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Summary 

Where and how fast do roots take up water? Despite its importance in plant and soil sciences, 

there is limited experimental information on the location of water uptake along the roots of 

transpiring plants growing in soil. The answer to this question requires direct and in-situ 

measurement of the local flow of water into the roots. The aim of this study was to develop 

and apply a new method to quantify the local fluxes of water into different segments of the 

roots of intact plants. To this end, neutron radiography was used to trace the transport of 

deuterated water (D2O) into the roots of lupines.  

Lupines were grown in aluminum containers filled with sandy soil. The soil was partitioned 

into different compartments using 1cm-thick layers of coarse sand as capillary barriers. These 

barriers limited the diffusion of D2O within the soil compartments.  D2O was locally injected 

into the selected soil compartments during the day (transpiring plants) and night (non-

transpiring plants). Transport of D2O into roots was then monitored by neutron radiography 

with spatial resolution of 100 µm and time intervals of 10 seconds. Neutron radiographs 

showed that: i) transport of D2O into roots was faster during the day than during the night; 2) 

D2O quickly moved along the roots towards the shoots during the day, while at night this 

axial transport was negligible. The differences between day and night measurements were 

explained by convective transport of D2O into the roots. To quantify the net flow of water 

into roots, a simple convection-diffusion model was developed, where the increase rate of 

D2O concentration in roots depended on the convective transport (net root water uptake) and 

the diffusion of D2O into roots.  

The results showed that water uptake was not uniform along the roots. Water uptake was 

higher in the upper soil layers than in the deeper ones. Along an individual roots, the water 

uptake rate was higher in the proximal segments than in the distal segments. In lupines most 

of the water uptake occurred in the lateral roots. The function of the taproot was to collect 

water from the laterals and transport it to the shoots. This function is ensured by a low radial 

conductivity and a high axial conductive.  

We also applied the technique to measure how rhizosphere affects root water uptake. As was 

recently reported in the literature, in this study was also observed that the soil in the 

immediate vicinity of the roots, the so called rhizosphere, becomes hydrophobic as the soil 

dries. For the first time, it was shown that hydrophobicity of the rhizosphere decreased root 

water uptake after drying and subsequent irrigation. It was concluded that, after drying, the 



 

rhizosphere became a significant resistance to the local flow of water into the roots. This may 

change the pattern of the water uptake zone along the roots.  

The significance of this study is the development of a new method to locally quantify water 

flow into roots of living plants. This method makes it possible to quantitatively measure 

where and how fast roots take up water in soils. This technique will allow understanding the 

function of roots in different plants, during root maturation and in response to varying 

external conditions, such as water content, transpiration demand, nutrient supply, and many 

other factors. The answer to these questions would open wide ranges of agronomy 

applications aimed at managing irrigation practice. 

 



 

 

 

Zusammenfassung 

Wo und wie schnell nehmen Wurzeln Wasser auf? Obwohl diese Frage in Pflanzen- und  

Bodenwissenschaften von großer Bedeutung ist, gibt es nur wenige experimentelle Daten 

darüber, an welcher Stelle der Wurzeln eine transpirierende Pflanze das Wasser aus dem 

Boden erhält. Die Antwort auf diese Frage erfordert direkte und in-situ Messungen des 

lokalen Wasserflusses in die Wurzel hinein. Ziel dieser Arbeit war es, eine neue Methode zu 

entwickeln und anzuwenden, um den lokalen Wasserfluss in unterschiedliche Segmente der 

Pflanzenwurzeln zu quantifizieren. 

Dabei wurde Neutronenradiographie eingesetzt um den Transport von deuteriertem Wasser 

(D2O) in die Wurzel von Lupinen zu untersuchen. 

Die Lupinen wuchsen in Aluminium Containern, die mit sandigem Boden gefüllt waren. Der 

sandige Boden wurde mit Hilfe von 1cm-dicken Schichten groben Sandes in verschiedene 

Bereiche eingeteilt. Diese Schichten reduzierten die Diffusion von D2O zwischen den 

verschiedenen Bereichen.  D2O wurde in ausgewählte Bereiche tagsüber (transpiriende 

Pflanzen) und nachts (nicht transpiriernde Pflanze) injiziert. Transport von D2O in die 

Wurzeln hinein wurde durch Neutronenradiographie mit einer räumlichen Auflösung von 100 

µm in Intervallen von 10 Sekunden aufgezeichnet. Die Messungen zeigten: i) Transport von 

D2O in die Wurzel hinein war tagsüber schneller als nachst; ii) D2O wurde tagsüber schnell 

entlang der Wurzel in Richtung Spross transportiert, während dieser axiale Fluss nachts 

vernachlässigbar war. Die Unterschiede zwischen Tag- und Nachtmessungen wurden durch 

konvektiven Transport von D2O in den Wurzeln erklärt. Um den effektiven Wasserfluss in 

die Wurzeln hinein zu quantifizieren, wurde ein einfaches Konvektions-Diffusions Modell 

entwickelt, wobei die Zunahme der D2O Konzentration in Wurzeln vom konvektiven 

Transport abhängt und von the Diffusion des D2O in die Wurzeln. 

Die Ergebnisse zeigten, dass die Wasseraufnahme nicht gleichmäßig entlang der Wurzel 

stattfindet. Die Wasseraufnahme war in den oberen Bodenschichten höher als in den tieferen. 

Entlang einzelner Wurzeln war der radiale Fluss in nahen Teilen der Wurzel höher als in den 

weiter entfernten Teilen der Wurzel. In Lupinen fand die Wasseraufnahme im Wesentlichen 

in den lateralen Wurzeln statt. Die Funktion der Pfahlwurzel war es, das Wasser der lateralen 

Wurzeln zu sammeln und zum Spross zu transportieren. Diese Funktion wird durch eine 

geringe radiale und eine hohe axiale Leitfähigkeit sichergestellt.  



 

Wir haben diese Technik auch angewandt um den Einfluss der Rhizosphäre auf die 

Wasseraufnahme zu untersuchen. Wie vor Kurzem auch in der Literatur berichtet wurde, 

wurde auch in dieser Arbeit beobachtet, dass der Boden in der unmittelbaren Nähe der 

Wurzeln, der sogenannten Rhizosphäre, hydrophob wird, wenn der Boden trocken wird. Zum 

ersten Mal konnte gezeigt werden, dass durch die Hydrophobizität der Rhizosphäre die 

Wasseraufnahme nach Trocknung und folgender Bewässerung reduziert wird. Es wurde die 

Schlussfolgerung gezogen, dass nach Trocknung die Rhizosphäre einen entscheidenden 

Wiederstand für den Wasserfluss zur Wurzel darstellt. Das beeinflusst vermutlich auch die 

Ausdehnung des Bereiches der Wurzeln, in dem Wasser aufgenommen wird. 

Die Bedeutung dieser Arbeit ist die Entwicklung einer neuen Methode, um Wasseraufnahme 

durch Wurzeln lebender Pflanzen lokal zu quantifizieren. Diese Methode macht es möglich 

quantitativ zu messen, wo und wie schnell Wurzeln Wasser im Boden aufnehmen. 

Diese Technik wird es erleichtern, die Funktionsweise der Wurzeln verschiedener Pflanzen 

zu verstehen und den Einfluss von Wurzelwachstum und wechselnder äußerer Bedingungen, 

wie Wassergehalt, Transpiration und Verfügbarkeit von Nährstoffen und vieler weiterer 

Faktoren zu untersuchen.  

Die Antwort auf diese Fragen könnten einen weiten Bereich für landwirtschaftliche 

Anwendungen eröffnen, die darauf abzielen, Bewässerungsmethoden zu verbessern.
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Why we need to study root water uptake 

All organisms, including plants, require water for their survival. Water has numerous vital 

functions in plant life such as major constituent of living cells, maintaining cell turgidity, 

providing a transport medium, serving as a raw material for various chemical processes, heat 

dissipater through transpiration, and buffering plants against temperature changes (Kudrev, 

1988; Kirkham, 2005). Plants as a big water mover on the earth return approximately, 40 % 

of the terrestrial precipitation to atmosphere via transpiration (Bengough, 2012). Root water 

uptake is the gateway to replace water lost by transpiration.  

Inadequate supply of water from soil is a worldwide constraint to plant yield and food 

production. Increasing population and periodic droughts due to reduced rainfall frequency 

(Gallagher et al., 1976; Laraus, 2004; Oki & Kanae, 2006; Miraglia et al., 2009) are expected 

to increase the alarm of water scarcity. Due to the high water consumption in agriculture, 

improved water use efficiency has been recommended as a needed management practice 

(Laraus, 2004; Oki & Kanae, 2006). Water use efficiency is the ability of plants to convert 

water into biomass (Stanhill, 1986; Howell, 2001). Besides improving the productivity of 

plant species, an irrigation practice that is capable of increasing the soil water content in the 

regions where roots are more active in root water uptake, while reducing water loss by 

evaporation and deep infiltration, will improve the water use efficiency in agriculture. To this 

end, we need to know where roots take up water in soil.  

Root water uptake 

Water moves from soil to plants and then to the atmosphere following an increasingly 

negative water potential in the process called transpiration. Water moves into and within 

plants in liquid form and it leaves the plant as vapor through the leaf stomata. Stomata are 

cavities open to atmosphere during the daytime to facilitate the entry of CO2 for 

photosynthesis. When stomata are open, water evaporates from the leaf tissue to the 

atmosphere. According to the cohesion–tension theory, water lost from leaves generates a 

tension in water that is transmitted along the xylem down to the roots. The resulting gradient 

in water potential between roots and soil drives water into the roots. Water supply to leaves 

depends on maintenance of a continuing column of water in the xylem from roots to shoots 

(Holbrook et al., 1995; Walker et al., 2003; Koch et al., 2004). When transpiration is low, 
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osmotic adjustment in plants by accumulation or removal of solutes in the xylem can move 

water into and within the roots (Steudle & Peterson, 1998). Water flow from the soil into the 

roots must continuously compensate the water lost from leaves. A non-sufficient root water 

uptake will gradually decrease water potential in the xylem. An imbalance between root 

water uptake and water lost from the leaves may cause dehydration of the root tissues 

(Zimmermann et al., 1992; Holbrook et al., 1995; Koch et al., 2004). To avoid dehydration, 

plants may reduce the rate of water loss from leaves by regulation of the stomata conductance 

(Schulze, 1986; Saliendra et al., 1995; Chaves et al., 2003) and/or increase water uptake from 

the roots. The increase of water uptake may occur by increasing the permeability of roots 

(Moshelion et al., 2004; Knipfer et al., 2011), and/or enhancing the growth rate of the roots to 

explore new sources of water (Dale & Causton, 1992; Dias-Filho, 1995).  

The concept of water movement in plants is often described analogous to electricity flux 

(Ohm’s and Kirchhoff’s laws). Applying these laws to plants, the flux of water into plants 

depends on the difference in water potential between soil and roots as driving force and the 

resistivity of the soil-root-atmosphere continuum. The hydraulic resistance is a parameter that 

describes how difficult it is for water to pass a certain cross section. It is the inverse of 

conductance. The flow of water from the soil into plants and then to the atmosphere occurs 

through different pathways in series with different resistances. When the pathways are in the 

series, the resistances of the pathways are additive, while when they are in parallel the inverse 

of their resistances is additive. In whole plant level, flow of water from soil to plant and then 

atmosphere, 𝐽𝑡, (cm3 s-1),  can be written as 

 
 

1
t soil atmosphere

soil root shoot leaf stomata

j
R R R R R

  
   

     (1.1) 

when 𝛹 denotes water potential (MPa) and R is resistance (cm3 MPa-1 s-1). Typically, the 

hydraulic resistance in the leaves is the biggest resistance. Then the resistance occurring in 

the roots is the second biggest resistance to flow of water.  

In the case of roots grown in the soil, the process of root water uptake is more complex than 

what it may appear in Eq. (1.1).  Draye et al. (2010) summarized typical values of soil and 

root hydraulic conductivities as a function of water potentials. Their review shows that when 

the soil is wet, its hydraulic conductivity is typically sufficient to sustain the transpirational 

demand and the root resistance controls the flow of water. As the soil dries, its hydraulic 

conductivity decreases of several orders of magnitudes and the soil becomes the limiting 
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factor in the water flow into roots (Gardner, 1960; Passioura, 1988; Garrigues et al., 2006; 

Draye et al., 2010).  

Acquiring a proper knowledge on root water uptake requires good understanding of the root 

structure, the pathways of water into the roots, and functioning of roots in response to their 

environments. In the following sections, we briefly review the basic structure of roots with 

regard to water transport, the pathways of water into the roots, and the effects of soil on root 

water uptake. 

Root anatomy 

The hydraulic properties of roots are related to the anatomy of roots, and there is no way to 

understand the transport of water into roots and root functioning in response to external 

factors without sufficient knowledge of their structure and its dynamics (Huang & Eissenstat, 

2000; Steudle, 2000). Water taken up from soil has to cross a series of cell layers before 

reaching the xylem vessels where it is transported towards the shoots. These cell layers (from 

outside to inside) are epidermis, cortex, endodermis and the root stele (Enstone et al., 2003). 

In many plants if not all, the root endodermis is considered as a major resistance to flow of 

water and solute into the roots (Perumalla & Peterson, 1986; Peterson et al., 1993; Steudle, 

2000). The endodermis separates the root cross section into two compartments: the root 

cortex and the root stele. The outermost compartment is the root cortex and consists of many 

parenchyma cells called cortical cells. The innermost compartment is the root stele and 

consists of conducting vessels (xylem and phloem) surrounded by parenchyma cells.  

The outermost layer of the cortex is the epidermis, which is a single layer of elongated and 

tightly packed cells from which originates root hairs and cluster roots. The overall quantity 

and longevity of root hairs and cluster roots varies among plant species and depends also on 

the interaction with the soil environment. In some plants, a second layer of cells may 

originate from the epidermal cells called the hypodermis. The exodermis is a special type of 

hypodermic cells that are subjected to different cell modifications such as formation of 

casparian bands in the anticlinal walls or deposition of suberin lamella at the surface of cells. 

These modifications usually occur in the late developmental stages of roots. External adverse 

conditions such as water stress may stimulate these modifications (Perumalla & Peterson, 

1986; Reinhardt & Rost, 1995; Enstone et al., 2003).  



Introduction  4 

 

The innermost layer of the cortex enclosing the stele is called endodermis. Endodermis is a 

single layer of elongated and tightly packed cells that develop casparian bands in the 

anticlinal walls and suberin lamella (deposition of hydrophobic covering around the cell as a 

secondary wall). In most plants, casparian bands form within 1 cm from the root tip. The 

effectiveness of casparian bands in the water flow is highly variable among different plants 

and depends on the growth conditions. Enstone et al. (2003), speculated that casparian bands 

block the passive transport of ions from soil into the roots and prevent the back diffusion of 

ions and water into the soil. In addition to formation of casparian bands, the surface of the 

endodermis is characterized by deposition of hydrophobic components (suberin lamellae). 

Unlike casparian bands, suberin lamellae only reduce permeability of cell-to-cell pathways of 

roots.  

Strong modification of the endodermis cells, formation of casparian bands and suberin 

lamellae have been often observed when roots suffered of harsh external conditions such as 

water stress. These evidences confirmed positive adaptive functions of these formations in 

improving the water status of the plant. Water and nutrient shortage, salinity stress and 

pathogenic attack cause an earlier and denser formation of casparian band and suberin 

lamella (Nobel & Cui, 1992; McCully, 1995; Enstone et al., 2003; Hu et al., 2011). However, 

both casparian bands and suberin lamella do not occupy the endodermal and exodermal cells 

completely. Casparian bands rarely occupy more than 1/3–1/2 of the anticlinal walls (Enstone 

et al., 2003). Lack of presence of casparian bands even in some portion of the root 

endodermis may be enough to facilitate the flow of water through apoplastic pathways. 

Although, presence of casparian bands and suberin lamella are easily detectable by 

microscopic investigation of root cross section, the quantitative effect of them on the flow of 

water into roots is not resolvable.  

 Water flow in root 

Root water uptake is often described in terms of radial and/or axial flow. The axial flow 

refers to the movement of water along the xylem. The axial flow, 𝐽𝑥, (cm3 s-1), can be 

described as 

 
( )1

( ) . x
x

x

d x
J x

R dx


                             (1.2) 
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where 𝑅𝑥is the xylem axial resistance (bar s cm-4), 𝛹𝑥is water potential in the xylem (bar) and 

𝑥 is location along the xylem. Axial flow of water can be calculated by Poiseuille's law where 

the xylem vessels of roots are considered as continuous conduits. According to this law, the 

size and abundance of the xylem vessels determine the axial resistance of root (Frensch & 

Steudle, 1989; McCully, 1995; Bramley et al., 2009). However, the measurement of the axial 

resistance showed that actual axial resistance (flow rate) occurring along roots differed from 

the one calculated by Poiseuille's law (Frensch & Steudle, 1989). The axial resistances along 

roots are commonly measured by root pressure probe and high-pressure flow meter 

technique.  

Typically, axial resistance in the apical parts of the root is high, resulting in hydraulic 

isolation of the root apex. As root matures, the axial resistance in xylem decreases due to the 

increasing size and abundance of the xylem vessels (Frensch & Steudle, 1989; McCully, 

1995; Bramley et al., 2009). Additionally, as root elongates the axial resistance increases due 

to a longer pathway of water (Landsberg & Fowkes, 1978; Zwieniecki et al., 2003).  

The radial flow, 𝐽𝑟, (cm3 s-1) is defined as flow of water from soil into the xylem crossing a 

set of concentric layers in the root tissue. The water potential difference between xylem and 

root is the driving force of water. The radial flow can be written as 

 s x

r

x

J
R

 
                             (1.3) 

where 𝑅𝑟 is the radial resistance (bar s cm-3), 𝛹𝑥 is water potential in the xylem (bar) and 𝛹𝑥 

is water potential in soil (bar). The radial resistance of roots varies along root system during 

root development and responses to external conditions such as drought stress. The measure of 

radial resistance and radial flow of water into root depends on the pathways of water into the 

roots (Frensch & Steudle, 1989; Steudle & Peterson, 1998; Knipfer & Fricke, 2010b).   

Radial pathways of water into roots 

Water has to cross root tissue before reaching the xylem vessels. The structure of root tissue 

results in composite pathways of water flow into the roots (McCully & Canny, 1988; Steudle, 

2000). The main pathways of water into roots are apoplastic pathway, symplastic pathway 

and transcellular pathway (Fig. 1). The apoplastic pathway occurs through the cell walls and 

the extracellular spaces. Apoplast is a free diffusional space. The symplastic pathway occurs 
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across the cytoplasm interconnected by plasmodesmata. Plasmodesmata are narrow strands of 

cytoplasm that interconnect the protoplasts of neighboring plant cells. In the transcellular 

pathway, water crosses the cell membrane by diffusing through cell membranes.  In the  

symplastic  pathway,  water flow between  cells is  facilitated by the  presence of 

plasmodesmata,  whereas  in  the  transcellular pathway water  has  to  cross  the cellular 

membranes. To date, it has been difficult to separate symplastic and transcellular pathways 

experimentally and therefore they are commonly referred to as cell-to cell pathway.  

Besides difficulties in separating two components of cell-to-cell pathway, the relative 

importance of the apoplastic pathway and cell-to-cell pathway in transport of water into roots 

has also been matter of big debates for decades (McCully & Canny, 1988; Canny, 1995; 

Magnani et al., 1996; Steudle, 2000; Fritz & Ehwald, 2011). The relative importance of these 

two pathways depends on plant species, developmental stage of the plant, growth condition, 

and nature of water flow (osmotic or hydrostatic). Casparian bands in the endodermis and the 

exodermis influence the contribution of the apoplastic pathway in transport of water. These 

structures play an important role in reducing the hydraulic conductance of apoplastic 

pathways and, depending on the relative importance of apoplastic pathway in transport of 

water, on the hydraulic conductance of te root system (Peterson et al., 1981, 1993; Enstone et 

al., 2003). The contribution of the cell-to-cell path to the overall hydraulic conductivity of the 

root is influenced by changes in the hydraulic conductivity of cell membranes. Suberization 

of the cell membranes following root maturation and/or in response to external conditions 

reduces the permeability of the root tissue (Peterson et al., 1981; McCully & Canny, 1988; 

Knipfer & Fricke, 2010a). Aquaporins in cell membrane also actively controls permeability 

of the cell-to-cell pathways and their regulation may reduce or increase the root permeability 

(Henzler & Steudle, 1995; Maurel & Chrispeels, 2001; Knipfer et al., 2011; McLean et al., 

2011).  

In the cell-to-cell transport, water has to cross several cell layers and two plasma membranes 

per cell layer, which results in a high hydraulic resistance. The transport of water can occur in 

a combination of pathways, in which water may travel through the apoplast for some distance 

and then cross the cell membrane and flow via the cell-to-cell pathway. Typically, apoplast is 

interrupted at the root endodermis. In the purely apoplastic pathway, water flows into the 

roots without involvement of any cell membranes. The possibility of a purely apoplastic 

pathway along root tissue up to the xylem is questionable. The fact that the roots can build up 
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turgor pressure in the xylem indicates that at least one cellular membrane is interrupting the 

apoplastic pathway (Knipfer & Fricke, 2010b).  

 

 

 

 

Figure 1: radial pathways of water into roots. The apoplast provide a diffusion free space to water flow 

through the cell walls and the extracellular spaces. Casparian bands in the endodermis and the exodermis 

may interrupt the apoplastic pathway. Symplastic pathway is the continuum of cytoplasm interconnected 

by plasmodesmata. In symplastic pathway, water flow into the cells occurs through the plasmodesmata. 

Plasmodesmata are narrow strands of cytoplasm that interconnect the protoplasts of neighboring plant 

cells. In transcellular pathway, water should cross the cell membrane by diffusing through cell 

membranes.  Both symplastic and transcellular pathways may be interrupted by deposition of suberin 

lamella in the endodermis and the exodermis (from Ranathunge, 2005).  

 

The transport of water along the apoplast is passive and it is driven by a gradient in 

hydrostatic potential. The transport of water through cell-to-cell pathway has also an osmotic 

component. In the absence of hydrostatic gradient between root and soil, water transport is 

occurring through the cell-to-cell pathway. During the night when transpiration is low, roots 

are in equilibrium with their surroundings (in well moist soil). In this condition, due to 

accumulation of solutes in the roots (transport of solute from leaves to roots trough phloem) 

water potential in the roots drops down and leads building up of gradient in water potential 
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between roots and soil. This gradient pulls water into the roots via cell-to-cell pathway. This 

results in a high turgor pressure. The relative contribution of the apoplastic pathway to cell-

to-cell pathway may depend on the transpiration demand of plants. Switching between 

pathways  is well described by Steudle (2000) who introduced a composite transport model to 

describe the transport of water into roots based on composite structure of roots. The volume 

of the apoplast is reported to contribute to 3-7% and the cell-to-cell pathway to more than 

90% of the total root volume.  

Effect of soil on root water uptake 

The transport of water into roots is highly influenced by the radial permeability of the root 

tissue. Besides root maturation, plants may regulate their radial permeability in response to 

adverse external conditions such as water and nutrient shortage, salinity stress , physical 

stress, and extreme temperature in the soil (Peterson et al., 1981; Reinhardt & Rost, 1995; 

Zimmermann & Steudle, 1998; Enstone et al., 2003). It is well known that formation and 

density of casparian bands, suberin lamellae, and  aquaporins  are influenced by soil water 

content (Perumalla & Peterson, 1986; Reinhardt & Rost, 1995; Enstone et al., 2003).  

Besides the effect of soil water content on the permeability of roots, supply of water to roots 

becomes limited when soil dries and its hydraulic conductivity decreases (Gardner, 1960; 

Landsberg & Fowkes, 1978; Dousssan et al., 1998; Draye et al., 2010). Model calculations 

showed that as the soil becomes dry, significant gradients in water potential and water 

content develop near the root surface. The drop in water potential near the roots in the soil 

occurs because of the radial geometry of the flow to the roots and the nonlinearity of the 

unsaturated soil conductivity (Gardner, 1960; Dousssan et al., 1998; Carminati et al., 2011). 

Under this condition, the hydraulic conductivity of the soil near roots becomes the main 

resistance to flow of water into the roots. Model calculations showed that the reduction in 

hydraulic conductivity of soil occurs in the immediate vicinity of soil. Plants may regulate 

their resistance in response to the low water potential developed at their surface. To date, it 

has been very difficult to measure the water potential gradients near roots and most of the 

high temporal and spatial measurements relied on monitoring water content in soil. Under 

drying condition, a big drop in water potential may occur with only a tiny change in water 

content, which is not detectable with our devices. This is particularly true in sandy soil.  
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In addition, the physical and biochemical properties of the immediate soil near the root, the 

so called rhizosphere is influenced by root exudation (Or et al., 2007b; Carminati et al., 2010; 

Moradi et al., 2012a). Recent observations on redistribution of water during the drying cycle 

of transpiring plant grown in soil showed that the rhizosphere was wetter than the bulk soil. 

During the rewetting phase, the rhizosphere stayed temporarily dry (Carminati et al., 2010). 

The first observation was explained by modification of the soil hydraulic properties by root 

exudation. The second observation was explained by the presence of lipid components in the 

root exudates. Lipids reduce wettability of the soil. How a hydrophobic rhizosphere may 

affect the flow of water into roots is still an open question. Answering to this question 

requires in situ measurement of water flux into roots.    

Rhizosphere    

Rhizosphere is defined as the soil in the immediate vicinity of the roots. Its physical and 

biochemical properties are actively modified by roots as well as by microorganisms living in 

symbiosis with the roots. Plants actively and constantly release various photosynthetic 

compounds into the soil. (Chenu & Roberson, 1996; Gregory & Hinsinger, 1999; Hinsinger 

et al., 2005; Gregory, 2006). One of the substances exuded from the roots is mucilage. 

Mucilage released by the peripheral cells of the root cap (both root tip and cluster roots) and 

is left behind following root maturation (Iijima et al., 2003; Nakaji et al., 2007). 

There have been many speculations on the role of mucilage in relation to water status of 

plants. Mucilage exuded by the roots, with its high water holding capacity, may increase the 

water holding capacity of the rhizosphere (McCully & Boyer, 2006). Mucilage contains many 

organic components in particular polysaccharides that stabilize soil aggregates. In addition to 

improving soil aggregation, the polysaccharides in mucilage form a continuous network that 

acts as a sponge and has a considerable capacity to absorb water. Water is absorbed and 

maintained in the network by osmotic, and capillary forces resulting in swelling of the matrix 

and increasing the water content (Gessa & Deiana, 1990; Chenu, 1993; Chenu & Roberson, 

1996; Or et al., 2007).  On the other hand, mucilage also contains lipids that can act as 

surfactants and alter the surface tension of water in soil. Change in surface tension will affect 

on water holding capacity of the soil, unsaturated hydraulic conductivities, and solute 

diffusion near to the root surface at any given soil matric potential.  (Read & Gregory, 1997; 

Czarnes et al., 2000; Hallett et al., 2003; Read et al., 2003; Whalley et al., 2005; Carminati et 

al., 2010; Moradi et al., 2012). The significance of rhizosphere hydrophobicity upon 
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rewetting may vary with plant species, root age, growth conditions, soil water content, and 

number of wetting/drying cycles (Watt et al., 1994; Moradi et al., 2012).  

Taking the advantage of new imaging techniques, experimental evidence of distribution of 

water content in the rhizosphere became recently more available. Currently, there are two 

different views on redistribution of water content around transpiring roots. MacFall et al. 

(1990) observed lower water content occurring first in the rhizosphere of the taproot and then 

extended to the laterals. Segal et al. (2008) also reported that the rhizosphere of two-week-old 

barley had lower water content than the bulk soil. In contrast to these findings, a higher water 

content in the rhizosphere has also been observed (Nakashi, 2005; Tumlinson et al., 2007; 

Carminati et al., 2010; Moradi et al., 2011). Carminati et al. (2010) investigated the 

redistribution of water in rhizosphere and bulk soil during a drying and wetting cycles. They 

observed higher water content in the rhizosphere than in the bulk soil during drying.  They 

also observed a temporarily hydrophobic behavior of rhizosphere after rewetting. 

Hydrophobicity of rhizosphere recovered during the following days and water content of the 

rhizosphere increased and finally exceeded that of the bulk. However, literature information 

on profile of water content in the rhizosphere of roots is puzzling. Carminati, (2012) believed 

that two different views on the distribution of water around roots are not in contradiction and 

they rather reflect the dynamic and hysteretic hydraulic behavior of the rhizosphere. 

Depending on the history of the rhizosphere (state of hydration) and chemical composition of 

the mucilage exuded into soil, the rhizosphere may turn hydrophobic or hydrophilic.  

At first glance, the effect of mucilage on increasing water holding capacity of the rhizosphere 

may seem insignificant due to the small size of rhizosphere (around 1-2 mm) and the high 

water demand of plants. However, mucilage may have an important role in controlling the 

flux of water into the roots, in particular as soil dries. Increase the water-holding capacity of 

the rhizosphere may increase the hydraulic conductivity by avoiding the formation of deep-

water depletion in the immediate vicinity of the roots as soil dries. Modeling calculations by 

Carminati et al. (2011) showed that the presence of mucilage in the rhizosphere  reduced the 

water potential gradients around the roots,  helping plants to extract more water from the soil.  

Although hydrophobicity of the rhizosphere has been reported by direct observation of water 

redistribution in the soil (Carminati et al., 2010), measurements of contact angle between 

water and soil particles in the rhizosphere (Moradi et al., 2012), and measurement of water 

infiltration into the rhizosphere (Hallett et al., 2003; Read et al., 2003), its significance in root 

water uptake is still unclear. The important questions to be answered are: what water 
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potential does plants feel when the rhizosphere becomes hydrophobic? How may distribution 

of water uptake zone along roots change when the rhizosphere becomes hydrophobic?  

One may see hydrophobicity of the rhizosphere as a negative factor due to limitation of water 

flow into roots, or a positive factor by preventing the back flow of water from the roots into 

the dry soil. This may be important for root system with deep roots in contact with wet soil 

and upper roots in a dry soil. These speculations should be tested in systematic experiments. 

The lack of answer to these questions is due to lack of a technique that allows us to measure 

the local flux of water into the roots.    

Location of water uptake along roots 

Where and how fast do roots take up water from soil is an important question in both soil and 

plant science. Many efforts have been made to answer these questions. There are two 

different views on the location of water uptake along the roots.  Studies on root anatomy 

variations along root have lead scientists to conclude that young parts of roots (apical parts) 

are more involved in water uptake. Primarily measurements of radial hydraulic conductivity 

of roots also confirmed this view. This view is still commonly cited in textbooks.   

Recently, our understanding of water uptake and its transport in roots has been substantially 

improved by new experimental techniques. Advanced modeling approaches combined with 

detailed measurements of root hydraulic conductivities showed that depending on the relative 

importance of radial and axial hydraulic conductivities the water uptake zone could be 

variable along the root system (Landsberg & Fowkes, 1978; Frensch & Steudle, 1989; 

Zwieniecki et al., 2003). These studies showed that the proximal parts of roots were more 

involved in delivering water into roots than the distal parts. These studies also pointed out the 

dynamic variation of the water uptake zone along root following root maturation and/or the 

reduction of hydraulic conductance at the root surface in the soil. However, these results were 

obtained from excised roots grown in hydroponic culture. The properties of these roots may 

largely differ from those grown in soils.   

Taking the advantage of new imaging techniques, researchers have been able to study water 

uptake by roots grown in soil. Imaging techniques were used to monitor the distribution of 

root and water content in soil. These observations revealed that greater changes in soil water 

content appeared in the regions where root density was higher(Garrigues et al., 2006; 

Pohlmeier et al., 2008). They also found that the location of root water uptake moved 
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downwards along the soil profile starting from the upper soil layers when soil was initially 

wet. Although these techniques allowed us to in situ observations of root growth in soil, they 

could not reveal directly the fluxes of water into roots and need to be coupled with models of 

root water uptake in soils. A review of the methods to measure root water uptake is given in 

the following paragraphs.  

Review of root water uptake measurements 

Locations of water uptake along roots can be determined by measuring radial flux or axial 

flux of water into and along roots, respectively. The radial flux of water into roots is defined 

as the local speed of water crossing the root tissue [cm s-1]. The axial flux of water is defined 

as the average velocity of water along the xylem vessels. The radial flux is a local measure of 

the speed of water into roots and its distribution along roots tells us about the relative 

importance of each segment of the root in water uptake. While the axial flux, its measure is 

cumulative along roots toward the proximal parts and it does directly give information about 

the location of water uptake.In the following section the main method of measuring fluxes are 

reviewed:  

1-Measurements of fluxes into and along single roots. 

In these methods, the distribution of the fluxes is derived by measuring the radial and axial 

resistances along the root. The main methods are: pressure probe, pressure chamber, and 

high-pressure flow meter (Passioura, 1980; Frensch & Steudle, 1989; Tyree et al., 1995; 

Zwieniecki et al., 2003; Knipfer & Fricke, 2010b). The principle of these techniques is rather 

similar. An excised root is sealed into devices and then water flow in or out of the root is 

measured as a function of the pressure gradient applied. The water flow can be induced by a 

hydrostatic and/or somatic pressure gradient. The water flow is given by (House, 1974)  

 
1

2 ext xJ rL
R

                             (1.4) 

Where J is the volumetric flow rate (cm3 s-1), r is the radius (cm), L is the length of root, R is 

the root resistance (cm s-1 MPa-1), Ψext is thewater potential in the surrounding medium of the 

root (MPa), and Ψx is the water potential at the cut end of the root. The calculated resistance 

is the total resistance that water should overcome to flow in or out of the cut end of a root 

with a length of L. The total resistance depends on the local radial and axial resistances. To 
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assess the distribution of radial and axial resistance along the root, the root should be 

successively cut into smaller segments from the apical parts toward the basal end of the root. 

Due to the porous nature of roots, the pressure gradient applied to the cut end of the root may 

dissipate along the root and, consequently, the apical parts of root are less involved in water 

uptake (Frensch & Steudle, 1989; Zwieniecki et al., 2003). To assess the distribution of radial 

and axial resistances along roots, the results have to be coupled with a model of water flow in 

the root (Landsberg & Fowkes, 1978).  

However, most of the measurement data available in literatures have not undertaken the 

efforts to calculate the distribution of resistances along the root and they just reported the 

total resistance. Frensch & Steudle (1989) using a root pressure probe apparatus measured 

hydraulic resistance along a 14 cm excised root of maize.  They showed that the flow of 

water into the root was mainly restricted by the radial resistance of the root, except in the 

apical parts (1-2cm) that were hydraulically isolated from the rest of the root due to high axial 

resistance. They showed that axial resistance was high at the distal parts of the roots and it 

decreased towards the more proximal parts of the roots. They showed that the radial 

resistance depended on the nature of pressure gradient applied to move water: the measured 

radial resistance by inducing hydrostatic flow was approximately 4 times bigger than that of 

the osmotic flow. Zwieniecki et al. ( 2003) measured water flow into a 20 cm long maize root 

grown in hydroponic. They measured the flow of water into roots using a pressure chamber in 

which the root was immersed in water and subjected to a given pressure. The apical segment 

of roots (3-6 cm) was successively removed starting from both the basal end, in a second 

approach, from the apical parts. The first approach showed that water uptake from 70% of the 

apical parts of the initial root was not detectable. In other words, as they removed the 10-15 

cm of the apical parts, water uptake stayed constant.  The second approach showed that by 

removing 50% of the basal segment of root water uptake stayed constant. They concluded 

that profile of water uptake zone varies along root depending on the relative importance of 

radial to axial resistances (Fig. 2).  However, the measure of radial and axial resistance along 

root may differ depending on the plant species, the developmental stage of the plant and the 

growth condition. To date, most of our available data on the local resistances of roots are 

obtained from plants grown in hydroponic cultures. The hydraulic properties of roots grown 

in hydroponic cultures may differ from those grown in soil.   
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2-Measurement root water using potometer 

A potometer directly measures the rate of water into different locations of the root of an 

intake plant grown in hydroponic.  Different locations of the roots are sealed into a tube filled 

with water and then the rate of water uptake is monitored by the change in volume of water in 

each tube. The potometer and roots should be immersed in water during the measurements. 

There have been many different potometer designed to measure the water uptake rate by 

roots. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Measured (point) and calculated (lines) value of water uptake along a 20 cm excised root of 

Maize. Length of root is percent of unsuberized root length and water uptake is percent of total root 

water uptake. The shaded area represents the suberized portion of the root. Lines represent the profile of 

water uptake along root modeled for different ratios between axial and radial resistance (from Zwieniecki 

et al., 2003). 

 

Sanderson (1983) measured water uptake at different locations of seminal axes of barley. 

Water uptake was measured in potometer with the shoot in the air with two different 

humidities.  Maximum water uptake occurred in the root segment with 10 cm distance from 
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the root tip and it decreased towards the distal and the proximal parts (Fig. 3). He found that 

the increasing transpiration rate was accompanied by a more marked increase in the water 

uptake rate at the proximal parts of roots.  

Although application of this technique to answer the question which parts of roots are more 

involved in water uptake is straightforward, its application is limited to roots grown in a 

hydroponic system.  

 

Figure 3: Water uptake of different location of roots along the seminal axes of barley, at two air humidity 

regimes, in relation to the development of the endodermis (. From Sanderson 1983). 

3- Experiment with dye tracers  

In these techniques, water uptake is quantified based on accumulation rate of a dye inside the 

root tissue or at the root surface. The concept is that when a dye is added to the solution in the 

root medium, it accumulates faster in the parts where the water uptake rate is higher. The dye 

may accumulate in the apoplast where water passes the cell membrane or at the root surface if 

transport of water is purely cell to cell.   

The dye accumulation inside the root tissue depends on the critical assumption that the 

apoplastic pathway is fully interrupted at the root endodermis. However, when the apoplastic 

pathway is not fully interrupted at the root endodermis, there will some apoplastic transport 
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of the dye into the root stele followed by an axial flow along xylem, which results in a 

uniform distribution of the dye or in the accumulation of dye at the more proximal parts of 

roots near to shoots. In this case, radial flux cannot be derived from the dye concentration 

solely.  

In the case of monitoring the accumulation rate of the dye at the root surface, the critical 

assumption is that the dye does not diffuse through the membrane of root cells, and the 

transport of water into roots is purely cell-to-cell. If the solute penetrates the membrane of the 

root cell or it is transported through apoplastic pathway, the rate of water uptake is 

underestimated. Varney & Canny (1993) introduced a new dye based method of measuring 

water uptake by roots, which was applied to whole root systems of large maize plants 

growing in aeroponic culture. The method depends on the buildup of concentration of dye 

(sulphorhodamine G) on the root surface. The local rate of accumulation of dye was related to 

flux of water into the roots.  They observed that maximum uptake from laterals occurred at 

30-60 cm from the root tip of the main axes, and it decreased towards the tip and the 

proximal parts (Fig. 4). Although this technique could be used to measure the rate of water 

uptake along mature roots and branch roots, its application is limited to roots grown in 

aeroponic system.  
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Figure 4: Water flux into different locations of roots along the axes and branches of mature maize grown 

in aeroponic culture (from Varney & Canny, 1993).  

 

4- Measurement of root water uptake in soil 

Recently, advanced imaging methods like x-ray computed tomography, light transmission 

imaging, magnetic resonance imaging, and neutron radiography have been applied to monitor 

the spatial distribution of root and soil water contents (Pierret et al., 2003; Garrigues et al., 

2006; Pohlmeier et al., 2008; Moradi et al., 2011). Garrigues et al. (2006) used light 

transmission imaging to observe root and water content distributions in an artificial soil. They 

found that water uptake zone was initially at the upper layer of soil and it moved downwards 

as the upper soil dried. Pohlmeier et al. (2008) used magnetic resonance imaging (MRI) to 

study water content changes in soil caused by root water uptake. They found that greater 

changes in soil water content appeared in the regions where root density was higher.   

These imaging techniques qualitatively showed the location of water uptake along the roots. 

To quantify the water uptake, in particular along each individual roots, the changes in soil 

water content should be coupled with simulation of water redistribution in the soil profile. 

This requires accurate knowledge of the soil hydraulic properties in the root zone, which are 

difficult to experimentally characterize. For instance, Carminati et al. (2010) reported that the 

hydraulic properties of the rhizosphere were different from those of the bulk soil. Such 

heterogeneity of soil properties in the root zone may complicate the interpretation of soil 

water content changes in relation to root water uptake. 

Besides that, the application of these techniques is often limited to dry soil. In wet soil, in the 

soil hydraulic conductivity is much higher than that of the roots resulting in a very fast 

redistribution of water in the soil. Additionally, these methods are not able to differentiate the 

water uptake of two or more neighboring roots due to the redistribution of water in the soil.  
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5- Measurement root water using heat-based sap flow gauges 

Heat-based sap flow gauges were initially developed for  plant stems and have been recently 

modified for application to roots (Coners & Leuschner, 2002). The principle of this 

measurement is that a heat pulse is released either on the surface of root through a probe 

attached to the surface or inside the root tissue through an implanted probe into the xylem 

tissue. The probes and the root tissues at the place of measurement are carefully isolated from 

the sounding soil to reduce heat dissipation. The intensity and/or redistribution of the applied 

pulse at a certain distance are recorded and related to the rate of sap flow in xylem. Different 

types of these devices have been developed and tested (Howard et al., 1996; Lott et al., 1996; 

Smith & Allen, 1996; Coners & Leuschner, 2002). These techniques quantify root water 

uptake by measuring the axial flux of water in xylem. Axial flux of water in the xylem is a 

local measure of the speed of water along root and it is a cumulative parameter along the 

roots. Application of this technique is limited to roots with diameters larger than 3 mm.  
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Aim of this study 

In the last decades, fundamental advances have been made in the conceptual understanding 

and modeling of root water uptake. Despite the modeling advances, there is still a lack of 

experimental data on basic questions such as: where do roots take up water from soil? Are 

taproot and laterals equally involved in water uptake? What segments of individual roots are 

more active in water uptake, the proximal or the distal segments? Experiments with roots 

grown in a hydroponic system showed that 10 to 30% of the total root length are sufficient to 

fulfill the transpirational demand (Frensch & Steudle, 1989; Zwieniecki et al., 2003). This 

finding was also confirmed by monitoring and modeling water uptake by roots growing in 

soil (Passioura, 1980; Doussan et al., 2006; Garrigues et al., 2006).  However, an important 

question is which of the 10-30% of the roots are actively involved in water uptake. 

Answering all of these questions need in situ measurement of local flow of water into the 

roots of transpiring plants grown in soil.   

The aims of this study were to develop, and apply a new technique to measure local fluxes of 

water into the roots of plants growing in soil and investigate on the effects of rhizosphere on 

root water uptake. The specific objectives were:     

 To develop a new method to measure the local flux of water into the roots of plants 

growing in soil. 

 To apply the technique to different locations of roots and to map the flux of water 

along the roots. The finding will answer the questions about what parts of the roots 

are more involved in water uptake. 

 To assess the effect of rhizosphere on flow of water into the roots.  
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Outlooks 

The study proceeded in four steps, each of which is described in one of the main chapters of 

this dissertation: 

1-We introduce a new technique to measure the local flux of water into the roots of plants 

growing in soil by combining neutron radiography with local injection of deuterated water 

(D2O) into the soil next to roots. The spatial and temporal distribution of D2O in both soil and 

plants was monitored using time series neutron radiography. The transport of water into roots 

was quantified using a convection-diffusion model of D2O transport into roots. As the first 

attempt, the model was developed to describe the transport of D2O into root segments that 

were entirely immersed in D2O. 

2- We further modified the description of the proposed model to describe the transport of 

D2O into roots that were partly immersed in D2O. We have also generalized the description of 

the model to allow a varying importance of apoplastic and cell-to-cell flow across the root 

tissue. We measured and modeled D2O transport into different locations of the roots.  

3- We applied the technique to determine the water fluxes across dry and wet rhizosphere. 

Our goal was to verify whether and to what extent the rhizosphere conductivity limits the 

water fluxes to roots during rewetting. 

4- We investigated a new method to estimate the effective hydraulic conductivity of the 

rhizosphere following of a rewetting cycle. We used a time series neutron radiography to 

monitor  redistribution of water in soil and roots after a rewatting cycle. We used the swelling 

rate of roots as an indication of water flow into the roots to estimate the effective hydraulic  

conductivity of the rhizoshere.  
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Abstract  

Knowledge of local water fluxes across the soil-root interface is essential to understand and 

model root water uptake. Despite its importance, there is a lack of direct methods to measure 

the location of water uptake along the roots. The aim of this study is to develop a technique to 

quantify local fluxe of water from the soil to the roots of living plants. To this end, we used 

neutron radiography to trace the transport of deuterated water (D2O) into individual roots. We 

grew Lupines in 30×25×1 cm containers filled with a sandy soil, which was partitioned into 

different compartments using 1cm-thick layers of coarse sand. We locally injected D2O in a 

selected soil compartment near the roots of eighteen-day old Lupines during the day 

(transpiring) and night (non-transpiring). The transport of D2O into roots was then monitored 

using time-series neutron radiography. The results show that: 1) The transport of D2O into 

roots was faster during the day than during the night; 2) during day D2O was quickly 

transported along the roots towards the shoots, while at night this transport was insignificant. 

The differences between day and night measurements were explained by convective transport 

of D2O into the roots driven by transpiration. To quantify the local transport of D2O into 

roots, we developed a simple convection-diffusion model that assumed the endodermis as the 

main resistance to water transport. The D2O uptake predicted by the model was in agreement 

with the axial flow within the roots as derived from the transport of D2O behind the capillary 

barrier. This new method allows for quantification of local water uptake in different parts of 

the root system. 

Introduction 

In the last decades, fundamental advances have been made in the conceptual understanding 

and modeling of root water uptake. Many models of root water uptake are available with 

various degrees of complexity (Landsberg and Fowkes,  1978; Somma et al., 1998; Roose 

and Fowler, 2004; Doussan et al., 2006; De Jong Van Lier et al., 2006; Javaux et al., 2008). 

Although recent architectural models are capable of taking into account local root water 

uptake and can predict the water uptake pattern across the root length, there is a lack of 

experimental data on their parameterizations and validations.  

Root water uptake is a dynamic process that involves complex interactions between roots and 

the surrounding soil (Passioura, 1980; Steudle, 2000; Draye et al., 2010). It is assumed that 
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root resistance controls water uptake in relatively wet soils. As soil dries, soil hydraulic 

resistance increases and may restrict the flow of water to roots. Detailed measurements of 

root hydraulic properties along individual roots have mainly been performed on excised roots 

growing in hydroponic culture (Frensch and Steudle, 1989; Huang and Nobel, 1993; Frensch 

et al., 1996; Barrowclough et al., 2000; Zwieniecki et al., 2003; McLean et al., 2011). 

Frensch and Steudle, (1989) and Zwieniecki et al. (2003) demonstrated experimentally and 

theoretically that the distributed nature of water uptake zone depends on the relative 

importance of radial and axial resistance. These two resistances change with root maturation 

and soil water content.  

So far, it has been difficult to experimentally measure local water uptake along an individual 

soil-grown root and most of existing data are obtained from excised root grown in hydroponic 

systems. However, dynamics of root water uptake in the soil may be more complex than in 

hydroponic cultures. A complexity is that roots growing in the soil may have different 

hydraulic properties than those in hydroponics (Peterson et al., 1993; Enstone et al., 2002; 

Meyer et al., 2009). Additionally, root water uptake is influenced by the heterogeneous 

distribution of water in the soil and the presence of rhizosphere with distinct hydraulic 

properties (Carminati et al., 2010; Moradi et al., 2011). 

Recently, advanced experimental methods including X-ray computer tomography, light 

transmission imaging, magnetic resonance imaging and neutron tomography have been 

applied to monitor the spatial distribution of root and soil water content  (Pierret et al., 2003; 

Garrigues et al., 2006; Pohlmeier et al., 2008; Moradi et al., 2011). Pierret et al. (2003) used 

X-ray transmission to monitor root distribution and soil water content around living roots in 

two dimensions. Pohlmeier et al. (2008) used magnetic resonace imaging (MRI) to study 

water content change in the soil caused by root water uptake. They found that greater changes 

in soil water content appeared in the regions where root density was higher. Changes in soil 

water content were also observed in regions where no root was observed in MRI images. 

Therefore, they called for a higher spatially-resolved observation of fine roots, and coupling 

the experimental measurements with an advanced modeling approach for better 

understanding of water flow along the distance in the soil.  Using neutron tomography, 

Moradi et al. (2011)  demonstrated that there was more water in the rhizosphere of lupins, 

maizes and chick peas  than in the bulk soil during a drying cycle caused by root water 

uptake. Garrigues et al. (2006) used light transmission imaging to observe root and water 

content distribution in thin samples filled with an artificial  translucent medium (mixture of 
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98.5% Fontainebleau sand and 1.5% Hectorite clay). In a follow up study, Doussan et al. 

(2006) modelled the observed water content distribution by coupling the water flow in soils 

and roots. They found that the location of root water uptake moved downwards along the soil 

profile starting from the upper soil layers when soil was initially wet. The above mentioned 

studies indirectly estimated root water uptake from the changes in soil water content after 

stimulation of the water redistribution in the soil profile. The method requires accurate 

knowledge of the soil hydraulic properties in the root zone, which is difficult to 

experimentally characterize. For instance, Carminati et al. (2010) reported that the hydraulic 

properties of the rhizosphere were different than those of the bulk soil. Such heterogeneity of 

soil properties in the root zone may complicate the interpretation of the soil water content 

changes in relation to root water uptake. Additionally, these methods are not able to 

differentiate the water uptake of two or more neighboring roots due to the redistribution of 

water in soil. An alternative method is miniature sap-flow gauges (Coners and Leuschner, 

2002). They measured water flow along fine roots of trees. This technique can be applied to 

the roots with diameters down to 3 mm, but it does not explicitly measure the radial flow 

across the root-soil interface and it only measures the axial flow of water in xylem after a 

certain length of root without giving information on the location of the uptake.  

A direct measurement of local water uptake along individual roots growing in soil is highly 

desirable for better understanding of root function, particularly in response to various 

environmental conditions. The objective of this study was to introduce an in-situ technique 

for quantification of radial and axial flow of water into and within the roots. The method 

consists of monitoring the transport of deuterated water (D2O) into roots by means of neutron 

radiography. Neutron radiography was chosen because of the high sensitivity to water, which 

makes roots more visible than in X-ray radiography, and because of the high contrast 

between D2O and H2O. The use of neutron radiography and D2O was first proposed by 

Matsushima et al. (2008). They used D2O to image water fluxes in roots and shoot of living 

plants. However, they did not localize and quantify the flow of water into the roots. Our 

intention was to derive the quantitative the local water flow to the roots from the observed 

D2O transport. The results are expected to provide a better understanding of root water uptake 

and provide a database to evaluate and improve existing models. 
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Materials and methods 

Preparation of the soil and plants 

Experiments were carried out on 18-day-old Lupines (Lupine Albus) grown in aluminum 

containers (25 cm wide, 30 cm high and 1 cm thick) filled with a sandy soil. The sandy soil 

was collected from the artificial catchment Chicken Creek located near Cottbus, Germany. 

The soil (sieved to < 2 mm) consisted of approximately 92% sand, 5% silt, 3% clay and had a 

bulk density of 1.4 g cm-3. The soil hydraulic properties are given in Carminati et al. (2010). 

The containers were filled with soil while they were laid horizontally. A grid was placed into 

the containers to separate the sample into 16 compartments (4 rows × 4 columns). The sandy 

soil was poured into each compartment through one sieve to favor a homogeneous soil 

deposition and to reduce soil layering. The space between the compartments was 1 cm wide 

and was filled with a coarse sand (grain diameter of 1.2-1.7 mm), which acted as capillary 

barriers to hydraulically disconnect the adjacent compartments. The containers were then 

closed and the samples were gently placed vertically. The average bulk density of the packed 

soil in each compartment was 1.4 g cm-3. One face of each container was perforated using a 

1-mm thick drill forming a network of holes each 3 cm apart. A fine-needle syringe was used 

for injecting D2O into the desired regions through the holes. 

Lupine seeds (Lupine Albus) were soaked in 10% H2O2 solution for 10 min and subsequently 

in 10 mM CaSO4 solution for another 10 min. Then they were germinated for one day on 

moist filter paper in the dark. Germinated seeds were then sown on the soil at the center of 

the containers. The samples were kept under controlled conditions in a growth chamber with 

a photoperiod of 14 hours, light intensity of 300 μmol m2 s-1, day/night temperature of 

25°C/19°C, and relative humidity of 60 %. Plants were irrigated with nutrient solution every 

third day by slowly immersing the samples in water until the water table reached the bottom 

of the upper compartments. Then the water table was sequentially lowered to the top of the 

lower compartment letting each compartment to drain freely. This resulted in an average 

water content of 0.2 cm3 cm-3 with a gradient in water potential due to gravity. The plants 

were eighteen days old when the neutron radiography experiment started. At this stage plants 

had six leaves with a total leaf area of approximately 63±4.7 cm2 (n=3). During the daily 

photoperiod, the transpiration rate of individual plants averaged 1.20±0.23 g h-1 (n=6), as 

measured gravimetrically. The night transpiration was insignificant.  
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Neutron radiography  

Neutron radiography is a noninvasive imaging technique with high sensitivity to water. This 

makes it suitable to monitor soil water dynamics and root distributions (Moradi et al., 2009). 

The Beer-Lambert law describes the attenuation of neutrons across a sample 
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                                                (2.1)               

where I is the intensity of the attenuated neutron beam (cm−2 s−1), I0 is the intensity of the 

incident neutron beam, di (cm) is the thickness of the sample, and μi (cm−1) is the 

macroscopic neutron attenuation coefficient of material i composing the sample. The neutron 

attenuation coefficient defines the probability of neutron interaction per unit thickness of 

material. The attenuated neutron flux is converted to visible light by a scintillator plate and 

digital images are acquired by a cooled CCD camera. 

The experiments were carried out at the ICON beam-line at Paul Scherrer Institute (PSI), 

Switzerland (Kaestner et al. 2011). We used a CCD camera detector with an array of 

1260×1260 pixels, a field of view of 15.75×15.75 cm, and effective spatial resolution of 0.2 

mm. In this field of view, four radiographs with marginal overlaps were needed to scan one 

sample. For measurements during the day, a lamp identical to those in the growth chamber 

was installed in the imaging station above the plant. The transpiration rates in the imaging 

station stayed the same as in the climate chamber.   

Tracing the flow of water into roots by deuterated water   

Because of its similarity to water, deuterated water (D2O) has been used to study the water 

flow processes in plants (Bacic and Ratkovic, 1987; Matsushima et al, 2008). Deuterated 

water has a much lower neutron attenuation coefficient compared to H2O, which makes it an 

ideal tracer for neutron radiography experiments. We locally injected 3 ml D2O (purity of 

99.97 %) in a selected soil compartment using a syringe. D2O redistribution in soil and its 

transport into roots were monitored with a time interval of 10 seconds for a period of 1 hour. 

The measurements were performed during the day and night on 10 replicates. The objective 

of this study is to introduce this new method, therefore we focus on the results obtained from 

two samples; one measured during the day and one at night, where D2O was injected at the 

same location.   
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Image processing 

The radiographs were corrected for the flat field and dark current according to 
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                                                    (2.2)                     

where Inorm(x,y) is the corrected image, I(x,y) is the recorded image on camera, IFF(x,y) is the 

flat field (radiography without sample), and IDC(x,y) is the dark current (signal recorded by 

the camera when there was no beam). The Beer-Lambert law for our samples is 

 2 2 2 2log ( , ) (1 )norm Al Al s tot H O H O D O D OI x y d d d d                (2.3) 

where the subscripts Al, S, H2O and D2O refer to aluminium container, solid phase of the soil, 

normal and deuterated water, respectively, ∅ is the soil porosity (cm3 cm-3), and dtot is the 

inner thickness of the container (1cm). The contribution of container and soil were derived 

from the radiograph of a dry sample, Idry (x,y). The attenuation of dry soil and aluminium 

were μs= 0.13 cm-1 and μAl=0.02 cm-1, respectively. The attenuation coefficients of water 

(μH2O=3.65 cm-1) and D2O (μD2O=0.61 cm-1) were measured using control samples with 

known normal and deuterated water content. Assuming that the contribution of the container 

and soil was uniform across the sample, the contribution of H2O and D2O is given by 
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Eq. (2.4) gives the average neutron attenuations across the sample thickness (1 cm). For our 

convenience, we define 

2 2 2 2( )H O H O D O D O
soil

tot

d d

d

 
                         (2.5) 

which gives the neutron attenuation coefficient of the liquid phase over the total sample cross 

section (dtot). In soil where the liquid phase consists of pure H2O, 𝜇𝑠𝑜𝑖𝑙 = 𝜇𝐻2𝑂𝜃, where θ is 

the soil volumetric water content. In the pixels containing roots at a 2D projection through the 

1 cm thick sample, the signal is composed of the attenuation coefficients of the root and of 

the soil in front of and behind the root in the beam direction. The actual contributions of H2O 

and D2O in root can be calculated assuming that the contributions of H2O and D2O in the soil 

in front of and behind the root are equal to those of the soil at the sides of the roots as 

quantified by Eq. (2.5). The sharp contrast between the roots and the surrounding soil, due to 
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their difference in water contents, allowed us to segment roots from the soil. Roots were 

segmented using the algorithm roottracker2D as described in Menon et al. (2007). The 

segmented roots were skeletonized and their length and diameter were calculated using the 

Euclidean distance mapping functions in MATLAB. The pixel-wise neutron attenuation 

coefficient in roots μroot is calculated as 

log (1 )root
s root soil root

soil

root

root

I
d d

I

d

 
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  



          (2.6)              

where Iroot is the value of Inorm in the most center  pixel in the roots, Isoil is the average values 

of Inorm in soil near to the roots and droot is the root diameter. The attenuation coefficient of 

root (μroot) depends on the volumetric content of H2O and D2O in the root. 

To calculate the D2O content in roots we assumed that root swelling after D2O injection was 

negligible. This means that the total liquid content (H2O plus D2O) in roots were constant 

over time. It follows that 
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Where (𝑑𝑟𝑜𝑜𝑡
𝐷2𝑂 ) is the thickness of D2O in roots, and t=0 refers to the radiograph before D2O 

injection. The thickness of D2O in soil (𝑑𝑠𝑜𝑖𝑙
𝐷2𝑂)

 
is given by  
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where (𝑑𝑠𝑜𝑖𝑙
𝑙𝑖𝑞 ) is the total liquid content in soil. To calculate (𝑑𝑠𝑜𝑖𝑙

𝑙𝑖𝑞 ), we assumed that liquid 

content (H2O+D2O) inside the compartment quickly reaches to a uniform distribution after 

injection. It follows that 
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V V
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
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                                                       (2.9) 

where VD2O and VH2O are respectively the total volume of D2O and H2O in each compartment, 

and A is the total area of the isolated compartment (cm2). To calculate VD2O and VH2O we 

assumed that VH2O in the compartment was constant over time and it could be calculated from 

the first radiograph before injection (t=0) 
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where i and j are the x and y coordinates of the compartment, λ is the pixel size and t is the 

time after injection. We used the volumetric definition of D2O concentration in the root (Croot) 

and soil (Csoil) as the thickness of D2O divided by the total liquid thickness in root and soil, 

respectively:   
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The total liquid thickness in root (𝑑𝑟𝑜𝑜𝑡
𝑙𝑖𝑞 ) is calculated as H2O thickness in the first radiograph 

before D2O was injected.  

Model of D2O transport into root 

To quantify the transport of D2O into roots, a simple mathematical model was developed. The 

model calculated the local radial water flux from the penetration rate of D2O into roots. 

Deuterated water enters the roots by diffusion and convection. Thus, transport of D2O is 

described by a diffusion-convection equation, where the rate of D2O entering the root 

depends on: 1) the convective flow resulting from transpiration (net water uptake), and 2) the 

diffusional permeability of roots to D2O. It is known that root resistance is composite; it has 

an apoplastic pathway around the protoplasts, and a cell-to-cell pathway crossing cell 

membranes and plasmodesmata (Steudle, 2000). The relative importance of the pathways is 

still a matter of debate. To simplify the process, we assumed that endodermis is the main 

resistance to D2O transport with a reflection coefficient of close to zero (Henzler and Steudle, 

1995; Dainty and Ginzburg, 1964), and D2O transport in the apoplast is much quicker than in 

the cell-to-cell pathway. This means that D2O quickly passed through apoplast and reached 

the endodermis shortly after it was injected at the root surface. Subsequently D2O passes the 
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endodermis and the cell membrane of cortical cells in the cortex (Fig. 1). From the 

assumption of quick apoplastic transport in the cortex, the concentration of D2O in the 

apoplast of cortex was assumed to be identical to that at the root surface in soil. Additionally, 

we assumed that there is no considerable resistance to D2O transport inside the root stele and 

concentration of D2O inside the root stele is uniform. According to House (1974) the 

transport rate of D2O (cm3 s-1) across the endodermis is the sum of the convective part (𝐽𝑟
𝑆,𝐶

)  

, 2S C

r s r oJ R Lj C
                                            (2.14)                

and a diffusive part (𝐽𝑟
𝑆,𝐷

)
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                             (2.15) 

where jr (cm3 cm-2 s-1) is the radial flux of liquid driven by convection into the root stele, PD 

is the diffusional permeability coefficient of the root endodermis (cm s-1), Rs is the radius of 

root stele including the endodermis (cm), L is the length of root immersed in D2O (cm), Co is 

D2O concentration in the apoplast of root cortex (cm3 cm-3), where according to  our 

assumption, quick apoplastic transport, it is equal to the that of the soil at root surface and Cs 

is D2O concentration in the root stele (cm3 cm-3). Here, the flux of D2O from the soil into the 

root across the membrane is taken as positive. In our equations, superscripts r and x refer to 

radial and axial flow, respectively, and superscripts D and C refer to diffusion and 

convection, respectively. 

Besides the radial component of D2O transport, there is also an axial component inside the 

root. Once D2O passed the endodermis, it moves up inside the xylem axially (Fig. 1). Such 

axial transport is dominated by the hydrostatic gradient along xylem set by transpiration. The 

volumetric solute transport in the xylem, 𝐽𝑥
𝑆,𝐶

 (cm3 s-1), is 

, 2S C

x s x sJ R j C
                                            

(2.16)
 

where jx is the axial flux (cm3 cm-2 s-1) and Rs is the radius of the root stele including 

endodermis. Note, we defined the axial flux (jx) referring to the stele cross section (πRs
2). 

Therefore, the actual water velocity in the xylem referring to the xylem cross section will be 

higher than defined axial flux. From a mass conservation, it follows that 

2 2s x s rR j R Lj 
                                            (2.17) 
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The right hand side of Eq. (2.17) is the radial volumetric flow of H2O entering the root 

segment in the injected compartment and the left hand side is the axial volumetric flow 

leaving the root segment towards the shoot. Assuming that entire root including the root tip is 

immersed in D2O; Eq. (2.17) can be rewritten for D2O transport as 

, 2 2S C
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                                (2.18) 

Finally, the increase of D2O concentration inside the root stele can be described as: 
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Under the following boundary conditions 
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 the solution of Eq.  (2.19) is 
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Eq. (2.21) shows that the D2O concentration in the root stele (Cs) increases exponentially to 

the D2O concentration in the root surface (Co). The rate constant (2(PD + jr,)/Rs) contains the 

contribution of convection (jr) and diffusion (PD).  We assumed that D2O enters the root only 

by diffusion at night when transpiration is nearly zero and by both convection and diffusion 

during the day. Assuming that PD does not change with transpiration rate, it is possible to 

calculate the local flux of D2O into root (jr) during the day. The latter assumption needs 

further experimental evidence (see Discussion). 
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Figure 1: Illustration of D2O transport in root (A). Endodermis is assumed the major resistance to water 

and D2O transport. Deuterated water moves into the root stele by convection and diffusion, respectively 

driven by pressure and the concentration gradient between cortex and xylem (Eq.2.21). We assumed 

quick D2O transport through the apoplast and a slower transport across cell membranes and endodermis 

(B). Note the capillary barrier to stop D2O diffusion in soil.  
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Calculation of Cs 

The calculated neutron attenuation coefficient for the roots represents the average of CD2O 

across the root cortex and the root stele. 

c c s s
root

C R C R
C

R


                                    (2.22) 

where Croot is the average of D2O concentration in the root, Cc is D2O concentration in the 

cortex, Cs is D2O concentration in the root stele, R is the root radius, Rc is the cortex 

thickness, and Rs is the stele radius. To obtain Cs we need to know the contribution of cortex 

Cc. This value was estimated as follows; the cortex is formed by a series of cortical cells 

which are hydraulically in local equilibrium with the apoplast. Assuming a quick transport of 

D2O in apoplast, all the cortical cell membranes are uniformly immersed in an identical 

concentration as that of the root surface in soil. The increase of D2O concentration inside the 

cortical cells, neglecting the volume of apoplastic pathway, is then described as 
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where PD.C is diffusional permeability across the membrane of  cortical cells and rc is the 

radius of a single cortical cell. Assuming that endodermis and xylem are not yet developed in 

the root tip and it consists of only cortical cells, we took the increase of D2O concentration in 

the root tip to represent that of the cortex.   

Independent quantification of axial flow rate  

Mass conservation imposes that axial flow rate of liquid at the capillary barrier is:
 

,

2

, , 2
s bx b x b s rJ R j R Lj                                   (2.24) 

where Rs,b is the radius of root stele including endodermis at the location of the coarse sand 

barrier (point B in Fig. 3), Jx,b is the axial flow rate at point B (cm3 s-1),  jx,b is the axial flux at 

point B (cm s-1) and 𝑅𝑠 is the average radius of stele along the root length up to barrier (L).  
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In addition to Eq. (2.24), the axial flow rate (Jx,b) can be calculated from the cumulative 

volume of D2O passing the barrier. The cumulative volume of D2O moving across the barrier 

(VD2O) can be quantified from the time-series neutron images:  

   2 , ,D O x b s bV J C t
                                                 (2.25)

 

where Cs,b is the D2O concentration in the root stele at point B in fig 3. The axial flow rate 

calculated by Eq. (2.25) is independent from our modeling approach. Therefore, comparison 

of Jx,b calculated with Eq. (2.24)  (modeling approach) and Eq. (2.25) (quantified neutron 

images) provides a first test of the proposed model to describe the radial flow of D2O into 

roots.  

Results  

Figure 2 shows radiography of the two samples measured at night (left) and day (right). The 

images show the root distribution and soil water content before D2O injection - i.e. the darker 

the image, the higher the soil water content. The signal in soil varies due to soil heterogeneity 

and variations in the soil water content. The top compartments of both samples were initially 

drier than the lower compartments. This resulted from the higher root density, and therefore 

higher water uptake in these compartments as well as from gravity drainage when the soil 

was initially wet.   

From the segmented images, the total root length and root surface were calculated to be 

446.81 cm and 78.06 cm2 for the day sample and 489.19 cm and 91.36 cm2 for the night 

sample, respectively. D2O was injected in both samples at the same location (Fig. 2), where 

the average water content was 0.07 in the night sample and 0.06 cm3 cm-3 in the day sample. 

These water content values correspond to matric potential of -35 hPa and -47 hPa, based on 

the water retention curve of the soil.  

Visualization of D2O uptake in the root 

Figure 3 shows the distribution of H2O and D2O in the soil and roots before and after 

injection. The color-marked roots in the rectangular area in image A were used for the flow 

calculations in both samples according to Eq. (2.21). In this rectangular area, the D2O 

concentration in the soil near roots reached a relatively constant value shortly after injection 

in both samples. The marked roots had a length of 11.75-12.80 cm (night sample), and 10.81-
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11.25 cm (day sample). The rectangular area was chosen so that it contained a root tip in both 

day and night samples (Root3). D2O concentration in the root tip of this root was used to 

represent the concentration of D2O in the cortex. The first 2 mm of root3 after excluding 5 

mm of the apical part was used for this calculation in both samples. Images B, C and D in 

Figure 3 show the difference between the actual radiographs (at various times) and the 

radiograph before the D2O injection (at t=0). Bright gray values indicate reduced neutron 

attenuation due to increasing the D2O/H2O ratio. In contrary, the dark areas show H2O 

accumulation after D2O injection. Deuterated water first redistributed in the soil quickly due 

to fast pressure dissipation (bulk flow of H2O+D2O), and then slowed down as the diffusive 

mixing of D2O and H2O dominated. Roots turned white relatively fast in both night and day 

samples, indicating a significant diffusion of D2O into the roots (Fig. 3B). During the day, 

D2O moved up inside the root beyond the capillary barrier while this was insignificant during 

night. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Neutron radiographs of the samples at night (left) and day (right). The gray scales are 

proportional to water content: the darker, the wetter. The red rectangles show the compartment where 

D2O was injected in each sample. The bright horizontal and vertical layers are the capillary barriers 

made of coarse sand. 
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Figure 3: Neutron radiographs of the samples before D2O injection (A) and after injection (B, C and D). 

Left: measurements performed during the night. Right: measurements performed during the day. In 

Figure A we marked the segmented roots used for the flow analysis. Figures B, C and D images are the 

difference between the actual radiograph at various times and the one before injection (at t=0). Brighter 

color indicates less neutron attenuation and higher D2O/H2O ratio.  The blue rectangles show the location 

of roots, where we used for calculation of the radial flux (jr) according to Eq. (2.21). The yellow line 

indicates the location of roots, where we calculated the axial flow rate (Jx,b) according to Eq. (2.24) and 

(2.25). 

 

Quantification of radial water flow in roots 

After segmenting the roots, we calculated the D2O concentration in soil and roots by Eq. 

(2.12) and Eq. (2.13). Figure 4 shows the average D2O concentration in the soil near the roots 

(C0) at night (Fig. 4A) and day (Fig. 4B). The D2O concentrations were averaged for the soil 
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within 3 mm distance from the roots inside the rectangular area shown in Fig. 3. The D2O 

concentration sharply increased and then stayed relatively constant over the course of the 

next hour. The volumetric liquid content (H2O + D2O) increased in both samples to 0.18 cm3 

cm-3 after D2O injection. Based on the soil water retention curve, we expect the soil matric 

potential to increase from -35to -12 hPa for night sample, and from -47 to -12 hPa for day 

sample. Therefore, the changes in the soil matric potentials before and after D2O injection, 

compared to the typical gradients in water potential between soil and roots, were insignificant 

to induce a flow into the roots.  

The increase of D2O concentration in the roots (Croot) is shown in Fig. 5A and 5B for night 

and day sample, respectively. This increase was faster in the day sample than in the night 

sample with a half time of approximately 150 seconds for the day, and 280 seconds for the 

night. The calculated D2O concentration in the root (Croot) is the average concentration across 

the cortex and stele (Eq. 2.22). To quantify the radial water flux into roots by Eq. (2.21), we 

need to calculate the concentration of D2O in stele (Cs). We used the increase of D2O 

concentration in the root tip of root3 in both samples, to represent D2O concentration in 

cortical cells. Figure 5C shows that D2O concentration in the root tip increased similarly in 

both day and night sample; suggesting that D2O transport into the root tip was driven only by 

diffusion. The curves were fitted by Eq. (2.23) and the half time of the concentration increase 

in cortical cells was approximately 120 seconds in day and night. Microscopic observation of 

the root cross sections (data not shown here) revealed that the radius of the stele was 46% of 

the root radius. The cross-sections also showed that the area of 5-6 cm from the root tip had 

developed an endodermis with casparian bands. The concentration of D2O in the root stele 

(Cs) was calculated according to Eq. (2.22). D2O concentration in the root stele increased 

exponentially with time in both day and night samples (Fig. 5 D and E). D2O concentration in 

the root stele increased much faster at day than at night, with a half time of approximately 

160 s at day and 430 s at night (Eq. 2.21). 
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Figure 4:  Average D2O concentration in the soil near the roots after injecting 3 ml of D2O during night 

(A) and day (B) measurement. The D2O concentration is average within 2 mm region in soil near to root 

surface in the blue rectangle marked in fig. 3. 
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Figure 5: Average D2O concentration in roots after D2O injection during the night (A) and day (B), in the 

root tip (C), and in stele after excluding cortex contribution during the night (D) and day (E).  In Fig. A, 
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B, D and E, the average is calculated along the segmented roots in the blue rectangle marked in Fig. 3. In 

Fig. C, the data shows the average D2O concentration along 2 mm length of root after excluding 5mm 

apical part of the root tip. 
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Table 1 summarized the results obtained from fitting Eq. (2.21) to the D2O concentration in 

the root stele of the night sample. The calculated diffusional permeability of different roots 

with the same length was similar. The average concentration of D2O in soil and root in the 

final minutes of measurement is presented as equilibrium concentration. We observed slightly 

smaller D2O concentration in the roots than in the soil. The small differences may be 

originated from the estimation of D2O concentration in root, where we neglected the neutron 

attenuation of solid parts of root. In other words, we assumed that neutron attenuation of root 

represented the thickness of liquid in the root. Additionally, the differences may be due to the 

presence of non-exchangeable water inside the root as reported by Bacic and Ratkovic (1987) 

for maize roots with NMR technique.  

 

Table 1: Properties of the segmented roots and D2O transport parameters fitted by an exponential 

function for night measurement (Eq. (2.21)).   

 

 

 

 Unit Root1 Root2 Root4 Root5 

Diffusional permeability, PD [cm s-1] 8.52e-6 8.69e-6 1.04e-5 8.13e-6 

Equilibrium concentration of  

D2O  at root surface, C0 
[-] 0.89 0.93 0.91 0.88 

Equilibrium concentration of  

D2O in root stele, Cs 

[-] 0.86 0.90 0.85 0.84 

Total length [cm] 12.80 11.75 11.88 11.75 

Length after barrier, L [cm] 8.58 7.79 8.38 7.72 

Root radius, R [cm] 0.024 0.024 0.024 0.024 
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Quantification of axial water flow rate   

We used the calculated value of radial flux (jr) from Eq. (2.24) to calculate the axial flow of 

water crossing the barrier (Table 2). For this calculation, we assumed that apical parts of the 

root tip (length of 1.5 cm) were hydraulically isolated from the rest of the roots (Frensch and 

Steudle, 1989). Therefore, we excluded 1.5 cm of each root length and assumed that the 

radial flux (jr) is uniform along the rest of the root up to the barrier.  

To test our model, we quantified the total volume of D2O passing the barrier from the neutron 

radiographs and independently calculated the axial flow rate according to Eq. (2.24). Figure 

6A shows the total volume of D2O passing the barrier as a function of time during the day. A 

few seconds after D2O injection, D2O was detected beyond the barrier. The volume of D2O 

passing the barrier increased gradually at the beginning, because D2O concentration in the 

root xylem was increasing. After 900 s, when D2O concentration in the root at the barrier 

reached a constant value, the VD2O beyond the barrier increased linearly with time. This linear 

behavior was observed until approximately 2400 s, when D2O in the xylem reached the 

taproot, where it was not monitored anymore. To estimate the axial transport rate at the place 

of the barrier (Jx,b) according to Eq.(2.25), we used only the linear parts of data. The 

calculated value of Jx,b for each roots is presented in Table 2. The independent calculated 

values of Jx,b using Eq.(2.25)  were in a good agreement with the  calculated value of Jx, by 

using our model according to Eq.(2.24) (Table 2). 
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Table 2: Properties of the segmented roots and D2O transport parameters fitted by Eq. (2.21), (2.24) and 

(2.25) for day measurement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Unit Root1 Root2 Root4 

Radial flux, jr, Eq.(2.21) [cm s-1] 1.72e-5 1.42e-5 1.75e-5 

Axial flow rate, Jx,b, Eq.(2.24) [cm3 s-1] 8.35e-6 7.33e-6 8.44e-6 

Axial flow rate, Jx,b, Eq.(2.25) [cm3 s-1] 8.00e-6 6.00e-6 7.00e-6 

Equilibrium concentration of  D2O  at 

root surface, C0 
[-] 0.88 0.91 0.88 

Equilibrium concentration of  D2O in 

root stele, Cs 
[-] 0.85 0.88 0.84 

Total length [cm] 10.81 11.25 10.91 

Length after barrier, L [cm] 8.00 8.42 7.95 

Root radius, R [cm] 0.025 0.025 0.025 



Quantification and modeling of local root water uptake  50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Total volume of D2O passing the barrier as a function of time after D2O injection (A) and total 

volume of D2O passing the barrier divided by the concentration in the root at the barrier (B). Linear 

regression of the data in the right figure yielded the axial water flow rate.     
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Discussion 

For the first time, local water uptake by individual roots in soil was quantified using 

deuterated water and neutron radiography. Deuterated water was injected into the soil near 

the roots and its transport in soil and roots was monitored during the day (transpiring plant) 

and night (non-transpiring plant) using time-series neutron radiography. The goal was to 

determine the radial transport of D2O into the roots as representative of radial water flux (jr) 

which is one of the key parameters in understanding and modeling local root water uptake.  

We developed a simple model to describe the local transport of D2O into root and the model 

suggested valuable hydraulic properties of the root. The model predicted the average 

diffusional permeability of cortical cell membrane to be PD,C=3.3×10-6 ±1.19×10-8 cm s-1 and 

the average diffusional permeability of the endodermis to be PD=9.42×10-6 ±8.70×10-7  cm s-

1. Permeability coefficient of endodermis was greater than that of the cortical cell membrane. 

This suggests the contribution of apoplastic flow across the endodermis. If there were no 

apoplastic pathway in endodermis and cell-to-cell pathway was the only pathway, diffusional 

permeability coefficient of endodermis could have been lower than that of cortical cells. Note 

that in cell-to-cell transport across the endodermis, D2O passes two membranes. Further 

experiments are needed to confirm this hypothesis.  

As the first attempt, the model was tested by comparing the axial flow rate (Jx,b) calculated 

using our model (Eq. (2.24)) with independent calculation of Jx,b (Eq. (2.25)). We obtained a 

good agreement between the calculated Jx,b from the two approaches (Table 2) that may 

support the modeling approach. However, there are limitations in the current model because 

of assumptions made. To calculate the radial flow rate of water across root, we assumed the 

diffusional permeability of endodermis to D2O transport will be similar during the day and 

night. This may not be true. The diffusional permeability of endodermis may vary during the 

day when cell-to-cell pathway is regulated by aquaporins. Such variability should be verified 

in further experiments and eventually included in the calculations. Another assumption of the 

model is the quick transport of D2O in the apoplast. Consequence of this assumption is that 

cortical cells and endodermis were simultaneously imposed to an identical D2O concentration 

to that of the soil at the root surface. In reality, it takes some time for D2O molecules to 

diffuse from the root surface to the endodermis. The typical diffusion time is given by t=l 2/ 

(2De), where l is diffusional length and De is the diffusion coefficient of D2O in H2O. Using 

the value of diffusion coefficient of D2O in water (2.272×10-5 cm2 s-1, Longsworth, 1960), 
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and l equal to the cortex thickness (0.015cm), we obtain the D2O diffusion time to reach to 

the endodermis to be 5 seconds. Although the actual pathway could be longer due to 

tortuosity, diffusion in the apoplast seems quick enough to meet our assumption (if 

diffusional length was 1.5 times longer, the time would have been 11 sec). It is important to 

mention that if this assumption was not valid, the actual D2O concentration imposed to 

endodermis would have been overestimated and the diffusional permeability of endodermis 

would have been underestimated. Consequently, the values of jr calculated from the model 

would have been overestimated. However, similar value of Jx,b calculated by our model and 

by the independent calculation may support this assumption. Additionally, immediate 

presence of D2O beyond the barrier in day sample (Fig. 6A) suggests that D2O arrived to 

endodermis shortly after D2O injection.  

The diffusional permeability of the cortical cells was calculated to be PD,C= 3.3×10-6cm s-1 

and this value was comparable to other literature values. Henzler and Steudle (1995) 

measured permeability coefficient of deuterated water for intermodal cells of Chara corallina 

using a cell pressure probe. Their values ranged from 4×10-4 to 8×10-4cm s-1. The water 

permeability in this type of cell is known to be higher than in cortical cells of higher plants, 

and values could be variable depending on open/closed status of water channels within the 

cell membranes. Bacic and Ratkovic (1987) reported the diffusional permeability of D2O in 

cortical cell for roots grown in hydroponic cultures to be in the range of 10-6-10-3cm s-1. The 

estimation of this value depended on the model used for describing D2O transport. The 

average value of diffusional permeability of cortical cell membrane in our study (3.3×10-6cm 

s-1) falls within the reported range.  

Using the total water uptake divided by the total root cross section divided by the radial flux, 

we estimated that 63% of the total root length would be needed to fulfill the water demand by 

the plant. This estimation is larger than the values of 30% reported by Passioura (1980), 

Doussan et al. (2003), and Zwieniecki et al. (2003). The difference between our estimation 

and the literature could be explained by the errors in the assumption of uniform radial flux of 

water along the active parts of the root system. This uncertainty in the measurements of local 

water fluxes into and along roots is an important source of error in existing methods.  

The significance of this study is the description of a new method to locally quantify water 

flow into individual roots of living plants. Quantification of the radial flux (jr) requires a 

model of water and D2O transport inside the roots. The model results were tested by 

comparing them with an independent measurement of the axial flow rate (Jx,b). This method 
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makes it possible to quantitatively address the question of where roots take up water in soils. 

The answer to this question would open wide ranges of agronomy applications aimed at 

understanding root development and root functioning in response to various environmental 

conditions. Additionally, the data can be used to calibrate and test the existing models of root 

water uptake. Future experiments with D2O injected at different locations will give 

information on the variation of root properties and root water uptake along the root systems.  
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Summary 

 Where and how fast does water flow from soil into roots? Answer to this question 

requires direct and in-situ measurement of local flow of water into roots of transpiring 

plants growing in soil. 

 We used neutron radiography to trace the transport of deuterated water (D2O) in 

Lupine roots. Lupines were grown in aluminum containers (30×25×1cm) filled with 

sandy soil. D2O was injected in different soil regions and its transport in soil and roots 

was monitored by neutron radiography. The transport of water into roots was then 

quantified using a convection-diffusion model of D2O transport into roots.  

 The results showed that water uptake was not uniform along root. Water uptake was 

higher in the upper soil layers than in the lower ones. Along an individual roots, the 

radial flux was higher into the proximal segments than into the distal segments.  

 In Lupines most of the water uptake occurred in lateral roots. The function of the 

taproot was to collect water from laterals and transport it to the shoot. This function is 

ensured by a low radial conductivity and a high axial conductivity. Lupine root 

architecture seems favorable to take up water from deep soil layers.  
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Introduction  

Where and how fast do roots take up water? Despite its importance in plant and soil sciences, 

there is limited experimental information on the location of water uptake along roots of 

transpiring plants growing in soil. Root water uptake is a dynamic process that involves 

complex interactions between atmosphere, plants and soil. Location of water flow into roots 

depends on the relative importance of the hydraulic conductivities of the root-soil interface, 

of the radial path across roots, and of the axial path along the xylem (Landsberg & Fowkes, 

1978; Steudle & Peterson, 1998; Draye et al., 2010).  

Due to the porous nature of the roots, the relative importance of radial and axial conductances 

determines the profile of water uptake along roots (Landsberg & Fowkes, 1978; Frensch et 

al., 1996; Hsiao & Xu, 2000; Zwieniecki et al., 2003). During transpiration, the initiating low 

water potential at the proximal end of a root dissipates along the root and a lower tension 

transmittes to the distal parts. A combination of high radial conductivity and low axial 

conductivity results in a big pressure dissipation along xylem, and in a reduced uptake from 

the distal parts. Conversely, low radial conductivity and high axial conductivity result in 

uniform water uptake along the root. 

Root hydraulic conductivities vary along the root system during root maturation as well as in 

response to external conditions. As roots mature, their radial hydraulic conductivities 

decrease as a consequence of anatomical modification of the root tissue (Steudle & Peterson, 

1998; Enstone et al., 2003; Bramley et al., 2009; Knipfer & Fricke, 2010). Decrease of the 

radial hydraulic conductivity with age shifts the water uptake zone to the distal root 

segments. The axial conductivity varies along root length as a consequence of the 

differentiation of early metaxylem vessels during the developmental stage of plants and the 

formation of secondary xylem during secondary growth (Varney & Canny, 1993; McCully, 

1995; Vercambre et al., 2002; Bramley et al., 2009). Increase of axial hydraulic conductivity 

through root maturation helps to redistribute the water uptake zone more evenly along roots. 

As the soil dries, the soil hydraulic conductivity may further limit root water uptake. As the 

soil typically dries up quicker in the upper layers (due to evaporation, gravity and higher root 

length density), the water uptake zone is expected to move downwards along the soil profile.  



Where do roots take up water?   62 

To date, it has been difficult to directly measure where roots take up water in soil. Thanks to 

recent advances in imaging methods, it is now possible to monitor the spatiotemporal 

distribution of roots and water content in soil (Pierret et al., 2003; Garrigues et al., 2006; 

Pohlmeier et al., 2008; Moradi et al., 2011).  In these studies, root water uptake was indirectly 

estimated from the decrease in soil water content near the roots. However, simulations of 

water flow in soil demonstrated that water uptake is not equal to the change in water content 

because of soil water redistribution. Therefore, observations of water content change must be 

coupled with models of water flow in roots and soil (Javaux et al., 2008).  Such methods 

require accurate knowledge of root and soil hydraulic properties and cannot differentiate 

between uptake rates of neighboring roots. 

In this study, we tested a new method to measure the local fluxes of water into and along the 

root system of transpiring plant growing in soil. The method consists of monitoring the 

transport of deuterated water (D2O) into roots by means of time-series neutron radiography. 

Neutron radiography is an imaging technique that has high sensitivity to normal water (H2O). 

Compared to normal water, D2O is almost transparent in neutron radiography and its 

transport into roots can be monitored at high temporal and spatial resolution. The method was 

introduced by Zarebanadkouki et al.( 2012), who applied it to lateral roots of Lupines at a 

specific location of the root system. The objective of the present study was to apply the 

technique to different locations along the roots of lupins. The model introduced by 

Zarebanadkouki et al.( 2012) has been extended to the case of roots partly immersed in H2O 

and partly in D2O. Additionally, the description of the radial pathway of water into roots has 

been generalized to allow a varying importance of apoplastic and cell-to-cell flow. The 

questions we addressed are: where does water enter the roots of lupins? Is the water uptake 

higher in the taproot or in the laterals, and in the proximal or in the distal segments? In these 

experiments, the soil was kept wet. In further studies, we will investigate how the uptake 

patterns change as the soil dries. 
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Materials and methods 

Plant and soil preparation  

Lupines (Lupinus albus L.cv. Feodora) were grown in aluminum containers (25 cm wide, 30 

cm high and 1 cm thick) filled with sandy soil. The soil was collected from the artificial 

catchment of Chicken Creek located near Cottbus, Germany. The soil (sieved to a particle 

size smaller than 2 mm) consisted of 92% sand, 5% silt and 3% clay. The aluminum faces of 

the containers were detachable to allow filling of the soil. Three vertical sticks (1×30×1 cm) 

and three horizontal ones (1 ×25×1 cm) made of plastic were placed inside the containers 

dividing the internal space of the containers into sixteen compartments (4 rows × 4 columns). 

The sandy soil was poured into each compartment through a 2 mm sieve to favor a 

homogeneous soil deposition and to reduce soil layering while the containers were laid 

horizontally. Dry weight of the soil was approximately 1 kg in each container. The soil was 

wetted and the sticks were removed from the containers. The space between the 

compartments was filled with coarse sand (grain diameter of 1.2-1.7 mm). The layers of 

coarse sand acted as capillary barriers to hydraulically disconnect the adjacent compartments 

without hindering root penetration. We refer to these layers as capillary barriers. The 

detachable faces of the containers were then closed, and the samples were gently turned 

vertically. This procedure resulted in an average bulk density of  1.4 g cm-3. The detachable 

face of the containers had holes of 1 mm in diameter at intervals of 3 cm. A fine-needle 

syringe was used for injecting D2O through the holes into the soil. The top of the samples 

was covered with 1 cm layer of quartz gravel with grain size of 3 mm to minimize 

evaporation. 

Lupines (Lupinus albus L.cv. Feodora) were grown in aluminum containers (25 cm wide, 30 

cm high and 1 cm thick) filled with sandy soil. The soil was collected from the artificial 

catchment of Chicken Creek located near Cottbus, Germany. The soil (sieved to a particle 

size smaller than 2 mm) consisted of 92% sand, 5% silt and 3% clay. The aluminum faces of 

the containers were detachable to allow filling of the soil. Three vertical sticks (1×30×1 cm) 

and three horizontal ones (1 ×25×1 cm) made of plastic were placed inside the containers 

dividing the internal space of the containers into sixteen compartments (4 rows × 4 columns). 

The sandy soil was poured into each compartment through a 2 mm sieve to favor a 
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homogeneous soil deposition and to reduce soil layering while the containers were laid 

horizontally. Dry weight of the soil was approximately 1 kg in each container. The soil was 

wetted and the sticks were removed from the containers. The space between the 

compartments was filled with coarse sand (grain diameter of 1.2-1.7 mm). The layers of 

coarse sand acted as capillary barriers to hydraulically disconnect the adjacent compartments 

without hindering root penetration. We refer to these layers as capillary barriers. The 

detachable faces of the containers were then closed, and the samples were gently turned 

vertically. This procedure resulted in an average bulk density of  1.4 g cm-3. The detachable 

face of the containers had holes of 1 mm in diameter at intervals of 3 cm. A fine-needle 

syringe was used for injecting D2O through the holes into the soil. The top of the samples was 

covered with 1 cm layer of quartz gravel with grain size of 3 mm to minimize evaporation. 

Lupine seeds were germinated on moist filter paper in the dark for 24 hours. The seedlings 

were then planted in the containers at 1 cm depth. The plants were grown for 18 to 21 days 

with photoperiod of 14 hours, light intensity of 300 μmol m2 s-1, day/night temperature of 

24°C/19°C, and relative humidity of 60%. Plants were irrigated every third day by slowly 

immersing the samples in a nutrient solution until the water table reached the bottom of the 

upper compartments. The bottom of containers had holes to allow infiltration from the 

bottom. The samples were then slowly lifted letting each compartment to drain freely. This 

resulted in an average water content of 0.20 cm3 cm-3 in each compartment. The nutrient 

solution was composed of (in mM): K2SO4, 3.5; KCl, 1; KH2PO4, 1; Ca(NO3)2, 1; MgSO4, 5; 

and (in µM) H3BO3, 100; MnSO4, 5; ZnSO4, 5; CuSO4, 2; (NH4)Mo7O24, 0.1; Fe-EDTA, 200. 

The plants were 18 to 21day-old when the neutron radiography experiment started. 

Transpiration rates were calculated by weighing samples at intervals of six hours during day 

and night. The average of daytime transpiration of 18 to 21-day-old plants was 1.23±0.18 g h-

1 (n=10) and it was negligible at night. At this stage, plants had six leaves with a total leaf 

area of approximately 63±5 cm2 (n=3). After the measurement, we opened the containers and 

washed the roots. We did not observe any evidence of arbuscular mycorrhizas and rhizobial 

nodules.  
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Neutron radiography  

Neutron radiography is an imaging technique that, due to its high sensitivity to hydrous 

materials, has been widely used to image water and root distribution in soil (Tumlinson et al., 

2007; Oswald et al., 2008; Moradi et al., 2008; Carminati et al., 2010). Neutron radiography 

consists in guiding a neutron beam across the sample. The transmitted beam carries the 

information about sample composition and thickness. The Beer-Lambert law describes the 

attenuation of the neutron beam through a sample 
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where I is the intensity of the attenuated neutron beam [number of neutrons m−2 s−1], I0 is the 

intensity of the incident neutron beam [number of neutrons m−2 s−1], di (m) is the thickness of 

the i-material composing the sample, and μi [m−1] is the macroscopic neutron attenuation 

coefficient, which describes the probability of neutron interactions with the materials per unit 

of thickness.   

Our experiments were carried out at the ICON beam-line of the Paul Scherrer Institute (PSI), 

Switzerland. We used a CCD camera detector with an array of 1260×1260 pixels, resulting in 

a field of view of 15.75×15.75 cm and an effective spatial resolution of 0.125 mm. Four 

radiographs with marginal overlaps were needed to scan a whole sample. For the 

measurements during daytime, a lamp that was identical to those in the growth chamber was 

installed in the imaging station above the plants. Plants were kept in the imaging station for 

one hour before starting the measurement. The measurements lasted approximately two 

hours. Transpiration rate was measured from the weight of samples before and after neutron 

radiography. During daytime measurements, the average transpiration was 1.43±0.25 g h-1 

(n=4).  

Deuterated water   

Deuterated water (D2O) was used as a contrast agent to trace the flow of water into the roots. 

In contrast to normal water, D2O has a much lower neutron attenuation coefficient, which 

makes it well distinguishable in neutron radiographs. Because of its similarity to water, D2O 

has been used since long time to study water flow in plants (Ordin & Kramer, 1956; 
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Matsushima et al., 2008; Da-Ines et al., 2010). We locally injected 3-4 ml of D2O (purity of 

99.97 %) in selected soil compartments using a syringe. Spatiotemporal distribution of D2O 

in soil and its transport into and along roots were monitored by time-series neutron 

radiography at time intervals of 10 seconds for a period of two hours. The measurements 

were performed during daytime and nighttime at different locations of 10 samples. 

Image  processing 

Neutron radiographs were referenced to flat field (radiography without sample) and dark 

current (signal recorded by the camera when there was no beam). The neutron attenuations of 

aluminum and dry soil were determined by the neutron radiographs of a slab filled with dry 

soil. After subtraction of the contribution of aluminum and dry soil, the remaining values 

gave the water content in the sample.  Due to their high water content, roots could be clearly 

distinguished from the soil. Roots were segmented from soil using the roottracker2D 

algorithm developed by Anders Kaestner (Menon et al., 2007). Root segmentation was 

performed on the radiographs obtained before the injection of D2O. The segmented roots 

were skeletonized and their length and diameter were calculated using the Euclidean distance. 

In 2D radiographs, the signal in the pixels containing the roots was composed of attenuation 

coefficients of the root and of the soil in front of and  behind of the root in the beam direction 

(across soil thickness). The actual contributions of H2O and D2O in the root were calculated 

assuming that the amount of H2O and D2O in soil in front of and behind of the root was equal 

to that of the soil at the sides of the root (i.e. it we assumed a radial symmetry around the 

roots). We calculate the volumetric concentration of D2O in root (Cr) and soil (C0) as the 

thickness of D2O divided by the total liquid thickness in root and soil, respectively. Cr and C0 

were averaged along the segment of roots immersed in D2O.  

The volume of D2O transported beyond the capillary barrier was calculated by subtracting the 

radiographs at time t from the radiograph before D2O injection. This image processing is 

described in details in the supplementary information (Method S1) and   Zarebanadkouki et 

al. (2012). 
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Model of D2O transport in roots 

To quantify the radial flux of water into roots, Zarebanadkouki et al. ( 2012) introduced a 

simple model  of D2O transport into and along roots. The transport of D2O into roots was 

described by a diffusion-convection model, where the transport rate of D2O into the roots 

depended on the convective transport (net root water uptake) and on the diffusion of D2O 

(Fig. 1). Zarebanadkouki et al. (2012) assumed that the entire root segment, including the 

root tip, was immersed in D2O and the radial flow of water across the cortex was primarily 

apoplastic. In the present paper, the model is extended to the case when a portion of the root 

is immersed in D2O, while the rest is immersed in normal water. Additionally, the description 

of the water flow across the cortex has been generalized to allow a variable importance of the 

apoplast and cell-to-cell pathways. The model is explained in the next sections. Derivation of 

the equations is given in the Appendix A. 

 

 

Figure 1: Illustration of D2O transport into a root that is partially immersed in D2O. The radial transport 

of D2O into the root is driven by the concentration gradients between soil and root (diffusion, red arrows) 

and by convection following the transpiration stream (blue arrows). As D2O reaches the xylem, it mixes 

with the incoming water flow and it flows axially along the root. The capillary barriers were used to limit 

D2O diffusion in soil. 
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The model is based on the observation that the increase of D2O was well fitted with the sum 

of two exponential curves. Statistical justification of the use of a two exponential equation 

instead of single exponential is given as Appendix B, Fig S1. The two exponential rates were 

explained by the different dynamics of D2O transport into cortex and stele. Dynamics of D2O 

into cortex and stele depends not only on the diffusional permeability of the two 

compartments separated by the endodermis, but also on the axial flow along the roots. 

Imagine that a root segment is immersed in D2O, while its proximal and distal segments are 

immersed in normal water. As normal water flows into the distal segment, D2O and normal 

water will mix depending on the relative magnitudes of the radial and axial flow. The final 

concentration in the xylem of the segment immersed into D2O will converge to a lower value 

than the D2O concentration in soil and the rate of increase will be affected by the axial flow 

of apical segment. Instead, the concentration in the cortex will converge to that of the soil, as 

the axial flow into the cortex is typically neglected. For this reason, the D2O dynamics in 

stele and cortex are treated separately. 

The average D2O concentration in the root, Cr, is calculated as the sum of the D2O 

concentration in the cortex, Cc, and the stele, Cs 

( )r s c s s
r

r

R R C R C
C

R

 
                     (3.2) 

where Rr and Rs are the root and the stele radius.  

We first consider the experiments at nighttime, when convection is assumed to be negligible. 

As mentioned above, our observations showed that the concentration of D2O in root could be 

described by a two exponential model. Increase of CD2O in roots at nighttime is described as 

   0 01 exp 1 exp
n n
c s

k t k tr s s
r

r r

R R R
C C C

R R

 
        (3.3) 

where C0 is the D2O concentration in soil, and 𝑘𝑐
𝑛 and 𝑘𝑠

𝑛 are the rate constants of D2O 

concentration increase in the root cortex and the root stele at nighttime. Under the following 

assumptions, Eq. (3.3) can be demonstrated and the two rate constants have a physical 
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meaning. The assumptions are: (i) reflection coefficient of D2O across root membranes is 

approximated as zero, as measured by Henzler & Steudle (1995); (ii) D2O rapidly diffuses 

through the apoplast of the root cortex; and (iii) the endodermis is the main resistance to 

transport of D2O from the inner part of the cortex to the xylem vessels, with a consequient 

uniform D2O concentration inside the root stele. Note that the assumption (ii) does not 

necessarily mean that there is a significant D2O transport [m3 s-1] across the apoplast. Under 

these assumptions, the parameters in Eq. (3.3) are 
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                                                                 (3.4) 

where PD,c [m s-1] is the diffusional permeability of the cortical cells, rc is the radius of the 

cortical cells, and PD,e [m s-1] is the diffusional permeability of the endodermis. The 

diffusional permebility is defined as the diffusion ceoffiecent of D2O across the membrane 

divided by the thinckness of the membrane. In circumstances when the assumptions are not 

valid, Eq. (3.3) has to be considered as an empirical equation and the rate constants as 

effective diffusional parameters of cortex and stele. 

During the daytime, transpiration results in a convective flow of water from soil to roots. 

Convective transport of D2O across the root (radial flow) and along the root (axial flow) need 

to be included in the model. Increase of D2O concentration in the roots at daytime is 

described as 

   0 01 exp 1 exp
d d
c sk t k tr s s

r

r r

R R R
C C C

R R
 

      (3.5) 

 where 𝑘𝑐
𝑑  and 𝑘𝑠

𝑑   are rate constants of the root cortex and the root stele at daytime, and β is a 

coefficient that describes the fact that when a root is only partly immersed in D2O its 

concentration does not converge to C0 (β≤1) Under the assumptions (i)-(iii), Eq. (3.5) can be 

explicitly derived and its parameters have the following physical meaing 
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where jr [m s-1] is the radial flux of water into the root endodermis , 𝑗𝑥
𝑜𝑢𝑡 [m s-1] is the axial 

flux of water through the root stele from the root segment immersed in D2O, L is the length of 

the root segment immersed in D2O, and λ is a coefficient vairing between zero and unity and 

describing the relative importance of the apoplastic and cell-to-cell flow across the cortex. If 

the flow through the cortex is purely apoplectic,  λ=0 and the model corrensponds to that of 

Zarebanadkouki et al. (2102). If the flow though the cortex is purely cell-to-cell, λ=1.  

If the root segment including the root tip is entirely immersed in D2O, the outflow of liquid 

from the root segment is equal to the radial flow into the segment (𝜋𝑅𝑠
2𝑗𝑥

𝑜𝑢𝑡 = 2𝜋𝑅𝑠𝐿𝑗𝑟). 

From Eq. (3.6) it follows that β=1 and 𝑘𝑠
𝑑 = 2(𝑃𝐷,𝑒 + 𝑗𝑟)/𝑅𝑠. This case corresponds to the 

model of Zarebanadkouki et al . (2012). For the roots that are partly immersed in D2O, the 

outflow of liquid from the root segment is equal to the radial convective flow into the 

segment plus the axial inflow of liquid into the root segment (𝜋𝑅𝑠
2𝑗𝑥

𝑜𝑢𝑡 = 2𝜋𝑅𝑠𝐿𝑗𝑟 +

𝜋𝑅𝑠
2𝑗𝑥

𝑖𝑛). In this case, β<1. 

Eq. (3.3) and Eq. (3.5) were fitted to the data of the D2O concentration increase in roots 

during nighttime and daytime that were obtained from neutron radiographs. From the 

nighttime measurements, we calculated the diffusional permeabilities, PD,c and PD,e. To 

calculate the net transport of D2O into roots, we assumed that the diffusional permeability 

coefficients were identical at daytime and nighttime. The validity of this assumption is 

discussed later in the text.  
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Quantification of axial flux along the root 

The axial fluxes, 𝑗𝑥
𝑜𝑢𝑡, were directly calculated from the volume of D2O that passed the 

capillary barrier, VD2O [m
3]. VD2O is related to the axial flow according to   

2 2

, ( )
D O out

s x s b

dV
R j C t

dt


                                            (3.7) 

where Cs,b is the D2O concentration in the root stele at the place of capillary barrier . VD2O 

was quantified from the time-series neutron images. Note that the values obtained with Eq. 

(3.7) are independent from our modeling approach.  

Results 

We measured the transport of D2O into the roots of ten plants. D2O was injected into selected 

compartments of each sample during daytime and nighttime. To illustrate the results, we 

show the radiographs of one sample in which D2O was injected during the daytime in two 

compartments (Figure 2). Figure 2a shows radiography of the sample before injection of 4 ml 

of D2O into each compartment. The image was obtained by overlapping four radiographs 

taken at different locations. A close-up of the regions where D2O was injected is shown in 

Figure 2b. In Figure 2a and 2b the gray values are proportional to water content: the darker 

was the image the higher was the soil water content. Before D2O injection, the average soil 

water content in all compartments of the 10 sampels was between 0.08 and 0.15 [cm3 cm-3], 

which in our soil corresponds to soil matric potentials of -70 hPa and -20 hPa, respectively 

(Carminati et al., 2010). After injection of D2O, the water content increased from 0.08-0.15 to 

0.18-0.25. The corresponding change in pressure is expected to be of approximately 50 hPa, 

which is small compared to the difference in water potential between soil and root.  

The sharp contrast between roots and the surrounding soil resulting from the higher 

volumetric water content in roots allowed us to segment roots from soil. The average root 

length of the ten plants was 470±36 cm (n=10).  The marked rectangles in Figure 2a show the 

compartments where D2O was injected. The roots that were selected for the analysis of D2O 

transport are marked as roots 1-7 (Figure 2b). Root 1, 2 and 4 had a length of 12-14 cm, and 

roots 3 and 7 had a length of 8-10 cm.  
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Figure 2: Neutron radiographs of one sample before (2a and 2b) and after injection of 4 ml D2O (2c, 2d, 

and 2e) during daytime. Image 2a shows roots and soil water distribution. This image was obtained from 

stitching together four radiographs with original with field of view of 15.75×15.75 cm. The marked 

rectangles show the two compartments in which we injected D2O and monitored its transport into roots 

and soil. Image 2b is a close-up of the original field of view showing the roots selected for the flow 

analysis. In image 2a and 2b the darker the image, the wetter is the soil. Images 2c, 2d, and 2e show the 

difference between the actual radiographs at time t and the radiograph before D2O injection (t=0). Here, 

brighter colors indicate lower neutron attenuation and higher D2O/H2O ratio. 
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Figure 2c, 2d, and 2e show the difference between the actual radiographs at time t and the 

radiograph before D2O injection (t=0). Brighter gray values indicate reduced neutron 

attenuation due to increased D2O/H2O ratio. Conversely, the dark areas show accumulation of 

H2O after D2O injection. Figure 2c to 2e show that D2O quickly redistributed in the soil due 

to the rapid dissipation of pressure (bulk flow of H2O+D2O). The diffusive mixing of D2O 

and H2O appeared to be relatively slow. After injection, roots turned bright, which indicates 

that D2O entered into roots. As D2O entered the roots, it started to move along the root 

beyond the capillary barrier. During the nighttime, by contrast, D2O entered the roots more 

slowly and there was no D2O transport beyond the capillary barrier.  

Figure 3a shows the transport of D2O into taproot and laterals in the upper root zone (2-9 cm 

in depth from soil surface) at nighttime. We injected 7 ml D2O into the middle compartment 

of the sample. Taproot turned bright slower than the lateral roots, indicating that the radial 

diffusive flow of D2O into taproot was significantly slower than into the lateral roots. Figure 

3b shows the increase of D2O concentration in the taproot (averaged in the segments at a 

distance of 24-25 cm from the root tip) and in the lateral roots (averaged in the segments at a 

distance of 10-12 cm from the root tip). These data are averaged for three roots and 

demonstrate that the taproot was less permeable  than lateral roots.  For this reason we expect 

that the role of the taproot in the absorption of water should be small and we focused our 

analysis on lateral roots.  

For the quantification of D2O transport into roots, we selected the roots with minimum 

second order laterals and cluster roots. We averaged the concentration of D2O in the 

centermost pixel of the root segment immersed in D2O. At nighttime, D2O concentration in 

roots increased to a maximum value identical to that of the soil at the root surface (data not 

shown). At  daytime, D2O concentration in roots rapidly increased to a maximum that varied 

among roots. Figure 4a shows the average D2O concentration in the roots markeded in Figure 

2.  

We calculated the diffusional permeability of the cortical cells, PD,c, and the endodermis, PD,e, 

by fitting the nighttime measurements with Eq. (3.3). The radius of the root stele 

(Rs=150±0.1µm, n= 5) and of the cortical cell (rc=23±0.05 μm, n=20) were obtained from 

microscopic observation of the root cross sections (Zarebanadkouki et al., 2012). PD,c, and 

PD,e at three locations along laterals are reported in Table 1.  



Where do roots take up water?   74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Neutron radiographs of one sample before D2O injection (3a) and after injection (3b-d) at 

nighttime. Images 3b-dare the difference between the actual radiograph at various times and the one 

before injection (at t=0). Images 3a-d show radial transport of D2O into the proximal parts of the taproot 

(3-8 cm depth) and the lateral roots. Brighter colors in images 3b-3d indicate higher D2O/H2O ratio. 

Figure 3e shows the average concentration of D2O in the taproot and in the laterals. The data are 
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averaged for three plants. These results show that the taproot of Lupines is less permeable than the 

laterals. 

The diffusional permeability of cortical cells showed no variation along roots and had an 

average value of 4.8±0.3×10-8m s-1. In contrast, the diffusional permeability of the 

endodermis decreased from 1.4±0.2×0.210-7 m s-1 in the most distal parts of roots (2-3 cm 

from the root tip) to 5.6±0.3×10-8 m s-1 in the most proximal parts (10-12 cm from the root 

tip).   

 

Table 1: Diffusional permeability of cortical cells, PD,c, [m s-1], and endodermis, PD,e, [m s-1], along lateral 

roots. Diffusional permeabilities were measured at various distances from the root tip using the data of 

D2O transport into the roots at nighttime, when transpiration was nearly zero. The values are average of 

six roots. 

 

By fitting the increase of D2O concentration in roots using Eq. (3.5), we obtained the radial 

flux, jr, the axial flux, 𝑗𝑥
𝑜𝑢𝑡, and the parameter λ. To summarize the results, we grouped the 

roots of ten plants into an upper zone (roots at 2-9 cm in depth from soil surface) and into a 

lower zone (18-27 cm in depth). Additionally we grouped the roots according to their length: 

(i) long roots with length of 12-14 cm, (ii) medium roots with length of 8-10 cm, (iii) and 

short roots with length of 3-4 cm. These groups yield a picture of the distribution of root 

water uptake along the root system as presented in Figure 5.  

 

 

Distance 

from tip 

Diffusional permeability  

of cortical cells, PD,C [m s-1] 

Diffusional permeability  

of endodermis, PD,e  [m s-1] 

2-3 cm 5.0±0.4×10-8 1.4±0.2×10-7 

7-8 cm 4.6±0.2×10-8 1.0±0.1×10-7 

10-12 cm 4.6±0.3×10-8 5.6±0.3×10-8 
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Figure 4: Increase of D2O concentration inside roots (a), and volume of D2O passing beyond the barrier 

(b). The lines refere to the roots marked in Figure 2. The experiment was performed during daytime. The 
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concentrations were averaged along the segment of roots that were immersed in D2O. D2O concentrations 

in roots were fitted with Eq. (5). The fitted parameters are presented in the legend for each root. 

 

To quantify the results, we first started with the middle segments (distance of 6-9 cm from 

the root tip) of long roots (length of 12-14 cm). For these root segments the axial fluxes, 𝑗𝑥
𝑜𝑢𝑡, 

were calculated from Eq. (3.7) using the volume of D2O passing beyond the capillary barrier. 

Figure 4b shows the volume of D2O passing the capillary barrier in different roots of the 

sample presented in Figure 2.  A few seconds after D2O injection, we observed transport of 

D2O beyond the capillary barrier. The volume of D2O passing the capillary barrier increased 

gradually in the beginning because the D2O concentration in the root xylem was increasing. 

After approximately 200 s, when the D2O concentration in the root at the capillary barrier 

reached a constant value, VD2O started to increase linearly with time. The linear behavior was 

observed until 1200 s, when the D2O front reached the taproot and exited the field of view. 

The values of 𝑗𝑥
𝑜𝑢𝑡 were calculated according to Eq. (3.7) using the linear phase of the curves. 

The remaining parameters jr and λ were derived from fitting the data from daytime 

measurement using Eq. (3.5). The best fitt was obtained with λ=0.14±0.1 (n=10). The results 

of curve fittings for the sample presented in Figure 2 are given in Figure 4a. For the 

remaining roots we set λ=0.14 and we calculated 𝑗𝑟  and 𝑗𝑥
𝑜𝑢𝑡. This fitting procedure was 

chosen because the independent estimation of 𝑗𝑥
𝑜𝑢𝑡 from Eq. (3.7) was not possible for the 

root segments near the taproot.   

The results of the radial flux calculations at different locations of ten plants are summarized 

in Figure 5. The calculated radial fluxes showed a significant variation along roots. The radial 

fluxes into lateral roots were higher in the upper zone than in the lower zone. The radial 

fluxes into the most proximal segments of long and short roots were approximately 3-4 times 

higher in the upper zone than in the lower one. The radial fluxes in the more distal parts were 

6 times higher in the upper than in the lower zone.  

Looking at individual laterals, the highest radial fluxes observed in the most proximal 

segments, and they declined towards the distal segments (near the root tip). For the long roots 

in the upper zone, the radial flux into the most proximal segments (11-14 cm from the root 

tip) was 2 times higher than into the middle segments (6-9 cm from the root tip), and 9 times 

higher than into the distal segments (2-3 cm from the root tip). For the medium roots in the 

upper zone, the radial flux into the most proximal segments (8-10 cm from the root tip) was 6 
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times higher than into the distal segments (2-3 cm from the root tip).  For the medium roots in 

the lower region, the flux into the proximal segments was 9 times higher than into the distal 

segments.  

The radial flux into the root endodermis predicted by the model agree well with independent 

measurements of average root water uptake. Taking the  average total root length (470 cm), 

the average water consumption (1.43 g/h) and the radius of endodermis (150 µm), one obtain 

an average radial flux into the endodermis equal to 8.9 10-8 m s-1, which falls well in the 

values predicted by the model (Figure 5).  

 The axial flux at different locations of long and medium lateral roots calculated from the 

model (Eq. 3.5) and those directly obtained from Eq. (3.7) are shown in figure 6. The highest 

axial fluxes were found in the more proximal parts of roots to be 2.9±0.2×10-4 m s-1 for long 

root, and 2.1±0.2×10-4 m s-1 for medium root.  

Discussion  

The transport of D2O into the roots showed a two exponential growth over time. This was 

explained with: (i) different rate of D2O transport into the cortical cells and the root stele, and 

(ii) dilution of D2O concentration in the root stele due to inflow of normal water in the xylem 

during transpiration (when distal parts of roots were not immersed in D2O). We developed a 

simple diffusion-convection model to describe the local transport of D2O into roots. The 

radial transport through the cortex included both an apoplastic and a cell-to-cell pathway. The 

relative importance of the two pathways varied with the parameter λ. The best fitting was 

obtained with λ=0.14, which suggests a dominant apoplastic flow through the cortex. Note, 

that the model says nothing about the relative importance of the two pathways across the 

whole root: i.e. it may be that the apoplast at the endodermis is completely interrupted and 

that the overall root conductivity is controlled by the cell-to-cell pathway. By fitting the 

neutron radiograph data, the model calculated the diffusional permeability of the cortical cells 

and of the endodermis and the radial and axial flux of water in different root segments. The 

results demonstrated significant variations of water uptake rate along the root system. The 

radial fluxes were higher in the upper zone than in the lower zone. In each root, the radial 

fluxes were higher in the more proximal segments and decreased towards the distal segments.  
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Figure 5: Scheme of the root system showing the distribution of the radial fluxes, jr, [m s-1] calculated 

with Eq. (3.5). Roots are grouped in upper zone and lower root zone according to their depth. 

Additionally roots were grouped in long, medium and short roots. The numbers inside the boxes indicate 

the distance from the root tip. The value of radial flux for each position is averaged for n replications and 

is given above the boxes in meter per second. The results are averaged among 10 samples. 
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Figure 6: Axial fluxes, 𝒋𝒙
𝒐𝒖𝒕 [m s-1], in long and medium roots calculated from the model (Eq. 3.5, solid 

arrows above roots) and directly obtained from radiographs (Eq. 3.7, dashed thin arrows below roots). 

The numbers inside the roots indicate the distance between each root segment. Note that the axial fluxes 

are calculated for the cross-section of the root stele. 

 

Lower water uptake in the distal segments of lateral roots could be explained by (i) lower 

radial conductivity of the distal segments and/or (ii) significant dissipation of the water 

potential along the root system (driving force). The experiments at nighttime showed that 

D2O entered more quickly into the distal segments than in the proximal ones. This indicates 

that the radial permeability of roots was higher in the distal segments than in the proximal 

ones. A more likely explanation of the lower water uptake in the distal segments is that there 

was a significant dissipation of water potential along the xylem of lateral roots. Due to the 

porous nature of roots, the relative importance of radial and axial conductivity determines the 

distribution of water potential and water uptake along the root (Landsberg & Fowkes, 1978; 

Frensch et al., 1996; Hsiao & Xu, 2000; Zwieniecki et al., 2003). High ratio of radial to axial 

conductivity results in a higher dissipation of water potential along roots and in consequent 

hydraulic “isolation” of the distal segments. In the lateral roots, incomplete development of 
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the xylem vessels towards distal segments would produce lower axial conductivity and may 

have further decreased the water uptake in the most apical parts (McCully & Canny, 1988; 

Huang & Nobel, 1993; McCully, 1995; Bramley et al., 2009).  

The decrease in water uptake with distance in depth was smaller than with distance in 

laterals. In laterals, water uptake decreased 9 times over a distance of 10 cm from the 

proximal segments to the distal ones (2-3 cm from the tips). Instead, water uptake into the 

proximal segments of roots decreased of 3 to 4 times over a depth of 15 cm (Fig. 5). This 

indicates that the dissipation of water potential for the same unit of the root length along the 

taproot is less significant than along lateral roots. The low dissipation of water potential along 

the taproot is explained by the low ratio of radial to axial conductivity. Indeed, the 

microscopic observation of the root cross sections revealed that xylem vessels were larger 

and more abundant in the taproot compare to the lateral roots (data not shown). Additionally, 

experiments at nighttime showed the radial transport of D2O into the taproot was significantly 

slower than into the lateral roots (Fig. 3). This indicates that in comparison to lateral roots, 

the taproot is significantly more resistant to radial flow of water into roots. The function of 

the taproot is to collect water from laterals and transport to shoot. The combination of high 

axial conductivity and low radial conductivity is beneficial for collecting water from deep 

soil and increasing the portion of roots involved in water uptake. The tap-rooted architecture 

seems optimal for plant survival in soils where water is mainly stored in the deep profiles.   

Our observations of  higher radial fluxes at the more proximal segment of roots are in 

agreement with modeling studies (Landsberg & Fowkes, 1978; and Doussan et al., 1998), 

experiment studies with excised roots (Frensch & Steudle, 1989; Zwieniecki et al,. 2003), 

and those with roots in soils (Doussan et al., 2006). Location of root water uptake is expected 

to change with root maturation. Decrease of radial hydraulic conductivity and increase of 

axial conductivity due to root maturation might move the location of water uptake to more 

distal zones. Sanderson, (1983) measured the profile of water uptake along roots of barley 

grown in hydroponics culture using a potometer apparatus. He found that the peak of water 

uptake was at a distance of 4-5 cm from the tip. Varney & Canny, (1993) measured water 

uptake of lateral and axile roots for aeroponically grown maize. They observed that 

maximum uptake from laterals occurred at 30-60 cm from the root tip of the main axes, and it 

decreased towards the tip and the proximal parts. The axile roots were approximately 100 cm 

long. Variations in root architecture, maturation of xylem vessels, changes of root 
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permeability by root maturation, and different growth condition account for the discrepancy 

in the proximal parts.  

As discussed above, the ratio of axial to radial conductivities determines the profile of water 

uptake along a root. In order to maintain large area of roots involved in water uptake, root 

elongation needs to be coupled with a decrease of radial conductivity and an increase of axial 

conductivity. In addition to irreversible modification of roots during maturation, the ratio of 

radial to axial resistance might be regulated by aquaporins and also by the resistance of the 

root-soil interface. Recent studies on water dynamics in the rhizosphere showed that when the 

soil dries, the rhizosphere becomes temporarily hydrophobic (Carminati et al., 2010). Such a 

temporary hydrophobicity may help plants to isolate the roots from the top dry soil and favor 

the uptake from the deep wet soil (Carminati, 2012). A similar mechanism will happen when 

roots shrink and lose contact with the soil (Nobel & Cui, 1992; Nye, 1994; North & Nobel, 

1997; Carminati et al., 2012). Carminati et al. (2012) used X-ray CT to monitor the formation 

of air-filled gaps between soil and roots of lupins. They found that gap occurred mainly 

around the taproot. As we showed that the taproot is not so important for water uptake, gaps 

seem not to represent a limit for water uptake. Such rhizosphere dynamics and gaps 

formation are reversible and their role on plant adaptation to drought needs further 

investigation.   

Some assumptions of the model of D2O transport in soil and root need to be further 

investigated, with consequent improvement of the model. We assumed that after D2O 

injection, D2O rapidly moved by diffusion and convection in the apoplast of the root cortex. 

With this assumption, our model can be explicitely derived and the parameters have a 

physical meaning. Diffusion time of D2O in the apoplast of the cortex is given by t = l2/(2D), 

where l is the diffusional length and D is the diffusion coefficient of D2O in H2O through the 

apoplast of the cortex. The diffusional length is given by the thickness of the cortex, 

l=1.5×10−4 m. The diffusion coefficient of D2O in pure water is  D=2.27×10−9 m2 s−1 

(Longsworth, 1960). This value would give a diffusional time t=5 s, which is consistent with 

our hypothesis. However, the diffusion of D2O is slower in the apoplast than in pure water. 

Richter & Ehwald, (1983) observed that diffusivity of sucrose (molecular weight of 342 gr 

mol-1) in extracellular space of sugar  beet  was 5-10 times lower than in water.  Aikman et 

al., (1980) reported a decrease of 10 times for Rb+ diffusion.  The diffusivity of charged and 

large molecules is expected to be reduced more significantly than that of a neutral and low 
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molecular weight molecule like D2O (Aikman et al., 1980; Richter & Ehwald, 1983; 

Fleischer & Ehwald, 1995; Fritz & Ehwald, 2011). A reduction of 10 times in D seems 

therefore a safe assumption and would give a diffusional time of 50 seconds. This value is 

still smaller than the half time measured at nighttime, which was around 300 seconds 

(Zarebanadkouki et al., 2012). A second assumption that needs further investigation is 

whether or not diffusional permeability of cortical cells and endodermis is constant during 

daytime and nighttime. It is known that aquaporin activity is function of transpiration and 

therefore it would affect the diffusional permeabilities (Maurel et al., 2008). Bramley et al. 

(2009) showed that the radial flow of water in Lupine roots occurred primarily through the 

apoplast, with a negligible involvement of aquaporins, while in wheat the water flow mainly 

occurred in the cell-to-cell. Our assumption of constant diffusional permeability of the 

endodermis during daytime and nighttime may therefore be justified for Lupine roots, but it 

should be improved before application to other plant species. Future improvements of the 

model should include: the diffusion of D2O though the apoplast of the cortex, which is now 

assumed to be instantaneous, and a variable Pd during daytime and nighttime. Further 

experiments with plant species that are known to have a dominant cell-to-cell pathway would 

be greatly beneficial to test the model.   

Appendix A: Derivation of the model of D2O transport into roots  

We assume that when roots are immersed in D2O, the apoplastic free space of the root cortex 

rapidly saturates with D2O diffusion. This results in an identical D2O concentration in the 

apoplast of the root cortex to that of the soil at the root surface, C0. The reflection coefficient 

of membrane to D2O transport is assumed to be zero (Henzler & Steudle 1995). During night, 

under these assumptions, the total flow of  D2O into the cortical cells, 𝐽𝑟,𝑐
𝑛   [m3 s-1], is 

described by a diffusion equation as  

 , , 02 ( )n

r c c D c cJ r LP C C                                     (AP.1)                     

where rc [m] is radius of the cortical cells, L [m] is the length of the root immersed in D2O, 

PD,c [m s-1] is diffusional permeability of the cortical cell and Cc [-] is the D2O concentration 

inside the cortical cell. From mass conservation it follows that 
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, 02 ( )c
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Under the boundary conditions 
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the solution of Eq.(AP.3) is 

 0 1 exp
n
ck t

cC C


                                                 (AP.4) 
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P
k

r
                                                                (AP.5) 

Similarly, during the night, the total flow of  D2O into the root stele, 𝐽𝑟,𝑠
𝑛   [m3 s-1], is described 

by a diffusion equation as 

, , 02 ( )n

r s s D e sJ R LP C C                                           (AP.6) 

where Rs [m] is the root radius, PD,e [m s-1] is the diffusional permeability of the endodermis, 

and Cs [-] is the D2O concentration inside the root stele. From the mass conservation it 

follows that 
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Under the boundary conditions of Eq.(AP.3), the solution of Eq.(AP.7) is 

 0 1 exp
n
sk t

sC C


                                                    (AP.8) 
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,2 D en

s

s
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                                                                   (AP.9) 

The average D2O concentration in the root, Cr [-] is the sum of D2O concentration in the 

cortex and stele:   

( )r s c s s
r

r

R R C R C
C

R

 
                                                 (AP.10) 

where Rr [m] is the roots radius.  By substituting Eq.(AP.4) and Eq.(AP.8) in Eq.(AP.10) it 

follows that the increase of Cr at night is  
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During the day, leaf transpiration induces a net flow of water into the roots. The convective 

transport of D2O into the cortical cells depends on the ratio between the cell-to-cell water 

flow and the total flow. We call λ [-] the ratio of the cell-to-cell to total water flow. The net 

flow of D2O into the cortical roots during day, 𝐽𝑟,𝑐
𝑑 (m3 s-1), is described as 

, , 0 0

2
2 ( ) ( )

4

d c
r c c D c c r c

r
J r LP C C Lj C C


                    (AP.12) 

where jr [m s-1] is radial flux of water into the root, and λ [-] is the ratio between the cell-to-

cell water flow and the total water flow across the cortex. By geometrical consideration, the 

convective flow of water crosses approximately one fourth of the cortical cell perimeter. 

From the mass balance it follows that 
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under boundary conditions Eq.(AP.3) the solution of Eq.(AP.13) is  

 0 1 exp
d
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The net flow of D2O into the root stele during day, 𝐽𝑟,𝑠
𝑑  [m3 s-1], is described by 

2

, , 0 02 ( ) 2d out

r s s D e s s r s x sJ R LP C C R Lj C R j C            (AP.16) 

where  𝑗𝑥
𝑜𝑢𝑡 is the axial flux [m s-1] calculated for the stele cross-section. In Eq.(AP.16) it is 

assumed that the only the root segment of length L is immersed in D2O, while the other root 

segments are immersed in normal water.  From the mass conservation for CD2O it follows that 
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Under the boundary conditions of Eq.(AP.3), the solution of Eq.(AP.17) is 

 0 1 exp
d
sk t

sC C 
                                                               (AP.18) 
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By substituting Eq.(AP.14 and AP.18) in Eq.(AP.10) it follows that the increase of Cr at the 

day  
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Appendix B: D2O concentration in the roots: experimental results and best fits with 

single and double exponential curves 

 

 

 

 

 

 

 

 

 

Figure 7: Measured D2O concentration inside the roots and the best-fit lines using a single and double 

exponential equation. The experimental points are obtained from D2O injection at nighttime and are 

averaged along a lateral root segment that was 9-12 cm distant from the root tip.   
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Abstract 

The ability of plants to extract water from soil is limited by the hydraulic conductivity of 

roots and, as the soil dries, by that of the soil near the roots, the so called rhizosphere. Recent 

experiments showed that the rhizosphere turned hydrophobic after drying and it remained dry 

after rewetting. Our objective was to investigate whether rhizosphere hydrophobicity is 

associated with a reduction in root water uptake after drying and rewetting. We used neutron 

radiography to trace the transport of deuterated water (D2O) in the roots of lupines growing in 

a sandy soil. The plants were initially grown in relatively moist conditions (0.1<θ<0.2). Three 

weeks after planting, we let one soil region dry for two-three days. Then, we injected D2O in 

this soil region and in a symmetric region that was kept wet. We monitored D2O transport in 

soil and roots with time-series neutron radiography. From the D2O transport into roots we 

calculated the root water uptake. We found that root water uptake in the soil region that was 

let dry and rewetted was 4-8 times smaller than that in the region that was kept moist. The 

reduced uptake persisted for more than 2 hours. We conclude that a reduction in hydraulic 

conductivity occurred after drying and rewetting. We expect that this reduction was caused 

by the rhizosphere hydrophobicity. 
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Introduction 

Root water uptake depends on the hydraulic conductivities of roots and soil. In wet soil, the 

hydraulic conductivity of roots typically controls the water uptake. As the soil dries, its 

conductivity decreases by several orders of magnitude and may limit the flow of water into 

the roots (Passioura, 1980; Draye et al., 2010). Model calculations showed that as the soil 

dries, a critical drop in water potential may occur in the immediate vicinity of the soil, the so 

called rhizosphere. The drop occurs because of the radial geometry of the flow to the roots 

and the nonlinearity of the unsaturated soil conductivity (Gardner, 1960; Carminati et al., 

2011). As large gradients in water potential occur in the rhizosphere, plants typically decrease 

the transpiration rate by closing leaf stomata with a consequent reduction in photosynthesis 

(Dodd, 2003).  

To adapt to water shortage, plants can alter their own properties: as example, they can tune 

the root permeability by aquaporin regulation (North and Nobel, 1997; Meyer et al., 2008; 

Knipfer et al., 2011), increase the root to leaf area ratio (Sperry et al., 1998), and vary the 

xylem resistance by ion concentration in the sap flow (Zwieniecki et al., 2003; Lee et al., 

2012). An additional, complementary strategy consists in altering the hydraulic properties of 

the soil in the vicinity of roots, the so called rhizosphere, in order to optimize the acquisition 

of water and nutrients.  

Effects of rhizosphere on root water uptake and drought tolerance are still matter of 

controversy. Young (1995) measured larger water contents in the rhizosphere than in the bulk 

soil, and he explained this observation with mucilage exuded by roots. Mucilage is primarily 

composed of polysaccharides and it can hold big volumes of water (McCully and Boyer, 

1997); this can justify the observations of Young (1995) of a wetter rhizosphere compared to 

the bulk soil. However, other studies suggest that the rhizosphere is drier than the bulk soil. 

Read et al. (2003) showed that mucilage contains lipids that reduce the surface tension of the 

soil solution and that likely decrease the water holding capacity of the soil. Hallett et al. 

(2003) showed a low wettability of the rhizosphere compared to the bulk soil. Moradi et al. 

(2012) measured a high water repellency of the rhizosphere of lupines in dry sandy soils.  

These opposite results on the water distribution in bulk soil and rhizosphere are not a 

contradiction, but are rather an expression of the rhizosphere plasticity (Carminati and 

Vetterlein, 2012). Carminati et al. (2010) found that the rhizosphere was wetter than the bulk 

soil during drying and it stayed temporarily dry upon rewetting. Based on this observation, 
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they concluded that the hydraulic properties of the rhizosphere are hysteretic and time-

dependent. The authors interpreted their observations as the effect of mucilage. When 

mucilage is in equilibrium with the water potential in the bulk soil, it is expected to increase 

the rhizosphere water holding capacity. However, as roots take up water and the soil dries, 

mucilage shrinks and it becomes hydrophobic. Mucilage drying and its slow rewetting upon 

irrigation is shown in Figure 1. 

Carminati et al. (2011) showed that a rhizosphere with higher water holding capacity than the 

bulk soil attenuated the drop in water potential towards the roots and facilitated the water 

uptake from dry soils. Keeping the rhizosphere wet, for instance by mucilage exudation, 

would be a strategy to improve the water extraction when water is scarce. However, this 

strategy seems to have a drawback: when mucilage dries it turns hydrophobic (Moradi et al. 

2012). Therefore, the positive effect during the drying phase could be counteracted by the 

dryness of the rhizosphere after rewetting.  

 

 

Figure 1: Hypothetical water distribution in the rhizosphere during drying and wetting including 

mucilage dynamics 
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The low wettability of the rhizosphere after drying and subsequent rewetting is shown in 

Figure 2. The image was obtained with neutron radiography and it shows the spatial 

distribution of water content and roots of a 25-day-old lupine 30 minutes after irrigation. The 

initial water content of the soil was 0.02 and it was irrigated from the top with constant 

infiltration at a rate of 1 ml min-1. In this radiograph, dark values correspond to high water 

contents, bright values to low water contents. After irrigation, water content in the bulk soil 

increased significantly, but a thin layer around the roots remained markedly drier. The white 

regions around the roots show that the rhizosphere rewetted much less than the bulk soil.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Neutron radiograph of a sample one hour after irrigation with normal water. Initial water 

content in the bulk soil was 0.02 and increased to 0.20 after irrigation.  The darker gray value 

corresponds to big change in water content after irrigation. The brighter layers around roots indicate 

that the rhizosphere did not rewet. Note that neutron attenuation is averaged across the soil thickness (1 

cm). Assuming that the rhizosphere has a thickness of 1.5 mm around roots the actual neutron 

attenuation in the rhizosphere would be at least 6 times bigger is seen on the radiographs.  
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This observation was consistent in six samples and confirms the previous studies of 

Carminati et al. (2010) and Moradi et al. (2012). In the present study, we focus on a new 

aspect. Given that the rhizosphere becomes hydrophobic after drying, what are the effects on 

root water uptake? Does it prevent roots from taking up water? Does it impede the recovery 

of plants after drought? Or does water easily flow across the rhizosphere, with no 

consequences for root water uptake. 

Answering these questions has been so far impeded by the lack of experimental methods to 

in-situ measure local flux of water into the roots. Recently, Zarebanadkouki et al. (2012; 

2013) developed a new method to visualize the local water flow into roots by using 

deuterated water (D2O) and neutron radiography. In this study we applied this method to 

roots growing in soil regions that were let dry and subsequently rewetted. Our hypothesis was 

that after drying and subsequent rewetting, the rhizosphere became hydrophobic and root 

water uptake was limited. 

Materials and methods 

Plants and soil  

We grew ten lupines (Lupinus albus) in aluminum slabs (28 cm wide, 28 cm high and 1 cm 

thick) filled with sandy soil. The soil consisted of 92% sand, 5% silt, 3% clay. Before the 

filling procedure, we placed a grid of 1 cm thickness into the containers to partition the soil 

medium in nine compartments, 3 rows × 3 columns (Figure 3). We poured the sandy soil into 

each compartment through one sieve to favor a homogeneous soil deposition and to reduce 

soil layering. During the filling procedure, the containers laid horizontally. We wetted the soil 

and removed the grids. After removing the grid, we filled the space between the 

compartments with coarse sand (grain diameter of 1.2-1.7 mm). The layers of coarse sand 

acted as capillary barriers to hydraulically disconnect the adjacent compartments without 

hindering root penetration. One face of each container had holes of 1 mm at a distance of 2 

cm to allow injection of H2O and D2O in selected positions. We filled the upper one 

centimeter of the samples with quartz gravel to minimize evaporation. 

Lupine seeds were germinated on moist filter paper for a period of 24 hours. The seeds were 

gently placed into the soil at 1 cm depth. The plants were grown with a photoperiod of 14 

hours, light intensity of 300 μmol m2 s-1, day/night temperature of 25°C/19°C, and relative 

humidity of 60%. We irrigated the plants every fourth day to maintain the soil water content 
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in each compartment between 0.1 and 0.2. Three weeks after planting, we stopped irrigating 

one of the two upper lateral compartments of each sample. We measured the transpiration 

rate of plant gravimetrically by weighing the samples every eight hours. Daily transpiration 

was 2.20±0.23 (n=10) g h-1 per plant. The plants were 28 day-old when the neutron 

radiography experiment started. At this stage plants had eight leaves with a total leaf area of 

approximately 170±6.31 cm2 (n=10). 

Neutron radiography  

Neutron radiography is an imaging technique with high sensitivity to water and high temporal 

and spatial resolution. We used neutron radiography to monitor spatial and temporal 

distribution of H2O and D2O in soil. Neutron radiography was carried out at the cold neutron 

imaging beam-line ICON at the Paul Scherrer Institut (PSI), Switzerland. We used a CCD 

camera detector with an array of 1024×1024 pixels, resulting in a field of view of 14.5 cm × 

14.5 cm, which corresponds to a pixel size of 0.0125 cm. Nine radiographs with marginal 

overlaps were needed to scan the entire sample. For the measurements at daytime, a lamp 

identical to those in the growth chamber was installed in the imaging station above the plant, 

providing a light intensity of 300 μmol m2 s-1.  

D2O injection experiments 

Deuterated water (D2O) was used as a contrast agent to trace the flow of water into the roots. 

In contrast to normal water, D2O has a much lower neutron attenuation coefficient, which 

makes it well distinguishable in neutron radiographs. 

After maintaining the plants well irrigated for 25 days, we stopped irrigating one of the upper 

lateral compartments while we continued to irrigate the other compartments. When the not-

irrigated compartment reached a water content of 0.02 (this took approximately 2-3 days), we 

injected 8-10 ml of D2O into each of the two top lateral compartments of eight sample. We 

refer to these two compartments as compartments with dry and wet rhizosphere. The 

compartment with wet rhizosphere was the control treatment and gave the root water uptake 

when the rhizosphere was hydrated. After injection of D2O, both compartments had a water 

content 0.10 < θ < 0.20. In our sandy soil, this water contents correspond to soil matric 

potentials of -50 hPa < h < -20 hPa (Carminati et al., 2010). This difference is smaller than 

typical differences in water potential between soil and roots during transpiration.  
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The water potential in the roots of the two compartments was expected to be similar because 

all roots were connected to the same tap root. Therefore, the difference in water fluxes into 

the roots of the two compartments mostly depended on the hydraulic conductivity of the 

rhizosphere-root continuum. 

Redistribution of D2O in soil and roots was monitored with time series neutron radiography 

with time interval of 10 seconds for a period of three hours. In four samples, D2O was 

injected at daytime, when a lamp identical to that of the growth chamber was mounted inside 

the imaging station. Transpiration was measured gravimetrically by weighing the samples 

before and after measurements. In other four samples, D2O was injected at nighttime when 

transpiration was negligible. The experiments at nighttime were made to determine the effect 

of convection (net water transport) and diffusion on the D2O transport along roots (axial 

transport) and from soil to roots (radial transport).  

Image  processing 

The individual radiographs were referenced using a flat field (radiography without sample) 

and dark current (image recorded by the camera when there was no beam). The sharp contrast 

between roots and surrounding soil facilitated the visual separation (segmentation) of the 

roots from the surrounding soil. The segmented roots were skeletonized and their length and 

diameter were calculated. In the pixels containing roots, the signal was the sum of the 

attenuation coefficients of the root and the soil in front of and behind the root in the beam 

direction. The actual contributions of H2O and D2O in the root were calculated assuming that 

the contribution of H2O and D2O in soil in front of and behind the root was equal to those of 

the soil at the sides of the roots. We calculated the pixel-wise D2O content in the centermost 

pixels of the roots from the measured neutron attenuation coefficients in the radiographs. The 

volumetric concentration of D2O in the roots was calculated as the thickness of D2O divided 

by the total liquid thickness in roots. The image processing is described in details in 

Zarebanadkouki et al. (2012). 

Quantification of the water fluxes 

Transport of D2O in roots is driven by two processes: 1) diffusion following the gradient of 

D2O concentration, and 2) net volume of water driven by the transpiration stream 

(convection). Zarebanadkouki et al. (2012) showed that diffusion and convection are equally 
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important in the transport of D2O from soil to roots across the root-soil interface and root 

tissue (radial transport). In contrast, D2O transport in the xylem along the root (axial 

transport) is primarily driven by convection. Comparison of experiments at nighttime, when 

convection is negligible, with experiments at daytime, when both convection and diffusion 

take place, gives information on the convective fluxes and, consequently on root water 

uptake.  

Quantitative estimation of root water uptake by comparing daytime and nighttime 

radiographs is not straightforward and requires a modeling approach. Crucial is how the 

pathway of water across cortex, endodermis and stele, as well as the relative importance of 

the apoplastic and cell-to-cell pathways, are modeled (Zarebanadkouki et al. 2013). The 

results are therefore affected by the validity of the model and its assumptions.  

Conversely, estimation of root water uptake from the axial transport in the roots does not 

need a modeling approach. Since D2O diffusion along the xylem is negligible compared to 

the convective transport,  the  volume of D2O passing the barrier, VD2O, is related to the axial 

flux according to:   

𝑑𝑉𝐷2𝑂

𝑑𝑡
= 𝜋𝑟2𝑗𝑥𝐶(𝑡)           (4.1)   

where C [-] is the D2O concentration in the root stele at the place of the barrier, t is time, r is 

the radius of the root stele and 𝑗𝑥 [cm s-1] is the axial flux of water across the stele at the place 

of the barrier. Eq. (4.1) is valid until the D2O front reaches the taproot and then moves out 

from the field of view. When concentration of D2O  reaches a constant value, the slope of 

𝑉𝐷2𝑂(𝑡) is a straight line and is used to calculate 𝑗𝑥. The relation between 𝑗𝑥 and the radial 

flow into the root, 𝑗𝑟 [cm s-1] is given by: 

𝜋𝑟2𝑗𝑥 = 2𝜋r𝐿𝑗𝑟           (4.2)  

where L [cm] is the length of the root and jr is the flux into the endodermis averaged along L. 

In this study, we used the axial transport of D2O to calculate the water uptake of the roots 

immersed in D2O. 

Results  

Neutron radiography of one sample before injection of D2O is shown in Figure 3. The 

radiograph is obtained from stitching nine radiographs with marginal overlaps. It shows the 

distribution of water and roots. The gray values are proportional to the water contents 

(darker=wetter). The two compartments selected for the D2O injection are marked with a 
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white and a black rectangle. We refer to these compartments as compartments with dry 

rhizosphere (white) and wet rhizosphere (black). The average water content before injection 

was equal to 0.02 in the dry compartment 0.10 in the wet compartment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Neutron radiography of a sample that was used for D2O injection. Gray values are proportional 

to water contents (dark=wet). Roots appeared dark because of their high water content. The two 

compartments selected for D2O injection are marked in white (compartment with day rhizosphere) and 

black (compartment with wet rhizosphere). 

 

We injected 8-10 ml of D2O into the two compartments at daytime. Neutron radiographs of 

the sample after injection of D2O are shown in Figure 4. The images show the ratio between 

the actual radiographs at time t and the radiograph before injection (t = 0). Bright gray values 

indicate increased D2O/H2O ratio. Dark gray values indicate accumulation of H2O. Shortly 

after injection, D2O pushed away the H2O presented in the soil until the sum of θH2O = 

VH2O/Vtot and θD2O = VD2O/Vtot was constant throughout the compartment. This process was 

driven by water potential gradients inside the compartment and was relatively fast (around 

one minute). The successive mixing of D2O and H2O was driven by diffusion and was 

relatively slower.   
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After D2O injection, the roots inside the compartment turned bright indicating transport of 

D2O into roots. Subsequently, D2O moved along roots and passed the capillary barriers. This 

axial transport was faster in the roots with wet rhizosphere than in the roots with dry 

rhizosphere. Fast transport in the roots with wet rhizosphere was observed in all samples 

(Figure 5).  

The measurements at nighttime showed that the axial transport along roots was negligible 

(Figure 6). This observation is consistent with our previous work (Zarebanadkouki et al., 

2012; Zarebanadkouki et al., 2013) and it demonstrates that the axial transport of D2O 

beyond the barrier depends mainly on the convective fluxes.  

To extract the quantitative information about the transport of D2O into roots with dry and wet 

rhizosphere, we calculated the volume of D2O passing the barrier, VD2O [cm3]. VD2O is related 

to the axial flux 𝑗𝑥 [cm s-1] according to Eq. (4.1). In Figure 7 we plotted the cumulative 

fluxes for the roots of the sample shown in Figure 4. The cumulative fluxes were calculated 

from the increase of 𝑉D2O/(𝜋𝑟2𝐶) [cm] over time in the time interval when C was constant. 

The slopes of the lines in Figure 7A are equal to the axial fluxes 𝑗𝑥. Figure 7A shows that the 

water fluxes were much higher in the compartments with wet rhizosphere than in those with 

dry rhizosphere. 
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Figure 4: Neutron radiographs of the sample presented in Figure 3 after D2O injection. Radiographs 

show the ratio between the actual radiographs and the one at t=0. Bright values indicate less neutron 

attenuation and high values of D2O/H2O. Roots appeared bright indicating the transport of D2O into 

roots. The axial transport of D2O into roots was faster for the roots with wet rhizosphere than the roots 

with dry rhizosphere. 
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Figure 5: Neutron radiographs of two additional samples one hour after D2O injection. Radiographs show 

the ratio between the actual radiographs and the one at t=0. Bright values indicate less neutron 

attenuation and high values of D2O/H2O. D2O was injected into each compartment separately.  
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Figure 6: Comparison between axial transport of D2O beyond the barrier for the roots with dry 

compartment at night (A) and day (B). Radiographs show the ratio between the actual radiographs 90 

minutes after injection and the one at t=0. Bright values indicate less neutron attenuation and high value 

of D2O/H2O. These radiographs show that axial transport of D2O beyond the barrier is negligible at night.  

 

As 𝑗𝑥 increases with root length (Eq.4.1), we grouped roots in long (length of 16-17 cm, 

n=14), medium (length of 12-13 cm, n=9), and short roots (length of 9-10 cm, n=6), with n 

being the number of roots. The mean axial fluxes for all samples are plotted in Figure 7B. In 

long roots the fluxes in the compartments with dry rhizosphere decreased of 7.6 times. In 

medium and short roots, the fluxes decreased of 6.8 and 4.2 times, respectively. The higher 

reduction in long roots compared to that in short roots suggests that water repellency and 

rewetting times increased with root age.  

The higher water uptake of the roots with wet rhizosphere is also visible in the increase of 

D2O concentration inside the root. The rate of the D2O increase inside the root depends on 

diffusion and convection. Under the assumption that diffusion into roots is equal at nighttime 

and daytime, the difference between nighttime and daytime measurements contains the 

information about the convective flux. Therefore, we expect a larger day/night variation in 

the roots with wet rhizosphere. The average concentration of D2O in the roots with wet and 

dry rhizosphere is plotted in Figure 8. As expected, the larger day/night variations occurred in 

the roots with wet rhizosphere, while for the roots with dry rhizosphere the curves at daytime 

and nighttime were more similar. This observation confirms the measurements of jx shown in 

Figure 7 - i.e. higher uptake in roots with wet rhizosphere.  
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Figure 7: Water uptake of roots with dry and wet rhizosphere. (A) Cumulative axial fluxes into roots with 

dry and wet rhizosphere. The values refer to the sample shown in Figure 3.  (B) Axial fluxes within the 

roots of all samples. Roots are grouped in long (16-17 cm, n=14), medium (12-13 cm, n=9) and short roots 

(9-10 cm, n=6). The axial fluxes are calculated at the capillary barriers (5-6 cm from taproot). 
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Discussion 

The axial D2O transport into roots (Figure 7) and the radial one (Figure 8) show a lower root 

water uptake in the soil compartments that were let dry and subsequently rewetted. Root water 

uptake in these compartments was reduced of 4-8 times. This reduction persisted for at least 

one-two hours after rewetting. Such observations are in line with former observations of high 

water repellency in the rhizosphere (Moradi et al. 2012; Carminati et al. 2010).  

Figure 8B shows also an unexpected result. During daytime, the increase of D2O into the roots 

with dry rhizosphere is as fast as in the roots with wet rhizosphere; and during nighttime, the 

increase of D2O into root with dry rhizosphere is even faster than in the roots with wet 

rhizosphere. How can we explain these observations? Is there a contradiction with our 

hypothesis that after drying the rhizosphere becomes a limiting factor for water transport into 

roots? 

One explanation is that in the roots with dry rhizosphere there is an additional force that 

drives water into the root after D2O injection. This force originates from the sudden increase 

of water potential in the soil compartment that was let dry. Based on the water retention curve 

of our sandy soil, we expect an increase of water potential up to 1 MPa. Let us consider the 

experiment at nighttime. Let us assume that when transpiration was null roots and soil were in 

equilibrium. After irrigation, the soil water potential suddenly increased and initiated a water 

flow into the roots. As water entered the roots, the roots swoll, their tissue rehydrated and 

their water potential increased until it equaled that of the soil. During D2O injection, this 

initial flow into the root increased the rate of D2O transport into the root and could explain our 

observations. Obviously, hydraulic equilibration between soil and roots is more complex and 

depends on the hydraulic redistribution between roots. However, this simple picture illustrates 

the effect of the abrupt change of water potential in the dry compartment. A similar process 

will occur at day.  

A second explanation is that the increase of D2O that we attribute to the roots with dry 

rhizosphere did not come only from the roots themselves, but it partly came from the 

rhizosphere. The reason is illustrated in Figure 9. Before D2O injection, according to 

Carminati et al. (2010) and Moradi et al. (2011), we expect that the water content increased 

towards the roots. Let us assume that the initial water content of the bulk soil was 0.02 and the 

water content in the rhizosphere was 0.06 (Figure 9A). Taking a neutron attenuation 

coefficient of normal water ƩH2O=4 cm-1, we obtain a neutron attenuation of 0.24 [-] for the 

rhizosphere and of 0.08 [-] for the bulk soil. After injection of 9 ml D2O, the liquid content 

(H2O+D2O) in the bulk soil increased to 0.12. If we entirely replaced the H2O present in the 
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bulk soil with D2O and we assume ƩD2O=0.6 cm-1, the neutron attenuation in the radiographs 

for the bulk soil would be 0.07 [-]. Since the liquid content (H2O+D2O) in the rhizosphere did 

not change instantaneously after injection (Carminati et al. 2010), the neutron attenuation in 

the rhizosphere remained constant (Figure 9B). If we take the difference between the 

radiograph before and immediately after D2O injection, we cannot expect to see any effect of 

rhizosphere water repellency. Indeed, we did not see it in the experiments with D2O. 

However, after some time, H2O initially presents in the rhizosphere mixed with D2O of the 

bulk soil until the concentration of D2O in the soil solution was uniform. We expect that 

H2O/D2O mixing was slower in the rhizosphere than in the bulk soil, due to the presence of 

mucilage around the roots. After complete H2O/D2O mixing in the rhizosphere (Figure 9C), 

the neutron attenuation in the rhizosphere decreased down to 0.07 (based on the total volumes 

of D2O and H2O in the compartment, at equilibrium we can expect H2O/D2O=1/5). Compared 

to the initial radiograph, this means that the decrease in the neutron attenuation after D2O 

injection was much bigger in the rhizosphere than in the bulk soil. Since our analysis is based 

on the two-dimensional picture, we cannot be sure that the signal in the root was not affected 

by the signal of the rhizosphere. On the contrary, it is very likely that part of the increase of 

D2O in Figure 8B came from the rhizosphere, rather than exclusively from the root.  
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Figure 8: Concentration of D2O in roots crossing dry and wet rhizosphere at daytime (A) and nighttime 

(B). Error bars show the standard deviation.     
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Figure 9: Putative H2O and D2O distribution as a function of distance from the root surface at different 

times after D2O injection. 
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The interpretation of Figure 8B in terms of radial transport into the root is therefore not trivial 

and the effect of H2O/D2O mixing in the rhizosphere should be better understood and 

interpreted. 

Beside this unexpected increase of D2O into the root of the dry compartment, our experiments 

clearly demonstrated two points:  

1) Although the rhizosphere became hydrophobic after drying and rewetting (Figure 2), water 

could flow from soil to roots across the rhizosphere.  

2) Root water uptake in the compartment with dry rhizosphere was reduced of 4-8 times 

compared to the well watered compartment.  

The first point confirms the model of Carminati (2012), in which water content, water 

potential and hydraulic conductivity of the rhizosphere are not related by a unique function, 

but their relation varies over time. In fact, rhizosphere rewetting and transport across the 

rhizosphere show different dynamics: rhizosphere rewetting takes one-two days (Carminati et 

al. 2010), whilst the transport of D2O across the dry rhizosphere is relatively fast. This point 

alone, however, does not allow a conclusion on the effects of the rhizosphere on root water 

uptake.   

The second point shows that the hydrophobicity of the rhizosphere is associated with a 

reduction of root water uptake. As the driving forces in the compartments with dry and wet 

rhizosphere are expected to be similar and the bulk soil was wet, the low root water uptake 

must result from a decrease in the hydraulic conductivity of the system. The decrease in 

hydraulic conductivity may have occurred in the rhizosphere or in the root. 

The reduced hydraulic conductivity of the rhizosphere may have resulted from the 

rhizosphere hydrophobicity discussed above or from the shrinkage of roots and the 

consequent formation of air-filled gaps (Nobel and Cui, 1992; North and Nobel, 1997; 

Carminati et al., 2012).   

Decrease of root hydraulic conductivity may have occurred at different levels. One possibility 

is that the radial conductivity decreased in response to aquaporine closure during drying. 

However, Bramley et al. (2009) found that aquaporine closure did not affect significantly the 

conductivity of Lupine roots and concluded that the pathway of water flow in Lupine roots 

was predominantly apoplastic. Another possibility is that during the 2-3 days of soil drying, 

the endodermis of the roots became tighter blocking the apoplastic flow  (Henzler and 

Steudle, 1995; Knipfer et al., 2011; Hu et al., 2011; McLean et al., 2011). Beside a decrease 

in radial conductivity, also a decrease in the axial conductivity may have occurred due to 
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cavitation of some vessels in the xylem (Tyree and Sperry, 1989; Tyree and Zimmermann, 

2002). Note that such hypothesis would explain both the low net water uptake and the 

relatively quick D2O diffusion into the roots with dry rhizosphere, whereas a decrease in the 

radial conductivity would not explain the latter observation. 

However, the growing condition of the roots in the dry compartment were varied only for 2-3 

days after 25 days of wet growing conditions. Additionally, having only a small portion of the 

soil relatively dry may have limited the risk of cavitation and root dehydration, due to partial 

hydraulic redistribution during night. Note that the plants were well turgid throughout all the 

measurement time and did not show any symptoms of water shortage. Therefore, we think 

that this experimental set-up minimized the risk of cavitation and alteration of the root 

properties in the dry compartment in the short time interval of our measurements.  

The main result of this study is that after a drying/wetting cycle the local root water uptake 

was 4-8 times lower than in well watered regions, and it stayed low for at least 1-2 hour. Such 

reduction in water uptake is in line with our observations of water repellency in the 

rhizosphere. However, we cannot exclude that cavitation or reduced root permeability may 

have contributed to the reduced root water uptake. The apparently quick D2O transport across 

the dry rhizosphere needs further investigation. 
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Abstract 

The ability of plants to take up water from the soil is influenced by the hydraulic behavior of 

the soil in the immediate vicinity of the roots, the so called rhizosphere. Hydraulic properties 

of the rhizosphere are actively altered by roots and associated microorganisms. In previous 

works (Carminati et al 2010; Moradi et al. 2011; Moradi et al. 2012), it has been shown that 

the water retention curve of the rhizosphere differs from that of the bulk soil. However, the 

hydraulic property that is expected to have a higher impact on soil-plant water relations is the 

hydraulic conductivity of the rhizosphere. To data, there is very little experimental 

information on the hydraulic conductivity of the rhizosphere.  

In this study we attempted to measure the hydraulic conductivity of the rhizosphere after 

drying. To this end, we monitored the redistribution of water in the soil and root during a 

drying and wetting cycle using time-series neutron radiography. 

Lupines were grown in aluminium containers filled with sandy soil. Plants were irrigated 

every fourth day for a period of two weeks and then irrigation was stopped. Six days after 

stopping irrigation, we rewatered the samples from the top (60 ml water) and simultaneously 

monitored redistribution of water in the soil and roots by mean of neutron radiography. The 

radiographs showed that the rhizosphere stayed temporarily dry and it slowly rewetted with 

time. Over time, we observed that roots swelled. 

We used the swelling rate of roots to estimate the effective hydraulic conductivity of the 

rhizosphere. To calculate effective hydraulic conductivity of the rhizosphere, we assumed that 

roots and soil were at the same water potential before and the end of infiltration. We used a 

Darcy type of equation where the flux of water into roots was obtained from the swelling rate 

of roots and gradient in water potential between roots and soil was estimated from the 

pressure volume curve of the roots. We found that the effective hydraulic conductivity of the 

rhizosphere was initially 1×10-11 cm s-1 and it increased to 2×10-9 cm s-1 in four hours.  
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Introduction 

The rhizosphere is defined as the soil in the immediate vicinity of roots that is actively 

modified by roots and microorganisms living in symbiosis with the roots (Gregory, 2006). 

Many studies reported that the rhizosphere has specific and distinct properties that differ from 

those of the bulk soil. How these properties may affect the balance of water between plants 

and soil has been subject of many investigations (Young, 1995; Read & Gregory, 1997; Read 

et al., 1999; Hallett et al., 2003; Whalley et al., 2004, 2005; Carminati et al., 2010; Moradi et 

al., 2012).  

Due to the small size of the rhizosphere, its importance as water capacitor is negligible 

compared to the big transpiration demand of the plants. However, the hydraulic conductivity 

of the rhizosphere may affect the flux of water into the roots. Typically, the ability of plants to 

take up water from the soil is controlled by the resistance of roots. But, as the soil dries, the 

soil hydraulic conductivity decreases of several orders of magnitudes and may become 

dominant (Gardner, 1960; Passioura, 1980; Nobel & Cui, 1992; Doussan et al., 2006; 

Carminati et al., 2011). Modelling calculations showed that under dry condition, the flow of 

water into roots is limited by the hydraulic properties of the soil in the immediate vicinity of 

the roots due to a big drop in water potential and hydraulic conductivity around the roots in 

the soil ( Carminati et al., 2011). 

It has been known that by exuding mucilage, roots modify the relation between water content 

and water potential in the rhizosphere (McCully & Boyer, 1997; Czarnes et al., 2000; Hallett 

et al., 2003; Whalley et al., 2004). Carminati et al. (2010) and Moradi et al. (2011) observed 

unexpectedly higher water contents in the rhizosphere than in the bulk soil during a drying 

cycle. They explained this observation with the presence of mucilage in the rhizosphere. 

Mucilage is expected to increase the water-holding capacity of the soil by improving the 

absorbing capacity of soil and the soil structure (Chenu, 1993; Watt et al., 1994; McCully & 

Boyer, 1997; Or et al., 2007).  Higher water content in the rhizosphere has been also reported 

by others (Young, 1995; Nakashi, 2005).  

Carminati et al. (2010) observed that immediately after rewetting, the rhizosphere remained 

markedly dry and it slowly rewatered until it became again wetter than the bulk soil. They 

explained this observation with a temporarily hydrophobicity of the rhizosphere caused by the 

presence of surfactants in the mucilage. Mucilage contains surfactants that reduce the surface 

tension of water in soil. Coating the soil particles in the rhizosphere with surfactants, in 



Hydraulic conductivity of hydrophobic rhizosphere  118 

 

particular lipid components, reduces the wettability of the rhizosphere (Read & Gregory, 

1997; Read et al., 1999; Czarnes et al., 2000; Hallett et al., 2003; Moradi et al., 2012). Other 

authors have also reported low water content in the rhizosphere (MacFall et al., 1990; Segal et 

al., 2008). Carminati et (2012) suggests that different observations of a wet and dry 

rhizosphere are not in contradiction, but they rather reflect the dynamic and hysteretic 

hydraulic behavior of the rhizosphere. These studies show that the rhizosphere has hydraulic 

properties than cannot be explained by classical models. According to the classical models, 

the hydraulic conductivity of soil is a unique function of water content. Carminati (2012) 

proposed a new model in which the rewetting of the rhizosphere does not follow the changes 

in water potential in the rhizosphere and it depends on wettability and swelling rate of the 

mucilage. This model could simulate the unexpected water distribution around the roots 

during drying and rewetting cycles. In the present study, we aimed to measure the hydraulic 

conductivity of the rhizosphere during the rewetting cycle. To this end, we used neutron 

radiography technique to monitor redistribution of water in the soil and roots of lupines. We 

used the swelling rate of roots to estimate the effective hydraulic conductivity of the 

rhizosphere. This study will introduce a capable technique to measure the hydraulic 

conductivity of the dry rhizopsphere. It will also provide experimental data needed for 

understanding and modelling root water uptake in dry condition.  

Material and methods 

Preparation of the soil and plants 

Lupine seeds (Lupine Albus) were grown in aluminium containers (15 cm wide, 30 cm high 

and 1 cm thick) filled with a sandy soil. The sandy soil was collected from the artificial 

catchment Chicken Creek located near Cottbus, Germany. The soil (sieved to < 2 mm) 

consisted of approximately 92% sand, 5% silt and 3% clay. The soil hydraulic properties are 

given in Table . The containers were filled with soil while they were laid horizontally. The 

sandy soil was poured into the containers through two sieves to favor a homogenous sand 

deposition and limit soil layering. The open faces of the containers were then closed, turned 

vertically, and gently shaken to achieve a stable packing. The average bulk density of the soil 

was 1.4 g cm-3. The top of the samples was covered with a 1 cm-thick layer of quartz gravel 

(size of 5 mm grain) to minimize evaporation.  
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Lupine seeds were germinated on moist filter paper for a period of 24 hours. Then, we placed 

the seedling into the soil at 1 cm deptsh. We grew the plants with a photoperiod of 14 hours, 

light intensity of 300 μmol m2 s-1, day/night temperature of 25°C/19°C, and relative humidity 

of 60%. We irrigated the plants every fourth day to maintain the soil water content between 

0.10 and 0.20. Two weeks after planting, we stopped irrigation. Transpiration was monitored 

gravimetrically by weighing the samples every 8 hours. The average daily transpiration rate 

was 1.04 ±0.13 (n=6) g h-1 per plant. After stopping irrigation, transpiration was rather 

constant for four days and then it reduced to 0.4 ±0.21 (n=6) g h-1 per plant at the day when 

we started the neutron radiography experiments (plants were 20 days old). 

Neutron radiography  

Neutron radiography is an imaging technique with high sensitivity to water and high temporal 

and spatial resolution. Neutron radiography was carried out at the cold neutron imaging beam-

line ICON at Paul Scherrer Institut (PSI), Switzerland. We used a CCD camera detector with 

an array of 1260×1260 pixels, resulting in a field of view of 15.75 cm ×15.75 cm, and 

effective spatial resolution of 0.2 mm. Two radiographs with marginal overlaps were needed 

to scan the entire sample. The neutron radiography experiments were performed at nighttime 

when transpiration was negligible.  

Infiltration experiments  

Six days after stopping the irrigation, we started neutron radiography experiment. Plants were 

three weeks old when we started the experiments. At nighttime when plants were not 

transpiring, we infiltrated the samples from top using three syringes. Samples were infiltrated 

with 60 ml water for a period of three minutes. Spatiotemporal distribution of water in soil 

and the roots were monitored using time series neutron radiography for a period of four hours. 

During the rewetting phase only the upper part has been scanned 

 

Table 1: Mualem–van Genuchten parameters for the bulk soil.  

θres [-] θsat [-] n [-] α [cm-1] ks [cm s-1] 

0.02 0.36 2.21 0.03 3×10-3 
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Root segmentation 

The sharp contrast between roots and surrounding soil, due to the marked difference in their 

water contents, allowed us to easily segment roots from the soil. Root thickness calculation 

and root segmentation were carried out by image processing using the algorithm 

roottracker2D (Menon et al., 2007). We calculated root radius and root length using the 

Euclidean distance map and the skeleton of the segmented roots.   

Quantification of water content in the bulk soil 

The individual radiographs were referenced using a flat field (radiography without sample) 

and dark current (image recorded by the camera when there was no beam). The Beer-Lambert 

law for our samples can be rewritten as 

 2 2log ( , ) (1 )norm Al Al s tot H O H OI x y d d d              (5.1)
  

 

where the subscripts Al, S, and H2O refer to aluminium container, solid phase of the soil, and 

normal water, respectively, Inorm (x, y) is the corrected image, μ (cm−1) is the macroscopic 

neutron attenuation coefficient, ∅ is the soil porosity (cm3 cm-3), and dtot is the inner thickness 

of the container (1cm). The contribution of container and soil were derived from the 

radiograph of a dry sample, Idry (x,y). The attenuation coefficients of water (μH2O=3.65 cm-1) 

were measured using control samples with known normal water content. Assuming that the 

contribution of the container and soil was uniform across the sample, the contribution of H2O 

in the sample can be written as 

 2 2

( , )
log

( , )

norm
H O H O

dry

I x y
d

I x y


 
   

 

      (5.2) 

The average water content, 𝜃̅ [-], across the thickness of the sample can be written as  

2H O

tot

d

d
       (5.3) 

where dtot is the total thickness of the inner space of the container (1cm).  This equation can 

be used to calculate water content in the bulk soil, but not in the roots and their rhizosphere.  
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Quantification of water content in the rhizosphere 

Since the radiographs are 2D images resulting from neutron transmission across the sample 

thickness, the radiographs give the average water content in the rhizosphere and in the portion 

of the soil in front and behind the rhizosphere. Consider the example illustrated in Figure 1: If 

water content in the rhizosphere is two time bigger than the bulk soil, the attenuated neutron 

projected in the pixel A of the radiograph will yield a water content of only 1.18 times bigger 

than the one of the bulk soil, because the attenuated neutron is an averaged across 45 pixels, 

while only 9 pixels had a high water content (rhizosphere). Additionally, the pixels containing 

the rhizosphere also have different distance from the roots. Assuming a radial symmetry 

around the root, the relation between the actual water content as a function of distance from 

root, 𝜃(𝑟), and the average water content calculated from the radiographs, 𝜃(𝑥), can be 

written as:  

2 2

2

2

1
( ) ( )

tot
x d

r

tot x

r
x r dr

d r x
 






                     (5.4) 

where dtot is the thickness of soil, r is the radial distance from the root surface and x is the 

apparent distance from the root surface in the radiograph.  

 

 

Figure 1: Schematic cross-section of  root (black), rhizosphere (dark gray) and bulk soil (light gray). 

Neutron radiography yielded the water content averaged along the 1 cm sample thickness. In the pixels 

next to the root, θ is the average of the water content in the bulk soil and the rhizosphere.  
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Quantification of water content in roots 

In the pixels containing roots, the signals are the average of the attenuation coefficient of the 

root and the soil in front and behind the root. The actual contributions of H2O in roots can be 

calculated assuming that the contributions of H2O in front and behind the root are equal to 

those of soil beside the roots quantified by Eq.(5.3). The pixel-wise water content in the roots 

was calculated as 

log (1 )root
s root soil root

soil

root

root

I
d d

I

d

 
    

 

  



     (5.5)

 

               

 

where Iroot is the value of Inorm in the centermost  pixel in the roots, Isoil is the average value of 

Inorm in soil near to the roots and droot is the root diameter. The attenuation coefficient of root 

(μroot) depends on the volumetric water content in the root. 

Effective hydraulic conductivity of the rhizosphere 

To calculate hydraulic conductivity of the rhizosphere, we assumed that the rhizosphere is a 

region with 1.5 mm distance from the root surface. Then we calculated effective hydraulic 

conductivity of the rhizosphere, which determines how easily water flows from the soil into 

roots crossing the rhizosphere. According to Darcy law, the hydraulic conductivity can be 

calculated as  

( ) b rh h
j k

d





             (5.6) 

where j is the flux of water into root [cm s-1], k is the hydraulic conductivity of the 

rhizosphere [cm s-1], hb is the water potential in the bulk soil [cm], hr is the water potential in 

root [cm], d is the thickness of the rhizosphere in direction of flow [cm]. To be correct, k is 

the hydraulic conductivity of the rhizosphere-root continuum, and only when the conductivity 

of the rhizosphere is much smaller than that of the root, k is equal to the rhizosphere 

conductivity. We will come back to this point later on in the discussion. 

We assumed an equal water potential in roots and soil at nighttime, when plants were not 

transpiring. Then we used swelling rate of the roots obtained from neutron radiographs to 

calculate the flux of water into the roots - ie. the changes in the root water content over time 

was equal to the net flow of water into the roots, and the axial flow along root was negligible. 
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The water potential in soil during infiltration was derived from the water content based on the 

measured water retention curve. The relation between water potential, Ψp, [cm], and root 

volume was  parameterized according to (Stadelmann, 1984) 

1.( 1)

(max)

RWC

p p e   
                 (5.7) 

where Ψp (max) is the maximum water potential in the roots [cm], β is the exponential factor 

related to sensitivity the elasticity change with degree of water saturation [-] and RWC is the 

relative water content in roots [-]. From this equation it follows that  

1

(max)ln ln .( 1)p p RWC     
    (5.8) 

To find the value of β for our roots, we assumed that the roots were in equilibrium with the 

soil at the beginning and at the end of infiltration experiment. The relative water content of 

roots was calculated from the water content of roots divided by the final water content at the 

end of the experiment.  

Results 

We monitored the distribution of water in soil and roots in five samples following a rewetting 

cycle. Figure 2 shows the radiographs of one sample in which we infiltrated the sample from 

the top with injection of  60 ml H2O. We also presented the results of radiography of one 

more samples in the appendix. The radiographs are a close-up of the original field of view of 

15.5cm×15.5cm. Images 2a in Figure 2 shows water and roots distribution in the sample 

before infiltration. Images 2b-f show  the ratio between the actual radiographs at time t and 

the radiograph before injection, indicating the changes in water content in both roots and soil 

after infiltration. In these images, the dark values correspond to big changes in water content 

and bright values to small changes. After infiltration, water content in the bulk soil increased, 

but a tiny region in the vicinity of the roots appeared slightly drier (brighter color). This 

indicates that the bulk soil was conductive enough to be rewatered quickly while the rewetting 

of the rhizosphere was restricted. The slow rewetting of the rhizosphere can be explained by 

hydrophobicity of the rhizosphere (Moradi et al., 2012) or formation of air gaps due to 

shrinkage of roots (Nobel & Cui, 1992; Nye, 1994; North & Nobel, 1997; Carminati et al., 

2009).
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Figure 2: Neutron radiographs of sample after a drying period (a) and after rewetting at time t (b-f) 

during nighttime. The soil was infiltrated from the top with 60 ml of water. Images 2b-f are differences 

between the actual radiographs at time t and the one before infiltration (t=0). In these images the darker 

is the image, the wetter is the soil.  The bright region around roots indicates a slow rewetting of the 

rhizosphere. The images are a close up of the original field of view of (15.5×15.5cm).  
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 This observation was consistent in all our samples and confirmed the previous results of 

Carminati et al. (2010). The intensity of dark colors in the bulk soil decreased over time due 

to drainage of water from the top of the sample to the bottom (Images 2b-f). Despite of 

drainage of water in the bulk soil,  the rhizosphere turned dark, indicating that water content 

in the rhizosphere slowly increased. The images 2d-f show that roots slowly turned dark after 

infiltration, which indicates the root swelling.  

After root segmentation, we quantified the water content in soil and roots. We selected five 

roots with rather similar length for detailed analysis (Fig. 2a). The quantified water content 

near the roots in the soil was average of water content across the soil thickness. We 

reconstructed the actual profile of water content as a function of distance from roots according 

to Eq. (5.4). The data are shown in Figure 3. Note here and elsewhere in our text the time zero 

for each root is referenced  to the time that water front arrived in the vicinity of the roots. The 

results showed a higher initial water content in the rhizosphere of all roots than the bulk soil. 

The 3D profiles showed that water content increased at a distance of 1.5-2 mm toward the 

root surface and in average it was 3 times higher in the rhizosphere than in the bulk soil. This 

observation was consistent with the results from (Carminati et al., 2010; Moradi et al., 2011). 

After infiltration, water content in the bulk soil quickly increased but not in the rhizosphere. 

Following infiltration, water content in the bulk soil decreased due to gravity drainage but in 

the rhizosphere it slowly increased and finally exceeded the one in the bulk soil. We averaged 

the water content in the immediate vicinity of the roots (a distance of 1.5 mm from the root 

surface) and along the roots as representative of water content in the rhizosphere (Carminati et 

al., 2010; Moradi et al., 2011). We also averaged water content in a distance of 10 to 12 mm 

from the root surface of the selected roots as the water content in the bulk soil. Figure 4 shows 

the change in water content of the rhizosphere and the bulk soil following infiltration. These 

results show that after infiltration, the rhizosphere of each roots stayed dry at the beginning,  it 

rewetted slowly, and finally exceeded the water content of the bulk soil.  
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Figure 3: The profile of water content as a function of distance to roots after irrigation in different roots 

(a-e). 
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Figure 4: Average water content in the rhizosphere and in the bulk soil after infiltration. Water content in 

the rhizosphere was initially higher than in the bulk soil. After rewetting, the rhizosphere remained 

markedly drier than the bulk soil and re-watered slowly with time and finally the water content exceeded 

that of the bulk soil.  

 

The changes in  root volumes after infiltration are shown in  Figure 5a. The changes in 

volume of roots were taken as an indication of water flux into roots. The results showed that 

the volume of roots stayed rather constant for 10-15 min after infiltration, indicating that there 

was not significant water flux into the roots. Following infiltration, the swelling rate was 

initially slow and it became faster until it reached a constant value. We used these volumes to 

estimate the flux of water into the roots and the pressure in the roots. The pressure volume 

curve that we estimated from our data using (5.7) is shown in Figure 5b. This curve suggested 

that the change in the root volume as a function of change in root pressure was big at more 

negative potentials and became smaller at less negative water potentials. We calculated the 

hydraulic conductivities according to Eq. (5.6), using swelling rate of the roots. Figures 6a 

and 6b show the effective hydraulic conductivity of the rhizosphere as a function of time after 

infiltration and water content in the rhizpshere, respectively. The effective hydraulic 

conductivity of the rhizosphere ranged between  1.5×10-11 and 2.5×10-9 cm s-1. Following 

rewetting of the rhizosphere, the effective hydraulic conductivity increased. The hydraulic 

conductivity of the bulk soil was calculated using retention curve of the soil and van 

Genechten-Mualem equation.  At the same water content, the effective hydraulic conductivity 

of the rhizosphere was 4 to 5 orders of magnitude smaller than the one  of the bulk soil. 
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Figure 5: (a) Change in volume of roots after irrigation. (b) Volume-pressure curve of the Lupine roots 

parameterized according to Eq. (5.7). 

 

 

 

 

 

 

 

 

 

Figure 6: Effective hydraulic conductivity of the rhizosphere as a function of time after irrigation (a), and 

as a function of water content in the rhizosphere (b).   
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Discussion 

Although  the ability of plants to take up water from the soil is influenced by the hydraulic 

properties of the soil in the immediate vicinity of the root. To date, it has been technically 

difficult to quantify the effect of hydrophobicity of the rhizosphere on hydraulic properties of 

the soil. This information is urgently required for a better understanding and modelling of 

water flow from soil to roots. We previously showed that flux of water into roots was reduced 

as the rhizosphere bocame hydrophobic. We explained the reduction of flux by low hydraulic 

conductivity of the rhizosphere following a rewetting cycle. To test our hypothesis, we 

introduced a technique to estimate effective hydraulic conductivity of the rhizosphere 

following a rewetting cycle. To this end, we monitored the distribution of water in soil and 

root following a rewetting cycle. Consistent with previous observations (Carminati et al., 

2010; Moradi et al., 2011, 2012), we found that the rhizosphere held more water than the bulk 

soil during drying cycle and it stayed temporarily drier than the bulk soil during rewetting 

cycle. The hydrophobicity reported by Carminati et al. (2010) and Moradi et al. (2012) stayed 

for more than a day following rewetting cycle while in our case the recovery seemed to be 

faster. The difference can be due to the different energy state of water in soil. They infiltrated 

the samples by capillary rise from bottom while we infiltrated our samples from the top by 

applying a positive pressure.  

We estimated the effective hydraulic conductivity of the rhizosphere from the swelling rate of 

roots. The results showed that the effective hydraulic conductivity of the rhizosphere was 4-5 

order of magnitude smaller than one of the bulk soil and it recovered slowly with time. We 

explained the low effective hydraulic of rhizosphere due to the temporal hydrophobicity of the 

rhizosphere based on the literature evidences which showed a low wettability of the 

rhizosphere (Hallett et al., 2003; Read et al., 2003; Moradi et al., 2012). However, one may 

also explain this low hydraulic partly by formation of air gaps due to shrinkage of roots in dry 

soil (Nobel & Cui, 1992; Nye, 1994; North & Nobel, 1997; Carminati et al., 2009). Degree of 

hydrophobicity of the rhizosphere depends on the chemical component of the mucilage, soil 

texture, water content, and drying/wetting cycles. Plants exudate vast ranges of chemicals in 

soil. There has not been any evidences in the literatures if the quantity  and quality of the root 

exudate changes in response to environmental conditions such as water stress. We expect a 

higher degree of hydrophobicity in the rhizosphere of sandy soil than clay soil, because the 

surface area of sand particles for a given volume is smaller and therefore less volume of the 

mucilage is needed to cover the soil particles (Ritsema & Dekker, 2003). It is also known that 
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the degree of water repellency of organic matter in particular lipid component is a function of 

water content (Ritsema & Dekker, 2003), but it is not known to us if there is a critical water 

content that the rhizosphere turns hydrophobic resulting in low hydraulic conductivity, or its 

hydraulic conductivity is continuously lower than the bulk soil.  

The consequences of the temporarily low hydraulic conductivity of the rhizosphere for plants, 

at the first glance, seem to be negative, as it may limit the flow of water into the roots that 

were under prolonged water stress (see previous chapter). However, this phenomenon can be 

interpreted differently: a hydrophobic rhizosphere with a low hydraulic conductivity may 

build up an additional resistance to prevent back flow of water from the roots into the soil. Let 

us imagine a deep rooted plant growing in soil. Our finding on distribution of water uptake 

zone along roots showed that the basal segments of roots near the soil surface are initially 

more involved in root water uptake. These regions become dry quicker while deeper roots are 

still in contact with water. Hydraulic isolation of roots in contact with dry soil will shift the 

uptake zone to distal roots in deep soil and may improve the overall hydraulic performance of 

the plant.  

Eq.  5.6 gives the hydraulic conductivity of the rhizosphere at the condition that the hydraulic 

conductivity of the roots is much bigger than the one of the rhizosphere. Otherwise the 

hydraulic conductivity will be effective hydraulic conductivity of the soil-root continuum, 

The flow of water into roots has to overcome two resistances in series: the rhizosphere and the 

root tissue. The flow of water into roots will be controlled by the bigger resistance. We did 

not measure the resistance of roots but we have arguments to believe that the resistance across 

the hydrophobic rhizosphere was controlling the flow during the rewetting phase. We found 

that the effective hydraulic conductivity increased two orders of magnitude with time. This 

rather big recovery is difficult to explain with changes in root resistance and aquaporins. The 

literature indicates that even after complete blockage of aquaporines, root permeability 

reduced up to 80% (Martre et al., 2001; Bramley et al., 2009; Knipfer et al., 2011).  However, 

root hydraulic conductivity reduces in response to dry condition (Huang & Nobel, 1993; 

McLean future, 2011). In the future, the resistance of roots and the pressure volume curve of 

roots can be independently measured which will improve the calculations. 
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Appendix 

To reduce the complexity of the measurement, we repeated the same experiment when we 

infiltrated the sample from the top with a constant infiltration rate. This helped us to keep the 

water content in the bulk soil constant over time. Neutron radiographs of one sample 

following of a repeating cycle are shown in Figure 7.  

 

Figure 7: Neutron radiographs of a sample after rewetting at time t (7a and 7b). Images 7b and 7b are a 

close up of the original neutron radiographs. In these images the darker color corresponds to a high water 

content in the soil. The bright region around roots indicates a slow rewetting of the rhizosphere. Images 7c 

and 7d are the differences between actual radiographs at time t and the one 15 minutes after infiltration 

when the bulk soil reached to a constant water content. Images 7c and 7d show the changes in water 

content in both soil and roots over time. The darker is the image, the bigger is the change in water content 

over time. The images are a close up of the original field of view of (15.5×15.5cm) 
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Summary 

In this thesis, a new method was developed and applied to measure the local flux of water 

into the roots of plants growing in soil. The method consists of injecting deuterated water 

(D2O) in the soil and tracing its transport into the roots by a time-series neutron radiography. 

The experiments were performed at different locations of lupine roots during daytime 

(transpiring plants) and nighttime (non-transpiring plants). The objective of the thesis was to 

derive the net flow of water into the roots (radial flux). A simple diffusion-convection model 

was developed to describe the transport of D2O into the roots. In the model, the increase rate 

of D2O concentration in the roots depends on convective (net root water uptake) and diffusive 

transport of D2O. The model predicted that the concentration of D2O in roots increases as the 

sum of two exponentials. The exponential rates depended on the radial flux of water into the 

roots, the axial flux of water along the roots, and the permeability of the root tissue. The 

technique was applied to map the fluxes of water into the different locations of roots to 

answer the long-standing questions: (i) where roots take up water from soil; and (ii) how the 

rhizosphere affects root water uptake.  

The measurements showed that root water uptake was not uniform along the root system. 

Uptake rate was higher in the upper root zone near the soil surface and it decreased towards 

the deep root segments. Along individual roots, water uptake was higher in the proximal parts 

and it decreased towards the distal parts. The changes in water uptake with distance along 

lateral roots were higher than the changes along the taproot in depth. This suggests a 

functional role of the taproot in collecting water from deep root segments and transporting it 

to the shoots. Due to the porous nature of roots, the relative importance of radial and axial 

resistances determines the profile of water uptake along the roots. A high ratio of the radial to 

the axial resistance of the proximal parts of roots, as it was observed along the taproot, will 

distribute water uptake zone towards the distal parts. This ratio is expected to change with 

root maturation and boundary conditions, such as soil moisture.  

The method was applied to assess the effect of the rhizosphere on root water uptake after 

drying and consequent rewetting. This experiment rooted from unexpected observations of 

water dynamics in the rhizosphere during a drying/wetting cycle. Our results confirmed that 

the rhizosphere of roots stayed temporarily dry upon rewetting which was explained with 

hydrophobicity of the rhizosphere. The next question was: does such hydrophobicity affect 

the rhizosphere conductivity and the fluxes of water into the root? As a first step, a new 



 

 

method was introduced to estimate the effective hydraulic conductivity of the roots from the 

swelling rate of the roots during a rewetting period, which followed a severe drying. The 

swelling rates of the roots and rewetting of the rhizosphere were monitored by means of 

neutron radiography. After rewetting, the hydraulic conductivity of the rhizosphere remained 

markedly lower than that of the bulk soil, and  it partly increased as the rhizosphere rewetted. 

To answer the question about the effects of hydrophobicity on root water uptake, the 

transport of D2O into roots crossing a dry and a wet rhizosphere was monitored. The 

experiments showed that flux of water across a hydrophobic rhizosphere  were reduced by a 

factor of 4 and 8 in short roots (length of 16-17 cm )  and long roots (length of 9-10 cm), 

respectively. These results demonstrate for the first time that the rhizosphere affects water 

availability to plants. Hydrophobicity of the rhizosphere may have positive or negative 

effects on root water uptake. At first glance, the reduction of water into the roots after 

rewetting should have a negative impact on the plant water balance. However, it may have 

positive effect for plants growing in deep soil with water stored in the subsoil by temporarily 

shifting water uptake zone down towards the distal parts of the roots in depth and preventing 

the back flow of water from the upper roots in contact with the dry top soil.  

Limitations of the method 

Calculation of root water uptake based on D2O transport into roots is not trivial and needs the 

support of convection-diffusion models. We found that there is no way to interpret this data 

without taking into account the structure of the roots. Our model is generalized to the 

composite transport of water in the radial direction and it allows a varying importance of the 

apoplastic and cell-to-cell pathways. The model was initially thought for roots in which the 

apoplastic pathway was the dominant flow path. The model needs to be validated for the case 

in which transport of D2O into roots is purely cell-to-cell.   

Application of this technique is limited to relatively wet soils. This is due to the increase of 

soil water content after injection of D2O. The increase of soil water content after injection 

will induce a significant gradient in water potential between soil and roots. In this case, the 

flux of water into root will be overestimated. Here, we selected a sandy soil in which the 

change in water potential following D2O injection was negligible compared to typical water 

potentials in the xylem.  
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To quantify transport of D2O into roots we introduced a simple diffusion-convection model 

that assumes: (i) quick diffusion of D2O in the apoplastic pathways of the root cortex; (ii) the 

diffusional permeability of cell membranes is constant at the daytime and the nighttime 

(independent from transpiration rate). We discussed the validity of these assumptions for 

lupine roots in details in chapters 2 and 3. Application of this technique to roots with a 

dominant cell-to-cell pathway will probably need an adaptation of the model. 

Outlooks 

In this study, we developed a new technique to measure the local flux of water into the roots. 

The technique was applied to answer the question about where roots take up water from soil 

and how rhizosphere affects water uptake.  

This technique has a high potential to solve long-standing questions about water relations of 

soil and plants under varying and more complex environmental conditions. Future 

applications include: 

1- Application to other plants than lupines. Comparison between taprooted and fibrous 

root systems will reveal the hydraulic functions of different root system.  

2- Architectural models of root water uptake are typically lacking of experimental 

information on the properties of individual roots. Using the fluxes of water into roots 

that are measured with neutron radiography and D2O, is possible to inversely 

calculate the distribution of resistances (radial and axial) along the roots.  

3- Here, as a first attempt, we averaged transport of D2O along the root length that was 

immersed in D2O. In future, it will be possible to numerically solve the diffusion-

convection equations along the root length. The concentration of D2O in the roots will 

be fitted locally. This procedure will give information not only about the distribution 

of fluxes along the root length immersed in D2O but also the root length beyond that 

segment. In this way, the capillary barriers may not be used anymore, as the boundary 

conditions do not need to be constant in time. 

4- The technique can be applied to the roots growing in soils with heterogeneous water 

content. It would be interesting to see how the water uptake zone moves as parts of 

the soil become dry. Does water uptake move towards the more distal parts along 

laterals or along depth?  



 

 

5- It was found that water uptake by roots was restricted as the rhizosphere became dry. 

Application of the technique to roots grown at different water contents may reveal 

whether or not the hydrophobicity can be an adaptive strategy of plants. This would 

be possible by comparing the flux of water into roots imposed to different drying 

cycle during their growth period. If modifying the rhizosphere is an adaptive strategy 

of plants responding to drought stress it should be more pronounced in the samples 

with more drying cycle.   

6- This technique can be used to investigate the effect of nutrients, salinity, root 

maturation, and other external condition on root permeability and root water uptake.
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