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1  Abstract 

 

1 Abstract 
 

Splicing is a crucial post-transcriptional processing event that entails the removal of non-

coding intervening sequences (introns) from eukaryotic pre-mRNA and the ligation of the 

coding sequences (exons). It is carried out in a two-step reaction by the spliceosome, a 

giant and highly dynamic protein-rich ribonucleoprotein (RNP) enzyme. The spliceosome 

consists of five major subunits, U1, U2, U4/U6 and U5 snRNPs and multitude of non-

snRNP proteins. The active center of the spliceosome only develops de novo on the pre-

mRNA by a stepwise assembly of U snRNPs that is driven by several DExD/H-box 

ATPases/RNA helicases. Major structural and compositional rearrangements are required 

to render the spliceosome catalytically competent for promoting the two steps of splicing. 

The enzyme Brr2 plays a major role in this catalytic activation process. Brr2 is an 

exceptionally large DExH-box protein (ca. 250 kDa), and is a member of the Ski2-like 

RNA helicases in the spliceosome that stands out both structurally and functionally among 

other splicesosomal DExD/H-box proteins. It is composed of two putative helicase 

cassettes fused in tandem. Each helicase cassette contains conserved dual-RecA-like 

domains, flanked by a winged helix (WH) domain and a Sec63 homology unit of unknown 

function that may bestow specific properties upon the helicase. Brr2 is an integral 

component of the U5 snRNP and unlike other spliceosomal helicases it is preassembled 

with one of its substrates, the U4/U6 snRNPs, before recruitment to the pre-spliceosome. 

Furthermore, Brr2 remains stably associated with the splicesosome to function again 

during the disassembly step of the spliceosome. Thus, the RNPase activity of Brr2 needs to 

be reliably controlled to facilitate its multiple usages in the spliceosome. Indeed, Brr2 

forms a stable complex with two U5 snRNP proteins, a large scaffolding protein Prp8 and 

the EF-2 like GTPase Snu114, both of which have been implicated in the regulation of 

Brr2 activity. In human, several mutations within Brr2 and the C-terminal tail of Prp8 

cause a severe type of retinitis pigmentosa (RP), a progressive retinal dystrophy. It was 

hitherto unclear how Brr2 structurally and functionally adopts these capabilities and how 

the regulatory role of Prp8 on Brr2 can lead to a precise timing of the spliceosome 

activation and thus U4/U6 RNA unwinding by Brr2. In addition, the molecular basis of the 

way in which several RP-linked mutations in Brr2 and Prp8 may lead to the disease 

retinitis pigmentosa remained poorly understood.  
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In this work, a crystal structure of the C-terminal Sec63 unit of Brr2 solved in 

collaboration with V. Pena and M. Wahl revealed the first insight into the structural 

similarity of the Brr2 helicase units with the DNA helicase Hel308. Guided by the Hel308 

structure, the architecture of both Brr2 helicase cassettes could be modeled as a composite 

dual Hel308-like helicase. Functional roles for various predicted structural elements of 

Brr2 were then validated by mutational analysis in vitro and in living yeast cells. The 

results supported the idea that in analogy to Hel308 a conserved β-hairpin loop in the 

RecA-2 domain of the N-terminal helicase cassette may act as a strand separation device, 

during unwinding of U4/U6 RNAs.  

More recently, the crystal structure of a larger fragment of human Brr2, encompassing both 

helicase cassettes, solved in collaboration with K. Santos and M. Wahl, revealed an 

extensive interaction surface between the C-terminal cassettes (respectively, Brr2
NC

and 

Brr2
CC

), and provided a framework for a detailed structure-based mutational analysis of 

Brr’s enzymatic activities. It could be shown that only the isolated Brr2
NC

 harbors ATPase 

and helicase activities and that it threads single-stranded RNA through a central tunnel and 

across a helix-loop-helix domain during duplex unwinding. Although the Brr2
CC 

is inactive 

on its own, it strongly stimulates the activity of the N-terminal cassette. Mutations of 

amino acid residues involved in the communication between the two cassettes, as well as 

mutations that interfere with the nucleotide-binding pocket of Brr2
CC

, strongly affected 

ATPase and/or helicase activities of the enzyme. Thus, while the Brr2
CC

 does not seem to 

engage RNA, it binds ATP and acts as an intramolecular cofactor to stimulate Brr2
NC

 

helicase activity. Using various U4/U6 mutant constructs I was also able to show that Brr2 

interacts with the single-stranded region of U4 preceding U4/U6 stem I (the U4 central 

domain), and translocates in a 3’ to 5’ direction along the U4 strand to unwind the U4/U6 

stem I first.  

In the second part of the work for this thesis I investigated the roles of the C-terminal 

RNase H-like (RH) and Jab1/MPN-like domains of Prp8 in the regulation of Brr’s 

enzymatic functions. Using UV-induced RNA-protein crosslinking and RNA structure 

probing methods I could show that the RNase H domain of Prp8 forms a specific complex 

with U4/U6 snRNAs in vitro, where it binds to a single-stranded region of U4 preceding 

U4/U6 stem I. Using mass spectrometry, RNA-protein crosslinks could be mapped at the 

base of a hairpin loop (β-finger) of the RH domain. Moreover, I was able to show that the 

Prp8 RNase H domain interferes with Brr2-mediated U4/U6 unwinding by sequestering 
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Brr2’s targeting site, indicating that the RH domain negatively regulates Brr2 function and 

acts as a keeper to prevent premature activation of the spliceosome. These findings also 

support the idea that the Prp8 RH domain acts as a platform for the handover of the 5'-

splice site from U1 to U6 snRNA prior to the activation step.  

The Prp8 Jab1 domain is a ubiquitin-binding domain that comprises a globular domain 

followed by a protruding C-terminal tail, which is partly unstructured in the isolated Jab1 

domain, and which represents a hotspot for mutations leading to retinitis pigmentosa. 

Using biochemical in vitro assays, I was able to show that the Jab1 domain binds only to 

the N-terminal helicase cassette and inhibits the helicase and ATPase activities of Brr2 by 

preventing Brr2 loading onto its RNA substrate U4/U6. Upon deletion of the unstructured 

C-terminal 16 amino acids, Jab1
Δ16

 now strongly stimulated Brr2’s ATPase and helicase 

activities, suggesting that the C-terminal tail of Jab1 may interfere with Brr2’s RNA 

binding capacity. The crystal structure of Brr2 in complex with the intact Jab1 domain, 

which was obtained in collaboration with M. Wahl, revealed the molecular basis for the 

biochemical observations. Jab1 rests with its globular part primarily on the IG-like domain 

of Brr2
NC

 while the C-terminal tail interacts with the RNA binding motifs of the RecA 

domains, thus occluding the RNA binding tunnel of the N-terminal helicase cassette. I was 

also able to show that under conditions favoring RNA binding, the full-length Jab1 domain 

acts as a coactivator of Brr2, enhancing the coupling of ATP hydrolysis to duplex 

unwinding and the processivity of the helicase. This delicate regulation requires the dual-

cassette organization of Brr2 and is not observed with the isolated N-terminal helicase 

cassette. Finally, I have investigated the effect of various RP-linked mutations in the Prp8 

Jab1 domain on the regulation of Brr2’s activities in vitro and on the stability of tri-snRNP 

formation, cell viability and pre-mRNA splicing in vivo in yeast cells. Taken together, the 

results obtained uncover the mechanism underlying a unique dual-mode regulation of a 

superfamily 2 helicase by a protein cofactor and reveal that its disruption constitutes a 

disease principle underlying certain forms of retinitis pigmentosa. 
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2 Introduction 

 

2.1 The chemistry of Pre-mRNA splicing  
 

A fundamental feature of all eukaryotic cells is that the primary transcripts of most of their 

coding genes undergo a variety of post-transcriptional modifications to produce the mature 

messenger RNAs (mRNAs). Only these properly processed mRNAs can be exported out of 

the nucleus and translated into polypeptides in the cytoplasm. One of the most important 

and intricate post-transcriptional modifications is pre-mRNA splicing that entails the 

removal of non-coding intervening sequences (introns) from precursor-messenger RNAs 

(pre-mRNAs) and the concomitant ligation of neighboring coding exons to generate 

continuous open reading frames for protein biosynthesis. This process is catalyzed by the 

spliceosome, a large and highly dynamic molecular ribonucleoprotein (RNP) machine that 

orchestrates the stepwise binding and release of numerous RNPs and protein factors.  

The spliceosome catalyzes two SN2-type trans-esterification reactions that involve three 

evolutionary conserved sequences, namely the 5’-splice site (5’ss), the branch point site 

(BPS) and the 3’-splice site (3’ss). First, the 5’ss is nucleophilically attacked by the 2’-

hydroxyl of a bulged adenosine of the BPS, which leads to formation of the excised 5’-

exon and an intermediate intron-lariat 3’-exon. The second step of splicing is carried out 

by attack of the free 3’-hydroxyl of the 5’-exon to the phosphodiester bond at the 3’ss that 

generates the excised intron-lariat and the spliced exons (Figure 2.1; Villa et al., 2002; 

Green, 1986). The splice sites within the intron can be identified by consensus sequences 

in yeast and metazoans (Figure 2.2; Wahl et al., 2009).  
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Figure 2.1  Pre-mRNA splicing mechanism.   

Pre-mRNA splicing is accomplished by two consecutive nucleophilic reactions. First, the 2’-

hydroxl group of the branch point adenosine attacks the phosphodiester bond at the 5’ss leading to 

formation of a 2’-5’ bond within the intron-lariat-3’exon and the excised 5’ exon (magenta). 

Subsequently, in the second step of splicing, the free 3’-hydroxyl group of the 5’exon attacks the 

3’ss that leads to the ligation of neighboring exons and excision of the intron-lariat (Figure kindly 

provided by Dr. Patrizia Fabrizio). 

 

Figure 2.2  Consensus sequences of metazoan and yeast pre-mRNAs. 

The 3’ and 5’ exons are separated by the intron (yellow) where the consensus 5’-splice site, branch 

point, 3’-splice site and poly-pyrimidine tract sequences in yeast and metazoan (both U2 and U12 

types) are shown. N stands for any nucleotide, R for purine, and Y for pyrimidine.   
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2.2 RNP Composition of the spliceosome  

 

The two-step splicing catalysis by the spliceosome involves sequential assembly of five 

small nuclear RNPs (snRNPs) designated U1, U2, U4, U5 and U6. In metazoans, there is a 

rare class of introns that are spliced by a different type of spliceosome (the so-called minor 

or U12-type spliceosome as opposed to the major or U2-type spliceosome). Minor 

spliceosomes are assembled from U11, U12, U4atac and U6atac snRNPs that are 

homologues of U1, U2, U4 and U6 snRNPs, respectively. The U5 snRNP is shared by both 

types of spliceosomes (Patel and Steitz, 2003; Tarn and Steitz, 1997). In metazoans, the 

BPS and the 3’ss are separated by a pyrimidine-rich stretch (the so-called poly-pyrimidine 

tract), which is not found in yeast or in U12-type introns (Figure 2.2).   

The major spliceosome is formed from five uridine-rich RNPs (UsnRNPs), as the main 

building blocks and numerous non-snRNP splicing factors (Figure 2.3). Each UsnRNP is 

composed of a UsnRNA complexed with a set of seven Sm (B/B’, D3, D2, D1, E, F, and 

G) or Sm-like (LSm2-8) proteins, and a number of UsnRNP-specific proteins (Raker et al., 

1996). After transcription, all UsnRNAs, except U6, are 5’G-capped and 3’-end trimmed in 

the nucleus (Guthrie and Patterson, 1988). Differential 3’-end trimming of U5 in yeast 

creates two isoforms U5S and U5L whereas in human several U5 snRNA isoforms are 

formed. Further post-transcriptional modification of all UsnRNAs, with the exception of 

U6, takes place in the cytoplasm where the Sm ring is assembled on their Sm-site and the 

5’G-cap is hypermethylated. A Sm-like (LSm) ring is also assembled on a 3’-region of U6 

snRNA in the nucleus. Finally, UsnRNPs are re-imported into the nucleus and undergo 

further maturation through pseudouridylation and 2’-O-methylation in the Cajal bodies. 

However, 2′-O-methylation and pseudouridylation of the U6 snRNA is directed by 

snoRNAs in the nucleolus (Kiss, 2004; Kiss, 2001). Cajal bodies are also thought to be the 

site of assembly of the UsnRNP-specific proteins which is corroborated by the finding that 

proteins required for the assembly of the U2, the U4/U6 di-snRNP, and the U4/U6.U5 tri-

snRNP, are enriched within these nuclear bodies (Lemm et al., 2006; Makarova et al., 

2002; Will and Lührmann, 2001). Within the human U4/U6 di-snRNP, the U4 and U6 

snRNAs are extensively base paired and, in addition to the Sm and LSm core proteins, they 

stably bind to five U4/U6 di-snRNP specific proteins, 15.5K (hSnu13), CypH (20K), hPrp4 

(60K), hPrp31 (61K), and hPrp3 (90K) (Figure 2.4). The U5 snRNP contains the Sm 

proteins plus the large spliceosomal proteins hPrp8 (220K), hBrr2 (200K), hSnu114 

(116K), and hPrp6 (102K), hPrp28 (100K), hLin1 (52K), 40K, hDib1 (15K) (hLin1 is not 
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found in the U4/U6.U5 tri-snRNP). Three additional proteins, hSnu66 (110K), hSad1 

(65K), and 27K are found in the tri-snRNP. The association of the U4/U6 di-snRNP with 

the U5 snRNP appears to be merely through protein-protein and/or RNA-protein 

interactions, as no intermolecular base pairing of U5 with U4/U6 is established. Indeed, 

based on two-hybrid data, hSnu66 (110K) and hPrp6 (102K) are thought to bridge these 

two snRNP particles of the tri-snRNP. All proteins of the tri-snRNP are highly 

evolutionarily conserved and all, except the 40K, 27K and 20K proteins, have homologues 

in S.cerevisiae (Liu et al., 2006; Gottschalk et al., 1999; Stevens and Abelson, 1999).    

In addition to U snRNPs, splicing requires a multitude of non-snRNP protein factors that 

are not integral components of the snRNPs and may transiently associate with the 

spliceosome (Chen and Cheng, 2012). Among these proteins, SR proteins are a family of 

structurally related, essential splicing factors that play roles as activators of constitutive 

splicing and regulators of alternative splicing (reviewed in Graveley, 2000; Long and 

Caceres, 2009). The structural feature of the members of this family is the presence of one 

or two copies of an N-terminal RNA-recognition motif (RRM) followed by C-terminal 

arginine-serine (RS) di-peptide repeats. The RRM module recognizes RNA sequences and 

the RS domain mediates protein-protein interactions and can recruit splicing core factors to 

promote splicing. SF2/ASF (Splicing Factor2/Alternative Splicing Factor) and 

U2AF
65

/U2AF
35

 (U2 auxiliary factor) are examples of SR proteins that are essential 

components of the constitutive splicing machinery (Sanford et al., 2005; Krämer, 1996). 

There are at least eight different members of the DExD/H-box family of proteins that 

represent an abundant group of non-snRNP splicing factors that are essential for the 

constitutive splicing, though most of them only transiently associate with the spliceosome 

during the step that requires their function (Semlow and Staley, 2012). The function of this 

group of enzymes will be described in more details in the following sections. The Prp19 

protein and its associated proteins that form the nineteen (NTC) complex in yeast or its 

human homologue the hPrp19/CDC5 complex, are another example of non-snRNP 

splicing factors that appears to associate with the spliceosome after recruitment of the 

U4/U6.U5 tri-snRNPs. This complex has been suggested to be involved in the activation 

process of the spliceosome, as its depletion stalls splicing prior to the first catalytic step 

(Ajuh et al., 2000; Makarova et al., 2004).    
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Figure 2.3  Sequences and predicted secondary structures of the human spliceosomal snRNAs 

and the yeast U4/U6 snRNAs. 
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(Figure legend 2.3) The sequences and secondary structures of the human spliceosomal snRNAs 

U1, U2, U4/U6 and U5 (A) and the yeast U4/U6 (B) are shown. In the case of the human snRNAs), 

the Sm-interacting sequences are shaded in light yellow and the intermolecular RNA-RNA base 

pairing sequences are highlighted as follows: interaction sites with the 5’-splice site, orange; base 

pairing interactions between U2 and U6, blue; interacting region with the branch site, green (Panel 

A was modified from Patel and Steitz, 2003). 

 

 

Figure 2.4  RNA/protein composition of the human spliceosomal U snRNPs. 

The predicted secondary structures of snRNAs of each snRNP particle and its protein components 

are shown. The set of seven Sm proteins (B/B’, D3, D2, D1, E, F, and G) and Sm-like (LSm) 

proteins (LSm 2, 3, 4, 5, 6, 7, 8) that form the snRNP cores are simply shown as “Sm” or “LSm” 

,respectively, on top of each protein chart. The approximate molecular weight of each snRNP 

particle is indicated at the bottom (Figure was kindly provided by Dr. Berthold Kastner).    
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2.3 Stepwise assembly of the spliceosome  

 

The splicing cycle entails stepwise assembly and release of the spliceosomal snRNPs on 

the pre-mRNA (reviewed by Will and Lührmann, 2011 and Wahl et al., 2009). 

Spliceosome assembly initiates by the binding of the U1 snRNP at the 5’-splice site 

through base pairing of the U1 snRNA with this region. In contrast to the following steps 

of spliceosome assembly or its rearrangements, U1 binding is an ATP-independent event 

(Figure 2.5). The earliest assembly of the spliceosome also involves cooperative 

recruitment of the SF1/BBP (Splicing Factor1/Branch Binding Protein) and the 

U2AF
65

/U2AF
35

 (U2 auxiliary factor) heterodimer to the BPS, the polypyrimidine tract and 

the 3’ss, respectively (Rutz and Séraphin, 1999; Berglund et al., 1997). These series of 

events lead to formation of the early spliceosomal complex (E complex). Next, the U2 

snRNP is engaged in an interaction with the BPS, an event which is promoted by the two 

RNA helicases Prp5 and Sub2/UAP65, in an ATP-dependent manner (Liao et al., 1992). 

This base pairing of the U2 snRNA with the BPS, bulges out the branch point adenosine at 

this region. Furthermore, U2 binding to the BPS is stabilized by the RS domain of U2AF
65

 

and by the U2 snRNP associated SF3a/SF3b heteromeric complexes (Hastings and 

Krainer, 2001; Query et al., 1996; Query et al., 1994). This intermediate complex is termed 

the pre-spliceosome or A complex. Integration of the pre-assembled U4/U6.U6 tri-snRNP 

to the A complex, forms the B complex that is still catalytically inactive (also called the 

pre-catalytic spliceosome). To convert the B complex to a competent spliceosome for 

catalysis of the first step of splicing, the U1 and the U4 snRNPs must be released and the 

spliceosome has to undergo major structural rearrangements. The RNA helicases Prp28 

and Brr2 are, respectively, involved in the ATP-dependent displacement of the U1 and the 

U4 snRNPs, which yields the activated B complex or the B
act

 complex. In addition, the EF-

2 like GTPase Snu114 promotes the U4 release in its GTP-bound state (Small et al., 2006; 

Staley and Guthrie, 1999; Raghunathan and Guthrie, 1998). At this stage, the Prp2 ATPase 

remodels the B
act

 complex which creates a catalytically active spliceosome or B* that is 

capable of catalyzing the first trans-esterification reaction (Warkocki et al., 2009). The 

resulting complex is called the C complex, which requires another ATPase, Prp16, to 

undergo the second step of the splicing. Subsequently, the spliced mRNA is liberated by 

the action of the Prp22 ATPase (Tseng et al., 2011; Schwer, 2008; Schwer and Meszaros, 

2000). The post-spliceosomal complex is disassembled by cooperative action of Prp43 

ATPase, Brr2 and Snu114, and the resulting components can be recycled for another round 
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of splicing. The released intron-lariat is de-branched by the de-branching enzyme Dbr1 and 

degraded (Tsai et al, 2005; Danin-Kreiselman, 2003).  

 

 

 

 

Figure 2.5  Stepwise assembly and disassembly of the major spliceosome. 

 The splicing cycle shows stepwise assembly and disassembly of the UsnRNPs (colored circles) as 

major building blocks of the spliceosome. First, the 5’-splice site is recognized by the U1 snRNP 

followed by ATP-dependent interaction of the U2 snRNP at the branch point sequence. 

Subsequently, the pre-assembled U4/U6.U5 tri-snRNP is recruited to form the pre-catalytic 

spliceosome or the B complex. The spliceosome is activated upon release of the U1 and U4 

snRNPs followed by further rearrangements leading to formation of the B
*
 complex that undergoes 

the first step of splicing. The action of the Prp16 ATPase is required for the second step of splicing 

to occur by the C complex. Finally, the spliced mRNA is released and the post-spliceosomal 

complex is disassembled. Eight evolutionary conserved ATPases/helicases that act at specific steps 

of the splicing cycle, as well as the GTPase Snu114, are indicated (Figure kindly provided by Dr. 

Berthold Kastner and modified).        
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2.4 Rearrangements in the spliceosomal RNA-RNA network  

 

The spliceosome undergoes profound structural rearrangements during the evolution of its 

active site. These reorganizations can be followed by looking at the network of 

spliceosomal RNA-RNA interactions, i.e. the snRNA/snRNA and snRNA/pre-mRNA 

interactions. Moreover, spliceosomal RNA conformational changes can be even more 

complex and include rearrangements in the secondary and/or tertiary structure of the 

UsnRNAs (Wahl et al., 2009). This cascade begins by base pairing of the 5’-end of U1 

snRNA with the 5’ss. Next, the U2 snRNA base pairs with the BPS, establishing the 

U2/BPS duplex, in which the branch point adenosine is bulged out which makes its 2’-

hydroxly group spatially available for nucleophilic attack during the first step of splicing 

(Figure 2.6). At this stage, the U4/U6.U5 tri-snRNP is recruited to the A-complex 

(Konforti and Konarska, 1994). Within the tri-snRNP, the U4 and U6 snRNAs are base 

paired, extensively, forming the stem I and stem II (Figure 2.3 A, B and Figure 2.6) 

(Mougin et al., 2002). In this conformation, the catalytically important regions of U6 are 

engaged in base pairing with U4. After integration of the tri-snRNP, the U5 snRNA 

contacts the 5’ and 3’ exons, the U1/5’ss and U4/U6 interactions are disrupted during 

catalytic activation and the invariant ACAGAG-box of the U6 snRNA base pairs with the 

5’ss. Furthermore, displacement of the U4 snRNA allows U6 to adopt a catalytically 

important internal stem loop structure (U6-ISL), and to form additional interactions with 

U2 through helices Ia and Ib, while its 3’-end was already engaged in base pairing with U2 

within the B complex (helix II). The resulting three-dimensional organization of the 

snRNAs juxtaposes the branched adenosine to the 5’ss of the intron to facilitate the first 

chemical step of splicing (Burke et al., 2012; Sashital et al., 2004; Ryan and Abelson, 

2002; Madhani and Guthrie, 1994).    
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Figure 2.6  Dynamics of the spliceosomal RNA-RNA network. 

Schematic representation of the network of snRNA/snRNA and snRNA/pre-mRNA interactions 

within the pre-catalytic and catalytically activated spliceosome. The catalytically important regions 

of the snRNAs are colored. The 5’-end of each snRNA is indicated by a black dot. Within the pre-

catalytic splicesome, U4/U6 are base paired through stems I and II, U1 contacts the 5’ss and U2 

interacts with the BPS and the 3’-end of U6. Upon the release of the U1 and U4 snRNAs by the 

action of Prp28 and Brr2, and further rearrangements by the Prp2 ATPase, the catalytically 

activated spliceosome is formed. These events allow U6 to form additional base pairs with U2 

(helices Ia and Ib) and to contact the 5’ss. This intricate network of interactions juxtaposes the 

branched adenosine to the 5’-exon-intron junction (Figure kindly provided by Dr. Berthold Kastner 

and modified).   

 

 

2.5 RNA helicases as molecular motors of the spliceosome 

 

RNA helicases are highly conserved enzymes that utilize the free energy of adenosine 

triphosphate (ATP) binding and hydrolysis to catalyze unwinding of RNA-RNA/RNA-

DNA duplexes that are thermodynamically stable or to remodel ribonucleoprotein 

complexes (RNPs) by displacing proteins bound to RNAs and aid in formation of proper 

RNA tertiary structures.  RNA helicases are found virtually in all domains of life and are 

known to play essential roles in various aspects of RNA metabolism. In S. cerevisiae, 

about 2% of the protein-encoding genes code for putative RNA helicases or their related 

proteins (Shiratori et al., 1999). RNA helicases are involved in different RNA metabolic 

pathways such as RNA splicing, RNA export, ribosome biogenesis, RNA turover, small 

RNA processing and translation initiation, termination and inhibition events (Bleichert and 
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Baserga, 2007; Tanner and Linder, 2001). Given their wide functionalities, RNA helicases 

have acquired significant attention over the past years and interesting models have been 

proposed to link the structures and functional mechanisms of these enzymes.  

Helicases have been primarily classified based on their conserved sequence motifs into five 

superfamilies, SF1 to SF5. SF1 and SF2 are the two largest groups that share eight 

conserved sequence motifs I, Ia, Ib, II, III, IV, V, VI (Table 2.1, Figure 2.7). Variation in 

the consensus sequence of the motifs is the basis for classification within each superfamily. 

Most of RNA helicases belong to the SF2 superfamily that includes proteins of DEAD, 

DEAH and Ski2-like (DExH) subfamilies, generally known as DExD/H-box proteins 

named according to their consensus sequence of motif II (DExx). Thus, each family based 

on this type of segregation may include helicases with different phylogenetic source, 

substrate specificity and/or mechanistic features, such as directionality of unwinding 

(Figure 2.8; Bleichert and Baserga, 2007; Caruthers and McKay, 2002).    

   

Figure 2.7  Diagram of conserved sequence motifs of DEAD-box RNA helicases and their 

functions. 

The Q-motif is specific to the DEAD-box helicases and acts as ATP sensor. The corresponding 

function of each motif has been color coded and is shown at the bottom.  

 

 

2.6 Characteristics of the conserved RNA helicase motifs 

 

Crystal structures of SF1 and SF2 helicases have shown that the invariant helicase motifs 

form a functional entity whereby they cooperate together to bind ATP and nucleic acid 

substrates. These observations have been complemented by extensive functional studies of 

the individual motifs to unravel their roles in the molecular mechanism of helicases. 

Among the eight canonical helicase motifs, motifs I and II (also named Walker A and 

Walker B, respectively) show the highest degree of conservation in SF1 and SF2 helicases 
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and are found in NTP hydrolyzing enzymes. Both are identified as GK(T/S) and DExD/H 

consensus sequences. Motif I forms a pocket in which the amino group of the lysine 

interacts with the phosphates of NTP/NDP and the threonine residue coordinates Mg
2+

. 

Within the motif II, the aspartate residue coordinates Mg
2+ 

ion and the glutamate residue 

has been proposed to activate the attacking water molecule that promotes NTP hydrolysis 

(Figure 2.9). Motifs Ia, Ib, IV and V show RNA substrate binding and motif III couples 

ATP hydrolysis to unwinding activity. Motif VI has been suggested to play role in RNA-

coupled ATP hydrolysis (Linder and Daugeron, 2000; Gorbalenya and Koonin, 1993). An 

additional motif called the Q-motif has been recently identified upstream of motif I. It is 

comprised of a conserved glutamine residue and is thought to be a specific characteristic of 

the DEAD-box helicases. The Q-motif acts as an ATP sensor and thereby regulates ATP 

binding and hydrolysis (Cordin et al., 2004; Tanner et al., 2003).  

 

2.7 Mechanisms of nucleic acid strand separation by helicases  

 

The ultimate goal of the various core domains of an RNA helicase is to efficiently couple 

the energy of ATP hydrolysis to base pair opening and/or translocation along an RNA 

substrate. However, some helicases are comprised of flanking domains that are not 

involved in the mechanism of helicase activity and may be necessary to integrate their 

activity into the function of a larger molecular machinery. Most of our knowledge about 

the functional mechanism of helicases has been obtained by structure-function analyses of 

DNA helicases. However, these mechanisms can be, in principle, also employed by RNA 

helicases (Bleichert and Baserga, 2007).  

Helicases often require a single-stranded nucleic acid stretch to bind and initiate their 

remodeling cycles. After binding they show a bias in the polarity of translocation along the 

bound strand (loading strand) i.e. in 3’ to 5’ or 5’ to 3’ direction. For example, NPH-II and 

NS3 RNA helicases have been demonstrated to be merely dependent on a covalently 

linked RNA backbone and show no affinity for nucleotide bases. In addition, some 

helicases have specificity for the nature of the loading strand and in certain cases they are 

also sensitive to the type of the displaced strand. In a variety of biological processes, 

helicases need to separate long base pairs of nucleic acids which call for a stepwise 

catalysis of unwinding. In such cases, the helicase needs to stay on its path by repeated 
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Table 2.1  Examples of SF1 and SF2 RNA helicase subfamilies from S.cerevisiae  

Superfamily                                                         SF2                                                           SF1 

 Subfamily                   DEAD                                      DEAH              Ski2-like             UPf1-like  

 mRNA splicing                  Sub2, Prp5, Prp28, Ded1          Prp2, Prp16,              Brr2 

                                                                                              Prp22, Prp43 

 RNA export                       Sub2, Dbp5 

 RNA turnover and             Dhh1, Dbp2                                                             Ski2, Mtr4                   Upf1 

 quality control 

 Ribosome biogenesis        Has1, Dbp2-4, Dpb6-10                 Prp43                     Mtr4                        Sen1 

 Translation initiation        eIF4A, Ded1, Dbp1 

 Translation termination       Dbp5                                                                                                      Upf1, Hel1 

 Translation inhibition           Dhh1                                                                        Ski2, Slh1 

 Small RNA processing                                                                                             Mtr4                       Sen1 

 Mitochondrial RNA             Mss116, Mrh4                                                             Suv3 

 metabolism 

                                                                                                                          (Adapted from Bleichert and Baserga, 2007) 

 

 

 

 

catalytic cycles to open several base pairs continuously. A number of mechanisms have 

been proposed for translocation and nucleic acid unwinding by helicases, all of which 

involve NTP hydrolysis, alteration of nucleic acid binding affinity and a subsequent 

conformational change (power stroke) that leads to translocation and/or strand separation 

(Tanner and Linder, 2001).      

 

 

 

 



17 Introduction 

 

      

                         

                     

 

 

 

 

 

 

 

 

 

Figure 2.8  Sequence and structural organization of the conserved motifs of RNA helicases.   

 (A) Conserved helicase motifs of different SF1 and SF2 helicase families (indicated at the left; 

RNA helicase families are in bold). (B) Topology of the two RecA-like domains of SF1 and SF2 

RNA helicases. The helicase motifs are indicated and are colored as in figure 2.7. Numbers below 

the diagram indicate the connectivity of the β-strands of the RecA1 domain. Domain insertions are 

shown by green circles (Panel A is adapted from Jankowsky and Fairman, 2007; Panel B is adapted 

from Jankowsky, 2011).                                                                  

                                       

Figure 2.9  Interactions of conserved motifs of SF1 and SF2 helicases with ATP and nucleic 

acid substrates. 

 Solid arrows indicate contacts that are observed in both SF1 and SF2 helicases. Dashed arrows 

indicated interactions that maybe specific to a particular helicase family. For detailed description of 

the interactions refer to the main text (Adapted from Caruthers and McKay, 2002).  

     

A 

B 
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2.7.1 Stepping models 

The stepping models require two RNA binding sites that in response to the signals 

transduced from the NTPase active center undergo intermittent binding and release cycles 

on the RNA. These dual binding sites can act independently of one another and thereby 

one site can always anchor the helicase to RNA. One type of stepping model is the so-

called inchworm mechanism, whereby a cycle of nucleic acid binding, release and 

translocation starts with one binding site bound to the nucleic acid strand tightly, while the 

other site is weakly bound. The weak site dissociates, moves forward to a new position on 

the nucleic acid, and forms tight interactions at this position. At this stage, the former tight 

binding site has been weakened, and the helicase moves towards the first binding site. 

Thus, one cycle of inchworm motion is completed upon six sequential conformational 

changes. This mechanism is applicable to monomeric and dimeric helicases. (Patel and 

Donmez, 2006; Velankar et al., 1999).  

 

2.7.2    Brownian motor model 

In contrast to the stepping models, the Brownian motor mechanism involves only one 

nucleic acid binding site (Figure 2.10). Biochemical and structural investigations have 

identified two distinct conformational states of helicases based on the state of their bound 

NTP, namely a tight and a weak binding state. Upon binding or hydrolysis of NTP, the 

helicase can switch between these states. In the tight binding state, the helicase cannot 

move on the loading strand and it needs a transition to the weak binding state to be able to 

start repositioning in either direction (Brownian motion) or to dissociate from the substrate. 

When the helicase regains its tight binding conformation, it may step forward along the 

nucleic acid with a power stroke. Those helicases that have fluctuated in the opposite 

direction restore their initial binding sites. Thus, compared to the inchworm mechanism, in 

this model ATP hydrolysis is not tightly coupled to translocation and several ATP 

molecules may be hydrolyzed prior to one-step movement of the helicase (Rad and 

Kowalczykowski, 2012; Patel and Donmez, 2006; Delagoutte and Hippel, 2002).  
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Figure 2.10  Proposed models of helicase translocation. 

 (A) Inchworm mechanism. A cycle of inchworm movement (power stroke) of a helicase is shown 

that is comprised of six conformational changes. The two nucleic acid binding sites of the helicase 

undergo changes in the affinity for nucleic acid that leads to transition from tight (closed hand) to 

week (open hand) binding or vice versa. (B) Brownian motor model. On the right, the helicase 

monomer undergoes changes in its affinity for nucleic acid from a tight to weak binding state. In 

the weakly bound state, the helicase starts fluctuating (2). Thereby some molecules move forward 

and a fraction move to the opposite direction until they restore their tightly bound state (1 or 3). On 

the left, changes in the free energy state of the helicase-nucleic acid complexes along the nucleic 

acid are shown. (Modified from Patel et al., 2006).       

 

2.7.2 Local strand separation by DEAD-box RNA helicases  

 

All the above mentioned mechanisms can be only applied to processive helicases but only 

a few RNA helicases have been demonstrated to show appreciable processivity in vitro. 

Recent studies have evidenced that there are RNA helicases that appear to locally displace 

RNA-RNA or RNA-protein interactions without translocation along the loading strand 

(Figure 2.11). Indeed, biochemical and structural studies demonstrate a different 

mechanism for the action of this group of RNA helicases. Cooperative binding of ATP and 

RNA to these helicases induces a transition from open to closed conformation that can lead 

to a bend in the RNA duplexes. Subsequently, ATP hydrolysis may destabilize the closed 

conformation and recycles the RNA helicase (Liu et al., 2008; Yang et al., 2007; Sengoku 

et al., 2006). This model explains how DEAD-box RNA helicases can remodel their 

substrates without the requirement for a loading strand such as displacement of blunt RNA 

duplexes, and in principle, how a nucleic acid duplex can be unwound by non-translocating 

helicases (Henn A et al., 2012; Mallam et al., 2012; Russell et al., 2012).  

A 

B 
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Figure 2.11 Two distinct modes of RNA duplex unwinding by processive (DExH-box) and 

non-processive (DEAD-box) RNA helicases. 

Close-up views of the nucleic acid bound to the DEAD-box RNA helicase, Vasa (A) or to the 

DExH-box helicase, HCV NS3 (B) are shown with the conserved helicase motifs colored as in 

figure 2.7. General modes of local RNA strand separation by a DEAD-box RNA helicase (C) and 

processive unwinding by a DExH-box helicase (D) (Adapted from Jankowsky and Fairman, 2007).    

 

2.8    Regulation of RNA helicase activity by effector proteins 

 

Most of the RNA helicases function in the context of larger RNP complexes such as the 

spliceosome or the exon-junction complex (EJC), where they interact with other proteins 

and their activity is required at a particular step of the biological process mediated by these 

complexes. Moreover, RNA helicases often exhibit high specificity for their substrates 

and/or functional efficacy in vivo, whereas in many cases their biochemical function is 

non-specific and very poor in isolation. Thus, an important question is how the functional 

specificity of the numerous RNA helicases is maintained for specific cellular processes, 

despite them sharing conserved helicase domains. Indeed, many RNA helicases harbor 

specific associated domains, flanking their helicase core, which determine their specificity 

and/or modulate their functionality e.g. by serving as interaction sites with effector 

proteins. Effector proteins or cofactor proteins can stimulate or inhibit helicase and/or 

ATPase activities of RNA helicases in different ways. When the helicase is a component of 

B 

C D 

A 
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a multi-protein complex, an effector protein may recruit the helicase to the complex. Some 

cofactor proteins can cooperatively enhance the specificity and/or helicase activity of RNA 

helicases by bridging the RNA substrate. Furthermore, these regulatory proteins can 

mediate direct physical interaction with the RNA helicase, by stabilizing a particular 

conformation that is either favorable (stimulatory) or inhibitory for its ATPase/helicase 

activities (Bleichert and Baserga, 2007; Cordin et al., 2006; Silverman et al., 2003). The 

processivity of a helicase is defined as the probability that the enzyme will translocate 

forward and conduct the next step of base pair opening as opposed to dissociating from its 

RNA substrate. Helicase processivity is often regulated by cofactor proteins that may 

interact functionally with the helicase to trap intermediate single-stranded RNA products 

of the double-stranded RNA unwinding reaction and facilitate their subsequent use (von 

Hippel and Delagoutte, 2001).  

To date, many RNA helicase associated proteins have been identified and proposed to act 

as potential helicase cofactors; however, the effects of only very few of them on their 

corresponding RNA helicase have been biochemically investigated. eIF4A is one of the 

few well-characterized eukaryotic RNA helicases. eIF4A interacts with eIF4G and eIF4E, 

forming the eIF4F complex that is required for cap-dependent translation initiation. 

Purified eIF4A exhibits RNA-stimulated ATPase activity and nonprocessive RNA 

unwinding activity. Strikingly, eIF4G directly interacts with this helicase and stimulates its 

ATPase activity in vitro (Bleichert and Baserga, 2007;Korneeva et al., 2005). Furthermore, 

eIF4B is another effector protein that binds eIF4A alone or in complex with eIF4F and 

enhances the coupling of ATP hydrolysis to strand separation by eIF4A (Özeş et al., 2011).   

Dbp5 is a DEAD-box RNA helicase that acts in mRNA export from the nucleus, and it is 

thought to remodel the mRNPs at the nuclear pore complex. Dbp5 directly binds to its 

cofactor protein Gle1, which leads to stimulation of its ATPase activity. Interestingly, 

inositol hexakisphosphate (InsP6), a small second messenger molecule that interacts with 

Gle1, is necessary for the optimal activation of Dbp5 by Gle1 (Alcázar-Román et al., 

2006). Very recently, the crystal structure of Dbp5-Gle1- InsP6 and biochemical studies on 

this complex, provided a mechanistic insight into the regulatory mechanism of Dbp5 by its 

cofactors. Montpetit et al., demonstrated that both Gle1-InsP6 and eIF4G helicase cofactors 

activate their interacting DEAD-box helicases by stimulating RNA release and thus, fast 

ATP-dependent recycling of enzymes that have just unwound RNA duplexes (Montpetit at 

al., 2011). An example of regulation of a processive RNA helicase by an effector domain, 
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is the stimulation of the helicase cassette of hepatitis C viral nonstructural protein 3 (NS3) 

by its associated domain. The full-length NS3 protein consists of an N-terminal serine 

protease domain and a C-terminal helicase/ATPase cassette. Intriguingly, the protease 

domain is required for optimal RNA unwinding activity of the NS3 helicase cassette and 

strongly increases the affinity of NS3 for RNA (Beran et al., 2007; reviewed in Frick, 

2007).  

The effector proteins not only activate RNA helicases, but they can also specifically 

suppress these enzymes. However, our current knowledge of this type of regulatory 

mechanism is very poor. Regulation of the mammalian eIF4AIII RNA helicase, which is a 

core component of the exon-junction complex (EJC), is one of those very few examples. 

Here, the MAGOH/Y14 heterodimer within the EJC, interacts with eIF4AIII and inhibits 

the release of inorganic phosphate and ADP (ATP turnover), and thereby locks eIF4AIII 

and the EJC onto the mRNA. This is achieved through locking a closed conformation of 

eIF4AIII, in which the hydrolyzed ATP and the bound RNA are trapped (Nielsen et al., 

2009; Andersen et al., 2006).   

 

2.9 Spliceosome activation: Brr2 as a key player 
 

During pre-mRNA splicing, after completion of the spliceosome assembly, the major step 

is the exchange of the ACAGAG-box of U6 snRNA for U1 snRNA at the 5’-splice site, 

and unwinding of the most stable duplex of the spliceosome, formed through extensive  

intermolecular base pairing (stem I and stem II) of U4 and U6 snRNAs (Brow and Guthrie, 

1988). The displacement of U4/U6 snRNA interaction is a central event during catalytic 

activation that makes U6 free to adopt catalytically important structures (e.g. U6 internal 

stem loop), and to establish new interactions with the U2 snRNA (helix Ia and Ib) (refer to 

Figure 2.6; Brow et al., 2002). The DExH-box protein Brr2 (h200K), has been implicated 

in the ATP-dependent unwinding process of U4/U6 snRNAs (Kim and Rossi, 1999; 

Raghunathan and Guthrie, 1998; Laggerbauer et al., 1998). Brr2 is an integral component 

of the U5 snRNP and joins the pre-spliceosome (A complex) as a component of the 

U4/U6.U5 tri-snRNP (Wahl et al., 2009; Laggerbauer  et al., 1996; Lauber et al., 1996). In 

contrast to most of the spliceosomal ATPases/helicases that are recruited to the 

spliceosome transiently, Brr2 remains stably associated with the spliceosome, and is 

thought to act not only as a key player during the activation step, but also as a facilitator of 
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U2/U6 dissociation during disassembly of the spliceosome (Small et al., 2006). 

Furthermore, Brr2-mediated activation of the spliceosome results in the dissociation of a 

number of U4/U6-specific proteins.  

Brr2 is the unique representative of the Ski2-like subfamily of the SF2 RNA helicases (see 

Table 1), and the largest helicase (ca. 245 kDa) in the spliceosome which contains an N-

terminal region (ca. 400 amino acids) followed by two tandem helicase domains 

(Raghunathan and Guthrie, 1998). Each helicase cassette is composed of conserved dual-

RecA domains, typical of helicases, followed by a functionally unknown region which 

shows homology to a portion of the Sec63p subunit of the ER translocon (Ponting, 2000). 

The Sec63 unit may confer Brr2 functional properties that could be specific to this 

spliceosomal helicase. Previous yeast genetic studies have shown that only the activity of 

the N-terminal helicase cassette of Brr2 is required for pre-mRNA splicing and cell 

viability. The C-terminal cassette of Brr2 bears catalytically detrimental mutations within 

the helicase motifs and is thought to be inactive (Kim and Rossi, 1999). Furthermore, 

exhaustive two-hybrid screening with Brr2 has identified a number of proteins, essential 

for different steps of splicing, to interact with the C-terminal cassette of Brr2; e.g. Prp2 and 

Prp16 (Liu et al., 2006; van Nues and Beggs, 2001). Therefore, the second cassette of Brr2 

is generally considered as a versatile protein-protein interaction platform. 

Since, Brr2 is a core component of the spliceosome that initiates a cascade of structural and 

compositional rearrangements; it must be faithfully regulated to prevent premature 

activation of the spliceosome. Furthermore, as it is required twice during the splicing cycle, 

it needs to be repeatedly switched on and off. Within the U5 snRNP, Brr2 stably interacts 

with two large spliceosomal proteins, Prp8 and Snu114 (Achsel et al., 1998), both of which 

have been implicated in the regulation of Brr2.  

Prp8 (human 220K) is the largest and highly conserved scaffolding protein of the 

spliceosome that constitutes part of the catalytic core of the spliceosome, and is involved in 

several central molecular rearrangements that takes place (reviewed in Grainger and 

Beggs, 2005). The evidence for the role of Prp8 in spliceosome activation was provided by 

a genetic mutation in U4 snRNA (U4 cs-1) that hyperstabilizes the extended U4/U6 stem I 

and prevents the U6 interaction with the 5’-splice site. Indeed, previous genetic studies 

proposed that Prp8 may regulate the exchange of U6 for U1 at the 5’-splice site. The U4 

cs-1 mutation was shown to stall the U1and U4/U6 dissociation steps. Importantly, several 

mutations in Prp8 could suppress the U4 cs-1 phenotype. This led to the proposal that Prp8 
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may negatively regulate Brr2 activity (Kuhn and Brow 2000; Kuhn et al. 1999; 2002). In 

addition, previous two-hybrid data found the interaction of the C-terminal region of Prp8 

with Brr2 (Liu et al., 2006; van Nues and Beggs, 2001). This region contains a domain 

with a three-dimensional fold resembling RNase H, flanked on one side by a β-hairpin loop 

and on the other by an α helical domain (Pena et al. 2008; Ritchie et al. 2008; Yang et al. 

2008). Previously, in the human B complex, a cross-link was identified between the 5'ss 

and the Prp8 RNase H domain (Reyes et al. 1996; Reyes et al. 1999), leading to the 

proposal that it may be involved in the handover of the 5'ss from the U1 snRNA to the 

ACAGAG-box of the U6 snRNA. The RNase H domain of Prp8 is followed by a 

Jab1/MPN-like domain and a C-terminal region, which is partly unstructured, and is linked 

to a human retinal degenerative disease, retinitis pigmentosa (Maeder et al., 2009, Pena et 

al, 2007). The Jab1 domain shows similarity to Zn
2+

-dependent isopeptidases, but it has 

lost its deubiquitination activity, while retained its ability to bind ubiquitin (Bellare et al. 

2006). 

Snu114 (human 116K) is the homologous of the eukaryotic elongation factor 2 (EF-2), a 

GTPase that promotes the translocation of mRNA and tRNA through the ribosome 

(Fabrizio et al., 1997). Mutations in Snu114 lead to formation of the arrested spliceosome, 

where U4/U6 is accumulated, and suggest a role for this protein in the regulation of U4/U6 

unwinding (Bartels et al., 2002). Moreover, Snu114 is involved again during the 

disassembly of the spliceosome, where it regulates the release of U2 and U6 snRNAs. 

Indeed, it has been suggested that the GTP-bound state of Snu114 promotes both 

spliceosome activation and disassembly through regulation of Brr2 activity (Small et al., 

2006).    

 

2.10    Impaired function of Brr2 leads to human retinal disease 

 

Retinitis pigmentosa is a hereditary disorder causing progressive degeneration of the 

photoreceptors in the retina. It leads to night blindness in patients, and upon further 

progression at later ages, complete loss of visual fields. Unlike mutations in genes that 

have specific functions in the retina, those in the splicing-related genes, prp8, brr2, prp3 

and prp31, are ubiquitously expressed in all tissues, and cause an autosomal dominant 

form of retinitis pigmentosa (Ivings et al., 2008). Importantly, these mutant splicing factors 

are components of the U4/U6.U5 tri-snRNP, which indicates a potential defect in the 
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formation of functional tri-snRNP. Recently, it has been reported that retinal cells contain a 

high level of snRNPs and spliced pre-mRNAs, indicating an enhanced splicing activity in 

these cells. Thus, unlike other tissues, retinal cells appear to be more sensitive to splicing-

related defects (Tanackovic et al., 2011).  

A number of missense or nonsense mutations in the C-terminal tail of the Prp8 Jab1 

domain lead to a severe type of retinitis pigmentosa (RP13) (Towns et al., 2010; Martínez-

Gimeno et al., 2003).  In addition, several missense mutations have recently been identified 

within the helicase domains of the N-terminal cassette of Brr2 that give rise to early-onset 

retinal degeneration (RP33; Liu et al., 2012; Benaglio et al., 2011). Together, these 

naturally occurring mutations may indicate fundamental defects in the mechanisms 

underlying the Brr2-mediated activation of the spliceosome. 
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3 Discussion 
 

The DExH-box RNA helicase Brr2 has been implicated in the activation process of the 

spliceosome. It contains two tandem helicase cassettes, each encompassing canonical dual 

RecA domains, flanked by a Sec63 homology unit of unknown function. In this work, 

published in Mol. Cell (2009), it was found that the crystal structure of the C-terminal 

Sec63 unit of Brr2 shows previously unknown structural similarity to an archaeal DNA 

helicase Hel308. This similarity allowed to devise a model of the N-terminal helicase 

cassette of Brr2, which was further validated by rational mutagenesis combined with in 

vivo analysis and in vitro enzymatic approaches. These findings showed how the RecA-

like domains and the Sec63 unit form a functional entity suitable for RNA duplex 

unwinding (further discussed in sections 3.1 and 3.2). The crystal structure of a large 

fragment of human Brr2, encompassing both helicase cassettes, solved by our 

collaborators, could provide a basis for further functional analyses. This work showed that 

the C-terminal helicase cassette of Brr2 (Brr
CC

) is required as an intramolecular cofactor 

for the active N-terminal cassette (Brr
NC

). This finding was further corroborated by 

structure-guided mutagenesis along the extensive interaction surface of the helicase 

cassettes. It is also shown that Brr
CC

 binds but cannot hydrolyze ATP and that mutations 

that disrupt its nucleotide-binding pocket strongly affect helicase activity of the enzyme. 

Together, the results were published in PNAS (2012) and are discussed in sections 3.3, 3.4 

and 3.5. Next, I examined the path and the direct targeting region of Brr2 on U4/U6 

snRNAs and show that Brr2 is loaded onto the central domain of U4 preceding U4/U6 

stem I, and thus translocates in a 3’ to 5’ direction along U4 to unwind the U4/U6 stem I 

first. Furthermore, I investigated the regulation of Brr2 by a C-terminal region of Prp8, a 

large and highly conserved multi-domain protein of the spliceosome. This region contains 

consecutive RNase H and Jab1/MPN-like domains. I found that the RNase H domain of 

Prp8 binds the U4/U6 snRNAs with the U4 central domain contributing to complex 

formation. I also identified amino acids of the Prp8 RNase H domain involved in RNA-

protein interactions and demonstrated that the RNase H domain inhibits Brr2-catalyzed 

U4/U6 unwinding by sequestering the loading RNA strand, U4 snRNA. This part was 

recently published in Genes Dev. (2012) and is discussed here in sections 3.6, 3.7, 3.8 and 

3.9.  In addition, biochemical assays, combined with the crystal structure of human Brr2 

complexed with the Jab1/MPN domain of Prp8, showed that the Jab1 domain binds Brr
NC

, 

and that the C-terminal tail of Prp8 Jab1, can inhibit Brr2-mediated U4/U6 snRNA 
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unwinding by transiently occluding Brr2's RNA binding channel. Upon removal of this tail 

from the Brr2’s RNA pocket, Jab1 acts as a coactivator, enhancing the efficiency with 

which Brr2 couples ATP hydrolysis to U4/U6 strand separation and enabling Brr2 to act 

processively. Finally, in vitro and in vivo characterization of Prp8 Jab1 mutations leading 

to retinitis pigmentosa in human indicates that subtle changes in the Prp8Jab1/MPN C-

terminal tail can alter regulation of Brr2 activity. Thus, these studies (submitted for 

publication; further discussed in sections 3.10, 3.11 and 3.12) reveal a unique dual 

regulatory mechanism of the Prp8 Jab1 domain in regulation of the Ski2-like helicase Brr2, 

and provide novel insights into the intricate cascade of spliceosome activation.    

 

3.1 An initial structure-based working model of Brr2 RNA helicase 

 

The crystal structure of Brr2’s C-terminal Sec63 unit (C-Sec63), solved by Vlad Pena,  

revealed a previously unknown similarity of two domains, a helical-bundle (HB) domain 

and a helix-loop-helix (HLH) domain to the domains IV and V of the archaeal DNA 

helicase Hel308 (Mol. Cell, 2009). However, the C-terminal Immunoglobulin-like (IG) 

domain was absent in the structure of Hel308. This outlines the same architectural 

organization of domains in Brr2 helicase cassettes as in Hel308 (Figure 3.1A). 

Furthermore, this structural homology together with sequence similarity of the RecA-like 1 

(RecA1) and RecA2 domains allowed building a homology model of the Brr2 N and C-

terminal cassettes using the Hel308 structure as a template.  

Hel308 is a processive Ski2-like DNA helicase with 3’ to 5’ directionality that functions at 

the stalled replication forks (Guy and Bolt, 2005). The recent crystal structure of archaeal 

Hel308 in complex with a short DNA duplex containing a single-stranded 3’-overhang 

(Büttner et al., 2007) provided an insight to the mechanism of nucleic acid strand 

separation by the family of Ski2-like helicases, to which Brr2 also belongs (Figure 3.1B 

and 1C).  In this DNA-helicase complex, the single-stranded region of DNA is threaded 

through the central tunnel formed by the RecA1, RecA2 and the HB domains and 

subsequently, it bends around the HB domain and contacts the HLH domain via the sugar-

phosphate backbone. Indeed, most of helicases are dependent on the presence of a single-

stranded overhang adjacent to the duplex junction to initiate unwinding (loading strand). 

However, the modes of interactions with the loading strand can be specific and vary 

according to the unwinding mechanism of helicases (Mackintosh and Raney, 2006). In this  
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Figure 3.1  Similarity of domain organization between Brr2 and Hel308. 

(A) Schematic representation of the domain organization in Hel308 and Brr2. RecA-like domains,  

light and dark gray; WH domain, black; helical bundle domain (ratchet), blue; HLH domain, red. 

Ribbon plots of the Hel308 DNA helicase in complex with DNA (B) (Buttner et al., 2007) (PDB 

ID 2P6R), and the Brr2 helicase cassettes with a modeled RNA (Santos et al., 2012). DNA or 

RNA, gold; Brr2 N-terminal extension and intercassette linker, magenta.  

 

A 

B 
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respect, I show that while Brr2 efficiently bound and unwound the wildtype yeast U4/U6 

(pre-bound to Snu13 to stabilize the U4 5’-stem loop), it did not bind the blunt end U4/U6 

variant lacking the 5’ and 3’ single stranded overhangs (U4
1-64

/U6
55-81

) (Mol. Cell, 2009, 

Figure S4 and Figure S7). Furthermore, the unwinding of this truncated U4/U6 was 

dramatically reduced, which arises from the reduced formation of functional Brr2-RNA 

complexes (Mol. Cell, 2009, Figures 4 and 7B). 

 

3.2 The helical bundle domain of the N-Sec63 unit of Brr2 may act as a 

ratchet by directly contacting RNA  

 

In Hel308, the analog of the helical bundle domain of Sec63 unit has been suggested to act 

as a ratchet. Notably, removal of this domain uncouples the ATP hydrolysis and helicase 

activity, and an equivalent of this domain is absent in many non-translocating helicases 

such as DEAD-box RNA helicases (Büttner et al., 2007; Sengoku et al., 2006). All these 

pieces of evidence suggest that this domain is required to maintain the processive 

translocation of Ski2-like helicases. A long central helix in the equivalent HB domain of 

Hel308 directly contacts the 3’-ssDNA, where a positively charged residue (Arg) and an 

aromatic residue (Trp) stack on the base moieties. Similar to the Hel308, the long 

scaffolding helix of the N-Sec63 HB domain runs along the presumed RNA-binding tunnel 

and aromatic (F1100) and positively charged side chains (R1107 and R1110) protrude 

from the underside of this helix and are predicted to intermittently contact the RNA during 

the cycle of ATP hydrolysis and translocation (Pena et al., 2009). In agreement with the 

importance of these residues, mutation of R1107 and R1110 resulted in a defect in the 

splicing of pre-U3 RNA and could completely abolish the RNA unwinding activity of 

Brr2, respectively (Mol. Cell, 2009, Figures 5B, 6D and 7D). Very recently, a number of 

mutations in human Brr2 were discovered to give rise to a severe type of autosomal 

dominant retinitis pigmentosa (RP33), a progressive retinal dystrophy. Interestingly, two of 

these mutations reside in the corresponding ratchet helix of human Brr2 (S1087L and 

R1090L), the yeast equivalents of which (N1104L and R1107L), impaired unwinding of 

U4/U6 within the tri-snRNPs (Liu et al., 2012; Benaglio et al., 2011; Li et al., 2010; Zhao 

et al., 2009). Furthermore, I observed that upon S1087L (RP33-linked) mutation in a 

human Brr2 variant encompassing the entire helicase region (hBrr2
HR

), the helicase 

activity was dramatically reduced (PNAS, 2012, Figure S7) and both the RNA-stimulated 
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ATP hydrolysis and the RNA binding to a 12 bp RNA duplex were significantly affected 

(by ~ 2-fold) compared to the wildtype.     

All together, these findings indicate the crucial function of HB domain of the N-Sec63 unit 

in the unwinding mechanism of Brr2 through acting as a ratchet that couples 

conformational changes to nucleic acid translocation, in a manner similar to the case of 

Hel308.  

 

3.3 Brr2 consists of active N-terminal and non-active C-terminal 

helicase cassettes  

 

Previously, genetic analyses have shown that only the helicase activity of the N-terminal 

cassette is required for pre-mRNA splicing (Kim and Rossi, 1999). The C-terminal cassette 

bears non-canonical helicase motifs, which are thought to render it inactive (Zhang, et al., 

2009; Pena et al., 2009), and is generally considered as a versatile platform mediating 

protein-protein interaction (van Nues and Beggs, 2001). Whether the C-terminal cassette 

also influences activities of the N-terminal cassette directly and if so how, was unknown. 

Recent X-ray crystal structure of a large fragment of human Brr2 encompassing both 

helicase regions, determined by K. Santos in the group of Markus C. Wahl, revealed direct 

interaction of both of the Hel308-like N-terminal (Brr2
NC

) and C-terminal (Brr2
CC

) 

helicase cassettes (PNAS, 2012). These extensive interactions are established primarily 

through the IG domain of the N-terminal cassette, which is fitted squarely between the WH 

domain and the RecA2 domain of the C-terminal cassette. Additional contacts ensue 

between the RecA2 domain of the C-terminal cassette and the RecA1 and the WH domains 

of the N-terminal cassette. However, the crystallized fragment lacked the Brr2’s N-

terminal tail (ca. 400 amino acids) that may mediate additional contacts with the helicase 

region. Consistently with previous in vivo experiments, I showed that hBrr2
NC

 is the 

catalytic helicase cassette of Brr2, while the hBrr
CC

 was inactive in both ATPase and 

U4/U6 unwinding activities (PNAS, 2012, Figure 2B, 2C). The RecA2 domain of 

processive helicases contain a hairpin loop that is ideally positioned to plow through the 

nucleic acid duplex upon forward movement and thus acts as a strand separation device. 

Mutation of the separator loop can abolish the helicase activity in other helicases (Lam et 

al., 2003). Significantly, removal of the separator loop of Brr2
NC

 rendered it unable to 

support cellular growth (Mol. Cell, 2009, Figure 6A). The lethal phenotype confirms the 
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crucial function of this element in Brr2-mediated unwinding of U4/U6. Furthermore, in 

line with the conclusion that the C-terminal cassette of Brr2 is not directly involved in 

melting the dssRNA substrate, I show that truncation of the β-hairpin loop of the Brr2
CC

 

had no effect on either Brr2 enzymatic activity or its RNA binding (PNAS, 2012, Figure 

2A and Figure 4). This could also indicate that the RNA does not enter the second helicase 

cassette of Brr2 and should take another path (see below).     

 

3.4 The C-terminal pseudohelicase domain of Brr2 acts as an     

intramolecular cofactor 

 

Interestingly, the isolated Brr2
NC

, compared with the Brr2 variant containing both helicase 

domains, exhibited an approximately 2-fold decrease in RNA-stimulated ATPase activity 

and a dramatic reduction of helicase activity both towards its complex U4/U6 snRNA 

substrate and a short linear RNA duplex (PNAS, 2012, Figure 2B, 2C). Given that there is 

an extensive interface between the N- and C-terminal cassettes, these results suggest that 

the C-terminal cassette is an intramolecular cofactor of the N-terminal helicase. The 

importance of this interaction surface for the communication of cassettes was further 

elucidated by mutational analysis of the interacting residues. As I showed here, the 

majority of single alanine substitutions located at the interface of the N-terminal RecA1 or 

WH domains and the C-terminal RecA2 domain (R603A, R637A, K1544A, H1548A and 

T1578A) impaired the U4/U6 unwinding activity of Brr2. However, as revealed by the 

anisotropy experiments, the K1544A mutant could still bind RNA in a manner similar to 

the binding by the wildtype protein (PNAS, 2012, Figures 4E-H). Additionally, I examined 

the effects of alterations in the linker between the helicase cassettes. Indeed, mutations in 

the inter-cassette linker that contact the N-terminal IG (ILP1290-2AAA) or C-terminal 

RecA-1 domain (LPV1307-9AAA) and also a reciprocal contact from the N-terminal IG 

domain to the linker (R1195A) caused significant defects in the helicase activity of the N-

terminal cassette. Significantly, mutation of a triple proline motif in the centre of the linker 

(PPP1296-8AAA) with no direct contacts to Brr2 helicase regions reduced ATPase 

activities but strongly up-regulated helicase activity (PNAS, 2012, Figures 4E-G). These 

results  suggest that the linker can transmit conformational changes to the N-terminal HLH 

and HB domains via the intervening IG domain.   
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Despite lacking the ability to hydrolyze ATP, the Brr2
CC

 could stably bind ATP-Mg
2+

 after 

soaking the crystals in this solution (Santos et al., 2012). Strikingly, mutation of residues in 

the ATP binding pocket that could interfere with the accommodation of ATP 

(G1355Q/K1356E) showed that ATP clamping by the Brr2
CC

 could have consequences on 

the overall enzymatic activity of Brr2 (PNAS, 2012, Figure 4). Thus, our data show for the 

first time that the C-terminal cassette can regulate the N-terminal helicase cassette form a 

distance and play a direct role in spliceosomal RNP remodeling events without 

contributing RNA helicase activity itself.  Given that a number of proteins required for 

different steps of splicing interact with the C-terminal cassette (van Nues and Beggs, 

2001), it is imaginable that these additional interactions may control the functionality of 

Brr2, as a permanent resident of the spliceosome, enabling it to perform its function 

reliably during the steps of activation and disassembly of the spliceosome.   

 

3.5 Implications for the path of RNA through Brr2 

 

As in Hel308 and the SF2 RNA helicase Mtr4, Brr2 is expected to thread one RNA strand 

through the central tunnel of the N-terminal cassette during duplex unwinding, while the 

separator loop is inserted into the RNA duplex region. The single stranded RNA should 

then contact the conserved RNA binding motifs of the RecA1 and RecA2 domains as well 

as the underside of the scaffolding ratchet helix of the HB domain (PNAS, 2012, Figures 

S5 and S6). Involvement of these motifs in RNA binding is supported by the yeast brr2-1 

allele, which gives rise to a protein bearing an E610G exchange that impedes U4/U6 di-

snRNA unwinding (Raghunathan and Guthrie, 1998) and fails to release the excised intron 

and dissociate snRNAs during spliceosome disassembly (Small et al., 2006). The 

equivalent E591 of hBrr2 lies at the center of the helicase motif Ic and is exposed on the 

inner surface of the RNA-binding tunnel across the ratchet helix.  

However, upon emergence from the N-terminal tunnel, the ssRNA may either exit via a 

positively charged surface on the N-terminal HLH domain in Hel308-like fashion or 

continue towards the C-terminal cassette. Mutation of positively charged surface residues 

of the HLH domain (R1133E/K1134E) led to enhanced ATPase activity while the U4/U6 

unwinding activity and binding to a model RNA duplex was reduced dramatically (PNAS, 

2012, Figure 4). Similarly, in Hel308, a conserved triplet of arginines on the surface of its 

HLH domain has been proposed to engage ssDNA for coupling to productive ATP 
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hydrolysis (Woodman et al., 2007). It is likely that the contacts of the HLH domain on the 

remote 3’-tail of the RNA strand is a key step in initiating the loading of Brr2 onto U4/U6 

and transducing this to efficient ATP hydrolysis.       

 

3.6 Mechanism of RNP remodeling by Brr2 during spliceosome 

activation 

 

 Previous studies have documented the 3’ to 5’ translocation of Hel308, Mer3 and Mtr4 on 

DNA or RNA strands; all members of the Ski2-like helicase subfamily (Bernstein et al., 

2008; Guy and Bolt, 2005; Nakagawa and Kolodner, 2002). Consequently, the homology 

of Brr2 to these helicases suggests that Brr2 also acts by translocating in the 3’ to 5’ 

direction on its nucleic acid substrates. A 3’ to 5’ polarity would be well suited to initiate 

dissociation of the U4/U6 complex during spliceosome activation, since both U4 and U6 

snRNAs exhibit single-stranded 3’-overhangs that may serve as entry points for Brr2. I 

showed that Brr2 binds to U4/U6 with high affinity (Kd ~30 nM) and that it exhibits higher 

specificity for unwinding of this complex three-way junction RNA structure than of a 

linear RNA duplex (18 bp) with a 3’-overhang. Furthermore, I demonstrated by 

constructing various mutants of U4/U6 snRNA that Brr2 is loaded onto the single-stranded 

central domain of U4 preceding the U4/U6 stem I and thus translocates in 3’ to 5’ direction 

to unwind stem I before stem II is unwound (Genes Dev., 2012, Figure 5). Notably, the 

presence of the 3’-overhang of U6 adjacent to U4/U6 stem II was not sufficient to allow 

loading and unwinding (Genes Dev., 2012). This model of U4 release may allow U6 to 

form U2/U6 helix Ia even before the stem II is disrupted. Indeed, these results are nicely 

consistent with previous report on the minor spliceosome that shares a homologous snRNA 

interaction network, demonstrating that during the activation step of minor spliceosomes, 

the  stem I of U4atac/U6atac is also unwound prior to stem II and an alternative 

U12/U6atac helix Ia is formed (Frilander and Steitz, 2001). In parallel to our findings, 

recent in vivo crosslinking and cDNA sequencing (CRAC) by Hahn et al., (2012) revealed 

that the N-terminal cassette of yeast Brr2, and not the C-terminal cassette, is largely 

crosslinked to the U4 snRNA at U4/U6 stem I and sequences immediately 3’ to this region. 

Remarkably, this CRAC analysis did not detect any RNA crosslink to the C-terminal 

helicase cassette of Brr2 which supports our model for the path of the central domain of U4 

snRNA through the HLH domain of the N-terminal cassette. 
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A number of RNA helicases also act as RNPases in vitro; i.e. they are capable of detaching 

bound proteins from nucleic acid substrates. Dissociation of proteins that recognize 

double-stranded regions could be a consequence of the helicase disrupting the duplex 

binding platform of the protein. It has been evidenced that Hel308 is capable of displacing 

streptavidin bound to biotinylated oligonucleotides in vitro (Richards et al., 2008). The 

separator loop employed by Hel308 to dissociate the substrate duplex may similarly allow 

to ‘shave’ proteins off single-stranded RNA strands (Buttner et al., 2007).  

The U4/U6 interaction region in the pre-catalytic spliceosome binds several proteins. 

Protein 15.5K (Snu13) initiates protein assembly at a neighboring K-turn (Nottrott et al., 

1999; Vidovic et al., 2000) and leads to the subsequent recruitment of proteins Prp31 and 

the ternary Prp3-Prp4-CypH complex to the 5’-stem loop of U4 and U4/U6 stem II 

(Nottrott et al., 2002). In addition, the 3’- region of U6 is bound to the LSm heptameric 

complex (LSm 2-LSm8) that can prevent Brr2 interaction with this region (Achsel et al., 

1999). In our scenario of Brr2 action by walking on U4, after opening the stem I Brr2 may 

continue its translocation on the 5’-stem loop to destabilize proteins that are in contact with 

the three-way junction of U4/U6 or it may rapidly load onto the stem II, leaving the 5’-

stem loop intact. Additionally, internal base pairing of the U6 ISL and formation of U2/U6 

helix Ia may also cooperate, leading to the fast melting of the U4/U6 stem I and stem II.  

 

3.7 The Prp8 RNase H-like domain interacts specifically with U4/U6 

snRNA 

 

Earlier two-hybrid data indicated that the largest spliceosomal protein Prp8 interacts with 

Brr2 through its C-terminal region (Liu et al., 2006). Furthermore, it shown was very 

recently that a C-terminal fragment of Prp8 could bind and modulate Brr2 activity (Maeder 

et al., 2009, Mol. Cell, 2009).  However, the mechanism whereby it regulates Brr2 activity 

is unclear. The Prp8 C-terminal region contains a domain with a three-dimensional fold 

resembling RNase H, flanked on one side by a β-hairpin loop and on the other by an α-

helical domain (Pena et al. 2008; Ritchie et al. 2008; Yang et al. 2008). It also contains a 

Jab1/MPN-like domain that has lost its deubiquitination activity, but retained its ability to 

bind ubiquitin (Bellare et al. 2006). 
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Here, I have provided evidence that within the C-terminal portion of Prp8, the RNase H 

domain and not the Jab1/MPN domain function as an RNA binding unit of Prp8 and that it 

specifically interacts with the yeast U4/U6 snRNAs in vitro, with a Kd value of ~1.5 µM 

(Genes Dev., 2012, Figures 1-2 and Figure S1). Earlier studies led to reports of a weak 

affinity of the isolated RNase H domain (Kd of ~20 µM) for a four-helix junction RNA 

construct mimicking the U2/U6-5’splice site (Ritchie et al., 2008). Binding studies using 

various deletion mutants, combined with the results from UV crosslinking and from RNase 

protection assays demonstrate that the RNase H domain requires single-stranded regions of 

the U4 and U6 snRNAs preceding U4/U6 stem I, with the single-strand region of U4 

contributing decisively to RNA-protein complex formation. Interestingly, this interaction 

was not dependent on the sequence of the U4 central domain, as it could be inverted 

without hindering complex formation (Genes Dev., 2012, Figures 1-3 and Figure S2). 

Therefore, the particular three-way junction structure of U4/U6 appear to be important for 

the affinity of the Prp8 RNase H domain for binding, as modifying the 5’-stem loop of U4 

could also affect complex formation (Genes Dev., 2012, Figure 2).    

Notably, on the basis of the structural probing data with purified human and yeast tri-

snRNPs, the central domain of U4 is either inaccessible (in case of humans) or somewhat 

less accessible (in the case of yeast) for chemical modification, indicating that within the 

U4/U6.U5 tri-snRNP, this region of the U4 snRNA can potentially be protected by proteins 

(Mougin et al., 2002).  

 

3.8 Mapping of the U4/U6 interaction site on the Prp8 RNase H domain 

 

Previously, crosslinking studies with the human B-complex revealed a crosslink between 

the 5’-splice site of pre-mRNA and a 310-helix within the Prp8 RNase H central channel 

(Reyes et al., 1996 and 1999; see also Genes Dev., 2012, Figure S1,). This result could be 

reproduced with the isolated RNase H domain and the U2/U6-5’splice site four-helix-

junction RNA oligo (Ritchie et al., 2008). Our analysis of the in vitro reconstituted 

complex of the RNase H and a U4/U6 mimicking oligo by mass spectroscopy could map 

the binding site to a region at the base of the β-hairpin loop of the Prp8 RNase H domain 

(Genes Dev., 2012, Table 1, Figure S3 and Figure 4). The importance of this region was 

further supported by a splicing defect observed upon mutating the crosslinked tyrosine of 

Prp8 to alanine (Prp8
Y1858A

; Figure S4 in Genes Dev., 2012). Strikingly, mutations in a 
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similar region of Prp8 have been indicated to suppress a U4 cold-sensitive mutation (U4-

cs1) which hyperstabilizes the U4/U6 interaction and thus interferes with the U4/U6 

unwinding process during spliceosome activation. Indeed, one of these suppressor 

mutations (RNase H
V1860D

) exhibited a lower affinity for binding to U4/U6 snRNA (Genes 

Dev., 2012, Figure S5). Thus, the physical interactions identified in this work are in 

agreement with the previous genetic interactions of Prp8 and U4 snRNA. As double-

stranded nucleic acid is a common substrate of RNase H enzymes, it is possible to propose 

that the Prp8 RNase H domain accommodates the U4/U6 stem I within its central channel 

(Nielsen and Staley, 2012).     

 

3.9 A potential mechanism of Brr2 regulation by the Prp8 RNase H 

domain 

 

Within the C-terminal portion of Prp8, the RNase H domain is followed by a Jab1/MPN-

like domain. Indeed, I have defined the Jab1/MPN domain as a direct binding region of 

Prp8 to Brr2 and showed that the RNase H domain does not interact with Brr2 in vitro 

(Genes Dev., 2012, Figure 7B). Furthermore, I demonstrate that the RNase H domain 

interaction with the three-way junction structure of the U4/U6 snRNA hinders the Brr2-

mediated unwinding of U4/U6 in vitro (Genes Dev., 2012, Figure 7A). Since the RNase H 

domain has no direct affinity for Brr2, the inhibition of Brr2 activity may take place 

indirectly through sequestering the central domain of U4/U6, which is required as a 

loading site for Brr2 to initiate unwinding. This idea was corroborated by the results of the 

in vitro binding competition experiment, which showed that the binding of RNase H 

prevents Brr2 loading onto U4/U6, as no ternary complex of Brr2-U4/U6-RNase H was 

detected (Genes Dev., 2012, Figure 7B). These in vitro results are consistent with previous 

in vivo studies suggesting that Prp8 negatively regulates Brr2-mediated activation of the 

spliceosome (Kuhn et al., 2002; Kuhn and Brow, 2000; Kuhn and Brow, 1999).  

On the basis of these findings, I propose that prior to the spliceosome activation, the 

interaction of the Prp8 RNase H domain with the U4/U6 snRNA is disrupted and Brr2 can 

react with its loading strand, the central domain of U4, to initiate translocation and 

remodeling of the U4/U6 snRNPs. Furthermore, our results support the previous models 

suggesting that the RNase H domain of Prp8 provides an RNA binding platform that is 
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involved in the handover of the 5'ss from U1 snRNA to U6 snRNA (Pena et al. 2008; 

Ritchie et al. 2008; Yang et al. 2008) (Genes Dev., 2012, Figure 4B).    

       

3.10 The Prp8 Jab1/MPN-like domain induces a locked conformation of 

Brr2 

 

The helicases Prp8 and Brr2 are stable components of the U5 snRNP, and upon assembly 

with the U4/U6 snRNPs to form the U4/U6.U5 tri-snRNPs, Brr2 helicase activity must be 

tightly controlled to prevent premature dissociation of U4/U6 particles. To date, a small 

number of mechanisms of regulation of RNA helicases by cofactor proteins, acting in a cis 

or trans manner, have been discovered within various helicase families (for examples, refer 

to the introduction). However, possible molecular mechanisms of regulation of members of 

the Ski2-like helicase family had remained to be characterized.  

In the work for this thesis I aimed to unravel the molecular details of the process whereby a 

deubiquitinase-like domain, the Prp8 Jab1-MPN, regulates the Ski2-like helicase Brr2. Our 

biochemical studies on the Brr2-Prp8 Jab1/MPN complex combined with the crystal 

structure of the hBrr2
HR

-hPrp8 Jab1/MPN complex obtained in Markus Wahl’s laboratory, 

revealed an inhibitory mechanism of Prp8 on Brr2 through intermittent occlusion of the 

RNA binding tunnel of Brr2 by the C-terminal acidic tail of the Prp8 Jab1/MPN domain 

(Submitted manuscript, Figures 1-2). This is achieved through extensive interaction of the 

Prp8 C-terminal tail with the conserved RNA binding motifs at the interior of the N-

terminal helicase cassette of Brr2. In this way, Brr2’s catalytic core is blocked from 

gaining access to the U4 central domain, an event which seems to be essential for initiating 

the process of spliceosome activation (Nielsen and Staley, 2012; Mozaffari-Jovin et al., 

2012; Hahn et al., 2012). Since Brr2 has been implicated in functioning twice during the 

splicing cycle (Small et al., 2006), i.e. during the spliceosome's activation step and its 

disassembly, this inhibitory mechanism can provide the possibility of keeping Brr2 

switched off until the stage which requires its activity. Moreover, as the Prp8 RNase H 

domain could also sequester Brr2’s targeting site on U4/U6, it is conceivable that both 

neighboring Prp8 RNase H and Jab1/MPN domains act in a coordinated manner to prevent 

premature activation of Brr2 within the pre-catalytic spliceosome (B complex). In this 

scenario, accommodation of the 5’-splice site-U6 RNA duplex within the Prp8 RNase H 

channel may make the U4 central domain free for Brr2 loading. Subsequently, upon the 
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clearance of the Prp8 C-terminal tail from Brr2’s RNA binding channel, Brr2 can be 

introduced to its targeting site on the U4 snRNA (Figure 3.2).  

 

3.11 Molecular mechanism of Brr2 activation by the Prp8 Jab1/MPN 

domain    

 

The Prp8 Jab1/MPN domain is a derivative of the Zn
2+

-dependent isopeptidases that has 

lost its deubiquitinase activity, while retaining the ability to bind ubiquitin (Bellare et al., 

2006). The C-terminus of the Prp8 Jab1 domain constitutes a tail which is unstructured and 

contains a large number of charged residues that are involved in the interaction of the tail 

with the RNA binding motifs of Brr2. Indeed, lack of a rigid structure may facilitate 

displacement of the Prp8 tail from the Brr2’s RNA channel at the expense of subtle 

changes in the binding thermodynamics. Previously, disruption of the interaction of a Prp8-

conjugated ubiquitin with the Jab1/MPN domain has been suggested to trigger activation 

of the spliceosome (Brow, 2009; Bellare et al., 2008). Additionally, there is strong 

evidence that the GTPase, Snu114, which is a stable binding partner of Prp8, is involved in 

activation process of Brr2 (Small et al., 2008). Indeed, within the complex environment of 

the spliceosome, post-translational modifications or additional binding partners could 

potentially induce a signal for the release of the Prp8 C-terminal tail from Brr2’s RNA 

pocket and trigger its activation.       

I provide further evidence that subtle changes in the interaction of the most C-terminal tail 

of Jab1 with Brr2’s RNA binding channel not only leads to the release of the locked 

conformation of Brr2, but also stimulates the helicase activity of Brr2 (Submitted 

manuscript, Figures 3 and S3). Indeed, after loading of the U4 central domain into the 

catalytic core of Brr2, binding of the Jab1 domain is required that could configure Brr2 to 

efficiently remodel the U4/U6 snRNPs so that Jab1 acts as Brr2’s coactivator protein 

(Figure 3.2). I demonstrate that the observed stimulation of Brr2-catalyzed unwinding of 

U4/U6 by the Prp8 Jab1 domain is due to the more efficient coupling between the Brr2’s 

ATP hydrolysis and productive RNA strand separation when it is in complex with the Jab1 

domain (Submitted manuscript, Figure 3). The crystal structure of the hBrr2
HR

-hPrp8 

Jab1/MPN could have implications for the mechanism of this stimulatory effect. In this 

complex, the proximal tail of the Prp8 Jab1 domain is placed along a cleft between the HB 

and the HLH domains. The HB domain is thought to act as a helicase ratchet during 
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helicase translocation on the newly unwound ssRNA, while the HLH domain is involved in 

coupling nucleic acid binding to productive ATP hydrolysis by positioning the unwound 

ssRNA relative to the HB domain (Figure 3.1B). Interactions between these two domains 

are critical for the helicase activity in Hel308 (Woodman et al., 2007). Since Brr2 lacks 

direct contacts between the HB and the HLH domains (PNAS, 2012), the Jab1 domain 

could help positioning these domains relative to each other. 

In contrast to most of the short RNA duplexes formed within the spliceosome, the U4/U6 

di-snRNAs is extensively base-paired and is highly stable. Therefore, Brr2 is expected to 

exert an appreciable degree of processivity in vivo, to be able to fully unwind the relatively 

long U4/U6 stem II (Maeder et al., 2009). Here, I demonstrate that Brr2 requires the 

globular domain of the Prp8 Jab1 to processively unwind RNA duplexes in vitro 

(Submitted manuscript, Figure 4). In line with the gain of processivity, interaction of the 

Jab1 globular domain increased the affinity of Brr2 for binding to the ssRNA (Submitted 

manuscript, Figure 2B). Thus, subsequent to loading of the RNA substrate by Brr2, during 

the spliceosome activation, the Prp8 interaction is still essential for Brr2 to efficiently 

remodel the U4/U6 snRNPs without repeated dissociation from its substrate. 

Strikingly, I find that the characterized cooperation between the Brr2’s helicase cassettes 

(PNAS, 2012), which is required for the helicase activity, is also essential to confer this 

helicase the efficient capacity of regulation by the Prp8 Jab1 domain. An explanation for 

this behavior could be provided by the repositioning of the N-terminal helicase cassette 

relative to the C-terminal cassette upon Jab1 binding, observed in the hBrr2
HR

-hPrp8 Jab1 

structure (Submitted manuscript, Figures S2 and S4). Indeed, disruption of the 

intercassette interactions could be an additional mechanism to efficiently inhibit the Brr2 

helicase activity. Furthermore, this indicates that the N-terminal helicase cassette is 

dependent on the C-terminal cassette for efficient translocation on an RNA strand.  
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Figure 3.2 Molecular mechanism of the regulation of Brr2 helicase by Prp8 during the 

spliceosome activation. 

Model of the regulation of Brr2 by the Prp8 RNase H and Jab1/MPN domains. Red lines, inhibitory 

effects; green arrows, stimulatory effects; magenta arrow, Brr2 translocation direction. (I) In the B-

complex, Brr2 is blocked by the Prp8 Jab1/MPN domain through occlusion of Brr2’s RNA pocket 

and disrupting Brr2 N-terminal cassette (NC) – C-terminal cassette (CC) interaction. Additionally, 

the Prp8 RNase H domain interacts with the Brr2 loading site, the U4 central domain (thick black 

line), and prevents Brr2 loading on its RNA substrate and initiation of U4/U6 unwinding. (II) After 

introducing the 5’ss/U6 ACAGAG-box (thick gray line) to the RNase H, the U4 snRNA is 

released. (III) Brr2 activation upon removal of the Prp8 C-terminal tail from Brr2’s RNA pocket 

and initiation of the U4/U6 unwinding process with the stimulatory function of the Jab1 domain 

and the C-terminal cassette. (IV) After the spliceosome catalytic activation, the Prp8 Jab1 domain 

may again switch Brr2 off until the disassembly step.    

   

3.12 Molecular basis of the defects caused by the retinitis pigmentosa 

linked mutations in Prp8 

 

The pathogenesis of the splicing-related retinitis pigmentosa (RP) has been suggested to 

arise from the reduced amounts of the spliceosomal components such as the tri-snRNPs 

levels, and thus reduced rate of splicing in the retinal cells (Cao et al., 2011; Linder et 

al.,2011).  

On the basis of our data, RP-linked mutations in Prp8 can be divided into three groups 

(Submitted manuscript, Figure 5A). The first group includes mutations in the globular 

portion of the Jab1/MPN domain that can affect the structural folding/stability of the Jab1 

domain and thus, impairs the binding and the stimulatory mechanism of Brr2 (Maeder et 
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al., 2009; Brow, 2009). These mutations caused strong defects in splicing and yeast growth 

phenotype (Submitted manuscript, Figures 5 and S5). Therefore, decreased level of tri-

snRNPs formation and a defect in Brr2 activation could be the major consequences of 

these mutations. The second group of RP mutations reside in the proximal tail of the Jab1 

domain that establish important interactions with both the HB and HLH domains of Brr2. 

As revealed by our results, similarly to the previous group, mutation of these residues 

(human: R2310 and F2314; yeast: R2388 and F2392) significantly impairs binding of the 

Jab1 domain to Brr2 and also reduces the level of functional tri-snRNPs (Boon et al., 2007) 

and leads to deleterious effects on splicing and cell viability (Submitted manuscript, 

Figure S5). The third class of mutations (for example in human: Q2321stop and Y2334; 

and in Yeast: A2399stop and F2412N) is located in the distal region of the Jab1 tail and 

showed no obvious effects in binding of the Jab1 domain to Brr2 (Submitted manuscript, 

Figures 5B and S6). These RP mutations, in vitro, abrogate the inhibitory mechanism of 

the Prp8 Jab1 domain on Brr2 (Submitted manuscript, Figure 5C-E). Importantly, as the 

amounts of tri-snRNPs did not alter in this set of mutations; we expect that a similar in vivo 

dysfunction in the inhibitory mechanism of Prp8 Jab1 domain on Brr2 could be the disease 

principle for these RP mutations (Submitted manuscript, Figures S5 and S6). Conceivably, 

loss of an inhibitory checkpoint may lead to premature activation of the spliceosome.  

I conclude that RP mutations in both Prp8 and the spliceosomal helicase Brr2 have a large 

impact on the activation process of the spliceosome, and that this – together with the 

assembly defect of the spliceosomal subunits – makes up the basis for the molecular 

pathology of the retinal disease.     

 

 

 

 

 

 

 

 



42 Perspectives 

 

4 Perspectives 
 

The work described above not only deepened our understanding of the structural and 

functional mechanism of Brr2 and its regulation by the Prp8 C-terminal domains; it also 

provided novel insights into the cascade of spliceosome activation. Moreover, it provided a 

structure- and mechanism-based understanding of how mutations in the Jab1 domain of 

Prp8 may give rise to retinitis pigmentosa. Nevertheless, several interesting questions 

concerning the action and regulation of Brr2 in spliceosome activation remain poorly 

understood.  

A remarkable functional aspect of some RNA helicases is their ability to displace RNA-

protein complexes. In this respect it will be interesting to investigate in the future whether 

the Brr2-Prp8
Jab1/MPN

 complex can displace the various proteins which are associated with 

U4/U6 RNAs within the purified U4/U6 snRNPs, and in which manner their release takes 

place. Of great importance will be the investigation of the various modes of regulation of 

Brr2 by Prp8 in the context of the entire spliceosome. Ideally this should be done with a 

purified splicing system which allows one to reconstitute the transformation of a B 

complex to the activated spliceosome with purified components, along the lines described 

for the catalytic phase of the spliceosome (Warcocki et al., 2009). This would allow 

delineation of the sequence of events and/or identification of the factors which alleviate the 

inhibition of Brr2 loading onto U4 RNA and activation of its helicase action, and would 

allow the possible role of ubiquitination of Prp8 and of the GTPase Snu114 in the 

regulation of Brr2 helicase to be addressed. Finally, once stem cells from retinitis 

pigmentosa patients harboring mutations in the Jab1 domain of Prp8 are available, it will 

be very interesting to analyze possible defects of pre-mRNA splicing on a global scale and 

to correlate the splicing defects with the misregulation of Brr2 described in this work. 
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µM                       micro molar 
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