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1. Introduction

Granular materials are large conglomerates of discrete macroscopic particles and
therefore obey purely classical behavior. This seems to make the description of
granular matter trivial but granular materials behave differently from any of the
other standard and familiar forms of matter: solids, liquids, or gases. For example
it is possible to stand on a big heap of sand, which means that sand can support
a certain load and can indeed behave like a solid object even though it consists
of single grains. But the same sand can flow through a hopper and behave like a
fluid. Fluidization is a further extraordinary phenomenon: At a certain frequency
and amplitude vibrating sand can change its behavior from solid-like to fluid-like.

Two main features contribute to the various properties of granular materials:
1) Interactions between particles are strongly dissipative (static friction, and, for
moving grains, the inelastic nature of their collisions) and 2) thermal fluctuations
can be disregarded.

As far as statics is concerned, granular matter can be viewed as a classical system
of particles at zero temperature which is confined to one of many possible meta-stable
states. For example the sand pile can behave like a solid; the material remains at
rest due to static friction forces, even though gravitational forces create macroscopic
stress on its surface. In ordinary gases temperature allows the system to explore
phase space, but in granular matter the relevant energy scale is the potential energy
which is for ordinary sand 1012 times larger than kBT at room temperature [JaNa96].
So temperature can be neglected and unless perturbed by external disturbances each
meta-stable configuration will last indefinitely.

Flow of grains occurs when the system is driven by external forces. In fig. 1.1 we
see an avalanche at the surface of a pile of mustard seeds. It shows that this flow
obviously need not be that of an ordinary fluid: Simultaneously fluid-like behavior
in a boundary layer at the pile’s surface and a solid-like phase in the bulk separated
only by a few particle diameters can be observed. Roughly two regimes of grain flow
are distinguished: 1) In the quasi static or slow flow regime all particles are in con-
tact with each other permanently. Interactions are then dominated by friction forces
and steric hindrance, and the particles slide or role on each other. 2) When driven
by strong external agents (gravity, shear, vibrating plates), granular matter can be
viewed as a complex fluid of hard particles that move ballistically and suffer instanta-
neous and inelastic collisions. In this rapid flow or grain inertia regime the dynamics
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1. Introduction

Figure 1.1.: An avalanche at the surface of a pile of mustard seeds. Note that the flow
occurs in a thin layer at the surface and that the seeds deeper within
the pile do not participate in the motion. The picture is taken from
[ChGr99].

is dominated by inter-grain collisions with peculiar effects due to inelasticity. Fig. 1.1
also illustrates that the two described regimes are not well-defined physical phases
and there exists a crossover regime, which might not easily be defined.

In general, fluid behavior only sets in above a certain threshold excitation level.
After the energy input is stopped, the inelastic collisions bring the granular medium
to rest almost instantly. The kinetic energy stored in translational or rotational
movement is then lost rapidly to internal degrees of freedom of the granular particles.
Here collective effects play an important role: While a single steel ball dropped on
a plate may bounce for a while, a filled sack with the same balls will stop short any
movement. The huge number of rapid inelastic collisions of neighboring grains are
responsible for this effect. Gravity intensifies this by concentrating particles at the
ground leading to even higher collision rates and therefore loss of energy.

In this introduction we will not give a complete overview of the huge variety of
phenomena in granular matter, which can be found for example in [JaNa96, HeHo98,
Ge99, Ka99], but focus on models and methods describing rapid granular flow. Gen-
erally three levels of descriptions are possible [Gi96]: On a microscopic level each
particle has its own internal degrees of freedom, which can take over parts of the
kinetic energy and are therefore responsible for the dissipative mechanism. A meso-
scopic level where each particle is considered as a classical particle interacting with
the other particles in a way that energy is not conserved. Then interaction laws
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1.1. Undriven rapid granular flow

are commonly introduced in a more phenomenological way and on that level of de-
scription granular matter can be considered as, in a thermodynamic sense, an open
system with an energy sink, which is created by the dissipative interaction [NoEr99].
On a more macroscopic level one is concerned with hydrodynamic quantities like
granular temperature, flow, or density, which might evolve in a particular way due
to the dissipative interaction. This makes it obvious that interesting phenomena
in granular matter take place in systems far away from equilibrium, indicating that
granular materials, despite of the huge technical interest, are per se a challenging field
to test established ideas, or to develop new techniques in the field of non-equilibrium
statistical mechanics.

In the following we give a short overview of models and methods used to describe
undriven rapid granular flow on a mesoscopic and macroscopic level.

1.1. Undriven rapid granular flow

Although the variety of phenomena in granular matter is intriguing and the interest
of many theoretical physicist in granular matter is certainly motivated by a lot of
beautiful experiments, we are still far from a complete theoretical description and
have to restrict ourselves to simplified situations and models. In this study we focus
on the grain inertia regime or rapid granular flow. In addition, we restrict ourselves
to undriven systems. Driven systems are still an open problem and there is a great
lack of real understanding, whereas for example the system of freely cooling1, smooth
spheres, described below, has been widely investigated by several groups by means of
kinetic theory and computer simulations [GoZa93, GoZa93b, Na93, NaYo96, NoEr97,
NoBr98, BrMo96, BrMo98, Deba97]. This system is by now established as a kind of
reference system and the hope is that it gathers all generic properties of undriven
granular gases despite of its simplifying assumptions.

Smooth spheres

In this model one considers identical, spherical particles whose collision properties are
described by a single normal coefficient of restitution en. If V is the relative velocity
of two spheres, then in an elastic collision the component of V parallel to the unit
vector n̂ pointing from one sphere to the other is completely reversed V ′n̂ = −V n
(primed quantities denote the values after collision), and to model inelasticity this
reflection is only partial and determined by en ∈ [0, 1] by V ′n̂ = −enV n̂.

Usually, a system prepared in a homogeneous, equilibrium state of a classical
hard-sphere gas is considered. After dissipation has been switched on, due to inelastic
collisions, energy is lost and the system cools down to a state where all particles are

1The term ‘cooling’ describes the slowing down of the (irregular) movement of the particles coming
to rest in the long-time limit.
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1. Introduction

at rest. The interesting feature of this systems is that it is unstable against spatial
density fluctuations, which grow slowly to macroscopic clusters of particles. The
reason for this so-called cluster instability has been traced back to noise reduction
[BrEr99].

Cooling of smooth spheres proceeds in three stages: The particles, initially pre-
pared in a spatial homogeneous state, remain for short times in the homogeneous
cooling state (HCS), where the dynamics can be described by a slowly decreasing
average kinetic energy or granular temperature2. This temperature T then follows
Haff’s law T ∝ t−2, t being time [Ha83]. The velocity distribution function in the
HCS is no longer Gaussian [GoSh95], but only a few collisions per particle are nec-
essary to reach a state where the shape of the distribution function is fixed and the
dynamics is described by the granular temperature only [HuOr99]. With time, due to
the inelastic collision, the particles move more and more parallel and inhomogeneities
show up first in the flow field, giving rise to vortex patterns. The hydrodynamic anal-
ysis shows that fluctuations in the flow field are only relatively unstable, i.e. only
if one measures the flow in units of the actual average velocity growing correlations
are visible. In other words, the correlations in the flow field decay slower than the
average energy, so that the correlations in the flow field can survive. Only later in a
third stage clusters emerge due to coupling of the vorticity field to the density field
[NoBr98], and the cluster instability is unstable in an absolute sense. In this late
stage the kinetic energy decays much slower than in the HCS. Most of the energy
is stored in the energy of the macroscopic flow field, which decays only diffusively
[BrEr98].

Advanced collision rules

Further concepts of modeling undriven granular flow include more sophisticated col-
lision rules or rotational degrees of freedom. In molecular-dynamic simulations phe-
nomenological equations of motion are formulated which include viscous and fric-
tion forces. We will describe this techniques and quote literature in section 1.2.2.
A velocity-dependent coefficient of restitution has been derived by means of a vis-
coelastic theory based on Hertz’ law of contact [BrSp96]. A more microscopic model
is proposed in [GiZi96, AsGi98], where kinetic energy can be transfered in vibrations
of one-dimensional rods, an effective mechanism of energy loss derived from a Hamil-
tonian model. Collision properties of two-dimensional elastic disks are discussed in
[GeZi99] and found to be inelastic, in general, with a finite fraction of translational
energy being transfered to elastic vibrations.

Theories including rotational degrees of freedom are modeled by a constant tan-

2 In this case granular temperature denotes the average energy per particle and degree of freedom,
so that in this sense it can be seen analogous to the term temperature in equilibrium statistical
mechanics. But in contrast to an equilibrium situation this granular temperature is not a fixed
parameter and can change in time.
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1.2. Methods

gential coefficient of restitution as proposed and discussed in chapter 3, where we
also give hints to studies in this field. More realistic models of rough spheres contain
Coulomb friction, a model, whose collision properties can be confirmed fairly well by
experiments [FoLo94].

Non-spherical objects

Most analytical and numerical studies of kinetic phenomena concentrate on spherical
objects so far. Exceptions are computer simulations of polygonal particles [Wa88,
HoSh87] and cellular automata models [BaBe90]. The question then arises which
of the results are specific to spherical objects and which are generic for inelastically
colliding particles. A single collision of two arbitrarily shaped, but convex objects is
quite difficult to describe analytically [Br96], set aside the problem of an ensemble
of colliding grains. In this work we have chosen the simplest non-spherical objects,
needles, which allow for an analytical, though approximate solution and large scale
simulations [HuAs99].

1.2. Methods

So far we have confined our interest to undriven rapid granular flow, and we now will
give a short overview of the different methods used in this field.

1.2.1. Kinetic theory and hydrodynamic description

Kinetic theory in the context of rapid flow in granular media is almost exclusively
connected with the hard-sphere model, which uses the idea of freely moving particles
which suffer instantaneous inelastic binary collisions.

Classical gases

Since the hard-sphere model has been a very useful reference system for our under-
standing of classical liquids [Ha86], many results and techniques are available and
not surprisingly the model has become very popular also in the context of granular
media.

As far as static correlations are concerned, an analytical expression for the pair
correlation is available [Th63, We63, VeLe82]. This provides a good first approx-
imation for particles interacting via smooth potential functions. The hard-sphere
model is even more important for the dynamics, because it allows for approxi-
mate analytical solutions based on the Boltzmann equation and its generalization
by Enskog to account for a finite particle diameter and pair correlations at contact
[LePe69, KoLe64, FuMa75, BeEr79]. The model has the additional advantage that
it is particularly well-suited for numerical simulations [AlGa70] and in fact many of
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1. Introduction

the important phenomena of dense liquids were observed first in simulations of hard
spheres. Examples are the discovery of long-time tails [ErWo81] and two-dimensional
solids [AlWa62].

Granular gases

Focusing on the rapid flow regime, where kinetic theory should apply, generalized
Boltzmann and Enskog equations have been formulated and pioneering work can
be found in [Ha83, JeRi85, LuSa87, Lu91]. The success of the Enskog Boltzmann
equation to describe classical fluids is based on the linearization of the collision op-
erator around local equilibrium. The resulting linear hermitian operator can then
be treated by standard methods of functional analysis [Gr58, Wa58, ChCo60]. For
inelastic systems no analog of the local equilibrium distribution is known.

In many studies, including the present one, a homogeneity assumption is made
(HCS), which is known to be unstable for dense and large enough system and long
times as described in the previous section [GoZa93]. Hence the analysis is restricted
to small and moderate densities. The velocity distribution function in the homo-
geneous cooling state is no more Maxwellian and deviations can be investigated by
an expansion in Sonine polynomials around the Gaussian state [GoSh95, NoEr98b,
BrPo99, HuOr99].

Hydrodynamic description

A Chapman-Enskog-like expansion around the HCS or Grad’s moment method allow
for calculation of transport coefficients and constitutive relations [JeRi85, JeRi85b,
JeRi85, LuSa84, GoSh95, BrDu98, SeGo96] to yield a hydrodynamic description.
Although there is no clear time and length scale separation in systems of granular
matter and the range of validity of hydrodynamic methods is still under discussion
[TaGo98], the success of a hydrodynamic description for nearly elastic systems is
astonishing.

As in standard hydrodynamics, the relevant macroscopic variables are the density,
the flow field and the granular temperature. The macroscopic equations commonly
used are given by the standard non-linear equations of fluid dynamics, completed
by an energy sink term in the transport equation for the energy, which accounts for
energy loss due to collisions. A linear stability analysis of these equations around the
homogeneous cooling state shows for example the above mentioned instability against
shear fluctuations. Fluctuating hydrodynamics [NoEr97, NoBr98, NoEr99] provides
a quantitative description of the build up of spatial correlations, which agree well
with two-dimensional molecular-dynamics simulations. A mode-coupling-like theory
[BrEr98] allows to determine the time dependence of the energy in the time regime
where the energy decays much slower then predicted by the homogeneous cooling
state due to vortex structures and clustering.
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1.2. Methods

1.2.2. Simulational methods

Simulations of granular matter have become quite important to investigate models
and certain experimental set ups which are difficult to be treated analytically. On
the other hand simplifying assumptions commonly used in analytical descriptions (as
there are for example no gravity, no friction forces, monodispersity of the particles,
constant coefficient of restitution) can hardly be realized in experiments, whereas
they can easily be realized on the computer. So simulations are a useful tool to
gain data, which are hard to access in the real world, to compare with analytical
descriptions and to guide the theorist in her considerations.

Mainly three computational methods are used to investigate rapid granular flow:
To perform molecular dynamics the forces acting during the contact have to be spec-
ified, although they are rarely determined by experiments and have to be introduced
in a more phenomenological way. Once the forces are given, one numerically inte-
grates Newton’s equations of motion. Here the collisions are not instantaneous and
the contact takes a finite time. In event-driven simulations the system is being up-
dated from collision event to collision event. The main assumption is that collisions
occur instantaneously and the velocities after collisions are completely determined
by the values before collisions. In contrast to molecular dynamics these “collision
rules” can be supported by experimental observations [FoLo94]. The direct Monte
Carlo method is similar to the event-driven method. The essential difference is that
the collisions are dealt with a probabilistic rather than a deterministic basis. This
requires the assumption of molecular chaos and restricts the method to dilute gran-
ular flow. In ref. [Bi76] it is shown that the basic assumptions are common to the
Boltzmann equation and that the result is equivalent to a numerical solution of the
Boltzmann equation.

Molecular dynamics

In a molecular-dynamic simulation Newton’s equations of motion are solved numeri-
cally [AlTi87, Ve67]. Therefore the corresponding forces which should lead to realistic
binary collisions have to be formulated. For an overview see for example [Lu98]. One
distinguishes between four types of forces: (i) To model ‘hard’ particles, a short range,
repulsive potential is required. It depends on the elastic properties and on the shape
of the particles. (ii) In order to introduce dissipation into the system, one assumes
viscous damping, i.e. a force which depends on the relative velocity of the particle
and is directed opposite to the velocity. (iii) Tangential friction forces are modeled
by viscous forces tangential to the surface of the particles and are responsible for
loss of the rotational energy. Another possibility is to formulate Coulomb friction
by assuming that the friction force is proportional to the normal force. In many
materials the tangential velocity is reversed in a collision, i.e. elastic properties of
the material store the kinetic energy of the tangential part of velocity and release it
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1. Introduction

again. Therefore (iv) tangential repulsive forces as for the normal direction of point
(i) are formulated.

Event driven

To investigate rapid granular flow, event-driven simulations (ED) are particularly
suitable for three reasons: (i) They allow for simulations of large systems and for
long times. (ii) They correspond perfectly to the dynamics we describe analytically.
(iii) The “collision rules” can be confirmed directly in experiments.

In the simulation the system is propagated from collision event to collision event.
In between the particles move freely and deterministically. The main part of the
computational work is to search for the next collision event and to update the system.
We will describe this simulational technique in detail in section 2.4.1.

Direct simulation Monte Carlo

The direct simulation Monte Carlo (DSMC) method was first proposed by Bird
[Bi76] for the simulation of rarefied gases, and has been applied also in the context
of granular matter [BrRu96, MuLu97, BrCu99]. The basic assumption of DSMC
is that the movement of the particles and the interaction can be handled one after
another. First in a time step τ the particles are moved according to their equations of
motion, without interaction with the other particles. The free movement can either be
calculated by a standard numerical integration scheme or by means of the analytical
solution of the equations of motion. Second interactions are taken into account. In
contrast to ED simulations the exact places and times are not calculated but chosen
randomly in a way that the correct dynamics is mirrored. The simulation box is
divided into cells. Only the particles in one cell can interact. In each cell with more
than one particle a certain number of pairs of particles are chosen randomly from
which only a few pairs are selected with a probability, which corresponds to the
relative velocity of the particles. The collisions are now performed by choosing again
randomly an impact parameter. Here the assumption of molecular chaos enters the
theory. Then the post-collisional velocities are calculated as if the two particles have
collided with that impact parameter. The advantage of this simulation is that it is
fastest and can deal with many more particles then other simulation techniques, but
it neglects correlated collisions and is therefore subject to the same restrictions as
the Boltzmann equation.

1.3. Questions to be answered

The main goal of this work is to understand freely cooling systems of particles with ro-
tational degrees of freedom. Since cooling of smooth spheres is quite well-understood
we ask ourselves how the found phenomena are specific for the model. How does
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1.3. Questions to be answered

friction influence the system and what happens if we consider non-spherical parti-
cles? We use the smooth spheres as a guideline for our work: We start to investigate
the first stage, i.e. the HCS, by means of kinetic theory. How can Haff’s law of ho-
mogeneous cooling be generalized when rotational degrees of freedom are included?
Furthermore it is not at all obvious if one finds a shear and cluster instability also
in systems of rough spheres and especially in systems of non-spherical particles. We
show by means of computer simulations that this is indeed the case, and in particular
we investigate the influence and behavior of the rotational degrees of freedom.

Outline

In chapter 2 we introduce the models under consideration and describe the dynamics
in terms of the time-evolution operator. For a comprehensive understanding we first
discuss smooth potentials and recall the formalism of a pseudo-Liouville operator
for elastic, hard-core collisions. Subsequently the formalism is extended to inelastic,
rough spheres and needles. We briefly describe the event-driven method we used
to perform simulations. The homogeneous cooling state is introduced in chapter 3.
We present results for both spheres and needles, assuming a Maxwellian distribution
for linear and angular momenta. Corrections to the Gaussian approximation are
investigated for smooth and rough spheres. Different time scales of the HCS are
discussed in detail. In chapter 4 we show by means of simulations that for dense
systems of needles the assumption of homogeneity breaks down. In the second part
of chapter 4 we investigate in particular the dynamics of the rotational energy for
rough spheres in the regime of inhomogeneous cooling. In chapter 5 we compare an
approach using the Enskog Boltzmann equation with the approach introduced in this
thesis. Finally, in chapter 6 we summarize results and give an outlook.
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2. The Liouville operator

We are interested in macroscopic properties of systems of many particles which are
themselves of meso- or macroscopic size, i.e. behave according to the rules of classical
mechanics as opposed to quantum mechanics. In addition, the systems are granular
so energy is not conserved. This means that they can not be treated by Hamiltonian
mechanics. In this chapter we will present a formulation of the dynamics based on
the Liouville operator that still enables us to derive properties of the system under
consideration.

We consider two different types of systems: The constituents of the first are
hard spheres of diameter d and the constituents of the second are (infinitely) thin,
hard rods or needles of length L. In order to keep the discussion as transparent as
possible, the formalism of the (pseudo-)Liouville operator will be demonstrated for
Hamiltonian systems with smooth potentials first, for hard-core potentials next, and
finally for granular spheres and needles. It is interesting to note that both cases,
spheres and needles, are analytically tractable so that comparisons between different
geometrical particle shapes are possible.

The dynamics can either be described in terms of the time dependence of observ-
ables or in terms of the time dependence of the distribution function. We derive for
the case of rough spheres the pseudo-Liouville equation, which describes explicitly
the time dependence of the distribution function.

In the last part of this chapter we describe in more detail the event-driven method
(ED), which we use to perform simulations and which mimics the dynamics of hard-
core systems.

10



2.1. Classical systems

2.1. Classical systems

We review the description of the dynamics of a classical many-particle systems in
terms of a Liouville operator. We extend the definition to hard-core interactions and
introduce the pseudo-Liouville operator, for which we derive explicit formulas for the
cases of rough spheres and needles.

2.1.1. Smooth potentials

We consider a system of N classical particles of mass m in a volume V , interacting
through a pair potential W . The system is characterized by its total energy

H =
N∑
i=1

p2
i

2m
+
∑
i<j

W (ri − rj) (2.1)

in terms of particle momenta pi and coordinates ri. The time evolution of an ob-
servable f(Γ), which is a function of phase-space variables Γ := {ri,pi}, but does
not depend on time explicitly, is given in terms of the Poisson bracket by

df

dt
= {H, f} =: iLf. (2.2)

This defines the Liouville operator L. The time evolution of f can then formally be
written as L: f(t) = eiLtf(0).

We decompose the Liouville operator L = L0 +Linter into a free streaming part L0

and an operator Linter, which accounts for interactions. The definition of the Poisson
bracket,

{H, f} =
∑
j

(
∂f

∂rj

∂H

∂pj
− ∂f

∂pj

∂H

∂rj

)
, (2.3)

thus yields

iL0 =
∑
j

iLj0 =
∑
j

pj
m

∂

∂rj
and iLinter =

∑
j<k

∂W

∂rjk

(
∂

∂pk
− ∂

∂pj

)
. (2.4)

2.1.2. Elastic hard-core interactions

A pseudo-Liouville operator for hard-core collisions has been formulated by Ernst et
al. [ErDo69] and has been applied by many groups [ReLe75, Re75, Le82] to study
the dynamic evolution of a gas of hard spheres. Collisions are instantaneous and
characterized by collision rules. In a collision of two particles, numbered 1 and 2,
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2. The Liouville operator

their pre-collisional velocities v1 = p1/m and v2 = p2/m are changed instantaneously
to their post-collisional values v′1 and v′2 according to

v′1 = v1 − (v12r̂12)r̂12

v′2 = v2 + (v12r̂12)r̂12.
(2.5)

We have denoted the relative velocity by v12 = v1 − v2, and r̂12 = r12/|r12|, with
r12 = r1 − r2. The free-streaming part L0 of the Liouville-operator remains un-
changed, whereas the interaction part Linter has to be modified because the potential
is no longer differentiable in the limit of hard-core interactions. It turns out that L
is no longer hermitian as it is for systems with smooth potentials. This is why it is
called a pseudo-Liouville operator for hard-core systems.

In order to construct the pseudo-Liouville operator, we consider the change of
a dynamical variable due to a collision of just two particles. What we need is an
operator T (12)

+ that

• generates the change of an observable caused by a collision when integrated
over a short time interval containing the collision time,

• only acts at the time of contact,

• only acts when the particles are approaching, but not when they are receding.

The second requirement can be satisfied by the ansatz T (12)
+ ∝ δ(|r12| − d), the third

one demands T (12)
+ ∝ Θ(− d

dt
|r12|), where Θ(·) is the usual Heaviside step function. In

order to satisfy the first requirement, we introduce an operator b
(12)
+ which is defined

by its action on an observable f according to

b
(12)
+ f(v1,v2) = f(v′1,v

′
2), (2.6)

i.e. it simply replaces all velocities according to eqs. (2.5). The operator T (12)
+ should

generate the change caused by a collision so that T (12)
+ ∝ b

(12)
+ −1. We collect the three

terms and make sure to include a prefactor which is chosen such that the integration
of an observable over a short time interval around the collision time yields the change
of the observable, as induced by the collision rules (2.5). The complete expression

for T (12)
+ is thus

iT (12)
+ =

∣∣∣∣ ddt |r12|
∣∣∣∣ δ(|r12| − d)Θ(− d

dt
|r12|)(b(12)

+ − 1). (2.7)

Since the probability that three or more particles touch at precisely the same instant
is zero, we only need to consider two particle collisions and find for the time-evolution
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2.1. Classical systems

operator for the system of elastically colliding hard spheres:

L = L0 + Θ(t)L+ + Θ(−t)L− with (2.8)

iL± =
∑
i<j

iT (ij)
± =

∑
i<j

∣∣∣∣ ddt |rji|
∣∣∣∣ δ(|rji| − d)Θ

(
∓ d

dt
|rji|

)
(b

(ij)
± − 1). (2.9)

The negative time evolution is given by L−, and b
(ij)
− is the operator that replaces

post-collisional velocities by pre-collisional ones.

Extension to rough spheres

Models of elastically colliding hard-core spheres have been extended to include ro-
tational degrees of freedom and surface roughness [JeRi85, JeRi85b, ChCo60]. Ro-
tational degrees of freedom offer the possibility to describe molecules with internal
degrees of freedom and surface roughness is needed to transfer energy from the trans-
lational degrees of freedom to the rotational ones.

We only discuss the simplest case of identical spheres of mass m, moment of
inertia I and diameter d. Translational motion is characterized by the center of mass
velocities vi and rotational motion by the angular velocities ωi. Let the surface
normal r̂12 at the point of contact point from sphere 2 to sphere 1. The important
quantity to model the collision is the relative velocity of the point of contact:

V = (v1 −
d

2
ω1 × r̂12)− (v2 +

d

2
ω2 × r̂12). (2.10)

There are two contributions, first the center-of-mass velocity of each sphere, and
second the contributions from the rotations of each sphere. The minus sign in the
first parenthesis stems from the fact that the surface normal r̂12 , as it was defined,
points outwards for sphere 2 and inwards for sphere 1.

Now we can specify the collision rules. Primed variables always denote quantities
immediately after the collision; unprimed variables denote pre-collisional quantities:

r̂12V
′ = −r̂12V ,

r̂12 × V ′ = − r̂12 × V .
(2.11)

Eqs. (2.11) constitute three linearly independent equations. In addition, total
momentum is conserved,

v′1 + v′2 = v1 + v2, (2.12)

and forces during a collision can only act at the point of contact. Therefore there
is no torque with respect to this point and consequently we have conserved angular
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2. The Liouville operator

momentum (also with respect to the point of contact) for both particles involved:

md

2
r̂12 × (v′1 − v1) + I(ω′1 − ω1) = 0 ,

md

2
r̂12 × (v′2 − v2)− I(ω′2 − ω2) = 0 .

(2.13)

Altogether we have 12 independent equations for 12 unknowns, namely the four
vectors v′i and ω′i, i = 1, 2, with three components each. Solving for these, we
obtain:

v′1 = v1 − ηtv12 − (ηn − ηt)(r̂12v12)r̂12 − ηt
d

2
r̂12 × (ω1 + ω2)

v′2 = v2 + ηtv12 + (ηn − ηt)(r̂12v12)r̂12 + ηt
d

2
r̂12 × (ω1 + ω2)

ω′1 = ω1 +
2

dq
ηtr̂12 × v12 +

ηt
q
r̂12 × (r̂12 × (ω1 + ω2))

ω′2 = ω2 +
2

dq
ηtr̂12 × v12 +

ηt
q
r̂12 × (r̂12 × (ω1 + ω2)).

(2.14)

The dimensionless constant q = 4I/(md2) abbreviates a frequently appearing com-
bination of factors. We have also introduced two parameters ηn and ηt, because
we anticipate the more general collision rules for the inelastic case. For elastically
colliding, perfectly rough spheres, we simply have ηn = 1 and ηt = q/(1 + q).

The pseudo-Liouville operator for elastically colliding rough spheres is still given
by eq. (2.9) but the operator b

(ij)
+ now replaces linear and angular velocities according

to eqs. (2.14).

Extension to rough needles

Elastic collisions of hard needles have been discussed by Frenkel et al. [FrMa83]. It
is straightforward to rephrase their results in terms of a pseudo-Liouville operator
[HuAs99]. The free-streaming part of the Liouville operator is derived from the ki-
netic energy of the Hamiltonian according to the general rules of classical mechanics.
Note, however, that for thin needles, one of the moments of inertia is zero; this im-
plies that the angular-momentum component along the corresponding axis, which
points along the orientation of the needle, is also always zero. Therefore, rotations
about this axis can be ignored, and ω has only two components, both perpendicular
to the orientation of the needle. The center-of-mass coordinate of needle i will be
denoted by ri and its orientation by the unit vector ui. The moments of inertia
perpendicular to ui are equal due to symmetry and will be denoted by I.

The formulation of the collision rules proceeds in close analogy to the case of
rough spheres. First we determine the conditions of contact. The unit vectors u1
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2.1. Classical systems

and u2 span a plane E12 with normal

u⊥ =
u1 × u2

|u1 × u2|
. (2.15)

We decompose r12 = r1 − r2 into a component perpendicular r⊥12 = (r12u⊥)u⊥ and

parallel r
‖
12 = (s12u1 − s21u2) to E12 (see fig. 2.1). The hard rods are in contact if

r12u
⊥ = 0 and simultaneously |s12| < L/2 and |s21| < L/2. The relative velocity of

r

12
u
1

||
12

21u2ss

Figure 2.1.: Configuration of two needles projected into the plane spanned by the
unit vectors u1 and u2.

the point of contact is given by

V = v12 + s12u̇1 − s21u̇2. (2.16)

It is useful to introduce a set of normalized basis vectors

u1, u⊥1 = (u2 − (u1u2)u1)/
√

1− (u1u2)2, and u⊥ (2.17)

with u⊥ defined in eq. (2.15). Total momentum conservation is given by (2.12) and
conservation of angular momentum with respect to the contact point reads

ω
′

1 = ω1 +
ms12

I
u1 × (v′1 − v1) and ω

′

2 = ω2 +
ms21

I
u2 × (v′2 − v2). (2.18)

Three additional equations follow from the change in the relative velocity of the
contact point, which is modeled in close analogy to the case of rough spheres:

V u⊥ = −V u⊥, V u1 = −etV u1, and V u2 = −etV u2. (2.19)
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2. The Liouville operator

Again, energy conservation implies et = ±1, corresponding to either perfectly rough
or perfectly smooth needles (see also eq. (2.32)). Solving for v′i and ω′i, we obtain
after a lengthy calculation:

v′1 = v1 + ∆v, v′2 = v2 −∆v , (2.20)

ω′1, ω′2 given by eq. (2.18) and the change in velocity ∆v can be decomposed with
respect to the basis defined above, ∆v = γ1u1 + γ2u

⊥
1 + αu⊥. The coefficient α is

given by

α = −
(

1 +
ms2

12

2I
+
ms2

21

2I

)−1

V u⊥, (2.21)

while γ1 and γ2 satisfy the set of linear equations(
A B
B C

)(
γ1

γ2

)
= −1 + et

2

(
V u1

V u⊥1

)
(2.22)

with

A = 1 +
ms2

21

2I
(1− (u1u2)2),

B = −ms
2
21

2I
(u1u2)

√
1− (u1u2)2,

C = 1 +
ms2

12

2I
+
ms2

21

2I
(u1u2)2.

(2.23)

The Liouville operator for two needles must obey the same basic requirements as
for spheres. The only changes are in the condition for a collision to take place1,

iT (12)
+ ∝ Θ(L/2− |s12|)Θ(L/2− |s21|)δ(|r⊥12| − 0+), (2.24)

and in the condition that the two particles are approaching,

iT (12)
+ ∝ Θ

(
− d

dt
|r⊥12|

)
. (2.25)

Collecting the terms and choosing the correct prefactor gives the result

iT (12)
+ =

∣∣∣∣ ddt |r⊥12|
∣∣∣∣Θ(− d

dt
|r⊥12|

)
×

Θ(L/2− |s12|)Θ(L/2− |s21|)δ(|r⊥12| − 0+)(b
(12)
+ − 1). (2.26)

The operator b
(12)
+ replaces all velocities according to eqs. (2.20).

1We assume the needles to be infinitely thin hard rods, i.e. |r⊥12| = 0 at contact. The quantity
|r⊥12(t)| is not differentiable at times t0, for which |r⊥12(t0)| = 0, but we have to take the time
derivative at the point of contact. Therefore we take the limit of arbitrarily but finitely thin
lines, with thickness denoted by 0+. It should be read as δ(|r⊥12| − 0+) = limε↘0 δ(|r⊥12| − ε).
This definition will become important in the calculations and will help us to distinguish if one
particle touches the other from ‘above’ or ‘below’. See also footnote 1 in appendix A.2.
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2.2. Inelastic collision

2.2. Inelastic collision

The collision rules for rough spheres and needles are easily generalized to the case
of inelastic collisions. This will allow us to set up a formulation of the dynamics of
inelastically colliding grains in terms of a pseudo-Liouville operator.

2.2.1. Rough spheres

Energy dissipation is modeled by normal and tangential restitution, see e.g. [JeRi85,
LuSa87, Ce95]. The collision rules imply for the change in the relative velocity of the
points of contact:

r̂12V
′ = −en r̂12V

r̂12 × V ′ = −et r̂12 × V .
(2.27)

The first equation describes the reduction of the normal-velocity component by a non-
negative factor en. This is the well-known normal restitution. The second equation
is intended to describe surface roughness and friction in that it imposes a reduction
or even a reversal of the tangential-velocity component. This is motivated by the
picture of small “bumps” on the surface which become hooked when the surfaces are
very close. For all −1 < et < +1 dissipation is present.

The change in energy in a collision is given by

∆E = −m
(1− e2

n

4
(r̂12v12)2 +

1− e2
t

4

q

1 + q

(
v12 − (r̂12v12)r̂12 −

d

2
r̂12 × (ω1 + ω2)

)2
)
. (2.28)

With the parameter range 0 ≤ en ≤ 1 and −1 ≤ et ≤ 1, energy is only lost and never
gained in a single collision.

The conservation laws for linear and angular momenta are unchanged, so we
obtain the same set of equations for the post-collisional velocities as eqs. (2.14),
with, however, different parameter values

ηn =
1 + en

2
and ηt =

q

1 + q

et + 1

2
. (2.29)

Later we will need the inversion of eqs. (2.14), i.e. for given post-collisional veloc-
ities we want to determine the pre-collisional ones. This is simply done by replacing
et by 1/et and en by 1/en in eqs. (2.14). The pre-collisional velocities obtained from
post-collisional ones will be denoted by v′′1,v

′′
2,ω

′′
1 and ω′′2 in the following.
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2. The Liouville operator

2.2.2. Rough needles

For hard needles we introduce normal and tangential restitution according to

V ′u⊥ = −enV u⊥, V ′u1 = −etV u1, and V ′u2 = −etV u2. (2.30)

The conservation laws for linear and angular momenta are the same as for the elastic
case so that one arrives at the same set of eqs. (2.20), the only change affecting the
parameter

α = −1 + en
2

(
1 +

ms2
12

2I
+
ms2

21

2I

)−1

V u⊥. (2.31)

The energy loss in a collision of two needles is given by

∆E = −m1− e2
t

4

(
C(V u1)2 − 2B(V u1)(V u⊥1 ) + A(V u⊥1 )2

AC −B2

)
−m1− e2

n

4

(
1 +

ms2
12

2I
+
ms2

21

2I

)−1

(V u⊥)2. (2.32)

It can be checked with eqs. (2.23) that the first term is non-positive if and only if
−1 ≤ et ≤ 1. Obviously, the second term is also non-positive if 0 ≤ en ≤ 1. Our
method of modeling granular collisions of needles is therefore consistent with the
constraint that energy may not be gained in a single collision.

2.3. Time evolution of the distribution function

The time evolution of the distribution function is derived for rough spheres. The
corresponding time-evolution operator of the distribution function is calculated.

We will be interested in phase-space averages of an observable f(Γ) at a time t
defined by:

〈f〉(t) =

∫
dΓ ρ(Γ; 0)f(Γ; t) =

∫
dΓ ρ(Γ; t)f(Γ). (2.33)

Here ρ(Γ; t) is the N -particle distribution function at time t. The average can either
be taken over the initial distribution ρ(Γ; 0) at time 0, with the observable being
propagated to time t, or equivalently over the distribution ρ(Γ; t) at time t with the
unchanged observable f(Γ). We write eq. (2.33) as2

〈f〉(t) =

∫
dΓ ρ(Γ; 0)eiLtf(Γ) =:

∫
dΓ
(
eiLtρ(Γ; 0)

)
f(Γ), (2.34)

2It was shown in [NoEr98] that the time-evolution operator of the N -particle system can be
represented in the form exp(iLt) without generating overlap configurations.
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2.3. Time evolution of the distribution function

to define the time-evolution operator L which describes the time evolution of ρ. To
determine L explicitly, we take the derivative of eq. (2.34) at time t = 0 for simplicity,

∂t〈f〉(t)
∣∣
t=0

=

∫
dΓ ρ(Γ; 0)iLf(Γ)

=

∫
dΓ
(
∂tρ(Γ; t)

∣∣
t=0

)
f(Γ) =

∫
dΓ
(
iLρ(Γ; 0)

)
f(Γ).

(2.35)

The time-evolution operator of the density due to free streaming, L0, is easily
calculated by partial integration and we get L0 = −L0. To find an expression for the

time-evolution operator of the density due to collisions T (12)

+ for spheres, we use eq.
(2.35). Phase-space coordinates before collision are denoted by Γ, after collision by

Γ′ = b
(12)
+ Γ so that∫
dΓρ(Γ; 0)iT (12)

+ f(Γ) =∫
dΓρ(Γ; 0)δ(|r12| − d)Θ

(
− d

dt
|r12|

) ∣∣∣∣ ddt |r12|
∣∣∣∣ (f(Γ′)− f(Γ)) . (2.36)

In the first term on the right-hand-side we make a coordinate transformation to the
variables after collision with Jacobian J :=

∣∣ ∂Γ
∂Γ′

∣∣. We use the inverse operator of b
(12)
+ ,

namely b
(12)
− Γ′ = Γ′′. Here the coordinates before collision in terms of the coordinates

after collision are denoted by Γ′′ = Γ(Γ′). We note that d
dt
|r12| = v12r̂12 and rewrite

the first term∫
dΓρ(Γ; 0)δ(|r12| − d)Θ

(
− d

dt
|r12|

) ∣∣∣∣ ddt |r12|
∣∣∣∣ f(Γ′) =∫

dΓ′J ρ(Γ′′; t)δ(|r12| − a)Θ(−v′′12r̂12) |v′′12r̂12| f(Γ′) (2.37)

Next we rename Γ′ by Γ and make use of v′′nmr̂nm = − 1
en

(vnmr̂nm). This allows us

to identify the time-evolution operator of the distribution function, T (12)

+ , by:

iT (12)

+ = δ(|r12| − d)

∣∣∣∣ ddt |r12|
∣∣∣∣ (Θ

(
d

dt
|r12|

)
J
en
b

(12)
− −Θ

(
− d

dt
|r12|

))
. (2.38)

It is common to multiply the right-hand-side of eq. (2.38) by
∫
dσδ(σ−r12) so that

we can replace r12 by σ in eq. (2.38). In the second term the integral transformation
σ → −σ is performed and we integrate over |σ|. We obtain in D dimensions

iT (12)

+ = dD−1

∫
v12σ̂>0

dσ̂ (v12σ̂)

(
J
en
δ(r12 − dσ̂)b

(12)
− − δ(r12 + dσ̂)

)
. (2.39)
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2. The Liouville operator

Finally, we note that t = 0 is not special since we have only chosen it for the sake
of simplicity. Hence we have derived the time-evolution operator for the N particle
distribution function ρ(Γ; t) which is given by the pseudo-Liouville equation

∂tρ(Γ, t) = i

(
−L0(Γ) +

∑
i<j

T (ij)

+

)
ρ(Γ, t). (2.40)

A similar procedure yields the time-evolution operator for the distribution of needles.
For later purpose we remark the frequently used identity

d

dt
〈f〉(t) =

∫
dΓ(

d

dt
ρ(Γ, t))f(Γ) =

∫
dΓ(iLρ(Γ, t))f(Γ) =

∫
dΓρ(Γ, t)iLf(Γ) .

(2.41)

2.4. Event-driven simulations

The event-driven method is introduced. Tricks to fasten the algorithm are presented,
and the peculiarities of needles are discussed.

2.4.1. General ideas

In the models we use the particles follow an unperturbed translational motion until
a collision occurs. These collisions are binary and the pre-collisional velocities are
changed instantaneously to their post-collisional values. In the simplest algorithm,
which mimics this dynamics, one computes the time of the next collision, propagates
the whole system until this time and updates the velocities of the two colliding
particles. This method is straightforward, but inefficient for large numbers of particles
for two reasons. First it is not necessary to update the whole system after each event
and second we do not need to determine all possible collision times for all pairs of
particles (especially in the case of needles, where we have to do this numerically, this
is a huge waste of time). Therefore a good algorithm for needles avoids updating of
the whole system and restricts the search for collision partners in the neighborhood.
We will describe this in detail:

The algorithm of Lubachevsky

In ref. [Lub91] an event-driven (ED) algorithm was introduced which updates only
those two particles which were involved in the last collision. For this a double buffer-
ing data structure is implemented, which contains the ‘old’ status and the ‘new’
status, each consisting of: time of event, position, velocities, and event-partner.

In the ‘new’ status of a particle the event is stored, which would be its very
next from its point of view, i.e. if no collisions of other particles with its expected
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2.4. Event-driven simulations

event-partner crosses its plans. This can happen if earlier collisions of other particles
have the effect that the expected partner will collide with another particle first.
Nevertheless, the main property of this algorithm is that the earliest collision time
stored in all ‘new’ status is indeed the time for the next collisions of the whole system
to be simulated. This ensures that we develop the system from the next ‘real’ event
to the next following ‘real’ event. The collision times of the ‘new’ status, are stored
in an ordered heap tree such that the next event is found at the top of the heap with
computational effort of O(1); changing the position of one particle in the tree from
the top to a new position takes O(logN) operations.

When a collision occurs, the ‘old’ and ‘new’ status of the participating particles
are exchanged. Thus, the former ‘new’ status becomes the actual ‘old’ one, while the
former ‘old’ status becomes the ‘new’ one and is free for future calculations. This
seemingly complicated exchange of information is carried out extremely simple and
fast by only exchanging the pointers to the ‘new’ and ‘old’ status respectively. The
‘old’ status of particle i has to be kept in memory, in order to calculate the time
of the next contact, tij, of particle i with any other object j which can change its
status due to a collision with yet another particle. During the simulation this may
be necessary several times so that the predicted ‘new’ status has to be modified.
The minimum of all tij is stored in the ‘new’ status of particle i, together with the
corresponding partner j as well as positions and velocities after the collision.

The linked-cell structure

The search for possible collision partners is accelerated by the use of a standard
linked-cell data structure and consumes O(1) numerical resources [AlTi87]. Then
crossing the boundary of such a cell is treated as an event. In total, this results
in numerical effort of O(N logN) for N particles. For a detailed description of the
algorithm see ref. [Lub91].

Inelastic collapse

We remark that ED algorithms run into problems when the time between events gets
too small. In dense systems with strong dissipation the time between events may
tend towards zero. As a consequence the so-called “inelastic collapse” can occur, i.e.
the divergence of the number of events per unit time. The problem of the inelastic
collapse [MaBe94, NaYo94], can be handled using restitution coefficients dependent
on the time elapsed since the last event [LuNa98]. If the time between a collision
and the preceding one for at least one particle is smaller than a critical value tc, we
set en = 1 and et = −1, i.e. the elastic values. The time tc can be identified as a
typical duration of a contact. We hope that the effect of tc on the simulation results
is negligible for small tc.

The codes for the ED algorithm of Lubachevsky used in this work were written
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2. The Liouville operator

by Timo Aspelmeier. The routines for the collision rules and the search for collisions
by the author himself.

2.4.2. Hard needles

For this algorithm collision times for each pair of needles have to be determined
numerically. We follow the algorithm proposed by Frenkel and Maguire [FrMa83].
Since the numerical procedure for finding collision events is time consuming, one first
rejects all pairs if needles in the search for collisions which would not collide if they
were spheres and then if they were discs, since we have angular momentum conserva-
tion and the needles rotate around their moving center of mass in a disc with constant
normal. These two procedures – to consider an imaginary surrounding sphere and
disc – supply also a lower and upper bound for the collision time. Inside this interval
we have to find now the smallest root3, corresponding to the next collision. This is
done by a Newton procedure of second order. If a root is found a further lower root
is searched in the interval of the previously found lower bound and the just found
root, as long as no more lower roots can be found.

The whole algorithm is reasonably fast as long as there are only few needles in
each cell of the linked-cell structure so that the time-consuming search for collisions
is restricted to needles in the own and the neighboring cells. On the other hand
we have to choose the linear dimension of these cells to be larger than the length
of a needle, so that for high densities there are many needles in each cell and the
algorithm becomes slow.

Since needles in 3 dimensions have zero excluded volume, all static properties of
the elastic system are equal to those of an ideal gas. This has the advantage that
the initial preparation of the system is trivial. We do not have to equilibrate the
system, but can choose positions randomly distributed over the simulation box and
orientations distributed isotropically. The velocities and angular velocities are taken
from a Boltzmann distribution.

2.4.3. Hard spheres

The search for collisions in this case is much simpler than in the case of needles, since
one only has to solve a quadratic equation. To get a well-defined initial configuration
every simulation is first equilibrated with en = 1 and et = −1 until the velocity
distribution is Maxwellian and the spatial correlations are those of a classical gas of
hard spheres. Then the restitution coefficients are set to the selected values.

3The conditions of contact are described in section 2.1.2. We have to find roots of the function
r12u

⊥ and test if |s12| < L/2 and |s21| < L/2.
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2.5. Summary

Two models are discussed where rotational degrees of freedom are important. We
have chosen rough spheres and needles and focus on the simplest collision rules, which
allow for a transfer of translational energy to rotational degrees of freedom. For
spheres this is achieved by tangential restitution (in addition to normal restitution),
for needles normal restitution is sufficient. We show that the time evolution can
be formulated in terms of a pseudo-Liouville operator, thereby generalizing previous
works from elastic collisions to inelastic ones. The presented formalism is general
enough to include more realistic collision rules, for example Coulomb friction for small
angles of impact and tangential restitution for large angles. The time evolution of
the distribution function is formulated in terms of the corresponding time evolution
operator, which we determine explicitly for the case of rough spheres. In the last part
of this chapter we have discussed the event-driven simulation technique and describe
the tricks to achieve a reasonably fast algorithm also for needles.

23



3. Homogeneous cooling state

The aim of this chapter is to describe the time evolution of a gas of freely cooling
smooth or rough spheres and needles which is dominated by two particle collisions,
as discussed in the previous section.

In this context systems of smooth spheres or discs have been investigated by means
of kinetic theory and computer simulations by several groups [GoZa93, GoZa93b,
Na93, NaYo96, NoEr97, NoBr98, BrMo96, BrMo98, Deba97]. Most of the theories
focus on latest times where interesting phenomena like formation of vortex patterns
and clustering can be observed. For short times or not too high inelasticities the
system remains homogeneous and the dynamics can be described by a decreasing
average kinetic energy or granular temperature T only. The assumption then is
that scaling all velocities with the corresponding mean velocity, v0 :=

√
2T/m, the

shape of the velocity distribution function remains constant in time. This so-called
homogeneous cooling state (HCS) is the starting point for a hydrodynamic analysis.
Although many of the hydrodynamic theories use transport coefficients derived by
the assumption of a Gaussian velocity distribution function, in general the shape
is not Gaussian and deviations have been investigated in different contexts in refs.
[GoZa93b, BrRu96, IcHa95, TaTa95, EsPo97].

Kinetic theory of rough, inelastic, circular disks was first discussed by Jenkins and
Richman [JeRi85, JeRi85b]. These authors introduced two temperatures, one for the
translational and one for the rotational degrees of freedom, and studied deviations
from a two-temperature Maxwellian distribution using Grad’s moment expansion.
Subsequently Lun and Savage [LuSa87, Lu91] extended the approach to rough, in-
elastic spheres. A set of conservation equations and constitutive relations was de-
rived from the Boltzmann equation assuming small inelasticity and surface roughness.
Goldshtein and Shapiro [GoSh95] discuss in detail the homogeneous cooling state of
rough spheres. They determine the asymptotic ratio of rotational to translational
energy as a function of surface roughness and coefficient of normal restitution. They
also assume a fixed shape of the velocity distribution function and assume that the
dynamics can be described by a decreasing total kinetic energy. More recently, event-
driven simulations of rough spheres have been performed by McNamara and Luding
[NaLu98].

In this chapter existing theories of the HCS are extended to the case where more
than a single average kinetic energy is necessary to describe the time dependence of
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velocity distribution function. This will become clear when one considers a system
of rough spheres which is initially prepared in an equilibrium ensemble. Then all
degrees of freedom are equipartitioned and the translational and rotational velocities
are distributed by a Maxwellian determined by a single temperature. Switching on
restitution, the average rotational energy will in general decay with a different rate
than the rotational energy. This means, even if one assumes that the shape of the
distribution function is Gaussian, the Gaussian distributions for the two energies
will have different widths or temperatures, which are now time dependent. Similarly
a system of smooth spheres might initially be prepared in a pure Gaussian state.
Switching on dissipation one may observe deviations from the Gaussian which can
be described by the time dependence of cumulants of the distribution function. At
the beginning higher than second order cumulants vanish but are not zero for later
times, so that the full dynamics is not only described by the average kinetic energy,
i.e. the second moment, but also by all higher moments. Since many theories are
based on the assumption of a Gaussian distribution function, we will investigate if
these cumulants remain small in time and check the range of validity of the Gaussian
approximation.

Of particular interest will be the question on which time scales the dynamics
proceeds. Since quantities like the average kinetic energy only change in collisions,
we will introduce a “collisional time”, which simply counts the number of collisions
which have occurred until time t [NoEr98]. We will see that on this time scale the
corresponding equations will look quite “natural”, but then one has to determine re-
lations between “real” and “collisional” time. This is in general not possible, because
the collision frequency changes in a complicated way with the cooling of the system.
Furthermore we will see that the distribution function approaches an asymptotic fixed
shape exponentially fast on the time scale of collisions1. Then the whole dynamics
is described by a single decreasing kinetic energy, and therefore the assumption of a
fixed shape of previous theories can be justified.

1The fixed shaped is characterized by a constant ratio of rotational and translational energy and
(if one scales all velocities with the square root of the mean kinetic energy) by constant values
of the cumulants.
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3. Homogeneous cooling state

3.1. Gaussian distribution

In this section we will restrict ourselves to the assumption of a Gaussian velocity
distribution function, but we will allow that in general the width or temperature of
the Gaussian for the rotational degrees of freedom differs from the temperature of the
translational ones. Here temperature defines the average kinetic energy per degree
of freedom. We will see that the rotational energy decays with a different rate than
the translational one so that introducing two different temperatures is mandatory.
In the next section, we shall discuss non-Gaussian distributions and shall compute
corrections perturbatively.

The average kinetic translational (rotational) energy and temperature at time t
are given by

〈Etr〉 (t) =
m

2N

∑
i

∫
dΓ ρ(Γ; t)v2

i =:
Dtr

2
Ttr(t) , (3.1)

〈Erot〉 (t) =
I

2N

∑
i

∫
dΓ ρ(Γ; t)ω2

i =:
Drot

2
Trot(t) . (3.2)

Here Dtr and Drot denote the total number of translational and rotational degrees of
freedom respectively. We remind the reader that in this case the term temperature
denotes the average (and time-dependent) kinetic energy per degree of freedom and is
not a temperature in the sense of equilibrium statistical mechanics. See also footnote
2 in the introduction.

It is impossible to compute the above expectation values exactly and we have to
resort to several approximations:

1. We assume that the N -particle probability distribution ρ(Γ, t) factorizes in
spatial and velocity variables

ρHCS(Γ; t) ∼ W (r1, . . . , rN) ρ̃ ({vi,ωi}, t) . (3.3)

Further we assume that the function W (r1, . . . , rN) is homogeneous in space
and only reflects that overlap configurations are forbidden. It gives zero weight
to overlapping configurations and 1 otherwise. Needles have vanishing volume
in configuration space, so that W ≡ 1.

2. We now demand that ρ̃(Γ, t) depends on time only via the average kinetic
energy of translation and rotation:

ρ̃({vi,ωi}, t) ∝ ˜̃ρ ({vi,ωi};Ttr(t), Trot(t)) . (3.4)

3. In the last step we assume that ˜̃ρ factorizes in all particles and is Gaussian in
all its momentum variables

˜̃ρ ({vi,ωi};Ttr(t), Trot(t)) ∝ exp

[
−N

(
Etr

Ttr(t)
+

Erot

Trot(t)

)]
. (3.5)
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3.1. Gaussian distribution

To determine the time dependence of Ttr(t) and Trot(t) we take time derivatives of
eqs. (3.1) and use the identity eq. (2.41).

Then ρ(Γ, t) is replaced by ρHCS(Γ; t), resulting in

d

dt
Ttr(t) =

2

Dtr

∫
dΓ ρHCS(Γ; t)iLEtr =

2

Dtr

〈iLEtr〉HCS and

d

dt
Trot(t) =

2

Drot

∫
dΓ ρHCS(Γ; t)iLErot =

2

Drot

〈iLErot〉HCS . (3.6)

All that remains to be done are high-dimensional phase-space integrals, the details
of which are delegated to appendices A.1.1 and A.2, for spheres and needles.

3.1.1. Results for spheres

After integration over phase space has been performed (see appendix A.1.1 for de-
tails), we find

Dtr

2

d

dt
Ttr(t) = 〈iLEtr〉HCS = −GAT 3/2

tr +GBT
1/2
tr Trot ,

Drot

2

d

dt
Trot(t) = 〈iLErot〉HCS = GBT

3/2
tr −GCT

1/2
tr Trot , (3.7)

with positive constants A, B, C, and G depending on space dimensionality D. In
two dimensions the constants in eqs. (3.7) are given by

G = 4d
N

V

√
π

m
g(d), A =

1− e2
n

4
+
ηt
2

(1− ηt),

B =
η2
t

2q
, C =

ηt
2q

(
1− ηt

q

)
. (3.8)

and in three dimensions

G = 8d2N

V

√
π

m
g(d), A =

1− e2
n

4
+ ηt(1− ηt),

B =
η2
t

q
, C =

ηt
q

(
1− ηt

q

)
. (3.9)

ηt is defined in eq. (2.29) and the pair correlation function at contact, g(d), is defined
in the usual way [Ha86] by:

g(|R1 −R2|) :=
V 2

N2

∑
i6=j

〈δ(R1 − ri)δ(R2 − rj)〉 . (3.10)

For details see also appendix A.1.1.

27



3. Homogeneous cooling state

The Enskog value [ChCo60, NoEr98] of the collision frequency ωE, i.e. the average
number of collisions which a particle suffers per unit time in D dimensions is given
by

ωE := SD
N

V
g(d)dD−1

√
Ttr(t)

πm
. (3.11)

SD is the surface of a unit sphere in D dimensions. Note that always ωE ∝ GT 1/2.
We define the dimensionless time τ by

dτ = ωE(Ttr)dt (3.12)

so that τ counts the collisions that on average each particle has suffered until time
t. In a simulation this would be simply done by counting the number of collisions.
The functional dependence of the two temperatures on τ is determined by

d

dτ
Ttr = −aTtr + bTrot, (3.13)

d

dτ
Trot = bTtr − cTrot (3.14)

with properly defined a, b, c. Eq. (3.13) has a simple interpretation. In a given short
interval ∆t a number of ∆τ collisions occur. Due to these collisions translational
energy decreases by an amount given by the first term, but there is also a gain term,
reflecting that rotational energy is transfered to translational energy. Eq. (3.14) can
be interpreted in a similar way. The solution of eqs. (3.13,3.14) can be written as

Ttr = c1K+ exp(−λ+τ) + c2K− exp(−λ−τ) , (3.15)

Trot = c1 exp(−λ+τ) + c2 exp(−λ−τ) , (3.16)

K± =
1

2b
(c− a±

√
(c− a)2 + 4b2) , (3.17)

λ± =
1

2

(
c+ a∓

√
(c− a)2 + 4b2

)
. (3.18)

The constants c1 and c2 are determined by the initial conditions. It holds for all et,
en, and q that λ− > 0, λ+ > 0 and λ− > λ+. Therefore for long times the ratio of
Ttr/Trot is determined by K+. Integrating equation (3.12) and inserting eq. (3.15)
provides a relation between t and τ :

SD
N

V
g(d)dD−1

√
1

πm
(t− t0) =

∫ τ

τ0

(c1K+ exp(−λ+τ̃) + c2K− exp(−λ−τ̃))−1/2dτ̃ .

(3.19)

The solution of the remaining integral2 gives no further insight.

2The remaining integral is of the form
∫ x1

0
(e(−λ1x) + be(−λ2x))−1/2dx and can be calculated by a
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3.1. Gaussian distribution

Asymptotic solution

We now assume that the ratio Ttr/Trot has reached its asymptotic value K+ for some
τ > τ0 or equivalently t > t0 and substitute Trot = Ttr/K+ into eq. (3.8). We obtain

d

dt
Ttr = −FT 3/2. (3.21)

The resulting equation is of the same functional form as for homogeneous cooling of
smooth spheres, except for the coefficient F , which contains all the dependence on
system parameters. Its solution is given by

Ttr =
Ttr(t0)

[1 + Ttr(t0)1/2(F/2)(t− t0)]
2 ∼

1

[(F/2)(t)]2
, (3.22)

i.e. Haff’s [Ha83] law of homogeneous cooling. We have determined two time scales,
first an exponentially fast decay (measuring time in collisions) towards a state where
we find a constant ratio of translational and rotational energy. As long as dissipation
is small, we can approximate the Enskog-collision frequency for sufficiently short
times by its initial value ω(t) ∼ ω(0) so that we find exponential behavior also in
real time. The second stage of relaxation is characterized by a slow, algebraic decay
of both energies, such that their ratio remains constant.

To get the full time dependence we solve eq. (3.7) numerically3. The two time
regimes are clearly seen for initial conditions Ttr(0) = 1 and Trot(0) = 0, i.e. a system
prepared in an equilibrium state of perfectly smooth spheres. We show in fig. 3.1 in a
double logarithmic plot the time dependence of the total energy E = 3

2
(Ttr(t)+Trot(t))

and the ratio Ttr(t)/Trot(t). Time is plotted in units of 2
3
GT

1/2
tr (0). We have chosen

en = 0.9 and et = −0.8. In addition we plot data of a simulation of 1000 particles in
a box of length 16 d. For details of the simulations see sections 2.4 and 4.2.

Dependence on en and et

We now discuss the dependence of free cooling on en and et. Of particular interest
is the long-time decay of translational and rotational energy as a function of en and
et. We would expect the decay to be slowest if energy is lost only due to normal

series expansion of the integrand for |b| < 1 and λ2 > λ1:∫ x1

0

1√
e(−λ1x) + be(−λ2x)

dx =

2√
π

∞∑
n=0

(
Γ(n+ 1

2 )(−b)n(1− e(−1/2x1(−λ1+2nλ2−2nλ1)))
Γ(n+ 1)(−λ1 + 2nλ2 − 2nλ1)

)
(3.20)

3The numerical integration scheme we use is the procedure stiff from [PrTe94].
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3. Homogeneous cooling state
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Figure 3.1.: Theoretical prediction (lines) for spheres for the total energy E =
3
2
(Ttr(t) + Trot(t)) and the ratio Ttr(t)/Trot(t) versus time. Time is plot-

ted in units of 2
3
GT

1/2
tr (0). We have chosen en = 0.9 and et = −0.8.

The symbols represent data of a simulation of 1000 particles in a box of
length 16 d.

restitution and not due to roughness. Hence, as a function of et, translational and
rotational energy should persist for the longest times for et = ±1. In between, i.e.
−1 < et < 1, we expect a faster decay, because surface roughness is an additional
mechanism for the dissipation of energy. These expectations are born out by the
following detailed discussion of eq. (3.22). We restrict our discussion to the case
of two dimensions, where F is given by F = G(A − B/K+). Asymptotically, for
t → ∞, the translational energy decays like Ttr ≈ (F

2
t)−2 and the rotational energy

like Trot ≈ (
F
√
K+

2
t)−2. In a double-logarithmic plot of Ttr and Trot against t one

should observe straight lines with slope −2 and axial sections (at t = 1) given by
−2 ln (F/2) for the translational energy, and by −2 ln (F

√
K+/2) for the rotational

energy. For the same slope a larger axial section implies persistence for longer times,
i.e. a ‘slower’ decay in time. In fig. 3.2 we plot the prefactors F and F

√
K+ against

et for en = 0.99.

As a function of et, F is smallest for et → ±1 corresponding to the cases where no
energy is lost due to friction. The decay of translational energy is then pushed out
to the longest time scales. In fig. 3.2, the maximum of F is reached for emax

ttr ≈ 0.17,
corresponding to the ‘fastest’ decay of T . For et = −1 we find that F

√
K+ = 0,

because the rotational energy remains constant as a function of time. F
√
K+ reaches
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3.1. Gaussian distribution
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Figure 3.2.: Dependence of the asymptotic decay-prefactors F and F
√
K+ on et for

en = 0.99.

its maximum for emax
trot
≈ −0.29 6= emax

ttr , so that the decay of rotational energy is
‘fastest’ for a value of et, different from the one where the translational energy decays
fastest. In the limit et → 1 the axial sections for T and R have approximately
the same values. In this case the ratio K+ is close to unity, reflecting the rather
effective exchange of rotational and translational energy for rough spheres and thus
approximate equipartition.

Comparison with simulations

In this section we compare our theoretical analysis with results of simulations of
three-dimensional systems performed by Luding and McNamara [LuHu98]. We in-
troduce the dimensionless temperatures T = Ttr/Ttr(0) and R = Trot/Ttr(0) and a
dimensionless time

t̃ =
2

3
Gt (3.23)

and solve eq. (3.7) analytically for short times and initial conditions T (0) = 1 and
R(0) = 0. We get T = 1 − At̃ + O(t̃2) and R = Bt̃ + O(t̃2). Hence, rescaling time
t̃ → At̃ and rotational temperature R → RA/B all data can be collapsed for short
times. This allows us to investigate the dependence of cooling on system parameters
like en, et and density in a clear way.

Various systems characterized by volume fraction ρ = 4π
3
d3N

V
and particle number

N have been simulated. One system with density ρ = 0.087 and N = 1331 particles
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3. Homogeneous cooling state

is denoted as medium; two other systems with lower density have the parameters
ρ = 0.0021, N = 4096 (denoted by dilute), and ρ = 0.0023, N = 68921 (denoted by
large). The abbreviation corresponds to the density, only for the large system one
should read “dilute and large”. Finally, a system with higher density, i.e. ρ = 0.23
and N = 54872, denoted by dense, is examined. To calculate the pair correlation
function at contact, we use the Carnahan-Starling formula in 3D [Ha86]:

4ρg(2a) =
1 + ρ+ ρ2 − ρ3

(1− ρ)3
− 1 = 4ρ

1− ρ/2
(1− ρ)3

, (3.24)

Initially, the normalized energies are T = 1 and R = 0 for all data presented here.
In fig. 3.3 we plot T against normalized time At̃ for en = 0.99 and various values

of the tangential restitution et. We observe reasonable agreement between theory
and simulation over many orders of magnitude in time. For et < 0.5 most of the
dependence on et is taken into account by our scaling, t̃ → At̃, so that the scaled
data almost collapse for et < 0.5.
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Eq. (21) (0.5)
medium (0.5)

Eq. (21) (-0.5)
medium (-0.5)
Eq. (21) (-0.9)
medium (-0.9)

Figure 3.3.: T as function of rescaled time At̃ in 3D. The symbols correspond to
simulations with N = 1331, ρ = 0.087 (medium), en = 0.99, and different
et as given in brackets in the inset. The curves represent numerical
solutions of eqs. (3.7) with the three-dimensional constants from eqs.
(3.9).

In fig. 3.4 we compare simulations of different systems with the numerical solution
of eqs. 3.7. Only the dense simulations deviate from the theoretical result.

In fig. 3.5 we plotRA/B versus normalized time At̃ for medium and dense systems.
We find that RA/B increases proportional to At̃ for small times (At̃ < 0.1), reflecting
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3.1. Gaussian distribution
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Figure 3.4.: T as function of rescaled time At̃ in 3D from simulations with en = 0.99,
and et = −0.9 or et = +0.9 as given in brackets. Different symbols
correspond to simulations with N = 1331, ρ = 0.087 (medium), N =
4096, ρ = 0.0021 (dilute), N = 68921, ρ = 0.0023 (large), and N =
54872, ρ = 0.23 (dense). The curves are numerical solutions of eqs. (3.7)
with the three-dimensional constants from eqs. (3.9).

the activation of initially ‘cold’ rotational degrees of freedom due to collisions. This
feature as well as the full time dependence is well reproduced by our theoretical
analysis.

Almost smooth spheres

In fig. 3.6 we present T , RA/B and the ratio of T and RA/B as a function of scaled
time At̃ for en = 0.6 and et = −0.9, where an interesting structure is observed.
The symbols correspond to a system with ρ = 0.087, N = 1331. The data are in
good agreement with the theoretical curves. The loss of energy during collisions
is predominantly due to normal restitution and only after the translational energy
has decayed to a very small value (T < 10−5) does one observe the energy loss due
to tangential restitution. The two regimes can be discussed analytically using eqs.
(3.9). For intermediate times, when the translational energy is still appreciable, the
equations can be simplified for almost smooth spheres, i.e. (et ≈ −1):

d

dt̃
T = −AT 3/2 (3.25)

d

dt̃
R = −CT 1/2R . (3.26)
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3. Homogeneous cooling state
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Figure 3.5.: RA/B as function of rescaled time At̃. The data are selected situations
from fig. 3.3. The curves represent the numerical solutions of eqs. (3.7).

We have neglected terms of O((1 + et)
2) and approximate A ≈ (1 − e2

n)/4 and
C ≈ 5(1 + et)/14. The solution for T is that of smooth spheres, decaying like
T (t̃) ≈ (At̃/2)−2 for large t̃. Substituting this result into the equation for R, we find
R(t̃)/R(t̃0) = (t̃/t̃0)−α with α = 2C/A. The exponent α depends continuously on en
and et. Here t̃0 is some intermediate time scale, larger than the time for the initial
increase of R, but smaller than the time scale to reach the true asymptotic state. The
above algebraic decay is shown in fig. 3.6 as a straight dashed line with α ≈ 0.396.
Once the translational energy has decayed to a very small value as compared to the
rotational energy, all terms in the differential equations for R and T are equally
important. We then observe a crossover from a t̃−α to a t̃−2 decay of the rotational
energy. This is the true asymptotic state characterized by a constant ratio T/R and
has been discussed above. The crossover between the two regimes shows up as a
parallel shift for T [see figs. 3.6 and 3.7], because the translational energy decays like
t̃−2 in both regimes, but with a different prefactor.

When en is increased to a value close to unity, i.e. the elastic case, the interme-
diate time regime disappears, because normal and tangential restitution are equally
important. This is demonstrated in fig. 3.7, where we show T plotted against the
normalized time At̃ for medium density ρ = 0.087, et = −0.9 and different values of
en, as given in the legend.

In the intermediate time regime all curves follow the decay of smooth spheres
(see eq. (3.25)), which is independent of en, because we use scaled time At̃. In
the true asymptotic regime, all curves have the same slope however with an axial
section, which increases with decreasing en. Without scaling t̃ with A the axial
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3.1. Gaussian distribution
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Figure 3.6.: T , RA/B, and (B/A)T/R for 3D simulations with et = −0.9 and en =
0.6 (symbols) as a function of scaled time At̃. The lines give the solution
of eqs. (3.9).

section decreases with decreasing en reflecting the more efficient dissipation of energy
for smaller en. The agreement between theory and simulations is quite good for
values of en as low as en = 0.6, and even for en = 0.2 only the crossover regime is
not captured by theory.

3.1.2. Results for needles

In the case of needles we restrict ourselves to the case of perfectly smooth needles,
i.e. et = −1. After some lengthy algebra, presented in appendix A.2, eq. (3.6) can
be cast in the following form

2Ṫtr

γnT
3/2
tr (1 + en)

= −
∫

2

d2r
(1 + Trot

Ttr
kr2)1/2

1 + kr2

+
1 + en

2

∫
2

d2r
(1 + Trot

Ttr
kr2)3/2

(1 + kr2)2
, (3.27)

4Ṫrot

3γnT
3/2
tr (1 + en)

= −
∫

2

d2r
Trot

Ttr
kr2(1 + Trot

Ttr
kr2)1/2

1 + kr2
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3. Homogeneous cooling state
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Figure 3.7.: T as function of rescaled time At̃. The density is ρ = 0.087, et =
−0.9 and the restitution coefficient en is given in the insert. The curves
represent the numerical solutions of eqs. (3.9).

+
1 + en

2

∫
2

d2r
kr2(1 + Trot

Ttr
kr2)3/2

(1 + kr2)2
, (3.28)

with γn = (2NL2
√
π)/(3V

√
m) and k = (mL2)/(2I). The two-dimensional integra-

tion extends over a square of unit length, centered at the origin.

In fig. 3.8 we plot the numerical solution4 of eqs. (3.27,3.28) for en = 0.8 and k = 6
(k = 6 corresponds to a homogeneous mass distribution along the rod) as a function
of time in units of γn

√
Ttr(0). In addition we have performed simulations of a system

of 10000 needles, confined to a box of length 24 L. (For details of the simulations
see section 2.4 and 4.1.) We show the total kinetic energy E = 3

2
Ttr + Trot (in units

of Ttr(τ = 0)) and the ratio Ttr/Trot. Analytical theory and simulation are found to
agree within a few percent over eight orders of magnitude in time. (Trot(0) = 0 has
been chosen as initial condition). In this case we observe an even clearer separation

4For the numerical solution of eqs. (3.27,3.28) the integrations have to be performed first. Therefore
we use spherical coordinates, so that the integration over the angle can be performed analytically.
The remaining integral is performed numerically by the procedure qromb of [PrTe94]. For the
numerical integration of the differential equation we use odeint also taken from [PrTe94].
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3.1. Gaussian distribution
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Figure 3.8.: Theoretical prediction (lines) for needles for the total energy E =
3
2
(Ttr(t)+Trot(t)) and the ratio Ttr(t)/Trot(t) versus time. Time is plotted

in units of γn
√
Ttr(0). The simulation data are from a system of 10000

needles in a box of length 24 L with en = 0.8.

of time scales. The decay of Ttr/Trot to a constant value c happens on a time scale of
order one. In this range of times the total kinetic energy E remains approximately
constant (on a logarithmic scale) and decays like t−2 only after translational and
rotational energy have reached a constant ratio.

The constant ratio

We plug the ansatz cTrot = Ttr into eqs. (3.27,3.28) and recover Haff’s law also for

needles, i.e. Ttr ∝ −T (3/2)
tr and Trot ∝ −T (3/2)

rot . To determine the constant c we use
cṪrot − Ṫtr = 0, which yields an implicit equation for c, whose solution is plotted in
fig. 3.9.

The asymptotic ratio c depends on k as well as on en. Interestingly we can choose
k in a way that equipartition holds for all en. To find that particular value of k we
set c = 1 which yields an equation for k :

(1− e2
n)

∫
d2x

1− 3
2
k∗r2

√
1 + k∗r2

= 0 .

Equipartition holds for all values of en < 1 if k = (mL2)/(2I) is set to the particular
value (k∗ = 4.3607). For en = 1, equipartition always holds, independent of k.
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3. Homogeneous cooling state
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Figure 3.9.: Asymptotic ratio for Ttr/Trot as a function of et for different values of k.

For k < k∗ we find Ttr < Trot and for k > k∗, Ttr > Trot. Hence the distribution of
mass along the rods determines the asymptotic ratio of rotational and translational
energy, including equipartition as a special case.

The asymptotic solution discussed above is approached for arbitrary initial con-
ditions for long times. If a totally elastic system is prepared in an initial condition
with Ttr 6= Trot we expect that the equilibrium state (equipartition) is reached expo-
nentially fast with relaxation rate given by ν ∝ γ

√
Ttr. As long as energy dissipation

due to inelastic collisions is small we expect a similar behavior, which is confirmed
by the numerical solution of eqs. (3.27) and (3.28) and the simulations.

3.1.3. Summary

The homogeneous cooling state for rough spheres and needles is discussed. We for-
mulate the N -particle distribution function, which we assume to be homogeneous in
space and velocities distributed by a Gaussian with time-dependent translational and
rotational temperatures, Ttr and Trot. This leads to two coupled differential equa-
tions for the two temperatures. For sufficiently rough spheres and for needles, the
relaxation of translational and rotational kinetic energy is characterized by two time
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3.2. Non-Gaussian distribution

scales: (1) An exponentially fast decay towards a state with constant ratio of trans-
lational to rotational energy and (2) an algebraically slow decay of the whole energy,
such that the above ratio remains constant in time. The theoretically predicted cool-
ing dynamics is confirmed by computer simulations of systems of small or moderate
density, where no shearing or cluster instability is observed and the system remains
homogeneous [LuHu98, HuAs99]. For almost smooth spheres, i.e. if the coefficients
of normal and tangential restitution are such that the energy is lost mainly due to
normal restitution, we observe an intermediate time regime which is characterized by
an algebraic decay of translational and rotational energy: Translational energy de-
cays according to Haff’s law t−2, whereas rotational energy decays with an exponent
that depends continuously on en and et.

3.2. Non-Gaussian distribution

Deviations from the Gaussian state are expressed by cumulants of higher order. We
consider smooth and rough spheres. For smooth spheres we are able to determine the
full dynamics of higher cumulants up to sixth order. For rough spheres we restrict
ourselves to the state where the deviations from a Gaussian state have reached their
asymptotic values. The collision integrals are calculated by means of computer algebra
programs.

3.2.1. Smooth spheres

In this section we consider smooth disks in two dimensions. Calculations of collision
integrals are much simpler due to a reduced number of degrees of freedom. This will
allow us to test in this case the pertubative procedure to higher order than in the
case of rough spheres.

The velocity distribution function is expanded around a Gaussian distribution
in terms of generalized Laguerre or Sonine polynomials. The coefficients of this
expansion are denoted with al. For time-independent al this expansion has first
been done by Goldshtein and Shapiro [GoSh95], who also determined the first non-
vanishing coefficient a2. Noije and Ernst [NoEr98b] also calculated a2 and found a
different result. In a more recent paper Brilliantov and Pöschel [BrPo99] consider
the dynamics of a2 up to order a3

2 but they neglect higher order coefficients ai for
i > 2. We will investigate the influence of higher coefficients a3, . . . , a6, which we
assume to be time dependent.

We recapitulate the dynamics of smooth spheres with normal restitution, which
is a special case of the more general rough sphere model. We consider a system of
N smooth, inelastically colliding spheres with radius d confined to a D-dimensional
volume V , so that the homogeneous density is given by n := N

V
. The position of each

sphere is denoted by ri and each particle has a velocity vi. The collision rules given
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3. Homogeneous cooling state

in eq. (2.14) simplify to

v′i = vi −
1 + en

2
(vij r̂ij)r̂ij , (3.29)

v′j = vj +
1 + en

2
(vij r̂ij)r̂ij , (3.30)

where vij = vi − vj and r̂ij = rij/rij. Angular velocities are not changed so we do
not consider them, which simplifies the calculations enormously. We are interested
in the dynamics of a freely cooling system of granular particles, which we assume to
remain homogeneous for all times. The system will initially be prepared in a Gaussian
state, so that deviations from the Gaussian should be small for short times and small
inelasticity. We assume that all particles are equally distributed and expand the
one particle distribution function ρi(vi, t) in generalized Laguerre polynomials5 Lαn
around the Gaussian state.

An average velocity v0(t) can be defined via the second moment of the distribution
function ∫

dΓρv2
1 =:

D

2
v2

0(t) , (3.31)

and the temperature T is defined in terms of v0(t) by T (t) := m
2
v2

0(t). All velocities
are now scaled by v0(t) and denoted with ci = vi/v0(t). We expand the distribution
function around a Gaussian function in the scaled variable c and time-dependent
coefficients an(t). The general ansatz for the N -particle distributions function for
the homogeneous cooling then reads

ρ(Γ, t) ∝ W (r1, . . . , rn)
N∏
i=1

ρi(vi, t), and

ρi(vi, t) :=
1

(v0(t)
√
π)D

ρ̃i(ci, t) :=

1

(v0(t)
√
π)D

exp
(
−c2

i

) ∞∑
n=0

an(t)Lαn
(
c2
i

)
, (3.32)

with α = D/2−1 in D dimensions. If we choose a0 = 1 then ρi is properly normalized,
so that

∫
dviρi = 1.

We express v2
i by the first and second Laguerre polynomial eqs. (A.32)(A.33)

v2
i = −Lα1 (v2

i )− (α + 1)Lα0 (v2
i ) . (3.33)

5For a definition of the Laguerre polynomials Lαn and the choice of α see [MaOb66] and appendix
A.3.
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3.2. Non-Gaussian distribution

and find using the orthogonality relations eq. (A.37)∫
dviρ1(vi, t)v

2
i = v2

0(
D

2
−
(

1 + α

1

)
a1) , (3.34)

which implies together with eq. (3.31) that a1 = 0 for all times [GoSh95, NoEr98b,
BrPo99]. See also appendix A.4.

We remark here that the coefficients ai(t) are given using the orthogonality rela-
tions of the Laguerre polynomials by

al =
1(
l+α
l

) ∫ dΓρ(Γ, t)Lαl ((
v1

v0(t)
)2) . (3.35)

We denoted the binomial coefficients by
(
a
b

)
.

Dynamics of moments

Using eqs. (3.31) and (A.15) the time dependence of T (t) = m
2
v2

0 is given by (see
appendix A.4)

d

dt
T =

d

dt

m

2
v2

0 = −2γω0T , (3.36)

ρ̃ is defined as in eq. (3.32) and γ as

γ := −
√

2π

DSD

1

πD

∫
dc1dc2dσ̂Θ(c12 · σ̂)c12 · σ̂ρ̃(c1)ρ̃(c2)(b− 1)

1

2
(c2

1 + c2
2) (3.37)

SD is the surface of a unit sphere in D dimensions and ω0 the Enskog collision
frequency for a classical gas of hard spheres with temperature T = m

2
v2

0, given by:

ω0 :=
SD√
2π
g(d)ndD−1v0 and SD :=

2πD/2

Γ(D/2)
. (3.38)

Taking the time derivative of eq. (3.35) we have to consider the time dependence of
ρ(v, t) as well as the time dependence of Lαl (( v

v0(t)
)2) via v0(t). The time dependence

of ρ(v, t) is given by the time-evolution operator for the distribution function, and
the time dependence of v0(t) is given by equation (3.36). After a straight forward
calculation, see appendix A.4, we get

d

dt
al = ω0γl + l2γω0(al − al−1) , (3.39)

and

γl =

√
2π

SD

1(
l+α
l

) 1

πD

∫
dc1dc2dσ̂Θ(c12 · σ̂)c12 · σ̂ ×

ρ̃(c1)ρ̃(c2)(b− 1)
1

2
(Lαl (c2

1) + Lαl (c2
2)) . (3.40)
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3. Homogeneous cooling state

All collision integrals γ and γl depend non-linearly on al for all l via ρ̃(c1)ρ̃(c2). We
mention here that our approach is equivalent to the dynamics proposed in [BrPo99],
but has the advantage to give immediately the explicit time dependence of all coef-
ficients, at least formally.

Up to now we have determined the full time dependence of the HCS in terms of
the time dependence of all its moments in eqs. (3.36) and (3.39). This infinitely large
system of differential equations can only be solved approximately. Only under the
assumption that all neglected coefficients are small does it make sense to truncate this
system of equations. It is not a priori clear which terms can be neglected. To make
some progress we assume that higher order coefficients contribute less and assign to
each al a factor λl and make a formal Taylor expansion around λ = 0 to order O(λl).
Then we set λ = 1. If we now make “an approximation of O(λl)” we neglect all
terms higher than λl in eqs. (3.36) and (3.39). A posteriori the assumption has to
be verified.

The collision frequency

To determine the collision frequency ω we use τ(t) which counts the number of
collisions per particle, which they had to suffer until time t. ω is then given by d

dt
τ(t)

[ChCo60]. To determine d
dt
τ(t) we use eq. (A.15) and the fact that in each collision

the number of collisions that each particle has suffered increases by one and we obtain

d

dt
τ = ω0γτ , and (3.41)

γτ =

√
2π

SD

1

πD

∫
dc1dc2dσ̂Θ(c12 · σ̂)c12 · σ̂ρ̃(c1)ρ̃(c2) . (3.42)

γτ depends on all al and for the case that all al = 0 we would get γτ = 1 and thus
the Enskog value ω0. We define a time τ̃ by

dτ̃ = ω0dt . (3.43)

Note that τ̃ is only an approximation of τ defined in eq. (3.41), so we do not really
measure time in collisions, but we will show later that the deviations of τ̃ from τ
remain small for not too high inelasticities. In other words we hope that the collision
frequency is approximately determined by the Enskog value and corrections due to
deviations from the Gaussian affecting the collision frequency are small.

General considerations

How can the dynamics be described in a state where all coefficients have already
reached their asymptotic values? A simple possibility is to make the assumption
that the collision frequency is given by the Enskog value ω0, which only depends
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3.2. Non-Gaussian distribution

on the temperature and therefore neglects deviations from the Gaussian state. We
assume that γ has reached its asymptotic value γ∗ for some time t > t∗ or equivalently
τ̃ > τ̃ ∗. γ∗ is determined by the asymptotic values of al. Then we consider eq. (3.36)
and (3.43):

d

dt
T = −2γ∗ω0(T (t))T , (3.44)

d

dt
τ̃ = ω0(T ) , (3.45)

which can we solve analytically

T =
T (τ̃ ∗)

(1 + ω0(T (t∗))γ∗(t− t∗))2
= T (τ̃ ∗) exp (−2γ∗(τ̃ − τ̃ ∗)) , (3.46)

so that

τ̃(t)− τ̃ ∗ =
1

γ∗
ln(1 + γ∗ω0(T (t∗))(t− t∗)) . (3.47)

As long as the collision frequency can be approximated by its Enskog value, eq. (3.47)
provides a relation between collisional time and real time.

Stationary and asymptotic values

We are interested in the dynamics of the temperature and the coefficients as well as
in the asymptotic state. The asymptotic state is characterized by the fact that the
entire time dependence is given by v0(t) and that the coefficients al(t) are stationary
in time. A priori it is not clear if such a state can be found.

(i) To investigate the dynamics we integrate the full differential equation. The
asymptotic values of the coefficients can then be obtained by taking the long-time
limit if they become stationary in time. (ii) To discuss the stationary state we set
the left hand side of eq. (3.39) equal to zero. This set of coupled and, as the case
may be, non-linear equations can be solved with the numerical tool provided by the
computer algebra program. Note that not all of these stationary values are necessarily
dynamically stable solutions of the corresponding differential equation.

In the following we discuss (i) the dynamics and (ii) the stationary state first to
order O(λ2), then to order O(λ3) and O(λ6).

Results to order 2

In a first step we only take into account a2 to linear order. Then the functional form
of the equation for a2 eq. (3.39) is given by

d

dt
a2 = ω0(γ2 + 4γa2)→ d

dτ̃
a2 = γ2 + 4γa2 =: A+Ba2 . (3.48)
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3. Homogeneous cooling state

We have neglected all terms of O(λ3) and A and B are constants given by the collision
integrals in γ and γ2.
(i) Dynamics– By counting time in collisions per particle a2 has, in this approxima-
tion, the time dependence

a2 = −A/B(1− exp(Bτ̃)) , (3.49)

so that the asymptotic value of a2 is reached exponentially fast on a collisional time
scale.
(ii) Stationary state– The stationary value −A/B for a2 coincides with the values
calculated in [NoEr98b]. A and B are given in 2 dimensions by A = 1

8
(1− 3e2

n + 2e4
n)

and B = 1
128

(30e4
n − 5e2

n − 32en − 57).

Results to order 3

To keep the discussion simple we take into account only a2 and a3 i.e. up to O(λ3).
We then still have to deal with equations which are linear in the coefficients (a2

2

is already of order O(λ4)). In the next section we will discuss the non-linear case
up to order O(λ6). We use computer algebraic programs to calculate the collisions
integrals γ, γi and γτ . See appendix A.6. The results are rather lengthy and we only
show here plots of the solution for a system with en = 0.9. We consider the following
equations, in which we neglect terms of higher order:

d

dt
T = −2γω0T , (3.50)

d

dt
a2 = w0γ2 + 4γω0(a2 − 0) , (3.51)

d

dt
a3 = w0γ3 + 6γω0(a3 − a2) , (3.52)

d

dt
τ = ω0γτ , (3.53)

d

dt
τ̃ = ω0 neglecting corrections of a2 and a3. (3.54)

(i) Dynamics– We have solved the simultaneous eqs. (3.50)-(3.54) numerically6 for
the case en = 0.9 and in the following we always plot time in units of 1/ω0(T (0)) and
temperature in units of T (0). We have chosen a2(0) = a3(0) = 0 as initial condition.
In a first step we prove that the approximation to use τ̃ instead of τ can be justified
(at least to this order). In fig. 3.10 a) we show the relative deviations of the true
number of collisions to the approximation given by the Enskog Boltzmann value, i.e
(τ − τ̃)/τ as function of time in a semilogarithmic plot. We see that the relative

6We have used the built-in numerical procedure dsolve of MAPLE to integrate the differential
equation.
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Figure 3.10.: a) Relative deviations of collisions per particle from the approximation
given by the Enskog value as a function of time. b) Collisions per
particle as a function of time.

deviations remain smaller than 0.2 %. This allows us, at least in the homogeneous
cooling state, to use τ̃ instead of τ in eqs. (3.46) and (3.47).

In the asymptotic state7 we get for γ∗ = 0.04723 and values from the numerical
integration of eqs. (3.50)-(3.54) coincides with eq. (3.46) and (3.47) within the graph-
ical accuracy, so we plotted here only the numerical solution. Fig. 3.10 b) shows τ(t)
which has the same form as predicted in eq. (3.47).

In fig. 3.11 a), we show T as a function of time in a double logarithmic plot. We
see the well-known asymptotic time dependence T ∝ t−2. In fig. 3.11 b), we show T
as a function of τ in a semi logarithmic plot resulting in a straight line with slope
−2γ∗ as predicted by eq. (3.46).

In fig. 3.12 we show the time dependence of a2 and a3 as a function of time a)
and as a function of τ b). We see that a2 and a3 reach their asymptotic value on a
time scale which is of the order of the time scale of the onset of the t−2 law and that
only a few collisions per particle are necessary to reach the asymptotic state for a2

and a3.
(ii) Stationary state– As mentioned above we calculate the stationary values by
setting the l.h.s of eq. (3.50) equal to zero. In fig. 3.13 we show the results for the
stationary values of a2 and a3 to O(λ3) as well as a2 to O(λ2). As long as en > 0.6, a2

to O(λ2) does not differ significantly from a2 to O(λ3) and a3 remains small. We see
stronger differences for smaller en and a3 becomes as important as a2 which indicates
stronger deviations from the Gaussian state. We also cannot assume anymore that
corrections of higher orders remain small since we do not have any indication that
the series is converging in the sense that the |al| are small and decreasing.

7How the asymptotic value of γ, which depends on the asymptotic values of ai, is derived, is
described below.
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Figure 3.11.: Temperature as a function of time a) and collisions per particle b).

0
�

10 20 30
t

�

−0.04

−0.03

−0.02

−0.01

0

0.01

0
�

10 20 30
τ�

−0.04

−0.03

−0.02

−0.01

0

0.01
a2

a3

a) b)
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Since to O(λ3) we have to deal with a set of linear equations we only find one
unique solution. Considering higher orders one will find many solutions whose validity
must be investigated. We will discuss this problem in the next section.

Results to order 6

In this section we go to O(λ6), which is the highest order we were able to calculate
with the computer algebra program.
(i) Dynamics– In fig. 3.14 we show for en = 0.8 the dynamics for the 5 non-vanishing
coefficients a2, . . . , a6 as a function of time. We have chosen the initial condition
a2(0) = . . . = a6(0) = 0. We see again a very fast decay to their asymptotic values
and we can verify the assumption that |al| > |al+1|.
(ii) Stationary state– Again we calculate the stationary values by setting the l.h.s of
eq. (3.39) equal to zero. In fig. 3.15 we show the results of the stationary values as
a function of en > 0.3. For en > 0.7 the coefficients remain small and the expansion
seems to converge in the sense that |al| > |al+1| for all l. For en < 0.7 the absolute
values of the coefficients start to grow and seem to diverge with en approaching 0.3.
We will discuss the case en . 0.3 below in more detail. In fig. 3.16 a) and b) we
compare results to order O(λ3) and O(λ6). As long as en > 0.6, we do not find
significant differences between the two orders, a further hint that for these values of
en the perturbation method works.

Since we have to deal with non-linear equations, the solution is not unique and
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3.2. Non-Gaussian distribution

e.g. for en = 0.8 two further stationary solutions can be found, similar as in [BrPo99].
We list the values of the other coefficients for these stationary solutions:

Solution 1 Solution 2
a2 8.95 -24.62
a3 -14.39 -4.50
a4 59.11 39.53
a5 -109.17 178.6
a6 127.8 -197.7

Both solutions are dynamically unstable which we have shown by numerical inte-
gration of the corresponding differential equations (3.36) and (3.39). In addition we
observe that the higher coefficients are not at all negligible so that our assumptions,
which should allow us to truncate the system of differential equations, are severely
violated.

The case en . 0.3– We now can discuss the case en . 0.3. Interestingly we
find for en . 0.3 that the coefficients do not go to an asymptotic value but diverge
with time even if one starts with the initial condition a2 = . . . = a6 = 0, as shown
in fig. 3.16 c). In fig. 3.16 d) we show two solutions of a2 of the corresponding
equations, which are obtained by assuming that the coefficients are stationary in
time. The continuous line corresponds to a dynamically stable solution, the dotted
line is dynamically unstable. Both solutions join near en ≈ 0.3, indicating that the
solution becomes complex. All other coefficients a3, . . . , a6 show the same behavior.
We cannot answer if there exists no asymptotic solution for en . 0.3, since again in
this case the assumption of small and decreasing |ai| is violated, and higher order
terms need to be considered.

3.2.2. Rough spheres

In this section we investigate rough spheres and keep the assumption of homogeneity
and factorization of the N -particle distribution function, but go beyond the approxi-
mation of a purely Gaussian state. The procedure is very similar to the case of smooth
spheres. We do not investigate the dynamics but are interested in the asymptotic
state. As in the case of smooth spheres in the asymptotic state the coefficients al are
stationary in time but in addition the asymptotic state is characterized by a constant
ratio of translational to rotational energy. The time dependence is then entirely given
by the time dependence of the whole kinetic energy.

Dynamics of moments

We make a double expansion of the one particle distribution function in generalized
Laguerre polynomials [MaOb66] around the Gaussian. We define average velocities
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v0 and ω0 via the second moments of the distribution function∫
dΓρv2

1 =:
Dtr

2
v2

0(t) :=
Dtr

m
Ttr(t) and∫

dΓρω2
1 =:

Drot

2
ω2

0(t) :=
Drot

m
Trot(t) , (3.55)

and scale linear velocities by v0(t) and angular velocities by ω0(t). The general ansatz
for the N - particle distribution function of the homogeneous cooling state then reads

ρ(Γ, t) ∼ W (r1, ...rN)
N∏
i=1

ρi(vi,ωi, t) , and

ρi(vi,ωi, t) =
1

Z(t)
exp

(
−
(
vi
v0(t)

)2

−
(
ωi
ω0(t)

)2
)
×

∞∑
n,m=0

an,m(t)Lαn

((
vi
v0(t)

)2
)
Lβm

((
ωi
ω0(t)

)2
)

. (3.56)

We have introduced the abbreviations α = Dtr/2 − 1 and β = Drot/2 − 1. The
average linear and angular velocities, v0(t) and ω0(t), are time dependent and so
are the coefficients an,m(t) of the double expansion. At time t = 0 the system is
equilibrated with temperature T so that m

2
v2

0 = T = I
2
ω2

0 and an,m = 0.
The factor Z(t) follows from the proper normalization,

∫
dvidωiρi = 1,

Z(t) = vDtr
0 ωDrot

0

√
π
Dtr
√
π
Drot

a0,0 , (3.57)

and similar to the case of smooth spheres the orthogonality relations eq. (A.37) of
the Laguerre polynomials imply a1,0 = a0,1 = 0. It holds that

an,m =
1(

n+α
n

) 1(
m+β
m

) ∫ dΓρLαn

(
(
v1

v0

)2

)
Lβm

(
(
ω1

ω0

)2

)
. (3.58)

The binomial coefficients are denoted by
(
a
b

)
and we choose a0,0 = 1.

Taking the time derivative of eqs. (3.55,3.58) one gets the full time dependence
of the homogeneous cooling state for rough spheres given by the time dependence of
all its moments. The calculations are similar to the case of smooth spheres: Taking
time derivatives of the right hand side of eq. (3.58) one has to take into account
the time dependence of ρ, which is determined by L as well as the time dependence

of Lαn

(
(v1

v0
)2
)
Lβm

(
(ω1

ω0
)2
)

via v0(t) and ω0(t), which follows from eq. (3.55). We do

not investigate the dynamics here, but we are interested in the asymptotic values of
the coefficients to check the validity of the Gaussian approximation. The dynamical
equations look very similar to the case of smooth spheres and are found in appendix
A.5.
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3. Homogeneous cooling state

The asymptotic values

To get the asymptotic values we assume that all an,m are stationary in time and that
v0/ω0 = µ is constant. We obtain an infinitely large, non-linear system of equations,
which reads

d

dt
an,m = 0, and

d

dt
v0 = µ

d

dt
ω0 . (3.59)

Details of the derivation and results can again be found in appendix A.5 eqs. (A.63,A.64).
In principle one has to show that a constant ratio v0/ω0 is indeed a stable solution of
the corresponding dynamics. This is in general not possible, but under the assump-
tion that all coefficients are stationary in time the full time dependence is given by
the dynamics of the two temperatures. These dynamics can be determined by a sim-
ilar procedure as in section 3.1. Therefore one can scale out v0 and ω0 in 〈iLTtr〉 and
〈iLTrot〉. The obtained equations are of the same functional form as eqs. (3.7) with
coefficients A, B, C depending on the actual values of all am,n. These two equations
are indeed solved for a constant ratio of Ttr/Trot but we can not make a prediction if
it is a stable solution.

Goldshtein and Shapiro [GoSh95] propose a similar set of moment equations but
they solve it only to lowest order, therefore resulting in the same asymptotic ratio µ
as given in eq. (3.17).

To make any progress we truncate eq. (3.59) and take into account only an,m
for n + m ≤ 2. We also neglect in eq. (3.59) products of different an,m, which we
assume to be of higher order similar as in the case of smooth spheres. We show
results for a0,2 in fig. 3.17 for fixed en = 0.9 as a function of et. Deviations from the
Gaussian vanish for perfectly smooth spheres and are found to increase dramatically
for et → −0.9. Deviations from the Gaussian distribution are also small for perfectly
rough spheres which is unexpected, because rotational degrees of freedom are coupled
to translational ones and en = 0.9. In fact deviations stay small for a broad range
of values of et & −0.75. We do not consider it meaningful to plot the theoretical
result, once a divergence of a0,2 has occurred. We measured a0,2 in simulations of
small systems8. Thereby we avoid clustering but have to bear with poor statistics.
The simulation confirms the increase of a0,2 around et = −0.7 in agreement with the
perturbation expansion.

The dynamics of the system can be discussed similarly as for eq. (3.48). We
consider the dynamics to linear order in a0,2, a2,0, and a1,1 [see eq. (A.61)] and
introduce the time τ̃ which counts the number of collisions as in eq. (3.12) or in eq.
(3.48). We obtain a system of ordinary linear differential equations, whose solution

8To estimate an,m in simulations, we use eq. (3.58), but substitute for the distribution function
the measured one, which is for the momenta given by 1

N

∑N
i=1 δ(v − vi)δ(ω − ωi). Now the

integration can be performed yielding in an estimator for an,m. The values plotted in fig. 3.17
are averages over 10 times of a single run.
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Figure 3.17.: Coefficient a0,2 for en = 0.9 as a function of et. Theory (straight line)
and simulations (circles) are compared.

is exponential, indicating that the asymptotic state of the distributions function is
reached exponentially fast on the time scale of collisions.

3.3. Summary

In chapter 3 the homogeneous cooling state for systems of smooth or rough spheres
and needles has been investigated.
Gaussian approximation– In a first step we investigate rough spheres and needles
and assume that the distribution function remains a Gaussian with time-dependent
translational and rotational temperatures. We are able to derive two coupled differ-
ential equations for the two temperatures, whose solutions show for both systems a
similar behavior: (i) A state with constant ratio of translational to rotational energy
is reached exponentially fast. (ii) Once this state has been reached the whole energy
decays algebraically like t−2, i.e. according to Haff’s law of homogeneous cooling.
Exceptions are almost smooth spheres i.e. if the coefficients of normal and tangential
restitution are such that the energy is lost mainly due to normal restitution: Then we
observe an intermediate time regime where rotational energy decays with an expo-
nent different from −2, which depends continuously on en and et. These results are
confirmed by computer simulations of systems of small or moderate densities where
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3. Homogeneous cooling state

no shearing or cluster instability is observed.
Dynamics of deviations from the Gaussian– To investigate deviations from the Gaus-
sian state for smooth spheres we expand the distribution function in generalized La-
guerre polynomials around the Gaussian state. The full dynamics of the homogeneous
cooling state is expressed by the dynamics of the kinetic energy or temperature, i.e.
the second moment of the distribution function, and the time dependence of the coef-
ficients al of the expansion, which corresponds to higher cumulants of the distribution
function. Under the assumption that we only have to consider coefficients up to a
certain order we are able to determine the dynamics approximately. We find that
only a few collisions per particle are necessary to reach a state where the coefficients
al remain constant in time. Then the dynamics can be described by the total kinetic
energy T only, which follows Haff’s law d

dt
T = −AT−3/2 with time-independent co-

efficient A, determined by the asymptotic values of al.
Validity of the Gaussian approximation– For smooth spheres we find that for en > 0.6
deviations from the Gaussian state remain small and that the perturbative expansion
seems to converge in the sense that the absolute values of the coefficients decrease
with the order of the coefficients. In addition we find for this range of values of
en that the results for the coefficients do not depend significantly on the order of
approximation. For en < 0.6 we find stronger deviations from the Gaussian state,
the absolute values of the coefficients rise and the results differ drastically from order
to order of approximation. To study deviations from the Gaussian state for rough
spheres, we use a similar approach. We determine the equations for the full dynam-
ics in terms of the translational and rotational temperature and the coefficients of a
double expansion in generalized Laguerre polynomials. We perturbatively calculate
the asymptotic values of the first three non-vanishing coefficients by neglecting all
coefficients of higher order. This perturbative approach is shown to break down for
certain values of et and en, where deviations from the Gaussian diverge. These results
are supported by simulations. Analogously to the case of smooth spheres we see that
at least on that level of description the asymptotic shape of the distribution function
is also reached exponentially fast in the time scale of collisions.
Common features– To summarize results we find that all9 systems have in common
that only a few collisions per particle are necessary to reach a state where the dy-
namics can be described by a single decreasing energy only, which follows Haff’s law
of homogeneous cooling.

9Exceptions are almost smooth spheres.
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4. Inhomogeneities

In the introduction chapter 1 we describe the mechanism that explains the shear
and cluster instability in a system of smooth inelastic spheres: The collision rules of
smooth spheres are such that after a collision the absolute value of the component
of the relative velocity of the two colliding spheres in direction of the line connecting
the center of masses is smaller than before the collision. This leads to the effect
that the particles move more and more parallel and correlations in the velocities can
develop. For needles collisions rules are much more complicated and the component
of the relative velocity which is decreased depends strongly on the actual orientation
of the needles. If the density is dilute so that needles can rotate freely between
collisions, one may not expect any ordering in the velocity field. We have checked
this for various coefficients of restitution and system sizes but never observed a cluster
instability as long as the dimensionless density N

V
L3 remains below 1. Even at higher

densities it is not obvious that this happens. We will answer this question by means
of simulations in the first part of this chapter.

In the second part of this chapter we investigate rough spheres in the inhomoge-
neous regime. We focus here only on one aspect, namely how the decay of rotational
energy can be described. Also for rough spheres it holds that on average after a
collision two spheres move more parallel than before. Hence correlations may build
up for the translational velocity first. This might have a similar effect as for smooth
spheres, namely that deviations from Haff’s law occur for the translational tempera-
ture. But we have shown for the homogeneous case that the time development of the
rotational temperature depends strongly on the translational temperature. Hence de-
viations from Haff’s law of the rotational energy may be triggered by the deviations
of the translational energy. Since in the HCS the constant ratio of translational to
rotational energy is reached fast compared to the decay of the total energy, we hope
that the rotational energy follows the translational energy by the same dependency
as described in the previous chapter. We will see how these effects look like and show
some encouraging results towards a hydrodynamic theory.
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4. Inhomogeneities

4.1. Needles

Results of simulations of systems of needles are presented. We discuss in particular
deviations from the homogeneous cooling state, which are investigated in terms if
hydrodynamic quantities.

Simulations

Simulations have been performed using the event-driven algorithm described in chap-
ter 2. The algorithm is reasonably fast as long as there are only few needles in each
cell of the linked-cell structure, so that the time-consuming search for collision part-
ners is restricted to the needles in its own and the neighboring cells. In this section
we investigate dense systems, which is time consuming, because we have to choose
the linear dimension of these cells to be larger than the length of a needle, so that
for high densities there are many needles in each cell and the algorithm becomes
slow. Hence for high densities (N

V
L3 & 10) only a few simulations could be done. We

show here a simulation of N = 20000 needles in a box of length 12L with en = 0.9.
To avoid inelastic collapse we use the tc-model [LuNa98] which is also described in
chapter 2.

Breakdown of homogeneity; hydrodynamic quantities

For sufficiently dense and large systems the assumption of homogeneity breaks down
and deviations from Haff’s law of homogeneous cooling are observed [HuAs99]. To in-
vestigate these inhomogeneities in more detail we measure hydrodynamic quantities,
i.e. we define local variables like the density field, the translational and rotational
flow field, and the local rotational and translational kinetic energy. In order to take
local averages over small volumes, we divide the simulation box into cells whose sizes
are small compared to the box size but large enough to give reasonable statistics. We
choose the cell size such that on average about 25 needles are in each cell. For each
cell indexed by α we compute the number density ρα := 1

Vcell

∑
i∈cellα

1 = 〈1〉α, the

translational energy per particle ραE
tr
α = 〈m

2
v2
i 〉α, and the hydrodynamic tempera-

ture T tr
α = Etr

α −mU 2
α/2 defined by fluctuations around the flow field ραUα = 〈vi〉α.

The corresponding observables of the rotational degrees of freedom are the rota-
tional energy per particle Erot

α , the hydrodynamic rotational temperature T rot
α and

the rotational flow field Ωα.
To check for spatial clustering, we compare the statistics of fluctuations of the

local density, velocity, and translational energy for elastic and inelastic systems. In
fig. 4.1 a) we show the histogram of the deviation of the local density δρα = ρα/n−1.
The initial distribution is uniform, corresponding to the equilibrium state of an elastic
system. As the system develops in time with particles colliding inelastically, we
observe that the distribution broadens, a clear indication that regions of large density
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Figure 4.1.:
a) Histogram of density fluctuations in the initial state and after 560
Collisions per particle. It is obvious that regions with high density have
developed.
b) Histogram of translational energy fluctuations in the initial state and
after 560 Collisions per particle. Again we find that the distribution
function has broadened.
c) Same as b) for the rotational energy fluctuations.
d) No significant change between the initial distribution for Qα (defined
in the text) and the distribution after 560 collisions per particle is ob-
served.
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4. Inhomogeneities

have developed. We measure the total translational energy Etr
all per particle and the

total rotational energy Erot
all per particle and plot in fig. 4.1 b) and c) histograms of

the deviation of the local translational (Etr
α /E

tr
all − 1) and rotational (Erot

α /Erot
all − 1)

energies, which look very similar and indicates that homogeneity breaks down also
for the distribution of the energies.

Orientational ordering

To investigate local orientational ordering we compute the local average quadrupolar
moment of the needles ραQα = 〈3(uz)

2 − 1〉α and show in fig. 4.1 d) histograms
of Qα. We do not observe a significant change in the distribution. To investigate
correlations between velocity of the particle and orientation we plot in fig. 4.2 his-
tograms of Qvi = 3(uiv̂i)

2− 1 where v̂i is the unit vector in direction of the velocity
of particle i. The configuration after 600 collisions per particle is compared to the
initial state which correspondents to randomized orientations. In addition we plot
the theoretical prediction for the histogram (straight line) which has been calculated
on the assumption that rods are oriented randomly and independent of their velocity.
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Figure 4.2.: Histogram of Qvi . The distribution after 600 collisions per particle coin-
cident with the initial distribution and with the prediction for randomly
distributed orientations.
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12 L

0 12 L

Figure 4.4.: Flow field after 600 collisions per particle
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4. Inhomogeneities

The flow field

Inelastic hard spheres without surface roughness tend to move more and more parallel
so that large scale structures in the velocity field develop. In such a state most of
the kinetic energy is to be found in the energy of the flow field, whereas the energy
of the fluctuations around the flow field is small. A quantitative measure for this
effect [NaYo96] is the ratio of the total energy of the flow to the total internal energy
of fluctuations: Str := (

∑
α
m
2
ραU

2
α)/(

∑
α ραT

tr
α ) and the analogous quantity Srot for

the rotational degrees of freedom. In fig. 4.3 we show Str and Srot as a function of
time, measured in collisions per particle. We observe an increase of Str by a factor
of 50, whereas Srot increases only by about 50 %. Hence the large scale structures
in the translational flow field are much more pronounced than in the rotational flow
field. In fig. 4.4 we show the flow field after 600 collisions per particle. We observe
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Figure 4.3.: Ratio Str (Srot) of the local macroscopic energy to the local temperature
for the translational (rotational) degrees of freedom as a function of the
number of collisions per particle.

two shear bands (note the periodic boundary conditions) in which the flow field is to
a large degree aligned.

To check for correlations between the flow field and the density we plot in fig.
4.5 the components of the flow field U y and U z and the density fluctuations as a
function of x for fixed y = 6L and average over 10 values of z = 1.2L, . . . , 12L. This
and similar plots give no hint of strong correlation between flow field and density
fluctuations.

Deviations from Haff’s law

How does the organization of the flow field influence the decay of the average energy
in the system? Brito and Ernst [BrEr98] have suggested a generalized Haff’s law to
describe the time dependence of the kinetic energy of smooth inelastically colliding
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Figure 4.5.: y− and z−component of the flow field and fluctuation of the density as
a function of x, for fixed y = 6L, averaged over 10 z-values.
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4. Inhomogeneities

spheres even in the non-homogeneous state. They found that in the late stages where
one finds a well-developed flow field the energy decays like τ−D/2 in D dimensions.
As in section 3.1.1 τ is the average number of collisions suffered by a particle within
time t. In fig. 4.6 we compare the data of the simulation with the solution of eqs.
(3.27,3.28) and in the inset we plot Ttr as a function of τ and compare it to τ−3/2.
We cannot confirm a τ−3/2 law, but by inspection of fig. 4.4 we see that the range
of correlations are already of the order of the system size, so that finite size effects
– not taken into account in the theory of Brito and Ernst – may be dominating. To
simulate larger systems and longer runs has not been possible because simulations of
dense systems are rather time consuming [HuAs99].

4.2. Spheres

The role of rotational energy in systems of inhomogeneously cooling rough spheres
is investigated. We will see that deviations from the homogeneous cooling law are
triggered by the translational degrees of freedom, whereas the rotational temperature
follows the same law as in the homogeneous state but now has to adjust to the altered
translational temperature.

Simulations

To perform simulations we use a similar method as for needles. To obtain a well-
defined initial configuration we start the simulation on a regular lattice with random
velocities and angular velocities chosen from a Boltzmann distribution. We equili-
brate the systems by choosing en = 1 and et = −1 and let the simulation run for 200
collisions per particle. Then en and et are switched to their desired values.

In this section we show the results of four systems with 105 particles each. We
choose en = 0.9 and et = ±0.8 and use two different densities given in terms of the
volume fraction Φ = 4π

3
d3N

V
. So we compare four different systems summarized in

the following table:

System Φ et
I 0.1 +0.8
II 0.25 +0.8
III 0.1 -0.8
IV 0.25 -0.8

Measurement of hydrodynamic fields

In the last section we described deviations from the homogeneous cooling state in sys-
tems of smooth needles by a hydrodynamic analysis. We measure the hydrodynamic
quantities: the number density ρα, the translational energy per particle Etr

α and the
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4.2. Spheres

hydrodynamic temperature T tr
α given by the fluctuations around the hydrodynamic

flow field Uα and the corresponding values for the rotational degrees of freedom.

As for needles a good indicator of long-range organization of the angular velocity
field is the ratio of the total kinetic energy of the angular flow to the total rota-
tional energy Srot := (

∑
α
m
2
ραΩ

2
α)/(

∑
α ραE

rot
α ). We also measure the ratio of the

total kinetic energy of the flow to the total internal energy Str, which is known to
rise strongly in systems of smooth spheres, indicating the long-range order in the
translational flow field.
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Figure 4.7.: Str and Srot as a function of collisions per particles for all four systems.

We see that Srot remains always of the same order of magnitude whereas Str rises
by a factor of about ten. While in the dilute systems we observe little change of Srot

with time, we see larger variations for system IV. We conclude that there is no long-
range ordering in the rotational degrees of freedom. Hence one may hope that the
dynamics of the rotational temperature is still given by eq. (3.7) of the homogeneous
cooling state. We will test this hypothesis in the next section.
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4. Inhomogeneities

The dynamics of the rotational energy

In this section we show that for systems I-III the dynamics of the rotational tempera-
ture follows the dynamics of the translational temperature via eq. (3.7). In the follow-
ing we will call this the “slaving mechanism”. The flow field of particle i is determined
by the flow field of the corresponding box α and is denoted by U i := Uα ⇔ i ∈ α
We measure the total temperature of the system by 3

2
T exp

tr (t) = 1
N

∑N
i=1

m
2

(vi−U i)
2.

Here temperature denotes the energy of the fluctuations around the flow field and
not the total kinetic energy. In section 3.1 we assumed to have a vanishing flow field
so that in the case of the homogeneous cooling state these two definitions coincide.

To test the slaving mechanism we measure T exp
tr (t) at times {tj}Mj=1 and interpo-

late1 between two measured points tj and tj+1 by an algebraic decay law

T int
tr (t) = ajt

−bj , tj ≤ t < tj+1. (4.1)

aj and bj are determined by the two conditions T int
tr (tj) = T exp

tr (tj) and T int
tr (tj+1) =

T exp
tr (tj+1). We insert this piecewise defined function in eq. (3.7) and solve the fol-

lowing equation numerically:

d

dt
T pred

rot = GB(T int
tr (t))3/2 −GC(T int

tr (t))1/2T pred
rot . (4.2)

We choose as initial condition for T pred
rot the measured value for Trot at the time

t1, where we observe first a significant deviation from the solution of homogeneous
cooling state.

The results for the dilute systems are shown in fig. 4.8,4.9.
We see strong deviations from the solution of the homogeneous cooling state,

whereas eq. (4.2) describes quite well the time development of the rotational temper-
ature. For system I the rotational energy follows the step of the translational energy
at time 106 and is well-predicted. In the case of et = −0.8, i.e. system III, we see
deviations of two orders of magnitude to the HCS-solution, while eq. (4.2) follows
quite well the order of magnitude of the rotational temperature.

In figs. 4.10,4.11 we plot the dense cases. For system II we also see an encouraging
result, but for system IV stronger deviations of the simulational results from the
results of eq. (4.2) occur. Note that the deviations are strongest at intermediate
times and “improve” at later times. It is still an open question why in this system
the slaving mechanism fails. This might be traced back to a change of the distribution
of the impact parameter, which can be also seen in systems of smooth spheres in the
highly clustered state [BrOr99].

1We interpolate between measured points, because we need a continuously defined function to
solve eq. (4.2) numerically.
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Figure 4.10.: System II: Same as fig. 4.8.
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Figure 4.11.: System IV: Same as fig. 4.8.
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4.3. Summary

4.3. Summary

For needles we observe and investigate the breakdown of homogeneity in simulations
of dense systems, where the inter-particle spacing is smaller than the length of the
needles. Large-scale structures in the translational velocity field are seen to develop.
Furthermore the density does not remain homogeneous but clusters form and dis-
solve again. These effects lead to deviations from the solution of the homogeneous
cooling state on the longest times scales and a third stage of cooling is found. It is
characterized by an even slower decay of the kinetic energy, most of the energy being
stored in the macroscopic velocity field.

To derive generalized hydrodynamic equations for grains with rotational degrees
of freedom one has to clarify the influence of angular momentum flow and rotational
energy. We show by means of simulations that we do not find a significant ordering
in the angular flow, neither for rough spheres nor for needles. In addition we show for
rough spheres and not too high densities that the rotational temperature adjusts –
by the same functional dependency as in the homogeneous case – to the translational
temperature, which deviates from the homogeneous cooling law.

For these reasons one may argue that in a hydrodynamic theory one could neglect
angular momentum flow and restrict oneself to density, translational momentum flow
and the two temperatures. Such a set of hydrodynamic equations could serve as a
starting point for a stability analysis, similar to the work of Brito and Ernst [BrEr98]
for smooth spheres.
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5. The Enskog Boltzmann equation

Starting point for many existing theories about rapid granular flow is the Enskog
Boltzmann equation. The question now arises how the results obtained in this thesis
are connected with the Boltzmann equation. It will become clear that on the level
of approximation we made the dynamics could have been formulated equivalently by
using the Enskog Boltzmann equation.

5.1. The assumptions

To compare our approach with the description in terms of the Enskog Boltzmann
equation we recapitulate the main assumption which are made to derive the Enskog
Boltzmann equation. One of many possible ways to obtain the Enskog Boltzmann
equation uses the pseudo-Liouville equation eq. (2.40) derived in section 2.3. The first
step is to integrate the pseudo-Liouville equation over dr3 . . . drNdv3 . . . dvNdω3 . . . dωN .
One obtains a equation which expresses the time evolution of the one particle distri-
bution function in terms of the 2-particle distribution function, defined as

ρ2({vi,ωi, ri}2
i=1t) :=

N !

(N − 2)!

∫
dv3 . . . dvNdω3 . . . dωN

∫
dr3 . . . drNρ(Γ, t) .

(5.1)

More general this equation is the first equation of the BBGKY-hierarchy, which
expresses the time evolution of the M -particle distribution function in terms of the
M + 1-particle distribution function. Details can be found for example in [BBGKY,
ZuMo96].

So far no approximations have been made. The Enskog Boltzmann equation
is obtained by the assumption that the two particle distribution function can be
expressed by the one particle distribution function and the pair correlation function
defined in eq. (3.10)

ρ2(r1,v1,ω1, r2,v2,ω2, t) = g(|r1 − r2|)ρ1(r1,v1,ω1)ρ1(r2,v2,ω2) . (5.2)

The pair correlation function describes short range correlations due to excluded vol-
ume effects. In eq. (5.2) one neglects dynamics correlations reflecting sequences of

68



5.2. Equivalence of description

correlated collisions1.
We now observe that we made similar approximations. We assumed that the

distribution function is of the form

ρ(t) =
1

QN
W (r1, . . . , rN)

N∏
i=1

ρi(vi,ωi, t) . (5.3)

Q is chosen so that
∫ ∏

i driW = QN and W gives zero weight for overlapping con-
figurations and W = 1 otherwise. Again, the only correlations which are taken into
account are short range excluded volume effects. We will show that both approaches
yield the same result.

5.2. Equivalence of description

The inelastic Enskog Boltzmann equation reads [Ce95]:

(∂t + v1∂r1)ρ1(t) = ng(d)dD−1

∫
dv2dω2

∫
dr̂|v12r̂|Θ(−v12r̂)×(

J
en
ρ1(r1,v

′′
1,ω1

′′)ρ1(r2,v
′′
2,ω2

′′)− ρ1(r1,v1,ω1)ρ1(r2,v2,ω2)

)
. (5.4)

We use the same notation as in chapter 2 section 2.3. J is the Jacobian of the trans-
formation from coordinates after collision (unprimed) to coordinates before collision
(double primed).

The time dependence of the average of a dynamical variable f(v1,ω1) is obtained
by multiplying eq. (5.4) with

∫
dv1dω1f(v1,ω1). After a similar coordination trans-

formation as in section 2.3 we obtain:

∂t

∫
dv1dω1f(v1,ω1)ρ1(r1,v1, t) + ∂r1

∫
dv1dω1v1f(v1,ω1)ρ1(r1,v1, t)

= ndD−1g(d)

∫
dv1dv2dω1dω2

∫
dr̂|v12r̂|Θ(−v12r̂)×

ρ1(r1,v1,ω1, t)ρ2(r2,v2,ω2, t)(f(v′1,ω
′
1)− f(v1,ω1)) . (5.5)

Under the assumption of homogeneity eq. (5.5) simplifies to

∂t

∫
dv1dω1f(v1,ω1)ρ1(v1, t)

= ndD−1g(d)

∫
dv1dv2dω1dω2

∫
dr̂|v12r̂|Θ(−v12r̂)×

ρ1(v1,ω1, t)ρ1(v2,ω2, t)(f(v′1,ω
′
1)− f(v1,ω1)) . (5.6)

1A more detailed discussion about this problem can be found in [NoEr97b]
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5. The Enskog Boltzmann equation

In appendix A.1.2 we derived in eq. (A.15) a formula for the the time dependence of
the average of a dynamical variable f(v1,ω1) under the assumption of homogeneity
and the assumption for the distribution function given in eq. (5.3), which reads:

〈iL+f〉 = ndD−1g(d)

∫
dv1dv2dω1dω2

∫
dr̂|v12r̂|Θ(−v12r̂)×

ρ1(v1,ω1, t)ρ1(v2,ω2, t)(f(v′1,ω
′
1)− f(v1,ω1)) . (5.7)

We observe that the r.h.s of eq. (5.6) coincides with the r.h.s of eq. (5.7). Hence under
the assumption of homogeneity the description in terms of the Enskog Boltzmann
equation yields the same results as derived in this thesis.
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6. Conclusions and outlook

In this work we try to elucidate the role of rotational degrees of freedom in a system
of freely cooling granular particles. To gather more general aspects we consider rough
spherical particles and, as an example for non-spherical particles, needles. We choose
the simplest collision rules which allow for exchange of translational and rotational
energy. The dynamics is formulated in terms of a pseudo-Liouville operator and we
use an ED-algorithm to perform simulations. For the considered systems two regimes
are found, both of which are characterized by common features:

The homogeneous cooling regime

Initially, all systems are prepared in a way that the spatial correlations are those of an
equilibrium ensemble of a classical system of non-dissipative particles. The velocities
and angular velocities are distributed according to a Maxwellian determined by two
temperatures Ttr and Trot respectively. For short times or not too high inelasticities
the system remains spatially homogeneous, but changes arise in the distribution
function for the momenta. The changes are twofold: (i) Due to the dissipative
character of collisions the average kinetic energy decreases and (ii) the shape of the
distribution function is no longer Maxwellian with a single temperature. The latter is
expressed by a ratio, in general different from one, of the average translational energy
to the average rotational energy and the emergence of higher cumulants, which are
zero in a pure Maxwellian state. The main result is that for all systems the change of
the distribution function to an asymptotic fixed shape1 is fast compared to the decay
of the average energy. For example only a few collisions per particle are necessary to
reach a state where the ratio of rotational and translational energy remains constant
in time. Once the system is characterized by a fixed distribution function, the decay
of the mean energy E follows Haff’s law of homogeneous cooling E ∝ t−2, a slow
algebraic decay.

1Here fixed shape means that if all velocities are scaled with the actual mean velocity the distri-
bution function is invariant in time.
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6. Conclusions and outlook

The inhomogeneous regime

For sufficiently large inelasticities, densities and system sizes the assumption of ho-
mogeneity breaks down. Large scale structures in the translational velocity field
arise, whereas long-range organization in the rotational velocity field seems not to
occur, or is at least much less pronounced. Clusters form and dissolve again, so also
the density does not remain homogeneous. In this state most of the translational
energy is stored in the translational velocity field and deviations from Haff’s law are
found. Also the rotational energy does no longer obey Haff’s. For spheres we could
show that it adjusts to the now different translational temperature according to the
law found for the homogeneous cooling state.

Outlook

Analytical extensions as well as further investigations using simulations are desirable.

• Analytical analysis
Since a hydrodynamic analysis has successfully explained the shear and cluster in-
stabilities of smooth spheres, it is promising to apply hydrodynamic methods to the
systems considered here. A first step would be to assume that the velocity distri-
bution function in the HCS remains Gaussian. For spheres this can be justified at
least for coefficients of restitution, for which the system remains almost Gaussian as
described in section 3.2.2. Furthermore motivated by the results of simulations in
chapter 4 the angular momentum field could be neglected. The remaining hydrody-
namic quantities would be density, translational flow field and the two temperatures.
A gradient or Chapman Enskog expansion [ChCo60, BrDu98] around the HCS (the
HCS is described in detail in section 3.1) would give transport coefficients and con-
stitutive relations for the hydrodynamic equations. A linear stability analysis would
show for which inelasticities, densities, and system sizes one could expect the onset of
clustering. Correlation functions could be calculated by fluctuational hydrodynamics
as was done for smooth spheres in [NoEr97].

A further possible extension would be to explain why the organization of angular
momentum remains negligible by additionally taking into account the equations for
the angular momentum field. A second possible way to elucidate the role of the an-
gular momentum field would be a calculation of the angular velocity-angular velocity
correlation function on a more microscopic level using a ring collision expansion as
suggested in [NoEr98] for the velocity velocity correlation function.

• Simulations
By means of simulations the conditions under which clustering occurs could be tested
more systematically. Measurement of correlations functions would give further in-
sight into the structure of the angular momentum field .

There is still an open field concerning modeling of collisions. More realistic colli-
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sion rules include Coulomb friction. Therefore the formalism presented in this thesis
can be applied and work along these lines is in progress [He99]. Rods with finite
diameter may show different density-dependent effects, even the statics is not trivial
and phase transitions to ordered phases are observed.
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A. Appendix

A.1. Calculations for spheres

A.1.1. An example

As an example, we explain the main steps to calculate 〈iLEtr〉HCS of eq. (3.6) in 2D.
We define the configuration integral

QN :=

∫ N∏
i=1

driW (r1, . . . , rN) . (A.1)

The proper normalized N -particle distribution function for the HCS-state reads

ρHCS(Γ; t) =
1

QN

(
m

2πTtr(t)

)N (
I

2πTrot(t)

)N/2
×

exp

[
−

N∑
i=1

(
m

2Ttr(t)
v2
i +

I

2Trot(t)
ω2
i

)]
. (A.2)

The angular velocity is a scalar in two dimensions, but a vector in more than two
dimensions. Free streaming does not change the energy, so we have to take into
account only the collision operator L+ and compute

〈iL+Etr〉HCS =
1

2

∑
i6=j

∫
dΓ ρHCS(Γ; t)iT (ij)

+

1

N

N∑
k=1

m

2
v2
k =

1

2N

∑
i6=j

∫
dΓ ρHCS(Γ; t)iT (ij)

+

m

2

(
v2
i + v2

j

)
. (A.3)

The binary-collision operator T (ij)
+ gives a contribution only if either k = i or if k = j.

Next, we introduce two δ-functions,

〈iL+Etr〉HCS =
1

2N

∑
i6=j

∫
dΓ

∫
dR1dR2δ(R1 − ri)δ(R2 − rj)×

ρHCS(Γ; t)iT (ij)
+

m

2

(
v2
i + v2

j

)
, (A.4)
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A.1. Calculations for spheres

which allows us to replace ri by R1 and rj by R2 in T (ij)
+ . We define the pair

correlation function g(|R1 −R2|) by

N

V 2
g(|R1 −R2|) :=

1

N

∑
i6=j

1

QN

∫ N∏
k=1

drkW (r1, . . . , rN)δ(R1 − ri)δ(R2 − rj) .

(A.5)

Eq. (A.5) is used to rewrite eq. (A.4) in terms of the pair correlation function. Inte-
gration over all velocities and angular velocities with index k and i 6= k 6= j gives 1
due to normalization. We get

〈iL+Etr〉HCS =
N

2V 2

(
m

2πTtr(t)

)2
I

2πTrot(t)

∫
dω1dω2dR1dR2dv1dv2

exp

(
− m

2Ttr(t)
(v2

1 + v2
2)− I

2Trot(t)
(ω2

1 + ω2
2)

)
×

g(r) |v12 · r̂|Θ (−v12 · r̂) δ (|r| − d) ∆Etr . (A.6)

The loss of translational energy of two colliding particles is denoted by ∆Etr. We use
the abbreviation R1 −R2 = r = rr̂ and neglect non-contributing terms linear in Ω
so that ∆Etr is given by

∆Etr =
m

2

[
2ηt(ηt − 1)(v2

12 − (v12 · r̂)2)−

(1/2)(1− e2
n)(v12 · r̂)2 + (1/2)η2

t d
2(ω1 + ω2)2

]
. (A.7)

To perform the remaining integrations we substitute

Ω =
1√
2

(ω1 + ω2), ω =
1√
2

(ω1 − ω2), (A.8)

V =
1√
2

(v1 + v2), v =
1√
2

(v1 − v2), (A.9)

r = R1 −R2, R = R1. (A.10)

The Jacobian determinant for the above transformation is 1. Integration over ω, V
and R all give the value 1 due to normalization. We are left with

〈iL+Etr〉HCS =
N

V

m

2πTtr(t)

(
2I

2πTrot(t)

)1/2 ∫
dΩdrdv

exp

(
− mv2

2Ttr(t)
− IΩ2

2Trot(t)

)
g(r) |v · r̂|Θ (−v · r̂) δ (|r| − d)×

m

2

[
2ηt(ηt − 1)(v2 − (v · r̂)2)− (1/2)(1− e2

n)(v · r̂)2 + (1/2)η2
t d

2Ω2
]
.
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A. Appendix

The integration over |r| yields dg(d). Choosing e.g. r to point along the x-axis,
the integrals over linear and angular velocities can easily be done as moments of a
Gaussian distribution. The result is independent of r̂, so that the integration over r̂
gives 2π. Finally we obtain the result of eq. (3.8).

A.1.2. General collision integral

More general we assume that the N -particle distribution function is of the form

ρ(t) =
1

QN
W (r1, . . . , rN)

N∏
i=1

ρi(vi,ωi, t) . (A.11)

Q is chosen so that
∫ ∏

i driW = QN and W gives zero weight for overlapping
configurations and W = 1 otherwise. All ρi are identical for all i. We consider
an observable depending only on velocities fi(vi,ωi) of one particle or equivalently
g = 1

N

∑
i fi, since all particles are equally distributed.

We calculate the time derivative of the non-equilibrium expectation value of g
defined in eq. (2.33). We will use the identity eq. (2.41). Since the free streaming
part of the Liouville operator does not change velocities, we have to calculate only

〈iL+g〉(t) =
1

2

∑
i6=j

∫
dΓρiT (ij)

i g . (A.12)

Step by step we make the same calculations as above for the translational energy of
all particles. First we introduce two δ-functions

∫
dR1dR2δ(R1− ri)δ(R2− rj) and

replace ri and rj by R1 and R2 in T (ij)
+ to rewrite eq. (A.12) in terms of the pair

correlation function g(r) also defined above in eq. (A.5)

〈iL+g〉 =
N

2V 2

∫
dω1dω2dv1dv2dR1dR2

ρ1ρ2g(|r|) |v12r̂|Θ(−v12r̂)δ(|r| − d)(b− 1)(f1 + f2) . (A.13)

We introduced the notation r = R1 − R2. Making a coordinate transformation
R = R1 and r = R1−R2 with Jacobian determinant 1 we get after integration over
R and |r|

〈iL+g〉 =
N

V
dDtr−1g(d)

∫
dω1dω2dv1dv2dr̂

ρ1ρ2 |v12r̂|Θ(−v12r̂)(b− 1)
1

2
(f1 + f2). (A.14)

All particles are interchangeable so that we can replace 1
2
(f1 + f2) by f1

〈iL+f1〉 =
N

V
dDtr−1g(d)

∫
dω1dω2dv1dv2dr̂ρ1ρ2 |v12r̂|Θ(−v12r̂)(b− 1)f1. (A.15)
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A.2. Calculations for needles

A.2. Calculations for needles

In this appendix we present some of the detailed calculations for needles. As a first
step we express the orientation of the rods in spherical coordinates

ui = (sin(θi) cos(φi), sin(θi) sin(φi), cos(θi)) . (A.16)

Thus the canonical momenta (translational and rotational) are given by

pi = mvi , pθi = Iθ̇i , pφi = Iφ̇i sin
2 θ . (A.17)

In the following calculation it will be useful to express u̇i in terms of canonical
momenta

u̇i =
pθi
I
eθi +

pφi
sin θiI

eφi . (A.18)

where eθi and eφi are orthogonal unit vectors in θi- and φi- direction. The transla-
tional and rotational kinetic energies per particle are then given by

Etr =
1

N

N∑
i=1

1

2m
p2
i , Erot =

1

N

N∑
i=1

(
1

2I
p2
θi

+
1

2I sin2 θi
p2
φi

)
. (A.19)

We want to calculate non-equilibrium expectation values with the normalized prob-
ability distribution given in eq. (3.5). Again we consider as an example the transla-
tional energy per particle Etr = 1

N

∑N
i=1

m
2
v2
i .

〈iL+Etr〉 =
1

V N

1

(4π)N
1

(2πMTtrans)3N/2

1

(2πITrot)N
×

1

2

∑
m6=n

∫ N∏
j=1

drj dφj dθj dpj dpθj dpφj

exp[−NEtr/Ttr(t)−NErot/Trot(t)]iT (nm)
+ Etr . (A.20)

Similar to the calculation for the spheres we see that the binary-collision operator
T (nm)

+ gives a contribution only if either i = n or if i = m. We can sum over N(N−1)
identical integrals and get

N − 1

2V 2

1

(4π)2

1

(2πmTtr)3

1

(2πIT rot)2

∫ 2∏
j=1

drj dφj dθj dpj dpθj dpφj

exp[−E12
tr /Ttr(t)− E12

rot/Trot(t)]

∣∣∣∣ ddt ∣∣r⊥12

∣∣∣∣∣∣Θ(− d

dt

∣∣r⊥12

∣∣)×
Θ(L/2− |s12|)Θ(L/2− |s21|)δ(|r⊥12| − 0+)∆E12

tr . (A.21)
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A. Appendix

E12
tr (E12

rot) is the sum of the translational (rotational) kinetic energy of particle 1 and
2 and with ∆E12

tr we denote the change of the translational kinetic energy of particle
1 and 2 in a collision:

∆E12
tr =

(p1 − p2) ·∆p
m

+
∆p2

m
, (A.22)

∆p = −1 + en
2

1
1
m

+
s212

2I
+

s221

2I

(V · u⊥)u⊥ . (A.23)

V is the relative velocity of the contact points defined in eq. (2.16).
We introduce relative coordinates r12 = r1 − r2 and r = r1 and the variables

z := r12 · u⊥ ,

a := r12 · u1 −
u1 · u2√

1− (u1 · u2)2
r12 · u⊥1 = −s12 ,

b :=
1√

1− (u1 · u2)2
r12 · u⊥1 = s21 .

The Jacobian of the transformation is given by
√

1− (u1 · u2)2. We remark that
d
dt

∣∣r⊥12

∣∣ = V · u⊥sign(r12 · u⊥) and we find again the relative velocity of the contact
points V = p12

m
− au̇1 − bu̇2 given in the new coordinates. Integration over r gives

V and integration over z gives the sum of two Θ-functions Θ(±V · u⊥)1. Next one
introduces relative and center of mass momenta, again as dimensionless variables:

χ :=
1√

2mTtrans

(p1 − p2) , γ :=
1√

2mTtrans

(p1 + p2) ,

p̃θi :=
pθi√
ITrot

, p̃φi :=
pφi√

ITrot sin θi
.

The integration over γ can be done and the result is proportional to∑
p=±1

∫
da db dφ1 sin θ1dθ1 dφ2 sin θ2dθ2 dχ dp̃θ1 dp̃φ1dp̃θ2 dp̃φ2

√
1− (u1 · u2)2 exp[−1

2
(χ2 + p̃2

φ1
+ p̃2

φ2
+ p̃2

θ1
+ p̃2

θ2
)]×∣∣∣Ṽ · u⊥∣∣∣Θ(p ∣∣∣Ṽ · u⊥∣∣∣)Θ(|a| − L/2)Θ(|b| − L/2)∆E12 , (A.24)

all expressed in new variables and u̇ by eq. (A.18), e.g.

Ṽ =
√

2Ttrans/mχ− a
√
Trot/I(p̃θ1eθ1 + p̃φ1eφ1)− b

√
Trot/I(p̃θ2eθ2 + p̃φ2eφ2) .

(A.25)

1This reflects the fact that if one particle touches the other from ‘above’ the sign of the relative
velocity of the contact point has to be negative if the particle touches from ‘below’ the velocity
has to be positive.
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A.2. Calculations for needles

We want to perform the remaining Gaussian integrals, but we have expressed different
terms either in (u⊥i ,u

⊥) defined according to eq. (2.17) with i = 1, 2, or in (eθi , eφi).
It is useful to note that (u⊥i ,u

⊥) and (eθi , eφi) are two different orthonormal basis
of the plane perpendicular to ui, so that we can make an orthogonal coordinate
transformation from one system to the other. The variables p̃θi and p̃φ1 are now
standard normally distributed and after an orthogonal coordinate transformation
the new coordinates will again be standard normally distributed. This means we
can equivalently write (p̃θieθi + p̃φieφi) or (viu

⊥
i + wiu

⊥) with standard normally
distributed variables vi and wi. With this definition of vi and wi we are able to
evaluate, for example, terms of the form (p̃θ1eθ1 + p̃φ1eφ1)·u⊥ ≡ (v1u

⊥
1 +w1u⊥)·u⊥ =

w1, where we used u⊥1 ·u⊥ = u⊥2 ·u⊥ = 0. We can integrate freely over v1 and v2 and
the two components of χ perpendicular to u⊥. We denote with dΩi := dφi sin(θi)dθi
and the intermediate result reads∑

p=±1

N − 1

2V

1

(4π)2

1

(2π)(3/2)

∫
da db ds dΩ1dΩ2 exp(−1

2
s2)
√

1− (u1 · u2)2 ×

|G · s|Θ(pG · s)
[
− s1

√
2Ttr

m

1 + en
2

1
1
m

+ a2

2I
+ b2

2I

G · s+

1

m

(
1 + en

2

)2
(

1
1
m

+ a2

2I
+ b2

2I

)2

(G · s)2
]
. (A.26)

We introduced the vectors

s := (s1, s2, s3) := (χ · u⊥, w1, w2) and (A.27)

G =

(√
2Ttr

m
,−a

√
Trot

I
,−b

√
Trot

I

)
. (A.28)

We can perform the integral over s. We sketch here only how this is done. We want
to integrate ∫

ds exp(−1

2
s2)Θ(±G · s)|G · s|(G · s)s1 . (A.29)

Let (e1, e2, e3) be the original coordinate system and we define a coordinate system
(ex, ey, ez) in which the z-axis is parallel to G and we decompose s in this coordinate
system s = (sx, sy, sz). Then eq. (A.29) reads∫

dsxdsydsz exp(−1

2
(s2
x + s2

y + s2
z))Θ(±sz)×

|G||sz||G|sz [(sxex + syey + szez) · e1] . (A.30)
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Only the term, which is proportional to szez, contributes and the Gaussian integral
can easily be performed. Using that |G|ez = G we write |G|ez · e1 = G · e1 = G1

and we end up with the result 4π|G|G1. Only the integrals over Ω1 and Ω2 have to
be done with standard techniques. All other integrals are performed similarly and
the results are quoted in the main text.
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A.3. Generalized Laguerre polynomials

The generalized Laguerre polynomials L
(α)
n , for α > −1, are the orthogonal poly-

nomials associated with the interval (0,∞), the weight function w(x) = xαe−x, and

standardized by the condition that the coefficient of xn in L
(α)
n (x) equals (−1)n

n!
.

Examples:

L
(α)
0 (x) = 1 (A.31)

L
(α)
1 (x) = α + 1− x (A.32)

L
(α)
2 (x) =

1

2
[(α + 1)(α + 2)− 2(α + 2)x+ x2] (A.33)

Orthogonality Relation:

∫ ∞
0

e−xxαL(α)
n (x)L(α)

m (x)dx = δm,nΓ(1 + α)

(
n+ α

n

)
(A.34)

Differentiation formula:

d

dx
L(α)
n (x) =

nL
(α)
n (x)− (n+ α)L

(α)
n−1(x)

x
(A.35)

Laguerre polynomials in D-dimensions

By choosing α for the Laguerre Polynomials L
(α)
n (x) equal α = D/2− 1 we get

π−D/2
∫ ∞
−∞

dv exp(−v2)L(α)
n (v2)L(α)

m (v2) =

π−D/2SD

∫ ∞
0

dvvd−1 exp(−v2)L(α)
n (v2)L(α)

m (v2) =

π−D/2SD

∫ ∞
0

dc
1

2
cα exp(−c)L(α)

n (c)L(α)
m (c) (A.36)

SD = 2πD/2

Γ(D/2)
is the surface area of a sphere in D dimensions, and together with the

orthogonality relation of eq. (A.34) we finally have

1

πD/2

∫ ∞
−∞

dv exp(−v2)L(α)
n (v2)L(α)

m (v2) = δm,n

(
n+ α

n

)
(A.37)
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A.4. The time dependence of the moments 1

In section 3.2.1 we determined the N -particle distribution function in eq. (3.32) as

ρ(Γ, t) =
1

QN
W (r1, . . . , rn)

N∏
i=1

ρi(vi, t), and

ρi(vi, t) :=
1

(v0(t)
√
π)D

ρ̃i(ci, t) :=

1

(v0(t)
√
π)D

exp
(
−c2

i

) ∞∑
n=0

an(t)Lαn
(
c2
i

)
. (A.38)

Q is chosen so that
∫ ∏

i driW = 1 and we have expressed ρi by a scaling form
ρ̃i(ci, t). ρi is normalized

∫
dviρi = 1 and it holds with eqs. (A.32)(A.33) that

v2 = −Lα1 (v2)− (α + 1)Lα0 (v2) . (A.39)

Using the orthogonality relations eq. (A.37) we find that∫
dv1ρ1(v, t)v2 = v2

0(
D

2
−
(

1 + α

1

)
a1) , (A.40)

so that we have to choose a1 = 0 for all times.
We compute using eq. (A.15)

d

dt
T =

d

dt

m

2
v2

0 = mv0
d

dt
v0 =

d

dt

m

D

∫
dΓρv2

1 =
1

N

m

D

d

dt

∫
dΓρ

∑
i

v2
i =

m

D
dD−1N

V
g(d)

∫
dv1dv2dr̂ρ1ρ2 |v12r̂|Θ(−v12r̂)(b− 1)v2

1 . (A.41)

All velocities are scaled with v0 and we make a coordinate transformation to c = v/v0.

d

dt
T =

m

D
dD−1N

V
g(d)v3

0

1

πD

∫
dc1dc2dr̂ρ̃1(c1)ρ̃2(c2) |c12r̂|Θ(−c12r̂)(b− 1)c2

1 =:

− 2γω0T . (A.42)

ω0 is the Enskog collision frequency and is quoted in the main text as well as γ.
We now calculate the time dependence of al represented by eq. (3.35)

d

dt
an =

1(
n+α
n

) d
dt

∫
dΓρLαn((v1/v0)2) . (A.43)

We have to take 1) the time derivative of the distribution function given by oper-
ator for the distribution function, and 2) the time derivative of Lαn((v1/v0)2) which
depends on time via v0.

82



A.4. The time dependence of the moments 1

1. We have to calculate∫
dΓiLρ(t)Lαn((v1/v0)2) =∫

dΓρ(t)iLLαn((v1/v0)2) =
N

V
dD−1g(d)

∫
dv1dv2dr̂

ρ1ρ2 |v12r̂|Θ(−v12r̂)(b− 1)Lαn((v1/v0)2) . (A.44)

Again we used eq. (A.15), and we transform to the scaled velocities to get

1(
n+α
α

)N
V
dD−1g(d)v0

∫
dV 1dV 2dr̂ρ̃1ρ̃2 |c12r̂|Θ(−c12r̂)(b̃− 1)Lαn(c2

1) =: ω0γn .

(A.45)

2. We want to determine ∫
dΓρ

(
d

dt
Lαn((v1/v0)2)

)
. (A.46)

We calculate using the differentiation formula eq. (A.35)(
d

dt
Lαn((v1/v0)2)

)
= −2

v̇0

v0

(
nLαn((v1/v0)2)− (n+ α)Lαn−1((v1/v0)2)

)
,

(A.47)

and using the orthogonality relations eq. (A.37) we get

B = −2
v̇0

v0

(
n+ α

n

)
(nan − nan−1) . (A.48)

Collecting terms we find

d

dt
an = ω0(γn + 2nγω0(an − an−1) (A.49)

i.e. eq. (3.39) and eq. (3.40).
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A.5. The time dependence of the moments 2

We assume that the N -particle distribution function is given by eqs. (3.56,3.57) so
that it reads

ρ =
1

QN
W (r1, . . . , rN)

N∏
i=1

ρi(vi,ωi) . (A.50)

Q is chosen so that
∫ ∏

i driW = 1 and we only need that ρi can be written in a
scaling form ρi = 1

v
Dtr
0

1

ω
Drot
0

ρ̃i(vi/v0,ωi/ω0) with average (angular) velocity v0 (ω0).

This is consistent with eq. (3.56). Using eq. (A.15) we compute

d

dt

Dtr

2
v2

0 = Dtrv0
d

dt
v0 =

d

dt

∫
dΓρv2

1 =
1

N

d

dt

∫
dΓρ

∑
i

v2
i =

dDtr−1N

V
g(d)

∫
dω1dω2dv1dv2dr̂ρ1ρ2 |v12r̂|Θ(−v12r̂)(b− 1)v2

1 . (A.51)

We scale all (angular) velocities with v0 (ω0) and introduce the dimensionless variables
V i = vi

v0
and Ωi = ωi

ω0
and insert the scaling form and end up with

d

dt

Dtr

2
v2

0 = dDtr−1N

V
g(d)v3

0

∫
dΩ1dΩ2dV 1dV 2dr̂

ρ̃1ρ̃2 |V 12r̂|Θ(−V 12r̂)(b̃− 1)V 2
1 =: dDtr−1N

V
g(d)v3

0µ
0
2 . (A.52)

b̃ is the operator which changes scaled variables from pre- to post-collisional val-
ues and is discussed at the end of this section. Analogously we calculate the time
dependence of ω0 to get

d

dt

Drot

2
ω2

0 = dDtr−1N

V
g(d)v0ω

2
0

∫
dΩ1dΩ2dV 1dV 2dr̂

ρ̃1ρ̃2 |V 12r̂|Θ(−V 12r̂)(b̃− 1)Ω2
1 =: dDtr−1N

V
g(d)v0ω

2
0µ

2
0 . (A.53)

We now calculate the time dependence of am,n represented by eq. (3.58):

d

dt
an,m =

1(
n+α
n

)(
m+β
m

) d
dt

∫
dΓρLαn((v1/v0)2)Lβm((ω1/ω0)2) =:

1(
n+α
n

)(
m+β
m

)(A+B + C) . (A.54)

The term A stems from the time derivative of the distribution function, B from the
time derivative of Lαn((v1/v0)2) which depends on time via v0 and C from the time
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derivative of Lβm((ω1/ω0)2). First we calculate term A:
Term A

A =

∫
dΓiLρ(t)Lαn((v1/v0)2)Lβm((ω1/ω0)2) =∫

dΓρ(t)iLLαn((v1/v0)2)Lβm((ω1/ω0)2) =

N

V
dDtr−1g(d)

∫
dω1dω2dv1dv2dr̂ρ1ρ2 |v12r̂|Θ(−v12r̂)(b− 1)×

Lαn((v1/v0)2)Lβm((ω1/ω0)2) . (A.55)

Again we used eq. (A.15), and we transform to the scaled velocities and obtain

A =
N

V
dDtr−1g(d)v0

∫
dΩ1dΩ2dV 1dV 2dr̂

ρ̃1ρ̃2 |V 12r̂|Θ(−V 12r̂)(b̃− 1)Lαn(V 2
1)Lβm(Ω2

1) =:

N

V
dDtr−1g(d)v0λ

m
n (A.56)

Next we calculate the terms B and C:
Term B

B =

∫
dΓρ

(
d

dt
Lαn((v1/v0)2)

)
Lβm((ω1/ω0)2) (A.57)

We calculate using the differentiation formula eq. (A.35)(
d

dt
Lαn((v1/v0)2)

)
= −2

v̇0

v0

(
nLαn((v1/v0)2)− (n+ α)Lαn−1((v1/v0)2)

)
(A.58)

and using the orthogonality relations eq. (A.37) we get

B = −2
v̇0

v0

(
n+ α

n

)(
m+ β

m

)
(nan,m − nan−1,m) (A.59)

Similarly we get
Term C

C = −2
ω̇0

ω0

(
n+ α

n

)(
m+ β

m

)
(man,m −man,m−1) (A.60)

Combining A, B, C in eq. (A.55), replacing v̇0 by eq. (A.52) and ω̇0 by eq. (A.53)
we get

d

dt
an,m = dDtr−1N

V
g(d)v0 ×[ λmn(

n+α
n

)(
m+β
m

) − 2µ0
2

1

Dtr

n [an,m − an−1,m]− 2µ2
0

1

Drot

m [an,m − an,m−1]
]

(A.61)
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In the asymptotic state we assume that that the ratio v0/ω0 is constant in time
and so are all an,m. To determine the ratio v0/ω0 we divide eq. (A.52) by eq. (A.53)
and get

Dtrv̇0

Drotω̇0

=
v0µ

0
2

ω0µ2
0

. (A.62)

Constant ratio v0/ω0 implies that v̇0

ω̇0
= v0

ω0
and we get the following equation to

determine the ratio of translational to translational velocity

Dtr

Drot

µ2
0 = µ0

2 . (A.63)

Time independence of all an,m together with eq. (A.63) can be written as:

λmn =
2

Dtr

µ0
2

(
n+ α

n

)(
m+ β

m

)
[(n+m)an,m − nan−1,m −man,m−1] . (A.64)

Eqs. (A.63,A.64) represent an infinitely large non-linear set of equations, which
can be solved only approximately.

For completeness reasons we give the collision rules for dimensionless quantities,

which can be written by introducing the dimensionless ratio K+ = m
I

v2
0

ω2
0

as in eq.

(3.17)

bV 1 =V ′1 = V 1 − ηtV 12 − (ηn − ηt)(r̂ · V 12)r̂ − ηt
1√
qK+

r̂ × (Ω1 + Ω2),

bV 2 =V ′2 = V 2 + ηtV 12 + (ηn − ηt)(r̂ · V 12)r̂ + ηt
1√
qK+

r̂ × (Ω1 + Ω2),

bΩ1 =Ω′1 = Ω1 +

√
K+√
q
ηtr̂ × V 12 +

ηt
q
r̂ × (r̂ × (Ω1 + Ω2)),

bΩ2 =Ω′2 = Ω2 +

√
K+√
q
ηtr̂ × V 12 +

ηt
q
r̂ × (r̂ × (Ω1 + Ω2)). (A.65)
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A.6. Collision integrals with MAPLE

In this appendix we give some hints how to improve the performance of a computer
algebra program like MAPLE to calculate collision integral for spheres. We want to
calculate integrals of the form given in eq. (A.15)∫

dω1dω2dv1dv2dr̂ρ1ρ2 |v12r̂|Θ(−v12r̂)(b− 1)
1

2
(f1 + f2). (A.66)

(b− 1)(f1 + f2) are multinomials in the components of the vectors v1,v2,ω1,ω2 de-
termined by the collisions rules and r̂. We assume that ρi is of the form of a Gaussian
multiplied with a multinomial in the vectors v1,v2,ω1,ω2. For symmetry reasons
after integration over all velocities and angular velocities the remaining integral over
r̂ does not depend on r̂. So we can choose it in the direction of let us say ez and
first perform the integral over all velocities. Then we multiply the result with the
value for the surface of the unit sphere. We are left with a 12-dimensional Gaussian
integral (in three dimensions) over a large multinomial, but we have to take into
account the Θ-function, which is for the special choice of r̂ given by Θ(−(vz1 − vz2)).
Since the polynomial is large, the build-in integration routine can not handle it. So
the idea is the following: We want to integrate one after another over ωx1 ,ω

y
1, . . . ,v

y
2.

To integrate for example over ωx1 we let MAPLE perform a Taylor expansion of the
integrand (which is done by this program quite fast and without problems) in ωx1 ,
take the n-th coefficients of this Taylor expansion and multiply it with the n-th mo-
ment of a Gaussian integral. Then we collect all terms together. Only for the last
integrations over vz1 and vz2 we first integrate over vz1 up to vz2 and then integrate
over vz2 to take into account the Θ-function.

For the MAPLE code see any textbook about MAPLE, for example [Ko97]. The
integral of the integrand integrand over one velocity component b to n-th order in
b is performed by the following procedure

gauss := proc(integrand,b,n)

local i, w, p;

w:=0; p:=convert(taylor(integrand,b,n),polynom);

for i to (n+1) do

w:= w + coeff(p,b,i-1)*

int(Pi^(-1/2)*exp(-y* y)*y^(i-1),y=-infinity..infinity);

od:

RETURN(w);

end:

The order n depends on the order of approximation and can be determined by a
simple power counting.

Gaussian integration up to a upper limit ober is performed by:
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obergauss := proc(integrand,b,n,ober)

local i, w, p;

w:=0; p:=convert(taylor(integrand,b,n),polynom);

for i to (n+1) do

w:= w + coeff(p,b,i-1)*

int(Pi^(-1/2)*exp(-y* y)*y^(i-1),y=-infinity..ober);

od:

RETURN(w);

end:

A further trick has to be used to perform the last integral over vz2. The integrand

is still a large sum of functions in vz2, but MAPLE normally tries to integrate over
the whole expression, which makes problems for too large calculations. Therefore we
integrate over each addend separately which is done by the following procedure:

zerlegint := proc(integrand,b)

local i, liste, inte, w, G;

G := x -> Pi^(-1/2)*exp(-x*x ); w := 0;

inte := expand(integrand);

liste := [seq( op(i,inte), i = 1..nops(inte))];

for i to nops(inte) do

w := w + int(liste[i]*G(b), b = -infinity .. infinity);

od;

RETURN(w);

end:

One may ask now, why we have not used the procedure zerlegint instead of the
procedure gauss. The reason for that is that MAPLE is not able to perform expand

for such a large polynomial, as it exists before all the other integrations are done.
The whole integral over all velocities now (in 3 dimensions) look like:

dphaseint := proc(integrand)

local inte; global gauss,obergauss,zerlegint;

inte := 4*Pi*gauss(integrand,w_1x,40);

inte := gauss(inte,w_1y,40); inte := gauss(inte,w_1z,40);

inte := gauss(inte,w_2x,40); inte := gauss(inte,w_2y,40);

inte := gauss(inte,w_2z,40); inte := gauss(inte,c_1x,40);

inte := gauss(inte,c_1y,40); inte := gauss(inte,c_2x,40);

inte := gauss(inte,c_2y,40);

inte := obergauss(inte,c_1z,40,c_2z);

inte := zerlegint(inte,c_2z);

inte := simplify(inte);

RETURN(inte);

end;
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fertig geworden.
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