
Three Essays on Job Loss Fears and

Offshoring

Dissertation

zur Erlangung des wirtschaftswissenschaftlichen Doktorgrades der

Wirtschaftswissenschaftlichen Fakultät der Universität Göttingen

vorgelegt von

Maximilian Riedl

aus Neuburg an der Donau

Göttingen, 2014



Erstbetreuer: Prof. Ingo Geishecker, PhD
Zweitbetreuer: Juniorprofessor Dr. Thushyanthan Baskaran

Tag der mündlichen Prüfung: 28. November 2013
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Introduction

Globalisation and the steadily growing international trade have caused major changes

in labour markets. Falling trade barriers and trade costs, as well as innovations in the

field of information and communications technology make it easier for firms to shift

parts of their production abroad or to purchase intermediate inputs at arm’s length on

international markets, thereby replacing domestic jobs. Apart from the gains from trade

and specialisation, many employees also realise that due to the increasing international

fragmentation of production processes their own jobs are at risk. Hence, when asking

people about their attitudes towards globalisation, often the public viewpoint does not

coincide with the commonly-received opinion of trade economists.

Economic research on employment and wage effects of offshoring or international

outsourcing already encompasses a large body of literature. It identifies winners and

losers resulting from increasing offshoring, e.g., growing wage dispersion between high-

and low-skilled workers. However, the vast majority of literature focuses on objective

labour market effects and neglects subjective effects of offshoring, such as the fear of

job loss. This thesis addresses the effect of offshoring on job loss fears as well as their

role during wage negotiations in more detail.

In the following, the terms offshoring or international outsourcing describe the same

phenomenon, namely sourcing of intermediate inputs from a foreign country, either from

a foreign affiliate or purchased at arm’s length (see, e.g. Helpman, 2006). As opposed

to foreign direct investments (FDI), offshoring can also take place without FDI, such

as arm’s length transactions. Moreover, the motivation for FDI is mostly of horizontal

nature and consequently disaccording with the definition of offshoring.

Offshoring takes place in both manufacturing and service industries. Although ser-

vice offshoring is an increasing phenomenon, this thesis looks at the effects of offshoring

in manufacturing only, since offshoring in manufacturing played and still plays the ma-

jor role in total offshoring activities. Furthermore, trade data coverage for service

industries is still limited and thus difficult to use for empirical analysis over a longer

period of time.
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The increasing possibility for firms to shift parts of their production abroad and si-

multaneously shut down domestic plants has been recognized as a threat by the public

opinion. When individuals lose their jobs and become unemployed, they do not only

lose their income but also face additional negative effects. Nickell, Jones and Quintini

(2002) show that workers also suffer from negative wage declines after re-employment

even in the long run. Furthermore, Winkelmann and Winkelmann (1998) highlight the

negative effect of unemployment on individual life satisfaction, which is more severe

than the loss of income. The effect on life satisfaction has been identified as three

times bigger than being in bad health. Additionally, the negative impact of unemploy-

ment on life satisfaction does not disappear over time and goes together with a social

loss which decreases life satisfaction even more. Even for workers who stay employed,

Di Tella, MacCulloch and Oswald (2001) find that rising unemployment has a negative

impact on their well-being. For these reasons, it is not surprising that job security is

one of the most important aspects of subjective perceptions on job satisfaction, as well

as individual well-being or life satisfaction.

Moreover, the fear of job loss also has significant implications for other areas in eco-

nomics like, e.g., wages or consumption behaviour. In Blanchflower (1991), the author

finds negative effects of increasing perceived job insecurity on wages for workers in the

UK. Further, Stephens, Jr. (2004) and Benito (2006) show that individual perceptions

of job insecurity can play an important role for individual household consumption, and

are valid predictors for actual future job loss. Lastly, according to Frey and Stutzer

(2002) or Layard (2011) individual perceptions concerning job security and the fear of

job loss are important also from a welfare perspective, as it is a major determinant of

individual well-being and happiness.

Interestingly, the impact of offshoring on individually perceived job loss fears has

not yet been investigated in the economic literature. Only Scheve and Slaughter (2004)

uses British household panel data together with industry data on FDI and find that

increasing FDI activities raises perceived job insecurity. As mentioned above, FDI and

offshoring differ not only in motivation and accordingly should not be treated equally.

Thus this thesis tries to fill the gap in the existing literature by assessing the impact

of offshoring on individual job loss fears.
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The existing theoretical literature regarding the labour market effects of offshoring

is already very profound, but at the same time it cannot show unambiguous evidence

for the specific direction of the effects.1 Depending on the model assumptions, e.g.,

Feenstra and Hanson (1996a), Arndt (1997, 1999) or Kohler (2004) can identify nega-

tive or positive effects on relative wages for low- and high-skilled workers in a general

equilibrium framework with competitive labour markets.

Theoretical studies with imperfect labour markets also point to contrary effects on

wages and employment caused by offshoring. In these models wages are negotiated be-

tween firms and trade unions. Wages can exceed the competitive level so that there is

the possibility of unemployment. The contrary wage effect results from the important

distinction between actual offshoring and the threat of potential but not realised off-

shoring. For example, Skaksen (2004) and Ranjan (2013) argue that firms can use the

threat of potential offshoring during negotiations in order to lower wages, while actual

or realised offshoring can rise wages for remaining workers due to productivity gains or

decreasing elasticity of labour demand. However, what is still missing in the literature

is the concrete channel through which the threat of potential offshoring impacts on

wages.

In the existing empirical literature, the distinction between actual and potential

offshoring has not been addressed so far. Instead, empirical studies find negative and

positive effects of actual offshoring on wages or employment through differentiating for

different skills or tasks. In these studies, individual micro level data on wages and

other personal characteristics are matched together with aggregate data on offshoring

intensities at the industry level. However, this data is only quantifying actual or realised

offshoring and thus can only reflect parts of the threat of potential offshoring. Still,

those studies show empirical evidence for negative wage effects of offshoring for low-

skilled workers and positive effects for high-skilled (see, e.g., Geishecker and Görg,

2008 or Hummels et al., 2010). Furthermore, Baumgarten, Geishecker and Görg (2013)

show for Germany that offshoring reduces the wage of workers who perform routine

and non-interactive tasks, irrespective of their skill level.

1For an extensive review of the existing literature of wage and employment effects of offshoring see,
e.g., Crinò (2009) or Harrison, McLaren and McMillan (2011).
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Although there is large empirical evidence on wage effects caused by increasing ac-

tual offshoring, the literature still lacks of a detailed analysis of the threat of potential

offshoring on wages. Thus, this thesis tries to contribute to the existing literature with

an assessment of the role of job loss fears in wage bargaining and to improve economic

understanding on how the threat of potential offshoring impacts on wages.

In most surveys where people are asked about their own happiness or subjective

well-being, respondents have to rate their feelings on an ordered scale. In this thesis the

reported level on job loss fears is measured on a three-point scale. Working with data

on individual happiness, Ferrer-i-Carbonell and Frijters (2004) show that controlling

for time fixed unobserved individual heterogeneity is crucial to get unbiased parameter

estimates.2 However, unlike in the case of continuous or dichotomous scaled dependent

variables, a consistent estimator for ordinal response data, which also accounts for

unobserved personality traits, does not exist.

In Ferrer-i-Carbonell and Frijters (2004), a new approach of a conditional ordered

logit estimator has been introduced that allows controlling for unobserved individual

heterogeneity. Besides several other existing estimation strategies pursued in the em-

pirical literature, this estimator was promising in two ways. First, it should capture

more of the ordinal variation in the data by using individual specific thresholds for the

binary recoding of the ordered response variable. Second, it should deliver parame-

ter estimates with the lowest variance because it chooses the individual threshold that

minimizes the Hessian function used to derive the variance covariance matrix for the es-

timates. For these two reasons, several studies already applied this estimator analysing

ordered response data on individual happiness3. However, there is missing knowledge

on the asymptotic and finite sample properties of this estimator. Furthermore, since

there are several other estimation strategies dealing with ordered response data and

individual unobserved heterogeneity, there is still no evidence on how they compare to

each other in terms of consistency and efficiency.

2De Neve, Christakis, Fowler and Frey (2012) recently found that 33% of variation in individual
happiness is based on genetic predisposition. Not controlling for those fixed individual characteristics
can certainly result in biased estimation results.

3Empirical studies using this estimation method are, e.g., Frijters, Geishecker, Haisken-De-New and
Shields (2006), Frijters, Haisken-DeNew and Shields (2004), Knabe and Rätzel (2009), Clark, Knabe
and Rätzel (2010) and Geishecker, Riedl and Frijters (2012).
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Therefore, the first chapter of this thesis compares different estimation strategies of or-

dered response models in the presence of non-random unobserved heterogeneity. This

is done by running Monte Carlo simulations on randomly generated artificial data

with predetermined parameters. All simulations are performed 1000 times for different

sample sizes, ordinal scales, number and distribution of covariates. The considered

estimation strategies include, inter alia, the estimator of Ferrer-i-Carbonell and Frijters

(2004) (FCF), the recently developed blow up and cluster (BUC) conditional logit esti-

mator of Baetschmann, Staub and Winkelmann (2011)4, the simple binary conditional

logit, the linear fixed effect estimator and other methods used in the literature.

The main contribution of this chapter is an evaluation of finite sample properties of

the recently developed conditional logit estimators for ordered response data and their

comparison with regard to consistency and efficiency. For this purpose, the conditional

logit estimator, as proposed by Ferrer-i-Carbonell and Frijters (2004), was programmed

in STATA and is now available as a free download.5 Additionally, this chapter also

provides a practical guideline for applied research on ordered response data.

One of its main findings is that the FCF method cannot meet the expectations,

however the BUC estimation method delivers unbiased and efficient estimates. Fur-

thermore, the simple linear fixed effects model can be recommended if the relative sizes

of the parameters are of interest. The linear fixed effects model provides correct coeffi-

cient ratios and thus leads to the same results as from the non-linear estimators. This

finding has already been recognized by Greene (1981), Chung and Goldberger (1984)

or Deaton and Irish (1984) about 30 years ago. Nevertheless, highlighting this finding

again is one of the major contributions of chapter 1, since it seems to be forgotten in

today’s empirical literature on happiness economics.

In the second chapter the estimation methods of Ferrer-i-Carbonell and Frijters

(2004) and Baetschmann et al. (2011), evaluated in the first chapter, are applied to

quantify the impact of offshoring and other globalisation measures on individual per-

ceptions of job loss fears. This analysis combines industry-level offshoring measures

4Among the studies using this estimator are, e.g., Frijters and Beatton (2012), Cho and Vadlaman-
nati (2012) and Bell, Otterbach and Sousa-Poza (2011).

5The STATA ado-file of the command called fcf is published online and public available at
http://hdl.handle.net/11022/0000-0000-1F7A-6.
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with micro-level data from the SOEP, a representative longitudinal survey of private

households in Germany. The unbalanced sample consists of male and female full or

part time employed workers in manufacturing industries for the years 1995 to 2006.

Industry offshoring data are derived from the Eurostat COMEXT data base and input-

output tables from the German Federal Statistical Office using the extended framework

of Feenstra and Hanson (1996a, 1996b, 1999). Additionally, the empirical model con-

trols for industry-level foreign direct investment (FDI) and import penetration plus

migration at the federal state level. individually perceived job loss fears is measured

on a three-stage scale ranging from not concerned over somewhat concerned to very

concerned. The empirical model also controls for individual unobserved characteristics,

industry and time fixed effects. Thus, only changes of the industry specific offshoring

intensity within the individual identifies the offshoring effect on job loss fears. To con-

sider the impact of offshoring in more detail, three different specifications are estimated.

Firstly, the impact of aggregated offshoring is estimated, then offshoring is disaggre-

gated towards low-wage and high-wage countries, and finally disaggregated offshoring

is interacted with skill level in order to get a differentiated effect of offshoring by each

worker’s the level of education.

In that way, this chapter is the first paper that estimate the impact of interna-

tional offshoring on individually perceived job security. Interestingly, its findings are to

some extent contrary to what one would expect according to theoretical and empirical

considerations on actual job loss risks.

The results indicate that offshoring to low-wage countries significantly raises job loss

fears whilst offshoring to high-wage countries lowers them. This result may be explained

with different offshoring motives of firms. When companies operate offshoring to low-

wage countries in order to save costs and to substitute domestic labour, this may have

a negative impact on job loss fears. Whereas offshoring to high-wage countries can also

be motivated by other reasons, such as entering new markets, and as a result lead to

more secure domestic workplaces. Over the sample period from 1995 to 2006, offshoring

to low and high-wage countries together can account for about 13 percent of the total

increase in job loss fears.

Another interesting result is that the negative effect of offshoring is most pronounced
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for high-skilled, although their objective job loss risk is lower relative to low-skilled

workers. The reason might be that high-skilled workers would suffer from higher income

cuts in the event of unemployment. Additionally, high-skilled workers may have to

accept greater wage losses than low-skilled workers when they get re-employed.

In their recently published article Böckerman and Maliranta (2013) confirm the

negative implications of offshoring towards low-wage countries on employer well-being

with linked employer-employee data from Finland. They also reveal a “silver lining”

for workers who stay employed. Increasing offshoring towards high-wage countries en-

hances intra-firm reallocations of occupations which improves workers’ well-being due

to better prospects of promotion.

The third chapter assesses the impact of job loss fears and potential offshoring on

wages, both theoretically and empirically. The theoretical model assumes imperfect

labour markets, in which firms and workers collectively negotiate over wages. Bargain-

ing takes place in a right-to-manage setting, in which firms set the amount of labour

demand after wage negotiations. Firms produce one good with two input factors and

can chose either to produce in-house or to purchase one of the two inputs as intermedi-

ate good from abroad, i.e. to operate offshoring. All workers are organized in one trade

union and have a disutility from perceiving subjective job loss fears. These fears are

modelled as the product of the perceived probability of job loss times the subjective

costs of job loss. During wage negotiations firms can use the possibility to offshore as

a threat to increase workers’ job loss fears. The Nash solution of the wage bargaining

model shows that increasing job loss fears, induced by the threat of potential offshoring,

lowers the wage of domestic workers.

The main contribution of this chapter is the explicit description of individual job

loss fears in the union members’ utility function within a wage bargaining setting. The

parameter that describes the individual subjective fear of job loss in now part of the

Nash bargaining solution. Hence, it is now possible to show the negative impact of job

loss fears on wages through the threat of potential offshoring.

In the empirical analysis individual data on wages, perceived job loss fears and

other demographic characteristics from the German Socio Economics Panel (SOEP)

7



are combined with industry level data on actual and potential offshoring. Since there

is no actual measure for potential offshoring, it is approximated by world wide export

supply of intermediate goods. The empirical results match with the theoretical find-

ings, that is, increasing job loss fears lower wages. Workers who switch to the highest

fear category earn about 1.6 percent less per hour than workers in lower fear categories.

Instead of actual offshoring it is potential offshoring to low-wage countries which low-

ers wages. Further, it can be shown that increasing potential offshoring to low-wage

countries lowers wages differently through the level of individually perceived fear of job

loss.

This thesis shows the importance of individually perceived job loss fears in a glob-

alised world. One important finding is that offshoring has a significant effect on these

fears. Furthermore, it is shown that offshoring impacts on wages through job loss fears.

In particular, it is the threat of potential offshoring and not actual offshoring that low-

ers wages. Thus, the distinction between potential and actual offshoring and its effects

on labour markets should be at the forefront of future research in this field.

Due to the negative effects of offshoring on job loss fears and the resulting wage

cuts, one may invoke policy to intervene. However, policy should neither restrict off-

shoring nor interfere in free collective bargaining between employers and trade unions.

Instead, it should be the aim of public policy to lower the fears of job loss and improve

happiness, just like Layard (2006, 2011) proposes. Possible solutions might include gen-

erous social security benefits, useful further education for employees or flexible labour

markets for fast re-employment.
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1 Keep it simple: estimation strategies for or-

dered response models with fixed effects1

Authors: Maximilian Riedl and Ingo Geishecker

1.1 Introduction

When estimating models for longitudinal ordinal response data, researchers typically

face the problem of accounting for unobserved personality traits that may be correlated

with explanatory variables, while at the same time accommodating the ordinal nature

of the dependent variable. Since there is no consistent estimator for an ordered logit or

probit model that can explicitly incorporate individual fixed effects, different estimation

strategies have been pursued in the literature. Yet, the literature provides no guideline

for when to use which estimator.

Authors such as Winkelmann and Winkelmann (1998), Senik (2004), Clark (2003)

and Kassenböhmer and Haisken-DeNew (2009) recode the ordinal dependent variable

into a binary variable and subsequently apply the conditional logit estimator of Cham-

berlain (1980). This approach has the advantage that it maintains the nonlinear char-

acter of the dependent variable. However, recoding ordinal responses into binary re-

sponses requires the researcher to more or less arbitrarily define a threshold above which

the dependent binary variable takes the value one. As a consequence, potentially im-

portant variation in the original ordinal response variable is disregarded.

Extending this approach, Ferrer-i-Carbonell and Frijters (2004) propose an estima-

tion strategy that uses much more of the variation in the ordinal response variable for

binary recoding. However, since this procedure requires calculation of the individual

Hessian for each binary recoding option, it is computationally very expensive. Never-

theless, the estimator has gained some popularity and has been employed in a number

of recent empirical studies, such as Frijters et al. (2006), Frijters et al. (2004), Knabe

1This chapter was published in an earlier version as: “Ordered Response Models and Non-Random
Personality Traits: Monte Carlo Simulations and a Practical Guide”, CEGE Discussion Papers No.
116, 2012.
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and Rätzel (2009), Clark et al. (2010) and Geishecker et al. (2012).

Another binary recoding strategy is developed in Baetschmann et al. (2011). Their

so called ”Blow-Up and Cluster” (BUC) estimator aims at using all variation of the

ordinal response variable by expanding the data set to accommodate all possible binary

recoding options of the ordered dependent variable. The approach has been used in,

e.g., Geishecker et al. (2012).

A fourth and very common approach taken, for example, by Di Tella et al. (2001),

Scheve and Slaughter (2004), and Senik (2004), assumes cardinality of the ordered

response variable and estimates a simple first difference or within-transformed linear

model. Although certain applications, such as studies of subjective well-being, have

shown that the cardinality assumption does not severely bias estimates (see Ferrer-i-

Carbonell and Frijters, 2004), it is difficult to generalize this finding to other applica-

tions. To circumvent violations of the cardinality assumption van Praag and Ferrer-

i-Carbonell (2008) propose to rescale the ordered dependent variable to a normal dis-

tributed variable centered around zero. The so called ”probit-adapted OLS” technique

has been used by, e.g., Stevenson and Wolfers (2008), Luechinger (2009), Clark et al.

(2010), Luechinger, Meier and Stutzer (2010), and Geishecker (2012).

Choosing from this arsenal of estimation strategies is not an easy task, since apart

from rough comparisons of the alternatives discussed in the context of concrete applica-

tions (e.g. Ferrer-i-Carbonell and Frijters, 2004), there is little comparative evidence on

their finite sample properties and performance that can be generalized. In the present

paper, we aim to fill this gap by performing Monte Carlo simulations that yield statis-

tical measures for consistency and efficiency for the previously mentioned alternative

estimation strategies.

The contribution of the paper is twofold. First, the paper presents a systematic

evaluation of the recently developed conditional binary estimators for ordered response

models in finite samples, which are unknown so far. Second, the paper functions as

a guide for applied researchers who typically face data for which asymptotic theory

is not applicable and who need to choose between the different proposed estimation

strategies.

The remainder of the paper is structured as follows: Section 1.2 revisits the proposed
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estimation strategies more formally. Section 1.3 describes the Monte Carlo experiment,

including the data generating process, and presents the results of our simulations for

different sample sizes, ordinal scales, number and distribution of covariates. Section 1.4

concludes.

1.2 Estimation Strategies in Detail

We want to estimate a latent variable model with ordered response data. The model

is given by:

y∗it = β′xit + αi + εit (1.1)

where y∗it, for example, represents general well-being of individual i = 1, . . . , I at time

t = 1, . . . , T and is a continuous variable that cannot be observed. xit is a vector of

independent explanatory variables, αi is the individual personality trait assumed to be

correlated with the vector of explanatory variables xit. Finally εit is the logistically

distributed error term. Since the continuous latent variable y∗it cannot be observed, an

ordered categorical response variable yit is measured with k = 1, . . . ,K categories and

individual-specific thresholds λik, where λik < λik+1:

yit = k ⇔ λik ≤ y∗it < λik+1. (1.2)

In what follows we discuss and compare six possible estimation strategies for this

ordered response problem. One simple estimation strategy for ordered response data

with unobserved personality traits is to transform the ordered response variable so

that it can be estimated with a conditional logit estimator (see Chamberlain, 1980).

To generate the required binary response variable from ordered responses one common

approach is to apply what is considered a meaningful threshold (Y ) to the whole data

set (e.g., Winkelmann and Winkelmann, 1998; Clark, 2003) such that:

Bit =

 0 if yit ≤ Y

1 if yit > Y.
(1.3)
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The conditional logit statistic corresponding to this simple coding scheme then is:

P

[
Bit|

∑
t

Bit = ci

]
=

e
∑T
t=1Bitxitβ∑

y∈S(ki,ci) e
∑T
t=1 Bitxitβ

. (1.4)

This represents the probability that the dependent variable is above Y , conditional

on the sum ci. More precisely, ci denotes the number of times the dependent variable

per group exceeds the threshold Y , 0 < c < T . S describes the set of all possible

combinations of yi1, . . . , yiT that sum up to
∑

tBit = ci. In the following, we refer to

this estimation strategy as simple conditional logit (SCLOG).

Clearly the SCLOG ignores all variation in yit that takes place below or above Y .

Furthermore and most importantly, the applied simple coding scheme also abstracts

from the possibility that the thresholds λik in Equation 1.2 vary in i. For example,

consider ordered responses on life satisfaction. Our sample may include a happy life

long enthusiast and an equally happy life-long sceptic. While the enthusiast’s self

reported life satisfaction scores may tend to be on the high side, responses of the

equally happy sceptic may tend to be on the low side. Accordingly, in this example, a

common threshold crossing cannot capture changes in the self-reported life satisfaction

of the sceptic and the enthusiast equally well. Thus, this strategy does not address

personality traits in any satisfactory way.

A somewhat more sophisticated coding scheme takes account of such personality

traits by constructing a binary response variable (E) that takes the value one if the

score of the ordered categorical response variable is above the individual-specific mean

of all ordered categorical responses:

Eit =

 0 if yit ≤ E(yit)

1 if yit > E(yit) .
(1.5)

To stay with the example, our enthusiast and sceptic now have different thresholds

that reflect that the responses of the former tend to be on the high side of the ordered

scale while the responses of the latter tend to be on the low side. Recent applications

of this approach include Kassenböhmer and Haisken-DeNew (2009). In the following,

we refer to this approach as individual mean conditional logit (IMCLOG).

An extension to the IMCLOG method is proposed in Ferrer-i-Carbonell and Frijters
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(2004) taking into account more variation in individuals’ ordered responses. Their

method uses the conditional logit approach combined with a fairly complex individual-

specific coding of the dependent variable. They use the information from the second

derivative of the log likelihood function, the Hessian matrix, per individual to choose

which coding is appropriate for the final conditional logit estimation. This procedure

consists of three steps, which deserve some detailed explanation as the exposition in

the original article of Ferrer-i-Carbonell and Frijters (2004) is incomplete.

In the first step the ordered dependent variable yit with K categories is split into

K − 1 new binary coded variables Dik capturing all possible threshold crossings.

The first newly generated variable Di1 equals one if the original dependent variable

yit is at least one category greater than the minimum of yit for each i:

Ditk =


0 if yit ≤ mini{yit}

1 if yit > mini{yit}
(1.6)

The next newly generated variable Di2 equals one if the original dependent variable

is at least two categories greater than the minimum of yit for each i and so forth. A

more detailed example can be found in the appendix of Ferrer-i-Carbonell and Frijters

(2004).

In a second step, a conditional logit model (Chamberlain, 1980) is estimated for

the first threshold crossing to derive the coefficients (β) that are used to calculate the

Hessian matrix for each individual for each Dik.

The first and second derivatives of the log likelihood function used for these calcula-

tions can be found in the appendix to this paper. On this basis, the sum of the diagonal

elements, the so called ”trace,” for each individual Hessian is calculated for each Dik.

The final binary dependent variable is then generated by choosing the specific Dik that

corresponds to the minimum trace per individual i. Since the variance of the estimated

conditional logit coefficient is the negative of the inverse of the sum of the Hessian Hi

over all i, this yields the maximum likelihood estimator with minimal variance.

In a third step, the newly generated binary variable, which reflects the optimal

choice of Dik for all i, is fed into a conditional logit estimation to obtain the final coef-

ficients. In the following, we refer to this estimation strategy as the Ferrer-i-Carbonell
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Frijters estimator (FCF). Since the FCF estimator requires calculation of individual-

specific Hessian matrices for each possible threshold Dik, it is computationally expen-

sive, particularly if T is large.2

Note that the individual-specific coding procedure based on minimum-trace individ-

ual Hessian matrices is initially based on the assumption of knowing the true parameter

estimates of the latent variable model. It is debatable how these initial parameters

should be obtained. We test whether the FCF estimation results differ when using

the individual mean coding procedure (IMCLOG), i.e., whether the FCF estimates

are sensitive to replacing Dit1 with Eit from Equation 1.5. Furthermore, we also es-

timate an iterated version of the FCF, continuously updating the initial parameters.

However, there are only subtle differences between the corresponding final FCF pa-

rameters. Thus, the FCF method is robust with respect to the choice of the first-step

estimation routine.

Yet, an alternative recoding scheme is introduced in Baetschmann et al. (2011).

Their so called “Blow-Up and Cluster” (BUC) estimator recodes the original dependent

variable with k categories into k − 1 different dichotomizations using k − 1 different

thresholds. Each observation of the original data is then duplicated k − 1 times, one

for each dichotomization. After “blowing up” the data, a standard conditional logit

estimation with clustered standard errors is applied to the whole sample. For more

details we refer to the paper of Baetschmann et al. (2011).

Finally, we consider the linear fixed effects model that assumes cardinality and

makes use of all variation in individuals’ ordered responses, while also accounting for

non-random personality traits. The ordered response categories k = 1, . . . ,K of yit

are interpreted as continuous values of the latent variable y∗it, which lends itself to

linear regression methods. Personality traits can be addressed by, for instance, within-

transformation of Equation 1.1, such that αi cancels out:

y∗it − y∗it = β′(xit − xit) + εit − εit (1.7)

In the following we refer to this estimation strategy as the fixed effects estimator

2For example, a data setup of 3,000 individuals with 15 observations over time can take about half
an hour computation time.
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(FE).3 The FE has the advantage that it is fast and very easy to implement. However,

assuming cardinality of ordered responses may be an assumption yielding biased esti-

mates. Nevertheless, as previously discussed, numerous studies have used this approach

(e.g., Scheve and Slaughter, 2004; Di Tella et al., 2001, Senik, 2004) and at least in

the context of life satisfaction studies, there is some evidence that the associated bias

is only moderate (Ferrer-i-Carbonell and Frijters, 2004). Additionally, Greene (1981),

Chung and Goldberger (1984) or Deaton and Irish (1984) theoretically show that, under

certain distributional assumptions of the explanatory variables, coefficient estimates of

limited dependent variable and discrete choice models using OLS can be consistent up

to a scalar multiple. If this is also the case for linearly estimated ordered response

models with fixed effects, coefficient ratios of OLS estimates should be consistent as

well.

A mild alteration to the FE method is proposed in van Praag and Ferrer-i-Carbonell

(2008). Their probit adapted OLS estimator (POLS) attempts to cardinalize the data

such that it can be applied to simple OLS without the aforementioned problems of

the FE estimator and has been used in e.g., Stevenson and Wolfers (2008), Luechinger

(2009), Luechinger et al. (2010). The POLS estimator attempts to circumvent violations

of the cardinality assumption by first calculating the relative frequencies of the different

outcome categories and then putting the frequencies into a standard normal distribution

function to obtain a standard normal distributed, ”cardinal scaled”, and unbounded

dependent variable. This variable can be used then for simple (fixed effect) OLS. For

more details on this procedure, see Chapter 2.6 in van Praag and Ferrer-i-Carbonell

(2008).

Regardless, from a theoretical perspective, assuming cardinality of ordered re-

sponses may be unsatisfactory, and our Monte Carlo simulations will show whether

this pragmatic approach frequently employed in the life satisfaction literature is justi-

fied in a more general setting.

3First difference transformation of the model yields equivalent results.
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1.3 Monte Carlo simulation and results

For some of the analysed estimation strategies asymptotic properties have been theo-

retically proven in the literature, other namely the FCF, IMCLOG and BUC still have

unknown asymptotic properties. Regardless, for the applied researcher finite sample

properties are important when choosing between different estimation strategies. We

therefore perform Monte Carlo simulations for all estimators discussed in Section 1.2

to provide a guideline for when which estimation strategy is appropriate. We also

consider the standard ordered logit without unobserved personality traits controls for

comparison. All simulations are performed 1000 times for different sample sizes, or-

dinal scales, number and distribution of covariates.4 Our data generating process is

designed in line with the standard Monte Carlo simulation literature for panel data

(e.g., Honoré and Kyriazidou, 2000; Greene, 2004). The latent variable y∗it is generated

by the following model:

y∗it = xitβ + αi + εit

The individual fixed effect αi is generated as αi =
√
T x̄i. The idiosyncratic error

εit is i.i.d. logistically distributed, and the exogenous variables xit are i.i.d. normally

distributed. Both error and exogenous variables have the same standard deviation

of σ = π/
√

3. As a robustness check we later consider alternative symmetric and

asymmetric distributions of xit.

We define the categories for the discrete dependent variable yit by splitting the

generated latent variable y∗it into K even parts. As a result, every category has the

same number of observations. To evaluate how the different estimates converge to

the true parameters, we focus on the mean of the estimated coefficients, the mean

squared error (MSE), and as a more robust performance measure to possible outliers,

the median absolute error (MAE). We also compare efficiency measures like the mean

of the coefficients’ standard errors (S.E.) as well as associated 95 per cent confidence

intervals across simulations.

4We use the statistical software STATA to run our simulations. The correspond-
ing STATA ado-file for the FCF estimator can be downloaded from the following website:
http://hdl.handle.net/11022/0000-0000-1F7A-6.
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Table 1.1: Monte Carlo simulation results for K = 3, T = 5

β = 1

Mean S.E. MSE MAE 95% Interval

I = 100

FE OLS 0.20526 0.01416
POLS 0.22324 0.01540

ordered logit 1.03623 0.06999 0.00671 0.05192 0.89769 1.20035
SCLOG 1.01140 0.14563 0.02093 0.09346 0.76928 1.32656

FCF 0.98475 0.11516 0.02538 0.08207 0.78009 1.24946
IMCLOG 0.98594 0.11772 0.01531 0.07952 0.78337 1.25336

BUC 1.00708 0.10682 0.01238 0.06708 0.80646 1.25820

I = 500

FE OLS 0.20555 0.00632
POLS 0.22355 0.00687

ordered logit 1.03423 0.03124 0.00215 0.03322 0.97628 1.10259
SCLOG 1.00433 0.06419 0.00446 0.04419 0.88182 1.14270

FCF 0.97926 0.05102 0.00314 0.03892 0.88404 1.08702
IMCLOG 0.98090 0.05218 0.00310 0.03846 0.88357 1.08989

BUC 1.00330 0.04780 0.00242 0.03409 0.91493 1.11028

I = 1000

FE OLS 0.20477 0.00446
POLS 0.22270 0.00485

ordered logit 1.03298 0.02206 0.00163 0.00840 0.98943 1.07798
SCLOG 1.00183 0.04529 0.00225 0.03235 0.91389 1.09804

FCF 0.97711 0.03600 0.00193 0.03270 0.91003 1.05655
IMCLOG 0.97921 0.03684 0.00191 0.03224 0.90987 1.06044

BUC 1.00080 0.03390 0.00124 0.02508 0.93906 1.07563

I = 3000

FE OLS 0.20492 0.00258
POLS 0.22286 0.00280

ordered logit 1.03253 0.01275 0.00122 0.00835 1.00751 1.05610
SCLOG 0.99857 0.02603 0.00064 0.01767 0.95139 1.05082

FCF 0.97514 0.02073 0.00103 0.02561 0.93725 1.01506
IMCLOG 0.97694 0.02121 0.00096 0.02343 0.93794 1.01708

BUC 0.99912 0.01953 0.00037 0.01362 0.96365 1.03747

Note: All simulations were performed 1000 times.
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We start with only one exogenous variable xit and set the coefficient to β = 1. To

compare the asymptotic properties of the estimators under consideration we start with

a small panel and subsequently increase the cross-sectional and longitudinal dimension

sizes. Table 1.1 presents estimation results where we fix the longitudinal dimension to

T = 5 and raise the cross-sectional dimension size from I = 100 to I = 3, 000 while

K = 3.

In accordance with asymptotic theory, all nonlinear estimators except IMCLOG and

FCF and of course the standard ordered logit converge towards the true parameter with

growing precision with increasing I. When instead evaluating asymptotic properties

over t, as reported in Table 1.2 5 we see in our simulations that the coefficient estimates

converges towards the true parameter for all nonlinear estimators except the standard

ordered logit. Unsurprisingly, the class of linear estimators (FE and POLS) cannot

provide consistent estimates of the true parameter due to the the different functional

form of the probability function. As a consequence, with only one explanatory variable,

the FE and POLS cannot be compared with the other estimators, and we do not report

performance measures other than the mean coefficients and standard errors. However,

when later including more than one explanatory variable, we will compare the coefficient

ratios to reflect on the relative size of coefficients.

In what follows we look at the speed with which convergence of the different non-

linear estimators is achieved and how severe the bias of inconsistent estimators is.

Ignoring unobserved individual heterogeneity clearly biases coefficient estimates for all

panel data configurations. In Table 1.1 and Table 1.2 the means of the simple ordered

logit coefficients are always furthest away from the true parameter β = 1. These sim-

ulation results are in line with Ferrer-i-Carbonell and Frijters (2004) who stress the

importance of allowing for individual fixed effects.

Comparing the consistent nonlinear models SCLOG and BUC leads to several im-

portant insights. First of all, the simple binary coding procedure SCLOG is very

sensitive to small sample sizes because it already disregards a large part of the avail-

able variation in the dependent variable.6 For example, with T = 5 and I = 100,

5We also perform simple t-tests to compare the means of the respective estimators’ coefficients when
I and T increase. The differences of the means are statistically significant when starting from small T
and small I and become insignificant when both dimension sizes are large.

6For our data set with yit ∈ {1, 2, 3} we did the following binary recoding: ynit = 1, if yit > 2.
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Table 1.2: Monte Carlo simulation results for K = 3, I = 1000

β = 1

Mean S.E. MSE MAE 95% Interval

T = 3

FE OLS 0.19821 0.00620
POLS 0.21557 0.00674

ordered logit 1.17846 0.03299 0.03296 0.17729 1.11813 1.24220
SCLOG 1.00044 0.07233 0.00544 0.04885 0.86150 1.15537

FCF 0.96420 0.05460 0.00424 0.04818 0.86095 1.07516
IMCLOG 0.97921 0.05570 0.00427 0.04775 0.85826 1.08004

BUC 0.99988 0.05383 0.00286 0.03576 0.89692 1.10606

T = 5

FE OLS 0.20555 0.00632
POLS 0.22355 0.00687

ordered logit 1.03423 0.03124 0.00215 0.03322 0.97628 1.10259
SCLOG 1.00433 0.06419 0.00446 0.04419 0.88182 1.14270

FCF 0.97926 0.05102 0.00314 0.03892 0.88404 1.08702
IMCLOG 0.98090 0.05218 0.00310 0.03846 0.88357 1.08989

BUC 1.00330 0.04780 0.00242 0.03409 0.91493 1.11028

T = 10

FE OLS 0.21262 0.00304
POLS 0.23124 0.00330

ordered logit 0.90834 0.01379 0.00859 0.09168 0.88139 0.93454
SCLOG 0.99986 0.02741 0.00074 0.01834 0.94901 1.05545

FCF 0.98763 0.02310 0.00070 0.01823 0.94010 1.03268
IMCLOG 0.98774 0.02343 0.00071 0.01835 0.93772 1.03382

BUC 0.99917 0.02063 0.00043 0.01415 0.95767 1.04011

T = 15

FE OLS 0.21602 0.00246
POLS 0.23493 0.00267

ordered logit 0.85903 0.01103 0.01999 0.14065 0.83816 0.88044
SCLOG 1.00004 0.02135 0.00050 0.01496 0.95837 1.04591

FCF 0.99102 0.01839 0.00045 0.01476 0.95502 1.02925
IMCLOG 0.99116 0.01858 0.00044 0.01507 0.95451 1.02742

BUC 0.99956 0.01614 0.00028 0.01139 0.96684 1.03459

Note: All simulations were performed 1000 times.
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40 percent of all observations were ignored because of no variation in the dependent

variable. With real survey data and less homogeneous categories, the loss of variation

may be even more serious. We therefore recommend not using the SCLOG method in

small samples.

Of all estimators the BUC method dominates in terms of consistency and efficiency

measures for all panel data configurations. Through all our simulations the mean of

estimated parameters is closest to the true value β = 1 with the lowest MSE and MAE.

At the same time the mean standard error of β and the associated confidence interval is

smallest. As a first conclusion, these simulations clearly show the asymptotic properties

of the estimation methods: Only the SCLOG and BUC estimates can be considered as

unbiased while the BUC is most efficient.

We proceed by comparing the set of estimators when including more than one

explanatory variable in the model, which is more informative for the applied researcher.

Table 1.3 reports the performance measures for the coefficient with three explanatory

variables. In applied research, coefficient ratios are frequently employed to interpret

the size of coefficients relative to a baseline effect. In the analysis of individual well-

being, for instance, it is common to calculate compensating income variations, i.e.,

the well-being effect of certain events expressed in percentage changes in income that

would generate the same well-being effect (see Winkelmann and Winkelmann, 1998).

Accordingly, it is not necessarily the absolute size of coefficients that researchers are

interested in, but their ratios.

For the following simulation, we arbitrarily set total number of observations to

18,000 consisting of I = 3000 and T = 6, a sample structure not uncommon in micro

data. We choose β1 = 1, β2 = −3.5 and β3 = 7 as the true data generating parameters

so we can also evaluate the correct sign of the parameter estimates as well as their

ratios β2/β1 = −3.5 and β3/β1 = 7.

As previously argued, the coefficients of the linear fixed effects models (FE, POLS)

cannot be compared to the ones from nonlinear estimators due to the different scaling.

However, as becomes apparent in Table 1.3 the estimated coefficient ratios of the FE, as

well as the ratios of the POLS, are very close to the ratios of the true parameters, i.e.,

β̂2/β̂1 is almost exactly −3.5 and β̂3/β̂1 is nearly 7. At the same time, of all estimators,
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Table 1.3: Monte Carlo simulation results for K = 3, I = 3000, T = 6

β2/β1 = −3.5

Mean MSE MAE 95% Interval

FE OLS -3.50254 0.01688 0.09059 -3.77135 -3.26882
POLS -3.50255 0.01688 0.09047 -3.77223 -3.26900

ordered logit -2.96128 0.29334 0.54159 -3.07308 -2.85501
SCLOG -3.50610 0.03664 0.12148 -3.92625 -3.16180

FCF -3.50022 0.01837 0.08657 -3.78670 -3.23716
IMCLOG -3.50289 0.02615 0.10578 -3.85568 -3.21248

BUC -3.49951 0.01807 0.08461 -3.78585 -3.24382

β3/β1 = 7

Mean MSE MAE 95% Interval

FE OLS 7.00921 0.06358 0.17499 6.55400 7.54091
POLS 7.00924 0.06358 0.17470 6.55289 7.54045

ordered logit 6.28513 0.52405 0.71975 6.07888 6.51445
SCLOG 7.01410 0.13999 0.24292 6.33485 7.85700

FCF 7.00274 0.06840 0.17344 6.51613 7.55918
IMCLOG 7.00530 0.09721 0.19735 6.43982 7.68614

BUC 7.00133 0.06733 0.17449 6.52065 7.54664

Note: All simulations were performed 1000 times.

the MSE and the MAE of the FE and the POLS are smallest.7

Of all the nonlinear estimators controlling for unobserved heterogeneity in Table 1.3,

both the BUC and the FCF method outperform the others in terms of unbiasedness and

efficiency of coefficient ratio estimates. Compared to the SCLOG and the IMCLOG, the

means of the BUC and FCF parameter estimates come closest to the true parameters

in conjunction with the smallest standard errors and lowest values for MSE and MAE.

In comparison, ignoring unobserved individual heterogeneity by applying the simple

ordered logit estimator leads to severely biased coefficient ratios in Table 1.3. This

becomes apparent when looking at the 95 per cent interval of the ordered logit estimates,

in which the true parameters are not included, and the large MAE.

We also check the performance of the alternative estimation strategies for different

distributions of the explanatory variables. Table 1.4 shows Monte Carlo simulations

for left and right skewed Beta distributions as well as for normal distributions with

different first and second moments. In general, when departing from the standard

7Furthermore, our simulations for increasing samples sizes (not reported) indicate that the FE and
POLS deliver in fact consistent estimates of parameter ratios.
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Table 1.4: Monte Carlo simulation results for different
distributions of the explanatory variables

x1 ∼ Beta(1, 5), x2 ∼ Beta(2, 2), x3 ∼ Beta(5, 1)

β2/β1 = −3.5 β3/β1 = 7 β3/β2 = −2
Method Mean MSE Mean MSE Mean MSE

FE OLS -3.69695 0.78830 7.01602 2.67229 -1.89997 0.01798
POLS -3.69685 0.78805 7.01293 2.66892 -1.89918 0.01812

SCLOG -3.71210 1.26982 7.42891 5.07450 -2.00496 0.01442
FCF -3.68803 1.19382 7.39570 4.74821 -2.00864 0.01240

IMCLOG -3.69735 1.09772 7.39250 4.29584 -2.00282 0.01260
BUC -3.63606 0.76707 7.27752 3.05166 -2.00384 0.00940

x1 ∼ Normal(0, 1), x2 ∼ Normal(5, 10), x3 ∼ Normal(2, 0.1)

β2/β1 = −3.5 β3/β1 = 7 β3/β2 = −2
Method Mean MSE Mean MSE Mean MSE

FE OLS -3.74551 1.32221 7.42532 11.96346 -1.99623 0.51903
POLS -3.74530 1.32103 7.42451 11.95713 -1.99613 0.51894

SCLOG -4.37796 35.83729 8.19181 256.44650 -1.89413 1.19050
FCF -3.81028 1.91946 7.39687 17.39827 -1.93452 0.57558

IMCLOG -3.98390 17.75278 7.49777 96.14915 -1.93663 0.94279
BUC -3.80662 1.91339 7.36381 17.26725 -1.92684 0.57119

x1 ∼ Normal(0, 1), x2 ∼ Normal(0, 2), x3 ∼ Normal(0, 3)

β2/β1 = −3.5 β3/β1 = 7 β3/β2 = −2
Method Mean MSE Mean MSE Mean MSE

FE OLS -3.59997 0.51341 7.20573 2.06420 -2.00254 0.00271
POLS -3.59987 0.51328 7.20553 2.06373 -2.00255 0.00271

SCLOG -3.74290 1.34155 7.48449 5.29469 -2.00199 0.00547
FCF -3.63117 0.54875 7.26366 2.19126 -2.00103 0.00273

IMCLOG -3.68796 0.82737 7.37118 3.29663 -1.99967 0.00371
BUC -3.62824 0.54313 7.25735 2.16254 -2.00097 0.00270

Monte Carlo simulation results for I = 1000, T = 6,K = 3.
All simulations were performed 1000 times.
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normal distribution the bias of estimated coefficient ratios increases. However, we still

infer that the FE, POLS, BUC and FCF deliver coefficient ratio estimates with small

bias.

So far we have assumed that the ordinal response variable is fairly aggregated and

lies on a three-point scale (K = 3). However, various ordinal scales consist of more than

three categories. For example, in the U.S. National Survey of Families and Households

(NSFH) and the German Socio-Economic Panel (SOEP), information on individual

well-being is captured on a seven- and eleven-point scale, respectively. Against this

backdrop, we want to test the extent to which the performance of the estimators under

consideration varies with respect to the ordinal structure of the dependent variable.

Table 1.5 lists the simulation results for a three-, seven- and eleven-point scale ordered

response variable. All simulations are performed with two exogenous variables with

the true parameters β1 = 1 and β2 = −2. The panel data dimensions are I = 3, 000

and T = 12.8 Interestingly, it seems that the IMCLOG and FCF method respond

rather sensitively to the number of ordered categories in the dependent variable. With

increasing K the estimated parameters show a sizeable downward bias, although the

β2/β1 = −2 ratios remain unbiased. This confirms Baetschmann et al. (2011) who have

recently shown, that the estimation strategies of Ferrer-i-Carbonell and Frijters (2004)

of which IMCLOG can be considered a special case can produce biased parameter

estimates. The reason behind is an endogeneity problem of the individual threshold,

which is by itself a function of the original ordered variable. In comparison, BUC, and

SCLOG are not sensitive with respect to the size of K; there is no significant change in

the mean of the parameter estimates, the MSE, MAE or in the the mean standard error.

In terms of coefficient ratios, all nonlinear estimates are unbiased as long unobserved

personality traits are controlled for, irrespective of K. The same holds for the linear

class of estimators FE and POLS.

Summarizing our simulation results, we find the BUC estimator to perform best,

that is to deliver unbiased and efficient parameter estimates irrespective of sample size,

the underlying distribution of xit and the number of ordinal response categories. In

addition, for large samples the SCLOG estimator also performs well and may be even

8To accommodate higher K it is necessary to have more observations per individual. We therefore
increase the number of time periods from T = 6 in Table 1.3 to T = 12.
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easier to implement.

However, if the researcher is only interested in relative parameters, all of the above

estimators deliver unbiased parameter ratios as long as unobserved personality traits

are controlled for. This finding also relates to a large theoretical literature that proves

that even with misspecified nonlinear models one can obtain consistent coefficient ratio

estimates (see e.g., Ruud, 1983; Cramer, 2007 and Wooldridge, 2010).

Furthermore, our Monte Carlo simulations show that to obtain unbiased estimates

of parameter ratios one can also employ simple linear estimation allowing for individ-

ual fixed effects. This is a generalization of a familiar result derived in the context

of happiness studies (e.g., Ferrer-i-Carbonell and Frijters, 2004). The result also re-

lates to Greene (1981), Chung and Goldberger (1984) or Deaton and Irish (1984) who

demonstrate that under certain distributional assumptions one can obtain consistent

parameter ratio estimates by applying OLS to discrete choice problems.
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Table 1.5: Monte Carlo simulation results for I = 3000, T = 12

β1 = 1

Mean S.E. MSE MAE 95 % Interval

K = 3

FE OLS 0.16148 0.00248
POLS 0.17563 0.00270

ordered logit 0.92901 0.01586 0.00529 0.07188 0.89849 0.96411
SCLOG 0.99994 0.02903 0.00090 0.01946 0.94103 1.06088

FCF 0.99330 0.02656 0.00074 0.01819 0.94225 1.04474
IMCLOG 0.98699 0.02651 0.00094 0.02148 0.93630 1.04430

BUC 0.99976 0.02110 0.00045 0.01412 0.96138 1.04181

K = 7

FE OLS 0.42420 0.00500
POLS 0.20693 0.00235

ordered logit 0.92531 0.01208 0.00572 0.07466 0.90169 0.94856
SCLOG 0.99972 0.02784 0.00075 0.01826 0.94528 1.05358

FCF 0.95820 0.02539 0.00239 0.04203 0.90878 1.00931
IMCLOG 0.99042 0.02635 0.00080 0.01979 0.93930 1.04363

BUC 0.99932 0.01645 0.00026 0.01100 0.96783 1.03000

K = 11

FE OLS 0.67823 0.00761
POLS 0.21344 0.00225

ordered logit 0.92525 0.01138 0.00573 0.07483 0.90294 0.94886
SCLOG 0.99906 0.02766 0.00078 0.01933 0.94290 1.05466

FCF 0.93817 0.02481 0.00449 0.06286 0.89028 0.99085
IMCLOG 0.98989 0.02628 0.00081 0.01933 0.93778 1.03975

BUC 0.99942 0.01575 0.00027 0.01090 0.96750 1.03096

β2 = −2

Mean S.E. MSE MAE 95% Interval

K = 3

FE OLS -0.32337 0.00248
POLS -0.35169 0.00269

ordered logit -1.50856 0.02589 0.24219 0.49096 -1.56013 -1.45887
SCLOG -2.00233 0.04700 0.00242 0.03288 -2.10216 -1.90702

FCF -1.98814 0.04479 0.00226 0.03063 -2.07914 -1.89968
IMCLOG -1.97595 0.04291 0.00265 0.03646 -2.06764 -1.89027

BUC -2.00110 0.03390 0.00124 0.02316 -2.07578 -1.93391

K = 7

FE OLS -0.84926 0.00500
POLS -0.41421 0.00235

ordered logit -1.50239 0.02181 0.24808 0.49766 -1.54547 -1.46093
SCLOG -2.00188 0.04511 0.00197 0.02853 -2.09208 -1.91451

FCF -1.91857 0.04403 0.00865 0.08329 -2.01559 -1.83207
IMCLOG -1.98281 0.04264 0.00213 0.03225 -2.06524 -1.89991

BUC -1.99984 0.02595 0.00070 0.01730 -2.05347 -1.94883

K = 11

FE OLS -1.35736 0.00761
POLS -0.42709 0.00225

ordered logit -1.50084 0.02107 0.24960 0.49944 -1.54128 -1.45818
SCLOG -2.00034 0.04480 0.00201 0.02971 -2.08792 -1.91651

FCF -1.87649 0.04313 0.01711 0.12460 -1.96627 -1.79364
IMCLOG -1.98237 0.04254 0.00219 0.03074 -2.06710 -1.89292

BUC -1.99987 0.02479 0.00067 0.01746 -2.05021 -1.94826

continued on next page. . .
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Table 1.5: . . . continued

β2/β1 = −2

Mean MSE MAE 95% Interval

K = 3

FE OLS -2.00295 0.00114 0.02251 -2.06771 -1.93409
POLS -2.00295 0.00114 0.02261 -2.06770 -1.93408

ordered logit -1.62404 0.14204 0.37591 -1.67641 -1.57123
SCLOG -2.00323 0.00201 0.02935 -2.09963 -1.91360

FCF -2.00207 0.00137 0.02585 -2.07552 -1.93191
IMCLOG -2.00268 0.00175 0.02665 -2.08529 -1.92115

BUC -2.00198 0.00106 0.02066 -2.06850 -1.93866

K = 7

FE OLS -2.00229 0.00074 0.01871 -2.05785 -1.95103
POLS -2.00200 0.00067 0.01766 -2.05361 -1.95338

ordered logit -1.62376 0.14202 0.37563 -1.66442 -1.58330
SCLOG -2.00312 0.00172 0.02757 -2.08770 -1.92411

FCF -2.00270 0.00117 0.02266 -2.07857 -1.94011
IMCLOG -2.00266 0.00168 0.02766 -2.08324 -1.91922

BUC -2.00146 0.00067 0.01700 -2.05403 -1.95221

K = 11

FE OLS -2.00159 0.00070 0.01795 -2.05382 -1.95094
POLS -2.00119 0.00059 0.01666 -2.04767 -1.95443

ordered logit -1.62222 0.14322 0.37818 -1.66620 -1.58054
SCLOG -2.00295 0.00183 0.02941 -2.09252 -1.92420

FCF -2.00071 0.00130 0.02393 -2.07339 -1.93461
IMCLOG -2.00328 0.00170 0.02745 -2.08487 -1.92772

BUC -2.00130 0.00068 0.01717 -2.05481 -1.95115

Note: All simulations were performed 1000 times.

1.4 Conclusion

We compare linear and nonlinear ordered response estimators in terms of consistency

and efficiency measures by running Monte Carlo simulations while varying the sample

size, the number and distribution of covariates, and the number of ordinal response

categories. The estimators under consideration are linear fixed effects, probit adapted

OLS, simple ordered logit, and four binary recoded conditional logit estimators that

recently have gained popularity in applied research.

Our simulations indicate that first of all it is crucial to control for individual unob-

served heterogeneity. Failing to do so adds considerable bias to estimates of parameters

and parameter ratios. If the researcher is interested in the absolute size of parameter

estimates as such the best choice for estimating ordered response models is the newly

developed “Blow-Up and Cluster” estimator of Baetschmann et al. (2011). It delivers

most unbiased and most efficient parameter estimates, irrespective of sample size and
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number of ordinal response categories. The simple conditional logit estimator is an

even more basic alternative but only appropriate for large samples.

However, if the researcher is mainly interested in relative effects, i.e. in ratios of

parameter estimates, the method of choice is simple: a linear fixed effects model. It

essentially delivers the same results as the more elaborate binary recoding scheme of

Baetschmann et al. (2011) and is most efficient and much easier to compute.
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1.5 Appendix

Loglikelihood equation of the conditional logit model:

lnLik =
T∑
t=1

Ditkxitβ − ln
∑

S(
∑T
t=1 Ditk)

e
∑T
t=1Ditkxitβ

Gradient function of the conditional logit model:

∂ lnLik
∂β

=
T∑
t=1

Ditkxit −

∑
S(

∑T
t=1Ditk)

(∑T
t=1Ditkxit

)
e
∑T
t=1Ditkxitβ∑

S(
∑T
t=1 Ditk)

e
∑T
t=1Ditkxitβ

Hessian function of the conditional logit model:

H =
∂2 lnLik
∂β2

H =

(∑
S(

∑T
t=1Ditk)

(∑T
t=1Ditkxit

)
e
∑T
t=1Ditkxitβ

)(∑
S(

∑T
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(∑T
t=1Ditkxit

)
e
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)
(∑
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∑T
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e
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−
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(∑T
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)(∑T
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)
e
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S(

∑T
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e
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∑T
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e
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With A =

∑
S(

∑T
t=1 Ditk)

(
∑T
t=1Ditkxit)e

∑T
t=1 Ditkxitβ∑

S(
∑T
t=1 Ditk)

e
∑T
t=1 Ditkxitβ

corresponding to the second term of

the gradient function.
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Abstract

We quantify the impact of offshoring and other globalisation measures on individual

perceptions of job security. For the analysis we combine industry-level offshoring mea-

sures with micro-level data from a large German household panel survey and estimate

ordinal fixed effects models. Our results indicate that offshoring to low-wage countries

significantly raises job loss fears whilst offshoring to high-wage countries somewhat low-

ers them. Over our sample period from 1995 to 2006, offshoring to low and high-wage

countries together can account for about 13% of the total increase in job loss fears.

High-skilled workers are more sensitive to offshoring although their objective job loss

risk is lower relative to low-skilled workers, which we argue reflects the fact that they

have more to lose from unemployment.
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3 Offshoring, Job Loss Fears and Wage Bargain-

ing1

Author: Maximilian Riedl

3.1 Introduction

It is a common phenomenon that during wage negotiations firms use the threat of

shifting domestic jobs abroad in order to lower the result of the wage bargaining.2 If

wages are the result of collective bargaining between firms and trade unions, it is often

argued that offshoring strengthens the bargaining power of firms, which results in lower

wages (see, e.g. Eckel and Egger, 2009). In this paper I argue that workers perceive

job loss fears which lowers their individual utility. Offshoring affects these fears and

workers are willing to accept a lower outcome during wage negotiations. Specifically,

it is the threat of potential offshoring which increases fear, and not necessarily actual

offshoring.

In their recent article Geishecker et al. (2012) find that international outsourcing

or offshoring towards low-wage countries increases job loss fears of German workers.

These fears could have effects on wages when they are determined by negotiations

between firms and workers individually or collectively. For example, Manski (2004)

mentions the importance of the perception of job insecurity as a determinant for wages

and employment. These concerns are mostly reasonable and justified and are indicative

of real future job loss. Clark (2001), Stephens, Jr. (2004) and Dickerson and Green

(2012) show that individual perceptions of job loss probabilities can be robust and valid

predictors for actual job loss probabilities.

In the previous literature regarding the impact of offshoring on wages, these per-

ceptions are not considered. So far, a lot of research has been done regarding the effect

1This chapter was published in an earlier version as: “Wage Bargaining, Job Loss Fears and Off-
shoring”, CEGE Discussion Papers No. 174, 2013.

2There is much evidence regarding those threats during wage negotiations reported in the media,
e.g., in March 2013 during wage negotiations of the German trade union IG Metall and the employ-
ers’ association: http://www.focus.de/finanzen/news/wirtschaftsticker/roundup-tarifverhandlungen-
fuer-740-000-metall-beschaeftigte-vertagt aid 945640.html.
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of offshoring on wages, both theoretically and empirically. It is known that mostly

high-skilled workers benefit from offshoring, whereas low-skilled workers usually have

to accept lower wages. Recent literature, however, changed the perspective from a skill

to a task oriented view of wage effects from offshoring. Workers who perform tasks

which are more interactive and non-routine are more protected from offshoring, irre-

spective of the skill level. Nevertheless, this is the first study to incorporate individual

perceptions like job loss fears into the effect of offshoring on wages.

I extend the model of Skaksen (2004), where wages are determined via wage bar-

gaining between firms and trade unions and introduce individual perceived fear of job

loss as an additional term into the worker’s utility function. Firms have the possibility

to chose between in-house production or purchasing intermediate goods, used in the

production process, from abroad. During wage negotiations, firms can use the possi-

bility to offshore as a threat to increase worker’s job loss fears. I use a Nash wage

bargaining model with a right-to-manage setting and find that with increasing job loss

fears, workers are willing to accept lower wages.

In the empirical application I test these theoretical implications, namely whether

a general increase of job loss fears lowers wages and whether increasing potential off-

shoring lowers wages through different levels of job loss fears. In order to show this, I use

large German household panel data combined with industry level offshoring measures.

Since I argue that potential but not realised offshoring affects the wage bargaining out-

come, world-wide export supply of intermediate goods is used to approximate potential

offshoring. The empirical results confirm the theoretical implications.

This paper is structured in the following way. In the next section I briefly discuss

the existing literature on offshoring and wages, wage bargaining and perceived job

insecurity. In Section 3.3 I present a right-to-manage wage bargaining model and show

how individual job loss fears impacts the Nash bargaining solution. The empirical

analysis is carried out in Section 3.4. I describe the data used and explain the empirical

model. After that I interpret the estimation results. Section 3.5 concludes.
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3.2 Literature

When looking at the theoretical literature, the impact of offshoring on wages is not clear

cut.3 In previous studies authors like Feenstra and Hanson (1996a), Arndt (1997, 1999)

and Kohler (2004) apply general equilibrium models with competitive labour markets

and come to different conclusions. Depending on the assumptions and framework of

their models, relative wages of low- to high-skilled workers may rise or fall.

A large body of literature models the effect of offshoring on wages where wages are

determined on imperfect labour markets via collective bargaining. In Skaksen (2004)

wages are negotiated between firms and trade unions in a right-to-manage model. After

wage bargaining the firm can decide whether to outsource one activity of its produc-

tion process or not. The author finds that the threat of potential outsourcing lowers

wages, whereas actual outsourcing results in higher wages. Ranjan (2013) comes to sim-

ilar results. He applies a Pissarides search model to look at unemployment and finds

that decreasing offshoring costs lowers unemployment first but increases unemployment

when offshoring costs are sufficiently low. Gaston (2002) uses an efficient wage bargain-

ing model where both wages and employment are negotiated and firms use offshoring as

a threat to lower wages. His model also predicts higher wages and lower employment if

offshoring takes place. However, contrary findings are in Koskela and Stenbacka (2009)

where the firm decides to offshore before wage negotiations. They find that increasing

offshoring rises the wage elasticity of labour demand which results in lower wages and

unemployment. Additionally, Eckel and Egger (2009), Egger and Kreickemeier (2009)

and König and Koskela (2011) also focus on the bargaining power of trade unions and

find that the effect of offshoring on wages can be positive or negative, depending on the

power of the unions. However, the better fall back option for firms to shift production

to foreign countries lowers the bargaining power of unions and therefore also the wages

of the union members.

Although all articles mentioned above name the threat of potential offshoring as a

form of pressure during wage negotiations, none of the models take that explicitly into

account. In this paper, the effect of this threat is considered in more detail. Trade

3For an extensive view over the previous literature on the effects of offshoring on wages, both
theoretically and empirically, see, e.g. Harrison et al. (2011).
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union members experience direct utility losses in the form of job loss fears through the

threat of potential offshoring. This way I can show that by increasing fears the Nash

solution of the collective bargaining results in lower wages. Therefore I claim that job

loss fears are an additional channel to explain labour market effects of offshoring.

The existing empirical literature mainly examines the impact of actual offshoring

on wages for different skill groups or different tasks. Studies of, e.g., Geishecker and

Görg (2008), Geishecker, Görg and Munch (2010) and Hummels, Jørgensen, Munch

and Xiang (2011) find a negative wage effect for low-skilled workers and a positive

effect for high-skilled workers, indicating that mostly low-skilled labour is threatened by

offshoring. Initiated by the theoretical work of Grossman and Rossi-Hansberg (2008),

there is a growing amount of literature that examines the impact of offshoring on the

wages of workers performing different tasks. Baumgarten et al. (2013) and Ebenstein

et al. (forthcoming) find that the focus on offshoring tasks is more important than

that on skill levels. Their results show distinctive negative wage effects for workers

performing routine and non-interactive tasks, irrespective of the skill level. In addition

to skill and task related effects on wages, this paper emphasizes the role of individual

perceptions, in this case job loss fears, in connection with the effect of the threat of

potential offshoring on wages.

As mentioned above, the existing theoretical literature often explains the wage

reducing effect of offshoring as a consequence of lower bargaining power of trade unions.

In Brock and Dobbelaere (2006), Dumont, Rayp and Willemé (2006) and Dumont, Rayp

and Willemé (2012) the authors empirically assess the effect of international trade on

the bargaining power of trade unions. While Dumont et al. (2006) and Dumont et

al. (2012) find a negative influence of internationalization on the bargaining power of

unions, Brock and Dobbelaere (2006) only find small and no significant effects for the

Belgian manufacturing industry.4

Of the papers that investigate the effect of individual perceptions like job loss fears

on wages, Blanchflower (1991) studies the effect of fear of unemployment on wages

of British workers in the 1980s. He argues that when the wage rate is the result of

4Dreher and Gaston (2007) also empirically assess the bargaining power of 17 OECD countries. They
use union membership as a measure for bargaining power and find no direct link between globalization
and bargaining power.
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bargaining between firms and trade unions, wages are lower if workers have to fear

unemployment. His empirical results show that if workers expect redundancy or plant

closure within the next year, wages are around 8 percent lower. Campbell, Carruth,

Dickerson and Green (2007) find that past unemployment and unemployment of near

family members and friends are linked with higher fears of unemployment. They also

find that higher fears of unemployment lead to lower wage growth for men.

Goerke and Pannenberg (2012) state that individual perceptions and attitudes play

an important role in wage negotiations. They theoretically and empirically look at risk

aversion and collective bargaining for Germany and find that increasing risk aversion

leads to lower wages.

Investigating how FDI and offshoring affect individual job loss fears, Scheve and

Slaughter (2004) use industry FDI and Geishecker et al. (2012) take industry FDI

and offshoring measures and link them with individual data on perceived job security.

Scheve and Slaughter (2004) find that increasing FDI leads to increasing job insecurity

of British workers. FDI increases the elasticity of labour demand and thus wage and

employment volatility. Consequently, individual job insecurity rises. Related to the

effects of FDI, Geishecker et al. (2012) find that offshoring toward low-wage countries

increases individual job loss fears of German workers.

Besides the importance of subjective measures in collective bargaining, the per-

ception of job security is also an important determinant for individual well-being and

overall utility (see, e.g. Frey and Stutzer, 2002). Thus, the aim of this paper is to

theoretically and empirically assess the effect of job loss fears on wages in the pres-

ence of collective bargaining, when firms have the possibility to offshore parts of their

production abroad.

3.3 Wage bargaining with job loss fears

The model presented in this paper builds on a general equilibrium model, where wages

are determined by Nash wage bargaining with optional offshoring. In a right-to-manage

setting the trade union is first negotiating with the firms over wages. In a second step

firms can decide over the amount of labour demand and have the possibility to offshore

parts of their production to maximize their profits.
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A very similar framework can be found in Skaksen (2004). This paper, however,

differs in two aspects. First, firms can use the possibility to shift production abroad as

a threat in order to enforce lower domestic wages. I introduce the fear of job loss as

a channel through which this threat is affecting worker’s utility. Thus, job loss fears

are modelled as an additional component in the utility function of the union members.

Second, union members are heterogeneous in their individual perception of job loss fears

and it is the median member of the trade union who determines the wage bargaining

outcome.5 As a consequence, the Nash wage bargaining solution shows, that with an

increasing threat of potential offshoring, and therefore higher job loss fears, the trade

union accepts lower wages.

3.3.1 Firms

The representative firm is producing one homogeneous good according to a Cobb-

Douglas production function with decreasing returns to scale:

Q = NαHβ, α+ β < 1, (3.1)

where Q is the quantity of the produced good, N is the labour input for the in house

activity which cannot be offshored and H is the intermediate input which can either

be produced in house or be purchased abroad (offshoring). Depending on whether the

firm does offshoring or not, labour demand can be either L = H or L = N + H. In

order to prevent workers to switch between the two production factors, wages have to

be equal for both factors.

According to the right-to-manage model, after the wage of in-house production is ne-

gotiated, the firm sets the amount of in-house labour demand and can decide whether

to offshore the production of the intermediate good or not. Offshoring takes place if

the cost of in-house labour exceeds the cost of offshoring. The firm’s decision is based

on maximizing the following profit function:

Π = Q− wL− cZ, (3.2)

5For an extensive description of right-to-manage and the median voter model, see, e.g. Booth (1994).
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where the price of the produced good is set to one, w is the wage rate for in house

labour L, c is the cost for offshoring including trade costs and Z is the quantity of the

intermediate input in case of offshoring.

3.3.2 Labour market

All domestic workers are organized in one trade union and are collectively negotiating

about the wage rate through Nash wage bargaining. In these wage bargaining solutions

wages are usually higher than in a competitive labour market and labour demand is

lower than the total endowment of union members, i.e. each member is faced with a

probability of not getting employed. Beside this objective probability of job loss, I now

introduce subjective individual job loss fears in the worker’s utility function.

According to authors like Schmidt (1999), Green, Felstead and Burchell (2000),

Manski and Straub (2000) and Nickell et al. (2002) job loss fear is decomposed into two

components: the perceived probability of job loss and the subjective cost of job loss.

Here, the subjective probability of job loss is a consequence of the uncertainty about the

exact costs of offshoring. Workers observe offshoring activities in their domestic markets

or outside their own country, while firms put pressure onto their workers during wage

negotiations with the possibility to offshore parts of the production abroad. Workers

sense this threat of potential offshoring and develop an own individual and subjective

probability of getting displaced. This subjective probability is multiplied with the cost

of job loss, which can be both actual monetary losses and non-pecuniary utility losses

(see, e.g. Green et al., 2000). As a result, this gives the expected subjective loss of utility

in case of unemployment. Hence, the utility of each employed worker i is a function of

the utility of the wage w minus the job loss fear components pi × [U(w)− U(w)]:

Uwi = U(w)− pi [U(w)− U(w)] , (3.3)

with the subjective individual probability of job loss pi and w as the reservation wage.

The probability pi has the functional form of a Pareto distribution:

pi(w, k) = 1−
(
w

w

)k
, (3.4)
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where w > w and k > 0. Workers differ in their perception of job loss fears, or more

precisely, in their perceived probability of job loss, which is a function of the wage w

and a perception parameter k. This parameter k is generally increasing with lower

offshoring costs, i.e. ∂k/∂c < 0. As already mentioned above, workers do not know

the exact amount of offshoring costs. Instead, they perceive the threat of potential

offshoring through their environment, such that decreasing offshoring costs intensify

this threat, which in turn results in higher k. Inserting U(w) = w, U(w) = w and pi

from Equation 3.4 the utility function of Equation 3.3 becomes:

Uwi = w + wkw1−k − wk+1w−k, (3.5)

and the first and second derivative with respect to w are

∂Uwi
∂w

= (1− k)wkw−k + kwk+1w−k−1 (3.6)

∂2Uwi
∂w2

= −k(1− k)wkw−k−1 − k(1 + k)wk+1w−k−2. (3.7)

Figure 3.1 shows the graph of the utility function for k = 0, k = 1 and k = 2,

representing three different threat scenarios for one worker. From this graph it can

be seen that the utility function has different properties regarding the value of the

individual perception parameter k:

• k = 0 : In the absence of job loss fears the utility function is constantly increasing

in w: U ′i(w) > 0 and U ′′i (w) = 0.

• 0 < k ≤ 1 : The utility function is increasing in w with a decreasing marginal

utility: U ′i(w) > 0 and U ′′i (w) < 0.

• k > 1 : The utility function is initially increasing in w with a decreasing marginal

utility until the function reaches its maximum value at w = kw
k−1 . After w = (1+k)w

k−1

the second derivative is changing its sign from being negative to positive.

In this bargaining environment, where all union members are heterogeneous re-

garding the perception parameter k, it is the median member of the trade union who

decides if the bargained wage rate is accepted or not. Accordingly, it is the individual
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Figure 3.1: Utility function for different k. A: maximum utility for k = 2.

parameter k of the median member of the union which is crucial for determining the

Nash bargaining solution.

In case of a successful negotiation, the expected outcome of the median member is

the following:

Um =
L

M
Uwm +

(
1− L

M

)
Uwm, (3.8)

where the subscript m stands for the median member and Uwm is the utility of the

employed median member derived from Equation 3.3. L/M is the actual probability of

getting employed after the wage is set. It is the fraction of labour demand L over the

total number of union members, M . Uwm is the utility of the median member in case of

unemployment and is set to Uwm = w.

To get the Nash wage bargaining solution, the Nash product NP has to be max-

imized with subject to the wage rate w, see e.g. Binmore, Rubinstein and Wolinsky

(1986):

max
w

: NP =
(
Um − Uwm

)γ (
Π−Π

)1−γ
, (3.9)

where Um is derived from Equation 3.8 and Uwm = w is the utility of the median worker

in case of a conflict. Π is derived from Equation 3.2 and the profit for the firm in case
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of a conflict is Π = 0. In case of a conflict, all workers are unemployed. The bargaining

power of the trade union and the firm is represented by the exponent γ and 1 − γ,

respectively.

3.3.3 Nash wage bargaining

The right-to-manage model consists of two stages. In the first stage the wage is ne-

gotiated between the trade union and the firms and in the second stage the firms

determine employment and offshoring, taking into account the negotiated wage from

the first stage. To solve this sequential game backwards, I first derive the demand of in

house labour, given the wage rate w and offshoring costs c. Unlike the union members,

firms do have exact information about the costs of offshoring. After that, the optimal

wage bargaining solution is obtained by maximizing the Nash product with subject to

w, knowing the profit maximizing labour demand of the firms.

3.3.4 Stage 2

To get the optimal domestic labour demand, the profit function of the firm from Equa-

tion 3.2 is maximized with subject to L. In-house employment differs if the firm does

offshoring or not:

L =


N +H = (A1 +A2)w

−1
1−α−β , if w ≤ c

N = A1w
β−1

1−α−β c
−β

1−α−β , if w > c,

(3.10)

where A1 = α
1−β

1−α−β β
β

1−α−β , and A2 = α
α

1−α−β β
1−α

1−α−β . In the first case wages are below

offshoring costs and the firm produces the intermediate input at home (L = N + H).

Unsurprisingly, labour demand is decreasing in w. In the second case wages are higher

than offshoring costs and the firm employs domestic workers only in the first activity

(L = N). Labour demand is decreasing in w and c.

Accordingly, the profit maximizing demand for purchasing the intermediate input
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abroad is:

Z =


0, if w ≤ c

H = A2w
−α

1−α−β c
α−1

1−α−β , if w > c.

(3.11)

If the cost of offshoring is above domestic wages the firm does not offshore and the

demand of the abroad produced intermediate input is zero. In the second case the firm

does offshoring due to lower offshoring costs and demand Z is positive and decreasing

in w and c.

3.3.5 Stage 1

In the first stage the wage is negotiated between the firm and the trade union, both

taking the level of employment from the second stage into account. The Nash bar-

gaining solution is obtained by the wage ŵ, which maximizes the Nash product from

Equation 3.9. As already mentioned above, the fear of job loss is depending on the

individual perception parameter k, which is increasing with the threat of potential

offshoring when offshoring costs are decreasing. Trade union members have no full

information on c. They can only perceive the threat of potential offshoring and can

make predictions of c via offshoring activities in other countries or industries.

The first order condition for maximizing the Nash product from Equation 3.9 with

subject to w is:

∂NP

∂w
= γ

∂Um(w)/∂w

Um(w)− U(w)
− γ ∂L(w)/∂w

L(w)
+ (1− γ)

∂π(w)/∂w

π(w)
= 0 (3.12)

Inserting the profit function of the firm π from Equation 3.2 and labour demand L(w)

from Equation 3.10, the first order condition becomes:

∂NP

∂w
= γ

1− k + kww−1
w − w

+
(1− γ)(−α− β)− γ

(1− α− β)w
= 0 (3.13)

Solving Equation 3.13 for ŵ yields:

ŵ = w

(
1 +

γ(1− α− β)

α+ β + kγ(1− α− β)

)
. (3.14)
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The wage ŵ of the Nash bargaining solution is a function of the reservation wage w,

the parameters α and β from the production function, the bargaining power of the

trade union γ, and the median member’s perception parameter k. The firm threatens

the union members with the possibility of offshoring, and as a result, the fear of losing

employment lowers the optimal wage rate through the parameter k. The higher the

median union member perceives the threat of potential offshoring, the lower the Nash

bargaining solution:

∂ŵ

∂k
= −wγ2 (α+ β − 1)2

[α+ β + kγ(1− α− β)]2
< 0. (3.15)

However, there are two solutions from maximizing the Nash product, differentiated by

the median member’s perception of the threat of potential offshoring:

ŵ =


ŵ1 = w

(
1 + γ(1−α−β)

α+β+kγ(1−α−β)

)
, if k ≤ z

ŵ2 = w
(

1 + γ(1−α−β)
α

)
, if k > z.

(3.16)

In the first scenario, union members are concerned about their future employment and

are willing to accept lower wages in order to prevent the firm from offshoring and to keep

employment for both production factors in house. The willingness of the trade union

members to agree to a wage cut is, however, limited. In a second scenario the threat

of potential offshoring is so strong, i.e. k is greater than the threshold variable z, that

the trade union accepts offshoring and only negotiates over the wage for employment

in the first factor, which cannot be offshored. In this case, the expected utility of the

median member must be higher than in the first scenario. However, since offshoring is

happening now, domestic employment is lower (see Equation 3.10).

As already mentioned above, Skaksen (2004) uses a similar framework regarding

the firms’ decision for offshoring and the determination of wages via Nash bargaining.

He describes three different outcomes for the Nash wage bargaining, depending on the

costs of offshoring. In one scenario offshoring costs are so high that the firm will never

do offshoring and the wage bargaining solution is as if offshoring is not possible. In

the other scenario offshoring costs are so low that union members accept offshoring

and negotiate only over the wage for the remaining in-house production. However, in
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the most interesting scenario the bargaining outcome has no analytical result. Skaksen

argues that there exists an interval in which the costs of offshoring are sufficiently low

to threaten domestic employment while high enough so that the workers are willing

to accept wage cuts to prevent the firm from offshoring. As the only possible solution

Skaksen proposes the wage that is exactly equal to the costs of offshoring so that the

firm just decides to produce at home. In the model described above it is now possible to

find an analytical result for this scenario because there exists a k which reproduces the

result of Skaksen (2004). To show this, the Nash bargaining solution from Equation 3.14

has to be equal to the cost of offshoring:

w

(
1 +

γ(1− α− β)

α+ β + kγ(1− α− β)

)
= c (3.17)

Solving this equation for the fear perception parameter k, gives:

k =
1

γ

(
α+ β

α+ β − 1
+

γ
c
w − 1

)
(3.18)

Thus, if the fear perception parameter k of the median trade union member equals

exactly Equation 3.18, ŵ = c is a Nash bargaining solution in the presence of job

loss fears. Accordingly, the solution of Skaksen (2004) is a special case of the Nash

bargaining model presented in this paper. The Nash bargaining result of Equation 3.14

is in fact much more general and allows wage rates which are even below the costs of

offshoring, depending how strong the fear of job loss is.

3.4 Empirical analysis

A large part of the German wages are negotiated industry-wide between employers and

trade unions. This wage applies, however, often only as a base trade. In addition to

this industry-wide wage floor, many non-tariff payments are individually negotiated

between the company and its employees, and hence leads to different individual wages.

One advantage of the the median voter concept in the collective bargaining model

is that the same results can be drawn for individual wage bargaining. In the collective

wage bargaining model, it is the utility function of the median voter which is crucial for

the wage of all union members. To change the setting to an individual wage bargaining
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model, the utility function of the median member has to be replace with the utility

function and fear level of the respective individual. The result of decreasing wages with

increasing fears will still be the same.

In this section two implications of the theoretical model are empirically evaluated

with combined micro and industry data for the German manufacturing sector. The

first implication to check is, whether increasing job loss fear results in lower wages.

The second, whether the threat of potential offshoring lower wages through different

levels of job loss fear.

3.4.1 Data

For this analysis I use micro data at the individual level from the German Socio-

Economic Panel (SOEP), a large longitudinal survey of private households, for the years

1995 to 2008.6 The focus is on male and female full-time workers of the manufacturing

sector (NACE 15-36) at the age of 18 to 65 years. The dependent variable is the natural

logarithm of real hourly wages, constructed from the Cross-National Equivalent File

(CNEF) of the SOEP. Hourly wages are yearly total wages and salaries from main

job (reported the previous year) with 13th and 14th month salary, profit sharing and

vacation and Christmas bonus, divided by the total amount of working hours per year.

The variable measuring perceived job loss fear is yearly obtained from the SOEP

by asking the respondents how concerned they are about their job security. The re-

spondents can answer in three categories: not concerned at all; somewhat concerned;

very concerned. Accordingly, the variable is coded in ordinal scale of three categories.

In the theoretical model it is potential and not realised offshoring that is threatening

the workers’ jobs. However, potential offshoring cannot be observed and is therefore

approximated by world-wide export supply of intermediate goods. World-wide export

supply has been used only for instrumenting actual offshoring in the empirical literature

like e.g., in Baumgarten et al. (2013), and is now used as a proxy for potential offshoring

for the first time. It is measured at the 2 digit industry level and is obtained from the

6For more details on the German SOEP, see e.g. Wagner, Frick and Schupp (2007). The
data used in this paper was extracted using the Add-On package PanelWhiz for Stata. PanelWhiz
(http://www.PanelWhiz.eu) was written by Dr. John P. Haisken-DeNew (john@PanelWhiz.eu). See
Haisken-DeNew and Hahn (2010) for details. The PanelWhiz generated DO file to retrieve the data
used here is available from the author upon request. Any data or computational errors in this paper
are my own.
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UN Comtrade database. To prevent problems of endogeneity, world-wide export supply

includes all countries reported except Germany.

As a short robustness check, actual offshoring is also used in this analysis. Actual

offshoring is measured as an extended version of the narrow concept of Feenstra and

Hanson (1999), which means that it only captures intermediate inputs denoted to the

corresponding industry of itself.7 For constructing actual offshoring, import data from

Eurostat COMEXT are combined with input-output tables from the German Federal

Statistical Office.

To capture additional industry-specific characteristics that might affect wages, in-

dustry productions values from the Federal Statistical Office of Germany and industry

specific R&D expenditures from the OECD ANBERD database are also used.

3.4.2 Empirical model and identification

The empirical model applied here is a standard wage regression with common individual

demographic covariates, like in Mincer (1974), Brown and Medoff (1989), Schmidt and

Zimmermann (1991), extended with variables for individual job loss fears, potential

offshoring and several other covariates capturing industry specific characteristics:

lnWijt = α+ γFEARit−1 + δlnOFFjt+1 + ηFEARit−1 × lnOFFjt+1

+ βXit + τ INDjt + θt + λj + µi + εijt

(3.19)

The dependent variable is the log of hourly wages W for individual i in industry j

at time t. The variable FEAR stands for the level of individually perceived fear of

job loss. It is measured in three categories and is recoded into three dummy variables

indicating low, medium and high fears. In the theoretical model individual job loss fear

is a function of the current wage. Including job loss fear in time t into the empirical

model would lead to simultaneity problems. For that reason, FEAR goes into the model

with a one period lag, assuming that past fears may explain current wages but current

wages cannot influence past individual fears.

OFF is potential offshoring for industry j and is measured as world-wide export

supply of intermediate goods excluding Germany. If supply of intermediate goods of

7For a more detailed description of this offshoring measure, see the appendix of chapter 2 or
Geishecker et al. (2012).
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the rest of the world increases, it indicates that costs of offshoring decreases so that

it is more attractive for domestic firms to purchase intermediate goods from abroad.

Domestic workers see future world-wide trade in intermediate goods as an indicator

for potential offshoring for their domestic firms and therefore as a threat for their

jobs.8 Potential offshoring is split into high- and low-wage countries, where high-wage

countries are defined as “advanced economies” from the IMF International Financial

Statistics.9 The reason behind is that worker may see only export of intermediate goods

from low-wage countries as a threat for their jobs.

Additionally, there could also be a simultaneity problem with future world-wide

export supply of intermediate goods and wages. This problem can be avoided by using

individual wage data and arguing that aggregate industry export supply is unlikely to

be determined by individual wages (see, e.g., Ebenstein et al., 2011 and Baumgarten et

al., 2013). Furthermore, Germany is excluded as export supplier and partner country

in the export supply data. Hence, the most likely occurring case that German wages

may determine export activities towards Germany can be excluded.

X is a vector of individual demographic variables including dummy variables for

four different age intervals, dummies for low, medium and high levels of education10,

and dummy variables for being married and for having children. Furthermore, there

are variables on work related individual characteristics like tenure, work experience,

occupation and firm size. IND denotes Industry production values and research and

development intensities and are accounting for industry specific wage effects. For de-

tailed descriptive statistics on all variables used in this analysis, see Table 3.1.

In order to control for as much observed and unobserved heterogeneity as possible,

the model also controls for time fixed effects θt, industry fixed effects λj and individual

fixed effects µi. Additionally, regional dummies at the federal state level and industry

specific time trends are also included and εijt is the residual error term. This model

is estimated with OLS with clustered standard errors at the combined industry federal

state mode applying the sandwich formula of White (1980) and Arellano (1987).

8I assume that on average, workers can make perfect predictions of future world-wide trade in
intermediate goods.

9high-wage countries are: EU-15, USA, Canada, New Zealand, Australia, Japan, Norway, Switzer-
land and Iceland.

10Accoring to the OECD International Standard Classification of Education (ISCED), workers are
split into low, medium and high-skilled.

45



Table 3.1: Descriptive statistics

Variable Notes Mean SD

Real hourly wage in Euro 16.67 8.75
D: JobLossFear: low 0/1 0.33 0.47
D: JobLossFear: medium 0/1 0.50 0.50
D: JobLossFear: high 0/1 0.18 0.38
D: Age: 18 - 24 0/1 0.03 0.16
D: Age: 25 - 39 0/1 0.40 0.49
D: Age: 40 - 54 0/1 0.46 0.50
D: Age: 55 - 65 0/1 0.12 0.32
Tenure in years 12.68 9.58
Work Experience: full-time in years 19.30 10.12
Work Experience: part-time in years 0.55 2.09
D: Education: low 0/1 0.15 0.35
D: Education: medium 0/1 0.66 0.47
D: Education: high 0/1 0.19 0.39
D: Occupation: missing 0/1 0.00 0.03
D: Occupation: clerk 0/1 0.08 0.27
D: Occupation: service 0/1 0.01 0.08
D: Occupation: craft 0/1 0.33 0.47
D: Occupation: skilled 0/1 0.18 0.39
D: Occupation: unskilled 0/1 0.05 0.22
D: Married 0/1 0.72 0.45
D: Children 0/1 0.46 0.50
D: Firm Size < 20 0/1 0.14 0.35
D: Firm Size 20 - 199 0/1 0.24 0.43
D: Firm Size 200 - 1999 0/1 0.09 0.29
D: Firm Size > 1999 0/1 0.02 0.15
D: Firm Size missing 0/1 0.00 0.05
D: Public Firm 0/1 0.01 0.09
Industry Producation Value in Billion Euro 104.53 62.65

actual: OFFhighwage in percentage points 4.94 4.41

actual: OFFlowwage in percentage points 1.79 1.77

OFFhighwage in Billion US-Dollar 242.56 208.49

OFFlowwage in Billion US-Dollar 126.05 121.99
R&D / Y in percentage points 2.23 2.40

Observations 16507

In this empirical analysis I want to test two predictions of the theoretical model.

First, whether an increase in job loss fear lowers wages. Second, whether there is an

effect of potential offshoring on wages through the different levels of job loss fears. To

test the first prediction, two dummy variables indicating medium and high level of fear

capture the effect of individuals who change from no fear to medium or high fear. To

test the second prediction the empirical model controls for potential industry offshoring

and individual job loss fears separately and multiplied together as an interaction term.
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The coefficient of potential offshoring plus the coefficient of the interaction term gives

the effect of changes of potential industry offshoring on wages for different levels of job

loss fears as elasticity:

∂lnWijt

∂lnOFFjt+1
= δ + η × FEARjt−1 (3.20)

3.4.3 Estimation results

Table 3.2 shows the results of the fixed effects OLS regressions for different specifica-

tions. They all include individual, workplace and industry characteristics, where almost

all coefficients have the expected sign. Wages significantly increase by age and tenure,

however, probably due to high multicollinearity with age and tenure, years of work

experience have no more additional significant effects on wages. As expected, workers

with higher education levels receive significant higher wages. Ceteris paribus, workers

get around 7.7 or even 15.7 percent higher wages when changing from low to medium or

from low- to high-skilled level, respectively. Being married has a small positive impact

on wages, whereas having children has no effect at all. Workers employed in bigger

firms with more than 2000 employees also receive higher wages of around 4.7 percent.

Interestingly, industry specific characteristics like industry production value and R&D

intensity have no significant effect. With industry specific time trends and industry

fixed effects, those covariates do not have any more explanatory power.

The first specification reported in the first column of Table 3.2 also shows the effect

of medium and high job loss fears on wages. Perceiving no fear of job loss is represented

by the reference category. According to the estimation results, changing from low to

medium job loss fear does not have any effect on wages. However, workers who change

to high job loss fear experience a wage cut by around 1.6 percent on average, ceteris

paribus. This change in fear of job loss corresponds to a change of the perception

parameter k from the theoretical model, where increasing k, ceteris paribus, lowers

the optimal Nash wage bargaining solution. This first specification only shows the

stand-alone effect of job loss fears on wages. In the following, I also include potential

offshoring individually and interacted with job loss fear to capture the effect of potential

offshoring through different levels of job loss fears.
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Table 3.2: Fixed effects OLS wage regressions

Dependent variable: log of hourly wages

(1) (2) (3) (4)

D: Age: 25 - 39 0.0671*** 0.0672*** 0.0664*** 0.0686***
(0.021) (0.021) (0.021) (0.021)

D: Age: 40 - 54 0.0529** 0.0530** 0.0525** 0.0545**
(0.023) (0.023) (0.023) (0.023)

D: Age: 55 - 65 0.0744*** 0.0746*** 0.0739*** 0.0757***
(0.026) (0.026) (0.026) (0.026)

Tenure 0.0036** 0.0036** 0.0035** 0.0035**
(0.002) (0.002) (0.002) (0.002)

Work Experience: full-time -0.0235 -0.0234 -0.0235 -0.0233
(0.019) (0.019) (0.019) (0.019)

Work Experience: full-time2 -0.0003*** -0.0003*** -0.0003*** -0.0003***
(0.000) (0.000) (0.000) (0.000)

Work Experience: part-time -0.0254 -0.0255 -0.0255 -0.0255
(0.018) (0.018) (0.018) (0.018)

Work Experience: part-time2 0.0005 0.0004 0.0005 0.0004
(0.001) (0.001) (0.001) (0.001)

D: Education: medium 0.0742*** 0.0744*** 0.0742*** 0.0740***
(0.017) (0.017) (0.017) (0.017)

D: Education: high 0.1463*** 0.1475*** 0.1473*** 0.1475***
(0.049) (0.049) (0.049) (0.049)

D: Married 0.0212* 0.0210* 0.0213* 0.0207*
(0.012) (0.012) (0.012) (0.012)

D: Children -0.0017 -0.0017 -0.0018 -0.0022
(0.011) (0.011) (0.011) (0.011)

D: Firm Size 20 - 199 0.0032 0.0031 0.0031 0.0029
(0.006) (0.006) (0.006) (0.006)

D: Firm Size 200 - 1999 0.0118 0.0120 0.0120 0.0118
(0.009) (0.009) (0.009) (0.009)

D: Firm Size > 1999 0.0458*** 0.0465*** 0.0462*** 0.0456***
(0.015) (0.015) (0.015) (0.015)

D: Firm Size missing 0.0138 0.0141 0.0138 0.0139
(0.048) (0.048) (0.048) (0.048)

D: Public Firm 0.0023 0.0027 0.0024 0.0018
(0.024) (0.024) (0.024) (0.024)

Industry Production Value -0.0004 -0.0005 -0.0005 -0.0006
(0.000) (0.000) (0.000) (0.000)

R& D / Y -0.0088 -0.0084 -.01188* -0.0089
(0.006) (0.006) (0.007) (0.006)

D: Fear: medium 0.0002 0.0003 0.0003 0.0321
(0.006) (0.006) (0.006) (0.022)

D: Fear: high -0.0158** -0.0158** -0.0158** 0.0342
(0.007) (0.007) (0.007) (0.031)

actual: OFFhighwage -0.0035
(0.003)

actual: OFFlowwage 0.0006
(0.006)

lnOFF
highwage
t+1 0.0793* 0.0780

(0.047) (0.048)

lnOFF
lowwage
t+1 -0.0692* -0.0604

(0.040) (0.041)

Fearhigh × lnOFF
highwage
t+1 0.0128

(0.013)

Fearmed × lnOFF
highwage
t+1 0.0019

(0.011)

Fearhigh × lnOFF
lowwage
t+1 -0.0255*

(0.014)

Fearmed × lnOFF
lowwage
t+1 -0.0093

(0.011)
Constant 3.2162*** 2.9585*** 3.2800*** 2.9729***

(0.259) (0.251) (0.260) (0.363)

Observations 16,507 16,507 16,507 16,507
R-squared 0.865 0.865 0.865 0.865
Number of individuals 3,636 3,636 3,636 3,636

Reference category: low job loss fear, age 18-25 low education, firm size < 20
Standard errors in brackets. ***, **, * significant at 1, 5, 10 %.

The second column of Table 3.2 adds potential offshoring, separated into high- and

low-wage exporting countries. The results show that potential offshoring has contrary

effects on wages, depending on the wage level of the country which supplies the interme-

diate goods. Increasing export supply of intermediate goods from high-wage countries

does have a positive effect, where an one percent increase leads to 0.08 percent higher
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wages, ceteris paribus. However, a one percent increase of export supply of intermedi-

ate goods from low-wage countries, i.e. a one percent increase of potential offshoring

for domestic firms, lowers wages of domestic workers by 0.07 percent.

Regarding those findings it is important to note that export supply of intermedi-

ate goods from high-wage countries does not necessarily means a threat of potential

offshoring for domestic jobs. Rather, this effect is similar to empirically observable

employment and wage effects of offshoring to high-wage countries, where wages may

rise due to increasing labour demand and/or productivity gains, like, e.g. in Ebenstein

et al. (forthcoming) and Sethupathy (2013).

Export supply of intermediate goods from low-wage countries, however, can be seen

as a threat for domestic jobs. According to the theoretical model, this threat results in

lower wages, where the magnitude depends on the level of individually perceived fear

of job loss.

To compare the effect of the threat of potential offshoring with the effect of actual

offshoring on wages, column 3 of Table 3.2 shows the otherwise same specification

now with actual offshoring. The small and also insignificant estimates indicate no

effect of within industry changes of actual offshoring, which confirms the findings of

empirical studies of e.g., Ebenstein et al. (forthcoming) or Baumgarten et al. (2013). In

contrast, within industry changes of potential offshoring are sufficient enough to show

their impact on wages.

To test if an increasing threat of potential offshoring does lower wages differently,

regarding the level of perceived fear of job loss, the third specification additionally

contains estimates of potential offshoring interacted with dummy variables for medium

and high levels of job loss fear. The third column of Table 3.2 shows a significant

negative effect of the interaction term of potential offshoring and high level of job loss

fears. For workers who are in the highest fear category, increasing potential offshoring

does have a stronger negative impact on wages than workers who are in the medium or

low fear category.

To quantify the magnitude and statistical significance of potential offshoring on

wages, the parameter estimates of potential offshoring and the interaction terms are

derived from Equation 3.20. Table 3.3 shows the marginal effects of potential offshoring
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on wages by fear level, as well as standard errors and the test for statistical significance.

Table 3.3: Marginal effects of potential offshoring by fear level

Fear: low Fear: medium Fear: high

lnOFFhighwage
t+1 0.0780 0.0798* 0.0907*

(0.048) (0.048) (0.048)

lnOFFlowwage
t+1 -0.0604 -0.0700* -0.0858**

(0.041) (0.041) (0.041)

standard errors in brackets. ***, **, * significant at 1, 5, 10 %.

Initially, it is striking that the opposing effects established above of export supply

of intermediate goods for low- and high-wage countries gain with increasing fears. Even

though the effects are only weakly statistical significant, export supply of high-wage

countries raises hourly wages by 0.08 and 0.09 percent for worker with medium and high

fear levels, respectively. This result seems to be slightly counterintuitive at first sight.

For workers who conceive stronger fears, it would be reasonable to be more reserved

in demanding higher wages in order to stay employed. One possible reason for this is

that workers with a higher fear level may claim a higher wage premium than workers

with less fear when there is no increasing threat of potential offshoring.

The effects reported in Table 3.3 match the predicted results of the theoretical model

regarding the wage effect of potential offshoring for domestic workers with different fear

levels. Increasing potential offshoring lowers the wages for all fear levels differently. For

workers with low fears, a one percent increase of potential offshoring lowers hourly wages

by 0.06 percent, for workers with medium fears by 0.07 percent and for the workers

with high fears the wage loss is strongest with almost 0.09 percent. Only the effect for

workers with a high fear level is statistical significant at the 5 percent level, though.

Table 3.4 shows that the percentage changes of the variable for potential offshoring

are partly large and volatile. Depending on the industry, the average rate of change for

the period 1995 to 2008 is between 0.2 and 15.6 percent. Considering now the sector

of motor vehicles (NACE code 34), in which the average yearly change rate is about

13 percent, according to the regression results for the wage of German workers in this

industry the following can be stated:
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Table 3.4: Average yearly wage effect of potential offshoring by fear level

NACE Industry description yearly average change Effect by fear level
Code of potential offshoring low med high

15 Food products, beverages, tobacco 7.58 -0.46 -0.53 -0.65
17 Textiles 2.81 -0.17 -0.20 -0.24
18 Wearing apparel; dressing of fur 4.66 -0.28 -0.33 -0.40
19 Tanning and dressing of leather 0.18 -0.01 -0.01 -0.02
20 Wood and cork, except furniture 4.09 -0.25 -0.29 -0.35
21 Pulp, paper and paper products 5.98 -0.36 -0.42 -0.51
22 Publishing, printing 15.59 -0.94 -1.09 -1.34
23 Coke, refined petroleum products 14.28 -0.86 -1.00 -1.22
24 Chemicals and chemical products 8.90 -0.54 -0.62 -0.76
25 Rubber and plastic products 10.57 -0.64 -0.74 -0.91
26 Other mineral products 10.06 -0.61 -0.70 -0.86
27 Basic metals 9.77 -0.59 -0.68 -0.84
28 Fabricated metal products 11.88 -0.72 -0.83 -1.02
29 Machinery and equipment 13.08 -0.79 -0.92 -1.12
30 Office machinery & computers 6.97 -0.42 -0.49 -0.60
31 Electrical machinery & apparatus 10.53 -0.64 -0.74 -0.90
32 Radio, TV and communication 9.14 -0.55 -0.64 -0.78
33 Medical, precision and optical instr. 10.30 -0.62 -0.72 -0.88
34 Motor vehicles and trailers 13.24 -0.80 -0.93 -1.14
35 Other transport equipment 11.86 -0.72 -0.83 -1.02
36 Furniture 7.11 -0.43 -0.50 -0.61

Note: Author’s calculation. All numbers in percentage points. Average change

of potential offshoring was calculated using the geometric mean.

• Ceteris paribus, the yearly average increase in potential offshoring of 13 percent

causes wage cuts of about 1.1 percent (13.24×−0.0858 ≈ −1.14) for workers with

a high level of fear. Whereas workers with medium or low fears are less affected

with a 0.93 and 0.8 percent wage cut, respectively.

• The biggest increase of potential offshoring in the motor vehicles sector was in

2004. Ceteris paribus, this increase affected a cut in wages of workers with strong

fears of almost 2.9 percent. For workers with little or no fears wages decreases by

2.3 and 2.0 percent, respectively.

• A worker who was employed in the motor vehicles sector for the entire period

capturing this analysis and constantly perceived a high level of job loss fear had

to accept a wage cut of 16 percent due to changes of potential offshoring from

1995 to 2008. Whereas a worker with constantly no fear of job loss but otherwise

completely identical, only had to face a wage cut of 11.2 percent, ceteris paribus.
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3.5 Conclusion

In this paper I theoretically and empirically show that the increasing opportunities for

firms to offshore results in lower wages if workers fear for their jobs.

In the theoretical model firms can chose either to produce the intermediate good

in house or purchase it from abroad. Workers are organized in one trade union and

differ in their individual perception regarding their job security. Therefore, I introduce

job loss fear as an additional term of the worker’s utility function. Firms and the

trade union are negotiating over wages via Nash wage bargaining. Firms can use the

opportunity of relocating parts of the production abroad as a threat to induce workers’

fears. The Nash wage bargaining solution shows that rising fears, induced by potential

offshoring, leads to lower wages.

For the empirical analysis I use a large German household panel dataset combined

with industry-level data. Since it is potential and not realised offshoring which is

threatening workers’ jobs, world-wide export supply of intermediate goods is used as a

proxy for measuring potential offshoring. I find that in general increasing fears of job

loss leads to lower wages. Workers who become more anxious, and therefore switch from

low to a high level of fear, are paid with 1.6 percent lower wages on average. Moreover,

increasing potential offshoring to low-wage countries has a negative impact on wages,

where workers with different levels of job loss fear are also affected differently. For

instance, in the sector of motor vehicles the cumulative change of potential offshoring

from 1995 to 2008 led to declining wages of about 11.2 and 16 percent for workers

perceiving a low and a high level of job loss fears, respectively.
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