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Abstract: 

 

 Having a plenty of geotechnical records and measurements in Göttingen area, a 

subsurface three-dimensional model of the unconsolidated sediment classes was required.  

To avoid the repetition of the long expressions, from this point on, these unconsolidated 

materials which vary from the loose sediments to the hard rocks has been termed as 

“soil”, “category”, “soil class” or “soil category”. These sediments which are intermediate 

between the hard bed-rock and loose sediments (soils) were categorized based on the 

geotechnical norms of the DIN 18196.  

 In this study, the aim was to evaluate the capabilities of the application of geostatistical 

estimation and simulation methods in modeling the subsurface heterogeneities, especially 

about the geotechnical soil classes. Such a heterogeneity modeling is a crucial step in a 

variety of applications such as geotechnics, mining, petroleum engineering, 

hydrogeology, and so on. For an accurate modeling of the essential continuous 

parameters, such as the ore grades, porosity, permeability, and hydraulic conductivity of a 

porous medium, the precise delineation of the facies or soil category boundaries prior to 

any modeling step is necessary. The focus of this study is on a three-dimensional 

modeling and delineation of the unconsolidated materials of the subsurface using the 

geostatistical methods. The applied geostatistical methods here consisted of the pixel-

based conventional and transition-probability Markov chain-based geostatistical methods.  

 After a general statistical evaluation of different parameters, the presence and absence of 

each category along the sampling boreholes was coded by new parameters called 

indicators. The indicator of a category in a sampling point is one (1) when the category 

exists and zero (0) when it is absent. Some intermediate states can also be found. For 

instance, the indicator of a two categories can be assigned to 0.5 when both the categories 

probably exist at that location but it is unsure which one exactly presents at that location. 

Moreover, to increase the stationarity characteristic of the indicator variables, the initial 

coordinates were transformed into a new system proportional to the top and bottom of the 

modeled layer as a first modeling step. In the new space, to conduct the conventional 

geostatistical modeling, the indicator variograms were calculated and modeled for each 

category in a variety of directions. In this text, for easier reference to the semi-

variograms, the term variogram has been applied instead.  
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Using the indicator kriging, the probability of the occurrence of each category at each 

modeling node was estimated. Based on the estimated probabilities of the existence of 

each soil category from the previous stage, the most probable category was assigned to 

each modeling point then. Moreover, the employed indicator variogram models and 

indicator kriging estimation parameters were validated and improved. The application of 

a less number of samples were also tested and suggested for similar cases with a 

comparable precision in the results. To better reflect the fine variations of the categories, 

the geostatistical simulation methods were applied, evaluated, and compared together. 

The employed simulation methods consisted of the sequential indicator simulation 

(SISIM) and the transition probability Markov chain (TP/MC). The conducted study here 

suggested that the TP/MC method could generate satisfactory results especially compared 

to those of the SISIM method. Some reasons were also brought and discussed for the 

inefficiency of the other facies modeling alternatives for this application (and similar 

cases).  

 Some attempts for improving the TP/MC method were also conducted and a number of 

results and suggestions for further researches were summarized here.  Based on the 

achieved results, the application of the TP/MC methods was advised for the similar 

problems. Besides, some simulation selection, tests, and assessment frameworks were 

proposed for analogous applications. In addition, some instructions for future studies were 

made.  

The proposed framework and possibly the improved version of it could be further 

completed by creating a guided computer code that would contain all of the proposed 

steps.  

 The results of this study and probably its follow-up surveys could be of an essential 

importance in a variety of important applications such as geotechnics, hydrogeology, 

mining, and hydrocarbon reservoirs. 
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Zusammenfassung: 

 

Das Ziel der vorliegenden Arbeit war die Erstellung eines dreidimensionalen 

Untergrundmodells der Region Göttingen basierend auf einer geotechnischen 

Klassifikation der unkosolidierten Sedimente. Die untersuchten Materialen reichen von 

Lockersedimenten bis hin zu Festgesteinen, werden jedoch in der vorliegenden Arbeit als 

Boden, Bodenklassen bzw. Bodenkategorien bezeichnet. 

 

Diese Studie evaluiert verschiedene Möglichkeiten durch geostatistische Methoden und 

Simulationen heterogene Untergründe zu erfassen. Derartige Modellierungen stellen ein 

fundamentales Hilfswerkzeug u.a. in der Geotechnik, im Bergbau, der Ölprospektion 

sowie in der Hydrogeologie dar. 

 

Eine detaillierte Modellierung der benötigten kontinuierlichen Parameter wie z. B. der 

Porosität, der Permeabilität oder hydraulischen Leitfähigkeit des Untergrundes setzt eine 

exakte Bestimmung der Grenzen von Fazies- und Bodenkategorien voraus. Der Fokus 

dieser Arbeit liegt auf der dreidimensionalen Modellierung von Lockergesteinen und 

deren Klassifikation basierend auf entsprechend geostatistisch ermittelten Kennwerten. 

Als Methoden wurden konventionelle, pixelbasierende sowie übergangswahrscheinlichkei

tsbasierende Markov-Ketten Modelle verwendet. 

 

Nach einer generellen statistischen Auswertung der Parameter wird das Vorhandensein 

bzw. Fehlen einer Bodenkategorie entlang der Bohrlöcher durch Indikatorparameter 

beschrieben. Der Indikator einer Kategorie eines Probepunkts ist eins wenn die Kategorie 

vorhanden ist bzw. null wenn sie nicht vorhanden ist. Zwischenstadien können ebenfalls 

definiert werden. Beispielsweise wird ein Wert von 0.5 definiert falls zwei Kategorien 

vorhanden sind, der genauen Anteil jedoch nicht näher bekannt ist. Um die stationären 

Eigenschaften der Indikatorvariablen zu verbessern, werden die initialen Koordinaten in 

ein neues System, proportional zur Ober- bzw. Unterseite der entsprechenden 

Modellschicht, transformiert. Im neuen Koordinatenraum werden die entsprechenden 

Indikatorvariogramme für jede Kategorie für verschiedene Raumrichtungen berechnet. 

Semi-Variogramme werden in dieser Arbeit, zur besseren Übersicht, ebenfalls als 

Variogramme bezeichnet. 
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Durch ein Indikatorkriging wird die Wahrscheinlichkeit jeder Kategorie an einem 

Modellknoten berechnet. Basierend auf den berechneten Wahrscheinlichkeiten für die 

Existenz einer Modellkategorie im vorherigen Schritt wird die wahrscheinlichste 

Kategorie dem Knoten zugeordnet. Die verwendeten Indikator-Variogramm Modelle und 

Indikatorkriging Parameter wurden validiert und optimiert. Die Reduktion der 

Modellknoten und die Auswirkung auf die Präzision des Modells wurden ebenfalls 

untersucht. Um kleinskalige Variationen der Kategorien auflösen zu können, wurden die 

entwickelten Methoden angewendet und verglichen. Als Simulationsmethoden wurden 

"Sequential Indicator Simulation" (SISIM) und der "Transition Probability Markov 

Chain" (TP/MC) verwendet. Die durchgeführten Studien zeigen, dass die TP/MC 

Methode generell gute Ergebnisse liefert, insbesondere im Vergleich zur SISIM Methode. 

Vergleichend werden alternative Methoden für ähnlichen Fragestellungen evaluiert und 

deren Ineffizienz aufgezeigt. 

 

Eine Verbesserung der TP/MC Methoden wird ebenfalls beschrieben und mit Ergebnissen 

belegt, sowie weitere Vorschläge zur Modifikation der Methoden gegeben. Basierend auf 

den Ergebnissen wird zur Anwendung der Methode für ähnliche Fragestellungen geraten. 

Hierfür werden Simulationsauswahl, Tests und Bewertungsysteme vorgeschlagen sowie 

weitere Studienschwerpunkte beleuchtet. 

 

Eine computergestützte Nutzung des Verfahrens, die alle Simulationsschritte umfasst, 

könnte zukünftig entwickelt werden um die Effizienz zu erhöhen. 

 

Die Ergebnisse dieser Studie und nachfolgende Untersuchungen könnten für eine 

Vielzahl von Fragestellungen im Bergbau, der Erdölindustrie, Geotechnik und 

Hydrogeologie von Bedeutung sein. 
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1.1.  The scene and statement of the problem  
 

When a project engineer or technical manager is planning and assessing the future of a 

geotechnical site, mineral deposit, a hydrocarbon reservoir, or an aquifer, it is 

tremendously essential for him/her to identify the subsurface conditions thoroughly and as 

precisely as possible prior to any technical and practical decision.  Though, only a minor 

portion of the total volume from the study zone is usually known having the limited 

available samples, while the rest parts are totally undetermined. However, the expert 

should assess and estimate the characteristics of the major unknown points of the model 

as well.  

 Suppose that the planning for a huge structure like a dam or a power plant is required. 

The geotechnical and hydro-geological characteristics of the underlying layers and 

materials of the foundation should be fully characterized for a proper engineering 

arrangement for these surveys. In the prediction of the fluid flows in rocks or sediments, 

either in the petroleum engineering, hydrogeology problems, geotechnical applications, or 

mining activities, a precise characterization of the porous media and their heterogeneities 

is undoubtedly a central issue. Another example could be the plan for the exploitation of 

an ore deposit for a mining project. The ore veins or layers, the gangues, the hydraulic 

characteristics of the porous media, the weakness surfaces, etc., are key parameters to be 

determined before deciding about the future and the plan of the mining activities. In all of 

the mentioned examples, the required characteristics are bounded in some geological 

limits and borders such as the boundaries of the layers or other geological bodies. Most of 

the required continuous parameters are rather consistent and similar inside the mentioned 

borders. Therefore, a precise characterization of the geological boundaries is the first and 

most important step in every geosciences modeling practice. However, due to the 

technical and economical limitations, compounded with the geological complexity and 

difficult access to the subsurface, this practice is considerably challenging.  

 In most of the cases, it is only feasible to get samples from the subsurface by means of 

drilling or other sorts of diggings. At times, some surveys can be performed to achieve 

indirect information from the subsurface. For instance, geophysical measurements can be 

made to map the underground physical characteristics and relate them to the geological 
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features. Though, these measurements are not capable of representing the requested 

geological characteristics directly while they may contain a considerable amount of 

uncertainty. These were just a few examples of the difficulties to survey and model the 

subsurface. Hence, the central question here is how to estimate the required parameters 

and evaluate the probable underlying uncertainties having a limited set of data and 

information.  Geostatistical methods make possible and simplify the integration of 

different sources of information, estimation of unknowns, and assessment of the 

uncertainties contained in the generated model(s) (Caers 2005).  

 

1.2.  An introduction to modeling and its applications in 
earth science problems 

 

1.2.1.  Definition and the categorization of the models 

 

 According to the online Schlumberger Oilfield Glossary
1
, a model can be defined as 

following: 

“A representation of a physical property or entity that can be used to make predictions or 

compare observations with assumptions” is called a model. 

 

 Despite its great importance, the subsurface modeling is tremendously a challenging task 

because of a limited and sometimes indirect access to such a complex heterogeneous 

space as subsurface. In addition, the heterogeneity and complexity of different 

characteristics in the subsurface is often too high to be estimated by simplistic estimation 

methods such as linear interpolation, constant values within polygons, or even by 

standard well-behaved mathematical functions that easily (Chilès 1999). For instance, the 

properties of sedimentary bodies vary naturally over the space due to the processes 

responsible for their generation and evolution. Most of the geological phenomena 

responsible for the forming subsurface features are so sophisticated that their modeling by 

most simplistic methods is not sensible. 

The most important benefit of making models for subsurface is that the models can act as 

gateways to integrate expert knowledge from different fields and aggregate data from 

different sources. 

                                                 
1
 Schlumberger Oilfield Glossary, Definition of “Model”. Web 

<http://www.glossary.oilfield.slb.com/en/Terms/m/model.aspx>.  accessed online 2010. 
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Most of the variations of the continuous attributes in the study zone are confined in 

discrete boundaries of the lithofacies, different soil types, etc. Therefore, there is an 

imperative demand to model the limits and borders of geo-bodies (e.g. lithofacies, soil-

type bodies, and so on) prior to modeling and prediction of the other continuous 

characteristics and parameters. Another challenge could be that, these models should be 

constructed having the restricted information sources. Geostatistical methods provide 

various tools for consistent and precise modeling the complex subsurface heterogeneity as 

well as to evaluate the modeling uncertainty (Ranjineh Khojasteh 2002; Hengel 2007, pp. 

13-14; Noppe 1994). 

 Models can be categorized into different groups based on different criteria, for example; 

deterministic versus stochastic, structure-imitating versus process imitating, forward 

versus inverse models, and object-based versus grid-based models (Farmer 2005; 

Falivene et al. 2007). 

 Deterministic models yield unique results for a given input because of the lack of 

randomness in the model whereas the stochastic models generate a set of probable results 

for the same input due to having random deviations (Falivene et al. 2007, p. 204; 

"Deterministic Model." BusinessDictionary.com accessed 2012). 

 Structure-imitating models simulate the patterns without paying attention to the processes 

responsible to their creation whereas the process-imitating models focus on the processes 

that create these patterns.  

 Forward models determine the output given the input while in the inverse models, the 

unknown input is determined having outputs (Falivene et al. 2007; Farmer 2005).  

 In object-based (Boolean) models, objects (with predefined geometries) are replaced in 

an extensive common background whereas in the grid-based models, the attributes are 

assigned to the grids or pixels (or voxels when the pixels have volume) (Falivene et al. 

2007, p. 206). 

 

1.2.2.  The importance and necessity of the three-dimensional 
modeling for engineering applications 

 

 The conventional mapping methods were mainly based on manually drawing the facies 

and parameter boundaries (by interpretations or simple interpolations) in two-dimensional 

slices and connecting the boundaries to each other among different slices to get the final 

three-dimensional images (Deutsch 2002, p. 154).Such manually drawn modeling 
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methods do not closely and analytically take the existing three-dimensional data structure 

into account. In addition, the conventional modeling approaches lack a clear and 

consistent modeling criterion (Falivene 2006, p. 49). 

 Nowadays, more advanced three-dimensional data acquisition tools, fast and powerful 

computers, computational techniques and software, and more powerful modeling 

techniques became available. Hence, the three-dimensional modeling with interactive 

powerful and criteria-based modeling tools adapted with the available problems can be 

applied. Such methods can better support the integration of all available data, expert 

knowledge, and known mathematical tools and rules to produce a more precise and 

realistic representations of subsurface (Deutsch 2002, p. 154; Falivene 2006, p. 49). 

 With the existence of more three-dimensional data sources such as well-bore data and 

three-dimensional seismic measurements as well as more improved modeling methods, 

the use of three-dimensional models are expanding. Such models provide better data 

integration and accuracy. 

 Some highlights of the importance of the three-dimensional models in the geotechnical 

and other applications can be summarized in the following points:  

 

a. Geotechnical modeling and foundations:   

The foundation of a structure such as a dam, a bridge, a building, railroad, etc., transmits 

the loads from the structures to the earth. After estimating the location and the amount of 

these loads, the geotechnical engineer should devise a plan to explore the subsurface soil 

types and bedrock characteristics as well as the geological features for evaluating the 

capacity of bearing the mentioned loads and the involved hazards and risks "Geotechnical 

Engineering." Wikipedia., 2012). Therefore, locating and determining the weak and 

bearing layers and their extent, geometry, and characteristics are the first critical steps in 

locating and designing the structures. It should again be emphasized that the mechanical, 

geotechnical, and hydrogeological characteristics of the underlying materials of the 

structures are considerably consistent and similar within the same geological and 

geotechnical categories. For example, a layer mainly consisting of coarse sediments can 

represent higher permeability that can fall in a specific geotechnical or geological 

category. Obviously, layers with similar conditions that fall in the same geotechnical 

category will show similar properties. Therefore, the delineation of these geo-bodies and 

the classifications of their geotechnical or geological categories are the most important 

steps before modeling their continuous characteristics. 
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b. Hydrogeology and groundwater aspects in geo-engineering problems:  

The layers located beneath a structure or their foundations which contain high hydraulic-

conductivity zones with enough thicknesses, can let higher water flows below and around 

the foundation and endanger the foundations. On the other hand, the layers with fairly low 

hydraulic conductivity zones can act as barriers that may prevent the foundation failures. 

Furthermore, the underground flows are highly dependent on the hydrogeological 

characteristics of the mentioned layers as well as their extent, thickness, geometry, and 

distributions (Marinoni 2003, p. 45). Probable swelling and shirking, or liquefaction 

phenomena of the layers beneath the structures or the seepage zones under the dams are 

among the other examples for the risks related to the hydrogeological and geological 

characteristics of the structure sites. Moreover, for the hydrogeological applications, the 

characteristics of the layers should also be determined. Therefore, to characterize the 

layer types and their texture is the first crucial step in hydrogeological/hydrological and 

their relevant geotechnical surveys. These examples highlight the importance of the three-

dimensional determination of the hydrogeological, geological, and geotechnical 

characteristics of engineering sites thoroughly and with enough details (Hamilton 2005; 

Lam et al. 1987). 

Geostatistical methods offer a set of clear-cut quantitative tools for three-dimensionally 

delineation of the geotechnical category zones and estimate the required parameters and 

evaluate the risks and uncertainties involved in these problems.  

 

c.  Plasticity and deformable materials and layers:  

 Some materials which can represent a plastic deformation or those are too loose 

especially when they are thick-enough can be hazardous for the foundations. Evaporative 

or organic sediments are among the materials that can have such potential problems (Das 

2011, pp. 14-14 to 14-22). 

 

d. Hazardous soils and quaternary sediments:  

 Regarding the foundations, some characteristics of hazardous soils should be taken 

seriously. For example soil liquefaction that can cause serious hazards such as landslides 

or the problems during the earthquakes. The soil grain-size distribution, its composition 

and geological origin and condition, hydrogeological condition, and its density are among 

the key factors that can affect the susceptibility of a soil to liquefaction (Johansson, Web. 
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14 Nov. 2011; "Liquefaction Potential of Cohesionless Soils Geotechnical Design 

Procedure.", 2007; Lade, 1998:242). Loose to moderately saturated granular soils with 

weak drainages are more prone to liquefaction. Silty sands or sands and gravels capped or 

containing seams of impermeable sediments are examples of such soils. In the existence 

of a loading, especially cyclic undrained loading like earthquake, the volume of the loose 

sands tend to shrink, which causes a raise in their porewater pressure and hence a 

decrease in shear strength, i.e. reduction in effective stress that can lead to a liquefaction.  

The most vulnerable deposits to liquefaction are young sands and silts with particles sized 

similarly (Holocene-age, well-sorted deposited sediments within the last 10000 years), in 

beds with thickness of some meters which are saturated with water. Such deposits usually 

occur along riverbeds, beaches, dunes, and accumulation zones of windblown silt (loess) 

and sand have been mounted up. Glacial sediments may contain substantial amount of the 

sediments like quick clay (in Pleistocene epoch) which can cause serious damages such as 

landslides. The mentioned points highlight the significance of the investigations and 

explorations of the texture, structure, combination, and the geometry of young (e.g. 

Holocene and Pleistocene) granular soils such as silty sands, sand and gravels, and clay 

bodies ("Soil Liquefaction." Wikipedia, 16 May 2012. Web. 21 May 2012). 

 The Leine river valley and its underlying sediments which contain riverbed and young 

sediments, especially considering its sediments composition, therefore deserve closer and 

more careful attention and investigations for the potential engineering risks. Regarding 

the fact that the Pleistocene structural layers of the Leine valley sediments represent a 

high variation in the types of the geotechnical and geological soil classes, the main focus 

of this study was on the Pleistocene sedimentary zone. 

 Some sediments in the layers beneath the project sites that probably contain special 

minerals with the deformation characteristics like swelling or shrinking in contact with 

water, such as sorts of clay minerals, can cause deformations in the underlying layers of 

the foundations and lead to serious hazards. All of the cited characteristics, which are 

reflected in the geotechnical and geological categorization of the sediments, and the 

interactions with the surrounding environment, should be taken into account in the 

engineering applications. 

Considering the points mentioned above and various undiscussed reasons, a precise 

capable of uncertainty assessments three-dimensional subsurface model is a tremendously 

valuable and even indispensable tool for decision-making about locating, designing, and 

building the structures.  
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e.   Urban development plans:  

A precise three-dimensional model of subsurface about the geology, geotechnical 

characteristics, and hydrogeology of an area, can act as a precious decision-making tool 

for urban development planning (e.g. Stoter, Jantien E., and Peter Van. Oosterom 2006; 

De-fu 2009). 

 

f.  The distribution and geometry of the weak and bearing layers:  

In addition to the weak and hazardous zones, one also should identify the distribution and 

the geometry of the bearing layers and their bearing capacity when planning for the 

feasibility and the required provisions of making structures according to the expected 

loads and the importance of the structure (Gedeon 1992). 

 Bearing capacity of a layer is the capacity of a soil to support the loads applied to the 

ground. In other words, the bearing capacity is the maximum average contact pressure 

between the foundation and the soil which should not produce shear failure in the soil 

("Bearing Capacity." Wikipedia, 05 Apr. 2012. Web. Apr. 2012). 

 

g.  Further foreseen applications:  

Several further uses can be considered for the mentioned three-dimensional subsurface 

model with the defined categorization scheme. Among these possible applications that 

such a model can have, groundwater, agriculture, geothermics, and so on could be 

mentioned.  

There are still lots of definitions and discussions regarding the mentioned geotechnical 

concepts that have not been referred here. Essentially, the attempt in the above section 

was only to highlight the importance of the three-dimensional modeling in geotechnical 

and hydrogeological investigations.  

However, the main focus of this study is to make a three-dimensional geotechnical model 

of the subsurface by means of the geostatistical estimation and simulation methods. 

 

 

1.3.  An overview to the three-dimensional subsurface 
modeling project in Göttingen area 
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1.3.1.  The study area 

 

 The study area is located near the city of Göttingen in Lower Saxony province 

(Niedersachsen), Germany. The center of the Göttingen project study area is located in 

the Göttingen Leine valley with the elevation of 140 to 150m above the sea level and is 

divided into two nearly similar halves in the middle of the valley. Some individual 

districts and connected localities in the study area are extending up to 300m above the sea 

level. The study area includes the most of the city of Göttingen (Wagner et al., 2007). 

 

 

Figure 1.1  Location map of the study area (translated from Wagner et al. 2007). 

 

 

 For geostatistical analysis and modeling purposes which is the focus of this research, a 

part of the study area was selected as a test site to evaluate the capability and efficiency of 

the three-dimensional geostatistical modeling of geotechnical types and the comparison 

among different geostatistical modeling approaches with the emphasis on the transition-

probability Markov chain simulation and optimization methods. 

 

1.3.2.  Göttingen project and its aims 
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 A high-quality geoscientific subsoil model is in the heart of the geotechnical surveys. 

Sustainable subsurface development and utilization, necessitates providing 

comprehensive information about cost-/benefit-/risk-analysis at the planning stage of 

infrastructure projects or similar (Nix et al. 2009, p.1). 

  Wagner el al. 2007 (p. 1) has mentioned some aims, challenges, details, and worth of the 

geotechnical investigations in such areas as following: 

“At first view, urban areas do no offer favorable conditions for spacious geoscientific 

investigations and the three-dimensional visualization of the underground. A multiplicity 

of anthropogenic and quasi-natural replenishments buries geological outcrops. However, 

particularly in urban areas geological, hydro-geological and engineering-geological 

point and areal data are continually collected. This information is usually recorded 

independently and stored decentrally in variable archiving systems. Just by transferring 

the variable point and areal data into a 3D model of the urban underground, an overall 

evaluation becomes possible. Such a 3D model may serve as a database for point and 

areal data (drillings, profile sections etc.) and provides comprehensive geoscientific 

planning documents for several topics ranging from site investigation, groundwater 

exploration, rain water infiltration and flood protection to the estimated use of 

geothermal energy. In a cooperation project between the Department of Applied Geology 

of the University of Goettingen (GZG
1
) and the State Authority of Mining, Energy and 

Geology (LBEG
2
), new methods for the design of 3D geological and engineering-

geological models are developed. The application area covers the medium-deep 

underground of the city of Goettingen within the Leinetal-Graben. This complex 

geological structure is a result of Mesozoic extensional and compressive movements as 

well as complex salt tectonics. Quaternary sediments cover large parts of the 

investigation area with thicknesses varying from 5 m up to 60 m in subrosion depressions. 

Mesozoic rocks crop out at the graben margins. The concepts developed so far, cover the 

standardization and harmonization of point and areal data as well as the definition of 

geologically and engineering-geologically relevant modeling units. Within a pilot area, 

all basic data and 2D-sections of the modeling units were merged by Gocad to create a 

geological 3D model with technically describable basal planes of the modeling units.”  

 

Possibilities for data and parameters storage as well as their display are aimed to be 

presented in the example of the three-dimensional subsurface geotechnical Quaternary 

model of the city of Göttingen. The basis of three-dimensional model is more than 3,000 

wells and geological, geomorphological and pedological maps. The developed 3D 

building models have illustrated the complex geological structure of the quaternary 

                                                 
1
 „Geowissenschaftliche Zentrum der Universität Göttingen“= ”The geosciences center of the 

University of Göttingen“. 
2
 „Landesamt für Bergbau, Energie, und Geologie“ = “The state office for  mines, energy, and 

geology“. 
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substrate, characterized by Quaternary depositional conditions, salt tectonics and sub-

erosion processes (Nix et al. 2009, p. 1). 

 

1.3.3.  Geology of the study area 

 

 The nearly mirror-constructed geological map (Figure 1.1) clearly shows the distinctive 

structure of the Leine-valley channel. The valley floor is covered by Quaternary 

unconsolidated rocks, rising only along the central axes that are hard rock beds. These 

"central bulges" containing clay, silt, and sand of the Keuper and lower Jurassic rocks are 

open (Wagner et al. 2007, p. 2). The valley sides are from the carbonate successions of 

the shell limestone and occasionally recorded from Keuper sandstone-built. Particularly, 

relevant for the recent development of the Göttingen area is the change of resistant rocks 

multi evaporative sequences (red, middle-Triasic (Muschelkalk (shell-bearing limestone), 

Middle Keuper) and lightly orderable rocks in the Mesozoic hard bed rocks (Figure 1.2)).  

 At the first glance, simply structured Leine valley rifts (Figure 1.1) have proven a 

complex structure, which was formed by several processes (Figure 1.2)). 

 The three-dimensional model of the subsoil has been designed to represent the complex 

geological structure of the quaternary underground, shaped by the quaternary deposition 

circumstances, salt tectonics and subrosion processes (Nix et al. 2009, p. 1).  

In Wagner et al. (2007), about the geology of the study area it has been mentioned that the 

trenches according to Arp et al. (2004) were originated through the extension movements 

in the upper Jurassic and particularly in the Cretaceous period. In the late Cretaceous 

period, there was a short compressional phase. The inverted trench structure was greatly 

disturbed by halo-tectonical movements and a distinct stockwerk tectonics. As it has been 

mentioned there, this is seen according to Grüger et al. (1994) and Meischner (2002) 

especially in allochthonous particles in steplike arrangement special ditches and till into 

the modern era active subrosion sinking (Wagner et al. 2007). 

 Quaternary unconsolidated sediments cover large areas of the valley floor and go up the 

slopes. The thickness of the Pleistocene and Holocene sediments range from 60 meters in 

the subrosion depressions to a few tens of centimeters in the valley sides. Subrosion 

depressions are underground erosions caused by water inflow leaching, e.g. by 
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groundwater flow of the underlying rocks such as salts that can create voids leading to the 

overburden sinking (Wagner et al. 2007; Stefan et al. 1999-2012. Web. 21 May 2012). 

 The Pleistocene sequence is made of the glacial river deposits, structured loess, basin 

sediments and solifluction interglacial muds, spring limestones, and the peat and 

fossiliferous sediment basin deposits. These sediments are extensively found in the 

working area of often superficial parts overprinted by soil formation processes (Wagner 

et al. 2007, p. 3). 

 In the Holocene, minor river sediments, alluvial, and floodplain of stream loams were 

formed (Wagner et al. 2007, p. 3). 

 

 

 

Figure 1.2  Schematic geological section through the Leine-Valley, Göttingen (Wagner et al. 2007, p. 

4, modified from Meischner 2002). 
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Figure 1.3  Geological section of the study zone, with WE length of 6900 and 20 times vertical 

exaggeration (Nix et al. 2009, p. 1). 

 

 

1.3.4.  Sampling and samples evaluations 

 

The main base for the three-dimensional model of the Göttingen area was 3145 boreholes 

with different depths, raging from 1 to 244 meters, distributed over the study Göttinegn 

urban area.  

All borehole data were error-checked, homogenized, adjusted for elevation according to 

the official 5 m-digital elevation model (DGM5), if necessary also digitized in the SEP3 

format using the borehole database GeODin
1
 (Wagner et al. 2007). The model integrates a 

comprehensive set of map data including the geological map of Göttingen (GK25, sheet 

                                                 
1
 GeoDin software version 7 (smart data management) “is a modular data management solution enabling 

you to choose the optimal software solution for your for geological, environmental, geotechnical, 

monitoring and laboratory projects requirements.” by fugro company. ( website: < 

http://www.geodin.com/software/> ). 

http://www.geodin.com/software/
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4425), 25 geo-engineering maps from diploma
1
 mapping projects, as well as geological, 

soil type and geomorphological small-scale maps (e.g. Schlie, 1989 and Wunderlich, 

1959). In addition more than 30 EW as well as more than 30 NS cross sections was 

constructed to use the defined layer boundaries as pre-interpreted support during the 3D 

modeling.  

 

 

 

Figure 1.4 Exploded view of the central section of the 3D subsoil model (view from southeast, tilted, 

extension E/W: 6900 m, extension N/S: 1700 m, vertical exaggeration 15x (Nix et al. 2009, p. 1). For 

Description of the model units, see section 1.3.4.  

 

Due to the complex spatial pattern of the Quaternary sediments the information had to be 

translated into a reduced set of structures that would preserve the main and relevant 

features and guarantee to keep the limited time frame for the modeling within the project. 

As a result the following model units were defined: 

(1) Anthropogenic fillings, 

(2a) floodplain sediments and stream loams of younger Holocene, 

(2b) younger Holocene debris flows, 

(3) Soft Holocene layers (lime from springs, peat, mud), 

(4) Pleistocene loess, loamy loes, and flood loess, 

(5a) Pleistocene solifluction soils, 

(5b) Pleistocene debris, 

(5c) Pleistocene river gravels, 

                                                 
1
 German diploma academic system is equivalent to M.Sc. in American academic system. 



 14 

(6) Pleistocene soft layers in subrosion basins, 

(7) Pre-quaternary bed rock surface. 

 

Figure 1.4 illustrates the location and distribution of the mentioned layers 

(Nix et al. 2009). 

In this study, the layer 5 was targeted for modeling, because of its geotechnical 

importance and higher complexity. In addition, the anthropogenic fillings and the 

superficial sediments were not considered for the geostatistical modeling because they are 

rather being homogeneous.  

 

1.3.5.  Parameterization 

 

Because of the uneven and sporadic distribution of measured soil physical or mechanical 

characteristics, a process was developed to geotechnically describe and estimate the 

properties of petrographic layers (Fritz et al. 2007). Basis of the classification was six 

major soil classes out of which four observed classes in the study zone of this dissertation 

were modeled here (see the summary of classification in Table 1.1 and Table 1.2).  

This classification was formed in accordance with the DIN 18196 standard
1
 based on the 

information from petrography, genesis, and soil layer group descriptions in the equidistant 

spacing of 0.5 m above this level are assigned to soil classes (Table 1.1 and Table 1.2). 

The distribution of soil classes within the three-dimensional sedimentary bodies was 

determined using a geostatistical indicator kriging (IK), sequential indicator simulation 

(SISIM), and transition-probability Markov chain simulation approaches using the 

software WinGslib version 1.5, and TPROGS version 2.1. Here, the probability of the 

existence of a soil class is estimated in each cell of the estimation model and the 

uncertainty of the estimation was quantified. Then in each estimation point of the model, 

the soil class which held the highest probability of occurrence was assigned to the 

estimation point. Geostatistical estimation was conducted for the distribution of soil 

classes 1-4 in the model units (5a, b, and c).  

 

                                                 
1
 German standard for geotechnical soil classifications based on grain size range, grain size distribution, 

plasticity characteristics, organic constituent characteristics, and genesis. For more details refer to Deutsche 

Institute Für Normung. "Erd Und Grundbau, Bodenklassifikation Für Bauteschniche Zwecke, DIN 18196." 

Erkundung Und Untersuchung Des Baugrunds: Normen. Vol. 13. Berlin [u.a.: Beuth, 1991. 363-66. Print. 



 15 

Table 1.1 Geotechnical unconsolidated sediments classification scheme for sedimants without organic 

components (Wagner, 2009). 

 
group geotech-

nical classes 
petrology main components 

(minor 
components) 

facies 

A 
fine-grained 
sediments 

3 clay and silt T, U, (S) clayey-silty limnic sediment 

pure clay T, (U, S) clayey limnic sediment 

pure silt U, (T, S) silty limnic sediments, loess 

B 
mixed grain-size 
sediments 
(clay and/or silt 
and/or sand) 

3 clay, silt and 
sand 

T, U, S clayey to silty floodplain 
deposits, weathered loess 

2, 3 clay and sand T, S, (U) weathered loess 

3 silt and sand U, S, (T) loess 

2, 3 sand and silt S, U, (T) aeolian sand, sandy loess 

C 
mixed grain-size 
sediments (clay 
and/or silt and/or 
sand, minor 
gravel) 

2 to 3 
3 

clay, silt and 
sand, minor 
gravel 
 

T, U, S, (G) displaced loess and sandy 
loess, sandy floodplain 
deposits 

3 clay and/ or silt, 
minor sand and 
gravel  

T, U, (S, G) 
T-U, (S, G) 

displaced loess, marginal fine-
grained limnic sediment, 
crumbled clay 

D 
mixed grain-size 
sediments  
(clay and/or silt 
and/or sand 
and/or gravel, 
minor blocks) 

2, 3 
2 to 3 

clay, silt, sand 
and gravel 

T, U, S, G, X solifluction material, 
weathered hardrock 

2, 3 clay, sand and 
gravel 

T, S, G, (U) solifluction material 

2 to 3 
3 

clay, silt and 
gravel 

T, U, G, (S) solifluction material, clayey-
silty fan deposit, displaced 
loess 

2, 3 
2 to 3 

clay and gravel T, G, (U, S) solifluction material 

E 
mixed grain-size 
sediments (silt 
and/or sand 
and/or gravel 
and/or blocks) 

2 to 3 
2, 3 

clay and gravel, 
minor blocks 

U, G, (X) silty fan deposit, silty fluvial 
gravel 

2 silt, sand, gravel 
and blocks 

U, S, G, X clayey and blocky fan deposit 

2, 3 
2 to 3 

silt, sand and 
gravel 

U, S, G, (T) silty-sandy fan deposit, silty-
sandy fluvial gravel 

F 
coarse-grained 
sediments (sand 
and/or gravel 
and/or blocks) 

1, 1 to2 sand and gravel S, G, X, (T, U) sandy fluvial gravel, sandy fan 
deposit 

1, (2) pure sand S, (T, U) fluvial sand 

1 gravel and blocks G, X, (T, U, S) coarse fluvial gravel 

1 pure gravel G, (T, U, S) fluvial gravel 

Abbreviations: T: clay; U: silt; S: sand; G: gravel; X: blocks 
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Table 1.2 Geotechnical unconsolidated sediments classification scheme for sedimants with organic 

components (Wagner, 2009). 

 
group geote

ch-
nical 
classe
s 

Petrology facies 

G 
organogenetic sediments 
or sediments with organic 
constituents 

4 slightly organic fine-grained 
sediments (h1, h2, org, pf or fau) 

holocene soil, flood plain 
deposits, limnic sediment, 
displaced loess 

slightly organic coarse-grained 
sediments (h1, h2, org, pf or fau) 

holocene soil, flood plain 
deposits 

slightly organic mixed grain-size 
sediments (h1, h2, org, pf or fau) 

holocene soil, flood plain 
deposits, limnic sediment, 
displaced loess 

4 organic fine-grained sediments (h) holocene soil, flood plain 
deposits, limnic sediment, 
displaced loess 

organic coarse-grained sediments 
(h) 

holocene soil, flood plain 
deposits 

organic mixed grain-size sediments 
(h) 

holocene soil, flood plain 
deposits, limnic sediment, 
displaced loess 

4 fine-grained sediments with high 
organic content (h4) 

holocene soil, flood plain and 
swamp deposits 

coarse-grained sediments with high 
organic content (h4) 

holocene soil, flood plain and 
swamp deposits 

mixed grain-size sediments with 
high organic content (h4) 

holocene soil, flood plain and 
swamp deposits 

organic clay flood plain and swamp depoits 

H 
freshwater limestone 

4 freshwater limestone sinter terraces  

Abbreviations: h1: very slightly organic; h2: slightly organic; h or h3: organic; h4: strongly organic 

 

The spatial structures and continuities are usually stronger in the startigraphic directions 

such as the layering surfaces.  

 The classes 5, 6, and 7 refer to the organic sediments, artificial fillings, and hard rock 

respectively which have not been explained in Table 1.1 and Table 1.2. 

To take the general stratigraphic continuity directions into account and improve the 

spatial continuity structure model, a common technique is to model the facies and 

reservoir attributes in the modeling grids proportional between the top ad bottom 

correlation surfaces (Deutsch 2002, p. 88). 

  For that reason, the coordinate transformation was applied in this study. More details 

about the grids transformation will be discussed in the next sections.  
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1.4.  An introduction to the geostatistical modeling 
methods (a comparison of different methods) 

 

1.4.1.  An overview to geostatistics 

 

1.4.1.1.  A bit of history: 

 

In the older conception, geostatistics had the meaning of the application of statistics in the 

geology or perhaps more generally in the earth sciences. In this sense, statistics was 

applied in the earth sciences since long time ago (Myers, 2002). Bertil Matern (born 

1917) a forestry scientist and statistician introduced the meaning of the spatial variation 

and the importance of the spatial dependence application especially in the forestry 

science. In the mid 60th and especially in the mid 70th, the new meaning of the 

geostatistics was introduced with relation to the works of Georges Matheron (1930-2000). 

Matheron was influenced by Daniel J. Krige, a mining engineer in South Africa, and the 

former attempts of the Lev Gandin (1921-1927) a Russian Mathematician in the 

Leningrad Hydrogeological Institute. Krige was working on the assessments of the new 

gold mines using a limited number of boreholes. Matheron had theorized the important 

geostatistical concepts such as the regionalized variables. He was closely applying the 

developed methods in mining and petroleum applications. Matheron named the optimal 

estimation method of the unknown points using the available observations as “kriging” in 

the honor of Krige as a pioneer in geostatistics. Matheron not only explained the basics of 

Geostatistics for estimation especially for mining applications but he also paid attention to 

the  quality of estimations and such concepts as estimation variance (Myers 2002; Myers 

2008; Isaaks et al. 1989; and "Danie G. Krige." Wikipedia, Mar. 2012. Web. Apr. 2012). 

 

1.4.1.2.  The estimation problem and geostatistics: 

 

A major problem in subsurface modeling is to estimate the attributes in the unknown 

points having a limited set of sample data, which can be employed for different cases 

such as geotechnical and geological applications. This estimation goal was primarily 

addressed by hand-contouring (in two-dimensional slices), providing an insight into the 

trends and uncertainty in data (Deutsch 2002, p. 154).  
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 Conventional estimation algorithms of the interpolation family, consider several 

simplifying assumptions such as constant values considered inside polygons, triangulation 

and linear interpolation inside the triangles (representing continuous changes), inverse 

distance weighted interpolation methods, etc. 

 These methods, for example the inverse-distance interpolation, are usually based on the 

estimation of the target variables in the unknown positions by means of a linear 

combination of neighboring known values. For such estimations, each of the known 

values of the surrounding points receives specific weights. For instance in the inverse-

distance method, the weights of the values inside a search radius for the known points 

applied for this estimation, are inversely proportional to their distance to the estimation 

point: 

) z(u 
d

1
 (u)*Z

n

1i

i

i

  (1-1) 

Where Z
*
(u) is the estimating function for the location u, z(ui) is one of the neighboring 

samples used for estimation, and di is the distance of the data from the estimation point.   

 To decide which method is the best among the others, some criteria can be defined and 

applied such as comparison of the univariate statistics of the estimates and true values, 

univariate distribution of errors, and evaluating the bivariate distribution of estimated and 

true values. Isaaks and Srivastava (1989) have compared polygonal estimation, 

triangulation, local mean, and inverse distance in some case studies (Isaaks et al., 1989) 

and represented some features about the efficiencies of these methods such as the 

existence of a global bias and smoothing effect (i.e. less variation in estimations in 

comparison to those of the true values)in all these methods. These two effects were less 

evident in polygonal estimates. The more samples were used in the estimation, the more 

smoothing were observed. On the other hand, since the triangulation method showed a 

more symmetric errors distribution, the lowest standard deviation, and the lowest inter-

quartile range of the estimations, it was suggested as the best estimation method among 

the mentioned techniques to infer a sensible guess for the unknown points (Isaaks et al. 

1989, pp. 249-277). 

 Some attempts were then conducted to perform optimal estimations in some objective 

sense. For instance, Daniel Krige was interested in, two criterions of the unbiasedness 

(correct overall average) as well as minimizing error variance in the estimations 

(Khojasteh 2002). For this purpose, kriging as an estimation method was developed by 

Georges Matheron (1961/62) which uses a linear combination of the known neighboring 



 19 

samples consistent with the two mentioned criteria. The kriging is usually abbreviated as 

the BLUE (the Best Linear Unbiased Estimator). 

A regionalized variable is a variable (such as litofacies, porosity, or permeability) that 

may take different values at different spatial locations (Deutsch 2002, p. 345).  

The two different terms of estimation and simulation have been often addressed in this 

context. 

 An estimation technique like kriging makes a single best guess of the unknown using the 

assumed spatial relationship between the data and the unknown and is locally accurate 

since it minimizes the local errors independent of what the global map of estimates may 

look like. The estimated maps usually represent much smoother outputs (Caers 2000, pp. 

815-816).  

The geostatistical simulation methods on the other hand, offer mapping methods which 

create non-unique and non-smooth results (Caers 2000, pp. 815-816). These methods are 

globally accurate rather than locally accurate.  The conditional geostatistical simulation 

methods generate a set of possible equi-probable realizations which are conditioned to the 

available observations while having very close global statistical behaviors (e.g. 

variograms) to those of the reality. Having multiple simulated realizations, one is also 

able to evaluate the global uncertainties and risks.  

 

 

1.4.2.  Some basic concepts in geostatistics 

 

 

There are some basic terms and concepts in geostatistics which should be introduced prior 

to any geostatistical discussion. Some of them such as; random function, random variable, 

discrete and continuous random variables, regionalized variable, and stationarity 

assumptions were described very briefly here: 

 

(a) Random function (RF):  

 

Geostatistics is basically founded on the concept of Random Functions (RF), by which 

the set of unknown attribute values z(u) at each location of u, is regarded as a set of 

spatially dependent random variables (RV) (Goovaerts 1997, p. 63) . With the concept of 
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the random function, one can recognize and model structures in the spatial variation of the 

attribute (Goovaerts 1997, p. 63). 

A group of spatially distributed samples can be considered as a realization of a random 

function (Matheron 1963). 

 

(b) Random variable (RV):  

 

According to Goovaerts (1997, p. 63), a random variable can be defined as following: 

 

“A variable, that can take a series of outcome values according to some probability 

distribution”.  

 

A random variable can be either a discrete or a continuous random variable.  

 

(c) Regionalized variable (ReV):  

 

 A variable distributed in space (or time) that can take different values in different spatial 

locations is termed as a regionalized variable (Deutsch 2002, p. 345). Geologic facies 

types or geotechnical soil types in different points are examples of categorical 

regionalized variables. 

 According to the regionalized variable theory (RVT), a set of regionalized variables 

includes three different relationships; structural part or trend, correlated variation, and 

uncorrelated variation or noise. In the geostatistics the main focus is on modeling the 

correlated variation element of the regionalized variable (Hattermann 2011).  
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Figure 1.5  The stationarity of means for a regionalized variable, (A): referring to a stationary mean, 

(B): to a non-stationary mean with a trend, and (C): non-stationary case (Hattermann 2011, p. 17). 

 

 

(d) Stationarity assumptions:  

 

Stationarity is one of the most essential assumptions and decisions that should be 

considered for a random function in the geostatistical techniques. Stationarity implies that 

the statistics (such as mean, variance, covariance, and so on) is independent of the 

location of its calculation in the study area. For instance, a variogram can often be 

assumed stationary because it can be applied over the entire area which has been 

computed. The variogram in the circumstance of the stationarity, can be regarded a 

function of the separation vector (lag) between the pairs of points and independent of the 

location.  It is the measure of spatial variability for separation vectors (Deutsch 2002, p. 

346).  

The stationarity is defined in terms of the first- and second-order moments of the samples 

random function, and stationarity degrees related to the special moments that stay 

unchanged in the study area (Hohn 1991, p. 23) 

 The expectation of the distribution function of a random variable )(uZ at location u is: 

)()}({ umuZE    (1-2) 

 This expectation which is a first-order moment of the )(uZ  distribution can be dependent 

on u.  
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 The four essential degrees of stationarity in geostatistics are; strict stationarity, second-

order stationarity, the intrinsic hypothesis, and quasi-stationarity. To define the 

stationarity assumptions easier, the concept of the spatial law of a random function can be 

introduced here. The spatial law of a random function can be termed as all observed 

distribution functions in all prospective locations of the study area. The referred 

stationarity assumptions have been explained briefly here as following: 

1. Strict stationarity: 

The spatial law between any pair of random variables { )( 1uZ , )( 2uZ … )( muZ } and 

{ )( 1 huZ , )( 2 huZ … )( huZ m } is invariant in the strict stationarity condition. In 

other words, the distribution function (of a random function) does not change in terms 

of the separation vector of h. 

 The strict stationarity assumption is not necessary in most of the geostatistical 

purposes since these applications often need only the first two moments (Hohn 1991, 

pp. 24-25). 

 

2. Second-order stationarity: 

  The second-order stationarity requires: 

(a) Invariant expectation: 

fixumuZE )()}({   (1-3) 

(b) The covariance dependent only on the separation vector: 

2)()()( mhuZuZShC  
 for each u  (1-4) 

The stationarity of covariance C(h) is equal to the stationarity of the variance 

and semivariogram: 

)()()()0(
2

uZVarumuZEC   (1-5) 

)()0(2/})()({)( hCCuZhuZEhg  (1-6) 

Under the second-order stationarity conditions, the semivariogram or covariance can 

be chosen to measure the spatial auto- or cross-correlations (Hohn 1991, pp. 24-25). 

3. The intrinsic hypothesis: 

 In the intrinsic hypothesis conditions, the expected first-moment and semivariogram 

values are invariant. Therefore, the intrinsic hypothesis is a reduced form of the 

second-order stationarity since it does not require the stationarity of the covariance 
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but just the existence of a finite variance C(0). For most of the geostatistical 

applications, the intrinsic hypothesis is sufficient. 

 If the random variables and their functions do not conform to the conditions 

described above and therefore represent a kind of dependence of the functions on the 

location, they bear a kind of characteristics called ‘trend’ (Hohn 1991, pp. 24-25). 

4. Quasi-stationarity: 

 The studied variables may in reality have a trend (or show a ‘drift’) over the study 

area. Although such a variable is not stationary in the insight of definitions mentioned 

above, a sort of local stationarity can be accepted in practice. This means that when 

the maximum applied distance in semivariogram or covariance calculation is much 

smaller relative to the trend range, the quasi-stationarity circumstance can be accepted 

(Hohn 1991, pp. 24-25). 

 

 

(e) Detecting the existence of a trend: 

 

Obviously, to identify the existence of a trend in regionalized variables, the most 

straightforward approach could be to plot the target variable against the distance in 

different directions and evaluate its general changes. To make a general trend clearer, the 

moving average or similar method can also be applied. In the case of the existence of a 

trend, a systematic change should be distinguished in the general variation of the values 

along the distance axes (similar to time-series analyses, e.g. Fahmy and Elsayed 2006; 

Smith 1989). As an example, suppose that there is a coal layer with variations in its 

thickness and the aim is to model and estimate the thickness of this layer.  Generally, 

three types of variations in the thickness of the example layer could be identified; erratic, 

periodic, and systematic. Assume that, in general, the mentioned layer is getting thicker 

and thicker in a specific direction, let say from west to the east. However, in the local 

scale, the layer thickness shows some erratic changes while these changes have an 

algebraic sum of zero. The first part of the variations (i.e. the general systematic changes), 

are the trends of the investigated parameter. Therefore, plotting the thickness of the 

mentioned layer against the distance will represent how the thickness is increasing in the 

East-West direction in general, which can be modeled using a regression model. 

Subsequently, the thickness of the layer will be equal to the amount of the mentioned 

trend plus a local erratic variation: 
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eumuZ )()( *    (1-7) 

where Z(u) stands for the amount of the required attribute (like thickness) in the location 

u, m
*
(u) is the estimated local average of that attribute, and e is the erratic term of the 

variation of the cited attribute or the error representing the difference between the 

estimation of general trend and the real values. 

In the geostatistical methods like kriging, the local erratic variation term of the 

regionalized variable (i.e. e equation (1-7)) can also be modeled.  

   All geological processes convey a sort of trend in distribution of petrophysical 

properties, such as fining or coarsening upward. Hence, the large-scale negative 

correlations indicative of a geologic trend is appeared as the variogram increase over the 

sill variance of C(0)= 2  (Deutsch 2002, p. 117). From the above discussion, an 

important practical conclusion can be inferred that one of the best and most practical 

indicatives of the existence of a trend within the study zone is to plot the sample 

variogram and the theoretical sill, and evaluate the general behavior of the variogram plot 

relative to the theoretical sill. If the sample variogram increasingly exceeds the expected 

(theoretical) sill, the prevalence of a trend can be concluded. The expected sill can be 

considered as the variance of a data-set, i.e. C(0)= 2 , for the continuous variables, and 

p(1-p) for categorical variables where 2  is the continuous data variance and p is the 

proportion of a category in the categorical data. Another concept related to the trend is the 

areal trend that may cause a zonal anisotropy between the horizontal and vertical 

variograms. The concept of the zonal anisotropy has been discussed in the next sections. 

The areal trend can cause the vertical variograms to be unable to meet the full variability 

of the attributes. Therefore, the vertical variogram stay below the theoretical sill of the 

variogram.  
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Figure 1.6  An example of the case of the presence of areal trends has been depicted here. In such 

cases, each well does not capture the full range of variability. In this example, well A faces mostly 

high values while the low values are observed in well B (from Gringarten and Deutsch 2001, p. 514).  

 

 

 

Figure 1.7  Vertical semivariogram with a zonal anisotropy in which the variogram does not reach its 

expected sill (Deutsch 2002, p. 121). 

 

Figure 1.6 illiterates the effect of areal variability on the coverage of the variability of the 

attributes in the vertical direction (Deutsch 2002, pp. 121-122). 

As discussed before, the first crucial stage in all geostatistical modeling procedures is to 

set the right model variables, to ensure, with an acceptable tolerance, that these 

characteristics can be modeled as a stationary variable along the study zone. In the case of 

the presence of a significant trend, the trend should be modeled and removed prior to any 

geostatistical modeling step. Finally, the trend can be added back to the estimations or 
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simulation values over again. The action of removing the existing trends is called 

detrending. If a negligible trend is detected, the stationarity can be accepted and the 

regular geostatistical procedures can be followed (Deutsch 2002, p. 122). 

 

  The above discussions are more applicable to the continuous variables. Nevertheless, the 

same principles can be applied to the categorical variables modeling. As it will be 

explained in the next sections, the indicator geostatistical methods are usually applied in 

modeling the categorical variables. For such indicator geostatistical analyses, to check 

whether or not any trend exists, the proportions of the categories (e.g. facies or soil types) 

are considered instead of the variable means of the continuous variables. In other words, 

the proportions or existence probabilities of the categories are evaluated, their variations 

are modeled, and the unknown probabilities are estimated (or simulated). The trends in 

facies proportions usually exists and is likely in either areal or vertical directions and the 

trend models construction follows the same approach as for that of the continuous 

variables (Deutsch 2002, p. 186-187). Then the significant trends in proportions can be 

removed prior to the indicator geostatistical analyses. To have a rough evaluation of the 

probable existing trends in different parameters during this study, three approaches have 

been applied: 

 (a) Drawing the scatter-plots of each parameter against the distance. 

(b) Plotting the location map of the boreholes which include the investigated 

parameters. 

 (c) Inspect the behavior of the indicator variograms for each soil category.  

 

 To achieve the best stationarity conditions, the zones and layers have been separated into 

the a few more similar and homogeneous sub-zones. For example, the deep holes were 

put aside and the slope sides of the basin were also considered separately. 

 

(f) Variograms and models: 

 

 Modeling the regionalization is more beyond a simple smooth interpolation among the 

points. In order to do geostatistical modeling, it is necessary to explore the spatial 

variability in the existing data-set (Gringarten 2001). 
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Figure 1.8  A typical variogram that can be applied in spatial visibilities modeling. The dots show the 

sample variogram and the solid curve represents the model variogram. The straight thin solid lines 

project the important variogram parameters of range (a) and sill (c).  

 

 

Recalling the concept of the regionalized variable, the correlated stochastic component 

can be modeled in the next estimation or simulation stages. Obviously, any existing trends 

can be modeled and removed beforehand. Modeling the spatial variability structure of a 

regionalized variable can be conducted using various measures and methods such as two-

point statistics; including the covariograms or correlograms to measure the similarities, 

variograms or madograms as the measures of dissimilarities, and the multiple-point 

statistical methods that go beyond the two-point statistics in spatial variability modeling. 

These concepts have been elaborated in different sources and will not be addressed here 

except very briefly for variogram and its analytical models. A variogram which represents 

the degree of spatial dissimilarities for a regionalized variable can be expressed in 

mathematical terms as a mean variance of the pairs of the values separated with the 

separation vector of h, plotted for different separation vectors (Gringarten 2001). 

Similarly, this spatial correlation can be expressed among more than one variable using 

spatial cross-covariance functions (covariance of the variables with other variables) which 

are called covariograms. A typical variogram increases with the increase of the separation 

vector to a certain distance called range where the variogram will reach to a plateau 

called sill. The sill expectedly should be, in its full distance, nearly equal to the data 
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variance for the continuous variable (i.e. 2)0()0( C ) and p(1-p) for the indicator 

variograms. In this expression, p represents the proportion of the corresponding category. 

 

A sample variogram of a regionalized variable therefore, can be defined as following: 
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hN

hxZxZ
hN

h   (1-8) 

where N(h) is the pairs number of the data locations which are separated by the vector h 

(Isaaks 1989, p. 82). It should be considered that in most of the scientific sources, the 

term of “semivariogram” was applied for the above definition. However, for 

simplification reasons (as it has been used also in some other literature), it will usually be 

referred as “variogram” in this context.  

 Equally, if the indicator values (I), are replaced with regionalized variables of Z in the 

definition of the variogram, the sample indicator variogram will be expressed as 

following: 
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 Such an indicator variogram is a valuable tool for modeling the spatial variability of 

indicator values in modeling categorical variables and estimating the local probability 

distribution functions. The act of fitting analytical models to the variograms is termed 

variography.  

 

 The above formulas provide a set of experimental values that reflect the spatial 

variability structure but neither in all distances nor in all directions. Hence, analytical 

models should be fitted to the experimental (or sample) variograms to; deduce the 

variogram values in all points, smooth out the effects of fluctuations, and ensure the 

positive definiteness property of variograms (Goovaerts 1997, p. 87; Deutsch 2002). 

 

Positive-definiteness is an indispensable perquisite for solving the estimation equations of 

kriging to ensure that the kriging variance is positive and the estimation equations are 

solvable. Using specific standard mathematical variogram models to be fitted to the 

experimental variograms can ensure the positive-definiteness characteristic of the 

estimation models (Goovaerts 1997, p. 87; Deutsch 2002, p. 131). 
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 Pure nugget effect, spherical, exponential, Gaussian, and power models are the most 

frequently used basic variogram models. The mathematical definitions of the most 

important basic theoretical isotropic variogram models have been brought in different 

geostatistical resources. Yet, as an instance and one of the most important permissible 

mathematical variogram models, the equation for standardized isotropic spherical model 

has been brought here: 

 

 Spherical model with a range of a: 

otherwise
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 (1-10) 

 

To model the spatial variability of a regionalized variable, a composition of the 

mentioned models may offer a better fit. The first four models are bounded because they 

reach actually or practically to their sill (which was 1 in the above formula as their 

standardized sill). The real sill values can be considered in the models by multiplication 

of the sill values by the standardized models (Goovaerts 1997, p. 88). 

 The variograms may show different behaviors in different directions. This characteristic 

is recognized with the phenomenon of anisotropy (Sarma 2009; Goovaerts 1997). On the 

other hand, the structure of the data variations (e.g. variograms), does not change in 

different directions in an isotropic model. The variogram anisotropy can be of two major 

types; the geometric (also called elliptic), and zonal (also called stratified). In the 

geometric anisotropy, the variogram sills remain unchanged whereas their range changes 

in various directions. This sort of anisotropy can be illustrated with an anisotropy ellipse 

or ellipsoid and expressed by anisotropy ratio, for instance, in the case of two-

dimensional studies: 

)/( 21 aab  (1-11) 

in which the a1  stands for the variogram range in one principal anisotropic direction and 

a2 is the variogram range in another principal anisotropic direction for a bounded 

variogram or: 

)/( 21 slopeslopeb   (1-12) 

for an unbounded variogram (Sarma 2009). 
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 With the anisotropy ratio, by a simple transformation, all the geostatistical equations can 

be reformulated based on the equations of the isotropic case.  

Figure 1.9 illustrates the case of the geometric anisotropy in two variograms.  

 

 

Figure 1.9 Anisotropic variograms; (A) variogram with the same sill and (B) linear variogram with 

different slopes (Sarma 2009, p. 83). 

 

 

 

Figure 1.10  Samples of elliptical anisotropy; (A) main axes follow the direction of the co-ordinate 

axes and (B) main axes do not follow the direction of the co-ordinate axes (Sarma, 2009 p. 84). 

 

In the case of zonal anisotropy, the sills are not equal in different directions, and in 

general, the variograms in various directions represent a complex behavior. Usually, in 

such cases, the variogram is split into two components; an isotropic variogram plus a 

variogram depending only on the vertical direction (Hohn 1999).  

 In this study, the zonal anisotropy between the horizontal and vertical variograms was 

obvious in indicator variograms. However, the problem was seen that the vertical 

indicator variograms could not meet all the variability because of the much shorter 

investigation distance. The component of the vertical indicator variograms played the role 

of the nugget effect for the horizontal indicator variograms. Therefore, the three-

dimensional variograms were the sum of the two mentioned components. 
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1.4.3.  Kriging and geostatistical simulation basics 

 

Let’s start with an example to address the importance and advantage of using the kriging 

estimator in practical problems, especially in the case of subsurface studies where the 

access and information are more limited. 

 

 

Figure 1.11  An illustration of the subsurface estimation problem in environmental applications. W1 

to W5 represent the drilling locations for getting subsurface samples or measurements.  

 

 

Suppose that in an environmental survey, the monitoring of the extent and immigration of 

contaminants and proper remediation planning is aimed. Yet, due to the technical and 

economical limitations, it is almost impossible to have a full measurement of the required 

parameters and characteristics throughout the subsurface. In this example, assume that, all 

the available and reliable information and data could be achieved through a limited 

number of samples taken from some boreholes (W1 to W5).  

Therefore, the required characteristics are known in a few points but they are unknown 

elsewhere which is the majority of the investigation zone and the prediction of the facies 

types within which the mentioned characteristics are targeted would be the first step in 

modeling. 

As it has already been discussed, there are different approaches to estimate the required 

characteristics in the unknown points which fall in two main categories of structure 

imitating and process-imitating. In the structure-imitating methods, the observed patterns 

and structures are modeled without directly considering the processes responsible of their 

creations. The process-imitating techniques are not the issue of this study (Falivene et al. 

2007, p. 200; Koltermann and Gorelick 1996).  

 The kriging aim is to achieve the “Best Linear Unbiased Estimation” (B.L.U.E.) by 

assigning weights to surrounding samples to an estimation point (Clark 1979, p. 100). In 
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comparison to the conventional estimation techniques, kriging takes also the spatial 

variability structure, the samples distribution patterns, and the probable anisotropies into 

account.  

 Although kriging is basically developed with the linear underlying presumptions, the 

non-linear estimation frameworks can also be defined in the kriging approach. These non-

linear estimations are termed non-linear kriging which fit better to the most practical 

applications since most data sets do not obey the multivariate Gaussian assumptions 

(Hohn 1999, pp. 134-135).  

 

Kriging estimator contains two essential properties (Armstrong 1998, p. 92; Deutsch 

2002, p. 154): 

(a) Unbiasedness, which means that the average of the estimation errors (the difference 

of real and estimated values) are zero : 

v vE[z z ] 0    (1-13) 

 in which *z  is estimated and z is the true value. 

(b) Minimum estimation error, which means that the average squared difference between 

the true and estimated values (square error) should be minimum: 

2 2

E v vE[(z z ) ]minimum  (1-14) 

  These equations obey stationarity assumptions. 

 

Based on the type of the mean of a regionalized variable in kriging equations, kriging is 

categorized into different types such as; simple kriging (SK) in which the mean is 

constant and known, ordinary kriging (OK) in which the mean is constant but unknown, 

and universal kriging (UK) where the mean is unknown and inconstant.  

When a stationarity or quasi-stationarity conditions is met, using the OK (ordinary 

kriging) or SK (simple kriging) would be suitable. However, in the case of significant 

trends, detrending should be performed first. In this case, using the ordinary or simple 

kriging was identified to be adequate due to the stationarity or quasi-stationarity 

conditions in the existing data-set of the soil types.  

 

The final equations of the kriging with the ordinary kriging conditions (i.e. constant and 

unknown mean of the variable) only are brought here. 
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Rewriting the kriging equations for ordinary kriging, the estimation equation can be 

summarized as: 

i

n

v i v
i 1

z Z   (1-15) 

where *

vz  is the estimate value based on the linear combination of 
ivZ known 

neighboring values and i are kriging weights and n is the number of neighboring points. 

The result of equation (1-15) will be: 
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and a set of equations for ordinary kriging can be written as: 
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i jC(V ,V ) in the above equations, is the average covariance between pairs of points and 

can be calculated using auxiliary functions. Therefore, having covariance or variogram 

functions (i.e. variogram models), a set of n+1 equation exist with n+1 unknown 

parameters including n, i kriging weights and a Lagrange parameter. 

In the indicator geostatistical approaches, a value so-called indicator is assigned to each 

sample point so that the indicator is set to one (1) when the category exists at that point 

and zero (0) otherwise, i.e. : 
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 where )(ucl is the true class that exists in the location u , k  is a category of soils between 

1 and n , and n  is the number of existing categories. 

The same variography and estimation methods are used for the indicators to achieve the 

estimations and simulation. The outcome of the indicator kriging, therefore, is the 

probabilities of the occurrence of each class at each location. In this study, the assigned 

category to each estimation point from the indicator kriging was the soil class that held 

the highest probability of occurrence estimated from indicator kriging. 
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  Although, the indicator kriging method is suitable in estimation of the probability of the 

occurrence of the facies, it faces some critical problems in modeling and estimating such 

as;  the estimated values out of (0,1) range (nonsense probabilities) and vague 

experimental variograms (because of insufficient data ) that are difficult and uncertain to 

model.  

  As referred before, kriging includes a problem so called smoothing effect. As a result, 

the global statistics of the estimations (including the univariate statistics, e.g. mean and 

histogram, and bivariate statistics e.g. variogram and covariogram) are different from 

those of the real statistics. In some practical problems such as flow simulating inside a 

hydrocarbon reservoir or detecting points with high vulnerability to contamination, the 

smoothing effect becomes a major drawback for kriging methods since the subtle 

variations are very important in such cases (Yamamoto, 2005).  

 Geostatistical simulation is an alternative to overcome the smoothing effect problem by 

producing a set of equi-probable results which resemble the reality in terms of the global 

behaviors and reproducing the fine variations. This set of realizations can be evaluated 

later as different possible scenarios for the reality (Caers 2005, p. 13). 

 

 Geostatistical simulation methods can be categorized into two broad groups of sequential 

and non-sequential as well as two main groups of conditional and unconditional methods. 

In the sequential simulation methods, the simulation is started from a simulation grid 

node and goes forward. Each time, the input data and the previously simulated values are 

considered for the simulation of the next grid node. The sequential indicator simulation 

method is an example of sequential simulation methods in geostatistics. In the non-

sequential methods on the other hand, the simulation is performed all at once, such as the 

LU decomposition and p-filed simulation methods (Caers 2005).  

In conditional simulation, the local conditional cumulative density function (CCDF) is 

approximated in each simulation node of the simulation grid and a random variable is 

drawn out of it, then using the existing data and already simulated points, the simulation 

is followed in a random path which visits all the simulation nodes. More details about the 

conditional geostatistical simulation are brought in relevant literature. 

 Sequential Gaussian (SGSIM) and Sequential indicator simulation (SISIM) methods are 

among conditional geostatistical simulation methods which are broadly used in various 

applications. However, SGS and SIS have some shortcomings. In SGSIM, the Gaussian 

assumption is not always reliable or readily verifiable. On the other hand, SISIM faces the 
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same difficulties as indicator kriging in modeling and statistics faces; i.e. tedious and 

from time to time vague variogram models, order-relation violations and sometimes 

nonrealistic probabilities inferred from indicator kriging.  For example, the estimated 

probability may become greater than one or less than zero. Another problem of the SISIM 

method is the difficulty of considering the inter-class relations among the categories. 

Considering the inter-class correlation can certainly improve the estimation quality 

especially for in the case of limited number of samples. Although one also may employ 

the methods like cokriging that take the inter-class correlations into account. However, 

cokriging method requires some constraints and special conditions in building the 

covariogram models that make its application more complicated. 

  Some geostatistical simulation methods based on Markov chains, which have been 

applied in the coming sections, have paved the way to improve the modeling of variability 

and to overcome the problems included in the traditional geostatistical methods. 

  In general, according to the author’s opinion and knowledge, some remarkable problems 

in the traditional geostatistical methods should be taken into consideration, such as 

variogram modeling in the lack of sufficient data, insufficiency of two-point statistics in 

capturing complexities, severely mathematical view in traditional methods, linearity of 

estimators, and etc.  

In the coming section, some geostatistical methods have been compared together based on 

the literature review. 

 

 

1.4.4.  A comparison of some geostatistical modeling 
(estimation/simulation) methods, considering their 
applications: 

 

 During the literature review according to the advisors’ recommendations, plenty of 

different papers and books were reviewed  aiming at finding the strength and weaknesses 

of different geostatistical modeling methods and selecting their best in terms of the 

applicability of the method in such cases, availability of the software, and the efficiency 

of the method. 

 Among a big variety of reviewed geostatistical modeling and simulation techniques, only 

the most important of them have been pointed out here.  
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 Table 1.3 summarizes the basics, applications, advantages, disadvantages, and software 

of some geostatistical methods which were reviewed in the initial stage of this research to 

compare and choose the most suitable of them for applying in this study. 

 The reviewed methods can be put into the following groups:  

 

(1) Markov-chain based methods: for example: transition probability-based Markov 

chain (TP/MC), coupled Markov chain (CMC), triple Markov chains (TPC), 

Markov chain geostatistics (MCG),  hierarchical architecture modeling of 

continuous characteristics using Markov chains (Ritzi 2007). 

(2) Multiple-point statistics (MPS). 

(3) Bayesian maximum entropy (BME).  

 

Because, bringing the complete summary of all the corresponding discussions here would 

be too tedious and lengthy to and to make it easier and quicker to compare and access all 

of the reviewed methods together with their most important features, the required 

information about them have been summarized in Table 1.3.  

 

1.4.5.  Summary and highlights of the compared methods 

 

The most important points about the mentioned comparison of the various geostatistical 

modeling methods can be summarized as following: 

(a) Modeling the boundaries of categories prior to modeling their containing 

continuous variables would lead to significant improvements in the resulting 

models. 

(b) Most of the mentioned Markov chains-based models facilitate the integration of 

subjective and interpretive information (such as geology and expert’s 

interpretations) into the models and result in considerable improvement in 

modeling spatial continuity. 

(c) Stochastic simulations based on Markov chains can lessen some shortcomings of 

conventional geostatistical methods theoretically because of:  

o Being non-linear. 

o Being neither completely stochastic nor completely deterministic (intermediate 

stochastic). 



 37 

o Facilitating consideration of the inter-class correlations. 

o Reducing the order-relation problem of IK
1
. 

(d) Two-point statistics such as variograms can not completely capture the spatial 

variability complications, especially when heterogeneity has a rather complex 

geometry. MPS
1
 is a solution to overcome this problem. 

(e) Considering a general primary knowledge and updating the posterior distribution 

function like in BME
1
 method seem very effective ways of improving stochastic 

modeling. 

(f) Traditional geostatistical approaches such as IK, suffer from several problems 

such as order-relation violations and the weakness in complex subsurface 

heterogeneities reconstruction specially about modeling spatial connectivity 

among them and particularly when samples are sparse (Bierkens and Weerts 1994, 

p. 283; Li and Zhang 2008, p. 158).This might be due to difficulty in making 

inter-class correlations and being linear (Li and Zhang 2008, p. 158). 

(g) Although the proposed methods based on the direct use of Markov chains (MCs) 

have significant advantages over other methods especially over traditional 

geostatistical methods, they still may have some shortcomings such as these: 

o Because they are among unilateral processes, they may generate inclined 

patterns (i.e. diagonal trends) due to the asymmetric neighborhoods used in 

multidimensional simulations. To reduce or avoid this problem, symmetric or 

quasi-symmetric path may be defined (Davis 2002, p. 575). However, the 

transition-probability Markov chain (TP/MC) approach applied in the present 

study does not implement asymmetric paths and expectedly should not 

produce such problems. 

o Pattern inclinations and artifacts are possible to occur. This is especially about 

CMC
2
 method when asymmetric or quasi-asymmetric paths are not used. They 

may also occur in MCG. In addition, using an asymmetric or quasi-

asymmetric path may reduce the positive feature of considering asymmetry as 

an advantage of these methods (Park et al. 2007, p. 910). 

o In TPC
2
 and MCG

2
 methods, the main formulation is suited for two-

dimensional problems. The direct and easy formulations of these methods for 

                                                 
1
 IK stands for indicator kriging, MPS multiple-point statistics, and BME for Bayesian maximum entropy. 

2
 CMC stands for coupled Markov chain, TPC for triple Markov chains, MCG for Markov chain 

geostatistics, and TPs for transition-probabilities. 
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three-dimensional problems and with considering three-dimensional modeling 

scheme are hardly mentioned except for CMC that suffers other problems. 

o In CMC, underestimation of small classes and overestimation of big classes 

especially when samples are few and sparse may cause unrealistic patterns. 

o Some other problems in CMC, TPC and MCG include; difficulties with 

accounting for anisotropies and large-scale features (e.g. in MCG because of 

the use of small, systematic neighborhood system), practical problems with 

calculating TPs particularly from sparse data, the problem of inferring multi-

step TPs form one-step TPs and some theoretical simplification problems such 

as conditional independence assumptions (Li and Chuanrong 2008, pp. 159-

163). 

(h) BME and MPS seem to be too dependent on external information sources 

rather than available data-set, such as training images, interpretations, and so 

on. 

(i) Most of the mentioned methods have been applied in specific practical 

problems while they can be applied in the other fields as well. It seems that 

the main difference is due to abundance and the sort of available data in 

different applications, e.g. in mining problems, various and abundant data 

usually exists whereas there is little data in environmental problems. 

However, in special cases, the problems may become more similar. For 

instance, in the primary exploration stages of hydrocarbon reservoirs, little 

information may exist. 

 

 

 Some other geostatistical methods such as truncated Gaussian and truncated 

plurigaussian methods as well as cleaning cell-based methods for modeling the soil 

lithofacies can also be applied for modeling the geotechnical soil classes. The first two 

methods are based on generating the realizations of one or more Gaussian continuous 

random variable and truncating them in specific thresholds to achieve the required 

categorical variables. More details and their comparison with the techniques applied in 

this study have been brought in Chapter 7. 

 In general, due to the practical and theoretical situation of this project, the best proposed method 

among the mentioned methods according to the literature should be TP/MC method. 
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Table 1.3  Practical summary and comparison of some geostatistical methods based on main framework and the reasons of using them. 

Method group 
The reason for using this 

method group 

Method 

subgroup 

Why this method, where, and 

the philosophy of its 

application? 

Main basics and assumptions 

of the method 

Main framework of the 

method 

Markov Chains 

(MC) 

 

 

 

 

1. Intermediate between 

completely stochastic and 

deterministic processes, i.e. the 

processes is expected to be only 

partially stochastic.
1
 

2. Non-linear. 

3. Probable dependency 

between variables in time and 

space and the Walter’s law of 

facies succession about 

geological or similar sequences. 

4. Easier integration of 

geological data into models.
2
 

5. Easier cross-correlations.
3
  

 

Transition probability-based 

indicator geostatistics (TP/MC)  

 

1. Improving spatial continuity 

modeling, taking some geological 

information into account. 

 

2. To overcome vague indicator 

variography. 

 

3. Avoid some IK problems like order 

relation violations. 

 

4. Incorporating geological/physical 

information in modeling. 

 

5. Suitable for categorical data. 

 

6. Asymmetry can be considered. 

 

1. Existence of Markov property. 

2. All IK equation can be rewritten in 

terms of transition probabilities.
4
. 

3.  Using conceptual information like 

mean length or proportion of a facies 

can help us to make better spatial 

continuity models. 

 

1. Get, estimate or calculate the mean 

length and proportion of each different 

lithofacies. 

2. Calculate the 3D transition 

probabilities in different distances and 

between each 2 categories. 

3. The model parameters of transition 

probabilities or (co)variograms can be 

modeled using the proportions and the 

mean lengths of each category.
5
  

5. Perform IK using TP equations. 

 

6. Perform SISIM using TP equations.  

Simulated annealing also can be 

used to improve the simulations.
6
  

 

Coupled Markov chain (CMC) 

1. Straight-forward modeling and 

easier conditioning to available data. 

 

2. Taking geological information into 

account. 

 

1. Existence of Markov property. 

 

2.  Conditional independence of 

samples.
7
  

 

3. Two single MCs (in 2D or 3 single 

chains are forced to move to equal 

states.
7
 

1. Calculating the Markovian vertical 

TPs using borehole data and inferring 

the horizontal TPs using Walther’s law 

(transiograms and modeling them). 

2. Making grids and Inserting well data 

in their location as conditioning data. 

3. Calculating the probability of 

occurring each states, using the relevant 

equation; (e.g. for 2D problem with 

Equation. (1-26)) row-wise and from 

top to bottom and determining the 

succeeding state (which would be 

drawn from the CDF of all states at that 

point, randomly). 

4. Filling out the remaining cells one by 

one with similar procedure.
8
  

Triplex Markov chain 

geostatistics (TMC) 

1. In soil problems with no sparse 

samples and soil line measurements. 

2. Avoiding trends in produced patterns 

despite CMC method. 

1. The same assumptions of CMC 

2. The simulation path is modified to 

avoid directional effects and trended 

patterns. 

3. Divide area to windows inside 

survey lines and walk in two opposite 

directions. 

4. Uses 2 CMSs from 3 independent 1-

D MCs.
3
  

1. Is according to the same basics of 

CMC. 

2. Two CMCs from three independent 

CMCs are used, i.e. from right to 

left, from left to right and from top 

to bottom. 

3. Applying the simulation inside 

windows that are partitioned inside 

survey lines, row-wise in opposite 

directions.  

 

Markov chain geostatistics 

(MCG) 

1. Direct application of MC in 

simulation (esp. soil problems) 

2. To overcome small-class 

underestimation problem of CMC. 

1.  Only one single MC exists in space 

which has its CPD in each location 

entirely dependent on its nearest 

known neighbours in different 

directions.
9
  

2. The conditional independence is 

theoretically correct in Pickard (1980) 

1. Applies a similar framework as the 

CMC but it uses only the nearest 

known points of estimation points 

and a single MC rather than coupling 

MCs.
10

  

2. Transition probabilities among each 

pairs of classes are calculated, based 
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random field for sparse samples, when 

the nearest known neighbours in 

cardinal directions are considered.
9
 

on the distances and modeled.  

3. The CPD (conditional probability 

distribution) is calculated using the 

equation (**). 

4.  Drawing a random class, based on 

the above CPD and continuing the 

procedure. 

Hierarchical architecture 

modelling (by: R. Ritzi) 

1. Incorporating analogue data 

(outcrops…)  

2. Improving semivariogram 

modelling of continuous variables (e.g. 

permeability) and its estimation by 

univariate statistics, transition 

probabilities and proportions. 

3. When Sediments show hierarchical 

structure. 

4. As usually more categorical data than 

continuous is available. 

1. Sediments usually represent 

hierarchical structure. 

2. The permeability variogram is a 

linear summation of the auto 

variograms and cross variograms for 

defined unit types, weighted by 

proportions and transition probabilities 

of unit types.
11

 

3. The sample variogram can be 

approximated using only cross-

transition probabilities and the 

univariate statistics (mean and variance) 

for permeability within unit types.
12

  

1. Determine and classify the different 

levels of hierarchies of sedimentary 

facies. 

2. Calculate the auto- and cross- 

transitions and proportions of each 

category. 

3. Calculating the univariate statistics 

(variance and mean) of continuous 

parameter (e.g. permeability) in 

different hierarchical levels. 

4. Having the calculated parameters, 

one can approximate the variogram 

model for continuous variable. 

Multiple-point statistics 

(MPS) 

Two-point statistics such as 

variograms can not capture the 

complex heterogeneities 

 

MPS ( continuous) 

 

1. Bivariate statistic (e.g. variograms) 

can not capture complex 

heterogeneities (e.g. meanders, 

channel (sand) bodies…). 

 

2. Solve the problems of object-based 

methods e.g. too much time-consuming, 

limitations when sampling is dense 

relative to average object size.
13

  

1. Analogue data can help us to make 

complicated heterogeneity models. 

2. Proper training images can help us to 

fill information gaps. 

Stationarity and ergodicity assumptions 

should be considered (for training 

images, etc.). 

1. Finding the most general prior 

distribution (no specific). 

2. Considering specific knowledge, 

including hard and soft data. 

3. Information from stages 1 and 2 is 

processed by means of logical data.
14

  
MPS (categorical) 

Bayesian maximum entropy 

(BME) 

Easier integration of different 

sources of information and 

physical or expert’s knowledge 

or interpretation. 

Suitable for little data 

condition. 

 

BME (continuous) 

 1. Offers a nonlinear model. 

2. Taking different sources of 

information (hard and soft) into 

account.
15

  

1. Available hard & soft data and 

expert’s knowledge can be applied. 

2. Maximizing the entropy maximizes 

the information. 

3. Posterior probabilities can be 

analyzed to get favourite 

assessments. 

 

3. Finding the most general prior 

distribution (no specific). 

4. Considering specific knowledge, 

including hard and soft data. 

3. Information from stages 1 and 2 is 

processed by means of logical data.
14

  

 
BME (categorical) 
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Table 1.4  Practical summary and comparison of some geostatistical methods based on the advantages of their applications pros and cons, researchers, where they have been applied and software. 

Method group 
Method 

subgroup 

Advantages  (pros) of 

using this method 

Disadvantages 

(cons) of using this 

method 

Requirements of this 

method 

Pioneer 

researchers 

The fields where 

the method has 

been applied in 

real cases 

Proposed 

applications 
Software 

Markov Chains 

(MC) 

Transition 

probability-Markov 

chain indicator 

geostatistics 

(TP/MC) 

1. Making it easier to 

integrate indirect, subjective, 

or conceptual information. 

 

2. Improving the 

understanding of spatial 

continuality measures and 

facilitating the modeling of 

geologically acceptable 

spatial continuity measures 

(e.g. variograms). 

 

 

3. Facilitating the full use of 

inter-class correlations.
16

 

 

4. Reducing the order-

relation problem of IK.
17

  

 

1. Due to the similar 

framework to 

traditional IK, order-

relation violations 

may still be 

encountered. 

 

2. Long simulation time 

and sometimes 

demanding model 

fitting procedure. 

1. Having 

information/interpretations 

about the mean length, 

juxtapositioning patterns 

and proportion of facies. 

 

2. Verification of having 

Markov property. 

 

3. Possibility of 

calculating, estimating and 

making 3D transition 

probability models. 

 

Steven F. Carle, 

Graham E.  Fogg, 

Weissmann, Gary 

 

Hydrogeology and 

hydrology
18

, 

environmental 

problems
19

, 

sedimentary structures 

analysis
19

, transports 

in porous materials
19

, 

solute and tracer 

transport in fractured 

media
20

, limited use in 

soil classifications
21

,  

very limited use in 

hydrocarbon 

problems.
22

  

Hydrocarbon 

reservoirs and 

petroleum problems, 

sedimentary mineral 

deposits and 

potentials modeling, 

more geotechnical and 

soil engineering 

problems, etc. 

T-PROGS (freeware), 

GMS (T-PROGS 

interface) 

Coupled Markov 

chain (CMC) 

1. Considering asymmetry in 

heterogeneity modeling. 

 

2. The ability of taking hard 

and soft information into 

account. 

 

 

3. Simpler and faster 

procedure than 

conventional methods. 

 

4. Straightforward and easy 

conditioning to 

measurements. 

 

 

5. The ease of 

implementation of 

geological observations 

and principles.
23

  

 

6. Incorporating interclass 

relations. 

 

 

7. Being nonlinear.
24

  

 

1. Small class 

underestimation. 

 

2. Pattern inclination.
25

  

 

1. Verification of having 

Markov property. 

 

2. Possibility of 

calculating, estimating and 

making 3D transition 

probability models. 

Amro Elfeki, Michel 

Dekking, Park E. 

Soil engineering
26

, 

hydrology
27

 and 

hydrogeology
28

, 

environmental 

problems
29

, some 

suggestion on 

petroleum problems 

applications (but not a 

real case
30

). 

Petroleum and 

reservoir problems, 

mining industry and 

mineral deposits 

(especially in 

sedimentary deposits 

or sedimentary host 

rocks), geothermal 

reservoirs and fields, 

etc. 

SALMA, CMC 2D, CMC 

3D ( MATLAB script and 

FORTRAN free codes) 

Triplex Markov 

chain geostatistics 

(TMC) 

 

1. Similar advantages of 

CMC. 

 

2. Overcoming the inclined 

patterns problem of CMC. 

 

a. Small class 

underestimation. 

 

b. Mainly applied in 2D 

problems. 

 

c. Losing the essence of 

asymmetry and 

1. Verification of having 

Markov property. 

 

2. Possibility of 

calculating, estimating and 

making 3D transition 

probability models, having 

survey measurement lines. 

Weidong Li, Zhang C. Soil engineering.
32

 

Other disciplines such 

as petroleum 

reservoirs, mineral 

deposits and mining 

problems (especially 

in sedimentary 

deposits or 

sedimentary host 

? 



 42 

directional 

dependency of MC.
31

 

 

 

rocks) and 

geothermic… 

 

Markov chain 

geostatistics (MCG) 

 

1. Similar advantages of 

CMC. 

 

2. To a much extent, 

overcoming the inclined 

patterns problem of CMC.  

 

 

3. Overcoming the small-

class underestimation 

problem of CMC. 

 

 

1. For categorical 

variables. 

2. Difficulties in taking 

a secondary variable 

into account.
33

 

3. So far, developed for 

two-dimensional 

applications.
34

  

4. Probable inclined 

patterns. 

1. Verification of having 

Markov property. 

2. Possibility of calculating, 

estimating and making 3D 

transition probability 

models. 

Weidong Li, Zhang C. 

Soil engineering
35

, 

and limited 

applications in water 

problems.
36

  

Other disciplines such 

as petroleum 

reservoirs, mineral 

deposits and mining 

problems (especially 

in sedimentary 

deposits or 

sedimentary host 

rocks) and 

geothermic… 

? 

Hierarchical 

architecture 

modeling (by: R. 

Ritzi) 

1. Suitable for continuous 

parameters. 

 

2. Taking analog information 

and hierarchical structure 

into account. 

3. Suitable when more 

categorical data than 

continuous is available. 

4. Improving variogram 

modeling. 

5. No need to curve-

fitting procedure.
37

 

 

Due to following the 

conventional framework 

of first making 

variograms the 

performing kriging…, 

faces similar problems 

of traditional methods. 

2. Having hierarchical 

structures. 

2. Verification of having 

Markov property. 

3. Possibility of 

calculating, estimating and 

making 3D transition 

probability models. 

4. Having 

information/interpretation 

about univariate statics 

such as mean length and 

proportion of categories 

and variance of 

continuous variable. 

Ritzi, R. W.; Dai, ZX; 

Dominic, DF 

Hydrogeology
38

, 

solute transport and 

environmental 

problems.
39

 

Other disciplines such 

as petroleum 

reservoirs, mineral 

deposits and mining 

problems (especially 

in sedimentary 

deposits or 

sedimentary host 

rocks) and 

geothermics, etc. 

Free FORTRAN codes and 

parameter files are 

available by Robert Ritzi’s 

group. The file have 

GSLIB format. 

Multiple-point 

statistics 

(MPS) 

MPS ( continuous) 

 

1. Ability of complex 

heterogeneity 

reproduction. 

2. Ability of incorporating 

different sources of 

information such as 

analogs and interpretations 

into account. 

 

1. Necessity of having 

training images. 

2. Computationally 

costly. 

The high effect of 

training image rather 

than available 

information. 

Having a suitable training 

image from analogs or 

interpretations. 

Considering the 

stationarity, ergodicity and 

scale and direction 

parameters properly. 

Strebelle, S.; Caers, 

J.; Journel, A. 

Hydrocarbon 

reservoirs and 

petroleum 

problems
40

, 
hydrogeological 

problems.
41

  

Other disciplines such 

as hydrogeology, 

mineral deposits and 

mining problems and 

geothermics, etc. 

snesim is an algorithm 

available in S-GEMS v. 3  

(freeware under MS 

Windows system), 

developed in C++ 

MPS (categorical) 

Bayesian maximum 

entropy (BME) 

 

BME (continuous) 

 

1. Avoiding unwanted values 

in estimation such as 

negative estimation where 

they are impossible. 

2. Nonlinear estimator. 

3. Ease of taking primary 

knowledge and different 

sources of information into 

account. 

4. No presumptions about 

data distribution nature. 

5. Producing a set of 

realizations and post-

processing. 

 

Misleading estimates are 

possible when soft data 

is of interval form.
42 

 

1. Having some idea 

about primary knowledge 

of parameters. 

2. Gathering different 

sources of information 

including hard and soft 

data e.g. in interval forms 

or distribution functions… 

Christakos, George , 

Bogart Patrik, Serre 

Mac, D’Or Dimitri 

Physical and medical 

geography, human 

exposure, earth and 

atmospheric sciences, 

environmental 

engineering, 

epidemiology, health 

sciences, risk 

assessment, and 

decision analysis.
43

. 

Other disciplines such 

as petroleum 

reservoirs, mineral 

deposits and mining 

problems … 

BMELib and its 

graphical user interface: 

SEKS-GUI 

BMELib is a free code 

developed in MATLAB 

BME (categorical) 

 



 43 

 

 

The abbreviations of the table: 

 

 
MC : Markov chains 

TP : Transition probability. 

MPS: Multiple point (geo)statistics. 

BME: Bayesian Maximum Entropy. 

IK : Indicator kriging. 

TP/MC : Transition probability Markov chain-based indicator geostatistics. 

CMC: Coupled Markov chain. 

TMC: Triplex Markov chain geostatistics. 

 

 
 

Figure 1.12 The definition of the simulation grid and cell indexes for coupled Markov chain methods in equation (1-26) (Figure adapted from Elfeki and Dekking 2001, p. 574). 
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In this equation, qklmp |,  stands for the probability of transition from class l in point (i-1, j) in row, and class m in point (i, j-1) in column, to the class k in point (i, j) given that the class (i.e. state) in the 

rightmost side (on the borehole) is q,  baZ ,  shows the state (i.e. class) in point (a, b), cS  represents the state c of a point, h

dep shows the probability of transition from state d to state e in horizontal direction, 

and
v

opp  for the probability of transition from state o to state p in vertical direction. 

 

 

 

 

 

 

                                                 
1
 Davis 2002, p.172. 

2
 Carle and Fogg 1996. 

3
 Li et al. 2004, p. 1480. 

4
 Carle and Fogg 1996, p. 472. 

5
 Carle and Fogg 1996, pp. 457, 460; Davis 2002, p. 8.  

6
 Carle 1999, p. 46. 

7
 Elfeki and Dekking 2001, p. 573. 

8
 Park et al. 2005, pp. 194-196; Elfeki and Dekking 2001,  pp. 578-579. 

9
 Li et al. 2007, p. 325. 
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10

 Li 2007, pp. 326-329. 
11

 Dai et al. 2005, p. 1. 
12

 Dai et al. 2005, p. 5; Ritzi et al. 2004, pp. 9-10. 
13

 Strebelle 2003, p. 1. 
14

 Christakos 2000, p. 90; D’Or 2003, p. 20. 
15

 Christakos 2000, p. 250. 
16

 Carle 2008, pp. 3-4. 
17

 Carle and Fogg 1996, p. 472. 
18

 Lee et al. 2007 and Fleckenstein et al. are examples. 
19

 Rubin et al. 1996 as an example. 
20

 Park et al. 2004 as an example. 
21

 D'Or 2004, and Bennett 2006 as examples. 
22

 For example in Bohling and Dubois 2005. 
23

 Park et al. 2005, p. 1. 
24

 Li 2007, pp. 573-577. 
25

 Li 2007, p. 576. 
26

 Park et al. 2007 as an example. 
27

 Elfeki 2006-a as an example. 
28

 Dekking et al. 2001 as an example. 
29

 Elfeki 2006-b as an example. 
30

 Elfeki et al., 2002 as an example. 
31

 Park et al. 2007, p. 910. 
32

 Li et al.  2004 as an example. 
33

 Li and Zhang 2007, p. 578. 
34

 Li and Zhang 2011; Li and Zhang 2007 as examples. 
35

 Öli and Zhang 2008 as an example. 
36

 Li et al. 2001 as en example. 
37

 Dai et al. 2005, p. 11. 
38

 Sun et al. 2008 as an example. 
39

 Ramanathan et al. 2008 as an example. 
40

 Caers et al. 2000 and Hoffman et al. 2005 as examples. 
41

 Feyen and  Caers 2006, Huysmans and Dassargues 2009 as examples. 
42

 Orton and Lark 2007, p. 68. 
43

 Christakos 2000. 
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 Considering the mentioned advantages of using geostatistical methods, the traditional 

geostatistical analyses as well as the transition-probability Markov chain (TP/MC) 

method were examined in this study. 

 The main objective of the study was to evaluate the capability of using geostatistical 

methods in modeling the subsurface categorical parameters. 

 It should be emphasized here again that the investigated sediments below the surface and 

above the hard rock was referred as “soil” in this context. 

  The first step was to classify the soil samples on the basis of the DIN 18196 German 

standard for geotechnical soil classifications. For each soil class, a code was given 

between 1 and 5 (though, only classes 1 to 4 exists in limits of present study zone) 

representing its geotechnical class according to Table 1.1 and Table 1.2.  

 Then, the study zones were chosen and separated. The separation of the zones was done 

to achieve a better stationarity as well as to take some geological information into 

consideration.  

 Along each borehole, the data of the observed soil types was then re-sampled in every 

0.5m and stored in a file. Then, to each re-sampled point, the indicator values (Ik) were 

assigned for every soil class. The estimation and sample coordinates were moreover 

transformed proportional to the top and bottom surfaces of the investigated layer. 

Afterward, the experimental indicator variograms of each soil class in different directions 

were calculated and modeled. As expected, an important zonal anisotropy between the 

horizontal and vertical directions of the variograms of each soil category was obvious. 

Subsequent to fitting models to sample variograms in various directions, three-

dimensional variogram models of each soil class were inferred considering the mentioned 

anisotropy. The probability of the occurrence of each soil class then was calculated using 

the indicator kriging (IK) method. In each estimation point, the class that held the highest 

estimated probability (from the IK method) was assigned as the estimated soil class to 

that location. Finally, the estimation grid (i.e. the relative stratigraphic coordinate) was 

back- transformed to the original one.  The estimation models were also validated an 

improved when necessary. These (variogram) models were applied to generate 

geostatistical simulations using the sequential indicator simulation method (SISIM). The 

realizations of the SISIM method were then assessed for their quality of statistics 

2. The general workflow of the geostatistical 

subsurface modeling in Göttingen test site 
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reproductions and geological soundness. The best produced realizations were also chosen 

based on the statistical and geological criterions. Similarly, the transition probability 

Markov chain method was performed by calculating and modeling the transition-

probabilities among all soil classes.  

 The Markov chain models were fitted, after that, to the sample transition-probabilities of 

the soil categories. Then some steps of simulation optimizations (simulated annealing or 

quenching) were also performed. Figure 2.1 summarizes the mentioned stages for the 

present analyses. 

 

 

 

Figure 2.1  General workflow of geostatistical modeling stages of Göttingen test site. 
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2.1. The investigation site and data 
 

 As explained before, the study area is located near the city of Göttingen in Lower Saxony 

province (Niedersachsen) of Germany (see Figure 1.1).  

A part of the whole area was selected as a test site to evaluate the capabilities of the 

geostatistical modeling methods in similar modeling projects. The study site was then 

separated into some sub-zones to achieve better modeling results. 

Modeling of all parts of the test site, at once, might ignore some points about 

geostatistical modeling perquisites such as: 

(a) Geological reliability: assigning the characteristics of geologically too different 

zones in one geostatistical modeling round, might lead to inaccurate models in 

geological point of view. 

(b) Stationarity: the first basic assumption in all geostatistical analysis is stationarity. 

Therefore, the modeling zones must be as homogenous as possible and the 

average frequency of each soil class must be as constant as possible over the 

modeling zone. 

 

For those reasons, it is geostatistically more appropriate to differentiate stationary sub-

volumes prior to the modeling practice. Since the separation of the reasonable geo-

engineering sub-volumes had already been accomplished by a comprehensive 

interpretative manual preprocessing of the available borehole data, as well as the 

derivation of a structural model, the application of the pre-defined layers was not an 

unusual practice. In addition, these layers were defined according to their geological-

genetical relations, which ensure a fine linkage between the geological and geotechnical 

characteristics. 

  Initially, a pilot area with the X-coordinate ranging from 355800 to 3567000 meters and 

Y- coordinate ranging from 5710925 to 5712500 meters is selected to examine the 

efficiency of the proposed methods. In addition, to certify the geostatistical stationary 

conditions in the models, the study zone was limited to the Pleistocene layer 5.  

  

Figure 2.2 represents the locations of the boreholes in three-dimensional view. Figure 2.4 

and 2.5 also demonstrate the location map of the boreholes and the mode class of the soil 

categories (cluster numbers) in each borehole inside the mentioned layer. In other words, 

in this two-dimensional map, the classes of the soils with the highest frequency in every 
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borehole, is illustrated. Therefore, it can reflect how the major prevailing soil classes are 

distributed across the study zone in a two-dimensional view. 

Then it was decided to limit the study part to the eastern basin of the mentioned site and 

the slope sides of the basin were cut and the study zone was limited to the X-coordinate 

ranged from 3560022 to  3566746  and the Y-coordinate ranged from  5710925 to 

5712500 meters (Figure 2.5). 

 

 

 

Figure 2.2  Southeast thee-dimensional view of the study area and the drilled boreholes locations 

applied in this modeling, with 20 times exaggeration in the vertical direction (Wagner et al. 2007). 
 

Following, the procedure and the reasons of choosing the mentioned zone and layer have 

been elaborated: 

 

2.1.1.  Choosing the layer unit 5 

 

 Layer 5 (Pleistocene solifluction soils, river gravels and sand as well as fan deposits) was 

chosen to be the first layer to parameterize as it is besides local exceptions the base layer 
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of the Göttingen model. The exceptions are local subrosion structures where also 

interstadial sediments with geotechnically critical characteristics were preserved. Because 

these structures are penetrated by only few boreholes, geostatistical modeling is not easy 

there (Wagner et al. 2007). 

However, among the Layers 1 to 5, the Layer 5 is the most complex with respect to the 

grain size distribution which is one of the key parameters for geotechnical 

characterization and classification. Grain size bandwidth in the other layers is much 

narrower which is likely to result in geotechnically more homogeneous soil types.  To 

evaluate the distribution of geotechnically relevant parameters in Layer 5 and to extract to 

some extent geological information at the same time, the German geotechnical soil 

classification standard of DIN 18196 was selected in a first approach for geotechnical 

parameterization. Since the Layer 5 was additionally separated into several subunits 

according to the local major sedimentation regimes, the Leine sub-basin in and around the 

inner city was selected as a training area, leaving areas with solifluction soils and low 

thickness on the hill slopes unconsidered (Wagner et al. 2007). Additionally, it is rather 

impossible to establish a proper correlation between those soils and the central basin part. 

For the same reason, too deep and narrow structures were excluded to increase the degree 

of lateral correlation (time/genesis), because they may have served as trapping structures 

for sediments of older ages. 

Naturally the expectation was that the correlation among the points of the selected volume 

must be higher considering the genesis of the sediments. The improvements in the 

variograms observed after limiting to the mentioned layer, verified this expectation.  The 

reason why focus of the study was drawn to the lowermost layer was that the upper layers 

were more homogenate where the fine materials were dominant.  The other reason for 

focusing on the lowermost layer was the existence of the anthropogenic materials in the 

upper layers that make them too complicated to model and consider /find spatial 

variability structure to use geostatistical analysis. 

 

2.1.2.  Grid transformation 

 

  It is essential to consider that, most of the geostatistical methods require the re-definition 

of the coordinate space if the modification of the thickness and dipping of the 

sedimentary layers is significant within the extent of the model (Deutsch 2002, pp. 85-
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88). This considerable dipping or changes in the strikes of the geological structures may 

considerably decrease correlation in horizontal direction.  

 On the contrary, the transformation into a new coordinate system may not meet all the 

internal structure variations of a sedimentary body and may therefore lead locally to non-

optimal estimations. In fact this makes the appropriate selection of a coordinate 

transformation on the one hand a crucial step in the geostatistical modeling and on the 

other hand should be seen as the best compromise to deal with the whole sedimentary 

body (Deutsch 2002, pp. 85-88). The bigger volumes obviously, contain more data and 

are statistically more reliable. In crucial cases one would have to subdivide a volume 

again.  

  

Figure 2.6 represents the Z-coordinate transformation with four different scenarios. In this 

study, the selected scenario for Z-coordinate system was according to case B of  

Figure 2.6 which has been suggested to be the best approximation for the lateral 

correlation of the sedimentary layers in such cases. According to this scenario in this 

study, to make a better stratigraphic continuity model among the relevant points 

(considering the genesis of the geological structures), the estimation grids were 

transformed into a new grid system proportional to the top and bottom surfaces of the 

Pleistocene layer.  Such a grid is more appropriate for making a detailed three-

dimensional facies model (Deutsch 2002, p. 89). The reason is that the sedimentation, 

compaction, and consequent deformation of the sediments can cause a sort of proportional 

layering between the top and bottom surfaces. It has been considered that no significant 

erosion stage has been occurred and this inference makes sense due to the young age of 

the sediments. Therefore, it is anticipated that the stationarity assumption should become 

stronger after such transformation. A test on the variograms without transformation 

represented non-stationary-like and more vague variograms (see Figure 2.3).  
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Figure 2.3  Horizontal sample variograms of the four geotechnical soil categories without vertical (Z) 

co-ordinate transformation (i.e. in original Z system), plotted in three directions; red representing the 

NS direction, blue representing the EW direction, and black representing the Omni-directional 

variogram. The horizontal solid black line represents the expected sills of each sample variogram. 

 

 

Figure 2.4  Location map representing the mode clusters (soil classes) of the Pleistocene layer in pilot 

zone in eastern and western basin of Göttingen soils project area (488 boreholes) excluding too deep 

samples (from the deep holes). Colors show the mode cluster (most observed) soil class in each 

borehole. 



 52 

 

 
 

Figure 2.5  Location map representing the mode clusters (classes) of the Pleistocene layer in pilot zone 

in Eastern basin of Göttingen soils project area (188 boreholes) excluding too deep samples (from the 

deep holes).  Colors show the mode cluster in each borehole.  

 

 As it is evident in Figure 2.3, they either show a constant increasing or straight trend of 

the variograms that exceed or fall more above or below the global estimated variogram 

sill based on the soil-class proportions ( )1( ppsill ) and in general much vaguer 

structure than those with the transformed grids (Figure 3.1). This phenomenon could also 

affect the results in the estimation and simulation stages in which the non-relevant or less 

relevant points could be accounted for estimating/simulating the unknown points in the 

IK, SISIM, or TP/MC methods, when no transformation is performed.  

 

The grid transformation was performed on the borehole elevation (Z) coordinate using the 

following equation (Deutsch 2002, p. 88): 

)(

)(

bottomtop

bottomp

averagerelative
ZZ

ZZ
TZ   (2-1) 

 

 where relativeZ  is the transformed Z (elevation) value for an initial point on the borehole 

(i.e. pZ ),  topZ and bottomZ  are the corresponding images of the mentioned point on the 

upper and lower surfaces of the bounding layer, respectively, and averageT is the mean 

thickness of the Pleistocene layer in the study area. 
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Figure 2.6  Various gridding systems for geostatistical modeling in different geological scenarios 

(Falivene et al. 2007, p. 203). 
 

In order to make a grids transformation proportional to the top and bottom of the layer 5, 

the first step was to estimate the mean thickness of the layer over the investigation zone. 

Therefore, in the single boreholes, the thickness of the layer in each borehole was 

calculated as: 

  Thickness= (Top elevation of the layer)-(Bottom elevation the layer) (2-2) 

 

For the 188 boreholes, the arithmetic mean of the observed thickness of the study layer in 

each borehole was calculated and considered as an estimation of the mean thickness of 

the investigated layer, i.e. averageT =6.7397 m (approximately). 
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 For any existing point then the grids transformation was performed according to equation 

(2-1). 

 

2.1.3.  Considered soil classes   

 

According to the classification scheme applied here, the soil classes 6 and 7 belong 

respectively to the artificial fillings and hard rock groups, and did not exist in the 

modeling zone. In addition, the soil class 5 that belongs to the group of organic materials, 

were absent in the selected zone (i.e. the eastern basin and layer 5). The observations of 

the soil class 4, which represents the freshwater limestone or sediments with some 

organic constituents, were very limited and isolated. In addition, their samples are more 

prone to the uncertainties due to some reasons that are explained briefly here. It is 

probable that some sediment was brought from the upper layers to the lower layers during 

the drilling process because the materials were unconsolidated. In addition, the log-

recorder staffs might have made some mistakes in the interpretations of the samples, for 

example magnesium oxides that have black appearance might have been mistaken with 

the organic materials.   

 Because the boundaries of the layers were drawn based on; available samples, geological 

evidences, and interpretations, it is also possible that the interpretation of the boundaries 

were not completely exact or they maybe not absolutely sharp. Therefore, some sediment, 

especially near the boundaries of the layers that might belong to another layer, might be 

wrongly considered in the other layer. 

 

2.1.4.  Separating the slope sides of the basin  

 

 According to the geological interpretations, the solifluction soils can be found just in the 

upper basin sides where the sediments were entered into the basin.  The soilfluction soils 

are the soils or materials found in “the slow downhill movement of soil or other material 

in areas typically underlain by frozen ground” ("Solifluction." The Free Dictionary. 

Farlex, 2009
1
). Therefore, these sediments do not belong to the channel sediments. Figure 

2.7  illustrates the solifluction phenomenon in a schematic section.  

                                                 
1
 The Free Dictionary. Farlex, 2009. Web. Winter 2011. 

<http://www.thefreedictionary.com/solifluction>. Originally has been taken from: The 
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Figure 2.7  A schematic illustration of solifluction materials, their location, and formation 

(Solifluction [Solifluction or Frost Creep (example)]. Copyright 2000-2001. Photograph (Image). Index 

of Teacher, Geology 12, Photos, Belmont Secondary School. Web.).  

 

 

 On the other hand, due to choosing a relative grid system in the vertical direction, the 

density of the grids would become too high in the slope sides, which does not seem so 

reasonable. Therefore, due to the lower sampling rates in the basin sides and to prevent 

mixing the geologically different pieces of the model with on another, it was decided to 

eliminate the basin sides from this model and do the modeling for them, separately. 

 

 

2.1.5.  Choosing the eastern basin  

 

 As mentioned before, the test site was limited to the eastern basin or in other words to the 

eastern part of the primarily selected rectangular zone ( 

Figure 2.5).  

 There were mainly two reasons for doing so; first, getting a better stationarity with 

considering a more relevant and similar points in a modeling run because the conditions 

of the eastern and western basins are certainly different, and second, dealing with a higher 

heterogeneity in the eastern basin (with a higher basin energy during the sedimentation) 

created the sedimentary patterns during the deposition.  Therefore, the eastern basin with 

a much higher heterogeneity needed a more precise modeling and evaluation. 

                                                                                                                                                  

American Heritage® Dictionary of the English Language, Fourth Edition copyright 

©2000 by Houghton Mifflin Company. Updated in 2009. Published by Houghton Mifflin 

Company 
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2.1.6.  Summary statistics of the data-sets in Göttingen test site 

 

 The aim of this section is to evaluate the main features and behaviors of the existing data-

sets. The general statistical evaluations can be discussed in two main sections; univariate, 

and bivariate statistics. 

 

Table 2.1  Summary statistics of the main two-dimensional parameters. 

 

     
             Parameter 

 
   Statistics 

X Y Top Bottom Thickness 

Min.* 3563590 5710945 140.2 127.2 0.2585 

1st Qu.** 3564095 5711369 142.9 134.6 3.8632 

Median 3564455 5711818 144.0 137.6 6.6319 

Mean 3564510 5711754 145.2 138.4 6.7397 

3rd Qu.*** 3564864 5712137 145.9 141.3 9.3086 

Max.**** 3565550 5712472 161.3 160.4 17.8204 

* Minimum., ** First quartile, *** Third quartile. *** Maximum. 

 

(1) Univariate statistics of the data-sets in Göttingen test site: 

  In this section, first of all, there is a general glance at the statistics of the main two-

dimensional parameters of the borehole data in the study zone, including X, Y, Top 

(elevation of the top of the layer 5 observed in the boreholes), Bottom (elevation of the 

bottom of the layer 5 observed in the boreholes), and Thickness (of the study layer). Table 

2.1 summarizes these statistics. 

One of the parameters that can be inferred from this table is the average thickness of the 

layer which is used in the grid transformation stage. Another important univariate statistic 

for the three-dimensional modeling of the soil classes in this study, especially for the 

geostatistical simulations, is a representative histogram of the soil classes or the 

proportions of each soil class.  
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Figure 2.8  The weighted histogram of the soil classes derived from the input data after de-clustering 

 

 

  This histogram should be a true representative of the volumetric proportions of the soil 

classes in the study zone.  Actually, the simple histogram of the soil-class data from the 

boreholes does not reflect a proper estimation of the real volumetric proportions of the 

soil classes and needs some corrections.  

 

  In addition to the fact that the sampling is not exhaustive, two other factors can mainly 

affect the histogram of the borehole data to become non-representative; first, a clustered 

distribution of the boreholes over the study zone, and second, the grid-transformation 

before the modeling course. In spite of the fact that the clustering of the boreholes in this 

case was not too high, the effect of the change in the support of the samples in the vertical 

direction (the representing volumes of the samples) after grid transformation was 

significant and could also be considered with declustering algorithms like cell-

declustering method. More details about the declustering are explained in Deutsch 2002, 

pages 50 to 63. The only problem with the cell-declustering method is that, it depends 

considerably on declustering parameters defined in the algorithm and can produce various 

results with various declustering parameters. Once with an optimum selection of the cell-

declustering parameters, and once with only modifications related to the vertical 

transformation of the modeling grid (for correcting the representing volumes of the 

sample cells), the proportions of the soil classes were calculated and compared together. 

The results were very similar. As mentioned before, because of the lack of a considerable 
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clustering of the boreholes, the estimation of the proportions by only vertical grid-

transformation corrections, should have given a proper estimation of the soil-classes 

proportions. This inference was verified by matching the results produced by cell-

declustering and calculating the proportions only with corrections for vertical 

transformations.  

 Figure 2.8 illustrates the borehole samples histogram after declustering. Table  2.2 

summarizes the frequencies and proportions of the soil classes achieved from 

compromising the results from the two mentioned methods.  

 

Table  2.2  Representative frequencies and proportions of the soil classes based on the observations in 

the boreholes with modifications using declustering and considering the representing volumes of each 

sample after grid transformation 

 

Soil classes Frequencies Proportions (p) 

Cl1 627.790 0.372 

Cl2 714.020 0.423 

Cl3 339.29 0.201 

Cl4 6.750 0.004 

 

 

(2) Bivariate statistics of the data-sets in Göttingen test site: 

 

 In this section, the aim was to assess the dependence between the pairs of the parameters 

and their changes when another one is changing. In cases, these studies can be applied to 

get a feeling of a probably existing trend in the data-set over the study area as well. 

  Scatter-plots of the soil classes (clusters) versus the X, Y, and Zrelative coordinates, show 

the distribution of different soil classes in various parts of the study site.  

 Scatter-plot of the soil clusters along the X-coordinate represents that in general there 

were no considerable preferential distribution of the clusters across different X-coordinate 

zones (Figure 2.9). Soil classes 1 and 3, tend to occur more in the middle of the basin. 

Soil class 2, was distributed nearly all-over the site and soil class 4 was observed around 

few points in the middle. The distribution of the soil classes across the Y-coordinate was 

even more homogeneous and covered nearly the full range of Y changes (Figure 2.10).   

Class 4, was again observed around few points slightly tending to be less isolated to the 

North. The distribution of the soil classes was even more monotonous relative to the 
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Zrelative coordinate. Only the few observations of the class 4 had a slight tendency to occur 

in the more superficial parts (Figure 2.11). These scatter-plots verified, in general, the 

lack of a considerable trend across the coordinates of the study zone. Though, the 

indicator variograms also can reflect the existence of an important trends when exist. As 

discussed in the next sections, the indicator variograms also did not reflect a significant 

trend in transformed grid in this survey.  

It should be considered that the evaluated behavior of the categorical variables in the 

scatter-plots can not be assessed by the common methods applied for the continuous 

variables. Yet, some similarities could be suggested in the evaluations of these two data 

types. 

 About the other factors (continuous parameters), as expected, the top and bottom surface 

elevations of the layer were strongly (i.e. R>0.8) correlated (Figure 2.12). Naturally, it 

means that the top surface goes higher when the bottom surface does so and vice versa. 

The bottom elevation is also strongly but negatively correlated (R< -0.8) with the 

thickness of the layer (Figure 2.14). These strong correlation was significant even with a 

very low significance level such as ( =0.0001) due to the rather large number of 

observations. It means that, the layer is thicker where the layer is deeper. 

 Although the top elevation also had a negative correlation with the thickness of the layer, 

this negative correlation was weak while significant even with very low significance 

levels like ( =0.0001). Hence, the layer is thicker wherever the (top) surface of the layer 

goes higher and vice versa.  

 

 

Figure 2.9  Scatter-plot representing the occurrence of soil clusters along the X-coordinate. 
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Figure 2.10  Scatter-plot representing the occurrence of soil clusters along the Y-coordinate. 

 

 

 

Figure 2.11  Scatter-plot representing the occurrence of soil clusters along the Zrelative-coordinate. 

 

 

 

 

Figure 2.12  Scatter-plot of the top versus bottom elevation surfaces elevations of the study layer. 
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Figure 2.13  Scatter-plot of the top elevation versus Pleistocene layer thickness (the study layer). 

 

 

 
 

Figure 2.14  -plot of the bottom elevation versus Pleistocene layer thickness (the study layer). 

 

 

The determination of the significance level of a Pearson correlation coefficient has been 

explained in many statistical resources and textbooks (e.g. McKillup and Darby Dyar 

2010; Davis 2002). 
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3.1.  Overview 
 

As explained before, the indicator kriging (IK) can be applied to estimate the existence 

probability of every available soil or facies category in an unknown point of the model. 

To do so, the indicator variables were assigned at the sample points for each soil class. 

Hence, the indicator value of a soil class which exists at a sample point, were equal to one 

(i.e. I=1) when that category existed at the sample point and zero (i.e. I=0) otherwise. 

These indicator values in the transformed grid system (see Section 2.1.2) were applied to 

calculate the sample indicator variograms of each category and fit the proper analytical 

models to them. The variogram models were then evaluated and improved using cross-

validation and jackknife criteria.  The fine-tuned models were then employed to do IK 

estimations for each soil class. The outcomes of these estimations were the probabilities 

of the existence of each soil category at each estimation point. To achieve the final IK 

model, the soil category with the highest estimated probability of existence (obtained by 

IK estimation) was assigned to each estimation point. A simple MATLAB code written 

by the author of this thesis was applied for this purpose. The final soil-classes model was 

evaluated statistically/geostatistically for histogram- and indicator variograms-

reproduction and geologically for its matching to the geological interpretations. Finally, 

the estimation results were brought back into the original gird system and represented by 

gocad software. 

 

 

3.2.  Variograms and spatial variability modeling 
 

3.2.1.  Introduction  

 

 As stated previously, after assigning the indicator values (Ik) to all sampling points for 

each geotechnical soil class k, the first step in geostatistical analysis was to calculate the 

indicator variograms of each soil class and in different directions. Figure 3.1 represents 

the sample indicator variograms of the soil categories in various directions and their fitted 

models.  The main directions considered for calculating the variograms were North-South 

3. Indicator kriging (IK) analysis in the Göttingen 

test site 
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(N-S), Northeast-Southwest (NE-SW), East-West (E-W), Southeast-Northeast (SE-NW), 

and Omni-directional, for horizontal directions (0, 45, 90, 135, and all-directions azimuth 

and tolerance), as well as the vertical direction. The sample horizontal variograms do not 

prove any obvious horizontal anisotropy. This phenomenon can be due to the lack of 

sufficient data in the horizontal direction to infer any probably existing horizontal 

anisotropy. Therefore, the existence or lack of any anisotropy in the horizontal direction 

could not completely be verified or rejected in this case. Due to the slight differences 

among the sample variograms in horizontal directions and lack of clear significant 

detectable horizontal anisotropies in them, together with the lack of a certain and clear 

evidence for such anisotropy direction based on the geological interpretations, they were 

modeled by isotropic models in horizontal direction. 

Obviously, in the variograms according to the horizontal and vertical variogram graphs, a 

significant zonal anisotropy is evident. The horizontal variograms have a nugget effect 

while the vertical ones either do not, or have only very little ones, and the sills and ranges 

are also different between the horizontal and vertical directions. For modeling such a 

zonal anisotropy in the indicator variogram of a soil class, an appropriate solution, could 

be trying to reflect the nugget effect of the corresponding horizontal variograms on the 

sill of each vertical variogram. The reason for doing so is that, the vertical variograms 

reflect the spatial variability in short distances whereas the horizontal ones reflect the 

long-distance spatial variations. The prospect is that the indicator variograms should not 

reach their expected sills fully in vertical directions (due to the incomplete coverage of 

the data variations in their plotting ranges) while they should reach their expected sill in 

the horizontal directions that have a much bigger coverage of the data variations. The 

evaluation of the characteristics of the horizontal and vertical indicator variograms 

confirms these expectations. Therefore, as an initial check, the expected sills for the 

indicator variogram of each soil category were calculated having their global proportions. 

The expected sills for the mentioned indicator variograms of each soil category were 

calculated by: 

)1( ppc  

in which c  stands for the expected sill, and p  is the proportion of the corresponding soil 

category. 
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Figure 3.1  Experimental and model indicator variograms of geotechnical soil classes 1 to 4, in 

horizontal and vertical directions (left-side and right-side graphs, respectively). Red, purple, green, 

gray, and blue solid lines in horizontal variograms represent N-S, NE-SW, E-W, SE-NW, and Omni-

directional variograms, respectively. In the vertical variograms, red lines represent the sample 

vertical variograms. The black dashed lines show the model variograms for both vertical and 

horizontal variograms. 

 

 The model variograms which have been obtained from the combination of the horizontal 

and vertical model variograms sometimes go beyond the theoretical sill. However, in their 

effective ranges, they are very well in accordance with the experimental variograms and 

expected sills. For making the variography clearer, the Omni-directional variograms also 
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have been represented in Figure 3.2, which has been used as the basis for building the 

three-dimensional models since the horizontal variograms were modeled isotropically. 

 

 

 

 

 

Figure 3.2  Experimental and model indicator variograms of geotechnical soil classes 1 to 4, in 

horizontal and vertical directions (left-side and right-side graphs, respectively). Blue solid lines in 

horizontal variograms represent Omni-directional variograms. In the vertical variograms, red lines 

represent the sample vertical variograms. The black solid lines show the model variograms for both 

vertical and horizontal variograms. 
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3.2.2.  The place of interpretations in variogram modeling 

 

 Variogram (or more specifically indicator variogram in this case) is one of the most 

essential bases in geostatistical modeling practice. This crucial importance is not only for 

the reason that variogram serves as a spatial variability analysis and quantification means 

but also its analytical model is an important perquisite for the majority of the 

geostatistical estimation and simulation methods (Gringarten and Deutsch 2001,p. 507). 

When talking about the variogram modeling, the aim is to find an optimal analytical 

variogram model which is a permissible model that at the same time conforms to the 

observations and any ancillary information about the phenomenon (Goovaerts 1997, p. 

97). 

The requirement of the application of analytical variogram models as well as the meaning 

and necessity of the permissibility of the variogram models have already been explained 

from page 26 (part ((f)) from section 1.4.2). 

 By choosing the known permissible variogram models or their combinations, the 

permissibility condition of the variogram model is guaranteed.  For the second 

prerequisite, i.e. their matching with the observations and other types of available 

information, there are two sources; available data-sets, and interpretations (or the experts’ 

knowledge and opinions). 

 To ensure that the variograms conform to the attribute data, one can try to fit a variogram 

model with the least deviation of the model from sample variogram values.  In this regard, 

more stress should be given to the sample variogram values calculated with a more 

numbers of point-pairs. The sample variogram points near the origin which reflect the 

main shape and slope near the origin as well as the nugget-effect of the variogram are also 

very essential (Chilès and Delfiner 1999, p. 104 , Armstrong  1998, p. 53, and Morgan 

2011, p. 61). However, there is still a big uncertainty in variogram modeling. For 

instance, a single sample variogram can be modeled with a range of analytical models and 

with different parameters in each.  

 Another approach to evaluate the quality of the variogram models and possibly improve 

and optimize them is to implement the cross-validation technique. The variogram 

modeling is rarely a final goal in geostatistical analyses. The ultimate objective is usually 

to do optimal and precise estimations and simulations of the attributes such as the existing 

soil type in a point or the porosity of a layer. More details about the cross-validation 
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method will be discussed later. In fact, in cross-validation, the attempt is to optimize the 

variogram and estimation models to obtain more precise estimations (Goovaerts 1997, p. 

105). However, the data from samples can rarely reflect sufficiently the existing 

geological, structural, and other facts about the phenomenon under study. For the models 

of this study to become more consistent with the existing and plausible three-dimensional 

geological continuities, the geological interpretations also were deemed. In other words, 

the linkage between the geology and the variogram behavior should be understood very 

well before and during the variogram modeling. For example, about choosing a suitable 

variogram model that conforms to the reality, the following points can considered: 

(a) The nugget effect: is related either to the short-scale variations or the uncertainty 

and measurement errors. The quantity of the nugget effect should be decided 

according to the nature of measurements and the expected short-scale variations. 

The higher the short-range variations or measurement errors, the bigger a nugget 

effect should be considered in the variogram model (Gringarten et al. 2001). 

(b) The hole-effect model and periodicity: undulations in a sample variogram can be 

a sign of cyclic structures and periodicity. A question may be raised in this case: 

according to the existing evidences from the reality or according to what the 

expert believes, is the periodic structures really expected about the variable which 

is being modeled?  The existence of a periodicity should be confirmed by 

interpretations prior to decision of fitting a hole-effect model to such variograms 

(Gringarten et al. 2001). 

(c) Anisotropies: a geometric anisotropy is reflected in the medium-scale variances 

with different variogram ranges in diverse directions. When non-isotropic 

features, for example elongations in specific directions are expected, the 

geometric anisotropy can be verified. Specially, in the case of insufficient 

observations that reflect a clear anisotropy in the sample variogram, a priori 

knowledge about the phenomenon and its geology can be helpful for deciding 

about the geometric anisotropies. In large-scale variances, when a variogram does 

not reach its full theoretical sill, a zonal anisotropy is speculated. A full variability 

range observation of the attribute is not expected in the corresponding direction of 

the mentioned variogram in such cases. The geological interpretations should 

verify the zonal anisotropy when fitting such anisotropic models (Gringarten et al. 

2001). 
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More discussions and details about the guidelines of the three-dimensional sample 

variogram interpretation and modeling are elaborated in Gringarten et al. 2001. 

In the case of this study, the structures of the sample variograms and their 

interpretations were discussed in the project team to verify the geological soundness 

and agreement with the expected patterns prior to and after modeling the sample 

variograms. Hence, the variogram models were confirmed for their accordance to the 

geological interpretations (Gringarten et al. 2001, p. 526). 

 

3.2.3.  The validation of the indicator variogram models 

 

Before any estimation and simulation stage, the variogram models should be evaluated, 

validated, and in the necessity case, should be improved. 

To ensure that the variogram models being applied in the estimation and simulation stages 

are reliable and appropriate, the variogram models have to be validated first. The 

validation of the variogram models was done in this study using the two validation 

methods of; cross-validation, and jackknifing to evaluate the impact of using different 

variogram models or variogram parameters on the estimation models.  

 When using the cross-validation and jackknifing methods, it should be considered that, 

the cross-validation method is not necessarily sufficient to decide whether or not a 

variogram model and estimation parameters are optimal in modeling or estimation 

problems (Goovaerts 1997, pp. 105-106). For example, the re-scaling of variogram 

models does not affect the kriging weights and hence cross-validation of variogram sills is 

not possible by this method. More details about such shortcomings of the cross-validation 

method have been discussed in Goovaerts 1997 (pp. 105-106). 

 

(a) cross-validation: 

 

In cross-validation which is a “leave-one-out” technique, each sample (with the known 

variable) is omitted once and its value is estimated using the rest of the observations with 

different variogram models or various model parameters. This procedure is conducted for 

all the available samples. Cross-validation can be applied to assess the goodness of the 

variogram models for the subsequent estimation stages (Goovaerts 1997, pp. 105-106). 

Cross-validation was also applied here to verify the quality of the variogram models 
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employed in geostatistical simulations. After conducting cross-validation using the 

GSLIB software, the estimated and true (known) values in the entire sample locations 

were compared together using a number of different tools. For example, in the continuous 

variables, creating the scatter-plot of the true versus estimated values is a common way to 

evaluate the results of a cross-validation. In the case of using the true versus estimated 

cross-validation scatter-plot, the points of the plot should ideally fall on the 45-degree line 

crossing from the origin of the coordinates, ideally the correlation-coefficient should be 

one and the averages of the estimated and true values should be the same. In practice, the 

ideal conditions are almost never met. However, the closer the scatter-plot, correlation 

coefficient, and the variable means to the ideal case, the better the quality of the models. 

This test were done for different models, different model parameters, and even for 

different estimation parameters such as the search radius and so on, to achieve the best 

estimation models and estimation parameters. 

 Another approach to evaluate the cross-validation results of the variograms/estimation 

models is to plot the histogram of the errors. The error is defined here, as the difference 

between the true and estimation values:  

Error= true-estimate  (3-1) 

 This histogram should ideally represent a very narrow, symmetric, and zero-centered 

shape (i.e. the mean of the errors equals to zero), that reflect the lack of a significant and 

systematic error in the estimations. 

 In the categorical data-sets such as the facies or soil types, the cross-validation method is 

somehow different. An alternative to cross-validation of the indicator variogram models 

for the indicator kriging method could be the cross-validation of the sample indicators (Ik) 

of any soil class (k) versus the estimated probabilities from the indicator kriging 

estimations. In this case, the estimated probabilities of the soil classes form the indicator 

kriging method is compared to those of the original data which are 1 where a soil class 

exists, 0.5 where it was suspicious to belong either to the mentioned soil class or to 

another one (unsure case), and 0 when that class did not exist at that location. This 

criterion can be evaluated using a scatter-plot of the predicted (using the indicator kriging 

technique) versus the actual probabilities (from data). Then, the distribution of the scatter-

plot points around the 45-degree line could be assessed using a similar framework to that 

explained for the continuous variables (Deutsch 2002, pp. 304-308). However, this 

approach contains an essential drawback in the estimation of the categorical variables 

because the final goal in the indicator kriging of the categorical variables is not to 
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estimate the probabilities of the soil classes precisely. In fact, the real objective in such 

problems is to estimate the soil types at unknown locations correctly. In other words, the 

rank of the estimated probably of each soil category at each location as a representative of 

the category which is going to be assigned to each location, are more critical than the 

probability values themselves. For instance if the probability of the existence of a soil 

class, let say k , in an estimation position is the highest compared to those of the other soil 

classes, then the conclusion will be that the existing soil category at that point is the soil 

class k .  

 In this study, to perform this form of the cross-validation for the categorical variables, the 

estimated soil class (i.e. the most probable soil class) was compared to the true existing 

soil class in all sample locations. Then, the ratio of the correctly estimating the true soil 

class in sample locations was calculated for the model. Another criterion considered for 

the evaluation of the quality of the estimations was the average probabilities of the true 

classes (Deutsch 2002, pp. 304-308). Hence, this average will be high when the 

probabilities of the true class are also high: 
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In this equation (Deutsch 2002, p. 308), C denotes the closeness measure that quantifies 

how accurate the probabilities are for the true classes, );( kup i  is the probability of the 

true class achieved from the indicator kriging during the cross-validation process at the 

estimation location of iu , and k  is the true class exists at that location.  

An important point in the cross-validation of a three-dimensional well-bore data-set is 

that if the “leave-one-out” approach is applied in a sample-by-sample way, the goodness 

of the estimations will normally be evaluated as being quite higher because the samples 

are much denser in the vertical direction and the estimation will be affected most by the 

samples with very near distances to the estimation point. Therefore, the probability of 

correctly estimating the classes will be evaluated as noticeably high as well.  To solve the 

problem of overrating the rightfulness of the soil categories estimations, an alternative 

method is to use the cross-validation method well-by-well instead of point-by-point. In 

other words, in every estimation step during the cross-validation, all the points of a well is 

omitted and estimated using the neighboring points from other boreholes and so forth for 
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the other wells to the end of procedure. Table 3.1 summarizes the cross-validation of 

indicator variograms and estimation models. These results were applied to evaluate the 

goodness of estimation models which were employed in the indicator kriging of the soil 

categories in present study. 

 Because the soil categories were represented by the consequent numbers (i.e. 1, 2, 3, 4) 

and in the case of being unsure between two consequent categories in samples, by the 

index of the lower category plus 0.5, i.e. 1.5 and 2.5, the estimated soil categories in these 

points also entail uncertainty. For instance, if the estimated soil category is 2 and the 

sample index is 1.5, the estimation is probably either correct or wrong. If a sample 

actually belongs to the category 1, the estimation is wrong. However, if the real category 

of the sample is 2, the estimation is correct.  

 There could be three decisions in such cases; accepting all the estimation cases where the 

absolute difference between the sample category index and estimation is 0.5 or 0 as being 

correctly estimated (optimistic view), rejecting all the cases with the difference of 0.5 as 

well as any greater difference (pessimistic view), or accepting the half of the cases with 

the soil index difference of 0.5 and rejecting the half of them. In addition, because the 

decision about the estimated category that occurs in a point is based on the selection of 

the category with the highest estimated probability, it was suggested that, the mean of the 

highest probability (among the four estimated probabilities for the four categories) at 

cross-validation points also could be a representative of the quality of the estimations. 

This is because, the higher the probability of a selected category, the more reliable the 

decision of the selecting this category would be. In other words, if the probability of the 

selected category which is assigned to this point is more clearly higher than those of the 

other categories, the indicator kriging will suggest more strongly the presence of that 

category in the mentioned location. Therefore, another criterion could be suggested to 

evaluate the estimation qualities for categorical variables using cross-validation 

technique. 

 

(b) Jackknifing:  

 

 Another scheme for validating the variogram and estimation models is to use the “keep-

some-back” jackknifing technique in which the available data-set is split into two sub-

sets. One of these subsets of the original data-set can be re-estimated from the other non-

overlapping data-sets (Deutsch 2002, pp. 115-125; and Deutsch and Journel 1998, p. 94). 
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Then, the true and estimated values can be compared to assess the quality of the 

estimation models. Suppose that the analyzer puts the 50% of the available samples aside 

and transfers them to another data-file. Therefore, one of the separated subsets from the 

original data-set is assumed as unknown and the other subset as known. Then its values 

are estimated using the “known” samples. Subsequently, the real and estimated values can 

be compared together similarly to the methods described before for the cross-validation. 

 To perform a Jackknife analysis for the indicator kriging models, the boreholes were 

divided into two sub-groups; wells with evenly-numbered borehole-indexes, and wells 

with oddly-numbered indexes. These indexes were given according to the x-ascending 

values for the locations of these boreholes. 

 Then, one of the subsets of the original data was considered as known to estimate the 

other set which was regarded as unknown, and once with reverse assumption about which 

one as known and another as unknown. To assess the accuracy of the models, similar to 

the cross-validation studies, two measures were considered in this study; the percentages 

of correctly estimating the prediction points (i.e. the percentage of points where the 

estimated soil classes were equal to the true known classes), and the average probability 

of the true class. The outcome was more or less similar to that of the well-by-well cross-

validation of the indicator kriging models. The mentioned percentages (probabilities) 

have been summarized in Table 3.2. 

 
Table 3.1  Summary of the cross-validation of the indicator variograms, point–by-point and well-by-

well indicator kriging (IK). 

 

       
              Measure 

 
 
Estimation   
  method 

Arithmetic mean 
of the highest 

probabilities in 
each cross-

validation point 

Probability of 
correctly 

estimating the 
existing 

categories 
without accepting 
0.5 difference in 
category codes 

Probability of 
correctly 

estimating the 
existing 

categories with 
accepting 0.5 
difference in 

category codes 

average 
probability of the 

true class in 
cross-validation 

points 

IK done point-by -point 
cross-validation 

 

0.78069 

 

0.70972 

 

0.80213 

 

0.65754 

IK done well-by-well 
cross-validation 

 

0.56771 

 

0.51483 

 

0.60261 

 

0.42461 
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 It can be inferable from Table 3.2 that the accuracy of the employed models has been 

relatively good and similar to the accuracy measure which has been inferred from the 

Jackknife method. The probability of correctly estimating a class, that seems a better 

criterion for estimating the accuracy in the estimation of the categorical attributes 

(because the final aim was to predict the soil class which exited in each position), shows 

higher values.  

 Actually, the probability of correctly estimating (inferred from well-by-well cross-

validation) in this case demonstrates that, well under 60-percent of the points have been 

estimated correctly. 

 

 

Table 3.2  Summary of the jackknifing of the estimation models. 

 

Methods 
 

Measure 

Jackknifing of data-subset 1 
by data-subset 2 

Jackknifing of data-subset 2 by 
data-subset 1 

Probability (or the 
proportion) of correctly 

estimating the true class 

 

0.57751 

 

0.54804 

 
True class probabilities 

average 

 

0.45685 

 

0.44857 

 

 

 The expectation of the author is that, the real accuracy of the estimations should be 

higher than the values reflected in Table 3.2. The reason is that, in the real estimation case 

on or near a borehole, the other samples along this borehole are also used in estimation 

and it is not necessary to omit a borehole totally during the estimation procedure.   

 

3.3.  The indicator kriging (IK) analyses for the Göttingen 
test site 

 

3.3.1.  The general procedure 

 

 To perform the IK analyses, as mentioned before, after assigning the indicator values to 

sample points, performing the grid-transformation, calculating the sample indicator 
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variograms and modeling them, the variogram models were checked and improved. As 

the next step, the indicator kriging was performed and the probability of the occurrence of 

each soil class at each estimation point was estimated. At each estimation point, the soil 

classes with the maximum estimated probability were assigned as the estimated soil class 

which exists at that model location. Once the global statistics/geostatistics of the produced 

model were evaluated and the grid space was back-transformed into the original one, the 

three-dimensional models and sections were created and illustrated in the gocad software. 

To evaluate the performance of indicator kriging, two methods were tried in this study:  

 

1. Using the kt3d program of the GSLIB software: the indicator values of each category 

were kriged separately, after achieving all the estimations (as the raw probability values), 

the indicator kriging estimations were normalized to sum-up to one, and the order-relation 

violations were corrected.  Finally, the most probable soil class was drawn in each point, 

considering the estimated probabilities of the occurrence of each soil class from indicator 

kriging, and assigned to the corresponding location. 

 

2. Using the ik3d program of the GSLIB software; the kriging was performed. In this 

program, the normalizations and order-relation problems corrections are done internally 

and automatically (embedded in the program), after estimating all the probabilities of the 

soil categories at once. Then using a separate computer program written by the author (a 

simple MATLAB code
1
) the most probable soil class was assigned to each estimation 

point. 

 

 The potential advantage of using the first procedure could be: 

 

(1) The estimation variances of the indicators of each soil category would be 

available to have an evaluation of the uncertainties. 

(2) The search parameters could be adjusted separately for each category whereas in 

ik3d all these parameters should be the same for all the categories. 

However, for the practical ease, the second procedure has been preferred for final 

analyses and report here.  

                                                 
1
 This simple MATLAB code has been created by the author of this dissertation, Enayatollah Ranjineh 

Khojasteh.  
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 To check the accuracy and the quality of the estimation models (i.e. indicator variogram 

models and estimation parameters such as search radius and the number of points 

considered in estimations) and improve them, the cross-validation and Jackknife analyses 

were performed.  

Finally, the back-transformation of the coordinates to the original coordinate system was 

performed. The three-dimensional models and sections were created and represented 

using gocad
1
 software. 

 

 

 

Figure 3.3  Histogram of the indicator kriging (IK) results for the soil class estimations in terms of the 

proportions of each soil category in estimated model. The class which held the highest probability was 

assigned to the estimation grid of the model in each estimation point. 

 

As it was expected, the global statistics/geostatistics (i.e. the histogram of soil categories 

as well as their indicator variograms) of the estimated soil classes by IK method have not 

been reproduced the expected statistics/geostatistics adequately (see Figure 3.3, Figure 

3.4, and Table 3.3 ).  

 It should be considered that, the output for indicator kriging is a set of probabilities for 

each category in every estimation point while the final goal is to predict the type of 

existing soil classes at each location. Therefore, the soil classes with the highest 

probability at each model point were assigned to the estimation points. 

                                                 
1
 Paradigm GOCAD 2009.2 (64-bits). 
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 Due to the huge number of the IK output file lines, after assigning the most probable soil 

class at each estimation location, achieving the frequencies and proportions of the 

estimated soil classes were noticeably difficult.   

As a solution, the Textpad program and its sort function (to sort the file lines according to 

the soil class column) were applied, the lines of IK file for each soil class were separated 

in different Textpad pages, and finally the numbers of lines including these soil classes 

were extracted and written in a table (Table 3.3). 

 

Table 3.3  Frequencies, proportions, and percentages of the estimated soil classes by the IK method 

and assigning the most probable class to each estimation grid of the IK estimation model. 

 

Soil class 

Soil classes 
Frequencies 

in the IK 
model 

Soil classes 
proportions in 
the IK model 

(%) 

Expected 

proportions 

(%) 

Deviation 
rates (%) 

cl1 168172 27.68% 37.20% 25.60% 

cl2 337906 55.61% 42.30% 31.47% 

cl3 101427 16.69% 20.10% 16.95% 

cl4 95 0.02% 0.40% 96.09% 

Sum 607600 100% 100% 170.11% 

Average 151900 25% 25% 42.53% 

 

Figure 3.3 shows the histogram of the estimated soil clusters after assigning the most 

probable class to each estimation point specified by the indicator kriging method. It is 

clear from the histogram that the distribution of the estimated classes does not conform to 

that of the input data (see Figure 3.3 and Figure 2.8); the class 2 has been overestimated 

whereas the other classes have been underestimated. For analytical histogram-

reproduction checking of the IK estimated model, the deviation rates were considered. 

The term deviation rate has been explained more in part (2)a, section 5.3.3 from Chapter 

5. The deviations of the proportions from the expected values were at minimum about 

17% and in average almost 43% which are considerable deviations. Because of 

inadequate number of samples for the class 4, the high deviation of its proportion from 

the expected value can be taken less seriously because even its estimated expected 

frequency should also be less reliable. For the two main classes; class 2, and class 1, the 
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deviation rates were still considerable and above 25%.  In other words, the frequency of 

the biggest soil class (class 2) has been overestimated while those of the other classes 

have been underestimated. This feature is not similar to what is usually observed about 

the IK method for continuous attributes in which usually the frequency of the biggest 

class is reduced and the frequencies of the smaller classes are increased. 

 In Figure 3.4, the indicator variograms of the estimated model for soil classes generated 

by IK method and assigning the most probable soil class at each estimation grid-node 

have been illustrated. It is again clear from this figure that the variograms-reproduction 

for this estimation model was not so good (for example considering the range, nugget 

effect, and in some way sill) though the vertical variograms were considerably better 

except about the soil class 4. For soil class 3, the variograms (and similarly corresponding 

soil-class proportions) were closer to those of the model. The variogram sills and ranges 

in the horizontal variograms were not in addition so different from those of the model 

while the nugget effects were very different in comparison to those of the model 

variograms. Since the soil class 4 had very few observations in the available samples, the 

expected or estimated statistics/geostatistics of it also should not be so reliable and the 

greater differences of them with those of the model can be due to such unreliability in 

these statistics.  

 In general, the sufficient reproduction of the global statistics is not expected in the IK 

estimation methods while the IK methods attempt to make a locally accurate estimation 

rather than globally accurate one. Therefore, the observed deviations in the global 

statistics are not so strange. However, as the Figure 3.6 to Figure 3.10, Figure 4.6 to 

Figure 4.14, and Figure 5.20 to Figure 5.36 represent, the general occurrence trends of the 

soil facies are similar to those of the SISIM and TSIM while the patterns produced by IK 

are much less scattered, and in this sense, the patterns are much smoother. Comparing 

these results to those of the similar cases such as He et al. 2009 demonstrates similar 

characteristics in these estimations and their statistical and geostatistical characteristics.   
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Figure 3.4  Indicator variograms of the indicator kriging (IK) results for the soil class estimations 

created by assigning the most probable soil classes to each estimation point. The graphs on the left 

and right side represent the horizontal and vertical indicator variograms, respectively. Black lines 

represent the model variograms while the red and blue lines demonstrate the indicator variograms of 

the estimated model.  The red and blue lines on the left side show the indicator variograms of the 

horizontal estimation model along the NS and EW directions respectively. The red lines on the left 

graphs represent the vertical variograms of the estimated IK model.  

 

3.3.2. The effect of using a less number of samples on the 
estimations  

 

Using a less number of samples could affect the estimations in two ways by: 
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(a) Reducing the clearness of the spatial variation structures of the sample data (i.e. the 

sample variograms).  

(b) Reducing the numbers of samples contribute in the estimation stage. In this case, 

removing a group of the samples leads also to increasing of the samples spacing. 

 To check the effects of decreasing the number of employed samples on the clearness of 

the spatial variability structure and estimations goodness, four different  subgroups of the 

whole data including; two-third, one-half (two subgroups), and one-third of the all 

boreholes were extracted. Though, only the results of 1/2 samples have been brought 

here. 

  

 

 

Figure 3.5  Sample and model indicator variograms of the soil categories in horizontal (left side 

graphs) and vertical directions (right side graphs). Sample variograms were calculated by the half of 

the existing boreholes. Red lines represent the sample variograms and the black lines represent the 

corresponding model. 
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Then, theses data subgroups were examined once for their sample variograms clearness 

and once for estimation goodness using the jackknifing measures. These measures have 

already been explained in the previous section.  

As stated above, the subgroup data-sets were used to calculate and plot new sample 

variograms.  

Figure 3.5 represent the mentioned experimental indicator variograms of the subgroup 

data-sets as an example. It is clear that the general behavior of the indicator variograms 

have not been altered dramatically. 

The effect of using a less number of samples on the quality of estimations was evaluated 

using the jackknifing and cross-validation methods which were explained in the previous 

section (see Table 3.1, Table 3.2, and Table 3.3).  

In general, according to the, for the half of the boreholes (using the same variogram 

models as those of the complete data-set Table 3.3), the qualities of estimations, i.e. the 

percentage of estimating correctly, did not drop noticeably compared to that of the full 

data-set. Therefore, it can be suggested that a less number of samples even with about the 

half number of the existing boreholes in this study, can yield the estimation results with 

nearly similar estimation accuracy. The reason to suggest this, is that the rate of the 

correctly estimating soil class of the samples and the average of the true class 

probabilities from the well- by-well cross-validation are nearly the same as these rates in 

jackknifing in which the half of the boreholes were omitted in the estimation of the values 

of the other boreholes.  In other words, when only one borehole was eliminated at each 

estimation stage (during the cross-validation procedure), the accuracy of the estimations 

was nearly the same as the time when the half of the boreholes were eliminated. The 

previous paragraph shows why considering the same variogram models for testing the 

effect of using fewer samples on the estimations can be a good approximation of the 

variogram models that could be employed in such cases.  

  The effect of using a less number of samples would be evaluated more reliably by 

comparison of two estimations/simulations generated by different number of input data 

point -by-point in which the less-dense data-set could be a selected part of initial data . 

Due to the huge volume of data-analyses tasks and the limited research time, this practice 

has not been made here.   
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3.3.3.  Different search radiuses 

 

 In the indicator kriging (IK) estimations, the considered search radiuses are among the 

most effective factors on the quality of the estimations. Decision for the most optimum 

search radius could be particularly essential. As a rule of thumb, one can multiply the 

variogram range by a coefficient greater than one (for example, 1.25, 1.5, 2, etc.) to 

suggest a search radius, since it is better to consider a large-enough search radius that 

leads to a consistent estimation (Deutsch and Journel 1998, p.106). Using a larger search 

radius usually will increase the smoothing effect of the kriging whereas a smaller value 

will decrease this effect and highlight the local variations more (Sinclair and Garston 

2002, pp. 236-237). On the other hand, in practice, a smaller search radius may cause 

limiting the estimable area. The computational time also, will obviously be longer when a 

bigger search radius is applied. Therefore, there should be a compromise between the 

larger and smaller search radiuses considering the modeling goals and expert’s knowledge 

or opinion.  

The effect of using different search radiuses on the quality of estimations was also 

evaluated here by means of the cross-validation method. The optimum search radius and 

other estimation parameters were selected to achieve the best cross-validation results by 

trial-and-error method. 

 

3.4.  Models of the soil categories from the indicator 
kriging 

 

The three-dimensional model of the soil categories achieved by the indicator kriging 

according to the explained framework in Section 3.3.1 is brought here in several three-

dimensional (3D) sections. Figure 3.6 to Figure 3.10 illustrate these 3D sections.  The 

models represent 2180m distance in EW and 1580m distance in NS direction with 15x 

exaggeration in the vertical direction. The results show clearly very smooth patterns and 

probably are not so realistic. 

The interpretations and more discussions about this model have been brought in Section 

5.3.6. 
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Figure 3.6  A perspective top view of the IK model including the lowermost surface (floor). The model 

represents a 2180m distance in EW and a 1580m distance in NS direction with 15x exaggeration in 

the vertical direction. 

 

 

 
 

Figure 3.7  A perspective tilted top view of the IK model with fence diagram sections. The model 

represents a 2180m distance in EW and a 1580m distance in NS direction with 15x exaggeration in 

the vertical direction. 
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Figure 3.8  A perspective top view of the IK model with fence diagram sections along the basin. The 

model represents a 2180m distance in EW and a 1580m distance in NS direction with 15x 

exaggeration in the vertical direction. 

 

 
 

Figure 3.9  A perspective top-view of the IK model with fence diagram sections along the basin. The 

model represents a 2180m distance in EW and a 1580m distance in NS direction with 15x 

exaggeration in the vertical direction. 
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Figure 3.10  A top view of the IK model showing the lowermost surface (floor) of the basin model. 

The model represents a 2180m distance in EW and a 1580m distance in NS direction with 15x 

exaggeration in the vertical direction. 
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4.1. Overview 
 

 As discussed before, the soil-types model (or similarly for facies types model) produced 

by indicator kriging is too smooth and unrealistic in geological point of view. To 

overcome this problem, the conditional geostatistical simulation was applied. The 

sequential indicator simulation (SISIM) was one of the geostatistical simulation methods 

employed in this study to obtain more sensible images of the subsurface (with more subtle 

and fine-scale changes). Then, the results out of different methods were compared. 

Geostatistical simulation or stochastic simulation is a series of techniques to produce a set 

of plausible scenarios for a known spatial structure that imitate the geological realities 

that are globally much more accurate (Caers 2005, pp. 11-13). The spatial uncertainty is a 

factor that can be evaluated in geostatistical simulation methods. For the facies modeling 

of diagenetically controlled systems, the SISIM method is broadly applied. The reason is 

that, the results of the SISIM method represent high variability, and at the same time, 

reflect the anisotropy and variograms corresponding to those of their underlying models 

(Deutsch 2002, p. 196). 

 

 The general procedure of a geostatistical simulation had been explained in Deutsch 

(2002, p. 196) as: 

 

“Sequential indicator simulation consists of visiting all grid nodes of a simulation 

network in a random order.” 

 

 A facies code is assigned at each simulation grid node during the SISIM method with the 

steps that can be summarized as following (Deutsch 2002, p. 196): 

a. Find the neighboring data as well as the simulated grid nodes from the former 

steps.  

b. Establish (estimate) the conditional distribution function by indicator kriging, 

that is, the calculation of the probability of the presence of each soil types at 

the current location, p
*
k, k=1,…, K  

4. Sequential indicator simulation (SISIM) of the 

geotechnical soil classes in Göttingen test site 
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c. Draw a simulated soil class from the mentioned conditional cumulative 

distribution function (ccdf). 

 

 All of the process explained above is repeated with different random number seeds to 

produce multiple realizations. A random path is considered to avoid producing artifacts. 

Such artifacts can stem from a regular path combined with a limited search. This 

restricted search is obviously required to limit the kriging matrix size (Deutsch 2002, p. 

196). 

 Ideally the simulations should reproduce the initial data spatial structure and histogram. 

Clearly, the input conditioning data also should be honored. 

 

4.2.  SISIM for the geotechnical soil classes of the 
Göttingen project 

 

For sequential indicator simulation of the geotechnical soil classes in Göttingen project, 

the sisim program of the GSLIB software was applied. The same variogram models that 

were used for indicator kriging (IK) were also employed in the simulations because these 

models have already been validated and admitted. 

 Similar to the IK results, some of the realizations have been depicted in three-

dimensional models and slices afterwards. The selection of the represented realizations 

was based on some geostatistical criterions, which guaranteed the reproduction of the 

expected statistics, as well as a number of geological considerations.  

 The number of 100 realizations was produced using the SISIM method. The simulation 

grid and search parameters were exactly like those of the IK model.  

 

4.3. Checking the realizations of the sequential indicator 
simulation (SISIM) method and selecting the best 
ones 

 

 As discussed before, although the advantage of the kriging algorithms is accounting for 

the spatial variability structure, the smoothing-effect of them contradicts with the nature 

of the geological realities which are actually more variant and changeable. 
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 Nowadays, the geostatistical simulation techniques are getting more popular due to their 

capability to improve the heterogeneity characterization and joint uncertainty assessment 

(Leuangthong 2004, p. 131). 

Geostatistical simulations create multiple likely scenarios called realizations. However, it 

is an important step to evaluate and check the produced realizations before they can be 

employed by practitioners in their real problems. In other words, some realizations which 

fit better to the reality of the statistical and geological heterogeneities should first be 

chosen.  

 Leuanthong et al. 2004 have discussed the minimum criterions for checking, accepting, 

and choosing the geostatistical realizations. These criterions include honoring the 

available data in their locations, the data statistical distribution, and the correlation 

structure. 

 

4.3.1.  Criteria for checking the goodness of the simulation 
results  

 

(1) Overview: 

 

 To check the goodness of the produced simulations, four major criterions were 

considered in this study; the proportions- (histogram-) reproduction of the soil classes, the 

variograms-reproduction, transition-probabilities-reproduction, and the geological 

soundness of the simulation results. Clearly, the conditioning data also should be 

reproduced. It will be discussed later why the conditioning to the input data may not be 

met at times. The transition-probabilities measure was also assessed here as a 

complementary spatial variation index. Ideally, the simulations should meet all the 

mentioned conditions perfectly. In practice, some variations and fluctuations from the 

ideal case will be observed. The best realizations can be and were selected here in terms 

of the mentioned criteria.  

 Theses parameters can be evaluated either for single simulations or for all the simulations 

at once. The realizations were checked here for all realization one-by-one and the quality 

of them were assessed. 

The input data and histogram reproductions have been explained very briefly in the 

coming section, because they have been elaborated in the next sections related to the 

evaluations of the transition-probability Markov chain simulations. 
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 Each criterion has been explained separately in the following sections. 

 

(2) Honoring the input data and histogram reproduction for the realizations of the 

SISIM method: 

 

 As mentioned above, the input data should be honored in their locations. Although the 

indicator kriging, as the base of the SISIM method to estimate the local probability 

distribution functions, is an exact estimator and expectedly all the SISIM results should 

honor the input data but sometimes it does not so.  

 It has been explained in Section 5.3.2 why sometimes the input data is not wholly 

honored.  

 The details of the method for checking this criterion and its results also have been 

explained there (Section 5.3.2 ). The only result deserves mentioning at this point is that; 

in general, the input data was honored very well in all the SISIM realizations and even 

better than that of the TSIM (transition probability-based Markov chain simulation) 

method. Therefore, all the realizations from the SISIM method were considered 

acceptable in terms of honoring the input data. 

In addition, the histogram- (i.e. proportions-) reproductions of the SISIM realizations 

were also checked for all the realizations. In other words, it was tested whether or not 

each realization has reproduced the expected proportions of each soil class in an 

acceptable statistical tolerance.  

 According to these criterions (see Sections 4.3 and 5.3) the realizations which reproduced 

the expected proportions sufficiently were suggested for evaluation in the next steps. The 

more detailed explanations and results about this test for the SISIM method also has been 

brought in the next sections, related to the transition-probability Markov chain method.  

 

(3) Variogram-reproduction for SISM: 

 

Figure 4.1, Figure 4.2, and Figure 4.3 represent the horizontal and vertical simulation 

variograms for realization number 37, 61, and all realizations produced by SISIM 

(sequential indicator simulation) method, together with their corresponding variogram 

models. The realization 37 was considered to be the best suggested realization among the 

all generated 100 realizations of the SISIM method in terms of the histogram- (i.e. 

proportions-) reproduction. Therefore, it was anticipated that the variograms of realization 
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37 generated by SISIM can reproduce the expected model variogram sills (or even the 

whole model variogram) better. This feature is because the expected indicator variogram 

sill is a function of the proportion of a category: 

)1( iii ppc   (4-1) 

where ic  is the expected sill for the indicator variogram of the category i, and ip  is the 

proportion of the category i.  

 In contrary, the realization number 61 with the greatest 2 value among all the 

realizations of SISIM method was expected to demonstrate the weakest reproduction of 

the model variogram sills. 

 To evaluate the quality of variograms-reproduction using the existing graphs, four key 

parameters of the variograms were considered; nugget effect, sill, range, and variogram 

shape. 

 The evaluation was started with realization number 37 (Figure 4.1). It was observed that 

the nugget-effects which normally should reflect the short-scale variations, in the 

horizontal variograms were less than those of the model in most of the variograms, except 

for that of the class 4, in which it is even higher. This means that, the simulation (number 

37) has more continuous structure than expected except for the class 4. About the class 4, 

shorter horizontal structures have been distinguished in the geostatistical simulation too.  

 Moreover, it might be speculated that the existing differences between the nugget effects 

of the models and the simulation horizontal variograms could also be due to the lack of 

the adequate information from the data samples in short. This is a usual case because the 

samples from the boreholes could not so densely be taken in the horizontal direction. In 

contrary, a dense sampling is available in the vertical direction and the short-scale 

structures can be reflected better in the vertical variograms. The variogram shapes were 

more or less similar to those of the model except that the simulation variograms had more 

fluctuations or sometimes a little more complex structures. The sills also were often very 

close to those of the models except for the variograms of the class 4, especially in vertical 

direction. There are some differences in the variogram sills between the models and the 

simulation, especially for the horizontal variograms of the class 4 and somehow about 

class 1. For the sills of the vertical variograms, the difference is clearer for class 2 and 

especially class 4. For the vertical direction of the same realization, the nugget effects are 

quite similar to those of the variogram models. In general, the conclusion in the SISIM 

method could be that the variogram of the realization number 37 reproduced the model 
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variograms reasonably well and the variogram reproduction can be accepted. Bearing in 

mind the Figure 4.2, it can be inferred that the variogram-reproduction of the realization 

61 (with the weakest proportions-reproduction), in general was clearly much weaker 

compared to that of the realization 37. The red and dark blue lines in the left graphs show 

the horizontal variograms of the realization 61 in north-south, and east-west directions, 

respectively, whereas the purple and light blue lines represent the variograms of the 

similar directions for the simulation number 37. The vertical variograms are plotted in the 

right-side graphs, in which red represent the variograms for the realization number 61 and 

purple for the realization number 37. It can be inferred from Figure 4.2 that, all of the 

horizontal variograms of the realization number 37 have reproduced the model variogram 

better than those of the realization number 61. However, in the vertical direction, the 

variograms-reproduction has shown a different performance. The variograms-

reproduction for the realization number 37 was just slightly weaker than that of the 

realization number 61 for the classes 1 and 2, nevertheless nearly the same, and still better 

than those of the realization number 61 for classes 3 and especially class 4. As mentioned 

before, the general conclusion could be that the variograms-reproduction is much better 

for the realization number 37 than that of number 61. This result could suggest that the 

variograms-reproduction of the realizations with a better proportions-reproduction can 

also be better, though this conclusion can not be generalized so strongly. In addition to the 

relation between the variograms-sill-reproduction and proportions-reproduction (Equation 

(4-1)), one could also tentatively refer to the relation between the slope near the origin of 

a variogram, the proportion and mean length of a category and on the other hand the 

probable relation between the proportion and the mean length of a category (Equation (5-

15 )). If the slope near the origin of the variograms as well as the variogram sills can be 

reproduced acceptably, the variograms-reproduction could also become very near to 

fulfillment. In other words, such result and inference can suggest the proportion-

reproduction as a key criterion to find the best realizations which most probably would 

reproduce the spatial variability of the simulation models as well. Figure 4.3 represents 

the spectrum of the variograms of the simulations for the realizations number 1 to 100 as 

well the corresponding variogram models. The variograms cover a broad area in the 

graph. This phenomenon obviously refers to the high degree of variations (in terms of the 

spatial variability structure) among the different realizations. The degree of variations 

among the different realizations, for example in terms of the diversity of the simulation 

variograms of each soil class, also can be considered as a guide to evaluate the robustness 
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and consistency of the simulation method. This is because, the simulation methods that 

produce more similar simulation variograms (the variograms of the simulation results), 

should obviously have closer similar simulation results in different realizations. 

Therefore, a less dispersions of the variogram plots can be interpreted as a less degree of 

uncertainty in the simulation method and vice versa. An interesting point is that; in spite 

of using isotropic variogram models for the simulations, in the horizontal direction the 

simulation variograms represent a clear anisotropy in the two horizontal directions of 

north-south (y-coordinate) and east-west (x-coordinate).  The applied variogram models 

can be considered as the average variograms of the different directions that could not be 

detected from the original data due to the lack of sufficient samples in this direction. The 

directional variograms of the simulations in the north-east and east-west directions were 

represented by the red and blue or purple and light blue lines respectively.  

 The solid black lines always represent the model variograms in these graphs. 
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Figure 4.1  Checking the variogram-reproduction of realization 37 for SISIM method. Red and blue 

lines represent the simulation and black lines show the model variograms. In the left side graphs 

which represent the horizontal variograms, the red lines illustrate the variograms of the simulation in 

the NS, and the blue lines represent the simulation variogram in EW direction. The right-side graphs 

show the vertical variograms in which the red lines show the simulation variogram. 
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Figure 4.2  Checking the sequential indicator simulation (SISIM) variograms reproduction for 

realization numbers 37 and 61. Colored lines represent the simulation and black lines show the model 

variograms. The left side graphs represent the horizontal variograms whereas the right side graphs 

are the vertical variograms. The red and purple lines in the horizontal variograms show the NS, and 

the dark and light blue lines in the horizontal variograms represent the EW directions, respectively.  

The purple and light blue lines represent the variograms of the realization 37 and the red and dark 

blue lines show the variograms of the realization 61. Red and purple lines in the vertical variograms 

show the vertical sample variograms of the realizations 61 and 37, respectively. 
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Figure 4.3  Sequential indicator simulation (SISIM) variograms for 100 realizations (red and blue 

lines) in horizontal (left graph; red for EW, and blue for NS) and vertical directions (right graphs) 

versus model variograms (black lines). 
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4.3.2.  The transition-probabilities- reproduction of the SISIM 
realizations: 

 

The variograms do not have the capability of fully reflecting the interclass spatial 

variability dependence structures among pairs of the (soil) classes. Therefore, the quality 

of reproducing spatial variability structure could not be evaluated sufficiently for the 

simulation results by merely using their indicator variograms. Therefore, it was 

considered to plot and evaluate the transition-probabilities (TPs) among the pairs of the 

soil classes in principal directions as well to accomplish the spatial variability-

reproduction evaluations.  

In this study the TPs of the realizations were compared to their corresponding Markov 

chain models. The models of TPs were taken from the TPs and Markov chain model 

analyses results which have been addressed in the next chapter. 

 As the extreme cases, the realizations with the best and worst proportions-reproductions, 

i.e. realizations 37 and 61, for the SISIM method were evaluated for their TPs-

reproduction. In other words, it was checked whether or not the TPs of these realizations 

correspond to their related Markov chain models? 

 Similarly, this test was conducted for the realizations produced by the transition-

probability Markov chain (TP/MC) simulation method as well. 

 Figure 4.4 and Figure 4.5 depict the TPs of the chosen realizations 37 and 61 generated 

by the SISIM method. It is clear from these figures that the TPs-reproduction of the 

realization 37, in average, was better than that of the realization 61. In general for the 

SISIM method, the TPs-reproduction of the realization 37 could be considered rather 

reasonable, especially when the emphasis is put on the starting lags of the TPs model. In 

the larger lags, the TPs-reproduction becomes weaker. 

 More details about the spatial variability structure-reproduction have been addressed in 

the next chapter. 
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Figure 4.4 The transition-probabilities of the SISIM realizations number 37 (points) and 61 (crosses), 

versus their corresponding Markov chain models for the horizontal direction of the existing soil 

classes in the study zone. The calculations have been conducted in  
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Figure 4.5 The transition-probabilities of the SISIM realizations number 37 (points) and 61 (crosses), 

versus their corresponding Markov chain models for the horizontal direction of the existing soil 

classes. 

 

4.4. Three-dimensional sections of the selected SISIM 
realization: 
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As mentioned above, the realization 37 which represented the best statistical fulfillment 

of the minimum criteria was selected as the best realization in terms of the mentioned 

criterions. 

Moreover, the geological soundness of this realization also had to be evaluated. Hence, a 

set of sections were produced in the GOCAD software and were brought here. The 

discussions about the geological soundness of this realization, considering the generated 

sections have been brought in the next chapter to make it easier to compare the results 

from various methods. 

 Some of these sections have been represented in Figure 4.6  to Figure 4.14. 

 

 

 
 

Figure 4.6  A perspective top view of the realization 37, generated by the SISIM simulation method. 

The model represents a 2180m distance in EW and a 1580m distance in NS direction with 15x 

exaggeration in the vertical direction. 
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Figure 4.7  A perspective bottom view of the realization 37, generated by the SISIM simulation 

method. The model represents a 2180m distance in EW and a 1580m distance in NS direction with 

15x exaggeration in the vertical direction. 

 
 

 
 

Figure 4.8  A perspective top side view of the realization 37, generated by the SISIM simulation 

method. The model represents a 2180m distance in EW and a 1580m distance in NS direction with 

15x exaggeration in the vertical direction. 
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Figure 4.9  A perspective bottom side view of the realization 37, generated by the SISIM simulation 

method. The model represents a 2180m distance in EW and a 1580m distance in NS direction with 

15x exaggeration in the vertical direction. 

 

 
 

Figure 4.10  A top view of the realization 37, generated by the SISIM simulation method. The model 

represents a 2180m distance in EW and a 1580m distance in NS direction with 15x exaggeration in 

the vertical direction. 



 101 

 
 

Figure 4.11  A top view of the realization 37, generated by the SISIM simulation method showing the 

lowermost surface (floor) of the basin. The model represents a 2180m distance in EW and a 1580m 

distance in NS direction with 15x exaggeration in the vertical direction. 

 

 

 
 

Figure 4.12  A perspective top side fence-section view of the realization 37, generated by the SISIM 

simulation method. The model represents a 2180m distance in EW and a 1580m distance in NS 

direction with 15x exaggeration in the vertical direction. 
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Figure 4.13  A perspective top side fence-section view of the realization 37 along the SN direction, 

generated by the SISIM simulation method. The model represents a 2180m distance in EW and a 

1580m distance in NS direction with 15x exaggeration in the vertical direction. 

 

 
 

Figure 4.14  A perspective top side fence-section view of the realization 37 along the EW direction, 

generated by the SISIM simulation method. The model represents a 2180m distance in EW and a 

1580m distance in NS direction with 15x exaggeration in the vertical direction. 
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5.1. Introduction 
 

 The focus of Markov chain models of the transition-probabilities for geostatistical 

simulations is the probabilistic quantifying, evaluating, and modeling the changes from 

one state to another one in the time or space. Varieties of the states can be considered in 

this sense, such as having a rainy day, or a sunny day (in temporal view), or having a silt, 

clay, or sandstone along a traverse (in spatial view).  Therefore, in the latter example, the 

existence of the clay in a point is one state (let say state 1), the existence of the sand is 

another state (let say state 2) and so on.  

 Markov chain (named after the Russian statistician, Andrei Markov) is a sequence of 

random variables, X1, X2, X3 … with the Markov property, i.e. the future depends solely 

on the present and not on the past. In other words, Markov chain is a sequence in which 

the state at one point depends partially, in a probabilistic sense, only on the previous state. 

Such a sequence with Markov property has an intermediate behavior between the totally 

random and absolutely deterministic sequence (Davis 2002, p. 172). In spatial Markov 

chains, the probability of going from one state (e.g. having clay in a point) to another state 

(e.g. having sand in the next point) depends solely on the nearest point(s). This Markov 

chain is stationary when the mentioned probability, is a function of a separation vector 

and not the location of the points (Carle 1999). 

In the transition- probability Markov chain (TP/MC) method, the spatial variability 

structure is calculated and modeled using the transition- probabilities among various 

possible states instead of the variograms (Markovian view to the spatial variation 

structure). These transition- probabilities can be molded using a number of models for 

Markov chains. 

 

5. Transition-probability Markov chain (TP/MC) 

method for modeling subsurface 

heterogeneities in Göttingen pilot area, layer 5 
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Figure 5.1 Transition-probabilities: tjk(h)=Pr{ k occurs at x+h| j occurs at x} as a function of 

separation vector and not the position in a stationary condition. The blue table summarizes the 

numbers of transition (#T) from each facies type to another one in matrix format, for the example of 

the facies column in the logs seen at the left side of the figure, for a specific separation vector of zh . 

The way of counting the transition for different lag-spacing (red and green arrows here) has been 

illustrated in the left-side log column (left graph are modified from Carle 1999, p. 8). 

 

There are good reasons to adopt using the TP/MC approach in estimation stages, 

especially when the indicator variogram models demonstrate a considerably vague 

variability due to the insufficient sampling rates. In such cases, it would be necessary to 

inject more subjective or interpretive information into the model, for instance the mean 

length of the geological bodies or the possible sequence or neighboring of the layers. 

 The advantages of using transition-probability Markov chain approach over the 

traditional indicator geostatistical method can be summarized as following:   

 

(a) An easier and improved integration of the geological subjective information of the 

facies architecture in modeling spatial variability especially when indicator 

variograms give too vague results (e.g. in too sparse or insufficient data-sets). 

(b) Producing more consistent patterns with the plausible geology in the outcomes. 

(c) Taking all the class inter-relations into account easily. This is especially correct 

when it is compared to the alternative methods such as covariograms and 

cokriging that demand special requirements in spatial variability modeling, 

including some constraints. 

(d) Reducing the order-relation violations, in statistical sense of the modeling. 

(e) Taking asymmetries into account. 

 It can be proven that the indicator kriging framework can be reformulated using the 

transition-probabilities. It is also possible to prove that the stationary transition-
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probabilities (in terms of the separation vector) can be fully modeled by an exponential 

model and a transition rates matrix like this (Carle 1999): 

)exp()( hRhT   (5-1) 

in which )(hT  is he transition-probability matrix of the separation vector h in direction 

and R  is the transition rate matrix in the same direction. 

More details about modeling the transition-probabilities will be explained in the next 

sections. 

 Having the transition-probabilities modeled, one can perform simulations based on them. 

More comprehensive descriptions will be represented in the coming sections. 

 

5.1.1.  Background 

 

If one counts the number of transition of some states (e.g. a lithology) to the others in an 

equidistance traverse and put them in a matrix, it will be called a transition frequency 

matrix. 

Dividing the row totals of the transition frequency matrix by the total number of 

transitions (the complete sum of transition numbers), the relative proportions of the states 

will be obtained. The corresponding matrix is called marginal (or fixed) probability 

vector (Davis 2002, p. 170). 

In many geological investigations, data sequences may be seen that consist of the ordered 

successions of mutually exclusive states. For instance, measured stratigraphic sections 

have the form of series of lithologies, where the type of lithology or in a drill-hole 

through an ore body, the ore and gangue can be considered as states. Observations along a 

traverse may be taken at equally spaced intervals or they may be taken wherever a change 

in state occurs (embedded Markov chains). Sometimes the nature of the transitions from 

one state to another is of main interest rather than the relative locations of the states in a 

sequence Davis 2002, p. 168). 

According to the conditional probability equations (Davis 2002, p. 170), if the probability 

of the occurrence of the states A and B are independent, the probability of occurring state 

B at a point given the state A, equals to the probability of the occurrence of the state B: 

 

Pr (B|A) = 
)Pr(

),Pr(

A

AB
 =

)Pr(

)Pr(

A

AB 
= 

)Pr(

)Pr().Pr(

A

AB
=Pr (B)  (5-2) 
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 This allows the prediction of, for example, what the transition probability matrix should 

look like if the occurrence of a lithologic state at one point in the stratigraphic interval 

were completely independent of the lithology at the immediately underlying point. The 

expected transition probability matrix would consist of rows that were all identical to the 

fixed probability vector.  

 For comparing this expected transition probability matrix with the actually observed one 

to test the hypothesis that all lithologic states are independent of immediately preceding 

states, one can use 2  test. For this purpose, first the probabilities should be converted to 

expected numbers of occurrences by multiplying each row by their corresponding total 

number of occurrences and the expected and observed should be compared values by 2  

criterion. 

 

5.1.2. Transition probability-based indicator geostatistics 

 

(1) Objectives and background 

 

As mentioned earlier, because a big part of the geological data is categorical (for 

example, lithofacies, soil classes, mineralization phases and so on), indicator kriging 

becomes increasingly popular for modeling them. Moreover, some continuous parameters 

may represent non-Gaussian behavior which necessitates the use of non-parametric 

approaches. However, modeling the spatial continuity which can be considered the most 

crucial and difficult practical step in applying the indicator kriging method, may face 

serious problems when sufficiently abundant data does not exist. Due to the lack of 

enough data in such cases, subjective and interpretative information can fill this gap to 

make reliable models. In transition-probability indicator geostatisticsal methods, 

proportions, mean lengths (e.g. mean thicknesses), and juxtapositioning patterns (i.e. how 

a category locates in space with respect to another category) are used as subjective 

information to improve modeling spatial continuity (Carle and Fogg 1996, pp. 453-454). 

 

(a) Some definitions and relations: 

The cross-variogram mk (h) of the indicator variables is defined as:  

2 mk (h) = E{[ I m  (x) - I m (x + h)] [I k (x) - I k (x + h)]} (5-3) 
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where mk (h) denotes the indicator cross-variogram between the categories m and k, I m  

(x) and I k (x) are the indicators of the category m and k in location x, respectively., and h 

is the lag separation vector (Carle and Fogg 1996, pp. 455). The equation is defined using 

the mathematical expectation function. 

 The cross-covariance C mk  (h) is defined as (Carle and Fogg 1996, pp. 455):  

C mk (h) = E{ I m (X) I k (x + h)} - E{ I m (x)}E{ I k (x + h)}  (5-4) 

where C mk (h) is the cross-covariogram between the categories m and k. As applied to 

measuring spatial continuity, the transition probability t mk (h) from category m to category 

k , is defined in the form f a conditional probability function as (Carle and Fogg 1996, pp. 

455): 

t mk (h) = Pr{category k  occurs at x + h | category m occurs at x} (5-5) 

Transition-probabilities are geologically easier to interpret than variograms and 

covariograms (Elfeki and Dekking  2001, pp. 569). 

The indicator (cross-) variogram, indicator (cross-) covariance, and transition probability 

are related to each other as different combinations of one-location marginal probabilities 

p k (x) defined as (Carle and Fogg 1996, pp. 455): 

p k (x)  = Pr{I k (x) = 1} = E{ I k (x)}  (5-6) 

and two-location joint probabilities p mk (x, h) defined as (Carle and Fogg 1996, pp. 455): 

p mk (x, h) = Pr{ I m (x) = 1 and I k (x + h) = 1} = E{ I m (x) I k (x + h)} (5-7) 

or (Carle and Fogg 1996, pp. 455): 

t mk (h) = Pr{ I k (x + h) = l | I m (x) = 1} = Pr{ I k (x + h) = 1 and I m (x) =l}/Pr{ I m (x) = 1}

  (5-8) 

 

Typically in practice, the assumption of a stationary model removes the dependence on 

the location x so that: 

E {p k (x)} = p k   x D  (5-9) 

In which p k denotes a constant (Carle and Fogg 1996, pp. 455) and 

E {p mk (x, h)} = p k (h)  x D (5-10) 

where p mk (x, h) denotes a joint probability depending only on lag h. 
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 Passing the detailed theories, it can be summarized that the cross-variograms and cross-

covariograms can be expressed in terms of the transition-probabilities and proportion, as 

following (Carle and Fogg 1996, pp. 456): 

mk (h) = p m {t mk (0)- [t mk (h)- t mk (-h)]/2}  (5-11) 

C mk (h) = p m [ t mk (h) - p k ]    (5-12) 

In general, it can be demonstrated that the indicator kriging method can be reformulated 

using the transition-probabilities. 

  

(b) Methodology 

 First, two key points regarding the transition probability-based indicator geostatistical 

technique deserve mentioning: 

 

(a) Geological and subjective information can be taken into account to improve the 

modeling of the spatial continuity of the indicator geostatistical simulation in the 

framework of the transition-probabilities indicator geostatistics.  

(b) All kriging equations can be reformulated in terms of the transition-probabilities 

among the existing soil categories. 

 

 Therefore, the method can be performed through the following steps:  

1. Estimating and inferring various pieces of subjective information such as proportions, 

mean length and juxtapositioning relations.  

2. Calculating all the transitions probabilities of the samples between pairs of the classes 

(auto- and cross-transitions).  

3. Modeling the transitions probabilities using Markov chain models.  

4. Solving the related equations and performing the geostatistical simulation.  

 

Carle and Fogg (1996) have discussed this reformulation by detail and represented that 

the normal indicator cokriging equation are equivalent to: 
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(Carle and Fogg 1996, p. 468) and the unbiasedness condition can be expressed as : 

klk

N K

l

l pp ,

1 1

  (5-14) 

in which )( jiml xxt  is the transition probability of transition from class m to class l  for 

the separation vector of )( ji xx , mlI  is the identity matrix, 1,lk … Nlk ,  are cokriging 

weights pertaining to the transition of the soil categories from l to k considering the N 

nearby estimation points, lp  and kp  are the proportion of the classes l and k, and 

finally lk  denotes the KK  matrix of the Lagrange parameters (Carle and Fogg 1996, p. 

468). 

 

(2) Taking the subjective and geological information into account: 

 

Subjective information such as the proportions, mean lengths, and juxtapositioning 

relations can be integrated into the simulation models to improve the modeling of the 

spatial continuity. Following, there are some practical points to integrating the mentioned 

information in the spatial variability modeling which have been explained briefly here: 

 

(a) Proportions: 

Proportions can be deduced directly from the indicator data and conceptual models. 

Proportions can be helpful in fitting the sill of a spatial continuity model, whether 

expressed in terms of covariogram (C mk (h)), cross-variogram ( mk (h)), or transition-

probabilities (t mk (h)). Equally, the sill of a spatial continuity model entails the guessed 

and estimated proportions. Thus, the relationship between proportions and the sill is 

connected to subjective development and abstract understanding of the spatial continuity 

model. 
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One might be interested in verifying whether or not the sill of a spatial variability model 

is acceptable? The frequency of the observations might not be so sufficient to provide an 

adequate to make a proper decision about the sill of the spatial variability model so easily. 

Conversely, proportions can also be inferred from the sills.  

The sill of )(htmk  comes near p k , the proportion of category k , whether km or m  k. 

On the contrary, the sills of kk (h) and C kk  (0) come close to )1( kk pp , which requires 

solving for "'p'" in a quadratic equation of sill = )1( pp . Then the question would be 

about kp  whether kp  equals kp or 1 - p? The sill of mk  (h) and C mk  (0) for m  k 

approaches km pp , an even more ambiguous situation. 

The stress on the relationship between proportions and model sills is not to determine 

proportions from bivariate statistics (e.g. transition-probabilities), instead to check for 

consistency of the spatial continuity model with proportions established by univariate data 

and conceptual information. In subjective model fitting of the sill, prior information on 

proportions (usually exist) can be applied as a guide for either C mk  (h), mk (h), or t mk . 

Obviously, among the mentioned measures, t mk  (h) provides the straightest relationship 

between the model sill and proportions.  

 

(b) Mean Length: 

The slope at origin of the graphs of: t kk  (h ), kk ( h ) and C kk  (h )  is directly related to 

mean length (mean thickness) of the soil category k  in the direction . 

Supposing stationarity for proportions, the mean length of the category k  in a direction , 

represented by l ,k , relates to the slope at the origin of kk (h ), C kk  (h ) and t kk  (h ) 

by: 

h

hkk )0(
=

,k

k

l

p
  (5-15) 
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Obviously, mean lengths can be computed directly from continuous data, but not from 

discontinuous data.  

 

(c) Juxtapositioning patterns: 

 As mentioned before, “juxtapositioning” patterns refer to how one category in the space 

is located preferentially or non-preferentially in relation to the other one, including 

nonrandom and directional-specific (asymmetric patterns) like cycles of fining upwards. 

Considering the fact that transition-probabilities are asymmetric, i.e. t mk (h)  t km (h), 

these patterns also will be reflected in the estimation stage.  

 An important point in the indictor geostatistics is to ensure that the models conform to 

the basic rules of the probability. For example, the estimated probabilities should not be 

negative or greater than one, or the estimated probabilities from the indicator (co)kriging 

should sum up to one.   

 

(3) Advantages and disadvantages of TP/MC method 

 

Before summarizing the advantages and disadvantages of the TP/MC method, it deserves 

mentioning that the literature review for different Markov chain methods revealed an 

interesting point. Each author usually had emphasized on the pros of own method without 

clarifying its cons. However, a next person who proposed a new method usually criticized 

the disadvantages of the previous methods and emphasized again on the advantages of his 

own method without mentioning the shortcomings of own technique. Therefore, the 

drawbacks of the previous methods could be found in different papers mentioned by the 

next authors. 

The advantages of transition probability-based indicator geostatistics (TP/MC) over 

traditional indicator geostatistical estimation and simulation can be summarized as:  

(a) Easier full consideration of the auto- and cross-correlations structure between 

pairs of the categories. 

(b) Easier integrations of geological subjective information of facies architecture in 

modeling spatial continuity (Carle 1999). 

(c) More consistency with order relation rules. 

(d) Taking the asymmetry in the spatial variability structure of the transition-

probabilities into account to construct more geologically plausible models. 
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While the indicator cross-variograms can not disclose the asymmetry (Carle and 

Fogg 1996, p. 463). 

(e) In general, in the methods based on Markov chains, the intrinsic non-stationarity 

of heterogeneities in larger scales is represented much well (Park 2010, p. 1). 

 

 On the other hand, because the TP/MC method follows the same framework as the 

indicator geostatistics, it still faces some similar shortcomings as the indicator 

geostatistics, for instance:  

(a) As represented before, the first stage of the TP/MC method is based on the 

reformulation of conventional indicator (co)kriging equations. Therefore, the 

order-relation violations can still exist. 

(b) Laborious model fitting and a rather long simulation course, because this method 

does not apply the Markov approach directly. Specially, the quenching or 

optimization stage of the TP/MC simulation to lessen the difference between the 

transition probability structures to their corresponding models can be considerably 

time-consuming. 

 

(4) Why the TP/MC method was chosen: 

 

In spite of the mentioned disadvantages of the TP/MC method, among the Markov chain-

based techniques reviewed in literature review stage of the present study, i.e. coupled 

Markov chain (CMC) and Transition-probability geostatistics (TPG), the later techniques 

still had several theoretical and practical drawbacks. For instance, they were not suited 

sufficiently for three-dimensional problems and they still did not have available computer 

codes or software to use. They were also prone to producing artifacts. 

 Hence, it was decided to apply the TP/MC scheme while some attempts were made to 

improve this technique.  

 

(5) Software: 

 

 T-PROGS developed by Steven F. Carle (1999) is a package which enables the user to 

apply the transition-probability/Markov approach to geostatistical simulation of 

categorical variables. This free package is developed in FORTRAN programming 

framework and can be requested from the author. 
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Figure 5.2 an example of (auto- and cross-) transition-probabilities, and relevant Markov chain 

models for a two-category facies model of Channel and Not-Channel. Points represent the observed 

values, solid curves represent the Markov chain models, dashed-lines stand for the proportions, and 

slopes show the estimated slopes from the mean lengths. The graph is taken from Carle and Fogg 

(1996, p. 459). 

 

Moreover, a software called GMS, distributed by EMS-I, is a package for modeling 

purposes especially for groundwater problems which provides a MS Windows, interface 

to T-PRGOS. 

 

 

5.1.3. The modeling stages in the TP/MC technique 

 

The modeling stages using the TP/MC method has already been explained in the previous 

sections.  

In this part, some more details are brought about the modeling steps.  

Practically, the following were steps taken in this study for simulation of the soil 

categories: 

(a) Calculating sample transitional-probabilities (i.e. transitions against separation 

distance) between pairs of the existing classes in various directions.  

(b) Modeling the mentioned transition-probabilities using Markov chain models. Length 

statistics can also be considered in this stage to improve the models by integrating more 

subjective information or to verify the inferred Markov chain models. Modeling the 

transition-probabilities by Markov chain models can be conducted through different 

methods. It can be proven that, all the Markov chain models of the transition-
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probabilities can be constructed using an exponential matrix form like Equation (5-1). 

During the modeling of the transition-probabilities using the Markov chain models, 

some constraints and conditions should be checked. For example, the auto-transition 

rates should be always negative while the cross-transition rates should be positive. The 

row-sums and column-sums of the transition rate matrix should obey the Equations (5-

33) and (5-34).  The models can be checked for their conformity to the length statistics 

(Equations (5-17) and (5-26)), and the general tendencies of the categories to occur 

beside or above each other (juxtapositioning patterns and the fining or coarsening 

upward or downwards). More detailed discussions about various modeling methods of 

the transition-probabilities by Markov chain models are mentioned in the coming 

sections.  

(c) The Figure 5.3 and 

(d) Figure 5.4 represent the calculated and model transition-probabilities among 

geotechnical soil classes for horizontal and vertical directions. In this study, although 

the observations were considerable and there were no vital need to integrate the 

subjective information, the conformity of the Markov chain models of the transition-

probabilities with subjective and interpretive information were also considered. In the 

cases where the subjective information were considerably different from their inferred 

values from the Markov chain models, the models were adjusted to achieve models 

which were more consistent with geological information.  

(e) Conducting the simulations using the mentioned Markov chain models and simulation 

framework. The simulations here were based on the reformulated indicator (co)kriging 

equations using transition-probabilities and Markov chain models. 

(f) Further optimization stages (simulated annealing or quenching stages) could be done 

using some objective functions. The objective function for performing the simulated 

annealing in TP/MC method is defined based on the closeness of the calculated 

transition-probabilities of the simulation results to the target Markov chain models of 

them. Therefore, in the quenching step of this simulation method, the deviation of the 

initial simulation and the target (Markov chain) model is minimized in terms of the 

transition-probabilities of the categories, under specific convergence conditions, to 

achieve a new improved simulation result. This result should represent a more 

acceptable spatial structure in terms of the transition-probabilities reproduction. The 

quenching usually improves the geological soundness of the simulated models. In this 
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study, as it will be shown later, quenching improved the geostatistical /statistical and 

geological soundness of the simulation results.   

 

5.1.4.   Markov chain models of transition-probabilities  

 

Spatial Markov chains, as explained before, stand for a change model in states (e.g. a 

sequence of lithofacies in a specific direction) so that the state in a point is dependent 

solely on the nearest points but not the others. This spatial Markov chain can be described 

based on the spatial probability of changing each state, e.g. a soil type, to the others so-

called transition-probabilities that are dependent only on the separation vector of points 

and not the location in the stationary case.  

A one-dimensional spatial Markov chain model supposes that the result at the specific 

location depends fully on the closest datum.  A three-dimensional spatial Markov chain 

model conveys that the spatial variability in any one direction can be described by a one-

dimensional Markov chain model (Carle 1999, p. 25).  

Even though the Markov chain, in theoretical and mathematical view, is identified very 

simply, it has demonstrated considerable applicability in spatial variability 

characterization of facies or hydrostratigraphic units in alluvial and fluvial depositional 

systems (Carle 1999, p. 28). 

Mathematically, it can be shown that the Markov chain consists of linear combinations of 

exponential structures, although non-exponential-looking ‘‘Gaussian’’ and ‘‘hole-effect’’ 

structures can also be generated. 

The Markov chain model in the   direction can be fully formulated using an exponential 

matrix equation like this: 

)exp()( hRhT   (5-18) 

and therefore the Markov chain models can be fully defined having the transition rates. 

The transition rates are the change of a transition probability from one state to another in 

unit length. 

In this equation, h  denotes a lag in the direction , and R  denotes a transition rate 

matrix: 
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where ,jkr  stands for changing rate from category j to category k for each unit length in 

direction . 

Attention should be paid that the Equation (5-18) do not reflect a plain mathematical 

exponential equation but it conveys an eigenvalue analysis procedure since the matrix 

exponential is not calculated solely by computing the exponential of matrix elements, that 

is, )exp()( ,, hrht jkjk . 

Symbolizing R  and h  by R and h, respectively, for notational simplification, (Rh) can 

either be approximated by an infinite series or even preferably with an exact form of: 

i

K

i

i ZhRh )exp()exp(
1

      (5-20) 

where i  and iZ represent the eigenvalues and spectral component matrixes of R for K 

categories, respectively. 

To define the term of “eigenvalue” and to keep the mathematical accuracy, the sentences 

have been exactly quoted here from Weisstein, E. W. "Eigenvalue." -- from Wolfram 

MathWorld, A Wolfram Web Resource (accessed in fall 2011): 

 

 “Eigenvalues are a special set of scalars associated with a linear system of 
equations (i.e., a matrix equation) known also as characteristic roots, 
characteristics values (Hoffman and Kunze 1971), proper values, or latent roots 
(Marcus and Minc 1988, p. 144)”. 
“The determination of eigenvalues and eigenvectors of a system is extremely 
important issues in physics and engineering. 
Each eigenvalue is paired with a corresponding so-called eigenvector. 
If A  is a linear transformation represented by a matrix A ,  is called the 

eigenvalue of A  with a corresponding vector 0nRX , if there is such a vector 
X so that: 
 

XAX ”  (5-21) 

 

The mathematical details are discussed in the relevant literature (e.g. Agterberg (1974) 

and Carle and Fogg (1997) and Carle and others (1998)). 
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An eigenvalue, like i , is inherently zero and is related to a spectral component matrix 

having the proportions along each column. Thus, for a four-category system, the 

continuous lag Markov chain model written out completely consists of 
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   (5-22) 

In which, the ijkz , are the coefficients of the spectral components matrices iZ calculated by 

the eigensystem analysis (Carle 1999, p. 30). 

Hence, the Markov chain model for every element of )(htij  in )(hT  equals to a linear 

combination of the K-1 exponential categories plus the column category proportion. For a 

four-category case, this can be expressed as following (Carle 1999, p. 30): 

)exp()exp()exp()( 44,33,22, hzhzhzpht ijijijjij     (5-23) 

The Markov chain model for in TP/MC method can be established using different 

methods such as; discrete lag Markov chain method, maximum entropy, transition 

frequencies, embedded transition frequencies, and embedded transition-probabilities. 

 

“The lateral extent of the 3-DMarkov chain model output by MCMOD
1
 must be finite, 

with limits that consider statistical closeness. Kriging-based algorithms, which do not 

consider cross-correlations, easily rank statistical closeness by the magnitude of the 

variogram (or covariance) model or a prescribed search radius with anisotropy ratios. 

However, the ranking of a full cross-correlation matrix for multiple categories is not so 

straightforwa”(Carle 1999, p. 30). 

 

 The determinant as a closeness measure is used not only in the MCMOD program of the 

T-PROGS software to rank the statistical closeness in MCMOD program but it is also 

                                                 
1
 A program in T-PROGS software to find a proper Markov chain model for transition-probabilities. 
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used in the search and simulated quenching algorithms of the TSIM program (in the T-

PROGS software). 

 It can be shown that the determinant of the transition-probability matrix )(hT  would be 

the product of its eigenvalues )(hk  (Carle 1999, p. 30): 

K

k

k hhT
1

)()(det   (5-24) 

More details about the eignsystem analysis can be found in relevant literature (e.g. Carle 

1999, pp. 27-28).  

Two- or three-dimensional Markov chain models can be achieved by accepting the 

assumption that the spatial variability in every direction can be characterized using a 1-D 

Markov chain model. The 1-D Markov chain models in each direction can be achieved by 

interpolating the 1-D Markov chain models in principal direction models. Similar 

conclusion can be made about the transition rates based on the assumption that the 

transition probability matrix can be fully determined by the use of the transition rates 

matrix (Carle 1999, p 30).  

 A brief description of each Markov chain transition probability modeling method is 

explained following: 

 

(a) Transition rates: 

When the transition rates, which equal to the slopes of the transition-probabilities at the 

origin, can be inferred directly (for example from the transition probability graphs of the 

input data) or from subjective information such as mean lengths and interpretations of the 

facies successions, this technique could become a suitable choice. 

In addition, in the case that the rough initial transition rates are inferable from another 

Markov chain modeling (e.g. discrete-lag method) and analysis method, the transition 

rates can be adjusted and fine-tuned to achieve better fits in the next stages. 

 

(b) Discrete-lag Markov chain model: 

If a transition probability matrix )( hT is multiplied successively by itself at lag h , the 

Markov chain model can be formulated using the discrete-lag method.  

It can be shown that, the transition-rates matrix can be formulated as following, in this 

technique (Carle 1999, p. 27): 
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  (5-25) 

which contains the eigensystem analysis. More details about the eigensystem analysis can 

be found in the relevant literature. 

Therefore, one can use this method to produce the Markov chain models that honor the 

calculated transition-probabilities from input data in specific unit lags, for example, in 

one-, two-, three-, or n-unit lags. 

This method is usually applied in the initial steps of Markov-chain modeling to obtain a 

rough estimation of the models and transition rates. 

In this case, the Markov-chain models of transition-probabilities were initially made 

based on discrete-lag method. Different lags were to tested to find the model that fits the 

best to all of the observed transition rates while fulfills the statistical requirements of the 

model such as negative auto-transition rates and positive cross-transition rates. Checking 

the debugging file, it could be evaluated whether or not the models had statistical 

problems and in the necessary cases, there were modified. 

In this study, in most cases, a 3-lag (discrete-lag) Markov chain model was considered as 

the initial transition rates Matrix approximation step. 

 

(c) Transition-probabilities of embedded Markov chain analysis: 

Embedded transition-probabilities are defined based on the probabilities of the transitions 

among the categories where the states are changed. Therefore, there are no auto-

transitions, in embedded Markov chain analysis. 

Embedded Markov chain analysis provides the most interpretive framework in Markov 

chain modeling. Therefore, it can be applied in the case of sparse data or even no data 

(Carle 1999, pp. 35-36). 

For example, the relation of the embedded transition-probabilities, mean length and 

transition rates can be expressed as following: 

zi

zij

zij
L

r
,

,

,   (5-26) 

where zijr ,  stands for the transition rate from category i to category j, zij ,  is the embedded 

transition probability from category i to category j, and ziL ,  indicates the mean length of 

the category i, all in vertical direction. 

In addition, the following condition also should be met: 
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zij   (5-27) 

in which, K is the total number of categories. 

In addition, interpretations and subjective information, inferred from embedded 

transition-probabilities, can be used to check and verify the chosen Markov chain models. 

The embedded transition-probabilities, stored in the debugging file of the MCMOD 

program of T-PROGS software, can be interpreted for some subjective information such 

as the tendency of categories to occur above or beside each other and the mean length of 

each category in specific directions for example in vertical direction that would be the 

mean thickness of each category. 

In general, a category with the highest frequency is considered in T-PROGS software as 

the background category. Besides, since in the embedded transition-probabilities analysis 

there are no auto-transitions, the inference of embedded transition-probabilities is not too 

difficult by integrating subjective information in Markov chain modeling of the transition-

probabilities. 

 

(d) Transition frequencies of embedded Markov chain analysis:  

In an embedded Markov chain transition-probabilities analysis, the numbers of transitions 

are indicated at the first step. For example, the count of transitions from soil class 1 to the 

soil class 2 and to all other classes are determined to calculate the transition-probabilities 

from class 1 to all other classes. Here, again, there are no auto-transitions. With 

normalizing the matrix of the number of counts by the sum of the whole matrix, the 

transition frequencies are calculated. If these counts are normalized by the row totals, the 

transition-probabilities will be achieved. The application of transition frequencies rather 

than transition-probabilities is suitable in the evaluations of statistical independence.    

 

(e) “Independent” or “maximum entropy” (disorder) Markov chain analysis: 

If there are no tendencies in the occurrence of any category over or beside the others, the 

conditions of the “independence” or maximum entropy should be met. 

“The disorder of the juxtapositional tendencies in a particular direction, say , can be 

quantified by the entropy S  of bed-to-bed transition frequencies ,jkf , the probabilities 

that one bed occurs next to another, by”: 
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j k

jkjk ffS )ln( ,,   (5-28) 

It can be proved that in the Maximum-entropy conditions, the transition rates can be 

obtained by: 
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,   (5-29) 

 

5.1.5.  TP/MC simulation technique 

 

 TP/MC simulation is performed in two stages:  

 

(a) The initialization  stage:  

 In this step, a method similar to the sequential indicator simulation (SISIM) algorithm 

(explained by Deutsch and Journel 1998, pp. 125-127, p. 149-150) is applied, except that 

this technique uses a transition probability-based indicator cokriging to approximate the 

local conditional probabilities: 

Pr{k occurs at 0x | )(xi j ; KjN ..2,1,...2,1  }
K

j

jkj

N

wxi
1

,

1

)(   (5-30) 

 In above equation (Equation (5-30)), the parameters definitions of the equation can be as 

summarized following: 

N: data number in the neighborhood, i: indicator for category j, ,jkw : estimation weights 

for transition from the state j to the state k, and  is the index of the points applied in the 

estimation of the conditional local probabilities (Carle 1999, p. 47). 

Estimation weights ( ,jkw ) can be calculated from solving Equations (5-13) and (5-14). 

The only point is that, in the mentioned equations, estimation weights have been denoted 

as   instead of w . 

Implementation of transition probability-based cokriging, improves the consideration of 

spatial interclass cross-correlations. 
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(b) Simulated annealing:  

 Simulated annealing or quenching is an optimization stage. A more detailed description 

of simulated annealing method for geostatistical analyses can be found in Deutsch 2002 

(pp. 275-294) as well as in Deustch and Cockerham 1994. In this stage, initially generated 

configurations using a transition probability-based SISIM technique, are improved and 

optimized to enhance the agreement between measured and modeled transition-

probabilities. In other words, the difference between the Markov chain models of 

transition-probabilities and the calculated transition-probabilities of the simulations are 

decreased. 

Thus the attempt in quenching step is to solve the optimization problem of  

})()(min{
1 1 1

2
K

l

K

j

K

k

MODljkSIMljk hthtO   (5-31) 

where O denotes the objective function, lh   represents the l=1,…, M indicated lag-

vectors, j and k show the K existing categories, and finally “SIM” and “MOD” 

distinguish the simulated (measured from the realization) and model transition-

probabilities, respectively (Carle 1999, p. 53).  

In each simulated point, the neighbouring states are cycled and the transition-probabilities 

are calculated. An objective function is defined as following: 

O = E {(Transition probability of simulation- Transition probability of model) 2 }  (5-32) 

 If the perturbation minimizes the objective function (O), it is accepted and otherwise it is 

rejected. 

 In this case, considering the mentioned soil classification scheme, due to rather enough 

amounts of data-points, considering the length statistics has no significant effect on 

improving the Markov chain models, although in fewer data, it would be more effective 

and useful for sure. The discrete-lag method and inferred proportions were first used to 

make the MC models, they were checked for statistical accordance, and then the models 

were further examined using the length statistics.   
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5.2.  Transition-probability Markov chain (TP/MC) 
geostatistical modeling of geotechnical data-set in 
Göttingen test site 

 

 

5.2.1. Overview: 

 

 To perform a transition-probability Markov chain geostatistical simulation and analyses 

of geotechnical soil-classes model in Göttingen test zone, the first step, as argued before, 

was to calculate the transition-probabilities among different classes in various directions 

from input data. Similar to the sequential indicator simulation (SISIM) and indicator 

kriging (IK) modeling methods, the transformed coordinates system was applied in 

transition probability Markov chain-based analyses. These transition-probabilities (auto- 

and cross-transitions) were calculated and plotted for horizontal (Omni-directional 

horizontal) and vertical directions. 

 The next step was to find a suitable Markov chain model that not only fit the transition-

probabilities of the input data but also it could fulfill some basic criterions. These 

criterions have been summarized following: 

(1) The auto-transition rates should be minus. 

(2) The off-diagonal transition rates should not be negative. 

(3) The row sums for transition rates matrix should be zero (Carle 1999, p. 

29): 

0
1

,

K

k

jkr   (5-33) 

(4) The column sums, considering the proportions of the categories, must 

conform the following equation (Carle 1999, p. 29): 

0
1

,

K

j

jkjrp   (5-34) 

(5) The transition rate values should individually be reasonable values. 

 All the mentioned criterions are checked internally in the MCMOD program of T-

PROGS software and reflected in a debugging file. 

 The first step in finding the proper Markov chain model which could fulfill the 

mentioned criterions and fit the sample transition-probabilities acceptably started with 

discrete-lag Markov chain modeling.  In discrete-lag Markov chain method, the model 
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honors the transition-probability data in a specific (discrete) lag. In other words, the 

model passes through a transition probability point in a specific lag, e.g. second-lag of 

transition probability plot, which has been calculated from the sample data. 

 One can choose the first-, second-, third- or a bigger number-unit lag transition 

probability point depending on the spatial structure of data which produces the best fit 

while no errors in MCMOD debugging file. 

 As Carle and Fogg (1997) have suggested, the Walther’s law of facies succession 

(Leeder 1982, p. 122) can be applied as a practical means to infer the horizontal 

transition-probabilities structure of a sedimentary succession from its vertical-direction 

structure and vice versa. Walther’s law of facies succession (in the absence of non-

conformities) implies that the vertical succession of sedimentary environments reflects 

their lateral structure (Leeder 1982, p. 122).  

  Hence, an observed fining upward asymmetry in the vertical transition-probabilities 

might be incorporated to construct the fining outward model in the dip-direction transition 

rates (Carle and Fogg 1997, p. 908). 

The next step usually is to improve the Markov chain model using embedded Markov 

chain method. In the embedded Markov chain modeling where the embedded transitions 

are considered, the length statistics and other interpretive information can also be taken 

into account. Embedded transition probability Markov chain modeling method is in 

general more flexible and interpretive. In the case of this study, the Markov chain 

modeling of transition-probabilities started with discrete-lag modeling (3-lag), followed 

by embedded Markov chain method and finally using the transition rates to improve the 

models using the adjustment of transition rates.  

 The produced models in MCMOD program were checked by plotting the data transition-

probabilities and Markov chain models in the same graph. Figure 5.3 and  

Figure 5.4 represent the data transition-probabilities and the chosen calculated models for 

vertical and horizontal directions. 

 In the MCMOD program the operator defines the Markov chain model type, categories 

proportions and the relevant model parameters as well as input data file. Then the 

program produces five output files as the elements of Markov chain model. Three files are 

the transition-probabilities of Markov chain models in x, y, and z directions respectively. 

These files are used in plotting and checking the produced Markov chain models 

compared to the transition probability of the input data. These three files have the ASCII 

file format. Therefore, the strategy for checking the models is to plot the transition-
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probabilities of model(s) and those of data in a same plot and comparing them together as 

mentioned above. Then, the debugging files were checked for their conformity to the 

required conditions. The graphs always do not change significantly but the debugging file 

may show better conditions with required fine-tuning of the Markov chain models to 

fulfill the necessary conditions.  

The two other files which include the three-dimensional Markov chain model are in 

binary format. One of the two mentioned files is the three-dimensional model file and the 

second file is determinant file which contains the statistical closeness data (see Section 

5.1.4 for more details about the method). 

After choosing, adjusting and improving the three-dimensional Markov chain transition 

probability models, regarding the debugging file of MCMOD program and transition 

probability graphs, one can also perform some length statistics checks to improve or 

verify the existing model, especially in the case of insufficient data. In the case of lack of 

enough information, the length statistics can play an important role to fill the information 

gap in order to approximate the proper Markov chain models or improve them. 

In this study, due to the existence of sufficient samples and data, the application of length 

statistics did not seem to be necessary. 
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Figure 5.3 Transition-probabilities of the four geotechnical soil categories in vertical direction 

calculated from input data (dots) and their corresponding Markov chain model (solid lines) from 

transition rates method as a final fine-tuned model. 
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Figure 5.4 Transition-probabilities of the four geotechnical soil categories in horizontal direction 

calculated from input data (dots) and their corresponding Markov chain model (solid lines) from 

transition rates method as a final fine-tuned model. 
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5.2.2. Some points about using post-quenching phase in TSIM 
program of the T-PROGS software: 

 

To perform the TP/MC simulations, termed here as TSIM simulation, the TSIM program 

of the T-PROGS software was applied. There were some practical points and 

considerations in the applications of this program in the present study which has not been 

explained here to avoid too much discussions and details. In this section, a summary of 

the most essential points of these points have been addressed. 

  For the reasoned explained before, the TSIM simulations started with generating 

simulations without quenching steps. Then, every further quenching step was performed 

on the available simulations of the previous stage. However, the TSIM program conducts 

these quenching steps on the same output file of the available simulations from previous 

stage(s) by assigning a negative number for the quenching steps. Therefore, the existing 

simulation as well as output files (which give a summary of each simulation round) had to 

be copied first and renamed for the next stage.  Copying the simulation files was for 

preserving the existing simulation results and renaming was for applying the last 

simulation results for the next quenching step with different names to avoid replacing the 

existing files. Since, the simulations were recorded in different files but there was only 

one generic “tsim.out” file for each round, the proper renaming had to be done on the 

output files in each step. To make it also easier to calculate the variograms of all the 

TSIM, simulation, the realizations of each TSIM simulation were merged into one file 

with compatible format of the GSLIB software. Scripting was applied during this study to 

make several handlings and calculations easier or even feasible. 

 

5.3.  Evaluating the TP/MC simulation results and their 
underlying models 

 

5.3.1. Overview: 

 

To evaluate the simulations produced by transition probability-based Markov chain 

method, some interpretive and statistical criterions were employed and suggested in this 

study. 

The purpose and meaning of the produced simulations evaluations and their underlying 

models was to assess the goodness of applied models for TP/MC simulations, improve 
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them if necessary, and suggest the best produced realizations in terms of mentioned 

criteria. In addition, the proper criterions were sought to compare the results out of 

different geostatistical simulation methods and evaluate how reliable in general these 

criterions were. 

 Oy Leuangthong et al (2004, p. 72) have summarized the minimum acceptance criteria 

for geostatistical realizations. Based on their suggestions, the following criteria to 

evaluate the qualities of produced simulations and choosing the best ones have been 

considered in this study: 

(a) Honoring the input (i.e. conditioning) data at their locations. 

(b) Histogram (or proportions) reproduction. 

(c) Transition probability Markov chain models reproduction (as a measure for 

spatial variability structure). 

(d) Variogram reproduction (as another spatial structure measure). 

(e) Geological soundness of the produced model. 

 

Actually, the criterion of TPs-reproduction has not been suggested by Oy Leuangthong et 

al (2004). However in this study, the application of TPs-reproduction as another spatial 

variability measure has been suggested to improve the evaluation of the spatial variability 

structure, especially to evaluate the interclass transition structures. In particular, TPs-

reproduction criterion could match better to the TP/MC method which essentially relies 

on modeling the TPs as spatial variability structure measure and using Markov chain 

models. 

More details about and the results of each mentioned criterion have been explained 

further, in the coming sections. 

 

5.3.2. Honoring the input (conditioning) data values at their 
locations or data reproduction: 

 

 It is a known fact that (co-)kriging is an exact estimator, so that the estimate at a data 

location equals exactly to the input data value. In other words, if kriging estimation is 

performed at the location of a data point, the result would exactly be the same as input 

data value at that location and the estimation variance will be zero: 

),(* uzzk      ,uu   n,...,1   (5-35) 
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where *

kz  represents the kriging estimation value of the random variable, Z, at location u 

and )(uz  stands for the data value at location u . 

 Considering that initial stage of the applied simulation methods was based on 

reformulated (co-)kriged estimations and their corresponding estimation variances to 

define the local conditional cumulative distribution functions (CCDF), the applied 

simulation methods also had to reproduce the data exactly at their locations. However, in 

practice, for some reasons, few data points were not reproduced. For example, in some 

simulation algorithms that assign data points to the simulation grid nodes, in order to 

speed up distance calculations, some input data may not be reproduced. For that reason, 

the total number of assigned data may become less than the total number of available 

conditioning data. This phenomenon can happen probably because of one of the following 

reasons: 

1. The sample coordinate may be situated outside of the limits of three-

dimensional model (simulation) grid (Figure 5.5, A). 

2. The data point may be inside the limits of 3D simulation grid, but it is trimmed 

or there is no variable available (Figure 5.5B). 

3. If there are more than one data points available inside the 3D simulation grid 

limits near to a simulation grid block and one of samples is closer to the block 

center, the closer sample will be kept and the other sample will be ignored 

(Figure 5.5, C). 

 

Figure 5.5 a schematic illustration of how the input data may not be assigned to the simulation grid 

node: A, the sample exists but it is located outside the simulation grid; B, the existing sample is inside 

the simulation grid but the value is trimmed; and C, samples exist and are inside the simulation grid 

but there are more than one samples inside the grid block but only the closest sample is assigned (the 

graph is taken from Leuangthong (2004, p. 133). 
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 In WinGslib software, the user can decide to let or not let the SISIM program to assign 

the data to the model nodes. The assigning of the data to the simulation model nodes can 

be chosen to reduce the simulation run-time. In this case, the decision was to let the 

SISIM program of WinGslib software to assign the data to the simulation nodes to speed 

up the simulation procedure. In addition, some data points could also be trimmed in the 

SISIM program. Therefore, it was expected that a number of input data points would not 

be reproduced (Leuangthong 2004, p. 133).  

 

Figure 5.6 input data conditioning errors histogram of SISIM simulation method for realization 

number 20. 

 

 

Input data reproduction can be checked in different ways. Oy Leuangthong et al (2004, 

pp. 133-134) have suggested the use of cross-plots in order to assess the goodness of 

input data reproduction. However, since this approach is not well-suited for categorical 

attributes, another solution was adopted here to facilitate the evaluation of conditioning 

data reproduction for each realization. A MATLAB code was developed to compare the 

observed and simulated soil categories and assess the conditioning-data reproduction ratio 

in all sample points in the simulation models. This check was performed for all 

realizations generated by various simulation methods. For this purpose, in each step the 

mentioned MATLAB code reads the soil category of a data point from borehole data file 

and finds the soil category in its nearest simulation point of a realization from its 

corresponding simulation file. Then, the code compares the observed and simulated 

categories from these two points with calculating their differences. Finally, the ratio of the 

correctly conditioned simulation points in each realization (with the difference values of 
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zero), was calculated for all realizations. The MATLAB output was copied and stored in a 

text file separately for each simulation method. The conditioning data reproduction can be 

evaluated afterwards. This difference also could be represented in a conditioning-errors 

histogram. The error then is the difference of the observed category values of wellbore 

data and their corresponding simulated category in their nearest points. Ideally, this 

histogram should only contain zero values (100% of the frequency) that would mean the 

exact reproduction of all input (conditioning) data points. In practice, however, some 

errors are expected. Figure 5.6 represents an input data conditioning error histogram of 

the realization number 20 for the SISIM simulation method. The histogram is quite 

symmetric with a governing frequency on no errors, meaning that the input data 

reproduction was almost perfect except for a minor portion of data points. Some errors in 

this method also could occur due to the imperfect match of the simulation and data points. 

For instance, if a data point is located between two simulation points with exactly similar 

distances from data point, the computer code will consider the first point in the simulation 

file.  

In simulation number 20 of the SISIM method, the 99.64 % of input data was exactly 

reproduced. 

 The results show that the input data reproduction of the SISIM realizations were in the 

range of 99.47% and 99.88% that is nearly perfect for all realizations. The same checks 

were performed on the realizations of different TSIM methods. 

 The conditioning on input data for the TSIM method is also about 89.47% to 95.22% 

which seems also fairly acceptable but weaker compared to the SISIM method.  

Since it was not possible to represent all the conditioning-errors histograms of all the 

realizations of different simulation methods, the qualities of input data reproduction was 

evaluated solely with the ratio of exactly conditioned simulation points in which the 

conditioning-errors were exactly zero. 

 Table 5.1 summarizes the simulations conditioning on the input data for different 

simulation methods. 

 The clear conclusion from this table could be that, the conditioning-data (input data) 

reproduction can be accepted for the realizations of all utilized simulation methods in this 

study. However, the conditioning on the input data has clearly been reduced by adding the 

number of quenching steps. Since the reduction of the input data honoring with further 

quenching steps is unfavorable whereas the extra quenching steps increase the other 

statistical and geological qualities of the simulations, a compromising decision could be 
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made to keep a good input data reproduction as well as an acceptable simulation at the 

same time. Therefore, it can be suggested that the number of quenching steps should not 

be too much but at the same time it should not also be too few. 

 

Table 5.1  The table represents a summary of honoring (conditioning on input data) for various 

geostatistical simulation methods. 

 
                                 
            Simulation method 
 
 
 
Ratios of correctly 
conditioned input data  

Statistic SISIM 
TSIM without 

any quenching 
steps 

TSIM with two 
quenching 

steps 

Based on the all input data 
points 

 
 

Minimum 0.9947 0.923 0.8863 

Maximum 0.9988 0.9431 0.9277 

Arithmetic 
mean 

0.9979 0.9329 0.9103 

Satadard 
deviation 

0.0011 0.0064 0.0120 

Based on the accepted 
input data points in the 

simulation program 
 
 
 

Minimum 0.9947 0.9318 0.8947 

Maximum 0.9988 0.9522 0.9366 

Arithmetic 
mean 

0.9979 0.9418 0.9190 

Satadard 
deviation 

0.0011 0.0064 0.0121 

 

5.3.3. Histogram- (or proportions-) reproduction: 

 

(1) Introduction:  

 

  One of the least requirements for a realization of a geostatistical simulation to become 

acceptable, in statistical sense, is its ability to reproduce its expected representative 
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histogram of the attributes under study. The target attribute in this study was the soil 

categories. Hence, a realization that, its histogram of the studied attributes, deviates too 

much (beyond an acceptable tolerance) from the target distribution, is rejected for 

histogram reproduction. In such cases, either another realization that fulfills this criterion 

better can be selected for further evaluations or the underlying models of the simulation 

should be adjusted to achieve a more suitable set of results which reproduce the target 

histogram better. Even, it could also be necessary to choose a different simulation method 

to achieve more proper simulation results that better reproduces the expected histogram. It 

should be reminded here that, the primary geostatistical models in this study were initially 

improved, prior to the geostatistical simulations. For the kriging-based method of SISIM, 

the cross-validation, and for the transition-probability-based method of TSIM, the 

Markov chain model parameters control was applied to improve the initial models which 

were implemented later for geostatistical simulations. About the transition-probability-

based methods, the debugging files were checked for the accordance of the simulation 

models statistics to the necessary statistical conditions such as non-negative cross-

transition and negative auto-transition rates in the transition-rates matrix. More details 

about the necessary conditions of the TP/MC simulation models have already been 

discussed in the relevant section.  

Two essential points should be kept in view when evaluating the quality of histogram 

reproduction for a realization of a geostatistical simulation: 

(a) A number of proper criterions should be chosen to verify the closeness of the 

histograms of the soil categories in realizations to that of the reality as well as 

to assess how close these distributions are and which realization reproduces 

the real distribution better. 

(b) The practical limitations and suitability as well as available software should be 

considered 

 

 The application of the Q-Q plots could be considered as one of the most common 

techniques in histogram reproduction evaluations of geostatistical realizations of a 

simulation method. A Q-Q plot, in fact, compares the distributions of the two sample 

groups. For instance, in the case of histogram reproduction tests of the geostatistical 

simulations, the realizations versus the expected (target) distributions can be compared 

with each other. This method is especially suitable to be implemented when evaluating all 

the realizations at once. In such cases, the Q-Q plot of all realizations versus the input 
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data is plotted to compare the distributions of these two sets. If the Q-Q plot (roughly) 

follow the 45-degree line of the y=x, it means that the two distributions, i.e. the 

simulations and the expected one in this case, are almost identical. Still, this technique is 

better suited for the continuous data-sets rather than the categorical ones and especially in 

assessing all the realizations at once. Besides, the calculation and plotting of such huge 

point-sets, due to a high computational demand, is rarely feasible. For example, in this 

application, the GSLIB and R programs exceeded their (memory and run-time) limits. 

Thus, the application of Q-Q plots was not preferred for the proportions-reproduction test 

in this project. Consequently, an analytical alternative was preferred for testing the 

histogram reproduction of such a categorical attribute, particularly because of offering a 

clearer index to evaluate and compare the results by such an analytical measure. 

To approximate the target distribution, in this study, the application of the volumetric 

proportions of the categories inferred from the borehole data considering the vertical 

grids-transformation corrections could be applied. This suggestion was supported by 

similar cases in the literature such as Ritzi et al. (2007) as well as in Deutsch and Journel 

(1998), and the discussion in Section 2.1.6. To achieve a modified representative 

histogram of the soil categories, the effect of the grids transformation in vertical direction 

had to be considered. In addition, due to the existence of some clustering in boreholes 

locations, corrections such as cell- or polygonal-declustering seemed necessary. The 

declus program in GSLIB software can be used for a cell-declustering of the input data. 

Both the mentioned methods including the declustering and direct proportions 

calculations from boreholes data with corrections for vertical grids-transformation were 

applied separately here to estimate the representative global proportions. Then, the results 

of these two methods were compared with each other. Nevertheless, there are still three 

important points about these corrections:  

(a) The applied declustering algorithm depends very much on declustering 

parameters that affect the global histogram approximation.  

(b) When these two methods to estimate the global histogram were applied 

separately, the results out of them were almost equal. As stated before, the first 

method was cell-declustering technique and the second approach was the 

volumetric proportion calculation from the borehole data just with considering the 

correcting weights proportional to the effective-range of samples in vertical 

directions in the transformed space. Therefore, in the second technique, the weight 

of each sample in the calculation of the proportions in global distribution was 
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higher in the thinner parts of the layer where there were less number of samples, 

and lower where the layer was thicker and the number of samples was more. 

According to the conducted cell-declustering of input data, the global proportions 

of the soil categories from two methods were more or less similar.  

(c) When performing the ordinary kriging algorithms, the declustering is not 

necessary because the ordinary kriging algorithm, automatically and effectively 

corrects the clustering effect (Deutsch 2002, p. 50). However, for the geostatistical 

simulations, a representative histogram in which the clustering problem has been 

modified is greatly necessary. 

 

 In this study, as mentioned above, the estimated global distribution of soil categories 

calculated by declustering method and from input data with vertical grid-transformation 

corrections were not considerably different. In addition, the declustering parameters were 

also affecting the estimated histogram. Therefore, the application of the second method 

which was easier and more consistent has been suggested for similar cases. Yet, the 

locally varying proportions and the proportions estimation uncertainties as well as the 

conceptual or deterministic process-based models or the secondary information such as 

seismic measurements could also be taken into account for a better proportion estimation 

of soil categories. The reason of the suitability of the second method, i.e. inferred from 

boreholes data with corrections related to the grid-transformation, for the proportions (of 

categories) estimation, was due to the plenty of available samples as well as the lack of 

significant trend in the proportions variations over the study area in the transformed-grid 

space.  

Hence, in this study, a realization was not rejected for the histogram reproduction when 

its proportions of the categories were close-enough to those of the expected ones 

(considering the acceptable tolerances). This evaluation had to be clearly supported by 

statistical concepts. Moreover, another insight to the proportions reproduction evaluation 

could be that both boreholes data and simulations should reflect the same populations 

which closely imitate the distribution of existing categories in the reality, all in the 

transformed space. Taking such an insight into consideration for this problem, the chi-

square statistical homogeneity of populations test was also suggested to assess the 

proportions reproduction in this case.  
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(2) The proportions-reproduction criteria: 

 

 Considering the above discussion, two decisive factors were suggested in this study to 

evaluate the proportions-reproductions of the realizations of each simulation method; 

first, a chi-square test for homogeneity of populations, and second, the deviation rate of 

the observed from expected proportions together with a chi-square-like statistic that will 

be explained more in the coming sections which has been named here as sum of the rates 

of squared deviations. This measure has been defined according to the squared deviation 

of the observed from expected proportion relative to the expected proportion which is 

defined similar to the definition of the normalized mean square deviation statistic. In 

addition, the chi-square ( 2 ) statistic for homogeneity of proportions test was also 

applied to assess the proportions-reproduction in the realizations and rank them in terms 

of its goodness. The ranking of the realizations in terms of the chi-square statistic for the 

quality of proportions reproduction, was based on the fact that, the lower the 2  value, 

the closer the distribution of that realization should be to the expectation, because 

the 2 statistic reflects the departure of the observed frequencies from the expected ones. 

 There are also further statistical measures for the evaluation of the accordance of the 

realizations and target (real) distributions in a simulation method, such as Kolmogrov-

Smirnov goodness of fit test for the continuous parameters or the RMS (root mean 

square) statistic for the categorical data (e.g. Clausen (1982, p. 55) for RMS).  

 

a. Proportions-reproduction check using a deviation rate framework:  

To evaluate the quality of the proportions-reproduction, a criterion has been suggested 

here which has been referred as the proportions “deviation rate” (D.R. or DR). This rate 

seems comparable to the framework of the mean absolute percentage error (MAPE) or 

mean absolute percentage deviation (MADE). However, the difference between these two 

methods is that, the DR is evaluated for each category separately and the greatest 

emphasize is considered on the most dominant classes. MADE is applied in evaluation of 

the model fitting in time series. The deviation rate of the proportion of category i in a 

realization, has been defined in terms of the ratio of the deviation of the proportion of a 

category (i.e. category i, in this case) from the expected (i.e. global) proportion: 
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where  iRD ..  , for a realization of a geostatistical  simulation, is the deviation rate of the 

observed proportion of the class i from its expected proportion, iOP )(  is the observed soil 

category proportion of the class i in the mentioned realization , and iEP )(  is the expected 

proportion of the same (global proportions). 

 It should be emphasized again that the proportions of the soil categories inferred from the 

boreholes, taking the grid transformation corrections into account, were regarded as the 

target distribution in the “deviation rate” calculation here.  

 In the proposed framework, the deviation rate  of the proportions of soil categories 

( ..RD ) for each realization of a simulation method was evaluated, starting the evaluation 

from the proportion of the soil category with the highest observed frequency in the 

boreholes (after necessary modifications related to the grid-transformations) and ending 

to the least frequent soil category from input data. Hence, a more emphasize was put on a 

class with the highest expected frequency and then, the second highest expectedly 

frequent class, and so forth. The practical steps of this method were as following: 

(a) First of all, the proportions of soil categories in the realizations were extracted 

from simulation output files and put in a table that besides, included the expected 

proportions of the categories. 

(b) Next, the deviation rates for each category were calculated using the above 

formula (5-36). 

(c) In the third step, the deviation rates which were not greater than the maximum 

acceptance limit, e.g. 0.1 (=10%) or 0.05 (=5%), were determined and indicated. 

The key classes for evaluation of the deviation rates of the proportions were the two 

most, and three most expectedly dominant classes in the SISIM (classes 2 and 1), 

and TSIM (classes 2, 1, and 3) methods, respectively. The maximum accepted 

deviation rates were 0.1 (10%) for the SISIM method and 0.0025 (0.25%), or at 

times, 005 (5%), for the TSIM methods. The reason for considering a much lower 

acceptable deviation rate limit for the TSIM methods were because of much closer 

proportions to those of the target in the realizations of the TSIM methods.  The 

signification of the acceptable deviation rates were by assigning a “1” when it was 

acceptable and a “0” otherwise. 

(d) Then, the realizations representing the acceptable deviation rates for the first 

two, or in some cases, first three expectedly most dominant soil classes were also 

indicated. 
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(e) The indicated realizations pointed out in step (4) were selected as realizations 

with acceptable proportions reproduction.  

(f) These selected realizations were sorted then, in terms of a statistic which looks 

like a chi-square statistic but has been defined somewhat differently and has been 

named in this study as the sum of the rates of squared deviations (SRSD). As 

mentioned before, this measure has been defined according to the squared deviation 

of the observed from expected proportions relative to the expected proportion. 

Actually, this measure has been defined similar to the coefficient of the variation of 

the mean square deviation statistic or the chi-square statistic. The difference of this 

measure with the coefficient of the variation of the mean square deviation is that 

there is no averaging in SRSD and the normalization is done against the expected 

values for each squared deviation but not the total mean of the observed 

(proportion) values. In this sense, SRSD is more similar to the chi-square statistic. 

However, the observed and expected values should be in terms of counts in the chi-

square statistic while the observed and expected proportions are employed in SRSD. 

Therefore, the SRSD was defined (proposed) in this study in somewhere between 

the chi-square and the coefficient of the variation of the mean square deviation. The 

aim of defining such a measure was to bring a complementary measure to highlight 

the absolute differences (by squaring the deviation) relative to the expected value 

(by dividing by its expected value) and summing these normalized deviations. 

However, there is no standard table for this statistic and it can only be used to 

compare among the different simulations to rank them for their quality of 

proportions-reproduction. The analytical definition of the SRSD has been brought in 

the next lines. The selected realizations were sorted in terms of their SRSD rates 

statistic of the proportions in an ascending order. The best realizations in terms of 

the proportions-reproduction should represent the least sum of the SRSD value as an 

indicator for the closeness of the simulation proportions to those from corrected (for 

the grid transformations in the vertical direction) observations in the boreholes.  

 Hence, wherever these deviation rates in a realization, for the two or three first 

expectedly most dominant classes, were in an acceptable range, let’s say, 0.1 or 0.05, the 

related realization was accepted and otherwise declined. 

 For instance, if the two classes that expected to be most predominant soil categories were 

considered as a basis to evaluate the quality of proportions-reproduction, let’s say, class j 

and class k (which were respectively classes 2 and 1 in this research) and the maximum 
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acceptable deviation rate is aRD .. , then the acceptance criterion could be expressed as 

following:  

{( jRD ..  < aRD .. ) and ( kRD ..  < aRD .. )}  the realization is acceptable in terms of the 

quality of proportions reproduction.   

The reasons for suggesting such a framework were:  

(a) Methods that could not be implemented or were not adequate: The Q-Q plot was 

not applicable in such cases not only due to software limitations but also for its 

incompatibility to the purpose of the categorical attributes evaluations. Moreover, 

the chi-square test of homogeneity does not always seem capable of identifying a 

satisfactory proportions-reproduction adequately.  As an example, regarding the 

expected proportions of the categories (i.e. the target distribution), the 2X  statistic 

(as a calculated estimation of the 2 statistic) for the homogeneity of proportions test 

suggested the realization number 20 as the best proportions-reproducing realization 

for the TSIM-without-quenching-step simulation method, whereas the calculated 

proportions of the realizations 16
1
 and 12

2
, putting more emphasize on the most 

dominantly observed classes in the input data, have obviously closer distributions to 

that of the target. In part (b), it will be explained why the belief here was that 

putting more stress on the most anticipated classes was a sensible decision. It has 

already been explained why the proportions of the soil categories inferred from the 

input borehole data were regarded a proper estimation of the real ones in this case. 

In addition, the chi-square method is not straightforward in terms of the departures 

from the expected proportions. Actually, a better decision could be made with a 

criterion that expresses these deviations more directly, for example in terms of a 

deviation rate. Moreover, the chi-square statistic for test of homogeneity, usually, 

gives a single overall value for all proportions-reproduction elements (proportions-

reproduction of cl1 to cl4).  Nevertheless, one can also evaluate each single chi-

square element for each soil category separately, to compare the expected and 

realization proportions. 

                                                 
1
 The proportions of the soil classes 1 to 4 for the realization 16 in TSIM method without any quenching 

step were 0.3672, 0.4255, 0.2015, and 0.0059 while the expected proportions were 0.372, 0.423, 0.201, and 

0.004, respectively.  
2
 The mentioned proportions for realization 12 for the same method were 0.3730, 0.4185, 0.2024, and 

0.0060 while they were 0.3618297, 0.4317658, 0.2028174, and 0.003587139, respectively for realization 

20. Clearly, both the realizations 16, and 12 represent closer proportions to those of the target ones for soil 

classes 1, 2 and even 3. 



 141 

(b) More reliable statistics in bigger classes: It is expected that the soil classes with 

the highest observed proportions, deduced from the borehole samples (considering 

necessary corrections for to the grid-transformation), would have the most reliable 

estimation of their proportions compared to the smaller classes. This is because of 

two reasons. First, the more dominant classes (based on the borehole data) have 

larger sample numbers and hence more reliabilities in their statistical inferences. 

The second basis could be that they also cover expectedly larger geometric sizes 

compared to the average spacing of the borehole samples, especially in the 

horizontal direction. Since the less observed proportions and hence the less 

coincidence of the boreholes with the smaller classes is due to their smaller 

geometric sizes compared to the average sample spacing, and vice versa. Therefore, 

the proportions of the small classes are prone to be approximated more inaccurately 

while the approximated proportions would be more reliable for the bigger classes.  

Hence, putting more emphasize on the reproduction of the proportions of the bigger 

soil classes is a sensible decision. In addition, in a volumetric view, if the 

proportions of the largest classes could be reproduced better, the volumes of the 

other classes also would not depart too much from their expected total volumes. 

This is because the total volume of the all categories is a fix amount for each of the 

realizations. However, if the volumetric deviations of the smaller classes are 

evaluated with a ratio rather than their volumes (similar to what is done in a chi-

square test or by deviation rates), the deviations may seem very considerable. For 

example, because the expected volume of the soil category 4, is 0.004 according to 

the categories proportions inferred from the borehole data considering the grid- 

transformation corrections, while the simulated volumetric proportion of the 

category 4 is 0.006 in a realization, there will be about 50% deviation of the 

proportion of this soil category from the expected value whereas the absolute 

volumetric difference is not so high. Besides, it is more probable that the 

approximated proportion of the category 4 (from the input data) is not that accurate 

and reliable due to the very low number of available samples from this class. The 

horizontal geometric sizes of this category should also obviously be much less than 

the boreholes spacing. However, for more frequent classes (in the boreholes 

samples), less variations should be acceptable, since their inferred proportions from 

the input data should expectedly be more precise. As a result, the suggested 

stepwise proportions deviation rate framework, that combines two insights of the 
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overall and fractional volumetric deviations from the expectations and puts more 

merit on the most anticipated classes, seems a more proper solution for the 

proportions-reproduction evaluation problem. In fact, this scheme forces the 

absolute volumes of the soil classes to be reproduced much closer to those of target 

and therefore to the real ones. In addition, the deviation rate is more straightforward 

in representing the extent of the deviation from the expected proportions. 

In this insight, as cited above, the most important and reliable soil-classes for the 

evaluation of the proportions reproduction are the classes 2, and 1 for the SISIM method, 

and classes 2, 1, and finally 3 for the TSIM method(s). The reason is that, these classes 

have the highest expected proportions and frequencies. Hence, the realizations that their 

proportions deviation rates of classes 2, and 1 (as well as class 3 in the TSIM method) 

from their expected proportions were less than 0.25% for the TSIM methods (except for 

the TSIM with two post-quenching-step method where the acceptable rate of 0.5% was 

considered), and less than 10% for SISIM method, were adopted as the acceptable 

realizations of these methods, in terms of the proportion- reproduction. As pointed out 

above, for the TSIM method with two post-quenching steps, the maximum acceptable 

deviation rate of 0.5% was considered because the deviations were, in general, higher for 

the results of this method compared to those of the TSIM methods with other numbers of 

quenching steps (i.e. no-, 1-, 3-, and 4-post-quenching steps). The maximum acceptable 

deviation rates for each simulation method were chosen so that the two or three best 

proportions-reproducing realizations could be differentiated. The reason for considering a 

lower acceptable value for maximum deviation rates in the TSIM with two-post-

quenching-step method is that, none of the realizations in this method have the deviation 

rate of the 0.25%.  

Table 5.2 summarizes and compares the results of the selected realizations produced by 

different simulation methods. The selection and comparison of the realizations in terms of 

proportions-reproduction was based on the two different mentioned methods of deviation 

rates (defined and proposed by the author of this dissertation) and chi-square test of 

homogeneity. 

 It should be clarified here that the proposed statistic which has been called the “sum of 

the rates of squared deviations” (SRSD) of the proportions here, was defined as 

following: 
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in which )( iOP  is the observed proportion of the category i, and )( iEP  is the expected 

proportion of the category i. Squaring the term )()( ii EPOP , makes the observed and 

expected proportions value positive and intensifies this difference while dividing the 

squared difference generates a rational value that compares this intensified positive 

difference to the expected proportions. SRSD resembles a chi-square statistic in some 

ways. Hence, SRSD facilitates the differentiation of better proportions-reproduction more 

clearly with a simpler calculation scheme compared to that of the chi-square test of 

homogeneity. 

 

b. Proportions-reproduction check using the chi-square test of homogeneity: 

Since, the real proportions of the soil categories are not exactly known and their inferred 

proportions form the boreholes are not necessarily accurate approximations of the real 

proportions, the consideration of the proportions inferred from the input data may not 

necessarily be accurate-enough in proportions-reproduction evaluations. Thus, the 

application of the chi-square test of homogeneity was suggested here as an alternative 

solution.  

The chi-square statistic, in general, is defined as following: 
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where the
2
 is the chi-square (or chi-squared) goodness of fit statistic, iO  is the observed 

frequency (counts) for the bin (category) i, iE  is the expected frequency for the bin i (i.e. 

the reference frequency for the bin i or let say the expected count for category i), and k is 

the existing number of categories (McKillup and Darby Dyar 2010, pp. 234-236). 

 The problem of chi-square goodness of fit test here was that the sample sizes of input and 

simulation data were dramatically different. For that reason, another method had to be 

opted with the capability of comparing the proportions of the categories rather than their 

frequencies (counts). 

It is a common question in earth sciences that the proportions of the considered categories 

in two or more groups of samples come from the same population or not? In contrary to 

the chi-square goodness of fit test, there are no expected frequencies or proportions of the 

categories in such problems. However, the chi-square test of homogeneity examines if the 

proportions of the categories in the two sample groups, i.e. the proportions observed in 

the boreholes versus the proportions calculated in the simulations, are heterogeneous that 
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means they come from two different populations or they are homogenous and come the 

same population. The observed frequencies (counts) can be calculated simply by 

multiplying the observed proportions by the total number of their corresponding sample 

numbers (number of simulation nodes). The expected frequencies also can be calculated 

by a similar method, i.e. multiplication of the expected proportions by total number of 

data samples. It should be reminded again that, in the calculation of the proportions and 

the frequencies of the categories in simulations, corrections should be implemented due to 

the application of a transformed space. 

 The chi-square statistic for the test of homogeneity can be defined as following (Online 

source: “Chi-Square Test of Homogeneity.” Chi-Square Test of Homogeneity, AP 

Statistics Tutorial. StatTrek.com
1
; McKillup and Darby Dyar 2010, pp. 234-236): 
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where 2X is the calculated chi-square statistic
2
, rN is the number of data rows that 

indicates the number of sample groups (here rN =2, i.e. two sample groups of ; the 

boreholes data, and simulation result), cN =k=4 is the number of categories, crO , is the 

observed frequency of data in row r, and column c (in the contingency table), which is the 

data frequency of sample group r (e.g. in borehole data; r=1, and in a simulation result; 

r=2) for category c (i.e. soil classes 1, 2, 3, and 4; c=1, 2, 3, 4), the crE ,  is the expected 

frequency of data in row r, and column c, or the data frequency of sample group r for 

category c. The row and column here, respectively, stand for the row and column of a 

contingency table (McKillup and Darby Dyar 2010, pp. 234-236). Using the 2X  symbol 

instead of 2  is because 2X is a calculated or estimated value for chi-square statistic. 

The expected frequency counts are computed separately for each population at each level 

of the categorical variable, according to the following formula: 
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1
 "Chi-Square Test of Homogeneity." Chi-Square Test of Homogeneity, AP Statistics Tutorial. 

StatTrek.com, Stat Trek Website. Web. Summer 2011. <http://stattrek.com/ap-statistics-

4/homogeneity.aspx>. 
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where crE ,  is the expected frequency count for the population r at level c of the 

categorical variable, rn is the total number of observations from the population r, cn  is the 

total number of observations at sample group c, and finally n is the total sample size 

(Online source: “Chi-Square Test of Homogeneity.” Chi-Square Test of Homogeneity, AP 

Statistics Tutorial. StatTrek.com
1
). 

 Therefore, the null hypothesis (H0) states that the proportions of all of the categories in a 

realization and those of the boreholes have come from the same population with the 

significance level of  whereas the alternative hypothesis (HA) says the contrary at least 

for one of the categories. 

 The null hypotheses will be rejected if the calculated chi-square ( 2X ) is greater than the 

critical chi-square values function (
2

),( DF  ) or the calculated p-value is less than the 

significance level of , for at least one of the categories: 

2X >
2

),( DF   (5-41) 

valuep <    (5-42) 

where 
2

),( DF stands for the chi-square critical value function with the DF, degrees of 

freedom and a significance level of   (Online source: “Chi-Square Test of 

Homogeneity.” Chi-Square Test of Homogeneity, AP Statistics Tutorial. StatTrek.com
2
). 

 This critical value can be derived from the standard chi-square distribution tables or chi-

square calculators having the significance level ( ) and the degrees-of-freedom (DF). 

The degrees of freedom for homogeneity of proportions test is calculated as following:  

1)-1)(N-(NDF cr   (5-43) 

 where rN , and cN  are the numbers of columns, and rows in the contingency table, 

respectively. In other words, as an example in this study, rN =2 is the number of sample 

groups that should be evaluated for being homogenous with one another (i.e. derived from 

                                                 
1
 "Chi-Square Test of Homogeneity." Chi-Square Test of Homogeneity, AP Statistics Tutorial. 

StatTrek.com, Stat Trek Website. Web. Summer 2011. <http://stattrek.com/ap-statistics-

4/homogeneity.aspx>. 
2
 "Chi-Square Test of Homogeneity." Chi-Square Test of Homogeneity, AP Statistics Tutorial. 

StatTrek.com, Stat Trek Website. Web. Summer 2011. <http://stattrek.com/ap-statistics-

4/homogeneity.aspx>. 
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the same population), and cN =4 is the number of columns in this table which is the 

number of existing categories. Therefore, the degrees-of-freedom for the present study is: 

3311)-1)(4-(21)-1)(N-(NDF cr   (5-44) 

 In this case, k is the number of soil classes. It is clear from the definition of 2  that the 

smaller the 2X  (estimated 2 ), the closer the evaluated simulation proportions to those of 

the reference will be (“Chi-Square Test of Homogeneity.” Chi-Square Test of 

Homogeneity, AP Statistics Tutorial. StatTrek.com). 

 

 

(3)  The proportions-reproduction checks in the test site:  

 

The distributions were calculated and checked for the different realizations of the SISIM, 

and TSIM (transition-probability Markov chain simulation) methods including the TSIM 

simulation without quenching steps, as well as the TSIM simulations with one-, two-, 

three-, and four-step  post-quenching phases. The proportions of the categories in each 

realization of the various simulation method were obtained from their corresponding 

debugging (*.dbg), and the generic “tsim.out” files. To avoid missing the produced results 

in the “tsim.out” files, in the TSIM method(s), the “tsim.out” files of the TSIM program 

from T-PROGS software were renamed, prior to running any new simulation. For 

example, here, they were renamed to the files with the prefixes names, the same as the 

output realizations file names, and the suffixes of “_out.out”.  

 In the” post-quenching” steps, the simulated annealing is conducted on the previously 

generated realizations of various simulation methods. The post-quenching steps were 

conducted to reduce the differences between the transition-probabilities of a simulation 

and the target Markov chain models of them. Thus, the “post-quenching step” term was 

applied here for the further quenching steps performed on the available realizations from 

the previous stages. The mentioned available realizations could be the product of the 

realizations with or without further quenching steps from the previous stages (mainly 

about the TSIM method). In fact, in each stage, only one quenching step was added to the 

previous realizations. Therefore, the TSIM simulations were started by conducting the 

TSIM simulation without any quenching steps, then a quenching step was performed on 

the realizations of the previous stage (i.e. on the TSIM method without any quenching 

step) to result the TSIM realizations with one quenching step, then another quenching 
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step was performed on the result of the previous stage (i.e. on the TSIM with one “post-

quenching step”) to achieve the TSIM realizations with two post-quenching steps, and so 

on. 

 

Table 5.2 Comparison of selected realizations produced with different simulation methods for 

proportions reproduction using two different suggested histogram reproduction test methods 

 

    Realizations with acceptable                                               
proportions-reproduction 

 
 
 Simulation method 
 

Based on deviation 
rates 

(maximum acceptable 
deviation rate) 

Based on chi-square 
test of homogeneity 

SISIM (Sequential Indicator 
Simulation method) 

12, 38, 37 
(0.1) 

37, 12, 65 

TSIM without quenching (Markov 
chain simulated annealing 
optimization) steps. 

16, 12, 1, 20 
(0.025) 

20, 16, 12, 1 

TSIM with 1-post-quenching (Markov 
chain simulated annealing 
optimization) steps. 

19, 12, 18, 4 
(0.025) 

7, 6, 19, 12 

TSIM with 2-post-quenching (Markov 
chain simulated annealing 
optimization) steps. 

12, 3, 16, 9 
 (0.025) 

19, 16, 11, 17 

TSIM with 3-post-quenching (Markov 
chain simulated annealing 
optimization) steps. 

9, 4, 12, 1 
(0.025) 

3, 16, 9, 11 

TSIM with 4-post-quenching (Markov 
chain simulated annealing 
optimization) steps. 

19, 18, 16, 17 
(0.025) 

19, 18, 16, 15 

 

 

The reason for using the “post-quenching” technique was to save the simulation time by 

avoiding the repetitions of quenching stages. For example, to achieve a TSIM simulation 

with a three-step post-quenching, one can simply carry out a quenching step on the 

realizations of a TSIM simulation with two post-quenching steps, which was actually 

produced by performing a quenching step on the realizations of the one-step post-

quenched TSIM simulation, and so forth. 

Table 5.2 summarizes the proportions reproduction test results of the geostatistical 

simulations. The table includes the accepted realizations for all applied simulation 

techniques based on the two stated proportions-reproduction test methods. 

 

(4) The density of the simulation grids: 
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In this study also, the effect of using coarser grids on the proportions reproduction was 

tested. As it has been expected, the results were dependent on the grid sizes so that each 

grid size lead to a different proportions-reproduction quality. Stepwise application of the 

different grid sizes is actually a part of the multiple-grid simulation strategy embedded in 

the GSLIB simulation programs to improve the simulation algorithm by taking the long-

range structures into account. This strategy however, has not been included in the TSIM 

program of the TPROGS. The multiple-grid simulation concept is to perform the 

simulation in two or more stages; i.e. starting from the coarser grids to the finer ones. In 

other words, a coarser grid is simulated first. Then this coarse grid is used as the 

conditioning data for another finer-grid simulation and so on (Deutsch and Journel 1998, 

p. 190). One of the advantages of using the multiple-grid strategy is that it leads to a 

better reproduction of the long-distance variogram structures. Therefore, adding this 

strategy to the TSIM program of the TPROGS could also be suggested to enhance the 

efficiency of the TSIM algorithm for a better spatial structures reproduction. 

 

The number of realizations in different simulation methods: 

 

 It should be reminded here that the number of realizations for the TP/MC (transition-

probability Markov chain) method was less (i.e. twenty realizations) than those of the 

SISIM method (i.e. one hundred realizations). There were two reasons for generating only 

twenty realizations in each of the TSIM simulation rounds:  

(1) Technical limitations: The technical limitations, because of exceeding the 

capacity of the TSIM program for such a big and fine-resolution simulation grid 

(nx=175, ny=124, nz=28; with unit cell size of mmm 25.05.125.12 ) from its 

limits after producing twenty realizations. Even by improving some capacity 

settings and parameters of the program, the TSIM program exceeded its limits. 

Perhaps, this capacity could still be enhanced. Due to the limited Ph.D. time, 

further enhancements were not followed up at this moment.  

(2) Low variations in TSIM method results: A considerably lower variations was 

observed among the realizations of a TSIM method compared to those of the 

SISIM method, in terms of several statistical criterions such as proportions of the 

soil categories, variograms, and transition-probabilities of the realizations (see the 

proportions-reproduction tables as well as the TPs and indicator variograms-
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reproduction in this section). Then, adding more numbers of realizations would 

not add a significant merit to the analysis, even if the technical limitations would 

not be encountered. (Yet, a set of 20 realization of the SISIM method was 

produced and checked for their indicator variogram spectrum. As Observed in 

these results, they covered nearly the same variation spectrum of the variograms. 

However, due to much higher variations of SISIM compared with the TSIM 

method, I preferred to keep 100 realizations for the SISIM method (see Figure 6.1 

and Figure 6.2). 

 

(5) More details about the chi-square test for homogeneity of proportions:  

 

As it has already been explained in this context, the chi-square statistic for the 

homogeneity of populations test was calculated for each of the realizations produced by 

various simulation methods. 

In order to formulate the proportions reproduction of the realizations for each simulation 

method using the chi-square homogeneity of proportions test, the null and alternative 

hypotheses and the significance level (the critical p-value) should be defined. The 

significance level ( ) is the probability of improperly rejecting the null hypothesis (H0) 

and in general, the null hypothesis is the hypothesis of “no difference” or “no effect” 

(McKillup, Steve, and Darby Dyar 2010, p. 13). In this problem, the null hypothesis is 

that the proportions of each soil category and those inferred from the borehole data (with 

necessary corrections explained in Section 2.1.6) reflect samples from the same 

population.  

The critical p-value (or significance level of ) for selecting the four and three best 

realizations, for TSIM, and SISIM methods, respectively, was considered as a criterion to 

evaluate the proportions reproduction qualities among different simulation methods. For 

instance, if for the simulation methods of A and B, the significance levels for selecting the 

four best realizations are A and  B , respectively, A  can be compared with B  to 

analyze and decide which method have reproduced the target proportions better. In this 

example, if A > B , it can be concluded that the realizations produced by method A, 

could reproduce the real proportions better. In other words, the method A, worked better 

in terms of proportions reproduction in this example. 
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 To evaluate the simulations using the 2X values for the proportions reproduction in this 

stage, the significance levels with which, in each simulation methods, the three best 

realizations in SISIM method and four best realizations in TSIM method(s)
1
 could be 

selected, were suggested. The reason for selecting a less number of realizations as the best 

proportions-reproducing ones in the SISIM method was that, this method had 

considerably lower proportions reproduction quality compared to that of the TSIM 

method and the quality of the realization would drop dramatically if a more number of 

realizations were selected. Lower critical p-values were selected for the simulation 

methods with a less quality of proportions reproduction (e.g. SISIM or TSIM without 

quenching step methods) and higher critical p-values were selected for the simulation 

methods with a better quality of proportions reproduction (e.g. TSIM methods with one or 

more numbers of quenching steps). It was concluded that, performing additional 

quenching steps, in general, improved the proportions reproduction quality of simulations. 

Although after the first quenching step, in the TSIM with two-post-quenching steps, the 

proportions-reproduction became even slightly worse. Then, it did not change 

significantly in three-step post-quenching stage. However, the proportions-reproduction 

was improved considerably in the four-step post-quenching phase. Moreover, in all the 

TSIM methods, the suggested critical p-values are considerably above the conventional 

significance level of 0.05. Therefore, with the significance level of 0.05, none of the 

selected realizations of the TSIM method could be rejected. Yet, a significance level of 

0.15 (15%) could be suggested for all of the selected realizations. Even in this 

significance level, all the accepted realizations (i.e. four best realizations in each TSIM 

method) fall in the statistical level of not being rejected for the TSIM methods.  

Sorting the realizations in terms of their 2X  homogeneity statistics in an ascending order, 

the realizations with the least estimated chi-square values ( 2X ) were located on the top of 

the list, representing the realizations which best reproduce the target proportions.  

 

(6) Summarizing the results of the chi-square test of homogeneity to evaluate the 

goodness of proportions-reproduction: 

 

Table 5.3 summarizes some descriptive statistics of the chi-square values for the 

homogeneity of proportions of the realizations (with the boreholes data), generated by 

                                                 
1
 When the term “TSIM methods” has been implemented in this context, the aim was to refer to the 

application of the TSIM method with different post-quenching steps. 
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different simulation methods. The minimum, maximum, average, and the standard 

deviations of 2X  corresponding to each of the simulation methods are reflected in this 

table. In addition, the related p-values for each of the 2X statistic together with the 

corresponding coefficient of variation of the standard deviation of 2X  have been placed 

in the parentheses.  

The mentioned descriptive statistics were chosen to represent the statistical location and 

dispersion of the calculated chi-square ( 2X ) values. 

 

Table 5.3 Summary of chi-square statistics for different simulation methods applied in this study. 

 

                      
                   
                        Simulation method 

 
 

                  Statistic 
 

2

minX  

(corresponding 

2
minX

P ) 

2

maxX  

(corresponding 

2
maxX

P ) 

2

averageX  

(corresponding 

2
averageX

P ) 

Standard 
deviation of 

2X  
(corresponding 

coefficient of 
variation) 

TSIM without quenching 
(Markov chain simulated 
annealing optimization) 

steps. 
 

0.888135 
(0.8282) 

33.35429 
(2.7112e-7) 

8.584887566 
(0.0353) 

8.124094 
(0.946325) 

 
 

TSIM with 1-post-quenching 
(Markov chain simulated 
annealing optimization) 

steps. 
 

0.018947599 
(0.9993) 

0.79631175 
(0.8503) 

0.313639749 
(0.9574) 

0.245226 
(0.781872) 

 

TSIM with 2-post-quenching 
(Markov chain simulated 
annealing optimization) 

steps. 

0.189506385 
(0.9792) 

0.896819433 
(0.8261) 

0.428922857 
(0.9342) 

0.217569 
(0.507245) 

 
 

TSIM with 3-post-quenching 
(Markov chain simulated 
annealing optimization) 

steps. 
 

0.344708282 
(0.9514) 

0.693566396 
(0.8747) 

0.500907457 
(0.9186) 

0.091308 
(0.182285) 

 

TSIM with 4-post-quenching 
(Markov chain simulated 
annealing optimization) 

steps. 
 

0.000510806 
(0.9999) 

0.840421978 
(0.8397) 

0.20874874 
(0.9761) 

0.281918 
(1.350514) 

 

 
SISIM (sequential indicator 

simulation method) 
 

8.51003149 
(0.0365) 

138.6058825  
(0) 

48.8278298  
(0) 

22.84308 
(0.467829) 

 

 

These results can be summarized and interpreted as following: 
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(a) In general, the TSIM realizations reproduce the soil categories distribution (i.e. the 

proportions) much better than those of the SISIM method. In the SISIM method, 

the average of the calculated chi-squares is 
2

averageX =48.82783. The 2X  ranges 

from 8.5100 to 138.6059 for different realizations whereas the 2X  has the overall 

average of 2.0074, and ranges from 0.0005 to 33.3543 for the TSIM method. The 

decision that which simulation could reproduce the proportions better was based 

on the fact that the lower the 2X , the better the proportions-reproduction. 

 

(b) In all of each TSIM methods, the majority of realizations (for example, 12 

realizations out of 20 in the TSIM without-quenching-step method) reproduce the 

proportions adequately with the significance level of 5%. In addition, all of the 

realizations of the TSIM method(s) with quenching steps reproduced the soil 

proportions with the significance level of 80% or better and most of the 

realizations (at least 12 out of 20 realizations) reproduced the proportions with the 

significance level of at least 90%. Therefore, it can be concluded that the quality 

of proportions-reproduction was notably higher in all of the TSIM methods 

especially in the TSIM method with quenching steps.  

 

(c) Only three realizations of the SISIM method fell in an acceptable range with the 

significance level of 1%. The best realization of the SISIM method (i.e. the 

realization number 37), reproduced the proportions at the significance level of 

3.65% which is just under the usual acceptance significance level of the chi-square 

tests (5%). Hence, the proportions-reproduction quality in the SISIM method was 

generally poor especially compared to that of the TSIM methods.  

 

(d) Adding the quenching (or post-quenching) steps to the TSIM method increased 

the proportions-reproductions significantly. However, the quality of the 

proportions-reproductions did not increase regularly with the increasing of the 

numbers of quenching steps. 

 

(e) Paying attention to the TSIM with four quenching steps, nearly all of the 

generated realizations (17 out of 20 realizations) reproduced the proportions with 

a 90% significance level. Thus, the proportions-reproduction was the best in TSIM 
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simulation with four quenching steps, based on the chi-square test of 

homogeneity. In addition, the selected realizations from both the chi-square 

homogeneity and the deviation rates test (proposed by the author of this 

dissertation here) were more common for the TSIM with four-post-quenching 

steps. A lot of common selected realizations between two methods of deviation 

rates and chi-square test of homogeneity while with a less computational costs and 

complexities for the former bedsides the best accuracy of the realizations in this 

simulation method (based on the proportions-reproduction tests), suggested that 

the deviation rates framework could be efficiently applied in the similar problems 

for proportions-reproduction checks. More details about this method and its 

analogues statistical method has been addressed in part (2)a, section 5.3.3 from 

Chapter 5. Perhaps, some conditions should be taken into consideration before 

applying the proportions deviation method such as the enough number of input 

sample data. It seems that inferring an accurate-enough representative histogram 

from the input data is the key point in the application of the deviation rates 

method. 

 

 Regarding the fact that the two proposed proportions-reproduction tests, here, suggested 

different but with many common and similar selected realizations, it can be concluded 

that the two methods lead to the similar results. The two methods of the proportions 

“deviation rate” and the chi-square test of homogeneity for evaluating the proportions-

reproduction of the realizations are suggested to be applied to the similar cases where the 

categorical variables are being simulated. In addition, the proportions deviation rate 

scheme with a simpler framework can be applied in the similar problems leading to more 

or less similar results. 

Table 5.4 illustrates the two methods of the proportions reproduction test (“proportions 

deviation rates” and the chi- test of homogeneity) for the realization number 37 of the 

SISIM method as an example. The “Global proportion” column is the proportions 

calculated from the boreholes considering the necessary grid-transformation corrections, 

the “Calculated proportions” come from the calculation of the proportions of the 

realization number 37 of the SISIM method obtained from the simulation debugging file, 

and the next columns show the relevant calculations. 
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Table 5.4  Illustration of the calculations frameworks of the chi-square test of the homogeneity of 

proportions, and deviation-rate, for the realization number 37 of the SISIM geostatistical simulation 

method. 

 

Soil 
class 

 
 

Global 
proportion 

 

Calculated 
proportion 

 

Element 
2X  

realizations  

Element 
2X  

boreholes 
 

Total 
2X  

 

Deviation 
rate 

 

Was the 
deviation 
rate<=0.1 

? 
 

Cl1 0.372 0.3486 0.007193 2.5877 

8.5100 

0.0629 1 

Cl2 0.423 0.4189 0.000165 0.0593 0.0097 1 

Cl3 0.201 0.2258 0.012846 4.6211 0.1234 0 

Cl4 0.004 0.0061 0.003387 1.2183 0.5250 0 

 

5.3.4. Transition-probabilities-reproduction: 

 

The transition-probabilities-reproduction of the generated simulations by different 

simulation methods reflects how close or similar the transition-probabilities (TPs) of the 

simulations to their corresponding MC models were. This test was implemented as a 

spatial variability index to verify one of the minimum acceptance criteria for geostatistical 

simulations. As discussed before, variograms were the other spatial variability tools 

applied in this study to asses the quality of generated realizations as one of the minimum 

criteria for accepting each realization. The variograms-reproduction of the realizations has 

been discussed in the coming section. In this section, the focus is on the evaluation of the 

transition-probabilities as another spatial variability tool to assess the spatial-variability-

reproduction of realizations. The author proposes here, to consider the transition-

probabilities reproduction as another minimum acceptance criterion of any realization in 

similar problems since the transition-probabilities capture the spatial variability structure 

of the categories, in terms of the change of state of each soil or facies category to any 

(other or the same) state. Therefore, the transition-probabilities of the simulations should 

reflect some spatial variability features better than what variograms can. It has been 

proposed here to apply the both variograms and transition-probabilities to assess the 

spatial-variability-reproductions of the generated realizations. 
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 Regarding the fact that there were lots of realizations from different geostatistical 

simulation methods and different simulation parameters (such as the number of quenching 

steps in the TSIM method), it would practically be extremely tedious to compare the 

transition-probabilities of all the simulation results one-by-one (e.g. by plotting them in a 

graph or performing an analytical comparison) with their corresponding Markov chain 

models. The technical limitations regarding the software also were required to be 

considered. To overcome these problems, two strategies could be considered: 

(a) To assess the acceptability of each realization separately, the realizations which 

reproduced the soil proportions the best were selected at the first step. Then, 

these selected realizations were suggested to be checked for their transition-

probabilities- reproduction (abbreviated here as TPs-reproduction) in the next 

step. One of the good reasons to evaluate the proportions-reproduction initially 

was that, a realization with closer proportions to those of the model would be 

expected to show closer variogram and transition-probability sills to those of the 

model. The reason for this prospect is that, the expected sill of an indicator 

variogram ( )1( ppc ) or a TP is a function of the proportion of that soil 

category (i.e. kp ). It is worth reminding again that, the sill of )(htmk  is tangent 

to the kp  (proportion of category k ) line at the infinity, whether km  or m  

k. Therefore, an acceptable proportions-reproduction can, at least, ensure a 

better sills-reproduction for variograms and TPs. It was shown before about the 

SISIM method that, the realizations with poorer proportions-reproduction 

demonstrated, in general, a weaker variograms-reproduction while the 

realizations with a better proportions-reproduction, represented commonly, a 

better variograms-reproduction as well. Hence, it can be expected that, the 

realizations which reproduced the target proportions better, should also be 

capable of better reproducing the spatial variability including the TPs. Figure 5.7 

to Figure 5.16 represent the TPs of the best selected realizations (in terms of 

their proportions-reproductions)from TSIM method  versus their corresponding 

TP Markov chain models. Therefore, a better TPs-reproduction was also 

expected in addition to a better variograms-reproduction, of the selected 

realizations. The TPs-reproduction of the selected realizations seems acceptable 

and better for the simulations with some quenching steps. Obviously, it should 

be considered that the effect of a better proportions-reproduction on the better 



 156 

TPs-reproduction should be in a specific extent. Because, if the general image of 

the patterns become similar, the proportions also would be similar. However, in 

general, a better proportions-reproduction can not completely guarantee a better 

variograms- or TPs-reproduction. Ideally, a sequential geostatistical simulation 

should reproduce the spatial variability structure (variograms and TPs) of the 

simulation model. Yet, in practice, the outcome of the sequential geostatistical 

simulations can not really reproduce the variograms or TPs because of the 

limitations embedded in the algorithms. The most important factor which affects 

the variograms/TPs reproduction is the long-range variations (Zanon and 

Leuangthong 2005).  According to Zanon and Leuangthong (2005), having a 

more abundant data-set and using the multiple-grid search strategy can improve 

the long-range-variation-reproduction of the sequential simulations. 

Nevertheless, in general, choosing the best proportions-reproducing realizations 

can narrow the range of realizations which should be evaluated for its 

variograms-/TPs-reproduction efficiency by suggesting the more acceptable 

realizations. 

(b) To assess the overall efficiency and quality of all the realizations of a simulation 

method, one could also calculate the average transition-probabilities of all 

realizations of a geostatistical simulation method and plot them together with 

their corresponding Markov chain models in one plot and compare them with 

each other among different methods. Similarly, the average indicator variograms 

of all realizations of a simulation method could also be calculated and plotted 

together with their relevant indicator variogram models, to evaluate the overall 

efficiency of a simulation method for its variograms-reproduction. These 

evaluations were initially attempted by the author using a special trick (i.e. 

constructing a big three-dimensional dummy model made by all the realizations 

of each simulation method which includes the grids of all of the realizations 

while the spatial continuity measures of the new model have the same value as 

that of the overall average of all realizations).  However, this procedure was not 

accomplished further because the evaluations using the first method and plotting 

of the variograms and TPs of all realizations of each method in a graph seemed 

sufficient and even more efficient. Hence, only the results of first method have 

been brought and discussed here. 
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As mentioned above, the transition-probabilities of the best realizations, chosen in terms 

of their proportions-reproduction, and their corresponding Markov chain models were 

plotted at the same graphs and compared with each other to evaluate the transition-

probabilities reproduction. The selection of the best realizations, in terms of the 

proportions-reproduction was a compromising decision between the results of two 

different proportions-reproduction-test methods of the chi-square test of homogeneity, 

and the deviation rates frameworks.  

As Figure 5.7 to Figure 5.16 represent, the TPs of the selected realizations match their 

relevant Markov chain models, in general, more or less well. This match was better for 

the TSIM methods, especially for the TSIM simulations with some quenching steps. 

However, the match between the TPs of the realizations and those of the models were 

weaker in vertical direction, especially for the class 4 which had the least observations 

frequency. These interpretations had been obtained by a graphical comparison of the 

transition-probabilities of the realizations and models. It has been explained in the coming 

section that, there are some analytical frameworks suggested in a number of literature to 

evaluate the variograms and other statistics-reproduction for simulation evaluations by 

analytical methods. However, it has been shown there, why the application of these 

measures was not suitable in this case so that the graphical method was preferred. Further 

attempts can be suggested to develop and suit similar analytical criterions to evaluate the 

generated realizations. 
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Figure 5.7  Horizontal transition-probabilities among the soil classes for realization 16 generated by 

TSIM without any quenching step method (dots) and corresponding Markov chain models (solid 

lines). 
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Figure 5.8  Vertical transition-probabilities among the soil classes for realization 16 generated by 

TSIM without any quenching step method (dots) and corresponding Markov chain models (solid 

lines). 
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Figure 5.9  Horizontal transition-probabilities among the soil classes for realization 19 generated by 

TSIM method with a one-step post-quenching phase (dots) and corresponding Markov chain models 

(solid lines). 
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Figure 5.10  Vertical transition-probabilities among the soil classes for realization 19 generated by 

TSIM method with a one-step post-quenching phase (dots) and corresponding Markov chain models 

(solid lines). 
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Figure 5.11  Horizontal transition-probabilities among the soil classes for realization 12 generated by 

TSIM method with a two-step post-quenching phase (dots) and corresponding Markov chain models 

(solid lines). 
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Figure 5.12  Vertical transition-probabilities among the soil classes for realization 12 generated by 

TSIM method with a two-step post-quenching phase (dots) and corresponding Markov chain models 

(solid lines). 
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Figure 5.13  Horizontal transition-probabilities among the soil classes for realization 19 generated by 

TSIM method with a four-step post-quenching phase (dots) and corresponding Markov chain models 

(solid lines). 
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Figure 5.14  Vertical transition-probabilities among the soil classes for realization 19 generated by 

TSIM method with a four-step post-quenching phase (dots) and corresponding Markov chain models 

(solid lines). 
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Figure 5.15  Horizontal transition-probabilities among the soil classes for realization 1 generated by 

TSIM method with a four-step post-quenching phase (dots), corresponding Markov chain models 

(solid lines), and realization 37 generated by SISIM method (cross symbols).  
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Figure 5.16  Vertical transition-probabilities among the soil classes for realization 1 generated by 

TSIM method with a four-step post-quenching phase (dots), corresponding Markov chain models 

(solid lines), and realization 37 generated by SISIM method (cross symbols). 

 

 

For the TSIM method without any further quenching steps, the realization number 4 was 

selected because of its best proportions-reproduction. For this realization, the TPs usually 
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reach a plateau, quicker than the model (Figure 5.7and Figure 5.8). The TP sills are also often 

different with the model. In this case, the number of near the origin points falling on or very 

close to the model line, is not so many, especially for the vertical direction. According to the 

Figure 5.9 and Figure 5.10, with a further quenching step in the TSIM method, the number of 

mentioned points (falling on or near the model line) and their corresponding closeness, in 

general, were improved in selected realization (i.e. realization number 19). The only 

exception was for the vertical TPs of the class 4 to any other classes that seem to become 

worse after quenching step though the difference were not too much. The mentioned general 

improvement trend by adding the quenching steps was continued for the TSIM simulations 

with two and four further steps, as well. In the TSIM with four post-quenching stages, the 

TPs-reproduction became worse in some cases and the improvements were not considerable. 

A logical conclusion could be that the number of quenching steps that improves the 

simulation TPs-reproduction should be optimize. The reason is that the TPs-reproductions is 

not improved considerably after some quenching steps but it can slightly affect the vertical 

TPs-reproduction of the class 4 with a considerably longer computational time. 

 The Figure 5.15 and Figure 5.16 compare the TPs-reproduction of the selected realizations of 

a four-step quenching TSIM method, and SISIM, with their corresponding Markov chain 

models. In general, it is clear that the TPs-reproduction of the TSIM method was 

considerably better except for some of the vertical TPs of the class 4. 

From Figure 5.15 and Figure 5.16, it can be inferred that except about the vertical transition-

probabilities of the soil class 4, the transition-probabilities of the selected realization 

(realization 37) of the SISIM method, was weaker than that of the TSIM methods.  

 

 

5.3.5. Variograms-reproduction of the transition-probability 
Markov chain simulations  

 

  As one of the minimum indexes to assess the acceptance and goodness of the spatial 

variability structure-reproduction of the simulations evaluation, variograms can be 

applied besides the transition-probabilities.  

 To evaluate the model variograms-reproduction of the simulations, the following six key 

elements, were examined and evaluated; one for evaluating the set of realizations, and the 

five rest to assess the reasonability of each realization, separately. These elements 

included; (a) the extent of the scattering of the variogram lines in graph plane to evaluate 
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the sets of realizations, and; (b) the general shape, (c) range, (d) sill, (e) nugget effect, and 

finally, (f) general behavior and slope of the variograms near the origin to evaluate each 

realization, separately. 

 Due to the higher probability (higher frequency) of coincidence of more frequent 

categories (bigger classes) with the drilling boreholes, the inferred variograms of the most 

frequent classes from the samples could be considered more reliable, and hence, their 

variograms and proportions-reproduction as a more emphasized acceptance condition. 

This fact is considered during the interpretations of the variograms and transition-

probabilities reproduction as well as histogram-reproduction of the simulations.   

 Figure 5.17 to Figure 5.19 summarize the horizontal and vertical variograms of different 

realizations for TP/MC method (TSIM simulations) and their corresponding model 

variograms for all twenty produced realizations of each method.  

 The variograms were calculated for the simulation methods of TSIM without any further 

quenching step, then with only one additional quenching step, and finally with two post-

quenching steps. These calculated simulation variograms were compared to their models.  

 The general conclusions about the variograms-reproduction of the realizations of the 

TSIM simulation methods which can be drawn from these graphs as well Figure 4.3 (for 

the SISIM method) are summarized as following: 

(a) TSIM had more similar variograms than those of SISIM especially after 

additional quenching steps. Adding the further quenching steps to the TSIM 

simulations for the vertical variograms of the all classes, the scattering of the 

variogram plots in the plotting area reduced. Likewise, for the variograms in 

main directions for class 4, the dispersion of the variogram graphs of different 

realizations reduced after adding quenching steps. However, the horizontal 

variograms of the classes 1 to 3 represented slightly more dispersion after 

adding some further quenching steps. In general, it can be concluded that the 

dispersion extent of the variogram graphs of different realizations in the plot 

area was less than that of the SISIM method. This means that the TSIM 

simulation method, especially with added quenching steps has produced more 

similar variograms than what the SISIM method could. 

(b) The overall variogram shapes and range considering the number of 

distinguishable structures and how quickly they reach their sills (not 

necessarily the expected sill), was quite similar to the model for vertical 

variograms especially after adding some quenching steps. For the horizontal 
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simulation variograms on the other hand, they were somehow different. 

Although, considering the slopes of the second rise in the horizontal 

variograms, the simulation variograms with some quenching steps were 

slightly nearer to the model.  The reason for considering the second rise is that 

the first part was speculated to reflect the short-range changes or the nugget 

effect parameter of the variograms.  

The Interpretation of the realization variograms of various TSIM simulation 

methods (with different quenching step numbers) :   

 

 The general approach to interpret the simulation variograms, in this study, was based on 

the graphical assessments and comparisons of the simulation and model variograms of 

different soil classes in a range of directions for the spectrum of all realizations produced 

by different simulation methods. The variograms of all realizations produced by a specific 

geostatistical simulation method were plotted in a single graph to assess the dispersion of 

the variograms for all realizations of this method. In addition, in this graph, they could be 

compared with their corresponding variogram models to evaluate how good the 

realizations could reproduce the underlying variogram models. Figure 5.17 to Figure 5.19 

represent the mentioned simulation and model variograms, each figure relevant to a TSIM 

geostatistical simulation method with no-, one-, and two-steps of post-quenching phases, 

respectively.  

In general, the horizontal simulation variograms of the soil classes 1 to 3, from their 

second rise, represent a kind of fluctuation resembling a hole-effect model. These 

fluctuations (for soil classes 1 to 3) were somewhat intensified after adding quenching 

steps. 

This phenomenon could be interpreted as the occurrence of a kind of periodicity in such a 

simulation method. It should be considered that, the sample variograms and their 

corresponding fitted models reflect only an overall trend in the spatial variability structure 

especially due to the limited number of observations. 

Therefore, the speculation could be that the available fluctuations did not necessarily 

signify an improper reproduction of the variability structure model. 
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Figure 5.17  Indicator variograms of all 20 realizations generated by the TSIM simulation method 

without any quenching steps (colored lines), and their corresponding model variograms (black lines). 

The graphs on the left side represent the horizontal variograms (red for North-South, and dark blue 

for East-West directions), and the graphs on the right side represent the vertical variograms. 
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Figure 5.18 Indicator variograms of all 20 realizations generated by the TSIM simulation method 

with one post-quenching step (colored lines), and their corresponding model variograms (black lines). 

The graphs on the left side represent the horizontal variograms (red for North-South, and dark blue 

for East-West directions), and the graphs on the right side represent the vertical variograms. 
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Figure 5.19 Indicator variograms of all 20 realizations generated by the TSIM simulation method 

with two post-quenching steps (colored lines), and their corresponding model variograms (black 

lines). The graphs on the left side represent the horizontal variograms (red for North-South, and dark 

blue for East-West directions), and the graphs on the right side represent the vertical variograms. 
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 In addition, the divergence between the variograms of the simulations in horizontal 

North-South and East-West directions somewhat increased in the TSIM simulations after 

conducting some quenching steps, except for the variograms of the soil class 4. For the 

TSIM simulations without any quenching step, the variograms reached their sills in a 

shorter range than those with quenching steps (especially for the horizontal variograms of 

the soil classes 2 and 3) and, as mentioned before, the fluctuations were less, except for 

the simulation variograms of class 4.  Closing the eyes to these fluctuations, the overall 

tendency of these horizontal variograms with further quenching steps, except about class 

4, was to reach their sills (but not exactly their expected sills), more or less at the same 

distances as those of the model variograms. In addition, in the second rise of the 

simulation variograms of the simulations with or without quenching steps, the beginning 

part of the graphs (nearer to the origin) represented a quicker rise than those of the model.  

 The figures represent that the realization variograms are clearly closer to each other in 

shorter distances and they diverge more when the distance is increased. Therefore, their 

shorter-scale structures should expectedly be more similar than their long-distance 

structures.  

 Figure 4.1 to Figure 4.3 and Figure 5.17 to Figure 5.19 represent the SISIM and TSIM 

realization variograms, respectively. Considering these figures, the behavior of their 

realization variograms with each other and with their relevant variogram models can be 

compared. It seems that, the TSIM realizations represent closer overall shapes to the 

model than those of the SISIM method, in terms of their variograms. 

In regard to variogram interpretations, two additional comments deserve pointing out 

here: 

 

(1) The interpretation of the variogram nugget-effects in simulation variograms 

was not that straightforward. Considering the intercepts of the variogram lines 

and the vertical axis of the variogram graphs as the nugget effect, the nugget 

effects of the simulations would apparently be much lower than those of the 

model. These nugget-effect differences between the simulations and model 

variograms of soil classes 1 to 3 might be due to either the low variations in very 

short-scale of the simulations (i.e. a higher continuity) or the shortage of enough 

observations for approximating the sample variograms from input data. 

However, bearing in mind that the nugget-effect of a variogram is defined as the 
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representative of a variogram value in very short-distances, it could be concluded 

that the first part of these variograms, which show the first quick rises and are 

corresponding to very short distances, could be considered as a representative for 

the nugget-effect value. A distance equivalent to the two first lag-distances of the 

model variogram was suggested as this short-range distance here. Hence, it was 

suggested in this study to consider a range of just less than 100 meters for the 

horizontal, and less than 0.4 meters for the vertical variograms as the nugget 

effect range. This distance is in the range of the observed first section of every 

variogram which represent very quick rises. With such an insight to the nugget-

effect issue, variogram nugget effects of the TSIM simulations without 

quenching steps were jus a bit more than those of the model. The nugget-effect 

became closer to that of the model after conducting some quenching steps on the 

TSIM simulations. About class 4, the nugget effects are considerably more than 

the model. This phenomenon could be due to the reason that, the short-scale 

variations of the simulation variables in horizontal direction were so high that it 

produced a much bigger nugget effect than that of the model.  In fact, the 

simulation variograms for class 4 is very much like a pure nugget effect model 

that means the kriging estimation would act very much like a typical 

interpolation. Compared to the SISIM variograms, the difference of the 

simulation variogram nugget-effects among different realizations was much less 

in the TSIM method.  

 

(2)  The sills in average seem to be fairly close the expected (or model) sills in 

horizontal variograms of the TSIM method either with or without quenching 

steps, though about the class 4, the difference were more. About the TSIM 

simulations without quenching steps, the vertical variograms of all soil classes 

and horizontal variograms of the soil class 4, the sills were more different from 

those of the model. These sills got closer to the model and their variations 

decreased after performing quenching steps on the initial TSIM simulations 

without any quenching step. Compared to the SISIM variograms, their variations 

were less and, in general, the sill reproductions were better in the TSIM method.  
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The general conclusion about the variogram reproduction of the TSIM method could be 

that the variogram reproduction of TSIM method especially with quenching steps was 

noticeably enhanced compared to that of the SISIM method.  

 

5.3.6. Geological soundness: 

 

 All the models here were constructed, on the one hand, based on the specific 

conditioning data from drillings and identified geostatistical characteristics that are 

capable of reflecting underlying geological characteristics. But on the other hand, the 

non-exhaustive sampling can cause the missing of a wide range of information about data 

and variability inside the model. Therefore, all the facts and details about the geology of 

the model for unsampled locations within the study zone could not be captured by 

existing boreholes. Although the geostatistical estimation and simulation methods rely 

basically on the geostatistical assumptions and schemes, some geological facts still should 

be taken into account within their framework in different ways. For instance,   the 

separation of the stationary zones, decisions about variogram model parameters (such as 

nugget effect, anisotropy directions, etc), and estimation parameters (such as search 

radius, etc) are among the factors that take the geological information and interpretation 

of the experts into the consideration which can be included in the geostatistical models by 

geological considerations. Some methods such as transition-probability Markov chain 

simulation method (TP/MC) facilitate the integration of geological and physical 

information into the geostatistical models. In the TP/MC method, some geological 

information such as mean length, and juxtapositioning patterns of lithofacies can also be 

included in modeling. However, the geostatistically generated models still need 

verification for their geological soundness in addition to checking their geostatistical and 

statistical consistency to ensure their consistency with the geological interpretations and 

expectations. Thus, one of the most important minimum criterions of the acceptance of 

geostatistical simulations is their geological soundness.  

 However, to the extent of author’s knowledge and investigation, straightforward 

quantitative criterions to evaluate the geological acceptability of the geostatistical 

simulations have not been represented in the literature relevant to the geostatistical or 

comparable techniques. Most of the available geological evaluation criterions are simply 

subjective and interpretive. In addition, since the modeled classes are geotechnical-based, 
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it is not straightforward to make a close link between the generated geotechnical 

simulations and geological interpretations. Though fortunately, the available geotechnical 

classes in these models convey an extent of geological meaning since the average 

composition of their particle size is getting finer from the geotechnical soil class 1 to soil 

class 3 while the mineralogical composition of the soil classes is also considered. In other 

words, soil class 1 contains the coarsest particles (including gravel, sand and their 

mixtures) whereas the class 3 (including clay and silt) has the finest particles. The soil 

class 4 falls in the organic materials category while it is a very minor constituent of the 

gathered samples. Subsequently, the expected frequency of the occurrence of class 4 in 

the model would also be very low. 

The quaternary sediments construct this sedimentary set and can be investigated as a 

fluvial system. The river has flown and slowed down along the valley bed and deposited 

the existing sediments. These deposits could reflect various patterns of the fluvial systems 

such as probable river-bed changes, braided river forms, and meanderings during their 

sedimentation course which could be combined with other sedimentation features. The 

changes in the river-bed location and its elevation were expected and could be identified 

in the model.  

 The sedimentation paths, directions, and locations may change continually to form a 

more complex sedimentary structure, due to the variations in the river-bed.  

Some observed patterns in the simulation models resemble a meandering or braided river 

system.  

A meandering system is formed when the flowing water in a stream erodes the banks of 

the river and widens its valley. Formation of such a structure happens on an almost level 

landscape and where the banks of the stream can easily be eroded.
1
  

In a meandering system, the coarser sediments are deposited where the flow slows down 

inside the river path curves and the finer sediments are deposited in the opposite side. 

Therefore, the expected geometry of the coarse sediments accumulations could be a set of 

channel-like features.   

According to the simulation results (Figure 5.20 to Figure 5.34), the coarse sediments 

occur mainly in the middle parts of the valley. 

                                                 
1
 Some example references defining the meandering are listed here; "Meander (river System Component)." 

Encyclopedia Britannica Online. Encyclopedia Britannica. Web. Jan. 2012; "Meander." Wikipedia. 

Wikimedia Foundation, Winter 2011. Web. Jan. 2012. http://en.wikipedia.org/wiki/Meander; “Meander” in 

“Geological terms beginning with ‘M’,” from Dictionary (Geology and earth science terms and definitions), 

Website of geology.com, [On-line]. Available: http://geology.com/dictionary/glossary-m.shtml. 

http://en.wikipedia.org/wiki/Meander
http://geology.com/dictionary/glossary-m.shtml


 178 

Some attempts to evaluate the geological soundness of the selected realizations were 

conducted here considering the statistical measures including the transition-probabilities 

and variograms which can consider valuable extent of geological information in the 

model. 

 The essential points about the geological assessments of simulation models can be 

summarized as following:  

 

(1) In the selected simulations, the predominant soil category observed in the 

middle of the basin is class 1 which is the representative of a less well-

sorted sedimentary group and contains the coarsest particles and comprises 

the coarsest average grain size. The geometry and location of class 1 masses 

in the model give the impression of different probable sedimentary features 

such as the paths of riverbed and their changes, meandering, braided rivers 

system, and so on, with changing and accumulating sediments processes. 

(2) An extent of connectivity and layering is obvious in masses of different 

categories in the simulation model which can resemble sedimentary system 

characteristics. This feature is better generated in the TSIM simulations. The 

Walther’s law of facies succession suggests that the vertical sequence of 

facies reflects the lateral changes of the facies in the lack of non-

conformities (Leeder 1982, p. 122). Hence, the TPs1 (and their 

corresponding models) can be used to recognize the neighboring categories, 

especially for the more reliable vertical directions (Figure 5.3 and  

(3) Figure 5.4).  According to these graphs, the class 2 is the most likely class to 

occur beside the class 1 while the class 3 is a little less likely to be adjacent 

to the class 1 although its probability is still not that low. The geological 

occurrence of the class 3 (the finest material) beside the class 1 (the coarsest 

composition), as it was also very probable according to the transition-

probabilities, could be due to different reasons such as the rush of the finer 

sediments from the basin sides to the middle of the basin during the erosion 

and sedimentation. Another probable reason could be that the river side is 

usually adjacent to the fine materials where the river current border is 

finished (see the rightmost side of the Figure 5.26 and Figure 5.27). In 

                                                 
1
 TPs in this document, stands for the transition probabilities 
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addition, a meandering stream can leave the coarse and fine sediments in 

two opposite side. Naturally, the intermediate sized compositions could 

usually be accommodated somewhere in between. These fine materials 

(class 3) near the slope sides sometimes occur above the coarse 

compositions (class 1) which can geologically be a plausible feature. This 

phenomenon is observed more in the eastern side of the basin. 

(4)  Very limited samples of organic materials (class 4 in this model) have 

been observed in samples and hence they have occupied a very minor 

volume of the model.  The source of organic materials in the zone of model 

could be due to various reasons. For example, they might have been brought 

from the upper layers to the lower levels during the drilling and sampling 

course. Obviously, the upper layers are closer to the zones of warmer 

sedimentation periods of deposition and are more likely to contain organic 

materials. They also can belong to the transition zones to the upper layers 

with more probability of containing the organic sediments. Even they might 

have been recorded due to the misinterpretation of some samples especially 

since they only constitute a limited number of samples and they can be 

resembled and mistaken with similar sediments of the same appearance
1
.   

 

The general conclusion that might be drawn from the above discussion could be summed 

up as following: 

(1)  No considerable objection against the geological soundness of generated 

simulation models could be identified here.  

(2) The geological reasonability of the TSIM simulation was even better than that of 

the SISIM simulations due to the weaker layering structure and more elongations 

of the material bodies in the vertical direction.  

Hence, the models can be initially accepted and considered for further evaluations. The 

attention could be paid that such a model with a connected zones of coarse alluvial 

sediments (like what there is here for class 1), can act as a better flow medium for the 

fluid flows that might be underestimated in the disseminated patterns of the SISIM 

simulations. This point could become very important in subsurface flow simulations or 

geotechnical evaluations. Such a less-disseminated pattern also seems closer to the 

                                                 
1
 As mentioned before, the characterization and classification of the samples were mainly based on 

interpretive methods. 
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geological realities of the comparable fluvial systems. Figure 5.34 to Figure 5.36 

represent how adding the quenching steps in TSIM method can increase the geological 

continuity. 

 

 

Figure 5.20  A perspective top view of the realization 12, generated by the TSIM with two post-

quenching steps simulation method. The model represents a 2180m distance in EW and a 1580m 

distance in NS direction. 
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Figure 5.21  A perspective side view of the realization 12, generated by the TSIM with two post-

quenching steps simulation method. The model represents a 2180m distance in EW and a 1580m 

distance in NS directions with 15x exaggeration in the vertical direction. 

 

 

Figure 5.22  A perspective side view of the realization 12, generated by the TSIM with two post-

quenching steps method. The model represents a 2180m distance in EW and a 1580m distance in NS 

directions with 15x exaggeration in the vertical direction. 
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Figure 5.23  A perspective bottom view of the realization 12, generated by the TSIM with two post-

quenching steps simulation method. The model represents a 2180m distance in EW and a 1580m 

distance in NS directions with 15x exaggeration in the vertical direction. 

 

Figure 5.24  A perspective bottom view of the realization 12, generated by the TSIM with two post-

quenching steps simulation method. The model represents a 2180m distance in EW and a 1580m 

distance in NS directions with 15x exaggeration in the vertical direction. 
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Figure 5.25  A perspective bottom view of the realization 12, generated by the TSIM with two post-

quenching steps simulation method. The vertical slice 21 has been depicted. The model represents a 

2180m distance in EW and a 1580m distance in NS directions with 15x exaggeration in the vertical 

direction. 

 

 

Figure 5.26  A perspective bottom view of the realization 12, generated by the TSIM with two post-

quenching steps simulation method. The vertical slice 14 has been depicted. The model represents a 

2180m distance in EW and a 1580m distance in NS directions with 15x exaggeration in the vertical 

direction. 
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Figure 5.27  A perspective bottom view of the realization 12, generated by the TSIM with two post-

quenching steps simulation method. The vertical slice 7 has been depicted. The model represents a 

2180m distance in EW and a 1580m distance in NS directions with 15x exaggeration in the vertical 

direction. 

 

Figure 5.28  A perspective bottom view of the realization 12, generated by the TSIM with two post-

quenching steps simulation method. The vertical slice 2 has been depicted. The model represents a 

2180m distance in EW and a 1580m distance in NS directions with 15x exaggeration in the vertical 

direction. 
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Figure 5.29  A perspective fence-model bottom side view of the realization 12, generated by the TSIM 

with two post-quenching steps simulation method. The vertical slice 2 has been depicted. The model 

represents a 2180m distance in EW and a 1580m distance in NS directions with 15x exaggeration in 

the vertical direction. 

 
 

 

Figure 5.30 a perspective fence-model bottom view of the realization 12, generated by the TSIM with 

two post-quenching steps simulation method. The vertical slice 2 has been depicted. The model 

represents a 2180m distance in EW and a 1580m distance in NS directions with 15x exaggeration in 

the vertical direction. 
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Figure 5.31 a perspective fence-model top view of the realization 12, generated by the TSIM with two 

post-quenching steps simulation method. The vertical slice 2 has been depicted. The model represents 

a 2180m distance in EW and a 1580m distance in NS directions with 15x exaggeration in the vertical 

direction. 

 
 

 

Figure 5.32  A perspective fence section bottom side view along the NS direction of the realization 12, 

generated by the TSIM with two post-quenching steps simulation method. The vertical slice 2 has 

been depicted. The model represents a 2180m distance in EW and a 1580m distance in NS directions 

with 15x exaggeration in the vertical direction. 
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Figure 5.33  Another perspective fence section bottom view along the NS direction of the realization 

12, generated by the TSIM with two post-quenching steps simulation method. The vertical slice 2 has 

been depicted. The model represents a 2180m distance in EW and a 1580m distance in NS directions 

with 15x exaggeration in the vertical direction. 

 

 

Figure 5.34  A top view of the realization 16, generated by the TSIM without any quenching step 

simulation method. The model represents a 2180m distance in EW and a 1580m distance in NS 

directions. 
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Figure 5.35  A top view of the realization 19, generated by the TSIM with a quenching step simulation 

method. The model represents a 2180m distance in EW and a 1580m distance in NS directions. 

 

 

 
Figure 5.36  A top view of the realization 12, generated by the TSIM with two quenching step 

simulation method. The model represents a 2180m distance in EW and a 1580m distance in NS 

directions. 

 

 

 



 189 

5.4. Choosing the best realizations   
 

5.4.1. Overview: 

 

One of the most essential steps in analyzing the produced geostatistical analyses is to 

select a set of produced realizations which conforms the best to the expected 

characteristics. To choose the best realizations of a simulation method, a stepwise 

approach has been suggested here. The reasons behind adopting such a stepwise method 

can be summarized as following: 

 

(1) Reducing the computational difficulties: The computation and verification of all 

statistics and objective criteria (such as geology, etc.) for all of the realizations 

would be remarkably demanding. Therefore, it seems more reasonable and 

practical to limit the number of investigated realizations as much as possible, to 

make the evaluations more feasible. 

(2) Enhancing the fulfillment chance of the other necessary criteria: It seems that if 

some of the criterions such as proportions-reproduction are met, it can enhance the 

chance of the fulfillment of the other criterions as well. For example, in a 

simulation that the proportions of the categories are reproduced better, the chance 

of a better variograms-reproduction also would expectedly be improved. This 

suggested idea was evaluated here with the variograms-reproduction test of the 

best and worst proportions-reproducing realizations of the SISIM geostatistical 

simulation method (Figure 4.2). A similar comparison was also made about the 

TPs-reproduction test of the best and worst proportions-reproducing realizations 

of the SISIM method and as it is obvious from Figure 4.4 and Figure 4.5, the 

general result is alike; the best proportions-reproducing realization produces the 

TPs much better. Fortunately, these results confirmed that a realization of the 

SISIM method with a better proportions-reproduction gives also in average a 

better variograms- and TPs-reproduction. One of the reasons for a better 

variograms-reproduction in a better proportions-reproducing simulation is that, in 

the indicator variograms, the simulation variogram sill is a function of the 

proportion of the corresponding category, i.e., )1( ppc  (Jones and Yuan 

2001). It is also known that, the sill of )(htmk  approaches to
kp , the proportion of 
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category k , whether km  or km  (Carle and Fogg 1996, p. 457).  Moreover, it 

seems that, there could be a relation between the proportion of a category and its 

mean length suggesting that the (absolute value of the) slope near the origin of the 

auto-transition-probability of a soil class and its proportion should probably have 

an inverse relation. This inference was made based on the Equation (5-17) and the 

implication of the existence of a relation between the proportion and mean length 

of a soil category. The later claim infers that the larger the mean length of a soil 

category in various directions, the larger the proportion of this category: It could 

be suggested that the bigger proportion of a category also would lead to a larger 

mean length. Since the slopes near the origin of the auto-transition-probabilities 

are inversely related to mean lengths of the categories (according to the Equation 

(5-17)), this slope should also, more or less is, inversely linked to the relevant 

proportions. Therefore, it could be suggested that the near origin slopes should be 

roughly larger in auto-transition-probabilities of the soil classes with smaller 

proportions, and vice versa. For instance, the soil class 4 with the lowest 

proportion should represent the largest auto-transition-probably slope near the 

origin. In other words, near-origin auto-transition-probability of the soil class 4 

should roughly demonstrate the largest while the auto-transition-probability of the 

soil class 2 should have approximately the least slopes among those of all the soil 

classes. According to Figure 5.3 and  

(3) Figure 5.4, the existence of this behavior in the transition-probability models is 

more or less confirmed for the soil classes in horizontal and vertical directions. 

Although for soil classes 1 and 2 which had rather similar proportions, these 

slopes near the origin (and their corresponding transition rates, i.e. -0.0074 vs. -

0.0086 in horizontal directions, and -0.17087 vs. -0.17087 in vertical direction) 

were rather equal or even slightly larger for soil class 2. Nevertheless, they were 

not dramatically unlike. This slight deviation form the mentioned expectation 

could be due to the adjustment of the Markov chain models to fit the necessary 

statistical constraints during their modeling. In addition, other spatial variability 

factors might affect the transition-probabilities and their corresponding models.  

 

As a result, it can be suggested that the evaluations of the realizations could start from the 

proportions-reproduction test as a key initial step and followed by testing the other criteria 
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in the next phases. Because, it was suggested that with a better proportions-reproduction 

of a realization, the sills of the transition-probabilities and variograms as well as the rough 

near the origin slopes of the auto-transition-probabilities could also be reproduced better. 

Hence, the selection of better proportions-reproducing realizations would be an important 

progress in screening realizations with better fulfillment of spatial variability structure 

reproduction and the other minimum required acceptance criteria. 

 

5.5. Some attempts to improve the TSIM algorithm  
 

The results of modeling categorical parameters in the present study suggest a noticeably 

better performance of the TSIM methods in regenerating the complex geological features 

in geostatistical simulations especially over the SISIM method. As discussed before, the 

qualities of the mentioned simulations were assessed based on a number of statistical and 

geological criterions. Although the efficiency of the TSIM methods was satisfactory, they 

demanded a considerable computational cost including a long computational time and 

more complicated models. On the one hand, performing the post-quenching steps on the 

realizations of the SISIM method, as another alternative, was much quicker than 

conducting post-quenching steps on the TSIM simulations without quenching steps. Yet, 

the qualities of final results produced from the SISIM method were not comparable to 

those of the TSIM methods which produced much better results. 

 Therefore, an idea was to keep the mentioned advantages of the TSIM method(s) while 

reducing the algorithm running-time and computational demand of the TSIM algorithm in 

addition to increasing the capability of integrating more information in the model. To 

reach this goal of time and computational efficiency as well as a better data integration 

capability, several attempts were made in the framework of this thesis. Unfortunately, the 

mentioned attempts have not totally been accomplished and completely succeeded yet. 

Although they did not reach a deadlock and represented some promising signs, further 

attempts and several ideas could still be conducted and tested to improve the TSIM 

algorithm to enhance the qualities and performance of the algorithm.  

 In all of the proposed corrections for the geostatistical simulation algorithms, the key 

idea was to modify and update the conditional density function of the local probabilities 

during the simulation stages.   
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Among the examined methods for improving the results were the Bayesian updating to 

integrate the expert’s knowledge or secondary data. As an example, the variations of the 

likelihood of the categories occurrence in different zones were considered as 

complementary information to improve the estimation models.  However, no significant 

improvement was detected in the results of this case.  Perhaps, this outcome was due to 

the nature of the data while performing further tests on other data-sets could show clearer 

distinctions in the performance of the different algorithms.  

 Another idea was to imitate the simulated annealing procedure (to make the simulated 

results and the target closer to each other) in terms of the transition-probabilities, just in 

the newer approach, during the simulation algorithm rather than after that. The expected 

advantages were: 

(1) Reducing the computational time. 

(2) Further improvements in the final models because of forcing the algorithm to 

produce sensible patterns from the beginning rather than modifying the produced 

patterns after their generations.  

 

In this framework, the local CCDFs for the geostatistical simulations had to be updated 

during the simulation course. Some attempts have been reported in the literature for 

updating the CCDFs during or after the simulation course based on the proportions of the 

facies to avoid a notable departure from the expected ones for instance about the SISIM 

method (Scares 1998; Journel and Xu 1994; Goovaerts 1996. The simulation methods like 

indicator simulation methods that do not rely on the transformation and back-

transformation of the distribution of data and results do not also reproduce the priori 

cumulative distribution function. Hence, the categories distribution function (proportions) 

of the realizations generated by these methods usually deviate considerably from the 

expected distributions. Several methods have been proposed to force the realizations of 

these methods to reproduce the expected proportions (Scares 1998; Journel and Xu 1994; 

Goovaerts 1996.  Although, the only concern was not to reproduce the expected 

proportions, a similar idea could be applied to improve the TSIM method based on the 

deviations of the produced proportions from their expected values so that the transition-

probabilities also could be reproduced acceptably. Nevertheless, for new proposed 

framework this correction would be conducted considering the deviations of the local 

CCDFs in the framework of the transition-probabilities conditioned to the nearest points 
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to the simulation grid node and the deviation of the observed transition-probabilities in 

the simulation from those of the (Markov chain) models.  

To conduct these corrections in the TSIM algorithm, some modifications were made in 

the TSIM Fortran program to estimate the global transition-probabilities of each 

realization at each simulation step and update the local conditional density functions 

during the simulation run. However, several simplifications were considered in this idea 

to make the changes more practical. Some of the mentioned simplifications included;  

 

(a) The transition-probabilities were computed for a simple specific neighborhood 

of the simulation point with averaging the distance and transition-probabilities 

inside the neighborhood. The neighborhood was defined by some vectors from the 

simulation point. For instance, a set of vectors like (0,0,+1), (0,+1,0), (0,0,-1), (0,-

1,0), etc. were defined. In this case, for example, the vector (0,+1,0) shows a 

simulation node in the neighborhood which is located in only one node distance of 

y direction from the simulation point. The program was using these vectors to 

identify the neighborhood in which it was searching for simulated or data points to 

calculate the transition-probabilities.  

(b) The model transition-probabilities were estimated using the corresponding 

Markov chain model of the transition-probabilities for a single short lag. 

(c) A simple corrector for updating the local CCDFs were considered during the 

simulation proportional to the extent of the deviation of the calculated overall TPs 

till that stage of the simulation from the model TPs. Therefore, this corrector was 

adding a value to the local proportion of a category when it became less than the 

expected proportion calculated to the previous simulation stages and subtracting a 

value in the contrary case. An important point is that, the local CCDFs were 

conditioned to the neighboring data or simulated points. This corrector in general 

was defined as a vector that were added to or subtracted from the proportions 

vector calculated as the local CCDF in a simulation stage. For example, if there 

are three points in the neighborhood, with the categories 2 in two of them and 

category 1 in the other one then it should be calculated that what are the 

probabilities of transition from classes 2 and 1 to each of the other possible 

categories in average? This calculation were conducted based on the existing 

simulated and sample points till that stage of the simulation and what the 

difference of them to the expected probabilities was.  
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  In spite of some achieved improvements in the results, artifacts also were seen and in 

general, the achieved advantages were not that sufficient so far to present the proposed 

method as a sufficient enhancement in the TSIM method while it needs further 

development and adjustments.  The reason could be the existence of several 

simplifications. 

 The mentioned improvements were evaluated from two points of view; how quicker the 

program in a specific condition (i.e. specific data-set and parameters) did work, and how 

better the produced simulation patterns were. Therefore, if the new algorithm could 

produce at least a comparable simulation patterns to those produced by the TSIM method 

with some quenching steps in a shorter time, it would be concluded that the proposed 

method have functioned well. However, in spite of quicker run-time, the produced 

patterns from this algorithm were not satisfactory-enough yet. Although the logic of the 

corrections seems reasonable, the applied simplifications and some other points in the 

algorithm could affect the overall results and reduce their qualities. 

 Another proposed approach was to imitate the multiple-grid simulation strategy in which 

the quenching was started from a coarser simulation-grid before going to the finer ones 

that could probably reduce the quenching time and increase its efficiency due to a less 

need to the pixels-swapping during the quenching steps. Still, a considerable 

improvement was not seen yet, especially in terms of the computational time though the 

proportion reproduction became better. The simplified test here was by performing the 

simulations stage-by-stage from the coarser grids and feeding the results as conditioning 

data to the next finer-grid stage. However, it is expected that by employing more proper 

programming techniques, the algorithm could become quicker and more efficient.  

 In addition, there were also some unanswered questions such as “should any selection be 

done in each simulation stage to feed the selected realization into the next simulation 

stage or not?” Some cases have been tested to answer this question but additional 

assessments are required to be accomplished yet to reach a reasonable answer. 

 Because the desirable goal was not fully achieved so far in this investigation and more 

attempts are necessary to reach the expected point, the more details were not explained 

here. 
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5.6.  Closing remarks for chapter 5: 

 

  

 The suggested steps to assess of the minimum acceptance statistical criteria for the 

geostatistical simulations in the present study can be summarized as following: 

1. Evaluation of the input data reproduction as the initial condition which 

should be fulfilled for all the realizations, with some fluctuations.  

2. The proportions-reproduction should be checked in the next step, from 

which a less number of realizations will be suggested for the evaluations in 

the next stages. The selected realizations from this step are expected to 

represent a better variograms-reproduction according to the discussions in 

the previous sections. 

3. The spatial variability reproductions including the variograms- and 

transition-probabilities-reproductions should be assessed next. The 

examples and logical reasoning suggested that each of the variograms and 

transition-probabilities convey a side of the spatial variability structure. 

Therefore, their simultaneous application can improve the understanding 

and verification level of the spatial variability reproduction for the 

realizations which is suggested for similar cases.   

 

 The mentioned steps include solely the statistical checks of the realizations. However, the 

geological confirmation of the realizations should be considered as another important 

criterion. However, as explained before, due to the difficulty of the one-by-one geological 

check of all the realizations, the assessments for geological soundness were conducted on 

the selected statistically sound realizations.  

 At the end of this study, since the selected realizations in terms of proportions-

reproduction fulfilled the other criteria as well, they were selected as the best realizations.  

 It was also suggested that this stepwise criterion could be applied for other similar 

problems too.  
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6.1. Overview 
 

 In addition to the selection of the best realizations and checking their acceptability and 

quality, a question may arise that which simulation method (algorithm) in general worked 

better and what were the pros and cons of each one? 

 To answer this question appropriately, the following three factors were considered in this 

study: 

(1) Geostatistical and statistical factors. 

(2) Geological considerations. 

(3) Computational considerations. 

 

 Following, more details about each factor have been discussed. 

 

6.2. Evaluations of the geostatistical simulation methods 
 

6.2.1. Based on the (geo-) statistical factors 

 

These assessments included evaluating how good the realizations of each simulation 

method (algorithm), in general, met the statistical and geostatistical requirements. In other 

words, the aim was to evaluate how close the statistics and geostatistics of the results for 

each simulation algorithm to the expected quantities or qualities were, considering a 

number of statistical measures.  A simulation method or algorithm which either can 

generate a more number of realizations with acceptable statistical and geostatistical 

factors or closer statistics and geostatistics to the target would be regarded as a better 

simulation approach. To conduct such evaluations, one might consider the proposed 

criterions by Oy Leuangthong et al. 2004 like minimum conditions to regard a realization 

as an acceptable one but this time to compare the efficiencies of different simulation 

methods. Yet, in the initial proposed scheme, the attention was drawn to the minimum 

conditions to validate the realizations of a simulation algorithm rather than evaluating the 

simulation algorithm itself. It seems that, evaluating and comparing the same criterions 

6. Comparison of different geostatistical 

simulation methods based on their results 
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among a set of the results from different simulation methods could provide a framework 

to compare different simulation methods. However, these criterions were expressed more 

qualitatively than quantitatively in the initial framework. Ortiz and Leuangthong (2007) 

have introduced a quantitative statistical scheme to validate the variogram-reproduction 

of Gaussian simulations using some statistics like T
2
-Hotelling’s test (an extension of 

Student’s T-test). However, the verification of the multivariate Gaussian behavior of the 

SISIM and TSIM methods was tremendously demanding  due to their extremely complex 

natures for such indicator data (I=1 or 0) or their finally inferred categories (i.e. soil 

categories here). Actually, Emery’s method is more suited for continuous data with a 

Gaussian behavior. Emery (2008) also suggested an analytical method to validate the 

geostatistical simulation algorithms based on some statistical tests to evaluate the 

agreement between the experimental statistics (such as means, variograms, and indicator 

variograms, calculated for several realizations) of the simulated random field and 

corresponding model statistics with a statistical acceptance tolerance. Obviously, the 

existing fluctuations in the experimental statistics of the geostatistical simulations should 

be considered. He discussed the basic assumptions, relevant statistical relations, his 

proposed statistical tests, and how to apply the mentioned statistical measures and checks.  

Relevant computer codes have also been provided by him. However, in this study, the 

variograms-reproduction checks were conducted qualitatively and considering the 

relevant plots. Yet, a brief description about the Xavier Emery’s quantitative method, its 

basic assumptions, and why it has not been applied here has been discussed very briefly 

in the coming parts.  

 Given that the statistics of the finite simulated fields and the model have been calculated, 

some fluctuations among the statistics of the realizations as well as some departures from 

the model should naturally be observed. Emery’s approach basically determines whether 

or not the agreement between the simulations and model statistics considering the 

observed fluctuations among them can be rejected in an acceptance tolerance? This 

tolerance can be expressed in terms of some statistical concepts such as the significance 

or confidence levels. However, in the case that the accordance of these two sets of 

statistics (from model and from simulation results) is not rejectable, the suitability of a 

simulation algorithm can not necessarily be admitted.  In Emery’s method (Emery 2008), 

the mean and dispersion variance of the simulated random variable in the generated 

realizations are tested using the T-student test. In this study, however, the application of 

the chi-square together with the deviation rates framework (the latter suggested by the 
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author) is proposed to validate and compare the categorical parameters histogram-

reproduction of different simulation methods. Another statistical test that Emery 

suggested to compare the algorithms was the variogram-reproduction in single or multiple 

lags. The T- and T
2
- tests are applied in his scheme (Emery 2008) to check the existence 

of a bias in the model variogram reproduction and compare the simulation algorithms so 

that one can determine the confidence-interval with a pre-specified probability of (1 ). 

However, this could not provide a clear criterion to compare the algorithms. In addition, 

this confidence-interval will be a function of the standard deviation of the simulation 

variograms and the number of realizations. Having a glance at the calculated variograms 

of the SISIM simulations for the number of 20 and 100 realizations, respectively (Figure 

6.1 and Figure 6.2 ), it can be suggested (qualitatively) that the standard deviation of the 

variograms of the 20 and 100 realizations should approximately be similar because the 

dispersions of the two mentioned series are very similar according to the related 

variogram graphs. On the other hand, the numbers of the realizations are considerably 

different and the term 1N  in the corresponding formula, i.e.   
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 will notably be different among 20 and 100 realizations( 11N =4.358 with N1=20 is 

well under the half of the 12N =9.949 with N2=100). 

 In the above equations (6-1 and 6-2), the regional variogram of the random field Y over 

domain D with the average of  )(DY  for a given lag vector h  is )(hD , hD  stands for 

the domain D  shifted by the vector h , hK is the geometric covariogram of  hh DD   

and specifically )0(hK is the measure of  hh DD  , and finally )(hD
S  is the standard 

deviation of the regional variogram of the random field (Emery 2008, pp. 1611-1612).  

Because the expected variogram values at lag h , i.e. )(h are the same for both cases and 

the critical t-values,TN-1 , for both sets of realizations are also almost equal (2.093 vs. 

1.984), the calculated interval for the variogram average D  will be much wider for the 

100-realizations set than that of 20-realizations set. Therefore, in this case, the Emery’s 

method does not help so much in comparing the simulation methods (algorithms). 

Clearly, it would not provide so much information about the acceptability interval of the 
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simulation variograms of each simulation method since it gives two different evaluations 

of the acceptability for two spectrums of realization variograms. Based on the same 

framework that Julian Ortiz et al (2007) have discussed, when the calculated values of t 

(for a single-lag test) or t
2
 (for a multiple-lag test) exceed their critical values from T (for 

single- lag tests) or F (for multiple-lag tests) distributions with the corresponding degrees 

of freedom (DF) and significance level ( ) , the hypothesis that the mean vector of 

realization-variograms (including the mean variogram values in a number of lag 

distances) is the representative of the input model variogram would be rejected (Emery 

2008, pp. 1611-1612). It could be suggested that if the variograms-reproduction of a 

method is rejected while it can not be rejected for another method, the second method 

functions better in terms of variogram reproduction. The reason for this deduction is 

because there is no strong evidence that the variograms-reproduction of the latter method 

to be rejected with the specified significance level.  

 The reasons which based on them it was decided not to apply Emery’s method here for 

the comparison of the simulation techniques and adopted another methodology have been 

summarized as following:  

 

(b) The multi-Gaussian assumption as a perquisite for the Emery’s suggested 

framework could not readily be proved and verified for such a discrete-value 

simulation scheme. Basically, the Emery’s suggested method was suited for 

continuous attributes and not for the categorical ones.  

(c) The method could potentially be applied for variograms or transition-

probabilities reproduction evaluation because the values of variograms or 

transition probabilities could be seen as random fields. However, it can impose 

considerable complications and more extra calculations whereas the proposed 

qualitative comparisons in the present study could be conducted much easier. 

Emery’s suggested framework does not provide a straightforward platform to 

compare the variograms-reproduction among different simulation methods. 

Actually, it can solely test whether or not in a simulation method, the average 

variogram falls out of an acceptable interval form the model with a specific 

statistical significance-level? If it falls out of the mentioned acceptance interval, 

one can reject the variogram reproduction. However, if it does not fall out of the 

mentioned interval, the variogram reproduction can not be rejected in the 

relevant simulation method.  Therefore, Emery’s method does not add so much 
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value to the variogram reproduction evaluations. Especially this is because; the 

mentioned interval depends very much on the standard deviation of the 

simulation variograms (experimental variograms calculated from the simulation 

results) and the number of realizations in this method. Therefore, it does not 

facilitate the comparison of different simulation methods noticeably. For 

example, in general, the standard deviation of the simulation variograms is 

considerably higher in SISIM method compared to that of the TSIM method. 

Therefore, the acceptance interval of the average variogram should be much 

wider for the SISM than that of the TSIM method considering the same 

significance-level. However, the higher standard deviation means a higher 

deviation of the spectrum of simulation variograms from the model. In other 

words, the acceptable departures of the average and the model variograms are 

higher in SISIM compared to those of the TSIM method. Nevertheless, the 

Emery’s method indicates that the latter has higher chance to be rejected. 

Considering the mentioned drawbacks of the method suggested by Emery 

(2008) and Ortiz et al. (2007) for variogram and other statistics reproduction 

test, a qualitative scheme was applied in this study to compare the efficiencies of 

different simulation methods. Though the proposed scheme in the present study 

has been devised more qualitatively, a development of quantitative criterions 

could also be suggested.  

(d) The general proposed framework here for the comparison of the simulation 

methods was to follow a stepwise workflow, starting from testing the 

conditioning to input data, histogram-/proportions-reproductions of the 

simulations, the variogram and transition-probabilities reproduction, and finally 

the geological soundness. For variograms and TPs-reproduction test, a 

qualitative verification and comparison scheme like in the previous section (for 

selecting the best realizations) was suggested, just this time considering the 

extent of difference from the model and their goodness among different 

methods. In this case, the dispersion of variograms among different realizations 

was considered as a disadvantage because the more simulation variograms 

dispersion the more realization variograms will depart from the model 

variograms. With such an insight, the variograms-reproduction for SISIM 

method was in general weaker compared to TSIM methods, especially for TSIM 

methods with post-quenching steps. Although, in the vertical variograms of the 
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TSIM method without quenching, the difference of the variogram values from 

the model are more but closer to each other. In other words, in the TSIM method 

without quenching steps, the simulations have much closer spatial structures 

together but they are more different from the model in vertical structure 

comparing to the SISIM method. Nevertheless, adding the quenching steps, 

improves this difference to the model significantly but the results are even closer 

to each other. Therefore, considering the proposed criterions, a general judgment 

could be that the TSIM has been more efficient than SISIM in terms of statistical 

parameters reproduction, especially when further quenching steps are 

considered. 

 

As discussed before and according to the mentioned criterions, one can conclude that, in 

general, the TSIM methods especially with some quenching steps produced much better 

realizations in terms of geostatistical criterions fulfillment and even in the geological 

soundness insight. The application of too many quenching steps, although, did not 

improve the results considerably and can be avoided.  

 

6.2.2. Evaluations based on geological acceptability: 

 

As discussed before in Section 5.3.6, the patterns produced by the TSIM method were 

geologically much sounder than those of the SISIM method. 

 In addition, there are more possibility of integrating the subjective information and 

geological interpretations in the TSIM framework. 

 The details of how this conclusion was made, has been addressed in that Section 5.3.6. 

 

6.2.3. Evaluations based on the speed of the algorithms and the ease 
of their applications: 

 

About the speed of the running any algorithm, the SISIM method was considerably 

quicker. The ease of applying each method does not seem greatly different. Only in the 

TSIM method, more care should be drawn to the perquisites of the Markov chain models 

during the modeling of the transition-probabilities. However, this difficulty does not seem 

to be a great challenge. In addition, in the case of the absence of abundant observations, 
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the TSIM method that can integrate more subjective information and geological 

interpretations could be applied easier. 

The worst drawback of the TSIM algorithm is its considerably longer run-time. For 

example in the PC system
1
 which has been applied for this research, producing a TSIM 

realization with two quenching steps for a simulation grid of 175 124 28 took about 1 

hour, 6 minutes, and 7 seconds while as a SISIM realization was produced in about 1 

minute, and 20 seconds. Even a TSIM simulation without any quenching steps took about 

27 minutes which is still considerably much more than the SISIM simulation time. 

Although, the computational cost is much higher in the TSIM method, it can be 

considered an acceptable shortcoming because with the advent of high-speed computers 

and computational techniques, this cost would become affordable for the benefit of 

producing better realizations in terms of statistical and geological soundness.  

 Still, some additional improvements can be proposed to overcome the problem of TSIM 

being too much time-consuming. A more detailed discussion about the efficiency of 

TSIM and its comparison to the other geostatistical simulation methods as well as some 

attempts and suggestions for improving the TSIM method and its efficiency will be given 

in the coming Sections 5.57.4. 

 

6.3.  A number of practical points on modeling steps in 
this research 

  

The application of the Wingslib software as a MS Windows interface between the user 

and the GSLIB programs, not only facilitates the use of those programs but it also 

provides a framework to combine or execute them and show the results for a considerably 

big numbers of times and in each favorable orders by its Batch script window, run the 

external programs, and store the log window to evaluate the execution details of each 

program and analysis. 

  

 

                                                 
1
 Intel(R) Pentium(R) 4 CPU, 3.2 GHz, 3.2 GHz, 2.00 GB of RAM, Microsoft Windows XP, Professional 

x64 Edition Version 2003, Service Pack 2. 
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Figure 6.1  Vertical indicator variograms of the generated realizations by the SISIM method of the 

20-realization run (left-side red lines) and 100-realization run (right side red lines) and their 

corresponding models (black lines). 
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Figure 6.2  Horizontal indicator variograms of the generated realizations by the SISIM method of the 

20-realization run (left-side red lines) and 100-realization run (right side red lines) and their 

corresponding models (black lines). 
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As it is clear in this dissertation, there were some steps in which the calculation of a 

parameter such as indicator variogram of the realizations has been performed for a big 

number of times. To be able to do so, the Batch script window of the Wingslib software 

was applied.  For this purpose, first, the required parameter files including parameters 

which had to be changed (e.g. the realization number) had to be created and stored with 

different names. In this research, the MS Excel pages with some functions and macros 

were employed to create a big file including the parameter files parameter units. The 

Replace pioneer 2.63 software was applied to split the units of parameters so that each 

unit as a representative of a parameter file contained the required parameters for that 

round of calculation. Each file was saved with a different name in which there was a base 

name ending with a different number, for example; “GR-vt_tsim…1.par”, “GR-

vt_tsim…2.par”, GR-vt_tsim…N.par”. All the produced parameter files were imported 

into the Wingslib atmosphere (added to the program trees) by the Import all parameter 

files option in File menu of the main Wingslib toolbar. To call the created programs for 

running or viewing, the best way would be to create a Batch script file (with *.wgb 

extension) including the name of the mentioned parameter files which can be created 

again in a MS Excel sheet where the name of the parameter files can be changed by 

adding a number to the base name of the parameter file.  The general format of Batch 

script file line stars with Run or View according to the aim of user either to run a program 

or show its results. The following line is an example of such a line in a Batch script line: 

 

Run, C:\gslib\parfiles\GR-vt_tsim…1.par 

Run, C:\gslib\parfiles\GR-vt_tsim…2.par 

…. 

… 

.. 

Run, C:\gslib\parfiles\GR-vt_tsim…N.par 

 

 For managing the big ASCII files, the Textpad software was applied.  For instance, since 

the calculation of the frequency of the soil categories in the produced realizations is very 

time-consuming for the Wingslib, the output ASCII file lines including the category codes 

(e.g. 1, 2, 3, 4) were found, marked, selected, and copied into another empty page. The 

number of lines including this category could be read in the Textpad software to find the 

frequencies of the categories in a specific realization or even in all the realizations. 

 Another practical point is related to the postscript files produced by Wingslib as the 

graphical outputs of the programs. Since the graphical and text options of the software is 
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very limited for making a suitable favorite graphical output, an applied solution in this 

research was to edit the *.ps or *eps files by a normal text editor such as Textpad. The 

Textpad software was especially very suitable because of its capabilities to work with big 

ASCII files and other capabilities such as producing macros. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 207 

 

 

7.1. Synopsis 
 

 A high-resolution and accurate subsurface model which integrates a wide range of 

information from various sources such as samples and observations, expert’s and priori 

knowledge, prediction or simulation results, etc.,  is an essential tool in evaluations of 

numerous practical problems such as mining and mineral resources, hydrocarbon or 

geothermal reservoirs, hydrogeology, and so on. More specifically, having a precise 

subsoil and subsurface stratification, existing material types, and underlying geological 

characteristics is of vital importance for the geotechnical engineering applications (e.g. 

Farshbaf Aghajani and Soltani-Jigheh 2009, p. 347). However, the limited and at times 

indirect accesses to the subsurface as well as the high heterogeneities and complexities in 

subsurface, make the modeling practice even more challenging.   

 In such applications, the aim would be to construct the complex subsurface model(s) 

thoroughly and precisely, having a limited number of samples usually distributed 

irregularly over the study area. This model(s) should reflect and imitate the underlying 

real characteristics. With such a limited data sources, geostatistical methods offer 

appropriate alternatives to establish an accurate model while increasing the capability of 

combining more information as well as providing the uncertainty measures of the 

modeling. 

In the conducted project, the aim was to construct a three-dimensional model of the 

subsurface in a test site of the Göttingen area to evaluate the capabilities of geostatistical 

methods to model, estimate, and simulate the facies, or more specifically here, 

unconsolidated sediment types, using geostatistical and stochastic methods. The modeled 

parameters were geotechnical categories of the subsurface unconsolidated materials form 

the Quaternary here. In general, modeling such categorical parameters, like the facies 

types, is usually the initial step to construct the continuous variable models such as the 

models of permeability, hydraulic conductivity, and so on (Deutsch 2002, pp. 21-25). Due 

to the improved and proper results obtained in this study, the explained steps for making 

such a model can be suggested in constructing the similar models for similar conditions. 

 In the Göttingen project, a wide range of data which had been collected from previous 

studies and ongoing measurements (at the time of the start of this research) such as 

several drillings were used as the basis for constructing the expected model. The 

7. Summary and conclusions 
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classification of the taken samples had been conducted according to a framework based 

on German geothechnical standard of DIN 18196 to obtain the necessary data for 

subsurface modeling in the department of Applied Geology of the University of 

Göttingen (Dr. Bianca Wagner, Dr. Torsten Lange, and other project coworkers). 

To achieve the sample data in vertical direction, the data were taken vertically in 

equidistance spacing along the sampling drillings of the test site. In pixel-based modeling 

of facies, the first step after collecting the available data is to assign the indicator values 

and create an indicator field for each soil or facies category. This indicator value equals to 

1 at the locations where the relevant category exists and 0 otherwise. These indicator 

values are applied as the basis to the geostatistical estimation and simulation of the 

existing soil categories. 

 Similar to what has been conducted in the present study, the estimation/simulation grid 

space should be transformed into a new one which better includes the stationarity of 

estimation/simulation space according to the stratigraphic structure and genesis of the 

layers. The transformed grid system chosen in this study was proportional to the top and 

bottom surfaces of the target layer due to the deformation of the layers during the 

sedimentation and the lack of significant erosion. It should be reminded that the quite 

homogeneous and sometimes containing artificial fillings uppermost layer was excluded 

in this model and has been modeled separately in order to improve the stationarity 

conditions inside the study zone and take the geological knowledge into account by 

delineating the geologically more similar units in separate modeling zones. Hence, the hill 

sides (which include the solifluction materials) as well as the deep holes in the modeling 

area were not included in this model and have been modeled separately. 

 In the original space, as it was expected for the target layer, strong correlations were 

detected between the elevations of top and bottom surfaces and a strong negative 

correlation between the bottom surface elevation and the thickness. This has represented 

that, the top and bottom surfaces of the target layer are correspondent to each other while 

the layer is thicker wherever the bottom surface is in a lower elevation. 

 In the transformed-grid space, the stationarity assumption was adopted since the soil 

categories were distributed almost homogenously over different parts of the model. The 

scatter-plots of the soil categories against the distance-coordinates and indicator 

variograms of soil categories in the transformed space were employed to evaluate and 

confirm the existence of stationarity conditions. In these scatter-plots and indicator 

variograms, there were no evidences of significant detectable trends. The evaluation of 
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the variograms to assess the existence of probable trends is a common solution to detect 

notable available trends. 

 Then the spatial structures of the data variability were calculated and modeled for the 

directional indicator variograms of each soil category. The variogram models validation 

and then the indicator kriging were the next steps.  

 Indicator variogram models and estimation models were validated and some trial-and-

error adjustments in the models as well as the estimation parameters were applied based 

on the two methods of cross-validation and jackknifing. The cross-validation and doing 

jackknife of the models of categorical attributes requires special techniques which have 

been discussed in section 3.2.3 . 

 The cross-validation and jackknifing of the models and re-plotting the variograms with a 

less number of boreholes here (e.g.  

Figure 3.5) suggested that the selected models were not only acceptable-enough but still a 

less number of drillings (even one-half of drillings for a similar area) could be applied in 

comparable cases to achieve more or less similar accuracies.  

 The indicator kriging (IK) can be performed for the indicator variables to produce the 

probability of the existence of each soil category in each estimation point. However, the 

favorite outcome would be a three-dimensional map of the predicted soil facies. To do so, 

the soil classes with the highest estimated probability of occurrence (from indicator 

kriging) could be assigned to each estimation point of the model.  The ik3d or kt3d 

programs of the GSLIB (or Wingslib) software can be employed to calculate the 

probability of the occurrence of each soil class at each estimation location. The first 

program (ik3d) calculates these probabilities, and performs the order-relation violation 

corrections all at one run and hence is much simpler in application. However, it does not 

let the user to consider different anisotropy or estimation parameters for various soil 

classes. The application of the second program (kt3d) makes this possible but with extra 

steps to conduct the order-relation violation corrections and perform the IK separately for 

each soil category which would be dramatically time-consuming and challenging. In 

addition, the estimation variances as a measure of estimation uncertainty can be obtained 

in the second method. In this study, however, in spite of testing both methods, the 

ultimate decision was to choose the first method and use its results for producing the final 

outcomes of the IK estimations. In the next step, a MATLAB code, written by the author 

of this dissertation, was employed to assign the most probable soil class (according to the 
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IK probability estimations) to each estimation point. The final three-dimensional model 

was then created after back-transforming the estimation grid into the original system.  

 The indicator kriging method is not capable of reproducing the expected features and 

geology so effectively since it contains the smoothing problem. In other words, the subtle 

variations and global features could not be reflected in the generated models. Actually, 

kriging produces patterns in the model that do not imitate the geological realities so 

adequately. In other words, kriging is globally inaccurate, e.g. generally it does not 

reproduce the expected global histogram. In other words, kriging can produce maps with 

minimum estimation error while its produced maps could not reproduce the extremes and 

global features. These subtle variations can become particularly essential in some 

applications such as modeling the fluid flows in the porous media. The only point here is 

that this discussion is about the indicator fields of the estimations using IK. Nevertheless, 

the behavior of final estimated categories by the mentioned scheme of the most probable 

soil class at each estimation point could be more different and complicated to easily be 

predicted. Still, the global-statistics-reproduction would not necessarily be fulfilled in IK 

final estimations of the soil classes or any categorical attribute (such as lithofacies and so 

on). Figure 3.3 and Figure 3.4 represent this fact that the IK estimation of soil classes 

does not reproduce the expected global histogram and indicator variograms so adequately. 

However the results of the cross-validation analyses confirms its being locally accurate 

(see parts (a) and (b)  from Section 3.2.3). 

 Geostatistical simulation methods provide a set of solutions to overcome the 

aforementioned problem of the kriging. Therefore, they can produce the patterns which 

better resemble the reality of the subsurface by putting the minimum squared error 

condition aside to make them capable of reproducing the fine variations and global 

statistics more adequately (Hohn 1999, p. 180). 

 The sequential indicator simulation (SISIM) and the transition probability Markov chain 

(TP/MC) methods as solutions for reproducing the local fine variations and global 

geological features were applied, assessed, and compared to each other, in this study.  

 The final geostatistical simulation outcomes and assessments of their methods have 

suggested the application of TP/MC method as a more suitable solution in simulating the 

subsurface categorical parameters over a number of other methods in sedimentary 

environments.  

 The quality of simulations was then assessed, the best realizations were suggested for 

further evaluations, and the simulation methods were compared. 
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7.2. Evaluations of the geostatistical realizations and 
simulation methods 

 

 To evaluate the quality of generated geostatistical realizations and decide on their 

acceptability, several statistical and geostatistical as well as geological criterions were 

assessed. Evaluated statistical/geostatistical criterions included conditioning of the 

simulations to the input data, along with the histogram-, indicator variograms-, and 

transition-probabilities-reproduction of the simulations.  Though, the assessment of 

geological soundness was a more challenging question due to its more interpretive and 

subjective than quantitative nature, or at least the lack of a general quantitative framework 

for such evaluations. In addition, since the geotechnical classes considered in this study 

did not directly correspond to the geological categories, although these categories (that 

were present in this test site) conveyed some geological meanings such as their grain-size 

composition or the sediment types, the evaluation of the geological soundness for these 

simulations was not so an easy and straightforward task. Although in the TP/MC 

framework, one can integrate an extent of geological information such as the length 

statistics of the layers and juxtapositioning tendencies as well. Some additional concepts 

were also applied in this study to evaluate the soundness of the generated geological 

simulations. Among these complementary concepts for geological evaluations of the 

quality of simulations, the coarsening upward or downward patterns, and the connectivity 

and layering of the soil categories were also considered in this study. Moreover, the 

Walther’s law of facies succession was deemed to infer the soil classes which probably 

can occur beside each other bearing in mind the vertical successions observed in the 

boreholes (see Section 5.3.6). The preference of applying the vertical successions 

observed in the boreholes was because of the abundant and more reliable information 

with much higher density of the samples along the boreholes (in the vertical direction). 

From these geological acceptability evaluations it could not be a big contradiction to the 

expectations found. The employed framework to evaluate the geological soundness of 

models for this study can be applied for the similar cases while the development of a 

more general quantitative scheme could be proposed. 

 The test of conditioning to the input data was simply done using a MATLAB code, 

written by the author of this thesis for such purposes. This program finds the nearest 
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simulation or estimation grid nodes to the sample points, compares there quantities with 

the observation, and finally calculates the ratio (or percentage) of simulation points in 

sample locations which have correctly been conditioned to the input data. As mentioned 

before, the conditioning-test results were quite sound except that they were weaker for the 

TSIM methods especially with more quenching steps (almost 89.5% to 95.22% for the 

TSIM methods and above 99% for SISIM method). 

  In order to check the histogram-reproduction of the simulations, two methods of 

deviation rates framework and the chi-square test of the homogeneity of populations were 

proposed and applied here. Some variants of these two methods have already been 

employed in several other applications and statistical methodologies with differences in 

formulation details and applications. For instance, the first framework contains a very 

similar criterion to the absolute percent error (APE) known also as absolute percent 

deviation (APD) and its other variant, mean absolute percent error/deviation 

(MAPE/MAPD) criterion ("Mean Absolute Percentage Error." Wikipedia. Web. 

Accessed: Feb. 2012). Such criteria have been widely applied in time-series analyses (e.g. 

Yaffee and McGee 2000, p.17 and "Time-series Forecasting Error Statistics." Time-series 

Forecasting Error Statistics Web. Accessed: Feb. 2012) due to their simplicity and 

straightforward relation to the target values. However, in the first framework proposed in 

this study by the author termed here as the deviation rates framework, some special steps 

and conditions, as well as some extra criteria, beside the APE or MAPE criterion, have 

been considered with specific steps to target the goals of proportions-reproduction check 

of subsurface geostatistical simulations more adequately. In this method, the proportions 

of soil categories inferred from the borehole data (with necessary corrections to make 

them representative) constructed the reference distribution. Then, the rate of deviation for 

the proportions of each soil category from its reference value for each realization was 

calculated. The soil classes with the highest proportions in the reference distribution (i.e. 

the biggest classes) were regarded as the key categories. Any realization that its deviation 

rates for these key categories (from their reference values) were greater than an 

acceptable deviation rate was rejected. The advantage of using this routine is not only for 

having a straighter link to the proportion values but also for its practical simplicity. In 

addition and more importantly, this method puts more emphasize on the bigger classes 

which are statistically more reliable and at the same time, it forces the proportions of the 

smaller classes to become volumetrically closer (relative to the whole volume of the 

model) to those of the reality. The deviation rates framework proposed here contains a 
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similar criterion to the absolute percentage error (APE) applied in some geostatistical 

literature (e.g. He et al. 2009, p. 627) but with additional considerations and 

improvements which has been explained in part (2)a (Section 5.3.3, Chapter 5). To the 

knowledge of the author, this proposed framework has not yet been used in geostatistical 

simulation problems or at least the author is not aware of the existence of such a 

framework.  

The second proportions-reproduction test which has been applied here (i.e. the chi-square 

test of homogeneity of populations) is being used to evaluate the homogeneity of 

population tests which indicate whether or not two samples come from the same 

populations. However, to the extent of the author’s knowledge and search, this criterion 

has not been employed in geostatistical applications yet. Therefore, the author suggests 

the insight of homogeneity test for evaluating the acceptability of proportions-

reproduction of a simulation in geostatistical simulations of the categorical variables 

especially that it does not consider any of the available distributions as the reference 

distribution.  

The next step was to assess the variograms-reproduction of the geostatistical realizations 

selected from the previous stages. To test the general variograms-reproduction of all 

realizations of a geostatistical simulation method, a graphical routine was applied. In this 

method, for each soil category in vertical and horizontal directions, the model indicator 

variograms as well as experimental indicator variograms of all the realizations of a 

simulation method were plotted in the same graph. Then, the general behavior of 

experimental indicator variograms and their corresponding model was compared to each 

other. A similar approach was applied for the TPs-reproduction test. In addition, the 

Julian Ortiz’s proposed analytical method (Ortiz 2007) for variograms-reproduction test 

together with the reasons believed here for its inappropriateness for such applications has 

been discussed. Yet, some more suitable analytical methods as well as necessary 

computer codes could be suggested to be developed for similar problems.  

The geological soundness evaluations were also conducted in this study to evaluate how 

reliable the generated simulations are. Still, no considerable contradictions to the expected 

geologies have been found in this case though this evaluation was considerably 

qualitative than quantitative. 

Besides the evaluation of the realizations generated by these simulation methods, the 

simulation methods themselves could also be compared to each other to imply and 

suggest the best simulation algorithm(s). This comparison of different simulation 
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algorithms was also conducted in this study. Again, based on the criteria similar to those 

used in selecting the best realizations of simulation methods as well as some other ones, 

the TP/MC (TSIM simulation method) was decided to be much better than the SISIM 

method while the biggest disadvantage of the TP/MC algorithm (i.e. its rather big run-

time demand) was still there. The algorithms with more number of realizations which 

represented statistical/geostatistical and geological acceptability or closer 

statistics/geostatistics and geology to that of the expectation were suggested to be more 

efficient. The details of these criteria and evaluation of the efficiencies of these simulation 

methods have been explained in Chapter 6. 

 

7.3. Some suggestions, comparisons, and conclusions 
inferred from this study 

 

Investigations conducted in this study for the proportions-reproduction, suggested that the 

simulations produced by the TP/MC (TSIM) method had considerably more acceptable 

quality than those of the SISIM method. This judgment were based on the (geo)statistical 

and geological criterions mentioned in the previous section. Hence, the two explained 

frameworks for proportions-reproduction evaluations could be recommended as key tests 

for evaluating the geostatistical simulations and selecting the best ones.  For the TPs- and 

variograms-reproduction evaluations, more appropriate criteria and computer codes could 

be developed. In addition, it can be suggested that the mentioned framework can be 

applied in the similar cases of modeling the facies or other categorical attributes in 

subsurface and for the similar cases of the geotechnical models.  

The TPs- and variograms- reproduction analyses in the present study have confirmed the 

acceptability of the reproduction of the spatial variability structures of all selected 

realizations from the previous stages. In other words, the TP/MC realizations which were 

evaluated to be acceptable in terms of conditioning to the input data as well as 

proportions-reproduction represented also acceptable TPs- and variograms-reproduction.  

Although the other available algorithms for simulation of categorical variables such as 

multiple-point statistics (MPS), truncated pluri-Gaussian simulation (TPGS) method, 

object-based simulation method, and so on, have not been applied in this study, however, 

the results from other literature as well as logical reasoning which has been discussed in 

the previous section, have suggested the TP/MC method as one of the best solutions for 
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the applications similar to this study. This comparison should especially be defensible, 

since, no training images or a speculation of the transition patterns among soil categories 

or any special information about how the geological objects may look like, were available 

in this study to make it suitable to use the other simulation methods. It seems that the 

application of TP/MC method, with the suggested framework here, in similar cases 

should noticeably be suitable so that its application could be suggested for similar cases 

too. 

 There were several (while still not so many) literature about the application of TP/MC 

(i.e. TSIM or T-PROGS) method in three-dimensional modeling of subsurface categorical 

attributes discussing the suitability of TP/MC and SISIM methods and their comparison 

to each other or to the other geostatistical simulation methods (e.g. Weissman et al. 2002, 

Maji et al. 2006, Weissman et al. 1999, and Schornberg et al. 2010, dell’Arciprete et al. 

2012).  

 In fact, the results of the present dissertation as well as those of some others from the 

literature (e.g. Weissman et al. 2002, Maji et al. 2006, Weissman et al. 1999, and 

Schornberg et al. 2010) have demonstrated a sizeable efficiency of the TP/MC method in 

producing sound geostatistical simulations (apart from its rather long running time) 

especially over the SISIM technique. For that reason, some attempts also were made here 

to improve the TSIM algorithm by reducing the computational time, enhancing the 

simulation quality, and/or adding more data integration capacity to the method. Still, 

further researches are required to accomplish the improvements of this algorithm while a 

notable improvement was not achieved in this study yet especially due to the limited time 

of this research. However, these attempts did not reach a deadlock but the research time 

limits, hindered further efforts.  

 Moreover, some suggestions could be made to evaluate the effect of combining TSIM 

with other geostatistical simulation techniques such as multiple-point geostatistical 

simulation methods. 

However, because in the TP/MC method, the modeling of the transitions from any 

category to another one in each distance has direction, it can be expected that this method 

would work more efficiently than the other two-point geostatistical techniques as this 

research and the similar literature (e.g. Weissman et al. 2002, Maji et al. 2006, Weissman 

et al. 1999, and Schornberg et al. 2010) also suggest. Yet, as another suggestion, the 

efficiency of the multiple-point geostatistical (MPS) methods for similar problems can be 

tested and compared to that of the TP/MC method (e.g. like dell’Arciprete 2012), or at 
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least the produced results out of the TP/MC method could be evaluated using the MPS 

methods (e.g.  Boisvert, J B et al. 2010). A clearer suggestion in combination of the 

TP/MC with MPS method could be the application of MPS metrics (e.g.  Boisvert, J B et 

al. 2010) either in the simulated annealing stage of the TP/MC method in simulation 

optimization or the selection of the best realizations produced by the TP/MC method. 

These checks can be especially more interesting for modeling the curvilinear, long-range, 

and complex geological patterns. However, the MPS methods entail some shortcomings 

and difficulties that could make hinders for easily using them in similar applications. For 

instance, the necessity of having the training images (TIs) besides their probable big 

influence on the simulation results rather than considering the effect of real underlying 

structures (e.g. Ortiz 2004) could be pointed out from these shortcomings. The growing 

use of the MPS methods in the petroleum applications due to their usually limited 

available data for estimation and simulation is of the reasons for using training images 

and the MPS methods suitability. However, there are typically more available data in the 

mining applications or comparable cases like the geotechnical subsurface modeling where 

plenty of local data could be present. 

 Another alternative to the SISIM and TP/MC algorithms for the facies and categorical 

data simulation is Truncated Gaussian simulation (TGS) method which has frequently 

been applied in facies modeling of reservoirs especially for hydrocarbon modeling. In the 

truncated Gaussian simulation method, the realizations of a continuous Gaussian variable 

is generated and truncated in series of thresholds to produce the categorical variables in 

simulations. This method can work sensibly when a clear ordering in the facies sequence 

is expected (Deutsch 2002, p. 204). Then the categorical variable can be seen as a 

continuous Gaussian variable that is truncated in specific thresholds (Deutsch 2002, p. 

204). The produced patterns form this method would represent much better connectivity 

than those produced by the methods based on Gaussian fields such as SISIM, while the 

ordering in the facies occurrence would be kept. In addition, the spatial structure for the 

variability of the facies reflected by their indicator variograms would also be reproduced 

adequately. However, the TGS method has some restrictions such as its inapplicability for 

the cases where a clear ordering in the occurrences of categories is not expected. For 

instance, in this study, there were many (horizontally or vertically) adjacent soil class 3 

samples found next to the soil class 1 which means that there were no ordering in the 

transitions of the categories in this data-set. In addition, in the TGS method, modeling 

different anisotropies for different categories (i.e. each soil class here) is not possible. The 
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truncated pluri-Gaussian (TPGS) simulation is an extension of the TGS method which 

makes the reproduction of the geologically more complex transitions feasible among the 

various classes. It makes use of more than one Gaussian random variable. Then, it 

truncates these Gaussian random variables in specific thresholds to obtain the simulation 

categories. The TPGS method enjoys some advantages such as resolving short-scale-

variations problem, a good reproduction of proportions and indicator variograms or cross-

variograms (Galli et al. 1994, p. 217; Cáceres et al. 2010, p. 2; Loc’h and Galli 1997; 

Deutsch 2002, pp. 204-205), and the capability of including some geological 

interpretations for example about the possible transitions among different categories or 

locally varying proportions (Loc’h and Galli 1997). However, this method still suffers 

from some drawbacks. For instance, it is not easy to define the simulation model 

parameters, such as thresholds or transition rules, etc., to obtain the expected geological 

features. Another option could be the application of cleaning cell-based facies 

realizations. This method not only reduces the effect of short-scale variations of the 

classes pattern produced by the traditional simulation methods, it can also maintain the 

proportions-reproduction of soil classes in the simulations (Deutsch 2002, p. 210).One of 

the solutions to perform cleaning cell-based facies of realizations is based on the dilation 

and erosion scheme. This solution is suited for cleaning images including only two facies 

although a nested approach can be implemented to produce a more complicated 

simulation (Deutsch 2002, p. 210). Some other Markov chain simulation methods such as 

the coupled Markov chain (CMC) simulation method (e.g. Elfeki and Dekking (2007); the 

Markov chain geostatistics (MCG) by Li and Zhang (2010), or Li et al. (2005)) have been 

proposed to simulate the facies in the models. However, they are not still sufficiently 

developed and suited for three-dimensional modeling, while they sometimes can produce 

artefacts in the simulations. Some more details especially about the practical side of these 

methods have been summarized in Table 1.3.  

Further investigations can still be made to improve and test the available categorical-

variable simulation methods and compare them to each other. 

 

7.4. Suggestions for further research  
  

 Based on the suggested evaluation criteria, the results of the TP/MC simulations of the 

soil facies, in the case of Göttingen test site, have presented sizably more sound results 
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compared to those of the SISIM method. Hence, the application of the TP/MC method 

about the other similar cases is suggested and speculated to offer considerably enhanced 

quality of simulations compared to those of the SISIM and traditional methods and 

sensible simulated patterns in general. This claim can be supported by theoretical 

discussions and practical findings mentioned in literature (e.g. Carle and Fogg 1996; 

Carle and Fogg 1997; Si-Yong Lee et al. 2007, Carle et al. 1998, Schornberg et al. 2010; 

Weissman et al. 1999; Ritzi 2007).   

 As discussed before, the transition-probability Markov chain simulation method 

improved the histogram reproduction, spatial variability structure reproduction (evaluated 

here by indicator variograms and transition-probabilities), the connectivity and structure 

of the sedimentary geo-bodies and hence the geological soundness (mostly qualitatively). 

These TSIM methods are also more capable of integrating information in the model such 

as the length statistics of the geological bodies. Therefore, the application of the TSIM 

methods could be suggested for similar problems. However, they still face some 

important drawbacks such as the long computational time and more practical and 

theoretical complexity. Pursuing the attempts pointed out in Chapter 5 (Section 5.5) is 

suggested also here to improve the TSIM algorithm to achieve a more high-quality 

simulations as well as a faster algorithm with a capability of more data integration. In 

general, some goals, such as the following points, could be defined for further researches 

and improvements of the transition-probability Markov chain technique:  

 

(a) Reducing the computational time and practical complexity of the algorithms. 

(b) Adding the capacity of integrating more information in the simulation models. 

(c) Making automations on the most of the simulation and models-validation steps 

in the framework of a software wizard and guided steps; e.g. finding the best 

parameters for estimations and simulations, testing the conditioning on the input 

data, histogram-reproduction assessments, checking the transition-probabilities- 

and variograms-reproduction of the realizations, integrating the length statistics 

in the simulation models more directly, integrating more geological information 

in the simulation models, suggesting the best realizations and assessing the 

quality of the realizations in terms of  the necessary geostatistical, statistical and 

geological factors, and so on. 

(d) Evaluating the capability of combing the transition-probability Markov chain 

simulation models with the other geostatistical techniques such as multiple-point 
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geostatistics, artificial neural networks, and so on. For instance Boisvert et al. 

201 suggested multiple point metrics as other minimum criteria to be to accept a 

geostatistical realization. (Bohling and Dubios 2003; Ortiz and Deutsch 2004). 

In other words, a clearer suggestion in combination of the TP/MC with MPS 

method could be the application of MPS metrics (e.g.  Boisvert, J B et al. 2010) 

either in the simulated annealing stage of the TP/MC method in simulation 

optimization or the selection of the best realizations produced by the TP/MC 

method. These checks can be especially more interesting for modeling the 

curvilinear, long-range, and complex geological patterns. However, the MPS 

methods entail some shortcomings and difficulties that could make hinders for 

easily using them in similar applications (e.g.  Boisvert, J B et al. 2010). The 

reason behind suggesting the combination of the multiple-point (MPS) 

geostatistics with the TP/MC method is that the TSIM algorithm still relies on a 

two-point statistic (TP) that might be incapable of wholly capturing the spatial 

structure of the geological complexities, especially for modeling too 

sophisticated patterns. 

(e) In the cases of the existence of analogues, complementary and auxiliary 

information could be taken into account to improve the models such as Markov 

chain models of transition-probabilities. 

(f) The application of a more general analytical method similar to what have been 

applied to evaluate the proportions-reproduction of the simulations (e.g. like the 

homogeneity tests or deviation-rates framework (proposed here by the author)) 

could be suggested for the variograms- or TPs-reproduction checks in similar 

applications. 

 

Yet, as another suggestion, the efficiency of using some other geostatistical facies 

simulation methods such as multiple-point geostatistics (MPS) for similar problems can 

be tested and compared to that of the TP/MC method.  

Moreover, some suggestions could be made to assess the effect of combining TSIM with 

other geostatistical simulation algorithms such as multiple-point geostatistical simulation 

methods. 

Another suggestion could be the evaluation of the effects of using such simulations in 

different applications such as flow simulations, temperature or geotechnical parameters to 
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evaluate the outcomes of these methods using the results of such simulations and assess 

which one could be appropriate with which application.  

Due to the normal limitations during a PhD period, the cited suggestions could not be 

followed at the moment and can be pursued later. 
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List of important acronyms, abbreviations, and 

initialisms 

 
 

BME ………………….…  Bayesian maximum entropy method for geostatistical 

simulation 

CCDF…………………………… conditional cumulative density (= distribution) 

function 

CMC ………………………….……coupled Markov chain geostatistical simulation 

method 

DR or D.R. ……………………………………………………deviation rate of a 

proportion 

IK………………………………………indicator kriging geostatistical estimation 

technique 

MCMOD…………………………… an algorithm and program of the TPROGS 

software for transition probabilities modeling using Markov chain models  

MC…………………………………………………………………………… Markov 

chain 

MPS ……………………………multiple-point statistics method for geostatistical 

simulation 

SGS…………………………………………………….……. sequential Gaussian 

simulation 

SISIM………….….……………..…sequential indicator (geostatistical) simulation 

method 

SRSD………………………………………………… sum of the rates of squared 

deviations 

TGS…………………………………………………………Truncated Gaussian 

simulation. 

TSIM………….the geostatistical simulation algorithm and program of the TP/MC 

method 

TP…………………………………….…….Transition probability between two 

categories  

TP/MC…...………… transition-probability Markov chain geostatistical simulation 

method  
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TPC ……………………………………triple-Markov chain geostatistical simulation 

method 

T-PROGS or TPROGS…………...……………………The computer software package 

of TP/MC method in the FORTRAN programming language.  

Q-Q plot …………………………………quantile-quantile plot to compare two 

distributions 

S  ……………………………..…………… the entropy of bed-to-bed transition 

frequencies 

ij ……………………….……embedded transition probability from category i to 

category j 

iL …………………………………………mean length of the category I in a specific 

direction 

ijr …………………………transition rate from category i to category j in a specific 

direction 

)(htij ………………..…… transition probability from category i to category j along a 

separation vector of h in a specific direction 

kp ……………………………………………………………..……proportion of category 

k 
2 ………………………………………………………chi-square (or chi-squared) 

statistic 

)(* h …………………………..…sample (=experimental) variogram of regionalized 

variable along a separation vector of h 

)(h ………………………………model variogram of regionalized variable along a 

separation vector of h 
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