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Abstract 

Parkinson’s disease (PD) is one of the common neurodegenerative diseases. In particular, it 

affects the elderly and associates with the movement disorder. The hallmarks of PD are 

progressive loss of midbrain dopaminergic neurons and the appearance of Lewy bodies in 

the affected neurons. At present, the etiology of PD is not well understood and may reflect 

the interactions of environmental and genetic factors. The main hurdle in studying PD 

pathogenesis is the inaccessibility to the brain tissues from PD patients. Recent advances in 

cellular reprogramming now allow an alternative approach for investigating PD. PD patients’ 

dermal fibroblasts can be converted to the pluripotent state, and further differentiated to 

the disease relevant cell type, dopaminergic neurons. Such PD affected neurons in culture 

represent a promising departure point for exploring the pathogenic factors of PD. 

Here, we have generated disease specific human induced pluripotent stem cells (hiPSCs) 

from 3 individual idiopathic PD patients and 2 healthy persons’ fibroblast. We applied a 

single lentiviral vector (hSTEMCCA-loxP) encoding OCT4, KLF4, SOX2, and c-MYC, and 

subsequently were able to generate the transgene-free hiPSCs using Cre-loxP recombination. 

The genomic constitutions of PD-hiPSCs were found identical to their parental fibroblasts by 

DNA fingerprinting. The characteristics of PD-hiPSCs resembled human embryonic stem cells 

(hESCs) displaying the expression of pluripotency marker genes, and the capability of 

differentiating into the three germ layers. Neural precursors were derived from PD-hiPSCs, 

and then examined by transcriptome analysis. Our results revealed some differentially 

expressed genes involved in axon guidance and neuron differentiation. Among those 

candidates, FGF20 was down regulated in PD patients. By Directed differentiation of 

floor-plate (FP) derived midbrain dopaminergic (mDA) neurons from hiPSCs, large 

population of specific midbrain dopaminergic neurons could be achieved. We exposed these 

control and PD specific hiPSCs derived mDA neurons to mitochondrial stress. PD-hiPSC 

derived mDA neurons were susceptible to CCCP treatments. Interestingly, FGF20 was able to 

counteract these cellular stresses. FGF20, therefore, might hold the capacity for 

dopaminergic neuroprotection. 
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1 Introduction 

1.1 Parkinson’s Disease 

Parkinson’s disease (PD) is one of the most prevalent neurodegenerative disorders 

worldwide. It is a lifelong and progressive disease that mainly causes complicated cardinal 

motor symptoms. More than 1 % of the population over 65 years of age is affected, and its 

prevalence is increased in individuals by aging (Bekris, Mata, & Zabetian, 2010). 

 

1.1.1 Clinical Aspects 

In 1817, the clinical features of PD were first depicted in the monograph of “An Essay on the 

Shaking Palsy” published by James Parkinson. He described the presence of primary motor 

signs including resting tremor, rigidity, and bradykinesia as characteristics of PD, and the way 

that the disease progresses over time. Therefore, this neurological disease was named as 

Parkinson’s disease in honor of his contribution (Lees, 2007). Those typical features affect PD 

patients’ voluntary motor movements. Tremor (resting tremor) is the most apparent and 

notable PD symptom. It can be easily noticed on PD patient’s shaking hand when they are at 

rest. Another characteristic feature of PD, bradykinesia (slowed movement), leads PD 

patients to make simple tasks difficult and time-consuming due to reduction of speed and 

amplitude of movements. Muscle rigidity limited PD patients’ the range of motion and cause 

body pain (Jankovic, 2008). However, non-motor symptoms can develop during PD, as well. 

Cognitive impairment, sleep disturbance, depression, and abnormal behavior, such 

neuropsychiatric symptoms are common to observe in PD patients. They might be caused by 

the disease itself or accompanied by disability and inconvenience of daily life. By all means, 

the patient with PD would be affected by motor dysfunction, but also reduced quality of life.  

 

1.1.2 PD Pathology 

According to post-mortem studies of PD patients, a lot of cell death of dopaminergic (DA) 

neurons was observed in the Substantia Nigra pars compacta (SNpc), a region of the 

midbrain (Figure 1.1). Approximately 60% of the SN DA neurons were already lost at the 

onset of PD symptoms. Moreover, the axonal projections of the SN dopaminergic neurons to 

the striatum are reduced, and near 80% DA transmitter is depleted. Therefore, it is believed 

that the loss of SN DA neurons results in the loss of dopaminergic transmission in the 



 

 

11 

striatum, leading to the majority of classic motor symptoms of PD. In the past decades, the 

major emphasis of PD research has been focused to the degeneration of midbrain DA neurons 

that have been consistently identified as the most severely damaged circuit. However, what 

causes massive SN DA neuronal death is still not fully understood.  

 

 

Figure 1.1: Brain Regions Affected by Parkinosn’s disease.  

The major aspect of PD pathological anatomy is the disappearance of pigmented 

dopaminergic neurons in the ubstantia nigra (pars compacta), resulting in loss of neuronal 

projection into the putamen. The image was taken from http://www.doctortipster.com/. 

 

Another PD pathological hallmark is Lewy Bodies (LB). (Figure 1.2) LBs are intraneuronal 

cytoplasmic inclusions, frequently found in PD patients’ brain tissues at autopsy. LBs contain 

a variety of proteins, neurofilaments, ubiquitin and α-synuclein. Among these components, 

misfolded α-synuclein is the predominant constituent of LBs, suggesting that it play a central 

role in the pathogenesis of PD (Spillantini et al., 1997). Heiko Braak and his colleagues 

proposed a theory (Braak’s theory) for the progression of PD based on LB pathology 

progression (Braak & Braak, 2000). However, recent studies have shown that 7-8 % of PD 

patients did not present medullary LBs (Kalaitzakis, Graeber, Gentleman, & Pearce, 2008). 

Therefore; the cause of PD seems to be more related to the degree of dopaminergic cell loss 

than to the severity of Lewy pathology. 

http://www.doctortipster.com/
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Normal aging induces neurodegeneration of DA neurons of SN at a rate of approximately 5% 

per decade, in PD patients the neurodegeneration rate is about 10 fold faster (Fearnley & 

Lees, 1991). The severity and progression of PD might tightly link to aging induced 

neurodegeneration. 

 

 

Figure 1.2: Micrographs of mesencephalon Parkinson’s disease.  

(A) Shows neuronal degeneration in the substantia nigra (arrows) by HE staining. (B) Shows a 

neuron with two classical Lewy bodies. (C) Shows α-synuclein staining with positive staining 

of a Lewy body (long arrow) and Lewy neurites (short arrows). The image was modified from 

(den Dunnen, 2013) 

 

1.1.3 PD Etiology and Environmental Contribution 

Parkinson’s disease is a multifactorial neurological disease. Most cases of PD are sporadic: 

idiopathic disorder may arise from the combinations of environmental and genetic 

vulnerabilities. The rest of PD (~5%) is the result of genetic defects. Although the familial PDs, 

genetic inheritance, are rare, they share the pathological, biochemical, and clinical features 

with idiopathic PD. Therefore, researchers have tried to explore the possible mechanisms of 

PD underlying the Mendelian PD mutations in the past years. A number of genes associated 

with PD have been identified, either autosomal dominant (α-synuclein, LRRK2, UCHL1) or 

autosomal recessive (Parkin, DJ-1, PINK1, ATP13A2) (Thomas & Beal, 2007) (Bekris, et al., 

2010). Most of the loci are involved in the impairment of ubiquitin-proteasome system or 

mitochondrial dysfunctions. Studying those genetic defects provides an insight into PD 

pathogenesis. Besides, they provide some supportive causes for idiopathic PD (Corti, Lesage, 

& Brice, 2011). 
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Environmental factors have been suspected to be the critical cause of PD since 1918’s 

influenza pandemic. Infectious agents in the environment affected many individuals leading 

to the development of Post-encephalitic Parkinsonism (Poskanzer & Schwab, 1963). The 

environmental hypothesis was further reinforced by N-methyl-4-phenyl-1, 2, 3, 

6-tetrahydropyridine (MPTP) as drug abuse in 1980s (Langston, Ballard, Tetrud, & Irwin, 

1983). Rural pesticides, such as rotenone or paraqua (Ossowska et al., 2006), also have 

similar adverse effects leading to DA neuron degeneration (Freire & Koifman, 2012). All of 

these toxins were subsequently identified to inhibit the activity of mitochondrial complex I, 

enhance the intracellular reactive oxygen species (ROS), and result in cell death eventually. 

To this point, by applying these toxins, such as MPTP, animal models can be established for 

studying PD in vivo (Jackson-Lewis & Przedborski, 2007). 

Investigation the monogenetic defects might shed light on the cellular mechanisms of PD. 

Nevertheless, the interplay of aging and environmental risks is more likely to contribute to 

the development of Parkinson’s disease. 

 

1.1.4 PD Causative Hypothesis 

Loss of midbrain dopaminergic neurons and the formation of Lewy Bodies (LBs) are typical 

characteristics of PD. However, mechanisms underlying this neurodegeneration are not very 

clear yet. Different hypotheses have been proposed to contribute to neuronal cell death of 

PD: (1) abnormalities in mitochondrial function and (2) increased level of oxidative stress, (3) 

defects in protein metabolism through ubiquitin proteasome system (UPS), and (4) 

autophagy (Schapira & Jenner, 2011). Besides, the assumption of multifactorial genesis was 

linked to the interaction of environmental susceptibility and genetic vulnerability. Therefore, 

the hypotheses mentioned above might be interconnected to each other, resulting in PD 

pathogenesis. 

 

1.1.4.1 Mitochondrial Dysfunction and Oxidative Stress in PD 

Neurons are ATP demanding cells because of the need of energy for impulse transmission. 

For this reason, mitochondria are enriched in the neuronal cells. Intracellular ATP production 

is via oxidative phosphorylation and electron transport by five multisubunit complexes 

(complex I–V) in the mitochondria. During ATP production high amounts of reactive oxygen 
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species (ROS) (e.g. superoxide anion (O2
-), hydrogen peroxide (H2O2) and hydroxyl radicals 

(•OH)) can be produced. However, if ROS is generated within a physiological level, those 

superoxides can be eventually converted to H2O by the intracellular antioxidant enzymes (ex. 

superoxide dismutase, catalase, glutathione peroxidase and glutathione S-transferase, etc.). 

If the electron transport is blocked (e.g. inhibition of complex I) or mitochondrial function is 

abnormal (ex. inability of cytochrome c or antioxidant enzyme), it would accumulate 

excessive ROS and cause serious destruction to the cellular functions, leading to cell death 

(Fukui & Moraes, 2008) (Ciccone, Maiani, Bellusci, Diederich, & Gonfloni, 2013). Therefore, 

mitochondrial dysfunction and excessive ROS production are common seen in 

neurodegenerative disorders.  

Abundant evidence from PD post-mortem studies supported that oxidative stress induced 

cell degeneration in the Substantia Nigra. Increased amounts of oxidative damaged lipids, 

proteins, and DNA were found in sporadic PD patients’ affected tissues. ROS detoxification 

systems were altered, like decreased amount of glutathione (GSH), reduced activity of 

mitochondrial complex I (Jenner, 2003). In particular, DA neurons are more likely susceptible 

to oxidative stress due to highly oxidative intracellular environment (Lotharius & Brundin, 

2002). The turnover of the neurotransmitter dopamine (DA) within the cell is processed by 

monoamine oxidase (MAO), catechol-O-methyltransferase (COMT) or autooxidation. (Figure 

1.3) The process of oxidation of DA would result in the production of H2O2. PD patients have 

a reduced H2O2 clearance capacity, suggesting that the incidence of oxidative stress and 

lesion of antioxidant system might be the cause of PD pathogenesis. 
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Figure 1.3: Dopamine Degradation.  

Dopamine is converted to inactive metabolites by MAO and COMT, accompanied by the 

production of H2O2. H2O2 is subsequently broken down to free radicals (•OH & OH-). The 

cellular antioxidant system would eliminate free radicals and turn into H2O eventually. The 

image was modified from http://en.wikipedia.org/wiki/Dopamine 

 

1.1.4.2 Impairment of ubiquitin proteasome system in PD 

The other pathological characteristic of PD is Lewy Bodies (LBs). LB formation is ascribed to 

the abuse of ubiquitin-mediated protein degradation, resulting in aberrant or misfolded 

protein aggregations and intracellular presence of proteinaceous deposits. Parkin acts as an 

E3 ubiquitin ligase, primarily involved in the targeting of aggregation-prone substrates for 

degradation by the UPS. Genetic evidence showed that defective parkin in PD affected 

tissues would hamper the protein metabolism, protein aggregations accumulated (Shimura 

et al., 2000). Especially α-synuclein, the major component of LBs, was often found 

overexpressed or mutant form in either sporadic PD or familiar PD. An impairment of UPS 

function is one of contributive factors to the proteolytic stress due to fibrilization and 

aggregation of excess or mutant α-synuclein in the cytosol (Bennett et al., 1999) (Tofaris, 

Layfield, & Spillantini, 2001). 

 

http://en.wikipedia.org/wiki/Dopamine
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As a matter of fact, these cellular pathways might be interconnected. For example, 

α-synuclein is not only involved in the LB formation. The N-terminal membrane-binding 

domain of α-synuclein specifically binds to the mitochondrial membrane and causes 

mitochondrial fragmentation. The amount of α-synuclein localized into mitochondria of SN 

neurons increases dramatically in PD (Nakamura et al., 2011). PINK1 plays a role of 

mitochondrial quality control. When the mitochondria is damage, interrupting membrane 

potential, PINK1 would recruit cytoplasmic parkin to the mitochondria and initiate the 

autophagic degradation of damaged mitochondria. Both parkin and PINK1 exert functions of 

ubiquitination and mitochondrial integrity, and implicate these cellular interactions in the PD 

disease progression (Matsuda et al., 2010). Besides, oxidative damage is also known to 

disturb ubiquitination and proteasome activity (Jenner, 2007). Thus, combination of 

oxidative stress, mitochondrial dysfunction, and impairment of UPS are likely to contribute 

to multifactorial vulnerability of DA neurons degeneration in PD. 

 

1.1.5 Current Therapeutic Approaches of PD 

Till now there is no cure for Parkinson’s disease, but a few of medical treatments could 

alleviate PD symptoms. 1-3, 4-dihydroxyphenylalanine (L-DOPA), a precursor of dopamine, is 

a typical first-line drug administration for PD patients. Initially it provides an excellent effect 

for reducing the motor symptoms. As the progression of the disease, PD patients would 

experience severe side effects, such as motor fluctuations and dyskinesias (Lang & Lozano, 

1998). Moreover, there are alternative therapeutic options including dopamine agonists, 

anticholinergic agents, and monoamine oxidase-B (MAO-B) inhibitors (Samii, Nutt, & 

Ransom, 2004). Besides, the surgery of deep brain stimulation (DBS) can benefit some 

population of severe PD patients. By placing the brain pacemaker in PD patient’s body and 

sending electrical impulses to specific parts of the brain, it can help manage some of the PD 

symptoms and subsequently improve the patient’s quality of life (Kleiner-Fisman et al., 

2006). In 2006, DBS has been approved for PD treatments by the Food and Drug 

Administration in United States. Nevertheless, it still carries the risk factors based on the 

invasion therapy. Some small molecules, ex GDNF or Neurturin, have been proposed to 

delay or arrest neurodegeneration in PD, but their potential of neuroprotection has not 

been conclusively approved yet (Obeso et al., 2010). 
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Transplantation of fetal mesencephalic tissue in PD patients has been applied in clinical uses. 

The grafted dopaminergic neurons can restore regulated dopamine release, and provide 

significant symptomatic relief. In the most successful cases, patients were able to resume an 

independent life after transplantation. However, the limited source of fetal tissues, 

occurrence of adverse effects: dystonia, immune rejection, and variability of functional 

outcome restrict its applications (Lindvall & Bjorklund, 2004). 

Advanced development in stem cell research has provided a new therapeutic approach for 

Parkinson's disease. Stem cells have the capability of self-renewal and plasticity to generate 

multilineage cells. Thus, they are a suitable source of various kinds of cells needed for cell 

therapy. To date, generating dopaminergic neurons from different stem cells have been 

succeeded. Those include mesenchymal stem cells (MSCs), human embryonic stem cells 

(hESCs), and induced pluripotent stem cells. However, the cell identity, purity, and quality 

control of differentiated DA neurons for transplantation should be considered crucially 

(Pawitan, 2011). In whatever manner, stem cell approaches still hold enormous competence 

either in cell therapy or modeling diseases. 

 

1.1.6 Research Models of PD 

Parkinson’s disease (PD) is a neurodegenerative disease characterized by the cell death of 

midbrain Dopamine (DA) neurons and the ensuing locomotor symptoms. Over the past two 

decades, identification of genetic defects has shed insights into the molecular pathogenesis 

of PD (Klein & Schlossmacher, 2007). However, the greatest obstacle for PD research is 

inaccessible to live PD patients’ brain, and lack of patient-specific midbrain DA neurons for 

mechanistic research and drug discovery. Therefore, in an attempt to mimic the PD 

neurodegenerative and motor phenotypes different animal models have been created. 

Administration of neurotoxins (MPTP or 6OHDA) to the striatum area of rats’ brain would 

cause selective dopaminergic neuron death and produce motor deficits. They lead to acute 

cell death but not fulfill the slow progression of neurodegeneration observed in PD patients. 

In the other way, PD related genetic studies have been applied to animals, either transgenic 

or knockout models, even to non-vertebrate systems (e.g. Drosophila, Zebrafish) (Blandini & 

Armentero, 2012). Despite the animal models show significant motor phenotype and are 

useful for unraveling the genetic roles on cellular pathways and mechanism of midbrain DA 



 

 

18 

neuron degeneration, there are still some drawbacks, like short life span, less complex brain 

structure and different physiological states. Furthermore, they could not interpret precisely 

the authentic features of PD disease in human. A model system that directly reflects the 

nature of genetics and physiology of the human condition is still urgently demanded (Pu, 

Jiang, Zhang, & Feng, 2012). Thanks to the advance of stem cell biology, pluripotent stem 

cell seems to overcome the intractable problem and transfers PD research in many 

prospects. 

 

1.2 Pluripotent Stem Cells 

Human pluripotent stem cell (hPSC) has the capability of giving rise to almost all of the cell 

types of body. Therefore, they hold great promise for both scientific research and medical 

use. To date, a few of methods were established for the generation of hPSC: human 

embryonic stem cell (hESC) from the inner cell mass of preimplantation embryos, conversion 

of somatic cells into human induced pluripotent stem cell (hiPSC), and cloned human 

embryonic stem cell. 

 

1.2.1 Human Embryonic Stem Cell 

The first human embryonic stem cell line (hESC) was derived from the inner cell masses of 

blastocysts in 1998 by James Thomson’s group (Thomson et al., 1998). They reported that 

the derived hESC cell lines with normal karyotypes expressed high levels of telomerase 

activity and presented ES cell specific surface markers. Besides, those hESC cell lines were 

able to in vivo differentiate to all three germ layers (ectoderm, mesoderm, and endoderm), 

showing the capacity of pluripotency.  

Similar to mouse ES cells, Oct4, Sox2 and Nanog play critical roles in human ES cells. The 

functions of those master regulators: Oct4, Sox2, and Nanog were subsequently identified to 

control self-renewal and pluripotency and maintain hESC in the undifferentiated state 

(Nichols et al., 1998) (Avilion et al., 2003) (I. Chambers et al., 2003) (Hart, Hartley, Ibrahim, & 

Robb, 2004) (Boyer et al., 2005). Moreover, unraveling the mechanisms of the lineage 

commitments allowed hESC to directly differentiate to different types of cells in a dish either 

for developmental research or clinical purposes (Figure 1.4) (Han, Williams, & Eggan, 2011) 

(Kadzik & Morrisey, 2012) (Spence et al., 2011) (Murry & Keller, 2008). 
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Figure 1.4: Direct Differentiation of hPSCs. 

in vitro differentiation of hPSCs can be carried out either by adherent culture or Embryonic 

bodies (EBs) culture. The presence of growth factors and small molecules activate or inhibit 

various signaling pathways in a stepwise manner by mimicking embryonic development. 

Herein three specific examples are illustrated: motorneurons from the ectoderm (Ec), 

erythropoietic cells from the mesoderm (Me) and intestinal cells from the endoderm (En). 

The image was taken from (Zhu & Huangfu, 2013) 

 

hESCs provide power tools for studying human embryogenesis (confirming and 

distinguishing the finding from mouse genetics), and the potential for clinical use (drug test 

or differentiated cell for cell replacements) In spite of the fact that isolation of hESCs 

brought the great expectations, a few of issues should be concerned. One is ethical debate 

that is about the destruction of human preimplantation embryos for the purpose of 

generating hESCs. The other one is transplanted non-autologous hESCs might cause immune 

rejection. 

 

1.2.2 Human Induced Pluripotent Stem Cell 

Following the breakthrough of 2006’s generation of mouse induced pluripotent stem cell 

(Takahashi & Yamanaka, 2006), reprogramming human somatic cells to pluripotent state was 

achieved (Takahashi et al., 2007) (Yu et al., 2007) (Park, Zhao, et al., 2008). By introducing 

four defined transcription factors: Oct4, Sox2, Klf4, and c-Myc, human somatic cells are 

allowed to convert to human ES-like cells. These human ES-like cells were similar to ES cells 

in morphology and cellular characteristics. When transplanted into immunodeficient mice, 

they grew teratomas including a variety of tissues from three germ cell lineages, showing 
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their pluripotency. Thus, they were termed “human induced pluripotent stem cells” (hiPSCs). 

Those defined factors were also called “Yamanaka factors” for generation of iPSCs. Despite 

other combinations, including Nanog (Yu, et al., 2007) or hTert (Park, Zhao, et al., 2008), 

could generate iPSCs, most researchers adopted Yamanaka factors. 

To date, iPS technology develops vigorously and attracts extensive attention. Not only that it 

circumvent the ethical issues concerned in hESCs, the generation of individual hiPSC could 

also provide the possibility of autologous transplantation, avoiding the risk of immune 

rejection. Besides, these specific hiPSC cell lines could be used for drug discovery, disease 

modeling, and the development of cellular transplantation therapies (Bellin, Marchetto, 

Gage, & Mummery, 2012). (Figure 1.5) 

With the advance of iPS technology, various methods of hiPSC generation developed as well. 

The initial strategies were retro- or lenti-viral delivery approaches, trying to reach the 

maximum amount of transduced cells expressing reprogramming factors (Takahashi, et al., 

2007) (Yu, et al., 2007). Regarding the transgenic integration and genomic instability, 

nonviral and nonintegrating methods have been explored. Besides, different sources (ex. 

skin biopsies, urine (Zhou et al., 2012) or amniotic fluid (Li et al., 2009)) or cell types (ex. 

fibroblasts, keratinocytes (Aasen et al., 2008) or dental pulp cells (Tamaoki et al., 2010)) have 

been applied. Table 1.1 lists some distinct and reproducible methods for hiPSC generation. In 

general, the viral methods are mostly reproducible and highly efficient.  

Although iPS technology holds great promise for future medicine, it still keeps some 

drawbacks. If the transgenic vectors integrate to the host genome, hiPSC might be risky for 

exogenous reactivation and harmful for further applications, like differentiation or 

transplantation. Despite hiPSC resembles hESCs in many respects, hiPSC might retain 

epigenetic memory from the origin of somatic cells, making it more difficult to differentiate 

to specific cell types. Depending on different approaches of hiPSC generation, cell 

line-to-cell line differences make it challenging to compare the outcomes either from 

research or translational medicine (Bellin, et al., 2012). Therefore, iPS technology has been 

focused on elaborating more efficient & reproducible nonintegrating delivery methods, 

establishing standards for cellular characterizations and safety in use. Even if some advanced 

techniques were established, allowing somatic cells to convert directly to specific cell types 

(Caiazzo et al., 2011) (Kurian et al., 2013). hiPSC possess the flexibility and unlimited cell 

source for various cell lineage differentiations, pre-clinical and clinical applications. 
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Figure 1.5: hiPSC Derivation, Differentiation, and Application.  

Somatic cells from Individuals can be converted to hiPSCs. After direct differentiation, hiPSC 

derived specialized cells could be used for several applications: (a) disease modeling 

underlying disease phenotypes, (b) drug screening and discovery, and (c) cellular toxicity 

tests. hiPSCs provide the potential of autologous cell therapy. The image was taken from 

(Bellin, et al., 2012) 

 

1.2.3 Cloned Human Embryonic Stem Cell 

Since the initial discovery in Xenopus (Gurdon, 1962), somatic cell nuclear transfer (SCNT) 

enable to transplant a nucleus from a mature cell to an enucleated egg and give rise to a 

living organism. The first cloned mammal, Dolly the sheep and later others (e.g. monkeys) 

have been created using SCNT (Campbell, McWhir, Ritchie, & Wilmut, 1996) (Byrne et al., 

2007). However, it failed to produce human cloned ES cell in last years. After a long wait, 

Mitalipov and colleagues have succeeded for the first time in deriving human ES cells by 

nuclear transfer of human somatic cells to human oocytes (Tachibana et al., 2013). They 

optimized the SCNT conditions used in monkeys, added extra factors (caffeine) to prevent 

the premature oocyte activation, and then significantly increased development of human 

SCNT embryos, cloned human ESC obtained. Cloned hESC displayed normal genome 

constitutions and received nuclear genome exclusively from parental somatic cells. Gene 

expression and differentiation profiles in cloned hESC were similar to embryo-derived ESCs. 

This breakthrough approach will give much hope and another opportunity to prepare 
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reprogrammed pluripotent cells for therapeutic cloning and autologous cell transplant. 

However, the oocytes for use are not easy to acquire legally. The technique for SCNT is not 

simple to achieve universally. Besides, it is imperative to compare the quality of cloned ES 

cells and iPS cells in many aspects. 
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Table 1.1: hiPSC reprogramming methods 
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1.3 Derivation of Dopaminergic Neurons from Human Pluripotent Stem Cell 

Since human ESC was first isolated in 1998, the applications of human pluripotent stem cells 

(hPSCs) have proposed an extensive scope of possibilities for future regenerative medicine. 

hPSCs offer a nearly unlimited cell source and are capable of generating therapeutically 

relevant cell types. Especially, patient specific iPSCs make it possible to model human 

disease and autologous cell transplantation. In particular, the derivation of DA neurons from 

hPSCs has drawn an attractive attention either for increasing the knowledge of development 

and specification of mDA neurons or for understanding the pathogenesis of PD. 

Midbrain DA (mDA) neurons play central roles in not only motor control but also 

motivational, rewarded and cognitive conducts. In virtue of remarkable headway of mouse 

genetics and mouse ESC, directed differentiation of mDA neurons has been developed in 

several ways. Then they were successfully applied in human ESC. Neural lineage was induced 

from PSCs either by suspension culture of embryoid bodies (EBs) (S. H. Lee, Lumelsky, Studer, 

Auerbach, & McKay, 2000) (S. C. Zhang, Wernig, Duncan, Brustle, & Thomson, 2001) or 

coculture on stromal feeder layers (PA6 or MS5) (Kawasaki et al., 2000) (Vazin, Chen, Lee, 

Amable, & Freed, 2008). Moreover, TGF-β/SMAD inhibitors (Noggin, SB431542, LDN193189 

or Dorsomorphin) were employed to accelerate and to dedicate hPSCs to neural lineages (S. 

M. Chambers et al., 2009). Then neural stem cell/ precursors were isolated and expanded 

independently. Alternatively subsequent cell fate of mDA neurons was specified by 

patterning factors, Shh & FGF8 and undergone for maturation. Then differentiated mDA 

neurons were characterized by expression of specific markers, like Tyrosine Hydroxylase (TH), 

engrailed-1 (EN1), or PITX3…etc. Furthermore, detection of dopamine release by HPLC 

(Studer et al., 1996) and specific physiological properties by electrophysiological assays (Kim 

et al., 2002) were utilized to determine the functional properties of mDA neurons. Even in 

vivo engraftment of PSC-derived mDA neurons to adult rodent model approved that they 

were functional integrated to the brain tissues and restored the behavioral deficits.  

The various protocols for increasing the high population of specific mDA neurons have been 

developed. Forced expression of midbrain-specific markers (e.g. Lmx1a or Nurr1) during 

neural induction was also used for differentiation of mDA neuron (Andersson et al., 2006). 

However, the studies of successful engraftment and long-term survival of differentiated mDA 

neurons were generally poor (Ferrari, Sanchez-Pernaute, Lee, Studer, & Isacson, 2006) (H. 
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Kim et al., 2011). Therefore, an alternative strategy was explored using floor plate-based 

dopamine neuron differentiation. mDA neurons are believed to originate from floor plate 

during brain development. Thus, early Shh exposure of hPSC during neural induction would 

commit high induction of floor plate precursor (Fasano, Chambers, Lee, Tomishima, & Studer, 

2010). Then interplay of Shh and canonical Wnt signaling result in the robust derivation of 

mDA progenitor coexpressing Foxa2/Lmx1a. Maturation and maintenance of mDA Neuron 

were subsequently promoted under a set of neurotrophic factors (e.g. GDNF, BDNF, Ascorbic 

Acid, TGF-β3, cAMP). Most importantly, these floor plated-based differentiated mDA 

neurons show great effects on high amounts of survival cells and rescue motor function 

after a long time of in vivo engraftment (Kriks et al., 2011). The floor plate-based strategy 

has been adopted by different groups, modified and optimized to increase mDA neuron 

specification and application (Xi et al., 2012) (Denham et al., 2012) (Kirkeby et al., 2012) 

 

1.4 Parkinson’s Disease and Human Induced Pluripotent Stem Cell 

PD patient specific iPSC can be generated from their skin fibroblasts, and further 

differentiated to disease relevant cell type: midbrain dopaminergic neurons. Besides, iPSCs 

hold a renewable, unlimited cell source and flexibility for PD research in a dish. In recent 

years, different monogenic PD-iPS cell lines have been established, like SNCA triplication, 

LRRK2 (G2019S), PINK1 & Parkin mutants. (Table 1.2) They observed PD phenotypes in 

PD-iPSC derived DA neurons and revealed possible mechanisms resulting in PD. The 

increased expression level of α-synuclein was found not only in SNCA mutant DA neurons, 

but also in LRRK2 (G2019S) mutant DA neurons. Moreover, it was often observed that the 

PD-iPSC derived DA neurons were sensitive to oxidative stress and ROS as evaluated from 

the analysis of responsive gene transcripts (e.g. cellular stress, antioxidant & apoptotic 

genes) were also elevated in affected DA neurons. Mitochondrial damage and impaired 

clearances of mitochondria (mitophagy) & aggregated protein were also evident in those 

PD-iPSC derived DA neuron models. The inhibitions of ERK activity or Drp1 were even 

proposed to improve the viability of DA neurons (Reinhardt et al., 2013) (Su & Qi, 2013). 

Although monogenic forms of PD only take up for a small population of PD cases, it is 

critically important for understanding the degeneration of DA neurons underlying these 
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genetic mutants. It might be a common way to cause PD no matter in familial or idiopathic 

PD. 

Nevertheless the majority of PD cases are idiopathic. Complex interactions between 

environmental and genetic factors are likely to contribute to the main cause of idiopathic PD. 

Therefore, DA neurons generated from idiopathic PD patient specific iPSC allow us to 

compare the genetic compositions and disease phenotypes to discover the vulnerable 

circumstance. Transplantation of DA neurons derived from idiopathic PD-iPSC into the adult 

rodent striatum showed that transplanted cells survived and behaved functionally to reduce 

motor deficits (Hargus et al., 2010). The long-term survival cell rate of transplanted DA 

neurons was more improved with the floor plate-based differentiation protocol (Kriks, et al., 

2011). These transplantation studies provide the practicable prototypes and foundations for 

the future cell therapy of autologous transplantation. 
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Table 1.2: Monogenic PD patients derived hiPSC and DA neurons 

 

Note: Donors--f: female, m: male, yr: age, CTL: control. Reprogrammimg factors--Retro: retrovirus delivery method, Lenti: lentivirus delivery 

method, O: Oct4, S: Sox2, K: Klf4, M: c-Myc, N: Nanog. 

 

Gene Protein Mutation Reference Donors Starting cell types
Reprogramming

factors
Affected DA Neuron Phenotype Perspective

LRRK2 LRRK2 G2019S (Nguyen et al., 2011) 1 60 yr f-patient &

1 46 yr f-CTL

dermal fibroblast Retro- OSK

G2019S

(vs idiopathic PD)

(Sanchez-Danes et al., 2012) 4 LRRK2 (G2019S)

patients, 7 idiopathic

patient & 4 CTLs

dermal

keratinocytes &

dermal fibroblast

Retro- OSK

G2019S (Reinhardt et al., 2013) 2 55yr, 82 yr f-patients &

4 CTLS

dermal fibroblast Retro- OSKM

G2019S (Su & Qi, 2013) 1 patient & 1 CTL dermal fibroblast Retro- OSKM

SNCA α-synuclein SNCA triplication (Devine et al., 2011) 1  f-patient & 1 CTL

(first-degree relative)

dermal fibroblast Retro- OSKM

SNCA triplication (Byers et al., 2011) 1 42yr m-patient &

1 CTL (46yr unfeccted

sister )

dermal fibroblast Retro- OSKM

Evaluated SNCA expression in RNA &

protein levels, increased α-synuclein

secreted from cells

Accumulation of α-synuclein, inherent

overexpression of markers of oxidative

stress, sensitivity to peroxide induced

oxidative stress.

Autosomal dominant

Increased expression of key oxidative

stress-response genes & α-synuclein

protein, sensitive to caspase-3 activation

and cell death caused by exposure to

stress agents

LRRK2 PD: increased  α-synuclein

accumulation in cytosol.  LRRK2/ iPD:

reduced numbers of neurites & neurite

arborization, accumulation of autophagic

vacuoles over long-time culture

Reduced neurite outgrowth & increased

sensitivity to stress, increased levels of α-

synuclein, increased MAPK ERK1/2 activity

Inhibition of ERK activity

rescued mDA neurons as

possible targets for new

therapeutics

Fewer and shorter neurites, altered

mitochondrial morphology, loss of MMP,

increased ROS, decreased ATP, lysosome

hyperactivity

P110, a selective peptide

inhibitor of Drp1,

improved the viability of

affected DA neurons
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Table 1.2, cont. 

 

 

 

Gene Protein Mutation Reference Donors Starting cell types
Reprogramming

factors
Affected DA Neuron Phenotype Perspective

PARK6 PINK1 Q456X (nonsense) &

V170G (missense)

(Seibler et al., 2011) 1 53 yr patient & 1 CTL

(healthy family

member)

dermal fibroblast Retro- OSKM

V170G

([Seibler, 2011 #357])

(Rakovic et al., 2013) 1 patient & 1 CTL dermal fibroblast Retro- OSKM

PARK2 Parkin PARK2 exon deletions (Imaizumi et al., 2012) 2 72yr f-, 50yr m-patient

& 2 CTLs

dermal fibroblast Retro- OSKM

    

PARK2 exon deletions (Jiang et al., 2012) 2 patients & 2 CTLS dermal fibroblast Lenti- OSKN

Increased oxidative stress and enhanced

activity of Nrf2 pathway, exhibited

abnormal mitochondrial morphology &

Increased spontaneous DA release,

reduced DA uptake and DAT-binding sites,

elevated ROS by increasing MAO

transcripts

Parkin controls

dopamine utilization in

human midbrain DA

neurons

Autosomal recessive

Reduction of 80-90 % PINK1 mRNA level,

mitochondrial depolarization showed

impaired recruitment of overexpressed

Parkin to mitochondria, increased

Ubiquitination of endogenous Parkin

attenuates mitophagy

Disease relevant cell

types are faithful in

physological condition
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1.5 Aim of this Study 

Parkinson’s disease (PD) is a multifactorial neurodegenerative disease. The past decades PD 

research has drawn numerous attentions, trying to explore the disease mechanism and the 

medical therapies. A few sets of genetic mutants found in familial PD were identified, and 

their roles have been linked to mitochondrial dysfunction and impairment of UPS, given the 

insights of degeneration of mDA neuron, the central cause of PD. Although many efforts 

have been done in the animal models, the authentic PD patients’ affected mDA neuron 

model is still imminently demanded. Despite the inaccessibility of PD patients’ live brain 

tissue, we are able to generate PD patient specific iPSC from skin fibroblasts and further 

differentiate to mDA neurons. 

In this study, we followed the workflow (Figure 1.6). We attempted to recruit PD patients 

from different kindred. Together with healthy persons, PD patient specific iPSC would be 

generated and characterized their states of pluripotency. Neural precursors would be then 

derived from these control and PD-iPSCs and applied for transcriptome analysis. By gene 

expression profiles between control and PD patients’ neural precursors, differential cellular 

networks and novel molecular players might be perceived. More importantly, the 

phenotypes of mDA neurons derived from control and PD-iPSC would be examined using 

external stress stimulations, like mitochondrial damage and oxidative stress. By establishing 

the PD patient specific hiPS cell models, we expect to obtain the new perception for 

understanding Parkinson’s disease. 
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Figure 1.6: Work Flow of the Study 
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2 Material & Methods 

2.1 Methods 

2.1.1 in vitro Cell Cultures 

2.1.1.1 Isolation of Mouse Embryonic Fibroblasts (MEFs) 

The Procedure was performed by following the protocol (Mansouri, Fukumitsu, 

Schindehuette, & Krieglstein, 2009) which was published from our lab. Briefly, mouse 

embryos were removed from E13.5 CD1 pregnant mice. Their heads, limbs, tails, and viscera 

were cut off. The rest of the body was minced into small pieces, and incubated with Trypsin 

for 30 min at 37°C. Then the cell pellet was centrifuged down for 15 min at 1000 rpm, and 

plated on gelatinized 14.5-cm dishes. The plated MEFs were fed with MEF medium at 37°C. 

When newly prepared MEFs reached up to 90% confluence, the cells were either frozen as 

P0 or subculture for expansions. In general, MEFs can be passaged up to 4 passages for the 

use of feeder layers. 

 

Mitotic Inactivation of MEFs  

80-90% confluent MEFs were treated with Mitomycin C (10 μg/mL) for 2.5 h at 37°C, and 

either directly replated to 0.2% gelatinized plates as feeder layers or frozen for future uses. 

 

2.1.1.2 Culture of Human Pluripotent Stem Cells (PSCs) 

Human pluripotent stem cells (hPSCs), like human embryonic stem cells (H1 and H9) and 

human induced pluripotent stem cells (hiPSCs), were grown and maintained on a layer of 

mitotically inactivated MEFs (iMEFs). One day before plating PSCs, iMEFs were plated on 

gelatinized 3.5-cm dishes (20000 cells/cm2). When hPSCs colonies were grown big enough, 

hPSCs were passaged by treatments of Collagenase IV (1 mg/ml) to lift the edges of cell 

colonies and manual splitting using cell scrapers. The hPSCs colonies were collected in a 15 

ml Falcon tube and pulled down to the bottom by gravity in a few minutes. hPSCs colonies 

were washed by hPSCs medium, and the suspension containing iMEFs and Collagenase IV 

was removed. Washing step was repeated twice. Then hPSCs colonies were carefully broken 

into smaller pieces by pipetting and replated to new iMEF feeder dishes at the ratio of 

1:3~1:5. hPSCs were fed with hPSC medium supplemented with bFGF (10 ng/ml) at 37°C. 

The medium was changed daily. hPSCs were passage about every 5~7 days. Working with 
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human ES cells (H1, H9) imported from WiCell (Madison, Wisconsin) was approved by the 

Robert-Koch Institute in Berlin (AZ. 1710-79-1-4-5) according to the German law. 

 

2.1.1.3 Generation of Human Induced Pluripotent Stem cells (hiPSCs) 

For production of lentivirus, 2nd generation Packaging System was applied in this work. To 

produce virus, a single packaging plasmid (psPAX2), an envelope plasmid (pMD2.G), and the 

transfer vector (hSTEMCCA-loxP) were included. Prior to transfection, HEK293T/T17 (ATCC, 

CRL-11268) (293T) were grown to 80-90% confluence in a gelatinized T75 flask. By the time 

transfection mixtures were first prepared as following: 

(hSTEMCCA: psPAX2: pMD2.G = 10:2:1) 15 μg total plasmid/ 500 μl DMEM 

                            45 μl Lipofetamine 2000/ 500 μl DMEM 

, mixed gently and incubated at room temperature (rt) for 20 min according to the 

manufacturer’s instruction (Lipofetamine 2000, Invitrogen, 11668-019). Meanwhile, 293T 

cells were fed with fresh 9 ml 293T medium. Then the 1ml transfection mixture were slowly 

added to the 293T cells and incubated at 37˚C, 5% CO2. Supernatant was carefully collected 

at 24 h and 36 h after transfection, and filtered through a 45 μm filter (Sartorius) to get rid 

of cell debris. The remaining supernatant was centrifuged for 1.5 h at 48960g in an 

ultracentrifuge. The viral pellets were resuspended in 100 μl PBS at 4°C overnight. The 

volume of 10μl for each aliquot was made and stored at -80⁰C. 

 

Lentiviral Infection and Human iPSC Generation 

1x105 fibroblasts derived from patients or controls were infected with concentrated 

lentivirus in hFB medium supplemented with 5 μg/ml polybrene. The next day, the infectious 

medium was replaced by the fresh hFB medium. On day 3, the infected cells were 

transferred onto iMEF feeder plates. After 24 h, the medium was switched to hPSC medium 

containing 10 ng/ml bFGF and Sodium Butyrate (0.5 mM). The medium was changed every 

other day. On day 10, the cells were fed with hPSC medium supplemented with 10 ng/ml 

bFGF. About 20 days later, the ES-like colonies started to appear. Then hPSC medium was fed 

every day. One month after infection, the ES-like colonies were about to grow big enough. 

The ES-like colonies were manually picked at stereomicroscope, transferred onto fresh iMEF 

feeder plates, and expanded under the standard hPSC culture conditions. hiPSC colonies, 
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some were frozen in liquid nitrogen when expanded to passage 4-5, and some were grown 

for further application. 

 

Excision of hSTEMCCA 

The excision of hSTEMCCA vector from the hiPSC colonies was based on Cre/loxP 

recombination by transient overexpression of Cre recombinase in the cells. Delivery of Cre 

expression vector (pHAGE2-Cre-IRES-PuroR) into the cells was followed the procedure of 

reverse transfection using Lipofetamine 2000 Transfection Reagent (Invitrogen, 11668-019).  

One day before transfection, puromycin antibiotic resistant iMEFs (Cell Biolabs, CBA-312) 

were plated on gelatinized 3.5-cm dishes. hiPSCs were fed with hPSC medium containing 10 

μM Y27632, additionally. At the time of transfection, transfection mixtures were first 

prepared as following:  

2 μg Cre plasmid/ 50 μl KO-DMEM 

                10 μl Lipofetamine 2000/ 50 μl KO-DMEM 

, incubated for 5 min at room temperature (rt). Then those two were mixed by gently 

pipetting, and incubated for another 30 min (maximum 50 min) at rt. Meanwhile, hiPSC 

colonies were dissociated into single cells by using Accutase. 800,000 hiPSCs were counted 

and suspended in 100 μl hPSC medium (10 μM Y27632). Transfection mixtures were added 

into suspended hiPSC gently for additional 15 min incubation, then plated on puromycin 

resistant iMEFs feeder dishes. The next morning, hPSC medium (10 μM Y27632) was freshly 

replaced. By the evening, puromycin selection (1.2 μg/ml) was begun 24 h following the 

initial transfection and lasted for 48 h. The transfected hiPSC cells were kept on feeding hPSC 

medium (10 μM Y27632 (ROCK inhibitor)) for one week, then MEF-conditioned hPSC 

medium (10 ng/ml bFGF) were replaced. The re-emergence of hiPSC colonies was noted 

within 1-2 week, and 5-7 colonies from each dish were picked on day 11–14 for passaging. 

PCR of gDNA extracted from each subclone was performed to screen for excision of the 

hSTEMCCA vector using the STEM_SPM primers (Table 2.3), 95°C for 3 m; followed by 33 

cycles of 94°C for 30 sec, 60°C for 30 sec, and 72°C for 1 m; followed by a single cycle of 72°C 

for 5 m. PCR products were analyzed by running on 2% agarose gels. Furthermore, vector 

excision was confirmed by Southern blotting. The vector free hiPSC cells were either frozen 

in liquid nitrogen or kept on growing for further study. 

 



 

 

34 

MEF-Conditioned hPSC Medium 

About 6.6 million mitotic inactive MEFs were plated on T75 flask in MEF medium and 

incubated overnight at 37˚C, 5%CO2. The medium was switched to 15ml hPSC medium 

containing 5 ng/ml bFGF, and kept incubated at 37˚C, 5% CO2. The MEF-Conditioned hPSC 

medium was collected and replaced by fresh medium onto MEFs daily for 7 days. The 

collected MEF-Conditioned hPSC medium was filtered through 0.22 μM filter and stored at 

-80˚C in aliquots. Before use, additional 10 ng/ml bFGF was added freshly into 

MEF-Conditioned hPSC medium. 

 

2.1.1.4 in vitro Differentiation 

Embryoid body (EB) formation is one of the easiest procedures for in vitro differentiation of 

PSCs. PSCs were dissociated into small pieces by using Collagenase IV (1 mg/ml) and manual 

splitting. The small clumps of cells were washed twice with hPSC medium to remove MEFs, 

and cultured in suspension. After 4-5 days, embryonic bodies (EBs) were formed. EBs were 

transferred to gelatinized plates or coverslips to grow for additionally 7 days for further 

differentiation. During the course of the differentiation, cells were fed with differentiation 

medium in the absence of bFGF. The differentiated cells were examined by 

immunocytochemistry for differentiation markers: Tuj1 for Ectoderm layer, AFP for 

Endoderm layer, and Brachyury for Mesoderm layer. 

 

2.1.1.5 in vivo Differentiation 

The in vivo differentiation experiments (teratoma formation) were performed by Prof. Dr. 

Ralf Dressel in the Institute of Human Genetics, University of Göttingen. At least 2 million 

hiPSC cells were harvested by Accutase and suspended in hPSC medium containing 10 μM 

Y27632 and 30% matrigel. The cells were injected into SCID or RAG-/- mice. The mice were 

carefully monitored for the appearance of tumors. If tumors were formed, the mice were 

sacrificed. Tumors were collected for histological analysis by paraffin embedding and 

hematoxylin and eosin (HE) staining. 

 



 

 

35 

2.1.1.6 Derivation and Maintenance of Human Neural Precursors  

hiPSCs were harvested by 1 mg/ml Collagenase IV and plated on PA6 stromal feeder dishes 

(400,000 PA6 cells/3.5-cm dish). hiPSCs were fed with Neural Induction medium which 

contained BMP inhibitors (noggin 200 ng/ml or Dorsomorphin 2 μM) every second day. After 

1~2 weeks, neural rosette structures started to appear with hiPSC colonies. By manually 

dissecting under the stereomicroscope, neural rosettes were transferred to poly-D-Lysine 

(PDL)-coated plates, and fed with NP medium supplemented with bFGF 20 ng/ml and EGF 20 

ng/ml.  

 

Maintenance of Neural Precursor Cells 

After some days of incubation, NPs outgrew from neural rosette structure. Following 

Accutase treatments, the cells became round in shape, then the cells were collected, 

centrifuged, suspended in NP medium, and plated to new plates. Then neural precursor cells 

(NPs) were grown as monolayers on NP medium (bFGF & EGF) at 37°C and 5% CO2. Media 

were changed daily or every other day. Cells were passaged every 5~7 days. Cells can be 

frozen with NP medium containing 10% DMSO in liquid nitrogen. So far, neural precursors 

can be maintained up to passage 25. 

 

Neuronal Differentiation 

50-75 x 104 NPs were seeded on matrigel (BD Bioscience, 356230) coated 3.5-cm culture 

dishes or glass coverslips. The minimal supportive medium for differentiating neural cells 

into neurons is neural differentiation medium containing BDNF 10 ng/ mL and 200 μM 

Ascorbic Acid. Differentiations are usually carried out for 1~2 weeks with media changes 

every two to three days. 

To enrich for dopaminergic neurons, the NPs were first fed with neural differentiation 

medium supplemented with 100 ng/ml FGF8 & 100 ng/ml Shh (or 2 μM Purmorphamine) for 

neuron patterning. The medium was changed every other day. After 2 weeks, for neuron 

maturation, the cells were fed with neural differentiation medium containing 10 ng/ml GDNF, 

10 ng/ml BDNF, 1 ng/ml TGF-β3, 200 μM Ascorbic Acid and 0.5 mM dbcAMP for subsequent 

weeks. Cells were analyzed after day 30 following the onset of differentiation procedure. 
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Culture of PA6 Stromal Cells 

PA6 cells (RIKEN Bio Resource Center Cell Bank), bone-marrow derived stromal cells, were 

maintained in PA6 medium. Upon passage, PA6 cells were split by the ratio of 1:5. For 

inactivation, cells were treated with Mitomycin C (10 μg/mL) for 1 h at 37°C, and either 

directly replated to 0.2% gelatinized plates as feeder layers or frozen for future uses. 

 

2.1.1.7 Differentiation of Floor-Plate Derived Dopaminergic Neurons 

Midbrain dopaminergic neurons are believed to originate from the midbrain floor plate (FP) 

during the brain development. Herein, the differentiation protocol was modified from (Xi, et 

al., 2012). hiPSCs were plated on PA6 stromal feeder dishes. The next day, hiPSC were fed 

with FP induction medium in the presence of 10 μM SB431542, 0.1 μM LDN193189, 2 μM 

purmorphamine (pur), and 0.5 μM CHIR99021 (CHIR). The medium was changed every 

second day. In addition, Shh (C24II) 100 ng/ml was added for the first four days. On day 9, 

SB431542 and LDN193189 were removed. The cells were fed with FP medium (Pur & CHIR) 

till day 11~13. On day 11, the cells were replated on Laminin (5 μg/ml)/ Fibronectin (5 μg/ml) 

or on matrigel coated coverslips for immunostaining. Cells were continuously maintained on 

neural differentiation medium containing 10 ng/ml GDNF, 10 ng/ml BDNF, 1 ng/ml TGF-β3, 

200 μM Ascorbic Acid, 0.5 mM dbcAMP, and DAPT 5μM. About day 23~25, the differentiated 

cells were replated on either coverslips or new dishes for future studies. After one month of 

differentiation, or even longer (till 40~45 days), the differentiated cells were harvested for 

molecular and functional analysis. 

 

2.1.2 Biochemistry & Molecular Biology Methods 

2.1.2.1 Alkaline Phosphatase Assay 

hiPSC colonies were washed with PBS once, and fixed by 3.7% Formaldehyde for 20 min at 

room temperature (rt). Followed 3 times of PBS-washes, fixed cells were washed 3 × 10 min 

in NTMT solution to equilibrate to alkaline pH (9.0–9.5). Then the cells were exposed to 

NBT/BCIP (Roche, 11 681 451 001) diluted NTMT (200 μl/ 10 ml NTMT) in the dark with 

gentle shaking. If color developed, the reaction was stopped by removing NBT/BCIP, and 

washed by PBS. 
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2.1.2.2 Fluorescent Immunocytochemistry 

To detect the expression of proteins by immunocytochemical methods, the cells were grown 

on either matrigel or PDL/laminin/fibronectin coated coverslips. At the time of assays, cells 

were rinsed with PBS once and fixed by 3.7% Formaldehyde for 20 min at rt. The fixed cells 

were washed with PBS and permeabilized by 0.5% Triton in PBS for 10 min. The cells were 

washed again and blocked in the blocking solution (5% BSA and 0.1% Triton in PBS) for 1 h at 

rt. Primary antibodies were diluted in blocking solutions, and incubated with cells either 

overnight at 4°C or 2 h at rt. After that, cells were washed 3 times with PBST (0.1% Tween-20 

in PBS), 10 min each. Diluted fluorescent secondary antibodies were applied for conjugation 

of respective primary antibodies, and they were incubated for 1 h in the dark. Then the 

coverslips were washed 3 times with PBST. Nuclear staining was counterstained by DAPI 

(Vector Labs). The coverslips were sealed by nail polish and stored at 4°C in the dark. 

The fluorescent images were acquired by using Leica SP5 Confocal microscope and Olympus 

BX60 fluorescent microscope. The processed images were done by Adobe Photoshop CS2 

and arranged by Adobe Illustrator CS3. Used primary and secondary antibodies are listed in 

Table 2.1 & 2.2. 

 

2.1.2.3 Isolation of total RNA 

Total RNA was isolated with the RNeasy Mini Kit (Qiagen, 74104) according to the 

manufacturer’s instructions. Briefly, collected cells were lysed and RNA was purified using 

silica-membrane RNeasy spin columns. DNA removal was carried by on-column DNase 

treatment. The concentration and quality of purified RNA were determined by the 

NanoDrop (Peqlab). 

 

2.1.2.4 cDNA synthesis 

0.5-1 μg total RNA was subjected to cDNA synthesis with QuantiTect Reverse Transcription 

Kit (Qiagen, 205311) following the manufacturer’s instructions. The RNA template was 

annealed by a unique RT Primer Mix and transcribed into cDNA by QuantiTect Reverse 

Transcriptase. The final volume was equal for each sample (e.g. 20 μl). The synthesized cDNA 

was stored at -20°C or optimized for use in conventional PCR or QRT-PCR. 
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2.1.2.5 Quantitative Real-Time-PCR (QRT-PCR) 

To quantify the relative expression of specific genes was relied on QRT-PCR. Target genes 

were amplified by their own specific primer set and normalized by housekeeping genes 

(GAPDH or Actin). For each reaction mix was total 10 µl:  

Forward / reverse primer mix (5 µM each) 1 µl 

2X SYBR Green PCR Master Mix (KAPA SYBR FAST Universal) 5 µl 

ddH2O 2 µl 

cDNA diluent (1:2-1:5) 2 µl 

The PCR was performed on the Mastercycler realplex system (Eppendorf). 

 

2.1.2.6 Isolation of genomic DNA 

Collected cell pellets were lysed in 500 μl DNA lysis buffer and 50 μl Proteinase K (10 mg/ml) 

at 56°C overnight. The next day, 500 μl Isopropanol was added to precipitate the genomic 

DNA. After 10 min of centrifugation (13.000 rpm), the supernatant was discarded, and 1 ml 

70% ethanol was added to wash the cell pellets. Samples were centrifuged again for 5 min 

(13.000 rpm) and the supernatant was discarded. The pellets were air-dried for 5 min and 

dissolved in 10-50 μl TE buffer, depending on the concentration needed. The concentration 

and quality of resulting genomic DNA were measured by using NanoDrop. 

 

2.1.2.7 Fingerprinting 

The method was referred by (Park, Arora, et al., 2008). 50 ng of genomic DNA was used to 

amplify genomic regions containing highly variable numbers of tandem repeats (VNTR) in 

order to verify the genetic relatedness of iPS cell lines relative to their parent fibroblasts. 

The sequences of each primer set: D10S1214, D17S1290, D7S796 and D21S2055 were listed 

in Table 2.4. PCR conditions were: 94°C for 10 min followed by 35 cycles of 94°C for 1 min, 

55°C for 1 min and 72°C for 1 min, with a final extension step of 72°C for 5 min. PCR 

products were analyzed by running on 2.5% agarose gels. 

 

2.1.2.8 Bisulfite sequencing 

The EpiTect Bisulfite Kit (Qiagen, 59104) was used for bisulfite conversion of genomic DNA, 

unmethylated Cytosine nucleotides (C) to Uracil nucleotides (U). The procedure was 
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conducted as the manufacturer’s instructions. The promoter region of OCT4 were amplified 

by the subsequent PCR using primers (Table 2.6) previously described ((Freberg, Dahl, 

Timoskainen, & Collas, 2007) primer pair 4 for OCT4). The resulting amplified products were 

cloned into pTZ57R/T Cloning Vector (Fermentas, K1214), amplified in DH5α cells. The 

cloned plasmids were purified by the QIAprep Spin Miniprep Kit (Qiagen, 27106) and 

sequenced by ABI PRISM® 3100 Genetic Analyzer (Applied Biosystems). 

 

2.1.2.9 Southern Blot 

After overnight digestion with BamHI, 10 μg genomic DNA fragments were resolved on 0.8% 

agarose gel with low voltage (25 V) over 16 hours. The gel was soaked in 0.25 M HCl for 

15-20 min with gentle shaking. This step is necessary for the optimal transfer of DNA 

fragments >4kb to the blotting membrane. Two 20 min-denaturation washes followed in 

denaturing buffer. Then the other two 20 min-neutralization washes were conducted. During 

the neutralization, the transfer stuff was started to set up, including Whatman paper, tissue 

paper, a big glass, a baking dish with 10X SSC buffer, and blotting membrane. The gel was 

rinsed with 10X SSC buffer for a while, then set to transfer DNA to blotting membrane 

overnight with gravity. After the DNA transfer is done, the membrane was rinsed by 2X SSC 

buffer to remove some residual gel, and placed on Whatman paper for a while for drying. 

The membrane was then UV crosslinked by Stratalinker “autocross link” setting 

(STRATAGENE).  

The UV crosslinked membrane was set into a hybridization tube with Hybrid Mix buffer, and 

placed in a hybridization oven at 65°C for at least 30 min. Meanwhile, radioactive WPRE 

probes were generated from 50 ng PCR products using the Rediprime™ II DNA Labeling 

System (GE Healthcare) and [a-32P]-dCTP (PerkinElmer), according the manufacturers’ 

protocols. Radio-labeled WPRE probes were purified using the ProbeQuant G-50 Micro 

Columns (Amersham Pharmacia Biotech, 27-5335-01) and heat-denatured (99°C, 5 min 

followed by 5 min on ice). Hybridization was performed at 65°C overnight in Hybrid Mix with 

slow rotation. The following day, the membrane was washed 3x in 10X SSC buffer at 65°C, 

wrapped with Saran Wrap and exposed to film (Kodak) for several days at -80°C. 
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2.1.2.10 Transcriptome Analysis 

The gene expression filing of hiPSC derived neural precursors was carried out by the 

Transkriptomanalyselabor (TAL) -Microarray and Deep-Sequencing Facility- in University of 

Göttingen. Neural precursors were collected by Accutase, suspended in TRIzol® Reagent (Life 

Technologies, 15596-026), and frozen at -80˚C. The total RNA was isolated and assessed RNA 

quality by the Agilent RNA 6000 Nano Kit (Agilent, 5067-1511). Following the standard 

procedure, the resulting gene expression data was obtained using Human GE 4x44K v2 

Microarray (Agilent, G2519F-026652). 

 

2.1.3 Functional Assays 

2.1.3.1 Electrophysiology 

Electrophysiological analyses were performed by Dr. Kun-Han Lin in the Max-Planck Institute 

for Biophysical Chemistry. Patch-clamp recordings were obtained from differentiated cells 

using an EPC-10 amplifier controlled by Pulse software (HEKA Elektronik, Lambrecht/Pfalz, 

Germany). Cells were visualized by differential interference contrast microscopy through a 

60x water-immersion objective (NA 1.0, Olympus, Hamburg, Germany) using an Axioskop FS 

microscope (Zeiss, Oberkochen, Germany). All experiments were performed at room 

temperature. 

Patch pipettes were made from borosilicate glass (Science Products GmbH, Hofheim, 

Germany). Pipette resistance was 4–6 MΩ. Access resistance (Rs) values were ≤20MΩ for 

recordings. Rs was compensated 60–70% during voltage-clamp experiments. For measuring 

sodium (INa(V)), potassium currents (IKa(V)), and action potentials (APs), pipettes were filled 

with K-gluconate based solution (Lin, Oleskevich, & Taschenberger, 2011). 

 

2.1.3.2 Carbonyl cyanide m-chlorophenyl hydrazine (CCCP) Treatments 

The mitochondrial stress experiments were carried out by Dr. Susann Kummer in the 

Department of NanoBiophotonics, Max-Planck Institute for Biophysical Chemistry. The cells 

were exposed to CCCP (Fluka BioChemika, 21855), which integrates into the inner 

membrane of mitochondria leading to an uncoupling of the proton gradient, and thus, to 

cellular ATP depletion and cell death. Incubation of hiPSC-derived neurons with 100–200 μM 

CCCP for 45 min at 37°C, was followed by fixation using 4% paraformaldehyde, blocking of 
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unspecific bindings using 5% BSA, and cell membrane permeabilization using 0.1 % Triton 

X-100. (Incubation was at room temperature for 5 min for each step). Cells subjected to 

microscopic imaging were treated with specific antibodies in a double staining procedure. 

Immunostaining was performed using the antibody combinations summarized in table 2.2 & 

2.4 for 1 h at room temperature to visualize mitochondria and dopaminergic neurons. The 

fluorescent images were acquired by using Leica DM6000 widefield microscope. 

 

2.1.3.3 Intracellular ROS Assay 

The cell-permeant 2', 7'-dichlorodihydrofluorescein diacetate (H2-DCFDA) is known as a 

general oxidative stress indicator for detection of intracellular ROS (Reactive Oxygen Species). 

The acetate groups of DCFDA are cleaved by intracellular esterases and oxidation, and 

fluorescent fluorophore, DCF, is yielded. Therefore, the level of ROS can be measured by the 

intensity of fluorescent DCF.  

The hiPSC-derived neurons were exposed 100 mM H2O2 for 1 h at 37°C and followed by 

incubation with 10 μM DCFDA for additional 20 min. Afterwards, cells were harvested and 

suspended in HEPES buffer. The fluorescence of living cells was monitored using a flow 

cytometer (BD FACSCanto II). The excitation and emission wavelengths used for the dyes are 

λex/λem = 475/525 nm for DCF. The data was analyzed using flowing software 

(http://www.flowingsoftware.com). 
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2.2 Material 

2.2.1 Medium & Reagents 

2.2.1.1 Culture Medium 

MEF Medium/ hFB Medium/ 293T Medium 

High D-MEM (Invitrogen, 41965-039) 

10% FCS (Fetal Calf Serum) 

1x P/S (Penicillin-Streptomycin, Liquid)(Invitrogen, 15140-122) 

 

hPSC Medium 

Knockout D-MEM (Invitrogen, 10829-018) 

20% Knockout Serum Replacement (KSR) (Invitrogen, 10828-028) 

1x NEAA (Non-Essential Amino Acids Solution 10 mM, 100x) (Invitrogen, 11140-050) 

2 mM L-Glutamine (Invitrogen, 25030-024) 

0.1 mM β-Mercaptoethanol (Sigma, M3148) 

1x P/S 

 

Differentiation Medium 

Knockout D-MEM (KO-DMEM) 

20% FCS 

1x NEAA 

1x P/S  

2 mM L-Glutamine  

0.1 mM β-Mercaptoethanol  

 

Neural Induction Medium 

Knockout D-MEM 

15% Knockout Serum Replacement 

1x NEAA 

1x P/S 

2 mM L-Glutamine 

0.1 mM β-Mercaptoethanol  
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Neural Precursor Medium (NP Medium) 

Neurobasal Medium (Invitrogen, 21103-049) 

1x NEAA 

1x P/S  

2 mM L-Glutamine 

1x N2 (Invitrogen, 17502-048) 

1x B27 Minus Vitamin A (Invitrogen, 12587-010) 

0.2 mM Ascorbic Acid (Sigma, A4403) 

 

Neuronal Differentiation Medium 

Neurobasal Medium 

1x NEAA 

1x P/S  

2 mM L-Glutamine  

1x B27 Minus Vitamin A  

0.2 mM Ascorbic Acid 

 

PA6 Medium  

MEM α medium, Nucleosides (Invitrogen, 12571-063) 

10% FCS 

1x P/S 

 

FP Induction Medium 

50% Knockout D-MEM 

50% Neurobasal Medium 

1x NEAA 

1x P/S  

2 mM L-Glutamine 

1x N2 

1x B27 Minus Vitamin A 
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2.2.1.2 Growth Factors, Recombinant Protein & Small molecules 

bFGF (PeproTech, 100-18B) 

Y27632 (TOCRIS, 1254) 

Noggin (R&D SYSTEMS, 344-NG) 

EGF (PeproTech, AF-100-15) 

Dorsomorphin (Sigma, P5499) 

FGF8 (PeproTech, 100-25) 

Shh (PeproTech, 100-45) 

BDNF (PeproTech, 450-02) 

GDNF (PeproTech, 450-10) 

TGF-β3 (R&D SYSTEMS, 243-B3-002) 

dbcAMP (Sigma, D0627) 

DAPT (TOCRIS, 2634) 

SB431542 (TOCRIS, 1614) 

LDN193189 (STEMGENT, 04-0074) 

Shh C24II (R&D SYSTEMS, 1845-SH) 

FGF20 (PeproTech, 100-41) 

purmorphamine (Cayman Chemical, 10009634) 

CHIR 99021 (STEMGENT, 04-0004) 

Poly-D-Lysine (Sigma, P6407) 

Laminin (Sigma, L2020) 

Fibronectin (R&D SYSTEMS, 1030-FN) 

H2-DCFDA (Sigma, D6883) 

 

2.2.1.3 Buffers & Reagents 

NTMT Solution 

100 mM NaCl 

100 mM Tris-HCl pH 9.5 

50 mM MgCl2 

1% Tween 20 
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DNA Lysis Buffer 

100 mM Tris-HCl pH 8.0 

5 mM EDTA 

0.2% SDS 

200 mM NaCl 

 

1X Neutralization Buffer 

1.5 M NaCl 

0.5 M Tris-HCl pH 7.5 

 

1X Denaturation Buffer 

0.5 M NaOH 

1.5 M NaCl 

 

20X SSC Buffer 

3 M NaCl 

0.3 M Na Citrate 

 

Hybrid Mix 

500 mM Sodium Phosphate Buffer, PH 7.2 

7% SDS 

1 mM EDTA 

 

HEPES Buffer 

5 mM KCl 

140 mM NaCl 

2 mM CaCl2 

1 mM MgCl2 

10 mM Glucose 

5 mM Hepes 
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2.2.2 Plasmids 

Table 2.1: List of Plasmids used 

Function Plasmids Source 

Virus Production pMD2.G Addgene, 12259 

Virus Production psPAX2 Addgene, 12260 

Reprogramming pHAGE2 EF1aL-hSTEMCCA-W-loxP Gift from Kotton Lab 

Cre Excision pHAGE2-Cre-IRES-PuroR Gift from Kotton Lab 

Bisulfite sequencing pTZ57R/T Cloning Vector Fermentas, K1214 

Kotton Lab: Pulmonary Center, Boston University School of Medicine 

 

 

Figure 2.1: The Map of Lentiviral Vector hSTEMCCA.  

(pHAGE2 EF1aL-hSTEMCCA-W-loxP) 

 

2.2.3 Primary Antibodies 

Table 2.2: List of Primary Antibodies used 

Antibody Species Dilution  Source 

Oct4 Rabbit Polyclonal 1: 500 Abcam, ab19857 

Sox2 Rabbit Polyclonal 1: 400 Abcam, ab15830 

Nanog Rabbit Polyclonal 1: 100 Abcam, ab21624 

Nanog Goat Polyclonal  1: 100 R&D Systems, AF1997 
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Lin28 Rabbit Polyclonal 1: 750 Abcam, ab63740 

TRA-1-60 Mouse Monoclonal 1: 100 Abcam, ab16288 

SSEA4 Mouse Monoclonal 1: 100 Abcam, ab16287 

Sox17 Goat Polyclonal  1: 100 R&D Systems, AF1924 

Brachyury Goat Polyclonal  1: 100 R&D Systems, AF2085 

α-Fetoprotein/AFP Mouse Monoclonal 1: 100 R&D Systems, MAB1368 

Tyrosine Hydroxylase/TH Rabbit Polyclonal 1: 300 Millipore, AB152 

β-tubulin III/Tuj1 Mouse Monoclonal 1: 1000 Covance, MMS-435P 

Nestin Mouse Monoclonal 1: 750 R&D Systems, MAB1259 

Msi1 Rabbit Polyclonal 1: 200 Abcam, 21628 

Pax6 Rabbit Polyclonal 1: 300 Covance, PRB278P 

FoxA2 Goat Polyclonal  1: 100 Santa Cruz, sc-6554 

Lmx1A Rabbit Polyclonal 1: 2000 Millipore, AB10533 

EN1 Mouse Monoclonal 1: 50 DSHB, 4G11 

TOM20 Mouse Monoclonal 1: 100 BD Bioscience, 612278 

DSHB: Developmental Studies Hybridoma Bank 

 

2.2.4 Secondary Antibodies 

Table 2.3: List of Secondary Antibodies used 

Conjugate Host species Reactivity  Dilution Source 

Alexa 488 Donkey Rabbit 1: 750 Invitrogen, A-21206 

Alexa 488 Goat Rabbit 1: 750 Invitrogen, A-11008 

Alexa 488 Goat Rabbit 1: 100 Molecularprobes, A11034 

Alexa 488 Chicken Goat 1: 750 Invitrogen, A-21467 

Alexa 488 Goat Mouse 1: 750 Invitrogen, A-11001 

Alexa 594 Chicken Goat 1: 750 Invitrogen, A-21468 

Alexa 594 Donkey Rabbit 1: 750 Invitrogen, A-21207 

Alexa 594 Goat Rabbit 1: 750 Invitrogen, A-11012 

Alexa 594 Donkey Mouse 1: 750 Invitrogen, A-21203 

Alexa 594 Goat Mouse 1: 750 Invitrogen, A-11005 

Rhodamine Sheep Mouse 1: 100 Dianova 
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Rhodamine labeling anti-mouse KK114 was made in the Department of NanoBiophotonics 

(Kolmakov et al., 2010). 

 

2.2.5 PCR Primers used for Cre Excision 

Table 2.4: List of PCR Primers for Cre Excision 

Gene/ Oligos Primer sequence 5’-3’  

STEM_SPM_F GCCGCCCCCAGCAGACTTCA 

STEM_SPM_R GGGGTGGGCAGCAGCTCGAA 

WPRE_F CGTAAGTCGATAGATCCTAATCAAC 

WPRE_R TTAAAGGTACCAGGCGGGGAG 

 

2.2.6 PCR Primers used for Fingerprinting 

Table 2.5: List of PCR Primers for Fingerprinting 

Gene/ Oligos Primer sequence 5’-3’  

D21S2055_F AACAGAACCAATAGGCTATCTATC 

D21S2055_R TACAGTAAATCACTTGGTAGGAGA 

DS17S1290_F GCAACAGAGCAAGACTGTC  

DS17S1290_R GGAAACAGTTAAATGGCCAA 

D7S796_F TTTTGGTATTGGCCATCCTA 

D7S796_R GAAAGGAACAGAGAGACAGGG 

D10S1214_F ATTGCCCCAAAACTTTTTTG 

D10S1214_R TTGAAGACCAGTCTGGGAAG 

 

2.2.7 PCR Primers used for Pluripotency 

Table 2.6: List of PCR Primers for Pluriopotency 

Gene/ Oligos Primer sequence 5’-3’  

OCT4_F CAGTGCCCGAAACCCACAC 

OCT4_R GGAGACCCAGCAGCCTCAAA 

SOX2_F TTACCTCTTCCTCCCACTCCAG 

SOX2_R GGGTTTTCTCCATGCTGTTTCT 
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NANOG_F CCTGAAGACGTGTGAAGATGAG 

NANOG_R GCTGATTAGGCTCCAACCATAC 

TERT_F GTGAACAGCCTCCAGACGGT 

TERT_R GCGTTCTTGGCTTTCAGGAT 

FOXD3_F AAGCCCAAGAACAGCCTAGTGA 

FOXD3_R GGGTCCAGGGTCCAGTAGTTG 

TDGF1_F TACCTGGCCTTCAGAGATGACA 

TDGF1_R CCAGCATTTACACAGGGAACAC 

GAPDH_F TGACATCAAGAAGGTGGTGAAGC 

GAPDH_R CCCTGTTGCTGTAGCCGTATTC 

 

2.2.8 PCR Primers used for Bisulfite OCT4 Promoter 

Table 2.7: List of PCR Primers for Bisulfite OCT4 Promoter 

Gene/ Oligos Primer sequence 5’-3’  

hOCT4P-4_F GGATGTTATTAAGATGAAGATAGTTGG 

hOCT4P-4_R CCTAAACTCCCCTTCAAAATCTATT 

 

2.2.9 PCR Primers used for QRT-PCR 

Table 2.8: List of PCR Primers for QRT-PCR 

Gene/ Oligos Primer sequence 5’-3’  

GAPDH_F TGACATCAAGAAGGTGGTGAAGC 

GAPDH_R CCCTGTTGCTGTAGCCGTATTC 

FGF20_F GACCACAGCCTCTTCGGTAT 

FGF20_R CTGCTCCCTAAAGATGCATTCG 
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3 Results 

3.1 Recruitment of PD Patients 

In collaboration with Prof. Dr. Claudia Trenkwalder in Paracelsus-Elena-Klinik, Kassel, 

Germany, and following German ethical regulations, PD patients were recruited with the 

purpose of establishment of PD patient specific hiPSC model and investigation of the PD 

pathogenesis. At the start, 6 PD patients who developed obvious PD symptoms at the age of 

38~54 years were enlisted and agreed to perform skin punch biopsy. However, only 4 PD 

patients’ dermal fibroblasts could be isolated and derived from the skin biopsies. Together 

with 2 controls contributed by healthy persons, 3 PD patients’ fibroblasts were further used 

for generation of hiPSC model and direct differentiation of dopaminergic neurons. The 

clinical information of 3 PD patients was listed in Table 3.1. 

 

Table 3.1: Clinical Information of PD Patients 

 

Note: UPDRS III (Unified Parkinson’s Disease Rating Scale-motor examination), RLS (Restless 

legs syndrome), DBS (Deep Brain Stimulation), N/A (Not Available) 

 

 

 

PD Patient Kas01 Kas02 Kas05

Gender female male female

Age of Onset 35 44 41

Age of Skin Biopsy 38 47 48

Family History N/A N/A
mother and maternal

grandfather with PD

Features pronounced dyskinesias
pronounced dyskinesias,

DBS

Clicical Symptoms

freezing,  rigid,

dysarthria,dystonia,left-

sided hypokineseia ,

severe fluctuations

tremor and left-sided

hypokinesia, motor

fluctuations

rigid, dystonia, RLS, right-

sided hypokinesia,

fluctuations

 UPDRS III 22/46 37/77 10/35

Levodopa Response yes yes yes

Present Treatments
Amantsdin, Apomorphin,

levodopa

DBS, Levodopa,

Entacapon, Rasagilin,

Ropinirol

Levodopa, Ropinirol,

entacapon, amantadin
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3.2 Generation of PD Patient Specific Induced Pluripotent Stem Cells 

3.2.1 Reprogramming of PD patients’ Fibroblasts to Pluripotent States 

To generate human iPSCs, the protocol used in this study was adopted from Kotton and 

Mostoslavsky’s published article. (Somers et al., 2010) They generated a humanized version 

of lentiviral Stem Cell Cassette (hSTEMCCA) (Figure 3.1.A) containing four defined factors 

(Oct4, Klf4, Sox2, and c-Myc). In addition, this lentiviral vector is flanked by a loxP site on 3’ 

long terminal repeat (LTR) region. Upon proviral replication, the loxP site in the 3’LTR is 

duplicated into the 5’LTR, resulting in an integrated transgene flanked by loxP sites on both 

LTRs. The transgene would be then removed using the technology of Cre/loxP 

recombination. 

Human dermal fibroblasts (Figure 3.2.a & d) used for reprogramming were within passage 4. 

(Figure 3.1.B) One day before transduction (day 0), 1x105 human fibroblasts were plated in 

hFB medium. The next day (day 1), the cells were infected with hSTEMCCA lentivirus. After 

24 h of transduction (day 2), the virus remaining in the medium was removed, and the cells 

were fed with fresh hFB medium for 2 days. On day 5, the transduced fibroblasts were 

passaged onto inactive mouse embryonic fibroblast (MEF) feeder layers. Acting as normal 

human embryonic stem (hES) cell culture, the cells were fed with hPS medium 

supplemented with bFGF. In the first week (day 5-12), the cells were treated with sodium 

butyrate (Na butyrate) additionally. It has been reported that Na butyrate, as a Histone 

deacetylase inhibitor, greatly enhances the efficiency of hiPSC derivation (Mali et al., 2010). 

Afterwards, the cells were kept growing on the hPS medium. About day 20-25, some small 

human ES-like colonies, started to appear in the dish. Following one month of transduction, 

hiPSC colonies with the appropriate size for propagation in culture were passaged. These 

hiPSC colonies were isolated and picked up mechanically under the stereomicroscope in the 

laminar flow hood. Isolated colonies were transferred to a fresh MEF feeder plate 

respectively and propagated under standard hES cell culture condition. Unlike parental 

fibroblasts, fully reprogrammed colonies were easily distinguishable by their similarity to 

hESC colonies and their tightly packed morphology. All selected clones had high nuclei to 

cytoplasm ratio, well defined borders, densely packed colonies, and were indistinguishable 

from human ESCs. (Figure 3.2.b & e) In addition, those hiPSC clones showed the enzyme 

activity of alkaline phosphatase (ALP), one of the characteristics of hESC. (Figure 3.2 c & f) 
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For each sample, up to 30 hiPSC clones were picked primarily. 1-3 clones per sample were 

continuously passaged; the rest of them were frozen in the liquid nitrogen tank. 

 

3.2.2 Excision of Transgene from Host Genome of Human ES-like Clones by 

Cre/loxP Recombination 

The previous reports have shown that presences of transgenic reprogramming factors would 

interfere with cellular activities of iPSCs. For example, constitutive expression of 

reprogramming transgenes interrupts the ability of mouse iPSC differentiation into different 

germ layers. (Sommer et al., 2010) The remaining integrated transgenic factors could also 

cause tumor formation and affect the global genetic network (Okita, Ichisaka, & Yamanaka, 

2007) (Soldner et al., 2009). Therefore, it is imperative for developing an improved method 

for generating human iPSC free of transgene integration. The lentiviral hSTEMCCA used in 

this work is a multicistronic vector flanked with a loxP site next to the transgenes. Use of this 

single vector allows deriving human iPSC with a single excisable viral integration, and further 

efficiently generating factor-free hiPSCs followed by Cre-mediated excision.  

In order to excise the transgenic hSTEMCCA from the generated hiPSC clones, the plasmid 

pHAGE2-Cre-IRES-PuroR, ectopic expression of Cre recombinase and puromycin resistant 

plasmid, was delivered into the hiPSC clones for transient expression of Cre recombinase 

within cells. Besides, the cells were exposed to puromycin antibiotic selection for 2 days. 

Afterwards, the cells would recover and grow for 1-2 weeks till new surviving colonies 

mature for pick-up. Those pick-up subclones were cultivated, expanded, and then examined 

for transgene excision by PCR primarily. For each hiPSC clone, at least 7 subclones were 

picked. Deletion of hSTEMCCA vector was nearly 100% successful in these screened 

subclones. (Figure 3.3.A) Furthermore, the absence of integrated hSTEMCCA or Cre plasmid 

was evident using the technology of Southern blot probed with the same element (WPRE) in 

both vectors. (Figure 3.3.B)  

In summary, human dermal fibroblasts isolated from 2 controls (wt & Hess) and 3 PD 

patients (Kas01, Kas02 & Kas05) were dedicated to generating hiPSCs using the single 

lentiviral vector hSTEMCCA. Beyond the excision of transgene, 2 hiPSC clones for each 

control (wt 1, wt 7 & Hess 6, Hess 9) and PD (Kas01 19, Kas01 21 & Kas02 14, Kas02 23 & 
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Kas05 5, Kas05 29) samples were employed for the characterization of hiPSC and directed 

differentiation of neural precursor and dopaminergic neurons. 

 

 

 

 

 

Figure 3.1 Generation of Human iPSC by a Lentiviral hSTEMCCA Vector.  

(A) Human fibroblasts were reprogrammed by lentiviral hSTEMCCA-loxP vector encoding 4 

defined factors (Oct4, Klf4, Sox, and c-Myc). The integrated transgene could be excised from 

the host genome by Cre/loxP recombination. The picture was adopted from (Somers, et al., 

2010). (B) Time flow of reprogramming in this study.  
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Figure 3.2: Cell Morphology of Human Skin Fibroblasts and Generated hiPSC Clones. 

Cell morphologies of primary human fibroblasts were control wt (a) & Hess (d) and PD 

patient Kas01 (g), Kas02 (j) & Kas05 (m). (b), (e), (h), (k) & (n) were hiPSC clones derived 

from control and PD patients grown on feeder layers, respectively. Alkaline phosphatase 

(ALP) activity was examined for derived hiPSC clones (c, f, I, j & o). Black bar represents 100 

µm. 
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Figure 3.3: Screen of Transgene-free hiPSC Clones by PCR and Southern Blot.  

(A) Preliminary screens were done by PCR using the plasmid specific primer set (SPM). P was 

diluted plasmid as positive control. 1~7 were post-excision subclones picked from hiPSC wt 7 

clones. Note: MEF (feeder cells), NTC (non template control).  

(B) Southern blot further confirmed that clone kas05 5f, Kas05 29f, kas02 23f, Kas02 14f & 

IMR 12f were transgenic-free excised form clone Kas05 5, Kas05 29, Kas02 23, Kas02 14 & 

IMR 12, respectively. hESC H1 cell line was negative control. 
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3.2.3 Characterization of PD Patient Specific hiPSC Lines 

Overexpression of pluripotency-associated transcription factors, like Oct4, Sox2, Klf4, c-Myc, 

and/or Nanog & Lin28, convert human somatic cells (e.g. fibroblast or keratinocyte) to the 

undifferentiated state, termed human induced pluripotent stem cells (hiPSCs). hiPSC is not 

only indistinguishable from hESC in morphology but also exhibits the specific characteristics 

of hESC. Besides the demonstration of their genetic origin from the parental cell, hiPSC is 

supposed to meet several criteria: (1) unlimited proliferation; (2) expression of pluripotency 

markers and surface antigen of hESC, such as Oct4, Nanog & SSEA4, Tra-1-60; (3) potential of 

differentiation in vitro to three germ layers (ectoderm, mesoderm, and endoderm); (4) 

competence of teratoma formation in vivo when injected into immune-compromised mice. 

Higher standards for pluripotency are that pluripotent stem cells (PSCs) are competent for 

chimera contribution, germline transmission, and tetraploid complementation, routinely 

examined in murine iPSCs (Chen & Liu, 2009). However, due to ethical restriction, these 

stringent tests cannot be applied to the assessment of human pluripotent stem cells. In this 

work, a series of pluripotency tests would be examined in the generated PD patient specific 

hiPSCs (PD-hiPSCs). 

 

DNA Fingerprinting 

In order to verify the origins of control/ PD-hiPSCs, the PCR-based fingerprinting analysis was 

set up. The genomic DNA was isolated from respective parental fibroblasts and derived 

hiPSCs, and the genomic regions containing highly variable tetra-nucleotide repeats (VTNR) 

were amplified by designed PCR primers. Four different genomic loci were examined: 

D21S2055, repeat (GATA)n, average heterozygosity 0.88; D7S796, repeat (GATA)n, average 

heterozygosity 0.95; D10S1214, repeat (GGAA)n, average heterozygosity 0.97; and D17S1290, 

repeat (GATA)n, average heterozygosity 0.84 (Park, Arora, et al., 2008). The PCR amplified 

products were separated by agarose gel electrophoresis and shown the specific patterns 

among different parental fibroblasts and hiPSCs. By the combination of various sets of 

primers, the genetic relevance of derived hiPSC to the parental fibroblast was approved. 

Besides, the uncertainty of contamination of hESC cell line (e.g. H1) was excluded. (Figure 

3.4) 
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Expression of hESC Specific Markers 

Control/PD-hiPSCs were further evaluated for the specific features of human pluripotent 

stem cells (hPSCs) molecular signature. Previously, it was shown that the derived hiPSCs 

resemble hESC in terms of morphology and alkaline phosphatase activity. (Figure 3.1) 

Moreover, the pluripotency associated markers, including Oct4, Sox2, Nanog, and Lin28, 

were detected in Control/PD-hiPSCs using immunocytochemistry. The hES cell-specific 

surface antigens, like SSEA4 and tumor-related antigen (TRA)-1-60, were assessed as well. 

(Figure 3.5.I) In addition, RT-PCR analysis showed that hiPSCs expressed a set of 

undifferentiated ES cell-marker genes at RNA level. Control/PD-hiPSC expressed endogenous 

OCT4, SOX2 & NANOG with similar levels as seen in hESC cell line (H9). Besides, the presence 

of mRNA transcripts of reduced expression 1 (REX1), teratocarcinoma-derived growth factor 

1 (TDGF1), and telomerase reverse transcriptase (hTERT) in control/PD-hiPSCs demonstrated 

the qualities of pluripotency regardless of the genetic condition represented within the 

parental fibroblasts. (Figure 3.5.II) 

 

 

Figure 3.4: DNA Fingerprinting Analysis.  

Genomic DNAs were prepared from hESC H9, IMR, control (wt) and PD patients (Kas02 & 

Kas05) fibroblasts, and derived hiPSCs. DNA fingerprinting was analyzed by genomic PCR 
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using designed primer sets (D7S796, D10S1214, D17S1290, and D21S2055). PCR products 

were subjected to 2.5% agarose gel electrophoresis. 
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Figure 3.5: Detection of human ESC Markers in hiPSCs.  

(I) Control (wt 1 (A), 7 (B) & Hess 6(C), 9 (D)) and PD (Kas01 19 (E), 21 (F) & Kas02 14 (G), 23 

(H) & Kas05 5(I), 29 (J)) hiPSC clones were examined for their pluripotency by 

immunostaining of Oct4, Sox2, Nanog & Lin28, respectively. hES surface antigens, SSEA4 & 

TRA-1-60, were present in those hiPSC cell lines as well. White bar represents 100 µm. (II) 

hES-related gene expressions (OCT4, SOX2, NANOG, REX1, hTERT, and TDGF1) were 

examined by RT-PCR. hESC H9 cell line was positive control, and hFB wt & hFB Kas02 were 

negative controls. wt 1& 7 and PD Kas02 14 & 23 hiPSC clone displayed these pluripotent 

genes’ expression. 

 

Methylation Analysis of the OCT4 Promoter Region 

It is believed that the iPSC generation involves the modifications of the epigenome during 

conversion of somatic cell to the pluripotent state. DNA methylation controls the genomic 

epigenetic state that regulates gene expression. Methylation (-CH3) in a 

cytosine-phosphate-guanosine (CpG) dinucleotide is a genetic alteration that favors genomic 

integrity, guarantees proper regulation of gene expression, and is required for long-term 

gene silencing. The reprogramming process has been shown to be associated with 

epigenetic changes (e.g. DNA hypomethylation) mostly on pluripotency-related gene 

promoters. Thus, the endogenous OCT4 and NANOG pluripotent genes may become 

reactivated in somatic cells undergoing faithful reprogramming. (Freberg, et al., 2007) 
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To assess stable reprogramming of the epigenetic state of the OCT4 promoter in 

Control/PD-hiPSCs, the degree of DNA methylation of 5 CpG dinucleotides in the OCT4 

promoter (-2126~ -1891 bp from the transcriptional start site TSS)) was examined. This was 

followed by bisulfite conversion of genomic DNA, and PCR amplification of the evaluated 

OCT4 promoter region. The amplified PCR product was cloned into the vector and 

sequenced. Sequences of at least 3 bacterial clones per genomic region examined are 

represented as rows of circles, with each circle symbolizing the methylation state of one CpG 

dinucleotide. (Figure 3.6) The results revealed that hiPSCs were highly unmethylated while 

CpG dinucleotides of the evaluated region were highly methylated in parental fibroblasts, 

indicating that the OCT4 promoter is active in hiPS cells. 

 

 

Figure 3.6: Methylation Status of OCT4 Promoter.  

The CpG dinucleotides in the OCT4 promoter (-2126~ -1891 bp from the TSS) were examined 

for the methylation status. Open circles represent unmethylated CpG dinucleotides; closed 

circles represent methylated CpG dinucleotides. The cell line is indicated to the left of each 
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cluster. The percentage of all methylated CpGs for each promoter per cell line is noted to the 

right of each panel. 

 

in vitro and in vivo Differentiation 

The competence to differentiate into almost all cell types is the specific feature of human 

pluripotent stem cells (hPSCs). Embryoid bodies (EBs) formation is an in vitro test for PSCs. 

EB recapitulates many aspects of cell differentiation during early embryogenesis, and shows 

the ability of ES cells to differentiate into a variety of cell types in vitro. (Kurosawa, 2007) 

Another tool to monitor the capability of differentiation in stem cell research, also known as 

“gold standard” for assessing pluripotency, is teratoma formation in vivo. Teratomas are 

benign tumors composed of tissue or organ components from all three germ layers 

(endoderm, ectoderm, and mesoderm). When PSCs were injected into immune-deficient 

mice, PSCs develop into teratomas typically by remodeling their microenvironment to 

support their growth and generating blood vessels for nutrients (W. Y. Zhang, de Almeida, & 

Wu, 2008). 

To verify the ability of differentiation in vitro, the Control/PD-hiPSC floating culture was set 

up to form embryoid bodies (EBs) (Figure 3.7.I). After one week of suspension culture, the 

resulting cell aggregates (EBs) were plated on the gelatinized coverslips and kept growing in 

differentiation medium without bFGF growth factor. The outgrowth of differentiated cells 

from EBs presented different population of cell lineages: Endoderm (α-Foetoprotein), 

Mesoderm (Brachyury), and Ectoderm (Neuron-specific class III beta-tubulin) as documented 

by immunohistochemistry (Figure 3.7.II). 

Transplantation of Control/PD-hiPSCs into immunodeficient mice conducted the test for 

teratoma formation in vivo. If the tumor formation were observed, tumors would collect for 

histological analysis. Histological structures representing endoderm, mesoderm and 

ectoderm lineages showed that the derived hiPSCs have pluripotent potential (Figure 3.7.III). 
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Figure 3.7: in vitro and in vivo Differentiation of hiPSCs.  

(I) Embryoid body (EB) formation was carried in suspension culture of hiPSCs. (II) The 

outgrowth of adherent EBs derived from Control (wt 1 (A), 7 (B) & Hess 6(C), 9 (D)) and PD 

(Kas01 19 (E), 21 (F) & Kas02 14 (G), 23 (H) & Kas05 5(I), 29 (J)) hiPSC were analyzed by 

immunostaining of different lineage markers. AFP (α-Foetoprotein): Endoderm; Brachyury: 

Mesoderm; Tuj1 (Neuronal Class III β-Tubulin): Ectoderm. White bar represents 50 µm. (III) 

hiPSC were injected into Immunodeficient mouse recipients. Resulting teratomas from 

control hiPSCs (wt 1 (A), Hess 9 (B)) and PD hiPSCs (Kas01 19 (C), Kas02 23 (D) & Kas02 14 (E)) 

were histologically examined by HE staining. Gut-epithelial, cartilage & muscle & bone, skin 

& keratinocyte & neural tissue correspond to endo-, meso-, and ectodermal lineages, 

respectively. Black bar represents 50 µm. 
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3.3 Derivation of Neural Precursors from Control/PD-hiPSCs 

3.3.1 Direct Differentiation of Neural Precursors form Control and PD hiPSCs 

Current developed protocols for neural induction of human pluripotent stem cells (hPSCs) 

rely on embryoid body (EB) formation (S. C. Zhang, et al., 2001) or stromal feeder co-culture 

(Kawasaki, et al., 2000). In addition, it is evident that inhibition of SMAD signaling improves 

the efficiency of neural induction. Therefore, some identified BMP inhibitors, like Noggin 

(Smith & Harland, 1992) and Dorsomoprhin, have been used as neural inducing factors in 

several PSC neural differentiation protocols (Morizane, Doi, Kikuchi, Nishimura, & Takahashi, 

2011) (S. M. Chambers, et al., 2009). For neuron differentiation in hPSCs, it is often carried 

out on co-culture with stromal feeders with respect to the elicited stromal cell derived 

inducing activity (SDIA) observed in mouse ESC efficient neuronal differentiation. However, 

the effect is relatively less in human ESC, suggesting that additional treatments of BMP 

inhibitors accelerate and improve the neural induction. In this study, the combination of 

stromal feeder co-culture and BMP inhibitor treatment was set up to commit 

control/PD-hiPSCs to neuroectodermal lineage, generate multipotent neural precursors, and 

then further differentiate to dopaminergic neurons. 

The day before starting neural induction, hiPSCs were clonal passaged onto inactive PA6 cells 

(stromal cell line derived from mouse skull bone marrow). Then the hiPSCs were co-cultured 

on PA6 feeders and treated with BMP inhibitors (either recombinant Noggin protein or small 

molecule Dorsomorphin). (Figure 3.8) After one week of neural induction, neural rosette 

structures (Figure 3.9.C) started to appear on the neural induced hiPSC colonies. By this time 

point, the expression of the neuroepithelial cell marker-Pax6 (Figure 3.9.A) as well as the 

neural stem/progenitor cell marker-Nestin (Figure 3.9.B) was present in neural induced cells. 

The neural rosettes were isolated mechanically and plated on poly-D-Lysine (PDL) coated 

dishes separately. Meanwhile, the neural rosettes were fed with Neural Precursor (NP) 

medium (serum free N2B27 defined medium) containing bFGF and EGF growth factors. In 

the presence of bFGF and EGF, hES-derived rosettes are able to proliferate and maintain the 

expressions of neural stem cell markers, Sox1, Sox2, and nestin (Elkabetz et al., 2008). After 

some days, the cell outgrowth of neural rosettes was observed. Following Accutase 

treatments, the neural rosettes were dissociated into single cells and replated onto new 

dishes. Those emerging neural precursors display the bipolar morphology maintaining the 
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characteristics of neural rosette (Figure 3.9.D). The neural precursors grew as monolayers on 

the PDL coated dishes and were expansible with Accutase. When derived neural precursors 

were grown in suspension, they were able to form the neurospheres (Figure 3.9.E). 

The generated transgene-free control/PD-hiPSCs were employed to derive multipotent 

neural precursors through this combination of BMP inhibitor treatments and co-culture on 

PA6 stromal feeders. Those control/PD-hiPSC derived neural precursors displayed the neural 

epithelial cell morphology and expressed neural precursor specific markers, e.g. Msi1, Sox1, 

Sox2, Nestin, and Pax6 (Figure 3.10). To date, control/PD-hiPSC derived neural precursors 

can be maintained up to passage 25. 

 

 

 

 

 

Figure 3.8: Flow Chart of Derivation of Neural Precursors. 
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Figure 3.9: Neural Rosettes Structures in Neural Inductions.  

Neural epithelial markers, Pax6 (A) & nestin (B), were observed in neural rosettes during 

neural inductions. Nuclei were counterstained with DAPI (blue). The morphology of neural 

rosettes (C) was present in a neural induced hiPSC clone. Neural precursors displayed bipolar 

neural epithelial morphology (D). Neural precursors were able to form neurospheres (E). 

White scale bar corresponds to 100 µm. 
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Figure 3.10: Derivation of Neural Precursors from Control/PD-hiPSCs Neural Inductions.  

(A & E) cell morphology of control & PD hiPSCs derived neural precursors. These neural 

precursors expressed neural epithelial markers, Sox1 & Msi1, Sox2, Pax6, and Nestin (B-D & 

F-H). White scale bar corresponds to 50 µm 
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3.3.2 Generation of dopaminergic neurons from Control/PD-hiPSC derived 

Neural Precursors 

After the establishment of PD patient specific neural precursor cell lines from the 

pluripotent state, further differentiation was required to demonstrate the ability of 

conversion into terminally differentiated neurons. To enrich for dopaminergic neurons, PD 

relevant cell type, neural precursors were exposed to Shh and FGF8 growth factors to 

mediate the cell fates of dorsal-ventral patterning for two weeks. Afterwards, the 

differentiated cells were maintained in the neural differentiation medium containing BDNF, 

GDNF, dbcAMP, Ascorbic acid, and TGF-β3 for maturation of dopaminergic neurons and to 

prevent cell death.  

After 30 days of final dopaminergic maturation, control/PD-hiPSC derived neural precursors 

were able to differentiate into neuronal cells. They showed the expression of Neuronal Class 

III β-Tubulin (Tuj1), a pan neuronal marker (Figure 3.11). More importantly, the expression of 

Tyrosine hydroxylase (TH), the marker for dopaminergic neurons, was observed in 

differentiated neurons as well. 
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Figure 3.11: Dopamine Neuron Differentiation from PD-hiPSC derived Neural Precursors.  

Immunofluorescent images of differentiated neurons following dopaminergic neuron 

patterning and maturations. Tuj1 (Neuronal Class III β-Tubulin) (green) represented as pan 

neuron marker while TH (Tyrosine Hydroxylase) (red) indicated dopamine neurons. Nuclei 

were counterstained with DAPI (blue). White scale bar corresponds to 100 µm. 
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3.3.3 Transcriptome Analysis of Control/PD-hiPSC Derived Neural Precursors 

On account of the increased knowledge of human genome, the technology of gene 

microarray has provided a rapid and parallel assay of gene expression patterns. The plenty of 

obtained data from the microarray platform can be used to assign a comprehensive 

understanding of genetic networks. Thus, it is a mighty technique to evaluate the global 

gene expression changes correlated with differential treatments of the samples and to 

demonstrate the correlation among various samples. Furthermore, it is possible to discover 

the new regulatory networks by the differential gene expression patterns. 

To reveal novel molecular players involved in the PD pathogenesis, the control/PD-hiPSC 

derived neural precursors were used for transcriptome analysis using RNA microarray. 4 

control neural precursors (wt 1, wt 7 & Hess 6, Hess 9) were derived from 2 healthy persons’ 

hiPSCs and 6 PD neural precursors (Kas01 19, Kas01 21 & Kas02 14, Kas02 23 & Kas05 5, 

Kas05 29) were derived from 3 individual PD patients’ hiPSCs, respectively. The RNA 

microarray of control/PD-hiPSC derived neural precursors and initial data processing were 

carried out by the “Transkriptomanalyselabor (TAL)” at the University of Göttingen. The 

hierarchical correlation among the corresponding control and PD neural precursors was 

presented by the heatmap (Figure 3.12). The slight discrepancy between clones of the same 

sample can be observed, and might be due to the process of derivation of neural precursors. 

On account of individual samples with diverse genetic backgrounds, the global 

transcriptomes of respective samples’ neural precursors were not similar to each other. 

Using the platform “GeneSifter®” (PerkinElmer Inc.), the differential gene expressions of 

respective neural precursors were computed by Dr. Patrick Collombat, Institut de Biologie 

Valrose, Nice, France. To be considered differentially expressed between PD neural 

precursors versus control ones (PD-Control), genes had to be at least 1.5 folds up- or 

down-regulated and the corresponding p-value should be less than or equal to 0.05. The 

number of resulting up- and down-regulated genes among PD-Control was 485 and 332, 

respectively.  

To comprehensively understand the role of differentially expressed genes and their involved 

signaling pathways, total 817 genes (up- and down-regulated) were upload to the DAVID 

Bioinformatics Resources 6.7 (http://david.abcc.ncifcrf.gov/) for functional annotation and 

enrichment analyses. Based on the functional clustering, 13 pathways (p-value less than or 

http://david.abcc.ncifcrf.gov/
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equal to 0.05) were depicted by KEGG pathways (Figure 3.13.A). Among them, the pathway 

of axon guidance was most significant and might be associated with PD (Lesnick et al., 2007) 

(J. M. Kim et al., 2011). The fold changes (PD versus Control) of 14 genes involved in axon 

guidance were presented on Figure 3.13.B and S1. Besides, the genes counted in Gene 

Ontology (GO) term for neuron differentiation (GO0030182) were picked up and displayed 

the fold changes (PD versus Control) in Table 3.2. Of note, EPHA4 gene was significantly 

increased (3.5 fold) in the pool of PD-hiPSC derived neural precursors and annotated in both 

of axon guidance and neuron differentiation. Besides, FGF20 was attributed to the scope of 

GO term: neuron differentiation (Table3.2) and remarkably reduced (4 fold) in PD-hiPSC 

derived neural precursors among genes of susceptibility to Parkinson disease (e.g. GAK 

(Cyclin G associated kinase), DGKQ (Diacylglycerol kinase, theta 110kDa), and FGF20 

(Fibroblast Growth Factor 20)) (Pankratz et al., 2009) (Lill et al., 2012) (van der Walt et al., 

2004) in this transcriptome analysis (Figure 3.14.A). Besides, the genetic variability of FGF20 

has long been considered as a risk factor of PD (van der Walt, et al., 2004). Furthermore, the 

decreased expression level of FGF20 was verified among respective clones of PD-hiPSC 

derived neural precursors by QRT-PCR. 

 

 

Figure 3.12: Comparative Transcriptome Analysis of Control/PD-hiPSC derived Neural 

Precursors.  

This heatmap showed the correlation among controls (wt & Hess) and PD (Kas01, Kas02 & 

Kas05) samples. For each sample (Control and PD), 2 clones of neural precursors derived 
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from 2 individual hiPSC clones were used as duplicate for analysis of RNA microarray. For the 

reason of fitting the experimental samples to the Aglient chip, NP wt 7 and NP Hess 9 were 

applied one more time.  

 

A. 

 

B. 

 

Figure 3.13: Functional Annotation Clustering by KEGG pathway.  
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(A) showed the significance of enriched pathways clustered by total differential expressed 

genes. (B) presented the fold change (PD versus Control) of various genes in the pathway of 

axon guidance. 

 

Table 3.2: Gene Ontology Analysis of Differential Gene Expression of Neuronal Precursors 

Annotated with the GO Term: Neuron Differentiation. 

 

Note: Fold Change (PD-Control) LOG2 

REFSEQ_MRNA
Fold Change

(PD-Control)

GENE

SYMBOL
GENE NAME

NM_001101 2.75 ACTB actin, beta

NM_004438 1.82 EPHA4 EPH receptor A4

NM_000555 1.74 DCX doublecortin

NM_001018065 1.67 NTRK2 neurotrophic tyrosine kinase, receptor, type 2

NM_004496 1.52 FOXA1 forkhead box A1

NM_201264 1.49 NRP2 neuropilin 2

NM_021955 1.49 GNGT1
G protein, gamma transducing activity

polypeptide 1

NM_004796 1.25 NRXN3 neurexin 3

NM_001145661 1.11 GATA2 GATA binding protein 2

NM_153487 1.04 MDGA1
MAM domain containing

glycosylphosphatidylinositol anchor 1

NM_002487 0.97 NDN necdin homolog (mouse)

NM_005986 0.91 SOX1 SRY (sex determining region Y)-box 1

NM_000280 0.86 PAX6 paired box 6

NM_002167 0.86 ID3 inhibitor of DNA binding 3

NM_000052 0.82 ATP7A ATPase, Cu++ transporting, alpha polypeptide

NM_171999 0.80 SALL3 sal-like 3 (Drosophila)

NM_005964 0.77 MYH10 myosin, heavy chain 10, non-muscle

NM_022363 0.69 LHX5 LIM homeobox 5

NM_000675 0.65 ADORA2A adenosine A2a receptor

NM_001719 0.62 BMP7 bone morphogenetic protein 7

NM_004787 0.60 SLIT2 slit homolog 2 (Drosophila)

NM_004442 0.45 EPHB2 EPH receptor B2

NM_001982 -0.66 ERBB3
v-erb-b2 erythroblastic leukemia viral

oncogene homolog 3 (avian)

NM_001033886 -0.88 CXCL12 chemokine (C-X-C motif) ligand 12

NM_032109 -0.92 OTP orthopedia homeobox

NM_002507 -0.99 NGFR nerve growth factor receptor

NM_014624 -1.20 S100A6 S100 calcium binding protein A6

NM_000230 -1.40 LEP leptin

NM_005172 -1.60 ATOH1 atonal homolog 1 (Drosophila)

NM_001426 -1.92 EN1 engrailed homeobox 1

NM_019851 -2.01 FGF20 fibroblast growth factor 20
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A. 

 

B. 

 

Figure 3.14: Expression Level of Genes of Susceptibility to Parkinson Disease.  

(A) In the transcriptome analysis of control/PD-hiPSC derived neural precursors, 3 genes 

(GAK, DGFQ, and FGF20) associated with the susceptibility to PD were differential expressed. 

(B) showed the expression changes of FGF20 (PD-Control) for each clone of PD-hiPSC derived 

neural precursors in both of RNA microarray and Q-PCR.  
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3.4 Derivation of Floor Plated-based Differentiated mDA Neurons from 

Conrtol/PD-hiPSCs 

3.4.1 Direct Differentiation of midbrain Dopaminergic Neurons from 

Control/PD-hiPSCs 

In order to increase the number of midbrain dopaminergic neurons from control/PD-hiPSCs 

for functional and phenotype assays, the alternative strategy of differentiation, floor plate 

(FP)-based dopamine neuron differentiation, was conducted in this study. Since 2012, 

several protocols have been adopted for hPSCs, including hPSC monolayer culture, EB 

suspension culture, or hPSC co-culture with feeders (Kriks, et al., 2011) (Xi, et al., 2012) 

(Denham, et al., 2012). The general features are early activation of Shh and wnt signaling 

during neural induction of hPSC by inhibition of dual SMAD signaling. The essential 

transcription factor, also known as the marker of FP, FoxA2 would mark FP-based induced 

cells due to the activation of Shh. Through the induction of wnt signaling, Lmx1a would be 

co-expressed on FoxA2 positive cells, then midbrain FP DA precursors emerged. Midbrain DA 

Neurons would appear to follow further differentiation and maturation of midbrain FP DA 

progenitors. 

In this study, the differentiation of FP-based dopamine neurons was adopted and modified 

from (Xi, et al., 2012). (Figure 3.14) One day before differentiation, hiPSCs were clonal 

passaged onto inactive PA6 feeder layers. The next day, hiPSCs were fed with FP induction 

medium in the presence of SB431542 (SB) and LDN193189 (LDN) for neural induction. In the 

meantime, purmorphamine (pur) (an activator of Shh) and CHIR99021 (CHIR) (an activator 

of wnt) were added to the hiPSC to drive Shh-FoxA2 and Wnt1-Lmx1a regulatory loops. After 

9 days of neural induction, dual SMAD inhibitors were removed, but the cells were still 

exposed to pur and CHIR for continuous activation of Shh and wnt signaling till day 13. At 

this time, the induced hiPSCs were prepared to examine the co-expression of FoxA2 and 

Lmx1a, the markers of midbrain FP precursors (Figure 3.15.A). Then the cells were fed with 

neuronal differentiated medium supplemented with a set of neurotrophic factors (BDNF, 

GDNF), growth factor (TGF-β3), and small molecules (Ascorbic acid, cAMP, and DAPT) for 

preventing cell death and promoting maturation of midbrain DA neurons. After 30 days of 

differentiation, the expressions of Tuj1 and TH were observed in a large proportion of cells 
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(Figure 3.15.B). More importantly, the specific markers of midbrain DA neurons, Lmx1a and 

engrailed 1 (EN1), were present in TH positive cell as well (Figure 3.15.C & D). 

 

3.4.2 Electrophysiological Analysis of FP-based Control/PD-hiPSC Derived 

mDA Neurons 

Neurons are cells specialized to processes and transmit information through electrical and 

chemical events (neurotransmitters). It is believed that neurons communicate with each 

other as well as with other terminal tissues through electrical activity. Therefore, the 

electrophysiological analysis of neurons is capable of showing hugh discernment into the 

function of neuronal elements. 

hiPSC derived mDA neurons were used for the technique of whole cell patch clamp after 40 

days of differentiation. From the result, it appeared that the differentiated cells (Figure 

3.16.A) exhibited characteristics of neurons: Action potentials were triggered by injection of 

current (Figure 3.16.B); both inward Na+ and outward K+ currents were observed in these 

cells by voltage clamp (Figure 3.16.C & D); the spontaneous excitatory postsynaptic current 

(ESPC) was observed (Figure 3.16.E). The results from the electrophysiological recordings 

demonstrated that the hiPSC derived mDA neurons presented neuronal functional 

properties, and were capable of synaptic transmission. 

 

 

 

 

Figure 3.15: Flow Chart of FP-based Differentiation of Midbrain Dopaminergic Neurons. 
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Figure 3.16: Induction and Maturation of hiPSC derived mDA neurons.  

(A) Immunostaining showed colocalization of Foxa2 and Lmx1a in induced hiPSC at day13. (B) 

After one month of differentiation, Tuj1+/TH+ cell populations were observed. (C) Lmx1a and 

(D) EN1, mDA neuron specific markers, were coexpressed in TH positive cells.   
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Figure 3.17: Electrophysiological Analyses of hiPSC Derived mDA Neurons.  

(A) Phase contrast image of the patched cell with typical neuronal morphology was taken 

under the 60x water-immersion objective. (B) Action Potential (AP) elicited by a sustained 

(500 ms, 75 pA) current injection recorded in the current-clamp mode. (C) INa(V) and (D) IKa(V) 

were evoked by voltage step pulses (50 ms and 100 ms) from a holding potential of −70 mV, 

starting at −70 mV with 10 mV increments up to +60 mV. Left is the representative traces 

and right is its I-V curve. (E) Baseline recording shows individual miniature EPSCs (mEPSCs) 

from hiPSC-derived cells. These spontaneously occurring events have amplitudes of ~60 pA. 
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3.4.3 PD-hiPSC Derived mDA Neurons were Sensitive to CCCP-induced 

Mitochondrial Damage 

Parkinson’s disease (PD) has long been proposed to be probably induced by the interaction 

of genetic predisposition and environmental factors. Some genetic defects (e.g. PINK1, 

Parkin & LRRK2) associated with familial PD have linked to mitochondrial deficits (J. Y. Lee, 

Nagano, Taylor, Lim, & Yao, 2010) (Matsuda, et al., 2010) (Nguyen et al., 2011). In particular, 

mitochondrial dysfunction and oxidative damage have been implicated in PD pathogenesis. 

Therefore, it is critical to examine the effects of mitochondrial dysfunction in PD-hiPSC 

derived DA neurons. 

To evaluate the impact of mitochondrial malfunction in mDA neurons derived from hiPSCs, 

exogenous stress (e.g. mitochondrial toxin) was applied for phenotypic assay. After 30 days 

of FP-based dopamine neuron differentiation, the control/PD-hiPSC derived mDA neurons 

were treated with a high concentration of carbonyl cyanide m-chlorophenylhydrazone (CCCP) 

for 1 h to dissipate mitochondrial membrane potential (MMP) resulting in mitochondrial 

damage and cell death. It was followed by the immunohistochemical staining for TOM20, 

translocase of outer mitochondrial membrane, which indicated the localization of 

mitochondria in the TH positive DA neurons (Figure 3.17.A). Upon CCCP treatment fewer 

cells were alive in PD-hiPSC derived mDA neurons. Moreover, the expression of TOM20 was 

found to be reduced by the quantitative analysis of integrated density of TOM20 in PD-hiPSC 

derived mDA neurons (Kas01 19, Kas02 23) (Figure 3.4. C, D & E) indicating that the 

mitochondrial network was disturbed. In comparison to mDA neurons derived from healthy 

control, PD-hiPSC derived mDA neurons showed stronger mitochondrial damage which 

might be caused by an enhanced sensitivity towards CCCP. 
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Figure 3.18: CCCP induced Mitochondrial Damage in hiPSC derived mDA Neurons. 

After 30 days of FP-based mDA neuron differentiation, control/PD-hiPSC derived mDA 

neurons were treated with 100 µM CCCP for 1 h at 37°C. Immunostaining of TOM20 and TH 

were used to mark the the mitochondrial outer membrane protein and the DA neurons. (A) 

Non-treated Cells, (B) control (wt), and (C)~(D) PD (Kas01 & Kas02) mDA neurons, 

respectively. White scale bar corresponds to 10 µm. Image acquisition was performed by Dr. 

Susann Kummer. (E) Quantification of integrated density TOM20 in mDA neurons. 2-5 cells 

per image were chosen to quantify the average integrated density of TOM20. Bars indicate 

the mean of two independent images ± the standard error of the mean (SEM). 
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3.4.4 FGF20 Might Counteract the Mitochondrial Damage Induced by CCCP 

From the current results of transcriptome analysis, the expression of FGF20 was significantly 

down-regulated in PD-hiPSC derived neural precursors (Figure 3.13). FGF20 is part of the 

fibroblast growth factor (FGF) family with diverse functions in development and metabolism. 

In the brain, FGF20 is preferentially expressed in the region of substantia Nigra pars 

compacta (SNpc) (Ohmachi et al., 2000), and has been suggested to boost the development 

of dopaminergic neurons (Shimada, Yoshimura, Tsuji, & Kunisada, 2009). Besides, FGF20 has 

been shown to protect mouse dopaminergic neurons against toxins in vitro and to restore 

some degree of motor function in a 6-OHDA-lesioned rodent PD model (Sleeman, Boshoff, & 

Duty, 2012). Thus, FGF20 might elicit the restorative effect to counteract neurodegeneration 

of PD.  

In order to examine the neuroprotective effect of FGF20 on PD-hiPSC derived mDA neurons, 

FGF20 was added to the differentiated control/PD-hiPSC derived mDA neurons 1 day prior to 

CCCP treatment. Consistent with the previous results, CCCP treated PD-hiPSC derived mDA 

neurons showed a disruption of the mitochondrial network (Figure 3.18.E, H & K) that 

denoted mitochondrial damage due to uncoupling of the proton gradient and thus, loss of 

membrane potential resulting in the breakdown of the respiratory chain. Of note, if the cells 

were pretreated with FGF20 (100 ng/ml) for 24 h, mitochondrial damage was reduced, 

which indirectly demonstrated the neuroprotective effect of FGF20 on hiPSC derived PD 

mDA neurons (Figure 3.18.F, I & L). 
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Figure 3.19: Effect of FGF20 on CCCP Triggered Mitochondrial Damage in hiPSC-derived 

mDA Neurons.  

100 ng/ml FGF20 was added to the control/PD-hiPSC derived mDA neurons one day before 

100 μM CCCP treatment. Immunostaining of TOM20 and TH marked the mitochondrial outer 

membrane protein and the DA neurons, respectively. (A), (D), (G), (J) non-treated cells, (B), 

(E), (H), (K) CCCP treated cells, (C), (F), (I), (L) cells pretreated with FGF20 followed by CCCP 

treatment. (A)~(C), (D)~(F), and (G)~(I) presented control (wt) and PD (Kas01, Kas02 & Kas05) 

hiPSC derived mDA neurons, respectively. Image acquisition was performed by Dr. Susann 

Kummer. 

 

3.4.5 FGF20 Might Reduce the Excess Intracellular Reactive Oxygen Species 

(ROS) 

To examine the neuroprotective effect of FGF20 on oxidative damage in PD patient hiPSC 

derived mDA neurons, H2O2-mediated oxidative stress was employed. FGF20 was added to 

the differentiated control/PD-hiPSC derived mDA neurons 1 day before the cells were 

exposed to a high concentration of H2O2. Afterwards, the H2O2 remaining in the medium was 

removed and the cells were incubated with the cell-permeable 2', 

7'-dichlorodihydrofluorescein diacetate (H2-DCFDA), a general oxidative stress indicator for 

detection of intracellular ROS. Upon the cleavage by the intracellular oxidation, the 

non-fluorescent H2-DCFDA is converted to fluorescent DCF. Using flow cytometer, the 

fluorescence of living cells was monitored to correspond to the amount of intracellular ROS 

(Figure 3.19.A). High concentration of H2O2 induced an acute increase in ROS within the 

control/PD-hiPSC derived mDA neurons. It was noted that pretreatments of FGF20 could 

reduce some degree of excess intracellular ROS. Although the results were not significant, 

the tendency of decrease of ROS level upon FGF20 pretreatments could be observed (Figure 

3.19.B). Similar to the effect seen in CCCP treatments, it suggested that FGF20 indirectly 

counteracted the dysfunction of mDA neurons caused by either mitochondrial damage or 

oxidative stress. 
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A. 

 

B. 

 

Figure 3.20: Effects of FGF20 on H2O2-induced Generation of Reactive Oxygen Species (ROS) 

in hiPSC-derived mDA Neurons.  

The cells were preteated with FGF20 100 ng/ml for 24 h followed by treatment with 100 μM 

H2O2. The ROS production was measured by the fluorescence of DCF using flow cytometry as 

described in Methods. (A) The representative plots of the analyses (B) Quantitative analysis 

of ROS production. Bars indicate the mean of three independent experiments ± the standard 

error of the mean (SEM). 
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4 Discussion 

In this study, 3 individual PD patients’ dermal fibroblasts, together with 2 healthy persons, 

were converted to induced pluripotent stem cells (hiPSC) using a lentiviral polycistronic 

vector (hSTEMCCA). After conducting a series of tests to confirm the pluripotency, 

control/PD-hiPSCs were used to derive neural precursors and midbrain dopaminergic 

neurons with the purpose of investigation of PD pathogenesis. In an attempt to molecularly 

characterize iPSC that were generated from PD patients, we examined iPSC derived neural 

precursors using transcriptome analysis. From the result of transcriptome analysis of 

control/PD-hiPSC derived neural precursors, it is suggested that axon guidance pathway 

might be implicated in PD etiology and/or progression. Besides, the expression of FGF20, the 

gene associated with the risk of PD, was significantly reduced in PD-hiPSC derived neural 

precursors. Based on the phenotypic assay of control/PD-hiPSC derived mDA neurons, 

PD-hiPSC derived mDA neurons were more prone to the CCCP-induced mitochondrial 

damage. When the cells were exposed to FGF20 prior to external stress (e.g. CCCP or H2O2) 

treatments, the cellular damage was attenuated, suggesting that FGF20 elicit the 

neuroprotective effects on PD-hiPSC derived mDA neurons. 

 

4.1 Generation of Transgene free PD patient specific hiPSCs 

Over decades’ studies of PD, the second prevalent neurodegenerative disorder, were 

primarily relied on the analysis of post mortem of PD brains and mouse models due to the 

inaccessibility to the live PD patient’s brain tissues. To date, it is possible to generate and 

study the PD relevant cell types in culture by virtue of advanced development of iPSC 

technology. In the last few years, various monogenic PD hiPS cell lines have been generated 

(Table 1.2), and provided insights into mechanisms contributing to PD progression, like 

mitochondrial dysfunction and oxidative stress. However, all of these PD-hiPS cell lines were 

established using retroviral delivery of reprogramming transgenes. There are several 

drawbacks for the use of integrating retroviral vectors to generate hiPSCs: multiple random 

insertions of transgenes into the host genomes would disturb the genomic integrity; 

exogenous reprogramming genes might not be completely silenced and interfere with the 

further use during differentiation or therapeutic purpose (Hartfield, Fernandes, Vowles, 

Cowley, & Wade-Martins, 2012).  
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In this work, a polycistronic lentiviral vector (hSTEMCCA) encoding 4 defined factors (Oct4, 

Sox2, Klf4, and c-Myc) and flanked one loxP site on 3’UTR (Somers, et al., 2010) was 

employed to convert PD patients’ dermal fibroblasts to pluripotent states, and subsequently 

excised following reprogramming. In consequence of lentiviral based delivery, the efficiency 

of hiPSC generation (0.1~1.5%) is greatly higher than retroviral based methods (0.01~0.25%) 

(Table 1.1). Additionally, Na butyrate was applied to the cells in the first week of 

reprogramming. As reported (Mali, et al., 2010), Na butyrate, as a Histone deacetylase 

inhibitor, largely enhanced the efficiency of hiPSC generation (Figure S2). For each sample, 

up to 30 hiPSC clones could be picked for propagation primarily. Consistent with previous 

reports of generation of PD patient specific hiPSCs (Park, Zhao, et al., 2008) (Soldner, et al., 

2009) (Sanchez-Danes et al., 2012), the reprogramming efficiency varied among different 

individuals, but not due to the context of PD or donor age (data not shown). 

The advantages of the use of a polycistronic hSTEMCCA for hiPSC generation are that it 

would lead to one insertion site on the host genome, and transgene can be excised via 

Cre-loxP recombination. Thus, Cre-mediated excision of transgenes was carried out among 

the generated control/PD-hiPSCs. It was successful to cut off the transgenes from the host 

genome as confirmed by PCR and southern blotting. In this way, transgene free 

control/PD-hiPSCs were obtained, characterized for the pluripotency. Moreover, they were 

further differentiated to PD relevant cell type, midbrain dopaminergic neurons, for study of 

PD pathogenesis.  

Although the risk of exo-transgenic insertion was minimized via Cre excision, it should be 

noticed that one small DNA fragment (~200 bp) of an inactive viral LTR remains in the host 

genome. The incomplete elimination might give rise to insertional mutagenesis. Although 

the possibility of single integration which induced the interruption of gene regulations is 

statistically minimal, the risk can be reduced by targeting the hSTEMCCA into a safe locus on 

the genome (Somers, et al., 2010) (Stadtfeld, Maherali, Borkent, & Hochedlinger, 2010). 

Furthermore, the non-integrating approach, like RNA based method (Warren et al., 2010), 

can be applied for reprogramming. However the low efficiency of hiPSC generation is a 

problem and might be might be improved by additional combinations of treatments with 

small molecules, like Valproic acid (Shi et al., 2008) or Na butyrate (Mali, et al., 2010). 
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4.2 Derivation of Control/PD-hiPSC Neural Precursors and Transcriptome 

Analysis 

To get more insights into the putative molecular players involved in PD etiology and 

progression, neural precursors were derived from control/PD-hiPSCs and subjected to 

transcriptome analysis. Neural precursors are multipotent cells, which are able to 

differentiate further into astrocytes, oligodendrocytes, and neurons. Besides, neural 

precursors are a homogeneous cell population instead of mixed heterogeneous 

differentiated neuronal cells. Therefore, it is applicable to perform transcriptome analysis 

using control/PD-hiPSC derived neural precursors to reduce noise backgrounds, and more 

importantly to reveal the possible regulatory networks at the very early stage of PD 

progression.  

Herein, derivation of control/PD-hiPSC neural precursors was set up for the combination of 

stromal feeder co-culture and BMP inhibitor treatment. Following one week of neural 

induction, it was possible to observe the neural rosette structures. Neural rosette cell is a 

novel neural stem cell type which holds broad potential toward CNS and PNS lineage 

differentiation and capability of in vivo functional engraftment in rodent models (Elkabetz, 

et al., 2008). Therefore, neural rosette structures were manually picked up and expanded to 

establish the neural precursor cell (NPC) lines. Isolated neural precursors showed the 

homogeneous population, the proliferative property, and expressed these neural specific 

markers: Sox1, Pax6, Msi1 and Nestin. Afterwards, a collection of control/PD-hiPSC derived 

neural precursors were used for profiling of gene expression. According to the heatmap of 

hierarchical correlation, the discrepancy between clones of the same sample was possible to 

be observed, and might be due to either clonal variations from the parental hiPSC clone or 

the process of derivation of neural precursors. However, a recent report has shown that 

there is a risk of some undifferentiated Oct4 positive cells remaining in the NPC culture (Mak 

et al., 2012). They suggested that use of magnetic bead sorting with a neural cell adhesion 

molecule antibody against polysialic acid neural cell adhesion molecule (PSA-NCAM) to 

enrich more specific and pure population of neural precursors (Mak, et al., 2012). In another 

study, neural induction of hESC/hiPSC using monolayer culture with treatments of dual 

SMAD inhibition was developed and showed high efficiency of neural conversion (S. M. 
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Chambers, et al., 2009). Both of these studies could reduce the uncertain effects from 

co-culture with stromal factors and enrich the population of neural precursors. 

Through the profiling of gene expression for each derived neural precursor from control and 

PD-hiPSCs, the transcriptome analysis was set up for comparison of controls vs. PDs. 

Although a set of differential gene expressions was perceived, the overall gene enrichment 

groups were diverse (Figure 3.12.A), and differences of gene expression between controls 

and PDs were not significant. It is probably due to either the variable genetic backgrounds 

from different individuals or the number of samples (controls or PDs) that was not 

statistically representative for the major PD population. However, a class of genes involved 

in axon guidance pathway was noticed. The axon guidance pathway (Figure S1), which 

regulates the formation of neuronal network by driving axons towards their synaptic targets, 

has been implicated to predispose to the development of PD. The studies of genetic 

variability (Single-nucleotide polymorphisms (SNPs)) in the axon guidance pathway 

associated with the PD have been reported (J. M. Kim, et al., 2011) (Bossers et al., 2009) 

(Srinivasan et al., 2009). Relying on whole-genome association study of SNPs in PD patients 

and controls from unaffected siblings, one research group used a bioinformatics approach to 

discover joint actions of common gene variants within axon guidance pathway that were 

predictive of PD susceptibility (Lesnick, et al., 2007). Besides, the gene expression analysis in 

post-mortem brains of 23 PD patients and 23 healthy donors also showed that genes 

associated with axon-guidance were differentially expressed in the PD-affected brain tissues 

(Papapetropoulos et al., 2006), further suggesting the relevance of axon guidance pathway 

in PD. Therefore, as appeared in the transcriptome analysis, some differentially expressed 

genes (Figure 3.12.B) in the axon guidance pathway might play roles in PD progression. Of 

note, EPHA4 gene expression was significantly increased (3.5 fold) in affected PD population. 

EPHA4 has been shown to display high expression level in the degenerated motor neurons in 

amyotrophic lateral sclerosis (ALS). Inhibition of EPHA4 could rescue neurodegeneration in 

ALS (Van Hoecke et al., 2012). Thus, EPHA4, or even other candidate genes within axon 

guidance pathway, might be the target for further investigation of PD pathogenesis. 

The here performed transcriptome analysis revealed that 3 genes which were susceptible to 

Parkinson disease (e.g. GAK, DGKQ, and FGF20) displayed an altered transcription in 

PD-hiPSC derived neural precursors. Nevertheless, only for FGF20 it is noticed that gene 

expression was reduced remarkably (~4 fold) in affected PD population, which was further 
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verified by QRT-PCR analysis. FGF20 has been suggested to promote the differentiation of 

dopaminergic neurons (Correia, Anisimov, Roybon, Li, & Brundin, 2007) (Shimada, et al., 

2009) and prevent the cell death of dopaminergic neurons (Ohmachi, Mikami, Konishi, 

Miyake, & Itoh, 2003). More importantly, genetic variability (SNPs) of FGF20 is strongly 

correlated with the risk of PD (van der Walt, et al., 2004) (Mizuta et al., 2008) (Pan et al., 

2012).  

Through the transcriptome analysis of control/PD-hiPSC derived neural precursors, the 

correlation might be established among gene expression profiling of affected PD derived 

neural precursors and genomic variants studies of PD patients. The previous reports about 

the risks of genetic variability associated with PD might find out the supportive evidence and 

even the downstream regulatory networks via gene expression analysis in PD-hiPSC derived 

neural precursors. Thus, our analysis clearly points to the potential impact of hiPSCs in 

getting novel insights into the molecular pathways controlling disease mechanisms. The 

derivation of basically any tissue of the three germ layers from patient’s hiPS cells provides 

useful material for molecular analysis. 

 

4.3 Direct differentiation of midbrain Dopaminergic (mDA) Neurons from 

Control/PD-hiPSCs and Phenotypic Assays 

It has long been thought that neurodegeneration in PD reflects the cooperation of genetic 

susceptibility and environmental vulnerability. In particular, mitochondrial dysfunction and 

oxidative stress have been implicated in the cell death of mDA neurons in PD. To evaluate 

the effect of mitochondrial damage and oxidative stress on PD affected neurons, 

control/PD-hiPSCs were committed to conversion of mDA neurons using floor plate 

(FP)-based dopaminergic neuron differentiation. The advantage of FP-based approach is the 

highly increased amount of differentiated cells displaying a midbrain dopaminergic fate and 

faithful representation of the PD relevant cell types.  

By conducting treatment of CCCP, which interrupts mitochondrial membrane potential 

(MMP), the expression of mitochondrial protein (TOM20) was monitored and found reduced 

in PD-hiPSC derived mDA neurons, indicating that mitochondrial activity was attenuated. It 

showed that PD-hiPSC derived neurons were sensitive to CCCP-induced mitochondrial 

damage. Besides, examination of CCCP-induced loss of MMP resulting in the mitochondrial 
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dysfunction, in the future, it would be necessary to develop more extensive assessments of 

cellular stress on PD-hiPSC derived mDA neurons, like the various external stimulations 

described in (Cooper et al., 2012) (Figure 4.1). Thus, it could specify the exact mechanism 

leading to PD and provide a platform for screening the potential therapeutic targets for PD. 

 

 

Figure 4.1: Various Cellular Stress Treatments on PD-hiPSC derived neural cells. 

Oliver Cooper’s group applied different toxins to measure mitochondrial responses, 

including ROS production, loss of MPP, and depletion of ATP (energy), on PD-hiPSC derived 

neural cells and their parental fibroblasts. They showed that neural cells were more 

vulnerable for cell stress as compared to fibroblasts (Cooper, et al., 2012). 

 

4.4 The Role of FGF20 in PD 

FGF20 is a paracrine growth factor, preferentially expressed in the substantia nigra pars 

compacta (SNpc) (Itoh & Ornitz, 2011). FGF20 signaling is mediated through phosphorylation 

of FGFR1c that is a receptor tyrosine kinase and activates the downstream MAPK pathway 

(Figure 4.2). Since both of FGF20 and FGFR1c are expressed in most mDA neurons, FGF20 

might act in an autocrine/paracrine manner to regulate the differentiation and cell survival 

of mDA neurons (Itoh & Ohta, 2013). With neurotrophic activity, FGF20 prevents cell death 

and thus promotes cell survival of dopaminergic neurons in 6-OHDA injured rodent model 

(Sleeman, et al., 2012). From our current result of gene expression profiling, the expression 

of FGF20 was reduced in PD-hiPSC derived neural precursors. Therefore, it is expected that 

FGF20 might exert a neuroprotective effect on PD affected mDA neurons exposed to 
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external toxins. Indeed, pretreatment of PD-hiPSC derived mDA neurons with FGF20 

counteracted the cellular stress following either CCCP induced mitochondrial damage 

(Figure 3.18) or H2O2 induced excess reactive oxygen species (ROS) (Figure 3.19), which 

indirectly confirmed that restorative effect of FGF20 in neurodegeneration of PD. In 

connection with the results of reduced expression in PD-hiPSC derived neural precursors and 

elicited neuroprotective effect, FGF20 plays a critical role of maintaining normal function of 

mDA dopaminergic neurons. 

 

 

Figure 4.2: The action of FGF20 on dopaminergic neurons.  

Acting in a paracrine/autocrine manner, FGF20 binds to FGFR1c and phosphorylates the 

cytoplasmic tyrosine residues to trigger the activation of the downstream MAPK pathway for 

enhancement of survival of DA neurons. The picture was taken from (Itoh & Ohta, 2013). 
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5 Supplementary Figures 

 

 

Figure S1: KEGG pathway enrichment analysis of Axon Guidance.  

Axon guidance plays a critical role in the formation of neuronal network, concerning how 

neurons send out axons to reach the corresponding targets. There are four classical families 

of guidance cues: netrin, ephrin (EPH receptors), Slit, and semaphoring (neuropilins, plexins). 

Interactions of these signaling networks orientate the growth cone by alterations of cellular 

cytoskeletal organization.  

The changes of gene expression level in the transcriptome analysis of control/PD-hiPSC 

derived neural precursors are highlighted in red. The picture is adopted from the database of 

KEGG: Kyoto Encyclopedia of Genes and Genomes (http://www.genome.jp/kegg/).  
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Figure S2: Alkaline Phosphatase (ALP) Staining of hiPSC Colonies. 

Representative dishes of ALP staining of hiPSC colonies act in response to treatments of Na 

Butyrate during hiPSC generation.  
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