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Summary 

Osteoarthritis (OA) is a degenerative disease of hyaline cartilage. The cartilage is an 

avascular tissue, once damaged it is difficult to repair. Articular cartilage is responsible for 
the smooth, frictionless, and painless moment of the knee joint. Severe loss or complete 

destruction of the articular cartilage results in highly frictional and painful moment of the 

knee joint, as is often the case in the late stages of OA. Total joint replacement remains 
the ultimate solution. However, there are many other options emerging to repair or 

regenerate the cartilage using various types of stem cells, but they might lead to some 

serious consequences. For example, transplantation of embryonic stem cells may result 
in teratoma formation. Applications of induced pluripotent stem cells are associated with 

possible viral integration. Alternatively, the concept of progenitor or repair cells in situ 

arises, and, for example, migratory chondrogenic progenitor cells (CPCs) were found in 
the later stages of human osteoarthritic cartilage in vivo. They have a tremendous ability 
for cartilage repair with no serious risk factors known so far. However, CPCs still face 
some challenges, for example, how to provoke them in situ to repair the tissue in a 
physiological manner. Secondly, CPCs have a limited life span at least in vitro (chapter 1). 
Furthermore, so far, there is no single optimized method available to achieve a complete 
chondrogenic differentiation of stem cells. More recently, a tiny organelle of the cells, 
known as primary cilium might be found to be instrumental for stem cell differentiation. 
This ‘physical projection’ of the cell acts like an antenna, and is considered as dual 

sensor of mechanochemical signals. This sensor has also been found on CPCs and their 
numbers have been shown to be reduced on chondrocytes derived from the 
temporomandibular joint (TMJ) of the discoidin domain receptor 1 knockout (DDR-1 KO) 

mouse (chapter 2, 3).  

OA is not only restricted to large joints but also affects small joints like the TMJ. It is well 
known that chondrocytes in the articular cartilage do not make direct cell-to-cell 
contacts, instead they rely on cell-matrix-interactions via cell receptors, for example, 
integrins or DDRs for their communication.  DDR-1 KO mice exhibit typical symptoms of 

OA of the TMJ cartilage. The chondrocytes derived from the TMJ cartilage of DDR-1 KO 
mice maintained their osteoarthritic characteristics such as a high expression of runx2 
and collagen type I as typical osteogenic signature, and a low expression of sox9, 

collagen type II and aggrecan known to be relevant for the chondrogenic differentiation. 
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The osteoarthritic characteristic could be reversed to a more normal chondrocyte type 

via the knockdown of runx2 or exposure of these cells to a three-dimensional 

environment in the presence of extracellular matrix (ECM) components such as laminins 
and nidogen (chapter 3). Their reversal towards the chondrogenic phenotype would also 

be of great importance in the pathogenesis of meniscus degeneration. Meniscus most 

often is the starting point for the development of OA of the knee joint. The meniscus is a 
fibrocartilaginous tissue, which acts as shock absorber. Furthermore, meniscus 

damaging makes the whole scenario of OA pathogenesis worse, by enhancing the 

cartilage degradation. The inner part of the meniscus is avascular in nature and therefore, 
once damaged it has a very limited self-repair capacity. However, there are other options 

available like the partial removal of the meniscus, which results in a short-term relief, but 

cannot prevent the long-term consequences, which ultimately lead to the development of 
OA. The inner part of the human meniscus harbors unique meniscus progenitor cells 
(MPCs) and can be directed towards meniscus regeneration via the TGFβ signaling 

pathway (chapter 4). Additionally, mouse meniscus progenitor cells (MMPCs) were 
investigated in healthy (wild type) meniscus tissue. These cells were traced ex vivo using 
immuno-histochemical techniques. They also maintained their stem cell characteristics in 
vitro as well, as shown via their stem cell marker expression and their mulitipotency 
(Chapter 5).  

Many critical consequences are associated with the application of various stem cells for 

cartilage regeneration as a therapy. Here, I concentrated on tissue specific cells, 
progenitor cells in situ, already present in diseased cartilage. These cells are well 
determined towards chondrogenic differentiation and might only need minor 

manipulations to fulfill their final determination to produce native-like hyaline cartilage 

(chapter 6). 
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General introduction 

Osteoarthritis and cartilage tissue 

OA is a chronic and degenerative joint disease. OA is a multifactorial disease, many 

important factors contribute to OA of the knee joint, such as age, obesity, trauma, joint 
anatomy, genetics or extensive use of the body joints in a daily life style of an individual 

(Blagojevic et al, 2010). Cartilage is responsible for the smooth, frictionless and painless 

moment of the knee joint. A healthy articular cartilage is a distinctively designed 
connective tissue, which covers the articular ends of the long bones. Articular cartilage is 

a highly specialized, avascular, alymphatic and aneural tissue. Biomechanically, it is a 

flexible tissue. Its integrity and functions solely depends on its ECM. Generally, 
chondrogenesis is initiated by mesenchymal stem cells (MSCs) condensation and 
chondroprogenitor cells differentiation into chondrocytes. Articular cartilage is 
synthesized by resting chondrocytes. While for bone formation, chondrocytes undergo 
terminal hypertrophic differentiation and apoptosis. Finally, the hypertrophic cartilage is 
replaced by cells of the osteoblastic lineage, a process called endchondral ossification 
(Goldring, 2012). However, in hyaline cartilage, only a single cell type, the chondrocyte, is 
responsible for the synthesis of the ECM (Kuettner, 1992). The ECM of articular cartilage 
is rich in two major components, the collagen molecules and proteoglycans. The most 
abundant collagen found in articular cartilage is collagen type II. However, normal healthy 
cartilage also possesses types, III, VI, IX, X, XI, XII and XIV collagens (Mayne & Brewton, 

1993). The second major components are proteoglycans, which are a heterogeneous 

group of proteins, comprising a central core protein substituted with one or more 
glycosaminoglycans side chains. For example, the aggrecan, as a large proteoglycans, is 
responsible for cartilage maintenance as are the other small proteoglycan such as 

decorin, biglycan and fibromodulin (Knudson & Knudson, 2001; Poole, 1999).  

DDR-1 Knockout results in OA of the TMJ-cartilage 

The pathogenesis of OA is always linked to a disordered ECM-cell relationship. In healthy 
articular cartilage the chondrocytes are trapped in a collagen scaffold tightly packed by 
glycoproteins and proteoglycans, which serve as bridges to stabilize the collagen 

network (Kruegel et al, 2008). Chondrocytes in articular cartilage are apart from each 
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other. However, they communicate via cell-matrix interactions (Kuettner, 1992), for 

example, via discoidin domain (DDRs) and integrin receptors (Goldring & Otero, 2011; 

Loeser, 2000). DDRs are receptor tyrosine kinases (RTKs) and are normally expressed in 
human and mouse tissues. The RTKs are activated extracellulary by binding to collagen 

molecules (Vogel, 1999). Further, the activated RTKs switches on downstream signaling 

processes via SHC (src homology domain-containing) (Vogel et al, 1997) or FRS2 
(fibroblast growth factor receptor substrate 2) (Foehr et al, 2000) and alter the expression 

level of genes related to ECM production (Poole, 1999), which are required for the 

homeostasis of healthy articular cartilage. In this study, the DDR-1 KO mouse is 
introduced to exhibit a high incidence of OA in the TMJ. For example, it shows 

degenerative signs such as, surface fissures and high expression of collagen type I. It is 

anticipated that temporomanidbular disorders (TMD) affect both the young and aged (18 
to 45 age). This is around 10-40 % of the population and 10% among them result in OA 
of the TMJ. Anyhow, untreated TMDs ultimately result in OA of the TMJ (Wadhwa et al, 
2005). The chondrocytes derived from TMJ cartilage can be directed towards normal 
chondrocytes via a runx2 knockdown, which results in an up-regulation of both collagen 
type II, sox9 and down-regualtion of collagen type I. The OA characteristics of the DDR-1 
KO cell, for example, high collagen type I and high runx2 expression, were significantly 
reduced in three-dimensional cells cultures in the presence of laminin, BMP-6 and 
nidogen-2, respectively. Here, we came up with new chondrogenic differentiation factors 

namely basement membrane associated proteins (laminin and nidogen-2) in combination 
with bone morphogenic protein-6.  

Chondrocytic primary cilium in osteoarthritis  

Articular cartilages are always exposed to mechanical forces especially the knee joint and 

possess very limited self-repair capability. Recently, a cell’s organelle is gaining a high 
interest, which is considered as mechnochemical sensor of the cell, known as primary 
cilium (Muhammad et al, 2013; Poole et al, 1997; Poole et al, 2001). It has been proved 

by electron microscopic studies that chondrocytes have a non-motile primary cilium. 
Furthermore, its physical orientation has been shown in the pericellular matrix of the 

chondrocyte and its binding via a receptor with collagen type II and collagen type IV 
(Jensen et al, 2004; McGlashan et al, 2006; Wilsman et al, 1980). Physical or genetic 
mutation of the chondroblastic and chondrocytic primary cilium results in a malformation 
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of ECM, which causes skeletal and growth plate abnormalities (Gouttenoire et al, 2007; 

Haycraft et al, 2007; Ruiz-Perez et al, 2007). It has been examined that the primary cilium 

is present on chondrocytes during all stages of OA. The number of primary cilia were 
found to be increased in OA. However, this was studied in a bovine model (McGlashan et 

al, 2008; Wilsman, 1978). Here in this study, a slight reduction of primary cilia was 

observed on chondrocytes derived from DDR-1 KO mice (Schminke et al, 2014). The 
organelle, the primary cilium, become visible also on CPCs using fluorochemical 

techniques (Muhammad et al, 2012). 

Human Chondrogenic progenitor cells 

In the late stage of human OA the articular cartilage is distorted, and for example, the 

repair tissue is found to be mainly composed of collagen type I produced by repair cells. 
Recently, Prof. Miosge’s lab isolated a subpopulation of these cells, termed 
chongrogenic progenitor cells (CPCs). The CPCs exhibits stem cells characteristics. They 
are found to be positive for stem cell markers, for example, CD105, CD90, CD44, CD29 
and CD73. The CPCs have been shown to be easily driven towards chondrogenesis via 
a runx2 knockdown or their exposure to chondorgenic media in alginate culture (Koelling 
et al, 2009; Muhammad et al, 2013). Both runx2 and sox9 are master regulators 
responsible for bone development and articular cartilage development, respectively. 
Higher expression of sox9 encourages chondrogenesis. While high expression of runx2 
inhibits chondrogenesis (Banerjee et al, 1997; Lefebvre & Smits, 2005; Wuelling & 

Vortkamp, 2011). 

Human meniscus progenitor cells 

The articular cartilage in the knee joint is protected by menisci. Menisci are 
fibrocartilagenous tissues, which give structural support to the knee joint. The meniscus 

does not allow direct exposure of the femuro-tibial articular cartilage surfaces during the 
mechanical movement of the knee joint and is considered as safeguard, which covers 
the surfaces of articular cartilage. It is located at the interface of the femoral condyles and 
the tibial plateau. The meniscus is a semi-lunar structure, the central region is known as 
‘body’, the larger posterior and anterior portions are called posterior and anterior horns, 

respectively. Approximately, the average size of the meniscus is 3.5 cm in length (Kohn & 
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Moreno, 1995). Fibrochondrocytes are the main cells of the meniscus, responsible for 

fibrocartilagenious matrix secretion. Usually, oval fibrochondrocytes reside in lacunae 

(Hellio Le Graverand et al, 2001a). Meniscus tissue is more complex than articular 
cartilage in terms of its cellular and ECM composition. The inner part of the human 

meniscus is avascular, termed white zone. While, the outer part of the meniscus is 

vascularized, termed red zone. The superficial zone is under the pressure of the total 
body weight, which alters the cell into a flattened phenotype. The cells with a flattened 

phenotype are secreting collagen type I. Histologically, when observing zones away from 

the pressure zone, the inner zone cells are round in shape. They are like proper 
chondrocytes, producing more collagen type II and less collagen type I (Pauli et al, 2011; 

Zhang et al, 2011). 

It has been known that a healthy human meniscus tissue is mainly composed of 72% 
water, 22% collagen, 0.8% glycosaminoglycans (GAGs) and 0.12% DNA. Adult menisci 
possess 78% collagen, 8% non-collagenous protein and 1% hexose amine. However, 
these observations were calculated on a dry weight basis (Ingman et al, 1974). The 
collagen type I is the major component of the meniscus ECM, which contributes 90% of 
the total collagen. Meniscus tissue also possesses type II, III and V collagen (Eyre & Wu, 
1983; McDevitt & Webber, 1990). Interestingly, collagen type I has been observed in the 
outer region of the meniscus. Contrary, collagen type II is located only in the central part, 
which shows cartilage-like properties (Chevrier et al, 2009). The ECM is responsible for 
the mechanical stability and integrity to the meniscus tissue. Malformations of collagen 

and non-collagen proteins have been found in the degenerated meniscus tissue. This 
means, menisci with a poor ECM composition are more susceptible to damage (Herwig 
et al, 1984; Ingman et al, 1974).  

In order to understand the developmental biology of meniscus, for example, how the 
menisci are derived embryonically one should take into account the overall 
developmental phenomena of normal synovial joint formation. The developmental 
process begins with the condensation of the mesenchymal blastema and this 
differentiates into a cartilaginous model, which serves as template for long bone 

formation. A thin layer of MSCs, known as interzone, separates the adjacent skeletal 
parts of the joint. Later, the interzone is differentiated into three layers. Both of the outer 
layers are chondrogenic and responsible to develop into the cartilage anlage. The middle 
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layer is mainly involved in the formation of intra-articular tissues such as meniscus, 

ligament and the synovium (Ito & Kida, 2000). It has been reported that mechanical 

stimulation assists the maintenance of newly developed meniscus during embryogenesis. 
Mechanical deficiency, for example, non-functional muscle contraction alters meniscus 

condensation (Mikic et al, 2000). 

The meniscus organogenesis in respect to the expression of matrix related genes can be 
divided into four steps. Initially, MSCs condensation occurs. Secondly, the differentiation 

of meniscal fibrochondrocytes takes place in the newly formed meniscus tissue. Thirdly, 

the protein synthesis machinery of the cells starts to synthesize meniscal ECM. Finally, 
mature ECM is excreted, which traps the meniscal cells (Pavlova et al., 2001).  

The above stages of meniscus development have been investigated in detail. For 
example, during the first stage of condensation, MSCs start to express BMP-4 and GDF-
5, which differentiates the cells more towards the meniscal fibrochondroblast. 
Interestingly, the chondrocyte-like cells are formed accidently during the phase of low 
expression of BMP-4 and GDF-5. Further, first the cells synthesize collagen type I, 
collagen type III and aggrecan. However, the collagen type II synthesis occurs in the late 
stages of meniscus organogenesis (Pavlova et al., 2001) 

The inner one-third regions of the menisci in early development are mostly vascularized. 
This could be identified in the middle of the human gestation period, usually, after 150 
days (Petersen & Tillmann, 1995). The meniscus is totally vascularized at birth. Gradually, 

the meniscus becomes avascularized. Particularly, avascularization begins at the second 

year of age and it starts in the central part of the meniscus (Petersen & Tillmann, 1998). It 
has been shown that damage of the vascularized zone heals as easily as the other 
vascular tissues of the body (Arnoczky & Warren, 1983; Heatley, 1980; King, 1990). In 

contrast, a tear located in the avascularized zone, restores poorly (Henning et al, 1990; 
King, 1990). To enhance the repair of the central, avascular zone, it has been connected 
to the vascular region by surgical incision (Arnoczky & Warren, 1983; Zhang et al, 1995). 
Although there have been many efforts to heal the inner zone of the meniscus, clinically it 
has remained a great challenge (Henning et al, 1990). It has been shown that the 

avascular part of the meniscus has no intrinsic self-repair capability. Already partial 
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removal of a meniscus has deleterious effects and eventually results in OA (Arnoczky & 

Warren, 1983; Hasan et al, 2014; Walker & Erkman, 1975). 

Degenerated or injured menisci are usually found to be calcified and it is challenging to 
stop the calcification process (Noble & Hamblen, 1975). Stem cell biologists came up 

with cell therapeutical approaches, such as, the application of MSCs. In principle, MSCs 

are considered a good choice, but it is still difficult to differentiate these cells towards the 
desired meniscus cell type and also difficult to maintain its phenotype. Differentiation 

often results in the production of an inappropriate ECM and mostly favors hypertrophy, 

as terminal differentiation (Mauck et al, 2006; Pelttari et al, 2006). However, efforts have 
been made by researchers to overcome the problems of hypertrophy and to control the 

undesired ECM synthesis. For example, Bian et al. came up with the concept of co-
culturing MSCs together with chondrocytes in hydrogels (Bian et al, 2011). It has also 
been shown that hypertrophy can be avoided when MSCs are co-cultured with meniscus 
derived cells (Cui et al, 2012). From the tissue engineering point of view, MSCs plus fibrin 
glue were found to be a good combination for healing of meniscus tissue (Ferris et al, 
2012). Surprisingly, MSCs derived from other adult tissues have been tested for 
meniscus regeneration, such as, cells of the synovial membrane. The synovial membrane 
derived MSCs are highly acknowledged by scientists for meniscus tissue regeneration, as 
they acquire a high chondrogenic potential (Katagiri et al, 2013; Sakaguchi et al, 2005). 
Although MSCs have revealed some satisfactory results for meniscus regeneration in a 
temporarily way, they are not promising in the long run.  

The main focus of this study is related to osteoarthritic degenerative lesions of the 
meniscus, which should be distinguished from traumatic injury of the meniscus. The term 
‘degenerative lesion’ reflects damaging of the meniscus without an injury. In the present 

literature, the association of OA and degeneration of the meniscus is 
pathomechanistically unclear and still debatable. However, it is known that the 
degeneration of the meniscus tissue is occurring during the course of OA. 

In this study, it has been found that mostly the superficial zone of the meniscus is highly 
degenerated in the late stages of human OA. Interestingly, the damaged meniscus 

harbors MPCs, they are present in the inner zone. MPCs possess stem cell-like 
characteristics, for example, they are positive for well known stem cells markers (CD44, 
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CD105, CD106, Stro-1, CD90 and CD29). They also exhibit multipotency and can be 

differentiated to three mesenchymal lineages (chondrocytes, adipocytes and cells of the 

osteoblastic lineage). In short, all OA related symptoms were observed in highly diseased 
meniscus, for example, degeneration of the superficial zone, high expression of collagen 

type I, runx2 and extremely low level of collagen type II and sox9. Further, results 

showed a suppression of the TGFβ pathway. This low expression of TGFβ3, smad2, 

sox9 as well as an up-regualtion of collagen type I and runx2 were observed in diseased 
specimens. This lead to experiments to drive MPCs towards chondrogenesis by different 

cell biological methods, such as, the induction with TGFβ3. TGFβ3 stimulates p-smad2, 

which in turn suppressed runx2 expression and enhances sox9 expression. Smad2 

overexpression results in down-regulation of runx2 and up-regualtion of sox9. Further, 
the reverse effect of runx2 was tested via a runx2 knockdown. Runx2 silencing resulted 
in the up-regulation of smad2. Importantly, p-smad2 becomes detectable only after the 
runx2 knockdown. On the other hand, the cell induction experiment with BMP-2 results 
in a low expression of smad2 and sox9.  

Mouse meniscus progenitor cells 

In this study, also MMPCs were investigated. MMPCs possess stem cells like 
characteristics. For example, these cells were found to be positive for stem cell markers, 
for example, CD29, CD73, CD90 and CD44. They also showed multipotency and could 
be differentiated towards the cells of the osteoblastic lineage and adipocytes. MMPCs 
have been derived from the inner, avascular part of the meniscus and showed negativity 
for hematopoietic stem cells markers, such as, CD34 and CD117. Previously, It has been 
reported that the outer, vascular part of the human meniscus is rich in stem cells which 
are also positive for hematopoietic stem cell markers (Osawa et al, 2013). Therefore, 

MMPCs are different from the previously published cells.  

In addition, it was noticed that mouse meniscus has a different histological pattern 
compared to human. For example, the main ECM protein, collagen type I, is not 

uniformly distributed as in human and is found only in the outer, avascular part of the 

mouse meniscus. The high weight bearing superficial zone is absent in mouse meniscus.  
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Conclusion 

Overall, the main theme of the project was to introduce novel progenitor cells. 

Particularly, for the regeneration of an avascular tissue such as cartilage or the inner part 
of the meniscus, which have limited intrinsic repair capabilities. Here, I introduced for the 

first time MPCs and MMPCs. They have stem cell-like characteristics and could be 

differentiated to three mesenchymal linages (cells of the osteoblastic lineage, adipocytes 
and chondrocytes). MPCs can be directed towards meniscus regeneration via the 

canonical TGFβ pathway.  
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General discussion 

DDR-1 Knockout mice as an OA model  

The DDR-1 depletion results in several severe consequences, which encourage the 

pathogenesis of OA, for example, high expression of DDR-2, MMP-13, collagen type I 
and runx2. In order to elucidate the pathomechanism of DDR-1 KO mice, numerous 

approaches were applied to chondrocytes derived from DDR-1 KO TMJs. The DDR-1 

KO chondrocytes revealed a high expression of runx2 and collagen type I, as well as low 
levels of sox9 and collagen type II. It has been reported that this catabolic shift in 

chondrocytes encourages the progression of OA development (Kamekura et al, 2006). 

Interestingly, the DDR-1 KO results in the high expression of the DDR-2 isoform, which in 
turn enhanced the expression of MMP-13. MMP-13 is mainly responsible for articular 
cartilage destruction. The PCR array (mouse signaling pathways) of DDR-1 KO 
chondrocytes showed a modulation of the IHH (Indian hedgehog) signaling pathway, 
which is associated with OA of mouse and human (Lin et al, 2009).  

The most exciting feature of the DDR-1 KO mice is that they developed OA of the TMJ 
only and by an early age of 9 weeks. OA related symptoms were not observed in the 
knee joint of DDR-1 KO mice. These findings can be addressed by a basic concept in 
developmental biology. Both joint’s (knee and TMJ) cartilages are developed from 
different embryonic regions. TMJ cartilage is also considered a secondary cartilage (Shen 
& Darendeliler, 2005; Symons, 1965). Additionally, the articular cartilage surfaces of the 
larger joints possess collagen type II. Contrary, this feature is absent in the superficial 
zone of the TMJ cartilage. However, the functional importance of this difference is 
unknown (Wadhwa et al, 2005). DDR-1 aberration induces MMP-13 expression, which in 

turn decreases collagen type II and initiates the development of OA in the TMJ. The 
regenerative activities were examined in a degenerated cartilage of the TMJ and found to 
be similar to human OA of the knee joint. Furthermore, the TMJ chondrocytes are also 

regulated by runx2 and sox9, as observed in CPCs (Koelling et al, 2009; Koelling & 

Miosge, 2010). TMJ chondrocytes were rescued from the OA phenotype via knockdown 
of runx2, which in turn up-regulates sox9 and collagen type II, while collagen type I was 
highly suppressed. Likewise effects were observed for aggrecan (Bi et al, 1999) and 

COMP (Tallheden et al, 2004). Interestingly, DDR-2 was found to be highly active in the 
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absence of DDR-1, which triggers signaling responses to the cytoplasm via binding to 

collagen type II molecules. In OA cartilage its binding affinity to collagen type II increases, 

which keeps the expression of MMP-13 switched on permanently (Xu et al, 2007). TMJ 
chondrocytes derived from DDR-1 KO mice were examined for primary cilia and showed 

a slight reduction of the primary cilia numbers. This suggests that the primary cilium is 

involved in the pathogenesis of OA in DDR-1-deficient chondrocytes.  

The main aim of the study was to introduce DDR-1 KO mouse as a novel model for OA 

of the TMJ. Comparatively, the DDR-1 null mouse model exhibited a higher incidence of 

OA symptoms than previously published models, such as, the ICR mouse (Silbermann & 
Livne, 1979), the Del 1 mouse (Rintala et al, 1997) and Cho mouse (Xu et al, 2003). The 

DDR-1 KO mouse will assist to explore more about the pathogenesis of OA of the TMJ in 
the future.  

Human osteoarthritic meniscus harbors progenitor cells 

All the typical symptoms related to OA have been observed also in the human meniscus, 
in the later stages of OA (Loeser et al, 2012), for example, tissue calcification, fatty 
degeneration and cells cluster formation (Hellio Le Graverand et al, 2001b). A simple 
histopathological grading system was applied and evaluated via transcriptomics and 
proteomics in order to extricate highly diseased meniscus from less diseased meniscus. 
Interestingly, an increased disease score also coincides with low immunohistochemical 
staining for TGFβ3 and smad2. At this point, the elucidation of the TGFβ/BMP pathway 

was considered in greater detail. BMP binds to its receptors and activates cytoplasmic 

mediators (smad1, smad5, smad8). One of the important downstream targets is runx2, 
which favors osteogenesis. Similarly, TGFβ bind to its receptors and stimulates smad2, 

smad3, and smad4. One of the important downstream targets is sox9, which encourage 
chondrogenesis. This dual effect of either promoting osteo- or chondrogenesis has been 

described by Massague (Massague, 2012). It has been shown that hyaline articular 
cartilage tissue harbors progenitor cells. A FACS analysis revealed that human MPCs are 
positive for well-known stem cells markers, such as, CD29, CD90, CD105, CD106 and 

stro-1. Interestingly, the explant culture-derived cells showed a higher expression of stem 
cells markers as compared to cells derived via collagenase digestions. This signifies that 

the MPCs are a subpopulation of these cells found in highly diseased human meniscus 
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tissue. Furthermore, these cells were found to be multipotent and can be differentiated 

towards the three mesenchymal lineages (cells of osteoblastic, chondroblastic and 

adipoblastic lineages). After exposing the cells to osteogenic medium, they expressed 
osteogenic makers such as osteocalcin and alkaline phosphatase. Quite remarkably, in 

three dimensional cell cultures, they expressed collagen type II and suppressed runx2 

under the influence of chondrogenic medium. Adipogenic differentiation was confirmed 
by oil red staining.  

These cells also showed high migratory activity towards a gradient of platelet-derived 

growth factor (PDGF). Their migration and integration capability were examined by an ex 
vivo migration assay. MPCs showed a tremendous migratory and retention capability in 

diseased meniscus tissue. Taken together, the distinctive stem cell-related characteristics 
of these cells, such as, clonicity, multipotency and migratory potential, allowed to name 
the cells meniscus progenitor cells (MPCs). These cells are rather progenitors cells, 
because they show signs of senescence. MPCs derived from diseased meniscus 
revealed a low expression of smad2/smad3 and a high expression of smad7, a 
cytoplasmic inhibitor of the TGFβ pathway. In OA, it has been shown that depletion of the 
TGF receptor II results in boosting up runx2, MMP13 and ADAMS5 (Shen et al, 2013). 
The knockdown of runx2 elevated the total smad2/3, and more importantly, the p-
smad2. The MPCs induction with TGFβ3 also had a positive influence on cells in terms of 
their chondrogenesis, as shown by significantly reduced runx2 level. In turn, it up-
regulated the sox9 and p-smad2. In contrast, MPCs treated with BMP-2 totally reflected 

an adverse effect. It down-regulates sox9 and smad2 expression, rather enhancing the 
osteogenic level.  

In short, the altered level or shift from smad2/3 to smad1/5 seems to be important in the 

progression of OA in human meniscus. These findings suggest that specific mediators of 

the TGFβ/BMP pathway may serve as drug targets in regenerative medicine in the future, 
particularly for the late stages of OA of human meniscus. 
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Mouse meniscus possesses progenitor cells 

Additionally, in this study it has been examined that, the avascular region (inner part) of 

mouse meniscus harbors multipotent progenitor cells found to be positive for stem cell 
markers (CD44, CD73, CD29 and CD90). Stem cell marker positive cells were localized 

via immunohistochemistry, immunocytochemistry, PCR, FACS and Western blots. The 

MMPCs were found to be negative for hematopoietic stem cells markers (CD117 and 
CD34), as expected, as they derived from the avascular part.  

More recently, Osawa et al. isolated cells from the vascular part of the meniscus via 

collagenase digestion and found them to be positive for hematopoietic stem cells marker, 
such as CD117 and CD34 (Osawa et al, 2013). It suggests that blood vessels or 

pericytes will be the possible source of their cells. Contrary, MMPCs are not only different 
from the Osawa et al. cells in terms of their source but also in terms of the 
methodological approach, which has been applied for cells isolation. Surprisingly, 
histological examination showed that structurally mouse meniscus is not completely 
identical to human meniscus. Mainly, a deviation has been observed in the superficial 
zone. A true superficial zone is absent in mouse meniscus and no flattened cells were 
seen as is in humans. Further, the structural divergence was confirmed by collagen type I 
staining, which intensively stained for superficial zone of human meniscus. However, no 
collagen type I staining was detected in pseudo-superficial zone of mouse meniscus. In 
addition, collagen type I staining was examined only in the outer part of the mouse 

meniscus. The MMPCs could be differentiated only into two mesenchymal linages, i.e., 

cells of the chondroblastic lineage and the osteoblastic lineage.  

In brief, the main theme of this study was to introduce novel, until now uncharacterized 
MPCs and MMPCs as possible candidates for meniscus tissue regeneration.  

In summary, the initial findings will contribute to broadening the concept of adult 
progenitor cells in situ, present in mature tissues. Furthermore, it will motivate the 
researcher to understand the biological nature of the progenitor cells, importantly, to 
establish mechanistic approaches to introduce progenitor cells as cellular therapeutics 
for meniscus regeneration.  
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Introduction: Hyaline articular cartilage is the connective tissue responsible for

frictionless joint movement. Its degeneration ultimately results in complete

loss of joint function in the late stages of osteoarthritis. Intrinsic repair is com-

promised, and cartilage tissue regeneration is difficult. However, new options

are available to repair cartilage tissue by applying ESCs, MSCs and CPCs.

Areas covered: In this review, the authors shed light on the different concepts

currently under investigation for cartilage repair.

Expert opinion: So far, there is no way to derive a chondrogenic lineage from

stem cells that forms functional hyaline cartilage tissue in vivo.One alternative

might be to enhance the chondrogenic potential of repair cells, which

are already present in diseased cartilage tissue. CPCs found in diseased

cartilage tissue in situ are biologically driven toward the osteochondrogenic

lineage and can be directed toward chondrogenesis at least in vitro.

Keywords: cartilage, chondrogenic progenitor cells, collagens, extracellular matrix,

osteoarthritis, sox9/runx2, stem cells

Expert Opin. Biol. Ther. (2013) 13(4):541-548

1. Introduction

The progression of knee osteoarthritis (OA) is multigenic in origin [1,2]. In addition,
gender has a powerful influence on the incidence, severity and pathogenesis of
OA [3]. Once damaged or injured, articular cartilage has a limited intrinsic capabil-
ity for self-repair because of its avascular nature [4]. For regeneration, two major con-
cerns need to be discussed: first, how to heal or fill the affected area with a tissue that
has the same biological and mechanochemical properties as articular cartilage; and
second, how to enhance and promote successful integration between the new repair
tissue and the native articular cartilage [5]. Articular cartilage is responsible for the
painless and frictionless movement of the joint; its degeneration leads to the expo-
sure of the bone and this results in painful direct bone-to-bone contact. Fibrocarti-
laginous repair tissue is present in the late stages of OA and harbors diseased
chondrocytes as well as elongated fibroblast-like cells (Figure 1). The authors found
unique progenitor cells, termed chondrogenic progenitor cells (CPCs) within this
repair tissue from human articular cartilage during the late stages of OA (Figure 2).
These CPCs have a tremendous ability for chondrogenesis [6]. This review will
discuss all cell-based therapeutic approaches to generate cartilaginous repair tissue
that may ultimately lead to clinical applications.

2. Human embryonic stem cells and parental stem cells as
candidates for cartilage repair

The tissue regeneration community shows a great interest in embryonic stem cells
(ESCs) because of their unlimited self-renewal and pluripotency. They represent

10.1517/14712598.2013.758707 © 2013 Informa UK, Ltd. ISSN 1471-2598, e-ISSN 1744-7682 541
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an immortal cell that could potentially provide an unlimited
supply of any target tissue (except placental cells) for
cell-based therapies.
ESCs, from the inner cell mass of the blastocyst can be iso-

lated and propagated in vitro. Mouse ESCs were the first to be
investigated in 1981 [7,8]. The next major breakthrough was in
1998 when Thomson et al. isolated ESCs from human
embryos [9]. These cells have the potential to produce all or
most cell lineages derived from the three embryonic germ
layers: ectoderm (skin and neural lineages), mesoderm (blood,
fat, cartilage, bone and muscle) and endoderm (the digestive
and respiratory system) [10].
The development of an efficient and stable culture condi-

tion to drive differentiation to the desired tissue-specific cells
is the crucial issue, because undifferentiated ESCs facilitate ter-
atoma formation in vivo [11,12]. Although it is possible to
enhance the differentiation potential toward a certain cell
type [13,14], obtaining a homogeneously purified population is
still challenging. Therefore, there is a need for further research
to understand and optimize different factors, signals and envi-
ronmental influences that induce and restrict human ESCs to
differentiate specifically toward the chondrogenic lineage.
It is not trivial to bypass embryonic body (EB) formation

and initiate the direct conversion of ESCs into chondrocytes.
Yamashita et al. reported the direct chondrogenic differentia-
tion of mouse ESCs using high-density adherent micromass
culture and 1% fetal bovine serum (FBS). Under high-serum

conditions, differentiation to multiple lineages has been
observed [15]. A growth factor-directed chondrogenesis has
also been demonstrated through the application of cocktails
containing different growth factors in varying proportions [16].
Growth factors of the TGF-b family are considered to be
potent inducers of the chondrogenic differentiation of ESCs,
and in the combination with bone morphogenic protein
(BMP)-7 these growth factors facilitate chondrogenesis with-
out EB formation [17,18]. Human ESCs have been reported
to differentiate successfully into chondrocytes using co-culture
and scaffold differentiation methods, and these differentiated
chondrocytes have been tested in vivo for cartilage repair
in mouse models without teratoma formation [19-22]. Never-
theless, any application of ESCs in humans harbors the risk
of teratoma formation.

Prenatal tissues, such as human umbilical cord (Wharton’s
jelly), cord blood and amnion all harbor stem cells expressing
mesenchymal stem cells (MSCs)-related markers. Although
most studies have mainly been concerned with osteogenic
lineage differentiation, the capacity to differentiate into
the chondrogenic lineage has also been observed with these
parental stem cells. Expression of the main extracellular
matrix (ECM) chondrogenic markers, including collagen II,
has been demonstrated in these cells [23-33]. More recently,
de Mara et al. isolated MSCs from human umbilical blood
cells, and their chondrogenesis was enhanced, using the
BMP-2 and BMP-6 proteins [34]. The potential of human
umbilical cord (Wharton’s jelly) stem cells is enhanced when
cultured on nanofibrous scaffolds [35].

3. Adult stem cells as candidates for
cartilage repair

Adult stem cells are progenitor cells, which reside in already
differentiated tissues. Many adult tissues exhibit a certain
capacity for self-renewal after trauma or disease. For instance,
bone marrow is the major pool of adult hematopoietic stem
cells (HSCs) that replenish circulating blood cells [36].
Wakitani et al. performed the first transplantation of bone
marrow-derived MSCs for cartilage repair, and a sort of
cartilage-like tissue was observed after 42 weeks [37]. Like
HSCs, MSCs are also believed to reside in the bone marrow.
They take part in the regeneration of mesenchymal tissues,
such as bone, cartilage, muscle, ligament, tendon, adipose and
stroma [38-47]. Pittenger et al. first isolated adult MSCs from
bone marrow and demonstrated their multilineage differentia-
tion potential [48]. Subsequently, researchers isolated MSCs
from various other adult mesenchymal tissues, such as blood,
adipose, skin, mandible trabecular bone, muscle and synovial
membrane [49]. The diversity of the chondrogenic potential of
MSCs isolated from these different tissues is still being investi-
gated. However, it has been suggested that MSCs derived from
adipose tissue have the highest chondrogenic potential [50].
More recently, Suzuki et al. reported that aggregated synovial
MSCs are a better choice for cartilage repair. These cells exhibit

A.

B.

C.

Figure 1. (A) Light microscopic histology of fibrocartilaginous

tissue indicating regeneration attempts in the late stages

of human osteoarthritis. (B) Electron micrograph of a

diseased chondrocyte from the late stages of osteoarthritis

and (C) a fibroblast-like cell from fibrocartilaginous tissue as

shown in A.

H. Muhammad et al.
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a high expansion capacity, efficient attachment and a high chon-
drogenic potential [51]. An increased number of MSCs are
observed in the synovial fluid of patients with OA [52]. Applying
small inhibitory agents could enhance the chondrogenic poten-
tial of human MSCs. Johnson et al. identified a small molecule
that promotes chondrogenic differentiation in human MSCs.
The inhibitor kartogenin binds filamin A, inhibits its binding
to the transfection factor core-binding factor b-subunit and
enhances chondrogenesis by regulating the core-binding
factor b that suppresses runx2 expression [53]. All of these experi-
ments that describe new enhancementmethods for the chondro-
genesis of MSCs indicate that no single method is yet efficient
for cartilage tissue regeneration. Research has yet to even eluci-
date the basic cellular mechanisms of MSC differentiation
into chondrocytes.

Stem cells, once isolated, purified and completely detached
from their tissue-specific environment, do not behave as
they would in vivo. In 1978, Schofield introduced the concept
that stem cells are located in particular anatomical sites in
adult tissues, called niches [54]. A niche is a stem cell’s sur-
rounding microenvironment, including its ECM and helper
cells. Stem cells live in their niche for an indefinite period of
time and self-renew from time to time to release a transient
amplifying pool of cells (Figure 3). The components of this
environment, for example, the stem cells themselves, the niche
cells, the ECM and secreted proteins, are coordinated to
maintain the stem cell phenotype and direct the daughter cells
to differentiate into cells of the transient amplifying pool to
escape from the niche [55]. It is crucial to understand the

main fundamental signals and pathways that a stem cell
receives when it is located in its niche, as this signaling infor-
mation will help to maintain these cells in an undifferentiated
state in an artificial in vitro environment.

4. Issue of stem cell transplantation and
immune response

Adult MSCs are believed to be immunosuppressive [56].
Sato et al. injected human MSCs into the osteoarthritic knee
joint of guinea pigs and demonstrated that MSCs integrate
into a tissue without any immunogenic response [57]. Major
histocompatibility (MHC) antigens on the donor cells and
their exposure to the host normally results in a biological
rejection. Fortunately, the number of MHC antigens is low
on undifferentiated cells. However, the MHC level increases
on differentiation [58]. MHC antigen expression is also very
low on human chondrocytes. Usually, human chondrocytes
express the class I MHC and do not normally express the
class II MHC [59]. Therefore, immunoreactions are unlikely;
however, some authors believe that a potential immune-
suppressive drug therapy will be required at least for
ESC-based application [60,61].

5. Induced pluripotent stem cells as
candidates for cartilage repair

Induced pluripotent stem cells (iPSCs) offer an allogeneic cell
source for cartilage repair. Because they are obtained from

A. B.

C. D.

Figure 2. (A) Light microscopic picture of cluster formation as a sign of regeneration found in the late stages of osteoarthritis.

(B) Cells migrating out of a sample of fibrocartilaginous tissue after 10 days in culture. (C) These cells are STRO-1 positive and

(D) show a fibroblast-like phenotype and have been characterized as CPCs [6].

Current concepts in stem cell therapy for articular cartilage repair

Expert Opin. Biol. Ther. (2013) 13(4) 543
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the patient’s own body, they could provide a patient-specific
cell-mediated therapy [62,63]. Nuclear transfer experiments
have confirmed that already differentiated cells can be
reprogrammed to form an entire organism. Takahashi and
Yamanaka pioneered the concept that the expression of only
four transcription factors is sufficient to render mammalian
somatic cells pluripotent. Further research developments
have reduced the number of transcription factors to only
oct4, which is at least sufficient for the induction of pluripo-
tency in neural stem cells. In contrast to somatic cells,
germline cells express oct4 to retain their pluripotency. There-
fore, Sterneckert et al. suggest that oct4 is the gatekeeper for
the reprogramming expressway [64,65].
Kim et al. generated iPSCs fromOA-patient-derived synovial

cells. Four well-known transcription factors (oct4, sox2, klf4 and
c-myc) were introduced into the cells to induce reprogramming;
the cells were then subjected to chondrogenic differentiation.
These experiments suggest that iPSCs exert a potential for cell-
based cartilage repair [66]. Recently, Hiramatsu et al. generated
hyaline cartilaginous tissue from mouse adult dermal fibroblast
cultures using only two reprogramming factors (c-myc and
klf4) and one chondrogenic factor (sox9) [67]. Adult somatic cells
reprogrammed via nuclear transfer to acquire pluripotency
retain the epigenetic memory of their tissue origin. Neural
progenitor- and fibroblast-derived iPSCs retain residual
methylations at loci required for the hematopoietic fate, so their
blood-forming capacity is reduced in vitro [68].
There are risks associated with the clinical application of

these cells because iPSCs are often generated using retrovi-
ruses, which can cause a lethal insertional mutagenesis and
may result in adverse effects, such as those observed in gene
therapy [69]. Mice grown from retrovirally derived iPSCs
seem to be normal only under conditions in which the
c-myc transgene is repressed [70]. The long-term safety of
human iPSCs cannot be guaranteed through mouse experi-
ments alone. The retroviruses applied to create iPSCs render
them immunogenic [71]. For the clinical application of these
cells, researchers should avoid the integration method. There
are safer methods, such as using plasmids and Sendai
virus [72,73]; however, all of these methods are still in the
early experimental phase. A recent review published by
Herberts et al. provides a comprehensive overview of all the
risk factors, such as transformation, tumor formation and
genetic modification that have to be faced in association
with stem cell therapy [74].

6. Progenitor cells as candidates for cartilage
regeneration

The authors have isolated migratory progenitor cell popula-
tions from late-stage human OA tissue. These cells are positive
for the well-known stem cells markers CD105, CD106, CD73,
CD29 and Stro-1. However, these cells were negative for the
hematopoietic markers, such as CD45. CPCs are multipotent
and exhibit a tremendous chondrogenic potential [6]. The

knockdown of runx2 enhances the chondrogenic potential of
CPCs by the up-regulation of sox9 and collagen II expression
(Figure 3). Recently it was shown that CPCs from both genders
were influenced by sex hormones. Both estrogen receptors
(ER)a and ERb and androgen receptors were detected on
CPCs. The presence of sex steroids in the synovial fluid and
the modulatory effect of estrogen on CPCs might be of rele-
vance for joint biology and stem cell-based therapy. The cells
of human OA cartilage were partially positive for the sex
hormone receptors, while all CPC populations were found to
be highly positive for these receptors. The chondrogenic poten-
tial was enhanced by treating the female-derived CPCs with
17b-estradiol and treating the male-derived CPCs with testos-
terone [75]. The osteogenic differentiation of murine ESCs is
negatively regulated by estrogen [76]. Jung et al. have demon-
strated that estrogen helps to maintain stemness and oct4
expression to keep the ESCs in an undifferentiated state [77].
Mouse ESCs were rescued from oxidative stress by dihydroxy
testosterone [78], and Hong et al. recently found that estrogen
induced the proliferation of MSCs [79].

7. CPCs might be suitable for cartilage repair
in situ but still face limitations

The progenitor cell studies produced exciting data revealing
the potential for the future clinical application of CPCs for
cartilage repair [6,75]. However, further research is required
before a clinical application can be developed:

1) A strong influence of age, gender and body weight on
the regenerative potential of CPCs has to be taken
into consideration.

2) Further questions remain regarding the guidance of
these cells to the diseased area. Additionally, the degen-
erated and inflamed ECM has a negative effect on the
repair potential of CPCs. In particular, cytokines that
are responsible for OA initiation [80] might negatively
influence the chondrogenic potential of CPCs.

3) The proposal of a safe method, condition or agent that
drives the CPCs in situ to entirely replenish native
cartilage with collagen type II synthesis, rather than
the fibrocartilaginous tissue with high amounts of
collagen type I, remains to be established.

4) It is necessary to elucidate the role of the stem cell
niche, from which the CPCs are derived, to learn
more about the microenvironment and how this
influences the niche and the progenitor cell release.

5) In situ manipulation of these cells will be crucial,
because CPCs are progenitor cells and not stem cells
and, therefore, reach senescence in cell culture.

8. Expert opinion

The main aim of tissue regenerative therapies is to replace the
damaged, injured or diseased tissue with proper native-like

H. Muhammad et al.
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functional tissue. However, the well-known physiological
repair mechanisms associated with diseased cartilage are rare
and generally overridden by matrix destruction that results
in less functional fibrocartilaginous tissue, with more collagen
type I and less collagen type II [81,82]. Stem cells are viewed as

one of the best candidates for cartilage repair. To address these
challenges, researchers have tested the chondrogenic potential
of a broad-spectrum of multipotent stem cells such as
adult MSCs, ESCs and iPSCs (Table 1). Comparative studies
have demonstrated that each cell type has advantages and

Table 1. Various types of progenitor/stem cells under investigation for cartilage repair.

Cell types ESCs iPSCs MSCs In situ progenitor

cells (CPCs)

Origin Derived from inner cell mass
of blastocyst

Derived from somatic cells
via stemness factors

Isolated from adult tissue Isolated from OA cartilage

Self-renewal Self-renewal Self-renewal Somewhat limited self-
renewal

Limited self-renewal

Life span Indefinite Indefinite Limited life span Limited life span, less than
MSCs

Teratoma
formation

High teratoma risk High teratoma risk No teratoma risk No teratoma risk

Differentia-
tion
potential

Pluripotent Pluripotent Multipotent Multipotent

Preclinical
aspects

Can differentiate in all cell
types of the three germ
layers

Can potentially differentiate
in all cell types of the three
germ layers

Can differentiate mainly into
the cell types of the
mesodermal lineage

Already determined to the
osteochondrogenic lineage

Immunity Low level of MHC I and II,
less immunogenic

Normal level of MHC I and II,
highly immunogenic

Less immunogenic Not noticed until now

Preclinical
aspect

Many steps required to
obtain the desired cell type

Many steps required to
obtain the desired cell type

Difficult to maintain
undifferentiated in cell
culture

Easy to isolate and
differentiate into
chondrocytes

ESC: Embryonic stem cell; iPSCs: Induced pluripotent stem cells; MSC: Mesenchymal stem cell; OA: Osteoarthritis.

Niche Transient amplifying pool
Ectodermal lineage

Chondrocyte

Collagen type II

CPC

runx2

runx2

sox9

so
x9

Mesodermal lineage

Stem cell

Asymmetric cell division Endodermal lineage

Fibro-chondrocyte

Collagen type I

Regeneration effort in OA

Osteo-chondro-progenitor cell

Helper cell
ECM

Figure 3. The image depicts the concept of progenitor cells in situ. The stem cell resides in its niche and releases cells of the

transient amplifying pool, which, in the case of cartilage repair, develop into osteochondral progenitor cells. These cells in

turn become chondrogenic progenitor cells found in the repair tissue that produces collagen type I. The aim would be to

manipulate these cells in situ to differentiate them into chondrocytes to produce collagen type II. The hypothesis is that this

can be achieved via runx2 and sox9.

Current concepts in stem cell therapy for articular cartilage repair
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disadvantages. The published data also demonstrated that
some sources may be more useful than others and more
promising for cartilage repair [83]. As of now, none of the pub-
lished successes in driving stem cells into the chondrogenic
lineage has resulted in functional hyaline cartilage tissue.
Furthermore, the long-term effects in these cells such as
ESCs-driven teratoma formation, the imprinted genetic
memory of iPSCs and the insertional mutagenesis of retrovi-
ruses used to induce iPSCs should be examined. Stem cell
differentiation potential decreases with age; and OA is a
disease of the elderly. The MSCs from aged OA patients
have a very low differentiation potential for cartilage-like
tissue formation [84]. More recently, patients from moderate
to late stages of OA were subjected to MSCs treatment, but
no complete regeneration of cartilage and no long-term satis-
factory results were obtained [85]. Thus, another concept in
regenerative medicine is to regard MSCs more as a therapeutic
means to stimulate the stem cells already present in the

diseased tissue and guide these stem cells toward regeneration
activities, instead of transplanting cells to regenerate the tissue
de novo. Therefore, the authors suggest that resident cells in
diseased cartilage tissue, that are already present in situ and
are active as a physiological response to the cell biological
stimuli of the diseased tissue should be taken into consider-
ation. They might be more efficient and safer than exogenous
cells. The authors’ research group aims mainly to elucidate the
chondrogenic pathways in CPCs and to investigate the inter-
acting partners of two of their master regulators, sox9 and
runx2. However, before a biological therapy of OA with
CPCs becomes a clinical reality, numerous questions, as
outlined in Section 7, remain to be addressed.
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Abstract The primary cilium is an immotile, solitary, and

microtubule-based structure that projects from cell surfaces

into the extracellular environment. The primary cilium func-

tions as a dual sensor, as mechanosensors and chemosensors.

The primary cilia coordinate several essential cell signaling

pathways that are mainly involved in cell division and dif-

ferentiation. A primary cilium malfunction can result in

several human diseases. Mechanical loading is sense by

mechanosensitive cells in nearly all tissues and organs. With

this sensation, the mechanical signal is further transduced into

biochemical signals involving pathways such as Akt, PKA,

FAK, ERK, and MAPK. In this review, we focus on the fun-

damental functional and structural features of primary cilia in

chondrocytes and chondrogenic cells.

Keywords Chondrocytes � Primary cilia �
Mechanotransduction � Chondorgenic progenitor cells

Abbreviations

OA Osteoarthritis

ECM Extracellular matrix

FAK Focal adhesion kinase

MAPK Mitogen-activated protein kinase

CPCs Chondorgenic progenitor cells

ERK Extracellular signal-regulated kinase

MSC Mesenchymal stem cell

PKA Protein kinase A

Hh Hedgehog

IFT Intraflagellar transport

Wnt Wingless

EvC Ellis–van Creveld syndrome

PKD Polycystic kidney disease

Ihh Indian Hedgehog

Introduction

The morphological, structural, and material features of the

cartilage are genetically programmed but can also be

modified by epigenetic factors, such as local tissue stress

and strain states [1, 2]. Mechanical stimulation resulting

from weight loading, mobilization, and muscle contraction

has an important role in bone formation and normal joint

cavitation [3, 4]. Paralysis of the skeletal musculature is

known to inhibit chondrogenesis in developing limbs [5],

which thereby influences the length, mass, and mechanical

properties of the forming bone [6–9]. The growth plate and

articular cartilage are subjected to massive repeated

mechanical forces, and they have a limited capacity for

repair. Thus, understanding how articular cartilage is

maintained and how mechanical loads are sensed by the

chondrocytes is of primary importance.

Sensing of mechanical signals

Mechanosensitivity starts with external or internal mechan-

ical responses, and the mechanical stimuli are transduced by
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the cell into a biochemical outcome. More precisely, this

phenomenon is known as mechanochemical signaling or

mechanotransduction. Multiple activation mechanisms are

simultaneously at play, including the release of autocrine

growth factors [10–17] activation of mechanically sensitive

kinases, such as Src [18–22] focal adhesion kinase (FAK)

[23–25] and extracellular-signal regulated kinase (ERK)

[26–32] and initiation of second messenger signaling [33,

34]. Mechanical forces drive many cellular events, including

proliferation, differentiation, and gene expression in adult

differentiated cells and stem cells [35]. When trying to

understand how cells can receive a variety of inputs and

translate them into a response, we think of a system, or a cell

organelle, that can perform these tasks. Interest in a spe-

cialized cell projection organ called the primary cilium has

recently emerged. This organ was shown to have the ability

to receive and transduce numerous cell signals [36]. Thus,

the primary cilium is a good candidate to act as the cell’s

‘‘control device’’ for mechanical stimulation because it

projects as an ‘‘antenna’’ from the cell into the ECM, and it

incorporates integrins, G protein receptors, and calcium

channels into the cell membrane.

Mechanosignaling in chondrocytes

Ultrastructural studies have shown that each chondrocyte

has such an immotile primary cilium. On chondrocytes, the

primary cilia are oriented into the pericellular matrix

environment of the chondron, and they interact with col-

lagen types II and IV via receptors [37–42]. A physical and

chemical deficiency in the chondroblastic and chondrocytic

primary cilia results in skeletal and growth plate abnor-

malities due to improper ECM secretion [43–49]. Integrins,

G proteins, and calcium channels on the primary cilium

have all been implicated as mechanoreceptors [19, 50–53].

Numerous genes and pathways have been shown to be

differentially regulated as a result of mechanical stimuli;

for example, the phosphoinositide 3-kinase/Akt, protein

kinase A (PKA) and Mitogen-activated protein kinase

(MAPK) pathways [54–56]. It is reasonable to assume that

mechanotransduction is a complex multi-component sys-

tem that allows cells to integrate mechanical stimulations

differing in intensity, frequency, duration, and orientation

to generate appropriate biological responses, including

cartilage formation and regeneration [57] and, especially,

growth-plate formation [37, 58]. Mice and humans with

mutations in ciliary genes often present with defects in

skeletal development. Two human syndromes that include

defects in endochondral bone formation were shown to be

associated with mutations in ciliary genes. Asphyxiating

thoracic dystrophy (Jeune’s syndrome) is associated with a

missense mutation in IFT80 (part of IFT complex B), and it

presents with skeletal defects resembling those seen in

sonic hedgehog homolog depletion. Furthermore, Ptc1 (hh

receptor) expression is downregulated in the IFT80 mutant,

suggesting that alterations in Hh signaling and Ellis–van

Creveld syndrome (EvC) are characterized by numerous

skeletal and craniofacial abnormalities. The mutated pro-

tein in EvC has been localized to the base of the cilia

expressed in chondrocytes and is required for normal Hh

signaling. The disruption of EvC in mice resulted in a

variety of skeletal abnormalities associated with dimin-

ished Ihh signaling [48].

Mice mutated in other ciliary genes also demonstrate

alterations in endochondral ossification, resulting in a

shortening of the long bones. Conditional deletion of

IFT88 or KIF3a produces defects in embryonic endo-

chondral bone formation, observed as early as 15.5 days

from gestation [59]. These phenotypes resembled those

seen in mice with germline mutations in Ihh [60]. When

either Ift88 or KIF3a was deleted at later stages of

development using the col2a-Cre promoter, the mice

demonstrated a progressive loss of the cartilaginous growth

plate, resulting in postnatal dwarfism that resembled the

phenotype of mice with a conditional deletion of Ihh

induced in postnatal cartilage. KIF3a and primary cilia are

essential for coordination of chondrocytes maturation and

condylar growth. The Ihh signaling pathway is one of the

major regulatory pathways that lead to chondrocyte divi-

sion and differentiation in the growth plate. Hydrostatic

compression of the chondrocytic primary cilium upregu-

lates Ihh gene expression [49, 61, 62].

Using electron microscopy, it has been shown that the

chondrocyte cilium projects into the ECM and is tightly

associated with the Golgi apparatus [39, 63]. Integrins have

been shown to be present on the chondrocyte cilium, and

integrin-dependent signaling cascades have been described

in chondrocyte mechanotransduction [42, 64], suggesting a

possible role for the chondrocytic cilia in mechanosensing.

Chondrocytes in articular cartilage differ from those in the

growth plate in that they are maintained as mature resting

cells. Mechanical load is a critical factor in maintaining

articular cartilage, but how the load is sensed is not known.

Recently, the fate of the primary cilia on articular chon-

drocytes during the progression of bovine OA has been

investigated [47, 65]. Primary cilia were present during all

examined stages of OA; however, the proportion of ciliated

cells increased and their orientation towards the surface

was altered; the significance of this orientation remains

unclear [37, 63, 65]. Recently published cyclic compres-

sion experiments proved that mechanical loading

modulates chondrocyte primary cilia incidence and length.

This observation has been made independent from the

well-known reduction of cilia appearance during cell

division. Axonemal orientation in the cilia of articular

2102 H. Muhammad et al.
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chondrocytes is more pronounced in weight-bearing areas

compared to of the cartilage tissue [66, 67].

We have studied the effect of loading on growth plate

chondrocytes in vivo. Chondrocyte proliferation, differen-

tiation, organization, and the major signaling pathways

were found to be modified by loading in a chick model

[68]. This demonstrated that the mechanical load affected

chondrocytes in the growth plate [69], especially the

expression of matrix metalloproteases [70].

The primary cilium

Primary cilia are non-motile sensory organelles that project

from cells in many tissues and types of cells, such as

kidney tubules, the bile duct, neurons, the endocrine pan-

creas, the thyroid, smooth muscle cells, and fibroblasts.

The complete list of the cells and tissues containing pri-

mary cilia can be found at http://www.bowserlab.org/

primarycilia/cilialist.html. In recent years, cilia have

emerged as a hot topic in research, resulting in the creation

of numerous databases, including those containing geno-

mic and proteomic data on cilium composition (http://

www.ciliaproteome.org, http://www.ciliome.com) [71–74].

Cilia can be seen as specialized cellular compartments or

organelles [36, 75]. They are microtubule-based structures

that originate at the basal body and extend into the extra-

cellular space. The basal body is a modified form of the

centriole, an organelle well known for its role as a

microtubule organizing center of mitotic spindles. The

basal body/centriole migrates toward the cell membrane

and acts as a template for ciliogenesis and an anchor for the

primary cilium. The centriole only moves towards the cell

membrane when it is not involved in mitosis; thus, cilium

generation occurs during the interphase of the cell. The

intraflagellar transport (IFT) system plays a key role in

primary cilium formation and maintenance. The IFT sys-

tem is bidirectional and directs movement along the ciliary

axoneme. Because no proteins are synthesized in the pri-

mary cilium itself, ciliary proteins are targeted to the basal

body and transported to the distal tip through the IFT

complex. IFT complexes are trafficked along the axoneme

by molecular motor proteins; they are transported by

kinesin II in the anterograde direction and by dynein II in

the retrograde direction.

Motile and non-motile, primary cilia have microtubule

axoneme cores made up of nine sets of microtubule dou-

blets that provide structure and rigidity. However, primary

cilia lack the central pair of microtubules (thus are desig-

nated 9?0), while other motile machinery includes the

inner and outer dynein arms, radial spokes, and central pair

projections (designated 9?2). Unlike the motile cilia, of

which there can be many per cell, there is only one primary

cilium per cell [76–78].

The function of the primary cilium

To date, there are three hypotheses regarding the functional

importance of the primary cilium: first, the primary cilium

is a vestigial organ on the cell; second, that it inhibits cell

division because it sequesters the centriole; and third, that

it is a cellular sensory structure. The first hypothesis has

been proven to be incorrect by several experiments. For

instance, analyses of mutants, such as the Tg737orpk Rpw

mouse, have indicated that a functioning primary cilium is

essential for normal development and function, not only of

the kidney, but also of many other tissues and organs.

Hence, ciliary dysfunction might lead to a series of

developmental abnormalities and diseases collectively

called ciliopathies, including cystic diseases, obesity, and

blindness, as well as behavioral, cognitive, and skeletal

defects. The second hypothesis seems reasonable because

the majority of cells possess primary cilia when they are

not undergoing mitosis. Additionally, recent studies have

demonstrated the accuracy of the third hypothesis: primary

cilia have been shown to be highly involved in cell sig-

naling processes because a number of ion channels,

transporter proteins, and downstream effector proteins are

associated with the cilium [79–81].

The primary cilium is a few micrometers in length, and it

detects and interprets signals from the environment, such as

odorants, fluid flow, and protein signaling between cells.

Thus, they are spectacularly complex sensors. In ciliary

signaling, the receptor protein and the protein that transmits

the message into the cell are localized in the cilia. Protein

association or dissociation from the cilia controls the sig-

naling pathways, which ultimately trigger responses such as

cell division and differentiation [82]. Several independent

lines of evidence have demonstrated a role for the primary

cilium in Hh signaling [83]. Hh is the master regulator of

endochondral ossification in the growth plate, and it deter-

mines chondrocyte activity and subsequent bone length

[84–86]. Upon Hh stimulation, both Hh receptors, Smo and

ptch1, are recruited to the cilium in vitro and in vivo; Gli2

and Gli3, downstream effectors of Hh, also localize to the

cilium in the developing limbs [45, 87]. Other pathways that

have been shown to regulate chondrocyte activity but have

not yet been linked to the cilium are as follows: bone

morphogenic proteins, wingless (Wnts), fibroblast growth

factors, and insulin-like growth factors, all of which are

essential for normal cartilage formation.
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Cilia function in mesenchymal stem cells

and chondrogenic progenitor cells (CPCs)

The effects of mechanical forces on mesenchymal stem cell

(MSC) differentiation were examined in a fundamental

study of the concept of environmental cell sensing. The

study showed that differentiation of MSCs is directed by

the stiffness of the culture matrix. On soft collagen gels

that mimic the elasticity of brain tissue (0.1–1 kPa), MSCs

tend to adhere, spread, and exhibit a neurogenic phenotype.

MSCs cultured on tenfold stiffer matrices that mimic

muscle elasticity (8–17 kPa) become spindle-shaped, sim-

ilar to myoblasts. When cultured on matrices that mimic

the stiffness of bone osteoid (25–40 kPa), the MSC phe-

notype becomes osteoblast-like with greater expression of

osteogenic genes [88]. This work, along with similar

studies, implies that a cell is able to sense its mechanical

environment and that mechanical signaling itself can reg-

ulate the differentiation of MSCs into different tissues.

More recently, Padmaja Tummala et al. identified the

presence of primary cilia on MSCs and determined their

role in MSC differentiation. MSCs require primary cilia not

only during their differentiation but also to maintain the

phenotypes of differentiated cells [89]. In addition, there is

evidence that MSC differentiation into chondrocytes and

osteocytes is regulated by mechanical signals [90]. Our

research group is working on tissue regeneration to eluci-

date repair mechanisms, especially in OA (Fig. 1) and

rheumatoid arthritis. OA is a chronic degenerative disease

characterized by articular cartilage degeneration, and it is

multifactorial in origin [89]. Primary cilia are present on

chondrocytes, and the percentage of ciliated cells and the

lengths of the cilia within OA tissue are higher compared to

the normal tissue [65], although the implications of these

facts have yet to be elucidated.

We have isolated CPCs from subjects in late-stage OA

and characterized their role in the repair of diseased

articular cartilage. CPCs have tremendous chondrogenic

and regenerative potential. These cells are positive for stem

cell markers and exhibit stem cell properties such as clo-

nogenicity, multipotency, and migratory activity. Recently,

we identified primary cilia projecting from the surfaces of

CPCs using antibodies against acetylated alpha tubulin.

Our laboratory is focused on using mechanobiological

approaches to investigate the role of primary cilia in dif-

ferentiation of CPCs into chondrocytes [91, 92].

Fig. 1 a Electron micrograph

of the primary cilium (Ax), the

distal (Dc), and proximal (Pc)

centriole. Bar 500 nm. b Cross

section of the proximal

centriole. Bar 100 nm.

Reprinted from Jensen et al.

(1979) with permission.

c Schematic presentation of the

primary cilium with membrane

signaling molecules that were

described in it. d Human

articular chondrocytes and

f CPCs stained with acetylated

a-tubulin (tb, green) Abs to

detect primary cilia (arrows),

phalloidin (ph, red) and DAPI

(DAPI, blue). e Tissue from the

late stage of human OA exhibits

surface fissures and cell clusters

(the arrow indicates the

tidemark). Breaks in the

tidemark are filled with blood

vessels, and the bone marrow is

visible underneath the OA

tissue. Reprinted from Koelling

et al. [92] with permission from

the publisher
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Conclusions and perspectives

Owing to the involvement of primary cilia in fundamental

cellular processes, mutations in primary ciliary proteins

result in diverse diseases such as cystic kidney diseases,

obesity, and retinal degeneration. Recent studies have

presented a comprehensive concept that primary cilia are

acting as dual sensors for physical and chemical cues.

Therefore, over the past few years, many researchers have

been paying attention to primary cilia to understand their

role in development and diseases. Here, we have reviewed

the basic role of primary cilia in mechanotransduction and

their possible impact on cartilaginous tissues. Additionally,

our results show that primary cilia project not only from the

surface of human osteoarthritic chondrocytes but also from

the surface of chondrogenic progenitor cells. One future

line of research should be to elucidate the role of the pri-

mary cilia in chondrogenic differentiation to enhance the

potential of cartilage repair.
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matrix combined with a runx-2 knockdown or stimulation 
with extracellular matrix components, such as nidogen-2. 
Therefore, the DDR-1 knock-out mouse can serve as a 
novel model for temporomandibular disorders, such as OA 
of the TMJ, and will help to develop new treatment options, 
particularly those involving tissue regeneration.

Keywords T emporomandibular joint · Osteoarthritis · 
Extracellular matrix · Collagen receptor · Chondrocyte 
signaling

Introduction

Temporomandibular disorders (TMDs) are structural, func-
tional, biochemical, and physiological dysregulations of 
the muscle or the temporomandibular joint (TMJ). It is 
estimated that 10–40 % of the population between 18 and 
45  years of age present symptoms or signs of TMD, and 
nearly 10  % are classified as suffering from osteoarthritis 
(OA) in this joint [1, 2]. Because OA of the TMJ is usually 
diagnosed only in the later stages of the disease, it is likely 
that the true incidence of OA of the TMJ may be higher [1]. 
TMD patients experience severe pain in the mastication 
muscles, joint clicking, displacement or perforation of the 
articular disc, and inflammatory or degenerative changes in 
the joint itself. Untreated TMDs ultimately result in OA of 
the TMJ [2]. The current therapeutic interventions for OA 
primarily provide short-term symptomatic relief, and almost 
all patients ultimately require joint replacement [3]. While 
the pathogenesis of OA of the TMJ has some special fea-
tures, the general aspects are similar to those of OA in other 
joints in which the imbalance between cartilage degradation 
and matrix synthesis ultimately results in the complete loss 
of joint function [4]. Within the joint, the articular cartilage 

Abstract  Discoidin domain receptor 1 (DDR-1)-deficient 
mice exhibited a high incidence of osteoarthritis (OA) in 
the temporomandibular joint (TMJ) as early as 9  weeks 
of age. They showed typical histological signs of OA, 
including surface fissures, loss of proteoglycans, chondro-
cyte cluster formation, collagen type I upregulation, and 
atypical collagen fibril arrangements. Chondrocytes iso-
lated from the TMJs of DDR-1-deficient mice maintained 
their osteoarthritic characteristics when placed in culture. 
They expressed high levels of runx-2 and collagen type I, 
as well as low levels of sox-9 and aggrecan. The expres-
sion of DDR-2, a key factor in OA, was increased. DDR-
1-deficient chondrocytes from the TMJ were positively 
influenced towards chondrogenesis by a three-dimensional 
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is responsible for the smooth transmission of force from one 
bone to another, thereby allowing painless skeletal move-
ments [5]. The maintenance of articular cartilage extracel-
lular matrix (ECM) is required for biomechanical func-
tions, such as rigidity and resistance to compression and 
shear forces [6, 7]. Chondrocytes, the cells responsible for 
cartilage tissue homeostasis, are embedded in a framework 
of collagens that, together with proteoglycans and glyco-
proteins [8], act as linking proteins to stabilize the collagen 
network. The chondrocytes in the articular cartilage do not 
make direct cell-to-cell contact; instead, they rely on cell–
matrix interactions [9] via integrins [10] or DDRs [11] for 
communication. Cartilage appears to have a low capacity 
for regeneration, and ECM degradation overrides the well-
known tissue regeneration attempts. Recently, we identified 
chondrogenic progenitor cells (CPCs), which drive these 
regeneration processes. During the late stages of OA, CPCs 
are located in the repair tissue of human articular knee car-
tilage. They exhibit stem cell characteristics such as clono-
genicity, multipotency, and migratory activity and exhibit a 
high chondrogenic potential [12, 13]. Whether CPCs might 
also play a role in the regeneration attempts of the TMJ is 
unknown, although this information is of importance in 
designing new therapies to treat TMD. Because human TMJ 
specimens are sparse, we aimed to establish a novel mouse 
model for OA of the TMJ. Histological analyses of the exist-
ing mouse models currently used to study OA, including 
ICR mice [14], Del 1 mice [15], Cho mice [16], mechani-
cally-induced OA via partial discectomy [17], and Col IX 
knock-out (KO) mice [18], showed a low incidence of TMJ 
OA. In contrast, we demonstrate that Discoidin domain 
receptor 1 (DDR-1)-deficient mice exhibit a high incidence 
of TMJ OA beginning at an early age, and are suitable as a 
model for TMD. Receptor tyrosine kinases such as DDRs 
are widely expressed in human and mouse tissues. The 
binding of collagen to DDR-1 results in tyrosine kinase acti-
vation [19]. This activation causes downstream signaling via 
Shc [20] or FRS2 [21], altering the gene expression levels 
of ECM molecules [19] that are important for maintaining 
healthy articular cartilage. Here, we demonstrate that DDR-
1-deficient mice display the histological characteristics typi-
cal of OA of the TMJ. Furthermore, isolated osteoarthritic 
DDR-1 KO TMJ cells can be converted to chondrocytes 
with a more normal phenotype, rendering cell biological 
interventions possible.

Materials and methods

Tissue sources and preparation

Animals were obtained according to the regulations of 
the Animal Welfare Act of the County of Lower Saxony, 

Germany. The generation and genotyping of DDR-1 null 
mice has been described previously [22]. Cartilage destruc-
tion was graded according to the modified Mankin score 
[23]; however, toluidine blue staining was used instead of 
safranin-O staining. Accordingly, healthy cartilage received 
a minimum score of zero points, and late stage OA received 
a maximum score of 23 points. Three histologists evaluated 
the tissues independently. The scores of KO and wild-type 
(WT) mice are shown in Tables 1 and 2.

Micro‑computed tomography

Three DDR-1 knockout and three wild-type (WT) mice 
were sacrificed at ages ranging from 9 to 12  weeks, and 
their jaws were prepared. The mineral content was meas-
ured in the subchondral bone of the articular surface of 
the mandible from each group using μ-CT scanning. The 
bones were scanned with a GE eXplore Locus SP Pre-Clin-
ical Specimen MicroCT instrument (GE Medical Systems, 
Muenchen, Germany) operated at a 13-m isotropic voxel 
resolution. The specimens were immersed in water, and 
hydroxyapatite (1.13 g/cm3) was included in each scan to 
provide reference values.

Antibodies for immunohistochemistry, 
immunocytochemistry, immunoblotting and FACS analysis

A monoclonal rat-anti-nidogen-1 antibody (JF4) and a 
polyclonal rabbit-anti-nidogen-2 antibody (1080+E2) 

Table 1   Grading of TMJ cartilage destruction in KO mice

Age at  
examination  
(weeks)

Number of  
sacrificed KO 
mice

Average  
modified Mankin 
score (0–23)

Average of 
OA prevalence 
(in %)

6 8 1 50

9 21 15 83

12 28 17 89

24 17 18 91

28 12 18 91

Table 2   Grading of TMJ cartilage destruction in WT mice

Age at  
examination 
(weeks)

Number of  
sacrificed WT 
mice

Average modi-
fied  
Mankin score  
(0–23)

Average of  
OA prevalence 
(in %)

6 6 0 0

9 15 0 0

12 20 0 0

24 20 1 15

28 15 2 20
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were generously donated by Dr. T. Sasaki (University of 
Erlangen, Germany). The nidogen-1 and nidogen-2 anti-
bodies have previously been demonstrated not to cross-
react [8]. The anti-COMP antibody is an affinity purified 
polyclonal rabbit-anti-bovine antibody [24]. Goat-anti-
rabbit or goat-anti-rat (Dako, Hamburg, Germany) sec-
ondary antibodies were used for immunostaining for light 
microscopy. DDR-1 (h-126, sc-8988), DDR-2 (h-108, 
sc-8989), aggrecan (4F4: sc-33695), runx-2 (M-70: 
sc-10758) and sox-9 (H-90: sc-2095) antibodies were 
obtained from Santa Cruz Biotechnology (Santa Cruz, 
CA, USA). Monoclonal anti-type I collagen (M-38) and 
an anti-type II collagen (CIIC1) antibodies were obtained 
from the Developmental Studies Hybridoma Bank, Uni-
versity of Iowa, USA. Intracellular FACS analysis was 
conducted using the Fix & Perm kit® (Invitrogen, Darm-
stadt, Germany). The MMP-13 antibody (ab39012) was 
obtained from Abcam (Cambridge, MA, USA). Goat-
anti-mouse, goat-anti-rabbit-FITC (Dianova, Hamburg, 
Germany) and anti-mouse-PE/FITC monoclonal immu-
noglobulin isotype controls (BD Pharmingen, Mountain 
View, CA, USA) were used as secondary antibodies. For 
immunoblotting, we used a goat-anti-mouse antibody 
coupled with alkaline phosphatase and a pan-β-actin 
(Dako, Hamburg, Germany) or α-tubulin (mouse mono-
clonal, DM1A; Sigma-Aldrich, St. Gallen, Switzerland) 
antibody as gel loading control. The detection of primary 
cilia was performed with anti-acetylated α-tubulin anti-
body [6-11B-1] (ab24610), which was purchased from 
Abcam.

Antibody immunoreactions were also performed 
in the absence of primary antibody, as a negative con-
trol, and images show representatives of three individual 
experiments.

Light microscopic immunohistochemistry

Immunoperoxidase staining was performed on paraffin-
embedded tissue sections as follows. The tissues were 
deparaffinised, rehydrated, and rinsed for 10 min in PBS. 
Endogenous peroxidase was blocked by a 45-min treat-
ment with a solution of methanol and 3  % H2O2 in the 
dark. Each of the reactions was followed by rinsing for 
10  min in PBS. The sections were pre-treated for 5  min 
with 10  μg/ml protease XXIV (P8038; Sigma, Deisen-
hofen, Germany) and chondroitinase (C3667-5UN; 
Sigma). The antibodies were applied at a dilution of 1:100 
in PBS for 12  h at room temperature. A standard perox-
idase–anti-peroxidase procedure followed with the appli-
cation of a peroxidase-coupled goat-anti-rabbit antibody 
(Dako;) at a dilution of 1:150 in PBS for 1 h at room tem-
perature. The color reaction was carried out with a DAB 
(diaminobenzidine) substrate [25].

Electron microscopy

For ultrastructural investigations, 1-mm3 cartilage samples 
from the condyle were resected. All tissue samples were 
then fixed and embedded in Epon® (Serva, Heidelberg, 
Germany). Subsequently, semi-thin (1  μm) and ultra-thin 
sections (80 nm) were cut. The ultra-thin sections were col-
lected on Formvar®-coated grids and stained as described 
elsewhere [26].

Cell isolation and culture

Standard explant cultures were established from 1-mm3 
tissue specimens taken from the TMJ cartilage tissue of 
9-week-old DDR-1 KO mice and their WT littermates. 
Care was taken to ensure that no bone tissue was included. 
After 10 days, outgrown chondrocytes were harvested, and 
103 cells/cm2 were transferred to cell culture in Dulbecco’s 
modified Eagle’s medium (DMEM) supplemented with 
10 % fetal bovine serum (Invitrogen; Lot. nr. 41F2061K), 
gentamycin (50  μg/ml) and l-glutamine (10  mM). Fur-
thermore, we cultured TMJ chondrocytes for 3  weeks 
in alginate beads, which provides the three-dimensional 
environment that is important for the phenotypic stability 
of the chondrocytes [27]. To test the influence of the ECM 
components, 40,000 cells at P2 were mixed with a 1.2 % 
alginate solution supplemented with either 125  ng/ml of 
laminin-1 (Dianova) or nidogen-2 (a kind gift from the late 
R. Timpl) or with 5 ng/μl of BMP-2 and BMP-4 and grown 
for 3 weeks in 3D in 6-well plates.

Immunofluorescence microscopy

The primary cells were transferred at P1 in 96-well plates 
for 16 h, they were fixed with 70 % ethanol and then incu-
bated with 100 μl of primary antibody diluted 1:50 in PBS 
for 1  h at RT in the dark. When necessary, this step was 
followed by incubation with a secondary fluorescence-
conjugated antibody (diluted 1:500) for 20 min at RT. Two 
washes with PBS were performed, followed by DAPI stain-
ing. The cells were examined under a fluorescence micro-
scope, and the images were captured with a Nikon D90 
camera (Düsseldorf, Germany).

Confocal microscopy

Cells were imaged with a FluoView1000 (Olympus) con-
focal microscope using a ×60 NA1.35 UPLS-APO objec-
tive. The excitation/emission wavelengths for DAPI and 
TRITC were 405/425–520  nm and 561  nm/570–670  nm, 
respectively. Images were acquired at a resolution of 
1,024 × 1,024 with the confocal pinhole set at airy disk 1. 
Two sequential frames were acquired and averaged.
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flask. The culture medium was replaced the next day to 
remove dead cells. The cells were harvested after 24 h after 
medium replacement.

Overexpression

Runx-2 was cloned into the pPM-C-His vector (ABM, 
Richmond, Canada) using standard procedures. The vector 
with the insert and the vector without the insert were trans-
fected (PolyFect; Qiagen, Hilden, Germany) into the cells 
as described above.

RNA extraction and complementary DNA (cDNA) 
synthesis

Cells in P1 were directly lysed in RLT buffer, and the RNA 
was isolated according to the manufacturer’s instructions 
(RNeasy Mini Kit; Qiagen, Chatsworth, CA, USA). RNA 
was reverse-transcribed into cDNA with the help of the 
Qiagen QuantiTect Reverse Transcription Kit, as per the 
manufacturer’s instructions.

Microarray analysis

Quality control and the quantification of total RNA samples 
was performed prior to the microarray experiments (Agi-
lent 2100 Bioanalyzer; Agilent Technologies, Palo Alto, 
CA, USA). We used equal amounts of total RNA from the 
condyles of each of three pairs of DDR-1 KO mice and two 
samples of their WT littermates. The microarray analy-
sis was conducted at the university transcriptome facility 
using an Affymetrix whole-mouse genome chip (Affym-
etrix, Santa Clara, CA, USA). The microarray experiments 
were performed according to the manufacturer’s protocols. 
A complete list of the genes present on the chip can be 
found at http://www.affymetrix.com/analysis/index.affx. 
The data were analyzed using Affymetrix Microarray Suite 
5.0. Gene expression was evaluated using the Affymetrix 
Data Mining Tool 3.0. The entire dataset is published in a 
MIAME-compliant format in the GEO database with the 
accession number GSE35297 (http://www.ncbi.nlm.nih.
gov/geo/).

Quantitative rt RT‑PCR

PCR was performed in a final volume of 10 μl containing 
5  μl Platinum SYBR Green qPCR SuperMixTM (Invit-
rogen), 20  pmol of each primer and 1  ng of cDNA were 
added to a final volume of 10. The primers were designed 
using Primer3® software (http://frodo.wi.mit.edu/cgibin/
primer3/primer3). The primer sequences used are shown 
below:

FACS analysis

The cultured cells were suspended in PBS with the fluo-
rescence-coupled antibodies listed above (1  μl added to 
100 μl containing 106 cells) at RT for 1 h in the dark. Two 
subsequent washing steps were performed (with centrifuga-
tion for 10 min at 800 rpm). The cells were analyzed on a 
FACScan instrument (Becton–Dickinson, Mountain View, 
CA, USA) as described in detail elsewhere [28]. At least 
10,000 living cells were analyzed. The data were evalu-
ated with the aid of WinMDI v.2.9. For cell selection, we 
applied FACS Vantage SE (Becton–Dickinson). We per-
formed analyses using the Cell Quest Pro 2000 software 
package.

Immunoblotting

Proteins were extracted using 5  M guanidine hydrochlo-
ride and protease inhibitors, precipitated in ethanol, washed 
in PBS, precipitated again, and finally dissolved in PBS 
containing 0.4 % SDS. SDS–PAGE was performed with a 
6 % acrylamide stacking gel and 12 % separation gel. Gel 
loading was evaluated using α-actin staining. The proteins 
were blotted onto nitrocellulose membranes, which were 
subsequently washed, and blocked, and immunoreactions 
were performed by exposure to antibodies diluted 1:500 in 
PBS. The secondary goat-anti-mouse antibody was diluted 
1:1,000 and incubated with the membrane for 1  h at RT. 
Visualization was achieved by applying the ECL Prime 
Detection Regent (GE Healthcare, Muenchen, Germany), 
and certain results were quantified using the Image J® 
program.

siRNA transfections

For silencing experiments, we used the iLenti-GFP siRNA 
expression vector (Biocat, Heidelberg, Germany) in which 
the target sequence of the runx-2 siRNA (CAGCACGCT-
ATTAAATCCAAATT) is under the control of the H1 and 
U6 promoters. For transfection confirmation and efficiency, 
the reporter gene GFP was placed under the CMV pro-
moter. All control experiments were performed with the 
vector without the runx-2 silencing insert. Nucleofection of 
TMJ chondrocytes was performed according to the manu-
facturer’s instructions (Lonza, Basel, Switzerland). Briefly, 
the TMJ chondrocytes were trypsinized and counted. 
The cells were centrifuged at 1,200  rpm for 10  min, and 
5 × 105 cells were resuspended in 100 μl of the nucleofec-
tion reagent containing 2 μg of plasmid DNA. To increase 
the transfection efficiency, the U-23 program was selected. 
Immediately after nucleofection, the TMJ chondrocytes 
were plated in warm culture medium in a T25 culture 
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Gene ID Primer forward 
primer

Primer reverse 
primer

Accession no.

runx-2 cagaccagcagcac 
tccata

cagcgtcaac 
accatcattc

NM_001271631.1

acan aggactgaaatcag 
cggaga

agggacatg 
gttgtttctgc

NM_007424.2

sox-9 tcagatgcagtgag 
gagcac

ccagccacagc 
agtgagtaa

NM_011448.4

col1a1 tgactggaagagcg 
gagagt

gttcgggctgat 
gtaccagt

NM_007742.3

IBSP gcagtagtgactc 
atccgagaa

gcctcagagtct 
tcatcttcattc

NM_004967.3

SPP1 agacctgacatc 
cagtaccctg

gtgggtttcagc 
actctggt

NM_001040058.1

 
After an initial activation step lasting 3  min at 95  °C, 

the reaction were performed in 45 cycles of denaturation 
for 20 s at 95 °C, annealing for 20 s at the primer-specific 
annealing temperatures and elongation for 20  s at 72  °C. 
Data acquisition was carried out after each elongation step, 
and amplification was followed melting curve followed by 
a melting curve in 0.1 °C steps from 50 to 95 °C. The reac-
tion were performed in a Mastercycler Realplex2 S® instru-
ment (Eppendorf, Hamburg, Germany). Normalization was 
performed against the mRNA of the appropriate control for 
each experiment. HPRT-1, MAPK-1, and β2-microglobulin 
were chosen as housekeeping genes, after we demonstrated 
that they were expressed at a constant level in individual 
experimental settings. The PCR products were sequenced 
(Seqlab, Goettingen, Germany) to confirm their identity. 
The relative ratios were calculated according to an algo-
rithm published by Pfaffl [29]. Therefore, it was necessary 
to repeat every PCR-run three times in triplicate, including 
the housekeeping genes, and a control cDNA for the KO 
and WT chondrocytes. The intra-test and inter-test variation 
were both <1 %. The efficiency of each primer was tested 
with a range of the cDNA dilutions from 1:1 to 1:10,000 
and this value was included in the calculation.

PCR array

The transduction pathway array [SAbio Mouse Signal 
Transduction Pathway Finder PCR Array (PAMM-014; 
SAbiosciences, Hilden, Germany)] was used according to 
the manufacturer’s instructions, and the PCR results were 
calculated and structured using the manufacturer’s online 
software.

Statistical analyses

We reported representative data from at least three inde-
pendent experiments, and we statistically tested our results 
using separate specimens. The analyses were performed 

using SPSS software 13.0 (SPSS, Chicago, IL, USA). 
The results are reported as the mean values and standard 
deviations (SD). After testing for normal distribution and 
variance homogeneity, we performed a one-way analysis 
of variance (ANOVA) and a post hoc pairwise comparison 
of mean values. The Pearson correlation coefficients were 
calculated to examine the relationships between the param-
eters. A p value <0.05 was considered significant.

Results

Structural and genomic aspects of OA of the TMJ  
in DDR‑1 KO mice in vivo

Disordered cell matrix interactions play a central role in 
the development of OA [9]. Therefore, it is reasonable to 
hypothesize that collagen receptors, such as integrins [10] 
and DDRs, are involved in OA pathogenesis. Because 
severe OA is associated with bone structure alterations 
[30], we applied microcomputed tomography (μCT) as a 
straightforward initial approach to examine DDR-1 KO 
TMJ. Three-dimensional reconstruction of the mandibular 
condyles of these mice showed a rugged subchondral bone 
surface and a flattening of the mandibular condyle (Fig. 1a, 
left, b), structural changes that are typical of TMD [2]. In 
contrast, the subchondral bone surface of WT mice was 
smooth and rounded (Fig.  1a, right, c), as expected for a 
normal joint. Furthermore, the DDR-1 KO mice exhibited 
a greater relative bone mineral density of the subchondral 
bone (Fig.  1d). Ultrastructurally, the joint surface of the 
mandibular condyle of 9-week-old DDR-1 KO mice dem-
onstrated an altered collagen fiber network with loosely 
packed and randomly arranged collagen fibers in the car-
tilage (Fig. 1e, f). In comparison, the collagen fiber assem-
bly in WT mice was parallel to the joint surface (Fig. 1g), 
and the arrangement appeared more compact (Fig.  1h). 
To investigate the overall changes in gene expression, we 
performed a microarray analysis of cartilage tissue sam-
ples from the mandibles of DDR-1-deficient and WT mice 
(Fig. 1i). Major changes in the DDR-1 KO mice were asso-
ciated with ECM components. For example, the DDR-1 
KO mice exhibited a lower expression of collagen type II, 
collagen type III, collagen type IX, aggrecan, and sox-9, 
while collagen type X, nidogen-2, and runx-2 expression 
levels were increased; this expression pattern is typical of 
OA. At the histopathological level, toluidine blue staining 
(Fig. 1j vs. l) indicated that, by 9 weeks of age, DDR-1 KO 
mice showed a decreased proteoglycan content at the joint 
surface of the mandibular condyle compared with their 
WT littermates. Moreover, loss of the superficial cartilage 
layer and deep surface fissures were observed in DDR-1 
KO mice (Fig. 1k vs. m), but not in WT mice. These OA 
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Fig. 1   Structural and genomic aspects of OA of the TMJ in DDR-1 
KO mice in vivo. a The micro-CT 3D reconstructions of the condylus 
mandibulae of the DDR-1 KO mice (KO, always on the left side) and 
the WT (WT, always on the right side). b, c Outline of the subchon-
dral bone surface. The KO mice (b) exhibited a rough surface and an 
abnormal bone structure compared to the WT (c). d The measure-
ments of the condyle bone mineral density revealed that the KO mice 
had a higher bone density. e–h Ultrastructural analysis: e, f the col-
lagen fiber arrangement was altered in the superficial layer of DDR-1 
KO mice compared to the parallel fiber alignment observed in the WT 

mice (g, h). i A short list of the fold changes of OA-relevant genes 
found in the microarray analysis. The complete lists can be found at 
GEO, GSE35297. j–m Toluidine blue histology of the condyles: j, 
k the DDR-1 KO condyle exhibits well-known signs of OA such as 
reduced staining of the superficial zone, cluster formation and surface 
fissures; l, m normal WT condyles. Three pairs of DDR-1 KO mice 
condyles and samples from two of their WT littermates were used for 
microarray analysis. (n = 6, including 3 KO mice and 3 WT mice, for 
electron microscopy; n = 5, including 3 KO mice and 2 WT mice for 
the microarray)
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features were also present in 24-week-old mice, as shown 
here for toluidine blue staining (Fig. 3i–l).

Molecular changes in the ECM of the TMJ during OA  
in vivo

Immunohistochemical analyses of the TMJs of 9-week-old 
DDR-1 KO mice revealed surface fissures, increased collagen 
type I, increased collagen fiber fibrillation, and an increased 
number of cells at the articular surface of the mandibular con-
dyle (Fig. 2a vs. b). This area also exhibited collagen type I 
staining (Fig. 2c vs. d). Surface fissures also became visible in 
HE staining of 24-week-old KO mice (Fig. 3a, c) compared 
with the corresponding WT mice (Fig. 3b, d). These features 
have been well described and are specific for OA progression 
[30]. Collagen type I staining was also detected in 28-week-
old KO mice (Fig. 3e vs. f). Furthermore, these KO mice also 
exhibit the typically destroyed joint surface (Fig.  3g vs. h). 
The expression of collagen type II, the collagen typical of the 
hyaline cartilage, was decreased in the DDR-1-deficient mice 
compared with WT controls (Fig.  2e vs. f). This was espe-
cially apparent in the superficial layer of the articular cartilage 
of the TMJ of DDR-1 KO mice, from which collagen type II 
was absent (Fig. 2g vs. h). The basement membrane proteins 
[31], most notably the nidogens, are involved as players in 
the pericellular matrix during the pathogenesis of human OA 
[6], and an increased amount of nidogen-2 is found primar-
ily around elongated chondrocytes from the late stages of OA 
[8]. There were no differences in the localization of nidogen-1 
in DDR-1 KO mice (Fig. 2i, k) compared with the WT mice 
(Fig. 2j, l). A pericellular increase in nidogen-2 staining in the 
middle zone was observed in the TMJ of DDR-1-deficient 
mice (Fig. 2m vs. n); however, less nidogen-2 staining was 
observed in the superficial and deeper layers (Fig. 2o vs. p). 
The same pattern was seen for collagen type IV in 24-week-
old mice (Fig. 3m–p). On the basis of these histopathologi-
cal findings of OA in vivo, we isolated chondrocytes from the 
TMJs of DDR-1 KO mice for further in vitro studies.

Cell isolation and characterization

Mouse cartilage was separated from the subchondral bone 
under a stereomicroscope (Fig.  4a, b). After 10  days in 
culture, the cells from the articular cartilage isolated from 
DDR-1 KO mice migrated out of the tissue specimens 
(Fig.  4c). We found that DDR-1 KO TMJ chondrocytes 
exhibited low levels of sox-9 (a chondrogenic transcription 
factor; Fig. 4d) and aggrecan (Fig. 4g) mRNA but high lev-
els of runx-2, an osteogenic transcription factor (Fig.  4e), 
and collagen type I (Fig.  4f) mRNA compared with cells 
from the WT mice. DDR-1 KO and WT TMJ chondro-
cytes were positive for runx-2 (Fig. 4h, k), collagen type I 
(Fig. 4i, l), and aggrecan (Fig. 4j, m) proteins. Chondrocytes 

from DDR-1 KO mice seemed to express higher levels of 
runx-2 (Fig.  4h) than WT chondrocytes (Fig.  4k), consist-
ent with the results of our real-time RT-PCR experiments. 
After passage 6, the phenotype of the TMJ chondrocytes 
was altered. This dedifferentiation of chondrocytes in cul-
ture is a well-known phenomenon and is usually associated 
with higher passage numbers for cells in culture [32]. We 
noticed that DDR-1-deficient chondrocytes changed more 
obviously than WT cells and had smaller cell bodies and 
numerous cell protrusions compared with WT controls (data 
not shown). Therefore, we re-evaluated the protein expres-
sion levels of the DDR-1-deficient cells at passage 6. We 
found that both DDR-1 null cells and their WT counterparts 
were positive for the typical components of cartilage ECM, 
and both exhibited a chondrocytic nature (Fig. 4n). Even at 
passage 6, the DDR-1 KO cells and their WT counterparts 
maintained their differences in runx-2 expression (Fig. 4n, 
second to last pair of bars). Therefore, up to passage 6, the 
isolated chondrocytes of the TMJ of the DDR-1 KO and 
WT cells are appropriate for in vitro investigations of TMD.

Differences of protein patterns of KO and WT cells

To elucidate ECM and cellular protein expression, we 
performed western blots at passage 2. In the absence of 
DDR-1 (Fig.  5a), the expression levels of two key play-
ers in OA, DDR-2 (Fig. 5b) and MMP-13 (Fig. 5c), were 
increased. DDR-1 KO cells produced 1.8× more DDR-2 
and 1.6× more MMP-13 than WT cells. Notably, the two 
described isoforms of DDR-2 [33] were both present in 
WT cells, whereas the KO chondrocytes exhibited just one 
stronger band with a lower molecular weight. However, 
DDR-1 KO cells produced 5.1× more collagen type I than 
WT cells (Fig. 5d). Sox-9-, runx-2-, and COMP (Fig. 5e–g) 
were present in nearly equal amounts in DDR-1 KO and 
WT chondrocytes. The β-actin staining indicated the equal 
loading of the gels (Fig. 5h). Coomassie blue staining was 
performed to evaluate the overall protein bands (Fig. 5i).

The influence of the three‑dimensional alginate matrix, 
bone morphogenetic proteins (BMPs), laminin‑1, 
and nidogen‑2 and the knockdown of runx‑2 on TMJ 
chondrocytes

Under 3D conditions [27], DDR-1 KO cells still exhibited 
high mRNA levels of runx-2 and collagen type I (Fig. 6a, 
b), and lower amounts of sox-9 and aggrecan (Fig. 6c, d). 
This observation underscores their osteoarthritic nature. 
However, we additionally stimulated the cells with the 
chondrogenic factor BMP-6 [34] and the basement mem-
brane components laminin-1 and nidogen-2 [8], which are 
present in the normal pericellular chondrocyte matrix [31]. 
Laminin-1 and nidogen-2 enhanced the chondrogenesis of 
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Fig. 2   The molecular changes in the ECM of the TMJ during OA 
in vivo of 9-week-old mice: Immunohistochemistry was performed 
for collagen type I (a–d), collagen type II (e–h), nidogen-1 (i–l) and 
nidogen-2 (m–p). a, c DDR-1 KO TMJ stained for collagen type I is 
shown. Note the fibrocartilaginous tissue as a sign of tissue regenera-
tion in (c). b, d The WT TMJ exhibited the well-known collagen type 
I staining. e, g The KO TMJ showed less collagen type II staining 
than the WT (f, h). i Nidogen-1 is present in both the KO and the WT 

mice (j). However, there were no differences between the DDR-1 KO 
mice (k) and the corresponding WT mice (l). m Nidogen-2 staining 
was stronger in the TMJs of DDR-1-deficient mice than in the TMJs 
of WT mice (n). o Note the intense pericellular staining in the deeper 
zones of the DDR-1 KO TMJ cartilage. Less nidogen-2 was present 
in the pericellular matrix of the WT cartilage (p). The numbers of the 
animals evaluated at each time point are shown in Tables 1 and 2
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Fig. 3   The histopathology and immunohistology of 24- and 28-week-
old mice. a–d HE staining of 24-week-old mice. c Note the surface 
fissures in the KO compared with the intact joint surface of the WT 
mice. d Immunohistochemistry results for collagen type I of stain-
ing in 28-week-old mice. There was an increase of collagen type I 
in the KO (e) versus the WT mice (f). The joint surface of the KO is 
destroyed (g), while the WT joint was smooth and rounded shaped 
(h). i–l Toluidine blue histology of 24-weeks old mice: the DDR-1 

KO condyle exhibited well-known signs of OA, e.g., reduced staining 
of the superficial zone (i), cluster formation and surface fissure (k); 
normal WT condyles were observed in (j, l). m–p Immunohistochem-
istry results of collagen type IV staining in 28-week-old KO mice: 
intense staining for collagen type IV was observed at the joint surface 
(m), especially in the pericellular matrix (o); nNormal WT staining 
was observed in (n, p). The numbers of the animals evaluated at each 
time point are shown in Tables 1 and 2
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DDR-1-deficient TMJ chondrocytes, insignificantly increas-
ing mRNA levels of sox-9 (Fig.  6e) and decreasing 
runx-2 levels (Fig.  6f). Treatment with BMP-6 (Fig.  6g) 
or laminin-1 (Fig. 6h) reduced collagen type I expression; 
these expression patterns are all signs of enhanced chondro-
genesis. It is known that runx-2 and sox-9 acts as antago-
nists in the CPCs isolated from late-stage human knee OA 

[12]. Therefore, we tested whether the knockdown of runx-2 
would influence the chondrogenic potential of DDR-1 KO 
chondrocytes. The transient knockdown of runx-2 mRNA 
resulted in the complete loss of the runx-2 protein at 24 h 
(Fig. 6i). The same expression pattern was observed for col-
lagen type I (Fig. 6j). The chondrogenic potential of DDR-
1-deficient chondrocytes was improved with the knockdown 

Fig. 4   Cell isolation and characterization. a The dissected mandible 
of a 9-week-old WT mouse is shown. Care was taken to sample only 
the translucent cartilage tissue, as shown in (b). c The cells growing 
out of a tissue sample after 10 days are shown. d–n These cells were 
identified as chondrocytes. However, DDR-1 KO cells exhibit reduced 
mRNA expression levels of sox-9 (d) and aggrecan (g) compared with 
WT cells. In contrast, the KO cells showed an increased expression 
of runx-2 (e) and collagen type I (f). A similar pattern was observed 
for the immunocytology; more pronounced staining for runx-2 was 
present in the DDR-1 KO (h) than in WT cells (k). Collagen type I 

(i, l), and aggrecan (j, m) were detected in both KO and WT cells. n 
Intracellular FACS analysis of cells in passage 6 identified aggrecan, 
collagen type II, COMP, and sox-9, as well as the osteoarthritic mark-
ers, runx-2 and collagen type I, in both cell types. A higher percentage 
of DDR-1 KO chondrocytes expressed runx-2 (second-to-last bars). 
*Significant differences (p ≤ 0.05); data are mean values with SD of 
three individual experiments (n =  10, including 4 KO mice, 4 WT 
mice, and 2 controls, for mRNA measurements; n =  6, including 3 
KO mice and 3 WT mice, for immunocytochemistry and FACS-anal-
ysis)
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of runx-2, consistent with the 1.8× higher amounts of 
sox-9 (Fig.  6k) and 3.4× greater collagen type II expres-
sion (Fig. 6l). Tubulin staining was assessed to confirm the 
equal loading of the gels (Fig. 6m). The key role of runx-2 
as a transcription factor of the osteoblastic lineage, was 
demonstrated by its localization in the nucleus (Supplemen-
tal Fig. 1a–c) and the overexpression of runx-2 in the cells 
(Supplemental Fig.  1d, e). The overexpression resulted in 
the enhanced gene expression of the downstream mediators 
Col1A1, SPP1 and IBSP (Supplemental Fig. 1f–i).

Pathways involved in OA of the TMJ and the downstream 
signaling of DDRs

We detected an upregulation of hedgehog interacting pro-
tein (HHIP), which is known to be involved in OA patho-
genesis [35]. We also found that vascular endothelial 
growth factor A (VEGFA), which is associated with the 

Wnt pathway in OA [36], was increased in DDR-1 KO 
chondrocytes (Fig.  7a). The loss of DDR-1, with its con-
comitant increase in DDR-2, initiates an upregulation of 
MMP-13 (Fig. 4c), presumably resulting in the degradation 
of collagens, mainly type II [17], in TMJ OA. Pit is possi-
ble that downstream signaling involves players of the IHH 
and Wnt pathways (Fig. 7a, b).

Investigation of the primary cilia in TMJ chondrocytes

It has been established that ECM proteins, mainly collagens, 
are responsible for the transduction of forces within the car-
tilage tissue; this is essential for skeletal growth [37]. The 
main cellular mediator of mechanosensing in chondrocytes 
is the primary cilium [38]. The microarray data showed that 
many of the regulated genes with altered expression in the 
DDR-1 KO were associated with the primary cilia (Supple-
mental Fig. 2a). Surprisingly, we observed fewer cells with 

Fig. 5   Differences in protein patterns in KO and WT cells. a The 
western blot for DDR-1 in the DDR-1 KO confirmed its absence; 
however, DDR-2 (b), MMP-13 (c) and collagen type I (d) were 
upregulated in the KO chondrocytes. Sox-9 (e), runx-2 (f) and COMP 
(g) were present in both the KO and WT cells. h β-actin staining con-
firmed the equal loading of the gels. i Coomassie blue staining was 

performed to evaluate the overall protein patterns. Protein isolation 
was performed using cells at passage 2 of the cells. Data are repre-
sentatives of three individual experiments, or quantified as stated in 
“Results” (n = 6, including 3 KO mice and 3 WT mice, for western 
blots)

47



B. Schminke et al.

1 3

primary cilia among the osteoarthritic DDR-1 KO chon-
drocytes (Supplemental Fig.  2b, upper panel) than among 
the WT chondrocytes (Supplemental Fig. 2b, lower panel); 
however, the differences in numbers did not reach statistical 
significance (Supplemental Fig. 2c).

Discussion

The present study introduces the DDR-1 null mouse as a new 
model for OA of the TMJ. These mice develop OA more 
frequently and at a younger age than other mouse models 

Fig. 6   The influence of three-dimensional alginate matrix, BMPs, 
laminin-1, nidogen-2 and the knockdown of runx-2 on TMJ chon-
drocytes: The expression patterns of runx-2 (a), collagen type I (b), 
sox-9 (c) and aggrecan (d) were similar to the results obtained in 
2D-cultured cells (Fig. 3d–g). e Laminin-1 stimulation resulted in an 
upregulation of sox-9 in DDR-1 KO chondrocytes, while nidogen-2 
down-regulates runx-2 (f). Therefore, the two basement membrane 
components promote the chondrogenesis of these cells. g BMP-6 
reduced the relative mRNA levels of collagen type I in DDR-1 KO 
chondrocytes, as did laminin-1 (h), which is also a marker of chon-
drogenic differentiation. i Runx-2 protein expression was not detect-

able 24  h (lane 2) after the knockdown performed by the transient 
transfection with the siRNA vector. Lane 1 always represents the con-
trol. j Collagen type I was not detectable 24 h (lane 2) after runx-2 
knockdown, as expected; k the amount of sox-9 was elevated com-
pared with the control cells (lane 1). l Collagen type II was detect-
able (lane 2), after runx-2 knockdown, but not in the control cells, in 
which collagen type II was not detectable (lane 1). m Tubulin staining 
confirmed the equal loading of the gels. k–m are composite figures. 
*Significant differences (p  ≤  0.05); data are mean values with SD 
from three individual experiments. (n = 10, including 4 KO mice, 4 
WT mice and 2 controls, for mRNA measurements)
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currently used to study TMD, including the ICR mouse [14], 
the Del 1 mouse [15], and the Cho mouse [16]. The loss of 
DDR-1 expression has several significant consequences that 
influence OA pathogenesis, including increased DDR-2, 
MMP-13, collagen type I, and runx-2 expression.

The pathomechanism of the DDR‑1 KO mice

We applied several approaches to characterize the articular 
chondrocytes from DDR-1 KO TMJs. Using a combination 

of real-time RT-PCR, immunocytochemistry, and FACS 
analysis, we found that DDR1-deficient chondrocytes 
exhibited characteristics of osteoarthritis. The observed dif-
ferences between the mRNA and protein levels of certain 
factors (Fig.  4) are not completely understood. There are 
a wide variety of post-transcriptional regulatory processes; 
for example, it is possible that micro RNAs [39] or cata-
bolic enzymes such as RNase [40] play an important role 
in the cartilage biology of the TMJ cartilage. The KO chon-
drocytes produced high amounts of collagen type I and 

Fig. 7   Possible players 
downstream of the DDRs in 
OA of the TMJ. a A PCR array 
identified the regulated signal-
ing pathway molecules, with 
the IHH pathway prominently 
involved in SSH and BMP-2 
interactions. VEGFA upregula-
tion was observed. b Surface 
fissures (a) and proteoglycan 
degradation (b) of the TMJ of 
the DDR-1 KO mice revealed 
typical OA characteristics. The 
pathomechanism of OA in the 
TMJ of DDR-1 KO mice results 
in an upregulation of runx-2, 
collagen type I and DDR-2 
(1). This leads to an increased 
activation of MMP-13 (2) to 
enhance matrix degradation, 
especially of collagens (3). 
*Also downregulated: Naip1, 
Brca1, Ccl2, Ccl20, Cd5, Cdh1, 
Csf2, Cxcl1, Cxcl9, Cyp19a1, 
En1, Fasl, Fgf4, Greb1, Hoxa1, 
Icam1, Il1a, Il2, Il2ra, Lef1, 
Lep, Lta, Mmp10, Mmp7, 
Nos2, Pparg, Rbp1, Tnf, Wnt1, 
Wnt2, MGDC, and Selp. Data 
are representative of three 
individual experiments. (n = 6, 
including 3 KO mice and 3 WT 
mice, for PCR array)
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runx-2 as well as low levels of collagen type II and sox-
9. These changes in gene expression promoted the devel-
opment of an osteoarthritic phenotype [41]. Most signifi-
cantly, DDR-1 KO chondrocytes displayed a compensatory 
increase in the expression of a DDR-2 isoform, and this 
receptor is linked to elevated MMP-13 (Fig. 5c) expression 
[42, 43] and articular cartilage degeneration [44]. Using 
signaling arrays, we determined that DDR-1-null chondro-
cytes exhibited increased expression of IHH signaling path-
way components, as measured by increases in HHIP [35], 
a protein reported to be overexpressed in human OA and in 
cartilage from other OA mouse models. Hydrostatic com-
pression of the chondrocytic primary cilia, which is essen-
tial for cartilage mechanotransduction [45], upregulates 
IHH gene expression [46]. It is also known that mechanical 
stimulation upregulates IHH expression in chondrocytes 
and is associated with OA [47]. We found a slight tendency 
towards a reduction of the primary cilia in the osteoarthritic 
TMJ chondrocytes. We, therefore, only speculate that pri-
mary cilia in the DDR-1-deficient chondrocytes might be 
involved in the pathogenesis.

Why does the lack of DDR‑1 result in OA of the TMJ?

Although DDR-1-deficient mice develop OA of the TMJ 
by 9 weeks of age, we did not detect any signs of OA in 
the knee joints of mice at this age. In fact, few DDR-1 KO 
mice developed OA of the large joints. One possible expla-
nation for this finding is the structural difference between 
the two joints. Unlike the articular cartilage of the knee, the 
cartilage of the mandibular condyle is considered a second-
ary cartilage [48, 49] and has a different embryonic origin. 
In addition, the molecular composition of the TMJ differs 
from that of the larger synovial joints in that it contains 
large amounts of collagen type I [50], especially in the mar-
ginal areas of the joint where the joint capsule and asso-
ciated ligaments are found. Furthermore, in contrast to the 
articular cartilage of other joints, the superficial layer of the 
mandibular condylar cartilage does not normally express 
collagen type II, although the functional significance of this 
difference is unknown [1]. Despite these structural differ-
ences, the absence of DDR-1 further reduced the amount 
of collagen type II and increased the amount of MMP-13 
within the TMJ, thereby promoting the early development 
of OA (Fig. 7b).

DDR‑1‑deficient chondrocytes and cartilage regeneration

Interestingly, we observed areas of regeneration on the artic-
ular surface of the degenerating jaws of DDR-1 KO mice. 
These areas displayed intense staining for collagen type I, 
similar to that observed in OA in the human knee joint [51]. 
In the pericellular space, especially that of cell clusters, 

an upregulation of nidogen-2 and collagen type IV was 
observed. This is also an indication of regenerative efforts 
within the diseased cartilage tissue. TMJ chondrocytes, sim-
ilar to their counterparts in the knee [12], are regulated by 
runx-2 and sox-9; here, we were able to enhance the chon-
drogenic potential of the DDR-1-deficient chondrocytes 
via runx-2 knockdown. The runx-2 knockdown resulted in 
an increased expression of sox-9, which then stimulates the 
enhanced expression of collagen type II and reduced lev-
els of collagen type I. Similar effects were also shown for 
aggrecan [52] and COMP [53]. Therefore, the chondrogenic 
potential is enhanced as DDR-1-deficient chondrocytes lose 
their osteoarthritic character via the runx-2 knockdown. 
Another target for the regeneration of TMJ cartilage is the 
DDR-2 receptor. It is well known that DDR-2 is activated 
via a direct interaction with collagen type II, which does 
not appear in the pericellular matrix of the chondrocyte 
in healthy cartilage, but it does in OA. Therefore, DDR-2 
is activated during OA. For example, a mutation in DDR-
2, that disrupts its binding to collagen type II, reduces the 
collagen-induced expression of MMP-13 [54].

Taken together, our findings indicate that the DDR-1-defi-
cient mouse is a novel animal model for the in vivo study of 
human TMD. Furthermore, the isolated TMJ chondrocytes 
can be used for the in vitro analysis of pathomechanisms of 
the TMJ. We show that TMJ cartilage regeneration is con-
trolled by the transcription factors sox-9 and runx-2 and is 
influenced by signals from the pericellular matrix, includ-
ing BMPs that enhance chondrogenesis. These measures 
result in a gene expression signature similar to that of normal 
articular cartilage, suggesting that the DDR-1 KO mouse can 
serve as a novel model for TMD, such as OA of the TMJ. 
This model will help to develop and test new treatment 
options, particularly those involving tissue regeneration.
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Highlights:

• Progenitor cells are found the inner avascular part of human osteoarthritic menisci.

• These cells (MPCs) are clonogenic, migratory and multipotent.

• MPCs are governed via the canonical TGFβ-pathway.

•TGFβ3 via smad2 reduces runx2 to enhance the chondrogenic potential of MPCs.
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Summary:

Degeneration of the knee joint during osteoarthritis often begins with meniscal lesions. 

Meniscectomy, previously performed extensively after meniscal injury, is now obsolete 

because of the inevitable osteoarthritis that occurs following this procedure. Clinically, 

meniscus self-renewal is well documented as long as the outer, vascularized meniscal ring 

remains intact. In contrast, regeneration of the inner, avascular meniscus does not occur. 

Here, we show that cartilage tissue harvested from the avascular inner human meniscus 

during the late stages of osteoarthritis harbors a unique progenitor cell population. These 

meniscus progenitor cells (MPC) are clonogenic, multipotent and exhibit migratory activity. We 

also determined that MPCs are likely to be controlled by canonical TGFβ signaling that leads 

to an increase in sox9 and a decrease in runx2, thereby enhancing the chondrogenic 

potential of MPC. Therefore, our work is relevant for the development of novel cell biological, 

regenerative therapies for meniscus repair.
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Introduction

The knee is particularly prone to meniscal lesions that lead to osteoarthritis (OA) (Englund et 

al., 2012), and a high interdependency of OA and meniscus lesions has been described 

(Brophy et al., 2012). Meniscal injuries are the most common knee injury and account for 

more than 50% of the 1.5 million knee arthroscopies performed annually (Englund et al., 

2008; Lohmander et al., 2007). The prevalence of meniscal tears increases with age (Loeser, 

2013) and may be as high as 56% in men aged 70-90 years old (Englund et al., 2008). In the 

elderly, OA is the most common musculoskeletal disease (Reginster, 2002) and will be the 

fourth-leading cause of disability by the year 2020 (Woolf and Pfleger, 2003). OA often leads 

to painful loss of joint function, and current therapeutic interventions serve primarily as short-

term symptomatic relief. Although allografts or bio-engineered meniscal substitutes (Haddad 

et al., 2013; Steinert et al., 2007) fill the space void created following removal of the 

meniscus, clinical, radiological and MRI evaluations show no protection against the 

development of OA (Hommen et al., 2007). The specific reasons for this lack of effect are 

unknown; however, a failure to successfully remodel the allograft into living tissue is one likely 

factor (Steadman and Rodkey, 2005). Almost all patients eventually require joint replacement 

(Lohmander and Roos, 2007).

The meniscus is a fibrocartilage (Benjamin and Evans, 1990) comprising an outer, “red 

vascularized” part and an inner “white, unvascularized” part harboring round 

fibrochondrocytes (Hellio Le Graverand et al., 2001). As in hyaline cartilage tissue, the cells of 

the meniscus are also embedded in extracellular matrix composed of a framework of 

collagens together with proteoglycans and glycoproteins. The inner part exhibits a superficial 

zone with flattened, elongated fibroblast-like cells that predominantly synthesize collagen type 

I (McDevitt and Webber, 1990), whereas the round fibrochondrocytes from the inner part also 
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produce collagen type II (Chevrier et al., 2009). Fibrochondrocytes have been isolated from 

bovine meniscus tissue, and their role in meniscus repair has been highlighted (Mauck et al., 

2007). Reports have described cells migrating out of healthy adult rabbit meniscus (Webber 

et al., 1989). Others have harvested cells from human meniscus after collagenase digestion, 

that have been described as mesenchymal stem cells (Segawa et al., 2009). It is known that 

the peripheral vascular (red) zone of the human meniscus harbors CD34-positive cells 

(Osawa et al., 2013). Progress has been limited by a lack of information on meniscal cell 

progenitors and the signals controlling their proliferation and differentiation. Growth factors 

and fibrin clots have shown some promise and are consistent with the theory of an intrinsic 

healing potential of the meniscus via activation of endogenous meniscal stem cells (Petersen 

et al., 2005).

Here, for the first time, we describe human meniscus progenitor cells (MPC) isolated from 

late-stage OA meniscus samplesof the white, avascular part and show that their regenerative 

potential is governed by TGFß  signaling. We believe that our results will help in the 

development of novel strategies for cell biological therapies for meniscus repair.

Results

Meniscus tissue histology and molecular composition

By combining and modifying available classification systems for OA specimens (Pauli et al., 

2011; Zhang et al., 2011), we developed a means to discriminate healthier from diseased 

specimens in our study of human menisci (see Methods and Materials). Intact meniscus 

tissue is composed of a superficial zone with flattened cells that primarily synthesize collagen 

type I (McDevitt and Webber, 1990). This architecture remains in healthier human menisci in 

patients suffering from OA (Fig. 1A and B). The inner zone, containing more rounded cells 
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that secrete collagen type I and type II, is also observed in the diseased specimens (Fig. 1C 

and F); however, the superficial zone is always lost in these samples. Moreover, in diseased 

human menisci, calcifications (Fig. 1D) and clusters of cells (Fig. 1E) are often found. 

We then analyzed cells growing from the inner zone of diseased and healthier human menisci 

using microarrays. We focused on the 100 genes with the smallest p-values, and among 

these genes, we identified 48  as being up-regulated, i.e., exhibiting a positive fold change, 

and 52 as being down-regulated, i.e., exhibiting a negative fold change (p-value < 0.001, as 

listed in the figure legend). Interestingly, only 4 of the 15 potential marker genes (see Materials 

and Methods) were among these 100 genes, that is, TIMP2, SOX9, ACAN and MMP14, 

stressing the importance of these particular genes for discriminating healthier from diseased 

samples. When used to examine eight human meniscus tissue samples, the 100 top genes 

clustered into two groups, healthier and diseased, as shown in the heat map (Fig. 1G). A 

selection is listed (Fig. 1H), and the complete results can be found under GEO (accession 

number: GSE52042). Furthermore, we subjected the cell lysates of cells from the patients to 

proteomic analyses (Fig. 1I). Approximately 4000 proteins were identified; however, only a 

small number are known to be relevant for OA and meniscus pathology (Fig. 1J). Interestingly 

smad2, a mediator of the canonical TGFβ/activin signaling pathway was more abundant in 

healthier meniscus cells than in diseased cells. However, most of the remaining proteins were 

not different between healthier and diseased samples. Because there is no international 

convention or single platform for presenting the results from these profiling studies and the list 

is too long for a supplemental figure, they can be found online on our homepage (http://

www.miosge.med.uni-goettingen.de/de/?id=17). Taken together, our classification system 

and the results of the transcriptome and proteomic analyses enable the unequivocal 

discrimination of healthier and diseased human meniscus specimens.
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TGFß, smads, runx2 and sox9 in human osteoarthritic meniscus tissue

Because the TGFß  family of proteins has been described to be important for meniscus 

pathology and we observed changes in smad2 levels that varied with disease severity, we 

performed immunohistochemistry to examine the TGFβ status in our samples. We observed 

greater staining for TGFß3  in healthier (Fig. 2A) tissue compared with diseased (Fig. 2B) 

human menisci and greater smad2/3 staining in healthier tissue (Fig. 2D) compared with 

diseased menisci (Fig. 2E). In addition, reduced staining for smad1 was observed in (Fig. 2C) 

diseased tissue compared with healthier specimens (data not shown), whereas smad4 

appeared to be similar between the 2 groups of human menisci (Fig. 2F and data not shown). 

These immunohistochemical findings were verified by Western blotting using tissue extracts 

from the inner zone of the menisci. All blots were quantified using ImageJ64 with α-Tubulin 

used as a control (Fig. 2G). A significantly higher level of smad2/3 was detected in healthier 

than in diseased tissue extracts (Fig. 2H). Interestingly, this finding correlated with the greater 

level of runx2 in diseased specimens (Fig. 2I), whereas sox9 levels were not altered 

significantly (Fig. 2J). However, smad4 was increased in the diseased menisci (Fig. 2K). Real 

time RT-PCR revealed results consistent with Western blotting for the expression of TGFß3 

(Fig. 2L), runx2 (Fig. 2M) and sox9 (Fig. 2N) mRNA. The expression of collagen type II mRNA 

was reduced (Fig. 2O) in line with the sox9 mRNA. Therefore, a reduction in TGFß3 and 

smad2/3  in diseased meniscus is found together with greater levels of runx2. This pattern of 

chondro- and osteogenic factors has been identified as a hallmark of osteochondro-

progenitor cells that are present in human tissue at late stages of OA (Koelling et al., 2009; 

Zhang et al., 2011). This finding guided us to investigate further the nature of the cells from 

diseased human meniscus tissue of the inner zone in vitro.
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Cells from diseased human meniscus in vitro are similar to the cells found in vivo

Explant cultures of diseased human meniscus from late-stage OA revealed the migration of 

cells outwards after 7 to 10 days (Fig. 3A). This finding was not observed in healthier 

specimens containing a superficial zone. After collagenase digestion of the inner zone, more 

round cells were observed in P1 (Fig. 3B) that were positive for collagen type I (Fig. 3D). 

However, the cells obtained from the superficial zone of healthier menisci in P1 were more 

elongated (Fig. 3C) and were also positive for collagen type I (Fig. 3E). Because most of the 

OA cases in medicine are identified at late disease stages when the superficial zone of the 

meniscus has been completely lost, we concentrated on the cells from the inner, “white”, 

avascular zone. Real time RT-PCR of the cells of the inner zone revealed significantly higher 

levels of mRNA for TGFß3 (Fig. 3  F), smad2 (Fig. 3G) and smad3  (Fig. 3H) in the cells derived 

from menisci with a lower disease score (healthier menisci), whereas sox9 was generally 

unchanged (Fig. 3I), which is consistent with results from meniscus samples in vivo (Fig. 2). 

When examined by immunocytochemistry, smad1 para-nuclear staining (Fig. 3J), smad2/3 

(Fig. 3K) and smad4 (Fig. 3L) were all detected in cells from diseased menisci. A TGFß/BMP 

pathway PCR array confirmed the involvement of this pathway in meniscal disease, as shown 

here by significantly higher levels of mRNA for smad7 (Fig. 3M), noggin (Fig. 3N) and follistatin 

(Fig. 3O) in meniscus cells from diseased tissues.
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The cells from the inner zone of the diseased meniscus show progenitor cell characteristics 

and a high migration potential

In culture, the cells derived from human meniscal tissue grow clonally and exhibit a spindle 

shaped phenotype typical of mesenchymal stem cells. A FACS analysis for the stem cell 

markers stro1, CD29, CD105 and CD106 on cells migrating out of the inner zone of diseased 

menisci showed significantly higher levels of these antigens than in cells released after 

collagenase digestion of healthier specimens where the superficial zone remained intact (Fig. 

4A). Both populations were negative for the hematopoietic markers CD45 and CD34 (data 

not shown). The cells were driven towards the chondrogenic lineage in a 3D alginate culture 

(3D) and with the help of standard chondrocyte differentiation medium (3D + chond. diff.). We 

used α-Tubulin (Fig. 4A) for quantification purposes with the ImageJ64 program. The cells 

from damaged menisci showed 60% more sox9 (Fig. 4C), whereas runx2 was no longer 

detected (Fig. 4D). Concomitant with the pattern of these transcription factors, collagen type 

II appeared in the 3D and 3D + chondrogenic differentiation culture medium; however, it was 

undetectable in undifferentiated cells in 2D culture (Fig. 4E). The levels of sox9 (Fig. 4F) and 

collagen type II mRNA (Fig. 4G) were also significantly increased when cells were grown in  

3D and chondrocyte differentiation medium. In contrast, the levels of collagen type I mRNA 

decreased (Fig. 4H). Following osteogenic differentiation, a proportion of cells became 

positive for alkaline phosphatase (Fig. 4I) and osteocalcin (Fig. 4J), as well as Alizarin red 

(data not shown). Oil red-positive (Fig. 4K) and PPARγ positive (data not shown) adipocytes 

were identified following adipogenic differentiation.

To examine the cell migration potential ex vivo, (Fig. 5A), a sample of diseased meniscus 

tissue was placed on the scraped side of a tissue culture flask that had been 80% confluent 

with GFP-labeled primary meniscus cells. After 3 days, green cells were found inside the 
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tissue sample (Fig. 5B), which was confirmed by placing the sample in a new flask (Fig. 5C). 

After an additional 7-10 days, cells, both green and unlabeled, residing in the damaged 

meniscus sample were again found outside the tissue. Cells migrated only into diseased 

meniscus tissues and not into the ones containing a intact superficial zone. Fixed samples 

allowed the identification of GFP-labeled meniscus-derived cells in the tissue sample (data 

not shown). Furthermore, a standard Boyden chamber assay revealed that the meniscus-

derived cells migrated more significantly toward a gradient of human recombinant PDGF (Fig. 

5D), as already shown for chondrogenic progenitor cells (Koelling et al., 2009). Taken 

together, the multi-lineage differentiation potential and the migration results enabled us to 

name the cells ‘meniscus progenitor cells’ (MPCs). 
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The influence of TGFß3, runx2 and smads on the chondrogenic potential of MPCs

MPCs were treated with 10 ng/ml TGFß3 in vitro. α-Tubulin was used as loading control and 

for the quantification (Fig. 6A). MPCs exposed to TGFβ3 exhibited significantly greater levels 

of smad2/3 (Fig. 6B) and also significantly greater levels of p-smad2 (Fig. 6C). Treatment with 

TGFß3 also increased the levels of sox9 in the MPCs compared with controls (Fig. 6D) while  

also decreasing runx2 levels significantly (Fig. 6E). MPCs treated with 10 ng/ml BMP2 

showed significantly reduced mRNA levels of smad2 (Fig. 6F) and sox9 (Fig. 6G).

We performed a runx2 knock-down on MPCs. Equal loading is indicated by α-Tubulin (Fig. 

7A). When runx2 was knocked down in MPCs by siRNA interference (Fig. 7B), smad2/3 

levels increased (Fig. 7C); more importantly, p-smad2 became detectable only after the runx2 

knock-down (Fig. 7D). In summary, we observed that TGFß3  treatment increased sox9 and 

decreased runx2 in MPCs, thereby enhancing their chondrogenic potential. 

The influence of smad1 and smad2 was evaluated via overexpression. Again α-Tubulin 

served for quantification purposes (Fig. 7E). Smad1 overexpression was confirmed (Fig. 7F), 

as was that of smad2 (Fig. 7G). The overexpression of smad1, as well as smad2 in MPCs 

increased sox9 significantly (Fig. 7H). In contrast, smad2 overexpression enhanced runx2 

levels more significantly then smad1 overexpression (Fig. 7I). These results demonstrate that 

the chondrogenic potential of MPCs is likely to be controlled by TGFß3-mediated 

phosphorylation of smad2, which in turn up-regulates sox9 and down-regulates runx2. 
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Discussion

The menisci harvested from patients undergoing total knee replacement showed typical 

pathological signs described for osteoarthritic articular cartilage (Loeser et al., 2012), 

including the presence of calcifications, areas of fatty degeneration and chondrocyte cluster 

formation (Hellio Le Graverand et al., 2001). The simple histopathological grading system we 

applied to our samples is based on these disease signs, and when combined with the 

absence or presence of the meniscal superficial zone, it enabled the separation of the 

samples of early OA (healthier specimens) from those that had progressed to severe 

degenerative disease (diseased specimens). The discriminative power of this grading system 

was mirrored in our transcriptome analysis, where the molecular pattern found in diseased 

samples was distinct from that found in early stage OA tissues. This was already shown for 

menisci of different age (Rai et al., 2013). Meniscus samples that received a high disease 

score also showed reduced immunohistochemical staining for TGFß and smad2. Consistent 

with these findings, proteome analysis and Western blotting of diseased specimens also 

showed a reduction in smad2 protein and an up-regulation of runx2 compared with healthier 

specimens. These results, together with the literature cited indicated that the TGFß/BMP 

pathway, with its dual osteogenic and chondrogenic actions (Massague, 2012), was a good 

candidate to investigate in greater detail in vitro. 

Previous results (Koelling et al., 2009; Seol et al., 2012) indicated the existence of progenitor 

cells in cartilage tissues from late stage OA. Therefore, we performed an explant culture from 

diseased meniscus tissue and found cells migrating out of these specimens after a few days, 

which was not observed for healthier menisci. The cells maintained their round phenotype at 

least in P1 in cell culture and were positive for collagen type I, as described previously 

(Chevrier et al., 2009; Hellio Le Graverand et al., 2001). In contrast, the cells from the 
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superficial zone of healthier specimens after collagenase digestion exhibited the elongated 

spindle-shaped phenotype of fibroblasts and were also positive for collagen type I (McDevitt 

and Webber, 1990). These meniscal-derived cells expressed smad2 and smad3 as 

determined by quantitative real time RT-PCR and immunocytochemistry and also exhibited an 

up-regulation of noggin, a BMP signaling antagonist, and smad7, a BMP/TGFβ signaling 

antagonist, when examined using a commercial PCR array. A FACS analysis of these 

migratory meniscal cells showed that they were positive for well-known stem cell markers 

including stro-1, CD105 or CD106. Quite remarkably, we found that these meniscal cells 

were capable of migrating into diseased meniscus tissue and re-populating it and that they 

also migrated toward a PDGF gradient in a Boyden chamber assay. We also determined that 

these highly migratory meniscal-derived cells were multipotent; they synthesized collagen 

type II and suppressed runx2 in 3D culture when grown in chondrogenic medium and 

became positive for markers of the osteoblastic lineage or adipogenic lineage after exposure 

to appropriate differentiation media. Interestingly, a significant difference in marker expression 

was observed when we compared cells migrating out of diseased meniscal explants with 

cells derived from meniscal tissue digestions, which indicates that the migratory progenitor 

cells are a subpopulation of the cells found in diseased human meniscus tissue in vivo. When 

the protein expression characteristics of the mesenchymal stem cell markers are considered 

together with their clonicity, multipotency and migratory potential, we name these cells 

meniscus progenitor cells (MPCs). The cells show signs of senescence (data not shown); 

therefore, we prefer the term progenitor rather than stem cell. The MPCs are different from 

the recently described CPCs (Koelling et al., 2009; Koelling and Miosge, 2010) not only due 

to their tissue origin and stem cell marker pattern, but also due to their ability to produce 

collagen type I and type II. However, they are similar as they also appear to be modulated via 
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a balance between runx2 and sox9 (Muhammad et al., 2013).

In articular cartilage, deletion of the type 2 TGFβ receptor results in the up-regulation of 

runx2, MMP13 and ADAMTS5, which correlates with the progression of OA disease (Shen et 

al., 2013), and the stimulation of smad2/3  signaling has been suggested as a potential 

therapeutic manipulation for articular chondrocytes for the treatment of OA (van der Kraan et 

al., 2012). Here, we demonstrate, that the treatment of MPCs with TGFß3  results in an up-

regulation of sox9 and a down-regulation of runx2. We also show that knock-down of runx2 

in MPCs enhanced total smad2/3 and p-smad2, data that underline the positive 

chondrogenic effect of TGFß3, which appears to be mediated via p-smad2, on MPCs. In 

contrast, direct BMP2 stimulation of MPCs reduced smad2 levels, enabling the suggestion 

that the influence of the TGFß/smad2 axis is more prominent in MPCs, which allows 

chondrogenesis. The shift in articular chondrocytes from smads2/3  to smads1/5 appears to 

be important for the development of OA, and recently, a balancing role of endoglin (CD 105) 

for this shift has been highlighted (Finnson et al., 2010). This may also be the case in the 

diseased human meniscus, as we found lower levels of smad2/3 and higher levels of runx2 in 

diseased tissue compared with healthier meniscus tissue. The complex regulatory role of the 

signaling balance between TGFß/BMP in OA pathology is widely acknowledged (Finnson et 

al., 2010; van der Kraan et al., 2010), and our data suggest this interaction also governs 

meniscal cell behavior during the development and progression of OA. Furthermore, our 

findings suggest that specific players of the TGFß pathway may be suitable targets for 

regenerative therapies directed at diseased human meniscus in late stages of OA. Because 

some studies support the notion that direct TGFß treatment of joint structures has 

undesirable side effects, including synovial hyperplasia, inflammation or even osteophyte 

formation (Blaney Davidson et al., 2006; van Beuningen et al., 1998), in the future, a more 
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nuanced understanding of the regulatory events governing MPC biology will be necessary to 

identify a cell-based therapy for the regeneration of diseased meniscus tissue. 

Experimental Procedures 

Tissues and preparation

Adult osteoarthritic lateral and medial menisci were obtained from more than 150 patients 

(ages 62–75 years) suffering from late-stage OA after total knee replacement operations. The 

patients met the American College of Rheumatology classification criteria and provided their 

written informed consent. Histopathological classification of OA cartilage confirmed the 

presence of late-stage OA (Pritzker et al., 2006) of the tibial plateau and femoral condyle in all 

samples. 

Histology and meniscus grading

For light microscopy, meniscus specimens (n=80), including the white and red areas (Fig. 1A, 

inset), were processed as described previously (Koelling and Miosge, 2010) and a combined 

Alcian blue/nuclear fast-red staining was performed. Based on existing grading systems 

(Pauli et al., 2011; Zhang et al., 2011), we developed a simple score for meniscus 

degradation. The presence (1 point) or absence (2 points) of the superficial zone and the 

intensity of the Alcian blue staining (high = 1 point or low = 2 points) were used for 

evaluations. The presence of fatty degeneration and/or cell clusters (2 points) or the presence 

of calcifications (3 points) was also included. A minimum of 2 and a maximum score of 9 

points can be reached. The threshold was set to 4 points. Three independent histologists 

evaluated more than 40 samples and identified 31 with a score of above 4 (diseased) and 16 

with scores of below 4 (healthier). The remaining samples were not evaluated unequivocally. 

14

73



Cell isolation and culture

Tissue pieces measuring 7-10 mm3 from the central inner zone (white area) of the healthier 

(n=12) and diseased (n=12) human menisci were excised, and care was taken not to include 

the outer red zone. Samples of healthier menisci with an intact superficial zone (grading 

score: 2, n=12) were also excised. After 7-10 days of incubation, only samples that lacked a 

superficial zone showed outgrowth of cells, which were harvested, and 103 cells/cm2 were 

transferred to a monolayer culture under standard conditions in Dulbecco’s modified Eagle’s 

medium (DMEM) containing 10% fetal bovine serum (GIBCO, lot number 41F2061K). 3-

Dimentional culturing was performed using alginate beads. Samples of 2-3  mm3 in size from 

the superficial area of healthier menisci (n=7) and the central area of diseased menisci (n=7) 

were harvested and digested with collagenase I (152 U/ml; Invitrogen, Karlsruhe, Germany), 

collagenase II (280 U/ml; Biochrom, Berlin, Germany), and dispase (15 U/ml; Invitrogen) for 6 

h at 37°C. To exclude cell-matrix residues, we filtered the collagenase-treated cells through a 

40-µm mesh sieve (BD Falcon, Heidelberg, Germany). 

Microarray analysis and bioinformatic methods

Quality control and the quantification of total RNA samples was performed, and data from 10 

human samples was measured using the microarray (Microarrays Inc., Huntsville, USA) 

ReadyArray (HS1100), which contains 48,958  probes per microarray slide from the Stanford/

Illumina collaboration on the HEEBO (Human Exonic Evidence Based Oligonucleotide) set of 

long oligos. This chip was used in a 1-color assay with a reference measurement of internal 

expression signals from several housekeeping genes. An internal QC was run to ensure these 

signals were within expected ranges for the array. First, the data were curated, primarily from 

non-zero flag values that indicate absent or poor-quality spots, resulting in 13,585 probes. 
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Next, quantile-normalization and logarithmizing followed. We then selected 15 potential 

marker genes, TIMP1, TIMP2, TIMP3, COL3A1, RUNX2, SOX9, ACAN, PRG4, DCN, MMP9, 

MMP3, MMP14, ADAMTS20, ADAMTS1 and NID2, to determine whether each of the 10 

samples belonged to the 'diseased' or 'healthier' group. A Pearson correlation-based 

hierarchical clustering approach including row-scaling and Ward's minimum variance method 

was chosen. This analysis revealed two groups of four samples each. For the selected eight 

samples, a differential expression analysis including all 13,585 probes with an empirical Bayes 

statistic of the limma package, moderated gene-by-gene t-tests and p-value adjustments via 

the Benjamini-Hochberg method was performed. Data were submitted to GEO (accession 

number: GSE52042).

Proteome analysis

For in-gel digestion, gel bands were washed with water, reduced with dithiothreitol (10 mM in 

100 mM NH4HCO3, 50 min, 56°C) and alkylated with 55 mM iodoacetamide. Gel spots were 

digested twice overnight at 37°C with porcine trypsin (12.5 ng/µl in 50 mM NH4HCO3 and 5 

mM CaCl2). Peptide extraction was performed using aqueous acetonitrile, and mass 

spectrometric analysis was performed following concentration of the samples using a 

reversed phase-C18 precolumn (0.15 mm ID x 20 mm self-packed with Reprosil-Pur120 

C18-AQ 3 μm material) and separation using reversed phase-C18  nanoflow chromatography 

(New Objective, Woburn, USA). The eluent was analyzed using a Top10 method in the Data 

Dependent Acquisition mode on the Q Exactive high-resolution mass spectrometry system 

(Thermo Scientific, Dreieich, Germany) operated under Tune 2.2 using HCD fragmentation, 

with normalized collision energy of 25%. Peak lists were generated using the Raw2MSM 

v1.10 software (MPI for Biochemistry, Martinsried, Germany). All MS/MS samples were 
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analyzed using Mascot (Matrix Science, London, UK; version 2.4.1) set to search the 

NCBInr_20130805 database (selected for Homo sapiens, 251,430 entries). Further details, 

especially about normalization procedures, have already been published (Christian et al., 

2013).

Antibodies 

Monoclonal anti-type II collagen (CIIC1) and anti-Stro1 antibodies were obtained from the 

Developmental Studies Hybridoma Bank, University of Iowa, USA. For Western blotting, 

monoclonal α-Tubulin antibody (Sigma-Aldrich, Saint Louis, USA) was used as a loading 

control. Monoclonal anti-smad2/3  (c-8, sc-133098), anti-smad1 (A-4, sc-7965), anti-sox9 

(H-90, sc-2095), anti-runx2 (M-70, sc10758) and polyclonal anti-smad4 (c-20, sc-19099) 

antibodies were purchased from Santa Cruz Biotechnology, Heidelberg, Germany. Polyclonal 

anti-phospho-smad2 (Ser465/467), and anti-TGFß3 antibodies were purchased from Cell 

Signaling Technology Inc., Frankfurt am Main, Germany. We used anti-human-PE/FITC 

monoclonal immunoglobulin isotype controls (BD PharMingen, Mountain View, USA) or 

fluorescein isothiocyanate (FITC)-coupled CD29, CD34, CD45, CD90, CD106 (Miltenyi 

Biotec, Bergisch Gladbach, Germany) and CD105 (Alexa flour 488) primary antibodies 

(Biolegend, London, UK). Goat anti-mouse, goat anti-rabbit-FITC IgG (Dianova, Hamburg, 

Germany) and anti-Turbo-GFP (Evrogen, Heidelberg, Germany) secondary antibodies were 

used for immunocytochemistry. 

Immunohistochemistry

After the histopathological grading, 10 diseased and 10 healthier samples were processed for 
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immunohistochemistry as described elsewhere (Koelling and Miosge, 2010). The 

HiDefDetectionR alkaline phosphatase mouse/rabbit system (Cell Marque, Rocklin, CA, USA) 

was used. Immunoreactions were also performed with swine serum as a negative control, 

and figures show representatives of three individual experiments.

Immunoblotting

Total protein extraction from tissues and cells was performed using 5 M guanidine 

hydrochloride and protease inhibitors. Pellets were precipitated in ethanol, washed in PBS, 

precipitated again and finally dissolved in PBS containing 0.4% SDS. SDS-PAGE was 

performed using 6% acrylamide in the stacking gel and 10% in the separation gel. Protein 

detection was performed as described previously (Koelling et al., 2009) and quantified using 

α-Tubulin as a loading control using the ImageJ64 program. 

RNA extraction and cDNA synthesis

Cells from samples of healthier and diseased menisci in P1 monolayer cultures were lysed 

directly in RLT buffer and subjected to RNA isolation, according to the manufacturer’s 

instructions (RNeasy Mini Kit, Qiagen, Hilden, Germany). The alginate beads from the 3D cell 

cultures were first dissolved using EDTA buffer. The QuantiTect Reverse Transcription Kit 

(Qiagen, Hilden, Germany) was used. 

Quantitative rtRT-PCR

A 10 µl volume per PCR reaction comprising 1 ng of cDNA, 5 µl of Platinum Sybr Green 

qPCR SuperMixTM (Invitrogen, Darmstadt, Germany) and 20 pmol of each primer was 
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chosen. The program primer 3 (http://frodo.wi.mit.edu/cgibin/primer3) was used to design 

the primers:

GeneID Forward primer Reverse primer Accession no.
Smad1 tcttcagagccaccatgaactaa aaccagcacaggaggaagtacag NM_005900
Smad2 gtctcttgatggtcgtctcca ttctgttaggatctcggtgtgtc NG_029946
Smad3 ccatcctgcctttcactc tggtgatgcacttggtgt AB004922
Smad4 gcacaaggttggttgctaaga gcagaacagtgagacattaggtagag NG_013013
Tgfb3 ctttggacaccaattactgcttc gggttcagagtgttgtacagtcc NM_003239.2
Runx2 ttccagaccagcagcactc cagcgtcaacaccatcatt NM_004348
Col1(a1) ttcccccagccacaaagagtc cgtcatcgcacaacacct NM_000088
Col2(a1) ctcctggagcatctggagac accacgatcacccttgactc NM_033150
Sox9 caggctttgcgatttaagga ccgttttaaggctcaaggtg Z46629
ß2M tgctgtctccatgtttgatgtatct tctctgctccccacctctaa NM_004048

The PCR program was set for 40 cycles: initial activation for 3  min at 95°C, denaturation at 

95°C for 20 s, appropriate annealing temperature for 20 s, elongation at 72°C for 20 s and a 

melting curve in 0.1°C steps from 50-95°C with the aid of the Mastercycler Realplex2 S® 

(Eppendorf, Hamburg, Germany). Data were normalized to a highly consistent housekeeping 

gene (β2M). PCR products were sequenced (Seqlab, Goettingen, Germany) to confirm the 

product identity. The relative ratios were calculated (Pfaffl, 2001). Every PCR was run three 

times in triplicate. The intra-test and inter-test variations were < 1%. Primer efficiencies 

ranged from 1.9-2.1.

Cell differentiation

Chondrogenic differentiation was performed using 3D cell culture. When the cells reached 

70% confluency, MPCs from P1 monolayer cultures were subjected to 3D culture. Cells 

(40,000) were encapsulated in low-viscosity alginate and standard chondrogenic medium. 

For osteogenic differentiation, a total of 1000 MPCs/cm2 in 75 cm2 flasks were differentiated 
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into cells of the osteoblastic lineage under the influence of NH OsteoDiffMedium or 

adipogenic differentiation was performed using NH AdipoDiffMedium (Miltenyi Biotec, 

Bergisch Gladbach, Germany).

Immunofluorescence microscopy 

P1 cells were grown on coverslips, fixed in 70% ethanol and incubated with 100 µl of primary 

antibody (1:50 dilution in PBS) for 1 h at RT. In the case of uncoupled primary antibodies, we 

then added secondary fluorescence-coupled antibodies (1:500 dilution in PBS) for 20 min at 

RT. Cells were than washed twice and finally stained with DAPI. A fluorescence microscope 

was used for cell examination, and a Nikon D90 camera (Nikon, Duesseldorf, Germany) was 

used to take all images. 

FACS analysis 

To test cells for stem cell markers, 106 cells were suspended in 100 µl of PBS containing 1 µl 

of fluorescence-coupled antibody at RT for 1 h in the dark. The cells were then washed twice 

and centrifuged at 800 rpm for 10 min. Finally, the cells were subjected to FACS analysis 

using a FACScan machine (Becton Dickinson, Mountain View, CA, USA), and 10,000 living 

cells were analyzed (Koelling et al., 2009). For data evaluation, we used the WinMDlv2.9 

program (Scripps Research Institute, La Jolla, USA). The FACS Vantage SE (Becton 

Dickinson, Mountain View, USA) was applied for cell selection and the Cell Quest Pro 2000 

software package was used for analysis.

PCR array 
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The human TGFß/BMP signaling pathway array was used (PAHS-035ZA_0123, 

SAbiosciences, Hilden, Germany), according to the manufacturer's instructions, and data 

were normalized using the standard program of the company’s online platform. 

GFP transfection

The cells (5×105) were transfected with 2.5 µg of the pmaxGFP vector (Lonza, Koeln, 

Germany) in 100 µl of nucleofector solution using the Amaxa program U-23. After 

transfection, the cells were transferred to DMEM supplemented with 20% FCS, incubated 

overnight, and then cultured under standard conditions. The transfection efficiency reached 

approximately 80%. FACS further enriched GFP-positive cells to approximately 97%. 

Migration and integration assay

In an ex vivo assay, a sample of diseased meniscus tissue was placed on the scraped side of 

a flask that had been 80% confluent with GFP-labeled cells. After 5-7 days, the specimens 

were washed with PBS, transferred to a new flask and examined using a fluorescence 

microscope. For the in vitro migration assay, we used a commercial two-chamber system 

with filters featuring 8-nm pores (CytoSelect, Cell Biolabs, San Diego, USA) and extinctions 

were measured at 560 nm. Human recombinant PDGF (R&D Systems, Abingdon, UK, 10 ng/

ml was applied as chemoattractant.

Cell induction experiment

Cells in 3D alginate were stimulated using recombinant human BMP2 (10 ng/ml, lot# 

MSA3612112) and TGFß3 (10 ng/ml, lot# MSA3612112), both of which were obtained from 
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R&D Systems, Abingdon, UK. After 24 hrs, the cells were harvested and subjected to total 

protein and RNA extraction.

siRNA transfections

The iLenti-GFP siRNA expression vector (ABM, Crestwood, Canada) was used for runx2 

knock-down. The probe (CAGCACGCTATTAAATCCAAATT) that targeted runx2 was placed 

under the control of H1/H6 and the GFP sequence under the CMV promoter. Control 

experiments were performed using a vector containing a scrambled siRNA sequence or 

without any vector. For the transfection of cells, see above. 

Overexpression

Smad1 and smad2 cloned into the pCMV5-Flag and pCMV5B-HA vectors were purchased 

from Addgene, Cambridge, USA. The cells were transfected either with the expression vector 

or the vector without the insert, as described above. 

Statistical analyses 

Statistical product and service solutions (SPSS, Chicago, USA) software version 13.0 was 

used. The observed data were tested statistically, and the representative data shown are the 

means and standard deviation of at least three independent experiments, if not stated 

otherwise. After testing for normality of distribution and homogeneity of variances, we 

performed ANOVAs and post-hoc pairwise comparisons of the mean values. The Pearson 

correlation coefficients were calculated to examine the relationships between parameters. A 

p-value <0.05 was considered significant.
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Figure legends:

Figure 1: Meniscus tissue histology and molecular composition. (A) Immunohistochemistry of 

collagen type I in healthier meniscus (arrow); insert: low magnification of a human healthier 

meniscus stained for collagen type I, the black line indicates the border between the vascular 

part on the right side and the avascular part on the left side. (B) Healthier human meniscus 

with an intact superficial zone and flattened cells (arrow). (C) Diseased meniscus with a 

completely degenerated superficial zone where only the round cells of the inner zone remain 

(arrow). (D) Calcifications and (E) cell clusters are signs of OA. (F) Immunohistochemistry of 

collagen type II in diseased meniscus (arrows); insert: low magnification of a human diseased 

meniscus stained for collagen type II. Magnification in A-F, bar = 150 µm; inserts bar = 1,7 

cm. (G) Heat map of the top 100 differentially expressed genes with p-values < 0.001. The 

red color indicates up-regulated genes, and the blue color indicates down-regulated genes. 

The up-regulated genes in diseased meniscus compared with healthier tissue are: ACTR2, 

KRT, HSPD1, CALU, HSPA9, BAX, CCDC80, C17orf59, HSP90AB1, CDC42, HNRNPH1, 

FKBP9, MT1DP, G3BP1, CTTN, COL6A1, TAF15, ELAVL1, MCL1, AL, HSPA4, CXorf40A 

CXorf40B, TCP1, RP5, VHL, PRPF4, BAG5, RIOK3, FCF1, SPTLC1, APH1A, RNF170, 

RCN3, DENR, CAPZB, MBNL1, CASC4, ASB1, MRPS10, RAB23, PAAF1, FARSB, NASP, 

NUDC, ZNF346, RIOK1 and GAR1. The down-regulated genes in diseased meniscus 

compared with healthier tissue are: RNF103, SLC41A3, SNX19, GTFIP1, ERF, NBPF10 

NBPF3, OSBPL10, ADAM15, KIAA0930, ZMAT3, AL845464.3, ANTXR1, ENDOD1, ZNFX1, 

GLT8D2, RP5-1022P6.4, ENG, POMZP3, C11orf95, LPCAT1, EPN2, POMZP3, RAB11FIP3, 

TBC1D2B, PCDHGC3, MMP14, TRPM4, HDAC5, ABL1, SOX9, Antxr1, BCAN, ZP3, ABR, 

SNX33, RPS6KA4, CXCR7, NCOR2, PLEC, GPC1, SEMA3C, PDGFRB, LUM, ACAN, 

CSPG4, OAS1, TIMP2, VCAM1, LAM5, PRSS54, PCDHB1 and FMOD. (H) Selected 
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microarray data of high-interest genes (SOX9, PDFGFRB, ACAN, TIMP2 and FMOD) that 

were significantly down-regulated in cells derived from diseased tissue compared with cells 

from healthier meniscus tissue. Only COL6 is up-regulated. (I) Peptide abundance of selected 

genes shown as the mean of four experiments that analyzed cells that migrated from 

meniscus samples from healthier and diseased. Standard deviation (S.D.).

Figure 2: TGFß3, smads, runx2 and sox9 in human osteoarthritic meniscus tissue (A-F). (A) A 

healthier meniscus stained for TGFß3 compared with the sparse staining in diseased 

meniscus (B). (C) Sparse staining of smad1 in diseased meniscus tissue. (D) The pattern 

observed for TFGß3  (A,B) was also found for smad2/3 in healthier compared with diseased 

meniscus tissue. (F) Smad4 staining in healthier meniscus tissue. Magnification in A-F, bar = 

150 µm. (G-K) Western blotting and quantification using ImageJ64 (G-K): (G) α-Tubulin shows 

equal loading; the first lanes of the blots corresponding to the dark grey bars in the graphs 

always show the healthier specimens. The diseased specimens are always found in the 

second lanes of the blots which correspond to the light grey bars in the graphs. A 

significantly greater level of smad2/3  in healthier meniscus tissue (H). Runx2 is almost 

undetectable in healthier tissue, whereas it is significantly elevated in diseased meniscus (I). 

Sox9 showed no significant differences between tissue types (J). Smad4 was increased 

significantly in diseased meniscus (K). (L-O) Quantitative real time RT-PCR results: (L) TGFß3 

mRNA is significantly increased in healthier meniscus tissue; however, runx2 mRNA levels are 

significantly reduced in healthier meniscus (M). (N) Sox9 mRNA is significantly reduced in 

diseased meniscus, which is in line with the significant reduction in collagen type II mRNA (O). 

*Significant differences (p ≤ 0.05); error bars denote the means ± S.D. of three individual 

experiments for mRNA and Western blotting experiments.
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Figure 3: Cells from diseased human meniscus in vitro are similar to cells found in vivo: (A) 

Explant cell culture of cells migrating out of a diseased meniscus specimen. (B) Cells in P1 

from the inner zone after collagenase digestion maintained a round phenotype in 2D culture. 

However, cells in P1 from the superficial zone from healthier menisci maintained their spindle 

shape (C). (D) Immunocytochemistry of the inner zone cells for collagen type I. (E) Collagen 

type I in the superficial zone cells. (F-I) Quantitative real time RT-PCR results from the cells in 

vitro. (F) TGFß3  mRNA levels are significantly higher in cells from healthier samples, which is 

consistent with smad2 (G) and smad3  (H) mRNA. No significant difference was observed for 

sox9 mRNA; however, a tendency toward higher levels in cells derived from healthier tissue 

was noted (I). (J-L) Immunocytochemistry of inner diseased meniscal cells positive for smad1 

(J), note the punctuate paranuclear pattern, smad2/3 (K) and smad4 (L). (M-O) The human 

PCR array for the TGFß/BMP pathway revealed high levels of mRNA of inhibitors of the 

TGFß/BMP axis, for example, smad7 (M) noggin (P), follistatin (O), in cells obtained from inner 

diseased meniscus. *Significant differences (p ≤ 0.05); error bars denote the means ± S.D. of 

three individual experiments. Magnification in A-E and J-L, bar = 150 µm.

Figure 4: The cells from the inner zone of the diseased meniscus show progenitor cell 

characteristics and are multipotent. (A) FACS data showed that migratory cells from diseased 

meniscus explant cultures obtained without collagenase digestion expressed significantly 

more stem cell markers, including Stro1, CD29, CD105, CD106 (bars on left side), than cells 

obtained via collagenase digestion from a healthier meniscus (bars on right side). CD90 was 

found to be expressed equally in the two cell populations. (B-E) Chondrogenic differentiation 

in 3D alginate (3D) and with additional chondrogenic differentiation medium (3D + chon.diff.). 
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(B) α-Tubulin loading control, the first lanes always represent the 2D control experiments, the 

second lanes always represents the 3D differentiation and the third lanes always represents 

the 3D differentiation together with the chondrogenic differentiation medium. (C) Production of 

sox9 is significantly increased under 3D + chon.diff. conditions compared with the control in 

2D and 3D cultures. (D) Runx2 was undetectable following 3D + chon. diff. culture. (E) 

Collagen type II was present after 3D culture and 3D+ chond. diff. culturing.

(F-H) Western blotting data were confirmed by mRNA results that revealed significantly higher 

levels of sox9 mRNA (F) and collagen type II (G) following 3D + chon. diff. culture compared 

with control cells in 2D culture. (H) Collagen type I mRNA decreased significantly following 3D 

+ chon.diff. culture. After osteogenic differentiation, cells become positive for alkaline 

phosphatase (I) and (J) osteocalcin. Adipogenic differentiation is indicated by positive Oil red 

staining (K). *Significant differences (p ≤ 0.05); error bars denote the means ± S.D. of three 

individual experiments. Magnification in I-K, bar = 150 µm.

Figure 5: Migration assays. (A) The strategy for an ex vivo migration assay. (A, top flasks). 

MPCs were GFP-labeled, enriched via FACS to 99% and cultured. (A, middle flasks) Upon 

reaching 70% confluence, one side was scraped and a sample of diseased meniscus tissue 

was placed on the cell-free side. After 3-4 days, MPCs re-populated and migrated into the 

tissue sample. (A, bottom flasks) The tissues were washed with 1x PBS solution and 

transferred into a new flask, and after 7-10 days, some labeled and unlabeled MPCs 

migrated out again. The experimental stages were visualized using a fluorescence 

microscope. (B) The labeled cells adjacent to the diseased meniscus tissue. (C) Labeled 

MPCs in the sample of the diseased tissue after washing and transferal to a new flask. (D) 

Boyden chamber assay results showing that significantly more MPCs were attracted by 
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human recombinant PDGF compared with controls. *Significant differences (p ≤ 0.05); error 

bars denote the means ± S.D. of three individual experiments.

Figure 6: The influence of TGFß3 and BMP2 on the chondrogenic potential of MPCs. (A) α-

Tubulin indicates equal loading of the gel lanes, also in this figure, the first lanes in the blots 

and the dark grey bars in the graphs represent control experiments, while the second lanes 

and the light grey bars represent the TGFß3 stimulation experiments. Following stimulation of 

MPCs with 10 ng/ml TGFß3 for 24 h, total smad2/3  (B) was significantly increased and active 

p-smad2 was significantly up-regulated (C). In turn, sox9 increased significantly (D) and runx2 

was reduced significantly (E). In contrast, following stimulation of MPCs with 10 ng/ml BMP2 

for 24 h, total smad2 was reduced significantly (F), as well as sox9 (G), shown by real time 

RT-PCR. *Significant differences (p ≤ 0.05); error bars denote the means ± S.D. of three 

individual experiments. 

Figure 7: Knock-down of runx2 (A-D) and overexpression of smad1 and smad2 (E-I). (A) α-

Tubulin indicates the equal loading of the gel lanes and was used for the quantification with 

ImageJ64, the first lanes of the blots always represents the controls as do the grey bars in 

the graphs, while the second lanes of the blots and the light grey bars of the graphs always 

represents the runx2 knock-down. (B) Following siRNA knock-down (KD) of runx2, the 

protein was undetectable (lane 2) compared with the control (lane 1). In turn total smad2/3 

increased significantly (C) and enabled the detection of p-smad2 (D). (E) α-Tubulin indicates 

equal lane loading and was applied for quantification, the first lanes of the blots always 

represents the controls as do the dark grey bars in the graphs. The second lanes and the 

light grey bars represent smad1 overexpression (OE). Finally the third lanes of the blots and  
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the black bars of the graphs represent the OE of smad2. (F) Smad1 OE is seen in lane 2. (G)  

Smad2 OE is seen in lane 3. (H) OE smad1 and smad2 results in a significant up-regulation of 

sox9. (I) OE of smad2 results in a greater reduction of sox9 as does OE of smad1.
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Name IPI No
Peptide 

abundance 
healthier 

S.D.
Peptide 

abundance 
diseased 

S.D.

SMAD2 IPI00019548 20,7 7,9 64,2 21,3

SMURF2 IPI00329664 16,2 3,7 30,9 7,9

COL1A1 IPI00304962 398,4 22,0 409,2 83,5

ACAN IPI00027377 100,7 25,8 86,7 54,6

COL6A2 IPI00983601 34,4 10,4 28,5 6,4

PDGFRB IPI00015902 30,2 11,9 37,3 6,8

BGN IPI00010790 55,1 19,1 40,7 21,9

COMP IPI00028030 32,31 15,5 31,0 16,3

Accession No Gene ID Fold change P value

NM_000346 SOX9 -1,090 0,00010395

NM_002609 PDGFRB -1,538 0,000520006

NM_001135 ACAN -1,634 0,000297344

NM_003255 TIMP2 -1,877 5.668051243e-05

NM_002023 FMOD -2,396 0,00533354

NM_001848 COL6A1 0,956 0,000535283
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Abstract 

The meniscus is a fibrocartilagenous tissue in the knee joint. It gives stability to the joint 
and is considered as a safeguard to protect the femorotibial articular cartilage. Meniscus 
degradation ultimately leads to osteoarthritis. The major part of the meniscus is avascular, 
which has difficulties to self-repair once damaged. Meniscus removal always results in 
osteoarthritis. Therefore, new approaches are required to repair or regenerate the 

damaged meniscus to result in the same biomechanical features as healthy normal tissue. 
Here, we are introducing mouse meniscus progenitor cells, which are positive for the 
stem cells markers, e.g., CD29, CD73, CD90, and CD44. These cells are multipotent and 

could be differentiated at least to two mesenchymal lineages, adipocytes and cells of the 

osteoblastic lineage. Additionally, we also confirmed the localization of these cells in vivo. 
Furthermore, histological results clearly depict the structural differences between the 
human and the mouse menisci in terms of their cellular and matrix composition. The 

superficial zone with its flattened cells in humans, stained more for collagen type I, 
however this staining is absent in the mouse meniscus. These initial findings will help to 

explore and understand the nature of progenitor cells and their involvement in 

regeneration of meniscus tissue. 
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Introduction 

In the United States about 27 million people are affected by osteoarthritis (OA). OA is a 

major cause of disability in adults (Centers for Disease & Prevention, 2010; Lawrence et 
al, 2008). There are numerous risk factors leading to OA, for example, age, obesity, 

genetics, trauma, joint anatomy, and the occupational history of an individual (Blagojevic 

et al, 2010). While OA is multifactorial, one of the key causes of OA is the damage of the 
meniscus. The meniscus protects the cartilage and works as a shock absorber in the 

knee joint. Meniscus tissue exhibits intrinsic repair capabilities; however these are 

restricted to the red, the vascular part. While damage of the white, avascular part does 
not have this intrinsic capability. Partial meniscectomy cannot stop the degradation 

process (Arnoczky & Warren, 1983; Hasan et al, 2013; Walker & Erkman, 1975). 

To repair the damaged or diseased meniscus tissue in all aspects of a normal native 
meniscus is a great challenge. It is also difficult to stop the secondary symptoms of the 
injured or damaged meniscus tissue such as calcification (Noble & Hamblen, 1975). The 
present surgical procedures are satisfactory at a temporary level but can’t prevent the 
deleterious effects resulting in OA (McDermott & Amis, 2006). There are other alternatives 
available such as the application of mesenchymal stem cells (MSCs). However, in 
practice, MSCs face two major problems: first the inappropriate production of the extra 
cellular matrix (ECM) and the second obstacle is the occurrence of hypertrophy (Mauck 
et al, 2006; Pelttari et al, 2006). There are attempts to overcome these problems, for 
example, via co-culturing of MSCs with chondrocytes in hydrogel (Bian et al, 2011). 
Another idea was to culture the MSCs together with meniscus derived cells to encourage 
the differentiation of MSCs towards a meniscal phenotype without hypertrophy (Cui et al, 

2012). It is reported that the bone marrow derived MSCs enhanced the healing process 
in combination with a fibrin glue (Ferris et al, 2012). Interestingly, not only the bone 
marrow derived MSCs are tested as potential candidate for meniscus tissue 

regeneration, but also other tissue sources, such as, synovial derived MSCs are 

considered. The synovial membrane-derived MSCs are being described as growing fast 
and exerting a high chondrogenic potential (Katagiri et al, 2013; Sakaguchi et al, 2005).  

More recently, Shen et al. published that meniscus-derived stem cells have a 

tremendous ability for articular cartilage repair, however, this was tested in a rabbit 
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model, which has a very high self-renewal capacity (Shen et al, 2013). The concept of 

progenitor cells in situ from diseased tissues is gaining extensive interest in regenerative 

medicine and we previously introduced chondrogenic progenitor cells (Koelling et al, 
2009) from cartilage of late stages of OA. We have also investigated that human menisci 

harbor progenitor cells that are governed by the canonical TGFβ pathway (manuscript 

submitted). Meniscus degeneration exposes the knee cartilage directly to high body 

pressure and ultimately damages the tissue and results in OA. To date, all the 
experimental efforts for the meniscus tissue engineering or regeneration are encouraging 

but seem not to be promising in the long term. Allografts or the bio-engineered meniscal 

substitutes seem to be only filling the space void after meniscal removal, however, the 
clinical and MRI evaluation does not show a satisfactory protection against the 

development of OA (Hommen et al, 2007). For the first time, we are introducing tissue 
specific, mouse meniscus progenitor cells (MMPCs). We characterized these cells in vivo 
with the help of immunohistochemical techniques and in vitro using various biochemical 
techniques. The MMPCs are found positive for well-known stem cell markers such as 
CD44, CD29, and CD73. They are multipotent and could be differentiated into 
adipocytes and cells of the osteoblastic lineages. We believe that our initial findings will 
help to develop new strategies of cell biological therapies for meniscus repair in situ.  

Materials and methods 

Sample preparation 

The treatments of the animals were performed according to the principles and laws of 

the Animal Welfare Act of the County of Lower Saxony, Germany. The samples were 
gently handled using sterile instruments and all the surgical steps were carried out under 
sterile conditions. First, muscles and ligaments were removed under a stereo microscope 
(Leica, EZ4D). After the removal of the cruciate ligaments of the distal femur, the tibial 
plateau was detached easily with the help of tweezers. Some meniscus pieces were 

immediately transferred to the cell culture medium for explant cell culture. Others menisci 
and surgically untouched complete knee joints were decalcified for immunohistochemical 
experiments.  
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Cells isolation and cells culture 

The grown out cells of the explant culture were cultured in a standard cell culture 

medium Dulbecco`s modified Eagle’s medium (DMEM) with the 10% fetal bovine serum 
(GICO, lot number 41F2061K). Additionally, supplemented with penicillin/streptomycin 

(50,000 U/50mg) and 10 mM L-glutamine.  

Multipotent differentiation 

The nearly confluent flask (75%) was subjected to the osteogenic differentiation under the 

influence of the proper induction medium, NH OsteoDiffMedium (Miltenyi Biotec), with the 

combination of dexamethasone, ascorbic acid, and ß-glycerophosphate. The cells were 
encouraged toward the adipogenic lineage using NH AdipoDiffMedium, which is a 
mixture of active compounds, such as, hydrocortisone, isobutylmethylxanthine, and 
indomethacin.  

Cytochemistry 

To evalutate the osteogenic differentiation, alkaline phosphatase staining was performed 
(86-C, Sigma), and oil-red staining was applied for fat detection in adipocytes after 
adipogenic differentiation (Koelling et al., 2009).  

Antibodies for immunohistochemistry, immunocytochemistry and Western blots 

For the immunohistochemistry we followed the PAP method. The monoclonal antibodies 
against collagen type I (M-38) and collagen type II (CIICI), both were obtained from the 
Developmental Studies Hybridoma Bank, University of Iowa, USA. The monoclonal 

antibodies against CD29 were purchased from abcam, Cambridge, UK and alpha-tubulin 
from Sigma-Aldrich, St. Gallen, Switzerland. Polyclonal antibodies against CD44 were 
ordered from abcam, Cambridge, UK and anti-CD73 were purchased online, antibodies-

online, Atlanta, USA.  

We also performed the immunoreactions in the absence of primary antibodies, as 
negative control and all images are representatives of three separate individual 
experiments.   
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Immunofluorescence microscopy 

The primary migratory cells were transferred in the P1 stage to 96 well plates and fixed 

by 70% ethanol after 16 hrs culture. Further incubated with 100µl of primary antibody 
(1:50 in PBS) for 1 hr at RT in the dark. When necessary, incubation with secondary 

fluorescence-coupled antibody (1:500 in PBS) for 20 min at RT followed. Finally, stained 

with DAPI, the cells were examined using a fluoresence microscope. Images were 
captured using a Nikon D-90 camera (Nikon, Düsseldorf, Germany). 

RNA extraction from cultured cells, cDNA synthesis and quantitative real-time PCR 

Primary cells of P1 were dissolved in RLT buffer and RNA was isolated according to the 
manufacturer’s instructions (RNeasy Mini Kit; Qiagen, Chatworth, CA, USA). RNA was 
converted into cDNA using Qiagen QuantiTect Reverse Transcription Kit, following the 
manufacturer’s instructions. The total volume of the PCR reaction was set to 10 µl, 
containing 5 µl of RealMasterMix (2.5x) (Eppendorf, Hamburg, Germany), 2 µl primers (20 
pmol), 1 µl (1ng) of cDNA and 2 µl of RNase free water. Primers were designed with the 
help of online primer3 software.  

 

 

 

 

 

Gene ID Forward primer Reverse primer Accession 

CD29 cgtgttgggaggcactgtgaatgta gcattcacaaacacgacacctgca NM_010578.2 

CD73 cctttcctctcaaatccagggacaa acttctttggaaggtggatttcctg NM_011851.4 
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FACS analysis 

The meniscus derived cells were suspended in PBS with fluorescence-coupled 

antibodies as described earlier, using a dilution of 1 µl antibodies/ in 100 µl buffer with 
one million cells at RT for 1 hr in the dark, washed twice by PBS, centrifuged for 10 

minutes at 800 rpm and finally were subjected to FACScane (Becton Dickinson, 

Mountain View, CA), as described in detail elsewhere (Koelling et al, 2009). A total of, 
approximately, 10,000 living cells were detected, and data were interpreted using 

WinMDlv2.9 software. We also performed further analyses with help of program Cell 

Quest Pro 2000.  

Immunoblotting 

Total proteins were extracted in 5 M guanidine hydrochloride with protease inhibitors. 
Proteins were precipitated in ethanol and washed with PBS. Precipitation steps were 
repeated and finally proteins were dissolved in PBS (0.4% SDS). For protein separation 
SDS-PAGE was performed. All the gels were mixed keeping 6% acrylamide in the 
stacking gel and 10% in the running or the separating gel. Further, the blotted 
membranes were blocked with 5% milk to avoid unspecificity. The immunoreactions 
were performed on the blotted membranes using primary antibodies over night at 40C.  
The next day membranes were washed with 1X TBST solution and probed with 
secondary antibodies for 1 hr at RT. The protein bands were visualized via ECL reaction.  
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Results 

Histological features of mouse meniscus 

Anatomically, the menisci are fixed in the knee joint by ligaments and muscles. The 
meniscus is sandwiched between the femur and tibia. To isolate the specimen, first of all, 

ligaments were removed and then the complete femur was detached easily. Finally, the 

C-shaped meniscus became prominent on the tibia under the stereomicroscope (Fig. 
1A). After extraction from the tibia, mouse menisci revealed calcified features at both 

terminal ends (Fig. 1B). Longitudinal sections stained unevenly for collagen type II (Fig. 

1C) and stained highly for collagen type I (Fig. 1D). Complete mouse knee joints were 
embedded in paraffin block and sections were stained with hematoxylin-eosin (Fig.1E). 

No signs related to OA, for example, no surface fissures in the articular cartilage (Fig. 1F) 
nor breaks in the osteochondral junction (Fig. 1I) were observed. However, the cross 
sectioning of mouse meniscus brings a pore to light (Fig. 1I), perhaps due to the calcified 
region, as was observed in the extracted mouse menisci (Fig. 1B). The 
immunohistochemistry results revealed that collagen type II is restricted to the inner and 
the pseudo-superficial zone of the meniscus (Fig. 1G). In contrast collagen type I was 
detected mainly in the outer part of the meniscus (Fig. 1H).  

Mouse meniscus explant-cultured derived cells exhibit stem cell-like characteristics  

Migratory cells derived from explant-cultures acquired a flattened phenotype (Fig. 2A). 
However, they lost their flattened phenotype upon encapsulation in the three-dimensional 
network of alginate (Fig. 2B) and turned into round cells (Fig. 2C). The well-known cell 
surface antigens, so-called stem cell markers, for example, CD44, CD90, and CD73 
were investigated in vitro via immunocytochemistry, and in vivo using immunohisto-

chemical techniques (Fig. 2D). The cells derived from meniscus via explant culture were 
subjected to FACS analyses for the stem cell markers. Furthermore, these cells were 
differentiated to adipocytes and cells of the osteoblastic lineage. The differentiated cells 

were evaluated by lineage specific staining, for example, the adipocytes were identified 

by oil-red stain (Fig. 2E+F). The osteoblasts were found to be positive for alkaline 
phosphatase staining (Fig. 2G+H). The control experiments, without induction media, 
remained negative for oil-red staining (Fig. 2I+J) and no positive staining was observed 
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for alkaline phosphatase (Fig. 2K+L) in control reactions. The FACS data analyses 

revealed a high incidence of stem cell marker expression, which are related to the 

mesenchymal origin, for example, CD73, CD44 and CD29. However, these cells showed 
immuno-negativity for hematopoietic progenitor stem cells marker such as CD117 and 

CD34 (Fig. 2M). 

Investigation of stem cell markers in vitro and in vivo 

Paraffin embedded mouse meniscus sections were used for immunohistochemistry and 

staining was observed for stem cells markers, such as, CD44 (Fig. 3A), CD73 (Fig. 3B) 

and CD29 (Fig. 3C). Further, in vivo, CD44 (Fig. 3A) and CD73 (Fig. 3B) positive cells 
were seen, more in the pseudo-superficial and less in the inner zone. However, CD29 

positive cells (Fig. 3C) were found slightly more in the inner zone of the mouse meniscus. 
The control slides (Fig. 3D) without primary antibodies did not show immuno-positive 
cells. The expression of CD73 mRNA was found to be up-regulated compared to CD29 
mRNA (Fig. 3E). As described earlier (Fig. 2D), these stem cells related antigens were 
localized in vitro using immuno-cytochemical techniques (Fig. 3F). For Western blot 
analyses, blotted membranes were stained with Coomassie brilliant blue (Fig. 3G). 
Further, Membranes were probed with anti-CD29 antibody; a desired protein band was 
identified at 135 kDa (Fig. 3H). After stripping, the membrane was re-probed with CD44 
antibody and a protein band was visualized by ECL reaction at 45 kDa (Fig. 3I). 

ECM differences of mouse and human menisci  

Interestingly, the mouse menisci were found to be different from human in terms of their 
cellular and ECM composition. For example, immunohistochemistry revealed that 
collagen type I is the major component of human meniscus and distributed evenly 

throughout the meniscus, in the outer (red part) and inner (white part). However, more 
intensively stained the superficial zone (Fig. 4E). In contrast, in mouse meniscus collagen 
type I is restricted to the outer part and is not present in the inner part (Fig. 4F). In short, 

human meniscus can be divided into four major zones (Fig. 4A). Mainly, there are two 

superficial zones (S), one inner avascular, white part (W) and one outer vascular, red part 
(R). The mouse meniscus is not this complex and possesses only two zones (Fig 1 B), 
one outer vascular, white part (W) and the inner avascular, red part (R). The extra two 
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superficial zones, as in human, with its unique layer of multiple flattened cells (Fig. 4C) are 

absent in the mouse. In contrast, the surface region of the mouse meniscus exhibits very 

few flattened cells and therefore it can be termed, pseudo-superficial zone (Fig. 4D).  
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Discussion 

Mouse meniscus tissue harbors progenitor cells 

Others and we previously introduced the existence of progenitor cells in the late stage of 
OA cartilage (Koelling et al, 2009; Seol et al, 2012). We observed that after 7-9 days cells 

migrated out of the explant culture. The FACS analyses and immunocytochemistry 

confirmed the expression of cells surface antigens, so called stem cells markers, for 
example, CD44, CD73, CD29, and CD90. However, these migratory cells were found to 

be negative for hematopoietic progenitor stem cell markers, for example, CD117 and 

CD34. Our findings suggest that these cells are different from the cells isolated by other 
researchers (Osawa et al, 2013). For example, Osawa et al. isolated meniscus cells from 

the red vascular part via collagenase digestion. They found them positive for 
hematopoietic stem cells markers, as one would expect. This indicates that the possible 
source of these cells could be blood vessels or pericytes. Our cells are derived from the 
inner avascular part of the meniscus. Further, these cells showed multipotency; 
becoming positive for markers of the adipocytes and osteoblastic lineage after induction 
with the proper differentiating media. Here, we are introducing for the first time mouse 
meniscus progenitor cells. However, Furumatsu et al., have characterized the cells 
derived from the inner part of the human meniscus via collagenase digestion (Furumatsu 
et al, 2011). Surprisingly, we found the cells derived from the inner part of human 
meniscus via collagenase digestion exhibit less stem cell characteristics as compared to 
the cells derived via explant-culture from the same region of human meniscus. It 
suggests that migratory progenitor cells are different from residing cells. However, mouse 
meniscus progenitor cells share the spindle phenotype and clonal growth characteristic 

of CPCs (Koelling et al, 2009).   

Taken together, the confirmation of stem cell markers, multipotency, clonicity and 
migratory potential allowed us to introduce the cells as  ‘mouse meniscus progenitor 

cells’ (MMPCs).  

Meniscus progenitor cells in ex vivo and in vitro 

Adult stem cells or progenitor cells can be found in mature developed tissues. These 
progenitor cells in situ are involved in regeneration phenomena after trauma or disease. 
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For instance, hematopoietic stem cells are found in bone marrow as a major pool to 

replenish the circulating blood cells. In line with this concept, the adult stem cells have 

been investigated in other adult mesenchymal tissues, for instance, blood, adipose, skin, 
mandible, trabecular bone, muscle, and synovial membrane (Muhammad et al, 2013; 

Punwar & Khan, 2011; Till & McCulloch, 2012). Here we investigated the existence of 

progenitor cells in healthy mouse meniscus tissue. The MMPC were found to be positive 
for stem cells markers (CD44, CD73, CD29, and CD90) and their confirmation were 

checked in all aspects, for example, at the transcription level by PCR, at the translation 

level by Western blot, immunohistochemistry and immunocytochemistry.  

Structural overlap and differences of mouse and human menisci 

Proffen et al. recently published a comparative study of menisci from different species. 
They discussed in detail the different anatomical and morphological aspects of seven 
species: human, sheep, goat, cow, dog and rabbit (Proffen et al, 2012). Here, we 
observed the structural features of mouse menisci in terms of their cellular and matrix 
composition. It has been shown histologically that the human menisci possess two major 
parts, in terms of their vascularity: the vascular (red) outer part, and the avascular (white) 
inner part (Pauli et al, 2011; Zhang et al, 2011). Furthermore, the inner part has two 
superficial zones and both are exposed to the surface of femero-tibial’s articular cartilage. 
The superficial zone cells in human menisci are flattened in shape and are stacked in a 
multilayered fashion. Interestingly, a superficial zone as such is absent in mouse menisci. 
One can speculate that, a superficial zone only develops under a large total body weight, 
which exerts pressure on the superficial zone cells to acquire a flattened phenotype like 
in human.  

Healthy mouse meniscus compared to less diseased human meniscus shows more or 
less the same histological features. However, there are slight differences, for instance, 
mouse meniscus is relatively more calcified then the human meniscus. In the human 

meniscus, the superficial zone and the inner part were uniformly stained for collagen type 

I. In contrast, the mouse meniscus collagen type I is only restricted to the outer red part 
of the meniscus. 
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Surprisingly, degenerated human meniscus in the late stages of OA shares feature with 

healthy mouse meniscus. In the late stage of OA, the superficial zone of human meniscus 

is completely lost. The phenotypes of the cells of the human inner part, round 
chondrocyte-like cells are similar to the cells found in the pseudo-superficial zone of the 

inner part of mouse meniscus.  

In summary, mouse meniscus harbors multipotent progenitor cells which can be 
localized in vitro and vivo. In addition, mouse meniscus is distinctively organized tissue, 

only exhibits a pseudo-superficial zone without flattened cells as in human meniscus. Our 

initial findings will help to understand and explore more about progenitor cell biology 
regarding meniscus tissue regeneration.  

Figure Legends 

Fig.1.   

Structural aspects of mouse meniscus tissue (A-D): (A) Micro-surgical excisions of the 
mouse menisci were performed under the stereomicroscope. After the femoral condyle 
displacement, the C-shaped meniscus was seen on the tibia. (B) The extracted meniscus 
revealed a translucent appearance with a hard globular structure at both horns. (C) 
Longitudinal section of meniscus stained for collagen type I. (D) In contrast, the following 
section stained less for collagen type II. (E-F and I) H.E. staining of a healthy mouse knee 
joint (E), magnified image of the complete joint revealed neither surface fissures nor 
breaks in the tidemark (F). (G) The cross section of a meniscus stained for collagen type II 
found to be restricted to inner part and, as expected, also seen in the hyaline cartilage 
tissue. (H) In contrast, collagen type I staining only detected in the outer part of the 
meniscus, while the healthy hyaline cartilage tissue stained less, as expected.   
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Fig. 2  

Explant cell culture and 3D cell culture of MMPCs (A-C): (A) MMPCs migrating out of an 

explant culture. Cells show a flattened phenotype in two dimensional cell culture. (B) 
However, when cells were encapsulated in alginate, in a three-dimensional cell culture, 

they turned into a round phenotype (C). MMPCs, express stem cells marker and are 

multipotent (D-M): (D) These cells express stem cell markers CD44, CD90 and CD73 in 
vitro, and CD44 was in vivo (asterisk).  

MMPCs are multipotent (G-H): Cells were cultured in the presence of adipogenic medium 

and were evaluated with oil-red staining. (E-F) In contrast, cells in the absence of 
stimulating medium have shown negativity for oil-red staining. (K-L) Cells induced with 

osteogenic medium revealed positive alkaline phosphatase staining. (I-J) In contrast, cells 
without the induction medium remained negative for alkaline phosphatase staining. (M) 
Furthermore, the FACS analyses also have confirmed the expression of stem cells 
markers, as shown for CD44 and CD73.  

Fig. 3  

Stem cells markers ex vivo (A-D): Immunohistochemical staining was performed for stem 
cells marker CD44 (A), CD73 (B) and (C) CD29. Interestingly, immunopositivity was seen 
in the cells, predominantly in the superficial zone of the meniscus tissue. (D) The control 
slides, without primary antibodies exposure, showed no staining. (E) The expression of 
stem cell markers (CD79 and CD73) were detected at the transcription level via PCR, 
using mRNA isolated from meniscus-derived progenitor cells. (F) CD44 molecules were 
also localized in vitro by fluorescence immunocytochemistry. (G) Total cell’s extract were 
loaded on a gel and stained for coomassie brilliant blue R-250. (H+I) Membranes were 

incubated with antibodies against CD29 (H) and CD44 (I), separately. Proteins bands for 
CD29 and CD44 were visualized after ECL reactions at 135 kDa and 45 kDa respectively.  
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Fig. 4  

Structural overlaps and differences between mouse and human meniscus (A-B): 

Histologically, mouse meniscus has some resemblance with human meniscus in terms of 
vascular (R) and non-vascular (W) parts. However, mouse menisci lack a true superficial 

(S) zone. (C) The phenotype of human meniscus superficial zone cells is flattened. (D) In 

contrast, these spindle shape cells are absent in the pseudo-superficial zone of mouse 
meniscus. (E) Furthermore, the flattened cells in the superficial zone of human meniscus 

are stained for collagen type I. (F) On the other hand, mouse meniscus stained less for 

collagen type I in the same region. 
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ABSTRACT 
 

It is thought that the general increase in life expectancy will make 
osteoarthritis the fourth leading cause of disability by the year 2020. 
Even though the pathogenesis of idiopathic osteoarthritis has not 
been fully elucidated, the main features of the disease process are the 
altered interactions between the chondrocytes and their surrounding 
extracellular matrix. In the course of these disturbances fibroblast-like 
chondrocytes take part in tissue regeneration especially in advanced 
stages of osteoarthritis. However, only fibrocartilaginous or scar tissue, 
since only collagen type I, and not collagen type II, typical for healthy 
cartilage, is synthesized. It remains a great challenge to enhance the 
regeneration potential of hyaline cartilage tissue. Tissue degeneration 
overrides the generally limited self-renewal capacity of this tissue. 
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232Stem Cells and Bone Tissue  
 

Adult mesenchymal stem cells, which are thought to be capable of 
repairing injured tissue can be differentiated into chondrocyte-like 
cells in vitro. During embryonic development, some cells of the inner 
cell mass will develop into the mesoderm. This will be the founder of 
the mesenchymal cells in connective tissues of adult life, such as bone, 
tendon, muscle, and cartilage. Some of these embryonic mesenchymal 
cells are believed not to differentiate, but reside in each of the tissues. 
These are now collectively described as adult mesenchymal stem 
cells, which are thought to be capable of repairing injured tissue. We 
found that repair tissue from human articular cartilage during the late 
stages of osteoarthritis harbors a unique progenitor cell population, 
termed chondrogenic progenitor cells (CPC). These exhibit stem cell 
characteristics together with a high chondrogenic potential. They will be 
relevant in the development of novel therapeutic regenerative approach 
for a progenitor cell-based therapy of late stages of OA. 

 
 

Introduction 
 

Osteoarthritis (OA) is a chronic and mainly degenerative joint disease. 
Degeneration is progressive and the loss of articular cartilage finally 
leads to the eburnation of the subchondral bone (Fig. 13.1). The process 
is accompanied by an inflammatory synovial reaction (Poole et al. 1993). 
OA is the most common musculoskeletal disease in the elderly, according 
to Reginster (2002) up to 1.75 million people alone in England and Wales 
suffer from symptomatic OA. However, the number of asymptomatic cases 
is estimated to be much higher. There is a strong association between its 
prevalence and increasing age, since up to 20 percent of the population over 
60 yr of age show signs of OA (Haq et al. 2003). The severity of OA also 
increases indefinitely with age and up to now the condition is not reversible 
(Woolf and Pfleger 2003). As OA often remains asymptomatic until late in 
the disease progress and early markers as reliable tools of diagnosis are 
still lacking up to now, therefore, total knee replacement is the ultimate 
therapeutic intervention. This means that important parts of health care 
resources have to be spent on coping with this disease (Reginster 2002). 
The general increase in life expectancy and the resulting aging populations 
are expected to make OA the fourth leading cause of disability by the 
year 2020 (Woolf and Pfleger 2003). This warrants the further elucidation 
of the pathogenesis of OA with the final goal of gaining insight into the 
disease processes to render a cell biological therapy possible and within 
reach. Regenerative medicine and tissue engineering approaches are 
being investigated and developed further. Here, we review the current 
knowledge on progenitor cells and their possible usage in future therapies 
of osteoarthritis. 
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Figure 13.1 Adapted from Bock et al. 2001 (with permission from the publisher). (A) 
Radiograph of a patient with grade IV OA. Areas from which the cartilage samples were 
taken are marked (black arrow=main defect, open triangle=adjoining area and black-on-white 
arrow=macroscopically intact), bar=2 cm. (B) Alcian blue staining of a cartilage sample from 
the macroscopically intact area; note that chondrocytes are organized in clusters (black arrow), 
bar=50 µm. (C) Light microscopic in situ hybridization in a sample similar to (B), intracellular 
staining for biglycan mRNA (Black arrows), bar=50 µm, inset: higher magnification of two 
cell clusters. 

Color image of this figure appears in the color plate section at the end of the book. 
 

Articular  Cartilage: Chondrocytes and  Matrix Composition 
in Health  and  Disease 

 
Normal, healthy articular cartilage is a highly specialized and uniquely 
designed tissue, which covers the articulating ends of long bones (Kuettner 
1992). It is an avascular, aneural and alymphatic tissue. The resilience, 
integrity and function of articular cartilage all depend on the composition 
of the abundant extracellular matrix (ECM) synthesized by the single cell 
type found in this tissue, the chondrocytes. These are responsible for the 
secretion and maintenance of the ECM of articular cartilage (Kuettner 1992). 
The abundant extracellular matrix of articular cartilage is composed of two 
major elements: the collagens and the proteoglycans. Normal articular 
cartilage contains types II, III, VI, IX, X, XI, XII and XIV collagens, the most 
abundant being collagen type II (Mayne and Brewton 1993). Collagens type 
II, IX and XI form fibrillar alloys with type XI collagen as core and type IX 
collagen on the outside possibly limiting the fiber diameter (Kuettner 1992). 
In addition, the proteoglycans, a heterogeneous group of proteins, consisting 
of a central core protein substituted with one or more glycosaminoglycan 
side chains constitute the other major extracellular matrix components. 
A few good examples would be, first of all, aggrecan, the large cartilage 

126



234Stem Cells and Bone Tissue  
 

matrix proteoglycan responsible for cartilage tissue maintenance together 
with several other small proteoglycans, which are also important for its 
function, such as decorin, biglycan and fibromodulin. 

A disturbed cell-matrix relationship lies at the center of the pathogenesis 
of OA (Poole 1999). The degradation of the tissue by matrix metalloproteases 
is underlined by a loss of the main proteoglycan, aggrecan, collagen 
fiber fibrillation and surface splits (Poole 1999; Martel-Pelletier 1999). 
However, this tissue degeneration is intermingled with regeneration efforts 
(Sandell and Aigner 2001), which might possibly be seen in the occurrence 
of chondrocyte clusters and are certainly seen in the appearance of 
fibrocartilaginous tissue with a more fibrillar matrix and a newly emerging 
cell type (Bock et al. 2001; Poole 1999). These cells were initially identified 
and described at the ultrastructural level and named elongated secretory 
type 2 cells (Fig. 13.2) and had an irregular shape with a prominent rough 
endoplasmic reticulum (Kouri et al. 1996). We called them fibroblast- 
like chondrocytes, which build the fibrocartilagenous tissue at the more 
advanced stages of OA (Sandell and Aigner 2001; Miosge et al. 1998). This 
repair tissue is mainly composed of collagen type I, whereas physiological 
articular cartilage reveals only collagen type II. Collagen type I protein has 
been detected at the light microscopic level in osteoarthritic cartilage with 
the help of immunohistochemistry. Recently, we identified a subpopulation 
of these cells as chondrogenic progenitor cells (Koelling et al. 2009; Koelling 
et al. 2009;  Koelling and Miosge 2010). 

 
From  Embryonic Stem Cells to Mesenchymal Cells and 
Adult Progenitor Cells 

 
The original stem cells reside in the inner cell mass of the embryo proper 
at the stage of the blastocyst. Before this developmental stage, one could 
argue, that every cell of the morula is a stem cell. Obviously, cells of the 
morula are pluripotent and capable of developing into each of the three 
germ layers that will later, during the course of embryogenesis, develop 
into the specific tissues to form the organs (O’Rahilly et al. 1981). During 
early embryonic development, some of the embryonic stem cells of the 
inner cell mass of the blastocyst will turn into ectoderm. Derivatives of 
this germ layer will, for example, develop into skin and brain-tissues 
devoted to connecting organisms to the exterior world. Some will turn into 
endoderm. This germ layer will mainly form internal organs, for example, 
the gut and the liver. The third germ layer, the mesoderm, will develop 
from the ectoderm, known as the first ectoderm-mesenchyme transition. 
This mesoderm will be the founder of the mesenchymal cells later found 
in the connective tissues. In adult life, these tissues, such as bone, tendon, 
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Figure 13.2 Adapted from Bock et al. 2001 (with permission from the publisher), Electron 
micrographs of the three chondrocyte types: (A) normal, (B) fibroblast-like, (C) degenerating, 
n = nucleus, black arrows = endoplasmic reticulum, bars = 0,7 µm. 
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muscle, and cartilage, are the building blocks of the skeletal system. Adult 
mesenchymal cells exhibit a profound plasticity. Adult differentiated cells 
like chondrocytes, which were kept in culture on plastic dishes for prolonged 
periods of time, dedifferentiate to an extent that allows for the reoccurrence 
of characteristics of stem cells (Dell’Accio et al. 2003). In vitro, adult skin 
fibroblasts have also been turned into stem cell-like cells with the help of 
the transfection of the transcription factors oct3/4, sox2, c-myc and klf4 
(Takahashi and Yamanaka et al. 2006). Mesenchymal stem cells are 
believed to be capable to regenerate diseased tissues. We would prefer to 
call them mesenchymal progenitor cells, as all those cells described in vivo 
and in vitro are migratory cells that have left their original stem cell niche 
and, therefore, belong to the transient amplifying pool of cells. Per 
definitionem, the stem cell resides in its niche composed of adjacent, more 
differentiated, cells and extracellular matrix molecules (Fuchs et al. 2004). 

Friedenstein et al. (1970) was the first to describe fibroblast colonies 
derived from guinea-pig bone marrow and this paved the way to the 
further characterization of bone marrow stroma cells. To date, various 
populations of bone marrow stroma cells have been described as stem cells 
and differentiated into cartilage tissue in vivo and in vitro. Due to space 
limitation, we can only highlight a few of these studies here. Johnstone et 
al. (1998) described rabbit mesenchymal cells differentiated in vitro into a 
tissue staining positive for collagen type II protein. Mackay et al. (1998) 
also described the chondrogenic differentiation of mesenchymal stem cells 
derived from bone marrow to produce a chondrocyte-like extracellular 
matrix in pellet culture. Micro-mass culture of human bone marrow stromal 
cells with the addition of the chondrogenic mediators BMP-6 and TGFß3 

resulted in the formation of cartilage-like tissue in vitro. Gronthos et al. 
(2003) have also applied bone marrow derived mesenchymal stem cells 
partially characterized by their expression of STRO-1. The other marker 
related to stem cells that this group applied is CD106 or VCAM-1, which is 
an adhesion molecule, is also found on endothelial cells. Chondrogenesis 
of these STRO-1+/CD106+  cells was proven by the detection of mRNA for 
collagen type II, type X and aggrecan. 

Stem cells from tissue sources other than bone marrow have also been 
described. Synovia-derived stem cells and cells isolated from the synovial 
fluid can be differentiated into cartilage-like tissue. The Hoffa fat pad in 
the knee joint has been described as the origin of stem cells driven into the 
chondrocyte lineage in vitro (English et al. 2007). 

Up until now, only one study in a goat animal model has described 
the use of mesenchymal stem cells to treat an osteoarthritic defect. In this 
case, intra-articular injections of mesenchymal stem cells resulted in minor 
improvement of the disease process. However, the cells migrated to all of the 
tissues of the knee, except the cartilage tissue itself (Murphy et al. 2003). 
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Chondrogenic Progenitor Cells for Cartilage Repair 

 
Especially in connective tissues, adult stem cell-like cells have been long 
known to be responsible for tissue repair after injury. In muscle, stellate cells 
are found and the broken bone heals via activation of mesenchymal cells 
derived from the inner layers of the periost, the connective tissue surrounding 
each bone. There is evidence that mesenchymal cells characterized by their 
surface antigens are found in osteoarthritic cartilage tissue. Alsalameh et 
al. (2004) isolated CD105+  and CD166+  cells from osteoarthritic cartilage 
tissue by enzymatic digestion and drove them into cartilage-like tissue 
with the help of micro-mass culture in vitro. In addition Fickert et al. (2004) 
isolated cells, this time positive for CD9, CD90 and CD166 and were able to 
demonstrate their differentiation into such a tissue. Moreover, microfracture 
and Pridie drilling to open the bone marrow underneath the cartilage defect 
are still used as a therapeutic option and result in a fibrocartilaginous 
repair tissue. This repair tissue is thought to originate from migrating 
mesenchymal cells (Fig. 13.3). However this regeneration tissue exhibits 

 

 
 

Figure 13.3 The diseased cartilage tissue exhibits deep surface fissures, chondrocytes in 
clusters and breaks in the tidemark (arrow), taken from Koelling et al. 2009 (with permission 
from the publisher). 
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less resistance to mechanical stress and is composed mainly of collagen 
type I, which is not typically present in healthy articular cartilage tissue 
(Miosge et al. 1998). Finally, postnatal stem cells have been identified in the 
superficial zone of healthy bovine cartilage believed to be responsible for 
the appositional growth of the joint surface (Dowthwaite et al. 2004). 

 
Progenitor Cells in Repair  Tissue of Late-stage Osteoarthritis 

 
Physiological repair mechanisms of diseased hyaline cartilage tissues 
are sparse and overridden by matrix destruction resulting in less 
functional fibrocartilaginous, collagen type I-rich scar tissue (Koelling 
and Miosge 2009). Despite the evidence that stem cells might be involved 
in regeneration activities seen in osteoarthritis, no studies to date have 
identified an already committed chondrogenic progenitor cell population 
in late-stage osteoarthritis. We identified migratory cells derived from 
repair tissue of late-stage osteoarthritis (Fig. 13.4) which possess a high 
chondrogenic potential and progenitor cell characteristics. We called them 

 

 
Figure 13.4 A brake in the tidemark with mesenchymal tissue and blood vessels entering the 
cartilage tissue. Via this route, progenitor cells from the bone marrow enter the diseased tissue, 
taken from Koelling et al. 2009 (with permission of the publisher). 
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chondrogenic progenitor cells (Koelling et al. 2009). These cells possess a 
multipotent differentiation capacity especially towards the chondrogenic 
lineage, as well as a migratory potential (Fig. 13.5) and furthermore they 

 

 
Figure 13.5 Chondrogenic progenitor cells transfected with green fluorescent protein migrate 
into osteoarthritic tissue ex vivo. These cells are found approx. 1400µm deep in the tissue after 
2 d, taken from Koelling et al. 2009 (with permission of the publisher). 
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also populate diseased tissue in vivo (Fig. 13.6). Because these cells show 
heterogeneity in these properties and because of their migratory potential, 
we prefer to call them chondrogenic progenitor cells. Furthermore, with 
the help of RNA knock-down, we have shown that sox-9 and runt-related 
transcription factor 2 (runx-2) play a central role in the chondrogenic 
differentiation process of these cells that are also influenced by mediators 
from the extracellular matrix. These CPCs are an ideal starting point for a 
cell biological regenerative therapy of osteoarthritis. 

 

 
 

Figure 13.6 Cells with marker proteins related to stem cells are also found in vivo in 
osteoarthritic cartilage tissue. Here two cells in a cluster are positive for CD29 and CD73, 
taken from Koelling et al. 2009 (with permission of the publisher). 
Color image of this figure appears in the color plate section at the end of the book. 

 
 

Future Perspectives of a Regenerative Therapy  of 
Osteoarthritis 

 
There are key limitations inherent to any cell biological therapy of 
osteoarthritic defects that have to be overcome before a regenerative therapy 
with progenitor cells will be applicable. First, it has to be shown that these 
cells can be manipulated to enhance their chondrogenic potential and 
that it remains present over a long time. The cells present in osteoarthritic 
tissue are not able to alter the disease process. Their physiological repair 
capacity is not sufficient. Therefore, it remains to be seen if these cells 
will produce an extracellular matrix that results in a repair tissue with a 
higher physical resistance to mechanical stress than the fibrocartilaginous 
tissue developed during the course of the disease. Finding the optimal 
conditions to manipulate such cells will be crucial for the development of a 
cell biological therapy for the treatment of osteoarthritis. Resident cells that 
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are already used as a physiological response to the cell biological stimuli 
of the cartilage tissue, the tissue they are supposed to repair, may be more 
sufficient than cells derived from a totally different source such as adipose 
tissue stem cells. Furthermore, stem cells have been shown to gradually 
lose their differentiation potential with age. Mesenchymal stem cells from 
patients with osteoarthritis exhibited a reduced potential for differentiation 
towards a cartilage-like tissue (Murphy et al. 2002). Thus, a new concept sees 
mesenchymal stem cells as a therapeutic means to positively influence the 
microenvironment of the stem cells already present in the diseased tissue 
and to direct those cells in their regeneration activities (Caplan 2007). This 
is derived from results demonstrating a positive immunomodulatory effect 
of mesenchymal stem cells, even in allogenic transplantations (Wolbank 
et al. 2007). However, there is also the possibility that stem cells found in 
osteoarthritic tissue are responsible for the disease process. Before a cell 
biological therapy of osteoarthritis becomes a clinical reality, numerous 
scientific questions remain to be addressed in vitro. However, the crosstalk of 
these transcription factors mediating pluripotency remains to be elucidated, 
to gain insight into molecular mechanisms of reversibility of commitment 
and consecutive plasticity in the cells of the transient amplifying pool. It is 
well possible, that the transcription factors named above are also important 
for CPCs and might enhance their multipotency. One of the shortfalls 
of stem cell therapy is that the stemness of true stem cells is altered, as 
soon, as it is removed from its niche (Fuchs et al. 2004) and that these cells 
are the transient amplifying pool already committed towards terminal 
differentiation (Fuchs 2009). Furthermore, the in vitro-cultivation of these 
cells further alters their cell biological properties. Therefore, understanding 
of the underlying mechanisms that govern stemness, multipotency and 
differentiation is essential for all future stem cell therapy approaches. 

 
Dictionary of Key Terms 

 
•  Osteoarthritis (OA): OA is mainly degenerative joint disease. Cartilage 

plays an important role in the joints mechanics for painless and 
frictionless motion. Loss of the cartilage in the joints permits direct bone 
to bone exposure which leads to pain, inflammation and ultimately in 
the loss of the joint. 

•  Sox9: Sox9 is a transcription factor, DNA binding protein and essential 
for chondrogenesis. Sox9 is directly involved in the regulation of type 
II collagen gene, which is the major components in extra cellular matrix 
(ECM) of hyaline cartilage. Sox9 is considered as master regulator and 
as a key player during chondrocyte differentiation. 

• Runx2: Runx2 is mainly involved in osteogenesis and cartilage 
development. Runx2 is a transcription factor and acts as “main/master 
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switch” in regulating many other genes that are involved in promoting 
the osteogenic characters in cells as in osteoblasts. 

•  Mesenchymal stem cells (MSCs): MSCs mostly reside in bone marrow, 
basically mesenchyme is embroyonic connective tissue that derived 
from the mesoderm. MSCs differentiates into multiple cell types 
including adipocytes, chondrocytes, and cell of the osteoblastic lineage. 
In short, MSCs are capable to regenerate the diseased tissue. 

•  Progenitor stem cells: Progenitor stem cells behave like stem cells and 
have the ability to differentiate into specific types of target cell. The 
most prominent and clear difference between progenitor cells and 
stem cells is that the stem cells can divide indefinitely and are open to 
choose their differentiation direction while progenitor cells are already 
determinated to a more narrow cell fate decision for example cells of 
the skeletal system and have a limit number of replication cycles. 

 
Summary Points 

 
• Osteoarthritis (OA) is such a wide spread complication associated 

with aging that it is expected to become the fourth most frequent cause 
of disability by the year 2020 and cartilage regeneration becomes a 
challenge for the regenerative and bio-engineering community. 

•  Osteoarthitis is a mainly degenerative joint disease. Eventual loss 
of cartilage in the joint uncovers the bone and allows direct bone to 
bone contact. The frictional moment of joint damaging the bone and 
ultimately results in pain and inflammation. This mechanical disability 
arises due to destruction and vanishing of extracellular matrix proteins 
particularly collagen type II and proteoglycans in cartilaginous 
tissue. 

•  Chondrogeinc progenitor cells (CPCs) are present in the late stages of 
human OA. They migrate from the fibrocartilaginous tissue in vitro. 

•  CPCs exhibit stem cell characteristics such clonogencity, multipotency 
and migratory activity. 

• CPCs have tremendous ability towards chondrogensis and this 
chondrogenic potential can be enhanced by knocking down (using 
siRNA) Runx2 (an osteogenic protein) or by over expression of sox9 
(a chondrogenic protein). 
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List of Abbreviations 

 
OA : osteoarthritis 
ECM : extracellular matrix 
CPC : chondrogenic progenitor cells 
MSC : mesenchymal stem cells 

 
Transcription factors 

 
oct3/4 : octamer-binding transcription factor ¾ 
sox2 : SRY (sex determining region Y)-box 2 
c-myc : cellular myelocytomatosis oncogene 
klf4 : Krüppel like factor 4 
STRO-1 : antigen identified by Simmons and Torok-Storb for 

stem cells 
CD106, CD9, : cluster of differentiation, so called stem cell markers 
CD90 and 
CD166, CD105 
VCAM-1 : vascular cell adhesion molecule 1 
BMP-6 : bone morphogenetic protein 6 
TGFß3  : transforming growth factor beta 3 
Runx-2 : runt-related transcription factor 2 
Sox9 : SRY (sex determining region Y)-box 9 
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Conclusion 

OA is a disease of cartilage degeneration, in worse conditions, as in the later stages of 

OA, the uncovered bone ends rub against each other and lead to the deformation or 
even complete loss of the joint. Total joint replacement is considered as an ‘ultimata ratio’ 

in the later stages of OA. However, as a cellular therapy, stem cells are considered as a 

good choice for cartilage tissue regeneration. Numerous types of stem cells have been 
introduced for cartilage regeneration, for example, ESCs derived from the inner cells 

mass of the embryo, or cells from the adipose tissue, the bone marrow and synovial 

membrane. These cells sources revealed somewhat encouraging results, however, they 
also have disadvantages. Prof. Miosge’s lab discovered a tissue specific source of cells 

already present in the diseased cartilage, termed ‘chondrogenic progenitor cells’ (CPCs). 
The CPCs have stem cells-like characteristics and have the ability to differentiate into 
chondrocytes. CPCs isolated from the late stages of human osteoarthritic cartilage are 
determined to the osteo-chondrogenic lineage. However, they could be easily driven 
towards chondrogenesis (chapter 1).  

DDR-1 KO mice showed typical symptoms of OA of the TMJ, as early as 9-weeks of 
age. The TMJ cartilage exhibited osteoarthritic features, such as surface fissures, low 
proteoglycan content, and cell clusters. Collagen type I was highly up-regulated and was 
structurally disorganized, as confirmed by transmission electron microscopy. 
Furthermore, DDR-2, which is considered a gene associated with OA, was up-regulated. 

The cells isolated from TMJ cartilage of the DDR-1 KO mice maintained their typical 

osteoarthritic characteristics in vitro as well. For examples, as compared to wild type, the 
chondrocytes derived from TMJ cartilage of the DDR-1 KO mice showed high 
expressions of collagen type I, DDR-2, and MMP-13. However these cells showed low 

expression of sox9 and collagen type II, the major transcription factor and the main ECM 
protein of healthy hyaline cartilage, respectively. All the above findings have been 
confirmed with FACS analyses and microarray data. Additionally, mouse signal 
transduction PCR array experiments revealed the regulation of other important candidate 
genes, associated with OA or DDR-1-linked downstream players, particularly the 

involvement of the IHH (indian hedgehog) pathway. Two strategies were applied in order 
to reverse the osteoarthritic signs of these cells towards normal chondrocytes. First, the 
runx2 knockdown resulted in the complete loss of collagen type I, up-regulation of sox9 
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and collagen type II. Secondly, the cells were cultured in a three-dimensional 

environment in the presence of nidogen-2, BMP-6 or laminin-1. This second approach 

also revealed positive influences on the cells driving them towards chondrogenesis. For 
example, nidogen-2 and laminin-1 significantly reduced runx2 and collagen type I, 

respectively. Furthermore, a reduction was found in the intensity of the staining for 

primary cilia on DDR-1 KO cells, which indicates a connection of the primary cilium with 
OA of the TMJ. No osteoarthritic symptoms were observed in the larger joints of DDR-1 

KO mice, which clearly depicts that the DDR-1 function is restricted to the homeostasis 

of TMJ cartilage. Moreover, another possible explanation would be that embryonically the 
TMJ cartilage and knee cartilage originate from different progenitors cell pools.  

Numerous studies showed the involvement of the primary cilium in stem cell 
differentiation. The primary cilium has been shown on CPCs via immunocytochemical 
techniques using antibodies against acetylated alpha-tubulin. Surprisingly, the intensity of 
primary cilium staining was reduced in chondrocytes derived from the TMJ cartilage of 
DDR-1 KO mouse. This indicates that the primary cilium is not only involved in cell 
differentiation but also in the pathogenesis of cartilage (chapter 2 and chapter 3).     

Meniscus degradation is considered as one of the major causes of OA. Over all, more 
than 150 surgical specimens of human late stage osteoarthritic menisci were examined 
for this study. The degradation process was noticed predominantly in the superficial zone 
of the meniscus. Therefore, the inner zone of meniscus was taken for tissue explant 

cultures. Interestingly, the cells were migrating out only from those menisci lacking a 

superficial zone. However, the cells from the superficial zone and inner zone of the 
healthy meniscus, with an intact superficial zone, could be obtained via collagenase 
digestion. They maintained their different phenotypes also in vitro. The inner zone cells 

showed a round phenotype. While the superficial zone cells were found to exhibit a 
spindle shaped phenotype. Total proteome and transcriptome data analyses brought 
many others genes to light typically associated with OA. These genes were found highly 
regulated, such as, TIMP2, sox9, ACAN and MMP14. Over all, a severe catabolic shift 
was noticed in diseased meniscus.  

FACS analyses exhibited highly positive signal intensities for stem cell markers (CD105, 
CD90, CD44, CD29, stro-1) in inner zone cells derived via explant cell culture as 
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compared to cells derived via digestion from the inner zone of less diseased menisci. 

They were found to be also multipotent and could be differentiated into the three 

mesenchymal lineages (adipocytes, chondrocytes and cells of the osteoblastic lineage). 
Furthermore, these cells showed a high migratory activity towards a chemotactant, the 

human recombinant platelet derived growth factor (PDGF). Taken together, these 

distinctive characteristics allowed to name them MPCs. Furthermore, cell integration 
experiments were performed to check their possible behavior ex-vivo. The GFP-labeled 

MPCs showed a high penetration and integration capability into diseased meniscus 

tissue. The incorporation of the MPCs was traced via immunofluorescence and 
immunohistochemical techniques using antibodies against GFP.  

Microarray and proteome data of diseased cells also revealed the suppression of the 
transforming growth factor beta (TGFβ) pathway, a signal transduction pathways which 
favors chondrogenesis. In vivo and in vitro, numerous experiments showed that TGFβ3 
protein (extracellular ligand of the TGFβ pathway), the cytoplasmic proteins 
smad2/smad3 (mediators) and the nucleoplasmic protein sox9 (target gene, as 
downstream transcription factor) were significantly reduced in highly diseased human 
meniscus tissue and in cells in vitro. Importantly, the inhibitor of these pathways, e.g., 
smad7 was highly elevated in diseased samples. Besides this, the expression of the 
osteogenic master regulator ‘runx2’ was elevated in diseased samples, which 
suppressed the smad2 expression. Molecular and cell biological techniques were applied 
in order to guide MPCs towards the chondrogenic lineage. For examples, the gene 

silencing experiment of runx2, switched on the TGFβ pathway via the active mediator 
phosphorylated smad2 (p-smad2). Here, at this point, I hypothesized that both proteins, 
runx2 and smad2, are acting like antagonist and agonist, respectively. In a cell induction 
experiment with TGFβ3, the ligand triggered the signal towards the cell cytoplasm via its 

membrane receptors (type II and type I receptor kinase). The membrane receptor 
activates the cytoplasmic mediators (smad2/3) via phosphorylation. Further, the mediator 
(smad2/3) cross-talks with smad4, and finally this complex translocates to the nucleus 

and starts the transcription of the downstream target gene (sox9). All these steps were 

followed at the transcriptional level (via rt-PCR) and at the translational level (via Western 
blots). Interestingly, active smad2 (p-smad) enhanced the sox9 expression and the 
antagonist (runx2) was highly suppressed. Further, the opposing effect of runx2 was 
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confirmed by a cell induction experiment with BMP: runx2 expression was elevated and 

sox9 was down-regulated. As further evidence of this antagonism, overexpression 

experiments were performed. The smad2 overexpression significantly reduced runx2. 
Taken together, these observations suggest that MPCs can be controlled via the TGFβ 

pathway for the regeneration of the human meniscus, this might lead to new therapeutic 

options (chapter 4). 

Mouse meniscus also harbors progenitor cells, which are positive for well-known stem 
cells markers such as CD29, CD73 and CD105. MMPCs cells were localized in vivo via 

immunohistochemical techniques. Interestingly, the round cells of the inner zone were 

found positive for stem cells markers, as already seen in humans. Stem cell-related cell 
surface antigens were confirmed at the transcriptional level, via rt-PCR, and the 
translational level, applying Western blot and FACS analyses. These cells showed 
multipotency and could be differentiated only into two mesenchymal lineages. 
Histologically, at the cellular level the mouse meniscus revealed different features than the 
human meniscus. For example, the mouse meniscus lacks the superficial zone. 
Moreover, other distinguishable features were observed by immunohistochemistry, for 
example, collagen type I staining was found throughout the inner zones of the inner and 
outer parts of the human meniscus, while collagen type I staining was restricted to outer 
zone of the mouse meniscus (chapter 5).  

In summary, OA cartilage degeneration overrides the generally limited self-renewal 

capacity of the tissue. It remains a great challenge to enhance the regeneration potential 

of hyaline cartilage and human meniscus during OA. In the long run the intrinsic efforts of 
repair cells lead to scar tissue, which is not flexible and biomechanically unfeasible for 
proper joint moments. Here, progenitor cells in diseased meniscus in situ were 

introduced, which are a starting point for cell biological therapeutic options for cartilage 
repair in the future (chapter 6)  
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