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Abstract 

This thesis is constituted of two parts. In the first part of this thesis, I studied the 

structural phenomena of SR protein phosphorylation. The serine/arginine-rich (SR) 

protein family plays multiple functions in the whole process of RNA metabolism such as 

transcription, RNA splicing, RNA exporting, translation, and nonsense decay of RNA. 

SR proteins contain at least one essential arginine/serine-rich (RS) domain, from which 

the protein name is derived. The RS domain mediates both protein-protein and protein-

RNA interactions. A number of studies have shown that the serine residues within the RS 

domains of SR proteins are extensively phosphorylated. The majority of phosphorylation 

occurs on serine residues in the RS domain. This phosphorylation appears to influence 

interactions and the subcellular localization of SR proteins, thereby modulating their 

functions. In spite of the versatile and vital functions of SR proteins, the structure of the 

whole protein remains unknown so far.   

In this study, we use the combined approaches of NMR and MD simulation to study 

the structures of wild type and phosphorylated RS dipeptide repeat peptides which are 

derived from the prototypical SR protein ASF/SF2 (200-219). In wild type form, the RS 

repeat peptide is disordered, which is revealed by its negative heteronuclear NOE values 

and highly degenerate spectra. Upon phosphorylation, the RS repeat peptide gets 

structured but is still not as fully rigid as folded proteins. After unbiased MD simulations 

of both, a sub-ensemble selection procedure was carried out to obtain a representative 

structural ensemble of the native and phosphorylated ASF/SF2 (200-219) peptides, which 

constrains the simulated ensembles to reproduce experimental NMR data. The 

phosphorylated peptide adopts an “arch-like” structure, which get structured at both 

backbone and side chain levels. The structural changes also show pH dependency, which 

is related to the charges which require -2 charges on the side chain of serine residues.  

Hence RE or RD repeats cannot reproduce the same phenomena as phosphorylated RS 

repeats. 

NMR data of the intact full length RS domains in ASF/SF2 or hPrp28 showed that the 

phosphorylated RS repeats in domain also undergoes a disorder-to-order transition upon 

phosphorylation, which is similar to the isolated RS peptide. This similarity suggests the 
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phosphorylated RS peptide is a general model of structure transitions upon 

phosphorylation for all SR and SR-related proteins.   

In the second part of this thesis, I studied the relationship between N-H spin-spin 

couplings and hydrogen bonds. Hydrogen bonds are essential for the structure of many 

biochemical compounds. Protein folding, the formation of amyloid aggregates, enzymatic 

catalysis, drug-receptor interactions, and many other phenomena are intrinsically 

connected to hydrogen bonding. It has been theoretically predicted that 1JNH becomes 

more negative upon hydrogen bond formation.  In spite of the high accuracy of 1JNH 

measurement, 1JNH values have not been used for the detection of hydrogen bonds.  

In this study, I first measured large numbers of 1JNH values in disordered proteins to 

serve as a reference. The residue-specific mean values of 1JNH were used as random coil 

values. The influence of pH and temperature were also checked by systematically 

measuring the couplings in various conditions.  Comparing the random coil values to 1JNH 

in folded proteins, it was demonstrated that the magnitude of 1JNH was increased by up to 

1.6Hz due to hydrogen bond formation.  Thus the H-N spin coupling can be a sensitive 

tool for the detection of hydrogen bonds. The results also provide a basis for further 

investigating the relation between hydrogen bonds and 1JNH values using theoretical 

calculations. 
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Abbreviations 

1DCα-CO Cα-CO residual dipolar coupling 
1DCα-Hα Cα-Hα residual dipolar coupling 
1DNH N-H residual dipolar coupling 
1JNH One bond N-H coupling 
3JHNHα Three bond HN-Hα coupling 

APSY Automated projection spectroscopy  

ATP Adenosine-5’-Triphosphate 

BSD-IPAP-HSQC Band selection decoupled IPAP-HSQC 

CD Circular dichroism 

CSA Chemical shift anisotropy 

DDX23 DEAD box protein 23 

DNA Deoxyribonucleic acid 

DTT Dithiotreitol 

E.coli Escherichia coli 

EDTA Ethylenediamine tetraacetic acid 

HPLC High performance liquid chromatography 

hPrp28 human Prp28  

HSQC Heteronuclear single quantum coherence 

im-HSQC Intensity modulated HSQC 

INEPT Insensitive nuclei enhanced by polarization 
transfer 

IDP Intrinsic disordered protein 

IPAP In-phase-anti-phase 

IPTG Isopropyl-β-D-thiogalactopyranoside 
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NMR Nuclear magnetic resonance 

NOE Nuclear Overhauser effect 
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PCR Polymerase chain reaction 

PDB Protein data bank 

PRE Paramagnetic relaxation enhancement 

RDC Residual dipolar coupling 

RpS Argine-Phosphoserine dipeptide   
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SAXS Small angle X-ray scattering 
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SDS-PAGE SDS-polyacrylamide gel electrophoresis 

SFRS Splicing factor, arginine-serine-rich 

SR  Serine- Argine dipeptide  

SRPK SR protein kinase 

TROSY Transverse relaxation optimized spectroscopy 

μl Microliter 

μs Microseconds 

τc Correlation time for molecular tumbling 
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Part I Structural consequence of RS domain phosphorylation 

1. Introduction 

1.1 Intrinsic disorder protein (IDP) 

1.1.1 Structure and Function of Intrinsic disordered protein (IDP) 

Intrinsic disorder protein is the protein that carries out biological functions but lack a 

single, well-defined 3-D structure in physiological conditions.  Compared to “regular” 

globular folded proteins, the IDPs exhibit distinct properties, such as resistance to heat 

and chemical denaturation (1), unusual mobility in SDS pages (2), enhanced proteolytic 

sensitivity (3), much bigger hydrodynamic radii (4), lack of secondary structure in 

circular dichroism, and can never be crystallized or missing from X-ray structures.  

The fundamental difference between IDP and regular folded proteins is seen on energy 

landscape topography (5). The topography of globular folded protein has a deep and 

global minimum, which corresponds to the folded state. Because of the steep energy 

barriers around, folded proteins reside in this minimum and fluctuate nearby. The energy 

landscapes of IDP are relatively flat, which do not obtain a global minimum but have 

many shallow local minima separated by low energy barriers. Thus, the thermal 

fluctuation enables IDP to sample a relatively large area in conformation space and 

fluctuate between a diverse set of conformations.  
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Figure 1.1 The landscape of folded protein (a) and intrinsically disordered protein 

(b). The folded protein has a defined minimum energy state, while the IDP lacks a deep 

minimum.(reproduced from (5) with permission) 

The primary structure of IDP is different in amino acid composition from folded 

proteins (6). Certain residues are enriched in IDPs or intrinsic disordered regions (IDR), 

such as Ala, Arg, Gly, Gln, Ser, Pro, Glu and Lys, whereas some other residues are 

depleted, such as Trp, Cys, Phe, Ile, Tyr, Val and Leu. The former group has a high 

flexibility index while the latter ones have low flexibility indices. As a result, the IDPs 

show increased in net charges and low overall hydrophilia (7).  

Although IDP lacks a well-defined 3D structure, it does not mean that they are 

featureless random coils. Even the highly denatured globular proteins caused by chemical 

agents are not true random coils. It has been apparent that the IDPs have a transit local 

order. A significant level of secondary structure elements are identified in IDP by CD, 

Fourier-transform infrared spectroscopy, and especially NMR methods (8-10). These 

secondary structure elements in unbound states often adopt similar structure in bound 

states, which may indicate the recognition segments already partially preformed in free 

form (11).  

On higher structure levels, IDP does not possess a unique tertiary structure. However, 

there are global parameters that can describe the overall size and shape of the protein, 

such as the radius of gyration and the hydrodynamic radius. Small angle X-ray scattering 

and pulsed field gradient NMR studies of IDP both show that the size of IDP molecule is 
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bigger than the globular folded protein with the same residues number, but is still smaller 

than the estimated values for a random coil protein of the same size (4, 12).  In the same 

line with this “partially compacted” state of IDP, there are long range contacts identified 

in IDP by NMR and MD methods (13, 14). 

The biological functions of IDP are searched by searching for the key words of IDP 

functions in databases that show statistically significant correlation (15).   The functions 

most preferential for IDP are in large function areas: 1.transcription and transcription 

regulation 2.signal transduction and regulation of cell cycle 3.the biogenesis and 

functioning of nucleic acid containing organelles 4.messenger ribonucleic acid (mRNA) 

processing 5.the organization and biogenesis of cytoskeleton. 

As IDPs are deeply involved in variety of functions, their dysfunctions lead to diverse 

pathological results (16). Some key proteins in cancers and neurodegenerative diseases, 

such as p53, α-fetoprotein, α-synclein, Prion and Tau, are IDPs or have long disordered 

regions. In fact, IDPs are enriched in proteins associated with cancer, cardiovascular 

disease and diabetes. In neurodegenerative diseases, such as Alzheimer's disease, 

Parkinson's disease and Huntington Disease, IDPs aggregate to form oligomers and 

further to form Amyloid fibrils, which is the key process of disease development. This 

correlation makes IDPs as novel and interesting drug targets. 

1.1.2 Structure-Function relation in IDP  

The structural disorder property of IDP and IDR enable some unique functions, which 

include functions as a spacer or linker, entropic brushes, entropic springs, and entropic 

clocks (17, 18).  The space and linker are regions that connect the functional domains or 

motifs. Their functions are to offer appropriate space separations between motifs, which 

allow the motifs freely interact with each binding partners. The entropic functions of IDP 

are due to the entropy penalty when the external forces reduce the conformation freedom 

(19, 20). To carry out these functions, the disorder to order transition of IDPs is not 

necessary.  

IDPs most often involve molecular recognition. Normally, they undergo induced 

folding upon binding (21, 22). Unlike folded proteins, the IDP tends to use short and 
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flexible motifs in binding. These short fragments often have the tendency of the bound 

form in their free states. Sometimes, two IDPs can bind together and undergo mutual 

induced folding (23).  However, the exact mechanism of folding upon binding is still 

quite obscure. The folding can happen before, concurrently and after the binding event.  

The disordered nature of IDP uncouples the specificity and binding strength by the 

decreasing in conformation entropy upon binding.  The entropic penalty reduces the free 

energy comes from the binding of protein and ligands. By modulating the entropy 

changes in reaction, it is possible to modulate the proteins interactions and hence regulate 

the protein functions.  In addition, segments of IDP could retain their disordered state in 

the complex, which is termed as fuzziness(24).  

The recognition interfaces of IDPs are larger than folded proteins if normalized by the 

chain length (25, 26). The interfaces of IDPs also make more hydrophobic-hydrophobic 

contacts, while the folded proteins use more polar-polar interactions.  It is suggested that 

the folded protein tends to stabilize themselves by the interaction within the same 

polypeptide chain, whereas the IDPs use more interaction with their partners for 

stabilization.  

From kinetic views of interactions, the flexible, fast moving backbone of IDP speed up 

the reaction by several factors. First, the binding regions of IDPs keep sampling the 

binding conformation and expose the primary contact sites for initial contact (27). Second, 

the increased capture ranges of the segments in disordered proteins make the search for 

partner more effective (28).   

The adaptability of IDPs in binding is another unique feature rooted in the structural 

property of IDP. In the classical structure-function paradigm, one protein or one part of 

the protein can only interact with one binding partners.  However, some segments of 

IDPs can interact with different binding partners with different conformations (29). It is 

particularly important for hub proteins, which sits in the intersection point of many signal 

transduction pathways such as p53 (30).  
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1.2 Ensemble representations of intrinsically disordered protein  

Under physiological conditions, thermal fluctuation causes the proteins sample certain 

ranges of different conformations, while the probability of each conformation depends on 

the terrain of the energy landscape.  The energy landscape of folded protein has a well-

defined global minimum, and the “funnel” terrain around the minimum is steep. This 

restricts protein conformations in a folded state corresponding to the global minimum and 

allows only small fluctuations around it. In this case, one single structure corresponding 

to the minimum is good approximation of protein conformation.   

By contrast, the relatively flat energy landscape of intrinsically disorder protein (IDP) 

lets the protein sample over a much larger range of conformers.  Thus one single structure 

cannot cover all of the protein states. The comprehensive description of such system 

requires an ensemble, which consists of a group of structures and covers all accessible 

states of the protein.  

In practice, members of ensemble are selected in such way that the ensemble averages 

of some “observable” parameters agree with the experimental data.  These observable 

parameters include chemical shifts, residue dipolar couplings (RDC), scalar couplings, 

paramagnetic relaxation enhancement (PRE) via NMR, average radius of gyration and 

scattering profile from small angle X-ray scattering (SAXS).  The conformations in the 

ensemble are exchanging with each other in a fairly rapid timescale, so the experimental 

values correspond to the ensemble average over all structure in the ensemble. 

Chemical shifts that give information about local conformation tendency can be 

estimated from protein structure by a number of programs SHIFTS(31), SPATA(32) or 

SHIFTX(33). RDCs, which report the relative orientation of the vectors toward the 

external magnetic field, can be predicted from known protein structures by program 

PALES(34). There are established Karplus equations to correlate scalar couplings with 

dihedral angles (35-37).  PREs, which provide long-range contact information, can be 

estimated straightforwardly based on atomic coordinates of protein structure. One has to 

compute the value for every structure, take the average, and then compare to 

experimental data. 
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There are two different approaches to build ensembles. First one is termed as 

“restrained MD simulation”. As shown by its name, it introduces extra terms in energy 

functions to bias the simulation towards the region in conformation space that agree with 

experimental data.  In such MD simulation, multiple replicas are simulated in parallel and 

the restrains are not applied to single structures but to the entire group. At each step, the 

ensemble average over all the replicas are calculated and compared to experimental data. 

The penalty function is added to enforce the match of back-calculated values and 

experimental data. This method is applied to α-synclein with PRE data as experiment 

restrains (38, 39).  

Another method to generate ensemble is sub-ensemble construction. First, a library of 

conformations is generated, and then a subset of this library is selected from this library 

to reproduce the experimental data. The start library can be obtained from MD simulation 

for the full length protein (40), or by joining conformations from MD simulation of each 

small peptide segments consisting the whole sequence altogether (41), or by with 

statistical coil models such as Flexible-Meccano (42).  

Once the ensemble is generated, a small subset of the ensemble is chosen to minimize 

the difference between predicted and experimental values.  The algorithm employs Monte 

Carlo (43), Sample and Select (44), or evolutionary algorithm (42) to search for a set of 

conformations that  best reproduce the experimental data.  This approach was also carried 

on α-synclein to detect long range contacts (45).  

There is a slightly different approach that does not select a subset of conformations, 

but assigns a probabilistic weight to every structure in library (46). However, the two 

approaches are equal in principle. The selection approaches can be regarded as a 

particular case for weight assigning method: for the conformations not selected, their 

weights are 0. For the conformations in the ensemble, all of them have the same weight 

1/N, with N being the number of conformations in the selected ensemble. The Energy-

minima Mapping and Weighting (EMW) method employs the both approaches, which 

chooses the structures to generate ensemble and then assigns weights to these structures. 

The EMW method was carried out for the C-terminal fragments of p21 protein, which 

reveals pre-existing bound state conformations in the free peptide.  
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To assess the performance of the algorithm used in generating ensembles, a method 

termed as “reference ensemble” was introduced as standard tool for evaluation ensemble 

generate methods (Figure 1.2).  The principle of this method is generating a “reference 

ensemble”, which is made up of preset structures and corresponding weights. The 

“synthetic” experimental data are calculated from the “reference ensemble”. The 

ensemble building algorithm tested is fed with “synthetic” experimental data, and then 

the outcome is compared to the “reference ensemble”. The sign of success is clear when 

the algorithm can reproduce the reference ensemble solely based on the synthetic 

experimental data.  This method allows checking the performance of the algorithm in an 

ideal situation without any experiment error. On the other hand, the same method also 

could be used to monitor the uncertainty in the final ensemble induced by experiment 

error.  

 

Figure 1.2 A schematic representation of the reference ensemble method for 

validating ensemble constructing methods (reproduced from (5) with permission) 

The two aforementioned approaches of restricted MD simulation and ensemble-

selection were tested with this method, which reveal both strengths and disadvantages. 

Restricted MD simulation of α-synclein using only PRE restrains performs poorly unless 

large number of restrains are included (39), i.e. more than 4 restrains per residue per 

replica.  However, if the radius of gyration is added as additional information, restricted 

MD needs much less PRE data; 2 restrain per residue per replica is enough (38). So the 
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performance of restricted MD depends on both number and type of restrains. With 

enough experimental data, this method can give accurate model of the protein, although it 

is difficult to know exactly how many experimental restrains is sufficient.  

Sub-ensemble also faces a problem of degeneracy. There are many ensembles can 

match the experimental data equally well within the experimental error range, but all 

these ensembles are different from the reference ensemble (41).  This means that 

agreement with experimental data cannot ensure the accuracy of the ensemble. This 

problem originates from the fact that the experimental data normally is much less than the 

degrees of freedom, which can uniquely specify the ensemble. Constructing a number of 

ensembles can alleviate this problem, and then extracting the structural features shared by 

all these ensembles (47, 48). The characteristics recurring in different ensembles are 

likely to be accurate. Again, similar to the restrains problem in restricted MD simulation, 

the number of ensembles needed to identify common structure features is unclear.  

Moreover, the definition of “common structure features” is ambiguous.  An alternative 

way is to quantitatively estimate the uncertainty of weights of structures in ensemble by 

Bayesian statistics given the experimental data (41). 

In short, all approaches to construct ensemble of IDP have the advantages and 

limitations of their own. With new developments made to better access and validate the 

ensembles, the accuracy of IDP structure description will be improved.  

1.3 Phosphorylation induced structure changes 

Although there are only 20 natural amino acids encoded in genes there are various 

modifications of amino acid side chains after translation, which are vital for functions of 

gene products. Phosphorylation is an important post-translation modification in both 

prokaryotes and eukaryotes that modulates numerous biological functions.  One 

phosphate group was added to side chain hydroxyl group of Ser, Thr or Tyr residues in 

protein phosphorylation. Phosphorylation is catalyzed by protein kinases, while the 

reverse reaction is catalyzed by phosphatase. 

Gain or loss of the phosphate groups on one protein is able to cause a signal cascade, 

which results in modifying the enzyme activity or gene expression.  Reversible 
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phosphorylation is one of the most ubiquitous and significant regulatory mechanisms. 

Aberrant regulation of phosphorylation leads to numerous diseases including several 

cancers (49).   

Genome surveys reveal that up to 30% proteins are phosphorylated in vivo and 

phosphorylation prefers hydrophilic and terminal part along the primary sequence (50). 

Moreover, sequence analysis shows that disorder-promoting residues are enriched in 

phosphorylation sites surrounding, which implies that protein phosphorylation 

predominately occurs within intrinsically disordered regions (51).   

Whereas many of thousands of phosphorylation sites are identified, the atomic detail 

information of structural changes induced by phosphorylation is relatively rare due to 

experimental difficulties. MD simulation based on known structures plays a valuable role 

in elucidating structural consequences of phosphorylation (52). 

The phosphate group is negatively charged in physiological conditions, which strongly 

perturbs the electrostatic interaction in proteins. Besides being directly involved in 

binding contact (53), phosphorylation changes the landscape of a protein, hence alters the 

conformation of protein (54).  Phosphorylation can change the conformation in a variety 

of ways: from local effects such as stabilizing the structure of the binding groove (55), to 

inducing allosteric changes distant from the phosphate (56). 

Phosphorylation sites can be found on kinase itself, which regulate the activity of 

kinase. The phosphorylation sites are mainly located in the so-called “activation loop”, 

which form part of the binding groove for the peptide.  In phosphorylated CDK2/cyclin A 

complex, the pThr160 directly contacts the basic residue 3 residues C- terminal to the 

phosphorylatable serine on the substrate, which contributes to substrate recognition.  In 

addition, the pThr160 also acts as an organizing center to stabilize the conformation of 

vicinity by contacting and neutralizing three agrinines with its phosphate group (55). The 

CDK family is also regulated by phosphorylation on a “glycine rich” loop, which is part 

of the ATP-binding site. Phosphorylation of two adjacent residues, Thr14 and Tyr15, can 

inhibit CDK2 activity by misalignment of the ATP (57). In the case of PKA, the 

phosphorylation of Thr197 in an activation loop not only changes the conformation of 
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this loop, but also stabilizes the side chain orientation of the serine on the substrate in a 

position to prime for phosphorylation(58).  

The conformation changes are not limited to the region in the vicinity. In one Hck 

kinase, four distinct conformational motifs are coupled to each other via the interaction 

limited to the nearest neighbor.  Phosphorylation on Tyr416 in the flexible, solvent 

exposed part of the activation loop causes a shift in the conformation equilibrium of this 

part. This shift induces some change of contact with the other part of the activation loop, 

which further changes the rotation of the α-C helix. Specific nearest-neighbor interactions 

between the α-C helix and N-terminal end hinge correlate the motion of N-terminal 

hinges with the rotation of the α-C helix.  Therefore, effects of Tyr416 phosphorylation 

are transmitted to regulatory SH2 and SH3 domains (56). 

In some cases, more dramatic conformation changes are induced, both order to 

disorder (59) or disorder to order transitions(60, 61). Phosphorylation of S16 in 

monomeric phospholamban causes melting of local structure, and further changes the 

motion of the whole protein (59). Electron paramagnetic resonance (EPR) and Molecular 

dynamics (MD) studies on the regulatory light chain of smooth muscle myosin reveal a 

helix structure is induced by phosphorylation in the N-terminal region (60, 61). 

Phosphorylation at Ser-133 of the kinase inducible domain of CREB (KID) triggers a coil 

to helix transition and reduces its flexibility, which facilities its binding to the KIX 

domain of CBP(62). Phosphorylation of Ser14 on glycogen phosphorylase induces a 

distorted 310 helix at the N-terminal and binds to the surface of the dimer. This structural 

change strengthens subunit interactions and transforms the enzyme to an active form (63).  

1.4 SR protein and RS domain 

1.4.1 The SR protein 

The SR protein was first identified as splicing factors in Drosophila in the early 1990s 

(64). The term “SR” refers to high-serine and Argine contents in a protein sequence. The 

first identified three SR proteins all have one domain rich in Arg-Ser repeats termed RS 

domain, which becomes the hallmark of SR proteins. Later, in humans, two other SR 
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proteins, ASF/SF2(65) and SC35(66) are identified, which also obtain RRM domains 

besides the RS domain.  

 Member of SR proteins family was identified based on following criteria: the presence 

of a phosphoepitope recognized by the monoclonal antibody mAb104, complement 

splicing in HELA S100 extraction, functions in both constitutive and alternative splicing, 

conservation across species and structure similarity (67, 68).   

Only nine proteins in humans are identified as SR proteins: SF2/ASF, SC35, SRp20, 

SRp40, SRp55, SRp75, SRp30c, 9G8, and SRp54, which are encoded by gene Splicing 

factor, arginine-serine-rich (SFRS) 1-7, 9 and 11 (69). All of them share the same domain 

architecture:  they contain at least one or two RNA recognition motif (RRM) domains at 

the N terminus and an RS domain at the C-terminus. The RRM domains are in charge of 

sequence-specific RNA recognition while RS domains mediate protein-protein 

interaction and RNA-protein interaction (68-70). However, recent cross-linking studies 

reveal a direct contact between RS domain and critical signals on pre-mRNA sequences 

(71-73). These are classified as “classical” SR proteins.  

A genome-wide study reveals more RS domain containing proteins. Their domain 

organization is different from “classical” SR proteins.  They have one RS domain in the 

sequence, but the RRM domains are missing. Instead, these proteins have some other 

domains such as DEAH box domain and PWI domain, which have RNA-binding ability.  

These proteins are classified as “SR-related” proteins. Some RS domains in “RS related 

proteins” (U1-70k, Prp28) have many Arg-Asp and Arg-Glu dipeptides repeats and 

relatively few Arg-Ser repeats(68). 

Now it is suggested to divide all SR-contain proteins into three classes based on their 

domain structures and functions related to splicing (70): Genius “SR proteins” refer to 

those that have at least one RRM domain and one RS domain, functional in constitutive 

or alternative splicing. Some SR proteins have a different domain organization compare 

to “classical” SR proteins, but are still involved in RNA splicing. These proteins are 

termed as “Additional SR-proteins”. Other proteins that contain one RS domain and other 

RNA related domains could be labeled as “SR-related factors”. Some the SR-related 
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factors bind to RNA via domains other than RRM, such as Zinc finger or PWI domains. 

Other SR-related factors do not directly contact with RNA, but are enzymes or regulators 

that modulate the splicing. “Classical SR-proteins”, “additional SR proteins”, “RNA 

binding SR-related factors”, and “RS domain containing factors ” are listed in Tables 1.1 

to 1.4.  The domain architecture of SR proteins and SR-related proteins are shown in 

Figure 1.3.   

 

Protein 

name 

Gene 

name 

Key 

domains 
Splicing role UniProt 

SF2/ASF SFRS1 RRM×2, RS Constitutive and alternative splicing activator Q07955 

SC35 SFRS2 RRM, RS Constitutive and alternative splicing activator Q01130 

SRp20 SFRS3 RRM, RS Constitutive and alternative splicing activator P84103 

SRp75 SFRS4 RRM×2, RS Constitutive and alternative splicing activator Q08170 

SRp40 SFRS5 RRM×2, RS Constitutive and alternative splicing activator Q13243 

SRp55 SFRS6 RRM×2, RS Constitutive and alternative splicing activator Q13247 

9G8 SFRS7 RRM, RS, 

CCHC-type 

  

Constitutive and alternative splicing activator Q16629 

Table 1.1 Classical SR proteins (reproduce from(68) ) 
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Protein 

name 

Gene 

name 

Key 

domains 
Splicing role UniProt 

p54 SFRS11 RRM, RS Alternative splicing repressor Q05519 

SRp30c SFRS9 RRM×2, RS Constitutive and alternative splicing regulator Q13242 

SRp38, 

TASR 
FUSIP1 RRM, RS General splicing repressor O75494 

hTra2α TRA2A RRM, RS×2 Splicing activator Q13595 

hTra2β SFRS10 RRM, RS×2 Splicing activator P62995 

RNPS1 RNPS1 RRM, RS Constitutive and alternative splicing regulator Q15287 

SRrp35 SRRP35 RRM, RS Negative regulator of alternative splicing Q8WXF0 

SRrp86, 

SRrp508 
SFRS12 RRM, RS Positive and negative regulator of alternative 

splicing 
Q8WXA9 

U2AF35 U2AF1 RRM, RS, 

C3H1-type 

  

Constitutive splicing factor Q01081 

U2AF65 U2AF2 RRM×3, RS Constitutive splicing factor P26368 

U1-70K SNRP70 RRM, RS Constitutive splicing factor P08621 

XE7 SFRS17A RRM, RS Alternative splicing regulator Q02040 

SRp46 SFRS2B RRM, RS Constitutive and alternative splicing regulator Q9BRL6 

Table 1.2 Additional SR proteins (reproduce from(68)) 
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Protein name Gene 

name 
Key domains Splicing role UniProt 

Urp ZRSR2 RRM, RS Splicing factor Q15696 

HCC1/CAPE

R 
RBM39 RRM, RS Alternative splicing regulator Q14498 

hSWAP SFRS16 RS Alternative splicing regulator Q8N2M8 

Pinin PNN RS Alternative splicing regulator Q9H307 

SRrp129 SFRS2IP RS Splicing factor Q99590 

U4/U6·U5 tri-

snRNP-

  

  

RY-1 RS Unknown Q8WVK2 

LUC7B1 LUC7L RS, C2H2-type 

zinc finger 
Unknown Q9NQ29 

Acinus ACIN1 RRM, RS, SAP Unknown Q9UKV3 

SR-A1 SFRS19/ 

SCAF1 
RS Unknown Q9H7N4 

ZNF265 ZRANB2 RS, RANBP2-

type zinc 

 

Alternative splicing regulator O95218 

SRm160 SRRM1 RS, PWI Constitutive and alternative splicing 

co-activator 
Q8IYB3 

SRm300 SRRM2 RS Constitutive and alternative splicing 

co-activator 
Q9UQ35 

RBM5 RBM5 RRM×2, RS, 

RANBP2- and 

  

 

Unknown P52756 

U2-associated 

protein 

 

SR140 RRM, RS Unknown O15042 

RBM23 RBM23 RRM×2, RS Unknown Q86U06 

SFRS15 SFRS15 RRM, RS Unknown O95104 

Table 1.3 RNA-binding SR-related factors (reproduce from(68)) 
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Protein name Gene 

name 
Key domains Splicing role UniProt 

SRrp53 RSRC1 RS, coiled-coil 

domain 
Unknown Q96IZ7 

hPRP5 DDX46 RS, DEAH box Spliceosomal rearrangement Q7L014 

hPRP16 DHX38 RS, DEAH box Splicing factor Q92620 

Prp22/HRH1 DHX8 RS, DEAH box Spliceosomal rearrangement Q14562 

U5-

100k/hPRP28 
DDX23 RS, DEAD box Spliceosomal rearrangement Q9BUQ8 

ClkSty-1 CLK1 RS, kinase domain SR protein kinase P49759 

ClkSty-2 CLK2 RS, kinase domain SR protein kinase P49760 

ClkSty-3 CLK3 RS, kinase domain SR protein kinase P49761 

Prp4k PRPF4B RS, kinase domain SR protein kinase Q13523 

CrkRS CRKRS RS, kinase domain SR protein kinase Q9NYV4 

CDC2L5 CDC2L5 RS, kinase domain Alternative splicing regulator Q14004 

Cyclin-L1 CCNL1 RS, cyclin-like 

domain×2 
Alternative splicing regulator Q9UK58 

Cyclin-L2 CCNL2 RS, cyclin-like 

domain×2 
Alternative splicing regulator Q96S94 

SR-cyp PPIG RS, PPIase 

cyclophilin-type 

 

Regulates localisation of SR proteins Q13427 

CIR CIR RS Alternative splicing regulator Q86X95 

SRrp130 SFRS18 RS×2 Unknown Q8TF01 

Table 1.4 Other RS domain containing proteins (reproduce from(68)) 
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Figure 1.3 Domain structure of SR proteins (reproduce from(68)) 

1.4.2 SR protein functions 

Classical SR proteins are present in all metazoan species as well as some lower 

eukaryotes, but not all eukaryotes (74). Classical SR proteins are absent in budding yeast, 

which only has some SR-like proteins (75). Interestingly, 95% of budding yeast genes 

contains a single intron and alternative splicing is rare. When more SR proteins were 

being studied, it became evident that the SR protein family is versatile: SR proteins are 

functional in the whole process of RNA metabolism, from transcription to decay (76).  

SR proteins are involved in transcription, splicing, facilitating mRNA exporting, 

stimulating translation in the cytoplasm, and enhancing nonsense-mediated-decay of 

mRNA (76). SR proteins bind to the phosphorylated C-terminal domain of RNA 

polymerase II, which facilitates transcriptional elongation and link transcription with 

splicing (77).  Some SR proteins, such as ASF/SF2, SRp20, 9G8, shuttle between the 

nucleus and the cytoplasm (78). These SR proteins interact with mRNA nuclear export 
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receptor TAP/NFX1 (79), by which they affect RNA exporting after splicing (80).   SR 

proteins have also been shown to be related to nonsense-mediated decay (NMD) of 

mRNA. Overexpressing ASF/SF2, SC35, SRp40 and SRp55 strongly enhance NMD (81). 

ASF/SF2 stimulates mTOR, which is kinase for various translation factors and inhibits 

protein phosphatase PP2A, thus enhancing cap recognition and translational initiation 

(82). SR proteins are required for maintaining genome stability. In vivo depletion of 

ASF/SF2 in Chicken DT40 cells induced double-stand DNA breaks and gross DNA 

recombination (83). 

1.4.3 SR protein in mRNA splicing 

Among various functions of SR proteins, the best known ones play essential roles in 

both alternative and constitutive splicing (70, 84).  In RNA splicing, SR proteins affect 

recognition and selection of splicing sites, bridging the 3’-end and 5’-end of introns, and 

play an import role in the incorporation of U4/U5/U6 tri-RNP into spliceosome (Figure 

1.4).  

 

Figure 1.4 Functions of SR proteins in RNA splicing.  a) Exon definition. SR proteins 

recognize the ESE (exonic splicing enhancer) sequences and guide splicing factors to the 

right position. The khaki sphere represents splicing factors at 3’ end of intron while the 
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blue sphere represents splicing factors at the 5’ end of intron. b) Intron bridging. SR 

proteins interact with splicing factors at both ends of intron to bring them together. c) SR 

proteins mediate incorporation of U4/U6·U5 tri-snRNP into pre-spliceosome. d) SR 

proteins antagonist with hnRNP in splicing site selection. 

The sequence of splice sites in eukaryotes mRNA is not enough to initiate splicing 

alone. There are certain sequences in exons or introns, serve as cis-acting elements to 

facilities splicing site selection, which are termed as exonic splicing enhancers (ESE) and 

intron splicing enhancers (ISE), respectively. At the first stage of spliceosome, SR 

proteins bind to certain ESE, and facilitate in two synergic ways spliceosome assembly: 

first, SR proteins bind to ESEs and then recruit and stabilize other splicing factors on 

mRNA in the “exon definition” process, such as U1 snRNP at 5’ss (85-87) and U2AF at 

the 3’ splicing site (88-90) (Figure 1.4a). Second, the bindings of SR proteins displace 

hnRNPs binding to mRNA or prevent them from binding, by which SR proteins 

antagonize the negative effects of hnRNP (91) (Figure 1.4d). It is also worth noting that 

two components of the U2AF, U2AF35 and U2AF65 are SR-proteins and SR-related 

proteins respectively.  

The other problem in multi-exon gene splicing is how to ensure the correct order of 

exons, i.e. how exon skipping is avoided. It is evident that SR proteins binding to ESE 

also prevent exon skipping (Figure 1.5). Upon binding to ESE, SR proteins favor the 

splicing on the proximal 3’ splicing site rather than on the distal 3’splice site (92). With 

this preference, SR proteins work as insulators to inhibit pairing of splicing factors at 5’ 

and 3’ splicing sites over the ESE sequence, and favor the pairing of closet 5’ and 3’ 

splicing sites. Thus, SR protein and ESE sequence together ensure that 5’ and 3’ splice 

sites within the same intron are used, therefore suppressing exon skipping. 
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Figure 1.5 SR proteins preventing exon skipping. The color coding is the same as 

Figure 1.4. 

The ESE binding SR proteins also serve as a bridge in correlation of the 3’end and 

5’end of the intron through a protein-protein interaction network (Figure 1.4b). It is 

demonstrated that ASF/SF2 and SC35 can interact either with both U1 small nuclear rib 

nucleoprotein (snRNP U1-70K) and the 35 kD subunit of the splicing factor U2AF 

(U2AF35) (93). This is extremely important in higher eukaryotes, in which introns are 

several kb long, much longer than the exons.  

  Due to the essential roles of SR proteins in splicing site recognition, it is not 

surprising to regard SR proteins as master regulators in alternative splicing. Many 

alternative sites are weak in splicing signals, thus fail to be efficiently recognized by 

splicing factors, which normally results in exon skipping. SR binding to ESE can 

compensate the weak signal and recruit splicing factors by the similar mechanism in 

constitutive splicing. 

SR proteins are involved in suppressing or promotion splicing in a substrate-dependent 

manner: different SR proteins bind to their own ESE respectively and antagonize with 

each other. The final selection of splicing sites is the result of competition of all SR 

proteins. Thus, for a particular splicing site, one SR protein can appear as a negative 

regulator because it promotes splicing on other sites. Moreover, it was shown that the 

relative positive or negative effects of SR proteins might depend on the relative position 

of their ESE with respect to the splicing site (94).  
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There are analogous SR proteins binding sites inside introns that resemble the ESE. 

Unlike their exonic counterpart, these sequences serve as negative cis-regulators of 

splicing (95). When SR proteins bind to these repressor elements, they prevent further 

recruitment of splicing factors, such as demonstrated in adenovirus infection: AFS/SF2 

prevents U2 snRNP binding to branch point thus inactivate the 3’ splice site. Hence, the 

SR proteins promote exon inclusion. Thus SR proteins bind to some ESE-like intronic 

sequence promote splicing at a “cryptic” intron sites instead of “routine” splicing sites 

(Figure 1.6).  

 

Figure 1.6 SR proteins binding to intronic sequence change splicing sites. The color 

coding is the same as Figure 1.4. 

However, there are several SR-related proteins identified only function as negative 

regulators without promoting splicing at any other sites on pre-mRNA. For example, 

SRp35(96), SRp38(97), p54(98) and SRp86 (99, 100) promote exon skipping in 

alternative splicing and antagonize typical SR protein activities.   

U12-dependent introns normally obtain more conservative 5’ss and branch points 

sequences. However, SR proteins are also shown to participate in U12-dependent splicing 

by prompting binding of U11 and U12 snRNP to 5’ss and branch point, respectively 

(101). Therefore, SR proteins appear to have an ancestral origin and were subsequently 

lost independently in some lineages. 

In later stages of spliceosome assembly, SR proteins facilitated the recruitment of 

U4/U6.U5 tri-snRNP into pre-spliceosome (102)(Figure 1.4c). Interaction between two 

SR-related proteins, SRrp65 and SRrp110, are required for U4/U6.U5 tri-snRNP 

incorporation (103). Another SR-related protein, prp28, is important for stability of tri-

snRNA, and is also required for tri-snRNP integration into spliceosome (104). 



 
Part I, 1. Introduction                                     23 

23 
 

1.4.4 Function redundancy of SR proteins  

The redundancy of SR functions is an intriguing puzzle. Because of the assay of SR 

protein identification, all classic SR proteins have function redundancy: they all can 

complement splicing in a S100 extract.  Both constitute and alternative splicing indeed 

show little impact in single SR protein knockout cells in most cases, which supports 

function redundancy of SR proteins in vivo (105, 106). This redundancy can be explained 

in two ways: first, one ESE sequence may be recognized by several SR proteins (107, 

108); second, one exon may obtain several ESE recognized by different SR proteins 

(109), which act independently or collaboratively (110, 111). These explanations make 

the implicit assumption that RS domains in SR proteins are exchangeable or at least 

similar in activity, which is valid to some extent by some domain substitution 

experiments(112). 

However, there are increasing results about deficiency in SR depletion cells and 

animals. Depletion of ASF/SF2 in chicken cell lines cannot be rescued by the expression 

of SC35 and SRp40 (113). Depletion of SR protein SRp20(114), SC35(115) and 

ASF/SF2(116) in mice induces phenotypes in embryonic development indicating that SR 

proteins are not redundant. In contrast, the cultured cell from knockout mice is viable, 

indicating that the non-redundant functions of SR proteins are tissue- and developmental 

stage-dependent.  Conditional knockout SR proteins in animals further reveal their non-

redundant function in tissue-maintenance and embryogenesis (117). 

1.4.5 SR proteins and diseases  

Given the essential functions of SR proteins in numerous cell functions, the disruption 

of SR family protein’s functions leads to human disease.  

Elevated expression of ASF/SF2, SC35 and SRp20 were observed in some cancer 

tissues (118, 119); however, the mRNA level of ASF/SF2, SRp40, SRp55 and SRp75 are 

lower in non-familial colon adenocarcinomas than adjacent non-pathological tissue (120). 

These different regulation directions indicate that the SR protein levels in cancerous 

tissues are both tissue- and protein- specific.  
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ASF/SF2 has specific roles in cancer development. Besides its up-regulation in many 

human cancers, the gene coding ASF/SF2, SFRS1 is commonly amplified in breast 

cancer.  Increasing expression of ASF/SF2 can transform immortal rodent fibroblasts and 

induce the formation of sarcomas in nude mice, which can be reversed by the down 

regulation of ASF/SF2. This transforming activity is unique for ASF/SF2 among other 

SR proteins. Taken together, these facts support SFRS1 to be a proto-oncogene (121). 

In addition, ASF/SF2 regulates the alternative splicing of Ron transcripts, which are 

well-known proto-oncogenes. ASF/SF2 promotes skipping of exon 11, which results a 

constitutively active isoform ΔRon. It increases motility on expressing cells, which is 

required for tumor metastasis.  In breast and colon tumors, the accumulation of ΔRon is 

observed and is correlated with the level of ASF/SF2 (122). 

The HIV virus generated more than 40 different mRNAs from its full-length genomic 

pre-mRNA to generate key viral proteins by a combinational usage of several alternative 

5’ and 3’ splice sites (123). Thus, as the master of alternative splicing regulators, some 

SR proteins are deeply involved in alternative splicing of HIV viral pre-mRNA and 

replication of HIV virus accordingly, such as ASF/SF2, SRp75 and SRp40 (124, 125). 

HIV infection changes the level of splicing factors including SR proteins (126). Current 

drug developments for treating HIV focus on reverse transcriptase, proteases and gp120 

(127). The essential functions of SR in HIV pre-mRNA splicing offer an alternative and 

novel drug target. Several benzopyridoindole and pyridocarbazole derivatives are 

identified, which selectively inhibit the ESE-dependent splicing activity of individual SR 

proteins (128).  One of these small chemical compounds was shown to block production 

of key HIV viral proteins by inhibiting ASF/SF2-dependent splicing (129). 

SR proteins are also regulators of pre-mRNAs related to some other human diseases.  

The absence of the exon 9 of the cystic fibrosis transmembrane conductance regulator 

(CFTR) is correlated with the occurrence of monosymptomatic and full forms of cystic 

fibrosis disease (130). ASF/SF2 and SRp40 promote this exclusion by binding to an ISS 

(131). SC35 has been shown to significantly activate splicing at a cryptic 5’ss splicing 

site which is introduced by an intronic mutation of E1α pyruvate dehydrogenase. This 

cryptic splicing site results in a mis-spliced mRNA and a defective protein (132).  
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Depletion of SC35 by RNAi in primary fibroblasts from patients could restore the normal 

splicing pattern.  

In addition, SR proteins were shown to be the autoantigens in systemic lupus 

erythematosus patients (133). 

1.4.6 RS domains in SR proteins  

The RS domain, rich in continual Arg-Ser dipeptide repeats is the marked feature for 

all SR proteins and SR-related proteins.  In RS domain of “Classic SR proteins”, such as 

AF/SF2, RS dipeptide repeats can constitute up to 70% of the sequence. In “SR-related” 

proteins, however, there are more Arg-Asp and Arg-Glu dipeptide repeats rather than 

Arg-Ser repeats (134, 135) (Figure 1.7).  

Figure 1.7 Residue compositions of RS domain in classical SR protein ASF/SF2 (a) 

and SR-related protein hPrp28 (b). 

The RS domain of ASF/SF2 can directly contact with RSF1, one splicing regulator in 

Drosophila (136). The interaction between ASF/SF2 and U1-70k, which is the very initial 

step in 5’ss recognition, requires RS domains in both proteins. The interactions of 

ASF/SF2 and SC35 with U1-70k and U2AF35 are RS domain dependent, which is 

important for bridging 5’ss and 3’ss splicing sites (93). The recruitment of the 

U4/U6 · U5 tri-snRNP to the pre-spliceosome is similarly mediated by RS domain-

mediated interactions with the SR-related proteins SRrp65 and SRrp110 (103). One 
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peculiarity of these protein-protein interactions is that RS domains binding partners are 

RS domains from another SR-protein or SR-related proteins. 

There is increasing evidence from cross-linked experiments that demonstrate RS 

domains can directly contact pre-mRNA (71, 72). Initial research showed that RS 

domains of ASF/SF2 and U2AF65 directly interact with RNA at the branch point in A 

complex and E complex in spliceosome cycle respectively. Further studies show that 

during the whole course of spliceosome assembly, different RS domains from different 

splicing factors sequentially bind to pre-mRNA on different sequences, mainly at 5’ss 

and at the branchpoint (73). Thus, the interaction with mRNA seems to be a common 

property of all RS domains.    

1.4.7 Phosphorylation of SR proteins 

Phosphorylation is one of the most important post-translational modifications. 

Considering the extraordinary contents of Ser residues in sequence, RS domain is a good 

substrate for phosphorylation modification.  SR proteins isolated from cell extract are 

highly phosphorylated. The majority of phosphorylation occurs on serines in the RS 

domain (137). The splicing activity of SR proteins dependent on the phosphorylation 

contents, both hyper-phosphorylation and hypo-phosphorylation inhibits splicing (138-

140). SR proteins undergo several rounds of phosphorylation and de-phosphorylation 

cycles in the process of splicing. 

Some evidence shows that both phosphorylation and dephosphorylation of RS domains 

regulate the activity of SR proteins, thereby regulating the assembly of spliceosome and 

splice site selection. For example, phosphorylation of ASF/SF2 enhances the interaction 

between ASF/SF2 and U1-70K proteins in A complex formation (141). Phosphorylated 

SR proteins are also required for the U4/U6-U5 tri-snRNP assembly into the spliceosome 

(102). On the other hand, phosphorylation of ASF/SF2 reduces its interaction with 

hTra2α, a human homolog of the Drosophila splicing regulator Tra2 (142). 

Besides splicing activity, phosphorylation of SR proteins affects subcellular 

localization. Phosphorylation in the RS domain controls SR importing into the nucleus 

and residing in speckle SR proteins (143, 144).  Speckles are dynamic structures that act 
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as storage sites for pre-RNA splicing factors. Trans-portin-SR, the nuclear import 

receptor for SR proteins, favors the interaction with phosphorylation RS domain (145). 

Phosphorylation of RS domain is also required for their recruitment to sites of 

transcription. Thus the nuclear distributions of SR proteins are also controlled by 

phosphorylation of the RS domain (146).   

1.4.8 Kinases phosphorylate RS domain   

Several kinases are responsible for SR protein phosphorylation: Clk/Sty and related 

kinases (147), SPRK (SR protein kinase) family including SPRK1(147), SPRK2(148), 

SPRK3 (149) and Atk kinases (150, 151).  

SPRK1 and SPRK2 show similar enzyme activity and substrate specificity in vitro. But 

a recently in vivo study showed that SPRK1 is predominately associated with U1 snRNPs, 

whereas SPRK2 is associated with U4/U6-U5 tri-snRNP (104). The structure of SRPK1 

without N-terminal and most insertion domain was determined by X-ray (152).  

CLK1 and CLK3 structures are also reported (153). CLK1 contains one kinase domain 

but without an insertion. Although CLK and SRPK both belong to CMGC group of 

kinases, CLK1 kinase domain lacks MAPK (mitogen-activated protein kinase), which is 

between αG and αH in the helix. In addition, CLK kinases contain small insertions 

between β6 and β9 in the kinase. Interestingly, CLK have an N-terminal extension, which 

is abundant in isolated Arg-Ser dipeptide, and have autophoshorylation activity on both 

serine and tyrosine (154).  

The molecular details of phosphorylation reactions of SR protein kinases are 

extensively studied on AFS/SF2 by mutagenesis and mass spectroscopy.  The RS domain 

of ASF/SF2 can be divided into two parts: the N-terminal part (197-228), termed as RS1, 

has 2 consecutive Arg-Ser stretches which contain 8 and 3 dipeptide respectively; the C-

terminal part (229-248), termed as RS2, has less amount of Arg-Ser dipeptide, and its RS 

repeats are more disperse(Figure 1.8).   
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Figure 1.8 Two segments (RS1 and RS2) in RS domain of ASF/SF2. The serine 

residues are colored in red. The arginine residues in RS dipeptide are also colored in red. 

SRPK1 prefers phosphorylating up to 12 serine residues in the N-terminal part (RS1) 

of the RS domain of ASF/SF2 (155), while CLK does not show such regional specificity 

and phosphorylates all 20 serine residues in the domain (156).  Moreover, CLK can 

completely phosphorylate RS domain even it is already phosphorylated by SRPK1.  

SRPK1 phosphorylate ASF/SF2 in a directional way (157): it binds to one region at the 

C terminal of RS1 of ASF/SF2 termed as the “initiation box”, and then slides to the N 

terminal of RS1, phosphorylating 5 to 8 serine residues in the RS1 part in a processive 

reaction before it dissociates from SR proteins and continues in a distributive manner 

(155, 156)(Figure 1.9). 
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Figure 1.9 Proposed mechanisms for regiospecific phosphorylation of SRPK1 on 

ASF/SF2. SRPK1 first binds to ASF/SF2 with high-affinity and starts phosphorylation 

from “initiate box” at the C-terminal of RS1. After phosphorylating 7 to 8 serine residues 

in RS1 in a sliding manner, SRPK1 disassociates from ASF/SF2 and then rebinds to RS1 

or starts to phosphorylate RS2 in a distributive manner.(reproduced from (158)) 

The mechanism of this processive and directional reaction was revealed by the 

structure of SRPK1 bound to a small peptide (152) or in the complex with part of 

ASF/SF2 (RRM2 domain + RS domain) (159). SRPK1 have a docking groove on the big 

lobe, which can accept some parts of RS domain. The groove is around 6 to 7 residues in 
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length and constituted by negative charged residues, which facilitate the binding of a 

basic peptide. Mutations of acid residues in this groove damage the initiation of 

processive phosphorylation and reduce the directional phosphorylation (155). However, 

in the two known structures, different sequences are bound to this groove. In the complex 

with small peptide, this groove was occupied by a small fragment (191-196) precede RS1 

(152), while in ASF/SF2 fragment (RRM2+RS) binding structure, N terminal segment 

(201-210) of RS1 sits in the docking groove (159). The latter observation was unexpected, 

since this fragment is too far away from activity center as part of substrate, which is 

phosphorylated during reaction.  

The two different structures may account for different stages of directional and 

processive RS domain phosphorylation, since the RS1 is moving from the C- to N- 

terminal through the active center during the whole reaction until the last docking 

element (191-196).  Interestingly, the fragment 191-196 is not part of the RS domain but 

in the last β-sheet of RRM2 domain, which indicates the RRM 2 domain is partially 

unfolded during processive phosphorylation. Due to the processive mechanism of SRPK1, 

it prefers long RS repeats such as RS1 part of ASF/SF2. 

Compared to the deep and negative charge docking groove in SRPK1, CLK1’s 

corresponding region is shallow and composed of both basic and acid residues (Figure 

1.10). This charge distribution makes the binding possible between CLK and RS domains 

phosphorylated by SRPK1, which possesses alternate positive and negative charges. Thus, 

CLK and SRPK kinases may effect on the same substrate sequentially: the SR protein 

phosphorylated by SRPK1 will be the substrate of CLK. It is experimentally proven that 

CLK1 phosphorylates another 7 serines in RS2 of RS domain of ASF/SF2, after the RS1 

of the same domain is phosphorylated by SRPK1. A cell study shows that SR proteins 

were imported as incorporated to speckle when they are phosphorylated by SRPK kinases, 

while further phosphorylation by Clk recruited the SR proteins to the transcription active 

sites.  
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Figure 1.10 The structure (above) and surface electrostatic surface (below) of 

Kinases for SR proteins.  Sky1p is the Yeast SRPK.  (Reproduced from (160)with 

permission ) 

1.5 Motivation of this project 

In spite of the versatile and vital functions of SR proteins, the structure of whole 

protein is not known so far.  This is mainly due to the difficulty to obtain the atomic 

resolution structure of the RS domain, since RRM domains of SR proteins are solved by 

X-ray and NMR. Circular dichroism spectra reveal the RS domain is disordered (161). 

This result also fit with the previous observation that phosphorylation prefer intrinsically 

disordered regions (51). In an X-ray structure of SRPK1-ASF/SF2 complex, RS repeats 

docked in a binding groove on SRPK1 and far away from the phosphorylation site is in 

extended conformation. However, the structure in bound form might not reflect the 

structure of RS repeats in the free form. 

However, there are two molecular dynamic simulation studies that propose different 

pictures (162, 163). In molecular dynamic (MD) simulations, they did not use the whole 
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RS domain, but only Arg-Ser dipeptide repeat stretches derived from the N-terminal part 

of the RS domain. Before phosphorylation, the native (RS)8 peptide (8 times dipeptide 

repeats) is in a helical conformation.  Upon phosphorylation, the backbone gets extended.  

Particularly, one compact conformation called “Arg-claw” is considered to be the stable 

and functional form, in which one phosphate from phospho-serine sits in the center and is 

chelated by guanidinium groups of six or seven arginine residues.  

The obvious conflict between experimental data and simulation result was partial 

eliminated in the second MD study, in which the helix conformation is short and transient. 

It is worthy to note that both MD study are done in implicit solvent.  In both cases, the 

starting conformations of peptides were set to fully extend or helix in some 

phosphorylated peptide cases.  
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2. Materials and Methods 

2.1 Materials  

2.1.1 Chemicals and Enzymes 

During this research work, the following reagents from the indicated suppliers 

summarized in Table 2.1 were used. 

Chemicals/Enzymes Supplier Company 

Agar, IPTG, Streptomycine AppliChem, Darmstadt, Germany 

Ammonium chloride (>98 % 15N ) 
Cambridge Isotope Laboratories, 

Andover, USA 

13C-D-glucose (>98 % 13C ) Spectra Stable Isotopes, Columbia, USA 

BamHI, NdeI,NcoI, T4-DNA ligase, Calf-

intestinal alkaline phosphatase 
Fermentas, St. Leon-Rot, Germany 

Coomassie Brilliant Blue R-250 Fluka, Neu-Ulm, Germany 

DTT Gerbu, Gaiberg, Germany 

Agarose GibcoBRL, Karlsruhe, Germany 

Bench Mark protein ladder Invitrogen, Karlsruhe, Germany 

Acetic acid, Ammonium sulfate, 

Ammonium chloride, Ammonium 

hydrocarbonate, Disodium hydrogen 

phosphate, Ethanol, Glycerol, Glycine, 

Hydrochloric acid, Manganese chloride 

dihydrate, Magnesium sulfate 

heptahydrate, Sodium chloride, Sodium 

Merck, Darmstadt, Germany 
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dihydrogen phosphate, Sodium 

hydroxide, TFA, Thiaminechloride 

hydrochloride, Tris, Urea, Adenosine 

triphosphate 

Hot Star Taq, Ni-NTA Agarose rasin, 

QIAGEN Plasmid Midi Kit,  
Qiagen, Hilden, Germany 

CompleteTM EDTA-free Protease 

inhitors 
Roch Diagnostics, Mannheim,Germany 

Acetonitrile, Ampicillin sodium salt, 

APS, Ethidium bromide, EDTA, HEPES, 

Imidazole, Magnesium chloride 

hexahydrate, MES, MOPS, Potassium 

dihydrogen phosphate, Sodium acetate, 

TEMED, Tryptone, Yeast extract 

Roth, Karlsruhe, Germany 

SDS Serva, Heidelberg, Germany 

Turbo Pfu DNA polymerase, dNTP Stratagene, La Jolla, USA 

Glutathione Sepharose 4B 
GE Healthcare, Little Chalfont, United 

Kingdom 

Phusion® High-Fidelity PCR Master Mix 
Biozym Scientific GmbH, Oldendorf, 

Germany. 

C8E5, n-octanol Sigma-Aldrich, St.Louis, United States   

Table 2.1 Chemicals/enzymes used and a list of suppliers 

2.1.2 Bacterial Strains 

-Escherichia coli BL21 (DE 3). F-, ompT, hsdSβ(rβ-mβ-), dcm, gal, (DE3) tonA. 
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-Escherichia coli Rosessta2 (DE3). F- ompT hsdSB(rB
- mB

-) gal dcm (DE3) pRARE2 

(CamR) 

2.1.3 Protein sequences  

The ASF/SF2 full length sequence is provided by Dr. Gert Weber from Prof. Markus 

Wahl’s research group, Freie Universität Berlin.  The coding sequence of RS domain (1-

137) of hPrp28 (DDX23, U5-100K), pCDFDuet-1/ SRPK1 plasmid were provided by 

Prof. Ficner, Georg-August-University Göttingen.  

2.1.4 Oligonucleotide primers  

The sequences of Prp28 RS domain (1-137) were amplified by the following primers: 

F   5’GCTGAATTCCATATGGCAGGAGAGCTGGCTG 3’ 

R   5’GTCAAGCTTGGATCCTTACTTAGGCTTCTTATCACCATGTTCATC 3’  

RS domain (196-248) was amplified from the plasmid by the following primer: 

F   5´GTCCTGCAGGGATC GGGCC AGAAGTCCAAGTTAT G3´ 

R   5´GGCAAGCTTGTCGACTTATGTACGAGAGCGAGATCTGCTATG3´ 

The RS8 peptide is the sequence from 200 to 219 of RS domain of ASF/SF2. It was 

amplified by the following primers: 

F   5´GCTGGTACCGCCATGGGCCCAAGTTATGGAAGATCTCGATCTC3´ 

R   5´GTCGGATCCAAGCTTTTAGCTTCTGCTACGGCTTCTGC3´ 

2.1.5 Equipments 

Laboratory instruments and consumables are summarized in Table 2.2. 

Item Identifier/company 

Balances 
Sartorius B 3100 S, Sartorius, Göttingen, Germany 

Sartorius AC 210 S, Sartorius, Göttingen, Germany 
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Centrifuges 

Beckmann-Coulter Avanti J-20 and J-301, rotors: JLA 8.100, 
JLA 9.100, JLA 16.250, JA 25.50 Ti, JA 30.50 Ti, Krefeld, 
Germany 

Centrifuges Eppendorf Centrifuge 5415D, Wesseling-Berzdorf, 
Germany 

Eppendorf Centrifuge 5804, Wesseling-Berzdorf, Germany 

Concentrators 
Microcon, YM-3 and YM-10, Amicon, Bedford, USA 

Concentrators Centricon, YM-3 and YM-10, Amicon, Bedford, 
USA Centriplus, 

Dialysis 

Slide-A-Lyzer Dialysis Cassettes, MWCO 10000, 0.1-0.5 ml 
Capacity, Pierce Biotechnology, Inc., Rockford, IL, USA 

Spectra Por membranes, MWCO 500,10000, Roth, Karlsruhe, 
Germany 

Electrophoresis 

Kodak Electrophoresis documentation and analysis system 120, 
Eastman Kodak Co., New York, NY, USA 

Electrophoresis Power Pac 300, BioRad, München, Germany 
Polyacrylamide gel electrophoresis: Mini- 

PROTEAN 3 Cell, BioRad, München, Germany 

Agarose gel electrophoresis: Mini-Sub Cell GT, BioRad, 
München, Germany 

-80°C freezer MDF-U71V Ultra-low temperature freezer, SANYO Electric Co., 
Ltd, Osaka, Japan 

Filtering Sterile filter 0,20 μm, Sartorius, Göttingen, Germany 

Ni-NTA Agarose QIAGEN, Hilden 

HPLC 

System 1: MD-910, PU-980, LG-1580-04, DG-1580-54, AS-950-
10, CO-200, JASCO International, Groß-Umstadt, Germany 

System 2: MD-2010Plus, PU-2080Plus, LG-2080-04, DG-2080-
54, AS-2055Plus, CO-200, JASCO International, Groß-Umstadt, 
Germany 

Agilent 300SB-C8 4.6X250mm，USA 

Incubator Infors Multitron HT, Einsbach, Germany Certomat R, B. Braun 
Biotech International, Melsungen, Germany 
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Lyophylisation Christ Alpha 2-4, B. Braun Biotech International, Melsungen, 
Germany 

NMR 

AVANCE 400 M, Bruker, Karlsruhe, Germany 

AVANCE 600 MHz, with cryoprobe, z-axis, Bruker, Karlsruhe, 
Germany 

AVANCE III 600 MHz, Bruker, Karlsruhe, Germany 

AVANCE 700 MHz, triple axis gradient, Bruker, Karlsruhe, 
Germany 

AVANCE III 800 MHz, triple axis gradient, Bruker, Karlsruhe, 
Germany 

AVANCE 900 MHz, with cryoprobe, z-axis gradient, Bruker, 
Karlsruhe, Germany 

NMR tube 

Quality NMR Sample Tubes 5 mm and 3mm, Norell, Inc., 
Landisville, NJ, USA 

NMR tube Shigemi NMR tube 5 mm, Shigemi Corp., Tokyo, 
Japan 

CD Chirascan spectrometer, Applied Photophysics Ltd , Leatherhead, 
UK 

UV Hewlett Packard 8453, HP, Canada 

Table 2.2 Equipments 

2.1.6 Softwares  

Program Source 
Topspin2.1 Bruker Biospin, Karlsruhe, Germany 
NMRPipe/NMRDra
w spin.niddk.nih.gov/NMRPipe,(164) 

Sparky3 www.cgl.ucsf.edu/home/sparky, T. D. Goddard and D. G. Kneller, 
University of California, San Francisco 

Cara http://cara.nmr.ch 
GAPRO http://www.aspy.ch 
Prosa 6.3 From Prof. Peter Güntert 

MARS http://www3.mpibpc.mpg.de/groups/zweckstetter/_links/software_
mars.htm (165) 

Pymol http://www.pymol.org/ 
Python http://www.python.org/ 
Origin 7.5 OriginLab Corporation, Northampton, MA, USA 
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mddNMR 1.6 http://pc8.nmr.gu.se/~mdd/Downloads/ 
 

Table 2.3 Softwares 

2.2 Methods 

2.2.1 Molecular biology methods 

The coding sequence of RS domain(1-137) of human Prp28 (DDX23) was cloned into 

a modified pET-16 plasmid by NdeI and BamHI.  

The RS domain of ASF/SF2 (196-248) was cloned to pETZ2_1a plasmid by NcoI and 

BamH1 restriction sites.  The RS8 peptide was taken from ASF/SF2 (200-219), which 

was cloned to Petz2_1a in the same way as the RS domain of ASF/SF2.   

The pCDFDuet-1 plasmid with SRPK1 sequence from Prof. Ficner was directly used 

for transformation without any modification.  

2.2.1.1 Purification of Plasmid 

Purification was done by using the NucleoSpin Plasmid DNA Kit. 3ml E. coli XL2-blue 

overnight culture can offer up to 15ug plasmid. Plasmid DNA is isolated from bacterial 

pellets according to manual instructions. For DNA sequencing, all plasmids were 

produced by QIAprep Midi Kit. 

2.2.1.2 PCR amplify  

The sequences of RS8 peptide, RS domain of hPrp28 (DDX23) and ASF/SF2 were 

amplified by PCR reactions. 

PCR reaction mixture 

2× Phusion Mix                     20ul 
Primer1(10uM)                         2ul 
Primer2(10uM)                         2ul 
Template                                   10ng 
ddH2O                                     add up to 40ul 

PCR cycle: 1. Denaturing at 95°C for 30s  

                   2. Annealing at 55 °C for 1 min 
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                   3. Elongation at 72 °C for 1min  

                   4. Repeat to 1 for 32 cycles 

                   5. 10 min at 72°C 

                   6. Keeping in 4°C 

2.2.1.3 DNA sequencing 

Sequencing service is done by Seqlab (Göttingen, Germany). A 7µl reaction mixture 

containing 20pmol of primers and 0.6ug plasmid DNA were loaded in a 200µl flat lid 

PCR tube. 

2.2.1.4 Double digestion  

BamHI digestion reaction mixture: 

DNA (PCR fragment or plasmid)              1µg 
BamHI                                                        1µl 
BamHI unique Buffer                                 4µl 
H2O (autoclaved)                           add to 40µl 
Incubation for 2 hours at 37℃ 

NcoI digestion reaction is the same as BamHI. 

Purification of the fragments by Nucleospin Extract II kit, take up each fragment in 30µl 

H2O. 

NdeI digestion reaction mixture: 

DNA (PCR fragment or plasmid)              30 µl 
NdeI                                                              4 µl 
10 X buffer orange                                       5 µl 
H2O (autoclaved)                              add to 50 µl 

Incubate for 2 hours at 37°C, then add to each reaction 1ul NdeI and go on with digestion 

overnight at 37°C. Add Calf Intestinal Phosphatase(CIP) 1ul to reaction mixture, digest 

for 1 hour at 37°C. Purify both fragments with Nucleospin Extract II kit; dissolving  each 

fragment in 30 µl H2O. 
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2.2.1.5 Ligation  

Reaction mixture 

Plasmid (Treated by restriction endonuclease and CIP)          2µl 
PCR fragment                                                                          9µl 
10X Ligation buffer                                                                 2µl 
T4 DNA ligase                                                                         6µl 
H2O (autoclaved)                                                                     6µl 

Overnight reaction at 14 °C. 

2.2.1.6 Transformation of E.coli 

1µl plasmid DNA was added to 50µl competent cell stock. After 30 min recovery on 

ice, cells were subjected to a 45 second heat shock at 42°C. This was then put on ice for 2 

min. After that, the cells were supplemented with 200µl 2xYT culture, incubated at 37 °C 

for 1h. Finally, the cells are plated on LB-agar plates with certain an antibiotic and 

incubated overnight at 37 °C.   

2.2.2 Protein Biochemistry Methods  

2.2.2.1 Expression of RS domain of hPrp28 (DDX23) 

E.coli Rosessta2 (DE3) cells carrying two plasmids (RS domain and SPRK1) were 

grown in LB media contained ampicillin and streptomycin. A single colony was used to 

inoculate a 2 ml LB culture which was grown for 10hrs. Then this culture was transferred 

to 50ml LB culture for overnight incubation at 37 °C. Finally, the 50ml culture was 

transferred to 1L LB media. When OD600 reached 0.6, expression was induced by 1mM 

IPTG. 

Similar protocols were used for production of unlabeled and 13C-15N labeled hPrp28. 

In the case of 13C and 15N-labeled sample, LB media is replaced by M9-minimal medium 

culture which contains the labeled carbon and nitrogen source. 

M9 minimal medium: 1L 

10* M9 salts    100 ml  



 
Part I, 2. Materials and Methods                  41 

41 
 

NH4Cl                              1 g 

20 % Glucose                         20 ml    

1M MgSO4                           2 ml 

200 mM CaCl2             0.5 ml  

5 mg/ml Thiamine'HCl                          6 ml 

Trace elements                         10 ml 

ddH2O                                    880 ml 

Ampicillin                         50 mg 

Streptomycin                                    50 mg 

Chloromycetin                                   34 mg 

 

10* M9 salts:                              1L 

Na2HPO4                                     67.8 g 

KH2PO4                             30 g 

NaCl                                5 g 

NH4Cl                              10 g  

 

Trace elements                          100 ml 

FeSO4.7H2O                   0.6 g 

MnCl2.4H2O               0.115 g  

CaCl2.6H2O                 0.08 g 

ZnSO4.7H2O                 0.07 g 

CuCl2.2H2O                 0.03 g 

H3BO4                  0.002 g 

(NH4)6MO7O24*4H2O                           0.025 g 

Stir for 10 min; add 0.5g EDTA, stir overnight (all materials were filtered before use). 

Cell pellet was harvested, after 3-4 hours induction at 37 °C, by centrifugation at 

6000g for 30 min. 
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2.2.2.2 Purification of RS domain of human Prp28 

The bacterial pellet from 1L culture was re-suspended in a 40-60 ml lysis buffer 

containing 2M LiCl, 50 mM TrisHCl, pH 7.5, 5% glycerol, 2 mM β-

mercaptoethanol,0.5mM PMSF. Complete-EDTA free inhibitor mix (1 tablet in 100 ml 

lysis buffer), and then was lysed by sonication. Spin at 20,000g, 40mins, keep the 

supernatant.  

Hi-Trap Ni-column was first equilibrate with column buffer (500 mM NaCl, 50 mM 

Tris⋅HCl ,pH 7.5, 5 % glycerol).The supernatant of sonicated lysate was loaded on the 

column at 1ml/min speed, and then the column was washed 2 ml/min with a column 

buffer supplemented with 15 mM imidazole. Elute protein with linear 100 ml gradient 

from 15 mM to 300 mM imidazole in column buffer. Then His-tag was removed by 

overnight treatment with TEV enzyme with a 1:1000 ratio.  

To obtain the completely phosphorylated RS domain, incubate SPRK1 in 100 mM 

NaCl, 50 mM Tris⋅HCl, pH 7.5, 5 % glycerol, 2 mM DTT, 10 mM MgCl2, and 2 mM 

ATP at 4°C overnight.  

The phosphorylated RS domain was also purified by C8 Reversed phase-HPLC. The 

phosphorylation was checked by HPLC-MS. RP-HPLC and HPLC-MS systems were 

operated by Gerhard Wolf in the department of NMR-based Structural Biology at 

MPIBPC. 

The peak was collected, frozen, and lyophilized. Then the sample was dissolved in the 

desired buffer, and dialyzed to the same buffer again, to make sure all the chemical 

components from HPLC step had been removed. The NMR buffer of hPrp28 (DDX23) 

was 50mM Na- phosphate buffer, pH6.0, 100mM NaCl. 

The wild type and phosphorylated 13C/15N labeled full length hPrp28 was prepared 

by Prof. Ficner’s group at Georg-August-University Göttingen. 

2.2.2.3 Expression and purification of SRPK1  

The expression protocol of SRPK1 alone was the same as the co-expression of SRPK1 

and hPrp28. The cells were harvested and lysed in the same way.   
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The purification procedure of SRPK1 followed the manual of Glutathione Sepharose 

4B from GE Healthcare.  

1. The column was washed 5-10 bed volumes of PBS (140mM NaCl, 2.7mM KCl, 

10mM Na2PO4, and 1.8mM KH2PO4) to remove preservative.  

2. The column was then equilibrated with 3 bed volumes PBS. 

3. The supernatant of lysate was applied to the column, and incubated for 30mins 

at 4°C. 

4. The column was washed with 7 beds volumes of PBS. 

5. The bund protein was eluted by 5 bed of elution buffer (10mM reduced 

Glutathione, 50mM Tris-HCl buffer, pH7.5,100mM NaCl ) 

The eluted protein was stored at -80°C and used in phosphorylation.  

2.2.2.4 Expression and purification of RS domain of ASF/SF2 

E.coli BL21 (DE 3) carrying Petz2_1a_ ASF plasmid were grown in LB media 

containing Kanamycin. The expression protocol, lysis buffer and sonication of RS 

domain of ASF/SF2 were the same as for the hPrp28 RS domain.  

The Qiagen Ni-NTA Superflow Columns were first equilibrated with a column buffer 

(50 mM Tris⋅HCl, 1M NaCl, pH 7.5, 5% glycerol) with 20mM imidazole.  The 

supernatant of lysate was adjusted to 20mM imidazole, and then was loaded on the 

column. The column was washed by column buffer with 20mM imidazole of 5 times 

volume of resins. The target protein was eluted by 500mM imidazole in column buffer. 

The eluted protein was concentrated and purified by a C-18 reverse phase HPLC. 

For phosphorylation, RS domain of ASF/SF2 was incubated with SRPK1 in 50 mM 

Tris-HCl buffer, pH7.5, 1M NaCl, 10mM ATP, 10mM MgCl2, at 30°C for 4 hours. The 

reaction mixture was isolated by C-18 reverse phase HPLC, and the phosphorylation state 

of RS domain was checked by mass spectroscopy.  

The peak was collected, frozen, lyophilized and re-dissolved as RS domain of hPrp28 

(hPrp28). The NMR buffer for RS domain of ASF/SF2 was 50mM Na- phosphate buffer, 

pH7.0, 100mM NaCl. 
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2.2.2.5 Expression and purification of RS peptide  

The RS8 peptide is the sequence 200-219 from RS domain of ASF/SF2. The 

expression and purification procedures with Hi-Trap Ni-column column are the same as 

RS domain of hPrp28. 

Phosphorylation was done with SRPK1 in 50 mM Tris-HCl buffer, pH7.5, 150mM 

NaCl, 10mM ATP, 10mM MgCl2, at 30°C for 4 hours. Then the phosphorylated forms 

were purified as RS domain of ASF/SF2. The NMR buffer for RS domain of ASF/SF2 

was a 50mM Na- phosphate buffer, pH7.0, 100mM NaCl. 

One 16 residues peptide, (RS)8 were synthesized by Volker Klaukien of the Max Planck 

Institute for Biophysical Chemistry. The powder of (RS)8 peptide was dissolved in 

50mM HEPES buffer,300mM NaCl, and the pH was adjusted to 6.5. 

  

2.2.3 NMR methods  

2.2.3.1 HSQC (Heteronuclear Single-Quantum Coherence) 

In NMR spectroscopy, nuclear spin is subjected to an external magnetic field B0, 

which is slightly shielded by the orbiting electron. As a result, the observed resonances 

differing from each other depend on the chemical environments of each nucleus. This 

phenomenon is called chemical shift.  

HSQC is the most frequently used and also most sensitive heteronuclear spectrum. The 

pulse programs begin with the excitation of a proton and then transfer the magnetization 

to the attached heteronucleus (15N, 13C), and subsequently reverse transfer back to proton 

for detection. Since proton has higher gyromagnetic ratio than carbon and nitrogen, these 

two steps transfer improve the sensitivity of spectra.  

HSQC can offer the chemical shifts of proton and covalently connected carbon or 

nitrogen atom. 1H-15N HSQC is extremely useful for protein study. Every backbone 

amide proton and nitrogen pair can give one peak on the spectra, with the proton 

chemical shift in one dimension and directly connected nitrogen in another dimension. If 
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the chemical environment of the group changed because of ligand binding, folding, 

unfolding etc., the corresponding peak will be shifted. Therefore, 15N-HSQC is a 

powerful tool to monitor the backbone conformation information at atomic resolution. 

The 1H-15N HSQC pulse program used in this study was the fast HSQC detection 

scheme described before (166). The water magnetization was flipped on to the z-axis 

before detection to avoid saturation of water signal.  Flipping of water magnetization 

allows short inter-scan delay. The pulse program is shown in Figure 2.1. The sweep 

width for RS domains and isolated peptide were 16ppm (N) and 11ppm (H). The N and H 

channels were centered at 117 ppm and water position respectively. The spectra were 

recorded in a data matrix of 256(t1)*512(t2) complex points for each dimension.  

 

Figure 2.1 Pulse program of fast 1H-15N HSQC. Narrow and wide pulses denote 90° 

and 180° pulses respectively. All pulse phages are x except where indicated. The 

comprised watergate is 3-9-19 comprised pulses with delay 166us, 140us, 125us and 

110us at 600M, 700M, 800M and 900M respectively. Δ=2.7ms.δ=2.1ms for a total 

refocus INPEPT time of 2.7ms.  Gradient pulses are 1ms half-sine shaped. G1=11.5 

G/cm, G2=10 G/cm, G3=25 G/cm. This first nitrogen 90° pulse and receiver phase are 

cycled (x, -x). (Reproduced from (166) with permission) 

2.2.3.2 Triple resonance experiments 

Backbone assignment is the first step of NMR study for protein, which means 

assigning peaks on 15N-HSQC to the residues in the protein sequence. For 13C, 15N-

labled-protein normally triple resonance experiments are used. These experiments make 
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magnetization transfer from protons to C and N nuclei, frequency labeled on those nuclei, 

and finally transfer back to the proton for detection. All transfer steps rely exclusively on 

1J/2J couplings between H, C and N nuclei of protein (Figure 2.2). 

In HNCA experiments (167), the 1HN and 15N are correlated with intra-residue Cα 

and previous Cα. In the spectrum, every 1HN and 15N combinations, which means one 

peak on the HSQC spectrum, have two peaks result from Cα(i-1), Cα(i). To distinguish 

Cα(i-1) from Cα(i), HN(CO)CA is also recorded, in which Hi,Ni only correlated to Ca(i-

1) by making the magnetization pass though the previous residues’ CO. 

 In principle, only HNCA and HN (CO) CA can yield the backbone assignment. 

However, the Cα chemical shift alone is not enough to determine the amino acid type and 

in many cases, Cα chemical shift overlap leads to an ambiguous assignment. Therefore, 

an improved strategy was developed based on the use of both Cβ and Cα chemical shift. 

Since the combination of Cβ and Cα chemical shifts for every amino acid type is very 

characteristic, this information is extremely useful when mapping the sequence of the 

protein. 
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Figure 2.2 Backbone assignment strategy using triple resonance experiments. The 

boxes drawn around the spin system indicate the connectivity established in the 

respective experiment. Grey parts of the boxes indicate that a spin is used as a relay spin, 

without chemical shift evolution. (Reproduced from (167) with permission) 

Similar to HNCA and HN (CO) CA, there are also two experiments that offer CB 

chemical shifts: HNCACB and CBCA (CO) NH. Compared to HNCA, HNCACB has 

one more transfer step to Cβ after magnetization is on Cα. So in this spectrum, every HNi 

and Ni combination correlated with 4 peaks result from Cαi-1, Cβi-1, Cαi, Cβi. As in 

HNCA, another spectrum CBCA (CO) NH is needed to distinguish inter-residue peaks 

from intra-residue peaks. CBCA (CO) NH uses a different transfer pathway: it starts with 

aliphatic protons instead of amid protons. By an INEPT step, magnetization is transfer to 

Cα and Cβ, and frequency evolved on them. In following steps, magnetization goes to Cα, 

and then transferred to N via CO, so only Cαi-1 and Cβi-1 are observed in this spectrum. 
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Based on these entire triple resonances spectra, one can group chemical shift values of 

Cαi-1, Cβi-1, Cαi, Cβi for every amide group. The next step is to find connections, which 

means looking for another amide group with the Cαi, Cβi chemical shift value matching 

with the Cαi-1, Cβi-1 chemical shift of this amide group. The fragment of several 

connected amide group can be mapped to sequence of protein to finally get the complete 

backbone assignment of the protein (Figure 2). 

The triple resonance experiments used for assign RS domain of hPrp28 (DDX23) are 

listed in Table 2.4. 

 

Experiment Pulse program Sweep width (PPM) Carrier frequency     
(PPM) 

Number of 
complex  

points 

HNCACB hncacbgpwg3d 
from Bruker 

10(H)/50(C)/22(N)
@900M 

4.7(H)/50(C)/117(N) 512(H)×37(C)
×37(N) 

 CBCA(CO)
NH 

cbcaconhgpwg3d 
from Bruker 

10(H)/50(C)/22(N)
@800M 

4.7(H)/46(C)/117(N) 

 

512(H)×40(C)
×30(N) 

CT-
HNCA(168) 

hacannh  
see Appendix 

11(H)/30(C)/22(N)
@900M 4.7(H)/55(C)/117(N) 512(H)×40(C)

×45 (N) 

HNN(169) hnngp3d  
see Appendix 

14(H)/22(N1)/ 
22(N2)   @900M 

4.7(H)/117(N1)/ 

117(N2) 

512(H)×50(N1
)×50(N) 

Table 2.4 Parameters of triple resonance experiments 

2.2.3.3 Automated projection spectroscopy (APSY) 

Since unfolded proteins cannot be crystallized, NMR is the only source of atomic-

resolution information. Unfortunately, the small chemical shift dispersion in 

“unstructured” protein makes the assignment of unfolded protein a laborious process. As 

mentioned above, backbone assignment by conventional triple resonance experiments is 

based on the matching of Cα and Cβ chemical shifts. However, in unfolded proteins, 

carbon chemical shift deviations from standard values are very small, which lead to 

serious ambiguity in assignment.   
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To solve this problem, high-dimensional NMR experiments are employed. High-

dimensional NMR experiments reduce resonance overlap by separating peaks in higher 

dimension space, and eliminate ambiguity during chemical shift matching by  direct 

correlation of a large number of nuclei. 

To record high-dimensional NMR experiments in a reasonable time, APSY 

(Automated projection spectroscopy) experiments were designed (170). The basic idea of 

APSY is running a series of 2D projection spectra instead of running high dimension 

experiments. A special algorithm (GAPRO) is used to calculate final peaks list from the 

peaks in all projections. The peak list can be used as input for automatic assignment 

software. 

There are currently several high-dimensional NMR experiments available. The most 

powerful APSY pulse program is 7D seq-HNCO(CA)CBCANH, which can offer 

sequential connectivity of neighboring backbone amide groups and also the Cα, Cβ, CO 

chemical shifts between them (171). The magnetization of the amide proton of residue i, 

is transferred with a series of INEPT steps via the scalar couplings JN,NH, JN,CO, JCO,Cα, 

JCα,Cβ, JCα,N and JN,HN. Along this transfer path, six evolution periods are involved on HN
i,  

Ni, C’i-1, Cβ
i-1, Cα

i-1 and Ni-1, respectively. By matching the combination of N and proton 

chemical shifts, one can connect sequentially neighboring residues. In addition to N and 

proton chemical shifts, 7D seq-HNCO (CA) CBCANH also provide the Cβ, Cα, CO 

chemical shifts, which can be used to map the dipeptide fragment to protein sequence. 

An alternative approach of 7D APSY is the combination of 5D-CBCACONH and 6D-

HNCOCANH. 6D is used to give the sequential connection of neighboring amide group, 

and 5D-CBCACONH is used to measure the Cα and Cβ chemical shift, which thereby 

can be used to determine residue type. Since both spectra have less INEPT transfer steps, 

6D and 5D have higher sensitivity. 

The original APSY pulse programs (5D, 6D and 7D) and GAPRO software are 

downloaded from www.apsy.ch. The pulse programs are modified to improve water 

handling. Before and after every comprised pulsed decoupling (CPD) sequence, one 90° 

pulse proton pulse is added to flip water magnetization. The one before CPD sequence 

http://www.apsy.ch/
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flipped the water magnetization to the same direction as CPD pulses .The one after CPD 

sequence flipped the water magnetization back to z-axis. The spectra was then processed 

by software PROSA(172). The peaks on every projection spectra were picked and the 

final peak list was calculated by GAPRO. Then the peak lists was fed in MARS to get the 

assignment (173).  

Backbone assignments of native and phosphorylated ASF/SF2 (200-219) were 

obtained by 7dimensional HNCOCACBNH APSY experiments with 33 projection angles 

(174). 6D-seq-HNCOCANH APSY and 5D CBCACONH APSY experiments are used to 

assign hPrp28 (175). 6D and 5D APSY were also applied to RS domain of ASF/SF2.The 

parameters of APSY experiments are listed in Table 2.5. 

Protein Experiments Number of 
projection angles 

Number of data 
points in every 
projection (real 

points) 

hPrp28 

6 D APSY-seq-
HNCOCANH 25 1024×180 

5D APSY-
CBCACONH 23 1024×160 

RS peptide 7D APSY-seq-
HNCO(CA)CBCANH 33 1024×180 

RS domain of 
ASF/SF2 

6 D APSY-seq-
HNCOCANH 25 1024×200 

5D APSY-
CBCACONH 23 1024×160 

Table 2.5 Parameters of APSY experiments 

In 6D and 7D APSY experiments, the carrier frequencies were: Amide proton 8.2 ppm, 

N 117ppm, CO 172.5ppm, H 4.7 ppm. In 6D APSY Cα were at 53ppm, while in 7D and 

5D APSY Cα and Cβ carrier frequency were both at 42ppm.All chemical shifts data are 

referenced to the DSS signal.  

2.2.3.4 Experiments of Coupling measurements 

The detail about method of coupling measurements is discussed in the chapter 5.4.  

3 bond J couplings, HN-Hα, N-Cγ,CO-Cγ were measured by intensity modulated 

experiments. 3J HN-Hα couplings are measured by intensity modulation in HSQC with 



 
Part I, 2. Materials and Methods                  51 

51 
 

mixing times of 40ms, 45ms and 50ms(176).  The Hα magnetization was flipped by Q3 

shaped pulse centering at 4 ppm, covering 2ppm. 

3J Co-Cγ and 3J N-Cγ couplings of argines’ side chains were measured by 2 

dimensional spin-echo difference experiments (177, 178) in which mix times are 100ms 

for N-Cγ and 90ms for Co-Cγ respectively. In N-Cγ couplings measurements, Cγ was 

flipped by Q3 shaped pulse centering at 25 ppm and covering 24 ppm. In CO-Cγ 

couplings measurements, Cγ was flipped by 500us sinc pulse which aims at Cγ of 

arginine.  

One-bond J couplings, JHα-Cα, JCα-Cβ, were measured by the splitting method. The JHα-Cα 

was measured by constant-time HNCA method without proton decoupling pulse during 

the Cα evolution. JCα-Cβ couplings were measured by normal HNCA and HNCOCA 

methods.  

The parameters of couplings measurements are listed in Table 2.6. 

Couplings 
Sweep width 
(ppm) 
 

 

Carrier frequency  
(ppm) 
 

Number of data points 
(real points) 

HN-Hα 11(H)/16(N) 4.7(H)/117(N) 
 

2048(H)×256(N) 

N-Cγ 11(H)/16(N) 4.7(H)/117(N) 
 
 

1024(H)×256(N) 

CO-Cγ 11(H)/16(N) 4.7(H)/117(N) 
 
 

1024(H)×256(N) 

Hα-Cα 10(H)/8 (C) 4.7(H)/53(C) 2048(H) ×80(C) 

Cα-Cβ 10(H)/10(C) 4.7/55(C) 1024(H)×256(C) 
Table 2.6 Parameters of Couplings measurements 

The spectra were processed by NMRpipe software, and analyzed with Sparky. The 

positions and intensities of peaks are determined by peak picking function of Sparky.  

The J couplings from intensity modulated experiments are calculated as described 

previously (176) (177, 178). 

2.2.3.5 RDC measurements  

The samples were aligned in 5% C8E5/n-octanol liquid crystalline phases (179). The 

C8E5 was taken out into EP tube with the protection of nitrogen gas. All buffers and 
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protein samples were cooled by ice. The pure C8E5 was first diluted to 15% by the NMR 

buffer, and then added to NMR sample to reach the final concentration at 5%. n-octanol 

was added to the mixture in microliter steps. The transition to Lα phase was reached 

when the solution just changed from milky to transparent and slightly blue. After placing 

the sample in the magnet for more than 15mins, the quadrupolar splitting of deuteron was 

measured. 

Three RDCs were measured: DN-H, DHα-Cα, and DCα-CO. The same experiments were 

carried out twice, once in isotropic samples, once in aligned samples. The RDC values 

were calculated as the difference of measured couplings in the two sets of experiments.  

Trosy-HSCQ interleaved experiments were used to measure HN-N couplings (180). 

Hα-Cα couplings were measured by HACANNH. To achieve high resolution and 

intensity, these experiments were recorded with Multi-Dimensional Decomposition 

(MDD) non-uniform sampling scheme. Cα-Co coupling were measured by spin-state 

selection HNCO pulse program carried out in a 2D manner (181).  The parameters are 

listed in Table 2.7. 

The spectra were processed by NMRpipe software, and analyzed with Sparky. The 

positions of peaks are determined by peak picking function of Sparky. Non-uniform 

sampled data were processed by the multiple dimension decomposition method (182). 

RDCs  Sweep width (ppm) Carrier frequency (ppm) Number of data points 
(real points) 

H-N  11(H)/16(N)   4.7(H)/117(N) 
 1024(H)×352(N) 

Cα-Hα 11(H)/16(N)/10(C)  4.7(H)/117(N)/53(C) 
1024(H)×96(N)×96(N) 
(576×4) by non-uniform 
sampling 

Cα-CO 11(H)/16(N)/8(C) 
     

4.7(H)/117(N)/174(C) 
 
 
 

1024(H)×1(N)×256(C) 

Table 2.7 Parameters of RDC measurements 

2.2.3.6 Heteronuclear NOE measurements  

Heteronuclear NOE measurements were carried out by the Bruker pulse program 

hsqcnoef3gpsi. The interscan delay was set to 7.5s to avoid saturation of water.
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3. Result 

3.1 Phosphorylated ASF/SF2 RS domain adopts structure. 

The RS domain (196-248) of ASF/SF2 was cloned to vector Pet-Z2 plasmid and 

expressed as a fusion protein with the Z domain of staphylococcal protein A.  There was 

some protein eluted at 40mM imidazole, however, most parts of product were eluted by 

500mM imidazole in the end. From the 1L M9 culture, more than 20 mg of protein was 

harvested from the NTA column. The product of important purification steps was 

sampled and checked by SDS-PAGE, which can be seen in Figure 3.1. 

 

 

 

 

 

 

 

Figure 3.1 SDS gel for ASF/SF2 RS domain (196-248) production. Lane W, the lysis 

of whole cell; Lane S, supernatant after sonification and centrifuge; Lane FT, flow 

through of NTA column; Lane 20 and lane 40, elution of 20mM and 40mM imidazole; 

Lane E, elution by 500mM; Lane M, the protein maker ladder. The molecular weight of 

every marker line was indicated on right.  

The purity of the ASF/SF2 sample was checked by the mass spectroscopy after the raw 

product from NTA column was further purified by C-18 reverse phase column (Figure 

3.2a). Phosphorylated RS domain samples were produced by SRPK1 phosphorylation at 

30°C, after 4hours. The mass spectroscopy of the RS domain ASF/SF2 revealed that 

protein got 12 to 17 phosphorylation groups (Figure 3.2b). Extended reaction times (from 
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4 hours to 18 hours) were tested; however, no homogeneous phosphorylated sample can 

be reached. The mixture of species with different phosphorylation numbers can be 

separated by HPLC. 

 

Figure 3.2 Mass spectroscopy of native and phosphorylated RS domain of ASF/SF2. 

a) Mass spectroscopy of the native RS domain of ASF/SF2 protein. b) Mass spectroscopy 

of ASF/SF2 protein phosphorylated by SRPK1 at 30°C for 4 hours, 15N/13C labeled. The 

peaks corresponding to different phosphates numbers were labeled in red. This is the 

same sample for NMR studies. 

The 15N-1H HSQC spectrum of ASF/SF2 RS domain was recorded, as seen in Figure 3. 

Complete backbone assignment was not achieved due to signal overlapping and sample 

heterogeneity. However, some peaks can be confirmed in phosphorylated serine and 

arginine (RS) repeat stretches. The phosphorylated serine residues were identified by 

their characteristic amide proton and Cα chemical shifts. The neighboring arginine 

residues were identified by the connections in 6D APSY spectra and Cα chemical shifts. 

These peaks were labeled on the HSQC, and residues in the 8 times RS repeats (204-219) 
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were circled by dash line (Figure 3.3). NMR parameters of this repeat region showed 

some distinct properties.  

 

Figure 3.3 15N-1H HSQC spectrum of phosphorylated RS domain of ASF/SF2, at 

pH7.0, 288K.The peaks that can be confirmed in the arginine and phosphorylated 

serine repeat stretch are labeled.   

The unphosphorylated RS domain of ASF/SF2 was shown to be disordered by circular 

dichroism spectra (161). Phosphorylation induced significant structural changes in this 

domain. The heteronuclear steady state NOE effect gives information about dynamic in 

pico- to nano- second range. Values of arginine residues in the phosphorylated RS repeat 

region are 0.50±0.05, while phosphorylated serine peaks gave the value 0.58±0.08, which 
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is higher than the typical values for intrinsic disordered proteins (183, 184). The repeat 

region was more rigid than normal disordered proteins.3-bond J coupling between amide 

proton and Hα, 3JHN-Hα, dependents on backbone torsion angle ϕ. The 3JHN-Hα of 

phosphorylated serine in stretches serine/arginine repeats was 5.2±0.3Hz, while the value 

of arginine was 6.3 ±0.3Hz. These values are lower than the predicted random coil values 

(185). 

Taken together, the reducing of flexibility and the preference of backbone torsion 

angles imply transit structure forming in this phosphorylated region.   

3.2 Phosphorylation induced structural transition in ASF/SF2 (200-219) 

peptide  

The structural changes induced by phosphorylation in ASF/SF2 are shown in above 

experiments. These structural transitions can explain why the phosphorylation of 

ASF/SF2 can modulate its function in cells. However, the inhomogeneity of 

phosphorylation on the ASF/SF2 RS domain prevents further study. The NMR sample 

contains at least 4 species with different phosphorylation numbers. The 4 similar but 

slightly different proteins increased the signal overlapping severely. 

Considering RS repeats in the N terminal part can partly restore functions of the whole 

domain in mRNA splicing (186), so we separated the arginine and serine repeat part 

(200-219) from the whole domain as a model peptide (Figure 3.4). The ASF/SF2 (200-

219) sequence contains 16 residues of arginine/serine repeats in the N-terminal of the RS 

domain of ASF/SF2. That is proven to be able to at least partly restore the functions of 

the whole RS domain in splicing reactions.  One (RS) 8 peptide which is constituted by 8 

times arginine/serine dipeptide repeats, was chemically synthesized. 

 

Figure 3.4 ASF/SF2 (200-219) peptide in RS domain. The 8 RS dipeptide repeats are 

labeled in red. The sequence in red was chemically synthesized as (RS)8 peptide.  
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3.3 Unphosphorylated ASF/SF2 (200-219) is in random coil status 

The CD spectra of the (RS)8 peptide at various concentrations showed the same 

characteristic random coil spectra (Figure 3.5).  

 

Figure 3.5 Near UV CD spectra of (RS)8 in the concentration range from 1mM to 

24mM,50mM HEPES, pH6.5,300mM NaCl. 

The chemical shifts of the backbone nucleus are sensitive to secondary structures, 

because the nuclear shielding dependences on dihedral ϕ and ψ have characteristic values 

for common secondary structural elements. The Cα and Cβ chemical shifts measured by 
13C-1H HSQC are identical to predicted random coil values, which signify the peptide is 

fully disordered (Figure 3.6a).  

To further address the possibility of the formation of any transitory structures, we put 

the (RS)8 peptide into 6M GuCl, which is a strong denatured condition. The peptide 

should be completely denatured and in a fully random coil state. On 13C-1H HSQC, the 

peaks corresponding to Cα and Cβ groups did not shift, which means the peptide is 
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initially disordered (Figure 3.6b). In other words, the native state has no helix 

conformation in the native state peptide. 

 

Figure 3.6 Natural abundace 1H-13C HSQC spectrum of (RS)8 peptide in 50mM 

HEPES, 100mM NaCl, pH 6.5 at 298K . a) 13C-1H HSQC of ASF/SF2 (200-219). Blue 

dash lines indicate the predicted random coil values of serine and arginine (187, 188). b) 

Superposition of 13C-1H HSQC OF native ASF/SF2 (200-219) (red) and ASF/SF2 (200-

219) treated with 6M GuCl (green). 
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 To further illustrate the structure of ASF/SF2 (200-219) by NMR, the recombinant 

approach of ASF/SF2 (200-219) was set up. Similar to ASF/SF2, ASF/SF2 (200-219) 

was expressed in E.coli as a fusion protein with the Z domain of staphylococcal protein A. 

The chromatography curves of NTA column are shown in Figure 3.7a. The fractions 

from the target protein peak were sampled and analyzed by SDS-PAGE (Figure 3.7b). 
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Figure 3.7 Purification of ASF/SF2 (200-219)-Z2 fusion protein. a) Chromatography 

for NTA column purification of ASF/SF2 (200-219)-Z2 fusion protein. The blue line is 

absorbance at 280nm; the green line is concentration of imidazole; the red line is 

conductance; the azure line is temperature. The numbers of fractions are labeled at the 

bottom of the picture. b) SDS-PAGE of each step and fractions in purification. Lane W, 

the lysis of the whole cell; Lane P, the precipitation after sonification and centrifuge; 

Lane S, the supernatant after sonification and centrifuge; Lane FT, flow through of NTA 

column; Lanes 16-41, the fractions of elusion; Lane M, marker. The molecular weight of 

each line is labeled on the right side.  

The fractions contain target proteins, which were collected and treated with TEV 

enzyme to cleavage the His-tag and the fused Z domain. The cleavage results were 

monitored by SDS-PAGE (Figure 3.8). Premature cleavage occurred before TEV enzyme 

was added. The mass ratios between ASF/SF2(200-219)-Z2 protein and TEV enzyme 

were scanned to find the best condition, which resulted in the optimal ratio as 1:200. 

  

 

 

 

 

 

 

 

Figure 3.8 TEV cleavage of ASF/SF2 (200-219). Lane M, Marker; Lane 1-4, ASF/SF2 

(200-219)-Z2 fusion protein was treated overnight at room temperature by TEV with the 

mass ratio 1:1000,1:750,1:500,1:200. Lane Ref, the ASF/SF2 (200-219)-Z2 fusion 

protein sample before cleavage. 
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After the cleavage, ASF/SF2 (200-219) was isolated by HPLC. Phosphorylation of 

ASF/SF2 (200-219) was carried out at 30°C, for 4 hours, and then checked by mass 

spectroscopy. Various reaction conditions were tested, including kinase substrate ratio 

from 1:10 to 1:200 and reaction time from 4 to 8 hours. The highest phosphorylation 

number, which can be reached with reasonable amount, was 6. In Figure 3.9, the mass 

spectroscopy results of native and phosphorylated ASF/SF2 (200-219) peptide are shown 

in panel a) and b).  

 

Figure 3.9 Mass spectroscopy of ASF/SF2 (200-219) in a) and major 

phosphorylation product of ASF/SF2 (200-219) with 6 phosphate groups in b) 

On 15N-1H HSQC of ASF/SF2 (200-219), separate peaks belonging to residues precede 

RS stretch repeats, as labeled in Figure 10a. All arginine residues in repeats collapsed 

into one blotch except the one on each terminal, as did the serine residues. This indicates 

the chemical environments of the same type of residues are very similar, which normally 

is the case in a random coil. The heteronuclear NOE values of ASF/SF2 (200-219) 
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residues are all negative. It indicates fast motions on the backbone of this peptide (Figure 

3.10d), which is also a feature for random coil. 



 
Part I, 3. Result                                             63 

63 
 

 

 



 
Part I, 3. Result                                             64 

64 
 

Figure 3.10 Structural transition of ASF/SF2 (200-219) upon phosphorylation. a-c) 
15N-1H HSQC of ASF/SF2(200-219) (a), phosphorylated ASF/SF2(200-219) (b), 

denatured phosphorylated ASF/SF2(200-219) (c). The assignments are labeled on the 

spectrum. d) {1H} 15N Heteronuclear NOE ratios against sequences of ASF/SF2 (200-219) 

(red) and phosphorylated ASF/SF2 (200-219) (black). e) The different values of 3JHN-Hα 

couplings between ASF/SF2 (200-219) peptide and phosphorylated ASF/SF2 (200-219) 

against sequence. The errors of 3JHN-Hα couplings were estimated from the distribution of 

values measured by 3 different mixing times. Due to the signal overlapping, 

Heteronuclear NOE and 3J coupling values for middle part of RS repeats are averaged 

values. Values of R11, 13, 15, 17, 19, 21 are average and values of S10, 12, 14,16,18,20 

are averaged. 

3.4 Structural transition of ASF/SF2 (200-219) upon phosphorylation  

15N-1H HSQC of phosphorylated peptide is different from its unphosphorylated form 

(Figure 3.10b). Backbone assignment of phosphorylated ASF/SF2 (200-219) was 

achieved by 7D -seq-HNCO (CA) CBCANH APSY experiments. The 6 phosphorylated 

serine residues are in the middle of RS repeats stretch. The last and first serine residues 

were not phosphorylated.  The assignments are labeled on the spectrum in the Figure 

3.10b. 

Peaks of the residues in the RS repeat region were better spread. Especially for the 

arginine residues, completely isolated peaks can be observed for every Arg residue. More 

importantly, all residues that precede the stretch of RS repeats did not change in 

phosphorylated form, which means the structural changes are restricted to the RS repeat 

region.   

In contrast to ASF/SF2 (200-219), the heteronuclear NOE values of RpS8 peptide were 

positive for the middle part of peptide with maximum reach 0.4 (Figure 3.10d). This 

indicated that upon phosphorylation, the backbone of ASF/SF2 (200-219) became rigid, 

though not as fully rigid as a folded protein, which normally has even higher values. 3-

bond J couplings between amid proton and Hα, 3JHN-Hα, is dependent on backbone torsion 

angle ϕ. 3JHN-Hα of RS repeats in RpS8 peptide were around 1Hz smaller than the 
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unphosphorylated form, moreover, this difference was continued and became more 

significant in the middle of RS repeats (Figure 3.10e). Residues before the RS repeat 

stretch did not show systematic deviation between the two forms.  

In order to find out whether the phosphorylated form deviated from the random coil 

state, we treated it with 6M GuCl to reach a completely denatured state.  In this condition, 

the phosphorylated ASF/SF2 (200-219) showed similar patterns as its unphosphorylated 

counterpart. All serine and arginine residues stack to the corresponding blotches by their 

residue types. Once more, the residues preceding the RS repeats region were affected 

little by GuCl (Figure 3.10c).  

The pK value for the equilibrium between singly and doubly charged phosphate groups 

is ~6. Hence in the physiology pH range, the charge state of the phosphoserine side chain 

depends on pH.  This changing in charge state made the signals observed in 15N-1H and 
13C-1H HSQC of phosphorylated RS peptides also pH dependent. We carried out a pH 

titration of phosphorylated ASF/SF2 (200-219), from pH 4.0 to pH 8.0. At pH4.0, the 

peaks from the stretch of RS repeats were highly overlapped on 15N-1H HSQC, which 

was similar to its unphosphorylated form (Figure 3.11a). The peaks on 13C-1H HSQC, Cα 

and Cβ chemical shifts of arginine residues were close to random coil values (Figure 

3.11b and c). With increasing pH values, the peaks gradually spread on 15N-1H HSQC, 

and secondary chemical shifts of arginine residues also increased. However, comparing 

the 13C-1H HSQC at pH 7.4 and pH 8, there was no difference observed (Figure 3.11d).   
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Figure 3.11 pH titration of phosphorylated ASF/SF (200-219) peptide. a) 15N-1H 

HSQC of peptide at pH 4.0, 6.0 and 7.0 b) Cα-Hα region of arginine residues on 13C-1H 
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HSQC c) Cβ-Hβ region of arginine residues on 13C-1H HSQC. The green dashed line in 

panel B and C indicates the predicted random coil values of Cα and Cβ (187, 188) d) 

Superposition of 13C-1H HSQC of RpS8 peptide at pH 7.5 (red) and pH 8.5 (green) 

The secondary chemical shift, which is the deviation of chemical shifts from random 

coil values, is sensitive to transient secondary structure. The chemical shifts of Cα and 

carbonyl of phosphorylated ASF/SF2 (200-219) peptide were measured and compared to 

their unphosphoyrlated counterparts (Figure 3.12). In the arginine and serine repeats 

region, the phosphorylated peptide showed continuing negative changes, although these 

changes were smaller, when they were compared to the secondary chemical shifts in 

secondary elements of the folded protein. The changes were smaller in the center part of 

the repeats region, while the residues in the N and C-terminals showed fewer differences. 

Figure 3.12 The differences of Cα (black) and carbonyl carbon (red) between native 

and phosphorylated ASF/SF2 (200-219) peptide. 

When the protein is weakly aligned in the magnetic field, the residual dipolar 

couplings (RDC) can be measured, which offers useful information about structure and 

dynamics. To enable RDC measurements, 5% C8E5/n-octanol liquid crystalline phases 

were made to align native and phosphorylated ASF/SF2 (200-219) peptides. The splitting 

of deuterium at 288K was 38Hz and 42Hz for native and phosphorylated ASF/SF2 (200-

219) peptides sample respectively. Three backbone RDCs, H-N, Hα-Cα and Cα-Hα, were 



 
Part I, 3. Result                                             68 

68 
 

measured. The values of native and phosphorylated ASF/SF2 (200-219) peptides were 

plotted against sequence in the Figure 3.13. 

Because the peaks of the residues between S10 and R23 of native ASF/SF2(200-219) 

peptide collapsed into two peaks, one for all the serine residues and the other for all the 

arginine residues (Figure 3.10a), the values of this region are actually the averaged values 

for all serine or all arginine residues in the region. This applies to heteronuclear NOE, 3-

bond J couplings, chemical shifts and RDC data. The details are labeled in legends.  
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Figure 3.13 Backbone RDCs of ASF/SF2(200-219) peptides.  H-N (a), Hα-Cα (b) and 

Cα-CO(c) RDC values are plotted against sequence. The data of native ASF/SF2 (200-

219) is in red while phosphorylated peptide data is in black. The coupling values of 

unphosphorylated form were scaled up base on 2H splitting values.  In unphosphorylated 

form, due to the signal overlapping, values for middle part of RS repeats are averaged 

values. In all three couplings data, R11, 13, 15, 17, 19, 21 are averaged. Values of S10, 

12, 14, 16, 18, 20 are averaged in H-N couplings. Values of S12, 14, 16, 18, 20 are 

averaged in Cα-Co and Cα-Hα couplings. The errors were estimated by the line widths 

and signal noise ratios.   

The other two RDC, N-CO and HN-CO, were also measured. However, the uncertainty 

in the data was too high due to the fact that RDC values were small and due to the broad 

line width of the aligned sample. The NC' and HC'-RDC's were measured twice. The 

RMSD values between two couplings datasets were 0.6Hz for H-CO and 1.3Hz for N-CO 

couplings. These RMSD sizes were comparable to the RDC values. These two RDC 

datasets were not used in further study. 

The heteronuclear NOE values clearly indicated the unphosphorylated ASF/SF2 (200-

219) was fully disordered, while phosphorylated ASF/SF2 (200-219) is structured but the 

structure is still partially dynamic. Hence, MD simulation was incorporated to get the 

structure of the phosphorylated ASF/SF2 (200-219) peptide.   
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3.5 Structural ensembles representation of RS repeats peptide1 

3.5.1 Structural ensembles from Molecular Dynamics (MD) simulations  

To characterize the structure of phosphorylated RS repeats, a set of unbiased MD 

simulations was carried out. Peptides of three different topologies were considered for the 

simulations: wild type RS, RpS (protonation PO4
-) and RpS (protonation PO4

2-). For 

every case, 20 independent MD simulations starting from random structure were 

conducted for 52 ns employing Amber99sb* force field (189, 190). The first 2 ns were 

used for equilibration and the rest of the 50ns were used for analysis. In total, simulation 

time of each case reached 1μs. 

The resulting MD trajectories were subjected to validation by comparing the 

experimental data to the values calculated from trajectories.  The NMR observables such 

as RDCs and J couplings were calculated from trajectories by PALES(191) and Karpuls 

equations. The back-calculated values were then compared to the experimental values.  

The structures in the trajectories are dominated by random coil, turn and bend, in 

agreement with small secondary chemical shifts. However, the back-calculated RDC and 

J coupling did not match the experimental data.  RDCs (NH, HC, CαC')  and 3J couplings 

(HN-Hα) calculated directly from the MD ensembles of the phosphorylated peptide 

showed high Q(192) and RMSD values when compared to the experimental NMR 

measurements: QRDC_NH=0.90, QRDC_HC=0.78, QRDC_caco=0.92, RMSD3J_HN-Hα=0.97 Hz. 

The high Q values showed that the unbiased MD simulation failed to generate one 

ensemble representing phosphorylated ASF/SF2 (200-219) structures in solution. 

To create a representative structural ensemble which matches the experimental 

observations a sub-ensemble selection method was therefore employed. RDCs are 

sensitive to structure and dynamic of proteins, which were therefore used in the study of 

ensembles of ubiquitin(193) and IDPs (194). In current study, three sets of RDC values 

(NH, HC, CαC') and a set of 3JHN-Hα couplings were used in the ensemble selection 

                                                             
1 The MD simulation and ensemble selection part is carried out by Vytautas Gapsys, Research 
group of computational bimolecular dynamics, Max Planck Institute for biophysical chemistry. 
For the experimental details, please refer to the thesis of Vytautas Gapsys. 
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procedure. A custom built sub-ensemble selection procedure that combines a Monte-

Carlo search with brute-force scanning was used for the selection of optimal ensembles. 

The sizes of ensembles varied from 5 to 100 structures, with an increment of 5 peptides. 

For every fixed ensemble size, 10 independent selections were performed the Q values of 

which are illustrated in the Figure 3.14.  

Increasing the ensemble size enables the structural ensembles to better match NMR 

constraints, as indicated by the decrease in the Q values for the RDCs and RMSD for the 
3J coupling (Figure 3.14). However, selecting a large ensemble increases the risk of 

overfitting. As the decrease in the Q values and RMSDs saturated at 30 structures for the 

phosphorylated peptide, this ensemble size was used for further analysis, for both native 

and phosphorylated peptides. It is important to note that no single structure could 

accurately reproduce experimentally measured couplings. The single structure from the 

pool of MD simulation trajectories of phosphorylated ASF/SF2 (200-219) which best 

matched NMR observables showed high Q and RMSD values: QRDC_NH=1.34, 

QRDC_HC=1.08, QRDC_caco=1.12, RMSD3J_HN-Hα=1.29 Hz. This matched observed 

heteronuclear NOE values of phosphorylated ASF/SF2 (200-219), which indicated the 

phosphorylated peptide became structured but was not full rigid. 

The wild type and phosphorylated structural ensembles were compared by calculating 

the Jensen-Shannon divergence between the smoothed 2D projections of the ensembles in 

a space defined by the principal components of the peptide internal distances between the 

Cα atoms. For every ensemble, the selection procedure was carried out 10 times, which 

resulted in 10 ensembles for the native peptide and 10 ensembles for the phosphorylated 

form. The Jensen-Shannon divergences were calculated between 2 randomly selected 

ensembles. For divergences of ensembles within the same type, 45 pairwise Jensen-

Shannon divergences were calculated. For divergences between native ensembles and 

ensembles of the phosphorylated form, 100 pairwise Jensen-Shannon divergences were 

calculated. The calculated divergences were then averaged.  The difference between the 

unphosphorylated and RpS ensembles is significantly larger than the internal differences 

within each ensemble (Figure 3.15), illustrating a significant difference between the 

unphosphorylated and phosphorylated ensembles. 
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Figure 3.14 Q values change with the sub-ensemble size of phosphorylated (a) and 

native (b) ASF/SF2 (200-219) peptide.  

a) 

b) 
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Figure 3.15 The Jensen-Shannon divergences between ensembles within the same 

type (native or phosphorylated) and between native and phosphorylated ensembles 

are plotted against ensemble sizes. 

With the determined optimal ensemble size of 30 structures, 100 independent selection 

rounds were separately performed for both the wild type and phosphorylated peptides 

separately. The obtained 100 ensembles were further used as the structural ensembles for 

the native and phosphorylated ASF/SF2 (200-219) peptides. The values calculated from 

ensembles were compared to the experimental values (Figure 3.16). 
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Figure 3.16 Experimental and back-calculated values for the NMR observables used 

in the selection. Both experimental and back-calculated values of 3JHN-Hα (a), Hα-Cα (b), 

HN-N(c), Cα-C’ (d) RDC values from native ASF/SF2 (200-219) peptide are plotted. 

The same datasets, 3JHN-Hα (e), Hα-Cα (f), HN-N (g), Cα-C’ (h) RDC values, from 

phosphorylated ASF/SF2 (200-219) peptide are plotted. Experimental values are all in 

black while the back-calculated values of native ASF/SF2 (200-219) are in azure whereas 

the phosphorylated ASF/SF2 (200-219) back-calculated values are in cyan. 

3.5.2 Validation of the structural ensembles 

To cross-validate the structural ensembles for the native (RS) and phosphorylated 

(RpS)ASF/SF2 (200-219) peptides, a number of NMR observations that were not 

included in the ensemble selection, were back-calculated from the selected ensembles and 

compared to experimental values.  

The backbone conformations were validated by 1JHα-Cα, 1JCα-Cβ and Chemical shifts. 

The side chain rotamers were validated by 3JNCγ and 3JCOCγ. 

For the 1JHα-Cα coupling calculations the Karplus equation was re-paremeterized due to 

an observed discrepancy between values reported in the literature (36, 168) (for details 

please refer to the thesis of Vytautas Gapsys). Considering the accuracy of the equation, 
1JHα-Cα couplings back-calculated from the phosphorylated RS repeats ensembles are in 

close agreement with the experimental measurements of RMSD=0.86 Hz. The wild type 

ensemble also showed a good match with RMSD=0.99 Hz from the NMR values.  
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The back-calculated 1JCα-Cβ coupling was also in agreement with the experimental 

measurements: for the native RS repeats ensemble RMSD=1.29 Hz and for the 

phosphorylated ensemble RMSD=1.21 Hz. The larger RMSD values may be due to an 

offset in the Karplus equation of 1JCα-Cβ which took random coil values from the 

couplings of free amino acid which is not identical to residues in intrinsically disordered 

proteins (195).  

  In the above two calculations, random coil value of serine was used for 

phosphorylated serine residues, which also introduced systematic error.   

The calculated chemical shift values for the Cα and C' atoms showed high Pearson 

correlation (>0.9) for both, the wild type and phosphorylated ensembles (Table 3.1). It 

must be noted that chemical shift prediction for phosphoserine is complicated since the 

empirical predictors are not trained against phosphorylated amino acids. This accounted 

to the systematic offsets in phosphorylated ensembles.  

 

Cα CO 

Correlation RMSD 
(ppm) Correlation RMSD 

(ppm) 

SHIFTX2 
native ASF/SF2(200-219) 0.99 0.85 0.93 0.68 

phosphorylated  
ASF/SF2(200-219) 0.99 0.93 0.97 0.70 

SPARTA+ 
native ASF/SF2(200-219) 0.99 0.62 0.97 0.64 

phosphorylated  
ASF/SF2(200-219) 0.99 0.64 0.94 0.37 

Table 3.1 Pearson correlation and RMSD values between experimental data and 

back-calculated by two software.   

Be awarded that the direct replace of phosphorylated serine with serine may be not 

valid in this case, because phosphorylated serine residue is different from serine in 

physical and chemical properties. It is hard to distinguish the difference between two 

states is the direct effects of phosphorylation groups or the effect of structure changes 

induced by phosphorylation. Due to phosphorylated serine, chemical shifts analysis of Cα 

and Cβ were not as useful as normal case. The random coil chemical shits of 

phosphorylated serine are not well established. There is one study use GGXGG peptide to 

measure random coil values (196). There is not many phosphorylated serine in NMR 
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database to train empirical predictors. The commonly used chemical shifts software, such 

as SPATA+, SHIFX2 cannot predict chemical shifts of phosphorylated serine.    

Even with this systematic error introduced by phosphorylated serine, the RMS 

Deviations in our study are smaller than the values reported in the papers introduced the 

software (197) (198) ,and also comparable to the RMSD in one similar study of IDP 

ensembles (0.77 ppm for N) (199). 

The RDC of H-C’ and N-C’ were also recorded, but they cannot be used due to the 

high uncertainty of the experimental values. The size of these 2 RDCs are too small, 

while the signals of aligned sample are too broad, which makes the accurate measurement 

unfeasible.  

Because the selection of structures was only based on the backbone NMR observables, 

the side chain rotamers are also compared to validate the ensembls. A considerable 

agreement between the back-calculated and measured 3JNCγ (RMSD=0.19 Hz) and 3JCoCγ 

(RMSD=0.23 Hz) couplings, which strongly depend on the side-chain χ1 angle, was 

observed.  

The experimental 3JN-Cγ values were smaller than the back-calculated values, which are 

a consequence of systematic errors of the method. There were two sources of systematic 

errors, passive couplings and T1 relaxation of aliphatic carbon as discussed in the 

reference (177).  The pulse used to flipped Cγ nucleus also flipped the Cβ, so both 3JN-Cγ 

and 2JN-Cβ were effective during the mixing time. This small and unknown 2JN-Cβ induced 

uncertainty in experiments. In this study, the 2JN-Cβ were assumed to be 0.3Hz, the 

average of two values suggested in paper (177).  The second source of error comes from 

the flipping of aliphatic carbons during the 15N dephasing and rephrasing time. Due to 

this relaxation, this method underestimated the coupling values 5-15%. In the 

experiments measuring 3J CO-Cγ, a more selective flip pulse was applied on Cγ without 

distributing Cβ. And the mixing time was only half of its counterpart in 3JN-Cγ 

experiments. Because of these two reasons, the experimental 3J CO-Cγ   values were less 

affected by errors and matched better with predicted values.  
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The experimental and back-calculated 1JHα-Cα, 1JCα-Cβ and chemical shifts of native and 

phosphorylated ASF/SF2 (200-219) peptides are plotted in Figure 3.17 and 3.18. The 

experimental and back-calculated values of two J couplings related to χ1 angles, 3JN-Cγ 

and 3JCO-Cγ, are plotted in Figure 3.19. 

 

Figure 3.17 Experimental and back-calculated 1JHα-Cα (a), 1JCα-Cβ (b) and chemical 

shifts (c)-(d) of native ASF/SF2 (200-219) peptide are plotted against sequence. 

Experimental data is in back, while back-calculated 1JHα-Cα and 1JCα-Cβ are in azure. 

Chemical shifts predicted by Shiftx2(198) are plotted in azure and chemical shifts 

predicted by Sparta+(197) are plotted in blue. The errors of back-calculated couplings are 

the standard deviations of values from 100 ensembles. The error of experimental data was 

estimated by intensities and line width of signals. 
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Figure 3.18 Experimental and back-calculated 1JHα-Cα (a), 1JCα-Cβ (b) and chemical 

shifts (c)-(d) of the phosphorylated ASF/SF2 (200-219) peptide are plotted against 

sequence. Experimental data is in black, while back-calculated 1JHα-Cα and 1JCα-Cβ are in 

cyan. Chemical shifts predicted by Shiftx2(198) are plotted in cyan and chemical shifts 

predicted by Sparta+(197) are plotted in green. The errors of back-calculated couplings 

are the standard deviations of values from 100 ensembles. The error of experimental data 

was estimated by intensities and line width of signals. 
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Figure 3.19 Experimental and back-calculated 3JN-Cγ and 3JCO-Cγ. a) 3JCO-Cγ of native 

ASF/SF2 (200-219). c) 3JN-Cγ of native ASF/SF2 (200-219). Experimental values are in black, 

back-calculated values are in azure. b) 3JCO-Cγ of phosphorylated ASF/SF2 (200-219) peptide. 

d) 3JN-Cγ of phosphorylated ASF/SF2 (200-219) peptide. Experimental values are in black, 

back-calculated values are in cyan. The error of experimental data was estimated by 

intensities and line width of signals. 

3.5.3 Backbone conformations 

100 ensembles containing 3000 structures were superimposed using the newly 

developed superpositioning algorithm by minimizing the variance and RMSDs between 

the molecules in their local neighborhood.2  

                                                             
2 detailed in Vytautas Gapsys’ thesis. 
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Visual inspection of the superpositioned ensembles (Figure 3.20) reveals the highly 

disordered nature of the unphosphorylated RS peptide, whereas the RpS peptides adopt a 

specific arch-like structure.  

  

 

Figure 3.20 Superposition of native (RS) and phosphorylated ASF/SF2 (200-219) 

peptide (RpS) structures from 100 selected sub-ensembles 

To further investigate the conformations adopted in the selected sub-ensembles, a 

clustering in internal distance space was performed (Figure 3.21) for the 6000 structures 

(3000 structures, 100 ensembles for each type) of native and phosphorylated peptide 

together. Six clusters were found to properly depict the populations contained within the 

ensembles. Phosphorylation appears to induce the depletion of clusters #1 and #6, which 

corresponds to the collapsed and stretched backbone conformations respectively. The 

population of the collapsed structures in cluster #5 is also decreased upon 

phosphorylation of the serine. Reduction of the collapsed and extended structures in the 

phosphorylated ensembles is compensated by enrichment of the arch-like bent structures 

corresponding to clusters #2, #3 and #4. 
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Figure 3.21 Clustering analysis of native and phosphorylated ASF/SF2 (200-219) 

peptide structures. 3000 structures of each type were subjected to analysis. The 6 

clusters were labeled on the plane of the first two eigenvectors. Every large sphere 

represents one phosphorylated ASF/SF2 (200-219) peptide structure and every small dot 

denotes one native peptide structure. The structures and Cα contact maps of extremes are 

shown. 

A major change in the backbone conformation induced by the phosphorylation was 

elucidated by training a partial least squares (PLS) model (200) on the 70 RS and 70 RpS 

ensembles. A binary external parameter was constructed denoting whether a structure 

was coming from the phosphorylated or wild type molecule pool. Coordinates of the 

backbone atoms were used as an independent variable for the model. PLS regression 

using 25 latent vectors was able to discriminate between the wild type and pSer peptides 

(Figure 3.22). The main contribution to the difference between the peptides captured by 

the ensemble weighted maximally correlated motion(201) on a single peptide level 

indicates that the wild type backbone is more collapsed bringing the N- and C-termini 

closer to each other.  

 

Figure 3.22 PLS analysis of native and phosphorylated ASF/SF2 (200-219) peptide 

backbone conformation. a) Correlation coefficient plotted against number of latent 

vectors. The arrow indicated the position of 25, which is the number of latent vectors 

used in PLS regression. b) The left part with light blue background showed training 

process with 4200 structures, which contained 2100 native ASF/SF2 (200-219) peptides 

and 2100 phosphorylated peptides. The right part with white background showed the 
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cross validation result with 1800 structures, which were half of native peptide and half of 

phosphorylated peptide. Every point was corresponding to one structure. 

 

3.5.4 Orientations of the side-chains  

Values of 3JN-Cγ and 3JCO-Cγ indicated changes in χ1 angle distributions upon 

phosphorylation. The differences in the arginine χ1 angle distributions of native and 

phosphorylated ASF/SF2 (200-219) are shown in Figure 3.23. Arginine and 

phosphoserine in the RpS ensemble show well defined preferential orientations, depicted 

by high density regions for the Nε (Arg) and Oγ (Ser, pSer) atoms in Figure 3.24. Side-

chain positions of the wild type structures are smeared out; hence, high density areas are 

scarce, whereas side-chains of the phosphorylated peptides are restrained sampling highly 

restricted regions (Figure 3.24). 

 

Figure 3.23 The difference of the occupancy of χ1 between native and 

phosphorylated ASF/SF2 (200-219) peptide. The occupancy of every arginine residue 

was normalized in such a way that integral over all the angles end up with 1. 
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Figure 3.24 The orientation of side chains in native and phosphorylated ASF/SF2 

(200-219) peptides. The 3000 structures in 100 sub-ensembles were included in analysis. 

Backbones are supperpositioned and shown in gray. The densities of Nε in arginine side 

chains and Oγ in serine side chain are sorted into three grades and plotted on the 

backbone.  

It has been suggested in two previous MD studies (162, 163) that one compact 

conformation termed as “arginine claw” is formed by the phosphorylated RS repeats 

peptide.  In the search for arginine claw, we counted the number of arginine residues with 

which phosphoserine side-chains formed hydrogen bonds, in all 3000 structures from the 

selected 100 NMR based ensembles. In most of the peptides no arginine residue H-

bonded to phosphoserine was found. Less than one percent of the phosphoserine made 

hydrogen bonds with 3 or more arginine side chains, which hints that the arginine claw 

may be found in the phosphorylated ASF/SF2 (200-219) peptide, but is not a dominating 

conformation of the side-chains. 
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Number of arginine residues to which 

pSer has at least one hydrogen bond 

Ratio with respect to all possible 

Arg-pSer hydrogen bonds (%) 

0 60.88 

1 28.83 

2 9.88 

3 0.53 

4 0.01 

5 0 
Table 3.1 Number of arginine residues making hydrogen bond to phosphoserine 

side chains in the selected ensembles of phosphorylated ASF/SF2 (200-219). 

3.6 SR-related proteins undergoing similar structural changes upon 

phosphorylation as SR proteins.  

SR-related proteins are different from classical SR proteins in their domain structures. 

SR-related proteins normally do not have RRM domains, but do have some other RNA 

related domains. SR-related proteins also have RS domains. However, their RS domains 

contain many Arg-Asp and Arg-Glu dipeptide repeats and relatively less Arg-Ser repeats 

(68). The phosphorylation of the SR-related protein modulates its functions in cell, which 

is also phosphorylated by the same kinase as SR-proteins (104). 

The native and phosphorylated forms of 15N-labeled full length human Prp28 (1-820) 

and its isolated RS domain (1-257) were provided by Prof. Ficner’s group, Georg-

August-Universität Göttingen.  The 15N-labeled phosphorylated full length human Prp 28 

(1-820) and its RS domain (1-257) were produced by SRPK1.  

The 15N-1H HSQC spectra of 4 hPrp28 samples (native/phosphorylated, full 

length/isolated RS domain) were recorded and compared (Figure 3.25). In native and 

phosphorylated states, the spectra of the full length protein and the RS domain were very 

similar. Although full length hPrp28 is much longer, it did not show much more signal 

than the RS domain alone. Full length hPrp28 gave 202 peaks on 15N-1H HSQC while RS 

domain gave 188, which was picked by the peak picking algorithm in Sparky. The folded 
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parts of the proteins were mainly not visible on NMR due to slow tumbling. Only the 

flexible part, such as the disordered RS domain, shows up in spectrum. The full length 

protein spectrum matches very well with the isolated RS domain, which proves that the 

isolated RS domain conformations are identical to the domain in intact proteins in both 

native and phosphorylated states.  

 

Figure 3.25 The isolated RS domain is similar to the domain in full length hPrp28. a) 

Superposition of 15N-1H HSQC spectra of RS domain alone (blue) and the full length 

hPrp28 (red) at pH6.5, 298K.b) Superposition of 15N-1H HSQC spectra of phosphorylated 

RS domain alone (blue) and phosphorylated full length hPrp28 (red). The spectra were 

recorded by Dr. Hai-Young Kim, MPI for biophysical chemistry. 

The heteronuclear NOE spectra were measured for the isolated RS domain (1-257) in 

the native form, which is shown in Figure 3.26. Comparing the spectra with and without 

saturated spectra, the heteronuclear NOE values were nearly zero or negative. Especially 
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in the region of serine, all signals vanished except one negative peak. The nearly zero or 

negative heteronuclear NOE values indicated that the RS domain, especially the serine 

residues including those in RS repeats, is highly flexible.  

 

Figure 3.26 {1H} 15N Heteronuclear NOE spectra of hPrp28 RS domain at pH6.5, 

298K. The spectra without (a) and with H saturation (b) are shown. The same contour 

levels were applied to both spectra. The region of serine residues are circled by dashed 

lines. The spectra were recorded by Dr. Hai-Young Kim, MPI for biophysical chemistry.  

One shorter fragment of the RS domain of human Prp28 (1-137) was purified by NTA 

column, which contains all putative phosphorylation sites. The phosphorylated form of 

the RS domain was acquired by co-expressing it with SRPK1 kinase, which is described 

in the “Methods and Materials” section. The NTA chromatography of human Prp28 RS 

domain purification is shown in Figure 3.27a. The samples of each step in purification 
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and the fractions of target protein were analyzed by SDS-PAGE (Figure 3.27b). The 

SRPK1 was also enriched in the fractions of human PRP28. After the phosphorylation 

reaction, the RS domain was purified by reverse phase HPLC and the phosphorylation 

number was analyzed by mass spectroscopy (Figure 3.27c).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) 

P S FT 20mM 27 28 29 30 31 32 33 M 

20 

15 

50 

kD b) 

10 

SRPK1 

RS domain  
of hPrp28 
(1-137) 
 



 
Part I, 3. Result                                             91 

91 
 

 

Figure 3.27 Purification of hPrp28 RS domain. a) Chromatography for NTA column 

purification of DXX23 RS domain. The blue line is absorbance at 280nm; the green line 

is concentration of imidazole; the red line is conductance; the azure line is temperature; 

the pink line is pH. The numbers of fractions are labeled at the bottom of picture. b) SDS-

PAGE of each step and fraction in purification. Lane P, the precipitation after 

sonification and centrifuge; Lane S, the supernatant after sonification and centrifuge; 

Lane FT, flow through of NTA column; Lane 20mM, 20mM imidazole wash of NTA 

column; Lanes 27-33, the fractions of elusion; Lane M, marker. The molecular weight of 

each line is labeled on the right side. c) Mass spectroscopy of hPrp28 RS domain 

phosphorylated by SRPK1.The phosphorylation protocol is presented in “Methods and 

Materials”. 

There were 14 extra residues from vector in the N-terminal of protein. The length of 

whole domain with His tag was 160. Partial backbone assignment of the RS domain was 

achieved by 6D -seq-HNCOCANH and 5D HNCOCACB APSY experiments. All serine 

and threonine residues were assigned except Ser63.12 phosphorylation sites, include 11 

serine and 1 threonine residues, were identified based on the distinct chemical shifts of 

phosphorylated amino acid, which is labeled on the 15N-1H HSQC spectrum (Figure 3.28).  

There is one continuing serine and arginine dipeptide repeat in sequence, which is 

constituted by 5 serine and 4 arginine residues from 71 to 79. All serines in this repeat are 

phosphorylated. Heteronuclear NOE shows the phosphorylated serine and arginine repeat 

c) 
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stretch is more rigid than the rest part of the protein (Figure 3.29a). The values were 

slightly lower than RS domain of ASF/SF2. This may be due to the fact that the hPrp28 

sample was recorded at higher temperature and lower pH value. 3 bond J couplings of the 

HN-Hα of phosphorylated RS repeat stretch were smaller than the random coil values, 

which suggested the repeat stretch has the same backbone ϕ angle preference as the 

phosphorylated ASF/SF2 (200-219) peptide (Figure 3.29b). The two phenomena implied 

the SR-related protein adopted the same structure transition as ASF/SF2 (200-219) upon 

phosphorylation. 

Figure 3.28 15N-1H HSQC of hPrp28 RS domain at pH 6.0, 298K. The phosphorylated 

residues are labeled on the spectrum. The spectrum was recorded at 800MHz of H 

frequency.  
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Figure 3.29 a) {1H}-15N heteronuclear NOE values of serine residues in hPrp28. b) 3J HN-

Hα couplings of serine residues in hPrp28. The red dashed line indicates the random coil 

value of serine. The arginine-serine repeats stretch is highlighted by beige box. 
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4. Discussion 

4.1 Structures transition of ASF/SF2 (200-219) peptide upon phosphorylation  

In this study, we illustrated the atomic resolution structure properties of ASF/SF2 

(200-219) peptide in its native and multiple phosphorylated statuses by the combined 

NMR and MD simulation approach.  The result showed that in the native status, the RS 

repeats stretch was in a random coil state and upon phosphorylation became structured. 

Moreover, the phosphorylated RS domain of prototypical SR proteins and SR-related 

protein show similar structure properties as does a phosphorylated ASF/SF2 (200-219) 

peptide.  These similarities suggested that the structure obtained from the RS peptide can 

be a model for all classical SR and SR-related proteins. It is the first high resolution 

structure of RS domains. 

The random coil nature of unphosphorylated RS peptide was revealed unquestionably 

by the negative heteronuclear NOE values and its chemical shifts of Cα and Cβ.The 

severe chemical shifts degeneracy also pointed to a dynamic and fully disordered state, in 

which the differences of chemical environment were averaged out. In addition, high 

concentration of strong denaturant did not induce changes of Cα and Cβ chemical shifts, 

which means the peptide was already in the fully disordered status in its native form. This 

result matches with a previously reported circular dichroism study of RS domain of 

ASF/SF2 (161).  The random coil status of RS repeats in native form is also in line with 

the bioinformatics result that phosphorylation predominantly occurs within disordered 

regions (51). The circular dichroism spectrum of the ASF/SF2 (200-219) peptide at a 

wide concentration range also support the disordered status of the ASF/SF2 (200-219) 

peptide.  

Upon phosphorylation, the backbone became rigidified, which was proven by the 

negative to positive sign reversal of heteronuclear NOE values. Considering that the 

molecular weight of the ASF/SF2 (200-219) peptide is less than 3KD, the herteronuclear 

NOE around 0.4 is high.  The reduced backbone mobility was also supported by the 

better separation of signals in the 1H-15N HSQC spectrum. The chemical environments of 
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amid protons could not be averaged. After adding 6M guanidine hydrochloride, the 

HSQC of RpS8 changed obviously. The spectrum of guanidine treated phosphorylated 

ASF/SF2 (200-219) peptide looks similar to native ASF/SF2 (200-219) peptide, in which 

all residues of the same residue type collapsed into one signal. This similarity again 

indicates that native ASF/SF2 (200-219) peptide is a fully disordered status. The changes 

of spectrum induced by denaturant treatment also supported that RpS8 peptide adopts a 

specific structure.  

The structural changes induced by phosphorylation are restricted in the phosphorylated 

RS repeats region. The structural difference between native and phosphorylated ASF/SF2 

(200-219) peptide were shown by the difference in 3JHN-Hα and different RDC profiles. 

The difference of 3JHN-Hα and RDC values were more significant in the middle of 

phosphorylated arginine and serine repeats compared to the regions preceding 

phosphorylated repeats. In 1H-15N HSQC, the peaks of residues before phosphorylated 

arginine and serine repeats are at the same position as the native form. The 

phosphorylation did not induce change in that region. The denaturant also did not change 

signals from the residues before phosphorylation RS repeats.  

Although the phosphorylated peptide was more rigid than its native counterpart, it is 

also not fully rigid as a folded protein.  In the sub-ensemble selection, there was no single 

structure fit to all NMR observables, i.e. there is no single structure, which can represent 

the conformations of phosphorylated ASF/SF2 (200-219) peptide. Under this situation, 

the ensemble approach should be used.  

The sub-ensemble size of 30 structures was used to reach the reasonable reproduction 

of experimental data and to avoid the problem of overfitting. The back calculated RDC 

and 3JHN-Hα couplings fit very well with experimental data. However, it is known that one 

can often find many sets of conformations that will agree with a given dataset(41). 

Agreement with experimental data alone cannot guarantee the accuracy of ensemble. In 

prior work, this degeneration problem was circumvented in such a way that the multiple 

ensembles were generated and the common structure characteristics are extracted (47, 48).  

In this study, the selection of one ensemble with 30 structures was conducted 100 times 

for both native and phosphorylated ASF/SF2 (200-219) peptides. Superposition of the 
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resulting 3000 structures from RpS8 ensemble shows an arch-like structure. This arch-

like structure is the common structure characteristic of ensembles. The restricted spread 

of backbone also fit with the increasing backbone rigid revealed by heteronuclear NOE 

measurements.   

The phosphorylated RS peptide adopts an arch-like structure, which is not a regular 

secondary structure. The significance of structural differences between native and 

phosphorylated peptides was demonstrated by the Jesen-Shannon divergence within the 

same type and between two types.  

The helix and sheets contents of native and phosphorylated ASF/SF2 (200-219) 

peptide did not change significantly. This can partially explain the small (<0.5 ppm) 

secondary chemical shits observed in the phosphorylated ASF/SF2 (200-219) peptide.   

In this study, random coils of serine are used for phosphoserine in the chemical shifts 

prediction. In such system with a high density of phosphorylated serine residues as RpS8 

peptide, the prediction of arginine residues will be also influenced by neighboring effects. 

It can explain the difference between back-calculated and experimental chemical shifts. 

The difference is bigger at the phosphoserine residues position. 

The structures are validated by back calculated J couplings and chemical shifts. The 

lack of phosphorylated serine data also affects J coupling calculation. The formula of 
1JHα-Cα and 1JCα-Cβ use the deviations from random coils (36, 195). The 1JHα-Cα and 1JCα- Cβ 

random coil values of phosphorylated serine are also absent.  As in chemical shifts 

calculations, serine random coil values were used in calculation, which introduce 

systematic error at each serine residue positions.  

There is second origin of the difference between back-calculated and experimental J 

couplings. The formulas for these J couplings predict 1JHα-Cα with RMSD 1.59Hz and 

predict 1JCα-Cβ with uncertainty of 0.5 Hz (195). The RMSD values between experimental 

and back-calculated data were less than 1.59Hz, which meant that the selected ensembles 

can reproduce experimental results.  The RMSD was bigger for 1JCα-Cβ, which was mainly 

due the improper random coil values for serine residues. The random coil values used to 
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deduce Karplus equation were from free amino acid, which were not the same as residues 

in intrinsically disordered protein.  

 

4.2 Discrepancy with previous works  

Our results of native and phosphorylated RS repeat peptide were different from the 

results of two previous works (162, 163). In these two MD papers, (RS)8 peptide 

containing eight RS repeats, was suggested in, at least partially, α-helix conformation. 

Phosphorylation induced a melting of helix, and one compact conformation termed as 

“arginine claw” were found to be formed by the RpS8 peptide.   

With the experimental data of ASF/SF2 (200-219), such as negative heternuclear NOE, 

secondary chemical shifts and signal distribution, there is no doubt of its disordered 

nature. The deviation of MD results may come from the bias of force field. In one recent 

paper, (RS)8 peptide conformations from MD with various force fields were compared. 

The conformations of RS repeats peptide varied with different force fields (163). It was 

noted that the force field AMBER99SB predicted much fewer helix conformations 

compared to the result by Amber03 used in a previous study (162).  AMBER99SB had 

been shown to provide a better balance of secondary structure elements, while Amber03 

force field preferred helix conformation (190).  Therefore, the helix conformation 

previously observed in (RS)8 peptide is probably an artifact of force field. 

Another potential vulnerability of these two studies was that the MD simulation was 

carried out in an implicit solvent. In one explicit MD simulation, which started with a 

helical structure, the helix conformation cannot persist within 50ns MD simulation (163).  

One compact structure termed “Arg-claw” was supposed to be the conformation 

induced by phosphorylation. However, such a compact and intensive hydrogen bonded 

structure was not found in our structures’ ensembles. In “Arg-claw”, the side chain of one 

phosphoserine is in the center and is coordinated by side chains of up to 7 arginine 

residues (162, 163). The guanidinium groups are hydrogen bonded to the phosphate 

group of the phosphoserine center. In contrast to these results, few arginine residues 



 
Part I, 4. Result 98 

98 
 

(<1%) in our structure ensembles formed more than 3 hydrogen bonds with 

phosphoserine side chain. The “Arg-claw” is not a dominating conformation. Some 

structures with high number of hydrogen bonds between arginine and serine side chains 

are shown in Figure 4.1, which did not resemble the “Arg-claw” structures previously 

reported (162).  

 

Figure 4.1 Some example structures of the RpS8 peptide with high number of 

hydrogen bonds between arginine and serine residues. The side chains of arginine 

residues are in blue and the side chains of serine residues are in orange. The hydrogen 

bonds are shown as dashed lines. 

“Arg-claw” requires high curvature of the backbone, which is easier to achieve in the 

case of short peptides. For RS repeats stretches in the middle of an RS domain, it is hard 

to form such a ring-like conformation without collision of flanking sequences. The 

simulations that resulted “Arg-claw” used either a fully extended or helix structure of 

RpS8 as initial structure, which is not a good representation for a fully disordered peptide.  

In addition, the simulations were done in an implicit solvent. When an explicit solvent 

was used, 50ns MD simulation starting with “Arg-claw” showed a decrease of the 

hydrogen bond number. This may suggest a breaking down of the whole “Arg-claw” 

structure (163). 
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In the complex structure of SRPK1 and ASF/SF2, part of RS repeat stretch, ASF/SF2 

(201-220), was in the bound groove of SRPK1 and exhibit an extended conformation 

(202). However, this was not structure of free form in solution but rather the bound form 

mainly induced and limited by the groove on the binding partner. The disordered nature 

of RS domain was supported by the fact that the rest of the RS domain was invisible on 

the X-ray structure.  For the whole RS domain, only the stretch in the dock groove and 2 

residues around the active center, all of which form contact and were restricted by 

SRPK1, showed up.  

4.3 Orientations of side chains 

The backbone conformation experienced significant changes upon phosphorylation as 

did the side chains, although very differently.  

Unlike the backbone of ASF/SF2 (200-219) peptide, the torsion angle χ1 of arginine 

residues in the peptide were relatively restricted. The three rotamers were not equally 

populated. The gauche+ rotamer is dominated(Figure 4.2), which matches well with 

previously reported χ1 angles of arginine residues in denatured lysozyme(203).  

 

Figure 4.2 Dominant χ1 rotamer of arginine residues in native RS repeats. 

Phosphorylation induced a population shift from gauch+ to gauch- conformation; 

however, gauch+ was still the dominated rotamer. From the point of view of χ1, the 

distribution of side chain orientations became dispersed upon phosphorylation. But when 
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the side chains were plotted on the superposing structures from ensembles, the 

distribution of side chains orientations in phosphorylated ASF/SF2 (200-219) peptide was 

more concentrated, while the directions of side chains in native peptide were smeared out. 

Since the χ1 angle distribution in the phosphorylated peptide was more scattered than for 

the native form, the preferential side chains orientations induced by phosphorylation was 

the result of disorder to order transition of backbone conformations.  

Side chains rather than backbone of residues usually form the contact surface, which 

mediates the interactions between proteins. In the view of the bulk and charged side 

chains of phosphoserine and arginine residues, the changes of side chains orientations in 

the RpS8 peptide will change the shape and electrostatic potential of interaction surfaces 

significantly. Hence, phosphorylation modulates the interactions of the RS repeats stretch. 

Speculating from the surface of the RpS8 peptide, the interaction partner of 

phosphorylated RS repeats should have an interface with the alternating pattern of 

positive and negative charges.  

4.4 pH dependency of RS repeats peptide conformation  

The spectrum of phosphorylated ASF/SF2 (200-219) peptide is pH dependent. The 1H-
15N HSQC spectrum changed dramatically from pH 4.0 to pH 7.4. The chemical shifts of 

serine and arginine Cα and Cβ also drifted during pH titration. 

It is known that the phosphoserine chemical shift changes with pH because of the 

charge state of side chains (196). The pKa of protonation of dianionic phosphate group is 

6. The pKa values of the other two protonation steps are out of the range of this pH 

titration. Thus, from pH 4 to pH 8, the charge of phosphate group changed from -1 to -2. 

The changes of phosphoserine chemical shifts were dominated by the electric charge on 

side chain. However, the charge of the arginine side chain does not change in this pH 

titration range. The changes of arginine chemical shifts may indicate the conformation 

changes of the peptide. At pH 4, when phosphoserine side chain was -1 charged, the 

arginine signals were overlaid as one big spot on 1H-15N HSQC, which is very similar to 

native ASF/SF2(200-219). At pH 7.4, the arginine peaks were well separated when the 

dominated charge state was -2. The different peak distribution implied a transition from 
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disordered to structured as pH increased. The Cα and Cβ chemical shifts of arginine 

residues also changed in the same manner. At pH 4, these values were very close to 

random coil values. As pH increased, the secondary chemical shifts also increased. These 

observations suggested that RpS repeats requires -2 charges on phosphoserine side chains 

to become structured. In addition, from pH 7.4 to pH 8, no change of Cα and Cβ were 

observed because the charge states did not change in this region.   

 pH 7.4 is usually taken as a physiological pH. In vitro splicing experiments are 

normally carried out in the pH range between 7 and 7.9 (204, 205). Within this pH range, 

the side chain of phosphoserine is -2 charged. In other words, the -2 charge may be the 

real biologically relevant state.  

Glutamic acid and aspartic acid are usually introduced as a phosphoserine mimic. Both 

residues are -1 charged in the biologically relevant pH range. Considering different 

spectra of RpS peptide with -1 and -2 charge on phosphoserine side chains, this approach 

may be not appropriate when applied to RS repeats. At pH 7, the overall charge of RpS 

repeats is negative, while RE or RD repeats overall charges are close to neutral. In 

splicing assay, RD or RE repeats are much less effective than RS repeats in terms of 

complementing splicing reactions in S100 extract(186). It was also reported before that 

glutamic acid and aspartic acid cannot reproduce the same phenomena as phosphorylated 

serine 129 in α-synclein.(206).   

In the RS domains of SR-related proteins, there are indeed many RE or RD repeats. 

The structures and functions of these repeats require further study. 

4.5 Universality of RS model peptides  

There is experimental evidence that the RS repeats alone can restore the function of 

whole domains in in vitro splicing assays (186).  This supported the ideal that the RS 

repeat stretches can function as “functional elements” independent of flanking sequences. 

It is known that IDPs interact with their partners via short motifs (24). The RS repeat 

stretches may act in the same manner as performed structural elements (PSE) (207), 

prestructured motifs (PreSMo) (208) or linear motifs (209). The RS repeat stretches carry 
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out the crucial interaction, while the remaining residues in the sequence are mainly acting 

as spacers.  

In this study, the phosphorylation induced structure changes in the whole RS domain 

of ASF/SF2 and SR domain of hPrp28 were similar to the RS peptide case at three points: 

first, the phosphorylated RS repeats stretches were more rigid than normal IDPs or other 

parts of the RS domain. Compared to other intrinsic disordered proteins such as Aβ and 

β-synclein, the values of RpS peptide are higher (183, 184). Since the two other IDPs 

were measured at lower temperatures (278K), the differences were even more 

pronounced. Second, the 3JHN-Hα values slightly decreased within the RS repeats. In 

addition, concerning the peaks position on 1H-15N HSQC spectra, the arginine residues in 

RS repeats drifted to the same region in the RpS8 peptide and two RS domains, which 

indicates the chemical environments of arginine residues were similar in all cases.   

  In RS peptide, the phosphorylation induced structure changes were limited within the 

RS stretch where the phosphates group were attached. There are extra residues in the N-

terminal of RS repeats, which do not change upon phosphorylation. This suggested that 

within the RS domain, the phosphorylation induced structuring in the RS motif whereas 

the remainder of the domain stays the same, which fit well with the aforementioned 

“functional elements” concept.  

Taken together, the structure transition between native and phosphorylated ASF/SF2 

(200-219) peptides is the general model that can be applied to all SR-proteins and SR-

related proteins.  

4.6 Function redundancy of SR proteins  

As mentioned in the introduction, SR proteins have redundant functions to a certain 

extent. Different individual SR proteins can complement splicing-deficient extracts, 

which are used as a benchmark to identify SR proteins. Moreover, the RS domain can be 

exchanged between SR proteins without a loss of biological function. For example, The 

RS domain can be exchanged between two SR proteins ASF/SF2 and SC35 without any 

effect on the ability of complement splicing-deficient S100 extracts(210).  A further 

study involved six different human SR proteins showed that the activity of RS domains 
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differed quantitatively, which is directly related to the number of RS dipeptides in the 

domains (211).  

This redundant function of RS domains can be explained by the universality of RS 

repeats structure discussed in the previous section. All RS domains contain RS repeat 

stretches. The same RS stretches in the different RS domains share the same structural 

feature.  All RS stretches adopt the same structure changes upon phosphorylation. The 

main difference between the RS domains is the amount of RS dipeptides in the domain, 

which is also the source of “quantitative differences” between RS domains.  

It was also shown that individual SR proteins were not functionally equivalent by 

depletion of single SR protein in cells and animals. Knocking out certain SR proteins 

results in deficient or lethal phenotypes, which mean the function of that SR protein 

cannot be accomplished by other SR proteins(113) (114) (115). However, an SR protein 

does not only contain an RS domain; the function redundancy of RS domain is not equal 

to functional overlapping of the whole SR protein. The functions carried out by other 

domains cannot be complemented by another SR protein without the same domain. For 

example, classical SR proteins have RRM domains, which recognize certain RNA 

sequences specifically. Different SR proteins recognize distinct RNA sequences, which 

cannot be simply substituted by another SR protein.    

4.7 Binding regulated by phosphorylation  

The RS domain is a module in charge of interaction, which mediated protein-protein 

and protein-RNA interactions. One unusual feature of RS domain is that its binding 

partners are mainly disordered proteins. Interestingly, the interaction partners often also 

include one RS domain.  The direct interaction between RS domains were confirmed by 

GST-pull down experiments, which were modulated by phosphorylation in different 

ways where increased, decreased and unchanged binding affinity were observed(142).  

The native RS domain of ASF/SF2 can self-associate, which is surprising considering 

its highly positive-charged nature (142). Nevertheless it was known that such a highly 

charged system, such as lysozyme, can form aggregation(212).  
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The alternatively charged phosphorylated RS repeats may self-associate in the way 

“polar zipper” does, first proposed by Peruz in a study of hemoglobin (213). Due to the 

absence of a complex structure, the factors contribute to interaction can only be 

speculated.  

Phosphorylation of RS domain may affect these interactions in two ways: electrostatic 

potential reversion and entropy contribution. 

First, the electrostatic potential was reversed upon phosphorylation. Because every 

phosphate group is -2 charged in physiological conditions and the number of arginine and 

serine residues is identical in RS repeats, the phosphorylated RS repeats are negatively 

charged. In contrast, the native RS repeats are highly positively charged, which make the 

PI of RS domains usually higher than 12. It was revealed that RS domains contact 

negatively charged mRNA. The positive charge of native RS domain facilitates this 

interaction. When the RS domain was phosphorylated, the same charge of RS domain 

and RNA cause repulsion between them, which may reduce the interaction between the 

RS domain and RNA.  

Another binding event modulated by electrostatic interaction is between Nxf1 (TAP) 

and ASF/SF2, and 9G8 and SRp20. This interaction can happen without RS domains 

(214), but the phosphorylated RS domain inhibits the interaction (215, 216). Since the RS 

domain is not essential for interaction, the indirect effects of the RS domain may be due 

to long range electrostatic interaction. The arginine residing in adjacent RRM domains 

are directly involved in this interaction (217). The RS domains are also rich in arginine 

residues, which contribute to the attraction between molecules with the same charges as a 

direct interaction fragment. Upon phosphorylation, the reversed charge status of the RS 

domain causes repulsion in electrostatic interaction between ASF/SF2 and Nxf1, hence 

changes the affinity between ASF/SF2 and Nxf1. 

Second, the conformational entropy contributes to the interaction strengths. It is known 

that change in conformational entropy can determine whether a proteins-ligand 

interaction will occur, even with the structures of interfaces unchanged (218). The higher 

level of disordered states of native ASF/SF2 (200-219) peptide will cause a higher 
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entropy penalty when folded into a complex. As seen in the c-Myb and KID domain of 

CREB binds to KIX domain of CBP, the higher disorder level of KID make its affinity to 

CREB less (219, 220).  

On the other hand, the disordered native ASF/SF2 (200-219) peptide will be more 

favor for interaction under certain situations. The flexible backbone of the native 

ASF/SF2 (200-219) peptide is easier to be induced into certain bound-form when the 

interaction occurs in the “induced-fit” model(221). In the scenario of “conformation 

selection” (222), binding requires that the conformation of bound form already exists in a 

free status. The disordered native RS repeats samples more conformations than the 

phosphorylated form. If the bound form structure is not included in the ensemble of 

phosphorylated RS repeats but it is sampled by native RS repeats, than native form will 

be more favor for interaction.  Hence in both two major models of interaction, the RS 

repeats may favor the interaction. 

One of the changes of backbone conformations upon phosphorylation is that the 

backbone is more extended, especially at the N-terminal of RS repeats. This 

conformation may better fit to a binding partner with a long and relatively shadow groove 

rather than in a deep cavity. This preference of binding sites may also contribute to the 

different binding properties of RS repeats and its phosphorylation counterparts.  

4.8 Different kinase specificity 

In a previous study of the phosphorylation of ASF/SF2 by SRPK1, the number of 

phosphates group added was 15 (223), which is in the range of our results (from 12 to 17, 

Figure 2 in result part).  There are 12 phosphorylation sites in the RS1part, which is 

known to the preferential substrate for SRPK1. These serine residues were 

phosphorylated by SRPK1 rapidly, which corresponds to the minus 12 phosphorylation 

number (223). The remaining 5 phosphorylate groups were added in the RS2 part (223). 

Since SRPK1 phosphorylates this region inefficiently, instead of a uniform 

phosphorylation number, species with all different phosphorylation numbers showed up.  

The sequence of RS peptide in this study was taken from the N-terminal of the RS 

domain.  It is found that SRPK1 first bound and started phosphorylation from an 
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“Initiation Box”, which is seen in the downstream of the (RS)8 repeat sequence (223). 

Although this motif was missing, SRPK1 still can phosphorylate ASF/SF2 (200-219) 

peptides. In all cases, the phosphorylated serine residues were always a consecutive 

stretch in the middle of RS repeats and the minimum phosphorylation number was more 

than 5. This phosphorylation pattern matches well with the “sliding” model of SRPK1 

phosphorylation mechanism which proposed that RS substrates slide through the active 

sites of SRPK1 to be phosphorylated without disassociation of the kinase-substrate 

complex (159). The sliding model of SRPK1 can also give an explanation for its 

preference of long and undisrupted RS repeats.  

SRPK1 phosphorylated 13 serine residues in the RS domain of SR-related protein 

hPrp28 (see Figure 3.2). It is important to note that all five serine residues in the RS 

repeats are phosphorylated. An in vivo study of hPrp28 revealed that its phosphorylation 

mediated by SRPK2 is more biologically significant, but knocking out SRPK1 also 

changes the phosphorylation status of hPrp28 (104). Although SRPK2 and SRPK1 

showed different substrate specificities in vivo, the specificity are not apparent in an in 

vitro assay (224). The different biological functions of SRPK1 and SRPK2 may not 

report any difference of their kinase activity but rather their different locations in cell: 

SRPK1 is predominantly associated with U1snRNA, whereas SRPK2 is associated with 

U4/U6-U5 tri-sRNP to which hPrp28 also binds. Hence, the kinase (SRPK1 or SRPK2) 

used for NMR samples did not make a difference. Interestingly, in vivo phosphorylation 

by either SRPK1 or SRPK2 resulted in several phosphorylation species that were 

revealed by 2D electrophoresis (104). In our study, the phosphorylation of hPrp28 was 

almost homogeneous (see Figure 3.27). This may be due to the large amounts of kinase 

and extended incubation time, which makes the phosphorylation reach the maximum.  

It was previously reported that CLK1 can phosphorylate all putative sites in ASF/SF2 

RS domain (156). However, the full phosphorylation was achieved by a high excess 

amount of kinase. In the same study, the phosphorylation of CLK1 showed two 

sequential phases: one fast phase with only around 5 phosphate groups added and a slow 

phase adding the rest phosphate groups. There is also evidence that CLK1 was less 

efficient than SRPK1 during the phosphorylation of ASF/SF2 in terms of the number of 
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incorporated phosphates groups, which was revealed by autoradiography (225). The 

structure of CLK1 also revealed that the binding groove is absent and the charge 

distribution is not in favor of a highly positive charged substrate. This suggested that 

CLK1 prefer a less positive charged substrate. 

Taken together, the ASF/SF2 phosphorylation assay of these two kinases CLK1 and 

SRPK1 so far showed distinct region-specific phosphorylation ability, though they can 

phosphorylate the remaining part of the protein with low efficiency. SRPK1 prefers the 

RS1 part of ASF/SF2, and it can inefficiently phosphorylate several serine residues in the 

RS2 after RS1 phosphorylation. CLK1 on the other hand phosphorylates the RS2 part 

first, and then phosphorylates the whole domain in favorable conditions.  However, the 

overlap of substrates may not happen in cell. CLK1 are mainly located inside nuclei, and 

SRPK1 exists in both cytoplasm and nucleus. Phosphorylation by SRPK1 in cytoplasm is 

required for SR proteins to be imported into the nucleus where SR protein can meet 

CLK1 (Figure 4.3).  It is more likely that SRPK1 and CLK1 exert effects sequentially or 

synergistically on different regions of the same protein rather than competing against 

each other.  
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Figure 4.3 Proposed model for sequential phosphorylation of ASF/SF2 by SRPK1 

and CLK kinases (reproduced from (152) with permission) 
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4.9 Outlook  

In this study, using the combined NMR and MD approach, we are able to illustrate the 

structural consequences of phosphorylation on SR proteins. The whole RS domain and 

the continuous Arg-Ser dipeptide repeats region in it are intrinsically disordered. Upon 

phosphorylation, the Arg-Ser dipeptide repeats region is still dynamic but adopts an 

“arch-like” structure. This structural change was observed in the isolated ASF/SF2 (200-

219) peptide, RS domain of ASF/SF2 and RS domain of hPrp28. This similarity 

suggested that the transition upon phosphorylation is universal to all SR and SR-related 

proteins. This structural change is pH-dependent, requiring -2 charges on the side chain 

of serine residues.  Hence RE or RD repeats cannot reproduce the same phenomena as 

phosphorylated RS repeats. 

The current study of structure is based on the isolated RS peptide and RS domain. It 

would be of great interest to study the structure of RS repeats in complex with other 

proteins or RNAs. There are two potential directions for future work. 

First, studying the structural changes undergone by RS domain upon binding. There 

are a few RS domain mediating interactions in which the size of both sides is suitable for 

NMR study. Two potential target interactions are ASF/SF2 with H3 tail histone and 

ASF/SF2 with CTD tail of RNA polymerase II.   

Second, identifying more binding partners of the RS domain, both in native form and 

phosphorylated form. Although there are many papers about the functions of SR proteins 

in cell, the exact binding partners of SR proteins are not clear, particularly in the process 

of splicesome assembly. Since SR and SR-related proteins contain domains other than the 

RS domain, it is important to identify the interactions directly mediated by the RS 

domain, and then further pin down the minimum sequences necessary for binding. The 

“minimum” complex can be used for later structural studies.  

In addition, it is revealed by GST-pull down that the RS domain of ASF/SF2 forms 

homo-aggregation in its native form, and phosphorylation can inhibit this 

aggregation(142). It is worth studying this aggregation prosperity using other 

biochemical and biophysical approaches, such as gel filtration, dynamic light scattering, 
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NMR and SAXS, etc. Which part, RS1 or RS2, is necessary for aggregation? How does 

phosphorylation regulate the aggregation? Is this aggregation related to the SR protein 

location in speckle? These questions need to be answered through further study.  
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Part II Probing Hydrogen bonds networks with N-H couplings 

5. Introduction 

5.1 Indirect spin-spin coupling  

Indirect spin-spin coupling, also called J coupling, is through-bond interaction, by 

which the spin of one nucleus perturbs the energy levels of neighboring magnetic nuclei. 

It is an indirect scalar interaction between two nuclear spins, which originates in the 

interaction between the nuclei and molecular electrons.  

There are 3 main mechanisms for indirect spin-spin coupling, all mediated by electrons 

of bonds (226, 227). The most important is the Femi contact interaction between the spin 

of electron and the spin of nucleus, which is mediated by most inner s electrons. The 

electron is perturbed by the interaction between electron spin and nucleus A, which then 

interacts with nucleus B. The reversed process, the interaction of nucleus B with electron 

then to the nucleus A, also contributes to the interaction.  In this way, the two nuclei A 

and B are coupled. Femi contact requires an electron with non-zero probability at the 

nucleus. It is only possible for the most inner s electrons.  

The other two spin-spin coupling mechanisms are mediated by p,d… electrons .The 

second interaction is between the magnet dipole of the nucleus and the magnetic field 

caused by orbital motion of the electron. The magnetic field of electron is perturbed by 

spin A, and then interacts with the magnetic dipole of the other nucleus, spin B. As in the 

Femi contact, the reverse process also contributes to the mechanism. This interaction 

requires the non-zero angular momentum of the electron, which is not the case for s 

electrons. In contrast to the Femi contact, the presence of only s electrons results in zero 

orbital interaction. The third mechanism is the interaction between the magnetic dipole of 

nucleus spin and the electron spin. The magnetic dipole of the electron interacts with the 

magnetic dipole of spinning nucleus A .The electron perturbed by nucleus A interacts 

with the other nucleus B and vice versa. The term is also zero for s electrons. 
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The total J couplings are expressed as the sum of three terms: 

𝐽𝐴𝐵𝑇𝑜𝑡𝑎𝑙 = 𝐽𝐴𝐵𝐹𝐶 + 𝐽𝐴𝐵𝑂𝑏𝑖𝑡𝑎𝑙+𝐽𝐴𝐵
𝑆𝑝𝑖𝑛−𝑑𝑖𝑝𝑜𝑙𝑒 

Although the term “scalar coupling” and “J coupling” are used as synonyms, scalar 

coupling is the isotropic part of J coupling.  In practice, the anisotropic part of J coupling 

is hard to observe, since it only shows up in aligned samples and is difficult to distinguish 

from much stronger dipolar couplings.      

Since J coupling is mediated by chemical bonds, it provides the information about the 

connectivity of molecules.  The observation of J coupling between two spins is positive 

proof of existence of a chemical bond. It is not necessary for the bond to be a covalence 

bond, as J coupling can also be mediated through a weak hydrogen bond (228). The J 

coupling aids the assignment of resonance enormously. In liquid state NMR, 

magnetization transfer is usually done by J coupling, such as COSY, TOCSY and 

numerous triple resonance experiments in bimolecular NMR (229).  Moreover, its 

dependency on conformation makes the J coupling a precious resource for structure 

information.  

J couplings give three parameters: multiplicity, sign and magnitude. Multiplicity is the 

multiple lines of interesting signals that arise from J coupling. From the number and 

relative intensities of these lines, the number of the nuclei coupled to the signal can be 

deduced. The sign of J coupling can be positive and negative, which is dependent both on 

the gyromagnetic ratios of involved spins and the number of bonds in between. However, 

the appearance of a high resolution spectrum does not change when the sign of coupling 

constants are reversed, if the relaxation effects are not taken into account (230).  

The strength of J couplings depends on the bond geometry, such as bond length and 

bond angles. Normally, the more bonds that are involved, the smaller J couplings are. 

Particularly, 3 bond J couplings are correlated with dihedral angles ϕ by various Karplus 

equations (231, 232): 

𝐽(𝜙) = 𝐴 cos𝜙2 + 𝐵 cos𝜙 + 𝐶 
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Some one-bond J couplings, such as 1JCα-Hα and 1JCα-Cβ are also related to backbone ϕ 

and ψ angles by their own equations (36, 195). The torsion angles derived from J 

couplings provide valuable information for structure determination.   

5.2 Hydrogen bond 

The hydrogen bond (H-bond) is the attractive force between a hydrogen atom and an 

electronegative atom such as nitrogen, oxygen or phosphorus, which comes from another 

molecule or chemical group. The hydrogen is also covalently attached to another 

electronegative atom. Two electronegative atoms interact with the same hydrogen atom. 

The electronegative atom covalently attached by hydrogen is termed as the donor. 

Because of this atom, the hydrogen atom is partially negatively charged, which makes it 

interact electrostatically with the other electronegative atom, termed the acceptor.  

The length of the H-bond is longer than that of a normal covalent bond. The H-bond is 

generally weaker than a normal covalent bond. The exact energy of the H-bond is 

dependent on its geometric features.  

The H-bonds are essential for the structure of many biochemical compounds. 

Hydrogen bonds between the complement base pairings are the main force that holds 

DNA double helixes and secondary structures in RNA molecules. In proteins, the 

backbone hydrogen bonds maintain the secondary structure elements. Protein folding, the 

formation of amyloid aggregates, enzymatic catalysis, drug-receptor interactions, and 

many other phenomena are intrinsically connected to hydrogen bonding.  

Hydrogen bonding in proteins involve, in most cases, arrangements of the type 

C=O•••H–N. The backbone amide proton is usually the donor of the hydrogen bond. The 

acceptors of the H-bond can be the oxygen atoms of the backbone carbonyl group. 

Oxygen atoms in hydroxyl groups, which reside in the side chains of some residues, such 

as threonine, tyrosine and serine, can also be acceptors. 

A number of NMR observables are used as indirect evidence as existence of H-bonds, 

such as exchange rates with solvents (233), temperature coefficients (234), chemical 

shifts, anisotropies of the chemical shifts (235), and nuclear quadrupole coupling 
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constants (236), which make NMR spectroscopy a key tool for the detection and 

characterization of H-bonds.  

The amide protons in the H-bonds exchange several magnitudes more slowly than 

those exposed to solvents (237). The amide protons involved in the H-bonds also shift 

less than the latter during temperature changes. Temperature coefficients of the amide 

protons which are more positive than -4.6ppm/K indicate the existence of the H-bonds 

(234). The H-bond changes the shielding tensors of amide protons in two ways: a 

decrease of isotropic values, which increases the isotropic chemical shifts, and an 

increase of the chemical shift anisotropy (CSA). The correlation between the amide 

proton CSA and the length of the H-bond, which was found to be 

𝐶𝑆𝐴 = 𝐵 + 𝐶/(𝑟𝐻⋯𝑂 − 𝐷)2 

 B= 4.9 ppm, C=1.96 ppm▪ Å2 and D= 1.3Å(235). 

The experimental observation of NMR spin-spin coupling constants across the H-bond 

allowed, for the first time, a direct detection of H-bonding in biomolecules (228, 238). 

Subsequently, theoretical calculations of trans-hydrogen bond spin-spin couplings 

provided detailed insight into the nature of H-bonds (239). There are 3 major structural 

parameters of H-bonds: the distance between H and O rHO, the H⋯O=C’ angle θ2  and H⋯

O=C’-N dihedral angle ρ. The experimental J coupling cross H-bond, 3JNC’, can be fit to 

the following formula with these 3 parameters: 

𝐽𝑁𝐶′
�3 (𝜃2,𝜌, 𝑟𝐻𝑂) = {−0.70 cos2 𝜃2 + 0.74 cos 𝜌 sin2 𝜃2} ∗ exp[−3.2(𝑟𝐻𝑂 − 𝑟𝐻𝑂0)] −

                                       0.01 𝐻𝑧  

Although the formula is based on 34 experimental cross H-bonds couplings in Gb3, it 

also applies to other proteins. This formula enables the use of cross H-bond couplings as 

restraints in molecular dynamic simulations, which offer the description of the geometry 

and the energetics of hydrogen bonds accuracy close to those of high-resolution X-ray 

structures (240).  
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5.3 Field dependence of scalar coupling values 

In theory, the scalar coupling values should be irrelevant to the external field strength. 

However, there are two effects, which make the apparent J coupling values vary 

depending upon external magnetic fields: dynamic frequency shifts (DFS) and dipolar 

contributions to J coupling. The following chapter is limited to the 1JNH. 

It is well known that two doublet components of 15N relax at different speeds due to 

cross correlation 15N chemical shift anisotropy and 1H-15N dipolar couplings (241, 242). 

This interference also causes small resonance frequency shifts of two components. This 

phenomenon, termed as dynamic frequency shifts (DFS), imposes a change in observed 
1JHN splitting. The DFS is theoretically described and experimentally measured. The size 

of DFS is dependent on the static magnetic field and the dynamic properties of amide 

groups. In a model-free approach, the DFS is the function of order parameter, rotation 

and internal motion correlation time, and is deduced as follows (243): 

𝛿𝐷𝐹𝑆(𝐵0) = S2(20𝜋3)−1ℎ(𝜎∥ − 𝜎⊥)(3𝑐𝑜𝑠2𝜂 − 1)𝛾𝑁𝛾𝐻(𝑟𝑁𝐻)−3 × [1 + (𝛾𝑁𝐵0𝜏𝑐)−2]−1 

                     = 𝛿𝐷𝐹𝑆(∞)[1 + (𝛾𝑁𝐵0𝜏𝑐)−2]−1 

 𝑆2 is the generalized order parameter, which gives the information about the globule 

and internal motions. h is Planck’s constant. (𝜎∥ − 𝜎⊥)  is the chemical shielding 

anisotropy of   amide N atom. 𝜂 is the angle between the unique axes of dipolar and CSA 

tensors. 𝛾𝑁 and 𝛾𝐻 are gyromagnetic ratios of nitrogen and proton. Hence 𝛾𝑁𝐵0 gives the 

angular Larmor frequency of nitrogen. 𝑟𝑁𝐻  is the distance between proton and N 

spin. 𝛿𝐷𝐹𝑆(∞) denotes the DFS at slow motion limit where 𝛾𝑁𝐵0𝜏𝑐 ≫ 1. Plugging in all 

parameters, 𝛿𝐷𝐹𝑆(∞) is -0.54Hz assuming 𝑆2 is 1.  

A protein can be weakly aligned by the magnetic field, which is induced by anisotropy 

of its magnetic susceptibility. This alignment results in a dipolar contribution to the 

apparent 1JNH splitting.  The residue dipolar coupling, 𝛿𝑑𝑖𝑝, is given as (243) 

𝛿𝑑𝑖𝑝(𝜃,𝜙) = −�
𝐵02

15𝑘𝑇�
�
𝛾𝑁𝛾𝐻ℎ

4𝜋2𝑟𝑁𝐻3
� × [𝛥𝜒𝑎(3𝑐𝑜𝑠2𝜃 − 1) +

3
2𝛥𝜒𝛾(𝑠𝑖𝑛2𝜃𝑐𝑜𝑠2𝜙)] 
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B0 is the static magnetic field, 𝛥𝜒𝑎 and 𝛥𝜒𝛾 are the axial and rhombic components of 

the magnetic susceptibility tensor. θ and ϕ descript the orientation of the N-H bond 

vector in the principal axis system of the magnetic susceptibility.  

For a diamagnetic protein, the overall magnetic susceptibility anisotropy mainly comes 

from two sources: backbone peptide bonds and aromatic side-chains. The alignment of 

protein G is indeed stronger than ubiquitin, because protein G contains a higher 

proportion of aromatic residues in the primary sequence (243, 244).  

These two effects can be extracted by comparing 1JNH obtained at different field 

strengths. For the folded globule proteins, the DFS of all residues are identical except 

those in the extremely flexible terminals. So the difference between two magnetic fields 

can be treated as normal RDC data plus a constant offset. The magnetic susceptibility 

tensor can be fitted by this process. The studies on ubiquitin and GB3 demonstrate that 

the actual DFS values fit very well with theoretical values (243, 244). The magnetic 

susceptibility of ubiquitin obtained by fitting 1JNH also shows good agreement with the 

one calculated from X-ray structure (243, 244).  

5.4 The methods to measure scalar couplings  

Since J couplings can provide structural and dynamic information, and the residual 

dipolar couplings can be measured in the same way as J couplings, various methods were 

developed to measure J couplings. 

Generally there are two ways to measure couplings: the splitting method and the 

intensity modulation method. These two methods are based on different principles and 

have their own advantages and shortcomings. 

5.4.1 Splitting method  

In the splitting method, the coupling values are read out by the displacements between 

peaks. The principle of such experiments is to allow the couplings to be effective during 

the chemical shift evolution time, which results in a splitting in that dimension. The 

displacement between peaks directly gives the coupling values. The design of these 

experiments is straightforward, usually conducted just by removing decoupling from the 
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evolution of interesting dimensions. The results are easy to analyze, because they only 

require basic arithmetic after peak picking. In protein NMR, this method is a common 

way to measure scalar couplings and residual dipolar couplings, especially for relatively 

large one-bond couplings, such as 1JNH and 1JCα-Hα (168, 245). 

However, the splitting of signals inevitably increases the signals overlapping, which is 

more severe in a big system or in an intrinsically disordered protein. Moreover, to get the 

peaks position accurate enough, high resolution has to be achieved on the dimension, 

which results in a long measurement time. If the interesting J coupling is very small, 

much less than the line width of signals, this method becomes problematic. 

The problem of signal overlapping can be circumvented by so-called in-phase /anti-

phase experiments (245). In this kind of experiment, instead of only recording in-phase 

terms, the terms of anti-phase are also recorded separately. Adding up or subtracting 

these two terms will get one of the two split doublets (Figure 5.1). To minimize 

experiment uncertainty, the two spectra are recorded in an interleaved way. 

The IPAP method is widely used in NMR measurements for scalar couplings. IPAP-

HSQC is a common pulse program to measure 1JHN(245). HACANH experiments use the 

IPAP scheme on the Cα dimension, which can give sequential connection and Hα-Cα 

couplings at the same time (168). Another backbone coupling Cα-CO can be measured 

by one HNCO-based pulse program, which makes use of IPAP in its CO dimension (181). 

 

Figure 5.1 IPAP method to solve the overlapping problem 
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For the couplings which are too small to make peaks separate enough, the E.COSY 

(exclusive correlation spectroscopy) type experiment can help to solve the problem (246). 

In heteronuclear experiments, the E.COSY type scheme uses a large coupling to separate 

two peaks, and lets the small couplings show up in other dimensions. A small unresolved 

J coupling between I and X, JIX, can be measured with assistance from a large, resolved J 

coupling between X and a third spin S. Assuming a 3 spin system: I and S both 

heteronuclear coupled to X. Jsx is large while JIX is too small to direct measure. In t1 

evolution, S spin evolves under chemical shift ωs and J couplings Jsx. 

Sy→ Sy cos(ωSt1)cos(πJsxt1)-Sx sin(ωSt1)cos(πJsxt1)-

2SxXzcos(ωSt1)sin(πJsxt1)-2SyXz sin(ωSt1)sin(πJsxt1)                                (1) 

Then the magnetizations are transferred from S to I without perturbing the X spin, which 

results in: 

Iy cos(ωSt1)cos(πJsxt1)-2SyXz sin(ωSt1)sin(πJsxt1)                                      (2)         

I spin evolves during t2, in which chemical shifts of I, ωI, and the scalar couplings JIX: 

[Iycos(ωIt2)-Ixsin(ωIt2)]cos(πJIXt2)cos(ωSt1) cos(πJsxt1) 

-2Xz [Ixcos(ωIt2)+Iysin(ωIt2)] sin(πJIXt2)cos(ωSt1)cos(πJsxt1) 

- 2Xz [Iycos(ωIt2)-Ixsin(ωIt2)] cos(πJIXt2)sin(ωSt1)sin(πJsxt1) 

+ [Ixcos(ωIt2)+Iysin(ωIt2)] sin(πJIXt2)sin(ωSt1)sin(πJsxt1)                            (3) 

Only the first and the last terms are the observable signals. The first term leads to anti-

phase signals in both dimensions (Figure 5.2a). The last term generates anti-phase signals 

split in t1 but in-phase split in t2 (Figure 5.2b).  Adding up these two terms will cancel 

half of the 4 multiples. The diagonally arranged two peaks are separated by JSX in t1 
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dimension and JIX in t2 dimension (Figure 5.2c). The large displacement of Jsx makes the 

measurements of JIX possible. 

 

Figure 5.2 Multiple peak pattern of E.COSY. 

3JHNHα, 3JHNCβ and 3JHNCO provide information about the backbone torsion angle ϕ. 

However, the sizes of these couplings are too small to be measured directly. The E.COSY 

method is used to take measurements of these smaller couplings. It employs large, one-

bond couplings, for instance, 1JCα-Hα, 1JCβ-Hβ and 1JCα-Co as Jsx to separate two peaks (247, 

248). 

5.4.2 Intensity modulation method   

In the intensity modulation or so-called “quantitative J correlation” method, the 

intensities of signals are dephased by J couplings with certain delays. The intensities of 

resulting signals are compared in order to extract J couplings.  

One of the most frequently used intensity modulation methods is a spin-echo 

difference-based scheme, which is shown in Figure 3a. This method can be used when 

the S spin is heteronuclear to I spin with scalar couplings JIS.  Transverse magnetization 

of I spin is generated as input for this module. The 180 degree pulse of S can be placed at 

position a or b. When the pulse is at position b, the JIS coupling is effective for the all 2T 

period. The resulting signal is proportional to cos(2TπJIS). When the 180 degree S pulse 

is at position a, the J coupling between I and S is refocused. The resulting signal can be 

used as a reference. The couplings can be extracted by the ratio of these signal intensities. 
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The spin-echo method is used to measure 3JHN-Hα, 3JCO-Cγ, 3JN-Cγ (176-178). One 

advantage of this method is that the dimensionalities of the experiment can be reduced, 

because the chemical shift of spin S is not evolved. The 3J couplings mentioned above 

can be measured by 2-dimensional N-HSQC based spin-echo experiments. 3D 

experiments will be needed to measure these couplings if the other methods are used. 

One assumption of the spin-echo method is that the relaxation rates of in-phase and 

anti-phase terms are identical. But this assumption is not valid and systematic errors are 

introduced. The detailed analysis of this error has been undertaken by Vuister and Bax 

(35). Generally speaking, the relatively fast relaxations of anti-phase terms result in the 

underestimating of J couplings.  

One variation of this method can be implemented even without a reference spectrum. 

Instead of using a single T delay, a series of experiments with different T length are 

carried out. The J couplings can be extracted by fitting the resulting signal intensity and T 

delays with a certain formula. Since there are always the same in-phase terms involved, 

the problem of the different relaxation rates can be eliminated. The accuracy of this 

experiment is high when enough T time points are included in fitting, as illustrated in J-

modulated HSQC for measuring 1JHN (243, 249). 

 

Figure 5.3 Schemes for Intensity modulation experiments. 

The second scheme that is based on HMQC for Intensity modulation method is shown 

in Figure 5.3b. The input magnetization is also Ix. During the first T period, JIS is active: 

Ix→Ixcos(π JIST)+2IySzsin(πJIST)                                                                                    (4) 



 
Part II, 5. Introduction 121 

121 
 

In the cross experiment, the second term was selected by phase cycle of ϕ1, ϕ2 and 

receiver phase. The ϕ1 90 degree pulse on S turns it to multiple quantum terms.  

IySzsin(πJIST) →-IySy sin(πJIST)                                                                                      (5) 

In t1 evolution time, the chemical shifts of S spin are labeled. The second 90 degree pulse 

on S spin, ϕ2, converts it back to anti-phase terms. (The terms from t1 evolution are 

omitted for clarity.) 

-IySy sin (πJIST) →-IySz sin (πJIST)                                                                                  (6) 

In the second T period, this anti-phase term is rephrased: 

-IySz sin (πJIST) →-IzSy sin (πJIST)cos(πJIST)-Ix sin (πJIST) sin (πJIST)                        (7) 

So the final signal is proportional to sin2(πJIST). 

In the reference experiment, by changing the phase of ϕ1, ϕ2 and receiver phase, the 

first term in equation (4) is selected. Following the same procedure, the result signal of 

reference experiment is proportional to cos2 (πJIST). 

After taking into account a proper scale factor, the ratio of signal intensity in “cross” 

and “reference” experiment is: 

Icross/Iref=tan2(πJIST) 

JIS couplings can be easily extracted. 3JNHβ which conveys the information of the side 

chain torsion angle χ1 was measured in this way (250). 
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5.5 Motivation of the project  

1JHN is one of the most frequently measured J couplings in protein NMR. However, 

there is no equation yet that correlates this coupling with the backbone torsion angles. 

Moreover, there has not been any reference value of 1JHN in the “non-interacting” 

condition reported as yet. It is also unknown if the reference is residue type-dependent. In 

contrast to 1JHN, two of other backbone one-bond couplings, 1JCα-Hα and 1JCα-Cβ, are well 

known for their relations with backbone ϕ and ψ angles (36, 195). The residue type 

specific values of 1JCα-Hα and 1JCα-Cβ of disordered state have also been reported, and were 

used as the reference values in the Karplus equation (36, 195). 

In theory, six spin-spin coupling constants should be affected by H-bonding. Four of 

them are directly affected because they are spin-spin coupling constants across the H-

bond and two are affected indirectly because they involve atoms participating in the H-

bonding. However, only the 13C-15N three-bond scalar couplings couple across the H-

bond and the one-bond 1H-15N scalar coupling, 1JHN, can be measured in proteins 

currently. The magnitude of the 1JHN spin-spin coupling constant is dependent upon the 

electronic structure of the molecule (251-253). Theoretical studies of small model 

systems have shown that 1JHN is negative and becomes more negative upon H-bond 

formation (252, 253). Moreover, conformational changes due to ligand binding can 

induce changes in 1JHN spin-spin coupling constants (254). 1JHN couplings might therefore 

be promising as potential hydrogen bond parameters. 

In this research, we measured 1JHN in intrinsically disordered proteins to identify the 
1JHN values at “non-interacting” states. We checked if there are reference values by 

looking at the distribution of 1JHN values, and also if the reference values are residue 

type-dependent. The stability of 1JHN was checked at different temperatures and pH. We 

then measured the 1JHN in folded proteins to explore whether any possible changes of 1JHN 

correlated with hydrogen bonds.    
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6. Methods and Materials   

6.1 NMR samples  

0.7mM 15N labeled Full length Tau protein (1-441) was dissolved in 57mM Na-

phosphate buffer, pH6.0, 42mM NaCl. 0.35mM 15N labeled Tau K18 (245-370) was in 

50mM Na-phosphate buffer, pH6.8, 100mM NaCl.  The Tau proteins samples were 

provided by Dr. Eckhard Mandelkow from the German Center for Neurodegenerative 

Diseases (DZNE) in Bonn. 

0.25mM 15N α-synclein was in 50mM Na-phosphate buffer, pH6.0, 100mM NaCl. The 
1JNH of Tau full length, Tau K18 and α-synclein were measured at 278K. To explore the 

pH and temperature effects, the α-synclein sample was adjusted to pH5.7, pH6.5 and 

pH7.4. At all three pH conditions, 1JNH couplings were measured at 278K and 288K. At 

pH5.7, the experiment was also carried out at 298K.  

0.5mM 15N labeled ubiquitin was dissolved in 50mM HEPE buffer, pH7.0, 300mM 

NaCl, which was measured at 298K. One 0.5mM 15N/2H labeled ubiquitin sample in the 

same condition was also used.  

The α-synuclein and ubiquitin samples are provided by Dr. Stefan Becker from the 

Max Planck Institute for Biophysical Chemistry. 

GCN (16-31) peptide was synthesized by Kerstin Overkamp of the Max Planck 

Institute for Biophysical Chemistry. The powder of GCN peptide was dissolved in 50mM 

Na phosphate buffer, and the pH was adjusted to 6.8. 

Chemicals, instruments and software are included in the “methods and materials” 

section for SR proteins (Chapter 2.1).  

6.2 Band-selective-decoupled (BSD) IPAP-HSQC 

During the N evolution time in IPAP-HSQC pulsprogram, the couplings between N 

and aliphatic protons are effective. These long range couplings split the signals further.  

Resolutions on indirect dimensions normally are not enough to solve the multiple 
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components. Moreover, the cross-correlated relaxation effect makes the doublets 

asymmetrical, which distort the line shape of the observed signal (Figure 6.1A). This 

distortion is a source of systematic error (Figure 6.1B). In gradient-enhanced IPAP-

HSQC, E.COSY-type effects, which result from the aliphatic protons coupled to both 

amide H and N, can further deteriorate the situation (Figure 6.1C).  

 
Figure 6.1 The impact of aliphatic proton spin, HR, on the measurement of 1JHN. A) 

cross-correlated relaxation causes different line widths and intensities of the two 

components. The size of JN-HR is exaggerated for visual purposes. B) Error of 1JHN 

splitting ΔJapp as a function of P2(cosθ). θ is the H-N-HR angle. Three values of JN-HR 

are used in the calculation: 1.5Hz (solid line), 3Hz (dotted line) and 4.5Hz (dashed line). 

C) E.COSY pattern obtained in gradient-enhanced 15N-1H transfer scheme. (Reproduced 

from (244)) 
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An improved version of IPAP-HSQC was proposed as Band-selective-decoupled (BSD) 

IPAP-HSQC (244). The pulse program is similar to normal IPAP-HSQC, with one 

shaped pulse in the middle of the N evolution time to refocus couplings between aliphatic 

proton and N. This refocusing pulse eliminated the cross-correlation effects, multiple fine 

structures of peaks, as well as the E.COSY pattern mentioned above.  To compensate the 

off-resonance effect on the amide proton during this pulse, the same pulse was applied at 

beginning of the N evolution and followed by one 180° pulse on N. The pulse program is 

shown in Figure 6.2.  

 

Figure 6.2 Scheme  of BSD-IPAP-HSQC. The pulses in the box were only applied in 

the anti-phase spectrum and were skipped in the in-phase spectrum. The water flip back 

pulse is a 1.5ms sine-bell shaped pulse, which is only applied in in-phase spectrum. The 

solid proton shaped pulse were REBURP pulses, centered at 2.4ppm and covering a 

bandwidth of 2.8ppm.  One broadband inversion pulse (BIP)(255), BIP 720.100.10 center 

at 116 ppm to decouple Cα and CO at the same time. Rance-Kay quadrature detection on 

t1 was achieved by alternating the phase of the last 90° pulse of the N evolution time 

between x and –x, and inverting the gradient G4 and G5 at the same time. δ= 2.65ms and 

ε=0.55ms. 

The 1JNH couplings of ubiquitin are measured at 400M, 600M, 900M to correct the 

effects of dynamic frequency shifts (DFS) and residue dipolar couplings which are 
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caused by anisotropic magnetic susceptibility of protein (243). BSD-IPAP-HQSC were 

recorded as interleaved in-phase and anti-phase spectra with data matrix 256(t1)*512(t2) 

complex points for each dimension. Data processing followed the methods outlined in a 

previous paper (244).  

Tau K18 (245-370) was also measured by BSD-IPAP-HSQC on the Bruker Avance 

600M and 400M spectrometer with z-axis gradient, triple resonance, and room 

temperature probes (244). In-phase and anti-phase spectra were recorded interleaved with 

data matrix 256 (t1)*512(t2) complex points of each dimension. 

Protein G 1JNH couplings at 500M and 750M were taken from one previous research, 

which was measured at 25 mM sodium phosphate, 50 mM NaCl, 0.05% w/v NaN3, 

pH6.5 (244). The DFS are calculated as previously reported (243, 249). After DFS was 

corrected, the residue couplings due to anisotropic magnetic susceptibility were rectified 

by taking the difference between 1JNH at different fields. 

6.3 Intensity modulated HSQC  

Intensity modulated HSQC was used to measure 1JNH. The pulse program is shown in 

Figure 6.3 (249).  
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Figure 6.3 Pulse scheme of intensity modulated HSQC. Narrow and wide bars 

correspond to 90° and 180° pulses. Small white bell shapes are 1ms 90° water flip back 

pulses in the WATERGATE module for water suppression. The white bar indicates the 

REBURP pulse which selectively flips amide protons. Except where indicated, all pulses 

are applied on x. Φ1=8(y),8(-y); Φ2=x,-x; Φ3=2(x),2(y),2(-x),2(-y); Φ4=-x, 

receiver=x,2(-x),2(x), 2(-x),x,-x, 2(x), 2(-x), 2(x),-x.τ=2.25ms. (Reproduced from (249) 

with permission) 

At point a, anti-phase term 2NyHz is created. During the delay 2λ, 1JNH is effective. 

The terms evolved during 2λ, at point b as follows : 

2Ny𝐻𝑧cos(πJ2λ) −𝑁𝑥sin (πJ2λ) 

After 15N chemical shift evolution t1, the term 2Ny𝐻𝑧  is transferred back to H and 

results in an observerable signal. So at the end, the single intensity can be described as : 

𝐼 = (𝐴0 cos(πJ2λ) + 𝐴1)exp (−𝐴22λ)                           (8) 

A series of experiments are recorded with 15 different λ delays.  To minimize the 

deviation between them, the spectra were recorded in a interleaved way. λ delays were set 

in such a way that the intensity sampled at 3 zero-crossing. J values are determined by 

fitting the intensities in each spectrum and λ delays to the equation. A0 is the intensity in 

the reference spectra, which is usually the first point. The exponential function 

exp (−𝐴22λ) is the decay of signals due to relaxation. Since the shaped pulse is only the 

flip amide proton, only one bond of the J couplings are effective during the 2λ delay. The 

long range coupling discussed in BSD-IPAP-HSQC case are also refouced.  

The 1JNH of Tau full length protein (1-441), Tau K18 (245-370) and α-synclein at 

pH6.0 was measured by 1JNH modulated HSQC. Data of Tau full length protein was 

recorded on Bruker Avance 900M spectrometers with z-axis gradient, triple resonance, 

and cryogenic probes. Tau K18 (245-370) and α-synclein were recorded in the Bruker 

Avance 700M spectrometer with z-axis gradient, triple resonance, and room temperature 

probes. The data were recorded interleaved of 15 mixing times: 31.9ms, 31.1ms, 30.7ms, 

30.3ms, 29.9ms, 26.5ms, 25.5ms, 25.1ms, 24.6ms, 24.3ms, 21.2ms, 20.3ms, 19.8ms, 
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19.5ms, and 19.1ms. One 2-dimentional spectrum was recorded at each time point, with 

data matrix 334(t1)*512(t2) complex points each dimension for Tau, and 256(t1)*512(t2) 

complex points for Tau K18 (245-370) and α-synclein. The 1JNH values were determined 

by fitting intensities as described previously (249).  

The intensities on the same position of each 2D spectrum was read out, and fit to 

equation (8) mentioned above with Python scripts (found in the Appendix). 
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7. Result 

7.1 The residues-specific 1JHN couplings in intrinsically disordered proteins 

The first step to find out the structural properties related to 1JHN couplings is to 

determine the coupling values of the random coil state as reference. To derive the 

reference values, we measured the 1JHN scalar couplings in the 441-residue intrinsic 

disordered protein Tau, which is known to be absent of stable secondary structures, at a 

static magnetic field strength of 21.1T and a temperature of 278K, pH6.0. A 1JHN 

modulated HSQC experiment was used to measure 1JHN scalar couplings. The length 

and native disordered nature of the Tau protein allow measuring large number 1JHN 

scalar couplings at the same time, and in a condition free of H-bond and chemical 

denaturants. 367 couplings are obtained which covers all non-proline amino acid types 

except tryptophan, which is not present in the primary sequence. The values are sorted by 

amino acid types and mean values are calculated (Table 7.1). As seen in Figure 7.1, the 

coupling values are dependent on the amino acid type. Glycine has the biggest 1JHN 

magnitude of 94.23Hz, while valine has the smallest 1JHN magnitude of 93.00Hz. Within 

the same amino acid type, maximum and minimum values differ by less than 0.6 Hz. 

Standard deviations within one amino acid type are less than 0.15Hz. The difference 

within the same amino acid type is smaller than the difference in all residues together as a 

whole.  We propose these mean values as the random coil value for each amino acid type. 
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Figure 7.1 1JHN spin-spin coupling constants observed in the intrinsically disordered 

protein Tau. 1JHN
 were grouped according to the amino acid type and subjected to a box 

plot analysis. The centre of the box indicates the mean value for each residue type, while 

the bottom and top correspond to the 25th and 75th percentile, respectively. The end of the 

whiskers indicates the 95th and 5th percentiles. 

 

Amino acid 

# of 

exp. 

values 

in Tau 

Random 

coil 

value of 
1JNH(Hz) 

Standard 

deviation 

of 
1JNH(Hz) 

Alanine 32 -93.4 0.15 
Arginine 12 -93.12 0.10 
Asparagine 10 -93.27 0.07 
Aspartic acid 29 -93.2 0.13 
Cysteine 2 -92.88 0 
Glutamine 18 -93.05 0.17 
Glutamic acid 27 -93.01 0.13 
Glycine 41 -94.23 0.13 

 0.11 Histidine 10 -93.17 
 0.15 Isoleucine 14 -93.03 

Leucine 19 -93.08 0.12 
Lysine 43 -93.08 0.13 
Methionine 5 -93.13 0.09 
Phenylalanine 3 -93.08 0.07 
Serine 43 -93.3 0.14 
Threonine 33 -93.2 0.14 
Tyrosine 4 -93.13 0.2 
Valine 27 -93.00 0.12 

Table 7.1 Amino-acid specific random coil values of 1JNH spin-spin coupling 

constants. 

The deviations of Tau 1JNH couplings from mean values are plotted against the 

sequence in Figure 7.2. All residues fell into the -0.35Hz~0.35Hz region around mean 

values, while the majority are restricted to the -0.2Hz~0.2Hz region.   
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Figure 7.2 Deviation of 1JNH spin-spin coupling constants observed in full length Tau 

from its amino-acid specific random coil values as a function of residue number. The two 

dash lines indicate the -0.35Hz ~0.35Hz region. 

To test the universality of the values derived from Tau, we also measured 1JNH scalar 

couplings of another intrinsically disordered protein, α-synuclein, in the same condition 

and by the same method. Deviations of α-synuclein 1JNH from the mean values are plotted 

against sequence in Figure 7.3. All residues except K96 are in the range of -0.35Hz 

~0.35Hz. Most residues are in the range of -0.2Hz~0.2Hz, with a few exceptions, such as 

E137 and D119.  
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Figure 7.3 Deviation of 1JNH spin-spin coupling constants observed in α-synuclein from 

its amino-acid specific random coil values as a function of residue number. The two dash 

lines indicate the region between -0.35Hz ~0.35Hz. 

To further trace any possible systematic offset between Tau and α-synuclein scalar 

couplings, the mean values of every residue type from these two proteins are compared 

(Figure 7.4). The differences between mean values are less than 0.1Hz for all residue 

types except Ile, which is 0.1Hz. However, there is only 2 Ile in α-synuclein, so the 

difference may be due to small number of occurrences. Consistency of couplings 

measured from Tau and α-synuclein shows that the 1JHN is not dependent on the protein 

but only residue types. 
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Figure 7.4 Changes in amino-acid specific values of 1JNH in the Tau and α-synclein. 

A) Number of experimental 1JNH spin-spin coupling constants for the most common 

residue types in a-synuclein. B) Differences between mean values of amino-acid specific 
1JNH constants in Tau and α-synuclein. 

7.2 The 1JNH scalar couplings in intrinsically disordered proteins are stable at 

different temperatures and pH  

To assess the stability of 1JNH scalar coupling values, we measured the 1JNH of α-

synclein at different temperatures and pH values. The same α-synclein sample was 

titrated from pH 5.7, pH 6.5 to pH 7.4. At each pH, 1JNH values were measured at 278K 

and 288K. At pH 5.7, the sample was also measured at 298K. The values of different pH 

or temperatures are compared. The correlation plots are in Figure 7.5, in which the data 

points are evenly distributed around y=x line. The data are measured by routine IPAP 

HSQC, in which the long range couplings, such as 2JNHα, 3JNHβ are not refocused.  The 

RMSD between the groups of 1JHN values in comparison are less than 0.15Hz, which is 

on the range of experimental error of such pulse program (~0.2Hz).   
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Figure 7.5 a) Correlation between 1JNH of α-synuclein at pH 6.5 and pH5.7, 278K. b) 

Correlation between 1JNH of α-synuclein at 288K and 298K, pH 5.7. c) Correlation 

between 1JNH of α-synuclein at pH 5.7 and pH7.4, 278K. d) Correlation between 1JNH of 

α-synuclein at 278K and 288K, pH 7.4. The y=x line are drawn on all correlation plots. 

Correlations RMSD (Hz) 
pH5.7 vs pH6.5,278K 0.15 
288K vs 298K, pH5.7 0.09 
pH5.7 vs pH7.4, 278K 0.15 
278K vs 288K, pH 7.4 0.12 

Table 7.2 Residue mean square-root of deviations (RMSD) between 1JNH values of 

different conditions. 

The mean values at different conditions are compared to ensure that there are no 

systematic drifts with pH or temperature change.  As seen from Figure 7.6, the mean 
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values of different conditions differ around 0.1 Hz or less. It is proved that 1JNH is stable 

within the range of near physiological condition.  

 

Figure 7.6 Changes in amino-acid specific values of 1JNH in the intrinsically 

disordered proteins a-synuclein with pH and temperature. a) Number of experimental 
1JNH spin-spin coupling constants for the most common residue types in α-synuclein. b) 
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Differences between mean values of amino-acid specific 1JNH values in α-synuclein at 

pH5.7 and pH6.5, 278K. c) Differences between mean values of amino-acid specific 1JNH 

values in α-synuclein at 298K and 278K, pH6.5.  

7.3 Field strength dependences of 1JNH couplings are negligible for IDP 

proteins. 

The 1JNH scalar couplings were measured at different field strengths to check the 

effects of dynamical frequency shift (DFS) and anisotropic magnetic susceptibility. One 

fragment of Tau, K18 (245-372), was measured by BSD-IPAP-HSQC at 600MHz and 

400MHz.The values measured by the BSD-IPAP-HSQC at different field strengths are 

compared. The correlation plots are shown in Figure 7.7. Linear fitting between two 

datasets give an offset as -0.016 Hz.  

 

Figure 7.7 Correlation plot of 1JNH of K18 at different magnetic field, pH6.0, 278K.  
1JNH values measured by BSD-IPAP-HSQC at 600MHz and 400MHz.The y=x line was 

drawn on the picture. 

The 1JNH of an intrinsic disordered protein does not differ significantly at different 

magnetic fields, which mean the mean 1JNH values of Tau measured at 900MHz can be 

applied to data at different field strengths. Due to the fast backbone motion and absence 
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of 3D structure in intrinsically disordered proteins, these two effects are trivial, so the 

values at different field strength should be identical.  

7.4 Systematic offset between intensity modulated HSQC and BSD-IPAP-

HSQC 

The 1JNH scalar couplings were measured by two different methods: 1JNH modulated 

HSQC and IPAP HSQC. The data from the two experimental methods are compared. The 

correlation plot of 1JNH by intensity modulated HSQC and BSD-IPAP-HSQC are shown 

in Fig8. There is a slight offset between two datasets, ~0.05Hz. The values from two 

methods are very close. 

 

Figure 7.8 Correlation between 1JNH of K18 measured by intensity modulation and 

BSD-IPAP method. The values by intensity modulation HSQC are on average 0.05Hz 

lower than the value measured by BSD-IPAP-HSQC experiment. The y=x line was 

drawn on the picture. 

The origin of this offset may be due to the different flipping pulses used during the J 

coupling effect periods in the two experiments. In the intensity modulated experiment, 

the magnetization of amide protons were flipped by a REBURP pulse and aliphatic 
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protons were kept on the xy plane, while the aliphatic protons were flipped and amide 

protons were kept on xy plan in the BSD-IPAP pulse program. 

7.5 Negative secondary 1J HN coupling values indicate H-bond  

The 1J HN values of ubiquitin were measured by BSD-IPAP-HSQC pulse program at 

400MHz, 600MHz and 900MHz. The folded proteins have much lower motion, which 

make the DFS no longer negligible. Dynamic frequency shifts (DFS) at different fields 

were calculated using the previously reported formula. The relatively rigid folded protein 

molecules are aligned due to anisotropic magnetic susceptibility, which causes residue 

dipolar couplings on top of scalar couplings. After DFS was corrected, the residue dipolar 

couplings were corrected by measuring the difference between J coupling values at 

various fields.  

The DFS values of ubiquitin were calculated by the formula 3 in reference (243). The 

DFS values of the GB3 protein were directly taken from previous reported values in 

reference (244). The DFS values of ubiquitin are 0.39Hz, 0.35Hz, 0.32Hz, and 0.23Hz at 

900M, 700M, 600M and 400M field strengths respectively. The DFS values of GB3 

protein is 0.38Hz and 0.28Hz at 750M and 500M field strengths, given the correlation 

time 3.3ns and ignore internal dynamic (244, 256). 

After two corrections, 1J HN couplings of the ubiquitin, which are free of DFS and 

residue dipolar couplings are obtained. These 1J HN couplings are compared to random 

coil values, and plotted again sequence in Figure 7.9a. 
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Figure 7.9 1JNH spin-spin coupling constants in ubiquitin. a) Deviation of 1JNH spin-

spin coupling constants observed in ubiquitin from its amino-acid specific random coil 

values as a function of residue number. Filled and hatched bars mark amide protons 

involved in a H-bond to the backbone or a side chain, respectively. Stars indicate spatial 

proximity (< 6 Å) to aromatic rings. The location of secondary structure elements as 

found in the crystal structure (PDB code: 1ubq) is shown above. b) Part of the BSD-IPAP 

hsqc spectra. The upper and lower doublets are shown in red and blue. c) Expanded small 

region of the crystal structure of ubiquitin shows the H-bonds between β strand 1 and 2. 

H-bonds are in green. Amide protons, which are involved in H bonds, are colour coded in 

blue while those not in H-bonds are in purple. The aromatic ring of Phe4 (red) with 

residues in spatial proximity (< 6 Å) shown in yellow.  

Deviations of 1J HN couplings from their random coil values in folded proteins are 

different from the case of intrinsically disordered proteins. The secondary 1J HN couplings 
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which are defined as the deviation from random coil values, Δ1J HN, span the range of -2 

Hz to 1.5Hz, which is a much larger range compared to the same ranges in intrinsically 

disordered protein cases (α-synclein, Tau). The residues in secondary elements have 

bigger Δ1J HN values, while smaller values are present in the loop regions. Strikingly, the 

majority of the first α-helix, Ile23-Asp32, shows continuous negative values of Δ1J HN 

with an average of 0.7Hz.  High Δ1J HN values were also present in 3/10 helix region. In 

β-strand, the trends were not clear, and the magnitudes of Δ1J HN are smaller. In β-strand 

1, 3, 4, the majority is negative with exceptions at the end. In β-strand 2 an alternating 

pattern of positive and negative Δ1JHN values is observed. 

Considering the position of the H-bond, negative Δ1JHN values are predominantly 

correlated with H-bonded amid protons. The continuous negative values in α-helix and 

3/10 helix were due to H-bond networks within the helix. β-strand 2 is on the edge of  β-

sheets of ubiquitin, so every second amide proton was involved in an H-bond while the 

other is solvent-exposure, which results in the alternating positive and negative pattern of 

β-strand 2 . For the residues in proximity to aromatic rings, the correlation is less 

prominent due to the coupling constant perturbation from the paramagnetic spin-orbit 

Ramsey term. 

1JNH scalar couplings of the IgG-binding domain of protein G, GB3, were taken from 

reference, which was measured by BSD-IPAP –HSQC at 500MHz and 750MHz.The 

same correction procedure was performed, and the deviation from random coil values are 

plotted as a function of residue number in Fig10. 

GB3 has significantly more aromatic residues in its sequence compare to ubiquitin, 6 

out of 56 versus 4 out of 76. The disturbance from aromatic rings is more severe in this 

protein, with many residues in proximity of 2 or even 3 aromatic rings. However, the 

correlation between H-bond and negative Δ1JHN is still prominent, particularly in α-helix. 

The second β-strand, from residue 14 to 20, also shows a similar alternative pattern as in 

the second β-strand of ubiquitin. This β-strand is also on the edge of the hydrophobic 

core of GB3, in which the amide proton of every second residue forms an H-bond with β-

strand 1 and the others point to the solvent.  
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Figure 7.10 1JNH spin-spin coupling constants in protein G. Deviation of 1JNH 

spin-spin coupling constants observed in protein G from their amino-acid specific 

random coil values were plotted as a function of residue number. Filled bars mark 

amide protons involved in a backbone H-bond. Stars indicate spatial proximity (< 

6 Å) to aromatic rings. Two or three stars indicate that two or three aromatic rings 

are within 6 Å of either the amide or amide proton. The location of secondary 

structure elements as found in the 3D structure (PDB code: 2oed) is shown above. 

(b) Expanded small region of the 3D structure of protein G to show the H-bonds 

between β strand 1 and 2. . H-bonds are in green. Amide protons, which are 

involved in H-bonds, are colour coded in blue while those not in H-bonds are in 

purple. The residues, which are in spatial proximity (< 6 Å) of aromatic rings of 

Tyr3 and Phe30 (red), are shown in yellow. 
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 1JNH scalar couplings of another folded protein, DINI, was recorded by routine IPAP-

HSQC pulse program, in which the long range scalar couplings 2JNHα, 3JNHβ were effective. 

This increases the uncertainty of experimental data. Without any correction, the 

couplings are compared to random coil values (Figure 7.11). The residues in two α-

helixes predominantly have negative Δ1JNH values with few exceptions. 

 

Figure 7.11 1JNH spin-spin coupling constants in DINI. Deviation of 1JNH spin-spin 

coupling constants observed in DINI from their amino-acid specific random coil values 

were plotted as a function of residue number. Filled bars mark amide protons involved in 

a backbone H-bond. Stars indicate spatial proximity (< 6 Å) to aromatic rings. Two stars 

indicate that two or three aromatic rings are within 6 Å of either the amide or amide 

proton. The location of secondary structure elements as found in the 3D structure (PDB 

code: 1ghh) is shown above. 

In all 3 cases, 1JNH scalar couplings of the residues involved in H bonds are higher than 

random coil coupling values. Without interference from nearby aromatic rings, the 

residues involved in backbone H-bonds show 1JNH scalar couplings more than 0.3Hz 

bigger than random coil values, which is bigger than the range of deviation in intrinsic 

disordered proteins.  

The relations between secondary 1JNH couplings with the individual parameter of the 

H-bond are investigated. The secondary 1JNH couplings values of ubiquitin and the length 

of corresponding H-bond were plotted in Figure 12a. Although the overall correlation is 

poor, the short H-bonds in β-sheet tend to be correlated to lower secondary 1JNH 
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couplings, while longer H-bonds in α-helix are more likely with higher second 1JNH 

couplings. This tendency is clearer if the Δ1JNH is plotted against dihedral angle ρ = 

<H•••O=C-N, which to a large extent distinguishes α-helix from β-sheet (Figure 7.12b). 

 

Figure 7.12 a) Comparison of secondary 1JNH values, Δ1JNH, with H-bond lengths, rH…O, 

in ubiquitin for residues in β-strands (■), loops (▲) and the α-helix (○). b) Comparison of 

secondary 1JNH values,Δ1JNH, with the dihedral angle ρ= <H•••O=C-N, which to a large 

extent distinguishes α-helix from β-sheet, in ubiquitin for residues in  β-strands (■), loops 

(▲) and the α-helix (○). 

7.6 Identify hydrogen bonds by secondary J couplings 

To further validate the relationship between H-bond and 1JNH scalar couplings, GCN 

peptides were studied. The GCN (16-31) peptide was known to have a helix tendency in 

its free state. TFE (2, 2, 2-Trifluoroethanol) was used to induce complete helix 

conformation. The chemical shifts and 1JNH scalar couplings were measured at free state 

and in the presence of 40% TFE (Figure 7.13). The CD and chemical shifts analysis both 

revealed that GCN peptide in water only has α-helix tendency, and no complete and 

stable helixes were formed (Figure 7.14a, black bar and Figure 7.13b). H/D exchange 

experiments also indicated that there is no stable H-bond formed in free form, in which 

all amid proton exchanged within 5mins in D2O(Figure 7.14c). The only remaining peak 

after 10mins in D2O was the proton in hydroxyl group of Tyr17 side chain. In 40% TFE, 
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however, one α-helix nearly formed based on chemical shifts and CD measurements, in 

which H bonds should form (Figure 7.13a, light grey bars, Figure 7.14b). 

1JNH scalar couplings of GCN peptide in water were close to random coil values. The 

values deviated less than 0.35Hz with the exception of R25, which was the upper limit of 
1JNH couplings deviation in “H-bond free” residues. When GCN peptide was in 40% TFE 

solution, the residues in the middle part of the peptide showed a negative shift in 1JNH 

couplings, while the 1JNH couplings of the residues in the two terminals moved to the 

positive direction. The decrease of dielectric permittivity in 40% TFE made a positive 

shift for 1JNH of all residues (257).  The negative Δ1JNH couplings of the residues in the 

middle of helix were because of the formation of H bonds. 

 

Figure 7.13 a) Secondary Cα chemical shifts of GCN (16-31) peptide in water as a 

function of residue number. The peptide was dissolved in 50mM Na phosphate buffer, 

pH was adjusted to 6.8.  b) Secondary 1JNH couplings of GCN (16-31) peptide in water as 

a function of residue number. The random coil values are taken from (187, 188) c) 

Secondary Cα chemical shifts of GCN (16-31) peptide in 40% TFE as a function of 



 
Part II, 7. Result  145 

145 
 

residue number. d) Secondary 1JNH couplings of GCN (16-31) peptide in 40% TFE as a 

function of residue number. The assignment of L28 is missing, which is marked by star.   

 

Figure 7.14. a) Secondary structure propensity (SSP) scores of GCN peptide in native 

state and in 40% TFE. The peptide was dissolved in 50mM Na phosphate buffer, pH was 

adjusted to 6.8.The SSP scores were predicted by SSP software from Hα,Cα chemical 

shifts(258). b) CD spectra of GCN16-31 peptide at various TFE concentration, from 0 to 

40 %( v/v). c) 1D proton spectrum of GCN16-31 peptide in 100% D2O after 10 mins. The 

GCN peptide in pH6.8 buffer was lyophilized and then re-dissolved in 100% D2O. The 

spectrum was recorded 10 minutes after dissolving.   

7.7 Experimental uncertainty  

Two similar ubiquitin samples were measured by BSD-IPAP-HSQC at 600MHz. The 

first one was 15N-single labeled ubiquitin in 50mM HEPES buffer, pH 7.0, 300mM NaCl. 

The other one was 2D, 15N-labeled in 50mM HEPES buffer, pH 7.4, 300 mM NaCl. The 

pairwise RMSD between this two data is 0.05Hz, which can be used as the upper limit of 

experimental uncertainty of BSD-IPAP-HSQC experiments. The correlation plot is 

shown in Figure 7.15. 
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Figure 7.15 Correlation between 1JNH of two ubiquitin samples. The line is y=x line. 

The x-axis are J couplings of 2D, 15N-labelled Ubiquitin, y-axis are J couplings of 15N-

labelled Ubiquitin. Both couplings were measured by BSD-IPAP HSQC, 298K. 

The experimental uncertainty of intensity modulated HSQC was also evaluated by two 

datasets of Tau K18 in the presence and absence of one small molecule B4A1 which is 

known to interact with K18. The pairwise RMSD between two datasets is 0.02Hz, which 

suggests the upper limit of experimental uncertainty. The correlation plot between the 

two datasets is shown in Figure 7.16.  
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Figure 7.16 Correlation between two datasets of K18 1JNH. Both data set was 

measured by intensity modulated HSQC. The K18 samples were in 50mM Na-phosphate 

buffer, pH6.0, 100mM NaCl. The x-axis is K18 in free form while the y-axis is K18 with 

B4A1 in ratio 1:1.5, 278K. 
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8. Discussion 

8.1 1JNH couplings of intrinsic disordered proteins 

In this study, we propose the mean values of 1JNH couplings as “random coil” values, 

which are residue type specific. The couplings were measured on the full length Tau 

protein, which is known to lack stable secondary structures (259, 260). The long 

sequence (441 residues) of Tau enabled enough reduplications of every residue type 

within one single sample, which minimized any possible systematic errors between 

different samples.   

The distributions of the 1JNH couplings were all in the range between of -92.77 Hz to 

-94.47Hz. The values were dependent on the residue type, for instance, the glycine 

residues showed larger values than other residue types. The statistical parameters, such as 

standard deviation and range, showed that 1JNH coupling values converged more 

effectively after sorting by residues types than considering the all J couplings as one 

whole dataset. The standard deviation of all J couplings together was 0.36Hz and the 

range was 1.39 Hz. After removing the glycine residues, which were obviously higher 

than others, the standard deviation was 0.19Hz and the range of data was 0.95Hz. The 
1JNH couplings in the same residue type, by contrast, were all within the range, at less 

than 0.70Hz, and the standard deviations within one residue type were also smaller 

(Figure 2 and Table 1 in result).  

On the other hand, the distributions of residue type specific “random coil” values are 

very narrow in comparison to other backbone one-bond J couplings. The similar “random 

coil” values of 1JHα-Cα (without proline and glycine) spans from 141.1 Hz (glutamine) to 

143.7Hz (alanine), which covers 2.6Hz (36). The “random coil” values of 1JCα-Cβ are from 

33.6Hz (tyrosine, valine) to 37.4Hz (serine) within the range of 3.8Hz (195). Taking the 

size of couplings into account, 1JHα-Cα values change ~2% with different residue types 

while 1JCα-Cβ changes ~10%. The changes of 1JNH magnitude with residue types are 

relatively small, at only 0.5% without glycine or 1.4% with glycine. One possible 
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explanation is that the N-H bond is further away from the side chain, and thus is less 

affected by different groups on side chains.  

The universality of these random coil values were verified by comparing the 1JNH 

couplings of α-synclein to the random coil values which were derived from Tau. Except 

one residue, the deviation from Tau based random coil values is less than 0.35Hz. The 

deviations in α-synclein were in a similar range to Tau data. The average values for each 

residue type were very close to random coil values (maximum difference<0.1Hz, Figure 

4 in result), which indicated that there was no systematic difference between the two 

datasets.  

The values do not drift significantly with pH and temperatures as illustrated by the J 

couplings of α-synclein at various conditions (Figure 6). The pH range in test was from 

5.7 to 7.4; the temperature range was 278K to 298K. Although the uncertainties of the 

experiments were relatively high, the stability of J couplings was revealed by the 

unchanged mean values, in which the random errors of individual values were averaged 

out.  In the line of this, the biggest difference, which was still less than 0.1Hz, was 

observed in the residue type with low occurrence.  

It is worth noting that apparent J couplings may change with temperature in other cases. 

The DFS (dynamic frequency shift) is dependent on the dynamic properties of N-H 

groups, which change with temperature (243, 261). Therefore, the change of DFS results 

in the different “apparent” J couplings. In the situation of intrinsically disordered α-

synclein, the backbone is very flexible. The motions of N-H groups are always fast 

enough in the temperature range of experiments, which does not change DFS 

significantly. In the folded protein cases, the motions of the N-H group are mainly 

dependent on the tumbling time of the whole molecule, which drifts significantly with 

temperature. The temperature changes of J couplings due to different tumbling time will 

be not negligible.  At 298K, correlation time τc of ubiquitin is 4.04ns, while at 278K, the 

τc is ~7.3ns (262). The DFS changes 0.08Hz according to τc, assuming the order 

parameters are the same at the two temperatures. 
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The residue type-specific random coil values were universal for different proteins and 

they were stable in the near physiological conditions. Hence, these values were taken as 

reference for 1JNH couplings. 

8.2 The relation between 1JNH coupling and hydrogen bonds 

One remarkable characteristic of 1JNH couplings in folded proteins is that the 

distribution ranges are larger than the ones in intrinsically disordered proteins (IDPs). In 

intrinsically disorder proteins, such as Tau and α-synuclein, the deviations of 1JNH from 

random coil values were in the -0.35Hz to +0.35Hz range. In contrast, the deviations in 

folded proteins were more than 1Hz. The two factors, DFS and residual dipolar couplings, 

cannot explain this distribution. DFS is one uniform value which is the same for all 

residues, which can make an offset with maximum to 0.54Hz, but not a larger distribution 

(243). Residual dipolar coupling due to weak alignment by anisotropic susceptibility is 

residue-specific, which is dependent on the structure. This effect was measured in 

ubiquitin (243) and the GB3 protein (244). The sizes of these RDC values were too small 

to account for the observed range of 1JNH coupling values. Even after the two effects were 

corrected, the 1JNH coupling values of folded proteins still distributed in a larger range 

than IDPs’.  

The deviations from random coil values were termed as secondary 1JNH coupling, 

Δ1JNH. The Δ1JNH showed significant correlation with the existence of hydrogen bonds. 

Involving one hydrogen bond increases the magnitude of 1JNH coupling of the amide 

proton. Apart from the residues near aromatic rings, all residues with secondary 1JNH 

coupling more negative than -0.35Hz are involved in hydrogen bonds (see Figure 7.9a, 

Figure 7.10a and Figure 7.11). The connection between negative Δ1JNH and hydrogen 

bonds is supported by the data of all three folded proteins under test: ubiquitin, protein G 

and DINI. This is the first time that the 1JNH couplings have been empirically related to 

the hydrogen bond, although this relationship has been theoretically predicted before (252, 

253, 263).  

The correlation between negative Δ1JNH values and hydrogen bonds was highlighted by 

the alternative positive and negative secondary J coupling patterns of the β-strand on the 
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edge of β-sheet, in which every second residue forms a hydrogen bond. In addition, the 

cross hydrogen bond couplings were not visible in 310-helix in ubiquitin due to an 

unfavorable geometry for the hydrogen bonds (264). In contrast, the residues of 310-helix 

in ubiquitin showed large negative Δ1JNH values, which is consistent with the location of 

hydrogen bonds in NMR and X-ray structures. 
1JNH values do not correlate with 

secondary chemical shifts, demonstrating that 1JNH coupling constants not simply report 

on the presence of secondary structures, but are intimately linked to the presence of H-

bonds. 

Here only intramolecular hydrogen bonds were taken into account. The solvent 

exposure amide proton may also form hydrogen bonds with solvent molecules. However, 

this kind of hydrogen may also exist in IDPs, in which the amide protons are all 

accessible to the solvent. Therefore, the difference between the two cannot distinguish the 

protein-solvent hydrogen bond. In addition, the transitory nature of protein-solvent 

hydrogen bond makes its effects weaker.  

In ubiquitin, Gly10 has a positive secondary 1JNH coupling, but its amide proton was 

predicted to be in the hydrogen bond based on the X-ray crystal 3D structure of ubiquitin. 

However, the H/D exchange rate of G10 revealed that it is solvent exposed(237). On the 

other hand, although Thr22 is not involved in hydrogen bonding based on the crystal 

structure of ubiquitin (PDB code: 1ubq), it partially hydrogen bonds to its own side chain 

in the NMR ensemble (PDB code: 1d3z). The H/D exchange rate of Thr22 also proved 

that it is in hydrogen bonding. The amide group of E34, which is hydrogen bonded to I30, 

however, had the most positive secondary 1JNH coupling value. The large amide proton 

chemical shift anisotropy and small deuterium quadrupolar coupling imply the 

destabilization of this hydrogen bond (235, 236).  

There are few amide protons with negative 1JNH couplings that are not involved in the 

hydrogen bonds, such as Ala46. In addition, 1JNH couplings of the residues in the 

proximity of aromatic rings are perturbed because of the paramagnetic spin-orbit Ramsey 

term (265, 266). The residues which are within the 6 Å from the nearby aromatic ring 

center are labeled. The exceptions of the 1JNH and hydrogen bond correlation were mainly 
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in these residues. The 6 Å is a rough estimation, since the exact size of this perturbation 

is still unclear.   

Although the correlation between Δ1JNH values and hydrogen bond is prominent, the 

values of secondary 1JNH couplings did not show a simple relationship with bond 

parameters, such as bond length and angles in hydrogen bond. On average, the Δ1JNH in 

helix, both α- and 310- helix, is larger than the Δ1JNH in β-strands (see Figure 7.9a, Figure 

7.10a and Figure 7.12).  

Theoretical calculation of 1JNH couplings at the current stage is not accurate enough to 

enable meaningful comparison with experimental values (252, 263). Our result on the 

random coil values as well as the relation between Δ1JNH and hydrogen bonds provide a 

basis for the theoretical calculation study of 1JNH and hydrogen bonds.  

8.3 Comparison with other Methods to identify hydrogen bond  

Identifying the hydrogen bond in proteins is a challenging task, since the hydrogen 

atom is only visible using the best resolution X-ray data. Several NMR observables have 

been found to relate to hydrogen bonds: H/D exchange, temperature coefficients (234), 

amide proton chemical shifts anisotropy(CSA) (235), and nuclear quadrupole coupling 

constants (236). These observables are used to detect hydrogen bonds. In addition, cross 

hydrogen bond J couplings give direct evidence of hydrogen bond existence.  The 

correlations between Δ1JNH and hydrogen bonds enable Δ1JNH to be a powerful tool to 

identify the hydrogen bond. In comparison to current hydrogen bond detecting methods, 

Δ1JNH method has its unique advantages. 

Cross hydrogen J couplings are incontrovertible evidence of hydrogen bonds. The 

trans-hydrogen couplings values give information about the bond parameters (239).   The 

J couplings are measured by long range Trosy-HNCO, which can also provide the 

chemical shifts of acceptor atoms. In spite of the valuable information offered by cross-

hydrogen J couplings, the coupling is difficult to measure due to its small size (<0.5Hz), 

which require high concentrated sample (>1mM) and 15N/13C labeling. Even with help of 

Trosy and deuteration, this experiment is limited to relatively small proteins (267, 268).  
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In addition, the cross hydrogen bond couplings were not visible in the 310-helix in 

ubiquitin due to an unfavorable geometry for the hydrogen bonds (264). 

Temperature coefficient measurements are easy to implement, only needing a series of 
15N-1H HSQC. The signal to noise ratio of HSQC is high, and only single labeled 

samples are needed.  However, the change of chemical shifts may be induced by other 

factors. If the residues are under conformation exchanges, then the populations between 

different states will be shifted by temperatures (269). This will result in the change of 

chemical shifts. This contribution can confuse the analysis of temperature coefficients.  

The pulse programs and data processing of CSA and quadrupolar coupling constants 

are complicated. Moreover, the signals levels of these two experiments are low. In the 

CSA measurements, amide proton magnetization had to be kept on the transverse plane 

up to 60ms which decrease the signal intensity (235). Measurement of quadrupolar 

coupling constants need the sample to be 13C/15N double labeled and dissolved in D2O. 

The pulse program was analogue of CPMG method. However, the magnetization 

transfers from Hα to Cα, then to Co and finally to N. The long transfer pathway makes 

the experiment insensitive. The CPMG method employed also makes the results 

vulnerable to the dynamic properties of the backbone. Without the knowledge of target 

protein dynamic in detail, as in ubiquitin case, the quadrupolar couplings cannot be 

reliably calculated (236).  

The overwhelming advantage of the Δ1JNH method is the convenience of implementing 

experiments. Accurate 1JNH values can be measured by intensity-modulated HSQC(243), 

or BSD-IPAP-HSQC with slightly higher errors (244). BSD-IPAP-HSQC offers an 

almost identical signal to noise ratio and consumes the same amount of time as routine 

IPAP-HSQC. Intensity-modulated HSQC normally needs 15 points for fitting, a similar 

time to R2 experiments. This method only needs a 15N-labled sample and in the H2O, 

which does not need an extra sample. In fact, the high signals in BSD-IPAP-HSQC 

enable the 1JNH measurement on a natural abundant peptide sample GCN as shown in the 

result part. Hence this method can apply to many systems in which isotope labeling is not 

feasible, such as natural products. In this study, the hydrogen bonds in the 310 helix were 
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identified by Δ1JNH method. In addition, the hydrogen bond between backbone and side 

chain, such Thr22, was also found out by this method.  

In addition, 1JNH is the NMR parameter, which is a prerequisite for most RDC studies. 

1JNH is pre-required to measure backbone N-H RDCs, which are the most commonly used 

RDC in protein NMR studies.Δ1JNH values could be a byproduct of RDC studies, which 

do not require extra time in the schedule of NMR experiments .  Higher accurate 1JNH 

values achieved by BSD-IPAP-HSQC or intensity-modulated HSQC also improve the 

quality of RDC data.  

The main disadvantage of this method is that it is currently unable to extract hydrogen 

bond parameters such as bond length and angles, from Δ1JNH.  At this stage, Δ1JNH is only 

used to identify the existence of the hydrogen bond. In addition, the relation between 

Δ1JNH and hydrogen bonds is affected by aromatic rings. For proteins with large numbers 

of aromatic residues, this method would be problematic.   

8.4 Outlook  

The 1JNH values within the same residue type of IDPs are distributed in a range of 

0.6Hz. It is possible that other structural factors also contribute to 1JNH. Moreover, in 

folded proteins, some residues show larger positive Δ1JNH than 0.35Hz, which is the 

upper limit of Δ1JNH in IDPs. The reason behind this is unknown. Both experimental and 

theoretical studies should be conducted to identify the factors causing this. 

Unlike CSA and nuclear quadrupolar coupling constants, the size of Δ1JNH did not 

show any simple correlation with parameters of hydrogen bonds. The correlation, if it 

really exists, needs further research to be fully confirmed and developed. Δ1JNH values of 

the residues in space proximity of aromatic rings show less correlation with hydrogen 

bonds, which is due to the interruption from spin-orbit Ramsey term. However, the size 

and range of this disturbance is not exactly known, which also needs to be addressed by 

additional research. 

In this study, we limited our scope of hydrogen bond types only to N-H⋯O=C. 

However, there are other kinds of hydrogen bonds in biomolecules. Their effects on 1JNH 
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also need to be investigated. Cross hydrogen bond couplings are larger in the ones with 

phosphorus as acceptors (270). It would be advisable to check the Δ1JNH in these 

hydrogen bonds. Protons in the C-H group are also likely to be involved in hydrogen 

bonds (271). It is interesting to see how 1JCH is affected by hydrogen bonds. Hα in 

proteins were found to form hydrogen bonds. How do the hydrogen bonds affect the 1JCα-

Hα values, and how does this effect improve the current Karplus equation of 1JCα-Hα? 

These questions need to be addressed by further study.  
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10. Appendix  

10.1 Pulse program used to measure Hα-Cα. HACANNH 

#include "bits.mz" 
#include <Avance.incl> 
#include <Grad.incl> 
 
;started from hnca-ge.abx 
;hcannh-3D with grad enhancement 1/7/00 
 
;p1 = 90 deg (10us) 1H pulse @pl1 
;p30 = 90 deg (60us) 1H pulse @pl30 
;p7 = 90 deg (50us) 15N pulse @pl7 
;p31 = 90 deg (180us) 15N pulse @pl31 
;p5 = selective 90 deg (53.0us) 13CA pulse @pl5 
;p4 = selective 180 deg (23.7*2us) 13CA pulse @pl4 
;p6 = 180 deg (191.7us=180deg) 13C pulse @sp1 using sinc1.0 
;p6 = 90 deg (191.7us=90deg) 13C pulse @sp2 using sinc1.0 
 
#define NITRO ; selection by hand 
#define CA 
;#define FIDCHECK2D 
;#define BS 
 
 
define loopcounter NLOOP 
define loopcounter CLOOP 
 
"NLOOP=38"  ;maximum "NLOOP=76" 
"CLOOP=49"  ;maximum "CLOOP=126" 
 
"d11=50m" 
"d12=100u" 
 
 
"d20=p7-p4" 
"d21=p7-p1" 
;"d28=p4-p1" 
 
;Gradient pulses 
"p17=0.75m" 
"p20=1.5m" 
"p21=1.1m" 
"p22=1.0m" 
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"p23=1.0m" 
"p24=0.200m" 
"p25=0.074m"  ; optimization of gradient selection 
"p26=2.705m" 
"p27=2.705m" 
"p28=2.0m" 
;"p29=1.5m" 
 
"d2=1.5m-p21" 
"d3=2.65m-p22" 
"d4=2.65m-p23" 
"d6=0.25m-p24" 
"d7=0.25m-p25" 
"d15=1.5m-p17" 
 
 
;-----Carbon Evolution------------- 
"d10 = 8u" 
;"d16 = 14m-0.63661977*p5-4u-d10-p21-p6-p7" 
;"d17 = 14m-0.63661977*p5-11u-p21-p7" 
;--- if BS compensating pulse is used 
"d16 = 14m-0.63661977*p5-4u-p6-p21-p7-d10" 
"d17 = d16+d10-8u-4u" 
 
"in10=inf1/2" 
"in17=in10"   ; for C dimension  
 
;----Nitrogen Evolution--------- 
; !!!! all increment MUST satisfy the following relations 
;   ******* in22 = in25  &&  in18 = in24 + in25 ******** 
"d22=7m-p6*0.5"               ;d22 =6.25m for in22 = 125u and 50 incs 
"d18=d22-5.5m"                ;in18 = 225u 
"d25=d22-p4*2-d24-5u"         ;in25 = 125u 
"d24=5u"                      ;in24 = 100u   for 15N incr of 700u 
"d19=5.4m-p26-300u-10u-p1" 
;--------Nitrogen increasement----- 
"in25=10u" 
"in24=inf2/2-2*in25" 
"in22=in25" 
"in18=in24+in25" 
 
 
1 ze 
 d12 
 10u 
 10u ru1 
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 10u ru2 
;------- selection by hand 
#ifdef FIDCHECK2D 
 10u iu2  ; for recording 2D IP-(H)CA(N)NH spectrum 
 d12 dp14  ; if 2D (HCA)NNH, as Sx is required instead of Sy 
#endif 
;------- END selection by hand 
 10u 
2 10u 
 1m 
 d11 do:N 
 d12 
3 d12*4.0 
4 d12*5.0 
5 d12*5.0 
6 d12*4.0 do:N 
7 5u do:C1 
 10u pl4:C1 
 d1 BLKGRAD 
 1m UNBLKGRAD 
 10u pl1:H 
 10u pl7:N 
;------- removal of boltzmann magnetization --- 
 (p7 ph7):N (p4 ph0):C1 
 2u 
        p20:gp20 
 1.0m 
;------- INEPT HA -> CA ----------------------- 
 (p1 ph0):H 
        10u 
        p21:gp21 
 d2 
 (center (p1*2 ph1):H (p4*2 ph8):C1) 
 ;(d28 p1*2 ph1):H (p4*2 ph8):C1 
        10u 
        p21:gp21 
 d2 
 (p1 ph2):H 
        10u 
 
;------- flip back ----------------------- 
; problems with water flip back !! 
; if "l2==1" goto 13 
;        (p2 ph0):H 
; if "l2==2" goto 14 
;13      (p2 ph20):H 
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;14      50u pl1:H 
        300u pl5:C1 
 
;------- IPAP selection ----------------------- 
 if "l2==1" goto 15 
 (p5 ph0):C1 
 2u 
 p17:gp20 
 d15 pl4:C1 
 (center (p4*2 ph5):C1 (p1*2 ph0):H) 
 ;(p4*2 ph5):C1 (d28 p1*2 ph0):H 
 2u 
 p17:gp20 
 d15 pl5:C1 
 (p5 ph3):C1 
 4u 
 p20:gp20 
 1m 
 (p5 ph14):C1 
 2u 
 if "l2==2" goto 16 
15 20u   ; symmetry gradients 
 p17:gp20 
 d15 
 p17:gp20 
 d15 
 p20:gp20 
 1m 
 
 (p5 ph0):C1 
 2u 
;------- end IPAP selection ----------------------- 
 
;--------------- CT evolution on CA ------------------- 
16 d10 
 (p6:sp1 ph0):C2  ;carbonyl decoupling with sinc 
 2u 
        p21:gp19 
 d16 pl4:C1 
 (d20 p4*2 ph13):C1 (p7*2 ph0):N 
 2u 
        p21:gp19 
 d17 pl5:C1 
        4u 
 (p6:sp1 ph0):C2  ;BS compensating pulse 
        2u 
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 8u pl5:C1 
 
 (p5 ph6):C1 
 5u 
        p28:gp28 
 300u pl5:C1 
        (p1 ph1):H  ;trim H decoup on 
        5u pl30:H 
        5u cpds1:H 
;--------------- CT evolution on N ------------------- 
 (p7 ph10):N 
 d22 
 (p6:sp1 ph0):C2  ;carbonyl decoupling with sinc 
 d22 
 (p7*2 ph7):N 
 d24 
        5u pl4:C1 
 (p4*2 ph0):C1 
 d25 
 (p6:sp1 ph0):C2  ;carbonyl decoupling with sinc 
 d18 
 0.1m do:H  ;H decoupling off 
        10u pl1:H 
        (p1 ph3):H  ;trim pulse 
        d19 pl1:H 
;alternating Rance-Kay coherence encoding 
        if "l1==1" goto 10 
        if "l1==2" goto 20 
10       p26:gp26  ;coherence encoding gradient 
         100u 
        goto 30 
20       p27:gp27  ;coherence encoding gradient 
         100u 
30 200u pl1:H 
;end coherence encoding 
 (p7 ph9):N (d21 p1 ph0):H 
;--------- Rance-Kay transfer N -> HN -------------------- 
 2u 
        p22:gp22 
 d3 
 (d21 p1*2 ph0):H (p7*2 ph7):N 
 2u 
        p22:gp22 
 d3 
 (p1 ph1):H (p7 ph8):N 
 2u 
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        p23:gp23 
 d4 
 (d21 p1*2 ph0):H (p7*2 ph7):N 
 2u 
        p23:gp23 
 d4 
 (d21 p1 ph0):H (p7 ph0):N 
 4u 
        p24:gp24 
 d6 pl31:N 
 (p1*2 ph0):H 
 2u 
        p25:gp25 
 d7 BLKGRAD 
 (2u ph0) 
 go=2 ph31 cpd2:N 
        10u do:N 
 1m 
 d11 wr #0 if #0 zd 
; ---------- 3D IPAP selection 
#ifndef FIDCHECK2D 
 d12 iu2 
 lo to 3 times 2 
 d12 ru2 
#endif 
 
 
 
#ifdef NITRO 
d12 ip9 
d12 ip9 
d12 iu1 
lo to 4 times 2 
d12 ru1 
d12 dd22 
d12 id18 
d12 id24 
d12 id25 
lo to 5 times NLOOP 
d12 rd22 
d12 rd24 
d12 rd25 
d12 rd18 
#endif 
#ifdef CA 
d12 ip6 
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lo to 6 times 2 
d12 id10 
d12 dd17 
d12 ip31 
d12 ip31 
lo to 7 times CLOOP 
#endif  
#ifdef BS 
d12 ip13 
lo to 7 times td1 
#endif  
d12  
d12 do:C1 
d12 do:N 
exit  
  
  
ph0=0 
ph1=1 
ph2=1 3 
;ph2=3 
ph3=3 
ph5=0 
;ph6=0 2 
ph6=0 
ph7=0 
ph8=1 
ph9=2 
ph10=0 0 2 2 
ph11=0 
ph13=0 
;ph13=(360) 11  ;BS compensation 
ph14=2 
ph20=2 
ph31=0 2 2 0 
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10.2 TROSY-HSQC interleaved experiment for measure N-H couplings 

 ;hsqc15N.new 
;D. Lee, Nov. 2002 
;15N-1H HSQC correlations without water saturation 
;The delay for 3-9-19 watergate (d5) should be matched 
;with 1/d;d=distance of next null point (in Hz). 
;S. Mori et al, JMR B108, 94-98 (1995) 
;pl1   : power for 1H 
;pl2   : power for 13C 
;pl3   : power for 15N 
;pl13  : power for 15N waltz16 decoupling 
;p1    : 90 degree hard pulse 1H 
;p3    : 90 degree hard pulse 13C 
;p4    : 180 degree hard 13C pulse (225d for 5/600) 
;p5    : 90 degree hard pulse 15N 
;pcpd3 : 90 deg cpd-pulse15N(waltz16,160u) 
;d1    : relaxation delay 
;d2    : INEPT delay (~2.7m) 
;d5    : delay for 3-9-19=1/(Hz between nulls) 
;in0   : 1/(2 SW) (Hz) 
;p21   : 500u (Gradient in first INEPT) 
;p22   : 500u (Gradient for z-filter) 
;p23   : 1m (Gradient for second INEPT) 
;gpz1  : 19% 
;gpz2  : 30% 
;gpz3  : 65% 
 
;trosy.new 
;D. Lee, Nov. 2002 
 
;optimization of water flip back: 
;- optimize watergate (o1,sp2,ph26) 
;- optimize water flip back (sp1,ph16,ph18,ph17,ph19) 
 
;K. Pervushin et al, PNAS, 94, 12366 (1997) 
 
;pl1   : power for 1H 
;pl2   : power for 13C 
;pl3   : power for 15N 
 
;sp1   : water flipback power 
;sp2   : water flipback power in watergate 
;spnam1: gauss128_5 
;spnam2: gauss128_5 
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;p1    : 90 degree hard pulse 1H 
;p3    : 90 degree hard pulse 13C 
;p4    : 180 degree hard pulse 13C (225d for 5/600) 
;p5    : 90 degree hard pulse 15N 
;p11   : water flipback pulse (1.5m) 
 
 
;p21   : 500u (Gradient in first INEPT) 
;p22   : 500u (Gradient in second INEPT) 
;p23   : 900u (Gradient in watergate) 
;gpz1  : 19% 
;gpz2  : 15% 
;gpz3  : 32% 
 
 
;d1    : relaxation delay 
;d2    : INEPT delay (~2.7ms) 
;in0   : 1/(2 SW) (Hz) 
 
#include <Avance_dl.incl> 
 
define delay INEPT_W 
define delay INEPT_D 
 
define delay INEPT1 
define delay INEPT2 
define delay INEPT3 
define delay INEPT4 
 
#define GRADIENT1  10u p21:gp1 200u 
#define GRADIENT2  10u p22:gp2 200u 
#define GRADIENT3  10u p23:gp3 200u 
 
"p2=2*p1" 
"p6=2*p5" 
 
;"in0=inf1/2" 
"in10=inf1/2" 
;"d0=in0/2-p5*2/3.14159-p1" 
"d10=in10/2-p5*2/3.14159-p1" 
"d3=d5/2-p5" 
"INEPT_D=d2-p21-210u"                      
"INEPT_W=d2-(p23+210u+p1*2.3846+d5*2.5)"    
 
 
"in0=inf1/2" 
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"d0=in0/2-(p3*2 + 1.5u)" 
"INEPT1=d2-(p21+p11+210u)-10u" 
"INEPT2=d2-(p22+p11+210u)-10u" 
"INEPT3=d2-(p23+p11+210u)-10u" 
"INEPT4=d2-(p23+p11+210u)-10u-p5" 
 
"l2 = 1" 
 
;=========================trosy==================================
= 
1  10u ze 
2  1m 
   10u*5 
3  10u*2 
4  10u  
   d1 
   20u pl1:f1  
   20u pl2:f2 
   20u pl3:f3  
   20u LOCKH_ON 
;----------------------------------------first INEPT 
5  10u  
   (p1 ph20):f1 
   10u 
   (p11:sp1 ph18:r):f1 
   GRADIENT1 
   INEPT1 pl1:f1 
   (center(p2 ph21):f1 (p6 ph20):f3)  
   GRADIENT1 
   INEPT1 
   (p11:sp1 ph19:r):f1 
   10u  
   (p1 ph23):f1 
;----------------------------------------15N evolution 
if "l2 %2 == 1" goto 31 
   (p5 ph2):f3 
goto 32 
31 (p5 ph1):f3 
32 d0 
   (p3 ph23 1.5u p4 ph20 1.5u p3 ph23):f2 
   d0 
;----------------------------------------second INEPT 
   (p1 ph10):f1 
   10u 
   (p11:sp1 ph17:r):f1 
   GRADIENT2  
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   INEPT2 pl1:f1 
   (center(p2 ph20):f1 (p6 ph20):f3) 
   GRADIENT2 
   INEPT2 
   (p11:sp1 ph16:r):f1  
   10u  
   (center(p1 ph20):f1 (p5 ph12):f3) 
;----------------------------------------WATERGATE 
   GRADIENT3 
   INEPT3  
   (p11:sp2 ph26:r):f1 
   10u  
   (center(p2 ph20):f1 (p6 ph20):f3) 
   10u  
   (p11:sp2 ph26:r):f1   
   GRADIENT3 
   INEPT4 LOCKH_OFF 
   (p5 ph11):f3 
;----------------------------------------acquisition 
   go=2 ph31  
   ;1m mc #0 to 2 F1EA(ip10*2 & ip12*2 & ip17*2 & iu2,id0) 
    1m wr #0 if #0 zd  
 
;10u do:f1 
;10u do:f2 
;10u do:f3 
;10u do:f4 
;10u LOCKH_OFF 
 
 
 
;=========================hsqc============================= 
;1  10u ze 
6  1m do:f3 
   d1 pl1:f1  
   20u pl3:f3  
   20u LOCKH_ON 
;----------------------------------------first INEPT 
   (p1 ph20):f1 
   GRADIENT1 
   INEPT_D         
   ;(center(p2 ph21):f1 (p6 ph1):f3)  
   (center(p2 ph21):f1 (p6 ph3):f3)  
   GRADIENT1 
   INEPT_D 
   (p1 ph21):f1 
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   GRADIENT2 
;----------------------------------------15N evolution 
   ;(p5 ph1):f3 
    (p5 ph3):f3 
   ;(refalign (d0 p2 ph23 d0):f1 center (p3 ph23 1.5u p4 ph20 1.5u p3 ph23):f2) 
   (refalign (d10 p2 ph23 d10):f1 center (p3 ph23 1.5u p4 ph20 1.5u p3 ph23):f2) 
   (p5 ph20):f3  
   GRADIENT2 
;----------------------------------------second INEPT 
   (p1 ph22):f1  
   GRADIENT3 
   INEPT_W 
   (p1*0.2308 ph21 d5 p1*0.6923 ph21 d5 p1*1.4615 ph21):f1  
   (d3 p6 ph1 d3):f3 
   (p1*1.4615 ph23 d5 p1*0.6923 ph23 d5 p1*0.2308 ph23):f1  
   GRADIENT3 
   INEPT_W pl13:f3 LOCKH_OFF 
;----------------------------------------acquisition 
   ;go=2 ph31 cpd3:f3 
  go=6 ph30 cpd3:f3 
  ; 1m do:f3 mc #0 to 2 F1PH(ip1,id0) 
   1m do:f3  wr #1 if #1 zd 
 
 
;=====phase ======= 
;======trosy======== 
10u ip10*2 
10u ip12*2 
10u ip17*2 
10u iu2 
;======hsqc===== 
10u  ip3 
 
lo to  3 times 2  
 
;======increament======= 
;=====trosy====== 
10u  id0 
;=====hsqc======= 
10u  id10 
 
lo to  4 times l1 
 
10u do:f1 
;10u do:f2 
10u do:f3 
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;10u do:f4 
10u LOCKH_OFF 
exit 
 
;========================trosy===================================
======= 
ph1 =1 3 2 0 
ph2 =1 3 0 2 
ph31=1 3 2 0 
ph10=3 3 3 3 
ph11=0 0 0 0 
ph12=3 3 3 3 
 
 
ph16=0 
ph17=1 
ph18=2 
ph19=3 
 
ph20=0 
ph21=1 
ph22=2 
ph23=3 
 
ph26=2 
 
;================hsqc================= 
;ph1 =0 2 
ph3=0 2 
;ph31=2 0 
ph30=2 0 
 
;ph20=0 
;ph21=1 
;ph22=2 
;ph23=3 
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10.3 HNN pulse program  

;hnngp3d 
;avance-version 
;3D HNN (800 MHz) 
;o2p = 56.0 ppm 
;Panchal et el J Biomol NMR 20, 135, 2001 
;1) exclude Rance-Kay trick 
;2) use maximum resolution for t2 including also period k 
;3) water flip back and final watergate for water suppression 
 
;sequence checkd and corrected by DMO 
 
;typed by jeet at 800 MHz 
 
prosol relations =<triple> 
 
#include <Avance.incl> 
#include <Grad.incl> 
 
;############### constant values ############## 
"d2=2m" 
;"d4=2.7m-p2-3u-4u-p16-d16" 
"d5=2.7m-p11-3u-20u-3u-p16-d16"         ;added DMO 
"d6=5.4m"                           ;k 
"d7=13.5m"                            ;Tn 
"d11=30m" 
"d14=p14" 
"d15=12m"                           ;Tcn=12-17m 
"d16=200u"   ;shengqi 
 
;############### center pulses ################ 
"d3=p21-p1" 
"d8=(p14-p21*2)*0.5" 
 
;############### incremented time t1 ########## 
"d0=3u"                             ;t1/2 
"d9=d0+d14+d7+d8"                    ;t1/2 NOTE that d9<=d8+3u 
 
;############### incremented time t2 ########## 
"d20=d9-d8"                         ;t2/2 decreased d20 
;d7=d9= 15ms = Tn 
"d10=3u"                            ;t2/2 increased 
"d21=d10+d9+d8+d7-d6-p1-p21*2-24u" 
 
"in0=inf1/2" 
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"in10=inf2/2" 
 
"in9=in0" 
"in20=in10" 
 
"spoff1=0" 
"spoff2=0" 
"spoff3=0" 
"spoff4=0" 
;"spoff6=0" 
"spoff5=bf2*(cnst21/1000000)-o2" 
 
aqseq 312 
 
1 ze 
  d11 pl13:f3 
2 d11 do:f3 
  d1 pl1:f1 
  20u pl2:f2 
  50u UNBLKGRAD 
;------- start 90-degree on N to get rid of boltzmann --------- 
 (p21*2 ph7):f3 (p5 ph0):f2 
 2u 
        p20:gp20             ;(0.5ms @ 8G/cm) 
 1.0m  pl11:f2 
;------- start 90-degree on hn ----------------------- 
  (p1 ph0) 
   10u 
  d2 pl3:f3 
  p15:gp5    ;(0.5ms @ 8G/cm) 
  d16 
  (d3 p1*2 ph0) (p21*2 ph0):f3 
  10u 
  p15:gp5      
  d16 
  d2 
  (p1 ph9):f1 
  3u 
  20u pl11:f1 
  (p11:sp1 ph7:r):f1 
  3u  
  p16:gp1    ;(1ms @11G/cm) 
  d16 pl1:f1 
  (p21 ph1):f3 
 
;#### Start t1 d0=A ; d7=15m=B ; d9=C=15m-3u ; d6=5.4m=k ######### 
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  (d6 p1 ph9 20u pl19 4u cpds1 ph7):f1 (d0 p14:sp5 ph0 d7 p14:sp3 ph0):f2 (d0 d14 d7 
d8 p21*2 ph0 d9):f3 
 
;########### end t1 ############ 
 
  (p21 ph2):f3 
  4u do:f1 
  20u pl1:f1 
  (p1 ph10):f1 
 
  4u 
  p16:gp2 
  d16 
  (p1 ph9):f1 
  3u 
  10u pl19:f1 
  10u  
  4u cpds1 :f1 
  (p13:sp2 ph2):f2 
  d15  pl11:f2                              ;Tcn = 12-16 ms 
  (d8 p21*2 ph0):f3 (p14:sp3 ph0):f2 
  d15                        ;Tcn = 12-16 ms 
  (p13:sp4 ph0):f2 
  4u do:f1 
  20u pl1:f1 
  (p1 ph10):f1 
  4u 
  p16:gp3 
  d16 
  (p1 ph9):f1 
  3u   
  20u pl19:f1 
  4u cpds1 :f1 
  (p21 ph8):f3 
  5u   
 
;#### Start t2 d10=F ; d20=D=15m-3u ; d7=E=15m ; d6=5.4m=k ######### 
 
  (d21 4u do 20u pl1 p1 ph10):f1 (d20 p14:sp3 ph0 d7 p14:sp5 ph0):f2 (d20 d8 p21*2 ph0 
d7 d14 d8 d10):f3 
 
;######## end t2 ############## 
 
  (p21 ph0):f3 
  10u 
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  (p11:sp1 ph3:r):f1 
  3u 
  20u pl1:f1 
  (p1 ph0):f1 
  3u 
  p16:gp4 
  d16 
  4u 
  d5 pl11:f1                          ;d4 substituted by d5 DMO 
  (p11:sp1 ph4:r):f1                           ;p2 substituted by p28 DMO 
  3u 
  20u pl1:f1 
  (d3 p1*2 ph5) (p21*2 ph0):f3 
  3u 
  20u pl11:f1 
  (p11:sp1 ph4:r):f1 
  3u 
  d5                                  ;d4 substituted by d5 DMO 
  p16:gp4 
  d16 pl16:f3 
  4u BLKGRAD 
  go=2 ph31 cpd3:f3 
  d11 do:f3 mc #0 to 2 
  F1PH(ip1, id0 & dd9) 
  F2PH(rd0 & rd9 & ip8, id10 & dd20) 
exit 
 
ph0=0 
ph1=0 0 2 2  
ph2=0 2 
ph3=2 
ph4=0 
ph5=2 
ph7=0 
ph8=0 0 0 0 2 2 2 2 
ph9=1 
ph10=3 
ph31=0 0 2 2 2 2 0 0  
 
;d1: relaxation delay; 1-5*T1 
;d11: delay for disk I/O [30 msec] 
;pl1: f1 power H high power pulse 
;p1: f1 90 degree high power pl1 pulse 
;p11: f1 90 degree shaped pulse using sp1 
;p28: f1 90 degree H2O shaped pulse  sp6 
;d2: 2.25-2.75m (Jhn=92Hz) 
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;d3: p21-p1 (center pulse) 
;pl2: f2 power C13 hard pulse  
;pl3: f3 power N15 hard pulse 
;p21: f3 90 degree high power N15 high power pl3 pulse 
;p5: f2 90 degree high power C13 high power pl2 pulse  
;pl11: 120db 
;p13: 90 degree 13C shape 
;p14: 180 degree 13C shape 
;gpz1: 37% 
;gpnam1: sine.100 shape of gradient pulse 
;sp5: f2 power 180 (CA) soft shaped 
;p14: f2 soft shaped pulse 180 null at 18200 Hz 
;spnam1: use shape sinc.1000 
;spoff1: 0 
;spnam5: use shape G3.256 
;spoff5: use offset 18200.0 Hz (600 MHz) on CO, null CA 
;spnam6: use shape sinc.1000 
;spoff6: 0 
;spnam3: use shape G3.256 
;spoff3: use offset 0.0 Hz (600 MHz) on CA, null CO 
;d6: 5.4m (k in sequence) 
;pl19: f1 power for cpds1 decoupling 
;cpd1: dipsi2 (along x) 
;pcpd3: f1 cpds1 pulse length (60-70u) use 65u 
;d0: t1/2 
;d7: Tn [12-16m] use 15m 
;d9: d0+d14+d7+d8 (Tn-t1/2) SET ALWAYS d9<=d8+3u 
;gpz1: 43 % power level 
;gpnam1: sine.100 shape of gradient pulse 
;gpz2: 27 % power level 
;gpnam2: sine.100 shape of gradient pulse 
;sp2: f2 power 90 (CA) soft shaped 
;spnam2: use shape G4.256 
;spoff2: use offset 0.0 on CA, null CO 
;sp4: f2 power 90 (CA) soft shaped 
;spnam4: use shape G4.256tr (time reverse shape) 
;spoff4: use offset 0.0 on CA, null CO 
;d15: [12-18m] Tcn, use 16m 
;gpz3: 37% 
;gpnam3: sine.100 shape of gradient pulse 
;d20: t2/2 (Tn-t2/2) [d9-d8] 
;d10: t2/2 
;sp1: f1 power H2O soft shaped pulse 
;p11: (2m) half-gaussian soft pulse with power sp1 
;spnam1: hg.1000 half gaussian shape 
;p16: gradient pulse 1 ms 
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;gpz4: 57% 
;gpnam4: sine.100 shape of gradient pulse 
;gpz5: 50% 
;gpnam5: sine.100 shape of gradient pulse 
;cnst21: CO chemical shift 
;d4: 2.7m-p2-3u-4u-p16-d16 
;pl16: f3 power level N15 cpd decoupling 
;cpd3: cpdprg3 decoupling sequence [garp] 
;pcpd3: f3 decoupling 90 degree pulse [>170 u] 
;l1: td1/2 STATES/TPPI 
;l2: td2/2 STATES/TPPI 
;in0: 1/(2* SW(N15)) = DW(N15) 
;in9: SET ALWAYS in9=in0 
;nd0: 2 
;in10: 1/(2* SW(N15)) = DW(N15) 
;in20: SET ALWAYS in20=in10 
;nd10: 2 
;NS: 8*n 
;DS: 16 
;td1: number of experiments N15 
;td2: number of experiments N15 
;MC2: STATES-TPPI 
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10.4 BSD-IPAP-HSQC pulse program  

#include "bits.mz" 
#include <Avance.incl> 
#include <Grad.incl> 
 
"d6=12.5m" 
"d10=3u" 
;"d14=3u" 
;"d0=d6+d10+p4*4+p9*2+d14*2+3u" 
"d11=50m" 
"d12=200u" 
;"d18=12.5m-3u-p26" 
;"d19=50ms" 
"d20=10u" 
;"d7=d20*4+p9*4+37u" 
"d7=d20*4+p14-63u" 
 
;"d21=2.4m-p21-203u-p7" 
"d21=2.4m-p21-203u-p7" 
;"d23=2.4m-p23" 
"d23=2.4m-p23" 
;"d24=2.4m-p24" 
"d24=2.4m-p24" 
;"d25=p25+110u" 
;"d25=p25+p9+110u+p9+10u" 
"d25=p25+p9+110u+p19+10u" 
 
"in20=inf1/4" 
"spoffs13=bf1*(cnst21/1000000)-o1" 
 
1       ze 
        1m  
        1m  
2       d11 do:f3 do:f2 
        d12 
4       d12*2 
5       d12*3 
6       10u 
        1m  
        10u  
        1m 
        1m do:f2 
        1m do:f3 
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        d1  
        1m  
        10u pl1:f1 
        10u pl7:f3 
        10u UNBLKGRAD ;setnmr3|0 setnmr0|34|32|33 ctrlgrad 0 
        (p7 ph1):f3 
        p21:gp28 
        100u 
;------- start 90-degree on hn ----------------------- 
        (p1 ph0):f1 
        3u 
        p21:gp21 
        d21 
        200u 
        (center (p1*2 ph0):f1 (p7*2 ph0):f3) 
        d21 
        p21:gp21 
        203u 
        (p1 ph8):f1                ;INEPT to 15N 
        3u pl2:f1 
        6u 
        3u pl1:f1 
if "l1==1" goto 110 
       (p7 ph1):f3 
        3u gron22 
        2.7m 
        3u groff  
       (center (p1 ph0 p1*2.2 ph1 p1 ph0):f1 (p7*2 ph0):f3) 
        3u gron22 
        2.7m 
        3u groff 
        (center(p1 ph0):f1 (p7 ph0):f3) 
        goto 111 
110     3u 
        (p10:sp5 ph4:r):f1   
        6u  
        (p7 ph0):f3 
        3u gron22 
        1.35m 
        3u groff 
        (p1 ph0 p1*2.2 ph1 p1 ph0):f1  
        3u gron22 
        1.35m 
        3u groff 
        (p7*2 ph0):f3 
        3u gron22 
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        1.35m 
        3u groff  
       (p1 ph0 p1*2.2 ph1 p1 ph0):f1 
        3u gron22 
        1.35m 
        3u groff 
        (p7 ph0):f3 
111     5u 
        p20:gp20 
        200u pl16:f2 
        5u  
        3u pl2:f1 
;---------start f3 evolution -------------------------------- 
       (p7 ph7):f3 
        d7 
        (p13:sp13 ph11):f1 
       if "l2==2" goto 27 
        p26:gp26 
        100u 
        (p7*2 ph9):f3 
        p26:gp27 
        goto 26 
27      p26:gp27 
        100u 
        (p7*2 ph9):f3 
        p26:gp26 
26      3u gron5 
        d20 
        3u groff 
        5u 
        3u gron3 
        d20 
        3u groff 
       (p13:sp13 ph12):f1 
       (p14:sp14 ph0):f2     ;hsec 13C dec 
        3u gron3 
        d20 
        3u groff 
        5u 
        3u gron5 
        d20 pl1:f1 
        3u groff 
       (center (p1 ph0):f1 (p7 ph5):f3) 
        p23:gp23 
        d23 
       (center (p1*2 ph0):f1 (p7*2 ph0):f3) 
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        p23:gp23 
        d23 
       (center (p1 ph1):f1 (p7 ph1):f3) 
        p24:gp24 
        d24 
       (center (p1*2 ph0):f1 (p7*2 ph6):f3) 
        p24:gp24 
        d24 
       (p1 ph0):f1 
        d25 
       (p1*2 ph0):f1 
        5u pl17:f2 
       (p9 ph0):f2 
        5u 
       (p19:sp11 ph0):f2 
        p25:gp25 
 
999     100u pl30:f3 
        5u pl19:f2 
        5u BLKGRAD;setnmr3^0 setnmr0^34^32^33 ctrlgrad 7 
        go=2 ph31 cpd3:f3  
        10u do:f3 do:f2 
        1m  
        d11 wr #0 if #0 zd 
 
 
 
        d12  iu1 
        lo to 4 times 2 
        d12  ru1 
        d12*0.5 ip5*2       
        d12*0.5  iu2 
        lo to 5 times 2 
        d12*0.5 ru2 
        d12*0.5 id20 
        d12 ip7*2 
        d12 ip31*2 
        lo to 6 times l4 
 
 
 
1m  
1m do:f2 
1m do:f3 
1m ;setnmr3^0 
1m ;RESET 



 
10. Appendix  200 

200 
 

1m 
exit     
         
ph0=0 
ph1=1           
ph2=2 
ph3=3 
ph4=0 
ph5=0 
ph6=0  
ph7=0 
ph8=1  
ph9=0 1 2 3 
ph10=2 
ph11=0 0 
ph12=2 2  
ph31=0 2 0 2 
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10.5 Intensity modulated HSQC for measuring 1JNH 

;hsqc15N.new 
;D. Lee, Nov. 2002 
 
;15N-1H HSQC correlations without water saturation 
;The delay for 3-9-19 watergate (d5) should be matched 
;with 1/d;d=distance of next null point (in Hz). 
 
 
;S. Mori et al, JMR B108, 94-98 (1995) 
 
;pl1   : power for 1H 
;pl2   : power for 13C 
;pl3   : power for 15N 
;pl13  : power for 15N waltz16 decoupling 
 
;p1    : 90 degree hard pulse 1H 
;p3    : 90 degree hard pulse 13C 
;p4    : 180 degree hard 13C pulse (225d for 5/600) 
;p5    : 90 degree hard pulse 15N 
;pcpd3 : 90 deg cpd-pulse15N(waltz16,160u) 
 
;d1    : relaxation delay 
;d2    : INEPT delay (~2.7m) 
;d5    : delay for 3-9-19=1/(Hz between nulls) 
;in0   : 1/(2 SW) (Hz) 
 
;p21   : 500u (Gradient in first INEPT) 
;p22   : 500u (Gradient for z-filter) 
;p23   : 1m (Gradient for second INEPT) 
;gpz1  : 19% 
;gpz2  : 30% 
;gpz3  : 65% 
 
 
#include <Avance_dl.incl> 
 
define delay INEPT_W 
define delay INEPT_D 
define delay Tau 
 
#define GRADIENT1  10u p21:gp1 200u 
#define GRADIENT2  10u p22:gp2 200u 
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#define GRADIENT3  10u p23:gp3 200u 
#define GRADIENT4  10u p22:gp4 200u 
#define GRADIENT5  10u p22:gp5 200u 
 
"p2=2*p1" 
"p6=2*p5" 
 
"in0=inf1/2" 
 
 
"d0=in0/2-p1" 
"d3=d5/2-p5" 
"INEPT_D=d2-p21-210u"                      
"INEPT_W=d2-(p23+210u+p1*2.3846+d5*2.5)"    
 
"spoffs1=bf1*cnst1/1000000-o1" 
 
1  10u ze 
2  1m do:f3 
   d1 pl1:f1  
   20u pl3:f3  
   20u LOCKH_ON 
   20u 
     "Tau=vd-(0.5*p12-p5)-210u-p22" 
;----------------------------------------first INEPT 
   (p1 ph20):f1 
   GRADIENT1 
   INEPT_D         
   (center(p2 ph21):f1 (p6 ph1):f3)  
   GRADIENT1 
   INEPT_D 
   ;(p1 ph21):f1 
  (p1 ph11):f1 
   GRADIENT2 
;----------------------------------------15N evolution 
    
(p5 ph12):f3 
   
 GRADIENT4 
 Tau   pl0:f1 
 (center (p12:sp1 ph13):f1 (p6 ph13):f3) 
  GRADIENT4 
  Tau pl1:f1 
  (d0 p2 ph20 d0):f1 
   (p5 ph20):f3  
   GRADIENT5 
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;----------------------------------------second INEPT 
   (p1 ph22):f1  
   GRADIENT3 
   INEPT_W 
   (p1*0.2308 ph21 d5 p1*0.6923 ph21 d5 p1*1.4615 ph21):f1  
   (d3 p6 ph1 d3):f3 
   (p1*1.4615 ph23 d5 p1*0.6923 ph23 d5 p1*0.2308 ph23):f1  
   GRADIENT3 
   INEPT_W pl13:f3 LOCKH_OFF 
;----------------------------------------acquisition 
   go=2 ph31 cpd3:f3 
   1m do:f3 mc #0 to 2 
 F1I(ivd, 15)   
 F1PH(ip12&ip13,id0) 
10u do:f1 
 
10u do:f3 
10u LOCKH_OFF 
exit 
 
ph1 =2 0   
 
ph31=0 2 2 0 0 2 2 0 2 0 0 2 2 0 0 2 
 
ph11=1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 
ph12=0 2 
ph13=0 0 1 1 2 2 3 3 
 
ph20=0 
ph21=1 
ph22=2 
ph23=3 
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10.6 Python scripts for fitting 1JNH values 

import numpy as np 
import os 
import pylab as plt 
import scipy.optimize as opt 
 
def shiftlist(proton,nitrogen): 
     
A=np.genfromtxt('DeUbi400bax1.list',skip_header=2,dtype=[('assignment','|S10'),('w1','<
f8'),('w2','<f8'),('DataHeight','<f8'),('SN','<f8')]) 
     B=np.zeros(len(A),dtype=[('assignment', '|S10'), ('w1', '<f8'), ('w2', '<f8')]) 
     B['assignment']=A['assignment'] 
     B['w1']=A['w1']+nitrogen 
     B['w2']=A['w2']+proton 
     np.savetxt('DeUbi400bax2.list',B, fmt='    %10s    %1.3f    %1.3f    ', newline='\n') 
     return B 
 
 
def changeto3D(): 
     
A=np.genfromtxt('Tau2D.list',skip_header=1,dtype=[('assignment','|S10'),('w1','<f8'),('w2
','<f8')]) 
     B=np.zeros(15*len(A),dtype=[('assignment', '|S10'), ('w1', '<f8'), ('w2', '<f8'),('w3', 
'<f8')]) 
     for i in range(15): 
         s='-'+str(i+1)+'-' 
         
B['assignment'][i*len(A):(i+1)*len(A)]=np.core.defchararray.replace(A['assignment'][0:l
en(A)] ,'-',s) 
         B['w2'][i*len(A):(i+1)*len(A)]=A['w1'][0:len(A)] 
         B['w3'][i*len(A):(i+1)*len(A)]=A['w2'][0:len(A)] 
         B['w1'][i*len(A):(i+1)*len(A)]=i+1 
     np.savetxt('3D.list',B, fmt='    %10s    %1.3f    %1.3f    %1.3f', newline='\n') 
     return B,A 
 
def changetoMatrix(): 
     
#C=np.genfromtxt('SynEGCG10Im2.list',skip_header=1,dtype=[('assignment','|S10'),('w1
','<f8'),('w2','<f8'),('w3','<f8'),('Height','<f8'),('SN','<f8')]) 
     
C=np.genfromtxt('Im.list',skip_header=2,dtype=[('assignment','|S10'),('w1','<f8'),('w2','<f
8'),('w3','<f8'),('Height','<f8')]) 
     matrix=np.zeros((15,int(len(C)/15))) 
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     for i in range(len(C)/15): 
        buff=np.zeros(15) 
        for j in range(15): 
            buff[int(C['w1'][i*15+j])-1]=C['Height'][i*15+j]# change between w1 and w2 
based on table structure. 
        matrix[:,i]=buff[:] 
     np.savetxt('matrix.out', matrix, delimiter='      ') 
     return matrix 
 
f=lambda x,A0,A1,A2,j:(A0*np.cos(np.pi*j*2*x/1000)+A1)*np.exp(-A2*2*x/1000) 
 
def  fitting(): 
  matrix=np.genfromtxt('matrix.out') 
  
A=np.genfromtxt('Tau2D.list',skip_header=1,dtype=[('assignment','|S10'),('w1','<f8'),('w2
','<f8')]) 
  
#A=np.genfromtxt('synEGCG.list',skip_header=1,dtype=[('assignment','|S10'),('w1','<f8'),
('w2','<f8'),('w1Hz','<f8'),('w2Hz','<f8')]) 
  
mixtime=np.array([31.9,31.1,30.7,30.3,29.9,26.5,25.8,25.1,24.6,24.3,21.2,20.5,19.8,19.5,
19.1]) 
  x=int(matrix.shape[1]) 
  result=np.zeros(x,dtype=[('assignment','|S10'),('J','<f8'),('error','<f8')]) 
  
resultfull=np.zeros(x,dtype=[('assignment','|S10'),('A0','<f8'),('A1','<f8'),('A2','<f8'),('j','<f
8')]) 
  for i in range(x): 
        y=matrix[:,i]/matrix[:,i].max() 
        #y=matrix[:,i]/np.abs(matrix[:,i]).min() 
        popt,pcov=opt.curve_fit(f,mixtime,y,p0=[1,0.1,10,100]) 
        result['assignment'][i]=A['assignment'][i] 
        result['J'][i]=popt[-1] 
        result['error'][i]=pcov[-1,-1] 
        resultfull['assignment'][i]=result['assignment'][i] 
        resultfull['A0'][i]=popt[0] 
        resultfull['A1'][i]=popt[1] 
        resultfull['A2'][i]=popt[2] 
        resultfull['j'][i]=popt[3] 
  np.savetxt('result.out',result, fmt='    %10s    %1.3f    %1.6f', newline='\n') 
  np.savetxt('resultfull.out',resultfull,fmt='    %10s    %1.6f    %1.6f   %1.6f    %1.6f 
',newline='\n') 
  return result,resultfull 
 
def  singleplot(resname): 
   matrix=np.genfromtxt('matrix.out') 
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mixtime=np.array([31.9,31.1,30.7,30.3,29.9,26.5,25.5,25.1,24.6,24.3,21.2,20.3,19.8,19.5,
19.1]) 
   dataseries1=np.zeros((15,2)) 
   
A=np.genfromtxt('resultfull.out',skip_header=0,dtype=[('assignment','|S10'),('A0','<f8'),('
A1','<f8'),('A2','<f8'),('j','<f8')]) 
   idx=A['assignment']==resname 
   dataseries=matrix[:,idx]/matrix[:,idx].max() 
   dataseries1[:,0]=mixtime 
   dataseries1[:,1]=np.transpose(matrix[:,idx]) 
   np.savetxt('datatrace.out',dataseries1) 
   parameter=A[idx] 
   x=np.linspace(mixtime[-1],mixtime[0],num=500) 
   y=f(x,parameter['A0'],parameter['A1'],parameter['A2'],parameter['j']) 
   plt.scatter(mixtime,dataseries) 
   p1=plt.plot(x,y) 
   p2=plt.scatter(mixtime,dataseries) 
   plt.suptitle(resname,fontsize=12) 
   plt.show() 
   return int(matrix.shape[1])==int(A.shape[0]) 
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10.7 RDC values and Chemical shifts of native ASF/SF2 (200-219) 

 

res number 
res 

name 

RDC 

HN(Hz) 

error 

RDC 

HN(Hz) 

RDC 

HαCα(Hz) 

error 

RDC 

HαCα 

(Hz) 

RDC 

CαCo(Hz) 

error RDC 

CαCo(Hz) 

CS 

Cα 

(ppm) 

CS CO 

(ppm) 

1 G - 
 

- 
 

- 
 

- - 
2 A -  -  -  

- 178.71 
3 M -  -  -  

55.23 176.45 
4 G -  -  -  

44.61 - 
5 P -  -  -  

- - 
6 S 3.366 0.3 10.384 1.4 -2.156 0.8 58.38 174.48 
7 Y -5.764 0.3 0.671 1.4 -1.386 0.8 58.3 176.46 
8 G -4.29 0.3 4.664 1.4 0.407 0.8 45.42 174.24 
9 R -1.804 0.3 3.861 1.4 -0.737 0.8 56.25 176.62 

10 S 4.774 0.3 5.456 1.4 -0.891 0.8 58.62 174.89 
11,13,15,17,19,21 R 3.762 0.3 16.104 1.4 -0.77 0.8 56.3 176.62 

12,14,16,18,20 S 4.774 0.3 16.654 1.4 -1.056 0.8 58.62 174.89 
21 R 3.762 0.3 16.104 1.4 -0.77 0.8 56.3 176.62 
22 S 4.774 0.3 16.654 1.4 -0.847 0.8 58.62 174.44 
23 R 4.598 0.3 10.857 1.4 -0.363 0.8 56.13 175.5 
24 S 2.618 0.3 8.8803 1.4 -  

60.06 - 
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10.8 3bond couplings of native ASF/SF2 (200-219) 

res number res 
name 

3JNH-Hα 
(Hz) 

error 
3JNH-Hα 
(Hz) 

3J NCγ 
(Hz) 

error 
3JNCγ 
(Hz) 

3JCOCγ 
(Hz) 

error 
3JCOCγ 
(Hz) 

1J HαCα 
(Hz) 

error 
1JHαCα 
(Hz) 

1JCαCβ 
(Hz) 

error 
1JCαCβ 
(Hz) 

1 G -    -  -  -  
2 A -    -  144.31  34.82 0.48 

3 M 7.74 0.25   -  143.20 0.35 -  
4 G -    -  -  -  
5 P -    -  148.93 0.72 31.32 0.76 

6 S -    -  142.50 0.42 39.42 0.54 

7 Y 6.84 0.41   -  143.30 0.47 35.29 0.30 

8 G -    -  141.12 0.74 -  
9 R 7.42 0.20 0.97 0.07 -  142.69 0.61 34.01 0.64 

10 S 6.70 0.19   -  143.26 0.60 39.26 0.64 

11 R 7.51 0.40 0.84 0.08 -  142.69 0.61 34.01 0.64 

12 S 6.70 0.19   -  143.26 0.60 39.26 0.64 

13,15,17,19,21 R 7.51 0.25 0.85 0.08 2.39 0.30 142.69 0.61 34.01 0.64 

14,16,18,20,22 S 6.70 0.19   -  143.26 0.60 39.26 0.64 

22 S 6.70 0.19   -  142.83 0.60 39.05 0.64 

23 R 7.00 0.25 0.85 0.08 2.46 0.30 142.10 0.31 36.07 0.64 

24 S 7.94 0.51   -  -  38.94 0.24 
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10.9 RDC values of phosphorylated ASF/SF2 (200-219) 

res 

number 

res 

name 

RDC 

HN(Hz) 

error 

RDC 

HN(Hz) 

RDC 

HC(Hz) 

error 

RDC 

HC(Hz) 

RDC 

CαCo(Hz) 

error 

RDC 

CαCo(Hz) 

CS 

Cα(ppm) 

CS 

Co(ppm) 

1 G - 
 

- 
 

- 
 

- - 
2 A - 

 
- 

 
- 

 
- - 

3 M - 
 

- 
 

- 
 

55.23 176.42 
4 G - 

 
- 

 
- 

 
44.6 - 

5 P - 
 

- 
 

- 
 

- - 
6 S 3.24 0.3 8.24 1.4 -0.86 0.8 58.33 174.35 
7 Y -2.82 0.3 2.12 1.4 0.16 0.8 58.22 176.33 
8 G -1.8 0.3 3.39 1.4 0.31 0.8 45.25 173.79 
9 R 1.04 0.3 3.87 1.4 -0.21 0.8 55.9 176.36 

10 S 0.7 0.3 5.85 1.4 -0.69 0.8 58.35 174.7 
11 R -0.18 0.3 -1.61 1.4 0.24 0.8 56.24 176.59 
12 S -1.3 0.3 5.75 1.4 -0.61 0.8 58.35 174.38 
13 R 3.76 0.3 6.12 1.4 -0.35 0.8 55.72 176.14 
14 S 3.4 0.3 7.87 1.4 -1.25 0.8 58.2 174.19 
15 R 7.28 0.3 10.05 1.4 -1.71 0.8 55.73 176.13 
16 S 7.62 0.3 11.71 1.4 -1.5 0.8 58.18 174.16 
17 R 9.24 0.3 16.86 1.4 -1.71 0.8 55.76 176.13 
18 S 9.16 0.3 11.71 1.4 -1.01 0.8 58.18 174.2 
19 R 7.88 0.3 17.1 1.4 -1.33 0.8 55.79 176.3 
20 S 7.56 0.3 11.73 1.4 -1.19 0.8 58.18 174.3 
21 R 5.62 0.3 11.55 1.4 -1.5 0.8 55.91 176.17 
22 S 8.04 0.3 9.97 1.4 0.26 0.8 58.19 174.36 
23 R 4.38 0.3 7.07 1.4 -1.63 0.8 55.92 175.44 
24 S 2.22 0.3 7.98 1.4 - 

 
59.93 - 
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10.10 3bond couplings of phosphorylated ASF/SF2 (200-219) 

res 
number 

res 
name 

3JNH-Hα 
(Hz) 

error 
3JNH-Hα 
(Hz) 

3JNCγ 
(Hz) 

error 
3JNCγ 
(Hz) 

3J CoCγ 
(Hz) 

error 
3JCoCγ 
(Hz) 

1J HαCα 
(Hz) 

error 
1J HαCα 
(Hz) 

1J CaCb 
(Hz) 

error 
1J CaCb 
(Hz) 

1 G - 

   

- 

 

- 

 

- 

 2 A - 

   

- 

 

144.84 0.60 - 

 3 M 7.61 0.36 

  

- 

 

141.61 0.60 34.54 1.30 

4 G - 

   

- 

 

140.82 0.60 - 

 5 P - 

   

- 

 

148.24 0.60 - 

 6 S - 

   

- 

 

142.32 0.60 39.58 1.45 

7 Y 7.10 0.33 

  

- 

 

143.44 0.60 35.12 1.20 

8 G - 

   

- 

 

141.05 0.60 - 

 9 R 7.22 0.45 1.19 0.19 2.45 0.20 142.27 0.60 34.71 1.20 

10 S 6.68 0.53 

  

- 

 

142.38 0.60 38.84 1.45 

11 R 7.41 0.23 0.98 0.14 2.17 0.20 141.80 0.60 35.07 1.20 

12 S 6.18 0.26 

  

- 

 

143.76 0.60 38.91 1.45 

13 R 6.97 0.23 0.77 0.18 2.53 0.20 142.27 0.60 34.75 1.20 

14 S 5.77 0.23 

  

- 

 

143.47 0.60 37.90 1.45 

15 R 6.61 0.23 0.77 0.16 1.89 0.20 143.14 0.60 35.34 1.20 

16 S 5.58 0.22 

  

- 

 

143.41 0.60 39.87 1.45 

17 R 7.09 0.26 0.76 0.17 1.89 0.20 140.87 0.60 33.62 1.20 

18 S 5.58 0.22 

  

- 

 

143.56 0.60 38.97 1.45 

19 R 6.83 0.24 0.79 0.17 2.42 0.20 142.41 0.60 34.32 1.20 

20 S 5.51 0.23 

  

- 

 

143.61 0.60 39.25 1.45 

21 R 6.67 0.25 0.68 0.17 2.17 0.20 142.15 0.60 34.27 1.20 

22 S 6.18 0.26 

  

- 

 

144.53 0.60 39.03 1.45 

23 R 6.44 0.32 0.63 0.15 2.56 0.20 141.07 0.60 36.07 1.20 

24 S 7.54 0.65 

  

- 

 

141.81 0.60 38.51 0.76 
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10.11 RDC values for H-CO and N-CO from 2 measurements on the same 

phosphorylated ASF/SF2 (200-219) samples. 

Res 
number DN-CO(Hz) DHN-CO(Hz) 

 
1st 2nd 1st 2nd 

3 -0.56 0.43 0.84 1.66 

4 
    

6 -0.19 0.6 4.34 0.94 

7 -0.72 0.51 1.13 1.4 

8 -0.61 -1.65 0.26 0.07 

9 -0.35 -0.28 -2.24 -0.72 

10 0.52 0.12 0.28 0.83 

11 -0.18 -0.39 -0.05 0.55 

12 0.25 -0.41 2.28 1.9 

13 -0.4 -0.35 0.99 0.8 

14 -0.14 0.11 0.6 2.25 

15 -0.71 -0.57 2.57 2.33 

16 0.4 -0.21 2.75 2.83 

17 -0.57 -0.37 1.4 2.65 

18 0.48 0.42 3.53 5.13 

19 -0.28 -0.19 2.72 2.51 

20 0.66 -0.41 4.04 1.9 

21 -0.21 0.33 2.17 3.17 

22 0.27 -0.22 5.12 2.53 

23 -0.18 0.39 0.98 1.71 

24 -0.09 0.03 1.59 2.42 
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10.12 1JNH values of Tau protein pH 6.0, 278K, at 900MHz 

Residue 1JNH(Hz) Residue 1JNH(Hz) Residue 1JNH(Hz) 

E3 -93.23 E53 -92.86 A103 -93.38 
R5 -93.10 D54 -93.11 E104 -92.99 
Q6 -92.92 G55 -94.33 E105 -93.06 
E7 -92.73 S56 -93.26 A106 -93.24 
E9 -92.95 E57 -92.96 G107 -94.25 
V10 -92.89 E58 -93.10 I108 -92.78 
M11 -93.20 G60 -94.11 G109 -94.44 
E12 -92.89 S61 -93.15 D110 -93.08 
D13 -93.26 E62 -93.01 T111 -93.37 
H14 -93.09 T63 -93.19 S113 -93.17 
G16 -94.26 S64 -93.28 L114 -93.03 
T17 -92.85 D65 -93.34 E115 -93.03 
Y18 -93.25 A66 -93.51 D116 -93.14 
G19 -94.14 K67 -93.06 E117 -93.10 
L20 -92.80 S68 -93.26 A118 -93.39 
G21 -94.34 T69 -93.45 A119 -93.26 
D22 -93.15 T71 -93.17 G120 -94.28 
R23 -93.19 A72 -93.35 H121 -93.16 
K24 -92.95 E73 -92.88 V122 -92.95 
D25 -93.12 D74 -93.21 T123 -93.39 
Q26 -92.78 V75 -92.83 Q124 -93.07 
G27 -94.24 T76 -93.31 A125 -93.25 
G28 -94.18 A77 -93.71 R126 -93.05 
Y29 -92.92 L79 -93.05 M127 -93.06 
T30 -93.20 V80 -92.90 V128 -92.90 
M31 -93.26 D81 -93.41 S129 -93.51 
Q33 -93.02 E82 -92.98 K130 -93.03 
D34 -93.15 G83 -94.21 S131 -93.45 
Q35 -92.88 A84 -93.57 K132 -92.83 
E36 -92.95 G86 -94.25 D133 -93.19 
G37 -94.24 K87 -92.99 G134 -94.40 
D38 -93.18 Q88 -93.20 T135 -92.96 
T39 -93.17 A89 -93.47 G136 -94.43 
D40 -93.37 A90 -93.37 S137 -93.17 
A41 -93.29 A91 -93.30 D139 -93.33 
G42 -94.43 Q92 -93.20 K140 -93.16 
L43 -93.05 H94 -93.08 K141 -93.15 
K44 -92.88 T95 -93.25 A142 -93.40 
E45 -93.10 E96 -93.02 K143 -92.94 
S46 -93.49 I97 -93.28 G144 -94.38 
L48 -93.10 E99 -92.96 A145 -93.14 
Q49 -92.98 G100 -94.17 G147 -94.47 
T50 -93.38 T101 -93.03 K148 -93.03 
T52 -93.20 T102 -93.35 T149 -93.28 
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Residue 1JNH(Hz) Residue 1JNH(Hz) Residue 1JNH(Hz) 
K150 -93.23 T212 -93.17 Q269 -93.03 
I151 -93.09 S214 -93.17 G271 -94.03 
A152 -93.58 L215 -93.01 G273 -94.19 
T153 -93.41 T217 -93.42 K274 -93.05 
G156 -94.30 T220 -93.12 V275 -93.09 
A157 -93.25 R221 -93.00 Q276 -93.28 
A158 -93.60 E222 -93.32 I277 -93.06 
G161 -94.25 K224 -93.10 I278 -93.17 
Q162 -92.98 K225 -93.09 N279 -93.42 
K163 -93.13 V226 -93.11 K280 -93.18 
G164 -94.40 A227 -93.62 K281 -93.06 
E165 -92.99 V228 -92.90 L282 -93.16 
A166 -93.48 V229 -93.13 D283 -93.01 
N167 -93.29 R230 -93.26 L284 -92.89 
A168 -93.36 K234 -93.09 S285 -93.22 
T169 -93.22 S235 -93.56 N286 -93.17 
I171 -93.28 S237 -93.27 V287 -92.96 
A173 -93.33 S238 -93.41 Q288 -93.36 
K174 -92.88 A239 -93.53 S289 -93.31 
A178 -93.61 K240 -93.04 K290 -93.03 
K180 -92.92 S241 -93.39 C291 -92.88 
T181 -93.32 R242 -93.07 G292 -94.37 
S184 -93.17 L243 -93.28 S293 -93.17 
S185 -93.18 Q244 -92.98 K294 -93.13 
G186 -94.30 T245 -93.14 D295 -93.21 
E187 -93.27 A246 -93.71 N296 -93.19 
S191 -93.25 V248 -93.04 I297 -92.94 
G192 -94.21 M250 -93.18 K298 -93.28 
D193 -93.23 D252 -93.05 H299 -93.09 
R194 -92.96 L253 -93.10 V300 -93.28 
S195 -93.25 K254 -93.13 S305 -93.11 
G196 -94.25 N255 -93.27 V306 -92.90 
Y197 -93.03 V256 -92.94 Q307 -92.77 
S198 -93.30 K257 -93.30 V313 -92.99 
S199 -93.59 S258 -93.36 D314 -93.32 
G201 -94.21 K259 -93.03 L315 -93.39 
S202 -93.53 I260 -93.13 K317 -92.89 
G204 -94.29 G261 -94.42 V318 -93.01 
T205 -93.39 S262 -93.17 T319 -92.92 
G207 -94.22 T263 -93.20 S320 -93.54 
S208 -93.33 E264 -93.09 K321 -93.08 
R209 -93.06 N265 -93.27 C322 -92.88 
S210 -93.33 L266 -93.22 S324 -93.17 
R211 -93.26 K267 -93.14 L325 -93.01 
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Residue 1JNH(Hz)   Residue 1JNH(Hz)  Residue 1JNH(Hz) 
G326 -94.22   F378 -93.04 

 
A426 -93.34 

N327 -93.33   R379 -93.24 
 

T427 -93.01 
I328 -92.92   E380 -93.06 

 
L428 -93.12 

H329 -93.05   N381 -93.35 
 

A429 -93.41 
H330 -93.32   A382 -93.36 

 
D430 -93.29 

K331 -93.41   K383 -93.18 
 

E431 -92.95 
G333 -93.95   A384 -93.53 

 
V432 -92.97 

Q336 -92.98   K385 -93.00 
 

S433 -93.54 
V337 -92.95   T386 -93.06 

 
A434 -93.54 

K338 -93.24   D387 -93.25 
 

S435 -93.35 
V339 -93.01   H388 -93.26 

 
L436 -93.28 

K340 -93.33   G389 -94.49 
 

A437 -93.55 
S341 -93.27   A390 -93.16 

 
K438 -93.10 

E342 -92.89   E391 -93.05 
 

Q439 -93.33 
K343 -92.99   I392 -92.96 

 
G440 -94.19 

L344 -93.29   V393 -93.13 
 

 
 D345 -93.07   Y394 -93.36 

 
 

 F346 -93.14   K395 -93.06 
 

 
 K347 -93.27   V398 -92.90 

 
 

 D348 -93.16   V399 -93.34 
 

 
 R349 -93.03   S400 -93.46 

 
 

 V350 -93.02   G401 -94.20 
 

 
 Q351 -93.15   D402 -93.30 

 
 

 S352 -93.35   T403 -93.12 
 

 
 K353 -92.96   S404 -93.71 

 
 

 I354 -93.11   R406 -93.10 
 

 
 G355 -94.34   H407 -93.12 

 
 

 S356 -93.18   L408 -93.05 
 

 
 L357 -93.18   S409 -93.23 

 
 

 D358 -93.13   N410 -93.29 
 

 
 I360 -92.92   V411 -92.95 

 
 

 H362 -93.37   S412 -93.48 
 

 
 V363 -93.19   S413 -93.26 

 
 

 G365 -94.00   T414 -93.15 
 

 
 N368 -93.27   G415 -94.38 

 
 

 K369 -93.30   S416 -93.26 
 

 
 K370 -93.26   I417 -92.89 

 
 

 I371 -93.03   D418 -93.38 
 

 
 E372 -93.20   M419 -93.05 

 
 

 T373 -93.17   V420 -92.95 
 

 
 H374 -93.26   D421 -93.26 

 
 

 K375 -93.04   S422 -93.34 
 

 
 L376 -93.15   Q424 -92.92 

 
 

 T377 -93.16   L425 -93.05 
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10.13 1JNH values of α-synclein at different pH and temperatures, measured at 

700MHz. The missing data due to signal overlapping and broadening are labeled as 

“N.A.” 

 

1JNH(Hz) 
Residues  278K  288K 298K 

 
pH 5.7 pH 6.5 pH 7.4 pH 5.7 pH 7.4 pH 5.7 

V3 -92.9 -93.0 -93.0 -92.9 -93.0 -92.9 
F4 -93.2 -93.5 -93.9 -93.5 -93.8 -93.4 
M5 -93.5 -93.7 -93.6 -93.5 N.A. -93.8 
G7 -94.1 -94.3 N.A. -94.3 N.A. -94.1 
L8 -93.3 -93.3 N.A. -93.4 N.A. -93.2 
S9 -93.6 -93.6 N.A. -93.6 N.A. -93.6 
K12 -93.3 -93.2 -93.2 -93.4 N.A. -93.3 
E13 -93.1 -93.4 N.A. -93.3 N.A. -93.2 
G14 -94.3 -94.4 -94.2 -94.2 -94.2 -94.2 
V15 -93.0 -92.9 -93.2 -93.0 -93.4 -93.0 
A17 -94.1 -93.6 -94.1 -94.0 -94.3 -94.0 
A18 -93.7 -93.6 -94.1 -93.6 -93.9 -93.7 
A19 -93.8 -93.9 -94.2 -93.8 -94.0 -93.7 
E20 -93.6 -93.6 -93.6 -93.4 N.A. -93.3 
K21 -93.1 -93.2 -93.1 -93.5 -93.3 -93.4 
T22 -93.4 -93.4 -93.3 -93.4 -93.3 -93.4 
G25 -94.3 -94.3 -94.3 -94.2 N.A. -94.2 
V26 -93.4 -93.2 -93.2 -93.2 -93.1 -93.2 
A27 -94.1 N.A. N.A. -94.0 -94.2 -94.0 
E28 -93.6 -93.6 -93.7 -93.2 -93.8 -93.5 
A29 -94.1 -93.8 -93.9 N.A. -94.1 -93.3 
G31 -94.3 -94.3 -94.3 -94.3 -94.3 -94.3 
K32 -93.4 -93.5 N.A. -93.3 N.A. -93.4 
T33 -93.6 -93.5 -93.5 -93.4 N.A. -93.4 
V37 -93.0 -93.2 -93.1 -93.0 -93.0 -92.9 
L38 -93.8 -93.5 -93.9 -93.7 -93.8 -93.7 
Y39 -93.5 -93.3 N.A. -93.4 -93.4 -93.3 
V40 -93.1 -93.1 -93.1 -93.1 -93.1 -93.0 
G41 -94.4 -94.5 -94.6 -94.4 N.A. -94.4 
T44 -93.5 -93.5 -93.5 -93.5 -93.4 -93.5 
V48 -93.0 -93.0 -93.1 -92.9 -93.0 -92.9 
V49 N.A. -93.1 -93.1 -93.1 -93.1 -93.2 
H50 -93.6 N.A. -93.8 -93.6 N.A. -93.9 
G51 -94.3 -94.2 -94.5 -94.4 N.A. -94.3 
V52 -93.1 N.A. -93.1 -93.0 -93.0 N.A. 
A53 -94.0 -94.1 -94.3 -94.0 N.A. -94.0 
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V55 -93.3 -93.3 -93.3 -93.1 -93.2 N.A. 
A56 N.A. -94.1 N.A. -93.9 N.A. -93.8 
E57 -93.4 -93.4 -93.6 -93.4 -93.6 -93.2 
K58 -93.5 -93.5 -93.8 -93.4 -93.7 -93.4 
T59 -93.5 -93.5 -93.6 -93.5 -93.3 -93.3 
K60 -93.5 -93.4 -93.6 -93.7 N.A. N.A. 
E61 -93.4 -93.8 -93.6 -93.5 -93.7 N.A. 
Q62 -93.6 -93.5 -93.5 N.A. -93.8 -93.4 
V63 -93.2 N.A. N.A. -93.1 -93.2 -93.0 
T64 -93.5 -93.5 N.A. -93.4 -93.3 -93.4 
V66 -93.1 -93.2 -93.2 -93.1 -93.3 -93.0 
G67 -94.4 -94.4 -94.5 -94.4 -94.6 -94.4 
G68 -94.3 -94.3 -94.3 -94.3 -94.5 -94.3 
A69 -93.9 -93.8 -94.1 -93.9 N.A. -93.8 
V70 -93.1 -93.1 -93.1 -93.1 -93.0 -93.0 
V71 -93.3 -93.2 -93.3 -93.2 -93.2 -93.1 
T72 -93.6 -93.4 -93.6 -93.5 -93.5 -93.5 
G73 -94.3 -94.2 -94.2 -94.2 N.A. -94.1 
V74 -93.1 -93.0 -93.1 -92.9 -93.1 -92.8 
T75 -93.6 -93.6 -93.5 -93.5 -93.7 -93.5 
A76 -94.0 -94.0 -94.1 -93.8 N.A. -93.9 
V77 -93.2 -93.2 -93.2 -93.0 -93.1 -93.0 
A78 -94.3 -94.3 -94.4 -94.1 -94.3 -94.0 
Q79 -93.3 -93.4 -93.4 -93.4 N.A. -93.5 
K80 -93.6 -93.6 N.A. -93.4 N.A. -93.5 
T81 -93.5 -93.5 -93.5 -93.4 -93.4 -93.3 
V82 -93.2 -93.2 -93.2 -93.1 -93.2 -93.2 
E83 -93.6 N.A. -93.7 -93.6 -93.7 -93.5 
G84 -94.3 -94.3 -94.3 -94.3 N.A. -94.3 
A85 -93.7 -93.9 -93.7 -93.6 N.A. -93.9 
G86 -94.4 -94.6 -94.5 -94.4 N.A. -94.4 
S87 -93.5 -93.5 -93.6 -93.5 N.A. -93.4 
I88 -93.3 -93.3 -93.2 -93.2 -93.3 -93.1 
A89 -94.1 -94.0 N.A. -94.0 N.A. -93.9 
A90 -94.0 -94.0 -94.1 -93.8 -93.9 -93.7 
A91 -93.9 -94.0 N.A. -93.7 N.A. -93.9 
T92 -93.2 -93.0 -93.2 -93.1 -93.4 -93.1 
G93 -94.2 -94.4 -94.0 -94.2 N.A. -94.3 
F94 -93.4 N.A. -93.4 -93.4 -93.4 -93.4 
V95 -93.3 -93.2 -93.3 -93.2 -93.2 -93.1 
K96 -93.9 -94.0 -93.9 -93.9 -94.0 -93.7 
K97 N.A. -93.1 -93.1 N.A. -93.1 N.A. 
D98 -93.7 -93.5 -93.7 -93.5 -93.7 -93.6 
Q99 -93.2 -93.1 -93.5 -93.2 N.A. N.A. 
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L100 -93.6 -93.6 -93.7 -93.5 -93.7 -93.4 
G101 -94.3 -94.3 -94.3 -94.3 -94.2 -94.3 
K102 -93.2 -93.5 N.A. -93.2 -93.4 -93.3 
N103 -93.6 -93.8 -93.9 -93.6 N.A. -93.7 
E104 -93.3 -93.4 -93.3 -93.3 -93.4 -93.2 
E105 -93.1 -93.6 -93.4 -93.4 -93.6 N.A. 
G106 -94.3 -94.2 -94.3 -94.3 -94.3 -94.2 
A107 -94.1 -93.8 -94.1 -93.9 -94.4 -93.9 
Q109 -93.2 -93.2 -93.3 -93.2 -93.3 -93.2 
E110 -93.3 N.A. -93.4 -93.2 -93.5 -93.2 
G111 -94.2 -94.2 -94.3 -94.2 -94.2 -94.2 
I112 -93.1 -93.1 -93.0 -93.0 -93.0 -93.0 
E114 -93.1 N.A. N.A. -93.6 -93.3 -93.3 
D115 -93.5 -93.3 -93.6 -93.4 -93.7 -93.4 
M116 -93.8 -93.5 N.A. -93.5 -93.7 -93.7 
V118 -93.2 -93.2 -93.1 -93.0 -92.9 -92.9 
D119 -93.9 -93.8 -94.0 -93.8 -93.9 -93.8 
D121 -93.5 N.A. -93.5 -93.5 -93.5 -93.5 
N122 -93.6 -93.6 -93.5 -93.5 -93.7 -93.5 
E123 -93.5 -93.6 -93.5 -93.4 -93.7 -93.4 
A124 -93.8 -93.7 -93.8 N.A. -93.7 -93.6 
Y125 -93.1 -93.3 -93.4 -93.0 -93.4 -92.9 
E126 -93.6 -93.5 -93.5 -93.4 -93.6 -93.4 
S129 -93.4 -93.2 -93.4 -93.3 -93.3 -93.3 
E130 -93.3 -93.4 -93.3 -93.3 -93.4 -93.3 
G132 -94.3 -94.3 -94.3 -94.2 N.A. -94.1 
Y133 -93.4 N.A. -93.4 -93.3 -93.4 -93.2 
Q134 -93.9 N.A. N.A. -93.5 -93.7 N.A. 
D135 -93.6 -93.6 -93.5 -93.6 -93.5 N.A. 
Y136 -93.2 -93.3 -93.3 -93.2 -93.2 -93.2 
E137 -93.8 -93.7 -93.8 -93.7 -93.8 -93.7 
E139 -93.2 -93.1 -93.3 -93.1 -93.3 -93.0 
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10.14 1JNH values of native ubiquitin at 400MHz, 600MHz and 900MHz field 

strength, pH 7.0, 298K. I36 was not included because its amid proton chemical shift is 

close to the edge of the selective pulse excitation profile. T9 and G75 were excluded 

because of low sensitivity. 

 
1JNH(Hz) 

400M 

1JNH(Hz) 

600M 

1JNH(Hz) 

900M 
Residue 
 

Q2 -92.97 -92.99 -92.90 
I3 -92.65 -92.64 -92.48 
F4 -93.37 -93.22 -92.95 
V5 -92.95 -92.71 -92.67 
K6 -93.37 -93.43 -93.01 
T7 -94.2 -94.09 -93.76 
L8 -92.38 -92.48 -92.61 
T9 N.A. N.A. N.A. 
G10 -93.64 -93.49 -93.40 
K11 -93.52 -93.43 -93.41 
T12 -92.68 -92.49 -92.26 
I13 -93.2 -93.03 -92.88 
T14 -92.84 -92.76 -92.65 
L15 -93.83 -93.72 -93.58 
E16 -92.02 -91.93 -91.86 
V17 -93.47 -93.41 -93.28 
E18 -92.15 -92.07 -91.85 
S20 91.95 91.95 -92.00 
D21 -93.96 -93.87 -93.78 
T22 -93.43 -93.38 -93.36 
I23 -93.96 -93.87 -93.95 
N25 -94.22 -94.11 -93.84 
V26 -93.76 -93.67 -93.45 
K27 -93.66 -93.55 -93.19 
A28 -94.03 -93.85 -93.68 
K29 -93.67 -93.61 -93.31 
I30 -93.79 -93.68 -93.31 
Q31 -93.9 -93.83 -93.90 
D32 -93.9 -93.98 -93.55 
K33 -92.87 -92.74 -92.54 
E34 -90.54 -90.46 -90.14 
G35 -93.98 -94.00 -94.03 
I36 N.A. N.A. N.A. 
D39 -93.4 -93.32 -93.16 
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Q40 -92.15 -92.15 -92.06 
Q41 -93.22 -93.27 -93.44 
R42 -93.35 -93.34 -93.57 
L43 -92.92 -92.93 -93.03 
I44 -92.42 -92.34 -92.30 
F45 -93.59 -93.51 -93.67 
A46 -93.91 94.01 -94.01 
G47   -93.28 -93.21 -93.00 
K48 -93.03 -92.99 -92.97 
Q49 -93.02 -93.04 -92.99 
L50 -93.97 -93.85 -93.65 
E51 -92.47 -92.38 -92.33 
D52 -92.45 -92.39 -92.44 

R54 -92.86 -92.91 -92.82 

T55 -92.57 -92.45 -92.23 
L56 -94.18 -94.13 -93.88 
S57 -93.73 -93.75 -93.71 
D58 -94.26 -94.09 -94.07 
Y59 -92.32 -92.31 -92.13 
N60 -94.15 -94.25 -94.19 
I61 -93.07 -93.03 -92.99 
Q62 -92.91 -92.93 -93.14 
K63 -93.26 -93.28 -93.23 
E64 -93.35 -93.29 -93.21 
S65 -93.84 -93.84 -93.82 
T66 91.85 91.76 91.58 
L67 -93.08 -92.97 -92.87 
H68 -93.08 -92.98 -92.74 
L69 -93.10 -93.02 -93.06 
V70 -93.45 -93.47 -93.62 
L71 -92.97 -93.00 -93.14 
R72 -93.12 -93.11 -93.24 
L73 -92.86 -92.91 -92.87 
R74 -92.99 -92.86 -92.88 
G75 N.A. N.A. N.A. 
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