the Case-Only Design 

Lee and Wang in (Lee and Wang 2008) derived an equation to quantify population stratification 

bias for genetic main effect estimation in a case-control study. They termed the newly 

introduced measure of population stratification bias the confounding rate ratio (CRR). Here we 

outline their derivation. Let RRG denote the relative risk of disease for individuals carrying the 

susceptibility genotype as compared to those who do not. Assume RRG is constant across the 

strata, meaning that in this case population stratification is a confounder only and is not an 

effect modifier. In the total population, the disease rate for a person carrying the susceptible 

genotype is 

DRG =
∑ njqjbjRRG

J
j=1

∑ njqj
J
j=1

, 

and for those who do not 

DRG =
∑ nj(1−qj)bj

J
j=1

∑ nj(1−qj)
J
j=1

. 

The confounded relative risk RRG
c  is defined as the overall risk in the admixed population 

RRG
c =  

DRG

DRG̅

. 

Define weights 𝑤𝑗 =
𝑛𝑗(1−𝑞𝑗)

∑ 𝑛𝑘(1−𝑞𝑘)𝑘
, and finally define the confounded rate ratio CRR as follows: 



36 

 

CRR =
RRG

c

RRG
 = 

∑ wjgjbj
J
j=1

∑ wjbj
J
j=1

∑ wjgj
J
j=1

       (3.1) 

To introduce a measure of population stratification bias in case-only studies of G×E interaction, 

we present once again the work of Wang and Lee described in (Wang and Lee 2008). Let RRGE 

denote the relative risk of disease for those subjects with (G,E) compared to (G, E) individuals. 

Similarly RRG denotes the relative risk of disease for individuals with (G, E) compared to (G, E) 

and RRE denotes the relative risk of disease for individuals with (G, E) compared to (G, E). Let 

RRGE, RRG, and RRE be constant across the strata of admixed population. Once again, PS is 

acting as confounder here and not like an effect modifier (Chapter 1). Assume that genotype 

and environment are independent within each stratum, for validity of the case-only G×E 

estimate. The G×E interaction effect on the multiplicative scale can be measured by RRG×E =

RRGE

RRGRRE
  (Chapter 2) and can be estimated by the case-only approach. If a study collects each 

and every case in the whole population, then the number of disease carriers would be nGE =

∑ njqjpjbj
J
j=1 RRGE, nG̅E = ∑ nj(1 − qj)pjbj

J
j=1 RRE, nGE̅ = ∑ njqj(1 − pj)bj

J
j=1 RRG, and 

nG̅E̅ = ∑ nj(1 − qj)(1 − pj)bj
J
j=1   

for (G, E), (G, E), (G, E), (G̅, E) subjects, respectively. 

Thus, the confounded G×E interaction effect can be estimated by the case-only approach as 

RRG×E
c =

nGEnG̅E̅

nG̅EnGE̅

 = 
∑ njqjpjbjj RRGE

∑ njqj(1−pj)bjRRGj

∑ nj(1−qj)(1−pjj )bj

∑ nj(1−qj)pjbjRREj
 

Therefore, the confounding interaction ratio for the case-only estimator of G×E interaction 

(CIRCO) is defined as 

CIRCO =
RRINT

c

RRINT
 = 

∑ wj(ej−φE)(gj−φG)j

SD(φE)×SD(φG)

SD(φE)

φE

SD(φG)

φG

+ 1 =  rGECVGCV𝐸 + 1  (3.2) 
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where wj =
nj(1−pj)(1−qj)bj

∑ nk
J
k=1

(1−pk)(1−qk)bk
 are weights, φ

E
= ∑ wjej

J
j=1 ,  φ

G
= ∑ wjgj

J
j=1 , φ

E
, φ

G
 

denote the means, SD(φE) = √∑ wj(ej − φE)2J
j=1   and SD(φG) = √∑ wj(gj − φG)2J

j=1  the 

standard deviations, CVE  and CVG denote the coefficients of variation of the exposure 

prevalence odds and the genotype frequency odds, respectively, and rGE denotes the correlation 

coefficient between the exposure prevalence odds and genotype frequency odds. 

 

3.1.3. Derivation of Confounding Interaction Ratio for the Case-Control Design 

 To derive an equation for the confounded interaction ratio for a case-control study, CIRCC, we 

followed the method and used the notation as described above (Lee and Wang 2008, Wang and 

Lee 2008). In a case-control study, the G×E interaction effect on the multiplicative scale can 

be measured by RRG×E =
RRGE

RRGRRE
. Note that in this section we newly redefine DR, RR, CV, 

SD and all notations from the previous section accordingly for the case-control design. Assume 

that the study was able to collect all the affected subjects, from here on cases, and controls from 

the entire population. Thus, we are still deriving risks and not odds ratios. Let DRG denote 

disease rate for carriers of a susceptible genotype given absence of any environmental factor 

in the whole population and DRG for non-carriers. Then RRG
C  =

DRG

DR
G

 is the confounded relative 

risk for carriers of the genotype in the absence of environmental exposure compared to the non-

carriers, 

where DRG =
∑ njqj(1−pj)bjRRG

J
j=1

∑ njqj(1−pj)J
j=1

 and DRG =
∑ nj(1−qj)(1−pj)bj

J
j=1

∑ nj(1−qj)(1−pj)J
j=1

. 

In the same manner, let DRE denote the disease rate for an individual exposed to the 

environment at the reference level of the genotype and DRE for those unexposed, therefore 
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 RRE
C  =

DRE

DR
E

, 

where DRE =
∑ nj(1−qj)pjbj RRE

J
j=1

∑ nj(1−qj)pj
J
j=1

 and DRE =
∑ nj(1−qj)(1−pj)bj

J
j=1

∑ nj(1−qj)(1−pj)J
j=1

. 

The confounded relative risk RRGE
C  for exposed carriers of the susceptible genotype is now 

RRGE
C =

DRGE

DR
GE

, where DRGE =
∑ njqjpjbjRRGE

J
j=1

∑ njqjpj
J
j=1

 and DRGE =
∑ nj(1−qj)(1−pj)bj

J
j=1

∑ nj(1−qj)(1−pj)J
j=1

. 

Finally, we define the confounded interaction effect as follows 

RRG×E
c =

RRGE
c

RRG
c RRE

c =

DRGE
DR

GE
⁄

DRG
DR

G
⁄

DRE
DR

E
⁄

. 

Thus, the ratio of the confounded effect to the true effect of G×E interaction CIRCC in a case-

control G×E interaction study is defined as 

CIRcc =
RRG×E

c

RRG×E
= 

= (
∑ njqjpjbjj

∑ njqjpjj

∑ nj(1−qj)(1−pjj )

∑ nj(1−qj)(1−pj)bjj
)/(

∑ njqj(1−pj)bjj

∑ njqj(1−pj)j
∙

∑ nj(1−qj)(1−pjj )

∑ nj(1−qj)(1−pj)bjj

∑ nj(1−qj)pjbjj

∑ nj(1−qj)pjj

∑ nj(1−qj)(1−pjj )

∑ nj(1−qj)(1−pj)bjj
) 

Define weights wj by 

 𝑤𝑗 =
𝑛𝑗(1−𝑝𝑗)(1−𝑞𝑗)

∑ 𝑛𝑘(1−𝑝𝑘)(1−𝑞𝑘)𝑘
, 

then 

𝐷𝑅𝐺
𝐷𝑅𝐺

⁄ =
∑ 𝑤𝑗𝑔𝑗𝑏𝑗𝑗

∑ 𝑤𝑗𝑔𝑗 ∑ 𝑤𝑗𝑏𝑗𝑗𝑗
, 

𝐷𝑅𝐸
𝐷𝑅𝐸

⁄ =
∑ 𝑤𝑗𝑒𝑗𝑏𝑗𝑗

∑ 𝑤𝑗𝑒𝑗 ∑ 𝑤𝑗𝑏𝑗𝑗𝑗
, 
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𝐷𝑅𝐺𝐸
𝐷𝑅𝐺𝐸

⁄ =
∑ 𝑤𝑗𝑒𝑗𝑔𝑗𝑏𝑗𝑗

∑ 𝑤𝑗𝑒𝑗𝑔𝑗 ∑ 𝑤𝑗𝑏𝑗𝑗𝑗
. 

Therefore, 

𝑅𝐺𝐸
𝑅𝐺𝐸

⁄

𝑅𝐺
𝑅𝐺

⁄
𝑅𝐸

𝑅𝐸
⁄

=
∑ 𝑤𝑗𝑒𝑗𝑔𝑗𝑏𝑗𝑗

∑ 𝑤𝑗𝑒𝑗𝑔𝑗 ∑ 𝑤𝑗𝑏𝑗𝑗𝑗
/ (

∑ 𝑤𝑗𝑔𝑗𝑏𝑗𝑗

∑ 𝑤𝑗𝑔𝑗 ∑ 𝑤𝑗𝑏𝑗𝑗𝑗

∑ 𝑤𝑗𝑒𝑗𝑏𝑗𝑗

∑ 𝑤𝑗𝑒𝑗 ∑ 𝑤𝑗𝑏𝑗𝑗𝑗
) 

and 

CIRCC = 
∑ wjejgjbj

J
j=1

∑ wjejbj
J
j=1

∑ wjgjbj
J
j=1

∑ wjgj ∑ wjej
J
j=1

J
j=1

∑ wjgjbj
J
j=1

∑ wjbj
J
j=1  

Define separate weights for cases wj1 and for controls wj0. 

wj0 =
nj(1 − pj)(1 − qj)

∑ nk
J
k=1

(1 − pk)(1 − qk)
 

wj1 =
nj(1 − pj)(1 − qj)bj

∑ nk
J
k=1

(1 − pk)(1 − qk)bk

 

Let φE
0

= ∑ wj0ej
J
j=1 ,  φE

1
= ∑ wj1ej

J
j=1 bj,  φG

0
= ∑ wj0gj

J
j=1 ,   φG

1
= ∑ wj1gjbj

J
j=1 , φ′s denote 

the means of genotype and exposure frequencies, subscript 1 refers to cases and 0 to controls. 

SDs are standard deviations defined as 

SD(φE) = √∑ wj(ej − φE)2J
j=1  and SD(φG) = √∑ wj(gj − φG)2J

j=1 , 

then 

CIRcc =

∑ wj1(ej − φE
1

)(gj − φG
1

)j

SD(φE
1)SD(φG

1 )
SD(φE

1)

φE
1

SD(φG
1 )

φG
1 + 1

∑ wj0(ej − φE

0
)(gj − φG

0
)j

SD(φE
0)SD(φG

0)

SD(φE
0)

φ
E
0

SD(φG
0 )

φ
G
0 + 1
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Finally, following some simplification this leads to 

CIRcc =
rGE1 CVG1CVE1+1

rGE0 CVG0CVE0+1
       (3.3) 

where CVE and CVG are the coefficients of variation of the exposure prevalence odds and the 

genotype frequency odds; and rGE is the correlation coefficient between the exposure prevalence 

odds and genotype frequency odds occurrence. Note that the mathematical form of CIRCC 

derived here is similar to the CIRCO measures of population stratification bias for the case-only 

design (Wang and Lee 2008), see previous section. It can be seen from the equation that there 

would be no population stratification bias when the exposure prevalence odds and the genotype 

frequency odds are uncorrelated in cases and controls, when there is no variation in the 

exposure prevalence odds, or when there is no variation in the genotype frequency odds across 

subpopulations. For CIRCC, overestimation of RR (CIRCC > 1) occurs when genotype and 

exposure are negatively correlated. Underestimation (CIRCC < 1) occurs when exposure and 

genotype have positive correlation and the range of the background disease risks is 

considerably smaller than the range of both genotype and exposure frequencies. For CIRCO, 

overestimation (CIRCO > 1) of the parameter occurs when genotype and exposure are positively 

correlated, while underestimation (CIRCO < 1) occurs when exposure and genotype are 

negatively correlated (Wang and Lee 2008). 

 

3.1.4. Calculation Settings  

To investigate the potential size of the confounding interaction ratio in a case-control study, 

CIRCC, we calculated this measure over a range of realistic scenarios. Generally, we followed 

the procedures described by Wacholder et al. (Wacholder, Rothman et al. 2000), and Wang 

and Lee (Amos, Wu et al. 2008). Additionally, we investigated the bias for samples including 

j = 2, 3, 5 or 8 subpopulations. For each scenario we assumed that there are j = 2, 3, 5 or 8 
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strata each of equal size. We allowed for different genotype and exposure frequencies and 

different baseline disease risks across the strata. Genotype qj and exposure frequencies pj were 

set to one of the three intervals 0.01–0.3, 0.1-0.4 and 0.3–0.6. These intervals reflect the range 

of frequencies of different alleles for a large number of genes in European populations reported 

in (Cavalli-Sforza, Menozzi et al. 1994). The background risk of the disease bj was chosen 

from intervals 1.0–1.5 or 1.0–3.0, representing a realistic range of cancer rates among 

Europeans (Wacholder, Rothman et al. 2000). In each of the corresponding intervals, values of 

the genotype and exposure frequencies were set to be equally distant on the logit scale and 

values of the baseline disease risk were set to be equally distant on the logarithmic scale. 

Therefore, we obtained unique values of three parameters for each stratum. Such a choice of 

the parameters is unique for each interval. 

Next, we calculated the bias due to population stratification employing the following approach: 

We set eight values for the exposure and genotype frequencies as well as for baseline disease 

risk as described above from the corresponding intervals. Then for j=2 subpopulations we 

considered all possible combinations of the corresponding pairs of genotype and exposure 

frequencies and disease risks out of eight possible values for each parameter (all possible 

combinations of two values in each interval out of eight). For j=3 subpopulations; we 

considered all possible combinations of triples from eight values of genotype, exposure 

frequencies, and background disease risks. To investigate both possible situations when 

genotype and exposure are positively and negatively correlated, we fixed disease risks and 

randomly permuted values for genotype and exposure frequencies in triples. For j=5 

subpopulations, we repeated the procedure as described for j=3, but for combinations of five 

values of parameters. For j=8 subpopulations, we fixed the background disease risk and 

randomly permuted eight values for the genotype frequencies and eight values for the exposure 
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prevalence. Finally, we found the distribution of CIRCC, CIRCO, and CRR for each of the 18 

scenarios and obtained the minimum, maximum, and the quartiles of its distribution. 

 

3.1.5. Results 

Table 3.2 summarizes the results for CIRCC calculated for the admixture of two and eight 

subpopulations. The bias due to population stratification on average does not reach alarming 

values for the G×E interaction term in a case-control design, meaning it is always below 10%. 

However it can stretch up to 50% in the situations in which the ranges of genotype frequency, 

exposure prevalence and background disease risks are wide, such as for example in scenarios 

10 to 14. To evaluate the degree of population stratification bias in case-only studies, we 

calculated CIRCO for the same 18 scenarios. The results are summarized in Table 3.3. It is clear 

that the case-control estimator of G×E interaction is more robust to the presence of population 

stratification compared to the case-only estimator for all considered scenarios. On average, the 

degree of population stratification bias in a case-control study is tolerable. However, it can 

reach 50% or higher for the case-only estimator. Comparison of Table 3.2 and Table 3.3 

demonstrates that the bias due to population stratification of the case-control estimator depends 

on the range of the background disease risks across the strata. In contrast, this statement is false 

for the case-only estimator. Calculations of CIRCC for the admixture of 3 and 5 strata are 

presented in Table 3.4. 

Wacholder (Wacholder, Rothman et al. 2000) mentioned that the bias of the interaction term is 

generally bigger than the bias in genetic main effects. We investigated the situations in which 

the population stratification bias of G×E interaction effect estimates were greater, smaller, or 

comparable to genetic main effects. We calculated the bias in main effects for the same set of 

18 scenarios as in Table 3.2 using CRR as a measure of the population stratification bias. The 
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results for scenarios 1 to 18 are represented graphically in Figure 3.1 to Figure 3.5. This 

reveals that population stratification bias decreases for each scenario and for all three measures 

of bias (CRR, CIRCC, CIRCO) when the number of admixed subpopulations increases in the 

study sample from 2 to 8. The largest bias appears for the admixture of 2 subgroups. We can 

see that CIRCC is greater than CRR in scenarios 1 and 10, is smaller in scenarios 4, 7, 8, 13, 14, 

15, 16, 17, 18 and is comparable in scenarios 2, 3, 5, 6, 9, 12. Therefore, bias as measured by 

CIRCC is greater than that for CRR when the exposure prevalence range in terms of variation 

of the odds ratios of the largest and the smallest values are extremely disparate. CIRCC is 

generally smaller than CRR when genotype frequency range in terms of the variation of the 

odds ratios is considerably wider than the exposure prevalence odds ratios range. Finally, 

CIRCC is comparable in size to the CRR when the genotype frequency odds ratios range is 

similar to the exposure frequency odds ratios range across the strata. 

The grey-shaded areas in Figure 3.1 to Figure 3.5 represent theoretical bounds for CIRCC, 

CIRCO, and CRR, derived in (Amos, Wu et al. 2008, Lee and Wang 2008). We calculated 

theoretical bounds for CIRCC in the same way. Table 3.1 presents equations to calculate the 

corresponding lower (L) and upper (U) theoretical bound. We do not provide details on the 

boundary derivations, because they were derived in the same way as already published. In 

contrast to the bias in the case-only design (CIRCO), the magnitude of variation in background 

disease risk affects the degree of the population stratification bias for both CIRCC and the CRR. 

The bias is larger for a larger variation in the disease prevalence (scenarios 10 to 18). It is clear 

from the figures that the case-control design is significantly more robust to population 

stratification than the case-only design. 

The bias of G×E interaction effect due to population stratification is usually small. However, 

it can still reach extreme values in realistic situations even for the robust case-control design, 

for example, when two divergent subpopulations are admixed. 
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Table 3.1 Theoretical bounds for CRR, CIRCC and CIRCO 

bounds of CRR 𝑈 =
√𝑄 × 𝐵 × (√𝑄 × 𝐵 + 1)2

(√𝑄 × 𝐵 + 𝑄) × (√𝑄 × 𝐵 + 𝐵)
 𝐿 =

1

𝑈
 

bounds of CIRCC 𝑈 = 𝐵2 𝐿 =
1

𝑈
 

bounds of CIRCO 𝑈 =
√𝑄 × 𝑃 × (√𝑄 × 𝑃 + 1)2

(√𝑄 × 𝑃 + 𝑄) × (√𝑄 × 𝑃 + 𝑃)
 𝐿 =

1

𝑈
 

 

U, theoretical upper bound; L, theoretical lower bound; Q=max(gj)/min(gj); P=max(ej)/min(ej); 

B=max(bj)/min(bj); j, subgroup indicator; gj, genotype frequency odds; ej, exposure frequency odds; bj, 

background disease risk; 
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Table 3.2 Confounding interaction ratio for case-control CIRCC, evaluated for 18 scenarios admixture of 2 and 8 subpopulations 

Scenario 
Parameter intervals CIRCC  2 from 8 ** 

CIRCC for 100 000 simulations of random 

permutation of 8 values*** 

bj pj qj min max min 25th  50th  75th  max 

1 1.0-1.5 0.01-0.3 0.01-0.3 0.80 1.28 0.86 0.97 1.00 1.03 1.16 

2 1.0-1.5 0.01-0.3 0.10-0.4 0.86 1.16 0.92 0.98 1.00 1.01 1.08 

3 1.0-1.5 0.01-0.3 0.30-0.6 0.90 1.11 0.94 0.99 1.00 1.01 1.06 

4 1.0-1.5 0.1-0.4 0.01-0.3 0.86 1.16 0.92 0.98 1.00 1.01 1.08 

5 1.0-1.5 0.1-0.4 0.1-0.4 0.91 1.07 0.96 0.99 1.00 1.01 1.04 

6 1.0-1.5 0.1-0.4 0.3-0.6 0.95 1.05 0.97 0.99 1.00 1.01 1.03 

7 1.0-1.5 0.3-0.6 0.01-0.3 0.90 1.11 0.94 0.99 1.00 1.01 1.06 

8 1.0-1.5 0.3-0.6 0.1-0.4 0.95 1.05 0.97 0.99 1.00 1.01 1.03 

9 1.0-1.5 0.3-0.6 0.3-0.6 0.98 1.01 0.98 1.00 1.00 1.00 1.02 

10 1.0-3.0 0.01-0.3 0.01-0.3 0.59 1.97 0.61 0.93 1.00 1.10 1.47 

11 1.0-3.0 0.01-0.3 0.1-0.4 0.68 1.46 0.79 0.95 1.00 1.05 1.24 

12 1.0-3.0 0.01-0.3 0.3-0.6 0.74 1.34 0.85 0.96 1.00 1.04 1.17 

13 1.0-3.0 0.1-0.4 0.01-0.3 0.68 1.46 0.78 0.96 1.00 1.05 1.23 

14 1.0-3.0 0.1-0.4 0.1-0.4 0.77 1.15 0.89 0.98 1.00 1.03 1.12 

15 1.0-3.0 0.1-0.4 0.3-0.6 0.84 1.17 0.92 0.98 1.00 1.02 1.09 

16 1.0-3.0 0.3-0.6 0.01-0.3 0.74 1.34 0.85 0.97 1.00 1.04 1.17 

17 1.0-3.0 0.3-0.6 0.1-0.4 0.84 1.17 0.92 0.98 1.00 1.02 1.08 

18 1.0-3.0 0.3-0.6 0.3-0.6 0.91 1.08 0.94 0.99 1.00 1.01 1.06 

 

bj, disease risk ratio, qj, genotype frequency; pj, exposure frequency; both G and E ranges are spaced to be equidistant on the logarithmic scale; * study cohort consists of 2 discrete, 

admixed populations; ** study cohort consists of 8 discrete, admixed populations; min, minimum of CIRCC; max, maximum of CIRCC; 25th, 50th, 75th, percentile of the CIRCC; 
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Table 3.3 Confounding interaction ratio for case-only CIRCO, evaluated for 18 scenarios admixture of 2 and 8 subpopulations 

Scenario 

 

Parameters CIRCO 2 from 8 * 
CIRCO for 100 000 simulations of random 

permutation of 8 values** 

bj pj qj min max min 25th  50th  75th  max 

1 1.1-1.5 0.01-0.3 0.01-0.3 0.09 3.5 0.29 .69 0.95 1.31 2.59 

2 1.1-1.5 0.01-0.3 0.1-0.4 0.3 2.57 0.55 0.83 0.98 1.18 1.77 

3 1.1-1.5 0.01-0.3 0.3-0.6 0.45 2.16 0.67 0.89 0.99 1.13 1.53 

4 1.1-1.5 0.1-0.4 0.01-0.3 0.3 2.57 0.53 0.83 0.98 1.18 1.76 

5 1.1-1.5 0.1-0.4 0.1-0.4 0.5 1.96 0.73 0.92 1.00 1.09 1.39 

6 1.1-1.5 0.1-0.4 0.3-0.6 0.6 1.67 0.80 0.94 1.00 1.07 1.28 

7 1.1-1.5 0.3-0.6 0.01-0.3 0.45 2.16 0.66 0.89 0.99 1.13 1.54 

8 1.1-1.5 0.3-0.6 0.1-0.4 0.60 1.67 0.79 0.94 1.00 1.07 1.27 

9 1.1-1.5 0.3-0.6 0.3-0.6 0.70 1.44 0.85 0.96 1.00 1.04 1.19 

10 1.1-3.0 0.01-0.3 0.01-0.3 0.09 3.49 0.27 0.69 0.96 1.34 2.93 

11 1.1-3.0 0.01-0.3 0.1-0.4 0.28 3.19 0.51 0.83 0.99 1.18 1.90 

12 1.1-3.0 0.01-0.3 0.3-0.6 0.41 2.41 0.63 0.88 0.99 1.14 1.63 

13 1.1-3.0 0.1-0.4 0.01-0.3 0.28 3.19 0.50 0.84 0.98 1.19 1.91 

14 1.1-3.0 0.1-0.4 0.1-0.4 0.52 2.04 0.71 0.91 0.99 1.09 1.47 

15 1.1-3.0 0.1-0.4 0.3-0.6 0.62 1.68 0.77 0.94 1.00 1.07 1.33 

16 1.1-3.0 0.3-0.6 0.01-0.3 0.41 2.20 0.62 0.88 0.99 1.13 1.62 

17 1.1-3.0 0.3-0.6 0.1-0.4 0.62 1.62 0.78 0.94 1.00 1.07 1.32 

18 1.1-3.0 0.3-0.6 0.3-0.6 0.70 1.36 0.83 0.96 1.00 1.05 1.22 

 

bj, disease risk ratio, qj, genotype frequency; pj, exposure frequency; both G and E ranges are spaced to be equidistant on the logarithmic scale; * study cohort consists of 2 

discrete, admixed populations; ** study cohort consists of 8 discrete, admixed populations; min, minimum of CIRCO; max, maximum of CIRCO; 25th, 50th, 75th, percentile of 
the CIRCO; 
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Table 3.4 Confounding interaction ratio for case-control CIRCC, evaluated for 18 scenarios, admixture of 3 and 5 subpopulations 

Scenario 
Parameters 

CIRCC for 100 000 simulations of 

random permutation for all possible 

combinations of 3 values out of 8* 

CIRCC for 100 000 simulations of random 

permutation for all possible combinations of 

5 values out of 8** 

bj pj qj min  25th 50th 75th max  min  25th 50th 75th max  

1 1.0-1.5 0.01-0.3 0.01-0.3 0.8 0.98 1.00 1.03 1.17 0.85 0.97 0.99 1.02 1.17 

2 1.0-1.5 0.01-0.3 0.1-0.4 0.89 0.99 1.00 1.02 1.11 0.91 0.98 0.99 1.01 1.08 

3 1.0-1.5 0.01-0.3 0.3-0.6 0.91 0.99 1.00 1.01 1.08 0.94 0.99 1.00 1.01 1.05 

4 1.0-1.5 0.1-0.4 0.01-0.3 0.89 0.99 1.00 1.02 1.11 0.93 0.99 1.00 1.01 1.09 

5 1.0-1.5 0.1-0.4 0.1-0.4 0.92 0.99 1.00 1.01 1.07 0.95 0.99 1.00 1.01 1.05 

6 1.0-1.5 0.1-0.4 0.3-0.6 0.94 0.99 1.00 1.01 1.05 0.97 0.99 1.00 1.00 1.04 

7 1.0-1.5 0.3-0.6 0.01-0.3 0.91 0.99 1.00 1.01 1.08 0.94 0.99 1.00 1.01 1.06 

8 1.0-1.5 0.3-0.6 0.1-0.4 0.94 0.99 1.00 1.01 1.05 0.96 0.99 1.00 1.01 1.04 

9 1.0-1.5 0.3-0.6 0.3-0.6 0.96 1.00 1.00 1.00 1.04 0.97 1.00 1.00 1.00 1.03 

10 1.0-3.0 0.01-0.3 0.01-0.3 0.57 0.95 1.01 1.09 1.59 0.63 0.91 0.97 1.06 1.68 

11 1.0-3.0 0.01-0.3 0.1-0.4 0.72 0.97 1.00 1.04 1.35 0.75 0.94 0.98 1.03 1.28 

12 1.0-3.0 0.01-0.3 0.3-0.6 0.79 0.98 1.00 1.03 1.22 0.81 0.96 0.98 1.02 1.23 

13 1.0-3.0 0.1-0.4 0.01-0.3 0.72 0.97 1.00 1.04 1.35 0.77 0.96 1.00 1.04 1.30 

14 1.0-3.0 0.1-0.4 0.1-0.4 0.82 0.98 1.00 1.02 1.2 0.85 0.97 1.00 1.02 1.17 

15 1.0-3.0 0.1-0.4 0.3-0.6 0.86 0.99 1.00 1.01 1.14 0.89 0.98 1.00 1.02 1.13 

16 1.0-3.0 0.3-0.6 0.01-0.3 0.79 0.98 1.00 1.03 1.22 0.83 0.97 1.00 1.03 1.24 

17 1.0-3.0 0.3-0.6 0.1-0.4 0.86 0.99 1.00 1.01 1.14 0.90 0.98 1.00 1.02 1.10 

18 1.0-3.0 0.3-0.6 0.3-0.6 0.89 0.99 1.00 1.01 1.10 0.91 0.99 1.00 1.01 1.08 

 

bj, risk ratio, pj,  genotype frequency; qj, exposure frequency; both G and E ranges are spaced to be equidistant on the logarithmic scale; * study cohort consists of 3 discrete, 

admixed populations; ** study cohort consists of 5 discrete, admixed populations; min, minimum CIRCC; max, maximum CIRCC; 25th, 50th, 75th, percentile of the CIRCC 
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Figure 3.1 Scenarios 1-4, degree of population stratification for G×E interaction and genetic 

main effects 

 

On the x-axis is the number of admixed subpopulations and on the y-axis are the minimum and maximum values 

of CRR, CIRCC, and CIRCO over 1000 replicates. In shades of grey are theoretical bounds of CRR, CIRCC, and 

CIRCO are depicted. Light grey corresponds to CIRCO theoretical bounds for the scenario, medium grey CIRCC, 

and dark grey CRR. The number at the corner denote the scenario, the order is the same as in Tables 3.2-3.4 
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Figure 3.2 Scenarios 5-8, degree of population stratification for G×E interaction and genetic 

main effects  

 

On the x-axis is the number of admixed subpopulations and on the y-axis are the minimum and maximum values 

of CRR, CIRCC, and CIRCO over 1000 replicates. In shades of grey are theoretical bounds of CRR, CIRCC, and 

CIRCO are depicted. Light grey corresponds to CIRCO theoretical bounds for the scenario, medium grey CIRCC, 

and dark grey CRR. The number at the corner denote the scenario, the order is the same as in Tables 3.2-3.4 
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Figure 3.3 Scenarios 9-12, degree of population stratification for G×E interaction and genetic 

main effects  

 

On the x-axis is the number of admixed subpopulations and on the y-axis are the minimum and maximum values 

of CRR, CIRCC, and CIRCO over 1000 replicates. In shades of grey are theoretical bounds of CRR, CIRCC, and 

CIRCO are depicted. Light grey corresponds to CIRCO theoretical bounds for the scenario, medium grey CIRCC, 

and dark grey CRR. The number at the corner denote the scenario, the order is the same as in Tables 3.2-3.4 
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Figure 3.4 Scenarios 13-16, degree of population stratification for G×E interaction and genetic 

main effects  

 

On the x-axis is the number of admixed subpopulations and on the y-axis are the minimum and maximum values 

of CRR, CIRCC, and CIRCO over 1000 replicates. In shades of grey are theoretical bounds of CRR, CIRCC, and 

CIRCO are depicted. Light grey corresponds to CIRCO theoretical bounds for the scenario, medium grey CIRCC, 

and dark grey CRR. The number at the corner denote the scenario, the order is the same as in. Tables 3.2-3.4 
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Figure 3.5 Scenarios 17-18, degree of population stratification for G×E interaction and genetic 

main effects  

 

On the x-axis is the number of admixed subpopulations and on the y-axis are the minimum and maximum values 

of CRR, CIRCC, and CIRCO over 1000 replicates. In shades of grey are theoretical bounds of CRR, CIRCC, and 

CIRCO are depicted. Light grey corresponds to CIRCO theoretical bounds for the scenario, medium grey CIRCC, 

and dark grey CRR. The number at the corner denote the scenario, the order is the same as in Tables 3.2-3.4 

 

 

3.2. Degree of the Population Stratification Bias for G×E Interaction 

Methods 

In the previous section we have seen that the biggest bias occurs when there are only two 

subgroups admixed. Therefore we decided to investigate the magnitude of the bias only for j = 

2 strata in the population comparing four common methods for G×E interaction in GWAS. We 

included into our study CC, CO, MUK-EB and EHB-GECHI (see Chapters 1 and 2).  

Since an analytical solution to evaluate the degree of population stratification bias for other 

G×E interaction methods than case-control or case-only design is not readily available we 

undertook the following approach.  For each method estimates were obtained by fitting the 

“adjusted” logistic regression model, which accounts for population stratification in the sample 
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and an “unadjusted” model, which omits information about individual’s membership in two 

subgroups. These two models are outlined in following Section 3.2.1. 

Furthermore, PCA, integrated in the EIGENSOFT software (Patterson, Price et al. 2006), was 

performed on each simulated data set to estimate the principal components. After simulation 

of an admixed sample, we included the first two principal components in the logistic regression 

models as covariates. As explained in Chapter 2 the first two principal components explain the 

most variation in the sample. Since we have only two admixed subpopulation it is enough to 

use only first two principal components. The G×E interaction effect estimates were recalculated 

for each method after principal components adjustment and the bias due to population 

stratification was thus re-evaluated. 

 

3.2.1. Methods 

Let G=1 (G=0) denote carriers (non-carriers) of the susceptibility genotype and E=1 (E=0) for 

exposed (non-exposed) individuals. We let D be a binary phenotype, such that D=1, cases and 

D=0, controls. We assumed that the study sample consists of two (j=1, 2) strata represented by 

S1 and S2, and Sj is an indicator variable, such that Sj=1 if the individual is in the jth subgroup 

and zero otherwise. We did not consider any issues concerning variance or precision of 

estimates, assuming that for large samples E(𝛽𝑙̂) = βl, l = CC, CO, MUK-EB, EHB-GECHI. 

 For the case-control study, an association between G×E interaction and the outcome D can be 

modeled in the following form using logistic regression 

“Adjusted” model for CC: logit(P(D= 1| G, E)) = α1_CC+α2_CCS2+βGG+βEE+βCCG×E, 

where regression coefficient βG is a measure of genetic main effect, βE is a measure of the 

environmental main effect, βCC is an estimated G×E interaction effect. Without loss of 
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generality let α1_CC specify the log odds of the disease (i.e. logit function of the baseline disease 

risk) in the “low”-risk ethnicity S1 and 0 < α2, where α2 specifies the log odds ratio of the 

disease risk comparing ethnicity S2 versus S1. Therefore to evaluate the observed bias we can 

omit the term from the model that is responsible to reflect the ethnic status of the individual 

and define “unadjusted” model for the CC study as follows 

“Unadjusted” model for CC:  logit(P(D = 1| G, E)) = αCC
*+β*

GG+β*
EE+β*

CCG×E, 

where * denotes the regression in the unadjusted model. 

Observed population stratification bias of the parameter estimate is defined as the difference 

between the corresponding parameters for the “Unadjusted” model and the “Adjusted” model. 

Therefore population stratification bias of the G×E interaction for the case-control design is 

equal to 

biasCC = β*
CC - βCC. 

In a similar manner for case-only study, the “Adjusted” and “Unadjusted” models are given by 

“Adjusted” model for CO:  logit(P(E = 1| G, D = 1)) = α1_cases+α2_casesS2+βcasesG, 

 “Unadjusted” model for CO:  logit(P(E = 1| G, D = 1)) = αcases
*+β*

casesG. 

Therefore, bias for the case-only design is equal to 

biasCO=β*
cases -βcases. 

Models for the subgroup of controls are only needed for other G×E methods. 

The “Adjusted” and “Unadjusted” models for control are given by 

“Adjusted” model for controls: logit(P(E=1|G,D=0))=α1_controls+α2_controlsS2+βcontrolsG, 

“Unadjusted” model for controls: logit(P(E = 1| G, D = 0)) = αcontrols
*+β*

controlsG. 
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Mukherjee’s Empirical Bayes type shrinkage estimator of the G×E interaction is given by 

“Adjusted” and “Unadjusted” G×E parameter estimates of Mukherjee’s Empirical Bayes 

approach are given by 

𝛽̂𝑀𝑈𝐾−𝐸𝐵 =
𝛽̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠

2

𝛽̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠
2 +𝜎̂𝐶𝐶

𝛽̂𝑐𝑎𝑠𝑒𝑠 +
𝛽̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠

2

𝛽̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠
2 +𝜎̂𝐶𝐶

𝛽̂𝐶𝐶  

𝛽̂𝑀𝑈𝐾−𝐸𝐵
∗ =

𝛽̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠
2∗

𝛽̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠
2∗ +𝜎̂𝐶𝐶

∗ 𝛽̂𝑐𝑎𝑠𝑒𝑠
∗ +

𝛽̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠
2∗

𝛽̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠
2∗ +𝜎̂𝐶𝐶

∗ 𝛽̂𝐶𝐶
∗ , 

where 𝜎𝐶𝐶, 𝜎𝐶𝐶
∗  are variance estimates from “Adjusted” and “Unadjusted” case-control model 

respectively. For MUK-EB the bias is defined as 

biasMUK-EB=β*
MUK-EB-βMUK-EB. 

The EHB-GECHI G×E effect estimates are calculated using the following equation 

βEHB-GECHI = βcases – posterior(βcontrols), 

therefore bias is given by 

biasEHB-GECHI = β*
EHB-GECHI - βEHB-GECHI. 

Theoretical background for EHB-GECHI approach is given (Sohns 2012, Sohns, Viktorova et 

al. 2013) and summarized in Chapter 4 of this dissertation. 

 

3.2.2. Simulation Study Set-up 

We simulated case-control samples consisting of 1000 cases and 1000 controls sampled from 

an admixed population with different proportions of each of two subpopulations. Three 

different admixture sampling ratios were implemented 0.2, 0.4 and 0.5 reflecting an extreme 

(0.2-0.8), moderate (0.4-0.6) or balanced (0.5-0.5) level of admixture as follows. Admixture 
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sampling ratio 0.2, for example, means that 20% cases and 80% controls were sampled from 

“low”-risk ethnicity and 80% cases, 20% controls from “high”-risk subgroup. The usage of the 

two others ratios 0.4 or 0.5 is the same. We replicated each scenario 1000 times. 

In each simulated sample we created binary genotype data at 5000 independent, random SNPs. 

We simulated three different types of SNPs. A single SNP with G×E interaction effect, and 

1000 SNPs, with substantially varying frequency across two admixed subpopulations, denoted 

as differentiated SNPs. We called the rest of the SNPs dummy SNPs as they had no effect on 

the disease. A single binary environmental factor E was simulated, having no main effect on 

the disease. In each stratum susceptibility genotype frequencies at a marker locus for dummy 

SNPs were generated independently from a beta distribution following the Balding-Nichols 

model as in (Devlin and Roeder 1999). In this Balding-Nichols model two parameters are 

employed,  p(1 − Fst) Fst⁄  and (1 − p)(1 − Fst) Fst⁄ , where Fst =0.01 and p is the ancestry 

population allele frequency from the uniform [0.1, 0.9] distribution. Fst is Wright’s fixation 

index, a measure of genetic divergence among subgroups (Holsinger and Weir 2009), Fst =0.01 

is a typical value for European populations. For the interacting SNP the frequency in the “low”-

risk subpopulation was fixed at 0.1 and we vary this value in the risk subpopulation from 0.4 

to 0.8 respectively. For the differentiated SNPs with no association to the disease, we assumed 

a large variation in frequencies by setting Fst values to be equal to 0.06. For the simulation of 

the interacting SNP we assumed a multiplicative trait model and fixed the relative risk at a 

value of 2 for the casual genotype. Exposure frequencies and baseline disease risk were fixed 

for all scenarios. In the “low-risk” ethnicity we set the prevalence of the environment to be 

equal to 0.1 and the background disease risk to be 0.02. In the high risk ethnicity corresponding 

values were set to 0.3, 0.5 and 0.1 or 0.05 respectively. For our study we considered a cohort 

with two underlying discrete subpopulations that could be present in cases and controls in 

different proportions as described above. Note that it is expected that there will be no 
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confounding for the 0.5 admixture sampling ratio. Table 3.5 summarizes simulated scenarios. 

We replicated each scenario 1000 times and obtained the distribution of the population 

stratification bias and mean squared error defined as MSE = bias2 + variance and their average 

values for G×E methods before and after principal components adjustment. 

Table 3.5 Summary of the simulated scenarios 

Scenario 
Parameters 

ratio p01 p02 pe1 pe2 pg1 pg2 

1 0.5 0.02 0.1 0.1 0.3 0.1 0.4 

2 0.5 0.02 0.1 0.1 0.3 0.1 0.8 

3 0.4 0.02 0.1 0.1 0.3 0.1 0.4 

4 0.4 0.02 0.1 0.1 0.3 0.1 0.8 

5 0.4 0.02 0.05 0.1 0.5 0.1 0.4 

6 0.2 0.02 0.1 0.1 0.3 0.1 0.8 

7 0.2 0.02 0.1 0.1 0.3 0.1 0.4 

8 0.2 0.02 0.05 0.1 0.5 0.1 0.8 

 
ratio, proportion of cases sampling from “low-risk” ethnicity; p01, baseline disease risk in “low-risk” ethnicity; 
p02, baseline disease risk in “at-risk” ethnicity; pe1, prevalence of environmental exposure in “low-risk” ethnicity; 

pe2, prevalence of environmental exposure in “at-risk” ethnicity; pg1, susceptible genotype frequency in “low-

risk” ethnicity; pg2, susceptible genotype frequency in “high-risk” ethnicity; 

 

 

3.2.3. Simulation Study Results 

Table 3.6 and Table 3.7 summarize results of the simulation study. The classic case-control 

estimator of G×E interaction, the recently introduced EHB-GECHI estimator and MUK-EB 

demonstrate smaller bias in all of the scenarios compared to the case-only estimator. One 

should note that for the matched case-control design (0.5) including two admixed 

subpopulations the case-control estimator tends to give better results in terms of smaller 

population stratification bias than the other considered estimators. For the moderate admixture 

or matched case-control design population stratification bias of the case-control estimator is 

negligible, however this is not the case for the case-only estimator. The explanation can be 

found by considering the main idea behind those methods. The original case-control estimator 

compares odds in cases and controls. In contrast to this the case-only estimator based only on 

the odds in cases. Therefore the case-control estimator tends to overcome the lack of 

homogeneity in both groups by matching cases to controls. The CC estimator does not take 
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into account other SNPs and analyzing each SNP separately. The EHB-GECHI method takes 

into consideration all other SNPs and therefore may suffer from difficulties in a single SNP 

estimate when there is some hidden substructure in other SNPs, like G-E correlations or 

presence of differentiating SNPs for which frequencies vary significantly across 

subpopulations. EIGENSTRAT is population stratification correction method, which is based 

on the principal components analysis and eigenvalues analysis. These are integrated in the 

software called EIGENSOFT (Patterson, Price et al. 2006). PCA was performed to derive 

principal components to account for population stratification. We included the first two 

principal components as covariates in the “unadjusted” model to account for PS. Population 

stratification bias was reevaluated for each G×E interaction approach after principal 

components adjustment and appeared to be practically zero for all methods. As only two sub-

populations were admixed it is sufficient to only include the first two principal components as 

covariate, accounting for the variation in the sample due to the stratification.  
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Table 3.6 Bias of G×E interaction estimators, calculated as observed difference of the 

estimates in two logistic regression models for G×E interaction methods 

Scenario bias CC bias CO bias MUK-EB bias EHB-GECHI 

1 0.124 0.418 0.100 0.183 

2 0.351 0.234 0.260 0.249 

3 0.361 0.636 0.181 0.192 

4 0.101 0.905 0.247 0.267 

5 0.009 0.489 0.083 0.176 

6 0.015 0.969 0.300 0.332 

7 0.179 0.659 0.157 0.178 

8 0.518 0.383 0.418 0.301 

 

Table 3.7 Mean Squared Error of G×E interaction estimators  

Scenario MSE CC MSE CO MSE MUK-EB MSE EHB-GECHI 

1 0.071 0.201 0.073 0.087 

2 0.208 0.076 0.148 0.134 

3 0.210 0.441 0.117 0.106 

4 0.066 0.861 0.148 0.159 

5 0.053 0.269 0.067 0.089 

6 0.055 0.986 0.184 0.208 

7 0.078 0.460 0.082 0.082 

8 0.337 0.166 0.246 0.159 

 

Scenarios employed in analysis (Table 3.5 for specification); CC, Case-Control estimator; CO, Case-Only 

estimator; MUR, MUK-EB, Mukherjee’s Empirical Bayes type shrinkage estimator; EHB-GECHI, empirical 

hierarchical Bayes approach to G×E interaction; 
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Chapter 4 

4. Extensions for the Empirical Hierarchical Bayes Approach to 

G×E Interaction EHB-GECHI 

The general concept of the empirical hierarchical Bayes (EHB) modeling approach is described 

in the current Chapter, since the EHB analysis is the focus of this dissertation. Recently, Sohns 

proposed an empirical hierarchical Bayes approach to G×E interaction designated as EHB-

GECHI (Sohns 2012, Sohns, Viktorova et al. 2013). The EHB-GECHI was developed as a 

compromise between the often underpowered case-control test and the case-only test, which 

has highly inflated type I error in the presence of G-E correlation. The proposed method is 

based on a two-level hierarchical model to estimate G-E correlation and employs the chi 

distribution on the first level and a mixture distribution with point mass at zero on the second 

level. The EHB-GECHI method is based on the Lewinger et al. (Lewinger, Conti et al. 2007) 

hierarchical Bayes prioritization approach, which was originally proposed for the genetic main 

effect. Sohns expanded this approach to studies of G×E interactions, as well as to using the 

available pathway information. The method first obtains estimated posterior G-E correlation 

effects, which are calculated for each marker by borrowing information across all SNPs over 

the sample of controls. These posterior effects are subtracted from the corresponding case-only 

G×E interaction estimates. A detailed description of the EHB-GECHI method is available in the 

dissertation of M. Sohns (Sohns 2012) as well as in our joint paper (Sohns, Viktorova et al. 

2013). Here we only present the summarized derivation of the EHB-GECHI approach. The thesis 

by Sohns also includes the description and results of the extensive simulation study comparing 

EHB-GECHI with the methods mentioned above for G×E interaction in terms of rank power. 

Rank power is defined as the percentage of simulated replicates for which the true G×E 

interacting SNP is within the top ranking positions, according to the absolute value of the 

corresponding rank statistics. The EHB-GECHI method is characterized by a greater rank power 
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than the introduced rival methods (CC, CO, TWO, MUR, MUK-EB), while accounting for 

population-based G-E correlation. The original EHB-GECHI was introduced for binary trait, 

exposure, and genotype without covariates. We extend the EHB-GECHI approach in several 

ways. 

We demonstrate how the method can be applied to handle multilevel or continuous exposure 

and genotype variables in contrast to the original binary setting. This is an important extension 

because in many cases exposure information is collected as a continuous variable. Such 

recoding may lead to information loss. In addition, use of the continuous probabilities of 

genotypes, obtained through available imputation techniques, is taken into consideration more 

often. 

We considered the performance of EHB-GECHI under the assumption of the additive risk model 

in contrast to the dominant or recessive model discussed previously. It is well known that the 

additive risk model is preferred for most genetic scenarios, when the etiology of the disease is 

not known, and most probably is not recessive. It is therefore important that the approach be 

able to handle various risk models. 

We show that the EHB-GECHI approach can be applied adjusting for important covariates 

separately in cases and in controls. The separate adjustment is required by the construction of 

the EHB-GECHI approach.  We prove that separate adjustment is allowed when independence 

of the covariate distribution from the G×E interaction odds ratio is a reasonable assumption. 

We proposed using log-linear models in place of logistic regression models, when such an 

assumption is not valid. Originally, EHB-GECHI did not consider covariate adjustment. 

Certainly, adjustment for sex, age, ethnical background, and so on is usually performed during 

analyses. Therefore, it should be clear as to how the method can be applied under the 
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adjustment for important covariates. This chapter focuses on presenting the proposed 

extensions to the EHB-GECHI approach and the derivation of solutions. 

 

4.1. Empirical Hierarchical Bayesian Models 

Statistical science may be viewed as two main competing colleges of thought: the frequentist 

or classic approach to statistical inference and the Bayesian approach. In the following sections, 

we shall introduce the basics of empirical hierarchical Bayes data analysis. The major units of 

a Bayesian analysis are the likelihood function, which represents information on the parameters 

of the data, and the prior distribution, which quantifies what is known about the parameters 

before observing the data. To form the posterior distribution, the prior distribution and the 

likelihood are combined. The posterior distribution reflects the total knowledge on the 

parameters after observing the data. Simple summaries, such as mean or median, of the 

posterior distribution are used to express quantities of interest and eventually to draw 

conclusions. Most of the information given in the following sections was adopted from (Morris 

1983, Robert 1994, Lee 1997, Sohns 2012). 

 

4.1.1. The Bayes Model 

The initial step to perform Bayes inferences is to specify a probability model for the data. 

Assume that we want to specify a sampling model of n data points X=(X1,…,Xn) depending on 

the vector of unknown parameters θ=( θ1,…,θn) and that data points are independent, 

conditional on θ. This can be expressed in a functional term using the probability density 

function f(X|θ), where 

f(X| θ)=∏ 𝑓(𝑋𝑖| 𝜃) 𝑛
𝑖=1  
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represents the probability of observing the data point X conditional on the values of parameters 

θ. In frequentist statistics, f(X|θ) is termed the likelihood function and is considered as a 

function of θ for fixed data points X. Parameter estimates in the frequentist inferences are 

derived by maximizing the likelihood and are termed maximum likelihood estimates (Robert 

1994, Dehling and Haupt 2004). Bayesians also are interested in the estimation of θ. However, 

they prefer to obtain the parameter estimates that are most likely given the fixed data. In other 

words, in the Bayes inference framework we are interested in the conditional probability of θ 

given X, π(θ|X). To derive π(θ|X) we use Bayes’ Theorem (Bayes 1991, Robert 1994). 

 𝜋(𝜃|𝑋) =
𝑓(𝑋|𝜃)𝜋(𝜃)

ℎ(𝑋)
=

𝑓(𝑋|𝜃)𝜋(𝜃)

∫ 𝑓(𝑋|𝜃)𝜋(𝜃)𝑑𝜃
 

where π(θ) is the prior distribution function of θ, f(X|θ) is the likelihood function, h(X) is the 

marginal distribution function of X and π(θ|X) is the posterior distribution function of the 

parameters. In many situations, it is computationally challenging to obtain h(X) and therefore 

the posterior distribution often has no closed form. Thus 𝜋(𝜃|𝑋)  ∝ 𝑓(𝑋|𝜃)𝜋(𝜃) is widely used 

(Robert 1994, Gelman, Carlin et al. 1995). 

 

4.1.2. Empirical Hierarchical Bayes Models 

In the Bayes analysis framework, defining the prior distribution always involves large 

uncertainty and sometimes subjectivism and is therefore often subject to criticism (Lee 1997). 

However, it is possible to model this uncertainty in a Bayesian manner by the decomposing the 

prior information into separate distributional levels. This is what is referred to as hierarchical 

Bayes (HB) modeling (Robert 1994). According to the HB approach, the prior π(θ) is separated 

into conditional distributions ∫ 𝜋1(𝜃|𝜂1)𝜋2(𝜂1|𝜂2) … 𝜋𝐽(𝜂𝐽−1|𝜂𝐽) and a marginal distribution 

𝜋𝐽+1(𝜂𝐽), so that 
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 𝜋(𝜃) = ∫ 𝜋1(𝜃|𝜂1)𝜋2(𝜂1|𝜂2) … 𝜋𝐽(𝜂𝐽−1|𝜂𝐽)𝜋𝐽+1(𝜂𝐽)𝑑𝜂1𝑑𝜂2 … 𝑑𝜂𝐽. 

The hyperparameter ηj is termed the level j hyperparameter to distinguish it from the parameter 

of interest θ. Therefore, given the data as in the previous section, we have the following 

hierarchical model. 

θi  ∼π(θi|η), with i=1…n, i.d. independently distributed 

η∼π(η) 

For such a two-level hierarchical model, the first stage represents the model hyperparameter θ 

relationship with level hyperparameter η. The second stage reflects our prior belief about η 

(Lee 1997). 

The hierarchical model can be combined with empirical Bayes models, resulting in empirical 

hierarchical Bayes models (EHB). The empirical Bayes models form a special class of Bayes 

models, which differ from the fully Bayesian approach in the construction of the prior 

distribution. The prior distribution in empirical Bayes methods is usually given a frequency 

interpretation, in contrast to that of the true Bayes methods (Lee 1997). In the empirical Bayes 

context, hyperparameter estimation is performed in a similar approach to that of the frequentist, 

i.e. through the maximization of the marginal distribution function, h(X|η) with respect to η. In 

this way, marginal maximum likelihood estimates (MMLE) of the parameters are obtained 

(Berger 1985, Heron, O'Dushlaine et al. 2011). 

Consider a general EHB model: 

Level 1  𝑋𝑖|𝜃𝑖   ∼    𝑓(𝑋𝑖|𝜃𝑖) , with i=1…n, i.d. 

Level 2 𝜃𝑖|𝜂     ∼ 𝜋(𝜃𝑖|𝜂) , iid independent identically distributed 

Level 3   η         ∼  π(η). 

Since the likelihood function of the data is 
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∏ 𝑓(𝑋𝑖|𝜃𝑖)𝜋(𝜃𝑖|𝜂)
𝑛

𝑖=1
 

and the marginal distribution function of the data is given by 

ℎ(𝑋|𝜂) = ∫ 𝑓(𝑋𝑖|𝜃𝑖)𝜋(𝜃𝑖|𝜂)𝑑𝜃𝑖. 

Thus, the marginal likelihood function of the data is obtained by marginalizing the likelihood 

over the parameters of interest 

𝐿 = ∏ ℎ(𝑋𝑖|𝜂)𝑛
𝑖=1 = ∏ ∫ 𝑓(𝑋𝑖|𝜃𝑖)𝜋(𝜃𝑖|𝜂)𝑑𝜃𝑖

𝑛
𝑖=1 . 

When the marginal distribution has a relatively simple form, it is possible to obtain an exact 

solution of the MMLE performing standard iterative maximum likelihood methods, such as, 

for example, the expectation-maximization algorithm (EM), (Lee 1997). 

EB analysis assumes that the prior distribution is known by using MLE estimates, 𝜂̂ and 

modeling 𝜃𝑖|𝜂̂ ∼  𝜋(𝜃𝑖|𝜂̂), 𝑖𝑖𝑑.  Based on this assumption the posterior of θi can be calculated 

by, 

𝜋(𝜃𝑖|𝑋𝑖, 𝜂̂) =  
𝑓(𝑋𝑖|𝜃𝑖)𝜋(𝜃𝑖|𝜂̂)

ℎ(𝑋𝑖|𝜂̂)
. 

Therefore the posterior depends on all data, summarized in 𝜂̂. 

 

4.2. The Empirical Hierarchical Bayes Approach to G×E Interaction 

(EHB-GECHI) 

Let D=1 denote that an individual has the disease (case), D=0 otherwise (control). Let G=1 

denote carriers of the minor allele, G=0 non-carriers, i.e. a dominant model for SNP. A binary 

environmental factor is assumed, so that E=1 indicates exposed subjects and E=0 otherwise. 
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Estimates of G-E correlation within cases and controls can be obtained from the following 

logistic regression models 

logit (P(E = 1| G, D = 1)) = 𝛼𝑚
𝑐𝑎𝑠𝑒𝑠 + 𝛽𝑚

𝑐𝑎𝑠𝑒𝑠G    (4.1) 

logit (P(E = 1| G, D = 0)) =𝛼𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 + 𝛽𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠G    (4.2) 

Under the assumption of a rare disease and population-based G-E independence, βcontrols=0. 

Then (4.1) corresponds to the valid model for the case-only test for G×E interaction (as 

illustrated in Chapter 2) and (4.2) provides estimates of the G-E correlation effects within 

controls. However, when such assumption is not true, 𝛽𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠coefficients should be properly 

estimated and consequently subtracted from 𝛽𝑚
𝑐𝑎𝑠𝑒𝑠 coefficients in order to obtain an unbiased 

estimate of the G×E interaction effect. For example, with the classic case-control approach, 

one can estimate the G-E correlation within controls for each SNP using equation 4.2. These 

estimates are then subtracted from the coefficients within the cases (4.1). 

In the context of GWAS, let M be the total number of genetic markers or SNPs m, m=1 … M, 

and 𝛽𝑚
𝑐𝑎𝑠𝑒𝑠, 𝛽𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 be the corresponding regression coefficients for G-E correlation among 

cases or controls, respectively (obtained by equations (4.1) and (4.2) for each SNP m) with 

corresponding standard deviations 𝜎𝑚
𝑐𝑎𝑠𝑒𝑠, 𝜎𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠. The remainder of Section 4.2 is based on 

(Sohns 2012, Sohns, Viktorova et al. 2013). The test statistics are 𝑇𝑚
𝑐𝑎𝑠𝑒𝑠 = 𝛽̂𝑚

𝑐𝑎𝑠𝑒𝑠 𝜎𝑚
𝑐𝑎𝑠𝑒𝑠⁄  and 

𝑇𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 = 𝛽̂𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 𝜎𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠⁄ , both normally distributed. A hierarchical Bayes framework is 

applied to model the 𝛽̂𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠estimated effect and to calculate 𝛽̂𝑚

𝑐𝑎𝑠𝑒𝑠 − 𝑠𝑔𝑛𝑚𝜆̂𝑚, with  𝜆̂𝑚  

being a posteriori estimators of |𝛽𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠|, and sgnm denoting the sign of 𝛽̂𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠. The 

corresponding hierarchical model is given by  

Level 1 |𝛽̂𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠|  | 𝜆𝑚   ∼   𝜎𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝜒1(𝜆𝑚)     (4.3) 

Level 2 𝜆𝑚 | 𝜃, 𝜎, 𝑝   ∼    𝑝𝜎𝜒1(𝜃) + (1 − 𝑝)𝛿(0)     (4.4) 

where λm are noncentrality parameters of the 𝜒 distribution with one degree of freedom 

(𝜒1(𝜆𝑚)) and p the estimated proportion of SNPs with G-E correlation. Assuming λm > 0, λm 
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is assumed to have a 𝜒1 distribution with noncentrality parameter θ as a measure of correlation 

and a scaling parameter σ > 0. Given λm=0, δ(0) denotes a point mass at zero. 

Next, the probability density function, the prior probability, marginal distribution, and posterior 

expected values can be derived. What results is the following form for the posterior expectation 

of the non-centrality parameter 

 𝜆̂𝑚 = 𝐸[𝜆𝑚| |𝛽̂𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠| 𝜃, 𝜎, 𝑝̂], 

based on the MLE estimates of the hyperparameters Θ̂ = (𝜃, 𝜎, 𝑝̂). The EHB-GECHI rank 

statistic is given in (4.5). 

𝑇𝑚
𝐸𝐻𝐵−𝐺𝐸 =

𝛽̂𝑚
𝑐𝑎𝑠𝑒𝑠−sgn𝑚𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(|𝛽𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 |)

√(𝜎̂𝑚
𝑐𝑎𝑠𝑒𝑠)2+𝑉𝑎𝑟(𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(|𝛽𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 |))
=

𝛽̂𝑚
𝑐𝑎𝑠𝑒𝑠 −sgn𝑚𝜆𝑚

√(𝜎̂𝑚
𝑐𝑎𝑠𝑒𝑠)2+𝑉𝑎𝑟[𝜆𝑚| |𝛽̂𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 |]

  (4.5) 

Notice that the case and the control part of the differences (𝛽̂𝑚
𝑐𝑎𝑠𝑒𝑠 − 𝑠𝑔𝑛𝑚 𝜆̂𝑚) are independent 

of each other. It is known that 𝑉𝑎𝑟(𝛽̂ 𝑚
𝑐𝑎𝑠𝑒𝑠) = (𝜎 𝑚

𝑐𝑎𝑠𝑒𝑠)2 is estimated by (𝜎 𝑚
𝑐𝑎𝑠𝑒𝑠)2. Therefore 

one only needs to obtain the variance for the control part, which is 𝑉𝑎𝑟[𝜆𝑚|𝛽̂𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠].  To 

estimate this variance Sohns proposed using an approximation by (Kass and Steffey 1989). To 

derive the rank statistic 𝑇𝑚
𝐸𝐻𝐵−𝐺𝐸 the following steps are undertaken: 

a. Obtain the marginal likelihood of the hierarchical model 𝐿 = ∏ ℎ(|𝛽̂𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠| |𝜃, 𝜎, 𝑝)𝑚 . 

The density functions for the hierarchical model and the hyperparameters Θ = (θ, σ, p) are 

𝑓(|𝛽̂𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠|  | 𝜆𝑚) = (𝜑 (

|𝛽̂𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 |−𝜆𝑚

𝜎̂𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 ) + 𝜑 (

|𝛽̂𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 |+𝜆𝑚

𝜎̂𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 )) /𝜎𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠, 

  𝑔(𝜆𝑚|𝜃, 𝜎, 𝑝) = 𝑝 (𝜑 (
𝜆𝑚−𝜃

𝜎
) + 𝜑 (

𝜆𝑚+𝜃

𝜎
)) /𝜎 + (1 − 𝑝)𝛿(0) 

where φ(.) is the standard normal density. The marginal distribution is given by 
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ℎ(|𝛽̂𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠| |𝜃, 𝜎, 𝑝) = ∫ 𝑓(|𝛽̂𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠|  | 𝜆𝑚)𝑔(𝜆𝑚| 𝜃, 𝜎, 𝑝)𝑑𝜆𝑚

= 𝑝
𝜑(𝐷+𝑚)+𝜑(𝐷−𝑚)

√(𝜎̂𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 )

2
+𝜎2

+ (1 − 𝑝)2𝜑 (
|𝛽̂𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 |

𝜎̂𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 ) /𝜎𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 , 

where 𝐷+𝑚 =
|𝛽̂𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 |+𝜃

√(𝜎̂𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 )

2
+𝜎2

, 𝐷−𝑚 =
|𝛽̂𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 |−𝜃

√(𝜎̂𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠)

2
+𝜎2

 

b. Obtain the MLE Θ̂ = (𝜃, 𝜎, 𝑝̂) from the marginal log likelihood maximizing with respect 

to Θ. (θ̂, σ̂, p̂) are common hyperparameters estimates. 

c. Obtain the posterior expectation of λm as 𝜆̂𝑚 = 𝐸[𝜆𝑚| |𝛽̂𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠| 𝜃, 𝜎, 𝑝̂] based on (θ̂, σ̂, p̂). 

d. Obtain the inverse negative Hessian of the marginal log-likelihood evaluated at the MLE,  

∑̃ = (−𝐷2log (𝐿)(Θ̂))−1 = (

𝜏𝜃𝜃̃ 𝜏𝜃𝜎̃ 𝜏𝜃𝑝̃

𝜏𝜎𝜃̃ 𝜏𝜎𝜎̃ 𝜏𝜎𝑝̃

𝜏𝑝𝜃̃ 𝜏𝑝𝜎̃ 𝜏𝑝𝑝̃

). 

e. Obtain the Jacobian of the posterior expectation 𝛿𝑚𝑘 = (
𝜕

𝜕Θ𝑘
)𝐸[𝜆𝑚||𝛽̂𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠|, Θ]|Θ=Θ̂. 

f. Obtain the first order approximation to the posterior variance using an approximation by 

Kass and Steffey (1989). 

𝑉𝑎𝑟[𝜆𝑚||𝛽̂𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠|] = 𝐸 [𝑉𝑎𝑟[𝜆𝑚| |𝛽̂𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠|, Θ]] + 𝑉𝑎𝑟 [𝐸[𝜆𝑚| |𝛽̂𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠|, Θ]]

≈ 𝑉𝑎𝑟[𝜆𝑚| |𝛽̂𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠|, Θ̂] + ∑ 𝜏̃𝑗𝑖𝛿𝑚𝑗

𝑗,𝑖
𝛿𝑚𝑖

= 𝐸[𝜆𝑚
2 | |𝛽̂𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠|, Θ̂] − (𝐸[𝜆𝑚|| 𝛽̂𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠|, Θ̂])

2
+ ∑ 𝜏̃𝑗𝑖𝛿𝑚𝑗

𝑗,𝑖
𝛿𝑚𝑖

 

where 

𝐸[𝜆𝑚
2 | |𝛽̂𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠|, Θ̂] = 𝐸[𝜆𝑚
2 | 𝜆𝑚 > 0, |𝛽̂𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠|, Θ̂]𝑃[𝜆𝑚 > 0| | 𝛽̂𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠|, Θ̂]

+ 𝐸[𝜆𝑚
2 | 𝜆𝑚 = 0, |𝛽̂𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠|, Θ̂]𝑃[𝜆𝑚 = 0| |𝛽̂𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠|, Θ̂]

 

where the first summand in the above expression can be calculated and 
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 E[𝜆𝑚
2 |𝜆𝑚 = 0, 𝛽̂𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠, Θ̂] = 0 

g. Insert the posterior expectation and the posterior variance into the final test statistic 

𝑇𝑚
𝐸𝐻𝐵−𝐺𝐸 =  

𝛽̂𝑚
𝑐𝑎𝑠𝑒𝑠−sgn𝑚𝜆𝑚

√(𝜎̂𝑚
𝑐𝑎𝑠𝑒𝑠)2+𝑉𝑎𝑟[𝜆𝑚||𝛽̂𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 |]

  (Sohns 2012, Sohns, Viktorova et al. 2013) 

Detailed equations for the posterior variance derivation can be found in (Sohns 2012). 

 

4.3. General Exposure Variable and Genotype Variable 

The EHB-GECHI method requires estimation of G-E correlations separately within cases and 

controls. This can be achieved employing equations (4.1) and (4.2). Therefore, the question 

arises as to if EHB-GECHI can be extended to work with continuous or multi-level exposures 

and categorical genotypes. This is certainly the case. In the regression models (4.1) and (4.2), 

the exposure variable can be represented by multiple levels or by a continuous variable in a 

general linear models framework with a link function appropriate to the format of the E data. 

For example, in the case of normally distributed E the following model can be applied to the 

data, conditional on the disease. 

E(E|G,D) = αG×E + βG×EG.       (4.6) 

According to equation (4.6), the relationship between genotype and environment is modeled as 

a simple linear regression. This approach to data modeling (formula (4.6)) was evaluated by 

Clarke and Morris (Clarke and Morris 2010). If E and G are coded as categorical or are 

categorical by nature, then proportional, multinomial, or ordinal regression techniques can be 

performed to model the G-E relationship (Kraft, Yen et al. 2007). 

As an alternative, we propose modeling P(G|E, D) instead of the original P(E|G, D) (note that 

we follow the approach of Piegorsch et al. to construct the necessary proof (Piegorsch and 

Casella 1996) of equality in the approaches). Assume that G, E, and D are all binary. Then we 



 

70 

 

can estimate G-E correlation effects separately in cases and controls. We treat the binary 

genotype variable as an outcome and estimate the main effects for the exposure categories. 

To demonstrate the equality of the data modeling approaches, first consider the ratio 

𝑃(𝐺 =  0|𝐸 =  1, 𝐷 = 0)𝑃(𝐺 =  1|𝐸 =  0, 𝐷 = 0)

𝑃(𝐺 =  1|𝐸 =  1, 𝐷 = 0)𝑃(𝐺 =  0|𝐸 =  0, 𝐷 = 0)
 

The odds ratio associated with G×E interaction on the multiplicative scale can be defined by 

𝑂𝑅𝐺×𝐸 =
𝑂𝑅𝐺𝐸

𝑂𝑅𝐺𝑂𝑅𝐸
 as discussed in Chapter 2, where ORGE is the odds ratio relating risk at the 

G=1, E=1 combination to the G=0, E=0 ‘baseline’ genotype-exposure combination, ORG is the 

odds ratio relating risk at the G=1, E=0 to the G=0, E=0 ‘baseline’ combination and ORE is the 

odds ratio relating risk at the G=0, E=1 gene-exposure combination to the ‘baseline’ 

combination. Consider the following data model 

logit (P(D = 1| G, E)) = αCC + βGG + βEE + βCCG×E   (4.7) 

From the logistic regression formula (4.7), 

βCC=log(ORG×E)= log(
𝑂𝑅𝐺𝐸

𝑂𝑅𝐺𝑂𝑅𝐸
), 

which can be written applying Bayes’ rule twice as 

𝑂𝑅𝐺×𝐸 =
𝑂𝑅𝐺𝐸

𝑂𝑅𝐺𝑂𝑅𝐸

=  
𝑃(𝐺 = 1|𝐸 = 1, 𝐷 = 1)𝑃(𝐺 = 0|𝐸 = 0, 𝐷 = 1)𝑃(𝐺 = 0|𝐸 = 1, 𝐷 = 0)𝑃(𝐺 = 1|𝐸 = 0, 𝐷 = 0)

𝑃(𝐺 = 1|𝐸 = 1, 𝐷 = 0)𝑃(𝐺 = 0|𝐸 = 0, 𝐷 = 0)𝑃(𝐺 = 0|𝐸 = 1, 𝐷 = 1)𝑃(𝐺 = 1|𝐸 = 0, 𝐷 = 1)
 

   

=
𝑃(𝐺 = 1|𝐸 = 1, 𝐷 = 1)𝑃(𝐺 = 0|𝐸 = 0, 𝐷 = 1)

𝑃(𝐺 = 0|𝐸 = 1, 𝐷 = 1)𝑃(𝐺 = 1|𝐸 = 0, 𝐷 = 1)

𝑃(𝐺 = 0|𝐸 = 1, 𝐷 = 0)𝑃(𝐺 = 1|𝐸 = 0, 𝐷 = 0)

𝑃(𝐺 = 1|𝐸 = 1, 𝐷 = 0)𝑃(𝐺 = 0|𝐸 = 0, 𝐷 = 0)
  

Applying natural logarithm to both sides of the equation, we obtain the following result 
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𝛽𝐶𝐶                    = log(ORG×E) = log (
ORGE

ORGORE

)

= log (
P(G = 1|E = 1, D = 1)P(G = 0|E = 0, D = 1)

P(G = 0|E = 1, D = 1)P(G = 1|E = 0, D = 1)
)

− log (
P(G = 1|E = 1, D = 0)P(G = 0|E = 0, D = 0)

P(G = 0|E = 1, D = 0)P(G = 1|E = 0, D = 0)
)

= log(𝑂𝑅𝑐𝑎𝑠𝑒𝑠) − log(𝑂𝑅𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠) =  𝛽𝑐𝑎𝑠𝑒𝑠 − 𝛽𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 

Therefore, it is possible to model P(G|E,D) instead of P(E|G,D), the interpretation of the beta 

coefficients from the logistic regression models (4.1) and (4.2) is the same. These calculations 

are easily extended for a categorical or a continuous E variable. The proportional odds 

regression analysis techniques to model P(G ≤ k|E, D) or multinomial for a genetic response 

model to design P(G=k|E,D), k = 0, 1, 2 can be performed in situations when the genotype 

variable is coded as 0, 1, and 2. We proved the equality of modeling the probability of the 

exposure, conditional on the genotype or otherwise, within the logistic regression framework. 

This provides us with a simple way to extend the EHB-GECHI approach to application with a 

continuous or categorical exposure variable. 

 

4.4. Additive Risk Model 

We discussed characteristics of case-control studies and possibilities for different types of 

genotype and exposure coding within the regression analysis framework. However, we have 

not discussed the possibility of assuming a particular mode of inheritance so far. Logistic 

regression has an advantage over the chi-squared test (which is not discussed in this 

dissertation), in that it is easier to test different genetic models (co-dominant, log-additive, 

dominant, recessive) or account for the covariates. The assumption of a specific mode of 

inheritance in many scenarios can bring power gain of the test. Three genetic models are 
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commonly used for the inheritance mode: the additive model refers to an “additive” risk on the 

log-scale, where each allele carries an equal risk;  the dominant model, where the relative risk 

associated with one at-risk allele is the same as the risk for carriers of two allele copies; and  

the recessive model, where the only individuals at risk are those carrying two copies of the risk 

allele (Zeggini and Morris 2010). The co-dominant model formulation is the one, assuming no 

particular mode of inheritance, in which the relative risk of a disease associated with the 

heterozygous genotype and with the homozygous genotype do not relate to one another from a 

statistical point of view (Sasieni 1997). It is easy to implement these various models in a logistic 

regression framework. To do so, the genotypes at each locus, for example AA/AT/TT, where 

T is the risk allele, are coded as categorical for a genotypic association test, 0/1/2 for an additive 

risk test, and 0/1/1 or 0/0/1 for the dominant or recessive test. 

In real data settings, it is clear that we do not know the true mode of inheritance for the disease 

and can therefore only assume a genetic risk model for the analyses. Previously, it was shown 

that the additive risk model has an advantage over the other models. It is a more powerful 

model to test for when the true inheritance mode is additive or close to additive. Furthermore, 

it has comparable power to the dominant model when the true mode of inheritance is dominant 

or similar to dominant (Lettre, Lange et al. 2007). However the disadvantage of the additive 

risk model implementation within the logistic regression analysis framework is that analytical 

estimates of the corresponding beta coefficients (logs of the odds ratios) are not available 

(Eiichiro 2004), but iterative estimates are available. Therefore we cannot prove analytically 

that the relationship βCC = βcases-βcontrols holds under the assumption of the additive risk model. 

It is clear that both estimators 𝛽̂𝐶𝐶 and 𝛽̂𝑐𝑎𝑠𝑒𝑠 − 𝛽̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 are testing the same null hypothesis 

of no G×E interaction effect. However, model fit to the simulated data demonstrates that the 

equality does not hold exactly any longer. Therefore, to derive the properties of the two 

estimators of G×E interaction, we relied on the simulations instead of analytical solution and 
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asymptotic theory to generalize our conclusions for limited-sample estimates. Simulation 

results based on a limited sample are presented in this chapter. 

 

4.5. Simulation Study Set-up 

A simulation study was conducted to evaluate sample properties of 𝛽̂𝐶𝐶 and 𝛽̂𝑐𝑎𝑠𝑒𝑠 − 𝛽̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠. 

For a total of 1500 cases and 1500 controls, the genotypes of 5000 SNPs were generated for 

each replicate. Power, type I error, and MSE of both 𝛽̂𝐶𝐶 and 𝛽̂𝑐𝑎𝑠𝑒𝑠 − 𝛽̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 were assessed 

based on 100 replicates. The phenotype variable D and the exposure variable E were generated 

as binary variables, where 1 stands for cases or exposed and 0 for controls or non-exposed, 

respectively. The genotype G at the locus was coded as 0/1/2 according to the minor allele 

count and was generated to satisfy Hardy-Weinberg equilibrium. As one of the 5000 SNPs, a 

single SNP with G×E interaction effect was created, according to the model 

logit (P(D = 1| G, E)) = pd + β G×E G×E, 

with disease prevalence pd = 0.05 and exposure frequency pe = 0.1, 0.3, odds ratio of the 

interaction effect exp(β G×E) = ORG×E = 1.5, 2, 2.5 and the interacting SNP MAF pa = 0.1, 0.3. 

All the other SNPs were sampled with a MAF from a beta distribution B(1,3) truncated to [0.01, 

0.5]. The genotypes of these SNPs were generated independently of the disease or exposure 

(dummy SNPs). Dummy SNP genotypes were generated to evaluate the type I error of both 

estimators after multiple testing Bonferroni correction. 

We fit three regression models to the data, equation (4.8), (4.9), (4.10), to estimate βCC, βcases 

and βcontrols for each of the 5000 SNPs and each of the 100 replicates. 

logit (P(D = 1| G, E)) = αCC + βGG + βEE + βCCG×E   (4.8) 

logit (P(E = 1| G, D = 1)) = αcases + βcasesG     (4.9) 
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logit (P(E = 1| G, D = 0)) = αcontrols + βcontrolsG    (4.10) 

We compared the characteristics of  𝛽̂𝐶𝐶 and 𝛽̂𝑐𝑎𝑠𝑒𝑠 − 𝛽̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 estimators visualizing the 

difference and evaluating their corresponding type I error, power, and MSE for the simulated 

scenarios. The goal of the simulation study was to compare 𝛽̂𝐶𝐶 and 𝛽̂𝑐𝑎𝑠𝑒𝑠 − 𝛽̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 based 

on the listed characteristics. It is therefore sufficient that we simulate a single G×E interacting 

SNP to assess the power and dummy SNPs to assess the type I error. 

 

4.6. Simulation Results  

To demonstrate that the equality does not hold exactly, we plotted 𝛽̂𝐶𝐶 versus 𝛽̂𝑐𝑎𝑠𝑒𝑠 −

𝛽̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠. Figure 4.1 demonstrates exemplarily differences in corresponding estimators with 

pe = 0.3, pa = 0.3, ORGxE = 1.5, 2, 2.5. We obtained similar results for other combinations of 

the parameter values (plots not shown). As shown on Figure 4.1 and Figure 4.2, 𝛽̂𝐶𝐶 and 

𝛽̂𝑐𝑎𝑠𝑒𝑠 − 𝛽̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 are close to each other, however they are not exactly the same. Asymptotic 

theory suggests that for an infinitely large sample size, both estimators will converge to the 

simulated true values, in our example 0.405, 0.693, or 0.916, respectively, and are therefore 

asymptotically equivalent. Deviations from equality decrease with decreasing size of the 

estimated effect. For example, ORG×E = 1.5 (a) compared to ORG×E = 2.5 (c) in Figure 4.1. 

Deviations slightly increase with decreasing frequency of E (Figure 4.2c) and slightly decrease 

with decreasing frequency of G (Figure 4.2b), both compared to Figure 4.2a. 

As MSE, type I error, power, and rank power are typical characteristics used to compare 

estimators, we considered them for both estimators. Table 4.1 presents a comparison of MSE, 

type I error, power, and rank power for the following settings pe = 0.1 or 0.3, pa = 0.1 or 0.3 

and exp(0.693) = ORG×E = 2 versus exp(0.405) = ORG×E = 1.5. Clearly in terms of these major 

characteristics, both estimators performed equally well. Since they also test the same 



 

75 

 

hypothesis, we can conclude that 𝛽̂𝐶𝐶 and 𝛽̂𝑐𝑎𝑠𝑒𝑠 − 𝛽̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 are practically equivalent 

estimators of the G×E interaction effect even for samples that are moderate in size (1500 cases 

and 1500 controls) and are asymptotically equivalent. 
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a) pe = 0.3, pa = 0.3, exp(0.405) = ORGxE = 1.5 

b) pe = 0.3, pa = 0.3, exp(0.693) = ORGxE = 2 

c) pe = 0.3, pa = 0.3, exp(0.916) = ORGxE = 2.5 

 

 

 

 

 

 

 

In bold are simulated true log(ORG×E). Points 

located on the diagonal line represent the 

equality of two estimators 𝛽̂𝐶𝐶 and 𝛽̂𝑐𝑎𝑠𝑒𝑠 − 𝛽̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠, deviations represent violations of the 

exact equality.

Figure 4.1 Comparison of βcases-βcontrols vs. βcc as estimators of G×E interaction for different ORG×E 
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Figure 4.2 Comparison of βcases-βcontrols vs. βcc as estimators of G×E interaction for different 

exposure frequency and allele frequency 

 

 

a) pe = 0.3, pa = 0.3, exp(0.693) = ORGxE = 2 

b) pe = 0.3, pa = 0.1, exp(0.693) = ORGxE = 2 

c) pe = 0.1, pa = 0.3, exp(0.693) = ORGxE = 2 

 

 

 

 

 

 

In bold are simulated true log(ORG×E). Points located on the diagonal line represent the 

equality of two estimators 𝛽̂𝐶𝐶 and 𝛽̂𝑐𝑎𝑠𝑒𝑠 − 𝛽̂𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠, deviations represent violation of the 

exact equality.
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We conclude that the EHB-GECHI approach can be applied under the assumption of the “log-

additive” mode of disease inheritance, as both estimators of G×E interaction are asymptotically 

equivalent and perform similarly when applied to moderately sized studies. 

Table 4.1 Properties of two estimators for ORG×E  

Estimator  βG×E βcases-βcontrols βG×E βcases-βcontrols 

Scenario 
ORG×E = 1.5 ORG×E = 2 

pe = 0.3 & pa = 0.3 

MSE 0.03 0.03 0.03 0.03 

power 0.17 0.17 0.91 0.92 

type I error 0.05 0.06 0.05 0.05 

rank power top 1 0.38 0.38 0.95 0.95 

rank power top 25 0.76 0.76 1.00 0.99 

Scenario pe = 0.3 & pa = 0.1 

MSE 0.06 0.06 0.06 0.06 

power 0.04 0.04 0.36 0.34 

type I error 0.04 0.05 0.04 0.04 

rank power top 1 0.06 0.06 0.45 0.44 

rank power top 25 0.35 0.35 0.86 0.83 

Scenario pe = 0.1 & pa = 0.3 

MSE 0.07 0.07 0.06 0.06 

power 0.02 0.02 0.36 0.38 

type I error 0.03 0.04 0.01 0.01 

rank power top 1 0.07 0.07 0.67 0.67 

rank power top 25 0.32 0.31 0.92 0.92 

 

 

4.7. Covariate Adjustment 

It is well recognized that in genetic association studies, including G×E interaction studies, great 

care should be taken to account for covariates to avoid bias. As defined in Chapter 2, a 

covariable is a variable in the analysis that relates to both the genotype of interest and to the 

phenotype (disease status), but is not an intermediate factor of the cause of disease (Rothman, 

Greenland et al. 1980). This is of key importance in case-control studies, as uncontrolled 

differences between disease carriers and healthy individuals in the study sample may lead to 
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spurious associations or mask true association signals (Zeggini and Morris 2010). In genetic 

association studies, it is generally recommended to adjust for age and sex of the individuals if 

the study design does not include matching for, these variables (Zeggini and Morris 2010). 

Other important covariables are those accounting for the ancestry of the individuals, such as 

principal components. As was discussed in detail in Chapter 3, failure to control for population 

stratification leads to bias in estimates. 

EHB-GECHI was originally proposed without discussing covariate adjustment. Since EHB-

GECHI requires estimates of the G-E correlation obtained within cases and controls, a proof is 

needed to illustrate that separate adjustment for covariates within cases and controls in a 

logistic regression framework would lead to the same estimates as an adjustment on the whole 

case-control sample. 

Let Z denote any covariate, and G, E, D all binary. To perform association analysis adjusted 

for the covariate Z one can fit the following three logistic regression models to the data. 

logit (P(D = 1| G, E)) = αCC_Z + βG_ZG + βE_ZE + βCC_ZG×E + βZ_CCZT (4.11) 

logit (P(E = 1| G, D = 1)) = αcases_Z + βcases_ZG + βZ_casesZT   (4.12) 

logit (P(E = 1| G, D = 0)) = αcontrols_Z + βcontrols_ZG + βZ_controlsZT  (4.13) 

In the equations above βCC _Z = log(ORG×E|Z), where ORG×E|Z is the population G×E interaction 

odds ratio adjusted for Z, likewise corresponding coefficients from (4.12) and (4.13) have the 

same interpretation. 

To prove that the population interaction odds ratio, ORG×E|Z, can indeed be written as the ratio 

of the population odds ratios in cases and controls respectively, or that the relationship βCC _Z 

= βcases_Z-βcontrols_Z holds, assume that ORG×E is independent of the covariate Z (in the case of a 

categorical Z, we assume that the G×E interaction effect is the same across the strata of Z). This 

assumption is commonly made in analyses that adjust for covariates Z as G×E×Z terms are 
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rarely included in the regression model. In finite samples, the estimated interaction odds ratio 

will not generally be identical to the ratio of estimated odds ratios, but the result holds 

asymptotically. This follows from the consistency (provided the model is not misspecified) of 

the estimated odds ratios in cases and controls and the equality holding at the population level.  

Denote f0(G,E,Z)=f(G,E,Z|D=0) and f1(G,E,Z)=f(G,E,Z|D=1) as the conditional probability of 

(G, E, Z) given D=0 or D=1. Then 

f(G=g, E=e, Z=z | D=d)=μ0+μ1D+μ2E+μ3G+μ4Z 

+β1DE+β2DG+β3DZ 

+γDGE 

+1GE+α2EZ+α3GZ+α4GEZ 

+ δ1DEZ+δ2DGZ+δ3DGEZ 

Then, P(D=1|G=g, E=e, Z=z)=
𝑒𝑓1(𝐺,𝐸,𝑍)

(𝑒𝑓1(𝐺,𝐸,𝑍)+𝑒𝑓0(𝐺,𝐸,𝑍))
 

so OddsG=1,E=1|Z = P(D=1|G=1 E=1, Z=z)/(1- P(D=1|G=1 E=1, Z=z))  

OddsG=0,E=0|Z = P(D=1|G=0 E=0, Z=z)/(1- P(D=1|G=0 E=0, Z=z)) 

OddsG|E=0,Z = P(D=1|G=1 E=0, Z=z)/(1- P(D=1|G=1 E=0, Z=z)) 

OddsE|G=0,Z = P(D=1|G=0 E=1, Z=z)/(1- P(D=1|G=0 E=1, Z=z)) 

Then, the case-control estimate of an adjusted G×E interaction odds ratio 

ORG×E|Z=(Odds G=1,E=1|ZOdds G=0,E=0|Z)/(OddsG|E=0,ZOddsE|G=0,Z) 

reduces to e(γ+δ3Ζ) . 

Now consider the estimator based on the comparison of adjusted G-E correlations in cases and 

controls, which EHB-GECHI proposes. Proceeding as above, starting with the probability of 

exposure given genotype, covariate, and disease status: 
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P(E=1|G=g, Z=z, D=d)=
𝑒𝑓(𝐺,𝐸=1,𝑍|𝐷)

(𝑒𝑓(𝐺,𝐸=1,𝑍|𝐷)+𝑒𝑓(𝐺,𝐸=0,𝑍|𝐷))
 

ORG-E_cases reduces to e(γ+1+4Ζ+δ3Ζ) and ORG-E_controls reduces to 𝑒(1+4Ζ) , so 

ORG×E|Z= ORG-E_cases|Z/ORG-E_controls|Z=𝑒(𝛾+𝛿3𝛧) , 

that is, the equivalent to that for the case-control estimator. 

Both are equal to the G×E interaction parameter, exp(), provided only that 3 = 0, i.e., that 

there is no 4-way interaction in the log-linear model (3-way interaction of G×E×Z in logistic 

regression framework), or equivalently that Z does not modify the magnitude of the G×E 

interaction. There is no need to assume Z to be independent of G, E, or Z or any of its lower-

order interactions for this result to hold. 

Another possible solution to the covariates problem relies on the simultaneous estimation of 

G-E correlation in cases and controls adjusted for the covariate Z in a single model. This can 

be performed with log-linear modeling. It was demonstrated by Umbach and Weinberg and 

later by Eiichiro (Umbach and Weinberg 1997, Eiichiro 2004) that the estimated coefficients 

of G-E correlation obtained employing a log-linear model are exactly equivalent to those 

calculated based on the logistic model. Therefore, one can fit the following single log-linear 

model to the data to obtain βCC_Z and βcontrols_Z and consequently βcases_Z as βCC_Z 

+βcontrols_Z=βcases_Z. We used notations as in (Umbach and Weinberg 1997).  

Let nijk denote the number of subjects having D = i, G = j, and E = k and N is the total number 

of individuals. For the sake of simplicity, assume that i, j, and k all binary. Replacing any 

subscript with a dot (.) denotes summation over the subscript. Our data are summarized in 

Table 4.2. 
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Table 4.2 Data representation for log-linear model 

 E=1 E=0 Total 

 G=1 G=0 G=1 G=0  

D=1 n111 n101 n110 n100 n1.. 

D=0 n011 n001 n010 n000 n0.. 

Total n.11 n.01 n.10 n.00 N 

 

Log-linear models assume a multiplicative relationship between categorical variables, that is, 

the expected value of any cell counts nijk can be modeled as a product of the overall number of 

observations (N) and the main effect of each variable and their respective interaction. 

log(nijk)=α0+βG_controlsG+βE_controlsE+βcontrolsG×E+αD+βGG×D+βEE×D+βCCG×E×D   (4.14) 

Equation (4.15) links the logistic model given in (4.8) to the log-linear model in (4.14) 

(Bishop, Fienberg et al. 2007)) 

log(n1jk)-log(n0jk)=logit(P(D=1|G,E,Z))=α+βGG+βEE+βCCG×E          (4.15) 

Log-linear models allow us to model cell counts for eight cells in the table above explicitly and 

simultaneously. Clearly from (4.14), adjustment for the categorical covariate Z can be handled 

in the log-linear models framework to obtain estimates βCC_Z and βcontrols_Z simultaneously 

adjusted for Z. For additional discussion on covariates adjustment in log-linear data analysis 

please refer to (Umbach and Weinberg 1997). Based on our proof for the logistic regression 

framework and discussion on log-linear models, we conclude that the analysis of the data 

adjusted for the covariates can be applied to the EHB-GECHI approach to G×E interactions.  
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Chapter 5 

5. Modified Empirical Hierarchical Bayes Approach for G×E 

Interaction 

In Chapter 4, we introduced the EHB-GECHI approach for G×E interaction. It combines 

estimates of G×E interaction from the case-only test and posterior estimates of population-

based G-E correlations made among controls to construct a powerful rank statistic. As 

discussed in Chapter 4, this statistic can only be applied to perform ranking and is not 

recommended for significance testing, since the test has inflated rate of type I error. 

In the current chapter, we introduce an improved, computationally faster, and more stable 

alternative approach we have developed, which obtains the posterior estimates of G-E 

correlation in controls basing on a normal-normal hierarchical model. The normal-normal 

model is a classic example of the empirical Bayes inferences framework (Chapter 4). This 

model allows us to reduce the variance of G-E control-based estimates. Thus, we gain power 

over the case-control statistic while keeping a tighter control on type I error than a pure case-

only test. We name this new approach the empirical hierarchical Bayes approach for G×E 

interaction (EHB-GENN). With EHB-GENN, only a single hyperparameter τ2, the common 

variance of G-E effects, has to be estimated in contrast to three hyperparameters in the previous 

EHB-GECHI method (Sohns, Viktorova et al. 2013), (Chapter 4). This leads to greater 

estimation stability and simplicity. Thanks to the improved type I error rate control, EHB-GENN 

can be utilized for significance testing and not just for ranking of G×E interactions, a notable 

and important improvement compared to EHB-GECHI. 

We conducted an extensive simulation study to evaluate our approach. We compared EHB-

GENN with EHB-GECHI and Mukherjee’s empirical Bayes approaches in terms of the achieved 

power and inflation of type I error, since these two methods were altogether favorable to other 
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tests (CC, CO, MUR) in most situations (Sohns, Viktorova et al. 2013). We compared rank 

power of EHB-GENN against all other G×E methods, EHB-GECHI, CC, CO, MUK-EB, and 

MUR. 

As already mentioned in Chapter 1, joint discovery of G×E interactions and genetic main 

effects may aid the detection of genetic variants potentially missed by the initial GWASs 

focusing on the marginal marker-trait association or pure interaction analysis (Kraft, Yen et al. 

2007, Dai, Logsdon et al. 2012, Vanderweele, Ko et al. 2013). Thus, methods capable of 

considering genetic main and G×E interaction effects simultaneously are important. 

In 2007, Kraft and colleagues presented a joint likelihood ratio test of SNP main and G×E 

interaction for case-control data (Kraft, Yen et al. 2007). In 2011, Dai and colleagues exploited 

Kraft’s approach and proposed three joint tests different from Kraft et al. in two respects (Dai, 

Logsdon et al. 2012). They proposed using a marginal genetic association component instead 

of the main effect estimate in a model for G×E interaction. Secondly, they demonstrated that 

not only the CC, but also the CO or the MUK-EB estimators can be used to test the G×E 

interaction component (Dai, Logsdon et al. 2012). Dai’s joint tests are more flexible than and 

at least as powerful as Kraft’s likelihood test. Therefore, we outline three joint 2-degree-of-

freedom tests (CCJ, COJ, MUK-EBJ), proposed by Dai (Dai, Logsdon et al. 2012). Similarly to 

Dai, we construct the joint EHB-GENN
J test, proposing combining both estimators of the genetic 

marginal effect and the EHB-GENN G×E interaction in a single statistic. Both EHB-GENN and 

joint EHB-GENN
J do not assume G-E independence, which makes them favorable in the 

genome-wide testing context.  
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5.1. The Normal-Normal Model 

(Morris 1983) 

Assume that p parameters need to be estimated θ=(θ1,…,θp) and that we have p independent 

unbiased estimates X=(X1,…,Xp), E(Xi)= θi, i=1…p. Assuming Xi’s are independently normal, 

we can write 

Level 1 𝑋𝑖|𝜃𝑖    ∼  𝑁(𝜃𝑖, 𝑉), 

 Level 2  𝜃𝑖|𝜇, 𝐴  ∼  𝑁(𝜇, 𝐴 ), 

with V=var(Xi), A=var(θi) (equal variances case), i=1…p, and η=(μ, A) are level 

hyperparameters. The estimates Xi are usually a statistic of the original data, for example 

sample means. Assume that V, common variance is known and do not need to be estimated in 

a Bayesian manner. We concentrate on the estimation of hyperparameters θ.  

For this model, the marginal distribution of Xi is given by 

𝑋𝑖|𝜇, 𝐴  ∼  𝑁(𝜇, 𝑉 + 𝐴), 

and estimates of η can be obtained by maximizing the log of the marginal likelihood, given as 

log (𝐿(𝑋|𝜇)) = log (
1

√2𝜋(𝑉 + 𝐴)
𝑒

(−
∑(𝑋𝑖−𝜇)2

2(𝑉+𝐴)
)
) 

Maximization yields the MMLE 𝜇̂ =
1

𝑛
∑ 𝑋𝑖 . Plugging in this estimate, the posterior 

distribution 𝜋(𝜃𝑖|𝑋𝑖, 𝜇̂, 𝐴) is obtained as 

𝜃𝑖|𝑋𝑖 ∼  𝑁(𝐵𝜇̂ + (1 − 𝐵)𝑋𝑖 , 𝐵𝐴), 

Where 𝐵 =
𝐵

𝐵+𝐴
. 

The posterior estimate of θi is given as 
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𝜃𝑖 = 𝐵𝜇̂ + (1 − 𝐵)𝑋𝑖. 

In the case of A being an unknown hyperparameter, it can also be estimated from the data. The 

overall data variance is estimated by 𝑠2 =
1

𝑛
∑(𝑋𝑖 − 𝜇̂)2 and the known V, then 

𝐴̂ = max (0, 𝑠2 − 𝑉). 

Any desirable number of hierarchical levels can be implemented within EHB models. 

 

5.2. Construction of the EHB-GENN Statistics 

As discussed earlier, G×E interaction is challenging to detect, particularly on the genome-wide 

scale, mainly due to the lack of power of common interaction tests. Addressing this issue, the 

CO test can be performed to increase power, however a large inflation in type I error associated 

with the test in the presence of G-E correlation must be taken into consideration. It is essential 

to account for population-level G-E correlation in studies of G×E interaction when using case-

only-related methods. The method we propose aims to estimate this correlation efficiently 

based on the information in controls as a sample from the general population, such that an 

increase in power over CC is achieved, while keeping type I error inflation low. 

Consider a case-control study with a total of N individuals, N1=ccr×N0 cases and N0 controls, 

where ccr stands for case-control ratio. Let m denote a SNP, m = 1…M, where M is the total 

number of SNPs in a GWAS analysis. Let G denote a genotype and Gm denote a genotype at a 

specific SNP m. Let E denote the exposure variable and D the disease outcome variable. Let us 

also assume that all three variables D, G, and E are binary. 

We assume that G-E effects in controls, i.e. parameters 𝛽𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠, m=1…M, can be estimated, 

yielding independent and unbiased estimates 𝛽̂𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠. Standard logistic regression models 
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(5.1) and (5.2) below can be applied per SNP to derive the needed effect estimates of G-E 

within cases and within controls (𝛽̂𝑚
𝑐𝑎𝑠𝑒𝑠 and 𝛽̂𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠) together with their variances 

((𝜎𝑚
𝑐𝑎𝑠𝑒𝑠)2,(𝜎𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠)2). 

logit(P(E=1|G, D=1))=αcases+βcasesGm     (5.1) 

logit(P(E=1|G, D=0))=αcontrols+βcontrolsGm     (5.2) 

Remember that the G×E interaction estimate on the multiplicative scale can be represented as 

the difference of βcases-βcontrols per SNP, (Chapter 2). We propose estimating βcases-

posterior(βcontrols) for each SNP to reduce the variance of the control-based G-E correlation. 

Adopting empirical hierarchical Bayes inference theory (Chapter 4), we propose the 

hierarchical Bayes model (5.3)-(5.4) to estimate the posterior mean of G-E correlation in 

controls and its variance. 

Level 1   𝛽̂𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠  | 𝛽𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠   ∼  𝑁(𝛽𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠, (𝜎𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠)2)  (5.3)  

Level 2   𝛽𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 | 𝜏2    ∼    𝑁(0, 𝜏2)     (5.4)  

If 𝛽̂𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 are maximum likelihood estimates (MLE) of the true parameters, obtained from 

equation (5.2), then, referring to the asymptotic theory, we can assume that they are normally 

distributed and can construct a valid two-stage model (5.3)-(5.4). 

Here 𝜎𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 is the standard error of 𝛽̂𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠. Each 𝜎𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 can be substituted by the 

corresponding MLE. The prior mean of G-E effects in controls (𝛽𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠) is centered at zero, 

since we expect no association for the vast majority of SNPs and the prior variance is τ2. The 

hyperparameter τ2 is estimated borrowing information across all SNPs from the marginal 

distribution of 𝛽̂𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠, given in (5.5) by maximizing the log of the marginal likelihood (L), 

given by (5.6) with respect to τ2 

𝛽̂𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠  | 𝜏2  ∼  𝑁(0, (𝜎𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠)2 + 𝜏2)      (5.5) 
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  (5.6) 

where fm(𝛽̂𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠  | 𝜏2) is the marginal density function. From (5.3) and (5.4), we derive the 

posterior distribution of the unknown parameters 𝛽𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠, m = 1 … M, see (5.7) below. 

𝛽𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠  | 𝛽̂𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠, 𝜏2  ∼  𝑁((𝛽𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠)∗, (𝜎𝑚

2 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠)∗)   (5.7) 

(𝛽𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠)∗ = posterior(𝛽𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠) = (1-Bm)× 𝛽̂𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠, 

(𝜎𝑚
2 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠)∗=(1-Bm)× (𝜎𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠)2,  

Bm = (𝜎𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠)2/((𝜎𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠)2 + 𝜏2) and 

𝐵̂m = (𝜎𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠)2/((𝜎𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠)2 + 𝜏̂2)  

Here, Bm is the SNP specific shrinkage factor, 0 ≤  𝐵m ≤ 1. The amount of shrinkage depends 

on τ2, with virtually no shrinkage in 𝛽̂𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 when Bm≈0 (τ2→∞) and complete shrinkage to 

zero when Bm=1(τ2 =0). 

The corresponding variance of posterior(𝛽𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠) is given by 

𝑉𝑎𝑟(𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(𝛽𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠))=(1 − 𝐵𝑚)2× (𝜎𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠)2  

We propose the following test statistic for G×E per SNP m accounting for population G-E. 

𝑍𝑚
𝐸𝐻𝐵−𝐺𝐸𝑁𝑁 =

𝛽̂𝑚
𝑐𝑎𝑠𝑒𝑠 −(𝛽𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 )
∗

√(𝜎̂𝑚
𝑐𝑎𝑠𝑒𝑠)2+𝑉𝑎𝑟 ((𝛽𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠)
∗
)
  

Alternatively, this can be done simultaneously, using a log-linear model framework to derive 

𝛽̂𝑚
𝑐𝑎𝑠𝑒𝑠, (𝜎𝑚

𝑐𝑎𝑠𝑒𝑠)2, 𝛽̂𝑚
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠, (𝜎𝑚

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠)2 (Umbach and Weinberg 1997). The possibility for 
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covariate adjustment separately within cases and within controls as well as effect estimation 

based on a multilevel or continuous genotype or exposure variable is discussed in Chapter 4. 

All extensions we derived for EHB-GECHI are applicable to the EHB-GENN approach. 

 

5.3. Simulation Study Set-up 

We simulated genotypes (G) at 10,000 SNPs (m), one environmental factor (E) and disease 

outcome (D) for a total of 3000 individuals, with three different case-control ratios (ccr), 1:1 

(1500 : 1500), 1:2 (1000 : 2000) and 2:1 (2000 : 1000) to represent balanced and unbalanced 

study designs. Linkage disequilibrium (LD) between SNPs was not modeled. Presence of the 

correlation structure between SNPs should not affect the validity of our approach but only its 

efficiency. All three variables D, G, and E were generated as binary, where 1 codes for cases, 

carriers, and exposed and 0 stands for controls, non-carriers, and unexposed. Table 5.1 

summarizes the simulation scenarios generated. The simulation setup remains the same as in 

(Sohns 2012) for a valid comparison across the G×E interaction methods. 

A single SNP with G×E interaction effect was generated based on the following disease model  

logit(P(D=1|Gm, E))=pd +βG×EGm×E 

with baseline disease risk pd   = 0.01 or 0.05, exposure frequency pe=0.1, 0.3, or 0.5, genotype 

carrier frequency pg = 0.1, 0.3, or 0.5 and odds ratio associated with G×E interaction exp 

(βG×E)=ORG×E=1.2, 1.5, 2, 2.5, 3. Note that E and G are not modeled as main effects. However, 

the frequencies influence the number of individuals in each G×E stratum. Among the total 

number of SNPs, we designed a number of signals, NG-E =0, 1000, 2500, or 5000, with 

population-based G-E correlation. The strength of these correlations was classified in three 

groups, low, medium, and high, based on the sampling distribution of the corresponding 
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coefficients N(0, log(1.5)/2), N(0.7,0.1), and exp(N(0,log(1.5)/2)), respectively. Figure 5.1 

demonstrates the distribution of these three groups of G-E correlation effects in controls. For 

the remaining SNPs, without any G×E interaction or G-E correlation effect, the frequency of 

the at-risk genotype carriers was sampled from a beta distribution B(1, 3) truncated to [0.01, 

0.5]. Analysis was conducted for each of 1000 replicated datasets. 

Figure 5.1 Distribution of G-E correlation effects in controls 

ORG-E(low)~N(0,log(1.5)/2), ORG-E(medium)~N(0.7,0.1), and ORG-E(high)~exp(N(0,log(1.5)/2)) 

 

Table 5.1 Simulation study settings, 3240 scenarios 

Scenario  Frequency Number OR 

Prevalence of D pd = 0.01, 0.05   

E pe = 0.1, 0.3, 0.5 1 ORE=1 

G×E interaction SNP pg = 0.1, 0.3, 0.5 1 ORG×E=1.2, 1.5, 2, 2.5, 3 

G-E correlated SNPs 0.01 - 0.5 0, 1000, 2500, 5000 ORG-E=(low, medium, high) 

 

 

5.4. Simulation Study Results 

We evaluated the performance of EHB-GENN with regard to type I error, power, and rank power 

and compared those to EHB-GECHI and MUK-EB. As expected, the power of EHB-GENN 

increases with increasing G×E effect size, increasing pg, pe frequencies, and decreasing pd. The 
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power of EHB-GENN depends on ccr, generally favoring a balanced design (Figure 5.2). This 

behavior persists independently of the number of G-E correlations. Figure 5.2 illustrates 

different ccrs, different G-Es, and effect sizes for ORG×E=2.5 and pg=0.3, pe=0.3, pd=0.05 

(upper row) or ORG×E=2.5, pg=0.5, pe=0.5, pd=0.05 (lower row). As can be seen from Figure 

5.2, having twice as many controls as cases is the most unfavorable situation. Figure 5.2 also 

indicates an increase in power with increasing genotype frequency and exposure. The power 

depends on the number of SNPs with G-E. The EHB-GENN test achieves higher power in the 

presence of low-effect G-E correlation when compared to medium or high effects. The decline 

in power depending on the number of G-E correlations is not dramatic and even less so in high 

effect scenarios.  

Subsequently, we compared the type I error rate and the power of EHB-GENN with EHB-GECHI 

and MUK-EB. To account for the possible inflation of the family-wise type I error rate due to 

the multiple testing of 10,000 SNPs we used Bonferroni correction, by setting up the 

significance level for the p-value of each test to 5×10-5. For clarification note that, under the 

null hypothesis the percentage among 1000 replications is given, where any one of 10,000 

SNPs is significant. Evaluation shows that relative loss in absolute power of the EHB-GENN 

method compared to the EHB-GECHI or the MUK-EB approaches are smaller on average than 

inflation of the type I error of the later methods in comparison to EHB-GENN. This conclusion 

is depicted in Tables 5.2 and 5.3. Table 5.2 portrays type I error and power of EHB-GENN, 

EHB-GECHI, and MUK-EB for 1500 cases and 1500 controls, ORG×E=2.5, pd=0.05, with 

pg=0.3, pe=0.3 on the left and pg=0.5, pe=0.5 on the right in the absence of or presence of a 

large number of G-E correlations with either medium or high effect. Table 5.3 portrays the 

results for pd=0.01, all other conditions remaining the same as in Table 5.2. If the G-E 

independence assumption is valid (OR_G-E = 1 in Tables 5.2, 5.3), all three approaches 

maintain type I error at a nominal 5% level or lower (see ORG×E =1, in italics). Tables 5.2 and 



 

92 

5.3 also reflect that under the assumption of G-E independence (OR_G-E=1), the type I error 

rate of EHB-GENN is less conservative than that of EHB-GECHI or MUK-EB. This leads to a 

power gain for our new approach in such settings. We therefore conclude that EHB-GENN is 

more powerful than EHB-GECHI and MUK-EB, under the assumption of G-E independence 

(Table 5.2 and Table 5.3, upper blocks). In the presence of a large number of G-Es of medium 

to high effect size, EHB-GENN always holds type I error less than or equal to 10%, except for 

situations with an infrequent environmental factor, i.e. in our simulation pe=0.1, when type I 

error can rise to 20%. In this case, the responsible sub-stratum is not large enough to estimate 

the variance of the correlation signals properly. Clearly, EHB-GENN has much lower type I 

error compared to EHB-GECHI and MUK-EB in the presence of G-E correlations of medium to 

high effect size. Controlling type I error is a critical issue when performing significance testing 

in contrast to a ranking of test statistics for follow-up. Hence, the ability of EHB-GENN to 

maintain it at a reasonable 10% or lower level compared to over 50% for EHB-GECHI or around 

20% for MUK-EB (Table 5.2 and Table 5.3) is a clear advantage of the EHB-GENN approach. 

Table 5.2 and Table 5.3 also present results on the power of the three approaches. In general, 

EHB-GENN appears to have lower power compared to the competitors; this should be seen as 

a compromise with the type I error control. The EHB-GENN approach always has greater or 

equal power compared to the classic CC test (data not shown). To evaluate the relative loss of 

power combined with a decrease in type I error towards an acceptable level for EHB-GENN 

versus the other two considered methods, we plotted the differences in type I error of EHB-

GECHI (Figure 5.3, upper row) or MUK-EB (Figure 5.3, lower row), respectively, minus type 

I error of EHB-GENN on the y-axis and the corresponding differences in power on the x-axis. 

Please note the difference in the scales between the upper (EHB-GENN versus EHB-GECHI) and 

lower (EHB-GENN versus MUK-EB) rows of Figure 5.3. Each of the points on the graphs 

represents one simulated scenario. Points above the diagonal reflect the situation in which the 
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increase in type I error level is greater than the power gain of the rival method compared to 

EHB-GENN. In most situations, we observe a much larger type I error level increase compared 

to the corresponding power increase of the competitors. In many situations, both EHB-GECHI 

and MUK-EB do not even gain in power at all at the expense of a large inflation in type I error. 

To summarize the results on power and type I error, EHB-GENN is an improvement on the 

earlier EHB-GECHI approach, because it maintains type I error rate reasonably well in the 

presence of G-E correlations, whereas the loss in power is not very critical. The EHB-GENN 

test is more powerful than the case-control test. In contrast to MUK-EB, it does not assume G-

E independence in the general population. Moreover, EHB-GENN is computationally much 

faster than EHB-GECHI and more stable in terms of parameter estimation. 

We also evaluated the rank power of our approach. EHB-GENN always has equal or greater 

rank power than the CC or CO methods in the presence of G-E correlations. The rank power 

gain of EHB-GENN compared to CO is extreme, reaching almost 100% in the presence of a 

large number of G-E correlations with high effect size, because the CO test has almost no 

power in these scenarios. EHB-GENN nearly always has greater rank power than MUR except 

in some situations of low G-E correlations, when for a rare exposure variable EHB-GENN lacks 

in power. On average over the 1000 replicates, EHB-GENN has about 5% lower rank power 

than EHB-GECHI for the top 100 ranks. The rank power of EHB-GENN was often lower than 

that for MUK-EB but not dramatically so. Nevertheless, in scenarios with low G-E correlation 

signals and some scenarios with high effect signals, the rank power of EHB-GENN was larger 

than that of MUK-EB. Rank power of EHB-GENN vs. CC, MUR, CO, MUK-EB, and EHB-

GECHI is demonstrated in Figures 5.4-5.6 for different ccr (1:1, 1:2, 2:1). 
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Figure 5.2 Power of EHB-GENN to detect a SNP with GxE interaction for ccr = 1:1, 1:2, 2:1 and different numbers of G-E correlations (# of G-E 

correlation) with different effect sizes OR_G-E low, medium and high, ORG×E  = 2.5, pg = 0.3, pe = 0.3, pd = 0.05 (upper row) and ORG×E  = 2.5, pg 

= 0.5, pe = 0.5, pd = 0.05 (lower row). 

 



 

95 

Table 5.2 Type I error (in italic) and Power of EHB-GENN, EHB-GECHI, MUK-EB, pd=0.05 

ccr =1:1 pd  = 0.05, pe  = 0.3, pg  = 0.3 pd  = 0.05, pe  = 0.5, pg  = 0.5 
OR_G-E N_G-E ORG×E EHB-GENN EHB-GECHI MUK-EB EHB-GENN EHB-GECHI MUK-EB 

1 0 

1 0.05 0.03 0.01 0.04 0.03 0.02 

1.2 0.00 0.00 0.00 0.00 0.00 0.00 

1.5 0.01 0.01 0.01 0.20 0.19 0.09 
2 0.22 0.23 0.11 0.97 0.94 0.80 

2.5 0.74 0.72 0.42 1.00 1.00 0.99 

3 0.96 0.95 0.73 1.00 1.00 1.00 

medium 

2500 

1 0.10 0.92 0.18 0.06 0.82 0.06 

1.2 0.00 0.00 0.00 0.00 0.00 0.00 

1.5 0.02 0.09 0.05 0.05 0.18 0.09 
2 0.38 0.83 0.62 0.63 0.93 0.80 

2.5 0.87 0.98 0.95 0.97 0.99 0.98 

3 0.99 0.99 1.00 1.00 0.99 1.00 

5000 

1 0.08 0.93 0.33 0.05 0.82 0.11 

1.2 0.00 0.00 0.00 0.00 0.00 0.00 

1.5 0.02 0.09 0.05 0.04 0.17 0.09 
2 0.34 0.81 0.62 0.60 0.92 0.80 

2.5 0.84 0.96 0.95 0.97 0.99 0.98 

3 0.99 0.98 0.99 1.00 1.00 1.00 

high 

2500 

1 0.05 0.54 0.08 0.05 0.32 0.30 
1.2 0.00 0.00 0.00 0.00 0.00 0.00 

1.5 0.01 0.08 0.04 0.04 0.18 0.10 

2 0.38 0.84 0.62 0.58 0.95 0.83 
2.5 0.85 0.99 0.95 0.97 0.99 0.99 

3 0.99 1.00 1.00 1.00 1.00 1.00 

5000 

1 0.04 0.52 0.15 0.05 0.30 0.04 
1.2 0.00 0.00 0.00 0.00 0.00 0.00 

1.5 0.01 0.08 0.04 0.04 0.18 0.10 

2 0.36 0.83 0.62 0.56 0.95 0.82 
2.5 0.84 0.99 0.95 0.97 0.99 0.99 

3 0.98 1.00 1.00 1.00 1.00 1.00 

 

Abbreviations: ccr, case-control ratio; pd, baseline disease risk; pe, exposure frequency; pg, genotype 

carrier frequency; OR_G-E, odds ratio associated with G-E correlation; N_G-E, number of SNPs with 

population based G-E correlation (strength of G-E correlations); ORG×E, odds ratio associated with G×E 

interaction; EHB-GENN, parametric empirical hierarchical Bayes approach for G×E interaction, based 

on normal-normal model; EHB-GECHI, empirical hierarchical Bayes approach to G×E interaction, based 

on chi-distribution; MUK-EB, empirical Bayes shrinkage estimator; 

Notes: ORG×E =1corresponds to the null hypothesis; 

 N_G-E=0 corresponds to absence of G-E correlation; 

 Significance level per test is set to 5×10-5, as 10,000 SNPs were simulated;  
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Table 5.3 Type I error (in italic) and Power of EHB-GENN, EHB-GECHI, MUK-EB pd=0.01 

ccr =1:1 pd  = 0.01, pe  = 0.3, pg  = 0.3 pd  = 0.01, pe  = 0.5, pg  = 0.5 
OR_G-E N_G-E OR_G×E EHB-GENN EHB-GECHI MUK-EB EHB-GENN EHB-GECHI MUK-EB 

1 0 

1 0.05 0.03 0.05 0.04 0.04 0.02 

1.2 0.00 0.00 0.00 0.00 0.00 0.00 

1.5 0.13 0.14 0.06 0.23 0.21 0.12 
2 0.92 0.90 0.67 0.97 0.97 0.83 

2.5 1.00 1.00 0.93 1.00 1.00 1.00 

3 1.00 1.00 0.99 1.00 1.00 1.00 

medium 

2500 

1 0.09 0.92 0.20 0.07 0.76 0.07 

1.2 0.00 0.00 0.00 0.00 0.00 0.00 

1.5 0.09 0.11 0.05 0.13 0.22 0.13 
2 0.84 0.90 0.68 0.90 0.96 0.83 

2.5 1.00 0.99 0.95 1.00 0.99 1.00 

3 1.00 0.99 0.99 1.00 1.00 1.00 

5000 
 

1 0.09 0.93 0.35 0.08 0.82 0.07 

1.2 0.00 0.00 0.00 0.00 0.00 0.00 

1.5 0.06 0.10 0.05 0.08 0.22 0.13 
2 0.70 0.87 0.68 0.83 0.96 0.83 

2.5 0.99 0.97 0.95 0.99 0.99 0.98 

3 1.00 0.99 0.99 1.00 1.00 1.00 

high 

2500 

1 0.08 0.53 0.08 0.07 0.34 0.04 
1.2 0.00 0.00 0.00 0.00 0.00 0.00 

1.5 0.01 0.13 0.07 0.04 0.22 0.12 

2 0.42 0.90 0.70 0.60 0.97 0.83 
2.5 0.87 0.99 0.93 0.96 1.00 0.98 

3 1.00 1.00 0.99 1.00 1.00 1.00 

5000 
 

1 0.06 0.49 0.13 0.05 0.27 0.05 
1.2 0.00 0.00 0.00 0.00 0.00 0.00 

1.5 0.01 0.14 0.07 0.04 0.21 0.12 

2 0.36 0.90 0.70 0.57 0.96 0.83 
2.5 0.84 0.99 0.93 0.96 1.00 0.98 

3 0.99 0.99 0.99 1.00 1.00 1.00 

 

Abbreviations: ccr, case-control ratio; pd, baseline disease risk; pe, exposure frequency; pg, genotype 

carrier frequency; OR_G-E, odds ratio associated with G-E correlation; N_G-E, number of SNPs with 

population based G-E correlation (strength of G-E correlations); ORG×E, odds ratio associated with G×E 

interaction; EHB-GENN, parametric empirical hierarchical Bayes approach for G×E interaction, based 

on normal-normal model; EHB-GECHI, empirical hierarchical Bayes approach to G×E interaction, based 

on chi-distribution; MUK-EB, empirical Bayes shrinkage estimator; 

Notes: ORG×E =1corresponds to the null hypothesis; 

 N_G-E=0 corresponds to absence of G-E correlation; 

 Significance level per test is set to 5×10-5, as 10,000 SNPs were simulated;  
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Figure 5.3 Evaluation of relative changes in power and type I error. The difference in power (on x-axis) and the difference in type I error (on y-

axis) for EHB-GENN vs. EHB-GECHI (upper row) and for EHB-GENN vs. MUK-EB (lower row) 
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Figure 5.4 Rank power comparison to detect a G×E interaction in the top 100 SNPs between EHB-GENN and competing methods (CC, MUR, CO, 

MUK-EB, EHB-GECHI) for parameter combinations (ORGxE = 1.2, 1.5, 2, 2.5, 3; pg = 0.1, 0.3, 0.5; pe = 0.1, 0.3, 0.5, and pd = 0.05) given 1500 

cases and 1500 control, and 1000 replicates. 
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Figure 5.5 Rank power comparison to detect a G×E interaction in the top 100 SNPs between EHB-GENN and competing methods (CC, MUR, CO, 

MUK-EB, EHB-GECHI) for parameter combinations (ORGxE = 1.2, 1.5, 2, 2.5, 3; pg = 0.1, 0.3, 0.5; pe = 0.1, 0.3, 0.5, and pd = 0.05) given 1000 

cases and 2000 control, and 1000 replicates. 
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Figure 5.6 Rank power comparison to detect a G×E interaction in the top 100 SNPs between EHB-GENN and competing methods (CC, MUR, CO, 

MUK-EB, EHB-GECHI) for parameter combinations (ORGxE = 1.2, 1.5, 2, 2.5, 3; pg = 0.1, 0.3, 0.5; pe = 0.1, 0.3, 0.5, and pd = 0.05) given 2000 

cases and 1000 control, and 1000 replicates. 
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Figure 5.4-Figure 5.6, plots a) demonstrate that EHB-GENN has much greater rank power in 

almost all simulation scenarios compared to the case-control test. Comparing EHB-GENN 

versus MUR (Figure 5.4-Figure 5.6, plots b)), we conclude that in presence of a larger number 

of G-E correlations with high effect size. EHB-GENN reaches remarkably increased rank power. 

The rank power of MUR is higher compared to EHB-GENN when there are only G-E 

correlations with low effect size. From Figure 5.4-Figure 5.6, plots c) it can be seen that EHB-

GENN outperforms the case-only test too. A clear triangular structure above the x-axis suggests 

that EHB-GENN has considerably larger rank power than CO in presence of medium to high G-

E correlation signals. Irrespective of other parameters, the CO test has very low rank power in 

these situations. The EHB-GENN approach performed better, achieving greater rank power than 

MUK-EB (Figure 5.4-Figure 5.6, plots d)) in presence of G-E correlations with low effect 

size. Generally, EHB-GENN has lower rank power, thank MUK-EB; however, the loss in rank 

power is not dramatic. EHB-GECHI has a higher rank power than EHB-GENN (Figure 5.4-

Figure 5.6, plots e)) for almost all simulated scenarios. The average loss in rank power for all 

situations over 1000 replicates is ≤ 5% for EHB-GENN. It is important to notice that the rank 

power of MUK-EB and EHB-GECHI compared to EHB-GENN should be discussed in the context 

of the type I error inflation for each of the methods. 

Generally, EHB-GENN can be applied for significance testing in GWAS to search for G×E 

signals without assuming gene-environment independence. It maintains adequate power and in 

this respect nearly always performs better, in terms of reaching higher rank power than CC or 

MUR tests, those methods requiring no assumption of genotype-environment independence. 

Based on the results from the simulation study, we recommend performing EHB-GENN to test 

for interaction when a large number of G-Es with moderate to high effect size is expected to 

occur in the study sample and preferably with a frequent exposure variable, so that the strata 

are large enough for the hyperparameter estimation. 
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5.5. Joint Tests for Genetic Marginal Effect and G×E Interaction Effects 

Originally, a joint likelihood ratio test for the genetic main effect combined with the G×E 

interaction effect was introduced by Kraft and colleagues (Kraft, Yen et al. 2007). They 

compared power and sample size requirement of this joint test to all: the marginal case-control 

test, case-control and case-only tests for G×E interaction. It was revealed that even though for 

many penetrance models the joint test is not the most powerful, it is nearly optimal across all 

genetic risk models considered (Kraft, Yen et al. 2007). Dai and colleagues presented a novel 

approach to joint testing (Dai, Logsdon et al. 2012). They proposed identifying the involvement 

of a genetic factor in terms of its marginal association with the trait and/or involvement in gene-

environment interaction. This allows them to use CC, CO and MUK-EB estimators to estimate 

the G×E interaction component (Dai, Logsdon et al. 2012). Dai’s joint tests are more flexible 

than and at least as powerful as the likelihood test by Kraft et al. We present below three joint 

2 degrees of freedom tests (CCJ, COJ, MUK-EBJ), proposed by Dai (Dai, Logsdon et al. 2012). 

In accordance with Dai’s proposal, let us consider the four logistic regression models presented 

in equations (5.9) – (5.12). Let D denote the binary disease outcome, E denote the exposure 

variable, and G denote genotype. Let Z be a vector of potential covariates. 

logit(P(D=1|G))=α0+αGGm+𝛼𝑍
𝑇ZT

      (5.9) 

logit(P(D=1|G, E))=β0+βGGm+βEE+βCCGm×E+βZZT 
  (5.10) 

logit(P(E=1|G, D=1)) = λ0 + βcasesGm+λZZT 
    (5.11) 

logit(P(E=1|G, D=0))=γ0+βcontrolsGm+γZZT
     (5.12) 

Equation (5.9) models the association between trait D and SNP effect Gm, therefore αG = 0 

tests for the presence of the genetic marginal effect of SNP m. The hypothesis βCC = 0 in 

equation (5.10) is a basis for the classic case-control test for G×E interaction in the presence of 
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G and E main effects. In order to combine two regression estimators 𝛼𝐺  ̂ and 𝛽𝐶𝐶  ̂  of two 

different models (5.9) and (5.10) into a single test statistic, these estimators should be 

asymptotically independent. As suggested in Dai et al. (2011), the independence follows, since 

for any two nested generalized linear models with a canonical link function, the parameter 

estimates of a smaller model are asymptotically independent of the estimates in a larger model 

(Dai, Logsdon et al. 2012). Because of the independence, Dai’s tests statistics have a simple 

form of the sums of two squared Z scores. Under the two null hypotheses H01: αG=0 and H02: 

βCC=0, or βCO=0, or βMUK-EB=0, all three test statistics follow a χ2 distribution with 2 degrees 

of freedom. 

The corollary to the theorem concludes the statement of asymptotic independence: We present 

the corollary as in (Dai, Kooperberg et al. 2012). 

Corollary (Dai, Kooperberg et al. 2012): Let Y be an outcome variable in a generalized linear model 

with a canonical link function g, and let X be the genetic variable, E the environmental variable 

and Z the additional covariates. Consider two nested generalized linear models 

𝑔{𝐸(𝑌|𝐸)} =  𝛽0 + 𝛽1𝑋 + 𝛽2𝑍. 

𝑔{𝐸(𝑌|𝑋, 𝐸)} =  𝛾0 + 𝛾1𝑋 + 𝛾2𝐸 + 𝛾3𝑋 × 𝐸 + 𝛾4𝑍. 

Then the maximum likelihood estimators, 𝛽1̂ and 𝛾3̂are asymptotically independent.  

In the logistic regression models framework, a simulation study performed by Dai and 

colleagues demonstrated almost zero empirical correlation when the sample size was at least a 

few hundred individuals (Dai, Kooperberg et al. 2012). 

Based on the corollary above, one can conclude that 𝛼G and 𝛽̂CC estimated on the basis of 

models (5.9) and (5.10) are independent and therefore can be pooled to construct joint statistics 
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distributed as 2 df chi square (𝜒2𝑑𝑓
2 ) for joint testing of genetic marginal and G×E interaction 

by adding the appropriate terms as follows in equation (5.13)  

𝑇𝐶𝐶
𝐽

=
𝑎𝐺̂

2

𝑉𝑎𝑟(̂𝑎𝐺)̂
+

𝛽𝐶𝐶̂
2

𝑉𝑎𝑟(̂𝛽𝐶𝐶)̂
        (5.13) 

The following joint test statistics for CO and MUK-EB can be obtained in the same way (Dai, 

Logsdon et al. 2012). 

𝑇𝐶𝑂
𝐽

=
𝑎𝐺̂

2

𝑉𝑎𝑟(̂𝑎𝐺)̂
+

𝛽𝐶𝑂̂
2

𝑉𝑎𝑟(̂𝛽𝐶𝑂)̂
       (5.14) 

𝑇𝑀𝑈𝐾−𝐸𝐵
𝐽

=
𝑎𝐺̂

2

𝑉𝑎𝑟(̂𝑎𝐺)̂
+

𝛽𝑀𝑈𝐾−𝐸𝐵
̂ 2

𝑉𝑎𝑟(̂𝛽𝑀𝑈𝐾−𝐸𝐵 )̂       (5.15) 

The estimators 𝛽̂𝑀𝑈𝐾−𝐸𝐵  and 𝑉𝑎𝑟̂(𝛽̂𝑀𝑈𝐾−𝐸𝐵) correspond to Mukherjee’s et al. empirical Bayes 

shrinkage estimator for G×E interaction that can be derived based on models (5.10), (5.11), 

and (5.12) as shown in (Mukherjee and Chatterjee 2008) and summarized in Chapter 2. 

 

5.6. Joint EHB-GENN
J Test 

Based on the same reasoning as above, we constructed a joint test for the EHB-GENN approach. 

We showed in Chapter 2 that βCC=βcases βcontrols (5.10-5.12). As proven in Chapter 4, the latter 

relationship also holds after separate covariate adjustment within cases and controls, when the 

covariate distribution is independent of the G×E interaction. Thus βCC is a linear combination 

of βcases and βcontrols. Independence of 𝛼G and 𝛽̂cases is stated in (Dai, Logsdon et al. 2012) and 

follows from the examination of covariance of respective estimating functions for the two 

estimators. Therefore, because of the linearity, in the relationship 𝛼G and 𝛽̂controls are 

independent. 
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Since 𝛽̂𝐸𝐻𝐵−𝐺𝐸𝑁𝑁
=  𝛽̂

𝑐𝑎𝑠𝑒𝑠
− 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(𝛽̂

𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠
), independence of 𝛼G and 𝛽̂𝐸𝐻𝐵−𝐺𝐸𝑁𝑁

follows 

immediately. We propose the joint test statistic EHB-GENN
J for simultaneous testing of genetic 

marginal and G×E interaction effects as follows (5.16). 

𝑇𝐸𝐻𝐵−𝐺𝐸𝑁𝑁

𝐽
=

𝑎𝐺̂
2

𝑉𝑎𝑟(̂𝑎𝐺)̂
+

𝛽𝐸𝐻𝐵−𝐺𝐸𝑁𝑁
̂ 2

𝑉𝑎𝑟(̂𝛽̂𝐸𝐻𝐵−𝐺𝐸𝑁𝑁
)
     (5.16) 

where 𝑉𝑎𝑟(̂𝛽̂𝐸𝐻𝐵−𝐺𝐸𝑁𝑁
) =  (√(𝜎̂𝑚

𝑐𝑎𝑠𝑒𝑠)2 + 𝑉𝑎𝑟 (𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(𝛽
𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠

) ))

2

, (see Section 5.2). 

In contrast to the CO test that was employed in Dai’s 2 df test construction (Section 5.5), our 

EHB-GENN approach does not require the assumption of G-E independence (Section 5.2). Thus, 

this also holds for the EHB-GENN
J approach by the construction. 

We did not perform an additional simulation study to compare the power and type I error of 

𝑇𝐶𝐶
𝐽

, 𝑇𝐶𝑂
𝐽

 𝑇𝑀𝑈𝐾−𝐸𝐵
𝐽

, and 𝑇𝐸𝐻𝐵−𝐺𝐸𝑁𝑁

𝐽
. All four tests have the same contributor for estimating the 

genetic marginal effect and differ only in the G×E interaction component; we therefore expect 

to see the same behavior as seen in the simulation study described in Section 5.4 in terms of 

the comparative performance of these tests. For the general comparison between main effect 

association tests and joint tests, we refer to the simulation studies previously conducted and 

published (Kraft, Yen et al. 2007, Dai, Logsdon et al. 2012, Vanderweele, Ko et al. 2013). 

Dai’s joint tests were evaluated in terms of type I error, power, and robustness to G-E 

correlations (Dai, Logsdon et al. 2012, Vanderweele, Ko et al. 2013). These previous studies 

suggest that in the presence of main genetic effects only the classic case-control main effect 

test is more powerful than joint tests; however, the power loss of the joint test is only moderate 

to small. In the situation in which both a genetic main effect and a G×E interaction effect are 

present for a SNP, joint tests have substantially more power than pure main effect or G×E 

interaction tests. 
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Chapter 6 

6. Applications to Lung Cancer Data from the ILCCO/TRICL 

Consortium  

Lung cancer remains to be the leading cause of the cancer mortality in the world (Jemal, Bray 

et al. 2011). Every year, nearly 1.35 million newly diagnosed cases occur worldwide (Herbst, 

Heymach et al. 2008). A substantial proportion of individuals newly diagnosed with lung 

cancer dies within two years of diagnosis (Ferlay, Autier et al. 2007). Tobacco smoking is the 

major risk factor in lung cancer, accounting for nearly 85% of cases in men and 50% in women 

worldwide (Jemal, Bray et al. 2011). However, a fairly large proportion of patients develop the 

disease without any history of smoking (Bryant and Cerfolio 2007, Sun, Schiller et al. 2007, 

Couraud, Zalcman et al. 2012). Furthermore, there are many reports suggesting that a positive 

family history of lung cancer is an important risk factor, especially in the young (Coté, Liu et 

al. 2012, Krebsregister and (GEKID) 2013). It is widely accepted that lung cancer is a complex 

disease, attributed to the complex interaction of genetic and environmental factors (Osann 

1991, Catelinois, Rogel et al. 2006, Chiu, Cheng et al. 2006, Kabir, Bennett et al. 2007, 

O'Reilly, McLaughlin et al. 2007, Brüske-Hohlfeld 2009). 

Despite many studies devoted to identifying genetic factors that modify lung cancer risk, the 

majority of genetic markers and genes responsible for the development of lung cancer remain 

undiscovered. In recent years, quite a number of GWASs and meta-analyses were conducted. 

These have identified some risk variants for lung cancer. SNPs on chromosome 5p15 (Landi, 

Chatterjee et al. 2009, Truong, Hung et al. 2010, Brenner, Boffetta et al. 2012, Fehringer, Liu 

et al. 2012, Timofeeva, Hung et al. 2012, Li, Yin et al. 2013, Myneni, Chang et al. 2013), 6q23-

25 (Bailey-Wilson, Amos et al. 2004, Hung, McKay et al. 2008, Amos, Pinney et al. 2010), 

15q24-25 (Amos, Wu et al. 2008, Hung, McKay et al. 2008, Amos, Gorlov et al. 2010, Brenner, 
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Boffetta et al. 2012, Fehringer, Liu et al. 2012, Timofeeva, Hung et al. 2012) were discovered 

to be in association with lung cancer overall or with a specific histological subtype, such as 

adenocarcinoma, non-small-cell and small-cell lung cancer (NSCLC, SCLC) in European and 

Asian populations, some of them in African Americans. Several GWASs on smoking behavior 

have identified loci associated with the number of cigarettes per day as well as other measures 

of tobacco addiction/consumption (Lee, Jeon et al. 2005, Bierut, Madden et al. 2007, 

Thorgeirsson, Geller et al. 2008, Heller, Zielinski et al. 2010, Liu, Tozzi et al. 2010, 

Thorgeirsson, Gudbjartsson et al. 2010). 

We had access to four lung cancer case-control GWASs from the International Lung Cancer 

Consortium/Transdisciplinary Research in Cancer of the Lung (ILCCO/TRICL) consortia. The 

GWASs are described below. In our investigation into genetic variants influencing the risk of 

lung cancer, we performed five statistical tests on each of the four GWASs, assuming a 

dominant mode of inheritance for all analyses. We applied EHB-GENN to investigate G×E 

interaction. We also applied joint CCJ, COJ, and MUK-EBJ proposed by Dai and colleagues 

(Dai, Logsdon et al. 2012), all described in Chapter 5, to test simultaneously for the genetic 

marginal and gene-environment interaction effects. Moreover and in a similar way to those, we 

combined both estimators of the genetic main effect (G) and G×E interaction, later obtained by 

EHB-GENN, into a single joint test statistic EHB-GENN
J (see Chapter 5) and applied it to the 

respective GWAS datasets. Several authors have suggested that G×E interaction might help 

detect genetic variants potentially missed by standard tests for association of main effects 

(Kraft, Yen et al. 2007, Dai, Logsdon et al. 2012, Vanderweele, Ko et al. 2013). Specifically, 

some SNPs may exercise a small to moderate genetic main as well as a G×E interaction effect. 

Therefore, joint tests for the marginal association combined with the test for G×E interaction 

have been developed to gain additional power over tests of main effects only (Kraft, Yen et al. 
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2007, Dai, Logsdon et al. 2012). Thus, joint testing can help identify such signals in lung 

cancer. 

 

6.1. ILCCO/TRICL GWAS Study Description  

We analyzed four GWASs from the ILCCO/TRICL consortia. The German Lung Cancer 

GWAS (GLC) (Holle, Happich et al. 2005, Wichmann, Gieger et al. 2005, Sauter, Rosenberger 

et al. 2008), the Central Europe Lung Cancer GWAS (Central Europe IARC, CE-IARC) 

(Amos, Wu et al. 2008, Hung, McKay et al. 2008), the Toronto Lung Cancer GWAS (Samuel 

Lunenfeld Research Institute, SLRI) (Hung, McKay et al. 2008), and the Texas Lung Cancer 

GWAS (MD Anderson Cancer Center, MDACC) (Amos, Wu et al. 2008, Hung, Christiani et 

al. 2008, Wang, Broderick et al. 2008) were included in the analysis. 

The German Lung Cancer Study (GLC, Bickeböller, Heinrich, Risch) is a population-based, 

case-control study comprising of 514 cases and 488 controls. It is a genome-wide study that 

includes cases diagnosed with lung cancer before the age of 51 and controls matched to them 

by sex and age. All subjects in the GLC Study were genotyped on the HumanHap 550K 

genome-wide SNP chip (Landi, Chatterjee et al. 2009). The GLC GWAS consists of three 

independent studies conducted in Germany, namely the Heidelberg Lung Cancer Study 

numbering 201 cases, the LUCY Study numbering 305 cases and the KORA Study with 488 

controls (Sauter, Rosenberger et al. 2008). 

The Heidelberg Lung Cancer Study is an ongoing hospital-based case-control genome-wide 

study initiated and conducted by the German Cancer Research Center (DKFZ, PD Risch). 

Initially started in 1997, more than 2,000 lung cancer cases were recruited in collaboration with 

the Thoraxklinik Heidelberg, 300 of which were cases with an age of onset ≤ 50 years. Data 
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on occupational exposure, tobacco smoking, and educational status, as well as family history 

of lung cancer for a subgroup of participants is available (Sauter, Rosenberger et al. 2008). 

Lung Cancer in the Young (LUCY) is a multicenter study with 31 participating hospitals in 

Germany, organized and conducted by the Helmholtz Zentrum Munich in collaboration with 

the University Medical Center, Göttingen. Patients with histologically or cytologically 

confirmed primary lung cancer were recruited. The data comprise information on family 

history, smoking exposure, occupational exposure, and blood samples (Sauter, Rosenberger et 

al. 2008). Recruitment ended in 2011, with a total of 847 lung cancer cases and 5,524 family 

members being recruited. 

Cooperative Health Research in the Augsburg Region (KORA) is a population-based, genome-

wide study in the area of Augsburg in southern Germany, conducted by the Helmholtz Zentrum 

Munich. In total, 18,000 participants were recruited between 1984 and 2001. The data include 

information on multiple phenotypes, medical and laboratory data, as well as blood samples to 

uncover genetic information (Sauter, Rosenberger et al. 2008). KORA is a representative 

sample of Caucasians in Germany (Steffens, Lamina et al. 2006). 

The Central Europe Lung Cancer Study of the IARC (CE-IARC, Brennan) is a hospital-

based case-control genome-wide study conducted in 15 centers in 6 central and eastern 

European countries (Czech Republic, Hungary, Poland, Romania, Russia, Slovakia) and in 

Liverpool (United Kingdom) between 1998 and 2002. The study collected lifestyle risk factors, 

occupational, medical, and family history information on a total of 2633 newly diagnosed lung 

cancer cases and 2884 controls frequency matched by age, sex, geographical area, and period 

of recruitment (Scelo, Constantinescu et al. 2004). All study individuals were genotyped on 

Illumina HumanHap 300K platforms (Hung, McKay et al. 2008). 

The Toronto Lung Cancer Study (SLRI, Hung), is a hospital-based, genome-wide, case-

control study that was conducted by the University of Toronto and the Samuel Lunenfeld 
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Research Institute in the greater Toronto area between 1997 and 2002. The study contained 

genetic, lifestyle risk factors, occupational, medical, and family history information on 332 

lung cancer patients and 505 controls of European origin (Hung, McKay et al. 2008).  

Table 6.1 demonstrates major characteristics of the GWASs and individuals, as well as 

information on the respective genotyping platform. 

Table 6.1 Characteristics of the four lung cancer GWASs, QC is quality control 

 GLC CE-IARC SLRI MDACC 

Data collection area Germany 

Central Europe: Czech 

Republic, Hungary, 

Poland, Romania, Russia, 

Slovakia 

greater Toronto area, 

Canada 
Houston, Texas, USA 

Origin of control Population-based Hospital-based Hospital-based Hospital-based 

Frequency matching factors Ages, sex, location Age, sex, location Age, sex, ethnic origin 
Age, sex, ethnic origin, 

smoking habits 

Genotyping HumanHap 550K HumanHap 300K HumanHap 300K HumanHap 300K 

Cases/Controls genotyped 514/488 1989/2625 332/505 1154/1137 

Cases/Controls after QC 467/468 1901/2503 331/499 1150/1134 

# SNPs after QC 529,730 312,452 310,045 314,072 

  cases controls cases controls cases controls cases controls 

Gender (Male/Female) 286/181 237/231 1493/408 1821/682 159/172 190/309 655/495 644/490 

Age (years) 

< 45 169 112 
246 415 41 233 176 120 

45-49 239 283 

50-54 50 73 272 378 32 62 109 107 

55-59 - - 329 394 28 46 158 210 

60-64 - - 386 435 46 32 186 278 

65-69 - - 353 430 62 35 202 236 

70-74 - - 286 368 69 41 184 134 

≥ 75 - - 29 83 52 49 135 49 

Missing 9 0 - - 1 1 - - 

Smoking status 

Never 35 214 144 884 91 215 - - 

Former 45 121 373 656 95 143 601 655 

Current 377 133 1380 954 90 90 549 479 

Any 10 - 4 7 55 46 - - 

Missing - - - 2 - 5 - - 

Smoking quantity (for smokers in pack/years) 

Moderate (≤ 20 pack/years) 83 152 248 619 38 122 160 230 

Heavy      (> 20 pack/years) 328 101 1504 988 145 106 990 904 

Missing 21 1 5 10 58 51 - - 
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6.2. GWAS Data Quality Control  

Quality control (QC) of the data in the genome-wide context is essential. We performed 

standard, systematic quality control on all four ILCCO/TRICL datasets prior to the association 

and interaction analyses and after QC carried out by the data providers. QC was mainly 

conducted in PLINK (Purcell, Neale et al. 2007) and EIGENSOFT (Price, Zaitlen et al. 2010). 

Comparable quality criteria were applied for each of the four GWAS. 

QC was performed on the subject level as well as on the SNP level (see Table 6.2). Standard 

filters on the subject level included checks for genotype call rate, cryptic relatedness as 

measured by identity by state (IBS) between pairs of subjects (if the IBS is too high, subjects 

might be closely related and should be excluded from further analysis), ancestral origin that 

can be determined for example by principal component (PC) (study populations should be as 

homogeneous as possible and subjects with a different ethnic background should be excluded 

from analysis), excessive number of heterozygous individuals (if the heterozygosity for a 

subject is too high, the DNA is suspected of being contaminated, low heterozygosity suggests 

that hybridization might have failed). Standard filters on the SNP level include checks for SNP 

call rate, minor allele frequency (MAF) (many genotype-calling algorithms tend to perform 

poorly for SNPs with low MAF, and the power of a study is low in detecting associations for 

SNPs with a low MAF, usually lower than 0.01), Hardy-Weinberg equilibrium (HWE) (SNPs 

are excluded if significantly more or fewer individuals are heterozygous at a SNP than 

expected, HWE is performed on unrelated control subjects with relatively homogeneous 

ancestry). 

For the GLC study, principal component analyses on a subset of around 100,000 independent 

markers was performed to access the population structure and identify ethnic outliers. As an 

outcome, we obtained 20 principal components (PC) with corresponding p-values < 0.05. 

Seventeen of them had p-values less than 10-7. To remove population outliers from the analyses 
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and restrict the sample only to individuals of Caucasian origin, we performed an iterative 

procedure integrated in EIGENSOFT to remove outliers automatically. A similar procedure 

was performed for the SLRI study. For the CE-IARC study, STRUCTURE software was used 

to identify population outliers as individuals with an ancestry probability rate of being 

Caucasians < 80%. The MD Anderson Cancer Center (MDACC) used a procedure in PLINK 

(absolute value of the nearest neighbor > 4) to identify outliers. Table 6.2 summarizes the 

quality control criteria that we used to preprocess our data. 

Table 6.2 Filters for standard quality control of ILCCO/TRICL GWASs 

Level  Filter Standard value for filter 

Subject 

Call rate ≥ 90% 

Cryptic relatedness proportion of IBD < 0.20 

Sex mismatch female F < 0.2 and male F > 0.8 

Heterozygosity mean F +/- 6 SD F, over all samples 

Ethnic origin Caucasian ancestry PLINK nearest neighbor Z score| < 4 

  

SNP 

Call rate ≥ 95% 

MAF ≥ 1% 

HWE p-values HWE in controls ≥ 10-7 

 

F, estimate for homozygosity, Wright’s inbreeding coefficient; SD, standard deviation; Recommended 

values to assign the sex are <0.2 for females and >0.8 for males; 

 

6.3. Covariates 

All four GWASs collected covariate information on individuals, such as sex, age, smoking 

status, smoking amount, and ethnicity (See Table 6.1). 

An individual’s sex was coded as 1 for female and 0 for male. Age was originally presented in 

years, later being coded as a categorical variable grouping age into blocks of five years, after 

an initial group encompassing everyone under the age of 45 years (Table 6.1). As described in 

Section 6.1, the GLC Study only contains subjects younger than 51 years. As a result, the GLC 

study only has three age groups. 
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Tobacco smoking as the major risk factor in lung cancer development was considered as the 

major environmental risk factor possibly interacting with the genetic factors of the individuals 

to influence occurrence of the disease. In all studies, smoking information was collected as 

pack-years per individual, defined as the number of cigarette packs smoked by the subject in 

one day multiplied by the duration of smoking in years (Amos, Wu et al. 2008). Hence pack-

years combines the amount smoked and the duration. Figure 6.1 demonstrates the distribution 

of pack-years in the four studies within cases and controls. Clearly, cases tend to have 

consumed more pack-years than controls. For our analysis, the smoking status of each subject 

was coded in two different ways: NE describes ever=1 and never=0 smokers and MH denotes 

heavy=1 and moderate=0 smokers. We defined never smokers as those individuals having 

consumed no more than 100 cigarettes over their life span and ever smokers as those having 

consumed more. Generally, there were few never smokers in the GWASs. The MDACC study 

considered only ever smokers. For the MH coding, we defined moderate smokers as those with 

a consumption ≤ 20 pack-years and heavy smokers with a consumption > 20 pack-years. Never 

smokers were excluded from the consideration in this model to ensure comparison across the 

GWASs, as the MDACC study did not include never smokers. 

To account for possible population stratification, PCs should be included as covariates in the 

analysis. For the GLC study, the first four significant PCs, for CE-IARC the first six significant 

PCs, representing the six countries of the data collection, for MDACC the first two PCs and 

for SLRI the first three PCs were included in the analyses. 
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Figure 6.1 Distribution of pack-years in each GWAS within cases and within controls 

 

 

6.4. Data Analysis Strategies 

To discover signals that may influence the risk of lung cancer we performed five statistical 

tests, the new EHB-GENN approach and four joint tests as described in Chapter 5, on the 

GWASs described in Section 6.2. 

After the quality control procedures and prior to the interaction analysis, we estimated G-E 

correlation effects within cases and within controls and their corresponding standard errors by 

the appropriate PLINK functions (Purcell, Neale et al. 2007). We also estimated the genetic 

main effects. We assumed a dominant mode of inheritance for all analyses, which were 

performed for both environment models never vs. ever and moderate vs. heavy (Section 6.4). 

For the joint testing, we included sex, age, and principal components as covariates and 

additionally controlled for smoking as main effect. 

To ensure that the application of EHB-GENN on the lung cancer GWASs is appropriate, we first 

evaluated the frequency of smoking exposure for both NE and MH coding in each of the four 
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GWASs. The frequency of smokers ranges from 54% to 65% with the frequency of heavy 

smokers ranging from 40% to 63%. Taking into account the sample sizes of the GWASs, we 

concluded that the exposed sub-strata are big enough to estimate the necessary parameters. We 

then looked at the distribution of the G-E correlation signals in controls for each study. There 

was evidence for the presence of a relatively large number of G-E correlation signals with 

medium and sometimes high effect size in all studies. This suggests that the application of 

EHB-GENN on these data is appropriate and can be advantageous. Figure 6.2 and Figure 6.3 

present histograms of the beta coefficients estimating G-E correlation effects in controls for all 

GWASs studies. We displayed the beta coefficients estimating G-E correlation in controls 

giving the ordered absolute values for the largest 100,000 coefficients. For the GLC study with 

HumanHap 550K, 529,730 SNPs passed quality control thresholds, here approximately 19% 

of the data are shown. For the CE-IARC, MDACC, and SLRI studies with HumanHap 300K, 

approximately 30% of the data are demonstrated. We split the data into two to three histograms 

for visualization purposes, owing to a large difference in the scales of G-E correlation effects.  

First, we applied the EHB-GENN approach to test for G×E interaction as described in Chapter 

5. To construct the EHB-GENN test statistics posterior estimates of G-E correlation effects were 

derived based on their prior estimates obtained with PLINK. Then the ZEHB-GE
NN

 statistic was 

constructed per SNP to test for significance. Results of this analysis are presented in Section 

6.7.  

Subsequently, we applied the 2 df tests proposed by Dai (Dai, Logsdon et al. 2012) and our 

EHB-GENN
J to test simultaneously for the genetic main and gene-environment interaction 

effects as described in Chapter 5. Results of the joint test are presented in Section 6.8. Table 

6.3 summarizes the tests performed.  
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Figure 6.2 Frequency histograms of the beta coefficients estimating G-E correlation effects in 

controls for each GWAS for never vs. ever smokers. Shown are the 100,000 largest coefficients 

in absolute value. 

 

NE = never versus ever smokers coding; 
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Figure 6.3 Frequency histograms of the beta coefficients estimating G-E correlation effects in 

controls for each GWAS for moderate vs. heavy smokers. Shown are the 100,000 largest 

coefficients in absolute value. 

 

MH = moderate versus heavy smokers coding;  
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Table 6.3 Summary of methods applied to ILLCO/TRICL GWASs. 

Method Test Statistics 

EHB-GENN 𝑍𝐸𝐻𝐵 −𝐺𝐸𝑁𝑁 =
𝛽̂𝑐𝑎𝑠𝑒𝑠 − (𝛽𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 )∗

√(𝜎̂𝑐𝑎𝑠𝑒𝑠)2 + 𝑉𝑎𝑟 ((𝛽𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠)∗)
 

EHB-GENN
J 𝑇𝐸𝐻𝐵−𝐺𝐸𝑁𝑁

𝐽 =
𝛽𝐺̂

2

𝑉𝑎𝑟(̂𝛽𝐺)̂
+

𝛽𝐸𝐻𝐵 −𝐺𝐸𝑁𝑁
̂ 2

𝑉𝑎𝑟(̂𝛽𝐸𝐻𝐵−𝐺𝐸𝑁𝑁
)̂
 

CCJ  (Dai, Logsdon et al. 2012) 𝑇𝐶𝐶
𝐽 =

𝛽𝐺̂

2

𝑉𝑎𝑟(̂𝛽𝐺)̂
+

𝛽𝐶𝐶̂

2

𝑉𝑎𝑟(̂𝛽𝐶𝐶 )̂
 

COJ (Dai, Logsdon et al. 2012) 𝑇𝐶𝑂
𝐽 =

𝛽𝐺̂

2

𝑉𝑎𝑟(̂𝛽𝐺)̂
+

𝛽𝐶𝑂̂

2

𝑉𝑎𝑟(̂𝛽𝐶𝑂)̂
 

MUK-EBJ (Dai, Logsdon et al. 2012) 𝑇𝑀𝑈𝐾−𝐸𝐵
𝐽 =

𝛽𝐺̂

2

𝑉𝑎𝑟(̂𝛽𝐺)̂
+

𝛽𝑀𝑈𝐾−𝐸𝐵
̂ 2

𝑉𝑎𝑟(̂𝛽𝑀𝑈𝐾−𝐸𝐵)̂
 

 

Abbreviations: EHB-GENN, parametric empirical hierarchical Bayes approach for G×E interaction; EHB-GENN
J/ 

CCJ/ COJ/ MUK-EBJ, joint method for genetic main (G) and G×E interaction effect based on original G×E test 

indicated; CC, classical case-control interaction estimator; CO, case-only interaction estimator; MUK-EB, 

empirical Bayes shrinkage estimator; 

 

6.5. Review and Replication of Results of Genetic Main Effect Analysis 

We reviewed the literature, investigating SNPs’ genetic main effect on the risk of developing 

lung cancer. Here, we first summarize some previously found results, i.e. significant 

association signals for lung cancer in Caucasian, Asian, and African American populations. 

We performed an extensive search of the PubMed database for articles concerning GWAS 

involving lung cancer. 

A number of genome regions were identified. SNPs on chromosome 15q25.1 (Amos, Wu et al. 

2008, Hung, McKay et al. 2008, Thorgeirsson, Geller et al. 2008), on chromosome 5p13.3 

(McKay, Hung et al. 2008, Wang, Broderick et al. 2008, Landi, Chatterjee et al. 2009), on 

chromosome 6p21.33 (Wang, Broderick et al. 2008), on 12p13.3 (Shi, Chatterjee et al. 2012), 

and on chromosome 9p21.3 (Timofeeva, Hung et al. 2012). The most famous signal for the 
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association with lung cancer consists of two SNPs on chromosome 15q24-25, namely 

rs1051730 mapped to the CHRNA3 gene and rs8034191, mapped to the AGPHD1 gene. 

Originally this signal was reported by three independent research groups in different datasets 

on the same day. Our search identified 40 potentially relevant articles for this association. 

Amos and colleagues (Amos, Wu et al. 2008) reported the association of these two variants 

and lung cancer based on the case-control sample of 1,154 current and former (ever) smoking 

cases of European ancestry and 1,137 frequency-matched, ever-smoking controls from 

Houston, Texas. They also replicated the findings on an additional cohort of 711 cases and 632 

controls from Texas and 2,013 cases and 3,062 controls from the UK. They reported an odds 

ratio of 1.32 and p-value (p < 10-17) of the combined analysis for both SNPs (Amos, Wu et al. 

2008). Many other studies replicated this signal in case-control and meta-analyses with p-

values significant for association in Caucasians (Hung, McKay et al. 2008, Thorgeirsson, 

Geller et al. 2008, Broderick, Wang et al. 2009, Lips, Gaborieau et al. 2010, Truong, Hung et 

al. 2010, Fehringer, Liu et al. 2012, Timofeeva, Hung et al. 2012). The same two SNPs were 

also identified as influencing the risk of lung cancer in Asians (Truong, Hung et al. 2010, Gu, 

Dong et al. 2012) and African Americans (Amos, Pinney et al. 2010). Additionally, a single 

SNP, rs16969968 on chromosome 15q mapped to the CHRNA5 gene, was identified as being 

associated with lung cancer risk in Europeans (Lips, Gaborieau et al. 2010) and African 

Americans (Walsh, Amos et al. 2012). 

Another interesting signal for the association with lung cancer was formed by SNPs on 

chromosome 5p15, namely rs2736100, which belongs to the TERT gene and rs402710, located 

on the CLPTM1L gene. These two SNPs were replicated in many large meta-analytic GWASs, 

including over 10,000 individuals and as many as 21 different GWASs to confirm signals 

(Wang, Broderick et al. 2008, Truong, Hung et al. 2010, Timofeeva, Hung et al. 2012). For 

example, Timofeeva and colleagues reported the association of rs2736100 (OR = 1.14, p = 
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5.00×10-8) and the association of rs402710 (OR = 0.87, p = 1.70×10-7) with the risk of lung 

cancer based on a meta-analysis of 14,900 cases and 29,485 controls of Caucasian origin 

(Timofeeva, Hung et al. 2012). A candidate SNP meta-analysis study for the variant rs2736100 

confirmed the association of this marker with lung cancer risk. The SNP rs2736100 was 

associated with the risk of lung cancer in a dominant model (OR = 1.14, 95% CI: 1.01-1.28; p 

= 0.03) based on 14,492 subjects (Wang, Zhang et al. 2013). A few meta-analyses reported the 

association of rs2736100 with the risk of adenocarcinoma (OR = 1.23, p = 3.02×10-7) e.g. 

(Landi, Chatterjee et al. 2009). These signals were also confirmed in the Chinese (Hsiung, Lan 

et al. 2010, Li, Yin et al. 2013). 

The third interesting signal comprises markers on chromosome 6p21. Hung and colleagues 

(Hung, McKay et al. 2008) reported that a signal of ten SNPs clustered in a segment of 

approximately one mega-base on chromosome 6p with rs432479 was the strongest in their data 

(Hung, McKay et al. 2008). However Hung et al. (Hung, McKay et al. 2008) mentioned that 

this association is not confirmed and needs to be studied further and replicated. In the same 

year, Wang et al. (Wang, Broderick et al. 2008) published a study describing the association of 

another SNP, rs3117582, mapped to BAT3-MSH5, with p = 4.97 × 10−10 in the same 

chromosomal region, based on their pooled analyses of 5,095 cases, and 5,200 controls.   

Many other SNPs across the genome have been reported to influence the risk of lung cancer 

generally or to be associated with the specific histology, such as NSCLC, SCLC, or 

adenocarcinoma risk. However, not all of these findings have been replicated in other studies 

or populations; therefore we only briefly mention some of them. For example, Timofeeva et al. 

mentioned that SNPs on 12p13 demonstrate an association with lung cancer. Furthermore, it 

was shown in the same study that the 9p21.3 variation is a determinant of squamous cell lung 

cancer risk (Timofeeva, Hung et al. 2012) in Caucasians. Novel SNPs on chromosome 15q, 
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rs2036534, rs667282, rs12910984, and rs6495309 were reported to be in association with lung 

cancer risk in the Chinese, but this was not confirmed in Caucasians (Wu, Hu et al. 2009). 

Since not all of the published studies controlled for smoking in their analyses, which is 

important from our point of view, we obtained the main effect analysis results for each of four 

GWASs from the research groups of CE-IARC, GLC (our group), SLRI, and MDACC, 

controlled for sex, age, PC, and main effect of smoking. None of the SNPs passed the genome-

wide significant level after including smoking as covariate in any GWAS. 

In the CE-IARC Study, two SNPs on chromosome 15q25 rs8034191 and rs1051730 had p-

values < 10-5. These two SNPs were reported to be in association with lung cancer in the CE-

IARC GWAS by Hung and colleagues (Hung, McKay et al. 2008). They reported 

corresponding SNP p-values, 8.8×10-10 (rs8034191) and 5.4×10-9 (rs1051730) in the model not 

adjusted for smoking. Another two markers had p-values lower than 10-5, rs10516367 

(KCNIP4 gene) and rs1407503 (GALNT12 gene). 

For the GLC Study, there were some SNPs with corresponding p-values ≤ 10-5 spread along 

the genome, however no clear signal for the presence of a genetic main effect for any of the 

SNPs. Among those, three SNPs belonged to genes, namely rs2866908 (DKK2), rs2916508 

(CTNNA2), rs9643575 (TRIM55). 

For the SLRI Study, six markers had p-values ≤ 10-5, however only two among them were 

mapped to genes. These two SNPs are rs12112953 (ADCY1), rs266508 (RGSL1). 

In the MDACC Study, no SNPs in coding regions or the close neighborhoods of genes with p-

values ≤ 10-5 were identified after adjusting for the main effect of smoking. 
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6.6. Results for G×E Interaction Analysis 

Generally, we do not discuss or present the results of G×E interaction analysis on those SNPs 

located outside of known genes or further than ±500Kb from protein coding regions. For such 

signals it is hard to argue for any association with the specific trait. We therefore omitted them 

from the discussion. For all the studies and both exposure models (NE and MH) in the analysis 

applying EHB-GENN to test for G×E interaction, we only describe SNPs with p-values of 

interaction p ≤ 10-4 here. 

In the CE-IARC study, we did not identify any SNPs with genome-wide significant interaction 

effect for either exposure models, NE or MH. In the NE model, there was only one SNP located 

in the coding region mapped to the C1orf21 gene on chromosome 1 with p=7.02×10-6. Other 

SNPs investigated for this study and NE coding with p-values ≤ 10-4 were located in non-coding 

regions and therefore are not discussed. For the MH coding, two SNPs located on chromosome 

14, rs2302591 and rs175891, mapping to the TTLL5 gene, form an interesting signal. This 

tumor suppressor candidate gene encodes a member of the tubulin tyrosine ligase-like protein 

family. This protein may function as a co-regulator of glucocorticoid-receptor-mediated gene 

induction and repression. This protein may also function as an alpha tubulin polyglutamylase 

(Uhlen, Oksvold et al. 2010). Another signal here consists of three SNPs on chromosome 16, 

rs200528 (p = 3.05×10-5), rs3803716 (p = 2.94×10-5), and rs2112783 (p = 2.79×10-5) that 

belong to the TNRC6A gene. 

In the GLC study with NE exposure coding, two SNPs, rs13244987 and rs13438768, reached 

genome-wide significance with p-values of 3.33×10-8 and 9.12×10-8, respectively. Both 

markers belong to the human protein coding locus LOC645249, known to be expressed 

differently in tumor and normal cell tissues. Marker rs7308621 on chromosome 12 in the RERG 

gene is worth mentioning, as this gene participates in tumor formation. Another interesting 

signal for this analysis comprises three SNPs on chromosome 13, mapping to the ENOX1 gene, 
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namely rs7982922 (p = 7.53×10-7), rs10492572 (p = 8.20×10-6), and rs10492573 (p = 

5.63×10-6). For the GLC, MH coding, two SNPs in the ARHGEF38 gene with p-values < 10-5 

appeared. Another signal for this analysis references three SNPs on chromosome 9 located in 

the TRPM3 gene. These SNPs are rs1421156 with p = 1.72×10-6, rs656875 with p = 1.30×10-

6, and rs672801 with p = 4.43×10-6. 

In the SLRI study and NE exposure model there are two signals of interest. The first signal 

consists of three SNPs (rs1337862, rs1337863, rs945949) with p-values of the order of 10-4 on 

chromosome 6, mapping to the NKAIN2 gene. It is known that the chromosomal translocation 

involving this gene is a cause of lymphoma. The second suggestion comprises five SNPs 

(rs12956176, rs4486983, rs9646509, rs1880113, rs1403762) with p-values of the order of 10-

5 on chromosome 18 in the KLHL14 gene. For the MH coding, a single SNP is an interesting 

signal; rs6872156 with p = 8.31×10-6 on chromosome 5 in the DUSP1 gene. The role of this 

gene is increasingly recognized in tumor biology (Moncho-Amor, Ibanez de Caceres et al. 

2011). Furthermore, two SNPs in ADAMTSL1 and two SNPs in the closure of the WWOX gene 

were identified. 

In the MDACC Study, MH analysis, there was only one SNP; rs9323666 (p = 3.79×10-5) 

located on chromosome 14 in the NRXN3 gene. The rest of the SNPs with relatively small p-

values in this analysis were spread along the genome and were not located in any genes or their 

surroundings. Table 6.4 summarizes our findings and gives further description of gene 

characteristics. Figure 6.3 portrays Manhattan plots for GWASs for the G×E interaction 

analysis based on EHB-GENN. 
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Table 6.4 SNPs discovered by EHB-GENN in G×E Interaction Analysis of the ILCCO/TRICL 

GWASs 

GWAS E SNP p ZEHB-GE
NN CHR Mapping* characteristics** 

CE-IARC NE rs2779286 7.02×10-6 1 C1orf21 Human protein coding gene  

MH 

rs1455701 4.31×10-5 1 
+/- 500kb  

of the  
ERRFI1 

Rare mutations in MIG-6 have 
been identified in human lung 
cancer(Zhang 2008). 

rs7620618 2.12×10-6 3 ±GOLGA4 

Human protein coding gene, 
postulated to play a role in Rab6-
regulated membrane-tethering in 
the Golgi apparatus (Meyer, 
Brieger et al. 2009). 

rs4563628 2.42×10-4 5 
+/- 500kb  
of the TAG 

tumor antigen gene, 
miscellaneous RNA 

 
rs2302591 
rs175891 

 
4.35×10-6 
7.85×10-6 

 
14 

 

TTLL5 
 

This protein may function as a 
coregulator of glucocorticoid 
receptor mediated gene induction 
and repression (Uhlen, Oksvold et 
al. 2010). 
Tumor-suppressor candidate 
(Liang, Wang et al. 2005). 

rs1126289 4.31×10-5 16 PRKCB 

Protein kinase C (PKC) family 
members are known to be 
involved in diverse cellular 
signaling pathways. PKC family 
members also serve as major 
receptors for phorbol esters, a 
class of tumor promoters (Uhlen, 
Oksvold et al. 2010). 

 rs200528 
rs3803716 
rs2112783 

3.05×10-5 
2.94×10-5 
2.79×10-5 

16 TNRC6A 

Expression TNRC6A delocalizes 
other GW-body proteins and 
impairs RNAi and mRNA-induced 
gene silencing (Uhlen, Oksvold et 
al. 2010). 

GLC 
 
 
 
 
 
 
 
 
 
 
 

NE 

rs13244987 
rs13438768 

3.33×10-8 
9.12×10-8 

7 LOC645249 

LOC645249 is a human protein 
coding gene, expressing 
differently between tumor and 
normal samples. The expression 
profile of the gene has been 
previously studied in human non-
small-cell lung cancer (Takahashi, 
Forrest et al. 2009). 

rs7308621 4.31×10-4 12 RERG 

RERG, a member of the RAS family 
of GTPases, inhibits cell 
proliferation and tumor formation 
(Finlin, Gau et al. 2001). 
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rs7982922 
rs10492573 
rs10492572 

7.53×10-7 
5.63×10-6 
8.20×10-6 

13 ENOX1 

Plasma membrane electron 
transport pathways are involved in 
functions such as cellular defense, 
intracellular redox homeostasis, 
and control of cell growth and 
survival (Uhlen, Oksvold et al. 
2010). 
Candidate growth-related 
constitutive hydroquinone 

rs4939642 4.65×10-5 18 MAPK4 

Mitogen-activated protein (MAP) 
kinase 4 is a member of the 
mitogen-activated protein kinase 
family (Uhlen, Oksvold et al. 2010). 
MAP kinase pathways constitute 
one of the hallmarks of many 
cancers (Kostenko, Dumitriu et al. 
2012). 

MH 
 

rs17035917 
rs17035960 

4.65×10-6 
4.65×10-6 

4 ARHGEF38 

Pancreatic islets, lung 
macrophages, breast and 
myocytes as well as basal cells in 
prostate, squamous and 
respiratory epithelium and 
showed strong staining (Uhlen, 
Oksvold et al. 2010). 

   rs1421156 
rs656875 
rs672801 

1.72×10-6 
1.30×10-6 
4.43×10-6 

9 TRPM3 

The product of TRPM3 belongs to 
the family of transient receptor 
potential (TRP) channels. TRP 
channels are cation-selective and 
are important for cellular calcium 
signaling and homeostasis (Uhlen, 
Oksvold et al. 2010). 

SLRI 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NE 

rs1337862 
rs1337863 
rs945949 

1.23×10-4 
1.11×10-4 
1.10×10-4 

6 NKAIN2 

The protein encoded by this gene 
is a transmembrane protein that 
interacts with the beta subunit of 
Na, K-ATPase (ATP1B1). A 
chromosomal translocation 
involving this gene is a cause of 
lymphoma.  

rs12956176 
rs4486983 
rs9646509 
rs1880113 
rs1403762 

1.55×10-5 
1.75×10-5 
3.37×10-5 
2.98×10-5 
8.14×10-5 

18 KLHL14 
protein coding, interacts with 
Torsin A 

MH rs6872156 8.31×10-6 5 DUSP1 

Candidate cancer biomarker. 
DUSP1/MKP1 is a dual-specific 
phosphatase that regulates 
MAPKs activity, with an 
increasingly recognized role in 
tumor biology (Moncho-Amor, 
Ibanez de Caceres et al. 2011). 
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rs6475227 
rs7863071 

4.13×10-5 
4.62×10-5 

9 ADAMTSL1 

ADAMTSL1 encodes a secreted 
protein and member of the 
ADAMTS family. This protein may 
have important functions in the 
extracellular matrix” (Uhlen, 
Oksvold et al. 2010). 

rs1876761 
rs9927953 

3.11×10-5 
7.66×10-6 

16 
+/- 500kb  

of the 
WWOX 

WW domain-containing proteins 
play an important role in the 
regulation of a wide variety of 
cellular functions such as protein 
degradation, transcription, and 
RNA splicing (Uhlen, Oksvold et al. 
2010). 

MDACC 

MH rs9323666 3.79×10-5 14 NRXN3 

Neurexins are a family of proteins 
that function in the vertebrate 
nervous system as cell adhesion 
molecules and receptors (Uhlen, 
Oksvold et al. 2010). 
Polymorphic site of NRXN3 gene 
was significantly associated with 
risk of breast cancer (Kusinska, 
Górniak et al. 2012). NRXN3 
polymorphisms are associated 
with alcohol dependence 
(Hishimoto, Liu et al. 2007). 

 

Abbreviations: genome-wide association study, GWAS; single nucleotide polymorphism, SNP; a parametric 

empirical hierarchical Bayes approach for G×E interaction, EHB-GENN; E = environmental coding (NE = never 

vs. ever, MH = moderate vs. heavy); p, p-value; 

*Listed are only SNPs located within ±500kb of coding regions and with p-values < 10-4  

**Characteristics or function of the gene or function of the nearest gene to the SNP 
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Figure 6.4 Manhattan plots of p-values for EHB-GENN. Depicted are p-values for each SNP 

 

 

Solid red line specifies 10-8 level of significance; Solid green line specifies 10-5 level of significance;
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6.7. Results of Joint Tests for Genetic Main and G×E Interaction Effects  

We performed four joint tests, namely EHB-GENN
J, as well as CCJ, COJ, MUK-EBJ, on our 

GWAS data, to search for the association signals possibly missed by classic main effect or pure 

interaction genome-wide association tests. For all the studies and both exposure models, NE 

and MH, we only address SNPs with p-values of interaction effect ≤ 10-5 located within ±500kb 

of coding regions. 

In the CE-IARC Study with NE coding, two SNPs on chromosome 15q24-25 rs1051730 and 

rs8034191 mapped to the nicotine acetylcholine acceptor subunit CHRNA3 and AGPHD1 

genes had genome-wide significant p-values applying 𝑇𝐸𝐻𝐵−𝐺𝐸𝑁𝑁

𝐽
 (p = 6.0×10-10, p = 2.4×10-

9). These two markers were previously reported as being in association with lung cancer, 

identified by the classic main genetic effect test (Amos, Wu et al. 2008, Hung, McKay et al. 

2008, Amos, Gorlov et al. 2010, Fehringer, Liu et al. 2012, Timofeeva, Hung et al. 2012) and 

discussed in Section 6.4. For the same GWAS with MH coding, the same two SNPs rs1051730, 

and rs8034191 had greater p-values; however, they remained significant on the genome-wide 

level (p = 5.8×10-9, p = 6.7×10-8). Another signal of two SNPs, rs13106574 (p = 8.5×10-6), 

rs13149938 (p = 1.8×10-6) on chromosome 4 that both belong to the gene SLC10A6 was 

discovered in this analysis. The SLC10A6 locus is an important human sodium-dependent 

organic anion transporter gene, member 6 of the solute carrier family 10 (sodium/bile acid 

cotransporter family). 

Joint 𝑇𝐶𝐶
𝐽

 identified a SNP on chromosome 5p15 that mapped to the TERT gene: rs2736100 

with corresponding p-value of 8.5×10-6. The telomerase reverse transcriptase (TERT) gene is a 

candidate lung cancer biomarker. Recently, a number of studies reported TERT variant 

rs2736100 in association with lung cancer impacting differently on lung cancer histology in 

European populations (Landi, Chatterjee et al. 2009, Truong, Hung et al. 2010, Brenner, 
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Boffetta et al. 2012, Timofeeva, Hung et al. 2012). SNPs of the TERT gene including 

rs2736100 were also found to be associated with the risk of lung cancer in the Chinese 

population (Li, Yin et al. 2013, Myneni, Chang et al. 2013). This variant is discussed in Section 

6.5. However, it is important to mention that it was previously only identified in a large scale 

meta-analysis study and that no single study prior to this has reported this signal. We also 

identified signals on chromosomes 16 and 14 with 𝑇𝐸𝐻𝐵−𝐺𝐸𝑁𝑁

𝐽
 described in Table 6.5 for CE-

IARC, MH. 

In the GLC study with never vs. ever coding, five SNPs with p-values lower than 10-5 on 

chromosome 13 that belong to different genes including ENOX1 were identified by joint 

𝑇𝐸𝐻𝐵−𝐺𝐸𝑁𝑁

𝐽
 analysis (rs1014744, rs10492572, rs10492573, rs10507886, and rs7982922), see 

Table 6.4. The ENOX1 protein is the constitutive ENOX family protein with an essential role 

in the enlargement phase of cell growth (Jiang, Gorenstein et al. 2008). It belongs to the same 

protein family and is very similar to the ENOX2 gene that expresses on the cell surface of 

malignancies and is detectable in the serum of patients with cancer (Cho, Chueh et al. 2002, 

Hostetler, Weston et al. 2009). Three regions on chromosome 13 including 13q14, where 

ENOX1 is mapped, were reported to influence non-small-cell lung cancer (NSCLC) 

development (Tamura, Zhang et al. 1997). Another signal in the same analysis (GLC, NE) 

comprises four SNPs on chromosome 7 rs13244987 (p = 5.1×10-8), rs13438768 (p = 4.2×10-

8), rs847916 (P = 7.9×10-6), rs847918 (P = 6.3×10-8). With the MH model, we found the 

signals on chromosome 9 as described in Table 6.5 and some additional individual association 

signals spread along the genome. 

In SLRI NE, we identified the following SNPs with 𝑇𝐸𝐻𝐵−𝐺𝐸𝑁𝑁

𝐽
. Two SNPs rs10517026 (p = 

1.98×10-6) and rs10517026 (p = 1.61×10-6) on chromosome 4 mapped to the protein coding 

region. One marker, namely rs12956176 located in the KLHL14 gene on chromosome 18, had 
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a p-value ≤ 10-6 with 𝑇𝐸𝐻𝐵−𝐺𝐸𝑁𝑁

𝐽
 and ≤ 10-7 with 𝑇𝐶𝐶

𝐽
. For the SLRI Study and the MH model, 

the 𝑇𝐸𝐻𝐵−𝐺𝐸𝑁𝑁

𝐽
 test did not identify any SNPs with p-values ≤ 10-5. The 𝑇𝐶𝐶

𝐽
test revealed five 

SNPs with p-values ≤ 10-5 that belong to genes. Data are in Table 6.5. 

In MDACC, MH analysis, SNPs in the SLC24A3 gene (rs1555852, rs2876537, rs4239730) on 

chromosome 20 form possible association signal 𝑇𝐶𝐶
𝐽

  (p = 4.6×10-6, p = 3.3×10-6, p = 2.9×10-

6). The SLC24A3 product is known as prostate cancer-associated protein 6. 

The most prominent findings of simultaneous testing with each coding (NE, MH), each joint 

test statistic (EHB-GENN
J, CCJ, COJ, MUK-EBJ) and for each GWAS (CE-IARC, GLC, SLRI, 

MDACC) are summarized in Table 6.5. In Table 6.5, only SNPs with corresponding p-values 

≤ 10-5 for at least one of the joint tests and those located within the known genes or maximum 

±500Kb away from the gene were included. Manhattan plots in Figure 6.5 visualize the results 

for each GWAS. Generally EHB-GENN
J has similar power and as the consequence similar p-

values as COJ and MUK-EBJ and smaller p-values compared to CCJ. However when SNP has 

protective effect against the outcome (negative estimated coefficient of the association with the 

trait) then CCJ has greater power and as consequence lower p-values for such signals. An 

example of the later statement are SNPs rs2736100 (TERT, CE-IARC GWAS, MH) and 

rs9347645 (PARK2, SLRI GWAS, MH) in Table 6.5. Even though the simulation study in 

Chapter 5 reflected slight power loss of the EHB-GENN compared to both COJ and MUK-EBJ 

in real data we observed only minor increase in p-values for the important signals. For example, 

SNP rs1051730 (CHRNA3, CE-IARC GWAS, NE) has p-value 5.97×10-10 testing with EHB-

GENN
J and 5.93×10-10 and 6.42×10-10 for COJ, MUK-EBJ respectively. 
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Table 6.5 Markers indicated by joint tests in ILCCO/TRICL data with p-values ≤ 10-5 for at least one of the joint tests 

GWAS E SNP CHR MA Gene p TJ
EHB-GE(NN) p TJ

cc p TJ
co p TJ

MUK-EB 

CE-IARC 

NE rs2779286** 1 G C1orf21 9,00×10-06 1,30×10-03 8,72×10-06 1,64×10-04 
 rs38012 7 G GLCCI1 8,09×10-06 1,72×10-04 7,94×10-06 5,38×10-05 
 rs3784179 14 C AKAP6 2,79×10-05 3,67×10-06 2,86×10-05 4,02×10-05 
 rs1051730* 15 A CHRNA3 5,97×10-10 1,67×10-09 5,93×10-10 6,42×10-10 
 rs8034191* 15 C AGPHD1 2,37×10-09 5,34×10-09 2,36×10-09 2,63×10-09 
 rs9302935 17 G LOC400618 1,27×10-03 1,93×10-06 1,29×10-03 3,09×10-05 
 rs1006957 17 T UBB 8,25×10-06 1,35×10-05 8,27×10-06 8,21×10-06 
MH rs6685121 1 G LOC100505872 3,71×10-06 5,29×10-06 3,86×10-06 4,45×10-06 
 rs7620618** 3 T ±GOLGA4 8,10×10-07 1,99×10-03 8,26×10-07 2,47×10-05 
 rs13149938 4 G SLC10A6 1,80×10-06 4,09×10-06 1,79×10-06 1,81×10-06 
 rs13106574 4 C SLC10A6 8,54×10-06 1,44×10-05 8,46×10-06 8,77×10-06 
 rs2736100 5 C TERT 4,70×10-04 8,50×10-06 4,95×10-04 1,34×10-04 
 rs4563628** 5 C ±TAG 5,76×10-04 7,52×10-06 5,87×10-04 6,79×10-04 
 rs4324798 6 A LOC401242 9,35×10-06 3,00×10-05 9,51×10-06 1,30×10-05 
 rs1076204 11 C ABCC8 3,30×10-05 9,33×10-06 3,48×10-05 1,46×10-05 
 rs2302591** 14 T TTLL5 2,90×10-06 5,37×10-03 2,88×10-06 4,04×10-06 
 rs175891** 14 G TTLL5 9,29×10-06 9,45×10-03 8,93×10-06 1,47×10-03 
 rs1051730* 15 A CHRNA3 5,76×10-09 3,42×10-09 5,77×10-09 5,76×10-09 
 rs8034191* 15 C AGPHD1 6,72×10-09 6,33×10-09 6,72×10-09 6,72×10-09 
 rs200528 16 A TNRC6A 9,29×10-06 3,37×10-03 8,74×10-06 5,29×10-04 
 rs2112783 16 A TNRC6A 9,70×10-06 3,87×10-03 9,13×10-06 5,86×10-04 
 rs9937754 16 T LOC1009 5,47×10-06 8,66×10-05 5,96×10-06 2,25×10-05 
 rs12944442 17 A ANKFN1 7,57×10-06 9,88×10-06 7,47×10-06 9,51×10-06 

  rs2866908 4 T DKK2 6,26×10-06 1,42×10-05 6,26×10-06 6,86×10-06   rs2866908* 4 T DKK2 6,26×10-06 1,42×10-05 6,26×10-06 6,86×10-06 

GLC 

NE rs6891265 5 C ±SLC27A6 6,81×10-06 2,89×10-05 6,82×10-06 9,77×10-06 
 rs13244987** 7 A LOC645249 5,09×10-08 2,37×10-05 5,04×10-08 5,09×10-08 
 rs13438768** 7 C ±LOC645249 4,19×10-08 1,32×10-04 4,23×10-08 4,19×10-08 
 rs847916* 7 G ±SCIN 7,91×10-06 1,05×10-05 7,90×10-06 9,87×10-06 
 rs847918 7 T ±SCIN 6,34×10-06 1,93×10-05 6,33×10-06 6,89×10-06 
 rs10849065 12 T B4GALNT3 6,78×10-06 7,79×10-04 6,79×10-06 3,42×10-04 
 rs7982922** 13 A ENOX1 3,01×10-07 1,20×10-06 3,00×10-07 5,46×10-07 
 rs10492572** 13 T ENOX1 1,85×10-06 1,15×10-05 1,84×10-06 1,86×10-06 
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 rs10492573** 13 G ENOX1 2,27×10-06 1,32×10-05 2,29×10-06 2,31×10-06 
 rs10507886 13 T ±POU4F1 8,34×10-06 1,45×10-04 8,28×10-06 1,79×10-05 
 rs1014744 13 T ±ATXN8OS 8,85×10-06 9,09×10-05 8,81×10-06 4,75×10-05 
 rs9911873 17 G LUC7L3 3,46×10-04 8,89×10-06 3,47×10-04 5,14×10-05 
 rs847916 7 G ±SCIN 7,67×10-06 7,66×10-06 7,67×10-06 7,62×10-06  rs2866908* 4 T DKK2 4,98×10-05 3,84×10-06 4,98×10-05 1,10×10-05 
MH rs9643575* 8 C TRIM55 1,69×10-06 6,69×10-06 1,68×10-06 1,69×10-06 
 rs4876151 8 C ±MYOM2 6,12×10-06 5,66×10-05 6,13×10-06 6,13×10-06 
 rs656875** 9 C TRPM3 7,56×10-06 7,08×10-04 7,54×10-06 8,55×10-06 
 rs1421156** 9 G TRPM3 9,52×10-06 6,09×10-04 9,57×10-06 1,33×10-05 

SLRI 

NE rs10517026* 4 G LOC100507930 1,98×10-06 4,23×10-07 1,98×10-06 2,40×10-06 
rs10517031* 4 G LOC100507930 1,61×10-06 3,39×10-07 1,61×10-06 1,86×10-06 
rs12956176** 18 A KLHL14 5,40×10-05 2,25×10-06 5,43×10-05 4,43×10-05 

MH rs10517026 4 G LOC100507930 7,01×10-05 6,66×10-06 7,01×10-05 7,13×10-05 
rs10517031* 4 G LOC100507930 3,48×10-05 3,28×10-06 3,48×10-05 3,65×10-05 

  rs9347645 6 C PARK2 2,81×10-03 3,81×10-06 2,82×10-03 1,47×10-03 
  rs482449 11 T ±MIR100HG 1,26×10-01 9,45×10-07 1,26×10-01 7,43×10-04 

 rs11631489 15 G AGBL1 1,10×10-01 3,29×10-06 1,10×10-01 5,15×10-03 

MDACC 
MH rs2538909 7 A ±ZNF804B 2,52×10-07 6,92×10-07 2,53×10-07 7,82×10-07 
 rs552247 7 G ±MEOX2 9,90×10-06 7,79×10-06 9,93×10-06 1,19×10-05 
 rs12276659 11 G PARVA 9,53×10-06 3,07×10-03 9,55×10-06 9,54×10-06 

  rs4239730 20 A SLC24A3 4,59×10-05 2,90×10-06 4.63×10-05 2.49×10-05 
  rs2876537 20 C SLC24A3 1.91×10-04 3.30×10-06 1.93×10-04 2.63×10-05 
  rs1555852 20 A SLC24A3 8.61×10-05 4.57×10-06 8.69×10-05 3.66×10-05 

 

Abbreviations: GWAS, genome-wide association study; SNP, single nucleotide polymorphism; CHR, chromosome number; MA, minor allele; EHB-GENN, a parametric empirical 

hierarchical Bayes approach for G×E interaction; ILCCO, International Lung and Cancer Consortium/ TRICL, Transdisciplinary Research in Cancer of the Lung; ±, denote that SNP 

locates ±500Kb of the gene; CC, classical case-control interaction estimator; CO, case-only interaction estimator; MUK-EB, empirical Bayes shrinkage estimator; TJ, joint test statistics; 

p, p-value associated with the joint test 

  E = environmental coding (NE = never vs. ever, MH = moderate vs. heavy; Gene = SNP to gene or nearest gene annotation; * denotes SNPs with p-value ≤ 10-5 testing for classical 

genetic main effect; ** denotes SNPs with p-value ≤ 10-5 testing for G×E interaction only by EHB-GENN in bold are markers with  p-value≤ 10-7; 
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Figure 6.5 Manhattan plots of p-values for SNPs joint effect based on the EHB-GENN test for G×E interaction component 

 

 

Red line specifies 10-8 level of significance; Green line specifies 10-5 level of significance; 
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Chapter 7 

7. Discussion 

One objective of research in human genetics is to understand how genetic and environmental 

factors interact to cause different diseases. In statistical terms, G×E interaction is present when 

the effect of the genotype on disease risk depends on the level of exposure to an environmental 

factor, or vice versa (Clayton and McKeigue 2001). In this dissertation, three major concerns 

to studies of G×E interaction were addressed: the extent of bias due to the uncovered population 

stratification; the presence of G-E correlation; and the lower power of common tests to identify 

an interaction. 

In Chapter 3, we focused on the evaluation of bias due to population stratification in studies of 

G×E interaction. We derived an equation to evaluate the population stratification bias for the 

case-control estimator of the interaction odds ratio. We demonstrated analytically that 

population stratification bias can reach an intolerable level for case-control studies of G×E 

interaction. We compared bias in estimates of G×E interaction effects in case-control and case-

only studies with bias in genetic main effect estimates. We concluded that the case-control 

design is significantly more robust to population stratification than the case-only design. On 

average, the degree of bias for the G×E interaction effect estimate in case-control studies is 

similar to that in genetic main effect studies and constitutes about 2%-3%. Exceptions are some 

extreme situations that cannot easily be avoided, an example of which is the admixture of two 

subpopulations in a study sample. In this situation, the bias can reach on average 10%-15%. 

Researchers should be aware that bias can theoretically rise up to 30%-40% in case-control 

studies of interactions and to over 50% in case-only studies. 

We compared common methods to detect G×E interaction in terms of their robustness to 

population stratification. These methods are the classic case-control approach, the case-only 
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approach, Mukherjee’s empirical Bayes method, Murcray’s two step approach, and the 

empirical hierarchical Bayes method to G×E interaction, based on the chi distribution. We 

demonstrated that principal component analysis adjustment reduced population stratification 

bias to almost zero and is thus also appropriate to correct for this bias in G×E interaction 

studies. 

EHB-GECHI was previously demonstrated as an attractive method for GWAS of G×E 

interactions (Sohns, Viktorova et al. 2013). Therefore, further extensions of the EHB-GECHI 

approach were presented in Chapter 4. Extending the original work of Melanie Sohns (Sohns 

2012), we demonstrated that the method can handle multilevel and continuous genotype and 

exposure variables. We also showed that it is applicable under the assumption of the log-

additive genetic model on the multiplicative scale and can deal with covariate adjustment. 

These extensions are essential, as they allow more flexibility in the use of the original EHB-

GECHI approach. In many situations, information on the exposure is collected as a categorical 

or continuous variable. Therefore, the ability of the approach to work with the original data 

without their reduction to a binary variable is important and may help in obtaining a more 

precise estimation. 

Generally, the ability of the particular statistical approach to handle various genetic models 

such as additive, dominant, and recessive, makes it more attractive, since a properly chosen 

model adds power to the interaction test. By means of the simulation study and reliance on 

asymptotic theory, we revealed that EHB-GECHI is valid under the assumption of the log-

additive risk inheritance model. The validity of the approach for dominant and recessive 

models is illustrated in the dissertation of Sohns (Sohns 2012). The additive risk model is 

commonly used to model the risk inheritance mode in epidemiologic study, since it takes into 

account natural genotype coding, according to the minor allele count. Furthermore, it performs 

optimally under the unknown true inheritance mode scenario. 
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The adjustment for major covariates such as sex, age, and principal components for ethnicity 

(as discussed in Chapter 3) is often needed in genetic association and interaction studies. 

Therefore, proof of the validity of the EHB-GECHI approach under the adjusted analysis is 

clearly important. We showed that if independence of the interaction OR and the covariate is  

given, then separate adjustment within cases and controls leads to the same estimates as those 

resulting from adjustment in the whole case-control sample. This proof validates EHB-GECHI 

after separate adjustment within cases and controls, as required by the approach. We proposed 

using log-linear models when the independence assumption is not valid, in order to obtain 

adjusted estimates for cases and controls simultaneously. However, a limitation of the log-

linear regression framework is its ability to model only categorical variables but not continuous 

ones. 

In Chapter 5, we developed an alternative, computationally much faster approach (it requires 

three times less computer time (CPU)) compared to the EHB-GECHI, approach. Another 

prominent advantage of our novel EHB-GENN method is that the analytically closed form of 

the posterior distribution for the test statistics of this approach is available. EHB-GENN is based 

on a two-stage hierarchical model, necessary to estimate G-E correlation effects in controls 

effectively. It is proposed as a tool to account for population-based G-E correlation, one of the 

biggest concerns in studies of G×E interactions. It is well known that the Gaussian family is a 

self-conjugate with respect to a Gaussian likelihood function. Therefore, choosing a normal 

distribution as a prior probability distribution for the mean of G-E correlations ensures that the 

posterior distribution is also normal. We assumed normal distributions at both stages, 

benefitting from the resulting analytical normal form of the posterior distribution and also from 

the closed form of the posterior variance of G-E correlation estimates. This is in contrast to 

EHB-GECHI. Our novel approach controls type I error substantially better than EHB-GECHI and 

suffers only minor power loss. The EHB-GENN approach is more stable in terms of the 
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hyperparameter estimation, as it requires only one common parameter to be estimated, 

gathering information on the whole available data in contrast to only three hyperparameters for 

EHB-GECHI. It is easily extendable to handle multilevel or continuous genotype and exposure 

variables, as this works in the same manner as shown for EHB-GECHI in Chapter 4. We 

implemented both EHB-GECHI and EHB-GENN in an R package that has been named EHBg×e. 

Performing an extensive simulation study, we evaluated properties of the EHB-GENN approach. 

Based on the observed results, we recommend performing EHB-GENN to test for the interaction 

when a large number of G-E correlation signals with moderate to high effect size are expected 

to exist in the study sample. We also suggest applying EHB-GENN in studies with frequent 

exposure variable, so that the strata are large enough for the hyperparameter estimation. EHB-

GENN can be applied for significance testing in GWAS to search for G×E interaction signals 

without assuming G-E independence. This is in contrast to the case-only or Mukherjee’s 

empirical Bayes tests. It maintains adequate power and almost always performs better than the 

case-control or Murcray’s two step tests. Case-control or Murcray’s two step also do not require 

any assumption of G-E independence. 

Joint tests are performed to detect variants that have moderate marginal effects on an outcome, 

differing according to an environmental factor that would be potentially missed by the main 

effect genome-wide analysis or pure interaction analysis. EHB-GENN can easily be used to 

construct a joint test for genetic marginal and G×E interaction effect, similar to the joint tests 

proposed by Dai and colleagues (Dai, Logsdon et al. 2012). In contrast to the CO test that was 

employed in Dai’s 2 df test construction, our EHB-GENN approach, as well as its joint version, 

do not require any assumption of G-E independence, which can be critical in the context of a 

large-scale genome-wide association study. Therefore, we constructed the joint EHB-GENN
J 

test for simultaneous testing of genetic main and G×E interaction effects in a similar fashion to 

Dai. 
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Our work was motivated by lung cancer GWAS data from the ILCCO/TRICL consortium with 

smoking being the established environmental risk factor. With the aim of identifying promising 

association signals for lung cancer, we conducted a statistical analysis on four lung cancer 

GWAS datasets. We replicated previous findings, namely two known SNPs on chromosome 

15q24-25 that belong to the nicotine acetylcholine acceptor subunit CHRNA3 and 

AGPHD1genes with slightly lower p-values than previously reported and described signals in 

our data worth further investigation, e.g. SNPs located in TERT and ENOX1 genes. Nowadays, 

TERT is one of the most interesting genes in the study of lung cancer risk. SNP rs2736100 in 

the TERT gene was reported as being in association with adenocarcinoma risk on the basis of 

a large genome-wide association study involving 13,300 cases and 19,666 controls of European 

descent and 3,333 subjects with adenocarcinoma among them (Landi, Chatterjee et al. 2009). 

The same variant was found to influence the risk of lung cancer in two meta-analyses; the first 

with 16 pooled GWASs involving 14,900 cases and 29,485 controls (Timofeeva, Hung et al. 

2012) and the second with 21 pooled GWASs involving 11,645 cases and 14,954 controls 

(Truong, Hung et al. 2010). To date, none of the single case-control GWAS were able to find 

these SNPs without requiring huge datasets and meta-analytical approaches. In our study with 

the joint test, we identified this SNP with p-value 8.5×10-6 based on only 1,989 cases and 2,625 

controls in the CE-IARC data with the moderate-heavy smoking model. For the same data, the 

variant has a p-value of 2.5×10-4 when testing for G×E interaction with classic CC test and a 

p-value of 1.6×10-3 when testing for genetic main effect. As a result, it was previously missed 

by both interaction and main effect tests in our data. This demonstrates that joint tests are useful 

in the identification of missing genetic main effect signals and require considerably smaller 

sample size than compared to meta-analytic approaches. This can be crucial in many situations 

and for many complex diseases such as cancer. 
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Both EHB-GENN and EHB-GENN
J tests indicated a novel association signal of SNPs rs7982922, 

rs10492572, and rs10492573, located on the ENOX1 gene on chromosome 13q14. ENOX 

proteins (ENOX1, ENOX2 and ENOX3) are a unique family of cell surface proteins, playing an 

essential role in the enlargement phase of cell growth (ENOX1) and unregulated cancer cell 

growth (ENOX2). Both ENOX1 and ENOX2 are found in the sera of cancer patients. These 

proteins highly relate to each other and in fact share 64% of identity and 80% of similarity in 

humans (Morré and Morré 2012). Deletion of three distinct regions on chromosome 13 

including the 13q14 region in which ENOX1 is located was reported for NSCLC (Tamura, 

Zhang et al. 1997). This suggests that ENOX1 variants, namely rs7982922, rs10492572, and 

rs10492573, might form an interesting signal for the risk of lung cancer development. 

Future research is necessary to study these signals in more detail with regard to their functions 

and molecular biology, as well as to replicate these association results in other studies of 

Europeans or other populations. 

A meta-analysis across more GWASs based on the joint testing techniques and allowing for 

lung cancer subtypes may lead to a consolidation of the results. 
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