
Entropic Motors:
Directed Motion without Energy

Flow

Dissertation zur Erlangung des
mathematisch-naturwissenschaftlichen Doktorgrades

“Doctor rerum naturalium”

der Georg–August–Universität Göttingen

im Promotionsprogramm ProPhys
der Georg–August University School of Science (GAUSS)

vorgelegt von

Johannes Paul Blaschke

aus Lich, Hessen

Göttingen, 2014



Betreuungsausschuss:

apl Prof. Dr. Jürgen Vollmer
Max-Planck Institute for Dynamics and Self-Organization

apl Prof. Dr. Stephan Herminghaus
Max-Planck Institute for Dynamics and Self-Organization

Prof. Dr. Annette Zippelius
Georg-August-Universität Göttingen

Mitglieder der Prüfungskommission:

Referent: Prof. Dr. Reiner Kree
Georg-August-Universität Göttingen

Korreferent: apl Prof. Dr. Jürgen Vollmer
Max-Planck Institute for Dynamics and Self-Organization

Weitere Mitglieder der Prüfungskommission:

Prof. Dr. Annette Zippelius
Georg-August-Universität Göttingen

Prof. Dr. Devaraj van der Meer
University of Twente

apl Prof. Dr. Stephan Herminghaus
Max-Planck Institute for Dynamics and Self-Organization

Dr. Claus Heussinger
Georg-August-Universität Göttingen

Tag der mündlichen Prüfung:



This Dissertation by Johannes Blaschke is licensed under a
Creative Commons Attribution 4.0 International License1.

1http://creativecommons.org/licenses/by/4.0/deed.en

http://creativecommons.org/licenses/by/4.0/deed.en
http://creativecommons.org/licenses/by/4.0/deed.en




Abstract

Asymmetric test particles can rectify thermal fluctuations of im-
pinging particles, if the test particles are not in equilibrium with
their environment [2, 25, 42]. Due to this rectification, these test
particles are called Brownian motors. One means of maintaining
the Brownian motor out of equilibrium, is to introduce dissipation
between impinging particles and Brownian motor.

So far, only Gaussian velocity distributions for the impinging
particles have been considered [8, 12]. However, In order to maintain
a steady state in the presence of dissipation, the impinging particles
must have some sort of driving in order to replenish the energy
that has been lost in collisions. This driving effects the velocity
distribution of the impinging particles [53]. In this dissertation, we
address the question: how do non-Gaussian velocity distributions
affect the motion of the Brownian motor?

By considering an anisotropic velocity distribution for the imping-
ing particles, we where able to identify a dimensionless parameter
which identifies whether the anisotropy has an effect on the motor
drift. In the regime where the anisotropy dominates the drift, a
dramatic violation of equipartition has been observed.

When the impinging particles all have the same speed but ran-
dom orientation, we found that the direction in which the motor
drifts is a function of motor mass. We where able to identify a break-
down of ergodicity for motors which are lighter than the impinging
particles.

In both cases, we found that the motor drift velocity approaches
a constant value, independent of motor mass, in the limit of a
massive motor. We have also found that rectification occurs even
when there is no dissipation, we therefore argue that an entropy
current, instead of an energy current, sustains motor drift.
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1
Introduction

Brownian motors are devices capable of rectifying the fluctuations
inherent to thermal systems [2, 25]. They are fascinating because,
at first glance they seem to be capable of violating the second law of
thermodynamics by turning thermal fluctuations into useful work.
This is of course not the case! A Brownian motor is only capable
of producing useful work when it is out of equilibrium with its
environment.

One way of ensuring that a Brownian motor is out of equilib-
rium is to introduce a source of energy dissipation. Dry granular
gasses, i. e. non-cohesive particles that dissipate energy upon colli-
sion [24, 30, 32], are a popular real-world systems exemplifying this
mechanism. Since particles are macroscopic, and fabrication tech-
niques allow for reasonably well defined material properties, studies
can be carried out in the laboratory without needing extremely
small, or large scales. Experimental and numerical studies have
found a wide and fascinating range of phenomena, [4, 17, 38, 45]
for just a few examples. Common to many of these experimental
and numerical studies is that the granular gas is kept in a (far-from-
equilibrium) steady state by shaking the container or its walls. This
has the effect that the velocity distribution of the granular gas is
non-Gaussian [53]. Another recent study has found rectification of
a cog driven by impinging swimmers [15]. Here the distribution
deviates from a Gaussian even more than a granular gas, as the
swimmers have a narrow range of speeds.

This work examines the motion of asymmetric test particles,
Brownian motors, that are immersed in a gas whose velocities are
sampled from a non-Gaussian distribution. We ask the question:
what is the effect of the non-Gaussian distribution on the motion of
the motors?

1.1 previous work
The present work was inspired by, and builds upon a number of
studies addressing the motion of an asymmetric test particle un-
dergoing random collisions with a bath. Here we shall give a short
review of several non–equilibrium model systems that are relevant
to Brownian motors.
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1.1.1 The Adiabatic Piston
The adiabatic piston [23, 39] consists of a piston which moves
without friction and does not conduct heat. The piston separates
two reservoirs of different gasses, often modelled as hard–core gases.

The relevant question is: if the two gasses are not in thermody-
namic equilibrium when the piston is released from rest, in which
direction does the piston move? If the pressure of both gasses is
the same, then classical thermodynamics makes no prediction about
the motion of the piston.

This makes sense, when the pressures are identical, the system
is in mechanical equilibrium, and so there is no net force (over time)
acting on the piston. The only motion that remains are the tiny
kicks that the piston receives from the gas.

This is problematic to thermodynamics, as it does not treat
the gas atomistically. And so, thermodynamics cannot make any
statements about the eventual motion of the piston [23].

Recalling that the piston moves without friction, and so it can
be moved by atomic/molecular collisions. Then the question re-
mains: in which direction, if at all, does the piston move? This
was considered one of the controversial physical questions until still
quite recently [39]. The answer is remarkable: the tiny kicks from
the gas, cause the piston to fluctuate in the same way as the thermal
fluctuations of the gas. Hence the piston’s motion conducts heat,
even though it is made up of a perfect insulator. This heat flow,
via the piston’s motion, equilibrate the gasses temperature. In the
process the piston move towards to hotter reservoir [14, 21, 23, 39].

This basic model therefore elucidated the importance of address-
ing fluctuations, in order to understand the mean motion of objects
in contact with heat baths.

1.1.2 Brownian Motors
The Brownian motor (or Feynman–Smoluchowski ratchet) is a basic
Gedankenexperiment aimed at rectifying the random fluctuations
of molecular statistical mechanics [31].

The idea is very simple, a ratchet–and–pawl mechanism is used
to ensure a paddle–wheel can only turn in one direction. If the
paddle–wheel is immersed in a gas of molecules, some collision
would turn it into the allowed direction. Normally a paddle–wheel
would not begin spinning on its own this way, as collisions turning
it clockwise and anti–clockwise would average out over time. With
the ratchet–and–pawl mechanism, this devices should spin in one
direction all due to the thermal fluctuations in the molecular gas.

However, the full mathematical treatment [31] shows the pawl
fluctuating also. In equilibrium, the pawl therefore skips equally
many otherwise forbidden turns as it allows allowed turns.
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Even though it did not yield a perpetuum-mobile, this Gedanken-
experiment did open the door to the field of Brownian motors. If the
Feynmman–Smoluchowski ratchet was, in some manner, kept out of
equilibrium from its environment, then the device can be used to rec-
tify the thermal fluctuations of the environment [1, 2, 25, 42, 51, 52].

In principle, all that is needed is spacial asymmetry, and time-
reversal asymmetry. The former was supplied by the ratchet-and-
pawl mechanism. And the latter is supplied by the non-equilibrium
condition. Since a wide class of physical system can be used to
perform rectification of thermal fluctuations this way, the term
“Brownian-motor” is used to describe them.

1.1.3 Granular Brownian Motors
Inelastic collisions with the wedge, lead to a finite steady–state drift
of the wedge’s position [8]. If the coefficient of restitution varies
over the surface of the wedge, this drift can be enhanced [12]. These
systems, where a finite steady–state drift is achieved via inelastic
collisions have been called granular Brownian motors [11, 12, 22, 28].
A granular version of the Feynman-Smoluchowski ratchet has been
also examined in the laboratory [18, 28].

Furthermore, since the state of the granular gas can be observed
directly [16, 17] some of the physical mechanisms, such as convection
are directly accessible to experimental observation.

Dissipative collisions are normally modelled using a coefficient
of restitution [24, 29, 47]. This simple model captures the inelastic
collisions, by removing a fraction of the normal component of the
particle’s relative velocity.

Here we shall consider a very basic geometry which breaks
reflection symmetry: a triangular wedge1 1. This breaks reflection

symmetry in the horizontal
direction, because the wedge
is oriented so the horizontal
axis goes through only one
tip

, constrained to move in
the horizontal direction only. When the wedge experiences elastic
collisions, there is a finite transient drift as the motor approaches
thermal equilibrium with the gas [50].

1.1.4 Bacterial Brownian Motor
A recent study observed that an asymmetric cog, driven by collisions
with E. Coli bacterial, develops a finite steady-state speed of rotation
[15]. This has been proposed as a means of stochastically driving
microscopic machines.

1.2 the aim of the present work
So far, pertinent theoretical studies addressing these motors are
based on thermostatted gasses. Impacting particles are sampled
from a Gaussian velocity distribution. When thermostatting via
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stochastic forcing, this is a reasonable assumption [12]. On the other
hand, experimental realizations of granular gasses typically exhibit
sustained heterogeneities in density and granular temperature [10,
16, 17, 45, 46]. Moreover, when shaking in the plane of observation,
they exhibit noticeable anisotropy of the granular temperature [53].
Consequentially we denote them as anisotropic gasses.

The fact that the velocity distribution of a granular gas does not
follow a Gaussian distribution is not surprising. After all, we expect
a Gaussian velocity distribution in local equilibrium. The studies
on the motion of a granular Brownian motor in an isotropic gas
[8, 12] have shed an important light on the nature of a system out of
equilibrium due to dissipation. We see that, due to the constant flow
of energy being dissipated, some velocity fluctuations of the wedge’s
motion are rectified to produce finite steady-state drift. Here we
explore the additional effects of anisotropy on the motion of the
granular motor is.

An anisotropic gas can still be considered near equilibrium. After
all, if the anisotropy is mild, then the deviation from the Gaussian
distribution is just a small perturbation. Hence we will complement
our findings by examining an extreme case of a non–equilibrium
system: a gas of self–propelling swimmers.

We will take an important step towards bridging the gap between
theory and experiment for both granular and bacterial Brownian
motors.

1.3 overview
This work is structured into 3 principal chapters giving an exposition
of the central results. In the results chapters of this dissertation, we
will address two model systems for the gas:

1. A gas whose particle velocities are sampled from a squeezed
Gaussian distribution;

2. A gas where all particles have the same speed, but random
orientation.

1.3.1 Chapter 2: Model System
In chapter 2 we introduce the model systems used throughout the
present work. The mathematical notations and conventions are also
presented here.

1.3.2 Chapter 3: Kinetic Theory
Much of this work relies on the kinetic theory of Markov processes.
In chapter 3, we introduce the basic features of Markov processes.

12



Then we proceed to review a computer algorithm which efficiently
computes the time evolution of such processes.

We then proceed onto the master equation, that is how velocity
probability density function may be calculated from the single-
collision equations of motion and the statistics of encountering a
specific collision. The method presented here is a generalization of
the published approach [35], allowing it to be applied to a wider
range of problems. It allows us to determine the moments of the
motor velocity probability density function.

1.3.3 Chapter 4: Kinetic Theory for a Granular Brownian
Motor in an Anisotropic Granular Gas
Up to now, the kinetic theory had not explicitly addressed the
particle velocity probability density function, φ. In chapter 4 the
method of moment-hierarchies is used to show that rectification
occurs when φ is a squeezed Gaussian. The asymptotic analysis
for a massive motor is used to introduce a dimensionless number
which serves as a faithful criterion for whether rectification is due
to dissipative collisions, or due to anisotropy.

In the traditional study of Brownian motor, the usual explanation
for rectification is that the motor is out of equilibrium with the gas
since dissipation ensures that the motor’s temperature is lower than
that of the gas. Surprisingly, rectification due to anisotropy occurs
even when the motor is almost at the same temperature as the gas.
We argue that this kind of rectification is due to the flow of entropy,
rather than energy.

1.3.4 Chapter 5: Brownian Motor in a Bath of Swimmers
Inspired by this insight into rectification due to entropy flow, rather
than energy, chapter 5 addresses a model where the particles have
identical energy (and therefore speed) but move with uniformly
random orientation. This provides interesting theoretical challenges,
since the transition rates are no longer defined on a convex surface.
The kinetic theory for this system requires the treatment of the
partitioned phase space, discussed in the chapter on the kinetic
theory. As an alternative to the kinetic theory, the beginnings of
the path integral treatment are also motivated at this point.

We find rectification of the velocity fluctuations here as well.
Contrary to the previous chapter, though, we find that the direction
of the motor drift depends on the mass ratio between motor and
gas particles. Furthermore, realizations of motor trajectories show
that the first moment of the velocity probability distribution of the
motor no longer corresponds to the motor’s average displacement
per unit time when the motor mass is less than the swimmer’s mass.

13





2
Model of the Brownian
Motor and Mathematical
Conventions

In this chapter, we shall review the basic elements of the model
system used whenever performing explicit calculations. This is
followed by an introduction to the mathematical conventions and
notation used throughout this work.

2.1 model
Central to this work is the study of asymmetric objects, whose
motion is driven by collisions with gas particles. For brevity, we
refer to the asymmetric object as the motor, and the gas particles
simply as particles.

In this introduction we shall give a general description of our
model system (cf. [8] for the original publication). That is, the
geometry of the motor, and its interaction with the gas particles.
The velocity distribution function of the particles will be discussed
in chapters 4, and 5.

2.1.1 Motor
The motor is taken to be a smooth 2-dimensional wedge, with wedge
angle 2θ0 and mass, M̃ . It is allowed to move only in one direction,

Figure 2.1: A particle (black
circle) colliding with the
Brownian motor (triangular
wedge with wedge angle 2θ0).
The angles of the edges,
i ∈ {0, 1, 2}, are measured
counter-clockwise from the
positive x̂-axis to the outside
of the motor, yielding θ0,
θ1 = π − θ0, and θ2 = 3π/2,
respectively.
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which we take to be the x̂-axis. Fig. 2.1 gives a simple sketch of
this. The motor will move freely with velocity V = V êx between
collisions. Hence the state of the motor can be characterized by
(x, V ), where x is the motor’s position.

The length of the n-th side is given by

w0 = w1 = 1
2(1 + sin θ0) w2 = sin θ0

1 + sin θ0
(2.1)

where the total length has been normalized such that w1 +w2 +w3 =
1. Under the assumption of molecular chaos11. Also called Stosszahlansatz [33], and since the
total side length is 1, the probability of a particle striking side i is
equal to its length.

2.1.2 Gas
Gas particles have mass, m̃, and velocity ṽ = (ṽx, ṽy). Different gas
baths have been examined throughout this work, the exact nature
of the gas bath will be addressed at the appropriate time. We do
assume that there exists an energy scale, allowing particle velocities
to be non-dimensionalized: v = (vx, vy). Henceforth, velocities with-
out a tilde represent the non-dimensionalized velocities, obtained
via this energy scale.

From a mathematical point of view, the gas bath will enter the
theory through the gas particle velocity distribution: φ(vx, vy). In
order to avoid the complexity of the Boltzmann equation, the gas
particle velocities are thermostated such that their velocities always
resemble the distribution φ. We refrain from modifying the theory
so that it includes feedback of the motor on the gas is possible. It is
possible in principle. However, this amounts to significant technical
complexity, without promising new insights.

2.1.3 Motor-Gas Interaction
A collision event is illustrated in Fig. 2.1. Collision rules depend on
which side of the motor, i ∈ {0, 1, 2}, is being impacted and on the
coefficient of restitution, r. Since the motor’s surface is perfectly
smooth, there is no change in the tangential component of the gas
particles velocity,

v′ · t̂i = v · t̂i , (2.2a)
where t̂i = (cos θi, sin θi) is the tangential vector to the surface being
impacted22. Note that indexing vectors

do not represent the vector’s
components

. In contrast, due to restitution the reflection law for the
normal direction becomes,

(V ′ − v′) · n̂i = −r (V − v) · n̂i , (2.2b)
where n̂i = (sin θi,− cos θi) is the normal vector. Single collisions
obey conservation of momentum,

v′x +MV ′ = vx +MV , (2.2c)
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whereM := M̃/m̃ is the mass ratio. Altogether Eqs. (2.2) determine
the change in the motor velocity,

ui := V ′ − V = γi (vx − V − vy cot θi) , (2.3a)

where
γi ≡ γ(r,M, θi) := (1 + r) sin2 θi

M+ sin2 θi
. (2.3b)

2.2 notations
Here I shall summarize the mathematical notation used throughout
this work. This sections serves to make the reader familiar with
the conventions used in the present work, and to introduce those
conventions that are not widely used.

2.2.1 Symbols
2.2.1.1 In-line Division

When specifying the fraction

x

yz
(2.4)

within text, then Eq. (2.4) becomes x/yz. Everything to the right
of the division sign is to be considered in the denominator, until the
next addition or subtraction operation.

2.2.1.2 Place holders

The symbol • will be used as a generic place holder. It shall be
used in place of arguments, indices, and expressions when these are
not relevant to the text discussed. For example, say there are two
quantities xA and xB being discussed. The statement x• > 0 is to
be read as “both xA > 0 and xB > 0”.

2.2.1.3 Sets

Important sets are denoted using the black-board-bold3 3. LATEX: \mathbbsymbols.
Any symbol displayed using this font is a set.

Definition 1 The following symbols are reserved for specific sets:

Real numbers: These are denoted by R.

Indexing set: A set for counting members of a family is denoted by
I. This is by definition countable, but not necessarily finite.
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Definition 2 Let X be a set. The subset of positive values is
denoted by

X+ := {x ∈ X | x ≥ 0} (2.5a)

and the subset of negative values is denoted by

X− := {x ∈ X | x ≤ 0} (2.5b)

Within the context of this work, most sets of continuous quanti-
ties are intervals. These can either be either connected, or the union
of disconnected intervals. Here there basic notation for addressing
such sets is introduced.

Definition 3 Let Ω be a set. We say that Ω can be partitioned,
if it can be written as a disjoint union of countably many sets Ωi,
that is

Ω =
⊔
i∈I

Ωi (2.6)

If each Ωi is an interval, we say that Ω can be partitioned into
intervals.

Definition 4 Let Ω be a set. Then the set ∂Ω is the boundary of
Ω. If Ω can be partitioned into intervals, then

∂Ω :=
⋃
i∈I
∂Ωi (2.7)

Definition 5 Say the set Ω can be partitioned into intervals. Let
x ∈ ∂Ωi ⊂ ∂Ω, then we define the function

bnd(x) =

1 if x is the upper bound of ∂Ωi

−1 if x is the lower bound of ∂Ωi

(2.8)

Definition 6 Say the set Ω can be partitioned into intervals and
let f be a function defined on the boundary of Ω. Then we write f ,
evaluated on the boundary of Ω as

f(x)|∂Ω :=
∑
x∈∂Ω

bnd(x)f(x) (2.9)

2.2.1.4 Vectors

Vectors shall be displayed as bold symbols. Hence v is a vector.
Furthermore, hatted vectors are unit vectors.

Definition 7 Let v be a vector, then v̂ is the unit vector pointing
in the direction of v. The unit vectors forming the basis of the
Cartesian coordinate system are denoted by êx, êy, êz, and so on.
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2.2.1.5 Dimensionless Units

In this work, the models are non-dimensionalized before being
treated mathematically. Hence, most quantities encountered will
be dimensionless quantities. Quantities with a tilde will represent
quantities with physical dimension. The plain counterparts are their
non-dimensionalized form.

Definition 8 Let x̃ be a variable in a model. The tilde denotes that
it has a physical dimension. The non-dimensionalized counterpart
will be written without the tilde, x.

Since the nature of non-dimensionalization is dependent on the
model used, the relationship of dimensionless quantities to their
dimensional counterparts will be addressed wherever appropriated.

2.2.2 Integration and Transforms
2.2.2.1 Integral Boundaries

For integration boundaries we employ the notation where the in-
tegration domain is represented as subscript of the integral sign.

Definition 9 Let (X,Σ, µ) be a measure space. Let f be a mea-
surable function with respect the this measure. Let A ⊂ X, then
the integral of f over A with respect to the measure µ is denoted as∫

A
f dµ (2.10)

This way we can save considerable effort, especially when partition-
ing X.

Remark 1 The integral over the entire real line,
∫∞
−∞ • dµ is now

simply
∫
R • dµ. Likewise, the integral over an interval Ω ⊂ R is

written as
∫

Ω • dµ.

2.2.2.2 Characteristic Function and Moments

Integral transforms, such as the Fourier transform are represented by
writing the transformed space coordinate as k and the transformed
time coordinate as ω.

Definition 10 Let f(x, y) be a distribution. Provided it exists, its
characteristic function with respect to y is written as f(x, k). Such
that:

f(x, k) =
∫
R

eiykf(x, y) dy (2.11)

19



Definition 11 Let f(x) be a probability density function. The
k-th moment is defined as:

Mk :=
∫
R
xkf(x) dx (2.12)

Remark 2 The moments of the probability density function, f(x),
are related to the characteristic function via the derivatives:

Mn = ∂nikf(k)|k=0 (2.13)

Remark 3 The cumulants of the probability density function, f(x),
are related to the characteristic function via the derivatives:

κn = ∂nik ln f(k)|k=0 (2.14)

Definition 12 Let f(x) be a probability density function. The
k-th partial moments over Ω ⊂ R are defined as

Mk,Ω :=
∫

Ω
xkf(x) dx (2.15)

2.2.3 Special Functions
2.2.3.1 Brackets

Definition 13 Let f be a probability density function. Angled
brackets represent expectation values. Angled brackets without
subscript are assumed to be taken over the whole domain of f .
Without loss of generality, we assume that this domain is R.

〈g(x)〉 :=
∫
R
g(x)f(x) dx (2.16a)

A subscript, Ω ⊂ R represents the domain of the integral making
up the expectation value operator:

〈g(x)〉Ω :=
∫

Ω
g(x)f(x) dx (2.16b)

Definition 14 Let S be a statement that is either true or false.
We define the Iverson bracket as:

JSK :=

1 if S is True
0 if S is False

(2.17)

Remark 4 The Iverson bracket constitutes a convenient building
block for many other distributions. Some examples of note are:

Kronecker delta: δi,j = Ji = jK

Heaviside theta function: θ(x) = Jx > 0K
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Indexing function: 1A(x) = Jx ∈ AK

In the absence of spatial correlations, particle collision rates
are proportional to relative velocity. However, when the velocity
is negative particles are moving away from each other, and so the
collision frequency should be zero. The collision rate is hence a
ramp function with respect to relative velocity. We therefore save
time by employing the notation of the Macaulay bracket.

Definition 15 Let x ∈ R, then we define the Macaulay bracket as:

VxW := x Jx > 0K (2.18)

2.2.3.2 Distributions

Definition 16 We write the Dirac-δ function as δ[•].

2.2.4 Limiting Relations
We adopt the following consistent notation for proportionality,
asymptotic behaviour and leading order of an expansion.

The symbol, ∼, is used to indicate that two quantities are
proportional. Frequently this would be used when the coefficients
of an expression have been dropped.

Definition 17 Let x and y be two quantities that are proportional
to one another. Then we write x ∼ y.

The symbol, � is used to mean that the “asymptotic behaviour”
of one function is that of the other. How quickly the asymptotics
are reached is not specified.

Definition 18 Let f and g be functions such that f asymptotically
approaches g in the limit of some parameter x→∞. We write this
as f � g.

Remark 5 If f can be expanded as a power series, then g is not
only the lowest order term of this power series, but any function
that is asymptotically approached.

Finally, the symbol ' in conjunction with a power series expan-
sion is used to show the “leading order” behaviour of a function.
To which order is being considered can be seen by the order of the
expansion.
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Definition 19 Let f be a function that can be represented as a
power series in terms of x,

f(x) =
∞∑
i=0

aix
i . (2.19)

Then we write the leading order(s) of this expansion as f(x) '
a0 + a1x+ a2x

2 + · · ·+ anx
n.
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3
Kinetic Theory of the
Model

In this chapter, we shall review the kinetic theory approach employed.
For specified distributions of the gas particle velocities, we solve
for the stochastic motion of the motor, and its velocity probability
density function. We do this in 4 steps:

1. We introduce Markovian dynamics.

2. We discuss the means of resolving the motor’s time-dependent
position and velocity1 1. Also called “tracking” the

motor’s trajectory.
by stochastically sampling velocity

changes.

3. We review the Kramers–Moyal expansion, which allows the
integro-differential master equation to be reduced to an infinite
order, non-linear differential equation.

4. We show how this may be further reduced to a linear system of
equations describing the moments of the velocity probability
density function.

In the appendix, we review how a distribution can be approxi-
mated from its moments.

3.1 markovian dynamics
Fig. 3.1 shows an illustration of the stochastic dynamics of the
motor. At random times, a collision occurs. This changes the
velocity discontinuously by u = V2 − V1.

A central consequence of molecular chaos is that the motor
follows Markovian dynamics [20]. Given a motor velocity V , we
write the transition rate of a collision resulting in a change of velocity
V → V +u as W (V ;u). The central feature of a Markovian process
is that the transition rates W (V ;u) depend only on the state V and
not the motor’s history, (Vn, Vn−1, · · · ).

Throughout this work, W will frequently be written in the form
W (state ; change in state). Sometimes, it is more convenient to use
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Figure 3.1: Illustration of
the time evolution of the

motor velocity. At random
times, tn, a collision changes
the motor velocity discontin-

uously. Digram reprinted
and modified from [54],

with the author’s consent.

the notation W (state → next state). The conversion between the
two is trivial:

W (xn → xn+1) := W (xn;xn+1 − xn) . (3.1)

Note that W (x1 → x2) is a collision rate. That is, the quantity∫
R
W (x1 → x2) dx2 = a0(x1) (3.2)

is the collision rate22. Also called the escape rate. experienced while in the state x1. The transition
rates may now be easily converted to transition probabilities

P(x1 → x2) := W (x1 → x2)
a0(x1) . (3.3)

For a Markov process, the probability of observing a trajectory
consisting of the transitions x1 → · · · → xn factorizes into the
transition probabilities for each individual transition,

Pn (x1 → · · · → xn) = P (x1 → x2)P (x2 → x3) · · · P (xn−1 → xn) .
(3.4)

This is also called the Markov property. Consequently, the probabil-
ity of observing a trajectory (x1, x2, · · · , xn) is simply

P (x1, x2, · · · , xn) = P (x1)Pn (x1 → · · · → xn) . (3.5)

Here P (x1) is the probability of observing state x1.
The subscript n denotes that this trajectory consists of n transi-

tions33. Technically P(x1 →
x2) should have a sub-

script 1, but this has been
dropped as it is self–evident

. The probability of observing any transition from x1 → xn
consisting of exactly n steps is given by integrating Eq. (3.4) over
all intermediary steps,

Pn (x1 → xn) =
∫
R
· · ·

∫
R︸ ︷︷ ︸

n−2 many

Pn (x1 → · · · → xn) dx2 · · · dxn−1︸ ︷︷ ︸
n−2 many

(3.6a)

=
∫
Dx Pn (x1 → · · · → xn) (3.6b)
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which is a path integral over all possible ways to get from x1 to xn.
Eq. (3.6a) is the explicit integral over all intermediate values, and
Eq. (3.6b) is the same integral written in path integral notation,
where x := (x2, · · · , xn−1).

3.2 motor trajectories
The path integral, Eq. (3.6b) cannot be solved analytically in general.
Instead, direct numerical solutions are possible, by using Monte-
Carlo techniques to find realizations of paths corresponding to the
transition probabilities Eq. (3.3).

The method of Monte-Carlo integration has two principal steps:

1. Many states, sampled from an initial distribution, are evolved
using the transition probabilities, Eq. (3.3).

2. To find the final density P (V, t), the result of step 1 is his-
togrammed.

Step 1 requires an appropriate time discretization. This is
granted because collisions between motor and particles depend
only on the motor’s instantaneous velocity V . More precisely, the
rate at which collisions take place given a motor velocity V is
a0(V ) :=

∫
RW (V ;u) du. Hence the probability, P0(t;V ), that a

collision does not take place within a time interval t is given by the
Poisson statistics:

P0(t;V ) = a0(V ) e−a0(V )t . (3.7)

Sampling the free-flight time between collisions from Eq. (3.7) pro-
vides us with a very natural time discretization.

Even though the time of free flight between collisions does not
explicitly depend on the history of previous collisions, this is not
quite independence. A prior collision which caused a change in
velocity V → V +u does influence the likelihood of the next collision
by having changed V . After all, we are modelling the collisions
between motor and gas as a Markovian process.

3.2.1 Slice Sampling
Sampling collisions from Eq. (3.4) requires an algorithm that can
sample from an arbitrary distribution.

Broadly speaking, algorithms for sampling pseudo-random num-
bers work by first generating uniformly distributed pseudo-random
numbers. Then these uniform pseudo-random numbers are trans-
formed so that they have the desired statistics. In general, this is
achieved in one of the following three ways:
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1. Inverse transform sampling, which transforms sampled pseudo-
random numbers by inverting the cumulative probability func-
tion.

2. Rejection sampling which transforms pseudo-random numbers
by accepting only those numbers which fulfil a prescribed
condition.

3. Markov-chain Monte-Carlo methods which solves a stochastic
process chosen such that its invariant distribution coincides
with the desired distribution.

Category (1.) and (2.) algorithms are computationally efficient
for a certain distributions. They cannot, however, produce pseudo-
random numbers with arbitrary desired statistics. This is precisely
what we need so solve the stochastic process prescribed by Eq. (3.9).

Category (3.) algorithms can cope with a very large range of
distribution, yet they produce serially-dependent pseudo-random
numbers. If the goal is to sample independent pseudo-random
numbers, as is the case for this work, an algorithm whose sampled
pseudo-random numbers decorrelate quickly is desired. The slice-
sampling algorithm [37] has been chosen for this reason.

Slice-sampling is a Markov-chain sampling algorithm, mean-
ing that it produces the next pseudo–random number given the
current one. These sampled pseudo-random numbers are not inde-
pendent. Yet they tend to decorrelate faster than those produced
by the Metropolis–Hastings algorithm44. Which is a frequently

chosen algorithm in the sta-
tistical physics community.

. This is because, unlike the
Metropolis–Hastings algorithm, slice-sampling adapts its step size
to the local shape of the desired Distribution. Especially in the
presence of intervals where the desired distribution goes to zeros,
slice-sampling avoids bottlenecks, where the Metropolis–Hastings
algorithm’s output would produce long correlation times.

The algorithm is based on a very simple principle: if we sampled
points (x, y) ∈ R2 uniformly55. For the purposes of this il-

lustration we shall ignore the
fact that this is impossible in
reality as R2 is not bounded.

with y > 0, and rejected all those
not below the graph of the distribution, then we would produce
pseudo-random numbers with the desired distribution. Of course,
no one should use this kind of algorithm: if the desired distribution
deviates significantly form the uniform distribution this algorithm
would waste a large amount of pseudo-random numbers.

Instead, slice-sampling divides the distribution, P (x), into in-
finitely thin horizontal slices. A slice is picked uniformly at random,
followed by uniformly sampling an x-coordinate from within the
slice. In order to pick the slice, one samples the y-coordinate from
the interval (0, P (x)] uniformly, where x is the previously sampled
x-coordinate. If the boundary of each slice is known precisely, then
no random numbers are wasted at all. Otherwise, if only upper
bounds are known, then rejected sampling is used to determine the
x-coordinate.
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Algorithm 1, below, details the pseudo-code used to implement
the slice-sampling method used in this work. Here P (u) is the
probability that a collision results in a change in motor velocity
from V → V + u, given the instantaneous motor velocity V . It is
related to the transition rates by Eq. (3.3)

Algorithm 1 Sample x, the next pseudo-random number in a
sequence of pseudo-random numbers, distributed according to P
over a domain Ω ⊂ R
Require: Intervals Ωi ∈ Ω over which P is monotonic.
Require: Let x, be a random variable distributed according to P .

It is the previous state of the random number generator.
1: Sample y ∈ (0, P (x)] uniformly
2: loop
3: Select those intervals Ωi such that maxx∈Ωi P (x) ≥ y
4: Sample i, weighted by the length of each Ωi

5: Sample z ∈ Ωi uniformly
6: if P (z) ≥ y then
7: x← z
8: return x
9: else
10: Let Ωi = [ai, bi] and mi = (ai + bi) /2
11: if P (mi) ≥ y then
12: if z > mi then
13: bi ← z
14: else
15: ai ← z
16: end if
17: else
18: if z > mi then
19: bi ← mi

20: else
21: ai ← mi

22: end if
23: end if
24: Ωi ← [ai, bi]
25: end if
26: end loop

A naive implementation of the slice-sampling algorithm is still
prone to bottlenecks if the distribution becomes very narrow above
some y-value (the “slice”). Hence, a standard solution is to shrink
the slice whenever a sampled value is rejected by line 9. This is
accomplished by lines 10 to 24. The monotonicity of the distribution
within each Ωi ensures that they shrink, yet keep bounding the slice
inside the graph of P (u).
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In order to ensure that the sequence of pseudo-random numbers
produced by Algorithm 1 has decorrelated, a sufficiently long se-
quence of pseudo-random numbers needs to be generated, before
the last number taken as the actual outcome of the collision. This
is acomplished by Algorithm 2 (below), which is executed to sample
each collision from W .

Algorithm 2 Sample a velocity change, u, due to a collision from
the transition rates W given by Eq. (3.9)
Require: Instantaneous motor velocity, V , transition ratesW (V ;u)

and thermalization sample N
1: P (u)← W (V ;u)

a0(V )
2: Sample n uniformly from {N,N + 1, · · · , 2N}
3: Initialize Algorithm 1 with random previous pseudo-random

number, the returned value is u0.
4: for i = 1 to n do
5: ui is sampled from P using Algorithm 1, with ui−1 used as x

(the previous state of the Algorithm).
6: end for
7: return un

Algorithm 2 ensures that the collisions are not correlated due
to correlations in the pseudo-random number generator. The cor-
relation time had been determined for a range of V and system
parameters. Taking N = 10 showed an auto-correlation within the
limits of noise. The additional randomization of the initialization
length (line 2) ensures that any residual correlations do not result
in systematic errors. Unless stated otherwise, the rest of this work
uses6

6. Determined by checking
that for N = 10, no cor-
relations from the pseudo-

random number gener-
ator could be observed.

N = 10 whenever invoking Algorithm 2.

3.3 master equation
The dynamics of the motor is driven by collisions with the gas
alone. Under the assumption of molecular chaos, this becomes a
Markov process. Instead of considering individual trajectories here
we examine the the probability density, P (V, t), of finding a motor
with velocity V at time t. For a Markov process, the time evolution
of P (V, t) follows the master equation,

∂tP (V, t) =
∫
R
W (V − u;u)P (V − u, t) du−

∫
R
W (V ;u)P (V, t) du ,

(3.8)
where W (V ;u) du is the transition rate of a motor experiencing a
collision resulting in a velocity change V → V +u. Since the particle
velocities are thermostated and thus collisions can be sampled
from an invariant distribution, the conditional probabilities can be
expressed as an integral involving three specifications:
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1. Selecting only those outcomes which are commensurate with
single collisions, cf. Eqs. (2.3).

2. Weighting single particle collisions by the impact frequency,
where care has been taken to ensure collisions occur only
with the outside surface. The impact frequency is given by
(V − v) · n̂i.

3. Sampling over all possible impact speeds and the motor’s sides,
where wi(θ0) is the probability of picking the side i.

Hence we arrive at the expression for the transition rates:

W (V ;u) =
∑

i∈{0,1,2}

∫
R

∫
R
δ [u− γ(r,M, θi)(vx − V − vy cot θi)]︸ ︷︷ ︸

(i)

V(V − v) · n̂iW︸ ︷︷ ︸
(ii)

φ(vx, vy)dvxdvy wi(θ0)︸ ︷︷ ︸
(iii)

(3.9)

where φ(vx, vy) is the velocity density function for the particles, and
r,M, γ(r,M, θ) and n̂i are defined in the single-collision theory in
section 2.1. Consequently, the steady-state solutions of Eq. (3.8)
are selected by the gas distribution, φ(vx, vy), the single-collision
kinematics γ(r,M, θ), and the wedge angle 2θ0.

3.4 kramers–moyal expansion
The integral-form master equation (Eq. (3.8)) can be transformed
into to a non-linear infinite-order partial differential equation. This
is accomplished by the Kramers–Moyal expansion.

The proof reviewed in the section only7

7. Another commonly pub-
lished proof is to consider
the Taylor expansion of the
W (V − u;u)P (V − u) term
around V . While in principle
correct, this kind of proof
assumes that the Taylor ex-
pansion of W (V ;u), in the
first variable, has an infinite
radius of convergence. This
is not guaranteed for general
transition rates.

demands of the function,
W (V ;u), that its characteristic function,

W (V ; k) :=
∫
R

eiukW (V ;u) du , (3.10)

exists. Before evaluating the integral, however, we expand the
exponential function ex ' 1 + x+ x2/2 + . . . yielding

W (V ; k) = 1 +
∞∑
n=1

(ik)n
n! an(V ) , (3.11)

where an(V ) are the jump moments defined by the integral

an(V ) :=
∫
R
unW (V ;u) du . (3.12)
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Hence the transition rates may be written as the inverse transform
of Eq. (3.11)

W (V ;u) = 1
2π

∫
R

e−iuk
[
1 +

∞∑
n=1

(ik)n
n! an(V )

]
dk

= δ(u) +
∞∑
n=1

(−1)nan(V )
n! δ(n)(u) (3.13)

where δ(n) is the n-th derivative of the Dirac delta function. The
second expression in Eq. (3.13) straightforwardly follows from the
identity δ(n)(x) = (2π)−1 ∫

R(−ik)ne−ixk dk for ∀n ∈ N.
The velocity probability density function evolves according to

Eq. (3.8), which becomes

∂tP (V, t) =
∫
R
δ(u) +

∞∑
n=1

(−1)nan(V − u)
n! δ(n)(u)P (V − u, t) du

−
∫
R
δ(u) +

∞∑
n=1

(−1)nan(V )
n! δ(n)(u)P (V, t) du , (3.14)

after inserting Eq. (3.13). The integrals in Eq. (3.14) can be evalu-
ated using the distributional derivative of the δ–function:∫

R
δ(n)(x)f(x) dx = (−1)n

∫
R
δ(x)f (n)(x) dx = (−1)nf (n)(0)

(3.15)
where f (n)(x) denotes the n-th derivative of the function f(x). An
important consequence of this derivative is that

∫
R δ

(n)(x)f(−x) dx =
f (n)(0). Furthermore, integrals of the form

∫
R δ

(n)(u) du = 0. Hence,
the integral over the second sum in Eq. (3.14) evaluates to zero.
Integrating over the δ-functions then eliminates the integrals giving

∂tP (V, t) =
∞∑
n=1

(−1)n
n! ∂nV [an(V )P (V, t)] , (3.16)

which is the well known88. Since truncating the
Kramers–Moyal expansion
at second order gives the

well studied Fokker–Planck
equation, the Kramers–

Moyal expansion is often
also called the Generalized

Fokker–Planck equation.

Kramers–Moyal expansion [44].
The sum in Eq. (3.16) is semi-convergent, and solutions to the

truncated form of Eq. (3.16) frequently exhibit oscillations that
grow in amplitude with increasing truncation order [43]. In fact,
a theorem by Pawula [44] shows that all but the second-order
truncation of Eq. (3.16) exhibit solutions where P (V, t) is negative
in some regions. Hence Eq. (3.16) is essentially a formal series
expansion, and not an asymptotic expansion.

3.4.1 Drift and Diffusion
The Kramers–Moyal expansion can be thought of as the generalized
form of the Fokker–Planck equation. A naive approach would then
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be to identify a term analogous to the drift term in the Kramers–
Moyal expansion:

∂tP (V, t) =
∞∑
n=1

(−1)n
n! ∂nV [an(V )P (V, t)]

= −∂V
[ ∞∑
n=1

(−1)n−1

n! ∂n−1
V [an(V )P (V, t)]

]
. (3.17)

In general, a probability current, j(V ) can be defined as

∂tP (V, t) =: −∂V j(V ) . (3.18)

Probability currents can be expanded in terms of drift coefficient,
µ(V ), and diffusion coefficient, ν(V ). These are allowed to be
functions:

j(V ) =: µ(V )︸ ︷︷ ︸
drift

P (V )− ∂V [ ν(V )︸ ︷︷ ︸
diffusion

P (V )] + · · · . (3.19)

The naming convention of drift and diffusion is justified by consid-
ering constant µ(V ) = µ and ν(V ) = ν. It is then easy to see that
∂t〈V 〉 = µ and ∂〈(V − µ)2〉 = ν.

We see that truncating the Kramers–Moyal expansion at the
second order yields µ(V ) = a1(V ) and ν(V ) = a2(V )/2 which is
the famous Fokker–Planck equation. This makes sense, as a1(V )
reflects the transferred moment, and a2(V ) the transferred energy
per collision.

Eq. (3.17) gives an expression for the probability current, j(V ):

j(V ) := a1(V )P (V )− ∂V
[ ∞∑
n=2

(−1)n
n! ∂n−2

V [an(V )P (V )]
]

︸ ︷︷ ︸
(i)

(3.20)

:= a1(V )P (V )− ∂V
[ ∞∑
n=2

(−1)n
n! ∂n−2

V [an(V )] P (V )
]

︸ ︷︷ ︸
ν(V )P (V )

− ∂V
[ ∞∑
n=3

(−1)n
n!

n∑
m=1

(
n

m

)
∂n−2−m
V [an(V )] ∂mV [P (V )]

]
︸ ︷︷ ︸

(ii)

(3.21)

where the diffusion coefficient ν(V ) is found by considering all
the coefficients of P (V ) (i. e. none of the coefficients of the higher
derivatives of P (V )) in the derivative term. This gives

ν(V ) =
∞∑
n=2

(−1)n
n! ∂n−2

V an(V ) (3.22)
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by invoking the product law of the derivative inside term (i) in
Eq. (3.20). The drift term is found by realizing that term (ii) in
Eq. (3.21) only contains ∂mV [P (V )] terms where m ≥ 1. Hence the
coefficient of P (V ) in j(V ) is

µ(v) = a1(V ) . (3.23)

3.4.2 Fokker–Planck Approximation
Traditionally one arrives at the Fokker–Planck equation by taking
only the first two terms of the Kramer–Moyal expansion. A practical
advantage of this is that the Fokker–Planck equation, even with
non-linear drift and diffusion terms, is essentially a heat equation.
One therefore has the the full compliment of mathematical tools at
their disposal, for finding P (V, t).

Here, a slightly different approach as been taken, giving a slightly
less naive approximation. Instead of truncating the Kramers–Moyal
expansion, Eq. (3.16), the expression of the probability current,
Eq. (3.19), is truncated at the second order derivative in P (V ). This
is equivalent to ignoring the (ii) term in Eq. (3.21). One expects
that this approximation gives improved results over truncating the
Kramers–Moyal expansion at the second order, when the higher-
order jump moments dominate the expansion.

Direct numerical solutions of the Fokker–Planck equation equa-
tion require numerical second derivatives. This can be avoided by
introducing the secondary probability current

j2(V ) := ν(V )P (V ) (3.24a)

hence
j1(V ) = µ(V )P (V )− 1

2∂V j2(V ) . (3.24b)

Time derivatives are,

∂tj2(V ) = −ν(V )∂V j1(V ) (3.25a)

and
∂tj1(V ) = −µ(V )∂V j1(V )− 1

2∂V [∂tj2(V )] (3.25b)

which involve only the first derivatives.

3.4.3 Direct Solution Scheme
Eqs. (3.25) introduce an auxiliary variable, j2(V ). This could be
generalized to the Kramers–Moyal expansion in general:

∂tPt(V ) = −∂V j1(V ) , (3.26a)

jn(V ) = an(V )Pt(V )− 1
n+ 1∂V jn+1(V ) . (3.26b)
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Figure 3.2: Illustration of the Fokker–Planck approximation, applied to a motor undergoing elastic, r = 1
collisions with gas whose velocities are sampled from a Maxwell–Boltzmann distribution. The motor to particle
mass ratio isM = 100. Different lines indicate increasing time. Cyan lines are the steady state solution. Left
Panel: Motor velocity distribution. Right Panel: Probability current Eq. (3.18). The amplitude of the probability
current can be used to determine whether it has reached a steady state.

This allows the n-th order Kramers–Moyal expansion to be solved,
by solving the hierarchy of “probability currents”

∂tPt(V ) = −∂V j1(V ) (3.27a)
∂tjn(V ) := −an(V )∂V j1(V ) (3.27b)

∂tjn−1(V ) = −an−1(V )∂V j1(V )− 1
n
∂V [∂tjn(V )] (3.27c)

...

∂tj1(V ) = −a1(V )∂V j1(V )− 1
2∂V [∂tj2(V )] (3.27d)

The trick here is to truncate the hierarchy and solve for the time
derivative of the n-th order current first, then move onto the (n−1)-
th order, and so on. This way, one does not require numerical
approximations of the n-th derivative, at the expense of introducing
more auxiliary variables.

3.5 solutions to the master equation
using moment hierarchies
A natural means of truncating Eq. (3.16), while avoiding negative
regions in P (V, t), is to apply it to the moments9 9. First published by [34, 35].of P (V, t), Mk(t),

Ṁk(t) =
∫
R
V k∂tP (V, t) dV . (3.28a)
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Applying Eq. (3.16) to Eq. (3.28a) gives

Ṁk(t) =
∫
R
V k

∞∑
n=1

(−1)n
n! ∂nV [an(V )P (V, t)] dV

=
∞∑
n=1

(−1)n
n!

∫
R
V k ∂nV [an(V )P (V, t)] dV . (3.28b)

This kind of integral will be encountered repeatedly in slightly
different settings. The following lemma allows us to evaluate this
kind of integral.

Lemma 1 Let (R,Σ, dV ) be a measure space. Let Ω ⊂ R be an
interval. Let ∂Ω be its boundary, we have∫

Ω
V k ∂nV [an(V )P (V )] dV (∗)

= Bk,n(t) +


(−1)nk!
(k−n)!

∫
Ω V

k−nan(V )P (V ) dV k ≥ n

(−1)kk! ∂n−k−1
V [an(V )P (V )]

∣∣∣
∂Ω

otherwise
(3.29)

where:

Bk,n =
k−1∑
j=0

k!
(k − j)!V

k−j ∂n−j−1
V [an(V )P (V )]

∣∣∣
∂Ω

. (3.30)

Proof We simply apply integration by parts to (∗), where the V k

term is differentiated, and the ∂n term is anti-differentiated. This
can be done until either: 1) the ∂n term has been anti-differentiated
away, or 2) the V k has been differentiated away. Each iteration
of integration by parts gives an additional term in B due to any
boundaries of Ω.

Corollary 1 For processes where V m+1∂mV [an(V )Pt(V )] vanish for
V on ∂Ω, ∀m ≤ n ∈ N,

(∗) =
{ ∫

Ω
(−1)nk!
(k−n)! V

k−nan(V )P (V ) dV k ≥ n

0 otherwise
(3.31)

Applying corollary 1 which together with Eq. (3.28b) and Ω = R
gives

Ṁk(t) =
k∑

n=1

k!
n!(k − n)!

∫
R
V k−nan(V )P (V, t) dV

=
k∑

n=1

(
k

n

)〈
V k−nan(V )

〉
. (3.32)
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This is a very elegant way of dealing with the Kramers–Moyal
expansion.

Eq. (3.32) has the advantage over the master equation (Eq. (3.8))
that it is a first order finite system of partial differential equations, as
opposed to being an integro-differential equation. However, it does
not constitute a practical improvement over the master equation as
it is not closed! In order to evaluate the right hand side of Eq. (3.32),
the distribution P (V, t) needs to be known.

To achieve closure, we relate the 〈•〉 in Eq. (3.32) term to the
moments of the distribution: The most straight forward way to do
this, is to write the jump moments, an(V ), as a formal power-series10 10. It might seems strange,

to go to some lengths to
avoid relying on the Taylor
expansion at the beginning
of this sections, and yet to
introduce a power series now.
This is not pathological
however, as we will show
later, since any formal series
expansion here would do.

,

an(V ) =
∞∑
i=0

dn,iV
i . (3.33)

Inserting this into Eq. (3.32) gives

Ṁk(t) =
k∑

n=1

∞∑
i=0

(
k

n

)
dn,iMk−n+i(t)

=
k−1∑
j=0

∞∑
i=0

(
k

k − j

)
dk−j,iMj+i(t) (3.34a)

where the second step is the result of the change of summation vari-
ables, such that j = k − n. Then j ∈ {0, . . . , k − 1}. Furthermore,
we desire to collect like Ml. Hence we re-index the double sum such
that l = i + j. Then i = l − j and j ∈ {0,min [l, k − 1]}. This
reduces Eq. (3.32) to an infinite linear system,

Ṁk(t) =
∞∑
l=0

Ak,lMl(t) , (3.34b)

reminiscent of a matrix equation with matrix elements,

Ak,l :=
min[l,k−1]∑

j=0

(
k

k − j

)
dk−j,l−j , (3.35)

which corresponds to the infinite matrix11

11. Note, the indices start at
0.

:

A =



0 0 0 0 · · ·
d1,0 d1,1 d1,2 d1,3 · · ·
d2,0 2d1,0 + d2,1 2d1,1 + d2,2 2d1,2 + d2,3 · · ·
d3,0 3d2,0 + d3,1 3d1,0 + 3d2,1 + d3,2 3d1,1 + 3d2,2 + d3,3 · · ·
d4,0 4d3,0 + d4,1 6d2,0 + 4d3,1 + d4,2 4d1,0 + 6d2,1 + 4d3,2 + d4,3 · · ·
... ... ... ... . . .


(3.36)

Hence we have reduced the Kramers–Moyal expansion to an
infinite-order linear system of ordinary differential equations for the

35



moments of the distribution. Since we see a clear interdependence of
the time evolution of the different moments, and since moments the
moments of a distribution are not independent from one another,
this is appropriately called a moment hierarchy.

While the moment hierarchy approach has been first reported
in [35], the matrix formalism presented here is a new generalization
of the moment hierarchy technique. All the details of the physical
processes are represented by the expansion coefficients dn,i, and the
matrix A, Eq. (3.36), is universal.

3.5.1 Truncation of the Infinite Moment Hierarchy
Eq. (3.35) shows that the infinite system of linear ordinary differ-
ential equations represented in Eq. (3.34b) is strongly coupled. In
order to numerically solve Eq. (3.34b) we require a means to trun-
cate the matrix A at some finite size, without introducing artefacts
from the truncation of the system.

Let us consider, that Eq. (3.33) is truncated at some finite order.
In this way, we essentially model arbitrarily closely the physical
system by another one, where the finite order expansion of Eq. (3.33)
is exact. Unfortunately, this does not guarantee that the system of
equations becomes closed. For instance, if we truncate Eq. (3.33) at
order 2, then Eq. (3.35) becomes

A2 =



0 0 0 0 · · ·
d1,0 d1,1 d1,2 0 · · ·
d2,0 2d1,0 + d2,1 2d1,1 + d2,2 2d1,2 · · ·
d3,0 3d2,0 + d3,1 3d1,0 + 3d2,1 + d3,2 3d1,1 + 3d2,2 · · ·
... ... ... ... . . .


As we can see, the time evolution of the first moment (second line)
only depends on the first and second moment, and no longer on
any higher moments. Likewise the time evolution of the second
moment (third line) depends on the first, second, and third moment.
Hence, truncating at order N , while constituting an improvement
over simply truncating Eq. (3.36), does not lead to formal closure
as the N -th moment’s time evolution still depends on th (N + 1)-st
moment. In fact, it is coupled by the constant Nd1,N . Therefore,
in order to achieve closure in the limit as N approaches a large
number, this truncation scheme requires that d1,N approaches zero
faster than 1/N .

Furthermore, this kind of truncation scheme will most likely lead
to modified physics. If we look at the definition of the first two
jump moments, then

a1(V ) :=
∫
R
uW (V ;u)du = 〈ρ〉(V ) (3.37a)

a2(V ) :=
∫
R
u2W (V ;u)du = 〈E〉(V ) (3.37b)
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where 〈ρ〉(V ) and 〈E〉(V ) is the average momentum and energy
of a collision, respectively, given an instantaneous motor velocity
V . Clearly 〈ρ〉 is a signed quantity, therefore it should be expanded
to an odd power, yet 〈E〉 is always positive, and therefore should
be expanded to an even power. This makes the case for truncating
Eq. (3.33) at an appropriate order depending on n, and not at some
fixed order. For instance, if we truncate the power series of an at
n12

12. This being the lowest or-
der at which to truncate an,
while still remaining com-
mensurate with Eqs. (3.37).

we find that Eq. (3.36) becomes

A1 =



0 0 0 0 · · ·
d1,0 d1,1 0 0 · · ·
d2,0 2d1,0 + d2,1 2d1,1 + d2,2 0 · · ·
d3,0 3d2,0 + d3,1 3d1,0 + 3d2,1 + d3,2 3d1,1 + 3d2,2 + d3,3 · · ·
... ... ... ... . . .


which represents a fully decoupled system. Of course, the decoupling
disappears once again when we wish to more closely model the jump
moments. We shall discuss the details of truncation in the next
sections, whenever numerical solutions to Eq. (3.34b) are found.

3.6 expansion of the jump moments for
factorizable velocity distributions
For many distributions, it is possible to write a probability distribu-
tion, φ(x) in terms of

φ(x) = p(x)ω(x) , (3.38)

where p(x) is an infinite-order polynomial [6] in x, and ω(x) is a
“weight function”. Usual choices for ω(x) are Gaussian, or exponen-
tial functions. The details of this expansion can be found in the
appendix, section A. The polynomial, p(x), can be written as

p(x) =
∞∑
k=0

b
(ω)
k xk . (3.39)

Different probability density functions can thus be characterized by
the sequence

{
b

(ω)
k

}∞
k=0

.
Here this representation is used to generalize the problem of

finding a series expansion for an(V ), Eq. (3.33), given a factorizable
distribution of particle velocities, φ(vx, vy) = φx(vx)φy(vy). Hence,
in Eq. (3.9) we factorize the φ(vx, vy) term and subsequently expand
each φ•. This gives

W (V ;u) =
∞∑
k1=0

∞∑
k2=0

b
(ωx)
k1 b

(ωy)
k2 Ŵk1,k2(V ;u) , (3.40a)
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where

Ŵk1,k2(V ;u) :=
∑

i∈{0,1,2}

∫
R

∫
R
δ [u− γ(r,M, θi)(vx − V − vy cot θi)]

V(V − v) · n̂iW vk1
x v

k2
y ωx(vx)ωy(vy)dvxdvy wi(θ0) .

(3.40b)

Here, the x and y components of φ have been expanded in terms of
potentially different weight functions. Hence, the jump moments
become

am(V ) :=
∞∑
k1=0

∞∑
k2=0

b
(ωx)
k1 b

(ωy)
k2 âk1,k2,m(V ) (3.40c)

where
âk1,k2,m(V ) :=

∫
R
unŴk1,k2(V ;u) du . (3.40d)

Using this expansion, we can find a method for determining the
expansion coefficients. The Taylor expansion coefficients are given
by dm,n = a(n)

m (0)/n!, hence the expansion coefficients are

dm,n := ∂nV am(0)
n! =

∞∑
k1=0

∞∑
k2=0

b
(ωx)
k1 b

(ωy)
k2

n! ∂nV âk1,k2,m(0) . (3.41)

Reducing the problem of computing the expansion coefficients, dm,n,
to computing the derivatives ∂nV ãk1,k2,m(0). These are subject to the
useful recursion relation

∂V âk1,k2,m(V ) = k1âk1−1,k2,m(V )− 1
σx
âk1+1,k2,m(V ) , (3.42)

if ωx(x) ∼ exp [−x2/2σx]. Alternatively

∂V âk1,k2,m(V ) = k1âk1−1,k2,m(V )− 1
σx
âk1,k2,m(V ) , (3.43)

if ωx(x) ∼ exp [−|x|/σx].

3.7 summary
Here we have reviewed the basic details for the kinetic theory of the
Brownian motor model introduced in chapter 2. The assumption
of molecular chaos allows us to model the dynamics of the motor
as a Markov process, introduced in section 3.1. At discrete times,
distributed according to Eq. (3.7), a gas particle collides with the
motor. This results in a velocity change V → V +u, whose transition
rate is given by Eq. (3.9).

In section 3.2, we have reviewed the slice-sampling algorithm,
which allows for the efficient sampling of the velocity changes ac-
cording to the transition rates given in Eq. (3.9).
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This is followed by a review of the Kramers–Moyal expansion
in section 3.4. Here the Kramers–Moyal expansion is derived, and
used to solve the master equation, governing the time evolution of
the motor’s velocity distribution. The Fokker–Planck expansion is
briefly discussed as a special case of the Kramers–Moyal expansion.
The method of moment hierarchies is introduced as a means of solv-
ing the Kramers–Moyal expansion. Here a previously unpublished
generalization of the moment-hierarchy method is presented.

Finally, we explore a general method of expanding the jump
moments provided the velocity distribution of the gas particles can
be factorized. In other words, if the components of the particle
velocities are statistically independent, the expansion of the jump
moments is given by the recursion relations in Eqs. (3.42) and (3.43).

3.8 outlook
In this chapter, we have reviewed the basic tools that shall be
employed in the following chapters. We will examine two separate
models, each requiring a different tool reviewed in this chapter.

In chapter 4, the gas particle velocity distribution is a squeezed
Gaussian. We find that there exists an analytical expansion for the
jump moments, and so the moment-hierarchy method will prove to
be very useful there.

When considering a gas where all particles have the same speed,
as is the case in chapter 5, the jump moments are no longer analytical.
Hence, we have to resort to the method tracking motor trajectories
numerically (cf. section 3.2).
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4
Rectification due to
Anisotropy: Granular
Brownian Motors

4.1 introduction
When a non-cohesive granular gas is driven by shaking, [53] have
shown that the typical velocity distribution of the gas particles can
be faithfully approximated by a squeezed Gaussian.

Even though granular Brownian motors have been realized exper-
imentally [18, 22, 28], an analysis of the effect of gas anisotropy was
lacking in the literature. In this chapter, we report on the motion
of the motor in a gas with an anisotropic velocity distribution. The
effect of the anisotropy is compared to the effect of dissipation. This
chapter is largely based on, and expands upon the details, our article
recently published in Physics Review E (Rapid Communications)
[5]. A copy of this paper may be found in the appendix, section B.1

4.2 model
An outline of the model for the motor, and the motor–gas interaction,
is given in section 2.1. What remained to be specified at the end of
the previous chapter is the velocity distribution for the gas particles.

4.2.1 Gas Velocity Distribution
Following [53], we model an anisotropic velocity distribution using
a squeezed Gaussian,

φ(v̂x, v̂y) = m

2πk
√
TxTy

exp
[
−m2

(
v̂2
x

kTx
+

v̂2
y

kTy

)]
, (4.1)

where m is the particle mass, k is Boltzmann’s constant, T :=〈
m(v̂2

x + v̂2
y)
〉
φ
/(2k) =: (Tx +Ty)/2 is the gas temperature averaged

over both degrees of freedom, and Tx and Ty are the granular
temperatures in the x̂ and ŷ direction, respectively. Anisotropy is
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quantified via the squeezing parameter, α2 := Ty/Tx. Without loss
of generality, let α ≥ 1.

4.2.2 Shaking
We require independent control of the the gas temperature and
its anisotropy11. In the laboratory, only

the shaking strength can be
varied freely. This would

increase both, the granular
temperature, and anisotropy.

. To avoid artefacts due to an increased granular
temperature of the gas α is changed under the constraint

constant ≡ T = Tx + Ty
2 . (4.2)

Setting the constant to 1 we arrive at and expression for Tx and Ty
given α:

Tx = 2
α2 + 1 Ty = 2

α−2 + 1 . (4.3)

4.2.3 Dimensionless Units
Introducing dimensionless velocities, v := v̂/

√
kT/m, reduces the

velocity distribution to,

φα(vx, vy) = 1
4π

α2 + 1
α

exp
[
−1

2

(
α2 + 1

2 v2
x + α−2 + 1

2 v2
y

)]
, (4.4)

which depends on α only. The parameters m, k, Tx and Ty have
been absorbed into the dimensionless velocities. Normalization of
Eq. (4.4) i. e. φ(v̂x, v̂y) dv̂xdv̂y = φα(vx, vy) dvxdvy is still fulfilled.

Time is non-dimensionalized using the gas density (which is
related to the collision frequency at rest). The gas density cannot
be freely chosen. We model collisions as independent. Hence the
gas density needs to remain low enough, to avoid feedback from the
motor’s motion on the gas causing local density correlations. [12]
discuss the upper bound on the collision rate, to ensure that local
density correlations, due to a collision, dissipate before the next
collision.

4.3 transition rates
Given Eq. (4.4), the transition rates, Ŵ0,0(V ;u), and jump moments,
â0,0,m, are given by Eqs. (3.40) for

ωx(vx) =
√

1 + α2

4π exp
[
−1 + α2

4 v2
x

]
(4.5a)

ωy(vy) =
√

1 + α−2

4π exp
[
−1 + α−2

4 v2
y

]
(4.5b)
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Evaluating the vx integral in Ŵ0,0(V ;u) gives2 2. the additional factor of
1/γ is due to evaluating an
integral over a δ-function,
where the argument is multi-
plied by γ

Ŵ0,0(V ;u) =
∑

i∈{0,1,2}
wi(θ0) V−u sin θiW

γ2(r,M, θi)∫
R
φ

(
u

γ(r,M, θi)
+ V + vy cot θi, vy

)
dvy ,

(4.6)

where γ(r,M, θ) is given by Eq. (2.3b). The remaining integral can
be evaluated by substituting Eqs. (4.5) for φ(vx, vy) = ωx(vx)ωy(vy)
giving
∫
R
φ

(
u

γ(r,M, θi)
+ V + vy cot θi, vy

)
dvy

=

√√√√ 1 + α2

4π (1 + α2 cot2 θi)
exp

− 1 + α2

4 + 4α2 cot2 θi

(
V + u

γ(r,M, θi)

)2


(4.7)

After evaluating the sum, we find that the transition rates have the
following analytical form which can be decomposed into transitions
going forward (u > 0) and backward (u < 0)

Ŵ0,0(V ;u) = Ŵ+
0,0(V ;u)Ju > 0K + Ŵ−

0,0(V ;u)Ju < 0K (4.8a)

with the forward (+), and backward (−) transition rates being

Ŵ±
0,0(V ;u) = ± 1

2
√
π

√
4β±

1 + cosec θ0
λ2
±u e−β±(λ±u+V )2

(4.8b)

where the following quantities have been defined for brevity:

λ+ := 1 +M
1 + r

β+ := 1
4
(
1 + α2

)
(4.8c)

λ− := 1 +M cos−2 θ0

1 + r
β− := 1

4
1 + α

1 + α2 cot θ0
(4.8d)

4.4 jump moments
The jump moments can be computed using Eqs. (4.8) directly.

am(V ) = a+
m(V ) + a−m(V ) , (4.9)

where
a±m(V ) :=

∫
R±
unŴ±

0,0(V ;u) du . (4.10)
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4.4.1 Expansion of the Jump Moments
One can use the Taylor-series expansion coefficients, Eq. (3.41),
together with the recursion relation, Eq. (3.42), to calculate the
power series expansion. This requires least effort, but numerical
evaluation has shown that this power series has a small radius of
convergence of small motor to gas particle mass ratio, M. As
a consequence it can lead to divergent solutions to the moment
hierarchy. Instead of taking this direct approach we present here a
series expansion with infinite radius of convergence.

All exponential terms in Eq. (4.8a) have the same basic structure.
So one alternative strategy of finding a power-series expansion for
Eq. (4.9) is to use the power-series expansion for the exponential
function. The exponential term is expanded so that we obtain
polynomials in V :

I(u, β, λ) := e−β(λu+V )2
(4.11a)

= e−βλ2u2−β(2λuV+V 2)

= e−βλ2u2
∞∑
n=0

(−β (2λuV + V 2))n

n! (4.11b)

= e−βλ2u2
∞∑
n=0

(−β)n

n!

n∑
m=0

(
n

m

)
(2λu)n−m V n+m (4.11c)

= e−βλ2u2

 ∞∑
m=0
m even

c(e)
n (β, λ, u)V m +

∞∑
m=0
m odd

c(o)
n (β, λ, u)V m

 .

(4.11d)

Here the first step, Eq. (4.11b), is simply the expansion of the
exponential function for all terms involving V . The second step,
Eq. (4.11c), applies the binomial theorem. The final step, Eq. (4.11d),
is the result of grouping like powers in V . Resulting in the following
coefficients for even and odd powers

c(e)
m (β, λ, u) :=

m/2∑
s=0

(−β)m2 +s(
m
2 + s

)
!

(
m
2 + s
m
2 − s

)
(2λu)2s (4.12a)

c(o)
m (β, λ, u) :=

(m−1)/2∑
s=0

(−β)m−1
2 +1+s(

m−1
2 + 1 + s

)
!

(
m−1

2 + 1 + s
m−1

2 − s

)
(2λu)2s+1

(4.12b)

The procedure of expanding the exponential terms of Eq. (4.8a)
relies only on the power series expansion of the exponential function.
Hence, its radius of convergence is infinite.

The expansion coefficients of the jump moments, Eq. (4.9),
are obtained from the coefficients, Eqs. (4.12), of the exponential
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integrand expansion by integrating over u. That is

an =
√

2− 1
2
√
π
λ2

+
√

1 + α2
∫
R+
un+1I (u, β+, λ+) du

+
√

2− 2
2
√

2π
λ2
−

∫
R−
un+1I (u, β−, λ−) du (4.13a)

=
∞∑
m=0
m even

d(e)
n,mV

m +
∞∑
m=0
m odd

d(o)
n,mV

m (4.13b)

where the expansion coefficients are:

d•n,m =
√

2− 1
2
√
π
λ2

+
√

1 + α2
∫
R+
un+1 e−β+λ2

+u
2
c•m (β+, λ+, u) du

+
√

2− 2
2
√

2π
λ2
−

∫
R−
un+1 e−β−λ2

−u
2
c•m (β−, λ−, u) du (4.14)

where the • refers to the even, (e), or odd, (o), coefficient. The
integrals in Eq. (4.14) are all of the form:

Λ±n (λ) :=
∫
R±
un e−λu2 du = (±1)n

2 λ−
1+n

2 Γ
[1 + n

2

]
(4.15)

so that Eq. (4.14) can be evaluated explicitly using Eqs. (4.12) and
substituting us → Λ±s (β±λ2

±) depending on the integral domain,
±. Eq. (4.15) also shows an important scaling with respect to
motor mass. We see the scaling Λ±n ' λ

−(1+n)/2
± with respect to λ.

Furthermore, λ± 'M for largeM irrespective or integral domain.
Hence d•n,m vanishes for large n in the limit M → ∞. Fig. 4.1
confirms this observation.

Numerical values for a variety of parameters are shown in Fig. 4.1.
Here for decreasing M, the values of dm,n diverge for increasing
m. This is pathological to the truncated Kramers–Moyal expansion.
The Kramers–Moyal expansion formally holds for all stochastic
processes where the jump moments exist: however, for our model
any motorsM . 4 cannot be solved with the truncated moment
hierarchy.

4.5 time-resolved velocity distribution
To get a first look at the effect of the different model parame-
ters we solve the Kramers-Moyal expansion for the time evolution
of the velocity distribution (as defined by the transition rates in
Eqs. (4.8)). First we use the Fokker-Planck approximation to give
an approximation to velocity distribution P (V, t). Then we use the
moment-hierarchy approach to determine the moments of the veloc-
ity distribution. At that point we establish for which parameters
the Fokker-Planck equation is an appropriate approximation.
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Figure 4.1: Graphical representation of the |dm,n| matrices. The colour bar for each column is shown on top.
Note that the fourth column (corresponding to M = 1) has an open-end color bar. Here certain a very small
number of values exceed |dm,n| > 4850. An unabridged representation of this column is shown in the last column.

4.5.1 Fokker-Planck Approximation

The decreasing dependence on the jump moments of higher or-
der than two (as seen by the decreasing amplitude of dn,m with
M in Fig. 4.1), shows that for increasing M the Fokker–Planck
equation becomes an increasingly good approximation. Hence,
Eqs. (3.25) are solved numerically for the initial condition P0(V ) =
exp [−V 2/2δ]/

√
2πδ for δ = 1/10M.

Fig. 4.2 shows solutions to the Fokker–Planck equation. The
effect of changing α and r are compared. The top panel illustrates
how a change in α of 10−2 causes a significant drift33. Here we see the effect of

the drift in the distribution
because the mean is moved
slightly into the negative di-

rection.

. A change in
r or 0.7 does not produce such a large effect on the drift, yet it
significantly decreases with width of the velocity distribution. We
conclude that, for massive motors, anisotropy predominately affects
motor drift, while dissipation predominantly affect width of the
velocity distribution (the “motor temperature”).

46



0

1

2

3

4

5

P
(V

)

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

V

10-1

10-3|P̃
•−
P̃
α
|

Figure 4.2: Steady-state so-
lutions to the Fokker–Planck
equation forM = 100, show-
ing the effect of changing α
and the effect of changing
r. blue line: r = 1 α = 1;
red line: r = 1 α = 1.02;
green line: r = 0.3 α = 1;
cyan line: r = 0.3 α = 1.02.
The bottom pannel shows
the difference between the
respective curves. The blue
line shows the difference be-
tween the red and blue lines
in the top panel. The green
line shows the difference be-
tween the green and cyan
lines in the top panel.

4.5.2 Moment Hierarchy
In order to solve the Kramers–Moyal expansion numerically, Eq. (3.36)
is truncated at the N -th order leading to the system of linear equa-
tions

Ṁk(t) =
N∑
l=0

Ak,lMl(t) . (4.16)

Inserting the expansion coefficients, dn,i, computed in Eq. (4.14),
into A (given explicitly by Eq. (3.36)) provides an analytical, al-
beit tedious, expression for Eq. (4.16). In the remainder of this
chapter, we will discuss these solutions. To illustrate the parameter-
dependence of A, the magnitude of its elements is shown in Fig. 4.3.
When the diagonal dominates A accurate solutions are obtained
by truncating at N = 20. However, forM . 4, an,m diverges with
increasing n, and so that the result is strongly dependent on the
truncation order N . Hence, we must restrict our analysis toM > 4.

Asymptotic analysis of Eq. (4.14) reveals that dn,i ∼ −i−i/2 for
large i. ForM > 4 this results in a combined truncation error in
Eq. (4.16) of the order of 10−10 for N = 20. As such, we will solve
Eq. (4.16) for N = 20 and a wedge angle θ0 = π/4 unless stated
otherwise. The initial condition will always be an ensemble where
all the motors are initially at rest: M(0) = (1, 0, 0, · · · ).

Fig. 4.4 shows typical time dependencies of the motor drift, 〈V 〉,
and motor temperature ,T , (cf. Eq. (4.22)) for M = 10, and 40.
We see that the time evolution for the following physical settings:

Elastic collisions For elastic collisions and an isotropic gas, the
ensemble undergoes a finite transient drift while it heats up to
the temperature of the gas [50]. Subsequently, the drift ceases
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Figure 4.4: Motor drift, 〈V 〉 (left panel) , and temperature, T (right panel), against t for motors with mass ratio
M = 10, and 40, and θ0 = π/4. Blue and cyan lines: r = 1 and α = 1, elastic collisions with an isotropic gas.
Green and magenta lines: r = 0.3 and α = 1, strongly inelastic collisions with an isotropic gas. The motor relaxes
to the values predicted by [8] (black horizontal lines). Red lines: r = 1.0 and α = 1.02, elastic collisions with a
slightly anisotropic gas. The magenta and cyan lines represent motors withM = 40. We see that increasing
mass increases the time it takes for the motor to reach the steady-state, as we might expect for a constant input
of power.
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(see Fig. 4.4, blue and cyan lines). This is what we expect
when the motor is in equilibrium with the gas.

0 10 20 30 40 50 60

t
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0.0030

0.0015

0.0000

〈 V〉

Figure 4.5: Closeup of the
time evolution of M1(t) for
M = 10, r = 1, and α = 1.
We see that initially there
is some motor drift which
ceases as the motor equili-
brates with the gas.

Dissipative collisions When introducing inelastic gas-motor col-
lisions, the steady-state acquires a finite drift velocity and
a temperature significantly lower than the gas (see Fig. 4.4,
green and magenta lines, and also Fig. 4.5). For comparison,
the published [8] result for an isotropic gas withM = 10 and
r = 0.3 is represented by the black horizontal lines.

Anisotropic gas A small amount of squeezing, α = 1.02, causes
a drift similar to the drift in a system with strongly inelastic
collisions (see Fig. 4.4, red lines). This squeezing hardly affects
the temperature.

Additionally (here examining the magenta and cyan lines), increasing
the motor mass results in an increased thermalization time (the
time it takes for the motor to reach the same temperature as the
gas). When this happens, the motor drift has reached a steady
state. This is is quite reasonable as the collision rate between motor
and gas particles does not change with motor mass. Hence, the
gas’ power input into the motor’s motion is unchanged by changing
motor mass.

Having examined drift and temperature, we now examine the
shape of the motor velocity distribution, P (V ). This information
can be characterized by the higher order moments and cumulants of
the distribution. In particular, we are interested in how asymmetric
the distribution is about its mean, and how important its tails are.
Asymmetry, or skewness, about a mean is measured using the third
cumulant, κ3. And “fatness”, or excess kurtosis is measured using
the fourth cumulant, κ4. In order to avoid the variance affecting
the skewness, it is defined as κ3/κ

3/2
2 . Likewise, κ4/κ

2
2 defines the

excess kurtosis4 4. If generalized to all n
cumulants, the only distribu-
tion yielding 0 for all n > 2
is the Gaussian distribution.
Hence κ3 and κ4 character-
ize the non-Gaussianity of
the distribution

.
Fig. 4.6 shows the time evolution of the skewness and the excess

kurtosis of the velocity distribution. Initially the velocity distri-
bution is highly non-Gaussian. The skewness tells us that the
distribution is highly positively skewed. Likewise, there is a high
positive excess kurtosis, indicating that P (V ) is broader than a
Gaussian. The skewness is likely due to the asymmetric shape of
the motor. As the motor equilibrates with the gas it develops a
negative skewness in those cases where the motor has non-zero
drift: if collisions are inelastic or anisotropic. This is reasonable,
after all, the ensemble develops a drift in the negative direction. If
collisions are elastic and the gas is isotropic then a slight positive
skewness is retained. The heavier motors retain less skewness and
excess kurtosis, indicating that for increasing mass, the steady-state
velocity distribution is more like a Gaussian than for light motors.
For inelastic or anisotropic systems, the motor retains a positive
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Figure 4.6: Skewness (left panel) and excess kurtosis (right panel) of the motor velocity distribution for motors
with mass ratioM = 10, and 40, and θ0 = π/4. Dashed lines represent negative values. Blue and cyan lines:
r = 1 and α = 1, elastic collisions with an isotropic gas. Green and magenta lines: r = 0.3 and α = 1, strongly
inelastic collisions with an isotropic gas. Red lines: r = 1.0 and α = 1.02, elastic collisions with a slightly
anisotropic gas. The magenta and cyan lines represent motors withM = 40.
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Figure 4.7: Effect of anisotropy on the drift-mass scaling. (left) Motor drift as a function of mass. The blue line
represents the motor drift with inelastic collisions in an isotropic gas. The red line represents the motor drift
with with elastic collisions in an anisotropic gas. All other curves are for inelastic collisions (r = 0.3) for a range
of anisotropies: α ∈ {1.02, 1.007, 1.002, 1.0007, 1.0002} all from top to bottom. Increasing anisotropy causes
increasing drift at highM. (right) An illustration of the effect of anisotropy compared to the effect of inelastic
collisions. Colour represents different coefficient of restitution r = 0.8 (blue lines), and r = 0.2 (red lines). For
small mass the effect of anisotropy is negligible, and for increasing mass, the effect of inelastic collisions can be
ignored.

excess kurtosis, indicating that the steady-state distribution remains
wider than a Gaussian.

In the subsequent sections, we examine the parameter depen-
dence of the steady-state drift, 〈V 〉, and motor temperature, T ,
respectively.
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4.6 motor drift
Here we shall examine the dependence of the steady-state motor
drift, 〈V 〉, as a function of mass. As we have seen in Fig. 4.3,
increasing the motor mass means that the matrix, A, governing
the time evolution of the moment expansion becomes increasingly
diagonal. Consequently, the moment hierarchy becomes less strongly
coupled for increasingM. This shall be the basis of an asymptotic
theory for the motor drift (and diffusion) with M as a control
parameter.

Fig. 4.7 (left panel) shows the drift as a function of M for a
fixed coefficient of restitution5 5. A coefficient of restitution

of r = 0.3 corresponds to a
very inelastic material

, r = 0.3, and a range of anisotropies
α ∈ {1.02, 1.007, 1.002, 1.0007, 1.0002}. The blue line shows the
mass-dependence of the drift for inelastic collisions with particles
with isotropic velocity distribution. In agreement with the theory
for the isotropic gas [8], the velocity initially scales as 1/M.

In contrast, the red line shows the converse; motor drift due
to elastic collisions with particles whose velocity distribution is
anisotropic. While, for inelastic collisions, the drift velocity de-
creases for increasing mass, for collisions with anisotropic velocity
distribution, the drift is independent of motor mass. For largeM
and α 6= 1 it approaches a constant value depending only on α and
θ0. This is illustrated by the right panel. It shows what happens
when collisions are both inelastic and particles have anisotropic
velocities.

Light Motors: The drift for light motors is essentially only de-
pendent on the coefficient of restitution, r. The effect of gas
anisotropy is negligible compared to the effect of dissipative
collisions. This is called the restitution-dominated regime.

Heavy Motors: When motor mass becomes large, the drift veloc-
ity saturates at a level set by the gas anisotropy. This is called
the anisotropy-dominated regime.

We conclude that the drift for light motors is affected primarily by
the inelastic nature of the gas-motor interactions. Here the theory
for the isotropic gas is a good approximation. In contrast, massive
motors are more strongly influenced by the anisotropy of the gas,
no matter how slight this may be.

In order to fully characterize the crossover from the restitution to
the anisotropy-dominated regime, we consider the limit of a massive
motor : M→∞. In this limit the γi term in Eq. (2.3b) simplifies,

γ(r,M, θ) ' 1 + r

M
sin2 θ =: Γ sin2 θ . (4.17)

Due to this factorization of sin θ and Γ, massive motors undergoing
dissipative collisions (r < 1) behave like motors undergoing elas-
tic collisions (r = 1) yet with a slightly higher mass. This is in
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agreement with results for the granular Boltzmann equation [40, 41].
Consequentially, the limit of a massive motor corresponds to the
limit Γ→ 0+ and is independent of restitution, r.

We observe that, for small Γ,

dn,i ' Γn , (4.18a)
d1,0 ' (α− 1) · Γ . (4.18b)

Hence, for isotropic gasses (where α = 1), the matrix defined by
Eq. (3.36) becomes lower-triangular in leading order of Γ. This
corresponds to the decoupling of the time-evolution equations for
the moments, as observed in [8]. In contrast, for α > 1, the time
evolution equations for the moments become coupled:

A '


0 0 0 · · ·
d1,0 d1,1 d1,2 · · ·
0 2d1,0 2d1,1 · · ·
... ... ... . . .

 . (4.19)

The asymptotic behaviour of Eq. (4.19) shall be the starting
point of a perturbation theory around (Γ, α) = (0+, 1). We assume
that, in the limit Γ→ 0+ the steady state is still largely independent
of truncation size for small (α − 1). Hence, we find that the null
space of the upper left 2 × 2 sub-matrix of Eq. (4.19) accurately
determines the steady state drift due to anisotropy,

〈V 〉ani ' −
d1,0

d1,1
'
√
π

2 (sin θ0 − 1) (α− 1). (4.20)

Eq. (4.20) does not depend on M. This is remarkable since it
implies that the drift velocity of the massive motor is of the order of
the gas-particle velocity (i. e. the dimensionless 〈V 〉ani is of the order
1), even though the transferred momentum from the gas remains
constant with increasingM.

The crossover occurs when the drift for the isotropic case 〈V 〉iso '
(1− r)M−1

√
π/2(sin θ0 − 1)/4 [8] is of the same order as the drift

due to anisotropy. Consequently the dimensionless number,

β := 〈V 〉ani
〈V 〉iso

= 4M(α− 1)
1− r , (4.21)

characterizes the dominant driving of the motor. For β � 1, the
dynamics is driven by inelastic collisions (r < 1), and for β � 1 the
dynamics is driven by anisotropy (α > 1). Plotting 〈V 〉/〈V 〉ani as a
function of β provides an excellent data collapse (Fig. 4.8).
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Figure 4.8: Master
plot for the motor drift
displating the data for all
combinations of θ0 = π/4,
r ∈ {0.3, 0.5, 0.8}, α ∈
{1.02, 1.007, 1.002, 1.0007, 1.0002};
and θ0 = π/10, r = 0.5, α ∈
{1.02, 1.007, 1.002, 1.0007, 1.0002}.

4.7 motor temperature
We define the motor temperature as the random component of the
motor’s kinetic energy

T :=M
(〈
V 2
〉
− 〈V 〉2

)
. (4.22)

Fig. 4.9 shows that the temperature is independent of M for
M & 10 and it is affected by inelastic collisions more severely than
by anisotropy. In order to understand this dependence, we follow
the perturbation theory of the previous section to determine the
correction to T in first order of (α− 1).

Since the motor temperature contains a coefficient of 1/Γ, we
must expand A at least to second order in Γ in order to accurately
evaluate the limit Γ→ 0+. Based on Eqs. 4.18 we find

A '



0 0 0 0 · · ·
d1,0 d1,1 d1,2 d1,3 · · ·
d2,0 2d1,0 + d2,1 2d1,1 + d2,2 2d1,2 + d2,3 · · ·
0 3d2,0 3d1,1 + 3d2,1 3d1,2 + 3d2,2 · · ·
... ... ... ... . . .


(4.23)

This results in a further increase of the coupling between the different
moments. In order to reliably compute 〈V 2〉ani, the null-space of at
least the upper left 4 × 4 sub-matrix of Eq. (4.23) must be used.
This yields the asymptotic expression for the temperature,

2
1 + r

Tani ' 1 +
[4− π

4 (1− sin θ0)2 + sin2 θ0

]
(α− 1). (4.24)

The lower panel of Fig. 4.9, shows the converge onto this asymptotic
value.
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Figure 4.9: Data for all
combinations of θ0 = π/4,
r ∈ {0.3, 0.5, 0.8}, α ∈

{1.02, 1.007, 1.002, 1.0007, 1.0002};
and θ0 = π/10, r = 0.5, α ∈
{1.02, 1.007, 1.002, 1.0007, 1.0002}.(top)

The motor temperature,
T , for θ0 = π/4,

r ∈ {0.3, 0.5, 0.8}, α ∈
{1.02, 1.007, 1.002, 1.0007, 1.0002}.

(bottom) The difference
between motor temperature

and the asymptotic
theory. For comparison,

θ0 = π/10, r = 0.5, α ∈
{1.02, 1.007, 1.002, 1.0007, 1.0002}

is also shown (?).

Instead of using Eq. (4.24) to plot a master plot, Fig. 4.9 is far
more instructive. In leading order, the temperature depends only
on the coefficient of restitution, r. In contrast, the dependence of
temperature on the anisotropy is a higher order effect. Fig. 4.9
shows that the coefficient of α− 1 in Eq. (4.22) is small compared
to 1: Fig. 4.9 shows the motor temperature for a range of r and α,
yet the curves with the same α almost fall on top of one another.

4.8 motor energy and equipartition
Let us denote the average energy of a gas particle by ε and the
kinetic energy of the sub-system66. In our case, this would be

the motor
by E . Many studies of systems

out of equilibrium have noted that equipartition does not hold, even
in the steady state [8, 9, 25, 32, 38]. In these studies, the violation
of equipartition ultimately results in the relationship E = cε, where
c 6= 1 does not depend onM.

Consider the granular Brownian motor for inelastic collisions
with a gas with isotropic particle velocities. Eq. (4.24) tells us that
in the limit of largeM, the motor’s temperature will depend only
on the coefficient of restitution T ' (1 + r)/2. Hence, the motor’s
kinetic energy remains the same fraction of ε independent of its
mass.

The implication of Eq. (4.24) is relatively profound in the context
of constant drift at large M. T is the kinetic energy that is not
part of the centre-of-mass kinetic energy of an ensemble of motors.
Eq. (4.24) tells us that, no matter the mass of the motor, this
part of the kinetic energy is constant. Moreover, since the motor
drift velocity is constant also the centre-of-mass motion contains an
increasing fraction of the energy. This way, E/ε diverges withM.
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Figure 4.10: Motor kinetic
energy as a function of mass.
Data and color are in corre-
spondence to Fig. 4.9. For
an isotropic gas, the kinetic
energy is independent of
mass. The relation of motor
kinetic energy to gas kinetic
energy is a function only of
r. For an anisotropic gas,
regardless of r, the kinetic
energy diverges.

Fig. 4.10 shows the kinetic energy of the motor as a function
of mass. Indeed, for an anisotropic gas, the kinetic energy of the
motor diverges. This is due to the diverging centre-of-mass energy.
Hence, for increasing motor mass, the motor will have acquired and
increasing amount of kinetic energy.

Equipartition is therefore not only broken with the motor’s
energy being restricted to a fixed of ε. One can use M to tune
the motor’s kinetic energy to an arbitrary amount. Considering all
the degrees of freedom7 7. i. e. all degrees of freedom

and the gas, plus one more
degree of freedom due to the
motor

, in the limit Γ→ 0+ equipartition is then
dramatically broken: one degree of freedom (the one representing
the motor), contains an infinite amount of energy.

In this respect, it is analogous to granular Brownian motors (or
pistons) with heterogeneous coefficients of restitution along their
surface [11, 12]. Even though the observation that equipartition is
broken so dramatically had not been made.

4.9 summary
We have investigated the motion of a granular Brownian motor
that is driven by inelastic collisions (particle-motor coefficient of
restitution r) sampled from an anisotropic velocity distribution (with
anisotropy α− 1), modelled using a squeezed Gaussian, Eq. (4.4).

Examining the scaling of the drift with relative motor mass,M,
we identified a crossover from the motor drift arising due to inelastic
gas-motor collisions, to a setting where it arises predominantly from
the anisotropy of the gas. Examining the steady-state drift of the
motor in the limit of largeM, we have identified a dimensionless
parameter β = 4M(α− 1)/(1− r), Eq. (4.21), that is independent
of wedge angle and yet fully characterizes the parameter dependence
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of the motor drift. For β � 1 inelastic collisions drive the drift
of the motor, and anisotropy is negligible; for β � 1 anisotropy
dominates the drift and restitution in motor-gas collisions becomes
negligible. In the latter regime we have identified a remarkably
strong enhancement of the drift. It is of the order of gas particle
velocity, even in the limit of infinite motor-particle mass ratios.

In the anisotropy-dominated regime, equipartition is broken dra-
matically. In an isotropic gas, the degree of equipartition-breaking
is set entirely by the amount of dissipation. For an isotropic system,
the motor can never acquire more kinetic energy than the average
kinetic energy of the particles. However, In the anisotropic sys-
tem, the motor acquires constant drift velocity, irrespective of mass.
Hence, more massive motors will acquire more kinetic energy, with
no upper bound.

Is this regime accessible experimentally? Laboratory experi-
ments can have an anisotropy of the order of α ≈ 2,88. Matthias Schröter, private

communications
and the most

conservative estimate for simulations yields α ≈ 1.12 ([53] Fig 4, in-
set). Given maximally inelastic collisions (r close to 0) this amounts
to β ≈ 0.5M. ForM > 10 typical experimental realizations there-
fore probe, at best, the crossover regime rather than a regime where
the drift solely arises from the inelastic collisions. If one wishes
to probe the latter regime, isotropy of the gas particles must be
enhanced by at least two orders of magnitude for the experimental
setups we are aware of.

The dramatic enhancement of the drift thus lies in an easily
accessible regime, and it certainly calls for further experimental and
numerical exploration.

4.10 outlook
According to Eq. (4.22) the motor’s temperature is hardly affected
by anisotropy compared to the effect of dissipation. Yet anisotropy
can lead to significant drift. Our intuition from thermodynamics
tells us that rectification is associated with a heat flow. When
rectification occurs due to dissipation, then this heat flow takes
the form of a flow of energy, from the gas, that is being dissipated.
The motor’s reduced temperature, when collisions are dissipative,
reflects exactly this energy flow.

What if the collisions are elastic, yet the gas is anisotropic? Then
there is still considerable drift, in spite of the negligible temperature
difference. Heat can still flow. The second law of thermodynamics
tells us that if there is a heat flow between two reservoirs with the
same temperature, then this heat flow takes the form of entropy
currents. When an impinging particle collides with the motor
surface, then its velocity distribution is changed. However, we
have prescribed that the velocity distribution of the gas does not
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change. In this way, our model is implicitly re-arranging the velocity
distribution after every collision. This comes as the cost of entropy.

While thermodynamics is not directly applicable to the Brown-
ian motor, analogues to the second law have been formulated in the
framework of stochastic-thermodynamics [3, 26, 28, 49]. Hence, en-
tropy currents as they are defined within stochastic-thermodynamics
appear to be a promising candidate for explaining the drift in the
anisotropic regime.
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5
Rectification Extremely
far from Equilibrium:
Brownian Motors in a
Bath of Swimmers

5.1 introduction
The most general message to take from the previous chapter is that
even a small restriction of one degree of freedom of the gas particles
results in a dramatic effect on the motor velocity. In light of this
finding a natural question is to ask what happens if one degree of
freedom is removed completely.

The present chapter therefore addresses the motion of the Brow-
nian motor driven by collisions with particles of constant speed and
uniformly random orientation. Real world systems that exhibit this
kind of motion include self-propelled mechanical and chemical swim-
mers, as well as swimming bacteria. There is also an experimental
realization of a bacterial Brownian ratchet where E. coli bacteria
are driving an asymmetric cog [15].

5.2 model
The treatment of a gas comprised of swimmers complicates matters
mathematically. In order to retain oversight, we restrict ourselves to
only a single wedge angle θ0 = π/4 and only to elastic collisions, r =
1. Investigations involving different wedge angles and coefficients of
restitution showed no qualitatively different behaviour.

5.2.1 Gas Velocity Distribution
Most work on swimmers focuses on the emergent dynamics due to
swimmer–swimmer interaction. In this chapter we shall consider
only the most essential feature of swimmers, that is, a swimmer is
a particle with fixed speed and uniformly distributed orientation.
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In the laboratory, one might expect a gas of such particles to
look like a dilute gas of identical swimmers. As such, we consider
a gas where all particles have the same speed ν, but uniformly
distributed orientation. Hence v̂2

x + v̂2
y = ν2 for every particle, and

the associated velocity distribution is

φν(v̂x, v̂y) = 1
π
δ
[
v̂2
x + v̂2

y − ν2
]
. (5.1)

Such a velocity distribution will faithfully describe a gas of
swimmers as long as the concentration remains low enough to
avoid any collective effects between different swimmers. The low-
concentration criterion is not unique to this model, the anisotropic
granular gas, dealt with in chapter 4, also required the concentration
to be low enough to avoid the motor → gas coupling causing local
velocity correlations [12, 13].

5.2.2 Dimensionless Units

We may non-dimensionalize velocities using the speed of the gas
particles, ν. Hence, non-dimensional velocities11. denoted by un-hatted sym-

bols
are given by v :=

v̂/ν. φν(v̂x, v̂y)dv̂xdv̂y = φ1(vx, vy)dvxdvy is automatically fulfilled.
Gas density is used to non-dimensionalize time. This fixes the

collision rate between motor and particles when the motor is at rest,
see the y-value of Fig. 5.2.

As a consequence, only the choice of the coefficient of restitution,
r, and the mass ratio,M, influence the dynamics of the Brownian
motor.

This leaves only two other parameters which may influence the
dynamics of the Brownian motor: the coefficient of restitution, r, and
the mass ratio of motor mass over gas-particle mass,M := M/m.

5.3 transition rates
For the model discussed in the previous section, the transition rates
for collisions resulting in a velocity change from V → V +u, are given
by Eq. (3.9). Yet the expansion Eq. (3.40b), where the gas-velocity
distribution is expanded in terms of independent Gaussian basis
functions, is no longer possible since Eq. (5.1) does not separate into
independent distributions for the vx and vy velocity components. A
faithful expansion would require a 2–dimensional expansion which
would be very tedious. Instead, it is faster to simply perform the
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integral in Eq. (3.9), this yields:

W (V ;u) =
∑

i∈{0,1,2}
wi(θ0) V−u sin θiW

γ2(r,M, θi)∫
R
φ1

(
u

γ(r,M, θi)
+ V + vy cot θi, vy

)
dvy ,

(5.2)

which in turn can be integrated analytically. Due to the singular
behaviour of φ1(vx, vy), the integral in Eq. (5.2) is a principal-value
integral. The domains (V, u) ∈ D± over which the δ-function in
Eq. (5.2) takes non-vanishing values are given by

D+ :=
{

(V, u) ∈ R2
∣∣∣u ≥ 0 ∧ 1 > (u/Γ+ + V )2

}
(5.3)

D− :=
{

(V, u) ∈ R2
∣∣∣u ≤ 0 ∧ 2 > (u/Γ− + V )2

}
(5.4)

Following the same approach as the previous chapters, we arrive
at the transition rates. They can be decomposed into forward and
backward transitions

W (V ;u) = W+(V ;u)J(V, u) ∈ D+K +W−(V ;u)J(V, u) ∈ D−K ,
(5.5a)

where

W+(V ;u) = u

πΓ2
+

√
2− 1√

1− (u/Γ+ + V )2
, (5.5b)

W−(V ;u) = u

πΓ2
−

√
2− 2

√
2
√

2− (u/Γ− + V )2
. (5.5c)

They involve dissipation-mass ratios Γ+ := 1+r
1+M , and Γ− := 1+r

1+2M ,
which are inspired by the massive-motor limit from the previous
chapter. The fact that r andM do not appear on their own2 2. And because Γ+ = Γ− for

M� 1.
indi-

cates that, in the limit of a massive motor, effects due to dissipation
vanish. However, since Γ+ 6= Γ− forM small, we expect dissipation
to affect the motion whenM is small.

Let D := D+ ∪ D−. Fig. 5.1 shows a graphical representation
of these transition rates and D. The set D is not convex, it has a
small “nose” for V ∈

(
−
√

2,−1
)
. Consequently, for these values

of V , W (V, u) is non-zero for values of u in a disjoint union two
intervals. This is shown by the green line in the right panel of
Fig. 5.1. The shaded area shows the interval of u over which
W (−1.1, u) drops to zero as a result of this “nose”. At some of the
boundaries of D, the transition rates develop rainbow singularities,
that is, W (V ;u) ' 1/

√
u2 − c.

When tracking the history of the motor directly the velocity, V ,
is known while the velocity increment, u, is sampled. Hence, it is
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Figure 5.1: (left) Transition rates W (V, u) of a collision resulting in an instantaneous velocity change V → V +u,
for the parametersM = 1 and r = 1. Transition rates are represented by colour. White represents (V, u) /∈ D.
The positions of the corners Vc = −

√
2,−1, 1,

√
2, are, independent of the parametersM and r. (right) Cross

sections for constant V , of the transition rates shown in the left panel. The green and blue curves represent
the transition rates for V = −1.1 and V = 0 respectively, and correspond to the vertical lines shown in the left
panel. The grey shaded area is the internal region in which the transition rates for V = −1.1 drop to zero.

not D (which defines the tuple (V, u) for which W (V ;u) 6= 0), but
the intersection D ∩ ({V } × R) which defines the set of u for which
W (V ;u) 6= 0 given V . Using Eq. (5.4), we find that

u ∈



(a−(V ), a+(V )) V < −
√

2
(b−(V ), 0) ∪ (a−(V ), a+(V )) −

√
2 < V < −1

(b−(V ), a+(V )) −1 < V < 1
(b−(V ), 0) 1 < V <

√
2

(b−(V ), a+(V )) V >
√

2

,

(5.6a)
where a±(V ) and b±(V ) are the following linear functions of V

a−(V ) := −Γ+ (1 + V ) a+(V ) := Γ+ (1− V ) (5.6b)
b−(V ) := −Γ−

(√
2 + V

)
b+(V ) := Γ−

(√
2− V

)
. (5.6c)

Depending on V , the domain over which the probability distri-
bution of velocity increments is defined can be one of the five in
Eqs. (5.6). The transition rates are continuous within each of these
intervals.

The disconnected domain, for −
√

2 < V < −1 arises because
a particle at the very top (or bottom) corner or the diagonal face
(face 0 or 1 in Fig. 2.1), moving directly towards the face, can
still catch up with the motor, if the motor moves with a velocity
−1 > V > −

√
2. In this way, the motor’s speed can be boosted to

speeds faster than the gas particles.
The abrupt changes in the domain of u imply, that the jump

moments are not well behaved. The points V = −
√

2,−1, 1,
√

2
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constitute points where the derivatives of the jump rates, ∂nV [an(V )],
are no longer smooth. An accurate model, needs to deal with
piecewise definitions of the jump rates for each of these five sub-
domains of V .

5.3.1 Jump Moments

The spatio-temporal data on the motor’s motion is obtained by
direct sampling of the motor trajectories (which will be described in
section 5.4). Direct sampling is based on the jump probabilities of a
velocity change V → V + u, rather than the jump rates discussed
so far. The conversion can easily be done with the collision rate
given by the zeroth jump moment, a0(V ),

a0(V ) =
√

2− 1
π



√
1− V 2 +

√
2− V 2 + V

(
sin−1 V + tan−1

(
V√

2− V 2

))
|V | ≤ 1

π

2 |V |+
√

2− V 2 + V tan−1
(

V√
2− V 2

)
1 <|V | <

√
2

π|V | |V | >
√

2
(5.7)

The rate a0(V ) does not depend on r and M since the collision
rate must not depend on the motor mass or restitution coefficient,
but only on motor speed and shape. The limiting behaviour of
a0(V ) for large |V | also is consistent with our intuition. When
the motor is travelling with a speed much larger than that of the
swimmers, all particles will seem to have the same effective relative
velocity. Moreover, since our model requires that the collision rate
is proportional to the relative velocity, a0(V ) �

(√
2− 1

)
|V |.

Fig. 5.2 shows jump moments a0(V ), a1(V ) and a2(V ) (for the
later two, M = 1, 2 and r = 1, 0.1, as denoted by the coloured
symbols), and their (n + 1)-st derivatives, which develop cusps
whenever the domain of u changes.

The points where the jump moments are not smooth dependent
only on the wedge angle and motor shape. These points are always
given by the borders of the intervals defining Eq. (5.6a): V =
−
√

2,−1, 1,
√

2. While the jump moments, an(V ), might not be
analytic, they are smooth enough not to generate additional source
terms in the moment-hierarchy theory (see Lemma 1 in section 3.5).
Hence, although it is still not formally correct to apply the traditional
moment expansion, at least for large enough M, the moment-
expansion approach is a good approximation. Finally, for all n, the
functions given by ∂n+1

V [an(V )] have a similar shape.
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Figure 5.2: The color of the lines corresponds with the axis label color (blue,right; green, left). Colored symbols
on lines denote different parameters. (blue squares)M = 1, r = 1. (green cirlces)M = 2, r = 1. (red diamonds)
M = 1, r = 0.1. (left) Motor–gas particle collision rate, a0(V ) (blue line and left axis), and its first derivative
(green line and right axis). It does not depend on M, or r, therefore only one line is shown. At velocities
significantly larger than particle velocity (V = 1), the collision rate becomes proportional to the motor speed.
(centre) Average change of momentum, a1(V ), (blue lines and left axis), and its second derivative (green, right
axis). (right) Average energy transferred per collision, a2(V ) (blue lines, left axis), and its third derivative (green,
right axis). The derivatives are not differentiable for V = −

√
2,−1, 1,

√
2, where the domain of u (the collisional

velocity increments) changes abruptly. As expected, this is not a function ofM, nor r.

5.4 direct sampling of trajectories
In this section, we begin by looking at the motor trajectories. By
directly sampling the transition rates we avoid the mathematical
complications that arise due to a piecewise definition of the jump
moments. Tracking motor trajectories has two added advantages
over solving the moment-hierarchy:

1. It provides data on the spatio-temporal motor trajectories
rather than only its velocity;

2. It provides direct data on the distribution of motor positions
and velocities.

In order to track motor trajectories, we implement the slice
sampling algorithm (Algorithm 2) introduced in Chapter 3, using
the transition rates defined in Eqs. (5.5), and Eq. (5.7).

5.4.1 Verification of the Sampling Algorithm
Agreement between the sampled velocity increments and Eqs. (5.5)
are checked in Fig. 5.3 (left panel). It is also verified that there
is no residual correlation between successive velocity increments
(right panel). This was done by holding the motor stationary and
sampling the velocity increments for fixed V .

The histogram of the sampled velocity increments agrees with
the expected transition probability P (u) := W (V ;u)/a0(V ) (black
lines) within the statistical noise. There are slightly larger devia-
tions for the edges of the domain of P (u), which we attribute to
the rainbow singularities (as this deviation only occurs in a bin
containing a singularity). Additionally there is excellent agreement
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Figure 5.3: Consistency tests to ensure that the random velocity increments which are sampled by Algorithm 2 are
indeed the desired random numbers. In this mode, random velocity increments are sampled without incrementing
the motor velocity. The parameters correspond to those in Fig. 5.1. Left top panel: Histogrammed velocity
increments. Black lines are comparisons with the desired random numbers. (left bottom) deviation of the
histogram bin value from the desired amount. The increased deviation on the far sides is an artefact of the
rainbow singularities. Right panel Autocorrelation function, R(n) := 〈(ui+n − µ)(ui − µ)〉/σ2, for successively
sampled random numbers. The bottom panel shows that, whithin the statistical noise the autocorrelation does
drop to zero for n 6= 0. Hence successive collisions appear uncorrelated to all effective purposes. The inset shows
a close-up of the data plotted in the main panel.

when the domain is disconnected, lending confidence to Algorithm 2
for dealing effectively with disconnected domains and functions that
contain rainbow singularities.

Fig. 5.3 (right panel) shows that the autocorrelation function
takes two values3

3. The logarithmic plot in
Fig. 5.3 (right panel) shows
a constant residual correla-
tion. This is because corre-
lation was estimated using a
finite sample size (N = 106

sampled u). Numerical ex-
amination shows that this
residual decays as 1/N .

:

R(n) := 〈(ui+n − µ) (ui − µ)〉
σ2 =

1 n = 0
0 n 6= 0

, (5.8)
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Figure 5.4: Motor ve-
locity autocorrelation
function, R(n), two
motor masses: M =
0.33 (blue), 1.28 (green).
Collisions are not δ-
correlated. But they appear
to become δ-correlated in
the limitM→∞.

where µ = 〈u〉 is the mean velocity increment for constant motor
velocity and σ2 = 〈(u − µ)2〉 is its variance. This provides strong
evidence that Algorithm 2 gives uncorrelated random collisions,
with the correct distribution.

5.4.2 Stochastic Trajectories
Motor trajectories have been sampled for a range of motor masses,
ranging fromM = 0.1 toM = 104 with r = 1 and θ0 = π/4.

Fig. 5.5 (left) shows a selection of these velocities. Remarkably,
the motor drift reverses direction twice. For very small M, the
motor drifts towards the open end (as it did with the anisotropic
gas). Then, for increasing M, the motor enters a region where
it drifts towards the sharp end for 0.38 < M < 0.93. For even
larger M, the motor drifts towards the open end again. Motor
trajectories for early times are also shown, here the fluctuations
are clearly visible. On the time scale of entire trajectories the drift
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Figure 5.5: Some sampled trajectories showing that the remarkable reversion of the motor drift ve-
locity. (left panel) Motor position for a series of parameters: r = 1 for all trajectories, M =
0.33 (blue), 0.38 (green), 0.39 (red), 43 (cyan), 0.53 (purple), 0.87 (yellow), 1.28 (black). The left sub-plot
shows every 100-th point in almost the entire sampled trajectory of the motor. We see that, to all inten-
sive purposes, the motor has a constant drift velocity. The right sub-plot shows the time evolution of the motor
position at the beginning of the trajectory. This reveals the fluctuations in the motor position. (right) Every
100-th initial motor velocity for r = 1 andM = 0.33 (blue), 1.28 (green). The velocity fluctuates wildly, and
might seem δ-correlated, but this is a result of plotting only every 100-th point in the trajectory. Fig. 5.4 shows
that, especially for the light motor (blue line) strong correlation and anti-correlations exist.

dominates the fluctuations in the motor position. Fig. 5.5 (right)
shows part of the motor velocity for two differentM (every 100-th
point has been plotted). The velocities, V , appear δ-correlated.
However, this is not the case as can been seen from Fig. 5.4. For
the light motor,M = 0.33, V shows significant correlations up to
10 collisions. For heavier motors, V appears to become δ-correlated,
consistent with the observation in the previous chapter: the motor
dynamics can be captured by the Fokker-Planck equation for large
M (cf. Fig. 4.1 and section 4.5.1). This remains a tenuous claim as
the Fokker-Planck equations require Gaussian velocity increments,
yet Eqs. (5.5) produce anything but Gaussian velocity increments.

5.5 motor velocity distribution
We may use the data from the trajectories to compile histograms of
the motor velocity distribution. Fig. 5.6 shows the large, and un-
usual variety of distributions possible for P (V ). The unusual shape
initially suggests that the sampling algorithm is producing arte-
facts. Near all the unusual points observed in P (V ), the sampling
algorithm was checked and it was observed that:

1. Sampled velocity increments are in agreement with Eqs. (5.5).

2. Sampled velocity increments are uncorrelated.
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Figure 5.6: Motor velocity distributions for (left) motors heavier than gas particles and (right) motors lighter
than the gas particles. Those intervals where the jump moments have a different series expansions are delimited
by black vertical lines. For all distributions r = 1. (left) Motors significantly heavier than the gas particles
show smooth distribution. M = 10.24 (magenta), 5.12 (cyan), 2.56 (red). The distributions for heavy motors
might look Gaussian, but they have finite support. Already whenM = 2.56 (red), does P (V ) become highly
non-Gaussian, and its tail extends into the interval V ∈ (−

√
2,−1). Once the motor’s mass is close to that of

the gas particles, P (V ) is dominated by singularities and starts to look very unusual. (right) An examination
of the points where Vdrift changes direction, and the point where it is in the maximum positive direction.
M = 0.93 (blue), 0.9 (green), 0.52 (magenta), 0.5 (yellow), 0.31 (red), 0.30 (cyan). Even though the motor’s
drift velocity does something unusual at each of these points, the distributions undergo only gradual changes.

As such a straight forward failure of the sampling algorithm seems
unlikely. It is more likely that the singularities in Eqs. (5.5) are
generating singularities in P (V ).

Fig. 5.6 (left) shows the distribution for r = 1 and 1 ≤ M ≤
10.24. We see that for reasonably heavy (M > 2.56) motors, P (V )
looks reasonably well behaved and might be approximated well by
using the moment-hierarchy technique. These distributions also
stay out of the region |V | > 1, hence, the traditional theory for the
moment-hierarchy (see section 3.5) probably holds for these mass
ratios. Lighter motor then enter the regime where P (V ) becomes
highly non-Gaussian and is eventually dominated by singularities
asM decreases. This occurs before the motor drifts in the opposite
direction. The presence of singularities in P (V ) is not an indicator
of drift-direction reversal.

Fig. 5.6 (right) shows the motor velocity distributions for r = 1
and 0.3 ≥M ≤ 0.93. In particular those points were chosen where
Vdrift does something unusual. For example, those masses where the
drift velocity changes direction or where it is at its maximal positive
(towards the sharp end) velocity. We see that there are no extreme
changes in the velocity distribution at these points, in fact, it seems
that P (V ) changes smoothly withM.
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5.6 kinetic theory
The traditional moment expansion can be applied as long as the
motor velocity never exceeds |V | > 1. Looking at the motor velocity
distributions, we see that forM & 3, there are almost no motors
with velocity |V | > 1. For this range of motor masses it is reasonable
to apply the traditional kinetic theory from section 3.5. Techniques
based on moment-hierarchies are only suitable for determining the
moments of P (V ) for massive motors.

An increasing number of collisions needs to be followed for large
M When determining P (V ) by tracking motor trajectories. Here
the moment-hierarchy technique gives answers where solving the
master equation directly does not.

5.6.1 Expansion of the Jump Moments
The jump moments, an(V ), are the sum of the forward, +, and
backward, −, jump moments

an(V ) = a+
n (V ) + a−n (V ) , (5.9)

where

a±n (V ) =
∫

Ω(V )∩R±
unW (V ;u) du . (5.10)

The forward and backward jump moments are defined over the
respective half of the real numbers, R±. As long was the motor
mass is sufficiently large, we may restrict ourselves to a domain of
Eq. (5.10) is given by

Ω(V ) = (b−(V ), a+(V )) =
(
−Γ−

(√
2 + V

)
,Γ+(1− V )

)
(5.11)

We shall now follow the mathematical working to derive the
power series expansion of the jump moments. Inspired by the result
for Gaussian-like velocities, for example Eq. (3.41), the goal of
this procedure is to arrive at a recursion relation for the expansion
coefficients of a±n (V ). Without loss of generality, the working for
the forward jump moments only will be presented here.

With the jump rates, Eq. (5.5b), inserted into Eq. (5.10), the
expression for the jump rates becomes44. The final step of Eq. (5.12)

is simply the transforma-
tion of variables y := u/Γ+

.

a+
n (V ) =

∫
Ω(V )∩R+

unW+(V ;u) du

=
√

2− 1
πΓ2

+

∫ Γ+(1−V )

0

un+1√
1− (u/Γ+ + V )2

du

= Γn+
√

2− 1
π

∫ 1−V

0

yn+1√
1− (y + V )2

dy . (5.12)
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Here the scaling of an(V ) ∼ Γn±, familiar from the previous chapter5 5. Of course this scaling only
makes sense for Γ+ = Γ−,
as is the case in the limit of
M→∞.

.
The Integral in Eq. (5.12) cannot be readily calculated for general
n ∈ Z+. However, this is not necessary for a power-series expansion,
instead, we use the familiar expansion for the root,

1√
a− x2

=
∞∑
i=0

(
−1

2 − i
−1

2

)
x2i

a
1
2 +i

, (5.13)

leading to the first expansion

a+
n (V ) = Γn+

√
2− 1
π

∞∑
i=0

(
−1

2 − i
−1

2

)∫ 1−V

0
(y + V )2iyn+1 dy . (5.14)

Now the integral in Eq. (5.14) needs to be expanded in terms of V ,

Ik,n(V ) :=
∫ 1−V

0
(y + V )kyn+1 dy =

∞∑
i=0

I
(i)
n,k(0)
i! V i , (5.15)

and so the sum in Eq. (5.14) can be done for each term in the
expansion in Eq. (5.15) separately, giving the expansion coefficients.
The expansion coefficients I(i)

n,k(0)/i! are the Taylor6

6. The integral, Ik,n(V )
might seem tempting to
expand via the binomial
theorem, but the resulting
expression for the coefficient
of V i is just messy this way.

expansion coef-
ficients. The i-th derivative of Ik,n, I(i)

k,n can be easily found using
Leibniz integration rule7

7. Also often called differenti-
ation under the integral sign.
For a good review, cf. [19].

,

∂V Ik,n(V ) =
∫ 1−V

0
∂V
[
(y + V )k

]
yn dy︸ ︷︷ ︸

kIk−1,n(V )

−(1− V )n . (5.16)

Eq. (5.16) can be generalized to the m-th derivative, giving

∂mV Ik,n(V ) = k!
(k −m)!Ik−m,n(V ) Jk ≥ mK

−
m−1∑
i=0

(−1)in!
(n− i)!

k!
(k + i−m+ 1)!(1− V )n−i . (5.17)

Finally we evaluate the integral, Ik−m,n, to be used with Eq. (5.17).
Integration by parts is the natural choice here, giving a recursion
relation∫ 1−V

0
(V + y)kyn dy︸ ︷︷ ︸
Ik,n(V )

= (1− V )n+1

n+ 1 − k

n+ 1

∫ 1−V

0
(y + V )k−1yn+1 dy︸ ︷︷ ︸
Ik−1,n+1(V )

.

(5.18)

Of course, what we want is the derivatives at V = 0, so we8

8. A naive approach would
be to recognise that V = 0
a bit earlier, and substitute
for V = 0 before applying
Eq. (5.18). This will give the
wrong result, however, due
to the boundary dependence
of Ik,n(V ).

substitute V = 0 into Eqs. (5.17) and (5.18),

Ik,n(0) =: Ik,n = 1
n+ 1 −

k

n+ 1Ik−1,n+1 (5.19a)

I0,n = 1
n+ 1 , (5.19b)
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where the argument has been dropped for V = 0.
Returning to our original aim of finding the power-series expan-

sion of the jump moments, Eq. (5.14) gives

a+
n (V ) = Γn+

√
2− 1
π

∞∑
k=0

(
−1

2 − k
−1

2

)
Ik,n(V )

= Γn+
√

2− 1
π

∞∑
i=0

∞∑
k=0

(
−1

2 − k
−1

2

)
I

(i)
k,n

i! V
i (5.20)

and so the expansion coefficients for a+
n (V ) are given by:

d+
n,i = Γn+

√
2− 1
π

∞∑
i=0

∞∑
k=0

(
−1

2 − k
−1

2

)
I

(i)
k,n

i! and, (5.21a)

I
(i)
k,n = k!

(k − i)!Ik−i,nJk ≥ iK−
i−1∑
j=0

(−1)jn!
(n− j)!

k!
(k + j − i+ 1)! .

(5.21b)

Where the Ik,n terms are dependent only on the domain of V ,
therefore they can be computed using Eqs. (5.19) once and stored for
repeated use. The scaling behaviour with respect to Γ ofEq. (5.21a)
is

dn,i ' Γn , (5.22)
which is the same behaviour99. In the limitM → ∞,

Γ+ = Γ− =: Γ
as Eq. (4.18a). Hence we use the same

asymptotic theory discussed in section 4.6 to estimate the motor’s
steady state drift in the limitM→∞, giving

〈V 〉∞ ≈ 1.03× 10−3 . (5.23)

While this is still an order of magnitude less than the velocity of
the gas, it is remarkable that this quantity does not vanish. This
result is analogous to the result from chapter 4.

Fig. 5.7 compares the result from the motor trajectories with
this prediction. There is overall agreement. The analysis based
on the motor trajectories underestimates motor drift for very large
motor mass. This is most likely because, for very heavy motors,
many collisions are necessary to get a representative sample of the
first moment of the distribution.

5.7 motor drift
We determine the motor drift using the first moment of the velocity
distribution, 〈V 〉. The results are shown in Fig. 5.7 (blue squares).

Alternatively, Fig. 5.5 indicates that the drift velocity can be
estimated by extrapolating the motor displacement:

Vdift =
〈
xn+N − xn
tn+N − tn

〉
X ,N

, (5.24)
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Figure 5.7: Left panel: Motor drift given by the first moment of the velocity distribution, 〈V 〉 (blue squares).
The drift velocity, Vdrift, is also measured directly from the motor displacement x via Eq. (5.24) and N = 1000
collisions (green circles). Interestingly, they do not agree. Evaluating Eq. (5.24) for incommensurable N shows
that this result is independet of N . The grey shaded areas are those ranges ofM, where Vdrift > 0. Right panel:
Motor drift for heavy motors. The result of the moment-hierarchy method is represented by the red line. It does
not vanish for the limitM→∞! The moment-hierarchy prediction agrees with the data from motor trajectories,
in particular when one takes into account that trajectory-based measurements under-estimate the drift due to
the limited sample time.

where the expectation value 〈•〉X ,N is taken over every N -th point10 10. To avoid artefacts due
to correlated velocities, only
one in every N data points
goes into the expectation
value in Eq. (5.24).

in the trajectory X .
This estimate for the drift velocity is shown in Fig. 5.7 (green

circles). Compared with 〈V 〉, it is clear that the two estimates
for drift velocity do not match. Since Vdrift is based on the actual
motion of the motor, it shall be called the drift velocity henceforth.

In section 5.4.2 we have seen is that for 0.38 .M . 0.93, the
motor changes the direction in which it drifts. The changes in the
motor drift direction are marked in grey areas (the motor drifts
towards the pointed end in the grey regions) in Fig. 5.7.

The mismatch Vdrift 6= 〈V 〉 highlights a breakdown of ergodicity
as Vdrift is a time average, and 〈V 〉 is a ensemble average. The break-
down of ergodicity appears to coincide with the collision velocities
becoming correlated (cf. section 5.4.2).

The faces 0 and 1 (cf. Fig. 2.1) are at an angle of π/4 with the axis
of motion, as such particles colliding with these faces transfer less
of their momentum to the motor than particles colliding with face 2.
In this way, on average, the motor should be travelling at a faster
velocity in the forward direction than in the backward direction.
It stands to reason that the motor will move forwards faster than
it travels backwards. The effect should become noticeable when
Γ+ 6= Γ−, which is aroundM' 1.

The positive drift might eventually be offset by correlations in
the free-flight time between collisions. When the motor is travelling
quickly it is more likely to collide with a particle. Hence the forward
time of free flight is less than the backward time of free flight.
It therefore stands to reason that when velocities become anti-
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correlated, as they are in Fig. 5.4, the motor spends more time
going backwards. This appears to be the case whenM . 0.38.

In the limit for very massive motors, the result of the moment-
hierarchy shown in Eq. (5.23) is in agreement with the motor tra-
jectory data as shown in Fig. 5.7 (right panel). Especially when
considering that the motor drift, for heavy motors, is underesti-
mated using the trajectory data. A finite drift in the limitM→∞
was also observed in chapter 4.

5.8 motor temperature
The motor temperature, Eq. (4.22), as a function ofM is shown in
Fig. 5.8 (blue squares). The motor drift velocity is fairly large for
low motor masses. Since rectification classically associated with a
heat flow, one might initially expect a larger difference in system
and bath temperature whenever motor drift is large. Fig. 5.8 shows
the opposite relationship: motor temperature is closest to the bath
(i. e. to T = 1) for low masses where drift is largest. This parallels
our findings from chapter 4 where large drift occurs in the presence
of a small motor–gas temperature difference.

When the motor mass is very large the drift becomes small. Yet
in this regime we encounter the most is a significant temperature
difference between motor and bath. It is reasonable that this
temperature difference sustains the finite steady state drift for
infinitely massive motors, Eq. (5.23).

Motor temperature is defined as the kinetic energy of the random
velocity fluctuations (cf. section 4.7). Since motor drift, Vdrift
no longer agrees with with first moment of the motor velocity
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distribution, an alternative definition of motor temperature is

T =M
(
〈V 2〉 − V 2

drift

)
. (5.25)

In Fig. 5.8, we compare Eq. (5.25) (green circles) with Eq. (4.22)
(blue squares). Within the numerical error, they overlap perfectly.
This might seem surprising at first, since there is an appreciable
difference between Vdrift and 〈V 〉, for low M. Both estimates for
motor temperature still give the same result because for low motor
masses the temperature is dominated by 〈V 2〉.

5.9 summary
In this chapter, we have examined the motion of a Brownian motor,
driven by collisions from a thermostatted bath where the particles
have constant speed. This can be thought of as a model for a gas
consisting of self-propelled swimmers in the absence of collective
effects, such as swarming.

This particular choice of the gas velocity distribution, Eq. (5.1),
cannot be factorized. Hence a the integral, Eq. (3.9) needs to be
carefully treated from scratch. The resulting velocity transition rates
develop rainbow singularities for certain finite velocity increments.
As a consequence, the moment-hierarchy method cannot be applied
to solve for the motor velocity distribution whenM . 3. Hence we
have examined the motor trajectories directly.

The motor velocity distribution appears well behaved (looking
almost Gaussian) for large M, but develops singularities when
M . 1. Algorithm 2, with which motor trajectories were sampled,
was checked to ensure that these singularities are not an artefact of
the numerics.

ForM . 1, the first moment of the motor’s velocity distribution,
〈V 〉, does not agree with the linear drift in the motor position, Vdrift,
cf. Eq. (5.24). Since 〈V 〉 is an ensemble average, and Vdrift is a time
average, 〈V 〉 6= Vdrift shows that this system becomes non-ergodic
forM . 1.

When 0.38 .M . 0.93, the motor drifts in the positive direc-
tion11 11. Towards the sharp end. Outside this range of mass ratios, the motor drift is negative.
The limit ofM→∞ appears to show non-vanishing positive drift.
This parallels our findings from chapter 4.

The motor temperature, shows the same counter-intuitive be-
haviour as in chapter 4. For those mass ratios where the drift is
largest, the motor temperature is close to the temperature of the
gas. Hence, again the heat flow is likely to be due to an entropy
current, rather than an energy flow.
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5.9.1 Limitations of the Model
When the motor becomes very light, it acts like a rattle; collisions flip
its velocity causing it to alternately travel forwards and backwards
at a large speed. When this rattling velocity becomes much larger
than the particle velocity, the motor very effectively explores its
surroundings. However, the model, does not include any data on
the surroundings, i. e. collisions are sampled with the assumption
of molecular chaos. Hence, this model fails when the time scale
between collisions, τc exceeds the time scale of particles moving out
of the neighbourhood of the motor. The mean free path, l, in the
neighbourhood of the motor is given by the swimmer area density,
ρ, assuming a uniform distribution l = 1/√ρ. Hence, for the model
to be effective τc > l/v = 1/√ρvT , where vT is the thermal motor
velocity vT =

√
T /m. This restricts the maximum density of the

gas.

5.10 outlook
The drift for light motors is likely driven by an entropy flow between
motor and gas because the largest motor drift occurs for those mass
ratios where the temperature difference between gas and motor is
smallest. While the drift for massive motors is likely driven by the
energy flow due to the constant temperature difference between gas
and motor. Hence, motor mass might tune the amount of entropy
flow, compared to the energy flow. For this reason, this Brownian-
motor model might be a instructive system to analyse from the
perspective of stochastic thermodynamics [26, 32, 48, 49, 54].

The unusual behaviour of the motor drift, the motor temper-
ature as well as the breakdown of ergodicity all call for further
investigation. Real swimmers do not swim in a vacuum. Therefore,
a natural next step would be to include the system of motor and
swimmers in a medium of inert particles whose velocity distribution
resembles a Gaussian. This might even resolve some of the math-
ematical difficulties, as the Gaussian medium would “smooth out”
the singularities in the transition rates. This modification also vital
to making this Brownian-motor model testable in the laboratory.
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6
Conclusion and Outlook

6.1 conclusion
In kinetic theory it is commonly assumed (under local equilibrium
[7]) that particles have Gaussian-distributed velocities. This as-
sumption is not valid for systems far from equilibrium. In the
present thesis we addressed the problem of the Brownian motion of
an anisotropic particle immersed in such a non-Gaussian gas.

In the present work, we have considered two common examples
of a non-Gaussian distribution for gas particles

1. A granular gas [53];

2. A gas made up of swimmers [15]

How does the non-Gaussian velocity distribution of the gas
particles effect the motion of this test particle?

Test particles with an asymmetric shape develop a finite steady-
state drift when immersed in a gas with an non-Gaussian velocity
distribution. Even when collisions between the test particle and the
gas particles are elastic, we found that the test particle acquires a
non-zero steady-state drift. In this respect it constitutes a Brownian
motor.

6.1.1 Granular Gas: Slightly Anisotropic Velocity Distribution
Inspired by the velocity distribution of a dry granular gas [53], which
is shaken vertically, we have examined the Brownian motor drift and
temperature as a function of shaking strength. The shaking strength
translates to the degree of anisotropy of the velocity distribution of
the gas.

Previous studies [8] have shown that for an isotropic gas, non-
zero stead-state drift can be achieved if collisions between motor
and gas are inelastic. Therefore, we compare the effect of anisotropy
with the effect of inelasticity.

The temperature of the motor is effected first of all by the
dissipation. Anisotropy has only higher order effects on the motor
temperature: Even if the motor drift due to an anisotropic gas is
comparable to the drift due to inelasticity, the motor’s temperature
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remains close to the gas temperature in the anisotropic regime. The
heat flow, responsible for rectification, therefore is due to an entropy
rather than an energy flow.

In the anisotropic regime, the drift velocity is of the order of
the gas particle velocities. Hence, when the motor/particle mass
ratio is increased, the motor’s kinetic energy diverges. This is a
very dramatic violation of equipartition: In the limit of a massive
motor, the kinetic energy of the motor diverges.

6.1.2 Swimmers: Strong Deviation from a Gaussian velocity
Distribution
Inspired by dilute gases comprised of swimmers, we examined a
gas where all particles have the same speed and random orienta-
tion. For such a model, the transition rates of the motor velocity
develop rainbow singularities, and the kinetic theory employed for
the anisotropic Brownian motor no longer applies.

Rather we study the dynamics by examining the numerical time
evolution of the Markov process driving the motor. We have found
that for low motor/particle mass-ratio the velocity distributions of
the motor become highly non-Gaussian, even containing spikes and
cusps that appear to be singularities.

Moreover the drift reverses as a function of mass-ratio. This has
been linked to non-trivial velocity correlations. They arise for mass
ratios less than 1 where ergodicity breaks down.

The motor temperature also exhibits counter-intuitive behaviour.
For massive motors, the motor temperature is approximately a third
of the gas temperature, independent of motor mass. In contrast,
when the motor/particle mass ratio is low, and drift is large, the
motor temperature is close to the temperature of the gas. This
leads us to suspect that, for low mass ratio, rectification is driven
by an entropy flow similarly to the anisotropic Brownian motor.

6.2 discussion and outlook
In the present work we have examined two models for Brownian
motors far from equilibrium. Common to both of these models is:

1. In the limit of a massive Brownian motor, the motor acquires
a non-zero steady-state drift velocity;

2. There is a non-vanishing motor drift, even if the motor tem-
perature is close the the gas temperature.

When the gas particle’s velocity distribution is no longer Gaus-
sian, fluctuations in the motor velocity are rectified resulting in
finite drift. Our intuition from the second law of thermodynamics
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tells us, that a finite steady-state drift occurs when the system is
coupled to two baths and there is a heat flow between these two
baths.

When collisions between motor and gas are dissipative, the
flow of heat takes the form of an energy flow from the bath of
thermostatted gas particles into the motor1 1. The coefficient of restitu-

tion introduced in Eq. (2.2b)
models the dissipation of
kinetic energy into the envi-
ronment as heat and sound.
Here this is the second bath.

. This manifests itself in
the motor’s temperature being lower than the gas temperature.

However, the investigation of the anisotropic gas in chapter 4 has
shown that a small amount of anisotropy can also lead to an equally
strong drift. Yet for practical purposes the motor temperature
is almost indistinguishable from the gas temperature. Here this
heat flow no longer takes the form of an energy flow but rather
amounts to an entropy current between the impinging gas particles
and the post-collisional particles that have a much more disordered
velocity distribution. Maintaining the impinging particles at a fixed
distribution therefore requires continuous rearranging of the gas
particles. This comes with the cost of entropy.
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A
Approximating a
Distribution from its
Moments

Here we shall review how a distribution may be estimated from
its moments. For distributions defined on the set of real numbers,
this is known as the Hamburger moment problem [36]. We will not
address those spaces, where the Hamburger moment problem is not
well defined.

Furthermore, the ability to transform moments back to a desired
distribution also gives us a systematic way to find the relationship
between the motor’s moments and the moments of the gas.

a.1 the hamburger moment problem
The central idea of the Hamburger moment problem, is that we may
express an arbitrary probability density function as the product

φ(x) := φ̂(x)ω(x) (A.1)

of a “weight” function, ω(x), and a function φ̂(x) which is to be de-
termined. The weight function is understood as the weight function
of the weighted inner product

〈f, g〉ω :=
∫

Ω
f(x)g(x)ω(x) dx (A.2)

This inner product implicitly defines a set of orthogonal polyno-
mials1

1. Common choices for ω(x)
is a Gaussian, or an expo-
nential function., correspond-
ing to Hermite or Laguerre
polynomials, respectively.

, H(ω)
n (x). Assuming that φ̂(x) is an element2

2. When H(ω)
n are the well

known Hermite or Laguerre
polynomials, complete-
ness requires that φ̂ ∈
L2(R, ω(x) dx or φ̂) ∈
L2((0,∞), ω(x) dx) respec-
tively.

of the Hilbert
space defined by Eq. (A.2), we may expand φ̂(x) in terms of this
set of orthogonal polynomials

φ̂(x) =
∞∑
n=0

h(ω)
n H(ω)

n (x) (A.3)

where the expansion coefficients, h(ω)
n are then simply given by the

weighted inner product 〈H(ω)
n , φ̂〉ω. Since H(ω)

n is a polynomial of
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degree n, we may relate the expansion coefficients to the moments
of φ(x)

h(ω)
n := 〈H(ω)

n , φ̂〉ω = 〈
∑
k

c
(ω)
n,kx

k, φ̂〉ω =
n∑
k=0

c
(ω)
n,k〈xk, φ̂〉ω (A.4)

By the definition of φ̂, the inner product in the last term simply
corresponds to the moments of φ. Hence:

h(ω)
n =

n∑
k=0

c
(ω)
n,k〈xk〉Ω (A.5)

Thus, we can now substitute this expression for h(ω)
n,k given by

Eq. (A.5) into Eq. (A.3) giving

φ̂(x) =
∞∑
n=0

h(ω)
n H(ω)

n (x) =
∞∑
n=0

n∑
k=0

h(ω)
n c

(ω)
n,kx

k =:
∞∑
k=0

b
(ω)
k xk (A.6)

with the expansion coefficients b(ω)
k depending solely on the moments

〈xk〉. These expansion coefficients are given by rearranging the terms
of the sum and identifying terms with the same power of x yielding

b
(ω)
k =

∞∑
n=k

h(ω)
n c

(ω)
n,k =

∞∑
n=k

c
(ω)
n,k

n∑
i=0

c
(ω)
n,i 〈xi〉Ω (A.7)

This is still not practical for computation as it involves infinite sums.
Hence the pragmatic choice would be to truncate Eqs. (A.6) and
(A.7) at some finite order.

φ̂N(x) :=
N∑
k=0

b
(ω,N)
k xk (A.8a)

with: b
(ω,N)
k :=

N∑
n=k

c
(ω)
n,k

n∑
i=0

c
(ω)
n,i 〈xi〉Ω (A.8b)

To demonstrate this, we expand a Gaussian probability density
function P (x) = exp [−(x− 3)2/2]/

√
2π in terms of Hermite poly-

nomials using Eqs. (A.8) to different orders as is shown in Fig. A.1.
The distribution choice of ω(x) was a wider Gaussian than P (x).
The reason for this, is that for the choice of ω(x) = P (x + 3),
Eqs. (A.8) experience some intermittent oscillations, before converg-
ing onto P (x)33. Here we see a typical

limitation of numerics.
When working analyti-

cally, the infinite sum in
Eq. (A.6) can be evalu-

ated without the problem
of intermittent oscillations.

. These oscillations die out readily when choosing a
wider ω(x). In general, we have observed that there is a trade–off in
the choice of ω(x). Choosing ω(x) a little wider than P (x), prevents
intermittent oscillations in the convergence of Eqs. (A.8) with re-
spect to N . Yet, the closer our choice for ω(x) is to P (x), the faster
the convergence (as long as there are no intermittent oscillations).
Hence we point out that even this relatively simple test case has

80



0.00

0.15

0.30

P
(x

)
,
φ
N

(x
)

−4 −2 0 2 4 6 8 10

x

10-9

10-5

10-1

|φ N
(x

)−
P
(x

) |

Figure A.1: Example of
the expansion algorithm
for a Gaussian probabil-
ity density function P (x).
Using a Gaussian weight
function, ω(x) represented
by the black curve around
the origin, results in a Her-
mite polynomial expansion,
φN (x). P (x) is shown as a
thin black curved centred at
x = 3. The coloured lines
represent different trunca-
tions for N = {10, 20, 30, 60}
with steadily decreasing
error (bottom panel).

shown that Eqs. (A.8) are not asymptotic expansions, in the sense
that higher expansion order leads to better results. We therefore
have the need to assess the goodness of our choice for ω(x). Since
in general, only the moments of φ(x) are known, we at least need a
measure which tells us whether observed significant deviations from
ω(x) are real, or whether they are simply a result of not taking the
expansion to infinity. This we shall do in the next section.

a.2 completeness of the moment
expansion
Many orthogonal polynomials may be expressed in terms of a Ro-
drigues’ formula.

Hn(x) = 1
ω(x)∂

n
x [ω(x)Pn(x)] (A.9)

where Pn(x) is a Polynomial. In general, Eq. (A.9) is only a poly-
nomial, if ∂nx [ω(x)]/ω(x) is a polynomial for all n. Never the less,
we shall restrict ourselves to orthogonal polynomials which have a
Rodrigues–type representation. This has the advantage of making
the proof of completeness almost trivial4

4. As we will see later, this
form has the added advan-
tage, that distributions with
tails wider than ω(x) will
not be contained in the
Hilbert space of spanned
by Eq. (A.9)

.
We shall determine the conditions ω(x) has to fulfil, in order to

be able to perform the expansion Eq. (A.3). For this we may use
the following very useful theorem:

Definition 20 Let (Ω,Σ, x) be a measure space, and F (Ω) be the
set of all measurable functions from Ω to R.
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Theorem 1 The set

Lp(Ω) :=
{
f(x) ∈ F (Ω) |

∫
Ω
|f(x)|p dx <∞

}
(A.10)

forms a complete metric space under the metric induced by the norm

‖f‖p :=
(∫

Ω
|f(x)|p dx

) 1
p

(A.11)

In other words, the spaces of p–Integrable functions form a
complete metric space. Consequentially every function f , such that
‖f‖p <∞, may be written as the limit of a sequence of functions
fn ∈ Lp(Ω).

With the help of this theorem, completeness is almost trivial to
proof.

Lemma 2 Say ω(x) is chosen, such that the polynomials, Hn(x) are
orthonormal with respect to the inner product 〈•, •〉ω (see Eq. (A.2)).
Then the set of these polynomials form a complete basis of

L2(Ω, ω(x)dx) :=
{
f(x) ∈ F (Ω)

∣∣∣∣ ∫
Ω
|f(x)|2 ω(x) dx <∞

}
.

(A.12)

Proof For each Hn, we introduce the function

fn(x) := Hn(x)
√
ω(x) . (A.13)

The L2–norm induces an inner product ‖f‖2
2 =: 〈f, f〉. We see that

〈fn, fm〉 = 〈Hn, Hm〉ω. Hence the orthogonality of the polynomials
Hn is carried over to the induced metric, induced by the L2–norm.
Since the fn are orthonormal, they form a complete (see Theorem 1)
orthonormal basis of L2(Ω). Hence the Hn also form a complete
orthonormal basis of L2(Ω, ω(x)dx).

In other words, only φ̂ ∈ L2(Ω, ω(x)dx) can be expanded in
terms of these polynomials.

The condition that ‖φ̂
√
ω‖2

2 = 〈f, f〉ω <∞ gives a useful test for
the convergence of Eq. (A.6). Say we wish to expand the distribution
ρ(x) in terms of Eq. (A.6), that is to say, we only have the moments
of ρ(x), and we wish to accurately determine the distribution.

Say an expansion for φ̂ exists in terms of Eq. (A.6). Then

∞ >
〈
φ̂, φ̂

〉
ω

=
∞∑
k=0

b
(ω)
k

〈
xk, φ̂

〉
ω

=
∞∑
k=0

b
(ω)
k 〈xk〉Ω (A.14)
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And so we may arbitrarily choose5 5. In general, choosing a
Gaussian for ω(x) is a good
initial choice. Choosing an
exponential requires knowl-
edge of the moments defined
on R±.

a given ω(x), and compute
Eq. (A.8b) for some N. Then we may check that the series

N∑
k=0

b
(ω,N)
k 〈xk〉Ω (A.15)

is convergent for N →∞. Hence we can utilize the standard tests
for convergence of series to estimate the quality of the moment
expansion. In particular, we shall utilize the ratio test and the root
test.

Definition 21 Let ∑n cn be a series where the cn ∈ R. We may
define two limits:

rR = lim
n→∞

cn+1

cn
(A.16a)

and
rP = lim

n→∞
n

√
|cn| (A.16b)

Theorem 2 (Ratio Test) Let the limit rR exist. If rR < 1 the
series is convergent. If rR = 1, the test is inconclusive. Otherwise
the series is divergent.

Theorem 3 (Root Test) Let the limit rP exist. If rP < 1 the
series is convergent. If rP = 1, the test is inconclusive. Otherwise
the series is divergent.

Remark 6 When only numerical data are available, it can be
difficult to see whether r• approaches a value less than one or not.
A common solution is to plot Domb-Sykes plots of the series terms.
That is, plotting either cn/cn+1 or 1/ n

√
|cn| against 1/n. This makes

extrapolation to large n significantly easier, where the y–intercept
gives 1/r•.

A.2.1 Motivating Example
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Figure A.2: Limiting be-
haviour of the ratio function
for the expansions shown in
Fig. A.1. The shaded area
marks rapid oscillations.

However the limit rP seems to exist. The Domb-Sykes plot for
rP is shown in Fig. A.3.

To illustrate that the convergence of Eq. (A.15) can be read
of the Domb-Sykes plot for cn := b(ω,N)

n 〈xn〉Ω, we apply it to the
expansion shown in Fig. A.1. We find that the limit rR does not
exist (the terms cn show rapid oscillations as shown by Fig. A.2).

The exploration of the Domb-Sykes plot Fig. A.3 also show an
unusual behaviour of the limit n→∞: |cn|−1/n approaches infinity
before n has approached infinity. In fact, for an expansion up to 60
moments, |cn|−1/n →∞ as 1/n→ 0.014 (approximately). Further-
more, this finite value decreases with increasing expansion order.
We therefore come to the conclusion that the finite–n divergence
is a result of letting cn = b(ω,N)

n 〈xn〉Ω rather than cn = b(ω)
n 〈xn〉Ω,

83



10-2 10-1 100

1/n−0.014

100

|c
n
|−

1/
n

Figure A.3: Domb-
Sykes plot, where cn :=∣∣∣b(ω,N)
n 〈xn〉Ω

∣∣∣−1/n

, for the
expansion shown in Fig. A.1.

The colours correspond
to those used in Fig. A.1.
The plot gives evidence
that rP < 1 is likely.

i. e. it is due to the error of estimating b(ω)
n from only finitely many

moments.
This might seem a little precarious, however Fig. A.3 has estab-

lished two important things:

Eventual monotonicity: To a high likelihood, the sequence {|cn|−1/n}
becomes monotonically rising (up to small oscillations which
eventually die out).

Eventual small rP: ∃N <∞ such that |cn|−1/n < 1 ∀n > N .

Hence, the limit rP likely exists and, if it does, it is likely to be less
than 1.

To better understand the subtle usage of this test (and of the
importance of choosing a good σ), we shall examine the case where
P (x) is expanded with a basis for which sigma is too small. The
resulting estimate for φN(x) is shown in Fig. A.4.

Here we chose a value of σ which formally still results in a con-
vergent moment expansion. However, we are close to the theoretical
limit (as we shall see in the next section). The expansion under-
goes transient oscillations (green line) which die out once enough
moments are used. These oscillations seem to occur where P (x)
disagrees most with ω(x).

The Domb-Sykes plot (Fig. A.4, left panel) shows that convergent
behaviour alone is not enough! Both the blue and the green lines
seem to converge onto rP = 0, with the green line converging fastest.
Yet this latter case is clearly not a good expansion.

We see that the rate of convergence is not a good indicator
that the limit r• < 1, if it exists. We must keep in mind that the
Domb-Sykes plot is not so much proof of convergence, let alone a
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Figure A.4: Here we see an example of the intermittend breakdown: The green line reconstructs the distribution
with the using the fewest moments. As we increase the number of moments considered we gradually converge
onto the actual distribution.

tool accurately calculating the value of a limit. Yet it gives evidence
(with varying degrees of confidence) that a series converges to a
given limit.

Hence the Domb-Sykes plot gives a measure of the quality of the
expansion. The following criteria seem reasonable for a high-quality
expansion (Eq. (A.8)):

Necessarily: The Domb-Sykes plot needs to converge and become
monotonic for low x-values.

Quality: The y value at the lowest x value characterizes the quality
of the expansion.

Thus we shall only trust all the features of a distribution recon-
structed from its moments, if the Domb-Sykes plot appears to readily
converge to a value of r• < 1, and the y–value for lowest x–value is
greater than 1.

a.3 weight function
For the scope of this work, we restrict our choices for ω(x) to either
exponentials or Gaussians. The basis of orthonormal polynomials
with respect to this class of inner products are the Laguerre poly-
nomials for ω(x) = exp [−x/σ]/2σ, and the Hermite polynomials
for ω(x) = exp [−x2/2σ]/

√
2πσ. The weight function for Laguerre

or Hermite polynomials can be indexed by an integer p such that
ωp(x) ∼ exp[−xp/pσ].

We will show in the subsequent sections, that these bases are
sufficient for expanding distributions with exponential and Gaussian
tails, respectively.

It is important to note, that the domain over which the polyno-
mials are orthogonal (i.e. the domain of the inner product Eq. (A.2))
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is implied by the finiteness of the weighted L2–norm, L2(Ω, ω(x)dx).
This mean that the weighted norm ‖ • ‖L2(Ω,ω(x)dx) admits Ω = R
for Gaussian ω. Yet for exponential ω and Ω = R, ‖ • ‖L2(Ω,ω(x)dx)
is finite for no polynomials, except 0. Restricting Ω to the positive
real line, that is Ω = R+ is sufficient.

Hence the Laguerre-polynomial expansion is only defined for
distributions over R+. There is a way around this though, by
expanding φ̂+(x) := JxKφ̂(x), and φ̂−(x) := J−xKφ̂(x), that is the
positive and negative part of φ̂ separately. Were each separate
expansion follows the same algorithm as described in the previous
section, yet involving the partial moments 〈xk〉R± .

A.3.1 Completeness given the Tails of the Distribution
Let φ(x) be a distribution such that

φ(x) � e−x
α

αδ . (A.17)

In order to expand φ(x) in terms of

ω(x) � e−
xp

pσ , (A.18)

then we wish to expand

φ̂(x) � e−
xα

αδ
+xp

pσ (A.19)

in terms of Laguerre polynomials (p = 1), or Hermite polynomials
(p = 2). The completeness of the weighted L2–space requires that

‖φ̂‖L2(Ωp,ωp(x)dx) �
∫

Ωp
e−2(xααδ−x

p

pσ )ωp(x)dx <∞ (A.20)

where Ω1 = R+ and Ω2 = R. It follows that whether or not φ̂ is
in the appropriate L2–space comes down to the convergence of the
integral ∫

Ωp
e−2(xααδ−x

p

pσ )−xppσ dx (A.21)

Given

L := xp

pσ
− 2x

α

αδ
�


1
pσ
xp if p > α

− 2
αδ
xα if α > p(

1
pσ
− 2

αδ

)
xα if α = p

(A.22)

the convergence of Eq. (A.21) is determined by the asymptotics of
L. The integral66. where Γ[•] is the gamma

function ∫
R+

e−βxλ =

β
−1/λΓ

[
1 + 1

λ

]
if β > 0

∞ otherwise
(A.23)

together with the asymptotics of L allows us to reduce the conver-
gence conditions of Eq. (A.21) to the following three cases:
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p > α: Eq. (A.21) diverges.

α > p: Eq. (A.21) converges. For small λ, it’s of the order of Γ[λ−1].

α = p: Eq. (A.21) converges if only if 1/pσ − 2/αδ < 0.

Hence we see that the tails of ω(x) need to be wider than the
tails of φ(x). Consequently, distributions with Gaussian tails can
be expanded by any exponential ω(x). φ(x) with tails wider than
Gaussians, cannot be expanded in terms of Gaussian ω(x). When
the tails of ω(x) and φ(x) are alike, σ > δ/2. All in all, we see
that the class of Laguerre polynomials is by far more general than
the Hermite polynomials. They allow broader distributions to be
expanded compared to Hermite polynomials, which cannot expand
exponential distributions.

a.4 gram–charlier expansion
Eq. (A.6) is also frequently called the Gram-Charlier expansion. It
is important to note, that the integral domain, Ω in Eq. (A.2) is
dependent on the choice of ω(x). Likewise the coefficients of the
moment expansion Eq. (A.7) either take the generic moments, or
the one-sided moments.

Hence, if we desired to expand φ̂ in terms of Laguerre Polyno-
mials (this would be necessary, if the system we are describing has
exponential tails), then the left-hand (〈•〉R−) and the right-hand
(〈•〉R+) partial moments need to be treated separately to give the
negative and positive part of φ.

The versatility of the Laguerre polynomial expansion is demon-
strated in Fig. A.5. The χ2 distribution could be accurately re-
constructed from its moments. This would have not been possible
using Hermite polynomials (as the χ2 distribution has exponential
tails). Furthermore, a Gaussian distribution could also be accurately
reconstructed. The convergence behaviour as demonstrated by the
ratio test is shown in Fig. A.6. We see that the convergence of the
Laguerre polynomial expansion for the Gaussian distribution seems
much better than that of the Hermite polynomial expansion.

This represents a mathematical trade-off, the standard Gram-
Charlier expansion, relying on expanding φ̂ in terms of Hermite poly-
nomials, requires only the standard moment hierarchy (Eq. (3.34b)
to be solved. Of course, then the tails of φ must not diverge from a
Gaussian distribution too much. On the other hand, expanding φ̂
in terms of Laguerre polynomials, allows a greater range of distribu-
tion. This, however, requires the partial-moments, which cannot be
determined using the moment-hierarchy method alone
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B
Published Work

This appendix is an overview of the works published during the
course of the PhD-programme.

b.1 role of granular gas anisotropy
This work is the published components of chapter 4. Here we discuss
the influence on of an anisotropic velocity distribution on the drift
and temperature of a granular Brownian motor.

b.2 arrest of the flow of wet granular
matter
Not all granular gasses are non-cohesive. Here we examine granular
matter that is cohesive by forming capillary bridges. For the pur-
poses of this study, a capillary bridge is modelled as an attractive
potential between two grains. This potential is formed only when
grains initially collide. If they move apart with enough energy, the
bridge is “broken” and its potential energy is dissipated. This is
often called wet granular matter [27].

Similarly to the dry granular gas examined in chapter 4, energy
needs to be injected into the wet granular flow1 1. For reasonable external

forcing, wet granular matter
resembles a fluid rather than
a gas. So we shall call this a
granular flow

in order to prevent
all motion from ceasing due to dissipation. In our paper we examine
the minimal external forcing necessary to keep the granular flow in
motion by an external body force.

b.3 the statistics of droplet
distributions on 2-dimensional
substrates
The size distribution of droplets as they are nucleated on a 2-
dimensional surface results from their interactions in a non-trivial
way. A common technique, to problems which span many scales is
scaling theory. We show here, that the traditional scaling theory
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needs to be augmented by terms accounting different regimes for
small and medium sized droplets.
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We investigate the motion of a two-dimensional wedge-shaped object (a granular Brownian motor), which
is restricted to move along the x axis and cannot rotate as gas particles collide with it. We show that its
steady-state drift, resulting from inelastic gas-motor collisions, is dramatically affected by anisotropy in the
velocity distribution of the gas. We identify the dimensionless parameter providing the dependence of this drift
on shape, masses, inelasticity, and anisotropy: The anisotropy leads to dramatically enhanced drift of the motor,
which should easily be visible in experimental realizations.
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I. INTRODUCTION

We investigate the motion of a two-dimensional wedge-
shaped object, which we shall refer to as the motor (Fig. 1).
It cannot rotate and is restricted to move along the x axis
as gas particles collide with it. When the motor experiences
elastic collisions, there is a finite transient drift as the motor
approaches thermal equilibrium with the gas [1]. A finite
steady-state motion is achieved when the gas-motor collisions
are inelastic [2–6]. The latter systems have consequently been
called granular Brownian motors.

These motors are prototypes of systems where small parti-
cles collide with heavy objects that break reflection symmetry.
Such models have been used to explore the rectification of
thermal fluctuations [6–8], the adiabatic piston [9,10], and have
lead to a novel treatment of nonequilibrium steady states [11].
In an experimental realization [4], it was demonstrated that
they even obey nonequilibrium fluctuation theorems.

So far, however, all pertinent theoretical studies have been
based on thermostated gases such that impacting particles
are sampled from a Maxwellian velocity distribution. When
thermostating via stochastic forcing, this is a reasonable
assumption [3]. In contrast, experimental realizations of
granular gases typically exhibit sustained heterogeneities in
density and granular temperature [12–16]. Moreover, when
shaking in the plane of observation, they exhibit noticeable
anisotropy of the granular temperature [17]. Consequentially,
we refer to them as anisotropic gases.

Here we revisit the approach by which [2,7,8] derived the
theory for the isotropic case. Then we address the motion of
the motor driven by an anisotropic gas.

II. GAS VELOCITY DISTRIBUTION FUNCTION

Following [17], we model an anisotropic velocity distribu-
tion function (VDF) using a squeezed Gaussian

φ(v̂x,v̂y) = m

2πkT
exp

[

−m

2

(
v̂2

x

kTx

+
v̂2

y

kTy

)]

,

where m is the particle mass, k is Boltzmann’s constant,
T ≡ 〈m(v̂2

x + v̂2
y)〉φ/2k is the gas temperature averaged over

both degrees of freedom, and Tx and Ty are the granu-
lar temperatures in the x̂ and ŷ directions, respectively.

FIG. 1. A particle (black circle) colliding with the Brownian
motor (triangular wedge with wedge angle 2θ0). The angles of the
edges i ∈ {0,1,2} are measured counterclockwise from the positive
x axis to the outside of the motor, yielding θ0, θ1 = π − θ0, and
θ2 = 3π/2, respectively.

Anisotropy is quantified via the squeezing parameter α2 :=
Ty/Tx . Here α ! 1 as we only address vertical shaking.
Introducing dimensionless velocities v := v̂/

√
2kT /m and

requiring φ(v̂x,v̂y) dv̂x dv̂y = φα(vx,vy) dvx dvy reduces the
VDF to

φα(vx,vy) = 2
π

α2 + 1
α

exp
[
−(α2 + 1)v2

x −
(

1
α2

+ 1
)

v2
y

]
,

(1)

which depends on α only and not on m, k, Tx , and Ty .

III. GAS-PARTICLE INTERACTION

A collision event is illustrated in Fig. 1. The motor has
dimensionless velocity 'V = V êx and a mass M . Collision
rules depend on which side of the motor, i ∈ {0,1,2}, is being
impacted and on the coefficient of restitution r .

Assuming no change in the tangential component of the gas
particles velocity,

'v′ · t̂i = 'v · t̂i , (2a)

where t̂i = (cos θi , sin θi) is the vector tangential to the surface
being impacted. In contrast, due to restitution, the reflection
law for the normal direction becomes

( 'V ′ − 'v′) · n̂i = −r( 'V − 'v) · n̂i , (2b)

040201-11539-3755/2013/87(4)/040201(5) ©2013 American Physical Society
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where n̂i = (sin θi ,− cos θi) is the normal vector. Single
collisions obey conservation of momentum

v′
x + MV ′ = vx + MV, (2c)

where M := M/m is the mass ratio. Together Eqs. (2)
determine the change in the motor velocity

ui := V ′ − V = γi(vx − V − vy cot θi), (3a)

where

γi ≡ γ (r,M,θi) := (1 + r)
sin2 θi

M + sin2 θi

. (3b)

IV. TIME EVOLUTION OF THE MOTOR VDF

For independent collisions, the probability density Pt (V )
of finding a motor with velocity V at time t follows the master
equation

∂tPt (V ) =
∫

R
W (V − u; u)Pt (V − u) du

−
∫

R
W (V ; −u)Pt (V ) du, (4)

where W (V ; u) du is the conditional probability of a motor
experiencing a collision resulting in a velocity change V →
V + u. It can be expressed as an integral involving four
specifications: selecting only those outcomes that (i) are
commensurate with single collisions [Eqs. (3)] and (ii) collide
with the outside of the motor’s surface, (iii) weight single-
particle collisions by the impact frequency, where the collision
frequency for a stationary motor is used to nondimensionalize
time, and (iv) sample over all possible impact speeds and the
motor’s sides, where wi(θ0) is the probability of picking the
side i [2]:

W (V ; u) =
∑

i∈{0,1,2}

∫

R

∫

R
δ[u− γ (r,M,θi)(vx − V − vy cot θi)]︸ ︷︷ ︸

(i)

× %[( 'V − 'v) · n̂i]︸ ︷︷ ︸
(ii)

( 'V − 'v) · n̂i︸ ︷︷ ︸
(iii)

× φα(vx,vy) dvx dvy wi(θ0)
︸ ︷︷ ︸

(iv)

. (5)

Consequentially, the steady-state solutions of Eq. (4) are
selected by α, γ (r,M,θ ), and the wedge angle 2θ0.

V. SOLUTIONS TO THE MASTER EQUATION USING
MOMENT HIERARCHIES

Given that ∀n ∈ N+ and m ! n the derivatives
∂m
u [unW (V ; u)] vanish for u → ±∞, the Kramers-Moyal [18]

expansion can be applied to the moments Mk(t) := 〈V k〉 =∫
R V kP (V,t) dV . Together with the jump moments an(V ) :=∫
R unW (V ; u) du, we arrive at an evolution equation for the

moments

∂tMk(t) =
k∑

n=1

(
k

n

)
〈V k−nan(V )〉. (6)

In order to accommodate a more general velocity distribution,
we compute the jump moments by expanding them as a power

series

an(V ) =
∞∑

i=0

dn,iV
i (7)

such that Eq. (6) reduces to an infinite linear system

∂tMk(t) =
∞∑

l=0

Ak,lMl (8)

reminiscent of a matrix equation with matrix elements

Ak,l :=
min{l,k−1}∑

j=0

(
k

k − j

)
dk−j,l−j . (9)

VI. TIME-RESOLVED MOTOR VDF

In general, one still cannot solve the infinite matrix
equation (8). Hence we truncate Eq. (7) at order N , which
leads to

∂tMk(t) =
N∑

l=0

Ak,lMl. (10)

The expansion coefficients dn,i in Eq. (7) are computed
using the Taylor expansion coefficients dn,i = 1

n!a
(i)
n (0), where

a(i)
n (V ) is the ith derivative of the nth jump moment. In order

to compute these derivatives, the δ distribution in Eq. (5)
is integrated out, resulting in nontrivial integrals. As long
as V = 0, these can be evaluated using MATHEMATICA. The
higher-order derivatives of these integrals are related to each
other, allowing them to be computed recursively. This provides
an analytical, albeit tedious, expression for Eq. (10).

Asymptotic analysis reveals that dn,i ∼ −i−i/2 for large i,
resulting in a combined truncation error in Eq. (10) of the order
of 10−10 for N = 20. In this work we hence solve Eq. (10) for
N = 20 and a wedge angle θ0 = π/4 unless stated otherwise.
The initial condition will always be an ensemble where all the
motors are at rest: 'M(0) = (1,0,0, . . .).

Figure 2 illustrates typical time dependences of the motor
drift 〈V 〉 and motor temperature T := M(〈V 2〉 − 〈V 〉2).
(i) For elastic collisions and an isotropic gas, the ensemble
undergoes a finite transient drift while it heats up to the
temperature of the gas [1]. Subsequently, the drift ceases.
(ii) When introducing inelastic gas-motor collisions, the
steady state acquires a finite drift velocity and a temperature
significantly lower than the gas [2]. (iii) Here we note that a
small amount of squeezing α = 1.02 causes a drift similar to
the drift in a system with strongly inelastic collisions. Note
that this squeezing hardly affects the temperature.

In the subsequent sections, we examine the parameter
dependence of the steady-state drift 〈V 〉 and motor temperature
T , respectively.

VII. MOTOR DRIFT

The inset in Fig. 3(a) shows that for a fixed coefficient
of restitution (r = 0.3), the drift velocity initially scales as
1/M. For large M and α -= 1 it approaches a constant value
depending only on α and θ0. The 1/M scaling is in agreement
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FIG. 2. (Color online) Ensemble drift 〈V 〉 (main panel) and
temperature T (inset) against t for motors with mass ratio M = 10
and θ0 = π/4. Blue lines (i) denote r = 1 and α = 1, elastic collisions
with an isotropic gas. Green lines (ii) denote r = 0.3 and α = 1,
strongly inelastic collisions with an isotropic gas. The motor relaxes
to the values predicted by [2] (black horizontal lines). Red lines
(iii) denote r = 1.0 and α = 1.02, elastic collisions with a slightly
anisotropic gas.

with the theory for the isotropic gas [2]. We conclude that
the drift for light motors is affected primarily by the inelastic
nature of the gas-motor interactions. Here the theory for the
isotropic gas is a good approximation. In contrast, massive
motors are more strongly influenced by the anisotropy of the
gas, no matter how slight this may be.

In order to fully characterize this crossover, we consider the
limit of a massive motor M → ∞. In this limit the γi term in
Eq. (3a) simplifies to

γ (r,M,θ ) % 1 + r

M sin2 θ =: % sin2 θ . (11)

Due to this factorization of sin θ and %, massive motors
undergoing dissipative collisions (r < 1) behave like motors
undergoing elastic collisions (r = 1) yet with a slightly higher
mass. This is in agreement with results for the granular

Boltzmann equation [19,20]. Consequentially, the limit of
a massive motor corresponds to the limit % → 0+ and is
independent of restitution, r .

We observe that, for small %,

dn,i ∼ %n, (12a)

d1,0 ∼ (α − 1)%. (12b)

Hence, for isotropic gas VDFs (where α = 1), the matrix
defined by Eq. (9) becomes upper triangular in leading order
of %. This corresponds to the decoupling of the time-evolution
equations for the moments, as observed in [2]. In contrast, for
α > 1, the time-evolution equations for the moments become
coupled again:

A %





0 0 0 · · ·
d1,0 d1,1 d1,2 · · ·
0 2d1,0 2d1,1 · · ·
...

...
...

. . .



 . (13)

This shall be the starting point of a perturbation theory
around (%,α) = (0+,1). We assume that, in the limit % → 0+,
the steady state is still largely independent of truncation size
for small α − 1. Hence we find that the null space of the upper
left 2 × 2 submatrix of Eq. (13) accurately determines the
steady-state drift due to anisotropy,

〈V 〉ani % −d1,0

d1,1
%

√
π

2
(sin θ0 − 1)(α − 1). (14)

Note that Eq. (14) does not depend on M. This is quite
astounding since it implies that the drift velocity of the massive
motor is of the order of the gas-particle velocity (dimensionless
〈V 〉ani is of order 1), even though the transferred momentum
from the gas remains constant with increasing M.

The crossover occurs when the drift for the isotropic
case 〈V 〉iso % (1 − r)M−1√π/2(sin θ0 − 1)/4 [2] is of the
same order as the drift due to anisotropy. Consequently, the

(a) (b)

FIG. 3. (Color online) Data for all combinations of θ0 = π/4, r ∈ {0.3,0.5,0.8}, and α ∈ {1.02,1.007,1.002,1.0007,1.0002} and θ0 = π/10,
r = 0.5, and α ∈ {1.02,1.007,1.002,1.0007,1.0002}. (a) Master plot for the motor drift where the inset illustrates the effect of varying
α. Curves for inelastic collisions with an isotropic gas with r = 0.3 and α = 1 [straight blue line (i)] and elastic collisions with
an anisotropic gas with r = 1 and α = 1.02 [straight red line (ii)] are included for reference. All other curves show the drift for
decreasing α ∈ {1.02,1.007,1.002,1.0007,1.0002} from top to bottom. (b) (top) Motor temperature T for θ0 = π/4, r ∈ {0.3,0.5,0.8}, and
α ∈ {1.02,1.007,1.002,1.0007,1.0002}. (bottom) Difference between motor temperature and the asymptotic theory. For comparison, θ0 = π/10,
r = 0.5, and α ∈ {1.02,1.007,1.002,1.0007,1.0002} are also shown (&).
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dimensionless number

β := 〈V 〉ani

〈V 〉iso
= 4M(α − 1)

1 − r
(15)

characterizes the dominant driving of the motor. For β $ 1
the dynamics is driven by inelastic collisions (r < 1) and for
β % 1 the dynamics is driven by anisotropy (α > 1). Plotting
〈V 〉/〈V 〉ani as a function of β provides an excellent data
collapse [Fig. 3(a)].

VIII. MOTOR TEMPERATURE

Figure 3(b) shows that the temperature is independent of
M for M ! 10 and it is affected by inelastic collisions more
severely than by anisotropy. We now follow the perturbation
theory of the previous section to determine the correction to
T in first order of α − 1.

Since the motor temperature contains a coefficient of 1/#,
we must expand A to second order in #. According to Eqs. (12),
A then takes the form

A&





0 0 0 0 · · ·
d1,0 d1,1 d1,2 d1,3 · · ·
d2,0 2d1,0 + d2,1 2d1,1 + d2,2 2d1,2 + d2,3 · · ·
0 3d2,0 3d1,1 + 3d2,1 3d1,2 + 3d2,2 · · ·
...

...
...

...
. . .




.

This results in a further increase of the coupling between the
different moments. In order to reliably compute 〈V 2〉ani, the
null space of at least the upper left 4 × 4 submatrix of this
matrix must be used, yielding the asymptotic expression for
the temperature

2
1 + r

Tani & 1 +
[

4 − π

4
(1 − sin θ0)2 + sin2 θ0

]
(α − 1).

(16)

The lower panel of Fig. 3(b) shows the convergence onto this
asymptotic value.

IX. CONCLUSION

We have investigated the motion of a granular Brownian
motor that is driven by inelastic collisions (particle-motor coef-
ficient of restitution r) with an anisotropic velocity distribution
(with anisotropy α − 1), modeled using a squeezed Gaussian
[Eq. (1)]. Examining the scaling of the drift with relative motor
mass M, we identified a crossover from the motor drift arising
due to inelastic gas-motor collisions to a setting where it arises
predominantly from the anisotropy of the gas. Examining the
steady-state drift of the motor in the limit of large M, we have
identified a dimensionless parameter β [Eq. (15)] (independent
of wedge angle). For β $ 1 inelastic collisions drive the
drift of the motor and anisotropy is negligible; for β % 1
anisotropy dominates the drift and restitution in motor-gas
collisions becomes negligible. In the latter regime we have
identified a remarkably strong enhancement of the drift: It
is of the order of gas particle velocity, even in the limit of
infinite motor-particle mass ratios. Is this remarkable regime
accessible experimentally?

Many experiments, involving agitated granular matter, are
kept in a steady state via shaking from the walls. Such
systems always exhibit an anisotropic velocity distribution
[17]. Laboratory experiments can have an anisotropy of the
order of α ≈ 2 [21] and the most conservative estimate for
simulations yields α ≈ 1.12 (see [17], Fig. 4, inset). Given
maximally inelastic collisions (r close to 0), this amounts
to β ≈ 0.5M. For M > 10 typical experimental realizations
therefore probe, at best, the crossover regime rather than
a regime where the drift solely arises from the inelastic
collisions. If one wishes to probe the latter regime, the isotropy
of the gas particles must be enhanced by at least two orders of
magnitude for the experimental setups we are aware of.

The dramatic enhancement of the drift thus lies in an easily
accessible regime and it certainly calls for further experimental
and numerical exploration.
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We study the arrest of three-dimensional flow of wet granular matter subject to
a sinusoidal external force and a gravitational field confining the flow in the
vertical direction. The minimal strength of the external force that is required to
keep the system in motion, i.e. the critical force, is determined by considering the
balance of injected and dissipated power. This provides a prediction whose quality
is demonstrated by a data collapse for an extensive set of event-driven molecular-
dynamics simulations where we varied the system size, particle number, the energy
dissipated upon rupturing capillary bridges, and the bridge length at which rupture
occurs. The same approach also works for systems that are kept at a fixed density
by confining walls. In both cases, this universal method provides the critical force
irrespective of the flow profile, and without specifying the hydrodynamic equations.

Key words: complex fluids, granular media

1. Introduction
Sudden arrest of granular flows is a challenge to the theoretical description of

granular flows in a hydrodynamic setting (Jaeger, Nagel & Behringer 1996; Kadanoff
1999; Silbert et al. 2001; Aranson & Tsimring 2006; Jop, Forterre & Pouliquen
2006; Borzsonyi & Ecke 2007; Forterre & Pouliquen 2008; Luding 2009; Schall &
van Hecke 2010; Slotterback et al. 2012), as well as an important problem in the
engineering sciences (GDR MiDi 2004). Its modelling involves two challenges: (a)
appropriately incorporating the role of dissipation arising from the particle interactions
into the framework of the balance equations underlying hydrodynamic transport
equations; and (b) addressing the roles of shear stresses, of the spatial distribution
of stress, and of yield stress in systems where the flow is spatially anisotropic.

Recent studies (Utter & Behringer 2008; Berardi et al. 2010; van Hecke 2010;
Tordesillas et al. 2011) of granular systems with purely repulsive interactions put
severe constraints on hydrodynamic descriptions of dense flows by pointing out a lack
of scale separation of microscopic and relevant hydrodynamic time and length scales.
Among other problems, this gives rise to a severe dependence of the effective material

† Email address for correspondence: juergen.vollmer@ds.mpg.de
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properties on the preparation history (Lois et al. 2009). In contrast, hydrodynamic
and continuum-mechanics considerations appear to provide a good description for
granular systems where the hard-core collisions with restitution are augmented by
(reversible) short-ranged attraction between particles (Trappe et al. 2001; Rognon
et al. 2006, 2008). Arguably this is due to the separation of connectivity and rigidity
percolation in response to attractive interactions (Lois, Blawzdziewicz & O’Hern
2007, 2008). This idealization of the particle interactions (Pitois, Moucheront &
Chateau 2000) applies as long as high-impact-velocity collisions with high capillary
numbers dominate the dynamics (see Kantak, Hrenya & Davis 2009; Donahue, Hrenya
& Davis 2010a for recent applications). On the other hand, recent experimental (Liao
& Hsiau 2010; Zhang et al. 2010; Remy, Khinast & Glasser 2012; Slotterback et al.
2012) and numerical (Remy et al. 2012) work on slowly moving shear flow in dense
granular systems clearly underlines the important impact of dissipation due to the
hysteretic formation and breaking of capillary bridges. Rather than accounting for the
finite restitution in collisions and assuming reversible attractive forces, the present
work therefore takes a complementary point of view: we explore slow flows in wet
systems where dissipation is arising solely from the hysteretic nature of the capillary
interaction between the wetting liquid and the particles, i.e. it is due to the formation
and rupturing of capillary bridges between particles (Herminghaus 2005; Mitarai &
Nori 2006). The hard-core collisions are elastic.

Shear forces that drive the flow can be modelled in various forms. Experimentally
studying shear forces in granular systems can be done, for instance, by constructing
two counter-rotating cylindrical walls (see Liao & Hsiau 2010 and references therein),
by constructing a specialized shear cell (Ren, Dijksman & Behringer 2011), or by
exploring a flow down an inclined plane (Quartier et al. 2000; Andreotti & Douady
2001; Andreotti, Daerr & Douady 2002; Rahbari et al. 2009). Moreover, in numerical
models it is convenient to induce shear flow by applying a cosine force field (Schulz,
Schulz & Herminghaus 2003; Herminghaus 2005; Roeller, Vollmer & Herminghaus
2009; Rahbari et al. 2010). Similarly to the method of images, this may be used to
mimic zero flow velocity at the positions envisioned for the walls.

Here, we will focus on the arrest of flow when the force driving the flow falls below
a threshold value Fex. Considerations based on a system of sheared disks at a fixed
density (Rahbari et al. 2010) suggest that the critical force, Fex, results from the power
balance between the energy-injection rate resulting from particle motion in the external
force field, and the dissipation rate accounting for the rupture of capillary bridges
between the particles.

Surprisingly, we show in the following that the same approach also describes the
arrest of flow in a three-dimensional system with constant pressure. The motion in the
third dimension is constrained by a hard wall at the bottom and a gravitational field in
the vertical direction (figure 1a). For external driving forces close to Fex all particles
accumulate at the bottom of the cell such that the packing density always lies slightly
above random close packing.

This finding is quite remarkable since the setting of constant density (Rahbari et al.
2010) fundamentally differs from that of constant pressure: at high packing fraction,
the constraint of constant density requires cooperative large-scale rearrangements
when two particles pass each other. In contrast the constraint of constant pressure
allows particles to pass each other with only local rearrangements. In spite of this
considerable difference, the arrest of flow in both settings is obtained by an informed
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FIGURE 1. (Colour online) (a) Sketch of a system of width Lx = L and length Ly = 2L with
periodic boundary conditions in the two lateral directions and elastically reflecting top and
bottom plates. The space-dependent cosine-shaped force field is indicated by the vertical band
and by arrows. Additionally, a gravitational force, g, is acting downwards. (b) A snapshot of
a simulation of 2.15 × 105 monodisperse spheres of diameter d that interact via a hysteretic
square-well potential (see § 2.1). The cosine-shaped shear force field, Fs(x), is sketched on
top of the figure. The colour of each particle indicates its individual kinetic energy according
to the colour bar at the bottom left. The system size is L = 100 d and H = 12.5 d, and the
filling height is h= 8.8 d for a shear force of amplitude Fsmax = 40 Ecb/L, i.e. F̂smax = 0.15.

inspection of the global energy budget. We argue that this approach hence provides a
versatile, universal method to study the arrest of granular flows.

Our paper is organized as follows. In § 2 we describe the system, our numerical
approach, and the dimensionless units adopted for modelling. Subsequently, in § 3 we
first provide a two-dimensional discussion of the power injected into the systems
by the external field, and the dissipated power due to the breaking of capillary
bridges and work against gravity. This power balance provides a prediction for the
critical force Fex. In § 4 the predicted parameter dependence of Fex is compared to the
numerical findings. Based on three scalar constants we describe the dependence of the
stability boundary in the four-dimensional parameter space spanned by the system size
L, the particle number N, the energy Ecb dissipated upon rupturing capillary bridges,
and the critical bridge length scb where rupture occurs. (Here and in the following
the subscript cb refers to capillary bridge.) The values of the three constants are
interpreted and derived from the model in § 5. In § 6 we augment the two-dimensional
model by flow features reflecting the vertical extent of the bed in order to calculate the
numerical values of these constants.

2. The model
The system is confined in a rectangular cuboid of size L × 2L × H with periodic

boundary conditions in the x- and y-directions, and solid, reflecting walls in the
z-direction. This box contains N particles whose motion is confined in the z-direction
by a gravitational field of uniform acceleration, g = −gẑ, where ẑ is the unit vector
along the z-axis (see figure 1). For the shear flows studied in the present work particles
never touch the upper wall of the container due to the gravitational confinement.

In the following ways this setting is fundamentally different from that of the two-
dimensional flows considered by Rahbari et al. (2010).
(i) Rahbari et al. (2010) consider a flow at fixed density close to random close

packing. In order to maintain constant density, particles passing each other in the
flow require cooperative large-scale rearrangements of large portions of the system.
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This is costly energetically, because it is accompanied by the breaking of a large
number of capillary bridges.

(ii) Conversely, in gravity-confined granular beds, particles can pass each other via a
slight, local expansion of the bed in the vertical direction. Only a few capillary
bridges must be ruptured in the resulting fixed-pressure setting, even though the
density of the bed is always very close to random close packing.

2.1. Particle interactions
In the present study we consider monodisperse spheres of diameter d, in order
to suppress any additional dynamics arising from different particle sizes. In fact,
polydisperse beads, which are subject to small shearing forces, segregate according to
their size (Schulz et al. 2003).

The dynamics in the simulation is calculated using a standard event-driven
molecular-dynamics method which has been described in detail by Fingerle et al.
(2008), Huang, Roeller & Herminghaus (2009), Roeller et al. (2009), Ulrich et al.
(2009a,b) and Roeller (2010). For the sake of a self-contained exposition we only
briefly summarize the particle interactions. Following Herminghaus (2005) the effect
of particle adhesion due to the capillary bridges is modelled as follows.

(i) Capillary interaction gives rise to pair forces between particles only.
(ii) Unless particles are connected by a capillary bridge they feel no force when they

approach each other.
(iii) They collide elastically, and upon collision a capillary bridge is formed

instantaneously. When the particle separate, this bridge gives rise to an attractive
force which is modelled by placing the particle into a potential well with a depth
Ecb, and a finite width scb.

(iv) The liquid bridge ruptures at the critical rupture separation, scb. A rupture event
is modelled by removing the potential well. Consequentially the particles stop
exerting a force on each other, until they touch once again.

In this manner the capillary bridge energy, Ecb, is dissipated whenever a capillary
bridge is removed (i.e. ruptures) after a collision. Particle collisions, without
bridge rupture, do not dissipate energy. They can, however, thermalize the particle
velocities by redistributing kinetic energy from the ordered centre-of-mass motion into
disordered motion. Henceforth, we shall refer to this as each particle’s thermal degrees
of freedom.

Work focusing on individual collisions (Davis, Rager & Good 2002; Antonyuk et al.
2009; Donahue et al. 2010a,b, 2012a,b; Gollwitzer et al. 2012) reports a multitude
of features of particle collisions involving capillary interactions that cannot fully be
captured by this model. On the other hand, the positions of phase boundaries of wet
granular fluids appear to be universal in the sense that they only depend on Ecb and
scb, and not on other details of the particle interaction (Huang et al. 2009). For
computational convenience all simulations shown in the present paper therefore adopt
a hysteretic square-well potential, i.e. we use an event-driven algorithm where the
potential takes the form of a square-well with hysteresis as outlined in (i)–(iv).

2.2. Dimensionless units
Masses are measured in units of the particle mass, m, distances in units of the
particle diameter, d, and the time unit is fixed by measuring forces in terms of mg.
Non-dimensionalized quantities are denoted by a hat. Unless stated otherwise, the
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system size is L̂× 2L̂× Ĥ = 60× 120× 7.5, and the number of monodisperse particles
is 4.39 × 104, resulting in a filling height of ĥ = 5.0. Furthermore, the capillary
interaction gives Êcb = 3/8 and ŝcb = 1/16.

2.3. Shear flow and arrest
A shear flow is induced by applying a space-dependent external force field

Fs(x)= Fs(x) ŷ with Fs(x)= Fsmax cos
2πx
L

(2.1)

to the system (Hoover 1983; Schulz et al. 2003; Schulz & Schulz 2006; Rahbari
et al. 2009, 2010), which accelerates particles along the ŷ-direction. The particles
are initially homogeneously distributed within the system with a Gaussian velocity
distribution of mean granular temperature Tg/Ecb = 40.0.

For external forces with an amplitude, Fsmax, slightly larger than the critical forcing,
Fex, the system approaches a fluid flow whose local centre-of-mass velocity follows
the external field. (The kinetic energy of states above the flow threshold gradually
grows. Eventually, for time scales much larger than those studied here, this can lead
to flow instabilities (see Roeller et al. 2009).) In figure 1(b) we illustrate such a
system by visualizing a flow in a larger simulation box, where L̂ = 100 and Ĥ = 12.5,
accommodating a greater filling height of ĥ ' 8.8, and an external force only 11%
above Fex. In that situation shear bands form such that the capillary bridges in the
region around Lx/4 and 3Lx/4 are ruptured, while in the other parts the network of
capillary bridges evolves only slowly. For shear forces smaller than Fex the system
eventually arrests in a solid state with a frozen network of nearest neighbours.

In passing we note that this arrest of flow is conceptually different from those
jamming transitions where crowding and hard-core interactions prevent particles from
passing each other, even at arbitrarily strong applied shear forces (Cates et al. 1998;
Trappe et al. 2001; O’Hern et al. 2003; Drocco et al. 2005; Bi et al. 2011). This
form of jamming is prevented here because the system can expand in the vertical
direction where it is only bounded by gravity (see, for example Valverde, Quintanilla
& Castellanos 2004 and references therein). Furthermore, the transition is also distinct
from those observed in earlier studies on cohesive granular materials: we focus on
the role of dissipation due to the hysteretic nature of capillary bridge ruptures, while
previous studies (Trappe et al. 2001; Rognon et al. 2006, 2008) address conservative
attractive forces. They implemented dissipation via grain friction and a restitution
coefficient smaller than one (Rognon et al. 2006, 2008), or indirectly by treating the
suspending fluid of attractive colloidal particles as an inert background (Trappe et al.
2001).

2.4. Measuring Fex

The kinetic energy, Ey, of motion parallel to the driving shear force will serve as the
order parameter to distinguish the dynamics. Rahbari et al. (2010) used the amplitude
of the velocity profile in the direction of the external field (i.e. the amplitude of the
velocity response in reaction to the applied force field, Fsmax) as an order parameter.
This has advantages when following the hysteresis loop of the response upon slowly
decreasing and subsequently increasing Fsmax. In the present study where we focus on
the arrest of flow only, the kinetic energy, Ey, is a numerically stable and more easily
accessible order parameter.
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FIGURE 2. (Colour online) Time evolution of the kinetic energy, Êy, of motion parallel to Fs

(upper set of lines), and that in transverse direction, Êx (lower set of lines) for a system of size
L̂ = 50 driven by shear forces with amplitude F̂smax ' 0.235 (dotted lines) and 0.245 (solid
lines), respectively. Initially all curves approximately follow the dynamics of free cooling
(dashed line, see Ulrich et al. 2009b for the derivation) until the kinetic energy reaches values
of the order of Ecb. Subsequently, the applied field is too weak to support sustained flow, and
one encounters arrest at finite times into a state with no system-spanning flow (dotted line).
For larger amplitudes of the force, the field injects a sufficient amount of energy into the
system to permit sustained motion (solid lines). They eventually enter a state where the flow
shows a rich time-dependent dynamics (cf. Roeller et al. 2009).

In figure 2 its time evolution is shown together with the kinetic energy, Ex, of
the motion transverse to the external field. When started in a state with high kinetic
energy, the fluid first cools down in a manner closely reminiscent of free cooling
(Ulrich et al. 2009a,b). Starting at t̂ ' 10 it has cooled so far that the acceleration due
to the external field becomes noticeable over the initial kinetic energy. Depending on
whether the external field is stronger or weaker than a sharp critical value, F̂ex, the
fluid either gains sufficient energy to remain in the fluid state forever, or it settles into
the arrested state. The phase boundary, Fex, is calculated as the mean value between
the neighbouring values of shear forces, F̂smax, which approach different final states.
For the data shown in figure 2 it is F̂ex ' 0.240.

The phase boundary hence corresponds to the smallest external force that still leads
to sustained shear flow. We demonstrate in the following that the flow at this threshold
corresponds to motion in a liquid state where the energy injected by the external field
is exactly balanced by dissipation due to rupture of capillary bridges.

3. Fluidization point: two-dimensional model
In this section we discuss the power balance of the flow. Energy is injected into

the kinetic energy of the particles due to their motion in the external force field.
In a steady state this power is balanced by the energy dissipation rate due to the
inelastic particle collisions. For external forces close to Fex the granular temperature is
small. Therefore, effects due to the thermal motion may be neglected, and the energy
dissipation rate is dominated by the rupture of capillary bridges when particles pass
each other in the flow field.
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For all investigated systems the flow remains translationally invariant in the y-
direction, in accordance with the symmetry of the forcing. Moreover, the density of
the liquid cannot be distinguished from the random close packing density, φrcp, and
the height of the layer is spatially uniform. Consequently, the number of particles,
n(x) dx, in a thin rectangular cuboid of size 2L× h× dx aligned parallel to the external
field takes a constant value, N/L, where N denotes the number of particles in the
system and L the system size transverse to the flow. This finding is in line with the
expectation that a flow breaking the symmetries of the system or noticeably expanding
the bed would give rise to higher dissipation.

3.1. Energy injection rate
Let vy(x) denote the profile of the flow established when applying the critical force
Fs(x)= Fsmax cos(2πx/L) != Fex cos(2πx/L). The input power that is injected by means
of this external force acting on the particles is given by

〈Pforcing〉 =
∫ L

0
vy(x)Fs(x) n(x) dx

= N Fex

L

∫ L

0
vy(x) cos

2πx
L

dx. (3.1)

Up to the factor N Fex this amounts to the leading-order Fourier coefficient of the
expansion of the velocity profile vy(x). Consequently, the injected power takes the
form

〈Pforcing〉 = Cf N1vy Fex (3.2)

where 1vy is the amplitude of the velocity field. Admissible values of Cf lie in
the narrow range 0.5 < Cf < π/4. The constant Cf takes the value 0.5 when the
velocity profile is faithfully approximated by its first even harmonic, i.e. vy(x) '
1vy cos(2π x/L), and Cf = π/4' 0.785 in the other extreme case of plug flow. Hence,
Cf characterizes the shape of the velocity response to the applied external field.

3.2. Energy dissipation rate
For each particle the creeping flow enforces a change of neighbours (in the direction
of the flow) with a rate γ̇ = dvy/dx. Such a displacement results in an energy
dissipation of γ̇ νEcb due to rupturing on average a number ν of capillary bridges
per change of neighbours. The total power dissipated upon rupturing capillary bridges
is thus given by

〈Pbridge〉 =
∫ L

0
n(x)

∣∣∣∣
dvy

dx

∣∣∣∣ ν Ecb dx. (3.3)

For every L-periodic function vy(x) with a single local maximum per period, this
integral yields

〈Pbridge〉 = 4 N1vy

L
ν Ecb, (3.4)

provided that n(x)≡ N/L is spatially uniform.
For the present system, rearrangements due to two particles passing each other are

achieved by a slight vertical expansion of the particle bed. Assuming that there is no
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height preference for the rearrangements, and that there are on average h/2d particles
in the column on top of the pair under consideration, a potential energy of

U = CU
h

2d
mg1h (3.5)

is associated with the expansion. Here, CU accounts for the number of columns to
be lifted, and 1h to the expansion in height. Due to the frequent collisions in the
dense bed the potential energy U is immediately dissipated into thermal degrees of
freedom (i.e. the random component of the particle velocities) of the granular fluid,
and therefore it is not just a one-off investment. Rather, work has to be done against
gravity each time particles move past each other. Multiplying this energy with the
frequency of particle passages, 4N1vy/L (as given by (3.4)), therefore provides a
second contribution to the energy dissipation,

〈Pgrav〉 = 4 N1vy

L
U = 4 N1vy

L
CU
1h
2d

mgh. (3.6)

3.3. Predicting the critical force F̂ex

Assuming that bridge rupture occurs only in the plane parallel to the applied force, the
effect of the third dimension is then only to provide an additional energy sink due to
gravity, 〈Pgrav〉. Therefore, in a steady state the total dissipation rate, due to rupturing
bridges and relaxation of U into thermal degrees of freedom, has to balance the input
power. We hence obtain

〈Pforcing〉 = 〈Pbridge〉 + 〈Pgrav〉
⇔FexL = aEcb + bmgh
⇔ F̂exL̂ = aÊcb + bĥ, (3.7a)

with a= 4ν
Cf

(3.7b)

b= 2CU1ĥ
Cf

. (3.7c)

At this point, it is worth pointing out that the flow’s response to the external force
field is characterized by its amplitude, 1vy, and the parameter, Cf , which characterizes
the shape of the velocity response. The amplitude-dependence, 1vy, cancels in the
power balance. In the worst case, the parameter Cf can vary by no more than a factor
of 1.6. Furthermore, for external forcing close to F̂ex the variability is expected to
be even smaller. Hence, one expects that F̂ex is well-approximated by (3.7) under the
assumption that Cf is a constant of order unity. Thus, it is not necessary to determine
Cf by calculating it from the flow directly.

The coefficient a characterizes the mean number of capillary bridges ruptured in
the flow as particles pass each other. Likewise CU counts how many rows of particles
are lifted when the particles pass each other. As a consequence, b mgh is the average
amount of work done against gravity in the flow per unit time.

We hence predict that F̂ex is inversely proportional to the system size L̂, and that
F̂exL̂ is a linear function of Êcb and the filling height ĥ. In the following section we
compare these predictions to the results of the molecular-dynamics simulations.
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FIGURE 3. (Colour online) The parameter dependence of the critical driving forces, F̂ex,
separating regions that lead to either solid or fluidized behaviour. The symbols indicate
the phase boundary between the two phases, and solid lines are the theoretical predictions
described in the main text. For most of the data points the numerical error in the phase
boundary is smaller than the size of the symbol. (a–d) The phase boundary between the
solid and the fluidized state upon varying different parameters: (a) system size, L̂, (b) filling
height ĥ, (c) dissipated energy, Êcb, and (d) critical rupture separation, ŝcb. In (e) F̂exL̂/ĥ is
plotted as a function of Êcb/ĥ in order to demonstrated that the data of (b) and (c) are not
compatible with the prediction, (3.7). (f ) A collapse of the data of (b) and (d), when F̂exL̂/ĥ
is plotted as a function ŝcb/ĥ in order to demonstrate that ŝcb and ĥ, rather than Êcb and
ĥ may considered independent parameters to predict F̂exL̂. The method for performing the
simulations is discussed in the text.

4. Comparison to numerical data

In figure 3(a–d) we explore the dependence of F̂ex on the systems size, L, the
filling height, h, the dissipated energy, Ecb, and the rupture length, ŝcb. Plotting F̂ex as
a function of the respective parameters provides sections through the phase diagram:
there is sustained flow for values of F̂s larger than F̂ex and flow is arrested for smaller
external forces.

4.1. Parameter dependence of F̂ex

(a) The system size L̂ was varied whilst keeping the aspect ratio of the container
constant at Ly/Lx = 2. At the same time the average particle number density was kept
constant at φ = 0.43 which means that the number of particles is changing in order
to provide a fixed filling height, ĥ ' 5. As expected from (3.7) the value of F̂exL̂ is
constant. We find that F̂exL̂' 12 for fixed Êcb = 0.375 and ĥ' 5 (figure 3a).

(b) The filling height, ĥ, was varied by changing the number of particles in the
system whilst keeping the geometry of the simulation volume and particle interactions
fixed. The filling height is estimated as the filling height in the solid state when
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assuming random close packing. As predicted by (3.7) the dependence of F̂exL̂ on ĥ
for a fixed Êcb is linear. In the simulations we find

F̂exL̂' 6.0+ 1.2 ĥ (4.1)

for Êcb = 0.375 (figure 3b).
(c) Whilst varying the capillary bridge energy, Ecb, the rupture separation, ŝcb =

1/16, filling height, ĥ' 5, and the system size, L̂= 60, were kept constant. Figure 3(c)
shows the expected linear dependence of F̂exL̂ on Êcb,

F̂exL̂' 24Êcb + 2.8. (4.2)

Central to the assertion of linear dependence is that Cf takes a constant value close to
arrest. The slight deviation from the linear fit for small Êcb expresses a slight increase
of the deviation of the velocity profile from a cosine profile.

(d) The critical rupture separation, scb, was varied for a fixed aspect ratio of width
versus depth of the potential well, i.e. Ecb was varied together with scb at a fixed ratio
of R ≡ Ecb/scb = 6.0. System size and filling height were fixed to L̂ = 60 and ĥ = 5,
respectively. The resulting linear dependence

F̂exL̂' 16 R ŝcb + 6.0 (4.3)

is shown in figure 3(d).

4.2. Consistency checks: effects of the third dimension

Merely finding linear dependences of F̂ex on ĥ, Êcb and ŝcb is not sufficient to show
that (3.7) faithfully describes the arrest of flow. One also has to verify that the linear
functions are mutually consistent for all sections through the phase diagram.

(e) In order to compare (4.1) and (4.2), their respective y-intercepts need to be
expressed in terms of the quantity held constant in (b) and (c). The y-intercept of (4.1)
may be written as 6.0' 16 Êcb given that Êcb = 0.375. Whereas the y-intercept of (4.2)
can be written as 2.8' 0.56 ĥ for ĥ= 5. This gives two linear equations,

F̂exL̂' 16 Êcb + 1.2ĥ according to (4.1), (4.4a)

F̂exL̂' 24 Êcb + 0.56 ĥ according to (4.2), (4.4b)

that must hold simultaneously if (3.7) is an accurate model. Plotting F̂exL̂/ĥ versus
Êcb/ĥ in figure 3(e) shows that this is clearly not the case. Consequentially the data
shown in figure 3(b,c) lie on different straight lines. It is not admissible to interpret
(3.7a) as a linear relation with constant coefficients a and b, and Êcb and ĥ as
independent variables.

(f ) In order to provide a physical interpretation of the origin of this deviation, we
note that the data shown in figures 3(d) and 3(b) are compatible. Equation (4.3) is
commensurate with (4.1) since the latter has a y-intercept of 6.0 = 16 Êcb = 16 Rŝcb

with R = 6.0 and ŝcb = 1/16, and since the y-intercept of (4.3) is 6.0 = 1.2 ĥ with
ĥ= 5.0.

In the following we show that a consistent description of the numerical data can
only be achieved by assuming that a has a weak, linear dependence on ĥ.

Equation (3.7) is consistent with the numerical data when taking into account a
monotonic increase of the number of bridge ruptures for increasing h/scb. After
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FIGURE 4. (Colour online) The solid line shows our theoretical prediction, (5.1) involving
only three free parameters ã, b̃, and χ̃ whose values can also explicitly be calculated. It
provides a master plot incorporating all data shown in the different panels of figure 3. The
dependence of the critical force Fex on the system size, L̂, the filling height, ĥ, the energy
dissipated upon rupturing capillary bridges, Êcb, and the critical rupture separation, ŝcb, is
faithfully described. The data points referring to different system size are so close that they all
lie on top of each other in this representation.

all, swapping events also lead to rupturing bridges along the sides of the vertically
displaced column of particles on top of the considered site.

5. Fluidization point: three-dimensional model and data collapse
The likelihood of rupturing bridges in the vertical direction can be derived from

the disparity between (4.3) and (4.2). They can only be consistent if the y-intercept
of (4.3) comprises a contribution proportional to R, and if the slopes are adjusted
accordingly, i.e. by decomposing the y-intercept as 6.0 = 1.2 ĥ ' (0.55 + R/10) ĥ with
ĥ= 5 and R= 6.0. Observing that R≡ Ecb/scb this provides an improved prediction

F̂exL̂'
(

1+ χ̃ ĥ
ŝcb

)
ãÊcb + b̃ĥ. (5.1a)

The agreement of all of our numerical data with this prediction is demonstrated in
figure 4. It shows a master plot where all data shown in figure 3 collapse on a single
line, (5.1a) with coefficients

ã' 16 bridge ruptures, (5.1b)

b̃' 0.55 flow dilation, (5.1c)
χ̃ ' 1/160 out-of-plane bridge ruptures. (5.1d)

A priori, it is not clear whether these values comply with their physical interpretation.
As a final step of the data analysis, we check our findings by estimating the expected
values of the parameters ã, b̃ and χ̃ .
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5.1. Determination of ã
In view of (3.7b) the parameter a is related to the number, ν, of capillary bridge
ruptures in every particle exchange

a= 4 ν
Cf
' 8ν, (5.2)

where we used the estimate Cf ' 0.5, as argued upon introducing this constant in (3.2).
Moreover, in order to take into account the correction term for the height dependence
introduced in (5.1) another factor 1 + ĥ/160ŝcb must also be considered. For the
standard choice of parameters ĥ= 5 and ŝcb = 1/16 we hence find

ã= 4ν
Cf

(
1+ ĥ

160ŝcb

)−1

' 16
3
ν. (5.3)

Finally, in a granular bed that is expanding to allow particles to pass each other the
number ν of rupture events must be larger than 1, but still small. For ν = 3 we hence
recover the value ã= 16 reported in (5.1b).

5.2. Determination of b̃
In order to see that the value for b ' 0.55 is also reasonable, we observe that
subsequent rows of spheres in a close-packed structure are separated by a height
distance ĥcp = √2/3 ' 0.816 and that the saddle that has to be passed to roll from
one minimum to a nearby minimum is at height ĥsaddle =

√
3/2' 0.866. The minimum

expansion in height to move over the potential landscape set up by the layers below is
therefore of the order of 1ĥ' ĥsaddle − ĥcp ' 0.05. Potential wells in a disordered, only
slightly expanded random packing, will still be of the same order of magnitude. Based
on this estimate, on Cf ' 0.5, and on (3.7c) the number of columns, CU, lifted in a
swapping event amounts to

CU ' 0.55
Cf

21ĥ
' 2.8. (5.4)

Lifting a small number of columns gives plausibility to b' 0.55.

5.3. Determination of χ̃
In order to gain insight into the order of magnitude of χ̃ we note that the lifted
column needs to rupture bonds all along its walls. Hence, ν is not merely dependent
on its cross-section, as implied by assuming ν to be independent of ĥ. The number
of bonds that are broken is then expected to scale linearly with column height and
inversely proportional to ŝcb. After all, bonds are allowed to stretch to a finite length
ŝcb, and the larger ŝcb the lower the likelihood that the dilation requires a given bond
(along the vertical walls of the pile of particles displaced vertically) to be broken.
This leads to an additional number χ̃νĥ/ŝcb of bonds broken per column. As we saw
above, it increases the number of bond ruptures by ∼50 % which seems reasonable
in a system with a packing height of only five layers and a rupture separation,
ŝcb = 1/16 = 0.065 that is larger than the average height displacement, 1h̃ = 0.05,
of the column. After all, in such a situation only pre-stretched bonds are likely to
rupture. Keeping this in mind, the small value of χ̃ may be understood as a result of
incorporating a factor of 1h̃ and a probability of ∼1/4 to encounter a pre-stretched
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bond in a layer of a column that is vertically displaced. In this interpretation the
average number of layers in the column is ĥ/2.

6. Summary and outlook
The present study substantiates the finding that the transition from a fluidized to an

arrested state in wet granular matter arises when the dissipation rate due to the rupture
of capillary bridges in the shear flow can no longer be balanced by the power injection
from the external field. Earlier work (Rahbari et al. 2010) showed that this approach
provides a comprehensive understanding of the transition in settings where the density
is fixed by a confining box. The present work addressed the flow of a bed kept at
constant pressure by confining it in the vertical direction by a gravitational field. Just
above the transition the flow is reminiscent of a slow plastic flow of the bed in the
direction of the applied field: the bed expands only minimally in the vertical direction,
and gravity keeps density, filling height, and pressure to values observed in an arrested
packing. Also, for this gravitationally confined wet granular flow the power balance
provides an accurate prediction, (5.1), of the critical force at which the flow ceases.
This is demonstrated by a master plot, figure 4, showing a collapse of all numerical
data obtained by varying four different characteristics of the system: the system size,
the filling height, as well as the strength and critical rupture separation of capillary
bridges. Our data collapse suggests that the prediction of the flow threshold involves
only three constants characterizing the types of dissipative events:

(i) When the granular flow is confined by gravity, typically only 2–3 capillary
bridges are ruptured upon swapping neighbouring particles moving with slightly
different speed in the direction of the external forcing. This is a striking difference
to wall-bounded flows (Rahbari et al. 2010) where this number diverges when the
density approaches close packing.

(ii) In a gravity-confined granular bed the effortless passing of the particles is
facilitated by a slight expansion of the granular bed where 2–3 columns
of particles are lifted by a small amount to let the particles pass between
neighbouring potential wells arising from the corrugations formed by the layer
below. The associated potential energy is also dissipated.

(iii) With a small probability additional capillary bridges are broken due to the slight
expansions in vertical direction.

The most remarkable finding of our study is that the critical force Fex can be
determined from the forcing alone. No details of the flow’s response are required
to predict whether the flow will arrest. Fex can be calculated without specifying the
hydrodynamic equations of the flow and determining their solution. We therefore
conclude that the approach of balancing the energy input rate (due to the external
force inducing the flow) and the dissipation rate (due the rupture of capillary bridges,
when particles move past each other) provides a powerful framework to study the
arrest of flow in wet granular materials. It provides a universal method to predict the
threshold for the arrest of flow.

Acknowledgements
We are indebted to M. Brinkmann, K. Daniels, W. Losert and M. Schröter for

stimulating discussion. J.B., S.H., and J.V. gratefully acknowledge financial support by
BP Exploration Operating Company Ltd.



420 K. Röller, J. Blaschke, S. Herminghaus and J. Vollmer

R E F E R E N C E S

ANDREOTTI, B., DAERR, A. & DOUADY, S. 2002 Scaling laws in granular flows down a rough
plane. Phys. Fluids 14 (1), 415.

ANDREOTTI, B. & DOUADY, S. 2001 Selection of velocity profile and flow depth in granular flows.
Phys. Rev. E 63 (3), 031305.

ANTONYUK, S., HEINRICH, S., DEEN, N. & KUIPERS, H. 2009 Influence of liquid layers on
energy absorption during particle impact. Particuology 7 (4), 245–259.

ARANSON, I. S. & TSIMRING, L. S. 2006 Patterns and collective behaviour in granular media:
theoretical concepts. Rev. Mod. Phys. 78 (2), 641.

BERARDI, C. R., BARROS, K., DOUGLAS, J. F. & LOSERT, W. 2010 Direct observation of
stringlike collective motion in a two-dimensional driven granular fluid. Phys. Rev. E 81 (4),
041301.

BI, D., ZHANG, J., CHAKRABORTY, B. & BEHRINGER, R. P. 2011 Jamming by shear. Nature 480
(7377), 355–358.

BORZSONYI, T. & ECKE, R. E. 2007 Flow rule of dense granular flows down a rough incline. Phys.
Rev. E 76 (3), 031301.

CATES, M. E., WITTMER, J. P., BOUCHAUD, J.-P. & CLAUDIN, P. 1998 Jamming, force chains,
and fragile matter. Phys. Rev. Lett. 81 (9), 1841–1844.

DAVIS, R. H., RAGER, D. A. & GOOD, B. T. 2002 Elastohydrodynamic rebound of spheres from
coated surfaces. J. Fluid Mech. 468, 107–119.

DONAHUE, C. M., BREWER, W. M., DAVIS, R. H. & HRENYA, C. M. 2012a Agglomeration and
de-agglomeration of rotating wet doublets. J. Fluid Mech. 708, 128–148.

DONAHUE, C. M., DAVIS, R. H., KANTAK, A. A. & HRENYA, C. M. 2012b Mechanisms for
agglomeration and deagglomeration following oblique collisions of wet particles. Phys. Rev. E
86, 021303.

DONAHUE, C. M., HRENYA, C. M. & DAVIS, R. H. 2010a Stokes’ cradle: Newton’s cradle with
liquid coating. Phys. Rev. Lett. 105, 034501.

DONAHUE, C. M., HRENYA, C. M., DAVIS, R. H., NAKAGAWA, K. J., ZELINSKAYA, A. P. &
JOSEPH, G. G. 2010b Stokes’ cradle: normal three-body collisions between wetted particles. J.
Fluid Mech. 650, 479–504.

DROCCO, J. A., HASTINGS, M. B., OLSON REICHHARDT, C. J. & REICHHARDT, C. 2005
Multiscaling at point j: jamming is a critical phenomenon. Phys. Rev. Lett. 95 (8), 088001.

RAHBARI, S. H. E., VOLLMER, J., HERMINGHAUS, S. & BRINKMANN, M. 2009 A response
function perspective on yielding of wet granular matter. Europhys. Lett. 87, 14002.

FINGERLE, A., ROELLER, K., HUANG, K. & HERMINGHAUS, S. 2008 Phase transitions far from
equilibrium in wet granular matter. New J. Phys. 10 (5), 053020.

FORTERRE, Y. & POULIQUEN, O. 2008 Flows of dense granular media. Annu. Rev. Fluid Mech. 40,
1–24.

GDR MIDI, 2004 On dense granular flows. Eur. Phys. J. E 14, 341–365.
GOLLWITZER, F., REHBERG, I., KRUELLE, C. A. & HUANG, K. 2012 Coefficient of restitution for

wet particles. Phys. Rev. E 86, 011303.
VAN HECKE, M. 2010 Jamming of soft particles: geometry, mechanics, scaling and isostaticity.

J. Phys.: Condensed Matter 22 (3), 033101.
HERMINGHAUS, S. 2005 Dynamics of wet granular matter. Adv. Phys. 54 (3), 221–261.
HOOVER, W. G. 1983 Nonequilibrium molecular dynamics. Annu. Rev. Phys. Chem. 34 (1),

103–127.
HUANG, K., ROELLER, K. & HERMINGHAUS, S. 2009 Universal and non-universal aspects of wet

granular matter under vertical vibrations. Eur. Phys. J. Special Topics 179, 25–32.
JAEGER, H. M., NAGEL, S. R. & BEHRINGER, R. P. 1996 Granular solids, liquids, and gases. Rev.

Mod. Phys. 68 (4), 1259–1273.
JOP, P., FORTERRE, Y. & POULIQUEN, O. 2006 A constitutive law for dense granular flows. Nature

441, 727–730.
KADANOFF, L. P. 1999 Built upon sand: theoretical ideas inspired by granular flows. Rev. Mod.

Phys. 71 (1), 435–444.



Arrest of the flow of wet granular matter 421

KANTAK, A. A., HRENYA, C. M. & DAVIS, R. H. 2009 Initial rates of aggregation for dilute,
granular flows of wet particles. Phys. Fluids 21, 023301.

LIAO, C.-C. & HSIAU, S.-S. 2010 Experimental analysis of dynamic properties in wet sheared
granular matter. Powder Technol. 197 (3), 222–229.

LOIS, G., BLAWZDZIEWICZ, J. & O’HERN, C. S. 2007 Jamming in attractive granular media. Proc.
Appl. Maths. Mech. 7 (1), 1090605–1090606.

LOIS, G., BLAWZDZIEWICZ, J. & O’HERN, C. S. 2008 Jamming transition and new percolation
universality classes in particulate systems with attraction. Phys. Rev. Lett. 100, 028001.

LOIS, G., ZHANG, J., MAJMUDAR, T. S., HENKES, S., CHAKRABORTY, B., O’HERN, C. S. &
BEHRINGER, R. P. 2009 Stress correlations in granular materials: an entropic formulation.
Phys. Rev. E 80, 060303.

LUDING, S. 2009 Towards dense, realistic granular media in 2d. Nonlinearity 22 (12), R101–R146.
MITARAI, N. & NORI, F. 2006 Wet granular materials. Adv. Phys. 55 (1–2), 1–45.
O’HERN, C. S., SILBERT, L. E., LIU, A. J. & NAGEL, S. R. 2003 Jamming at zero temperature

and zero applied stress: the epitome of disorder. Phys. Rev. E 68 (1), 011306.
PITOIS, O., MOUCHERONT, P. & CHATEAU, X. 2000 Liquid bridge between two moving spheres:

an experimental study of viscosity effects. J. Colloid Interface Sci. 231, 26–31.
QUARTIER, L., ANDREOTTI, B., DOUADY, S. & DAERR, A. 2000 Dynamics of a grain on a

sandpile model. Phys. Rev. E 62 (6), 8299.
RAHBARI, S. H. E., VOLLMER, J., HERMINGHAUS, S. & BRINKMANN, M. 2009 A response

function perspective on yielding of wet granular matter. Europhys. Lett. 87 (1), 14002.
RAHBARI, S. H. E., VOLLMER, J., HERMINGHAUS, S. & BRINKMANN, M. 2010 Fluidization of

wet granulates under shear. Phys. Rev. E 82 (6), 061305.
REMY, B., KHINAST, J. G. & GLASSER, B. J. 2012. Wet granular flows in a bladed mixer:

experiments and simulations of monodisperse spheres, AIChE J. (submitted).
REN, J., DIJKSMAN, J. A. & BEHRINGER, R. P. 2011 Linear shear in a model granular system.

CHAOS.
ROELLER, K. 2010. Numerical simulations of wet granular matter. PhD thesis, University

Goettingen.
ROELLER, K., VOLLMER, J. & HERMINGHAUS, S. 2009 Unstable Kolmogorov flow in granular

matter. CHAOS 19 (4), 041106.
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The analysis of the size distribution of droplets condensing on a substrate (breath figures) is a test

ground for scaling theories. Here, we show that a faithful description of these distributions must explicitly

deal with the growth mechanisms of the droplets. This finding establishes a gateway connecting nucleation

and growth of the smallest droplets on surfaces to gross features of the evolution of the droplet size

distribution.
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Classical questions regarding breath figures involve the
influence of material defects and impurities on the droplet
patterns [1–5]. Presently, they are used as self-assembling
templates in microfabrication [4,6–10] and as highly
efficient means for heat exchange in cooling systems
[5,11–13]. They are also promising candidates for water
recovery in (semi-)arid regions [14,15]. For these applica-
tions, a detailed knowledge of the droplet size distribution
and the average droplet growth speed is vital. Here, we
demonstrate that the state of the art scaling theory [16–20]
fails to describe data from simulations [21] and laboratory
experiments [22], Fig. 1. A faithful description must, there-
fore, explicitly address the microscopic growth mecha-
nisms of droplets.

Classical scaling [16,17] asserts that on clean surfaces
the coagulation of droplets organizes the systems into a
state where the number of droplets, nðs; tÞ, per unit droplet
volume and surface area takes a universal scaling form,

nðs; tÞ ¼ s��f

�
s

S

�
; with S ¼ SðtÞ: (1a)

Here, s denotes the droplet volume, � is a scaling exponent,
fðxÞ is a dimensionless function, and SðtÞ is the volume of
the largest droplets encountered at time t, i.e., the average
volume of droplets in the bump of the distributions shown
in Fig. 1.

Since nðs; tÞ has a dimension of length to the power
�5 the exponent � must be set to a value of � ¼ 5=3
[17–19]. The time evolution of SðtÞ is found by observing
that the total volume of all droplets grows linearly in time
when a constant volume flux impinges onto the surface. In
agreement with experimental and numerical observation
[17–19], this entails SðtÞ � t3. Moreover, a lower cutoff to
the scaling at a scale s0=S has been accounted for by a
polydispersity exponent 0< �< 2 [23]. For our numerical
scheme, where the mass flux onto the surface is imple-
mented as sustained addition of droplets of size s0 to
random positions of the surface and where overlapping
droplets are subsequently merged [22], it was predicted
[20] to be

x � 1 ) fðxÞ � x���; � ¼ 19=12: (1b)

The scaling, Eq. (1a), provides an excellent data collapse
of the bump and the dip of the numerical, Fig. 1(a), and the
experimental data, Fig. 1(b). Beyond the dip one can dis-
cern a self-similar scaling regime, Eq. (1b), in the numeri-
cal data, and in only those experimental data with the
vastest range of droplet sizes. On the other hand, in either
case—and particularly pronounced in the experimental
data—noticeable deviations, tails, from the scaling predic-
tion arise for small values of s=S.
In the following, we show that these deviations result

from features of droplet growth at the small length scale,
s0. Similar to the approaches in the theory of critical
phenomena [24,25] or of the effect of rough boundaries
in turbulent flows [26,27], scaling will be recovered by
asymptotic analysis [28], which allows us to explicitly
account for different growth mechanisms of small droplets.
Universal and nonuniversal features of the asymptotic
droplet density distribution will be disentangled by discus-
sing the consequences of the different growth mechanisms
for the small droplets in the numerical and experimental
setting, respectively.
Relation to fractal packings.—To explore the role of the

lower cutoff of scaling, we consider the droplet arrange-
ment in breath figures as an example of a fractal packing of
disks (see [29–31] for recent applications in other fields),
and adopt scaling arguments developed to characterize
(disordered) fractal structures to the problem at hand: We
assert that in the scale-separation limit, s0 � S, the free
surface area, i.e., the area not covered by droplets, ap-
proaches a fractal with a fractal dimension df < 2. Self-

similarity with fractal dimension df amounts, then, to the

statement that in an area of size S2=3 a number

Nðs�; SÞ �
�
S1=3

s1=3�

�
df ¼

�
s�
S

��df=3
(2)

of regions of size s2=3� are required to cover the complement
of the surface area covered by all droplets larger than s�.
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The fraction of this area in the considered domain of

size S2=3 amounts to

pðs�; SÞ ¼ Nðs�; SÞ s
2=3
�
S2=3

�
�
s�
S

�ð2�dfÞ=3
: (3)

Following [29], we denote the surface area not covered by
droplets as porosity, pðtÞ. It is obtained by evaluating
Eq. (3) for the size s0 characterizing the small-scale cutoff
of the fractal, pðtÞ ¼ pðs0; SðtÞÞ.

By its definition the porosity is related the area Ad

covered by droplets in a region of area As via pðtÞ ¼
1� Ad=As: when the surface area in between droplets
approaches a fractal of zero measure one obtains

Z 1

s0

aðsÞnðs; tÞds � Ad

As

¼ 1� pðtÞ !s0=S!0
1;

where aðsÞ denotes the area covered by droplets of size s.

Using Eq. (1a) with � ¼ 5=3, Eq. (1b), aðsÞ � s2=3, and
introducing x ¼ s=S one obtains

pðtÞ ¼ 1� Ad

As

�
Z s0=S

0
x�1fðxÞdx�

Z s0=S

0
x����1dx

¼
�
s0
SðtÞ

�
���

; (4)

and comparing Eqs. (4) and (3) yields

�� � ¼ ð2� dfÞ=3: (5)

Hence, the nontrivial scaling, Eq. (1b), of fðxÞ for small x
reflects the fractality of the arrangements of droplets in
breath figures with a large scale separation s0 � S, that
can faithfully be regarded as a fractal.

This provides an independent, more accurate means to
test the polydispersity exponent: For � ¼ 19=12 and S� t3,

Eq. (4) implies pðtÞ � t�1=4. Remarkably, none of our
data follow this prediction [Figs. 1(b) and 5(b) in the
Supplemental Material [22]]. Rather than 1=4, we find
0.30 for the numerical and 0.16 for the experimental data.
Hence, the different microphysics of droplet growth and

merging leads to (slightly) different fractal dimensions and
a different small-scale cutoff of scaling. To disentangle the
intermediate self-similar scaling regime from the large
scale (arising from the first generation of droplets,
cf. [32]) and the small-scale physics, we introduce cutoff

functions f̂ðs=SÞ and ĝðs=s0Þ for large and small droplets,

respectively. f̂ðxÞ � fðxÞ=x��� takes a constant value f̂0
for x � 1, and it accounts for the dip and the bump in
nðs; tÞ for s ’ S. Similarly, ĝðs=s0Þ accounts for the tails of
nðs; tÞ. As shown in the insets of Fig. 2, it approaches
constant values for s � s0, and it takes a scaling form
for all times. To arrive at a complete description of the
droplet size distribution, we further discuss this lower
cutoff.
Incorporating the lower cutoff.—We start by writing the

total volume of droplets of size s per unit volume ds and
unit surface area in the form

s nðs; tÞ ¼ S�2=3

�
s

S

��df=3
f̂ðs=SÞ ĝðs=s0Þ: (6)

This expression states that in the scaling regime s0 �
s � S the overall volume of droplets of size s on an area

of size S2=3 is proportional to the number of droplets,
Eq. (2), of the considered size.
In equation (6) the fractal dimension df and the function

ĝðs=s0Þ are not universal. We, henceforth, adopt the values
for df determined by fitting the porosity, and we follow the

evolution of droplets smaller than s� over a small time
interval from t to tþ dt in order to relate the form of

FIG. 1 (color online). Scaling plots of the droplet number density nðs; tÞ for (a) numerical and (b) experimental data, for (a) 8� 106

(rightmost tails), 12� 106, 16� 106, 20� 106, and 24� 106 (leftmost tails) droplets added to a domain of size 1600� 1600 [22],
and (b) water droplets on a polyethylene film [21] where eventually the droplet diameters cover the range from a few microns to a few
millimeters. The respective positions of the tail, dip, and bump of the distributions are indicated, and the slope, �� � ¼ 1=12, of the
scaling prediction, [Eq. (1b)], is shown by solid lines. The insets show snapshots of the breath figures at an early [blue, (lower) right]
and a late [red, left] time, respectively. Movies of their time evolution and full details of data assimilation and evaluation, as well as
plots of the raw data are given in the Supplemental Material [22].
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ĝðs=s0Þ to different nucleation and growth mechanisms of
small droplets. Let the considered area on the substrate and
the time interval dt be chosen such that this growth is not
influenced by the merging of droplets larger than s�. When

s� is so small that f̂ðs�=SÞ takes the constant value f̂0,
Eq. (6) entails

s� nðs�; tÞ ¼ f̂0 S
�2=3

�
s�
S

��df=3
ĝðs�=s0Þ:

In order to determine ĝðs�=s0Þ we observe that the volume
density of the droplets smaller than s� amounts to the
cumulative distribution

Vðs�Þ¼
Z s�

s0

snðs;tÞds¼ f̂0

S2=3

Z s�

s0

�
s

S

��df=3
ĝðs=s0Þds: (7)

For values of s� in the scaling regime the increase of
volume is accounted for by increasing the integral domain.
Therefore, an infinitesimal increase of s� to s� þ _s dt in the
time interval dt amounts to an increase of the volume
density of droplets,

dV

dt
¼ Vðs� þ _sdtÞ � Vðs�Þ

dt
¼ f̂0

S2=3

�
s�
S

��df=3
ĝðs�=s0Þ _s:

(8a)

On the other hand, this change must be due to the volume
flux � onto the fraction of area covered by droplets,

dV

dt
¼ pðs�; SÞ��

�
s�
S

�ð2�dfÞ=3
�: (8b)

Equating the expressions for dV=dt, Eqs. (8a) and (8b),
and dropping the subscript �, one obtains

ĝðs=s0Þ � �

f̂0

s2=3

_s
: (9)

This expression provides the desired connection of the
average speed _s of the growth of droplets of size s to the
form of the small-scale cutoff ĝðs=s0Þ of nðs; tÞ: it explains
how different microscopic droplet growth laws give rise to
different nonuniversal cutoff functions ĝðs=s0Þ, and how
the universal scaling is recovered for s � s0. After all, the
volume growth of large droplets in breath figures is always
proportional to the area exposed to the surface flux

[16,17,20], _s��s2=3. Equation (9) allows us to disen-
tangle universal and nonuniversal contributions to nðs; tÞ.
This major finding of our theoretical treatment is now
substantiated by working out the multiscaling predictions
for the data shown in Fig. 1.
Scaling numerical data.—When a small droplet, of size

s0, has been added to the surface, it is merged with a
droplet on the surface when the droplets overlap. As a

consequence, a droplet of radius s1=3 will capture small

droplets of radius s1=30 , that are added in a distance smaller

than s1=3 þ s1=30 from its center. In the absence of other

droplets, this growth amounts to

_s ’ �
h
s1=3 þ s1=30

i
2 ¼ �s2=3

�
1þ

�
s0
s

�
1=3

�
2
:

The term in square brackets accounts for an enhanced
growth of small droplets s * s0, which ceases rapidly for
increasing s. In practice, the decay is even faster since the
capture regions of neighboring droplets overlap. To fit the
simulation data, Fig. 2(b), one needs a nontrivial prefactor
0.76 and an exponent close to 0.78 rather than 1=3,

ĝðs=s0Þ ’ 0:07

�
1þ 0:76

�
s0
s

�
0:78

��2
: (10)

Using Eq. (6) and �� � ¼ 0:3 this provides a perfect data
collapse of all numerical data, Fig. 2(a).
Scaling experimental data.—In the experimental setting,

the growth rate of the droplets has two contributions. For
small droplets, growth is limited by the diffusion of water
molecules on the substrate towards the contact line of
the droplet. As derived in [33] and observed in the experi-
ments of [32], the radius of small droplets grows then like

r� t1=4, such that _s��s�1=3. For larger droplets, the
volume flux from the vapor phase onto the droplets is again
proportional to the exposed droplet surface, such that

_s��s2=3. These growth contributions combine to

_s��s2=3
�
1þ s0

s

�
) ĝðs=s0Þ ¼ b

�
1þ s0

s

��1
; (11)

where s0 ’ 1:5� 10�6 mm3 is the crossover size scale and
b’2�10�2 is a normalization constant. Inserting Eq. (11)
into Eq. (9) provides an excellent prediction for ĝðs=s0Þ,
Fig. 2(c). Also, for the experimentally measured droplet
size distributions, one obtains a perfect data collapse of the

FIG. 2 (color online). Master plot of the universal cutoff
function, f̂ðs=SÞ, which comprises all numerical and experimen-
tal data shown in Fig. 1 (using the same symbols), as well as
additional numerical data shown as black crosses (every 5� 104

frames of 44 runs where 4:23� 107 droplets are added
eventually). The insets show ĝðsÞ for (b) numerical and
(c) experimental data at all times. Their shapes (solid lines)
reflect the respective small-scale droplet growth mechanisms,
Eqs. (10) and (11). The vertical line in (c) marks s0.
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appropriately scaled droplet number density nðs; tÞ for all
different times, Fig. 2(a).

Discussion.—For the numerical data, s0 amounts to the
volume of the smallest droplets in the system, Fig. 2(b),
and for the experimental data it is about one order of
magnitude larger than the smallest observed droplets,
Fig. 2(c). In either case ĝðsÞ saturates for s * 102s0. On
the other hand the scaling behavior Eq. (1b) is only acces-
sible for values of s below the dip of the distribution,
i.e., for s & 10�2 S. It can, hence, only be resolved in
simulations where 10�4 � s0=S, resulting in the observed
scaling regime of about 1–2 decades, in the numerical data,
Fig. 1(a), and in the experimental data with the largest
accessible scale separation, Fig. 1(b).

Because of the relatively small scaling range, the droplet
size distribution of breath figures cannot merely be ideal-
ized as a self-similar process with a single relevant length
scale SðtÞ [16–19]. Rather, one explicitly has to cope with
the growth law of the smallest droplets in the system. Via
its (slight) effect on the fractal dimension characterizing
the free space in between the droplets, Eq. (5), it sets the
value of the polydispersity exponent �, and it leads to
massively different cutoff functions ĝðs=s0Þ, Figs. 2(b)
and 2(c), that can completely dominate the shape of the
droplet size distribution, Fig. 1(b).

When both the large scale and the small scale cutoffs are
properly accounted for via Eqs. (10) and (11), a remarkable
data collapse of all experimental and numerical data into a
single plot is achieved, Fig. 2(a). This recovery of scaling
establishes a novel gateway connecting features of the
microscopic droplet growth on surfaces to gross features
of the evolution of the droplet size distribution.
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Großmann, Andrew Scullion, and Stephan Herminghaus
for enlightening discussions, and to our referee for very
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[6] A. Böker et al., Nature Mater. 3, 302 (2004).
[7] M. Haupt, S. Miller, R. Sauer, K. Thonke, A. Mourran,

and M. Moeller, J. Appl. Phys. 96, 3065 (2004).
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J. S. Andrade, Jr., and H. J. Herrmann, Europhys. Lett. 97,
18004 (2012).

[30] A. Amirjanov and K. Sobolev, Model. Simul. Mater. Sci.
Eng. 14, 789 (2006).

[31] F. Varratoa and G. Foffia, Mol. Phys. 109, 2663 (2011).
[32] D. Fritter, C.M. Knobler, and D.A. Beysens, Phys. Rev. A

43, 2858 (1991).
[33] T.M. Rogers, K. R. Elder, and R. C. Desai, Phys. Rev. A

38, 5303 (1988).

PRL 109, 068701 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

10 AUGUST 2012

068701-4





Acknowledgements

I would like to thank apl. Prof. Dr. Jürgen Vollmer for his aca-
demic guidance over the years. His ability to distil very complicated
physical problems into their elegant essence has made this disserta-
tion possible. Our discussions where extremely insightful and have
shaped my understanding of the physical world.

I also would like to thank Christin Büchner, above all for her
emotional and moral support. She has given me an infinite reservoir
of strength that has helped me to complete this work. I also thank
her for proof-reading the earliest versions of this dissertation.

For proof-reading, I would like to thank James Clewett and
Artur Wachtel. They are excellent teachers. Our interesting and
fruitful discussions have helped improve the sanity and the quality
of this dissertation.

For their scientific guidance, and for the interesting discussions,
I would like to thank Bernhard Altaner and Laura Stricker. Their
advice has guided my research and helped me evaluate my findings
in a new light.

117





Bibliography

[1] D Abbott, B R Davis, and JMR Parrondo. The problem of
detailed balance for the Feynman-Smoluchowski engine (FSE)
and the multiple pawl paradox. AIP Conference Proceedings,
511:213–218, 2000.

[2] R Dean Astumian. Thermodynamics and kinetics of a Brownian
motor. Science, 276(5314):917–922, 1997.

[3] A Barrat, A Puglisi, E Trizac, P Visco, and F Van Wijland.
Fluctuations in granular gases. Mathematical Models of Gran-
ular Matter. Springer, 2008.

[4] E Ben-Naim, B Machta, and J Machta. Power-law velocity
distributions in granular gases. Phys. Rev. E, 72(2):021302,
August 2005.

[5] Johannes Blaschke and Jürgen Vollmer. Granular Brownian
motors: Role of gas anisotropy and inelasticity. Phys. Rev. E,
87(4):040201, April 2013.

[6] S I Blinnikov and R Moessner. Expansions for nearly Gaus-
sian distributions. Astron. Astrophys. Suppl. Ser., 130(astro-
ph/9711239. MPA-1051):193–205. 13 p, November 1997.

[7] Sydney Chapman and T G Cowling. The Mathematical Theory
of Non-uniform Gases. An Account of the Kinetic Theory of
Viscosity, Thermal Conduction and Diffusion in Gases. Cam-
bridge University Press, 1970.

[8] B Cleuren and Christian Van den Broeck. Granular Brownian
motor. EPL, 77(5):50003, January 2007.

[9] Bart Cleuren and Ralf Eichhorn. Dynamical properties of
granular rotors. J Stat Mech-Theory E, 2008(10):P10011, 2008.

[10] James P D Clewett, Klaus Roeller, R M Bowley, Stephan
Herminghaus, and Michael R Swift. Emergent Surface Tension
in Vibrated, Noncohesive Granular Media. Phys. Rev. Lett.,
109(22), 2012.

119



[11] G Costantini, U M B Marconi, and A Puglisi. Noise rectification
and fluctuations of an asymmetric inelastic piston. EPL, 82(5):
50008, 2008.

[12] G Costantini, A Puglisi, and U M B Marconi. Granular ratchets.
Eur. Phys. J. Spec. Top., 179(1):197–206, May 2010.

[13] Giulio Costantini, Umberto Marini Bettolo Marconi, and An-
drea Puglisi. Granular Brownian ratchet model. Phys. Rev. E,
75(6):061124, June 2007.

[14] Bruno Crosignani and Paolo Di Porto. Random Fluctuations
of Diathermal and Adiabatic Pistons. Found Phys, 37(12):
1707–1715, August 2007.

[15] R Di Leonardo, L Angelani, D Dell’Arciprete, G Ruocco,
V Iebba, S Schippa, M P Conte, F Mecarini, F De Ange-
lis, and E Di Fabrizio. Bacterial ratchet motors. Proc. Natl.
Acad. Sci. U.S.A., 107(21):9541–9545, 2010.

[16] Peter Eshuis, Ko van der Weele, Devaraj van der Meer, and
Detlef Lohse. Granular Leidenfrost Effect: Experiment and
Theory of Floating Particle Clusters. Phys. Rev. Lett., 95(25):
258001, December 2005.

[17] Peter Eshuis, Devaraj van der Meer, Meheboob Alam, Henk Jan
van Gerner, Ko van der Weele, and Detlef Lohse. Onset of
Convection in Strongly Shaken Granular Matter. Phys. Rev.
Lett., 104(3):038001, January 2010.

[18] Peter Eshuis, Ko van der Weele, Detlef Lohse, and Devaraj
van der Meer. Experimental Realization of a Rotational Ratchet
in a Granular Gas. Phys. Rev. Lett., 104(24):248001, June 2010.

[19] Harley Flanders. Differentiation Under the Integral Sign. The
American Mathematical Monthly, 80(6):615, June 1973.

[20] Crispin W Gardiner. Handbook of stochastic methods: for
physics, chemistry and the natural sciences; 2nd ed. Springer
series in synergetics. Springer, Berlin, 1997.

[21] Eric A Gislason. A close examination of the motion of an
adiabatic piston. American Journal of Physics, 78(10):995–
1001, 2010.

[22] A Gnoli, A Petri, F Dalton, G Gradenigo, G Pontuale, A Sarra-
cino, and A Puglisi. Brownian ratchet in a thermal bath driven
by Coulomb friction. arXiv, November 2012.

[23] C Gruber and J Piasecki. Stationary motion of the adiabatic
piston. Physica A, 268(3):412–423, 1999.

120



[24] P K Haff. Grain flow as a fluid-mechanical phenomenon. Jour-
nal of Fluid Mechanics, 1983.

[25] Peter Hänggi. Artificial Brownian motors: Controlling trans-
port on the nanoscale. Rev. Mod. Phys., 81(1):387–442, March
2009.

[26] R J Harris and G M Schütz. Fluctuation theorems for stochastic
dynamics. J Stat Mech-Theory E, 2007(07):P07020–P07020,
July 2007.

[27] K Huang, K Roeller, and S Herminghaus. Universal and non-
universal aspects of wet granular matter under vertical vibra-
tions. Eur. Phys. J. Spec. Top., 179(1):25–32, May 2010.

[28] S Joubaud, D Lohse, and Devaraj van der Meer. Fluctuation
theorems for an asymmetric rotor in a granular gas. Phys. Rev.
Lett., 108(21):210604, 2012.

[29] Ryoichi Kawai, Antoine Fruleux, and Ken Sekimoto. A hard
disc analysis of momentum deficit due to dissipation. Phys.
Scr., 86(5):058508, October 2012.

[30] Stefan Luding. Towards dense, realistic granular media in 2D.
Nonlinearity, 22(12):R101–R146, 2009.

[31] Marcelo O Magnasco and Gustavo Stolovitzky. Feynman’s
Ratchet and Pawl. Journal of Statistical Physics, 93(3-4):
615–632, May 1998.

[32] U Marconi, A Puglisi, and L Rondoni. Fluctuation-dissipation:
Response theory in statistical physics. Phys. Rep., January
2008.

[33] J Clerk Maxwell. On the Dynamical Theory of Gases. Phil.
Trans. R. Soc. Lond., 157(0):49–88, January 1867.

[34] P Meurs and Christian Van den Broeck. Thermal Brownian
motor. J. Phys. Cond. Mat., 17:S3673, 2005.

[35] P Meurs, Christian Van den Broeck, and A Garcia. Rectification
of thermal fluctuations in ideal gases. Phys. Rev. E, 70:051109,
January 2004.

[36] R MMnatsakanov. Hausdorff moment problem: Reconstruction
of probability density functions. Statistics & Probability Letters,
78(13):1869–1877, 2008.

[37] R M Neal. Slice Sampling. Annals of statistics, 2003.

121



[38] Kiri Nichol and Karen Daniels. Equipartition of Rotational
and Translational Energy in a Dense Granular Gas. Phys. Rev.
Lett., 108(1), January 2012.

[39] J Piasecki and C Gruber. From the adiabatic piston to macro-
scopic motion induced by fluctuations. Physica A, 265(3):
463–472, 1999.

[40] J Piasecki, J Talbot, and P Viot. Exact solution of a one-
dimensional Boltzmann equation for a granular tracer particle.
Physica A, 373:313–323, January 2007.

[41] Andrea Puglisi, Paolo Visco, Emmanuel Trizac, and Frédéric
van Wijland. Dynamics of a tracer granular particle as a
nonequilibrium Markov process. Phys. Rev. E, 73(2):021301,
February 2006.

[42] Peter Reimann. Brownian motors: noisy transport far from
equilibrium. Phys. Rep., 361(2):57–265, 2002.

[43] H Risken and H D Vollmer. On solutions of truncated Kramers-
Moyal expansions; continuum approximations to the Poisson
process. Z. Physik B - Condensed Matter, 66(2):257–262, 1987.

[44] Hannes Risken. The Fokker-Planck Equation. Methods of
Solution and Applications. Springer Verlag, Berlin, January
1989.

[45] Klaus Roeller, James P. D. Clewett, R. M. Bowley, Stephan
Herminghaus, and Michael R. Swift. Liquid-Gas Phase Sepa-
ration in Confined Vibrated Dry Granular Matter. Phys. Rev.
Lett., 107(4):048002, July 2011.

[46] J R Royer, D.J. Evans, L Oyarte, Q Guo, E Kapit, M E
Möbius, S R Waitukaitis, and H M Jaeger. High-speed tracking
of rupture and clustering in freely falling granular streams.
Nature, 459(7250):1110–1113, 2009.

[47] Thomas Schwager and Thorsten Pöschel. Coefficient of restitu-
tion and linear–dashpot model revisited. Granular Matter, 9
(6):465–469, October 2007.

[48] Udo Seifert. Entropy Production along a Stochastic Trajectory
and an Integral Fluctuation Theorem. Phys. Rev. Lett., 95(4):
040602, July 2005.

[49] Udo Seifert. Stochastic thermodynamics, fluctuation theorems
and molecular machines. Rep. Prog. Phys., 75(12):126001,
November 2012.

122



[50] Susan Sporer, Christian Goll, and Klaus Mecke. Motion by
stopping: Rectifying Brownian motion of nonspherical particles.
Phys. Rev. E, 78(1):011917, 2008.

[51] Julian Talbot, Alexis Burdeau, and Pascal Viot. Analysis of a
class of granular motors in the Brownian limit. Phys. Rev. E,
82(1):011135, July 2010.

[52] Christian Van den Broeck and R Kawai. Brownian Refrigerator.
Phys. Rev. Lett., 96(21):210601, June 2006.

[53] Devaraj van der Meer and P Reimann. Temperature anisotropy
in a driven granular gas. EPL, 74(3):384–390, January 2007.

[54] Artur Wachtel. Fluctuation Spectra and Coarse Graining in
Stochastic Dynamics. arXiv, November 2013.

123


	Contents
	Introduction
	Previous Work
	The Adiabatic Piston
	Brownian Motors
	Granular Brownian Motors
	Bacterial Brownian Motor

	The Aim of the Present Work
	Overview
	Chapter 2: Model System
	Chapter 3: Kinetic Theory
	Chapter 4: Kinetic Theory for a Granular Brownian Motor in an Anisotropic Granular Gas
	Chapter 5: Brownian Motor in a Bath of Swimmers


	Model of the Brownian Motor and Mathematical Conventions
	Model
	Motor
	Gas
	Motor-Gas Interaction

	Notations
	Symbols
	Integration and Transforms
	Special Functions
	Limiting Relations


	Kinetic Theory of the Model
	Markovian Dynamics
	Motor Trajectories
	Slice Sampling

	Master Equation
	Kramers–Moyal Expansion
	Drift and Diffusion
	Fokker–Planck Approximation
	Direct Solution Scheme

	Solutions to the Master Equation using Moment Hierarchies
	Truncation of the Infinite Moment Hierarchy

	Expansion of the Jump Moments for Factorizable Velocity Distributions
	Summary
	Outlook

	Rectification due to Anisotropy: Granular Brownian Motors
	Introduction
	Model
	Gas Velocity Distribution
	Shaking
	Dimensionless Units

	Transition Rates
	Jump Moments
	Expansion of the Jump Moments

	Time-resolved Velocity Distribution
	Fokker-Planck Approximation
	Moment Hierarchy

	Motor Drift
	Motor Temperature
	Motor energy and Equipartition
	Summary
	Outlook

	Rectification Extremely far from Equilibrium: Brownian Motors in a Bath of Swimmers
	Introduction
	Model
	Gas Velocity Distribution
	Dimensionless Units

	Transition Rates
	Jump Moments

	Direct Sampling of Trajectories
	Verification of the Sampling Algorithm
	Stochastic Trajectories

	Motor Velocity Distribution
	Kinetic Theory
	Expansion of the Jump Moments

	Motor Drift
	Motor Temperature
	Summary
	Limitations of the Model

	Outlook

	Conclusion and Outlook
	Conclusion
	Granular Gas: Slightly Anisotropic Velocity Distribution
	Swimmers: Strong Deviation from a Gaussian velocity Distribution

	Discussion and Outlook

	Approximating a Distribution from its Moments
	The Hamburger Moment Problem
	Completeness of the Moment Expansion
	Motivating Example

	Weight Function
	Completeness given the Tails of the Distribution

	Gram–Charlier Expansion

	Published Work
	Role of Granular Gas Anisotropy
	Arrest of the Flow of Wet Granular Matter
	The Statistics of Droplet Distributions on 2-Dimensional Substrates

	Bibliography

