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Summary  

Ecosystem services such as the suppression of pest insects may increase productivity of 

agroforestry systems and thereby increase well-being of smallholders. Tropical birds and bats 

are effective predators of arthropods and move within landscapes, representing mobile links 

that connect habitats in space and time. But information on the effects of birds and bats on 

multitrophic interactions and agricultural productivity in different types of agroforestry 

systems is limited. Similarly, the relative importance of local agroforestry management and 

the tropical landscape matrix for ecosystem services mediated by birds has not been 

investigated so far. Last but not least, a better understanding of dynamic tropical 

agroforestry landscapes and the effects of habitat conversion and land use intensification on 

important functional groups as well as for endangered species is urgently needed.  

We conducted a predator exclusion experiment in which we manipulated the access of birds 

and bats on 15 different cacao agroforestry sites to quantify their effects on diurnal and 

nocturnal insects and spiders, cacao fruit development, leaf herbivory and the final crop yield 

over a period of 15 months. The selected cacao agroforestry sites were located on the island 

of Sulawesi (Indonesia) and differed in local management and distance to forest. The absence 

of birds and bats led to an increased density of insect herbivores and caused a concurrent 

release of mesopredators such as ants and spiders despite negative effects on the 

development of cacao fruits and a remarkable decrease of final cacao crop yield of 31 % 

across local and landscape gradients.  

In addition to bird and bat field exclusion experiments, we investigated the group of 

insectivorous birds with two different sampling methods. Using an arthropod predation 

experiment (standardized exposure of dummy caterpillars), we quantified predation rates in 

relation to the identity and diversity of insectivorous birds. We discovered that responses of 

the insectivorous bird community and the predation activity differed with the landscape 

context and both increased with forest proximity. Our findings show that ecosystem services 

can be driven by single species rather than by overall communities of certain functional 

groups. Therefore, the conservation of species diversity and ecosystem services does not 

necessarily rely on the same management strategies, although nearby forests appeared to be 

of great importance for both bird diversity and avian ecosystem services.  
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The importance of forest proximity and large trees in agroforestry landscapes was also 

shown in a species specific study we conducted on a declining local population of the 

Indonesian endemic Grosbeak Starling in our study area. Although this species is well 

adapted to anthropogenic landscapes, it is also closely associated with large remnant forest 

trees that remain along forest margin areas and land use systems as nesting sites. The rapid 

conversion of the forest margin landscape in Central Sulawesi led to a sharp decline of such 

nesting sites by 92% within only two years. Hence, the endemic Grosbeak Starling is likely to 

be currently endangered although it was locally very abundant a few years ago. These results 

show how fast conversion of natural habitats and resource extraction in increasingly 

intensified tropical agroforestry landscapes can result in changes of the local species 

diversity.  

In conclusion, we demonstrate the importance of the quantification of final ecosystem 

services such as fruit productivity and crop yield to improve the valuation of ecosystem 

services provided by tropical birds and bats. Species diversity and species identity are both 

important measures for functional diversity and ecosystem functioning, although with 

different importance for conservation and the sŵallholders͛ eĐoŶoŵiĐs. A single common 

species (Zosterops chloris) was more important for the service of arthropod suppression than 

overall bird species diversity. Nevertheless, nearby forest habitats and extensively used 

agroforests (shaded and without use of pesticides or other chemical compounds) turned out 

to be important for both biodiversity and ecosystem services. Multitrophic interactions 

between birds, bats and other natural enemies (ants and spiders) of phytophagous insects 

are likely to jointly impact the productivity of agroforestry systems in complex ways and 

therefore need to be considered simultaneously at different temporal and spatial scales.         

.  
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Tropical landscapes – challenges and chances  

During the last two decades, the conservation of global biodiversity, ecosystem processes and 

services has become one of the most discussed and intensively explored topics in the scientific 

community and human society. Different concepts have been developed in order to prioritize 

global conservation efforts (Brooks et al. 2006) with relation to human well-being and 

population growth (Cincotta et al. 2000; MA 2005). As a result, tropical regions were defined 

as hotspots of worldwide terrestrial biodiversity (Myers et al. 2000) and subsequently 

received great attention in scientific research and conservation planning as well as extensive 

financial support (Myers 2003). However, although the conservation of tropical biodiversity is 

highly valued by the global society and supported by wealthy countries and companies, the 

valuation by rural populations and farmers living in these tropical landscapes is crucial for the 

maintenance of native wildlife and biodiversity (Schroth 2004). Most biodiversity hotspots 

occur in countries where poverty is widespread (Fisher et al. 2007), which makes matters 

worse. The conservation of the planet´s biodiversity in a world of persistent poverty, 

accelerating resource extraction and climate change remains a challenge, which often 

confronts conservationists with hard choices (McShane et al. 2011). The need of the 

explosively growing human population (Keinan and Clark 2012) for food, fuel and fibre, 

biological products and many other ecosystem processes and services (MA 2005) leads to an 

ongoing transformation of natural tropical landscapes, mainly into agricultural land (Archard 

2002). Deforestation and conversion of tropical forests as well as land use intensification drive 

the loss of biodiversity and many associated ecosystem services in the tropics (e.g. Lawton et 

al. 1998; Daily 2001; Foley et al. 2005). In this context, the combination of effective 

agricultural land use with biodiversity conservation represents another challenge (Tscharntke 

et al. 2012).  

It is important to recognize available opportunities within this development. Sufficient 

evidence from agricultural research is available showing that certain types of agricultural land 

use can provide habitat and resources for a variety of plant and animal taxa and may 

significantly contribute to conservation efforts in fragmented tropical landscapes (e.g. Schulze 

et al. 2004; Tscharntke et al. 2005; Perfecto and Vandermeer 2008).  
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Agroforestry systems (the practice of integrating trees and other large woody perennials on 

farms and throughout the agricultural landscape) are increasingly recognized as a useful and 

promising land use strategy that diversifies production for greater social, economic and 

environmental benefits (Schroth et al. 2004; Jose 2009). Particular attention has been paid to 

coffee (Coffea arabica, C. canephora) and cacao (Theobroma cacao) agroforestry systems (e.g. 

Tscharntke et al. 2011), the largest legal international trade volume beside petroleum (Donald 

2004). These systems can support high numbers of plant and animal species depending on the 

local diversity of shade trees (e.g. Perfecto et al. 1996; Rice and Greenberg 2000) and the 

respective landscape context (e.g. Fahrig et al. 2011), especially proximity to primary forest 

(e.g. Perfecto et al. 2007; Clough et al. 2009b).  

Transformation of tropical landscapes into agricultural land also leads to changes in landscape 

composition and spatial configuration which affect the diversity and abundance of important 

functional groups like insectivorous birds and bats (e.g. Faria et al. 2006; Sekercioglu et al. 

2006; Tscharntke et al. 2008,; Estrada-Villegas et al. ϮϬϭϬ; Williaŵs‐GuilléŶ et al. 2010). 

Consequently, extensively managed smallholder agroforests with a diverse shade tree cover 

can support substantially higher levels of species richness and functional diversity, which may 

enhance the impact of natural ecosystem services provided by these species (Tscharntke et al. 

2005; Whelan et al. 2008; Kunz et al. 2011). The idea of integrating such smallholder 

agroforestry systems into conservation strategies of tropical landscapes has become even 

more attractive since it has been shown that the support of species-rich agroforests does not 

need to result in a decrease in agricultural output (Clough et al. 2011, Karp et al. 2013). In 

conclusion, agroforestry practices which facilitate such win-win situations both for human 

well-being and biodiversity in the tropics, represent a great chance for more sustainable 

development of human actions in the future. 
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Birds, Bats and arthropods in tropical agroforestry 

The suppression of pest insects in worldwide agroforestry systems by natural enemies is 

considered as an important and increasingly attractive alternative to the use of pesticides or 

other chemical compounds (e.g. Bianchi et al. 2006; Clough et al. 2009a). Birds and bats 

provide numerous valuable ecosystem services in tropical landscapes and are particularly 

effective in supressing the numbers of pest insects in tropical agroforestry (e.g. Greenberg et 

al. 2000; Tscharntke et al. 2008; Van Bael et al. 2008). They act as functionally diverse mobile 

links that actively move in the landscape and connect habitats in space and time through 

recolonization ability and larger resource accessibility (Lundberg and Moberg 2003; 

Sekercioglu 2006; Whelan 2008; Kunz et al. 2011). However, until a few years ago, their role in 

agroforestry has not been investigated separately, underestimating the importance of bats for 

the limitation of insects (e.g. Kalka and Kalko 2006; Kunz et al. 2011) and attributing observed 

effects to birds (e.g. Greenberg et al. 2000; Jhonson et al. 2010). Williams Guillén et al. (2008) 

and Kalka et al. (2008) were the first to separate the effects of birds and bats in Neotropical 

agroforestry systems and forests using experimental exclosures. Their results showed that 

both diurnal and nocturnal flying predators have large impacts on the limitation of 

arthropods, especially in agroforestry systems (Williams-Guillén et al. 2008).  

These new findings left behind open questions as well as an evident need for more empirical 

field studies which consider the complexity of multitrophic interactions between natural 

enemies and arthropods both in space and time and their relation to functional diversity and 

crop yield. For example, predation by birds and bats might lead to reorganizations of the local 

food web structure by affecting predatory insects and spiders (e.g. Lundberg and Moberg 

2003), with unexpected consequences for the agricultural output. These effects of birds and 

bats on arthropod supression, trophic cascades and crop productivity in tropical agroforestry 

systems have not been investigated in previous studies, partly because multitrophic 

interaction and effects of mesopredator release are difficult to study. Furthermore, reliable 

recommendations for agroforestry systems need to integrate knowledge on the relative 

importance of local and landscape management for biodiversity and its relation to ecosystem 

services (e.g. Tscharntke et al. 2005; Bos et al. 2007), which have not been quantified to date. 

These knowledge gaps and open questions are the focus of my thesis. 
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Chapter II of this thesis shows the results of our full factorial exclusion experiment, which 

relates predation of birds and bats to changes in phytophagous insects, mesopredators, 

development and damage of cacao fruits, leaf herbivory and crop yield over local and 

landscape scales. It provides a detailed introduction into our field exclusion experiment and 

the effects of manipulated access of birds and bats to our 15 cacao agroforestry study sites 

which differed in local shade tree management and distance to primary forest. The effects of 

single or simultaneous bird and bat exclusions are related to an unmanipulated control 

treatment on each site. The results of this study highlight the importance of multitrophic 

interactions in agroforestry food webs as well as the tremendous economic impact of 

insectivorous birds and bats on crop yield production.  

In Chapter III, we present our findings from a comprehensive assessment of the bird 

community related to field predation experiments performed along gradients of local shade 

tree cover and distance to forest margin in the agroforestry landscape. Our results show that 

species diversity did not drive predation success, but the abundance of the most common 

species (mainly the Indonesian endemic Zosterops chloris) and the proximity to nearby 

forests. We found that mist netted birds better reflect species identities (which better 

represented the active predator community) whereas point counts reach higher overall 

inventory completeness (and therefore better represent species diversity). This chapter shows 

that species diversity and ecosystem services should be quantified with suitable methods and 

that their conservation does not necessarily rely on the same management strategies, 

although forest proximity seems to be of overall importance for both diversity and provided 

ecosystem functions. 

In Chapter IV, we focus on the role of an endemic bird species within the dynamic forest 

margin landscape of our study region. The Grosbeak Starling Scissirostrum dubium (Sturnidae) 

is highly adapted to forest margin areas with high anthropogenic impact but depends on the 

availability of old and large forest remnant trees as nesting sites. Its unique breeding behavior 

therefore makes the species sensitive to transformation and degradation of the natural forest 

margin zone. We used this species-specific example to investigate the importance of big trees 

in agroforestry landscapes and to demonstrate the consequences of the rapidly ongoing 

conversion of forested habitats at the margin of protected areas.  
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Experimental design and collection of data  

The main experimental approach of my thesis was a comprehensive exclusion experiment of 

birds and bats in cacao agroforestry systems which were selected in Central Sulawesi 

(Indonesia). Indonesia is the largest producer of cocoa in South-East Asia and the third largest 

producer worldwide (Moser et al. 2010). The country has 1.5 million hectares of cocoa 

plantations, mostly in the eastern Sulawesi island, with an extra 10,000 to 20,000 hectares of 

additional production due the last years (Wall Street Journal, 2011). Contrasting to its 

economic importance, the island of Sulawesi is the largest within the Indonesian biodiversity 

hotspot Wallacea with its highly endemic avifauna (Stattersfield et al. 1998) and an 

outstanding high proportion of endemic species from various other taxa (e.g. Lee et al. 2007). 

Together with the fact that previous studies on the importance of both birds and bats in 

tropical agroforestry landscapes were only available from the Neotropics, Sulawesi turned out 

to be an ideal study area to investigate the addressed questions of the importance of birds, 

bats and arthropods in tropical agroforestry landscapes. 

In the following, four color plates illustrate important parts of our extensive field work such as 

the experimental study design (Plate 1), the quantification of cacao fruit development and 

crop yield (Plate 2), leaf herbivory and arthropod community (Plate 3) and the insectivorous 

bird community (Plate 4).  
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Plate 1: Study area and exclusion experiments. (a) Our study area was located at the eastern 

border of the Lore Lindu National Park in Central Sulawesi, Indonesia. (b) In our study area, we 

selected 15 cacao plantations with different local shade tree cover and distance to forest 

margin as our study sites. (c) On each study site, we established 4 exclosure treatments to 

manipulate the access of birds and bats. (d) Every exclosure treatment included 2 cacao trees 

and was built by bamboo constructions and nylon filament nets to exclude birds or bats (in 

the control treatment, no nets were used).  
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Plate 2: Quantification of cacao fruit development (per tree) and crop yield (per study 

treatment). (a) Counting of cacao flowers on each tree; (b) Counting of fruits with assessment 

of fruit pests and diseases until ripeness of fruits; (c) Harvest of ripe fruits; (d) Assessments of 

pests and diseases inside the harvested fruits plus quantification of fresh weight of cacao 

yield; (e) drying cacao beans and quantifying dry weight in addition to qualitative sorting (best 

beans vs. low quality beans).  

 

 

Plate 3: Quantification of leaf herbivory and the arthropod community on each study tree. (a) 

Leaf development was quantified for 4 weeks with selected groups of young leafs on every 

study tree; (b) in addition to leaf size and area measurement, we estimated leaf damage by 

phytophagous arthropods with highly standardized methods. In day-time and night-time 

arthropod surveys, we quantified the number of (c) all larvae, (d) adult arthropods, (e) spiders 

and other predatory arthropod groups on our study tress (such as ants).  
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Plate 4: Assessment of the insectivorous bird community. We quantified the bird community 

on our study sites using point counts and (a) mist netting. In the following, we particularly 

focused on the role of abundant insectivorous bird species such as (b) Zosterops chloris in our 

analyses. In addition, we studied the nesting site requirements of (c) Scissirostrum dubium, an 

endemic Starling species which is well adapted to anthropogenic landscapes and requires 

proximity to natural forest resources such as large dead trees as nesting sites.  
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Abstract  

Human welfare is significantly linked to ecosystem services such as the suppression of pest 

insects by birds and bats. However, effects of biocontrol services on tropical cash crop yield 

are still largely unknown. For the first time, we manipulated the access of birds and bats in an 

exclosure experiment (day, night and full exclosures compared to open controls in 

Indonesian cacao agroforestry) and quantified the arthropod communities, the fruit 

development and the final yield over a long time period (15 months). We found that bat and 

bird exclusion increased insect herbivore abundance, despite the concurrent release of 

mesopredators such as ants and spiders, and negatively affected fruit development, with 

final crop yield decreasing by 31% across local (shade cover) and landscape (distance to 

primary forest) gradients. Our results highlight the tremendous economic impact of common 

insectivorous birds and bats, which need to become an essential part of sustainable 

landscape management.  
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Introduction 

Ecosystem services such as biological control of pests contribute to human welfare, especially 

for the world's poor (Millennium Ecosystem Assessment 2005; Boyd & Banzhaf 2007). Recent 

studies paid particular attention to the impacts of both diurnal and nocturnal flying predators 

in different tropical habitats (Kalka et al. 2008; Williams-Guillén et al. 2008; Morrison & 

Lindell 2012), but there is no publication showing the influence of birds and bats on 

arthropod suppression and crop productivity. It has not yet been analyzed in a long-term 

experimental approach considering effects on arthropods and final yield across spatial scales. 

This is partly due to the complexity of predator-prey interactions, which are often non-linear, 

change in space and time, and include direct as well as indirect effects (e.g. Brown et al. 

2001; Singer et al. 2012), making predictions difficult. For example, insectivorous birds, which 

decrease the numbers of leaf chewing insects can indirectly enhance forest tree growth by 

reduction of leaf damage (Marquis & Whelan 1994), whereas intermediate densities of minor 

pests in other ecosystems can be favorable, if they inhibit infestation of major pests 

(Wielgoss et al. 2012).  

Flying vertebrates like birds and bats are considered to be effective arthropod predators in 

the tropics (e.g. Whelan et al. 2008; Kunz et al. 2011; Morrison & Lindell 2012), but can also 

impact predatory insects and spiders, releasing lower trophic levels from potential pest 

control (e.g. Lundberg & Moberg 2003). Such mesopredator release (e.g. of predatory spiders 

and ants) could lead to reorganization of local food web structure and consequentially, 

unexpected changes in crop productivity, underlining the need for empirical studies that 

consider the complexity of interactions both in space and time with their relation to crop 

yield.  

We conducted an extensive exclosure field experiment, including 15 months of continuous 

data collection to investigate the effects of biological control by birds and bats on diurnal and 

nocturnal insect communities, cacao fruit development, crop yield and leaf herbivory in 

Indonesian tropical cacao agroforests differing in local shade tree management and distance 

to primary forest. Such long-term empirical studies (conducted over a period of 12 months or 

more) better account for variation of environmental and seasonal fluctuations (e.g. Williams-
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Guillén et al. 2008; Singer et al. 2012), changing peaks of population densities and crop yield, 

which have never been considered in previous exclosure experiments. They also provide for 

larger sample sizes and higher completeness of species inventories (e.g. Novotný & Basset 

2000).  

Landscape structure influences local communities and ecosystem services (e.g. Tscharntke et 

al. 2012), especially the biological control of insect pests (Bianchi et al. 2006) as well as 

species richness and diversity of birds and bats (Faria et al. 2006). Both distance to forest 

margin and available amount of shade trees are known to be critical variables in explaining 

the composition of bird (Clough et al. 2009) and bat (Faria et al. 2006) communities, in 

particular of forest species.  

Last but not least, the majority of research on the functional role of birds and bats is available 

from the Neotropics (e.g. Van Bael et al. 2005; Kalka et al. 2008; Williams-Guillén et al. 2008; 

Morrison & Lindell 2012), while knowledge from other tropical regions is urgently needed to 

understand global patterns of biodiversity-related ecosystem services.  

We tested the hypotheses that (1) the absence of top predators (birds and bats) does not 

only influence the abundance of phytophagous insects and mesopredators (predatory ants 

and spiders) but also (2) affects cacao crop yield. Furthermore, we hypothesized that (3) 

these effects depend on shade tree availability in the cacao plantations (Clough et al. 2011; 

Tscharntke et al. 2012), and on the distance to the next closed forest block (Clough et al. 

2009), a likely source of foraging insectivorous birds. 

To our knowledge, we present the first results from a comprehensive exclosure experiment 

relating predation of birds and bats to changes in mesopredators (predatory insects and 

spiders), phytophagous insects, and the development and damage of fruits over more than 

one year. In particular, we quantified crop yield, the final ecosystem service integrating all 

intermediate services (Mace et al. 2012), and found that bats and birds induced crop yield 

increases consistently across local (shade cover) and landscape (distance to primary forest) 

gradients.  
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Material and Methods  

Establishment of long-term exclosures 

All sites were situated at the northern tip of Napu Valley in Central Sulawesi, Indonesia (1° 

25' 32" S, 120° 18' 54" E). After an initial mapping of the study area, we selected 15 

smallholder cacao plantations as sites for our exclosure experiments in March 2010 (Fig. 1).  

Each site represented a unique combination of two gradients: (i) Local shade tree cover: With 

reference to Steffan-Dewenter et al (2007) and based on measurements in the field, we 

quantified local shade tree canopy cover in percent and classified it as low (0-25%), medium 

(25-50%) or high (more than 50%). In all of our study sites, shade was predominately 

provided by planted legume shade trees (Erythrina sp. and Gliricidia sp.; N = 2148; see 

Appendix Tab. S5), which are favored in many agroforestry systems (e.g. Tscharntke et al. 

2011). Single shade tree species from the families Euphorbiaceae (e.g. candle nut tree) and 

Lauraceae (e.g. avocado) occurred in two thirds of the plots, but were much less common (N 

= 87 and 86, respectively). We used mean shade tree cover per site, which was calculated 

from two shade cover surveys in June 2010 and February 2011, using digital photographs of 

the treatment canopy at each site (Panasonic DMC-TZ7EG-K) and processing software Image 

J (Rasband 1997-2010).  

(ii) Distance to primary forest: Distance to primary forest was determined using satellite 

pictures and GPS data (Garmin 12 Map) from the study area and measured as the distance 

(range: 0-3500 m) from the edge of the study site to the edge of the closed forest block. 

There were no secondary forest patches between the cacao plantations and the primary 

forest of the adjacent national park (Lore-Lindu National Park).  

All cacao plantations were larger than 0.5 hectare (range: 0.5-1.5 ha) and at least 500 m 

apart from each other. They were managed by local farmers without applications of 

insecticides, herbicides or other chemical compounds. We rented 8 cacao trees per site 

during the period of the study (January 2010 until August 2011). Trained field assistants 

maintained the experimental plots (see Appendix Tab. S2). Study tree and site characteristics 

are listed in more detail in the Supporting Information (see Appendix Tab. S1).  
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Fig. 1: Schematic map of study sites. Grey parts indicate the closest primary forest block of the Lore Lindu 

National Park in 2004. The dashed line represents the forest margin measured in our study (2010). White area 

represents the human dominated open land of the Napu valley (with all other habitat types, including 

agricultural systems). Our 15 cacao agroforestry study sites are plotted as circles, which indicate the amount of 

shade cover: 0-25 % (empty); 25-50% (half filled) and more than 50% (filled black). 

 

In each cacao plantation, 4 exclosure treatments (Fig. 2) were established: (1) Day-time 

exclosure of birds (Day ex.); (2) Night-time exclosure of bats (Night ex.); (3) Total exclosure of 

both birds and bats (Full ex.); (4) Control treatment with no exclosure (Con). Each of the four 

exclosure treatments contained two 2.5-4 m high cacao trees. The foliage of the study trees 

and the exclosure net were always spaced 1-2 m. Except for the control, each treatment was 

surrounded by an exclosure cage built by a bamboo construction and commercial nylon 

monofilament with a mesh size of 2 × 2 cm (following Van Bael et al. 2005; Kalka et al. 2008; 

Williams-Guillén et al. 2008). The exclosures prevented access by all bird and bat species but 

allowed access by arthropods, including large spiders and Lepidoptera (personal observation; 

see also Morrison & Lindell 2012). The exclosure nets were opened and closed like curtains 

daily in the morning hours (5:30 am) and in the evening (6:30 pm) to avoid/allow access from 

all directions. The total exclosure was always closed and cleaned from fallen shade tree 

leaves if necessary. In total, 120 cacao trees from 60 exclosure treatments on 15 cacao 

plantation sites were included in our study.  
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Fig. 2: One of the four exclosure treatments per site (Day, Night and Full Exclosure in addition to a non-caged 

Control) with two cacao trees (Theobroma cacao) within the exclosure construction of bamboo and nylon 

monofilament (mesh size: 2 × 2 cm). 

 

After 8 weeks of training of Indonesian assistants and optimization of methods and survey 

schedules, we started our standardized, repeated surveys in May 2010 and finished in August 

2011 (15 months of continuous data collection; see Appendix Tab. S2). Additional mist 

netting of birds (see Appendix Tab. S3) and data from bat mist netting 23 km apart from our 

study area (see Appendix Tab. S4) were used to identify excluded species and families. The 

most abundant insectivorous bird species excluded within our sites were: Diceaum 

aureolimbatum, D. celebicum, Nectarinia jugularis, Zosterops chloris and Z. atrifrons (see 

Appendix Tab. S3). Excluded insectivorous bat species from the western border of the Lore 

Lindu national park mostly belong to the genera Hipposideros, Myotis, Megaderma and 

Rhinolophus (Graf 2010, see Appendix Tab. S4).  

 

Arthropod communities  

Every month, B. M. observed the arthropod community of each study tree on each site twice: 

During daytime (7am until 1pm) and during nighttime (8pm until 2am). We used a time 

standard of 25-minutes per survey round and tree to observe all insects and spiders on the 

different parts of the tree. Starting on the ground, we observed stem, branches and tree 
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foliage visually and documented the observed arthropods with digital photographs 

(Panasonic DMC-TZ7EG-K). For each insect or spider, we noted as many attributes as possible 

and necessary for the best available identification (e.g. colour, morphological characteristics 

and body size). In the field, we identified insects and spiders at least to order level and 

estimated the size (in mm). We recorded the respective position on the tree (branch, stem, 

fruit, flower or leaf) and activity (eating or hunting) of each observed individual. The number 

of insects that occurred in groups larger than 20 individuals was estimated and re-checked 

after the survey using the photographs. Final identification was done using various 

references (e.g. Zborowski & Storey 2010) and photographic material from the surveys, 

which was archived after each survey.  

For statistical analysis, we used seven groups of the most common arthropod groups that are 

expected to play an essential role within the multitrophic interactions on cacao trees (out of 

7 target orders), either being at least partly phytophagous (Coleoptera imagines and 

Lepidoptera larvae), mesopredators (ants and spiders), phytophagous ant trophobionts 

(aphids), and/or mainly night active consumers (Orthoptera and Blattodea). Lepidopteran 

larvae were the only larvae group which was abundant enough (Tab. 1) to perform a separate 

analysis (in contrast to Coleoptera larvae). As flowers and fruits of cacao grow on the tree 

stem (cauliflore) and we were interested in quantifying fruit development, we analyzed 

arthropods on the stem of the cacao trees (including tree stem, branches, fruits and flowers) 

separately from those on the tree foliage (two different response variables). Each of these 

seven groups showed up with min. 250 individuals in at least one of the two tree parts.  

 

Cacao pests, fruit production, flowers and yield 

The cacao fruits were surveyed in two steps. First, every two weeks, the number of small, 

medium and large cacao fruits was counted (according to the methods of Wielgoss et al. 

2012) and fruit pests were quantified, including feeding marks of Helopeltis sulawesii 

Stonedahl (Heteroptera, Miridiae) and cacao pod borer Conopomorpha cramerella Snellen 

(Lepidoptera: Gracillaridae) feeding symptoms as well as cherelle wilt (early abortion of small 

cacao fruits smaller than 5cm).  
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In addition to the cacao fruits, we counted all cacao flowers (2011-2012) on each tree. Cacao 

flower and fruit survival strongly depend on multiple factors such as fruit abortion, diseases 

and pollination and are determined during the first few weeks of fruit development (Bos et 

al. 2007).  

The total number of cacao flowers was used in our analyses. In a second step, all harvested 

cacao fruits were opened and diseases of the fruit content were recorded (e.g. cacao pod 

borer damage). Finally, the cacao seeds were dried in separate drying boxes for each 

treatment per site. The dry cacao seeds (kg/treatment) represent cacao yield in our analyses. 

Cacao yield was further sorted into first class and second class cacao beans to determine 

effects on the top quality yield. In total, we recorded 75576 cacao fruits of all size classes 

(including multiple counts of single fruits which developed during the survey and were 

therefore counted more than once). Altogether, 4071 cacao fruits were produced and 

harvested on all sites during our experiment.  

 

Herbivory 

On each study tree, leaf damage (in %) caused by phytophagous insects (and not by fungi, 

virus infection, or sunburn) was quantified by a trained assistant. Every month, we marked a 

new group of 10 freshly developed (red colored and soft) cacao leaves on one or two 

branches of each study tree, and surveyed them three times (every 10 days). The selection of 

leaves was determined by the leaf production on the tree itself: very young cacao leaves 

have an intensive red color, in contrast to leaves older than a few days, which change their 

color increasingly to green, and are not of primary interest for herbivores (personal 

observation; see also Van Bael et al. ϮϬϬ5Ϳ. We ŵeasured the leaǀes͛ leŶgths aŶd ǁidths ;iŶ 

cm) to calculate the leaf area according to an algorithm developed by Marc Adams (personal 

communication: N = 97, R2 = 0. 997): Area = (Length*0. 4807)2
. For analyses we used the 

absolute leaf loss per tree calculated as the product of leaf area and leaf damage. In total, we 

investigated 34400 leaves in 30 rounds.  
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Statistical analysis 

We used linear mixed-effects models (lme) with site as a random factor to test for the effects 

of vertebrate exclosure (treatments were grouped within site) on the observed parameters.  

Adequacy of models checked graphically by plotting residuals against fitted values. The 

variables shade tree cover and distance to forest margin were centered by substracting the 

mean to improve the interpretation of multiplicative and interaction terms in the models. 

The distribution of the response variable was assumed to be normal (yield, number of fruit, 

leaf loss), overdispersed binomial (incidence of damage by pests and diseases) or right-

skewed (arthropod counts and number of cacao flowers). The number of all arthropod 

counts and cacao flowers per treatment were log-transformed (natural logarithms) before 

analyses. Cacao fruit damage incidences were calculated as the relative proportion of pest 

infection relative to the total number of harvested cacao fruits (N = 4071) or proportion of 

cherelle wilt pods relative to the total fruit set including black cacao pods (N = 10362). For 

the analyses of cacao yield, harvested cacao fruits and small cacao fruits, untransformed raw 

data were used. All data were aggregated at study site and study treatment level.  

Exclosure treatment, mean shade cover (%) and distance to forest (in meters) were used as 

fixed effects in all initial full models. To produce the final model, we took the models using 

Maximum Likelihood (ML) and dropped all three- and two-way interactions from the full 

model that did not reach statistical significance in the LRT (Likelihood Ratio Test). Significance 

of remaining interaction terms and explanatory variables not entering any interaction term 

was also assessed using LRT and a manual approach in which single terms were dropped one 

by one from the full model to investigate effects of the single terms.  

To plot the effect of the exclosures relative to the control treatment, we calculated the 

difference between each study treatment (Day ex., Night ex. and Full ex.) and the control 

treatment. Coefficients and respective SE´s between exclosure treatment and the tested 

paraŵeters ǁere deterŵiŶed froŵ the ŵodels͛ suŵŵarǇ statistiĐs. DiffereŶĐes ďetǁeeŶ 

groups were considered significant when P < 0.05. All analyses were conducted using R 

version 2. 15. 1 (R Core Team 2012).  



 

Chapter II  

 

 

- 32 - 

 

Results 

Responses of the arthropod community 

In total, we observed 47406 nocturnal and diurnal insects and spiders belonging to 16 orders 

and 65 families, from which 32537 individuals from seven target arthropod orders (from at 

least 46 families) were included in our analyses (Tab. 1).  

Tab. 1: Total numbers (N) of the most common arthropod groups observed on (a) woody cacao tree parts 

(stem, branches, fruits and flowers) or (b) the cacao foliage. Differences between arthropod numbers in 

daytime and night-time surveys (I and II) are shown above the total count of arthropods (TOTAL). Short names 

of the groups relate to: Lepidoptera larvae (leplarv), Coleoptera imagines (coleo), wingless Formicidae (ants), 

Araneae (spiders), Aphididae (aphids), Orthoptera (ortho) and Blattodea (blatto). 

 

Arthropod groups 

No. of individuals  leplarv coleo ants spiders aphids ortho blatto 

(a) woody parts 486 1101 9711 3580 1343 97 374 

(b) tree foliage 1973 2469 1047 1330 5704 250 18 

(I) Day 1665 2062 9367 3228 5352 108 162 

(II) Night 794 1508 1391 1682 1695 239 230 

TOTAL 2459 3570 10758 4910 7047 347 392 

 

All arthropod groups responded with significant increases to the absence of birds, bats or 

both predators in the full exclosure and in at least one of the two cacao tree parts (foliage vs. 

woody parts). The following results from Post-Hoc tests are displayed in Fig. 3 and listed in 

detail in the Supplementary Material (see Appendix Tab. S5). On the woody parts of the 

cacao trees, where flowers and fruit develop, the abundance of the main chewing insect 

groups, the Coleoptera and larvae of Lepidoptera, increased in the full exclosure and the day 

exclosure relative to the control treatment (P < 0.05, Tukey test; Fig. 3/I a and b). These 

groups were also often observed actively feeding on cacao flowers. Spiders increased also 

strongly on woody tree parts in all exclosure treatments (P < 0.05, Tukey test; Fig. 3/I d). 

Phloem-feeding aphids increased in the full exclosures on both tree positions (P < 0.05, Tukey 

test; Fig. 3/I and II e). Interestingly, mainly night-active insects like Orthoptera and Blattodea 

increased only within the night exclosures and on both tree parts (P < 0.05, Tukey test; Fig. 

3/I and II f and g).  
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Fig. 3: Effects of daytime, night-time and full exclosures of birds and bats on abundances of seven arthropod 

groups (a-g) observed on (I) woody parts of the cacao trees (stem, branches, cauliflore fruits and flowers) or (II) 

on the cacao tree foliage. Observed abundance of all groups increased in the exclosure treatments relative to 

the unmanipulated control treatment (dashed line at zero level). For each exclosure treatment, the mean 

number of individuals is displayed in black (± 95% confidence intervals) and original data on study site-level (15 

circles per treatment) are shown in grey. This allows a direct visual interpretation of treatment effects on single 

arthropod groups. All individual numbers were LOG transformed before analyses. Asterisk symbols represent 

statistical significance for p values below 0.05, 0.01 and 0.001 (*, ** and ***). 

 

In contrast, predominantly day-active insects like Coleoptera and Lepidoptera larvae 

increased only in the day exclosures, and only in their main microhabitat, the tree foliage (P < 

0.05, Tukey test; Fig. 3/II a and b).  
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Spiders were much less abundant on the tree foliage (only 27% of the whole spider sample) 

and increased there only within day exclosures, whereas ants in the tree foliage strongly 

increased in the night and under full exclosure of birds and bats (P < 0.05, Tukey test; Fig. 3/II 

c and d). Abundance of aphids, which were observed to attack young flowers and fruits and 

were attended by ants, were the only herbivore group that was negatively related to cacao 

yield (F1,44 = 7.459, P = 0.009; see Appendix Tab. S7).  

 

Cacao yield  

In total, we recorded 50114 small cacao fruits, 5648 medium-size fruits and 15743 large fruits 

(including multiple counts of fruits over different survey rounds) during 28 survey rounds on 

our study sites, resulting in a final count of 4071 ripe and harvested fruits. The number of 

harvested fruits represents the total amount of cacao fruit production in the exclosure cages. 

These fruits were used to determine the representative cacao yield per treatment and study 

site.  

In the control treatments, a mean cacao yield (dry cacao beans) of 0.1 kg per treatment and 

month was obtained over the whole duration of the experiment. The total amount of cacao 

yield was closely related to the amount of selected first class cacao beans (R2 = 0.81, d. f. = 

58, N = 1680). The absence of birds and bats in the full exclosure (P = 0.004) and night 

exclosure (P = 0.032), but not in the day exclosure, caused a significant decrease of crop yield 

compared to the control treatment (P < 0.05, Tukey test; Fig. 3a). The number of harvested 

cacao fruits was significantly reduced in all experimental treatments, compared to the mean 

productivity in the control treatment (all P < 0.05, Tukey test; Fig. 4a).  
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Fig. 4: Results from linear mixed effect models (lme) and performed Tukey Test´s for multiple comparisons of 

means. The amount of cacao yield (a) decreased as consequence of the exclosures of birds and bats in daytime, 

night-time and full exclosures from cacao trees. In case of the decreased number of harvested cacao pods (b) 

this difference was significant in all experimental treatments relative to the control. Asterisk symbols represent 

statistical significance for p values below 0.05, 0.01 and 0.001 (*, ** and ***). 

 

The negative effect of bird and bat exclosure was also significant for earlier stages of the 

cacao fruit development: the number of cacao flowers (log transformed) and small fruits 

decreased in day exclosures, or night and full exclosure treatments, respectively (see 

Appendix Fig. S1 and Tab. S6). We calculated the mean reduction of crop yield per site and 

year (July 2010 until June 2011) following bird and bat exclosure, and translated this loss to 

an economical value. Relative to the controls, the mean crop yield in the full exclosures was 

reduced by 31%. Related to the mean size of one exclosure treatment within the cacao 

plantations (16.43 m²) and the mean yield outcome in the control (1051.73 kg yield per ha 

and year), this reduction equals approximately 326 kg yield per ha and year which are lost 

due to the absence of birds and bats. According to the current ICCO daily prizes of cacao 

beans (mean of 2.25 USD/kg in 2013) this reduction leads to an estimated economical loss of 

730 USD per ha and year. The negative effects of bird and bat exclosure on crop yield remain 

across differences in local shade cover or distance to the nearest forest (P > 0.05).  

 

Fruit pests, leaf herbivory and spatial scales 

Neither the damage by the notorious pest species Helopeltis sulawesii and Conopomorpha 

cramerella, nor leaf herbivory were affected by the exclosure treatments in their abundance 

(P > 0.05, see Appendix Fig. S1 and Tab S6). The negative effects of bird and bat exclosure on 
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crop yield remain across differences in local shade cover or distance to the nearest forest (P> 

0.05). Lepidoptera larvae were the only arthropod group showing positive significant 

responses to the local and landscape gradients (leplarv: F1,13= 4. 686, P = 0.05). This group 

increased in abundance on sites that were both highly shaded and located at higher distances 

from the primary forest. All other observed arthropod groups (observed total numbers on 

both tree positions) occurred in similar abundances across both gradients (P > 0.05).  

 

Discussion 

Day and night exclosures of birds and bats in tropical cacao agroforestry did not only increase 

the abundance of phytophagous insects, ants and spiders, but also caused an economically 

important reduction in crop yield (31 % or 730 USD per ha and year), consistently across 

gradients of shade cover and distance to primary forest. 

 

Effects on the arthropod communities  

Bat and bird exclosures caused higher densities of phytophagous insects, despite increases in 

densities of mesopredators such as spiders and ants. Phytophagous insects (which occurred 

in high abundances) were expected to have a high impact on young leaves, cacao flowers and 

fruits. These effects were only partially detected. As expected, the number of leaf-eating 

chewing insects (Coleoptera and Lepidoptera larvae) increased in the day exclosures, 

whereas mainly night active groups such as Blattodea and Orthoptera increased in the night 

exclosures (Fig. 3).  

Leaf damage did not significantly increase (contrary to our expectations), and was not 

directly related to insect abundances. Similarly, Williams-Guillén et al. (2008) did not find an 

effect of exclosures on leaf area losses in coffee agroforestry. We observed several arthropod 

groups (predominately larvae of Lepidoptera and few Coleoptera larvae) on cacao flowers 

during our insect surveys and assume that the herbivory on flowers may be of significant 

importance for the development of the crops, a mechanism which needs to be studied 

further in detail.  
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Coleoptera and Lepidoptera (especially their larvae) are known to be effectively reduced in 

their abundance by birds with effects on host plants across different habitat types (Van Bael 

et al. 2005; Barber & Wouk 2012; Morrison & Lindell 2012). On the other hand, arthropod 

groups which might have been underrepresented in former studies due to several reasons 

such as polyphagy, sampling artifacts and genuine rarity (Novotný & Basset 2000), showed 

strong responses within our exclosure treatments. In particular, Orthoptera form a 

substantial part of the diet of gleaning insectivorous bats (e.g. Belwood & Morris 1987; Kalka 

& Kalko 2006). In contrast to Coleoptera and Lepidoptera, Orthoptera feed on plant foliage 

throughout their life cycles; individuals are usually rare, but relatively large and high in 

biomass.  

These increases in the abundance of phytophagous insects occurred despite a concurrent 

increase in mesopredator abundance in response to the exclosures. Prugh et al. (2009) and 

Brashares & Prugh (2010) defiŶe ͚ŵesopredator release͛ ďroadlǇ, as the eǆpaŶsioŶ iŶ deŶsitǇ 

or distribution of a middle-rank predator, resulting from a decline in the density or 

distribution of an apex predator.  

Spiders, which greatly increased in both nocturnal and diurnal exclosures, are abundant 

predators that can reduce insect pest populations in terrestrial habitats and can curtail plant 

damage by lowering the numbers of herbivores (Van Bael et al. 2005; Sanders & Veen 2011). 

Spiders were the second most observed arthropods in our samplings, which accords with 

other cacao studies from Sulawesi (Klein et al. 2002).  

Night active arthropods strongly declined in abundance in the night-time exclosures which 

raises the question if and how activity patterns of diurnal and nocturnal predators (Meyer et 

al. 2004) and their prey are the result of a potential avoidance strategy.  

Ants were the most abundant arthropod group observed and ants on the tree foliage 

responded to the absence of flying vertebrates with strong increases in the night-time and 

full exclosures. Ant species like Anoplolepis gracilipes, Crematogaster sp., and Monomorium 

floricola were very abundant in our study sites, and are potential predators of pests in cacao 

plantation (Rizali et al. 2012). Although ants are considered to be important mesopredators, 

especially in the tropics (e.g. Conner 2010), they can also provide disservices such as 

enhancement of their plant-sucking trophobionts (Wielgoss et al. , unpublished data).  
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In our study, both ants and aphids (which were ant attended) increased in the exclosures. As 

aphids attacked flowers and young fruits, their damage might have been significant and may 

at least partly explain flower and young fruit losses. Further, the fact that aphid density was 

significantly related to the reductions in final yield pointed to a potentially major role of 

aphids in cacao yield reduction.  

Interestingly, the well-known insect pests of cacao, the Helopeltis bugs and the cacao pod 

borer, were not affected by bat and bird exclosure. The main reason appeared to be that the 

cacao pod borer, which is a major cacao pest (Wielgoss et al. 2012), spends most of its 

immature stages hidden inside the cacao pod and therefore is not at all a conspicuous prey.  

 

Effects on cacao yield and fruit productivity 

Cacao crop yield was significantly reduced in the night-time exclosure and the full exclosure 

of flying vertebrates, where it decreased by 31% (Fig. 4). This impressive ecological impact of 

bats and birds (730 USD per ha and year), is an important argument for public policy makers, 

farmers and conservationists alike for sustainable management of this service, which is 

provided by common bird and bat species.  

Furthermore, this service might even be enhanced by effective management focused on 

those bird and bat species that exhibit the greatest beneficial impact on cacao fruit 

development.  

 

Neotropics vs. Paleotropics  

This study presents the first results of bird and bat exclosures from a paleotropical system. 

Previous studies focused on the Neotropics (e.g. Van Bael et al. 2003; Kalka et al. 2008; 

Williams-Guillén et al. 2008; Morrison & Lindell 2012), the natural origin of Theobroma 

cacao. Although cacao has been introduced to Indonesia, and now covers 1.5 million 

hectares of cacao production area (the largest in South-East Asia), it is likewise affected by 

ecological processes, diseases and pests.  

Comparing Neotropics with Paleotropics, differences in species richness and species 

specialization are conspicuous. Williams-Guillén et al. (2008) reported more than 120 bird 

species and 45 bat species present in Mexican organic coffee plantations. Bird and bat mist 
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netting in agroforestrsy systems in Sulawesi recorded 13 bat species (see Appendix Tab. S4) 

and 71 bird species (see Appendix Tab. S7). In general, the species richness of birds and bats 

in neotropical agroforestry is higher than in the Old World tropics, but the mean proportion 

of endemic species is highest in Southeast Asia (Sodhi et al. 2010). Ongoing conversion of 

agroforests into simplified agricultural systems can result in shifts towards less specialized 

bird communities with altered proportions of functional groups (e.g. loss of insectivorous 

bird species) and cause reduced avian ecosystem functions in these systems (Tscharntke et 

al. 2008; Sekercioglu 2012).  

Migratory birds were found to be of high importance in Neotropical systems, where they 

showed the strongest correlation with reduced arthropod densities (Van Bael et al. 2008). 

The presence of migratory bird species might influence the effectiveness of arthropod 

suppression due to an increased diversity of the bird assemblage, which results in a higher 

probability of present insectivorous species (e.g. Van Bael et al. 2008). In our study, no 

migratory birds were recorded.  

Contrary to Neotropical studies conducted on forest sites, which detected increased leaf 

herbivory in bird and bat exclosures in natural habitats (e.g. Van Bael et al. 2005; Kalka et al. 

2008), no significant effect on leaf damage could be found in Mexican agroforestry (Williams-

Guillén et al. 2008). This is consistent with our findings, except for the dependency on 

seasonal effects found by Williams-Guillén et. al. (2008). Such differences in herbivory could 

be caused by changing food resource use of insects. Cacao insects feed on cacao flowers, 

whereas flower herbivory does not appear to be important in coffee. Generally, the ecology 

of cacao flowers as well as their pollination remain largely unstudied and should be included 

in future research.  

Although ecosystem services in agroforestry might be often provided by common species, 

this does not decrease its potential to support also endangered natural forest species. 

Recommended management practices like increasing numbers of shade tree species (Clough 

et al. 2011), exposing roosting boxes (Morrison & Lindell 2012) and planting fruit trees 

(Tscharntke et al. 2011) to augment resources for insectivorous birds and bats may become 

part of biodiversity-friendly management by smallholder farmers (Bhagwat et al 2008) and 

need to be realized in the near future to prevent losses of ecological services and high 

biodiversity.  
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Conclusions 

The functional importance of birds and bats for tropical agroforestry is demonstrated in our 

study by the effective suppression of arthropod densities and the impressive increase of 

cacao crop yield by almost a third. We provide new arguments for wildlife-friendly 

management of agroecosystems, which is not only important for sustaining rural livelihoods, 

but also for the potential conservation of endangered species. For a better understanding of 

the role of birds and bats in tropical agroforestry, further research on biotic interactions 

shaping their services (e.g. effects on predatory arthropods like ants and spiders) as well as 

on interactions with other ecosystem services (e.g. pollination) needs to be conducted. These 

studies should be performed on appropriate scales accounting for temporal (e.g. seasonal 

effects, migrations, annual breeding cycles) and spatial variation (e.g. local and landscape 

effects; elevational gradients). Taking into account larger spatial and temporal scales into 

management practices might even facilitate the beneficial impact of birds and bats on 

agroforestry crops.  
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Appendix – Chapter II – Bats and birds increase tropical crop yield  

 

 

Table S1 - Study site and tree characteristics 

We measured all study trees at the beginning of our study (June 2010) and 6 months later in 

February 2011. An overview of the mean study tree sizes (a, b), distance to the closest 

primary forest (c), mean shade cover (d) and the dominant legume shade tree species (e: B = 

Gliricidia sp.; A = Erythrina sp.; mean height of 8 m; N = 2148) for each study site are shown 

in the table. The cacao tree diameter (dbh) was measured below the first branching of the 

cacao trees (mean height = 85 cm, N = 120). Tree size parameters a and b do not change the 

results of the final models from Table S6 if added as additional covariable. 

 

 

a b c d e 

Study 

site ID 

mean tree 

height 

(cm) 

mean tree 

dbh (cm) 

distance to next 

primary forest (m) 

mean shade 

cover (%) 

dominant shade 

tree species 

1 246.63 5.70 0 0.66 B 

2 315.81 8.73 200 0.74 B 

3 311.25 7.40 480 0.50 A 

4 308.94 10.51 1100 0.03 B 

5 380.81 12.15 3000 0.06 B 

6 260.69 6.20 2300 0.65 B 

7 304.19 8.64 450 0.46 A 

8 285.69 8.00 380 0.20 B 

9 265.50 7.50 1200 0.50 A 

10 322.25 8.45 800 0.63 B 

11 271.06 7.62 3000 0.21 B 

12 244.31 6.59 2700 0.53 B 

13 268.44 6.74 1800 0.20 A 

14 300.94 7.67 1800 0.28 B 

15 297.56 7.51 0 0.02 B 
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Table S2 - Detailed information on the research assistant team  

In total, 46 local assistants regularly assisted the first author (B.M.) in the field. B.M. was 

present in the field during the whole period of the study. All major parts of the field work 

were within her responsibility, and coordinated by her. In the field, there were basically two 

types of field work: physical work (construction; maintenance; transportation) and scientific 

work (preparation, collection and processing of data). The first type was conducted by a large 

number of local field assistants and workers, including the cacao plantation owners 

themselves. Scientific work was exclusively planned and supervised by the first author. B.M. 

did preliminary investigations for all datasets and trained scientific head assistants as long as 

necessary in each case (2-8 weeks). All head assistants were either well experienced scientific 

field work assistants (with minimum 6 years of experience in other biological research 

projeĐts; e.g. “FB55Ϯ/͟“TO‘MA͟ ďǇ the DFGͿ, or ďiologǇ ŵaster studeŶts froŵ the Tadulako 

University in Palu. After weeks of training, coordination and supervision by B.M., they 

collected data in the field (e.g. leaf measurements; counting of fruits; weighing seeds) in 

groups of at least two persons per task. During the whole period of field work, all tasks were 

supervised by the first author and regular trainings occurred to test the accuracy of the 

measurements in the field and the technical devices used in our study. The head assistants 

did not change during the study. Except three persons assisting for a shorter period, the field 

work team consisted of the same persons during the whole experiment.  

field work Short description of tasks and field work  

Manual  All tasks supervised and coordinated by the first author and 

scientific-assistants: Construction and maintenance of treatments; 

Daily opening and closing of exclosure cages; Pruning and mowing in 

treatments; Transportation of field equipment and other logistic 

tasks; Assisting in data collection  

Scientific  Data measurements (after previous training periods): Head 

assistants helped with coordination of local workers, and were 

responsible in one major data project each (fruit development data 

and leaf herbivory data); Master students assisted during insect 

surveys (all identifications confirmed by B.M.), and helped with entry 

of first data. Bird mist netting was done in cooperation with a 

scientific bird expert (Dadang Dwi Putra).   
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Table S3 - Insectivorous bird species 

Most common excluded insectivorous bird species were determined by repeated mist 

netting surveys on our 15 study sites (monthly mist netting per site in September 2010 and 

between February and June 2011; total of 7 mist netting runs per site). Short method 

description: We used 8 mist nets per study site (each net 6 x 3 m in size with 6mm mesh size) 

and situated them along a continuous net line (48 m) in the middle of the study site. From 

06h00 until 17h00, nets were checked every 60 minutes (every 30 minutes only under cold 

weather conditions). All captured birds were identified, banded with uniquely numbered 

metal rings and measured following the Level 1 standard of the revised field method manual 

published by Bairlein et al. (1995)1. The ten most common bird species are listed according to 

the total number of individuals captured (excluding re-captures) and with their habitat 

affiliations and distribution (endemic v. widespread species). In total, we observed 71 bird 

species belonging to 37 families within the 15 studied cacao agroforestry systems. 

 

Species name Habitat affiliation Endemic/Widespread Total number 

Zosterops chloris GEN W 626 

Dicaeum celebicum GEN E 167 

Dicaeum aureolimbatum GEN E 61 

Zosterops atrifrons GEN W 48 

Nectarinia jugularis OL W 25 

Halcyon chloris OL W 20 

Scissirostrum dubium GEN E 19 

Aplonis minor GEN W 13 

Nectarinia aspasia GEN W 9 

Dicaeum nehrkoni FO E 9 

*Habitat affiliation: GEN (generalistic); OL (open land) and FO (forest) habitat.  

 

1 Bairlein, F., Jenni, L., Kaiser, A., Karlsson, L., Noordwijk, A., Peach, W. and Walinder, G. (1995). 

European-African songbird migration network: manual of field methods. Vogelwarte Helgoland, 

Wilhelmshaven. 
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Table S4 - Insectivorous bat species 

List of the insectivorous bat species captured in a mist netting study of Graf (2010)2. The 

study was conducted in the Kulawi valley, situated at the western border of the Lore Lindu 

National Park in Central Sulawesi (approximately 23 km apart from our study area in Napu 

valley). Insectivorous bat species (Microchiroptera) were captured along a habitat gradient 

(natural forests, selectively logged forests and agroforestry systems) and belonged to 4 

families and 7 species.  

 

Family Species  

Rhinolophidae Rhinolophus borneensis (Peters, 1861) 

Rhinolophidae Rhinolophus euryotis (Temminck, 1835) 

Hipposideridae Hipposideros cervinus (Gould, 1863) 

Verspertilionidae Myotis ater (Peters, 1866) 

Verspertilionidae Myotis horsfieldii (Temminck, 1840) 

Verspertilionidae Myotis muricola (Gray, 1864) 

Megadermatidae Megaderma spasma (Linnaeus, 1758) 

 

 

 

 

 

 

 

 

 

 

2 Graf, S. (2010). Diversity and habitat use of understorey bats in forest and agroforestry systems at 

the margin of Lore Lindu National Park (Central Sulawesi, Indonesia). Diploma thesis, University of 

Vienna.  
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Table S5 – Arthropod responses to bird/bat exclosures  

Results from final linear mixed effect (lme) models (with treatment) fit by REML (Restricted 

Maximum Likelihood) and Post Hoc tests (Tukey´s Test) for the total number of each 

investigated arthropod group (log transformed) both on (A) woody tree parts and on the (B) 

tree foliage. The table results from the summary statistics of the final lme model (value and 

Standard Error SE) and the Tukey´s Post Hoc test of significance (P-value, upper and lower 

bound of Confidence Interval CI) for both tree positions.  

 

    A) WOODY TREE PARTS B) TREE FOLIAGE 

Group  

name 

Exclosure 

treatment 

final model Tukey´s Test Tukey´s Test 

value SE p CI_upper CI_lower p CI_upper CI_lower 

Lepidoptera 

larvae 

Control 1.039 0.307 – 0 0 – 0 0 

Day ex. 0.779 0.386 0.110 1.687 -0.128 0.013 0.960 0.088 

Night ex. 0.792 0.386 0.103 1.699 -0.115 0.935 0.524 -0.348 

Full ex. 0.322 0.386 0.740 1.229 -0.585 0.026 0.917 0.045 

Coleoptera  Control 2.208 0.249 – 0 0 – 0 0 

Day ex. 0.567 0.320 0.186 1.319 -0.185 0.0001 1.322 0.431 

Night ex. 0.146 0.320 0.941 0.898 -0.606 0.100 0.435 -0.456 

Full ex. 0.794 0.320 0.036 1.546 0.041 0.0009 1.126 0.234 

Formicidae 

(adult 

wingless 

ants)  

Control 4.470 0.293 – 0 0 – 0 0 

Day ex. 0.119 0.384 0.980 0.783 -1.022 0.160 1.698 -0.204 

Night ex. 0.393 0.384 0.608 1.296 1.296 0.044 1.921 0.020 

Full ex. 0.555 0.384 0.336 1.458 1.458 0.002 2.335 0.434 

Arachnida  Control 3.478 0.155 – 0 0 – 0 0 

Day ex. 0.676 0.193 0.001 1.129 0.226 0.011 1.083 0.114 

Night ex. 0.484 0.193 0.033 0.937 0.937 0.061 0.952 -0.017 

Full ex. 0.692 0.193 0.001 1.145 0.239 0.079 0.930 -0.039 

Aphididae Control 0.775 0.392 – 0 0 – 0 0 

Day ex. 0.984 0.554 0.193 2.303 -0.336 0.725 2.302 -1.072 

Night ex. 0.228 0.554 0.957 1.091 -1.548 0.975 1.927 -1.447 

Full ex. 2.626 0.554 0.0001 3.945 1.306 0.0001 4.895 1.521 

Orthoptera  Control 0.365 0.138 – 0 0 – 0 0 

Day ex. 0.205 0.195 0.596 0.668 -0.258 0.387 0.879 -0.235 

Night ex. 0.974 0.195 0.001 1.437 0.511 0.0002 1.494 0.381 

Full ex. 0.316 0.195 0.254 0.779 -0.146 0.999 0.563 -0.551 

Blattodea  Control 0.713 0.209 – 0 0 – 0 0 

Day ex. 0.465 0.283 0.202 1.096 -0.167 0.818 0.397 -0.212 

Night ex. 2.095 0.283 0.001 2.726 1.463 0.0006 0.790 0.180 

Full ex. 0.070 0.283 0.988 0.702 -0.561 1.000 0.305 -0.305 
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Table S6 – Cacao fruit development and leaf herbivory  

Results from final linear mixed effect (lme) models (withtreatment) fitted by REML 

(Restricted Maximum Likelihood) and Post Hoc tests (Tukey´s Test) for different stages of the 

cacao harvesting process (yield in kg/treatment; N of harvested fruits; N of small fruits; log 

transformed N of cacao flowers) and the percentage of leaf damage due to herbivores. The 

table shows results from the summary statistics of the final lme model (value and Standard 

Error SE) and the Tukey´s Post Hoc test of significance (P-value, upper and lower bound of 

Confidence Interval CI).  

 

  final model Tukey´s Test 

Variable Exclosure 

treatment 

value SE p CI_upper CI_lower 

Cacao 

yield 

Control 1.940 0.198 – 0 0 

Day ex. -0.459 0.213 0.081 0.042 -0.959 

Night ex. -0.536 0.213 0.032 -0.035 -1.037 

Full ex. -0.677 0.213 0.004 -0.177 -1.178 

Fruits 

(harv.) 

Control 92.000 9.275 – 0 0 

Day ex. -27.267 10.869 0.033 -1.736 -52.792 

Night ex. -28.533 10.869 0.024 -3.003 -54.059 

Full ex. -40.800 10.869 0.001 -15.270 -66.325 

Fruits 

(small) 

Control 1185.000 175.640 – 0 0 

Day ex. -306.867 204.891 0.307 174.415 -788.281 

Night ex. -578.067 204.891 0.013 -96.785 -1059.481 

Full ex. -514.133 204.891 0.033 -32.851 -995.548 

Flowers 

(log) 

Control 8.521 0.160 – 0 0 

Day ex. -0.405 0.153 0.012 -0.046 -0.765 

Night ex. -0.234 0.153 0.355 0.216 -0.503 

Full ex. -0.143 0.153 0.136 0.126 -0.593 

Leaf 

Damage 

(%) 

Control 407.112 39.175 – 0 0 

Day ex. 11.880 55.402 0.993 142.021 -118.257 

Night ex. 0.976 55.402 0.993 131.118 -129.161 

Full ex. 11.703 55.402 1.000 141.845 -118.434 
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Table S7 – Yield vs. pest insect abundances  

Relationship between total cacao yield (dry weight of harvest outcome) and the total number 

of herbivore arthropods resulting from linear mixed effect models (lme). Significant 

relationships in bold.  

 

Herbivore group lme model 

 F-value (1,44) p-value 

Lepidoptera larvae 0.037 0.848 

Coleoptera 0.512 0.478 

Aphids 7.459 0.009 

Orthoptera 0.572 0.454 
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Figure S1 – Cacao fruit development, leaf herbivory and fruit pests  

Effects of the experimental exclosures (Day, Night and Full exclosure of birds and bats) on (a) 

the number of small cacao fruits, (b) number of cacao flowers (LOG), (c) the total leaf loss 

area (in cm2) and the percentages of the notorious cacao fruit pests (d) cocoa pod borer 

(Conopomorpha cramerella), (e) mirid damage (Helopeltis sulawesii) and (f) early fruit 

abortion (cherrele wilt). Each exclosure treatment effect is shown relative to the 

unmanipulated control treatment (dashed line at zero level). The mean value of each 

parameter is displayed in black (± 95% confidence intervals) and original data on study site-

level (15 circles per treatment) are displayed as grey filled circles. This allows a direct visual 

interpretation of treatment effects on (a) – (f). Asterisk symbols represent statistical 

significance for p-values below 0.05 (*).  
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Summary 

 

1. Avian ecosystem services such as the suppression of arthropods are considered being of 

high ecological and economic importance in a range of ecosystems, especially in tropical 

agroforestry. But how bird predation success is concretely affected by the diversity and 

composition of the bird community, as well as local and landscape factors, is poorly 

understood.  

2. We quantified arthropod predation in relation to the identity and diversity of insectivorous 

birds, using artificial prey experiments on 15 smallholder cacao plantations, differing in local 

shade management and distance to primary forest. To sample birds, both mist netting 

(targeting on active understory insectivores) and point counts (higher completeness of 

species inventories) were used.  

3. Bird predation success in differently managed cacao agroforestry systems was not related 

to local shade tree management or overall species diversity, but to the activity of 

insectivorous bird species and the proximity to primary forest. Insectivore activity was best 

predicted by mist netting based data, not point counts. We identified the Indonesian 

endemic Lemon-bellied White-eye (Zosterops chloris) as the main driver of predation on 

artificial prey.  

4. Synthesis and applications. The suppression of arthropods by insectivorous birds is one of 

the most important ecosystem services provided in agricultural systems, where it has the 

potential to reduce herbivore damage on plants and yields. Targeted management of this 

service represents a biodiversity-friendly and profitable alternative to the use of pesticides 

and other chemical compounds, but requires evidence based knowledge. Avian predation 

success seems to be driven by common insectivorous species, rather than by local shade 

management and overall bird species diversity. Forest proximity is important for enhancing 

predator density, thus contributing both to conservation of biodiversity and human well-

being in tropical agroforestry landscapes.  
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Introduction 

Top down control of arthropod densities by insectivorous birds is a highly valuated service in 

a range of different ecosystems (Sekercioglu 2006), especially in tropical agroforestry 

landscapes (e.g. Van Bael et al. 2008; Perfecto et al. 2004; Philpott et al. 2009). Insectivorous 

birds and their contributions to ecosystem functioning are increasingly well studied (e.g. 

Tscharntke et al. 2008), facilitate remarkable increases in crop yields (Karp et al. 2013; Maas, 

Clough & Tscharntke 2013) and may serve as a viable alternative to pesticides or other 

chemical compounds in tropical agroforestry (e.g. Bianchi et al. 2006). However, the drivers 

of bird predation success and the importance of diversity and composition of the local bird 

community (with respect to local and landscape factors) are currently poorly understood. 

Avian predation success is often linked to the high functional diversity and mobility of bird 

species (e.g. Philpott et al. 2009). But this services is likely influenced by multiple factors (Van 

Bael et al. 2008; Mace, Norris & Fitter 2012), including variation in resource availability (e.g. 

Clough et al. 2009), habitat complexity (e.g. Philpott et al. 2009) and diversity of predator 

assemblages (e.g. Schmitz 2007). A key question in the study of avian ecosystem functioning 

is the relative importance of bird species diversity compared to species identities and 

functional groups. Philpott et al. (2009) conducted a meta-analysis of studies on birds in 

agroforestry, concluding that distinct traits (body mass, foraging strategy, foraging strata and 

diet) associate bird assemblages with increased contribution to ecosystem service or 

function. Contrastingly, high levels of bird species diversity are considered to secure the 

provision of ecosystem services and positively affect plant productivity (Tscharntke et al. 

2008; Sekercioglu et al. 2012). Most likely, avian predation pressure on arthropods does not 

only depend on local insectivore density, but is affected by predator satiation, intraguild 

predation, and intra- and interspecific competition (Schmitz 2007). However, there is 

consensus that at least some minimum number of species is essential for efficient ecosystem 

functioning under constant conditions and that a larger number of species is probably 

essential for maintaining the stability of ecosystem processes in changing environments 

(Loreau et al. 2001). Including avian ecosystem services into biodiversity-friendly 

management of tropical agroforestry landscapes may thus not only provide a promising 

conservation strategy, but also enhance human well-being through supporting food-security 

and ecosystem resilience (Fischer, Lindenmayer & Manning 2006; Tscharntke et al. 2012).  
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The need for such alternatives to intensified agroforestry management persists (Mace, Norris 

& Fitter 2012), but requires an improved understanding of avian predation services. To date, 

the importance of overall bird species diversity and species-specific functions for the 

provision and management of ecosystem services in agroforestry landscapes has not been 

quantified. Avian predation should be understood in relation to the local management of 

different farming systems as well as the landscape structure or availability of natural forest.  

Tropical agroforestry systems are increasingly recognized as a useful and promising land use 

strategy that diversifies production for greater social, economic and environmental benefits 

(Schroth 2004; Jose 2009). Particular attention has been paid to cacao (Theobroma cacao), 

the largest legal international trade volume beside petroleum (Donald 2004). Cacao 

plantations can support high biodiversity levels depending on the local shade tree availability 

(e.g. Clough et al. 2011) and the respective landscape context (e.g. Tscharntke et al. 2008; 

Fahrig et al. 2011). However, results showing local and landscape effects on insectivorous 

birds are still biased, neglecting the Paleotropics, where few studies are currently available 

(e.g. Maas, Clough & Tscharntke 2013). To provide reliable recommendations on the impact 

of avian predators on arthropods, studies under varying field conditions are needed (Philpott 

et al. 2009). 

Few studies have been published that quantify predation activity of birds in tropical habitats 

using predation field experiments (e.g. Loiselle & Farji‐Brener 2002; Koh & Menge 2006; 

Posa, Sodhi & Koh 2007; Fáveri, Vasconcelos & Dirzo 2008). Only one of them investigated 

agroecosystems (Howe, Lövei & Nachman 2009) and none was yet conducted in tropical Asia. 

Consequently, a distinct link between predation activity (measured in a standardized field 

experiment) and the role that birds play in suppressing phytophagous arthropods is still 

missing in tropical agroforestry research (e.g. Perfecto et al. 2004; Philpott et al. 2009).  

From a practical point of view, the choice of adequate sampling method or a combination of 

methods is essential for the accurate assessment of relative bird species abundances and 

avian activity in the field (Derlindati & Caziani 2005). Mist nets and point counts have been 

widely used in the study of Neotropical birds, and a combination of the two techniques might 

be the most effective methodological approach for monitoring bird assemblages (e.g. Wang 

and Finch 2002). Although point counts of birds have been used extensively in tropical 

agroforestry (e.g. Van Bael et al. 2008; Waltert, Mardiastuti & Mühlenberg 2004; Maas et al. 

2009), they strongly depend on the researĐher͛s traiŶiŶg iŶ ideŶtifiĐatioŶ of species (e.g. 
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Blake & Loiselle 2001), although they have the advantage to provide more complete 

assessments of bird communities. Mist nets are considered as a simple assessment method 

of birds with data representing species activity rather than abundance (Remsen & Good 

1996), typically confined to the understory (Sodhi et al. 2002), thus excluding most canopy 

ďirds. Therefore, poiŶt ĐouŶt saŵpliŶg seeŵs ŵore suitaďle for a ŵore geŶeral ͚diǀersitǇ 

assessŵeŶt͛ of ďirds ǁhereas ŵist ŶettiŶg is a good ŵethod for the ͚fuŶĐtioŶal 

ĐharaĐterizatioŶ͛ of a ĐertaiŶ ďird ĐoŵŵuŶitǇ. With respect to these different community 

parameters, potentially reflected by point counts (abundances) and mist nets (activity), we 

conducted both methods on our study sites and applied them simultaneously.  

Regarding our main focus on the importance of avian diversity and predator identity for 

predation success on phytophagous insects in relation to local management and landscape 

context of cacao agroforestry systems, we asked the following questions:  

(1) Do species richness, abundance and predation success of the bird community depend on: 

(a) local shade management and/or (b) distance to primary forest (landscape context)?  

(2) Is the combination of sampling methods (point counts and mist netting) adequate to 

relate bird community patterns to predation activity in agroforestry systems?  

(3) With focus on practical implications: Which bird species contribute most to insect 

predation in shaded agroforestry as measured by a standardized predation field experiment? 

We selected 15 cacao agroforestry systems which were located along independent gradients 

of local shade cover and distance to primary forest as our study sites. Thus, we were able to 

control for local and landscape effects on avian predation success which we tested in a 

standardized predation field experiment, using plasticine caterpillars as artificial prey for 

birds. Different community measures and sampling methods were chosen to assess diversity 

of species and functions within the insectivorous bird community. Based on our results, we 

aimed to identify local and landscape features as well as those bird species, which drive avian 

predation success in tropical agroforestry to contribute to practical implications for 

smallholder farmers in these landscapes. We expected common open land insectivores 

(Maas et al. 2009) to play a major role in predation of artificial arthropod prey.  

 

 

 



Avian predator identity vs. diversity  

 

 
- 59 - 

Materials and methods  

Study Sites 

Our study was conducted in Central Sulawesi which is not only the biggest cacao producer in 

Indonesia (third largest cacao producer worldwide) but is also the largest island within the 

Indonesian biodiversity hotspot Wallacea.  

We selected 15 smallholder cacao plantations which were situated at the eastern margin of 

Lore Lindu National Park, as our study sites. The Lore Lindu National Park is covers an area of 

218,000 ha, largely dominated by montane and submontane forests (The Nature 

Conservancy 2002). The forest margin landscape is characterized by a mosaic of secondary 

forests and a rapidly increasing number of land use systems with coffee, maize and rice 

representing the main cultivated crops besides the dominant cacao (e.g. Maas et al. 2009). 

Due to its proximity to the equator, the seasonality is not very marked. Precipitation levels 

vary considerably with elevation and topography, and climatic stations are few, but mean 

annual precipitation can be estimated to be around 2000–3000 mm per year (Kessler et al. 

2005). The park contains 227 bird species of which 77 are endemic (Coates, Bishop & Gardner 

1997).  

In 2010, our study sites were selected. The 15 smallholder cacao plantations were 0.5 - 1.5 ha 

in size, at least 500 m apart from each other and managed without any use of pesticides, 

herbicides or other chemical compounds. Every selected plantation represented a unique 

combination of local shade tree availability (local management gradient) and distance to the 

next closed primary forest block of the park (landscape context gradient) to allow for a 

comparison of different management regimes and a separation of their effects on the bird 

community. We quantified local shade tree canopy cover (Fig. 1) in percent and classified it 

as low (0-25%), medium (25-50%) or high (more than 50%). For statistical analyses, we used 

mean shade tree cover per site, which was calculated from two shade cover surveys in June 

2010 and February 2011, using digital photographs (Panasonic DMC-TZ7EG-K) and Image J 

processing software (Rasband 1997-2010). Distance to primary forest was determined using 

satellite pictures and GPS data (Garmin 12 Map) from the study area and measured as the 

distance (range: 0-3500 m) from the edge of the study site to the edge of the closed forest 

block. For the selection of study sites, we selected cacao plantations on five different 
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distances to the primary forest edge (Fig. 1), with three plantations in each class and not 

being correlated to the shade cover gradient.  

In September 2010 and from February until June 2011, we conducted monthly point count 

and mist netting sampling of birds on each of the 15 study sites (total of 7 visits per site). 

Both sampling methods were always conducted on the same date in each plantation and 

performed by two authors (B.M. and D.D.P.) who are very experienced in acoustical and 

visual identification of the studied bird species (Maas et al. 2009) as well as with the applied 

capture-recapture methods. In addition, an artificial prey experiment was performed to 

investigate the predation activity within the plots between June and July 2011.  

 

 

Fig. 1. Schematic map of study area and study sites in Central Sulawesi (Indonesia). Grey areas indicate the 

closest primary forest block of the Lore Lindu National Park in 2004. Dashed lines represent the forest margin 

measured in 2010. White parts indicate settlement and land use areas. The 15 cacao agroforestry study sites are 

plotted as circles, which indicate the amount of shade cover: 0-25 % (empty); 25-50% (half filled) and more than 

50% (filled black). Circles with the letter ´d´ on the top represent the sites were the predation field experiment 

;͚duŵŵǇ eǆp.͛Ϳ ǁith artifiĐial preǇ ǁas ĐoŶduĐted 
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Mist Netting 

For every monthly mist netting survey per study site, we established continuous net lines of 

48 m length in total (each with 8 songbird mist nets of 6x3 m and 16 mm mesh size per line). 

Lowest net height was 1.5 m above ground and opened nets reached up to 4.5-5m into the 

canopy of cacao and shade trees. This vertical orientation was chosen to cover the parts of 

the cacao canopy with the highest bird activity. Two weeks of preliminary experiments 

(August 2010), showed that most of the bird species were moving closely above or below the 

cacao tree canopy of the agroforestry system but not near to the ground. The mist netting 

lines were always readily prepared before 05h00 and checked for the first time at 06h00. 

From then on, we checked the net line every 60 minutes except for some cases with extreme 

weather conditions (e.g. high temperatures due to intensive direct sunlight or cold 

temperatures due to heavy rain events) were we checked every half an hour. Captured birds 

were identified and banded with uniquely numbered metal rings (provided by LIPI/Indonesia 

and Vogelwarte Helgoland/Germany). We measured every individual following the Level 1 

standard provided in the bird ringing manual of Coiffait, Clar & Robinson (2008) and took 

additional photographs. Recaptures of individuals within identical mist netting rounds were 

discarded from the statistical analyses.  

 

Point Counts 

From a fixed central location within each study site, we detected all birds visually and 

acoustically within a radius of 50 m for 20 minutes per survey. We experienced this time 

standard to be appropriate for agricultural systems in a former study (Maas et al. 2009) and 

carefully tried to ensure, that the same individual was not counted more than once. All 

observations beyond 50 m, including those individuals that flew over the canopy, were 

discarded from analysis. Point count sampling was performed between 07h00 and 10h00 

parallel to the mist netting surveys and with a total of seven visits per site.  

 

Artificial prey experiment 

To investigate the predation activity by insectivorous birds in cacao agroforestry systems, we 

performed a predation field experiment using artificial prey (plasticine caterpillars) to imitate 

natural prey of avian predators (Lepidopteran larvae). Comparable methods are explained in 



Chapter III  

 

 

- 62 - 

 

detail in Howe, Lövei & Nachman (2009). We conducted the experiment on 10 of our 15 

study sites (Fig. 1). 

 In total, we visited each study site four times (4 replicates) between June and July 2011 to 

perform the predation experiment. On each site, we randomly chose 5 cacao trees which 

were at least separated by two other cacao trees within the site. For every cacao tree, we 

prepared 7 plasticine caterpillars which were fixed on the trees in the early morning 

(between 05h00 and 06h00), checked for predation marks in the evening hours (between 

17h00 and 18h00) and kept over the night on the study site to account for night predation 

activity. On the next morning (between 05h00 and 06h00), the caterpillars from the last day 

were checked again for predation marks and subsequently removed from the cacao trees 

which completed one survey unit for the respective study site. A dummy caterpillar was 2 cm 

long and had a diameter of 0.4 cm (± 1 mm). The dummy caterpillar lengths derived from an 

insect data set taken from the same study sites in August 2010 which included 72 

Lepidoptera larvae with a mean length of 1.38 cm (± 0.72 SD). We oversized the caterpillars 

approximately by their standard deviation in order to increase the attraction of potential 

predators such as birds, bats and predatory arthropods. All produced plasticine caterpillars 

were green, which was naturally very common on our sites and considered to imitate 

attractive prey (e.g. Fáveri, Vasconcelos & Dirzo 2008; Howe, Lövei & Nachman 2009). The 

artifiĐial Đaterpillars ;͞duŵŵies͟Ϳ ǁere fiǆed oŶ differeŶt positioŶs of the studǇ trees: ;aͿ oŶe 

dummy on the first branching of the cacao tree, (b) three dummies on a main tree branch 

distanced 20 cm from each other and (c) three dummies on the center of single and healthy 

cacao leafs.  

All dummies were fixed at the tree using a drop of commercially available power glue (of 

neutral smell). We distinguished between marks of birds, predatory insects (typical 

mandibles), snails, rodents and unidentified predators (see Fig. 2). The design of the study 

was inspired by the few number of published studies on rapid predation assessment using 

caterpillar dummies in tropical habitats (Loiselle & Farji‐Brener 2002; Koh & Menge 2006; 

Posa, Sodhi & Koh 2007). Howe, Lövei & Nachman (2009) provide a detailed description of 

such artificial prey experiments.  
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Fig. 2. The common Lemon-bellied White-eye (Zosterops chloris) and typical dummy-predation marks of birds. 

Zosterops chloris was the most commonly observed insectivorous species in the cacao agroforestry sites and 

turned out to contribute most to the predation on artificial prey (right). Bird predation marks (indicated by black 

arrows) were frequently detected. Photo credits: B. Maas  

 

Statistical analyses  

Birds assessed during point count and mist netting surveys were assigned to their individual 

guild affiliations (habitat and feeding guilds) and distribution (endemic vs. widespread) 

before analyses. Total species richness and completeness of our bird samples were estimated 

using the abundance-based ACE species richness estimator (e.g. Chazdon et al. 1998). For 

details on all estimators, including equations of the nonparametric statistics, see Colwell 

(2013). We used the software EstimateS version 9.1.0 (Colwell 2013) to calculate species 

accumulation curves. Samples were randomized 100 times. Bird species richness was 

estimated separately for point counts, mist netting and the total bird count (including both 

methods) per site. We compared species diversity among different survey methods with 

Fisher͛s alpha, ǁhiĐh iŶĐorporates speĐies riĐhŶess aŶd eǀeŶŶess of speĐies aďuŶdaŶĐe iŶto a 

single measure (Magurran 2004). 

All main statistical analyses were performed using R version 2.15.1 (R Core Team 2012) with 

additioŶal fuŶĐtioŶs proǀided ďǇ the ‘ paĐkages ͚ǀegaŶ͛ ;OksaŶeŶ et al. 2007), for calculation 

of diǀersitǇ iŶdiĐes aŶd the ďird ĐoŵŵuŶitǇ aŶalǇses aŶd ͚MuMIŶ͛ ;BartoŶ ϮϬϭϭͿ, for the 

multi-model selection of species specific analyses. Number of bird species (species richness) 

as well as the number of individuals (abundance) were log-transformed before analyzes. The 

variables shade tree cover and distance to forest margin were centered by substracting the 

mean to improve the interpretation of multiplicative and interaction terms in the models.  
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Correlation analyses of insectivorous birds (log transformed abundance and species 

richness), local shade tree cover, distance to forest and predation activity (sum of bird marks 

per site), was performed with linear regression models (calculation of P and F values and 

adjusted R2). We fitted models of dummy caterpillar predation (sum of recorded bird marks), 

local and landscape gradient (local shade and distance to forest margin) by generalized least 

squares (GLS) using restricted maximum likelihood (REML) and power variance function, 

which accommodated variability between study sites (Pinheiro & Bates 2000).  

Because our study is focused on the importance of insectivorous bird species in tropical 

agroforestry landscapes, we made separate statistical analyses for this feeding guild. We also 

assigned those species to the analyses, which are not predominately feeding on insect prey 

but are considered to be insectivorous to a certain extent (e.g. sunbirds, flower peckers). To 

investigate species specific effects, we included the 7 most abundant (min. N = 30) 

insectivorous bird species in a model simplification approach based on Akaike Information 

Criterion corrected for small sample size (AICc) with predation activity (sum of bird marks per 

site) added as fixed effect. ΔAICc is calculated as the difference between each model´s AICc 

and the lowest AICc with a ΔAICc < 2 interpreted as substantial support (model belongs to 

the best models) and higher values interpreted as less or no support that the model belongs 

to the best set (Burnham & Anderson 2002).  

 

Results 

In total, we observed 69 bird species belonging to 36 families within the 15 smallholder cacao 

agroforestry systems (Table S1). From this overall number of observed bird species, 38 

species were caught with mist nets and 57 species were recorded with repeated point counts 

(Table S2D). The majority of all birds was represented by insectivorous species (N = 50; 

71.43%; Table S2A). Bird species with no specific habitat preference account for the half 

(Table S2B) while open land species make up 30% and forest species 17 % of the whole bird 

community. Almost a third of the species (N = 19; 27.14%) were endemic whereas the 

remaining 50 species (71.43 %) were widespread (Table S2C).  
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Insectivorous bird community  

We focused on the 50 insectivorous bird species recorded during our study. Species richness 

as well as species diversity (Fisher´s alpha) was higher in species point counts than in 

simultaneous mist netting samples (Table 1). The completeness of the insectivorous species 

inventory was relatively high both for the single survey methods mist netting (MN= 81.36 %) 

and point counts (PC= 88.69%), as well as for the total of the two methods (ALL= 86.94 %).  

 

Tab. 1:  Results from EstimateS for insectivorous bird species (N = 50). For the total bird count (ALL) as well as 

for the single methods mist netting (MN) and point counts (PC), we show the observed species (spp. obs.), the 

estimated species richness (ACE estimate) and the completeness of inventories (%). Species diversity is 

represented by Fisher´s alpha 

method 

spp. 

 obs.  

ACE 

estimate 

compl. 

(%) 

Fisher´s 

alpha 

ALL 50 57.51 86.94 8.45 

MN 31 38.10 81.36 5.98 

PC 40 45.10 88.69 7.03 

 

 

The abundance of insectivorous species significantly decreased with increasing distance to 

primary forest (P < 0.05; Table 2a; Fig. 3a) but was not significantly related to local shade 

cover in the study sites (P > 0.05; see Table 2a). Species richness was not significantly related 

to both gradients (Table 2b).  

 

Tab. 2: Effects of local shade and landscape context (distance to primary forest) on insectivorous birds. 

Correlation analysis for distance to primary forest (in m) and local shade cover (decimal values) on (a) 

abundance and (b) species richness of insectivorous bird species. Results shown for different sampling methods 

(MN = mist netting; PC = point counts) and the total count of bird species (ALL). Significant effects (P < 0.05) are 

indicated by * 

  (a) Species abundances (b) Species richness 

  R2 P F(1,13) R2 P F(1,13) 

Forest ALL 0.502 0.002 15.110 -0.054 0-606 0.279 

 MN 0.208 0.05 4.681 0.056 0.199 1.824 

 PC 0.456 0.003 12.910 -0.041 0.517 0.443 

Shade ALL -0.066 0.720 0.135 -0.006 0.358 0.910 

 MN -0.018 0.401 0.754 0.005 0.321 1.066 

 PC -0.077 0.944 0.005 0.057 0.197 1.848 
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Bird Predation activity  

To quantify the avian predation activity in our cacao agroforestry sites, we dispersed a total 

of 2800 dummy caterpillars on the ten selected experimental sites and controlled them for 

predation marks after daytime predation activity (of birds) and night-time predation (of bats, 

rodents). Only 6 dummy caterpillars were lost, 29 dummies were found on the ground and 

recorded and the rest (99%) remained on the study trees. From all predation marks that 

could be identified in the field (N = 182), birds caused 45 % (N = 81), snails 40 % (N = 74) and 

rodents 15% (N = 27).  

 

 

Fig. 3. Bird predation activity (bird marks) vs. distance to forest, species richness and species identity. Upper 

plots show the relationship between distance to forest margin and (a) total abundance of insectivorous birds 

(log) or (b) predation activity (sum of bird marks per site).  

The lower plots show the quantified between predation activity against (c) total insectivorous bird species 

abundance and (d) total abundance of the most common insectivorous species (Zosterops chloris). For (a - c), P-

values and Adjusted R-Squares from the linear model are shown; (b) is fitted by a generalized least squares 

which accommodate for equal variances 
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Bird predation marks were positively correlated to bird abundances of mist netting surveys 

(F1,8 = 8.94; P = 0.017; Fig. 3b) but showed no significant relationship to bird abundances of 

point count data (F1,8 = 1.304; P = 0.287) or the total record of both methods (F1,8 = 4.22; P = 

0.074). Bird species richness did not significantly influence the number of bird predation 

marks on dummy caterpillars (all P > 0.05). The number of bird predation marks fitted by 

generalized least squares significantly depended on distance to forest margin, with 

decreasing sums of marks on increasing distances (df = 10; P = 0.04; Fig. 3c), but with non-

significant relation to local shade cover (df = 10; P = 0.350).  

 

Species specific analysis  

To identify the importance of single species identities for predation success, we computed 

model selection for the 7 most common insectivorous bird species (Table 3). The best model 

with a ∆AICc below 2 and the highest AICc weight included Zosterops chloris (Zosteropidae), 

the most abundant insectivorous bird species recorded in all survey methods (ALL, MN and 

PC; Table 3 and Fig. 2). All other bird species included in the model simplification approach 

resulted in both high ∆AICc values (3.88 and higher) and low AICc weights (0.09 and lower), 

which excludes them from the set of best models for all abundant insectivorous bird species. 

Correlation analyses of Zosterops chloris and the total number of bird predation marks shows 

a strong positive relationship (F1,8 = 13.43; P = 0.007; Fig. 3d) between these two variables.  

 

Table 3. Model selection (based on ∆AICc and AICc weight) for common insectivorous bird species. The 7 most 

common species sorted by frequencies in the total bird count (ALL). Total number of recorded individuals is 

provided for mist netting (MN) and point count (PC) surveys. All seven species were included in the model 

simplification for which results are presented by AICc, ∆AICc and AICc weight 

Species name  ALL MN PC AICc ∆AICc AICc weight 

Zosterops chloris 1431 626 805 64.77 0.00 0.57 

Dicaeum celebicum 609 167 442 69.67 4.91 0.05 

Aplonis minor 176 13 163 68.65 3.88 0.08 

Dicaeum aureolimbatum 175 61 114 69.10 4.34 0.06 

Zosterops atrifrons 150 48 102 70.12 5.35 0.04 

Scissirostrum dubium 119 19 100 70.33 5.57 0.04 

Nectarinia jugularis 98 25 73 68.49 3.72 0.09 
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Discussion 

Our study provides first empirical evidence that predation success of insectivorous birds in 

tropical agroforestry landscapes is driven by the activity of the most common insectivorous 

bird species (in our case Zosterops chloris), rather than by bird species richness.  

In accordance with previous findings from Central Sulawesi (Clough et al. 2009), increasing 

forest proximity was positively related to the abundance of insectivorous birds, but not to 

overall species richness. Local shade management did not influence predation success or 

activity of insectivorous birds.  

Reliable recommendations for practical agroforestry management using common bird 

species and their provided services need a quantitative assessment of bird predation effects 

(Van Bael et al. 2008). The conduction of different sampling methods in relation to the 

analysis of avian predation success and predator diversity showed that only mist-netting was 

suitable to characterize the activity of insectivorous birds in the cacao canopy and understory 

layer. In contrast, overall species richness was better assessed with point counts, in 

agreement with other studies in which both methods were used (e.g. Blake & Loiselle 2001; 

Wang & Finch 2002; Derlindati & Caziani 2005).  

The application of a standardized field predation experiment (e.g. Howe, Lövei & Nachman 

2009), in combination with mist netting as a targeted method for quantifying insectivores, 

offered the possibility to examine the relative importance of species identity vs. 

complementarity in a species rich bird community, which is an important addition to 

previous studies (Philpott et al. 2009), and provides valuable findings for smallholder farmers 

who desire to take advantage of ecosystem services in an agricultural landscapes.  

Highly abundant groups of arthropods, such as caterpillars (Lepidopteran larvae), are known 

to be effectively reduced by insectivorous birds in different types of agroforestry systems, 

resulting in higher amounts of crop yield (Mols & Visser 2002; Maas et al. 2013). Similarly 

high predation rates on larvae were observed in shaded coffee agroecosystems (Perfecto et 

al. 2004), with small foliage-gleaning insectivores being more important for arthropod 

suppression than community diversity (Philpott et al. 2009). This relationship was simulated 

in our standardized field predation experiment, which allows considering different 

insectivore foraging patterns (leaf gleaning vs. perching species) and standardized positioning 

of the artificial prey, making a comparison of different study sites possible. 
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Our findings confirmed our expectation that common open land insectivores, in our case the 

endemic Lemon-bellied White-eye (Zosterops chloris), drive avian predation success in cacao 

agroforestry. Zosterops chloris occurs both in land use systems and forest habitats (Maas et 

al. 2009), usually lives in small flocks and forages at all levels in the vegetation (Coates, 

Bishop & Gardner 1997). Although the species is currently not important from a 

conservational viewpoint, it provides a major contribution to the highly valuated ecosystem 

service of arthropod suppression. To enhance the density of Zosterops chloris in the human-

dominated agricultural landscape, the proximity of forest area is important. In this case, the 

conservation of forest habitat will contribute both to the protection of endangered 

biodiversity (species richness and functional richness or rare species) and human well-being 

by enhancing ecosystem services.  

Similar recommendations could apply to tropical coffee agroforestry, where especially 

common bird species played an important role for arthropod suppression and provided 

enhanced services in the proximity of forest stretches (Karp et al. 2013). 

Although the integration of natural services into land use systems holds a great potential for 

human welfare and biodiversity (Jose et al. 2009), it is not common to this day. Improved 

knowledge on the impact of bird species diversity and single species identities on arthropod 

predation is needed to reveal the importance of species identities (common vs. rare species) 

and landscape management (local management vs. landscape structure) for avian predation 

success.  

Endemic species are often associated to forest areas and are of major importance as 

indicators of landscape conversion in South-East Asia (Maas et al. 2009; Sodhi et al. 2010). 

Although the Sulawesi endemic Zosterops chloris represents the most common insectivore 

species in our study area, its abundance and predation activity is likely to depend on the 

proximity of natural forest. This pattern might not be transferable to other tropical land use 

areas, where less common or even rare bird species might be of higher importance for the 

provision of ecosystem services.  

Previous results from Indonesian agroforestry systems have shown that combining complex 

habitat structure, biodiversity and high crop yields in tropical agroforests can be realized 

without adding pressure on natural habitats (Clough et al. 2011). Agroforestry systems with a 

low-intensity management (little use of pesticides) and a complex vegetation structure 

(shade tree abundance and diversity) host large numbers of potential insect prey (Bos, 
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Steffan-Dewenter & Tscharntke 2007) and therefore are likely to be highly attractive as 

foraging sites for insectivorous birds (Clough et al. 2009).  

In conclusion, our results emphasize that enhancing avian ecosystem services by taking into 

account the importance of forest proximity and species identities, can be of advantage both 

for human well-being and biodiversity, thus representing a win-win situation for both sides. 

Cacao smallholders in Central Sulawesi, having plantations close to the closed primary forest 

block might therefore profit from enhanced densities of the Lemon-bellied White-eye and 

the high predation pressure that it imposes upon phytophagous arthropods.  

Policy-makers and land owners, especially agroforestry smallholders, should pay attention to 

the economic impact of avian arthropod suppression on crop productivity (Karp et al. 2013; 

Maas, Clough & Tscharntke 2013) and start to integrate ecosystem services in the 

management of agricultural landscapes in the tropics. To achieve this, more research on the 

relation of species identities, species diversity, landscape management and ecosystem 

services is needed that provides evidence based knowledge and the possibility to conduct 

awareness training in regions were birds provide valuable ecosystem services. This way, the 

study of avian predation success and its drivers can contribute to increased valuation by rural 

populations and farmers, which is crucial for the integration of biodiversity and ecosystem 

functions in tropical agricultural landscapes (Schroth 2004). 
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Appendix – Chapter III – Avian predator identity vs. diversity 

 

Table S1 

Results from EstimateS for all recorded bird species (N = 69) recorded on 15 study sites. For 

the total bird count (ALL) as well as for the single methods mist netting (MN) and point 

counts (PC), we show the observed species (spp. obs.), the estimated species richness (ACE 

estimator) and the completeness of inventories (Compl.). Species diversity is represented by 

Fisher´s alpha. Additionally, Shannon and Simpson index as well as Pilou´s index (J) for 

eveness are shown.  

 

method 

Total 

no. spp.  

ACE 

estimate 

Compl. 

(%) 

Fisher´s 

alpha 

Shannon 

index 

Simpson 

index 

J 

eveness 

ALL 69 87.45 78.90 12.32 2.21 4.33 0.62 

MN 38 46.23 82.20 7.66 1.71 2.76 0.59 

PC 57 72.47 78.65 10.66 2.36 5.41 0.67 
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Table S2 

Species guild composition of all recorded bird species (sorted by family names; N=69) from 

our cacao agroforestry sites. Species were assigned to different (A) feeding guilds (G= 

granivorous; I= insectivorous; N= nectarivorous; P= predatory and O =omnivorous); (B) 

habitat affiliations (FO= forest species; GEN= generalists using both forest and open land 

habitats and OL= open land species); their respective (C) distribution (E= endemic; W= 

widespread) and (C) the survey method with which they were recorded (MN= mist netting; 

PC= point counts or both: PC+MN).  

Bird species 

(sorted by family names) 

 

A 

Feeding 

guild 

B 

Habitat 

affiliation 

C 

Distribution 

 

D 

Survey method 

 

Acanthizidae 

 

   

Gerygone sulphurea I GEN W PC+MN 

Accipitriidae 

 

   

Spizaetus lanceolatus P GEN E PC 

Alcedinidae 

 

   

Halcyon chloris I OL W PC+MN 

Halcyon sancta I FO W MN 

Apodidae     

Collocalia esculenta I GEN W PC+MN 

Collocalia vanikorensis I GEN W PC 

Ardeidae     

Ardea purpurea P OL W PC 

Ardeola speciosa P OL W PC 

Eggreta intermedia P OL W PC 

Arthamidae    PC 

Arthamus leucorhynchus I OL W PC 

Campephagidae     

Coracina leucopygia I OL E PC 

Coracina morio I FO E PC 

Coracina temminckii I GEN E PC 

Lalage leucopygialis I GEN E PC 

Columbidae  

 

   

Chalcophaps indica O FO W PC+MN 

Macropygia amboinensis F GEN W MN 

Ptilinopus melanospila F GEN W PC 

Ptilinopus superbus F FO W PC 

Corvidae     

Corvus enca  I GEN W PC 

Cuculidae     

Cacomantis sepulcralis I FO W PC+MN 

Centropus bengalensis I OL W PC 
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Chrysococcyx russatus I GEN W MN 

Cuculatus sparverioides I GEN W MN 

Cuculus saturatus I GEN W MN 

Phaenicophaeus calyorhynchus I GEN E MN 

Dicaeidae     

Dicaeum aureolimbatum I GEN E PC+MN 

Dicaeum celebicum I GEN E PC+MN 

Dicaeum nerhkorni I FO E PC+MN 

Estrilididae     

Lonchura malacca G OL W MN 

Lonchura molucca G OL W MN 

Lonchura punctulata G OL W MN 

Falconiidae     

Falco molucensis P GEN W PC 

Hemiprocnidae     

Hemiprocne longipennis I GEN W PC 

Hirundinidae     

Hirundapus caudacutus I GEN W PC 

Hirundo rustica I OL W PC 

Hirundo tahitica I OL  PC+MN 

Meropidae     

Merops ornatus I GEN W MN 

Monarchidae     

Hypothymis azurea I GEN W PC 

Motacillidae     

Motacilla cinerea  I OL W PC+MN 

Motacilla flava I OL W PC 

Muscicapidae     

Cyornis rufigastra I GEN W PC+MN 

Eumyias panayensis I FO W PC+MN 

Ficedula hyperythra I FO W MN 

Nectariniidae     

Aethopyga siparaja I GEN W PC+MN 

Antreptes malacensis I GEN W PC+MN 

Antreptes siparaja I GEN W PC 

Nectarinia aspasia I GEN W PC+MN 

Nectarinia jugularis I OL W PC+MN 

Oriolidae     

Oriolus chinensis I GEN W PC 

Pachycephalidae     

Pachycephala sulfuriventer I FO E MN 

Passeridae     

Passer montanus G OL W PC 

Petroicidae     

Culicicapa helianthea I GEN W MN 

Phasianidae     
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Turnix suscitator O OL W MN 

Picidae     

Dendrocopos temminckii I GEN E PC 

Picnonotidae     

Pycnonotus aurigaster I OL W PC 

Psittacidae     

Loriculus exilis N FO E PC 

Loriculus stigmatus N GEN E PC 

Trichoglossus flavoviridis N FO W PC 

Trichoglossus ornatus  N GEN E PC 

Ralidae     

Amaurornis isabellinus O OL E PC 

Gallirallus torquatus O OL W PC 

Rhipiduridae    E  

Rhipidura teysmannii I FO E MN 

Strigidae     

Ninox punctulata I GEN E MN 

Sturnidae     

Aplonis minor I GEN W PC+MN 

Scissirostrum dubium I GEN E PC+MN 

Sylviidae     

Cisticola exilis I OL W PC 

Timaliidae     

Trichastoma celebense I GEN E PC 

Turnicidae     

Turnix suscitator O OL W  

Zosteropidae     

Zosterops atrifrons I GEN W PC+MN 

Zosterops chloris I GEN W PC+MN 
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Table S3  

Correlation analysis of effects of primary forest (in m) and local shade cover (decimal values) 

on (a) abundance and (b) species richness of all recorded bird species (N = 69) for the 

different sampling methods (MN = mist netting; PC = point counts) as well as their total count 

of bird species (ALL). Significant effects (P < 0.05) are printed in bold. 

 

  (a) Species abundances (b) Species richness 

  R2 P F(1,13) R2 P F(1,13) 

Forest ALL 0.495 0.002 14.72 - 0.050 0.574 0.332 

 MN 0.196 0.056 4.404 0.066 0.182 1.985 

 PC 0.448 0.004 12.38 -0.041 0.512 0.454 

Shade ALL -0.071 0.794 0.071 -0.064 0.697 0.158 

 MN 0.023 0.423 0.683 -0.008 0.363 0.890 

 PC -0.076 0.935 0.007 -0.057 0.628 0.246 
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Table S4 

Correlation analysis of effects of primary forest (in m) and local shade cover (decimal values) 

on (a) abundance and (b) species richness of all recorded bird species (N = 69) for the 

different habitat affiliations (FO, GEN, OL) and distributions (endemic vs. widespread; see 

Table A2) 

 

  (a) Species abundances (b) Species richness 

  R2 P F(1,13) R2 P F(1,13) 

Forest FO 0.211 0.048 4.748 0.196 0.056 4.409 

 GEN 0.532 0.001 16.91 -0.005 0.354 0.924 

 OL 0.208 0.05 4.669 0.148 0.087 3.438 

 end. 0.700 <0.0001 33.61 0.265 0.029 6.054 

 wide. 0.089 0.148 2.371 -0.068 0.747 0.109 

Shade FO -0.036 0.486 0.514 -0.039 0.504 0.473 

 GEN -0.076 0.939 0.006 0.049 0.212 1.725 

 OL -0.075 0.894 0.019 -0.033 0.468 0.558 

 end. -0.073 0.837 0.044 -0.050 0.575 0.330 

 wide. -0.055 0.615 0.266 -0.076 0.917 0.011 
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Abstract 

Large and isolated native forest trees often act as last refuges for rare forest species in highly 

fragmented land use areas. This is of particular importance in tropical forest margin areas 

where remnant forest trees are being cleared at an alarming rate. Drivers and consequences 

of such remnant tree losses are still poorly documented. Here, we report the rapid collapse 

of a local forest margin tree occurrence closely associated to colonies of the endemic 

Grosbeak Starling (GBS) in Central Sulawesi. GBS is the only starling that depends on large 

and dead remnant forest trees as nesting sites, which it excavates on its own. Its local 

distribution area at the eastern border of the Lore Lindu National Park is mainly made up by 

secondary forests, annual crops and a large number of shaded agroforestry systems, with 

Erythrina shade trees being the most common species. In 2008, we mapped all potential 

breeding trees of GBS in this area (ca. 45 km²) along with tree characteristics and the local 

population density of GBS. After a re-mapping of all colony trees in 2010, we observed a 

dramatic loss of all formerly recorded nesting sites (92%) attended by a remarkable decline 

of the local GBS population. Analyses of colonized GBS trees showed that tree diameter (min 

dbh of 43.3 cm) and the number of breeding holes were closely correlated. Logging left only 

8% of the colonized trees in the two-year period of observation. In conclusion, our study 

highlights the critical role of rapid forest tree declines associated to native forest species 

diversity.  
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Introduction 

 

Deforestation degrades habitats and isolates populations, thereby substantially reducing 

biodiversity and leading to mass extinctions (Brook et al. 2003; Cardillo et al. 2006; Gardner 

et al. 2009). Southeast Asia, almost entirely considered as a biodiversity hotspot and 

harboring an exceptionally high number of endemic species, is threatened by the globally 

highest rate of human-caused habitat loss (e.g. Myers et al. 2000, Sodhi et al. 2004 and 

2010b). But still, the ecological impacts of deforestation are poorly understood in many 

regions of Southeast Asia (Sodhi et al. 2005), including the island of Sulawesi, where new 

species are still being discovered (e.g. Madika et al. 2001). 

Sulawesi is the largest island within the Indonesian biodiversity hotspot Wallacea 

characterized by a highly endemic avifauna (Stattersfield et al. 1998) and an outstanding high 

proportion of endemic species from various other taxa (e.g. Lee et al. 2007). However, a large 

number of its species suffers from the lack of protected areas and conservation funding as 

well as from intense human encroachment (e.g. Whitten et al. 1987; Sodhi et al. 2010a).  

Large remnant rainforest trees are important structural elements for the diversity and 

composition of bird assemblages in human modified habitats (Abrahamczyk et al. 2008). The 

Sulawesi endemic Grosbeak Starling (GBS) Scissirostrum dubium (Sturnidae) mainly occurs 

along forest margin habitats and in lightly wooded areas (Coates et al. 1997) due to its 

dependency on large and isolated trees as nesting and foraging sites. GBS is the only starling 

able to excavate its own nesting-holes in tall and dead trees in the manner of a woodpecker 

(Craig & Feare 2009; Fig.1). It only colonizes dead, often heavily rotten, large trees which 

remain at forest margin areas or in the agricultural landscapes, where it forages in small 

groups along the forest margin area and inside the agricultural landscape consuming fruits of 

numerous fruiting trees (e.g. Fabaceae, Moraceae, Myrtaceae) as well as insects and seeds 

(Maas et al., unpublished results). Large remnant trees at the forest margin and in the 

adjacent cultivated area are increasingly threatened by land use intensification and ongoing 

tree removal. GBS colony trees are occupied by highly social flocks of 20 – 150 birds (Coates 

et al. ϭ997Ϳ ǁhiĐh ĐaŶ ŵerge to ͞super-ĐoloŶies͟ of seǀeral Ŷeighďored trees aŶd ŵore thaŶ 

1000 individuals. Considering its ecology and behavior, GBS originally seems to be a forest 

species that has adapted to forest margin habitats very well. But tolerance towards 
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anthropogenic activities turns into a disadvantage for those species which are hunted, traded 

or removed from their colony trees (Sodhi et al. 2011, Wilcove et al. 2013, Maas et al., 

unpublished results). 

Given the rapid and ongoing conversion of natural habitats into land use systems, particularly 

in more densely populated areas, within Sulawesi, an improvement of forest management 

and conservation practices is overdue to prevent endangered and endemic species from 

extinction (e.g. Sodhi et al. 2005, 2010a). This includes an improved understanding of largely 

unknown species and their habitat requirements. Regarding GBS, this information is very 

limited (see Coates et al. 1997; Craig & Feare 2009).  

In 2008 and 2010, we studied a population of GBS along the eastern border of Lore Lindu 

National Park (Central Sulawesi) with two main objectives. (1) Mapping of dead trees and 

GBS colonies in the forest margin zone in 2008 was used to identify important characteristics 

of nesting trees. (2) Based on the mappiŶg of ĐoloŶies ǁe assessed the speĐies͛ loĐal 

population density. (3) A second mapping of colonized GBS trees in 2010 was used to re-

eǀaluate the speĐies͛ ĐurreŶt ĐoŶserǀatioŶ status aŶd ĐoŶĐlude ǁith reĐoŵŵeŶdatioŶs for 

possible conservation measures.  

 

Materials and methods 

Study Area 

Our study was conducted in Central Sulawesi, Indonesia, approximately 75 km southeast of 

the province capital Palu, at the eastern margin of Lore Lindu National Park (LLNP; Fig. 2). The 

area was declared a UNESCO Man and Biosphere Reserve in 1977, the national park was 

established in 1993 and covers an area of 229,000 ha (Adiwibowo 2005). LLNP is an 

exceptionally species-rich area harboring approximately 78% of Sulawesi´s endemic birds 

(Coates et al. 1997).  

The forest margin landscape outside the closed block of near-primary forest is characterized 

by a mosaic of secondary forests and a rapidly increasing number of land-use systems with 

cocoa, coffee, maize and rice as the main crops (Schulze et al. 2004, Maas et al. 2009). Our 

study area comprises the elevational range of the lower montane forest zone (Whitten et al. 

1987) with a mean annual precipitation of over 3,000 mm (Schweithelm et al. 1992). GBS 
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colonies were mapped at the northern tip of Napu Valley between 1,100 and 1,200 m ASL in 

an area of approximately 45 km2. 

Data collection 

During the first year of our study, data recordings (first tree mapping, tree measurements 

and observation of colony trees and GBS) were done between 22 August and 22 September 

2008. All colony trees found in 2008 were re-visited between 1 April and 5 May 2010. Daily 

mapping hours were between 06h00 and 19h00 in both years.  

Tree mapping  

For mapping of the colony trees, we used a geo-referenced map of the study area 

(Bakosurtanal 1991), GPS data (Garmin 12 Map) and a digital rangefinder to measure and 

estimate distances (Nikon Laser 800S). We divided the study area into grids of 50x50 m and 

mapped all dead trees with a dbh (diameter at breast height) larger than 20 cm and being 

taller than 2 meter by checking every grid. Every recorded tree (N=547) obtained an 

individual number, a GPS position and was plotted on the map. In addition, we systematically 

searched for colonized trees along 22 forest transects being 300 m long and 200 m wide 

(buffer zone of 100 m left and right from each transect). For each dead tree (N=547) we 

recorded tree height (estimated using a digital rangefinder), dbh, distance to primary forest 

(GPS data), last logging event for the respective location (3 classes: less than 5 years ago, 5-

10 years ago or more than 10 years ago), the habitat type (agricultural system, primary and 

secondary forest; see App. T1) and the number of breeding holes made by GBS. Because 

trees showing breeding holes are not necessarily occupied (meaning active use of the tree as 

nesting or roosting site) by GBS, we also noted which of the trees with visible breeding holes 

(N = 24) were visited by GBS (N = 20 from 24) in 2008. A tree was identified as occupied when 

GBS activity at the breeding holes was recorded during our mapping or the following tree 

observations. All potential colony trees were mapped and measured in 2008. In 2010, we 

focused on the re-assessment of colony trees from 2008. 

In addition to the mapping of potential GBS colony trees, we mapped the forest margin along 

158 GPS points in 2008 and re-mapped it in 2010 by taking additional data at those spots, 

were the forest margin had changed. All tree mapping data were analyzed using ArcGIS (ESRI, 

2005).  
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Mapping and observation of GBS colonies  

For occupied trees (GBS individuals observed; Fig. 1) we determined the number of GBS 

individuals per tree in two steps. First, we counted the number of available breeding holes on 

each tree. In a second step, we observed every occupied tree for 6 hours (divided into 2 or 3 

observation units) and determined the number of actively used breeding holes. These 

observations also served to obtain additional information on behavior, breeding activity and 

foraging times and were conducted by a team of experienced ornithologists (first author and 

experienced local guide) who adjusted their observations at the end of each observation unit. 

Each occupied breeding hole was used by two adult GBS individuals (and occasionally their 

chicks). Accordingly, the number of actively occupied breeding holes by two provides a 

conservative figure of GBS population size, only including adult GBS individuals that regularly 

returned to their breeding holes. Due to the long observation period of each tree, we can 

ensure that vacant breeding holes were not occupied by GBS. The population size was always 

reĐorded per tree, also if the ĐoloŶǇ oĐĐupied ŵore thaŶ oŶe tree at oŶe plaĐe ;͞super 

ĐoloŶǇ͟Ϳ, ďeĐause GB“ pairs ǁere Ŷot oďserǀed to use ŵore thaŶ oŶe ďreediŶg hole. Tree 

species were identified by the first author and an experienced local guide (App. T1).  

 

Fig. 1: A colony of Grosbeak Starlings in Napu Valley at the eastern margin of Lore Lindu National Park, Central 

Sulawesi. Photo: Christian H. Schulze  
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Statistical analyses  

To investigate the importance of measured tree parameters for tree colonization by GBS, we 

calculated Pearson correlations to relate tree height (m) and tree dbh (cm) to the number of 

GBS breeding holes (log transformed) per tree. The distribution of the response variable was 

either assumed to be approximated by normal (tree height, tree dbh) or overdispersed 

Poisson (number of breeding holes) distribution. In the last case, variables were log-

transformed. In addition, the tree parameters were divided into classes (5 dbh classes with 

50 cm intervals and 7 tree height classes with 5 m intervals) and tested them against the 

respective percentage of trees colonized within the intervals using Spearman rank 

correlations. Tree occupation by GBS was displayed within a bubble plot with colony size as 

weighted variable (colony size intervals of 20 individuals) against both tested tree parameters 

(tree height and tree dbh) on the plot axes. All statistical tests and two-dimensional plots 

were computed using STATISTICA version 7.1 (StatSoft Inc., 2005).  

 

 

Fig. 2: Study area located on the island of Sulawesi (left side) at the eastern border of the Lore-Lindu National 

Park (LLNP; augmented at the right side) indicated by the dashed-line polygon around the central village Wuasa.  
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Results  

Tree mapping  

In total, we mapped 547 dead trees (dbh > 20 cm; tree height > 2m). GBS breeding holes 

were found on 24 of them. A total of 83.3 % of these trees (N=24) were actively occupied (N 

=20) by GBS during the study period in 2008. 

Correlation between tree height and tree dbh was highly significant for all mapped trees (N = 

547; r = 0.412; p < 0.001), significant for all trees with breeding holes (N = 24; r = 0.456; p = 

0.025) and not significant for occupied trees (N=20; r = 0.269; p = 0.252). The number of 

breeding holes per tree (log) was significantly correlated with tree dbh (Fig. 3a) but not with 

tree height (Fig. 3b). However, the percentage of colonized trees increased both for 

increased size of dbh classes (Fig. 3c) and tree height classes (Fig. 3d).  

 

 

Fig. 3: Effects of tree dbh and tree height on colony size and the proportion of colonized trees. (a) The number 

of breeding holes is significantly correlated with the tree dbh (cm) of colonized GBS trees (N = 24) whereas (b) 

tree height is not related to colony size (see results of Pearson correlations). The percentage of colonized trees 

for different tree size classes (x axis) does significantly increase with increasing tree size although the effect is 

stronger for dbh classes (c) than for tree height classes (d) (results of Spearman rank correlations). 
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Trees with breeding holes were between 16 and 40 m high and had a dbh of 43.3 – 210.4 cm 

(Fig. 4). Besides the preference for such large trees, GBS also preferred to build their 

breeding holes in the upper trunk of colonized trees. The minimum height of an occupied 

breeding hole was 11 m above ground level while the highest observed occupied breeding 

hole was 32 m above ground.  

Larger GBS colonies also occupied larger trees. Some of the occupied trees were grouped to 

͞super ĐoloŶies͟ ĐoŶsistiŶg of up to three ĐoloŶized trees at oŶe spot. The ŵajoritǇ of trees 

with breeding holes was located in secondary forest habitats (41.7%), followed by 

agroforestry systems (33.3%), vegetable fields (12.5%) and other intensified land use systems 

(> 5%). Trees with breeding holes were represented by Erythrina subumbrans (Hassk.) in 

most cases (41.7%, 10 of 24 trees) while other trees could not be identified with complete 

certainty (Tab. A.1). The last logging event at the sites of located colonized trees was more 

than ten years ago for more than the half of the trees (66.7 %) while some trees remained 

within sites which have been cleared within the past 10 or 5 years (both 16.7%).  

From the 24 trees with breeding holes mapped in 2008, only two were left in the re-mapping 

survey in 2010. These two trees represent a super-colony formerly consisting of three GBS 

trees which remained within an uncultivated land area which is difficult to access due to 

small flooding areas and a more complex topography. All other 22 former colony trees were 

lost as a result of logging activities, land conversion or natural collapses. 

 

Population density of GBS  

On the 20 occupied trees, a total of 684 GBS individuals were observed within the study area 

of 45 km2 which corresponds to a local population density of 15.2 individuals per km2. The 

mean colony size per tree (± SD) was 26.29 (± 22.06) birds. 

We also recorded GBS breeding activity (feeding of chicks) during the first survey period in 

August and September 2008. So far, breeding was apparently only reported for the month of 

May (Craig & Feare 2009). 
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Fig. 4: Bubbleplot of tree height (m) and dbh (cm) of occupied trees (N = 20) with increasing colony size of GBS 

(intervals of 20 individuals per tree) indicated by circles of increasing size. Only trees outside the dashed lines 

(higher than 16 m and with dbh larger than 43.3 cm) were occupied by GBS.  

 

Discussion  

Our results document a rapid local decline of the endemic Grosbeak Starling at the eastern 

margin of the Lore Lindu National Park in Central Sulawesi, which is closely related to the 

significant decrease of large remnant forest trees. In only two years, 22 of the 24 colony trees 

found in 2008 vanished from the study area, corresponding to a loss of 92%. Hence, suitable 

nesting sites have become a potentially limiting factor in our study area. 

The Southeast Asian avifauna is characterized by the highest proportion of threatened and 

endemic bird species in the tropics but also suffers from a deforestation rate which is three 

times higher than in other tropical areas (Sodhi et al. 2004; Sodhi et al. 2010b) .The rapid 

decline of the GBS population in our study area indicates that suitable nesting sites are likely 

to become the limiting factor for the survival of that species, at least at the local scale. In 

2008, 4 of the 24 trees with breeding holes were not colonized of GBS. This amount of 

unoccupied trees could be explained by sufficient availability of nesting sites in 2008 or by 
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abandoning of these former colonies due to high anthropogenic disturbance since all these 

trees were situated in agroforestry systems.  

The conversion of forest margin areas and the intensification of land use systems are rapidly 

ongoing in Central Sulawesi as well as in other parts of the island (e.g. Riley 2010, Sodhi et al. 

2012) and hence pose a pressure on the remaining local GBS populations. Wildlife trade 

(caged GBS for sale were frequently seen in Sulawesi and Java; Maas et al., unpublished 

results), local hunting activities (GBS is frequently confused with Aplonis minor by the local 

community in our study area and therefore being hunted as a land use pest; Maas et al., 

unpublished results) and the low law enforcement in maintaining protected areas with 

populations of GBS represent additional threats. 

Being a forest species adapted to the forest edge, GBS depends on tall and large standing 

trees at the forest margin or in the adjacent cultivated area for establishing breeding 

colonies. We found that GBS trees could be best described using the dbh of colonized trees 

(min 43.3 cm), which was positively related to the number of breeding holes per tree. 

Furthermore, the proportion of colonized dead trees increased rapidly with increasing dbh. 

Tree height was a rather poor indicator for colonization by GBS, probably due to the fact that 

thick, rotten trees were frequently broken at the top. 

The majority of colonized trees were located in secondary forests and agroforestry systems 

as well as in systems in which the last logging event occurred more than ten years ago. 

Available studies from Neotropical forests illustrate the high variation of age (approximately 

from 15 to 115 years) of tree species with dbh values higher than 40 cm (see Fig. 3 in 

Schöngart 2008, Leoni et al. 2011). It is well understood that tree growth also strongly varies 

depending on the species and location-specific characteristics. Trees within secondary forests 

and agroforestry systems of Central Sulawesi with a tree height of 15 m or more are often 

remnants older than the respective forest succession stage or the land use systems 

themselves and were left during the forest conversion process (Michael Kessler, personal 

communication). Translated into the habitat requirements of GBS, an even longer and yet 

unknown period than the minimum available estimate (15 years) would be necessary to plant 

and grow new trees becoming future nesting sites for their colonies since the starling can 

only excavate breeding holes in trees which are already rotting and easy to perforate. GBS 
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therefore mostly occupies tree remnants coming from the forest interior to the forest edge 

in consequence of former slash-and-burn activities. The other type of colonized GBS trees 

persists in patches of older and uncultivated secondary forests or agroforestry sites within 

the open land area adjacent to the eastern margin of the Lore Lindu National Park. Hence, 

hoping for aging secondary forest habitats or extensive agroforests as a suitable strategy to 

avoid further tree declines and GBS extinctions on the local scale seems to be unpromising in 

the near future.  

 

Conclusions and implications for management 

The ongoing loss and conversion of primary habitats and the proceeding removal of remnant 

large rotten trees within the forest margin area and secondary forests represent a serious 

and likely underestimated threat for the endemic Grosbeak Starling in Central Sulawesi. The 

number of mapped colony trees within the eastern area of the Lore Lindu National Park 

decreased notably (92 %) between 2008 and 2010. These findings represent an alarming 

trend ongoing in many tropical forest margin landscapes. Unfortunately, most of the world´s 

species are still too poorly known to enter in the record lists of the World Conservation Union 

(IUCN) or other reports which effectively increase their conservation status (e.g. Brooks et al. 

1997). Until now, the global population size of GBS has not been quantified (BirdLife 

International 2013) and more evidence is needed to see if the clearance of their breeding 

trees and the collapse of nesting sites are widespread. The Grosbeak Starling is not only 

attractive to ecotourism and ecological research but also may represent a useful bioindicator 

for the condition of the forest margin zone, e.g. of protected areas such as Lore Lindu 

National Park. The protection of big trees, such as the widespread Erythrina shade trees, in 

agricultural habitats, in agroforestry systems and in the rainforest margin area is necessary to 

maintain stable population densities of GBS, at least in a short to mid term. 
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Synthesis  

In our comprehensive full factorial exclusion experiment set up across local management and 

landscape gradients, we could detect multitrophic interactions between flying vertebrate 

predators (birds and bats), other natural enemies (ants and spiders) and pest insects (see 

chapter II). We could demonstrate an impressive impact of birds and bats on arthropods, 

fruit productivity and crop yield in tropical agroforestry. Using additional sampling methods 

(mist netting and point counts of birds) and field predation experiments, we could show the 

importance of species identity for the predation of common pest insects (see chapter III). 

Functional diversity and ecosystem services do not necessarily depend on the same 

management strategies and, besides their unequal importance for conservation and 

smallholder economics, are best assessed with different field methods. Nevertheless, the 

proximity to forest habitats and extensively used agroforests seems important for both 

biodiversity and ecosystem functioning. This could also be shown in our study on the habitat 

requirements of the Sulawesi endemic Grosbeak Starling which is highly adapted to 

anthropogenic land use areas but depends on large remnant forest trees as nesting sites (see 

chapter IV). The conversion of the forest margin landscape in Central Sulawesi caused a sharp 

decline of local nesting site availability and is likely to affect the diversity of other species in 

this area as well.  

Our studies provide new arguments for wildlife-friendly management of agroecosystems, 

which is not only important for sustaining rural livelihoods, but also for the potential 

conservation of endangered species. To improve management and sustainable use of natural 

resources, a better understanding of the underlying ecological mechanism in agroforestry 

land use are needed (Perfecto et al. 2004; Philpott et al. 2009). Our results stress the 

economic impact of the underestimated group of night-active predators, such as 

insectivorous bats (Williams-Guillén et al. 2008). We also emphasize the relevance of single 

common bird species as drivers of arthropod suppression which are related to forest habitats 

and extensive land use. We underline the importance of taking into account the effects local 

and landscape management (Tscharntke et al. 2005; Clough et al. 2009) and consider 

different temporal and spatial scales simultaneously, also with respect to multitrophic 

interactions between birds, bats and predatory arthropods which jointly impact the 

productivity of agroforestry systems in complex ways.  



Synthesis 

 

 

- 99 - 

 

Traditional agroforestry practices have considerable potential to support biodiversity 

conservation, but this is conditional on factors such as sufficient areas of natural habitat and 

legal regulations of biodiversity and natural products (McNeely and Schroth 2006). Local 

shade tree management in tropical agroforestry is often considered a valuable management 

strategy to conserve species richness and functional diversity (e.g. Rice and Greenberg 2000; 

Perfecto et al. 2007). Modern trends towards increased planting of introduced fruiting tree 

species and the absence of native shade trees, have to be discussed with respect to possible 

impacts on native (shade tree associated) biodiversity and smallholder economics 

(Augusseau et al. 2006).  

Native fruit trees not only provide valuable shade trees for agroforestry, they can also be 

used as food resources, fire wood or construction material (McNeely and Schroth 2006; 

2008). Therefore, shade trees can not only be seen as a chance for biodiversity-friendly 

agroforestrǇ ŵaŶageŵeŶt, ďut also as ͚stored Đapital͛ aŶd additioŶal iŶĐoŵe for sŵallholder 

farmers (Tscharntke et al. 2011). The argument of extensive agroforestry management 

becomes even more attractive to smallholder farmers if high crop production can be 

combined with high biodiversity (Clough et al. 2011), which also increases the ecological 

resilience of ecosystems (Bengtsson et al. 2003; Loreau et al. 2003). Furthermore, intensive 

agriculture management (including pesticides, fertilizer and shade tree pruning) can reduce 

the ability of ecosystems to provide goods and services, for example through degraded soil 

and water quality (Tilman et al. 2002).  

Tropical landscapes are highly fragmented due to ongoing habitat destruction, a fact which 

creates the need for farming systems and landscape structures which allow migration 

between fragments and therefore detain ongoing local and regional extinctions (Perfecto et 

al. 2010). This landscape matrix framing approach (Perfecto et al. 2010) has a better chance 

of capturing reality than the alternatives taking into account the consensus among ecologists 

that metapopulations, metacommunities and landscape processes are important 

determinants of biodiversity. The emergence of new agricultural diseases and pest species 

and the impact of climate change represent additional threats for the global agricultural food 

production system (Schroth et al. 2004).  
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With increasing knowledge of the importance of biological and functional diversity for 

ecosystem functioning (Tscharntke et al. 2005; Whelan et al. 2008; Kunz et al. 2011 ), more 

sustainable land use practices are in great demand (Cullen et al. 2005; McNeely and Schroth 

2006). It is known that extensive agricultural systems (shaded with no or low amounts of 

chemical compounds) can support high biodiversity depending on local shade tree diversity 

and availability (e.g. Perfecto et al. 1996; Rice and Greenberg 2000) as well as the respective 

landscape context (e.g. Fahrig et al. 2011), but the integration of local and landscape scales 

into the study of ecosystem functioning in tropical agroforestry is new.  

In the context of such improved practices for productive and extensively used agricultural 

systems in the tropics, our findings represent an important addition to previous studies 

because they highlight the importance of these scales for the provision of ecosystem 

services. Besides the tremendous positive effects of birds and bats for the productivity of 

tropical agroforestry, we point out the importance of species identities for ecosystem 

services on a landscape scale and illustrate the impact of landscape conversion on species 

diversity and common species identities in tropical land use areas. Accordingly, we agree that 

conservation should be viewed from a larger landscape perspective (e.g. Tscharntke et al. 

2005; Bos et al. 2007; Perfecto et al. 2010) and suggest that the consideration of spatial and 

temporal scales into management practices might even facilitate the beneficial impact of 

birds and bats on agroforestry crops. To allow for such a targeted local and landscape 

management, more quantitative evidence for spatial effects on the quality and quantity of 

ecosystem services, species identities and species specific functions are needed in tropical 

landscapes.  
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