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Not that the story need be long,
but it will take a long while to make it short.

(Henry David Thoreau)

Introduction

Max-stable processes arise as limits of normalized maxima of independent copies of
stochastic processes and they provide a natural framework to model spatial extremal
scenarios. Over the last decade, they have gained an increasing attention in appli-
cations such as hydrology and meteorology – see [7, 8, 69] for some recent examples.
While the theory and inference of max-stable distributions is well-developed in the
univariate case [4, 16, 23, 79], appropriate modelling of the multivariate and spatial
dependence structure is still a difficult question. Although convenient structural re-
sults and dependency descriptors are available in terms of exponent measure, spectral
measure, stable tail dependence function, dependency set or Pickands’ dependence
function in the multivariate case [4, 15, 66, 75, 79] and spectral representations in-
volving Poisson point processes or extremal stochastic integrals in the spatial case
[15, 35, 96], all of these quantities are rather complex. This makes them hard to be
estimated from data, see [19, 21, 22] and the references therein for some approaches
in a multivariate setting, and contrasts in particular Gaussian processes, where the
dependence structure of a finite sample is finite-dimensionally parametrized by its
covariance. Therefore, it is often necessary to consider simpler extremal dependence
measures as well as parametrized subclasses of max-stable laws.
Dating back to [32, 89, 95], simpler summary statistics include the extremal co-

efficients [85, 90] and the (upper) tail dependence coefficients [4, 10, 14, 28, 86],
the latter being a special case of the extremogram [14] and often considered as an
analogue to the correlation function for extreme values. In this thesis, we capture
the full set of extremal coefficients of a max-stable process X = {Xt}t∈T on some
space T in the so-called extremal coefficient function (ECF) θ, and the full set of
upper tail dependence coefficients in what we will call here tail correlation func-
tion (TCF) χ. Other names for the TCF χ include χ-measure [4, 10] or extremal
coefficient function [29] (not to be confused with the ECF above).



2 Introduction

Roughly speaking, the ECF θ assigns to each finite subset A of T the effective
number of independent variables among the collection {Xt}t∈A (with respect to ex-
tremal dependence), whereas the TCF χ assigns to each pair (s, t) ∈ T × T the
probability of observing a large value at the location s conditioned on the event that
a large value has been observed at the location t. Both quantities are intimately
connected and we will benefit from this connection particularly in Chapter 3.

In [85] the set of multivariate ECFs is shown to be in a 1-1 correspondence with
a set of multivariate max-linear distributions and thereby characterized in terms of
a set of inequalities. An alternative proof for these inequalities is given in [66] and
it is noticed therein that they in fact express a property called complete alternation.
In this thesis, these ideas are generalized to a spatial setting in Chapter 2, which
contains a complete characterization of the set of ECFs and the construction of a
corresponding max-stable process. Thus, analogies to Gaussian processes and posi-
tive definite functions are revealed as follows: Among (zero mean) square integrable
processes, the subclass of Gaussian processes takes a unique role, since it is in a 1-1
correspondence with the set of covariance functions, which are precisely the positive
definite functions.

Zero mean, square inte-
grable processes Z on T

Positive definite functions
C on T × T

Covariance C(Z)

Gaussian process Z∗(C)

In case T is a metric space, the Gaussian process Z∗(C) is continuous in the mean
square sense (and then also stochastically continuous) if and only if C is continuous
(on the diagonal) (cf. [81]). Well-known operations on the set of positive definite
functions C, and hence on the corresponding Gaussian processes Z∗(C), include
convex combinations and pointwise limits. Moreover, Bernstein functions play an
important role for the construction of Gaussian processes.

In our case, the role of (zero mean) square-integrable processes is taken by the
simple max-stable processes and the crucial role of Gaussian processes is taken by
a subclass of max-stable processes X∗, which is in fact the spatial generalization of
the multivariate max-linear model of [85]. Alongside, generalizing the multivariate
result [66, Corollary 1] to the spatial setting, we prove a characterization of the set
of ECFs that can be illustrated in analogy to the above sketch.
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Simple max-stable
processes X on T

Negative definite functions θ on F(T )
with θ(∅) = 0 and θ({t}) = 1 for t ∈ T

ECF θ(X)

X∗(θ)

Here, F(T ) denotes the set of finite subsets of T . Further, we derive a spectral rep-
resentation for the corresponding process X∗(θ) and operations on ECFs that allow
to build new ECFs from given ones, including convex combinations and pointwise
limits. Certain “triangle inequalities” for θ from [11, Proposition 4] involving Bern-
stein functions are recovered and generalized. For T being a metric space we discuss
continuity of θ and its corresponding process X∗(θ). The dependency set K∗(θ) of
the process X∗(θ) is identified as intersection of halfspaces that are directly given
by the ECF θ, which leads to sharp inequalities for the finite dimensional distribu-
tions of arbitrary max-stable processes in terms of its ECF θ. Finally, most of these
results can be directly transferred to the more general directional ECF, which is not
bound to diagonal data like the ECF.

Chapters 3 and 4 are concerned with the class of TCFs. A first structural result on
TCFs was given by [20] showing that compactly supported TCFs of stationary dis-
sipative max-stable processes on Z are in fact set correlation functions. Here, Chap-
ter 3 exhibits the set of TCFs as an infinite-dimensional compact convex polytope
and compares it to the set of non-negative correlation functions. It is well-known
that TCFs are non-negative correlation functions, but not all non-negative corre-
lation functions are TCFs. Nonetheless, both classes have desirable properties in
common: (i) TCFs can be completely characterized by finite-dimensional inequal-
ities and (ii) convex combinations, products and pointwise limits are admissable
operations on TCFs (Chapter 3). Moreover, a well-known operator on correlation
functions, the turning bands operator, is also applicable to TCFs (Chapter 4).
Up to the fourvariate case we compute the vertices and bounding hyperplanes

of the polytope of TCFs explicitly. At least theoretically, there is an algorithm
that provides vertices and inequalities of any order. As a byproduct, we may also
formulate an algorithm that solves the inverse problem of finding a multivariate max-
stable distribution realizing a prescribed TCF, even though we expect computations
to be tedious and unfeasible already for low-dimensional cases. First attempts to
tackle this inverse problem can be found in [28, 30].
TCFs can be defined also for processes that are not max-stable. We show that

the set of all TCFs (of not necessarily max-stable processes) coincides with the class
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of TCFs stemming from max-stable processes. This is of particular importance for
applications, as it ensures that the tail correlation of data, which are commonly
assumed to be in the max-domain of attraction of some max-stable law, can be
modelled appropriately by the tail correlation of some max-stable process.

Widely used flexible subclasses of stationary max-stable processes on Rd include
(Mixed) Moving Maxima processes (cf. [70, 90, 91, 92]) parametrized by a (random)
shape function, extremal Gaussian processes [83] parametrized by a correlation func-
tion and Brown-Resnick processes [52] parametrized by a variogram, the last two
classes offering a link to Gaussian processes. In particular, the class of Brown-
Resnick processes seems to be very promising for spatial applications due to its
wide flexiblility while being conveniently parametrized by a bivariate quantity (cf.
[18, 26]).
In Chapter 4 the TCFs of these processes are compared to each other. More pre-

cisely, the TCFs of Brown-Resnick processes with bounded variogram are compared
to the TCFs of extremal Gaussian processes, whereas the TCFs of Brown-Resnick
processes with unbounded variogram are compared to the TCFs stemming from
Mixed Moving Maxima constructions. This case distinction is necessary due to the
different ergodic properties of these processes, which is reflected in the tail behaviour
of the respective TCFs. In the second case we focus on stationary isotropic processes
and consider TCFs that decrease monotonously to zero. In fact, we observe several
systematic coincidences of classes of TCFs, which shows that the TCF cannot dis-
tinguish between the respective processes. With regard to results from Chapter 3 we
also find sharp bounds for the parameters of some well-known parametric families of
correlation functions to be a TCF, including the Whittle-Matérn model. Addition-
ally, we provide counterexamples to some naturally arising questions in this context.

In [52] it is shown that a rich class of Brown-Resnick processes can be represented
as a Mixed Moving Maxima process, which is particularly relevant for simulation
techniques [70, 71]. In this thesis, Chapter 5 deals with Brown-Resnick processes
that are considered as group invariant processes on some space T (instead of sta-
tionary processes on Rd). Two representations of these processes are addressed –
a Mixed Moving Maxima representation that complements a result in [52] and an
extremal log-Gaussian representation on the sphere. The Mixed Moving Maxima
representation is derived when a suitable group action of some compact group is
considered. The difficulty here does not lie in transferring the proof of [52] to the
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new situation, but in establishing a measurability result that might be of indepen-
dent interest. In fact, this measurability problem does not occur in the previous
case, since the question of a unique measurable argmax can be avoided by tak-
ing the (lexicographic) infimum which commutes with the translation action of Rd

on Rd. Finally, the extremal log-Gaussian representation on the sphere will facilitate
simulations of Brown-Resnick processes on the sphere.

Notation and conventions concerning max-stable processes are introduced in Chap-
ter 1, which also revises structural results as well as some important examples of
stationary max-stable processes that will figure throughout the text. While Chap-
ter 1 and this very introduction are partially based on the manuscript [94] that has
been submitted to the Bernoulli Journal and its precursory arXiv-version [93], Chap-
ter 2 is mainly based on the manuscript [94]. Further, the arXiv-manuscript [93] has
partially entered the considerations of Chapter 3. Chapter 4 is based on joint work
with Felix Ballani, where I am responsible for the main contributions.





[...] it is necessary to march along paths opened by previous
workers; acting otherwise, one runs too great a risk of creating
a science without links with the rest of mathematics.

(Henri Lebesgue)

1. Preliminaries

We introduce our basic notions concerning max-stable processes and list the exam-
ples of max-stable processes that will be considered in this text. The material of this
chapter is partially based on the manuscript [94] and its precursory arXiv-version
[93].

1.1. Max-stable processes

A stochastic process X = {Xt}t∈T on an arbitrary index set T is said to be max-
stable if for each n ∈ N and independent copies X(1), . . . , X(n) of X the process of
the maxima {

∨n
i=1X

(i)}t∈T has the same law as {an(t)Xt + bn(t)}t∈T for suitable
norming functions an(t) > 0 and bn(t) ∈ R on T .

Marginal distributions In particular, the univariate marginal distributions of X
are max-stable. It is well-known that up to an affine transformation of the form
x 7→ ax+b with a > 0 and b ∈ R the non-degenerate univariate max-stable distribu-
tions are classified by belonging to one of the following three types (Fisher-Tippett
theorem/Gnedenko’s theorem):

Φα(x) =
{

0 x ≤ 0
exp (−x−α) x > 0

α > 0 (Fréchet)

Ψα(x) =
{

exp (−(−x)α) x < 0
1 x ≥ 0

α > 0 (Weibull)

Λ(x) = exp
(
−e−x

)
(Gumbel)
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(cf. [31, 36]; see also [79, Proposition 0.3] or [16, Theorem 1.1.3] for the one-
parameter representation due to von Mises and Jenkinson). Moreover, these marginal
distributions can be transformed into each other by non-decreasing continuous trans-
formations (cf. [23, p. 123]). Therefore and since we are interested in the dependence
structure of max-stable processes, we shall primarily deal with max-stable processes
X that have standard Fréchet marginals as it is commonly done, i.e. X satisfies

P(Xt ≤ x) =
{

0 x ≤ 0
e−1/x x > 0

for t ∈ T . Here the sequence of normalizing functions will be an(t) = n and bn(t) = 0
(cf. [23, p. 124]). Such standardized max-stable processes X will be called simple
max-stable processes.

Finite-dimensional distributions In order to describe the finite-dimensional distri-
butions (f.d.d.) of a simple max-stable process X on T , we shall fix some convenient
notation: Let M ⊂ T be some non-empty finite subset of T . By RM (resp. [0,∞]M )
we denote the space of real-valued (resp. [0,∞]-valued) functions on M . Elements
of these spaces are denoted by x = (xt)t∈M where xt = x(t). The standard scalar
product is given through 〈x, y〉 =

∑
t∈M xt yt. For a subset L ⊂ M we write 1L

for the indicator function of L in RM (resp. [0,∞]M ), such that {1{t}}t∈M forms
an orthonormal basis of RM . In this sense, the origin of RM equals 1∅ being zero
everywhere on M . Using this notation, we emphasize the fact that a multivariate
distribution of a stochastic process is not any |M |-variate distribution, but it is
bound to certain points (forming the set M) in the space T . Finally, we consider
some reference norm ‖·‖ on RM (not necessarily the one from the scalar product)
and denote the positive unit sphere SM := {a ∈ [0,∞)M : ‖a‖ = 1}.
The f.d.d. of a finite sample {Xt}t∈M of a simple max-stable process X may be

described by means of one of the following three quantities that are all equivalent
to the knowledge of the respective |M |-variate simple max-stable distribution of
{Xt}t∈M :

• the (finite-dimensional) spectral measure HM (cf. [17] or [79, Proposition
5.11.]), i.e. the finite Radon measure on SM such that for x ∈ [0,∞)M \ {1∅}

− logP(Xt ≤ xt, t ∈M) =
∫
SM

( ∨
t∈M

at
xt

)
HM (da), (1.1)

• the stable tail dependence function `M (cf. [4, p. 257]), i.e. the function on
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[0,∞)M defined through

`M (x) := − logP(Xt ≤ 1/xt, t ∈M) =
∫
SM

( ∨
t∈M

at · xt

)
HM (da), (1.2)

• the (finite-dimensional) dependency set KM (cf. [66]), i.e. the largest compact
convex set KM ⊂ [0,∞)M satisfying

`M (x) = sup{〈x, y〉 : y ∈ KM} ∀x ∈ [0,∞)M . (1.3)

In order to be a valid finite-dimensional spectral measure of a simple max-stable
random vector {Xt}t∈M , the only constraint that a finite Radon measure HM on SM
has to satisfy is that

∫
SM

atHM (da) = 1 for all t ∈M . This ensures standard Fréchet
marginals. Moreover, up to this normalization to standard Fréchet marginals, it
follows from [66] that stable tail dependence functions of multivariate simple max-
stable distributions can be characterized as being sublinear, homogeneous and max-
completely alternating, whereas dependency sets are max-zonoids. We address this
matter in more detail in Proposition A.5.1. Equation (1.3) expresses that `M is the
support function of KM (cf. [87]).

Spectral representation Max-stable processes have a close connection to Poisson
point processes. For theoretical background on Poisson point processes we refer to
[13, 54, 79]. In [15] de Haan shows that all (simple) max-stable processes X =
{Xt}t∈T that are either defined on a countable index set T or defined on T = R
and that are stochastically continuous may be represented as follows: There exists a
finite measure ν on the Borel σ-algebra B([0, 1]) of [0, 1] and non-negative measurable
functions {Vt}t∈T on [0, 1] (with

∫ 1
0 Vt(ω)ν(dω) = 1 for each t ∈ T ), such that

{Xt}t∈T
f.d.d.=

{ ∞∨
n=1

UnVt(ωn)
}
t∈T

(1.4)

in the sense of finite-dimensional distributions (f.d.d.), where {(Un, ωn)}∞n=1 denotes
an (enumerated) Poisson point process on R+× [0, 1] with intensity u−2du× ν(dω).
The normalization

∫ 1
0 Vt(ω)ν(dω) = 1 is due to our choice of standard Fréchet

marginals. For arbitrary unit Fréchet marginals with a different scale it is suffi-
cient to require

∫ 1
0 Vt(ω)ν(dω) <∞ instead.

In [92] Stoev and Taqqu introduce the slightly more general notion of an extremal
stochastic integral by means of a random sup-measure Mν with control measure ν,
which allows to involve arbitrary control measure spaces (Ω,A, ν) instead of consid-
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ering ([0, 1],B([0, 1]), ν) as above. Indeed, the r.h.s. of (1.4) may be read as extremal
stochastic integral

{Xt}t∈T
f.d.d.=

{∫ e

Ω
Vt(ω)Mν(dω)

}
t∈T

(1.5)

with Ω = [0, 1] and where Mν denotes a random sup-measure with control measure
ν. We refer to [92] for a detailed explanation and to [96, p. 857] for an exploratory
summary. For our purposes it will suffice to know that the f.d.d. of the process X
from (1.5) are given by

− logP(Xt ≤ xt, t ∈M) =
∫

Ω

( ∨
t∈M

Vt(ω)
xt

)
ν(dω) (1.6)

for x ∈ [0,∞)M \ {1∅} and any non-empty finite subset M ⊂ T .

Definition 1.1.1 (cf. [48, 96]). Let (Ω,A, ν) be a measure space and V = {Vt}t∈T
non-negative measurable functions (with

∫
Ω Vt(ω)ν(dω) = 1 for each t ∈ T ). We

call (Ω,A, ν, V ) a spectral representation of the (simple) max-stable process X =
{Xt}t∈T , if (1.5) holds (or, equivalently, (1.6) holds for all non-empty subsets M ⊂
T ). The functions {Vt}t∈T and the measure ν will be called spectral functions and
spectral measure, respectively. In case (Ω,A, ν) is a probability space, the collection
of spectral functions V = {Vt}t∈T themselves form a stochastic process that will be
addressed as spectral process.

Of course, any stochastic process X with a spectral representation (1.5) is (simple)
max-stable. Conversely, it has been shown in [48, Theorem 1] that all (simple) max-
stable processes allow for a spectral representation on some sufficiently rich measure
space (Ω,A, ν). Moreover, given a (simple) max-stable processX on a separable met-
ric space T , the existence of a spectral representation (Ω,A, ν, V ), where (Ω,A, ν) is
a Lebesgue probability space (and the joint measurability of (t, ω) 7→ Vt(ω) in both
variables t and ω) is guaranteed under mild conditions. This includes processes X
that have a measurable modification and especially stochastically continuous pro-
cessesX (cf. [48, Theorem 2], [96, Proposition 4.1.], [34, chapt. 3 sect. 3 Theorem 1]).
Such max-stable processes X are again representable in the form (1.4) (and not only
(1.5)) with a spectral process V = {Vt}t∈T . It is convenient in this case to interpret
the expression V (ωn) in (1.4) as a sequence V (n) of independent copies of a process
V = {Vt}t∈T on T that are independent of the Poisson point process {Un}∞n=1 on
R+. However, we shall use other choices of (Ω,A, ν) when more appropriate for
interpretations (as in the case of M3 processes, see Example 1.2.1).
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1.2. Examples of max-stable processes

The following processes X = {Xt}t∈Rd on Rd are all max-stable and stationary,
which means that the law of {Xt+h}t∈Rd does not depend on h ∈ Rd. We call a
process X = {Xt}t∈Rd on Rd stationary isotropic if the law of {XAt+h}t∈Rd does not
depend on rigid motions (A, h) ∈ SO(d)nRd. The subsequent examples have either
been proposed already in previous literature or they constitute slight modifications
of them. Here, they are all standardized to standard Fréchet marginals. Note that
the stationarity of a spectral process V is a sufficient, but not a necessary condition
for X being stationary (cf. [52, 67] and Proposition A.3.1).

Example 1.2.1. (Mixed Moving Maxima processes (M3)) Slightly different
notions are used in the literature (cf. [51, 83, 90, 91, 92]). We consider the following
normalized version: A Mixed Moving Maxima process (M3 process) is a simple
max-stable process X on Rd with the following spectral representation (Ω,A, ν, V ):

• (Ω,A, ν) = (F × Rd,F ⊗ B(Rd), µ ⊗ dz), where (Rd,B(Rd),dz) denotes the
Lebesgue measure on the Borel σ-algebra of Rd and where (F,F , µ) denotes
a measure space of [0,∞]-valued measurable functions on Rd, such that the
assignment F× Rd 3 (f, z) 7→ f(z) is measurable and such that∫

F

(∫
Rd
f(z)dz

)
µ(df) = 1, (1.7)

• Vt((f, z)) = f(t− z) for t ∈ Rd.

It can be easily checked that the process X is stationary. In case the measure µ
is a point mass (and f with ‖f‖L1 = 1 is deterministic), the process X is called a
Moving Maxima process. If the measure µ is a probability measure, with (1.4) in
mind the M3 process X is sometimes interpreted as a process of random storms f of
a certain severity U centered around z. As in [27, 70] we will address the involved
functions f ∈ F as (random) shape functions.

Example 1.2.2. (Extremal Gaussian processes and extremal binary Gaus-
sian processes (EG and EBG)) Here we relate to [83, Theorem 2]. Let
Z = {Zt}t∈Rd be a stationary Gaussian process whose marginals follow a standard
normal distribution. The correlation function of Z will be denoted by ρ(t) and is
simply ρ(t) = E(ZtZo) due to the standard normal marginals. Based on Z, we call
the process X defined through the spectral process

Vt =
√

2π · (Zt)+ t ∈ Rd
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extremal Gaussian process (EG process) (where z+ = max(z, 0)). Secondly, we call
the process X with spectral process

Vt = 2 · 1{Zt>0} t ∈ Rd

extremal binary Gaussian process (EBG process). Again it is easy to check that EG
processes and EBG processes are stationary and simple max-stable. An advantage
of such processes is that they can be simulated directly from Gaussian processes,
using only a correlation function as parameter. Of course, in both cases the law of
X depends on the correlation function ρ only.

Example 1.2.3. (Brown-Resnick processes (BR)) In [52] Brown-Resnick
processes η = {η(t)}t∈Rd are introduced with standard Gumbel marginals. Here,
we shall primarily consider Xt = exp(η(t)), which amounts to standard Fréchet
marginals instead: Let {Wt}t∈Rd be a Gaussian process with stationary increments
(meaning that the law of {Wt+h−Wh}t∈Rd does not depend on h ∈ Rd) and variance
σ2(t) = Var(Wt). Then we call the process X defined through the spectral process

Vt = exp
(
Wt −

σ2(t)
2

)
t ∈ Rd

Brown-Resnick process (BR process). The law of X is stationary, simple max-stable
and depends on the variogram γ(t) = E(Wt −Wo)2 only. It is neither obvious that
X will be stationary nor that the law of X depends only on the variogram. We
refer to [52, Theorem 2] (rephrased in Theorem A.3.2) for both statements. These
processes are particularly attractive for modelling as they occur as natural limits for
maxima of Gaussian processes ([52, Theorem 20]) and allow for a wide flexibility in
their dependence structure using only the variogram as parameter.

Remark 1.2.4. The processes above exhibit different behaviour towards long-range
dependence. While M3 processes are shown to be mixing (on R [91]; or generated
by a dissipative flow [51]), EG and EBG processes feature long-range dependence
(generated by a positive recurrent flow, cf. [51, p. 419]). Brown-Resnick processes
entail both behaviours depending on the variogram. If the variogram tends to ∞
fast enough, Brown-Resnick processes may even be representable as an M3 process
(cf. [52, Theorem 14]). See also [97] for ergodic properties of max-stable processes
defined on Rd.

Additionally, we shall consider a special subclass of M3 processes based on indi-
cator functions of Poisson polytopes, which is a mixed and slightly modified version
of a max-stable process introduced in [55] and, secondly, a “variance-mixed” version
of Brown-Resnick processes:
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Example 1.2.5. (Mixed Poisson storm processes (MPS)) Here, we consider
a mixed version of the Poisson storm process introduced in [55]. Before we define
the process, let us make some preliminary considerations (with terminology from
stochastic geometry based on [88]).
We denote κd := νd(Bd

1(o)) = πd/2/Γ(1 + d/2) the volume of the d-dimensional
unit ball. If C is the typical cell of a stationary isotropic Poisson hyperplane mosaic
of intensity 1 (cf. [88, pp. 497 and p. 126] for the intensity) and β > 0, then 1/β ·C
is distributed like the typical cell corresponding to the intensity β and has expected
volume

E
(
νd

( 1
β
· C
))

= ddκd−1
d

κdd−1
· 1
βd

=: 1
µd(β) (1.8)

(cf. [88, (10.4) and (10.4.6)]). Note that our notion of intensity β is based on [88, p.
126] and corresponds to the choice λ = βκd−1/(dκd) with λ as in [55, p. 420].
Now, let β ∈ (0,∞) be a random variable distributed according to a distribution

function F on (0,∞) (with F (0+) = 0). Let C be the typical cell of a stationary
isotropic Poisson hyperplane mosaic of intensity 1 that is independent of β and set

f(t) := µd(β)1 1
β
·C(t) t ∈ Rd, (1.9)

where 1 1
β
C denotes the indicator function of 1

β C. Conditioning on β, one sees
that, indeed, f satisfies (1.7) and thus, defines an M3 process with standard Fréchet
marginals, which is stationary isotropic. We call this process Mixed Poisson storm
process with intensity mixing distribution F . We shall see that the considered char-
acteristics of these processes admit nice expressions in view of a geometric interpre-
tation.

Example 1.2.6. (Variance-mixed Brown-Resnick processes (VBR)) Fi-
nally, let us consider a mixture of Brown-Resnick processes with respect to the
variance of the involved Gaussian process. As in the construction of Brown-Resnick
processes let {Wt}t∈Rd be a Gaussian process with stationary increments and vari-
ance σ2(t). Additionally, let S be an independent random variable on (0,∞) with
distribution function G (with G(0+) = 0). Then we call the process X with spectral
process

Vt = exp
(
SWt −

S2

2 σ2(t)
)

t ∈ Rd

variance-mixed Brown-Resnick process with variance mixing distribution G.
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The law of X is stationary, simple max-stable and depends on the variogram γ(t) =
E(Wt −Wo)2 and the distribution function G only (cf. Corollary A.3.3). A similar
construction can be found in [25], where the Brown-Resnick process is mixed in its
scale instead. This yields in fact the same class of processes in the most prominent
example when Wt is a fractal Brownian motion and thus, self-similar.



Our minds are finite, and yet even in these circumstances of
finitude we are surrounded by possibilities that are infinite,
and the purpose of life is to grasp as much as we can out of
that infinitude.

(Alfred North Whitehead)

2. Max-stable processes parametrized by
their extremal coefficients

This chapter is primarily based on the manuscript [94] and its precursory arXiv-
version [93].

2.1. Extremal coefficient functions

Given a simple max-stable process X = {Xt}t∈T on an arbitrary index set T , we
may assign to each non-empty finite subset A ⊂ T the extremal coefficient θ(A) (cf.
[85, 90]), that is

θ(A) := lim
x→∞

logP (
∨
t∈AXt ≤ x)

logP(Xt ≤ x) =
∫
SM

(∨
t∈A

at

)
HM (da) = `M (1A) , (2.1)

for A ⊂ M , where HM and `M denote the (finite-dimensional) spectral measure
(1.1) and the stable tail dependence function (1.2), respectively.
Indeed, the expression logP(

∨
t∈AXt ≤ x)/ logP(Xt ≤ x) does not depend on x

and equals the r.h.s. Observe that θ(A) takes values in the interval [1, |A|], where
the value 1 corresponds to full dependence of the random variables {Xt}t∈A and
the value |A| (number of elements in A) corresponds to independence. Roughly
speaking, the extremal coefficient θ(A) detects the effective number of independent
variables among the random variables {Xt}t∈A. It is coherent to set θ(∅) := 0 to
obtain a function θ on F(T ), the set of finite subsets of T . We call the function

θ : F(T )→ [0,∞)

extremal coefficient function (ECF) of the process X.
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The set of all ECFs of simple max-stable processes on a set T will be denoted by

Θ(T ) :=
{
θ : F(T )→ [0,∞) :

θ is an ECF of a simple
max-stable process on T.

}
. (2.2)

Example 2.1.1. The simplest ECFs are the functions θ(A) = |A| corresponding to
a process of independent random variables, and the indicator function θ(A) = 1A 6=∅

corresponding to a process of identical random variables.

Rather sophisticated examples of ECFs can be obtained using the spectral repre-
sentations (Ω,A, ν, V ) of processes X (cf. (1.6)). In these terms the ECF θ of X is
given by

θ(A) =
∫

Ω

(∨
t∈A

Vt(ω)
)
ν(dω) (2.3)

for A ∈ F(T ) \ {∅} and θ(∅) = 0.

Example 2.1.2 (Mixed Moving Maxima processes (M3)). Because of (2.3) the
ECF θ of an M3 process X as in Example 1.2.1 can be computed as

θ(A) =
∫
F

∫
Rd

(∨
t∈A

f(t− z)
)
dz µ(df)

for A ∈ F(Rd)\{∅} and θ(∅) = 0. In case µ is a point mass at an indicator function f ,
the bivariate coefficient θ({s, t}) will be given by θ({s, t}) = 2− f ∗ f̌(s− t), where
f ∗ f̌ means the convolution of f with f̌ and f̌(t) = f(−t).

Example 2.1.3 (Brown-Resnick processes). Because of (2.3) the ECF θ of a Brown-
Resnick process X as in Example 1.2.3 is

θ(A) = EW exp
(∨
t∈A

Wt − σ2(t)/2
)

for A ∈ F(Rd)\{∅} and θ(∅) = 0. Since the f.d.d. ofX only depend on the variogram
γ, the extremal coefficient θ(A) will also depend only on the values {γ(s− t)}s,t∈A.
In particular, we have θ({s, t}) = 1 + erf(

√
γ(s− t)/8) for the bivariate coefficient

θ({s, t}), where erf(x) = 2/
√
π
∫ x
0 e
−t2dt denotes the error function (cf. [52, Remark

25]). In case the variogram equals γ(z) = λ‖z‖22 for some λ > 0, explicit formulas
for multivariate coefficients of higher orders up to d+ 1 can be found in [33].
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Example 2.1.4 (Mixed Poisson storm process). In this example it can be seen ex-
plicitly, how θ depends on the geometry of A. We consider the Mixed Poisson storm
process X with intensity mixing distribution F as in Example 1.2.5. Conditioning
on the intensity β, we see that θ(A) =

∫
θβ(A)dF (β). Following [55, Proposition 4]

we compute in our parametrization (with K = A ⊂ Rd, µ = µd(β), ωd = κd and
λ = βκd−1/(dκd)) that θβ(A) =

∑
∅6=L⊂A(−1)|L|−1χβ(L) with

χβ(L) = EC

[
µd(β) ·

∫
Rd

∏
t∈L

1 1
β
·C(z − t)dz

]
=

EC
[
νd
(⋂

t∈L

(
C
β + t

))]
EC

[
νd
(
C
β

)]
= PC

[⋂
t∈L

(
C

β
+ t

)
6= ∅

]
= exp (−β · b (conv(L))) ,

where b(conv(L)) denotes the mean width of the convex hull of L (cf. [88, p. 601
(14.7)]). Summarizing, we obtain

θ(A) =
∑
∅6=L⊂A

(−1)|L|−1L(F ) (b(conv(L))) (2.4)

for the ECF of the Mixed Poisson storm process with mixing distribution F . Here
L(F )(x) =

∫
(0,∞) exp(−xt)dF (t) denotes the Laplace transform of F , which is eval-

uated at the mean width b(conv(L)) of the convex hull of L.

2.2. A consistent max-linear model

A multivariate simple max-stable distribution is called max-linear (or spectrally
discrete) if it arises as the distribution of a random vector X of the following form

Xi =
q∨
j=1

aijZj i = 1, . . . , p,

where Z = {Zj}qj=1 is a vector of i.i.d. unit Fréchet random variables and where
{aij}p×q is a matrix of non-negative entries with

∑q
j=1 aij = 1 for each row i =

1, . . . , p. This is equivalent to requiring the spectral measure HM from (1.1) for
M = {1, . . . , i, . . . , p} to be the following discrete measure on SM

HM =
q∑
j=1
‖aj‖ δaj/‖aj‖,
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where aj denote the column vectors of the matrix {aij}p×q. Conversely, any discrete
spectral measure of a simple max-stable random vector gives rise to such a matrix.
Surely, the ECF of such a random vector X = {Xi}i∈M is

θ(A) =
q∑
j=1

∨
i∈A

aij (2.5)

for ∅ 6= A ⊂M and θ(∅) = 0 (cf. (2.1)).

In [85] Schlather and Tawn introduce a max-linear model for X∗ = {X∗i }i∈M
where the column index j ranges over all non-empty subsets L of M and where
non-negative coefficients τL are given for each column ∅ 6= L ⊂M , more precisely

X∗i =
∨

∅6=L⊂M
ai,LZL i ∈M with ai,L = τL1i∈L,

which is equivalent to

X∗i =
∨

i∈L⊂M
τLZL i ∈M. (2.6)

The model (2.6) is simple if and only if
∑
∅6=L⊂M aiL =

∑
L⊂M : i∈L τL = 1 for each

i ∈M . It follows from (2.5) that the ECF of model (2.6) is

θ(A) =
∑

L⊂M :A∩L6=∅
τL

for ∅ 6= A ⊂ M and θ(∅) = 0. Now, the interesting aspect of this model (2.6)
with given coefficients τL is that such models are in 1-1 correspondence with ECFs
θ on the finite set M (cf. [85, Theorem 3 and 4]). Alongside, this leads to a set of
inequalities which fully characterizes the set of ECFs Θ(M) for finite sets M (cf.
[85, Corollary 5]). In [66, Corollary 1] Molchanov offers an alternative proof for
these inequalities and notices that they are equivalent to a property called complete
alternation (see below).

As we seek a spatial generalization of these results, let us consider a max-stable
process X∗ = {X∗t }t∈T on an arbitrary index set T , whose f.d.d. for a finite set
M are precisely of the above form (2.6), where the coefficients τL now additionally
depend on M . That means we set the spectral measure H∗M of the random vector
{X∗t }t∈M

H∗M :=
∑

∅6=L⊂M
τML ‖1L‖ δ1L/‖1L‖, (2.7)
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Figure 2.1.: Spectral measure representation of {X∗t }t∈M forM = {1, 2, 3} if we choose the
reference norm on RM to be the maximum norm ‖·‖∞. In this case the spectral measure sim-
plifies to a sum of weighted point masses on the vertices of a cube: H∗M =

∑
∅6=L⊂M τML δ1L

.

such that the f.d.d. of the process X∗ are given by (cf. (1.1))

− logP(X∗t ≤ xt, t ∈M) =
∑

∅6=L⊂M
τML

∨
t∈L

1
xt
. (2.8)

Here M ranges over all non-empty finite subsets of T , which we express as M ∈
F(T ) \ {∅}. Figure 2.1 illustrates this spectral measure for a trivariate distribution
where M = {1, 2, 3} in case the reference norm is the maximum norm.

Lemma 2.2.1. Let T be an arbitrary set and let coefficients τML be given for M ∈
F(T ) \ {∅} and L ∈ F(M) \ {∅}, such that

(i) τML ≥ 0 for all M ∈ F(T ) \ {∅} and L ∈ F(M) \ {∅},

(ii) τML = τ
M∪{t}
L + τ

M∪{t}
L∪{t} for all M ∈ F(T ) \ {∅} and L ∈ F(M) \ {∅} and

t ∈ T \M ,

(iii) τ{t}{t} = 1 for all t ∈ T .

Then the spectral measures {H∗M}M∈F(T )\{∅} from (2.7) define a simple max-stable
process X∗ = {X∗t }t∈T on T with f.d.d. as in (2.8).

Proof. Condition (i) ensures that each spectral measure H∗M defines a max-stable
distribution with Fréchet marginals. Subsequently, condition (ii) ensures consistency
of these distributions (i.e. the conditions for Kolmogorov’s extension theorem are
satisfied). Hence the spectral measures H∗M define a max-stable process X∗ on T .
Finally, condition (iii) ensures that the process X∗ has unit Fréchet marginals.
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Remark 2.2.2. Note that condition (ii) is equivalent to

τAK =
∑

J⊂M\A
τMK∪J ∀M ∈ F(T ) \ {∅}, ∅ 6= K ⊂ A ⊂M. (2.9)

2.3. Negative definiteness of ECFs

For the following characterization of the set of ECFs Θ(T ) we use the fact that
F(T ), the set of finite subsets of T , forms an abelian semigroup with respect to
the union operation ∪ and with neutral element the empty set ∅. The semigroup
(F(T ),∪, ∅) is idempotent (meaning A∪A = A for A ∈ F(T )), partially ordered by
inclusion of sets and generated by the singletons {{t}}t∈T . Section A.1 summarizes
several facts from harmonic analysis for such semigroups based on [5] and [65]. The
following notation is adopted from there. For a function f : F(T )→ R and elements
K,L ∈ F(T ) we set

(∆Kf) (L) := f(L)− f(L ∪K).

Note that the operators ∆K1 and ∆K2 commute with each other and that ∆K∆K =
∆K (since F(T ) is idempotent).

Definition 2.3.1 (negative definiteness, complete alternation).
A function ψ : F(T ) → R is called negative definite (in the semigroup sense) on
F(T ) if for all n ≥ 2, {K1, . . . ,Kn} ⊂ F(T ) and {a1, . . . , an} ⊂ R with

∑n
j=1 aj = 0

n∑
j=1

n∑
k=1

ajakψ(Kj ∪Kk) ≤ 0.

A function ψ : F(T ) → R is called completely alternating on F(T ) if for all n ≥ 1,
{K1, . . . ,Kn} ⊂ F(T ) and K ∈ F(T )

(∆K1∆K2 . . .∆Knψ) (K) =
∑

I⊂{1,...,n}
(−1)|I| ψ

(
K ∪

⋃
i∈I

Ki

)
≤ 0. (2.10)

Because the semigroup (F(T ),∪, ∅) is idempotent, these two terms coincide. That
means ψ : F(T ) → R is completely alternating if and only if ψ is negative definite
(in the semigroup sense), cf. [5, 4.4.16] or (A.2). In fact, the condition (2.10) can
be slightly weakened.
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Lemma 2.3.2. A function ψ : F(T )→ R is negative definite (completely alternat-
ing) on F(T ) if and only if for all ∅ 6= L ∈ F(T ) and K ∈ F(T ) with K ∩ L = ∅

∑
I⊂L

(−1)|I|+1ψ (K ∪ I) ≥ 0. (2.11)

Proof. Because the semigroup F(T ) is generated by the singletons {t} for t ∈ T ,
it suffices already to require (2.10) only for Ki = {ti} for ti ∈ T (i = 1, . . . , n), cf.
[5, 4.6.6.] or Lemma A.1.7. Since ∆{t}∆{t} = ∆{t} it suffices to choose pairwise
different ti (i = 1, . . . , n). Hence ψ is completely alternating on F(T ) if and only
if for all ∅ 6= L ∈ F(T ) and K ∈ F(T ) the inequality (2.11) holds. Finally, the
expression on the l.h.s. of (2.11) equals automatically 0 if K ∩ L 6= ∅.

For finite sets M (instead of arbitrary T ), negative definiteness (complete alter-
nation) can be formulated by bounding the value ψ(M) by lower order values ψ(L)
for L ⊂M . The following lemma shows the connection to [85, (12)].

Lemma 2.3.3. Let M be a non-empty finite set. Then ψ : F(M) → R is negative
definite (completely alternating) on F(M) if and only if

∑
I⊂L

(−1)|I|+1ψ ((M \ L) ∪ I) ≥ 0 ∀ ∅ 6= L ⊂M, (2.12)

which is equivalent to

∨
L⊂M
|L| odd

∑
I⊂L
I 6=L

(−1)|I|ψ ((M \ L) ∪ I) ≤ ψ(M) ≤
∧

∅6=L⊂M
|L| even

∑
I⊂L
I 6=L

(−1)|I|+1ψ ((M \ L) ∪ I) .

(2.13)

Proof. Because of

∑
I⊂L

(−1)|I|+1ψ(K ∪ I) =
∑

J⊂M\(K∪L)

( ∑
I⊂L∪J

(−1)|I|+1ψ((M \ (L ∪ J)) ∪ I)
)

for K,L ⊂ M with K ∩ L = ∅ (cf. Lemma A.5.3), it suffices to check (2.11) for
K = M \ L. Summarizing the cases where |L| is odd and where |L| is even yields
the second equivalence.

Example 2.3.4 ([65], p. 52). Let Y = {Yt}t∈T be a stochastic process with values
in {0, 1} and let the function C : F(T )→ R be given by C(∅) = 0 and

C(A) = P(∃ t ∈ A such that Yt = 1) = P
(∨
t∈A

Yt = 1
)
.
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Then C is negative definite (completely alternating) on F(T ). The function C is
called the capacity functional of Y . Conversely, if C : F(T ) → [0, 1] is completely
alternating with C(∅) = 0, then C determines the f.d.d. of a stochastic process
Y = {Yt}t∈T with values in {0, 1}, whose capacity functional equals C.

Now, we can characterize the set Θ(T ) of possible ECFs on F(T ) and define a
corresponding max-linear process X∗ as follows.

Theorem 2.3.5. a) The function θ : F(T )→ R is the ECF of a simple max-stable
process on T if and only if the following conditions are satisfied:

(i) θ is negative definite (completely alternating) on F(T ),

(ii) θ(∅) = 0,

(iii) θ({t}) = 1 for all t ∈ T .

b) If these conditions are satisfied, the following choice of coefficients

τML := −∆{t1} . . .∆{tl}θ(M \ L) =
∑
I⊂L

(−1)|I|+1θ((M \ L) ∪ I)

∀M ∈ F(T ) \ {∅}, ∅ 6= L = {t1, . . . , tl} ⊂M

for model (2.7) defines a simple max-stable process X∗ on T which realizes θ as
its own ECF θ∗.

Proof. If θ is an ECF of a simple max-stable process X on T , then necessarily
θ(∅) = 0 and θ({t}) = 1 for all t ∈ T (cf. (2.1)). Further, it is an application of
l’Hôpitals rule (apply Lemma A.5.4 to the choice p(x) := P(Xt ≤ x) and α = θ(A))
that for A ⊂ F(T ) \ {∅}

θ(A) = lim
x→∞

− logP (
∨
t∈AXt ≤ x)

− logP(Xt ≤ x) = lim
x→∞

1− P (
∨
t∈AXt ≤ x)

1− P (Xt ≤ x)

= lim
x→∞

P (∃ t ∈ A such that Xt ≥ x)
P (Xt ≥ x) = lim

x→∞
C(x)(A)
p(x) , (2.14)

where C(x) denotes the capacity functional for the binary process Yt = 1Xt≥x and
p(x) = EYt = 1 − e−1/x. Since negative definiteness respects scaling and point-
wise limits, negative definiteness of θ follows from Example 2.3.4. This shows the
necessity of (i),(ii),(iii).
Conversely, let θ : F(T ) → R be a function satisfying conditions (i),(ii),(iii) and

let the coefficients τML be given as above. We need to check that they fulfill the
(in)equalities from Lemma 2.2.1. Indeed we have:
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• The inequalities τML = −∆{t1} . . .∆{tl}θ(M \ L) ≥ 0 follow directly from the
complete alternation of θ.

• From the definition of ∆{t} we observe

τ
M∪{t}
L∪{t} = −∆{t}∆{t1} . . .∆{tl}θ

(
(M ∪ {t}) \ (L ∪ {t})

)
= −∆{t1} . . .∆{tl}θ

(
M \ L

)
+ ∆{t1} . . .∆{tl}θ

(
M ∪ {t} \ L

)
= τML − τ

M∪{t}
L .

• For t ∈ T we have τ{t}{t} = θ({t}) = 1 because of (iii).

Thus, the coefficients τML define a simple max-stable process X∗ on T as given by
model (2.7). Finally, we compute the ECF θ∗ of X∗ and see that it coincides with θ:
For the empty set we have θ∗(∅) = 0 = θ(∅) because of (ii); otherwise we compute
for A ⊂ F(T ) \ {∅} that

θ∗(A) (2.1),(2.7)=
∑
∅6=L⊂A

τAL =
∑
∅6=L⊂A

∑
I⊂L

(−1)|I|+1θ((A \ L) ∪ I)

=
∑
∅6=L⊂A

∑
∅6=K⊂A
A\L⊂K

(−1)|K∩L|+1θ(K) =
∑

∅6=K⊂A
θ(K)

∑
∅6=L⊂A
A\L⊂K

(−1)|K∩L|+1

=
∑

∅6=K⊂A
θ(K) (− (−1K=A)) = θ(A).

This shows sufficiency of (i),(ii),(iii) and part b).

Theorem 2.3.5 is in complete analogy to the following standard result for Gaussian
processes (as illustrated in the sketches in the introduction):

a) A function C : T × T → R is a covariance function if and only if it is positive
definite.

b) If C : T × T → R is positive definite, we may choose a (zero mean) Gaussian
process which realizes C as its own covariance function.

Both statements are intrinsically tied together. When proving them by means of
Kolmogorov’s extension theorem, one proceeds in the same manner as we did for
Theorem 2.3.5. The necessity of positive definiteness of covariance functions is easily
derived even for the bigger class of square-integrable processes, whilst sufficiency can
be established by showing that Gaussian processes can realize any positive definite
function as covariance function.
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Remark 2.3.6. In order to incorporate stationarity w.r.t. some group G acting (e.g.
from the left) on T (for example Rd acting on Rd by translation), we just have to
add the following condition (iv) θ(gA) = θ(A) for all A ∈ F(T ) \ {∅} and for all
g ∈ G. Then the process X∗ will be stationary w.r.t. this group action.

Remark 2.3.7. Instead of requiring the max-stable processes in Theorem 2.3.5 to have
standard Fréchet marginals everywhere, we can admit a different scale at different
locations, i.e. P(Xt ≤ x) = exp(−st/x) for a positive scaling parameter st for t ∈ T .
In this case Theorem 2.3.5 holds true without condition (iii) and the word “simple”.
To make sense of the ECF as in (2.1) in this case, either use a reference point t ∈ T
or set logP(Xt ≤ x) = −1/x in the denominator. Beware of that the ECF θ cannot
be interpreted as the number of independent variables anymore in this case.

Remark 2.3.8. In [85] the last issue of the proof is derived for finite sets T by a
Moebius inversion. The relation to the proof therein becomes more transparent
if we compute θ∗(A) for A ⊂ M from the coefficients

{
τML

}
∅6=L⊂M

for arbitrary
M ⊃ A instead of M = A:

θ∗(A) (2.1),(2.7)=
∑

∅6=K⊂A
τAK

(2.9)=
∑

∅6=K⊂A

∑
J⊂M\A

τMK∪J =
∑

L⊂M :L∩A 6=∅
τML . (2.15)

2.4. Consequences of negative definiteness

Here, we collect some immediate consequences of the above Theorem 2.3.5. There-
fore, note that the first part of Theorem 2.3.5 can also be expressed as (cf. (2.2))

Θ(T ) =
{
θ : F(T )→ R :

θ is negative definite (completely alternating)
on F(T ), θ(∅) = 0, θ({t}) = 1 for t ∈ T.

}
.

(2.16)

2.4.1. Convexity and compactness

Corollary 2.4.1. The set of ECFs Θ(T ) is convex.

Proof. This can be seen readily from (2.16) since all involved properties are com-
patible with convex combinations. As a constructive argument use the fact that the
ECF of the max-combination αX ∨ (1−α)Y of two independent simple max-stable
processes X and Y on T is the convex combination of their ECFs for α ∈ (0, 1).

Corollary 2.4.2. The set of ECFs Θ(T ) is compact w.r.t. the topology of pointwise
convergence.
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Proof. The topology of pointwise convergence on RF(T ) is the product topology.
Since θ(∅) = 0 and θ(A) ∈ [1, |A|] for θ ∈ Θ(T ) and A ∈ F(T ) \ {∅}, the set Θ(T ) is
a subset of the product space

Θ(T ) ⊂ {0} ×
∏

A∈F(T )\{∅}
[1, |A|],

which is compact by Tychonoff’s theorem. Moreover, since elements of Θ(T ) are
completely characterized by finite-dimensional equalities and inequalities involving
≤ only (stemming from (2.16)), the set Θ(T ) is closed. Hence Θ(T ) is compact.

Remark 2.4.3. Note that even though we say “the topology of pointwise conver-
gence”, the “points” meant here are indeed elements of F(T ), i.e. finite subsets of
T . In particular it follows from the compactness of Θ(T ) that Θ(T ) is sequentially
closed. That means if (θn)n∈N is a sequence of ECFs such that θn(A) converges to
some value f(A) for each A ∈ F(T ), then f is an ECF.

2.4.2. Spectral representations

Another consequence of Theorem 2.3.5 is that ECFs allow for an integral representa-
tion as a mixture of functions A 7→ 1A∩Q 6=∅, where Q is from the power set of T . To
be more precise, let us denote the power set of T by P(T ) and consider the topology
on P(T ) that is generated by the maps Q 7→ 1A∩Q 6=∅ for A ∈ F(T ) or equivalently
(since F(T ) is generated by the singletons {{t}}t∈T ) the topology on P(T ) that is
generated by the maps Q 7→ 1t∈Q for t ∈ T . Identifying P(T ) with {0, 1}T , this
space is also known as Cantor cube. As in [5, Definition 2.1.1.] a measure µ on the
Borel σ-algebra of P(T ) w.r.t. this topology will be called Radon measure if µ is
finite on compact sets and µ is inner regular.

Corollary 2.4.4. Let θ ∈ Θ(T ) be an ECF. Then θ uniquely determines a positive
Radon measure µ on P(T ) \ {∅} such that

θ(A) = µ({Q ∈ P(T ) \ {∅} : A ∩Q 6= ∅}) =
∫
P(T )\{∅}

1A∩Q 6=∅ µ(dQ),

where θ({t}) = 1 for t ∈ T . Moreover, the function θ is bounded if and only if
µ(P(T ) \ {∅}) <∞.
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Proof. Since θ is negative definite (Theorem 2.3.5) and F(T ) is idempotent, we may
apply Theorem A.1.10, which says that θ uniquely determines a positive Radon
measure µ̃ on F̂(T ) \ {1}, where F̂(T ) denotes the dual semigroup of F(T ) (cf.
Definition A.1.4), such that θ(A) = µ̃({ρ ∈ F̂(T ) \ {1} | ρ(A) = 0}). The function θ
is bounded if and only if µ̃(F̂(T ) \ {1}) <∞.
Now, it can be easily seen (using ρ(A) =

∏
t∈A ρ({t}) =

∧
t∈A ρ({t})) that semichar-

acters on F(T ) are in a 1-1 correspondence with subsets of T via

F̂(T ) 1-1←−−→ P(T )

ρ 7−→ {t ∈ T : ρ({t}) = 0}

1(·)∩Q=∅

7−→Q

Here the constant function 1 corresponds to the empty set. Moreover, the topology
considered on F̂(T ) is the topology of pointwise convergence. Transported to P(T )
this is the topology generated by the maps Q 7→ 1A∩Q 6=∅ for A ∈ F(T ). Let µ denote
the Radon measure µ̃ transported to P(T ) \ {∅}. Then the corollary follows.

Remark 2.4.5. In case T = M is finite, we have that P(M) = F(M) carries the
discrete topology and

θ(A) = µ({Q ∈ F(M) \ {∅} : A ∩Q 6= ∅}) =
∑

Q∈F(M)\{∅}
µ({Q})1A∩Q 6=∅.

A comparison with (2.15) reveals that µ({Q}) = τMQ . In this sense, the coefficients
τMQ of the max-linear model (2.7) can be interpreted as finite-dimensional “Fourier
coefficients” of the negative definite function θ. Moreover, denoting F (M) the set of
sub-semigroups of F(M) that are hereditary on the left (see before Theorem A.1.10),
we have the following (topological) isomorphisms of idempotent abelian (discrete)
semigroups

(F̂(M), ·, 1) ∼= (F (M),∩,F(M)) ∼= (F(M),∩,M) ∼= (F(M),∪, ∅),

where the respective maps are given by ρ 7→ ρ−1({1}), I 7→
⋃
A∈I A, C 7→ Cc (for-

ward) and Q 7→ Qc, C 7→ F(C), I 7→ 1I (backward). In particular the semigroup
(F(M),∪, ∅) is isomorphic to its dual semigroup (F̂(M), ·, 1) in this case.

The integral representation of the ECF θ also yields a spectral representation
(Ω,A, ν, V ) for the corresponding process X∗ (cf. Definition (1.1.1)).
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Theorem 2.4.6. Let X∗ = {X∗t }t∈T be the simple max-stable process from Theorem
2.3.5 b) with ECF θ. Then X∗ has the following spectral representation (Ω,A, ν, V ):

• (Ω,A, ν) is the measure space (P(T ),B(P(T )), µ) from Corollary 2.4.4,

• Vt(Q) = 1t∈Q.

Proof. We need to check that the f.d.d. of X∗ satisfy (1.6). The f.d.d. of X∗ are
given by (2.8)

− logP(X∗t ≤ xt, t ∈M) =
∑

∅6=L⊂M
τML

∨
t∈L

1
xt
,

where the coefficients τML can be computed from the ECF θ as in Theorem 2.3.5 b)
and θ satisfies the integral representation from Corollary 2.4.4, i.e.

τML =
∑
I⊂L

(−1)|I|+1θ((M \ L) ∪ I) =
∑
I⊂L

(−1)|I|+1
∫
P(T )\{∅}

1((M\L)∪I)∩Q 6=∅ µ(dQ).

Using the identity

∑
I⊂L

(−1)|I|+1
1((M\L)∪I)∩Q6=∅

=
∑
I⊂L

(−1)|I|+1
(
1(M\L)∩Q 6=∅ + 1I∩Q 6=∅ − 1(M\L)∩Q 6=∅1I∩Q6=∅

)
= 0 · 1(M\L)∩Q6=∅ +

(
1− 1(M\L)∩Q 6=∅

)∑
I⊂L

(−1)|I|+1
1I∩Q 6=∅

= 1(M\L)∩Q=∅1L⊂Q = 1L=M∩Q,

we obtain that

τML =
∫
P(T )\{∅}

1L=M∩Q µ(dQ).

It follows that the f.d.d. of X∗ satisfy

− logP(X∗t ≤ xt, t ∈M) =
∫
P(T )\{∅}

∑
∅6=L⊂M

1L=M∩Q
∨
t∈L

1
xt

µ(dQ)

=
∫
P(T )\{∅}

∨
t∈M

1t∈Q
xt

µ(dQ) =
∫

Ω

( ∨
t∈M

Vt(ω)
xt

)
ν(dω)

as desired. This finishes the proof.
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2.4.3. Triangle inequalities and the operation of Bernstein functions

In [11, Proposition 4] it is shown that an ECF θ on F(T ) satisfies the following
bivariate inequalities for r, s, t ∈ T :

θ({s, t}) ≤ θ({s, r})θ({r, t}),

θ({s, t})α ≤ θ({s, r})α + θ({r, t})α − 1, 0 < α ≤ 1,

θ({s, t})α ≥ θ({s, r})α + θ({r, t})α − 1, α ≤ 0.

These inequalities have in common, that they are in fact triangle inequalities of the
form

g ◦ η({s, t}) ≤ g ◦ η({s, r}) + g ◦ η({r, t}),

if we rewrite them in terms of η := θ − 1 and

g(x) = log(1 + x),

g(x) = (1 + x)α − 1, 0 < α ≤ 1,

g(x) = 1− (1 + x)α, α ≤ 0.

These functions g have in common that they are in fact Bernstein functions.

Theorem/Definition 2.4.7 (Bernstein function).
A function g : [0,∞)→ [0,∞) is called a Bernstein function if one of the following
equivalent conditions is satisfied (cf. [5, 4.4.3 and p. 141]):

(i) The function g is of the form

g(r) = c+ br +
∫ ∞

0

(
1− e−λr

)
ν(dλ),

where c, b ≥ 0 and ν is a positive Radon measure on (0,∞) with
∫∞

0
λ

1+λν(dλ) <
∞ (or equivalently

∫∞
0 min(λ, 1)ν(dλ) <∞).

(ii) The function g is continuous and g ∈ C∞((0,∞)) with g ≥ 0 and (−1)ng(n+1) ≥
0 for all n ≥ 0. (Here, g(n) denotes the n-th derivative of g.)

(iii) The function g is continuous, g ≥ 0 and g is negative definite as a function on
the semigroup ([0,∞),+, 0) (cf. Definition A.1.1).

(iv) The function ϕ◦g is completely monotone on [0,∞) for all completely monotone
functions ϕ, where “completely monotone” is to be understood in the sense of
Definition A.2.3.
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For a comprehensive treatise on Bernstein functions including a table of examples
see [82]. Bernstein functions play already an important role in the construction of
advanced Gaussian processes by generating novel covariance functions from given
ones, cf. [102] and [78]. Here we see that they are equally useful for generating new
ECFs from given ECFs and correspondingly new max-stable processes from given
ones.

Corollary 2.4.8. Let T be a set and θ ∈ Θ(T ) an ECF. Let g be a Bernstein
function which is not constant. Then the function on F(T )

A 7→ g(θ(A))− g(0)
g(1)− g(0)

is again an ECF in Θ(T ).

Proof. The result is immediate from Theorem 2.3.5, since Bernstein functions oper-
ate on negative definite kernels (cf. [5, 3.2.9 and 4.4.3]).

For instance, if θ is an ECF, then also log(1 + θ)/ log(2) or ((θ + a)q − aq)/((1 +
a)q − aq) are ECFs for 0 < q < 1 and a ≥ 0. Finally, the result of [11, Proposition
4] can be generalized to the following extent as a corollary to Theorem 2.3.5.

Corollary 2.4.9. Let θ ∈ Θ(T ) be an ECF. Set η := θ− 1 and let g be a Bernstein
function. Then we have for A,B,C ∈ F(T ) \ {∅} that

g ◦ η(A ∪B) ≤ g ◦ η(C) + g ◦ η(A ∪B) ≤ g ◦ η(A ∪ C) + g ◦ η(C ∪B).

Proof. Since θ is an ECF, it is negative definite (cf. Theorem 2.3.5). Subtracting 1
does not change this property. Notice further that θ takes values in {0} ∪ [1,∞),
where the value 0 is only attained for the empty set ∅ (the neutral element of F(T )).
Thus, η = θ−1 : F(T )\{∅} → R is negative definite and takes values only in [0,∞).
Applying a Bernstein function g does not change this property (cf. [5, 3.2.9. and
4.4.3.]). By [5, 8.2.7.], this also means that f := g ◦η : F(T )\{∅} → R is completely
alternating on F(T ) \ {∅}. Since we have also f ≥ 0 on F(T ) \ {∅}, we may derive
for A,B,C ∈ F(T ) \ {∅}

f(C) + f(A ∪B)− f(A ∪ C)− f(C ∪B)

= (f(C)− f(A ∪ C)− f(C ∪B) + f(A ∪B ∪ C)) + (f(A ∪B)− f(A ∪B ∪ C))

= ∆A∆Bf(C) + ∆Cf(A ∪B) ≤ 0

as desired. This finishes the proof.
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2.5. Continuity

In this section we require T to be a metric space. We need to define the notion of
continuity that we will use in connection with ECFs θ : F(T ) → [0,∞). Therefore
let f : F(T )→ R be a function on the finite subsets of T . Then f induces a familiy
of functions {f (m)}m≥0 where f (m) : Tm → R is given by

f (m)(t1, . . . , tm) = f({t1, . . . , tm}).

Definition 2.5.1. Let f : F(T )→ R be a function on the finite subsets of a metric
space T . We say that f is continuous if all induced functions f (m) : Tm → R are
continuous for all m ≥ 0, where Tm is endowed with the product topology.

Lemma 2.5.2. Let X = {Xt}t∈T be a simple max-stable process with ECF θ. Then
the following implication holds:

X is stochastically continuous. =⇒ θ is continuous.

Proof. Stochastic continuity of X means that for any ε > 0, for any t ∈ T and
sequence t(n) → t we have P(|Xt(n) − Xt| > ε) → 0. From this, we can easily
derive that for any ε > 0, any m ∈ N, any (t1, . . . , tm) ∈ Tm and a sequence
(t(n)

1 , . . . , t
(n)
m ) → (t1, . . . , tm), also P(‖(X

t
(n)
i

−Xti)mi=1‖ > ε) → 0 for any reference
norm ‖·‖ on Rm. The latter implies the corresponding convergence in distribution:
F(t(n)

1 ,...,t
(n)
m ) → F(t1,...,tm). Since logF(t1,...,tm) : [0,∞)m → R is monotone and homo-

geneous, we have that for x > 0 the point (x, . . . , x) ∈ (0,∞)m is a continuity point
of F(t1,...,tm) (cf. [79, p. 277]). Thus, the induced function θ(m) on Tm is continuous,
since θ(m)(t1, . . . , tm) = −x logF(t1,...,tm)(x, . . . , x). Hence θ is continuous.

Secondly, we prove the following upper bound that shows that stochastic conti-
nuity of the process X∗ is indeed controlled by the bivariate extremal coefficients:

Lemma 2.5.3. Let X∗ = {X∗t }t∈T be the simple max-stable process from Theorem
2.3.5 b) with ECF θ. Set η := θ − 1. Then we have for any ε > 0

P(|X∗s −X∗t | > ε) ≤ 2
(

1− exp
(
−η({s, t})

ε

))
≤ 2
ε
η({s, t}).
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Proof. Let ε > 0. We will prove the statement for 2ε instead of ε. Therefore,
consider the following disjoint events on a corresponding probability space (Ω,A,P)
for k = 0, 1, 2, . . .

Ak :=
{
ω ∈ Ω : (X∗s (ω), X∗t (ω)) ∈ (kε, (k + 2)ε]2 \ ((k + 1)ε, (k + 2)ε]2

}
.

The disjoint union
⋃∞
k=0Ak is a subset of {ω ∈ Ω : |X∗s (ω)−X∗t (ω)| ≤ 2ε} and so

P(|X∗s −X∗t | ≤ 2ε) ≥ P
( ∞⋃
k=0

Ak

)
=
∞∑
k=0

P(Ak) = lim
n→∞

n∑
k=0

P(Ak).

From (2.8) and Theorem 2.3.5 we see that the bivariate distribution of the process
X∗ is given by

− logP(X∗s ≤ x,X∗t ≤ y) = η({s, t})
x ∨ y

+ 1
x ∧ y

. (2.17)

For further calculations we abbreviate for p, q ∈ N ∪ {0}

B(p, q) := P(X∗s ≤ p · ε,X∗t ≤ q · ε).

Note that B(p, q) = B(q, p) and B(p, 0) = 0. With this notation we rearrange

n∑
k=0

P(Ak) = −B(n+ 1, n+ 1) + 2
n∑
k=0

[B(k + 2, k + 1)−B(k + 2, k)] .

For the second summand we have (cf. (2.17))

n∑
k=0

[B(k + 2, k + 1)−B(k + 2, k)]

(2.17)=
n∑
k=0

[
exp

(
−1
ε

[
η({s, t})
k + 2 + 1

k + 1

])
− exp

(
−1
ε

[
η({s, t})
k + 2 + 1

k

])]

=
n∑
k=0

exp
(
−1
ε

[
η({s, t})
k + 2

]) [
exp

(
− 1

(k + 1)ε

)
− exp

(
− 1
kε

)]

≥
n∑
k=0

exp
(
−η({s, t})

2ε

)[
exp

(
− 1

(k + 1)ε

)
− exp

(
− 1
kε

)]

= exp
(
−η({s, t})

2ε

)
exp

(
− 1

(n+ 1)ε

)
.
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Finally,

P(|X∗s −X∗t | > 2ε) = 1− P(|X∗s −X∗t | ≤ 2ε) ≤ 1− lim
n→∞

n∑
k=0

P(Ak)

= 1 + lim
n→∞

B(n+ 1, n+ 1)− 2 lim
n→∞

n∑
k=0

[B(k + 2, k + 1)−B(k + 2, k)]

≤ 1 + lim
n→∞

exp
(
−η({s, t}) + 1

(n+ 1)ε

)
− 2 lim

n→∞

(
exp

(
−η({s, t})

2ε

)
exp

(
− 1

(n+ 1)ε

))
= 2− 2 exp

(
−η({s, t})

2ε

)
≤ 2

2εη({s, t}).

This finishes the proof.

Theorem 2.5.4. Let X∗ = {X∗t }t∈T be the simple max-stable process from Theorem
2.3.5 b) with ECF θ. Then the following statements are equivalent:

(i) X∗ is stochastically continuous.

(ii) θ is continuous.

(iii) The bivariate map (s, t) 7→ θ({s, t}) is continuous.

(iv) The bivariate map (s, t) 7→ θ({s, t}) is continuous on the diagonal.

Proof. The implication (i) ⇒ (ii) follows from Lemma 2.5.2. Clearly, continuity
of θ implies continuity of the induced function θ(2)(s, t) := θ({s, t}), which implies
continuity of θ(2) on the diagonal. This shows the implications (ii) ⇒ (iii) and
(iii) ⇒ (iv). Finally, the implication (iv) ⇒ (i) follows from Lemma 2.5.3, since
η({t, t}) = θ({t})− 1 = 0.

2.6. Dependency sets

In this section we show that the max-stable processX∗ is exceptional among all max-
stable processes sharing the same ECF θ as X∗ in the sense that its dependency set
K∗ (to be introduced below) is maximal w.r.t. inclusion.
Therefore, recall that for a finite non-empty subset M ⊂ T the dependency set
KM of {Xt}t∈M is the largest compact convex set KM ⊂ [0,∞)M satisfying (cf.
(1.3))

`M (x) = sup{〈x, y〉 : y ∈ KM} ∀x ∈ [0,∞)M .
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The closed convex set KM may also be described as the following intersection of half
spaces (cf. [87, Section 1.7.]):

KM =
⋂

x∈SM

{y ∈ [0,∞)M : 〈x, y〉 ≤ `M (x)}. (2.18)

Example 2.6.1 ([66], Example 1 and Proposition 2). The simplest examples for
dependency sets KM are the unit cube [0, 1]M corresponding to a collection of inde-
pendent random variables {Xt}t∈M and the cross-polytope DM := {x ∈ [0,∞)M :∑
t∈M xt ≤ 1} corresponding to identical random variables {Xt}t∈M . Any depen-

dency set KM of a simple max-stable distribution satisfies

DM ⊂ KM ⊂ [0, 1]M .

Example 2.6.2 (Brown-Resnick process, Hüsler-Reiss distribution). The f.d.d. of
a Brown-Resnick process (cf. Example 2.1.3) are the multivariate Hüsler-Reiss dis-
tributions (cf. [44]). In the bivariate case, when M = {1, 2} consists of two points
only, the distribution function of a Hüsler-Reiss distributed random vector (X1, X2),
standardized to unit Fréchet marginals, is

− logPγ(X1 ≤ x1, X2 ≤ x2) = 1
x1

Φ
(√

γ

2 + log (x2/x1)
√
γ

)
+ 1
x2

Φ
(√

γ

2 + log (x1/x2)
√
γ

)

for x1, x2 ≥ 0. Here Φ denotes the distribution function of the standard normal
distribution and the parameter γ is the value of the variogram between the two
points (cf. Example 2.1.3). Figure 2.2 illustrates, how the corresponding dependency
sets range between full dependence (γ = 0) and independence (γ =∞).

In order to define a single dependency set for a simple max-stable process com-
prising all multivariate dependency sets, we write

prM : [0,∞)T → [0,∞)M (xt)t∈T 7→ (xt)t∈M

for the natural projection.

Definition 2.6.3. Let X be a simple max-stable process X = {Xt}t∈T and denote
for finite M ∈ F(T ) \ {∅} the multivariate dependency set of the random vectors
{Xt}t∈M by KM . Then we define the dependency set K ⊂ [0,∞)T of X as

K :=
⋂

M∈F(T )\{∅}
pr−1
M (KM ) .
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Figure 2.2.: Nested dependency sets K(γ)
M of the bivariate Brown-Resnick (resp. Hüsler-

Reiss) distribution where M = {1, 2} (cf. Example 2.6.2). The dependency sets grow as
the parameter γ increases. They range between full dependence (γ = 0) and independence
(γ =∞).

Analogously to (1.3), the dependency set K may be characterized as follows.

Lemma 2.6.4. The dependency set K of a simple max-stable process X = {Xt}t∈T
is the largest compact convex set K ⊂ [0,∞)T satisfying

`M (x) = sup
{∑
t∈M

xtyt : y ∈ K
}

∀x ∈ [0,∞)M ∀ ∅ 6= M ∈ F(T ), (2.19)

where `M is the stable tail dependence function of {Xt}t∈M .

Proof. Convexity of K follows from the convexity of each KM and from the linearity
of the projections prM for M ∈ F(T ) \ {∅}. Since K{t} = [0, 1] is the unit interval
for each t ∈ T , the set K is contained in the compact space [0, 1]T . Moreover, K is
closed as the intersection of closed sets, hence K is compact.

Next, we prove that KM = prM (K). By definition of K it is clear that prM (K) ⊂
KM for M ∈ F(T ) \ {∅}. To prove the reverse inclusion, let yM be an element of
KM and set V (yM ) := pr−1

M ({yM})∩K = pr−1
M ({yM})∩K∩ [0, 1]T . We need to show

that V (yM ) 6= ∅. Denoting V (yM , A) := pr−1
M ({yM}) ∩ pr−1

A (KA) ∩ [0, 1]T , we see
that

V (yM ) =
⋂

A∈F(T )\{∅}
V (yM , A).

Note that each V (yM , A) is a closed subset of the compact Hausdorff space [0, 1]T .
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Therefore, it suffices to verify the finite intersection property for the system of sets

{V (yM , A)}A∈F(T )\{∅}

in order to show V (yM ) 6= ∅ (cf. e.g. [3, Theorem 2.31]). But this follows from the
consistency of the finite-dimensional dependency sets {KA}A∈F(T )\{∅} as follows: As
[66, Section 7 (Projection)] essentially says, we have that if A and B are non-empty
finite subsets of T with A ⊂ B, then KA is the projection of KB onto the respective
coordinate space. In particular pr−1

B (KB) ⊂ pr−1
A (KA) and pr−1

A ({yA})∩pr−1
B (KB)∩

[0, 1]T 6= ∅ for yA ∈ KA. Now, let A1, . . . , Ak be non-empty finite subsets of T . Then

∅ 6= pr−1
M ({yM}) ∩ pr−1

M∪
⋃k

i=1 Ai

(
K
M∪
⋃k

i=1 Ai

)
∩ [0, 1]T

⊂ pr−1
M ({yM}) ∩

k⋂
i=1

pr−1
Ai

(KAi) ∩ [0, 1]T =
k⋂
i=1

V (yM , Ai),

as desired and we have shown that KM ⊂ prM (K). Both inclusions give KM =
prM (K).
By definition, we have `M (x) = sup {〈x, y〉 : y ∈ KM} for x ∈ [0,∞)M . Thus,

(2.19) follows from KM = prM (K).
Finally, let L ⊂ [0,∞)T be also convex compact and satisfying (2.19) with K

replaced by L. Then it follows immediately that prM (L) = KM for any non-empty
finite subset M ⊂ T . We conclude that L ⊂ K by definition of K. This finishes the
proof.

In particular, the ECF θ of a simple max-stable process X = {Xt}t∈T can be
expressed in terms of the dependency set K of X as

θ(A) = sup
{∑
t∈A

xt : x ∈ K
}
. (2.20)

In order to make statements about the dependency sets K of processes X = {Xt}t∈T
in terms of the ECF θ, we introduce the following notation: For any non-empty finite
subsets A of T we set the halfspace

HA(θ) :=
{
x ∈ [0,∞)T :

∑
t∈A

xt ≤ θ(A)
}

that is bounded by the hyperplane

EA(θ) :=
{
x ∈ [0,∞)T :

∑
t∈A

xt = θ(A)
}
.
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Lemma 2.6.5. Let K be the dependency set of a simple max-stable process X =
{Xt}t∈T with ECF θ. Then the following inclusion holds

K ⊂
⋂

A∈F(T )\{∅}
HA(θ).

On the other hand for each A ∈ F(T ) \ {∅} there is at least one point xA in the
intersection

xA ∈ K ∩ EA(θ).

Proof. Let A ∈ F(T ) \ {∅} and x ∈ K. Then the assumption
∑
t∈A xt > θ(A)

contradicts θ(A) = sup{
∑
t∈A xt : x ∈ K} > θ(A) (cf. (2.20)). So

∑
t∈A xt ≤ θ(A).

This proves the inclusion. Secondly, since K is compact and the map [0,∞)T 3 x→∑
t∈A xt is continuous, we know that it attains its supremum at some xA ∈ K.

Example 2.6.6. We give a simple multivariate example for Lemma 2.6.5 (illustrated
in Figure 2.3 in the trivariate case): The Euclidean norm `M (x) = ‖x‖2 is a stable
tail dependence function on [0,∞)M (cf. [66, Example 2]) and defines a simple max-
stable distribution (cf. (1.2)) with ECF θ(A) =

√
|A| for A ⊂M , such that

HA(θ) =
{
x ∈ [0,∞)M : 〈x,1A〉 ≤

√
|A|
}

EA(θ) =
{
x ∈ [0,∞)M : 〈x,1A〉 =

√
|A|
}

for ∅ 6= A ⊂M . It can be easily seen that for x ∈ [0,∞)M \ {1∅}

`M (x) = ‖x‖2 = 〈x, x/‖x‖2〉 = sup{〈x, y〉 : y ∈ B+},

where B+ := {y ∈ [0,∞)M : ‖y‖2 ≤ 1} denotes the positive part of the (Euclidean)
unit ball. So, the dependency set K is clearly B+ in this case. Now, the planes
EA(θ) are tangent to the boundary of B+ with common points xA = 1A/

√
|A| for

∅ 6= A ⊂M , which makes it easy to see that Lemma 2.6.5 holds true in this example.

The following theorem shows that the inclusion from Lemma 2.6.5 is sharp and
attained by the process from Theorem 2.3.5 b). Figure 2.4 illustrates a trivariate
dependency set of this process.
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Figure 2.3.: The positive part of the Euclidean unit ball is the dependency set K of the
simple max-stable distribution with stable tail dependence function the Euclidean norm
`(x) = ‖x‖2 as illustrated here in the trivariate case. Indeed, K is contained in the inter-
section of halfspaces given by

∑
i∈A xi ≤

√
|A| = θ(A). For each non-empty A ⊂ {1, 2, 3}

we have precisely one point xA = 1A/
√
|A| in the intersection K∩EA(θ) (cf. Example 2.6.6

and Lemma 2.6.5).

Theorem 2.6.7. Let K∗ be the dependency set of the simple max-stable process
X∗ = {X∗t }t∈T from Theorem 2.3.5 b) with ECF θ. Then

K∗ =
⋂

A∈F(T )\{∅}
HA(θ).

Proof. First, we prove the theorem in the case, when T = M is finite and K∗ = K∗M :
Therefore, write

LM :=
⋂

∅6=A⊂M
HA(θ) = {x ∈ [0,∞)M : 〈x,1A〉 ≤ θ(A) for all ∅ 6= A ⊂M}.

The inclusion K∗M ⊂ LM is proven in Lemma 2.6.5. So, it remains to show the other
inclusion LM ⊂ K∗M . Due to (2.18) we have that

K∗M =
⋂

x∈SM

{y ∈ [0,∞)M : 〈x, y〉 ≤ `∗M (x)},

where

`∗M (x) =
∑

∅6=L⊂M
τML

∨
t∈L

xt

is the stable tail dependence function of {X∗t }t∈M , here expressed in terms of the
coefficients τML from Theorem 2.3.5 b) (cf. (2.8)).
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Thus, it suffices to show the following implication in order to prove LM ⊂ K∗M :

x ∈ SM and y ∈ LM =⇒ 〈x, y〉 ≤ `∗M (x).

We now prove this implication: Without loss of generality, we may label the elements
of M = {t1, . . . , tm} such that xt1 ≥ xt2 ≥ · · · ≥ xtm . Then we may write x =
(xt)t∈M ∈ SM ⊂ [0,∞)M as

x = xtm︸︷︷︸
≥0

1M + (xtm−1 − xtm)︸ ︷︷ ︸
≥0

1M\{tm} + · · ·+ (xt2 − xt3)︸ ︷︷ ︸
≥0

1{t1,t2} + (xt1 − xt2)︸ ︷︷ ︸
≥0

1{t1}.

Taking the scalar product with y ∈ LM , we conclude

〈x, y〉 ≤ xtmθ(M) + (xtm−1 − xtm)θ(M \ {tm}) + . . .

· · ·+ (xt2 − xt3)θ({t1, t2}) + (xt1 − xt2)θ({t1})

= xtm(θ(M)− θ(M \ {tm})) + · · ·+ xt2(θ({t1, t2})− θ({t1})) + xt1θ({t1}).
(2.21)

On the other hand the stable tail dependence function `∗M is by this ordering of the
components of x given as

`∗M (x) =
∑

∅6=L⊂M
τML

∨
t∈L

xt =
m∑
i=1

xti

 ∑
L⊂M : t1,...,ti−1 /∈L,ti∈L

τML

 .
From (2.15) we see that this expression coincides with the r.h.s. of (2.21). Thus, we
have our desired inequality 〈x, y〉 ≤ `∗M (x). This finishes the proof in the case, when
T = M is finite.
Otherwise, the definition of the dependency set K∗ and the result for finite M

give

K∗ =
⋂

M∈F(T )\{∅}
pr−1
M (K∗M ) =

⋂
M∈F(T )\{∅}

⋂
∅6=A⊂M

pr−1
M

(
HMA (θ)

)
,

where

HMA (θ) =
{
x ∈ [0,∞)M :

∑
t∈A

xt ≤ θ(A)
}
.

Since pr−1
M

(
HMA (θ)

)
= HA(θ) for ∅ 6= A ⊂M , the claim follows.



2.6. Dependency sets 39

x3

x2

x1

x1 = θ1

x2
=
θ2

x3 = θ3

x1 + x3 = θ13

x1 + x2

= θ12

x2
+
x3

=
θ23

x1 + x2 + x3

= θ123

x3

x2

x1

τ1
1

τ2
2

τ3
3

τ12
1

τ13
1

τ13
3

τ23
3

τ12
2

τ23
2

τ123
1

τ123
1

τ123
2
τ123

2

τ123
3

τ123
3

Figure 2.4.: Dependency set K∗ of the random vector {X∗t }t∈M for M = {1, 2, 3}. The
dependency set K∗ is bounded by the hyperplanes EA(θ) that are given by the equations∑
t∈A xt = θ(A), where θ denotes the ECF of X∗. The coefficients τL{t} for L ∈ F(M) \ {∅}

and t ∈ L turn up as lengths of the resulting polytope K∗ (cf. Theorem 2.3.5 b) and Theorem
2.6.7).

So, if we fix the ECF θ of a simple max-stable process on T , then the process from
Theorem 2.3.5 b) yields a maximal dependency set K∗ w.r.t. inclusion, that is

K∗ =
⋃

K dependency set
with the same ECF as K∗

K. (2.22)

Now, inclusion of dependency sets corresponds to stochastic ordering in the following
sense (cf. [66, p. 242]): If K′ and K′′ denote the dependency sets of the simple max-
stable processes X ′ and X ′′ respectively, then K′ ⊂ K′′ implies

P(X ′t ≤ xt, t ∈M) ≥ P(X ′′t ≤ xt, t ∈M) ∀x ∈ [0,∞)M

for all M ∈ F(T ) \ {∅}. This leads to the following sharp inequality:

Corollary 2.6.8. Let X = {Xt}t∈T be a simple max-stable process with ECF θ. Let
M be a non-empty finite subset of T . Then

P(Xt ≤ xt, t ∈M) ≥ exp

− ∑
∅6=L⊂M

τML
∨
t∈L

1
xt

 ∀x ∈ [0,∞)M , (2.23)

where the coefficients τML depend only on θ and can be computed as in Theorem 2.3.5 b).
Equality holds for the process X∗ from Theorem 2.3.5 b).
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Example 2.6.9. Let us abbreviate ηA := θ(A) − 1. In the bivariate case the
inequality (2.23) reads as

P(Xs ≤ xs, Xt ≤ xt) ≥ exp
(
−
[

ηst
xs ∨ xt

+ 1
xs ∧ xt

])
= exp

(
− ηst + 1
xs ∧ xt

)
exp

(
ηst

∣∣∣∣ 1
xs
− 1
xt

∣∣∣∣) .
Indeed this inequality is much better then the trivial inequality

P(Xs ≤ xs, Xt ≤ xt) ≥ P(Xs ≤ xs ∧ xt, Xt ≤ xs ∧ xt),

which can be written in the above terms as

P(Xs ≤ xs, Xt ≤ xt) ≥ exp
(
− ηst + 1
xs ∧ xt

)
.

Further note that ηst = θ({s, t})− 1 can be interpreted as a normalized madogram:

ηst
(2.14)= lim

x→∞
P(Xs ≥ x or Xt ≥ x)

P(Xt ≥ x) − 1 = lim
x→∞

E|1Xs≥x − 1Xt≥x|
2E1Xt≥x

.

If we additionally take into account that (cf. [85, (13)])

ηrs ∨ ηst ∨ ηrt ∨ (ηrs + ηst + ηrt − 1) ≤ ηrst ≤ (ηrs + ηst) ∧ (ηst + ηrt) ∧ (ηrt + ηrs),

we obtain from (2.23) the following (sharp) inequality for the trivariate distribution
of a simple max-stable random vector (Xr, Xs, Xt) from bivariate extremal coeffi-
cients:

P(Xr ≤ xr, Xs ≤ xs, Xt ≤ xt)

≥ exp
(
−
[1− ηrs ∨ ηst ∨ ηrt

xr ∧ xs ∧ xt
+ (arst ∧ 1)

( 1
xr ∧ xs

+ 1
xs ∧ xt

+ 1
xr ∧ xt

)
−
(

ηrs
xr ∧ xs

+ ηst
xs ∧ xt

+ ηrt
xr ∧ xt

)
+ arst

( 1
xr

+ 1
xs

+ 1
xt

)
−
(
ηst
xr

+ ηrt
xs

+ ηrs
xt

)])
,

where arst := (ηrs + ηst) ∧ (ηrs + ηrt) ∧ (ηst + ηrt).

Remark 2.6.10. It is an open problem and it would be interesting to know whether
there exist also minimal dependency sets in the sense of (2.22) and if they would
help to better understand the classification of all dependency structures. In view of
Lemma 2.6.5 and Theorem 2.6.7 a very naive idea would be to take one point from
each of the sets K∗∩EA where A ∈ F(T )\{∅} and then to take the convex hull with
0 included. However this fails to be a dependency set in dimensions |T | ≥ 3, since
it is not even a zonoid, which would be necessary (cf. [66]).
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2.7. Directional ECFs

By definition the ECF of a simple max-stable process X on T is bound to data on
the diagonals in [0,∞)A for finite subsets A ⊂ T . Inspired by [74], we now involve
an additional direction u that may vary in (0,∞)T into the previous setup. We
shall see that most results for standard ECFs as considered before (where u = 1T )
immediately transfer to directional ECFs as introduced below.
By slight abuse of notation we simply write `M (u) instead of `M (prM (u)) for

u ∈ [0,∞)T omitting the projection onto [0,∞)M which is already clear from the
subindex of the stable tail dependence function `M . Secondly, we abbreviate uA :=
u · 1A where 1A denotes the indicator function of a set A ⊂ T and the product is
meant componentwise. With this notation in mind we define the directional extremal
coefficient function (directional ECF) θ(u) of a simple max-stable process X on T

for u ∈ (0,∞) as follows:

θ(u) : F(T ) −→ [0,∞)

θ(u)(A) :=
{ ∫

SM
(
∨
t∈A utat)HM (da) = `M (uA) ∅ 6= A ⊂M

0 A = ∅
, (2.24)

where HM and `M are again the spectral measure and the stable tail dependence
function of {Xt}t∈M , respectively.
Since `M is homogeneous (of degree 1), the directional ECF θ(u) is also homoge-

neous in the variable u. Apriori it is clear that

∨
t∈A

ut ≤ θ(u)(A) ≤
∑
t∈A

ut (2.25)

if A 6= ∅. The set of all directional ECFs w.r.t. u ∈ (0,∞)T will be denoted by

Θ(u)(T ) :=
{
θ(u) : F(T )→ [0,∞) :

θ(u) is a directional ECF w.r.t. u
of a simple max-stable process on T.

}
.

(2.26)

Following the steps taken for standard ECFs (cf. (2.7)), we consider the following
ansatz for a collection of spectral measures

{
H

(u)
M

}
∅6=M∈F(T )

H
(u)
M :=

∑
∅6=L⊂M

τML (u)‖(1/u)L‖ δ(1/u)L/‖(1/u)L‖. (2.27)

The vector (1/u)L ∈ [0,∞)M is meant in the sense of (1/u)L(t) = 1/u for t ∈ L and
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(1/u)L(t) = 0 for t ∈M \ L. If this collection is consistent, these spectral measures
form the max-linear f.d.d. of a max-stable process X(u) that are given by

− logP(X(u)
t ≤ xt, t ∈M) =

∑
∅6=L⊂M

τML (u)
∨
t∈L

1
utxt

. (2.28)

In matrix notation, i.e. X(u)
t =

∨
∅6=L⊂M aMt,L(u)ZL for t ∈M with standard Fréchet

variables ZL and a matrix {aMt,L(u)}t,L where t ranges through M and L through all
non-empty subsets of M , this distribution corresponds to the columns

aML (u) = τML (u)(1/u)L. (2.29)

Indeed, Lemma 2.2.1 generalizes as follows, where the proof transfers verbatim to
the new situation.

Lemma 2.7.1. Let T be an arbitrary set and u ∈ (0,∞)T . Let coefficients τML (u)
be given for M ∈ F(T ) \ {∅} and L ∈ F(M) \ {∅}, such that

(i) τML (u) ≥ 0 for all M ∈ F(T ) \ {∅} and L ∈ F(M) \ {∅},

(ii) τML (u) = τ
M∪{t}
L (u) + τ

M∪{t}
L∪{t} (u) for all M ∈ F(T ) \ {∅} and L ∈ F(M) \ {∅}

and t ∈ T \M ,

(iii) τ{t}{t} (u) = ut for all t ∈ T .

Then the spectral measures
{
H

(u)
M

}
M∈F(T )\{∅}

from (2.27) define a simple max-stable

process X(u) =
{
X

(u)
t

}
t∈T

on T with f.d.d. as in (2.28).

Correspondingly, we may characterize the set Θ(u)(T ) of directional ECFs and
define for each directional ECF a realizing max-linear process X(u) as in Theorem
2.7.3. This time, we give an alternative proof for the negative definiteness (com-
plete alternation) of directional ECFs as an immediate consequence of the following
Proposition 2.7.2. We say that a function on [0,∞)M is max-completely alternat-
ing, if it is completely alternating on the semigroup ([0,∞)M ,∨,1∅) (cf. Definition
A.1.6). Recall that if u ∈ [0,∞)M and A ⊂ M , we denote uA := u · 1A, where the
product is meant componentwise.

Proposition 2.7.2. Let M be a non-empty finite set and ` : [0,∞)M → R. For
u, x ∈ [0,∞)M define θ(u, x) : F(M) → R by θ(u, x)(A) := `(x + uA). Then `

is max-completely alternating if and only if θ(u, x) is negative definite (completely
alternating) on F(M) for all u, x ∈ [0,∞)M .
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Proof. Let ` be max-completely alternating. We need to establish (2.12) for ψ =
θ(u, x). Indeed we have for ∅ 6= L = {t1, t2, . . . , tl} ⊂M that

∑
I⊂L

(−1)|I|θ(u, x) ((M \ L) ∪ I) =
∑
I⊂L

(−1)|I|`
(
x+ u(M\L)∪I

)
=
∑
I⊂L

(−1)|I|`
(
(x+ uM\L) ∨ (x+ u)I

)
≤ 0

due to Lemma A.5.2 for y = x+ uM\L and v = x+ u.
Reversely, let θ(u, x) be completely alternating on F(T ) for all u, x ∈ [0,∞). We

need to establish (A.5) for v, y ∈ RM with v ≥ y and ∅ 6= L ⊂M . Indeed, we have

∑
I⊂L

(−1)|I|` (y ∨ vI) =
∑
I⊂L

(−1)|I|` (y + (v − y)I)

=
∑
I⊂L

(−1)|I|θ((v − y)I , y) ((M \ L) ∪ I) ≤ 0,

since θ((v − y)I , y) is completely alternating on F(T ).

Theorem 2.7.3. a) The function θ(u) : F(T ) → R is the directional ECF of a
simple max-stable process on T w.r.t. u ∈ (0,∞)T if and only if the following
conditions are satisfied:

(i) θ(u) is negative definite (completely alternating) on F(T ),

(ii) θ(u)(∅) = 0,

(iii) θ(u)({t}) = ut for all t ∈ T .

b) If these conditions are satisfied, the following choice of coefficients

τML (u) := −∆{t1} . . .∆{tl}θ
(u)(M \ L) =

∑
I⊂L

(−1)|I|+1θ(u)((M \ L) ∪ I)

∀M ∈ F(T ) \ {∅}, ∅ 6= L = {t1, . . . , tl} ⊂M

for model (2.27) defines a simple max-stable process X(u) on T which realizes
θ(u) as its own ECF.

Proof. The necessity of (ii) and (iii) is again immediate. In order to establish neg-
ative definiteness of θ(u) note that this property is given by finite-dimensional in-
equalities such that it suffices to consider the case where T = M is finite. But then
it follows directly from the previous Proposition 2.7.2 when applied to the stable
tail dependence function `M in the role of ` and considering θ(u) = θ(u,1∅) (cf.
Proposition A.5.1 for the max-complete alternation of `M ).
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Sufficiency of (i),(ii),(iii) by the construction of a realizing process X(u) can be
achieved as before in the proof of Theorem 2.3.5 if θ is replaced by θ(u) and τML by
τML (u) when Lemma 2.7.1 is applied.

2.7.1. Consequences of negative definiteness

We collect some immediate consequences from Theorem 2.7.3, now for directional
ECFs analogously to Section 2.4. First, note that the set of all directional ECFs
w.r.t. u ∈ (0,∞)T (cf. (2.26)) coincides with the set of standard ECFs in case we
admit a different (fixed) scale at each location (cf. Remark 2.3.7)

Θ(u)(T ) =
{
θ : F(T )→ R :

θ is negative definite (completely alternating)
on F(T ), θ(∅) = 0, θ({t}) = ut for t ∈ T.

}
.

(2.30)

Corollary 2.7.4. The set of directional ECFs Θ(u)(T ) is convex and compact w.r.t.
the topology of pointwise convergence.

Proof. Convexity is readily seen from (2.30), whereas compactness can be derived
as in Corollary 2.4.2 if we consider the bound (2.25) instead of θ(A) ∈ [1, |A|].

The operation of Bernstein functions from Corollary 2.4.8 transfers immediately
as follows.

Corollary 2.7.5. Let T be a set and g be a Bernstein function which is not constant
and satisfies g(0) = 0. Then

θ(u) ∈ Θ(u)(T ) =⇒ g ◦ θ(u) ∈ Θ(g◦u)(T ).

An integral representation for directional ECFs θ(u) on the Cantor cube and a
spectral representation of the corresponding process X(u) may be formulated in
analogy to Corollary 2.4.4 and Theorem 2.4.6.

Corollary 2.7.6. Let θ(u) ∈ Θ(u)(T ) be a directional ECF w.r.t. u ∈ (0,∞)T . Then
θ(u) uniquely determines a positive Radon measure µ(u) on P(T ) \ {∅} such that

θ(u)(A) = µ(u)({Q ∈ P(T ) \ {∅} : A ∩Q 6= ∅}) =
∫
P(T )\{∅}

1A∩Q 6=∅ µ
(u)(dQ),

where θ(u)({t}) = ut for t ∈ T . Moreover, the function θ(u) is bounded if and only if
µ(u)(P(T ) \ {∅}) <∞.
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Theorem 2.7.7. Let X(u) =
{
X

(u)
t

}
t∈T

be the simple max-stable process from The-
orem 2.7.3 b) with directional ECF θ(u). Then X(u) has the following spectral rep-
resentation (Ω,A, ν, V ):

• (Ω,A, ν) is the measure space (P(T ),B(P(T )), µ(u)) from Corollary 2.7.6,

• Vt(Q) = 1
ut
· 1t∈Q.

The respective proofs are almost verbatim repetitions of the proofs of the previous
results involving Theorem 2.7.3 instead of Theorem 2.3.5 and (2.28) instead of (2.8)
and are therefore omitted.

2.7.2. Dependency sets

Also in the generalized situation the dependency sets K(u) of processes X(u) take an
exceptional role among dependency sets of processes sharing the same directional
ECF w.r.t. u ∈ (0,∞)T as we shall see next. Because of (2.19) the directional ECF
θ(u) of a simple max-stable process X can be expressed in terms of the dependency
set K of X as

θ(u)(A) = sup
{∑
t∈A

utxt : x ∈ K
}
. (2.31)

We define the following halfspaces and hyperplanes for non-empty finite subsets A
of T and u ∈ (0,∞)T

HA
(
θ(u)

)
:=
{
x ∈ [0,∞)T :

∑
t∈A

utxt ≤ θ(u)(A)
}
,

EA
(
θ(u)

)
:=
{
x ∈ [0,∞)T :

∑
t∈A

utxt = θ(u)(A)
}
.

Note that HA
(
θ(u)

)
and EA

(
θ(u)

)
indeed only depend on θ(u) since ut = θ(u)({t}).

With these definitions we may adapt Lemma 2.6.5 and Theorem 2.6.7 as below to
Lemma 2.7.8 and Theorem 2.7.10.
Exemplarily, we carry out the proof of Theorem 2.7.10 explicitly, whereas it suffices

to replace
∑
t∈A xt by

∑
t∈A utxt, θ(A) by θ(u)(A) and (2.20) by (2.31) in the proof

of Lemma 2.6.5 in order to obtain Lemma 2.7.8.
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Lemma 2.7.8. Let K be the dependency set of a simple max-stable process X =
{Xt}t∈T with directional ECF θ(u) for u ∈ (0,∞)T . Then the following inclusion
holds

K ⊂
⋂

A∈F(T )\{∅}
HA

(
θ(u)

)
.

On the other hand for each A ∈ F(T ) \ {∅} there is at least one point x(u;A) in the
intersection

x(u;A) ∈ K ∩ EA
(
θ(u)

)
.

Example 2.7.9. As a simple example for Lemma 2.7.8 we explore Example 2.6.6
involving an additional direction u ∈ (0,∞)T . The example is illustrated in Figure
2.5 for the trivariate case. We have seen previously that the dependency set of the
max-stable distribution with stable tail dependence function the Euclidean norm
`M (x) = ‖x‖2 is the positive part of the (Euclidean) unit ball B+ := {y ∈ [0,∞)M :
‖y‖2 ≤ 1}. The directional ECF of the corresponding max-stable distribution w.r.t.
the direction u ∈ (0,∞)M is thus given by θ(u)(A) = ‖uA‖2 =

√∑
t∈A u

2
t for A ⊂M ,

such that

HA
(
θ(u)

)
= {x ∈ [0,∞)M : 〈x, uA〉 ≤ ‖uA‖2}

EA
(
θ(u)

)
= {x ∈ [0,∞)M : 〈x, uA〉 = ‖uA‖2}

for ∅ 6= A ⊂M . Now, the planes EA
(
θ(u)

)
are tangent to the boundary of B+ with

common points x(u;A) = uA/‖uA‖2 for ∅ 6= A ⊂M , which makes it easy to see that
Lemma 2.7.8 holds true in the example.

The following theorem shows that the inclusion from Lemma 2.7.8 is sharp and
attained by the process from Theorem 2.7.3 b). Figure 2.6 illustrates a trivariate
dependency set of this process.

Theorem 2.7.10. Let K(u) be the dependency set of the simple max-stable process
X(u) =

{
X

(u)
t

}
t∈T

from Theorem 2.7.3 b) with directional ECF θ(u) for u ∈ (0,∞)T .
Then

K(u) =
⋂

A∈F(T )\{∅}
HA

(
θ(u)

)
.
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Figure 2.5.: The positive part of the Euclidean unit ball is the dependency set K of the
simple max-stable distribution with stable tail dependence function the Euclidean norm
`(x) = ‖x‖2 as illustrated here in the trivariate case. Indeed, K is contained in the inter-
section of halfspaces given by

∑
i∈A uixi ≤ (

∑
i∈A ui)1/2 = θ(u)(A). For each non-empty

A ⊂ {1, 2, 3} we have precisely one point x(u;A) = uA/θ
(u)(A) in the intersection K∩EA(θ(u))

(cf. Example 2.7.9 and Lemma 2.7.8).

Proof. Following the proof of Theorem 2.6.7 we start with the case where T = M is
finite and K(u) = K(u)

M and abbreviate the r.h.s. by

LM :=
⋂

∅6=A⊂M
HA

(
θ(u)

)
= {x ∈ [0,∞)M : 〈x, uA〉 ≤ θ(u)(A) for all ∅ 6= A ⊂M}.

The inclusion K(u)
M ⊂ LM is proven in Lemma 2.7.8. In order to show the reverse

inclusion LM ⊂ K(u)
M , we need to establish the following implication

x ∈ SM and y ∈ LM =⇒ 〈x, y〉 ≤ `(u)
M (x),

where `(u)
M denotes the stable tail dependence function of

{
X

(u)
t

}
t∈M

given by

`
(u)
M (x) =

∑
∅6=L⊂M

τML (u)
∨
t∈L

xt
ut

in terms of the coefficients τML (u) from Theorem 2.7.3 b), cf. (2.28). We now prove
this implication: Labelling the elements of M = {t1, . . . , tm} such that xt1

ut1
≥ xt2

ut2
≥

· · · ≥ xtm
utm

we may write x = (xt)t∈M ∈ SM ⊂ [0,∞)M as

x = xtm
utm︸︷︷︸
≥0

uM +
(
xtm−1

utm−1
− xtm
utm

)
︸ ︷︷ ︸

≥0

uM\{tm} + · · ·+
(
xt1
ut1
− xt2
ut2

)
︸ ︷︷ ︸

≥0

u{t1}.



48 2. Max-stable processes parametrized by their extremal coefficients

x1

x2

x3

E(u)
1

E
(u)
2

E (u)
3

E (u)
12

E
(u)
13

E (u)23

E
(u)
123

x1

x2

x3

c
1 1(
u)

c2
2(u)

c3 3
(u

)

c
121
(u

)

c
13

1
(u

)

c13 3
(u

)

c23 3
(u

)

c12
2 (u)

c23
2 (u)

c
12

3
1

(u
)

c
12

3
1

(u
)

c123
2 (u)

c123
2 (u)

c12
3

3
(u

)

c12
3

3
(u

)

Figure 2.6.: Dependency set K(u) of the random vector {X(u)
t }t∈M for M = {1, 2, 3}. The

dependency set K(u) is bounded by the hyperplanes EA(θ(u)) that are given by the equations∑
t∈A utxt = θ(u)(A), where θ(u) denotes the directional ECF of X(u). The coefficients

cLt (u) := (aL{t}(u))t = τL{t}(u)/ut for L ∈ F(M) \ {∅} and t ∈ L (cf. (2.29)) turn up as
lengths of the resulting polytope K(u) (cf. Theorem 2.7.3 b) and Theorem 2.7.10).

Taking the scalar product with y ∈ LM , we conclude

〈x, y〉 ≤ xtm
utm

θ(u)(M) +
(
xtm−1

utm−1
− xtm
utm

)
θ(u)(M \ {tm}) + . . .

· · ·+
(
xt2
ut2
− xt3
ut3

)
θ(u)({t1, t2}) +

(
xt1
ut1
− xt2
ut2

)
θ(u)({t1})

= xtm
utm

(
θ(u)(M)− θ(u)(M \ {tm})

)
+ · · ·+ xt2

ut2

(
θ(u)({t1, t2})− θ(u)({t1})

)
+ xt1
ut1

θ(u)({t1}). (2.32)

On the other hand the stable tail dependence function `(u)
M is by this ordering of the

components of xu given as

`
(u)
M (x) =

∑
∅6=L⊂M

τML (u)
∨
t∈L

xt
ut

=
m∑
i=1

xti
uti

 ∑
L⊂M : t1,...,ti−1 /∈L,ti∈L

τML (u)

 ,
which coincides with the r.h.s. of (2.32) and the desired inequality 〈x, y〉 ≤ `

(u)
M (x)

is shown. This finishes the proof for the case that T = M is finite. If T is infinite,
apply the following replacements to the remaining proof of Theorem 2.6.7: K∗ by
K(u), K∗M by K(u)

M , θ by θ(u),
∑
t∈A xt by

∑
t∈A utxt.
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So, if we fix the directional ECF θ(u) of a simple max-stable process on T for
u ∈ (0,∞)T , then the process from Theorem 2.7.3 b) yields a maximal dependency
set K(u) w.r.t. inclusion, that is

K(u) =
⋃

K dependency set
with the same directional

ECF w.r.t. u as K(u)

K. (2.33)

As before, this implies the following sharp inequality.

Corollary 2.7.11. Let X = {Xt}t∈T be a simple max-stable process with directional
ECF θ(u) for some u ∈ (0,∞)T . Let M be a non-empty finite subset of T . Then

P(Xt ≤ xt, t ∈M) ≥ exp

− ∑
∅6=L⊂M

τML (u)
∨
t∈L

1
utxt

 ∀x ∈ [0,∞)M , (2.34)

where the coefficients τML (u) depend only on θ(u) and can be computed as in Theo-
rem 2.7.3 b). Equality holds for the process X(u) from Theorem 2.7.3 b).

Example 2.7.12. We abbreviate θ(u)
st := θ(u)({s, t}) for the bivariate case, such

that the inequality (2.34) reads as

P(Xs ≤ xs, Xt ≤ xt) ≥ exp
(
−
[
θ

(u)
st − (us + ut)
usxs ∨ utxt

+ 1
xs

+ 1
xt

])

= exp
(
− θ

(u)
st

usxs ∧ utxt

)
exp

([
θ

(u)
st − (us1usxs<utxt + ut1usxs>utxt)

] ∣∣∣∣ 1
usxs

− 1
utxt

∣∣∣∣) .
Indeed this inequality is much better then the trivial inequality

P(Xs ≤ xs, Xt ≤ xt) ≥ P(Xs ≤ xs ∧ xt, Xt ≤ xs ∧ xt),

which can be written in the above terms as

P(Xs ≤ xs, Xt ≤ xt) ≥ exp
(
− θ

(u)
st

usxs ∧ utxt

)
.





If only I had the theorems!
Then I should find the proofs easily enough.

(Bernhard Riemann)

3. A characterization of tail correlation
functions

This chapter is partially based on the arXiv-manuscript [93].

3.1. Tail correlation functions

Let X = {Xt}t∈T be a (not necessarily max-stable) stochastic process on a set T ,
such that X has identical non-degenerate one-dimensional marginal distributions
with upper endpoint x∗. Assuming that the limits of conditional probabilities

χ(X)(s, t) := lim
x→x∗

P(Xs > x |Xt > x),

exist, the function χ(X) : T × T → [0, 1] will be called the tail correlation function
(TCF) of the process X. Roughly speaking, χ(X)(s, t) expresses the probability of an
extremal event at location s given an extremal event at location t. The value 1 can
be interpreted as total dependence in the tail and the value 0 as tail independence
of Xs and Xt.

Dating back to [32, 89, 95] the TCF is one of the most popular bivariate extremal
dependence measures that has entered the literature under various names, most
prominently (upper) tail dependence coefficient [4, 14, 28], χ-measure [4, 10] or ex-
tremal coefficient function [29] (not to be confused with the ECF from the previous
Chapter 2, Section 2.1). We prefer the name “tail correlation function”, since χ(X)

measures tail dependence and χ(X) is indeed a correlation function, i.e. a symmetric
positive definite kernel on T ×T with χ(X)(t, t) = 1 for t ∈ T . This has been already
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observed in [14, 29, 86] and can be easily seen by writing

χ(X)(s, t) = lim
x→x∗

E(1Xs>x1Xt>x)
E(1Xt>x) = lim

x→x∗
Cov(1Xs>x,1Xt>x)

P(Xt > x) + lim
x→x∗

P(Xt > x),

(3.1)

where the constant term limx→x∗ P(Xt > x) vanishes if X has no mass at its upper
endpoint x∗. Even though TCFs are non-negative correlation functions, beware that
not all non-negative correlation functions are TCFs. For instance, η := 1−χ(X) has
to satisfy the triangle inequality (cf. (3.14))

η(s, t) ≤ η(s, r) + η(r, t) r, s, t ∈ T.

In the context of {0, 1}-valued stochastic processes (or two-phase random media), it
is well-known that the respective covariance functions obey this triangle inequality
and implications are addressed e.g. in [45, 58, 60], see also [86] in the context of max-
stable processes. We will compare the classes of TCFs and non-negative correlation
functions in more detail in Section 3.6.
Further, note that TCFs are invariant under non-decreasing, eventually continuous

marginal transformations, i.e.

χ(X)(s, t) = χ(f◦X)(s, t)

if f is such an allowed transformation. In particular, it is not important to which
marginal distribution we standardize. If X is stationary max-stable, the TCF χ(X)

contains also mixing information (cf. [50]). Estimators can be found in [90] (raw
estimates), [86] (respecting positive definiteness) and [11, 69] (using a madogram
approach).

Example 3.1.1. The simplest TCFs are the functions χ(s, t) = δst := 1s=t corre-
sponding to a process of independent random variables, and the constant function
χ(s, t) = 1 corresponding to a process of identical random variables. If X is a Gaus-
sian process on T , whose correlation function ρ on T × T attains the value 1 only
on the diagonal {(t, t) : t ∈ T}, then its TCF will also be χ(X)(s, t) = δst, cf. [89,
Theorem 3].

While Gaussian processes do not exhibit tail dependence, the class of max-stable
processes naturally forms a class of processes for which the TCF is well-defined and
yields rich classes of non-trivial examples as we shall see next and subsequently in
Chapter 4.



3.2. TCFs are realized by max-stable processes 53

3.2. TCFs are realized by max-stable processes

Lemma 3.2.1. The TCF χ(X) of a simple max-stable process X on T with spectral
representation (Ω,A, ν, V ) is well-defined and given by

χ(X)(s, t) =
∫

Ω
Vs(ω) ∧ Vt(ω) ν(dω). (3.2)

Proof. The upper endpoint of the Fréchet distribution is x∗ =∞. An application of
l’Hôpitals rule (cf. Lemma A.5.5) yields

χ(X)(s, t) = lim
x→∞

(1− P(Xs ≤ x)) + (1− P(Xt ≤ x))− (1− P(Xs ≤ x , Xt ≤ x))
1− P(Xt ≤ x)

= lim
x→∞

− logP(Xs ≤ x)− logP(Xt ≤ x) + logP(Xs ≤ x , Xt ≤ x)
− logP(Xt ≤ x)

=
∫

Ω
Vs(ω) + Vt(ω)− Vs(ω) ∨ Vt(ω) ν(dω) =

∫
Ω
Vs(ω) ∧ Vt(ω) ν(dω).

So simple max-stable processes form a class of processes, where TCFs always
exist. Some non-trivial examples of TCFs are given below. Additionally, we refer
to Chapter 4 for various concrete examples of TCFs stemming from max-stable
processes.

Example 3.2.2 (Mixed Moving Maxima processes (M3)). Because of (3.2) the TCF
χ(X) of a general M3 process X as in Example 1.2.1 can be computed as

χ(X)(s, t) =
∫
F

∫
Rd
f(z) ∧ f(z − (s− t)) dzµ(df).

In case µ is a weighted point mass at an indicator function f = 1A, the TCF will be
given by χ(X)({s, t}) = 1A ∗ 1Ǎ(s− t)/νd(A), where 1A ∗ 1Ǎ means the convolution
of 1A and 1Ǎ (with Ǎ = {−a : a ∈ A}) and νd(A) is the d-dimensional volume of A.

Example 3.2.3 (Brown-Resnick processes). In [52, Remark 25] the TCF χ(X) of a
Brown-Resnick process X as in Example 1.2.3 has been identified as

χ(X)(s, t) = erfc

√γ(s− t)
8

 ,
where erfc(x) = 2/

√
π
∫∞
x e−t

2
dt denotes the complementary error function and γ

the variogram of X.

It is natural to ask whether even further TCFs will arise if we do not restrict
ourselves to the max-stable class, i.e. whether the set of TCFs stemming from max-
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stable processes is properly contained in the set of all TCFs or if these sets are equal.
Therefore, let us denote the set of all TCFs and certain subclasses as follows:

TCF(T ) :=
{
χ(X) :

X a stochastic process on T with identical
one-dimensional marginals such that χ(X) exists

}
,

TCF∞(T ) :=
{
χ(X) ∈ TCF(T ) : X with essential supremum ∞

}
,

MAX(T ) :=
{
χ(X) ∈ TCF(T ) : X simple max-stable

}
.

Here, TCF∞(T ) represents the TCFs of processes whose marginals have no jump at
the upper endpoint. Apriori it is clear that

MAX(T ) ⊂ TCF∞(T ) ⊂ TCF(T ). (3.3)

Further, let us introduce the class of uncentered and normalized covariance functions
of binary processes

BIN(T ) :=

(s, t) 7→ P(Ys = 1|Yt = 1) :
Y a stochastic process on T with
identical one-dimensional marginals
with values in {0, 1} and EYt 6= 0

 ,
(3.4)

which is closely related to the above classes. By definition of TCF(T ) and considering
the processes Yt = 1Zt>x indexed by x > 0, we observe

TCF(T ) ⊂ sequential closure of BIN(T ), (3.5)

where the sequential closure is meant w.r.t. pointwise convergence. In the sequel, we
will prove the following theorem, which gives an affirmative answer to the question
whether TCF(T ) and MAX(T ) coincide and which involves also the connection to
TCF∞(T ) and BIN(T ).

Theorem 3.2.4. a) For arbitrary sets T we have the following coincidence

TCF(T ) = TCF∞(T ) = MAX(T )

= sequential closure of BIN(T ) = closure of BIN(T ),

where the (sequential) closure is meant w.r.t. pointwise convergence.

b) For infinite sets T the inclusion BIN(T ) ( TCF(T ) is proper.

c) For finite sets M , the equality BIN(M) = TCF(M) holds.
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Remark 3.2.5. The class described in part a) of Theorem 3.2.4 also comprises the
extremogram ρAA from [14] where Rk-valued processes are considered (and not only
real valued processes).

3.2.1. Proof of Theorem 3.2.4 using ECFs

In view of (3.3) and (3.5) the gaps that need to be filled in for proving Theorem
3.2.4 are the following two propositions:

Proposition 3.2.6. a) For arbitrary sets T we have BIN(T ) ⊂ MAX(T ).

b) For infinite sets T the inclusion BIN(T ) ( MAX(T ) is proper.

c) For finite sets M the equality BIN(M) = MAX(M) holds.

Proposition 3.2.7. MAX(T ) is compact w.r.t. the toplogy of pointwise convergence.

The crucial point in establishing Propositions 3.2.6 and 3.2.7 is the close con-
nection of the tail correlation function (TCF) χ(X) of a simple max-stable process
X = {Xt}t∈T to the extremal coefficient function (ECF) θ(X) of the respective pro-
cess X. It follows easily from (3.2) and (2.3) that

χ(X)(s, t) = 2− θ(X)({s, t}). (3.6)

if X is a simple max-stable process. Therefore, it will be convenient to introduce
the following map

Ψ : [0,∞)F(T ) → [0,∞)T×T , Ψ(F )(s, t) := 2− F ({s, t}), (3.7)

such that (3.6) reads as χ(X) = Ψ(θ(X)). The set MAX(T ) may thus be written as

MAX(T ) = Ψ(Θ(T )), (3.8)

where Θ(T ) ⊂ [0,∞)F(T ) denotes the set of all ECFs on F(T ) (cf. (2.2)). Similarly,
BIN(T ) is the image of bounded elements of Θ(T ) that will be denoted by

Θb(T ) = { θ ∈ Θ(T ) : θ is bounded. } . (3.9)

Lemma 3.2.8. BIN(T ) = Ψ (Θb(T )) .
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Proof. Let f ∈ BIN(T ) and let Y be a corresponding process with values in {0, 1}
as in the definition of BIN(T ) (cf. (3.4)). Let C denote the capacity functional of Y
as in Example 2.3.4. Then C({t}) = EYt lies in the interval (0, 1] and is independent
of t ∈ T due to identical one-dimensional marginals. Further, note that the function
f is given by f(s, t) = P(Ys = 1 | Yt = 1) = 2− C({s, t})/C({t}). Now, set θ(A) :=
C(A)/C({t}) for A ∈ F(T ). Then θ satisfies Ψ(θ)(s, t) = 2− θ({s, t}) = f(s, t) and
θ is clearly bounded by 1/C({t}). It follows from Example 2.3.4 and Theorem 2.3.5
that θ lies in Θ(T ). Hence, f ∈ Ψ(Θb(T )).
Conversely, let θ ∈ Θb(T ) be bounded, say by K. Clearly, K ≥ θ({t}) = 1. Set

C(A) := θ(A)/K. Then C satisfies all requirements of Example 2.3.4 to define a
binary process Y with values in {0, 1}, whose capacity functional equals C. The
process Y has identical one-dimensional marginals since θ({t}) = 1 for t ∈ T , and
EYt = 1/K > 0. So Y fulfills the requirements of a process in the definition of
BIN(T ) (cf. (3.4)). Finally, note that the corresponding function in BIN(T ) is given
by P(Ys = 1 | Yt = 1) = 2− C({s, t})/C({t}) = Ψ(θ)(s, t) as desired.

Now we can prove Propositions 3.2.6 and 3.2.7 and finally Theorem 3.2.4.

Proof of Proposition 3.2.6. a) For arbitrary sets T the assertion BIN(T ) ⊂ MAX(T )
follows directly from (3.8) and Lemma 3.2.8.

b) Let T be an infinite set and let χ(s, t) := δst as in Example 3.1.1. Indeed χ is
an element of MAX(T ) realized by the simple max-stable process X on T , where
the variables {Xt}t∈T are i.i.d. standard Fréchet random variables. Moreover, the
only (!) preimage of χ under the map Ψ (cf. (3.8)) is the ECF θ(A) = |A|. This
can be seen as follows: Either an induction on the number of elements |A| yields
this result from the inequalities (2.12). Or we can use the fact that pairwise
independence of the components of a simple max-stable random vector implies
their joint independence (cf. [4, p. 266] or [66, Proposition 7]). Either way, the
ECF θ(A) = |A| is unbounded in case T is an infinite set. Because of Lemma
3.2.8 the inclusion BIN(T ) ( MAX(T ) must be proper.

c) If M is finite, take additionally into account that elements θ ∈ Θ(M) are auto-
matically bounded by |M | and thus Θ(M) = Θb(M).

Proof of Proposition 3.2.7. We use the description (3.8) of MAX(T ). Note that the
involved map Ψ is continuous if we equip both spaces [0,∞)F(T ) and [0,∞)T×T with
the topology of pointwise convergence. So, MAX(T ) is the continuous image of the
compact space Θ(T ) (cf. Corollary 2.4.2), and hence compact.
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Proof of Theorem 3.2.4 from Propositions 3.2.6 and 3.2.7. a) The assertion follows
from

TCF(T )
(3.5)
⊂ sequential closure of BIN(T ) ⊂ closure of BIN(T )

Prop. 3.2.6
⊂ closure of MAX(T )

Prop. 3.2.7
⊂ MAX(T )

(3.3)
⊂ TCF∞(T )

(3.3)
⊂ TCF(T ).

b) If |T | is infinite, the inclusion BIN(T ) ( MAX(T ) is proper, cf. Proposition 3.2.6.

c) For finite setsM use that BIN(M) = MAX(M) as shown in Proposition 3.2.6.

Remark 3.2.9. The proof of Theorem 3.2.4 given here turns out to be surprisingly
simple. First attempts in [93] (where TCF(T ) is called LIM(T )) have been consid-
erably different, not as simple and only applicable to continuous TCFs.

Remark 3.2.10. In view of TCF(T ) = Ψ(Θ(T )) (cf. Theorem 3.2.4 and (3.8)) positive
definiteness of elements of TCF(T ) may also be derived from Theorem 2.3.5 and
Lemma A.1.3.

3.3. Operations on TCFs

Well-known operations on non-negative correlation functions include convex combi-
nations, products and pointwise limits. Interestingly, the same operations are still
admissable for TCF(T ). Further operations on TCFs of stationary processes on Rd

will be addressed in Chapter 4, Section 4.4.

Proposition 3.3.1. a) TCF(T ) is convex.

b) TCF(T ) is compact w.r.t. pointwise convergence.

c) TCF(T ) is closed under pointwise multiplication.

Proof. Convexity of TCF(T ) = MAX(T ) (cf. Theorem 3.2.4) follows from Corollary
2.4.1 and (3.8). Compactness of TCF(T ) follows from its closedness (cf. Theorem
3.2.4), since TCF(T ) is a subset of the compact space [0, 1]T×T . Finally, let χ1 and
χ2 be in TCF(T ) = TCF∞(T ) with corresponding processes X(1) and X(2) with
upper endpoint x∗ =∞. We choose the processes X(1) and X(2) to be independent.
Then the process X(3) := X(1) ∧X(2) has upper endpoint ∞ and satisfies

P(X(3)
s > x |X(3)

t > x) = P(X(1)
s > x |X(1)

t > x) · P(X(2)
s > x |X(2)

t > x).

Consequently, the TCF χ3 of X(3) is the product χ3 = χ1 · χ2.
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Remark 3.3.2. If a set of functions is closed under convex combinations, products and
pointwise limits, this allows for further operations built from these. For instance, we
may apply convergent power series with positive and suitably normalized coefficients,
e.g. if χ ∈ TCF(T ), then also 1− (1− χ)q ∈ TCF(T ) for q ∈ (0, 1).

Remark 3.3.3. In Proposition 3.3.1 we easily derived the product operation for
TCF(T ) and thus also for MAX(T ). Using only the description of MAX(T ) de-
riving the product operation is a subtle matter. In Section 3.4 we take advantage
from the connection TCF(T ) = MAX(T ) the other way around in order to derive
that TCF(T ) is bounded by finite-dimensional inequalities.

3.4. Characterization by finite-dimensional inequalities

In this section we show that the set TCF(T ) is completely characterized by finite-
dimensional inequalities. This is not evident since elements of TCF(T ) are defined
by a limiting procedure. We benefit from the connection

TCF(T ) = MAX(T ) = Ψ(Θ(T )) (3.10)

(cf. Theorem 3.2.4 and (3.8)) in the first place. For a finite set M the set TCF(M)
is in fact a convex polytope. Up to the fourvariate case we compute the vertices
and bounding hyperplanes (i.e. defining inequalities) of TCF(M) explicitly. At least
theoretically, there is an algorithm that provides vertices and inequalities of any
order. As a byproduct, we may also formulate an algorithm that solves the inverse
problem of finding a multivariate max-stable distribution realizing a prescribed TCF,
even though we expect computations to be tedious and unfeasible already for low-
dimensional cases.

Restrictions and extensions It follows from Theorem 2.3.5 that the set Θ(T ) of
ECFs of simple max-stable processes is completely characterized by finite-dimensional
inequalities. In order to draw an analogy to TCFs later on, we formulate the follow-
ing simple fact:

Corollary 3.4.1. Let θ : F(T )→ R be a function on the finite subsets of T . Then

θ ∈ Θ(T ) ⇐⇒ θ|F(M) ∈ Θ(M) ∀ ∅ 6= M ∈ F(T ),

where θ|F(M) denotes the restriction of θ to F(M).

For an arbitrary subset S ⊂ T , there are various ways to extend an ECF θ ∈ Θ(S)
to an ECF in Θ(T ). Exemplarily we state the following two trivial extensions.
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Lemma 3.4.2. Let S ⊂ T be a subset of T . If θ : F(S) → R is an ECF in Θ(S),
then the following two functions θ1 and θ2 extend θ to an ECF in Θ(T ):

θ1 : F(T )→ R, θ1(A) = θ(A ∩ S) + 1A∩(T\S)6=∅,

θ2 : F(T )→ R, θ2(A) = θ(A ∩ S) + |A ∩ (T \ S)|.

Proof. Let X = {Xs}s∈S be a simple max-stable process on S with ECF θ. Choose
independently from X i.i.d. standard Fréchet random variables Y and {Yt}t∈T\S .
Then θ1 is the ECF of the simple max-stable process Zt = Xt · 1t∈S + Y · 1t∈T\S
and θ2 is the ECF of the simple max-stable process Zt = Xt ·1t∈S + Yt ·1t∈T\S .

Analogously to Lemma 3.4.2, any χ ∈ TCF(S) extends (trivially) to an element
in TCF(T ) if S is a subset of T .

Lemma 3.4.3. Let S ⊂ T be a subset of T . If χ : S×S → R is a TCF in TCF(S),
then the following two functions χ1 and χ2 extend χ to a TCF in TCF(T ):

χ1 : T × T → R, χ1(s, t) = χ(s, t) · 1{s,t}⊂S + 1{s,t}⊂T\S ,

χ2 : T × T → R, χ2(s, t) = χ(s, t) · 1{s,t}⊂S + δst · 1{s,t}⊂T\S .

It follows that the set TCF(T ) is also fully characterized by finite-dimensional
projections:

Proposition 3.4.4. Let χ : T × T → R. Then

χ ∈ TCF(T ) ⇐⇒ χ|M×M ∈ TCF(M) ∀ ∅ 6= M ∈ F(T ),

where χ|M×M denotes the restriction of χ to M ×M .

Proof. If χ ∈ TCF(T ), then necessarily χ|S×S ∈ TCF(S) for any subset S ⊂ T .
To show the reverse implication, let χ : T × T → R such that χ|M×M ∈ TCF(M)
for all ∅ 6= M ∈ F(T ). We need to show that χ ∈ TCF(T ), which is equivalent to
{χ} ∩ TCF(T ) 6= ∅. Further, we write prM×M for the natural projection prM×M :
[0,∞)T×T → [0,∞)M×M for ∅ 6= M ∈ F(T ). Then χ ∈ TCF(T ) is equivalent to

∅ 6=
⋂

∅6=M∈F(T )
pr−1
M×M ({χ|M×M}) ∩ TCF(T ) =

⋂
∅6=M∈F(T )

V (M),

where

V (M) := pr−1
M×M ({χ|M×M}) ∩ TCF(T ).
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Since TCF(T ) is compact (cf. Theorem 3.2.4 and Proposition 3.2.7) and V (M) ⊂
TCF(T ) are closed for any ∅ 6= M ∈ F(T ), it suffices to verify the finite intersection
property for the system of sets {V (M)}∅6=M∈F(T ) in order to show that χ ∈ TCF(T )
(cf. e.g. [3, Theorem 2.31]). To this end, let M1, . . . ,Mk be non-empty finite subsets
of T . By definition of V (M), we have

V

(
k⋃
i=1

Mi

)
⊂

k⋂
i=1

V (Mi) .

Therefore, it suffices to show that V (M) 6= ∅ for ∅ 6= M ∈ F(T ). Finally, this
follows from the initial assumption χ|M×M ∈ TCF(M) together with Lemma 3.4.3,
since both imply the existence of some χ̃ ∈ TCF(T ) with χ̃|M×M = χ|M×M , which
is again equivalent to V (M) 6= ∅. This finishes the proof.

3.4.1. The convex polytopes Θ(M) and TCF(M)

Definition 3.4.5. A subset P ⊂ Rn is a convex polytope if P is bounded and P can
be represented as P = {x ∈ Rn : Ax ≤ a} for an m×n-matrix A and an m-vector a
for some m ∈ N (where ≤ is meant componentwise). A vertex of P is an extremal
point of P (cf. Definition A.4.1).

For a non-empty finite set M the set of ECFs Θ(M) ⊂ RF(M) is defined by
θ(∅) = 0, θ({t}) = 1 for t ∈ M and the 2|M | − 1 inequalities (2.12) stemming from
complete alternation (cf. Theorem 2.3.5). By these properties, Θ(M) is automati-
cally bounded by |M | and thus, we may regard Θ(M) as a convex polytope in Rn(M),
where n(M) = 2|M | − |M | − 1. Since

TCF(M) = Ψ(Θ(M))

(cf. (3.10) and (3.7)), it follows that the set TCF(M) ⊂ [0, 1]M×M is also a convex
polytope. Moreover, χ ∈ TCF(M) is symmetric and takes the value 1 on the
diagonal. Therefore, we may regard TCF(M) as a convex polytope in Rk(M), where
k(M) =

(|M |
2
)

= |M |(|M |−1)
2 . So finally, Proposition 3.4.4 gives the following theorem.

Theorem 3.4.6. The set TCF(T ) ⊂ [0, 1]T×T can be defined by finite-dimensional
inequalities.

Let us take a closer look at how to obtain these inequalities that define the set
TCF(M) for a non-empty finite set M . At least theoretically, all of the defining
inequalities (or equivalently bounding hyperplanes) and the vertices of the convex
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1

The set Θ(M) is a convex polytope in R(2|M|−|M |−1) with bounding
hyperplanes as given by the 2|M | − 1 inequalities (2.12) where θ(∅) = 0
and θ({t}) = 1 for t ∈ T has to be taken into account. From these in-
equalities compute the vertices {U1, . . . , Ua(M)} of the polytope Θ(M).

2
Apply the map Ψ (from (3.7) for T = M) to these vertices
{U1, . . . , Ua(M)} and obtain the set of potential vertices

{V1, . . . , Vb(M)} = {Ψ(U1), . . . ,Ψ(Ua(M))} of TCF(M) ⊂ R|M |(|M |−1)/2.

3
Remove all points from {V1, . . . , Vb(M)} that are inner

points of the convex hull of {V1, . . . , Vb(M)} and thus, ob-
tain the actual set of vertices {W1, . . . ,Wc(M)} of TCF(M).

4
From these vertices {W1, . . . ,Wc(M)} compute
the bounding hyperplanes of TCF(M) and thus,
obtain the defining inequalities of TCF(M).

Algorithm 3.1: Ad-hoc strategy to compute the vertices and defining inequalities of the
convex polytope TCF(M) from (2.12).

polytope TCF(M) should be computable by Algorithm 3.1, which is evident from
the above. Surely, this algorithm describes only the rough steps to be taken and
is a rather naive approach. If one is only interested in the inequalities describing
TCF(M) (and not the vertices), more elaborate approaches are summarized and pre-
sented in [46]. In fact, it seems adequate to use the Equality Set Projection method
from [46] that has a linear complexity in the number of obtained inequalities. Since
we are also interested in the vertices of TCF(M), we follow Algorithm 3.1 in the
trivariate case and fourvariate case. Each step can be improved when using symme-
tries and an intelligent exclusion of cases. However, to us it seems a hard problem
to formulate general “short-cuts” for arbitrary dimensions. The fourvariate case re-
quires already a delicate distinction and exclusion of cases. Here we summarize the
results.

The trivariate case For M = {1, 2, 3}, the convex polytope Θ({1, 2, 3}) ⊂ R4 is
bounded by the 23 − 1 = 7 hyperplanes that are given by

∨
(θ12, θ13, θ23, θ12 + θ13 + θ23 − 3) ≤ θ123 ≤

∧
(θ12 + θ13, θ12 + θ23, θ13 + θ23)− 1

(3.11)
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χ12

χ13

χ23

W1

W5

W2

W3

W4

Figure 3.1.: The convex polytope TCF({1, 2, 3}) as a subset of the cube [0, 1]3 when we
consider elements χ ∈ TCF({1, 2, 3}) as being defined by the three values (χ12, χ13, χ23). It
has 5 vertices {W1, . . . ,W5} and is clearly bounded by 6 hyperplanes, see also Table 3.1.

(cf. (2.13) and [85, (13)]). Table 3.1 lists the vertices of Θ({1, 2, 3}) ⊂ R4 and
the vertices of TCF({1, 2, 3}) ⊂ R3. Figure 3.1 illustrates the convex polytope
TCF({1, 2, 3}). It can be easily seen that TCF({1, 2, 3}) is bounded by 6 hyperplanes
that yield the following defining inequalities for TCF({1, 2, 3}):

χ12 ≥ 0 (3 inequalities)

χ12 + χ13 − χ23 ≤ 1 (3 triangle inequalities). (3.12)

The last three inequalities will be called triangle inequalities as they involve three
points, where one of them takes a distinguished role. They are in fact triangle
inequalities in the usual sense if we consider η := 1− χ instead of χ.

The fourvariate case For M = {1, 2, 3, 4}, the convex polytope Θ({1, 2, 3, 4}) ⊂
R11 is bounded by 24−1 = 15 hyperplanes as given by the inequalities (2.12). Table
3.2 lists the 42 vertices of Θ({1, 2, 3, 4}) ⊂ R11. Following Algorithm 3.1, we obtain
15 actual vertices for TCF({1, 2, 3, 4}) ⊂ R6 as listed in Table 3.3 and 22 bounding
hyperplanes. They consist of the following three types and yield the 22 defining
inequalities for TCF({1, 2, 3, 4}):

χ12 ≥ 0 (6 inequalities)

(χ12 + χ13 + χ14)− (χ23 + χ24 + χ34) ≤ 1 (4 tetrahedron inequalities) (3.13)

χ12 + χ13 − χ23 ≤ 1 (12 triangle inequalities). (3.14)

Compared to the trivariate case, we obtain one additional type of inequalities (3.13).
We call them tetrahedron inequalities as they involve four points, where one of them
takes a distinguished role.
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Vertices of Θ({1, 2, 3}) Vertices of TCF({1, 2, 3}) Partitions of {1, 2, 3}

θ12 θ13 θ23 θ123 χ12 χ13 χ23

U1 2 2 2 3 W1 0 0 0 {{1}, {2}, {3}}
U2 1 2 2 2 W2 1 0 0 {{1, 2}, {3}}
U3 2 1 2 2 W3 0 1 0 {{1, 3}, {2}}
U4 2 2 1 2 W4 0 0 1 {{2, 3}, {1}}

U5
3
2

3
2

3
2

3
2

U6 1 1 1 1 W5 1 1 1 {{1, 2, 3}}

Table 3.1.: (trivariate case) The vertices {U1, . . . , U6} of the convex polytope Θ({1, 2, 3}) ⊂
R4 and the corresponding vertices {W1, . . . ,W5} of the convex polytope TCF({1, 2, 3}) ⊂ R3

are listed as obtained through the projecting map Ψ (cf. Algorithm 3.1 for the notation).
All vertices of TCF({1, 2, 3}) correspond to a partition of the set {1, 2, 3}, cf. Lemma 3.5.2.

Vertex types of Θ({1, 2, 3, 4})

θ12 θ13 θ14 θ23 θ24 θ34 θ123 θ124 θ134 θ234 θ1234

1× U1 2 2 2 2 2 2 3 3 3 3 4
6× U2 1 2 2 2 2 2 2 2 3 3 3

4× U8
3
2

3
2 2 3

2 2 2 3
2

5
2

5
2

5
2

5
2

3× U12 1 2 2 2 2 1 2 2 2 2 2

12× U15 2 3
2

3
2

3
2

3
2

3
2 2 2 3

2 2 2

4× U27 1 1 2 1 2 2 1 2 2 2 2

4× U31
4
3

4
3

5
3

4
3

5
3

5
3

5
3

5
3

5
3

5
3

5
3

6× U35 1 3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

3
2

1× U41
4
3

4
3

4
3

4
3

4
3

4
3

4
3

4
3

4
3

4
3

4
3

1× U42 1 1 1 1 1 1 1 1 1 1 1

Table 3.2.: (fourvariate case) The polytope Θ({1, 2, 3, 4}) ⊂ R11 has 42 vertices, which can
be devided into 10 types. For each type the table contains one representative and the total
number of representatives due to symmetries. See also Algorithm 3.1 for the notation.

Vertex types of TCF({1, 2, 3, 4}) Partition types of {1, 2, 3, 4}

χ12 χ13 χ14 χ23 χ24 χ34

1× W1 0 0 0 0 0 0 {{1}, {2}, {3}, {4}}
6× W2 1 0 0 0 0 0 {{1, 2}, {3}, {4}}
3× W8 1 0 0 0 0 1 {{1, 2}, {3, 4}}
4× W11 1 1 0 1 0 0 {{1, 2, 3}, {4}}
1× W15 1 1 1 1 1 1 {{1, 2, 3, 4}}

Table 3.3.: (fourvariate case) The polytope TCF({1, 2, 3, 4}) ⊂ R6 has 15 vertices, which
can be devided into 5 types. For each type the table contains one representative and the total
number of representatives due to symmetries. All vertices of TCF({1, 2, 3, 4}) correspond to
a partition of the set {1, 2, 3, 4}, cf. Lemma 3.5.2.
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Higher-order triangle inequalities from a conjecture of Matheron In higher-order
cases, the problem size grows very fast, if we want to determine vertices and/or
bounding hyperplanes of TCF(M) explicitly (cf. also Corollary 3.5.8 for a lower
bound on the number of vertices). Still, we can derive certain “triangle inequalities
of higher order” from a connection to Matheron’s analysis [61] of variograms of
processes with values in {0, 1}. These inequalities are very likely to be among the
hyperplanes that bound the convex polytope TCF(M).

Proposition 3.4.7. Let χ ∈ TCF(T ). Then for any finite subset ∅ 6= M ∈ F(T )
and any e ∈ {−1, 0, 1}M with

∑
t∈M et = 1 we have that

∑
s∈M,t∈M

eset χ(s, t) ≥ 1. (3.15)

Proof. (cf. [61] and [24]) Let χ = χ(X) ∈ TCF(T ) and X a corresponding realizing
process such that χ(s, t) = limx→∞ χx(s, t) with χx(s, t) = P(Xs > x|Xt > x). We
need to show (3.15) for any χx (x ∈ R). To this end, set Yt := 21Xt>x − 1 for
t ∈ T , such that Yt takes values in {−1, 1} and

∑
t∈M etYt is always odd. Therefore,

E (
∑
t∈M etYt)2 ≥ 1, which entails

4P(Xt > x)

 ∑
s,t∈M

esetχx(s, t)− 1

 = 4P(Xt > x)

 ∑
s,t∈M

eset (χx(s, t)− 1)


= 4

∑
s,t∈M

esetE (1Xs>x1Xt>x − 1Xt>x) =
∑
s,t∈M

esetE (YsYt − 1)

=
∑
s,t∈M

esetEYsYt − 1 ≥ 0.

Remark 3.4.8. In [61] Matheron conjectures that the corresponding inequalities for
1−χ are precisely the inequalities that describe the hyperplanes through the origin
that bound the convex polytope of variograms of processes with values in {0, 1}.
Accordingly, we might suspect that the inequalities (3.15) describe the bounding
hyperplanes of TCF(M) that have the point (1, 1, . . . , 1) in common.

Example 3.4.9. The following example shows that the inequalities (3.15) give in-
deed new constraints for TCF(M) in addition to the fourvariate inequalities. We
consider the symmetric matrix

K =



1 0.3 0.4 0.6 0.6
0.3 1 0.3 0.6 0.6
0.4 0.3 1 0.6 0.6
0.6 0.6 0.6 1 0.4
0.6 0.6 0.6 0.4 1


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that contains only positive entries. The matrix K satisfies all
(5
3
)
· 3 = 30 triangle

inequalities (3.14) and all
(5
4
)
·4 = 20 tetrahedron inequalities (3.13). That means for

any subset M of {1, 2, 3, 4, 5} with at most 4 elements the restriction K|M×M is an
element of TCF(M). Moreover, the matrix K is even positive definite. Nonetheless
K is not an element of TCF({1, 2, 3, 4, 5}) as it violates the “triangle inequality of
higher order” (3.15) for e = (1, 1, 1,−1,−1).

The inverse problem of a prescribed TCF Based on the previous considerations,
we may also formulate algorithms (Algorithms 3.2 and 3.3) that solve the inverse
problem of finding a multivariate distribution realizing a prescribed TCF. The prob-
lem has been addressed before in [28] and [30]. However the approach considered in
[30] does not comprise dependent models whereas [28] does not comprise indepen-
dence. Even though the methods described here cannot be computationally efficient,
we want to emphasize that they cover all multivariate TCFs (and not a particular
subclass). We obtain a whole polytope of solutions to the inverse problem if we
consider all possible θ (and not only one) in the second step of Algorithm 3.2.

Example 3.4.10. As a “toy example” we consider the trivariate case M = {1, 2, 3}
(which is indeed better understood involving (3.11), since the the preimage of a valid
TCF χ under the map ψ is only an interval with bounds given by (3.11)). Here the
convex polytope TCF({1, 2, 3}) can be split into two tetrahedra

TCF(M) = conv(W1,W2,W3,W4) ∪ conv(W5,W2,W3,W4)

(cf. Figure 3.1). An element χ ∈ TCF({1, 2, 3}) belongs to one or the other tetrahe-
dron depending on whether χ12 +χ13 +χ23 is less or equal to 1 or greater or equal to
1. Therefore, Algorithm 3.3 can be abbreviated as follows: Let χ ∈ TCF({1, 2, 3}).
If χ12 + χ13 + χ23 ≤ 1, set

A :=


1− χ12 − χ13 0 0 χ12 χ13 0 0

0 1− χ12 − χ23 0 χ12 0 χ23 0
0 0 1− χ13 − χ23 0 χ13 χ23 0

 .
Else set

A :=


a1 0 0 a3 a2 0 b

0 a2 0 a3 0 a1 b

0 0 a3 0 a2 a1 b

 with


a1

a2

a3

b

 =


−1 −1 1 1
−1 1 −1 1
1 −1 −1 1
1 1 1 −1




χ12

χ13

χ23

1

 .
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1 Let χ ∈ TCF(M) ⊂ [0, 1]T×T be given. Consider the 2|M | − 1 inequali-
ties (2.12) for ψ = θ and set θ(∅) = 0, θ({t}) = 1, θ(s, t) := 2− χ(s, t).

2
Determine (at least one) θ ∈ RF(M) such that these inequalities
are satisfied. (That means determine a point in the convex poly-
tope Ψ−1({χ}) ∩ Θ(M), which is possible since χ ∈ TCF(M).)

3
Simulate i.i.d. standard Fréchet random variables

{ZL}∅6=L⊂M and set Xt =
∨
t∈L⊂M τML ZL for t ∈ M ,

where {τML }∅6=L⊂M depend on θ as in Theorem 2.3.5 b).

Algorithm 3.2: Ad-hoc strategy to simulate a random vector X = {Xt}t∈M realizing a
prescribed χ ∈ TCF(M). A preimage θ of χ under the map Ψ (cf. (3.7)) is determined and
the corresponding distribution from Theorem 2.3.5 is simulated.

1
Let χ ∈ TCF(M) ⊂ [0, 1]T×T be given. Determine vertices
{Wi}ki=1 of TCF(M) and {αi}ki=1 with

∑k
i=1 αi = 1 such that

χ is a convex combination χ =
∑k
i=1 αiWi of these vertices.

2 Choose θi ∈ Ψ−1(Wi) for i = 1, . . . , k and put θ =
∑k
i=1 αiθi.

3
Simulate i.i.d. standard Fréchet random variables

{ZL}∅6=L⊂M and put Xt =
∨
t∈L⊂M τML ZL for t ∈ M ,

where {τML }∅6=L⊂M depend on θ as in Theorem 2.3.5 b).

Algorithm 3.3: If the vertices of Θ(M) and TCF(M) are already known, this approach
can be used to simulate a random vector X = {Xt}t∈M realizing a prescribed χ ∈ TCF(M).
As before in Algorithm 3.2, a preimage θ of χ under the map Ψ (cf. (3.7)) is determined
and the corresponding distribution from Theorem 2.3.5 is simulated.

Simulate a random vector Z = (Z1, Z2, Z3, Z12, Z13, Z23, Z123) with i.i.d. standard
Fréchet entries and obtain X = (X1, X2, X3) by Xi =

∨
∅6=L⊂{1,2,3}Ai,LZL. The

random vector X is simple max-stable and realizes χ as its TCF.

3.5. Extremal TCFs

Taking a closer look at the set of vertices of TCF(M) up to the fourvariate case, we
note that in these cases the vertices of TCF(M) are in a 1-1 correspondence with
partitions of the respective set M .



3.5. Extremal TCFs 67

Π

t3

t4
t1

t6 t7

t5

t2

7−→ χΠ =



1 1 0 1 1 0 0
1 1 0 1 1 0 0
0 0 1 0 0 0 0
1 1 0 1 1 0 0
1 1 0 1 1 0 0
0 0 0 0 0 1 1
0 0 0 0 0 1 1



Figure 3.2.: Let M = {t1, t2, . . . , t7}. The partition Π = {{t1, t2, t4, t5}, {t3}, {t6, t7}}
yields the TCF χΠ(s, t) = 1{s,t}⊂{t1,t2,t4,t5}+1{s,t}⊂{t3}+1{s,t}⊂{t6,t7} which is represented
in matrix form here, see Lemma 3.5.2.

Definition 3.5.1. Let T be a non-empty set. Then a subset Π of the powerset
P(T ) of T is a partition of T , if it consists of disjoint non-empty subsets of T , such
that

⋃
A∈ΠA = T holds. The set of all partitions of T will be denoted by Π(T ).

Now, any partition of T defines an extremal point of TCF(T ) as follows, see also
Figure 3.2 for an example.

Lemma 3.5.2. Let T be a non-empty set. There is an injective map from Π(T ) to
TCF(T ) given by

Π 7−→ χΠ with χΠ(s, t) =
∑
A∈Π

1{s,t}⊂A

Proof. Let {XA}A∈Π be i.i.d. standard Fréchet random variables. For t ∈ T set
Xt := XA if t ∈ A for A ∈ Π. Then X = {Xt}t∈T is a stochastic process with TCF
χΠ. Apparently, different partitions lead to different TCFs.

Proposition 3.5.3. Any χΠ ∈ TCF(T ) stemming from a partition Π ∈ Π(T ) is an
extremal point of TCF(T )

{χΠ : Π ∈ Π(T )} ⊂ ex(TCF(T )). (3.16)

The closure of the convex hull of these elements is a subset of TCF(T )

conv({χΠ : Π ∈ Π(T )}) ⊂ TCF(T ). (3.17)

Proof. Those elements χΠ ∈ TCF(T ) stemming from a partition Π ∈ Π(T ) take
values in {0, 1} only (the extremal points of [0, 1]). Therefore, they cannot be
decomposed non-trivially as a convex combination of TCFs. The second statement
follows, since TCF(T ) is convex and closed (cf. Proposition 3.3.1).
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Remark 3.5.4. Equality in (3.16) would immediately imply equality in (3.17) due to
the Krein-Milman-Theorem (cf. Theorem A.4.2).

Up to the fourvariate case, equality in (3.16) is indeed established (cf. Tables 3.1
and 3.3)

ex(TCF(M)) = {χΠ : Π ∈ Π(M)} in case M = {1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}.

Let us consider two more observations (Lemma 3.5.5 and Observation 3.5.7.) that
might be helpful to understand the general case.

Lemma 3.5.5. a) Let M be a non-empty finite set. Then χ ∈ TCF(M) if and only
if χ can be represented as

χ(s, t) =
∑

∅6=L⊂M
τL 1{s,t}⊂L (3.18)

for non-negative coefficients {τL}∅6=L⊂M that satisfy

∑
∅6=L⊂M

τL 1t∈L = 1 ∀ t ∈M. (3.19)

b) Let T be an arbitrary non-empty set. Then χ ∈ TCF(T ) if and only if χ can be
represented as

χ(s, t) =
∫
P(T )\{∅}

1{s,t}⊂Q µ(dQ)

for a positive Radon measure µ on P(T ) \ {∅} with∫
P(T )\{∅}

1t∈Q µ(dQ) = 1 ∀ t ∈M.

Proof. Part b) follows from TCF(T ) = MAX(T ) = Ψ(Θ(T )) (cf. Theorem 3.2.4 and
(3.8)) and Corollary 2.4.4 and entails part a), where µ decomposes into point masses
µ({L}) =: τL (cf. Remark 2.4.5).

Remark 3.5.6. Both representations in Lemma 3.5.5 are not (!) uniquely determined
by the TCF χ.

Observation 3.5.7. Assume non-negative coefficients αΠ are given for Π ∈ Π(M)
such that

∑
Π∈Π(M) αΠ = 1. Or equivalently (via P(Π) = αΠ) let P be a probability

measure on Π(M). Set

τL :=
∑

Π∈Π(M) :L∈Π
αΠ = P(L ∈ Π) (3.20)
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for ∅ 6= L ⊂M . Then (3.19) is automatically satisfied, since

∑
∅6=L⊂M

τL1t∈L =
∑

∅6=L⊂M : t∈L
P(L ∈ Π) = P(∃L ∈ Π : t ∈ L) = 1 ∀ t ∈ L.

The TCFs defined by {τL}∅6=L⊂M (cf. (3.18)) and by {αΠ}Π∈Π(M) (cf. Lemma 3.5.2)
coincide by the choice of (3.20)

∑
∅6=L⊂M

τL 1{s,t}⊂L =
∑

Π∈Π(M)
αΠχΠ(s, t) ∀ (s, t) ∈M ×M.

Naturally, the question arises whether some converse statement can be made in order
to establish the coincidence of {χΠ : Π ∈ Π(M)} and ex(TCF(M)). However,
beware that it is possible to choose non-negative coefficients {τL}∅6=L⊂M satisfying
the condition (3.19), such that no probability measure P on Π(M) satisfies (3.20)
for all ∅ 6= L ⊂ M . This is possible even in the trivariate case M = {1, 2, 3}. For
instance, set τ1 = τ2 = τ3 = 0.1, τ12 = τ13 = τ23 = 0.2, τ123 = 0.5, which fulfills
(3.19) since 0.1+0.2+0.2+0.5=1, and assume the existence of P with (3.20). Then

0.1 = P({1} ∈ Π) = P(Π = {{1}, {2}, {3}}) + P(Π = {{1}, {2, 3}})

= P(Π = {{1}, {2}, {3}}) + P({2, 3} ∈ Π) = P(Π = {{1}, {2}, {3}}) + 0.2

yields a contradiction. Nonetheless, ex(TCF(M)) = {χΠ : Π ∈ Π(M)} is true in
the trivariate case. Thus, better ideas to involve the non-uniqueness of coefficients
τL in the representation (3.18) are needed.

Even though the general case remains an open question to us, it is appealing to
believe that those TCFs stemming from partitions are precisely the extremal TCFs,
since they allow for a convenient interpretation. The value χ(s, t) of a TCF χ would
simply be the probability of s and t being equivalent under a random equivalence
relation.
Inclusion (3.16) is useful (also without equality) in that it offers a new method

to generate valid TCFs as a convex combination
∑

Π∈Π αΠχΠ of partition TCFs χΠ

together with a corresponding simple max-stable distribution
∨

Π∈Π αΠXΠ, where
XΠ is the process described in the proof of Lemma 3.5.2. This also opens up a bridge
to involve models for random partitions. One can be sure to cover a fairly rich class
of TCFs this way (all TCFs up to the fourvariate case). Moreover, we obtain a lower
bound on the number of vertices of TCF(M) since the number of partitions of a set
with n elements is known to be the nth Bell number Bn [1]. The first Bell numbers
are (starting with B0) 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975.
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Corollary 3.5.8. The number of vertices of TCF(M) is greater or equal to the
|M |th Bell number B|M |.

We also might try to verify the idea presented in Remark 3.4.8 from the knowlege
of (3.16), and vice versa, Propostition 3.4.7 might help to exclude further potential
vertices of TCF(M) close to (1, 1, . . . , 1). Finally, we want to remark that even if
equality in (3.16) turns out to be true, the problem of identifying the bounding
hyperplanes of TCF(M) will not be an easy one. We refer to [2] for a systematic
study of hyperplanes spanned by vertices of the hypercube (and its limitations).

3.6. TCFs compared to non-negative correlation functions

Non-negative correlation functions A function ϕ : T × T → R is called positive
definite if it is symmetric and for all n ≥ 1, {t1, . . . , tn} ⊂ T and {a1, . . . , an} ⊂ R

n∑
j,k=1

ajakϕ(tj , tk) ≥ 0.

If ϕ is additionally normalized to the value 1 on the diagonal, the function ϕ is a
correlation function. Denoting the set of non-negative correlation functions by

CF+(T ) :=
{
ϕ : T × T → [0,∞) :

ϕ is positive definite,
ϕ(t, t) = 1 for all t ∈ T .

}
,

we have already seen that

TCF(T ) ⊂ CF+(T ) (3.21)

(cf. (3.1)). If T contains only one or two elements, these sets coincide: TCF({t}) =
CF+({t}) = {1} and

TCF({s, t}) = CF+({s, t}) =
{(

1 ρ

ρ 1

)
: ρ ∈ [0, 1]

}
.

Otherwise for |T | ≥ 3 the inclusion (3.21) is always proper regardless of T being
finite or infinite, as we shall see later on (cf. (3.22)).
Both classes, TCF(T ) and CF+(T ), allow for convex combinations, products and

pointwise limits (see Proposition 3.3.1 and e.g. [5, 3.1.11 and 3.1.12] for the state-
ments for CF+(T )). In Chapter 4, where we consider stationary processes on Rd, we
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compare the turning bands operator and the validity of certain well-known paramet-
ric models such as the Whittle-Matérn model (cf. Section 4.4 and Table 4.4). Here,
we focus on the finite-dimensional inequalities that characterize both classes.

3.6.1. Finite-dimensional inequalities

By definition, the set of functions CF+(T ) is characterized by finite inequalities. In
analogy to Proposition 3.4.4 for TCF(T ) we formulate the following lemma.

Lemma 3.6.1. Let ϕ : T × T → R. Then

ϕ ∈ CF+(T ) ⇐⇒ ϕ|M×M ∈ CF+(M) ∀ ∅ 6= M ∈ F(T ),

where ϕ|M×M denotes the restriction of ϕ to M ×M .

As for TCF(M), we may regard elements of CF+(M) as elements of Rk(M), where
k(M) =

(|M |
2
)

= |M |(|M |−1)
2 . However, unlike TCF(M), the compact convex set

CF+(M) is not a polytope in Rk(M) if M comprises at least three elements, but
is merely bounded by the algebraic conditions of Sylvester’s criterion, which says
that a symmetric real matrix is positive definite if all its principal minors are non-
negative.

Example 3.6.2. In the trivariate case the set CF+(M) is given by

CF+({1, 2, 3}) =




1 x y

x 1 z

y z 1

 :
x, y, z ∈ [0, 1],

1 + 2xyz − (x2 + y2 + z2) ≥ 0

 .
We plot CF+({1, 2, 3}) in Figure 3.3 to illustrate how the polytope TCF({1, 2, 3}) is
contained in CF+({1, 2, 3}). Choosing (x, y, z) = (0.6, 0.6, 0) for example, gives an
element from CF+({1, 2, 3}) \TCF({1, 2, 3}), which is positive definite, but violates
the triangle inequality (3.14).

Moreover, the same (trivial) extensions as in Lemma 3.4.3 for TCF(T ) also hold
for CF+(T ).

Lemma 3.6.3. Let S ⊂ T be a subset of T . If ϕ : S × S → R is a correlation
function in CF+(S), then the following two functions ϕ1 and ϕ2 extend ϕ to an
element of CF+(T ):

ϕ1 : T × T → R, ϕ1(s, t) = ϕ(s, t) · 1{s,t}⊂S + 1{s,t}⊂T\S ,

ϕ2 : T × T → R, ϕ2(s, t) = ϕ(s, t) · 1{s,t}⊂S + δst · 1{s,t}⊂T\S .
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W1

W3

W4

W5

W2
W1

W2

W5
W4

W3

W1
W2

W3

W5
W4

Figure 3.3.: The convex set CF+({1, 2, 3}) (on the right) can be viewed as a subset of the
cube [0, 1]3 when we consider elements as defined by the variables (x, y, z) from Example
3.6.2. It is shown how TCF({1, 2, 3}) (on the left) is contained in CF+({1, 2, 3}) (in the
middle), cf. also Figure 3.1.

Proof. Let U = {Us}s∈S be a Gaussian process on S where each one-dimensional
marginal Us follows a standard normal distribution, such that ϕ(s, t) = EUsUt ist
the covariance function of U . Choose independently from U i.i.d. standard normally
distributed random variables V and {Vt}t∈T\S . Then ϕ1 is the covariance function
of the Gaussian process Wt = Ut ·1t∈S +V ·1t∈T\S and ϕ2 is the covariance function
of the Gaussian process Wt = Ut · 1t∈S + Vt · 1t∈T\S .

Now, it follows from Example 3.6.2 and Lemma 3.6.3 that if T comprises at least
three elements {1, 2, 3}, the function

ϕ : T × T → R, ϕ(s, t) = 0.6 · 1(s,t)∈{(1,2),(2,1),(1,3),(3,1)} + δst (3.22)

belongs to CF+(T ), but cannot belong to TCF(T ) because it violates the triangle
inequality (3.14).

The fourvariate case We have already seen that the polytope TCF({1, 2, 3, 4}) is
bounded by 22 hyperplanes in R6. Apart from requiring elements to be non-negative,
the non-trivial constraints for being an element of TCF({1, 2, 3, 4}) consist of two
types of inequalities, the triangle inequalities (3.14) and the tetrahedron inequalities
(3.13). We compare these two types of inequalities with positive definiteness in
Table 3.4 in the presence of non-negativity. For each constellation of fulfillment (3)
or violation (5) of these properties we provide an example whenever possible. Those
elements in the table which are positive definite clearly belong to CF+({1, 2, 3, 4}).
Since we know already that TCF(M) ⊂ CF+(M), it is obvious that there cannot
be an example in the second row (triangle and tetrahedron inequalities fulfilled and
positive definiteness not). In fact, the triangle inequalities alone suffice already
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triangle tetrahedron positive example
inequalities inequalities definiteness (ϕ12, ϕ13, ϕ14, ϕ23, ϕ24, ϕ34)

3 3 3 (0.5, 0.5, 0.5, 0.5, 0.5, 0.5)
3 3 5 −
3 5 3 (0.5, 0.5, 0.5, 0.1, 0.1, 0.1)
3 5 5 −
5 3 3 (0.8, 0.8, 0.8, 0.5, 0.5, 0.5)
5 3 5 (0.805, 0.805, 0.805, 0.427, 0.427, 0.427)
5 5 3 (0.6, 0.6, 0.6, 0.1, 0.1, 0.1)
5 5 5 (1.0, 1.0, 1.0, 0.0, 0.0, 0.0)

Table 3.4.: The triangle inequalities (3.14) and the tetrahedron inequalities (3.13) describe
the non-trivial bounding hyperplanes of the convex polytope TCF({1, 2, 3, 4}) that is con-
tained in the set of positive definite functions CF+({1, 2, 3, 4}). For each constellation of
fulfillment (3) or violation (5) of these properties we provide an example of a symmetric
4× 4 matrix with 1 on the diagonal whenever this is possible for non-negative values.

to imply positive definiteness in the fourvariate case (see Proposition 3.6.5 below).
In other words, the tetrahedron inequalities are not necessary to enforce positive
definiteness. Therefore it is also not possible to provide an example in the fourth row
(triangle inequalities fulfilled, but tetrahedron inequalities and positive definiteness
not).
Let us denote the set of normalized non-negative symmetric functions that satisfy

the triangle inequality by

TRI(T ) :=

ϕ : T × T → [0,∞) :
ϕ(s, t) = ϕ(t, s),
ϕ(s, t) + ϕ(t, r)− ϕ(s, r) ≤ 1
and ϕ(t, t) = 1 for all s, t, r ∈ T .


Note that elements of TRI(T ) are automatically bounded by 1. Using this, it is easy
to check that we have (trivial) extensions also for TRI(T ) (as before for TCF(T ) or
CF+(T )).

Lemma 3.6.4. Let S ⊂ T be a subset of T . If ϕ : S × S → R is an element
of TRI(S), then the following two functions ϕ1 and ϕ2 extend ϕ to an element of
TRI(T ):

ϕ1 : T × T → R, ϕ1(s, t) = ϕ(s, t) · 1{s,t}⊂S + 1{s,t}⊂T\S ,

ϕ2 : T × T → R, ϕ2(s, t) = ϕ(s, t) · 1{s,t}⊂S + δst · 1{s,t}⊂T\S .

Proposition 3.6.5. TRI(M) ⊂ CF+(M) if and only if |M | ≤ 4.

Proof. Let |M | ≤ 4. It suffices to consider the fourvariate case M = {1, 2, 3, 4}.
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By definition, the set TRI({1, 2, 3, 4}) is a convex polytope in R6. Computing the
vertices of this polytope we find that TRI({1, 2, 3, 4}) has 19 vertices: 15 of these
vertices are precisely the vertices of TCF({1, 2, 3, 4}) as listed in Table 3.3 and there-
fore also elements of CF+({1, 2, 3, 4}). The other 4 vertices are up to symmetries
represented by the positive definite matrix

1 0.5 0.5 0.5
0.5 1 0 0
0.5 0 1 0
0.5 0 0 1

 .

Therefore, all vertices of the convex polytope TRI({1, 2, 3, 4}) are contained in the
convex set CF+({1, 2, 3, 4}), which entails TRI({1, 2, 3, 4}) ⊂ CF+({1, 2, 3, 4}).
Let |M | ≥ 5. In view of Lemma 3.6.4 it suffices to consider the fivevariate case.

We consider the following matrix

K =



1 0.3 0.3 0.6 0.6
0.3 1 0.3 0.6 0.6
0.3 0.3 1 0.6 0.6
0.6 0.6 0.6 1 0.3
0.6 0.6 0.6 0.3 1


.

Although all triangle inequalities (3.14) are satisfied for K, the matrix K is not
positive definite. This yields a counterexample in TRI(M)∩ (CF+(M))c for all sets
M with at least five elements.

Remark 3.6.6. Instead of TRI(M) ⊂ CF+(M) which is wrong for |M | > 4, it seems
likely that

b |M|−1
2 c⋂

k=1
TRI2k+1(M) ⊂ CF+(M) (3.23)

if TRI2k+1(M) denotes the symmetric [0, 1]-valued functions on T × T that satisfy
(3.15) for any e ∈ {−1, 0, 1}M with

∑
t∈M et = 1 and

∑
t∈M |et| = 2k+1. This would

be in accordance with Remark 3.4.8.



Different roads sometimes lead to the same castle.

(George R.R. Martin, A Game of Thrones)

4. Max-stable processes sharing
the same tail correlation function

This chapter is based on joint work with Felix Ballani. In the interest of a better
readability we enclose the proofs in a separate section at the end of the chapter.

4.1. Stationary max-stable processes and their TCFs

The tail correlation function (TCF) of a stationary max-stable processX = {Xt}t∈Rd
on Rd is defined through

χ(X)(h) := lim
x→x∗

P(Xh > x |Xo > x),

where o ∈ Rd denotes the origin. We refer to Chapter 3 for an introduction of TCFs
as a proper subclass of positive definite kernels on T × T . In the literature the
TCF is considered an appropriate summary statistic for max-stable distributions,
cf. [4, 10, 14, 28, 29, 85] among many others. Here, we explore to what extent the
TCF can distinguish between different classes of max-stable processes. In fact, we
identify essentially different stationary max-stable processes on Rd sharing the same
TCF. The focus lies on the stationary max-stable processes presented in Section 1.2
and particular emphasis is put on radially symmetric TCFs that are monotonously
decreasing as the radius grows. We start our analysis by identifying the TCFs of
these basic models in Table 4.1. The expressions therein are verified or referenced
in Section 4.5.1 (Proof of Table 4.1).

Remark 4.1.1. From the previous considerations we know already that any TCF
can be realized by a spectrally discrete process as in Theorem 2.3.5 (cf. also (3.10)).
However, this model is irrelevant for spatial applications and therefore not considered
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Process model Parameter TCF χ(t)

Brown-Resnick (BR) variogram γ erfc
(√

γ(t)/8
)

Variance-mixed
Brown-Resnick (VBR)

variogram γ,
distribution function G
on (0,∞) with G(0+) = 0

∫ ∞
0

erfc
(
s

√
γ(t)

8

)
dG(s)

extremal Gaussian (EG) correlation ρ 1−
√

(1− ρ(t))/2

extremal binary Gaussian
(EBG)

correlation ρ π−1 arcsin ρ(t) + 1/2

Mixed Moving Maxima (M3) random shape f Ef
∫
Rd

f(z) ∧ f(z − t) dz

Mixed Poisson Storm (MPS) distribution function F
on (0,∞) with F (0+) = 0

L(F )
(

2κd−1

dκd
‖t‖2

)

Table 4.1.: Tail correlation functions χ(t) for t ∈ Rd of stationary max-stable processes
on Rd from Section 1.2. The process models are grouped according to different long-range
dependence. Here erfc denotes the complementary error function and L(F ) the Laplace
transform of the distribution function F . M3 processes are considered with a random shape
function f .

here. For instance, it contains far too many parameters (2m − 1 parameters for an
m-variate distribution).

Comparable classes of TCFs If we want to compare the TCFs of processes in
Table 4.1 we need to take into account that Brown-Resnick processes are processes
associated to a variogram, which can be bounded or unbounded. The two situations
– bounded and unbounded variogram – have to be treated separately. Due to their
different behaviour towards long-range dependence (cf. Remark 1.2.4) that is re-
flected in the behaviour of the TCF χ(t) as t→∞ (cf. [50]), it is only meaningful to
compare Brown-Resnick processes with bounded variogram to extremal Gaussian or
extremal binary Gaussian processes and Brown-Resnick processes with unbounded
variogram to Mixed Moving Maxima processes.

Certain monotonicity properties of functions on intervals (absolutely monotone,
completely monotone, α-times monotone) will enter the subsequent considerations
and are therefore summarized in Section A.2.
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4.2. Brown-Resnick vs. EG and EBG processes

Comparing Brown-Resnick processes with extremal Gaussian and extremal binary
Gaussian processes, we need to consider Brown-Resnick processes associated to
bounded variograms on Rd. Such variograms γ are always of the form

γ(t) = λ(1− ρ(t)) t ∈ Rd,

where ρ is a correlation function on Rd, and λ > 0 (cf. [40, sect. 3.1] or [9, p. 32]).
The respective TCF is erfc(

√
λ(1− ρ)/8) (cf. Table 4.1). On the other hand, the

TCFs of an extremal Gaussian and an extremal binary Gaussian process are also
functions of a correlation function ρ (cf. Table 4.1). Thus, the ansatz

χEG(t) = χEBG(t) ⇔ 1−
√

(1− ρEG(t))/2 = π−1 arcsin ρEBG(t) + 1/2

χ
(λ)
BR(t) = χEG(t) ⇔ erfc

[√
λ (1− ρBR(t)) /8

]
= 1−

√
(1− ρEG(t))/2

χ
(λ)
BR(t) = χEBG(t) ⇔ erfc

[√
λ (1− ρBR(t)) /8

]
= π−1 arcsin ρEBG(t) + 1/2,

leads to the question, if (or for which λ > 0) the maps

R :[−1, 1]→ [−1, 1], R(x) := cos
(
π
√

(1− x) /2
)

(4.1)

Sλ :[−1, 1]→ [−1, 1], Sλ(x) := 1− 2
(
erf
[√

λ (1− x) /8
])2

(4.2)

Tλ :[−1, 1]→ [−1, 1], Tλ(x) := cos
(
π erf

[√
λ (1− x) /8

])
(4.3)

(or its inverses R−1, S−1
λ , T−1

λ ) transform correlation functions again into correlation
functions. (Here we write erf(x) := 1− erfc(x) for the error function.) Since convex
combinations, products and (pointwise) limits of correlation functions are again
correlation functions, this requirement will be met if these maps are continuous
on [−1, 1] and analytic on (−1, 1), such that the respective Taylor series at 0 has
only non-negative coefficients. Such functions are absolutely monotone on [0, 1] and
conversely, the Taylor series representation at 0 of an absolutely monotone function
on [0, 1] extends to [−1, 1]. So in fact, we ask, whether or for which λ these maps
are analytic on (−1, 1) and absolutely monotone on [0, 1].

Proposition 4.2.1. The functions R, Sλ and Tλ = R ◦ Sλ from (4.1),(4.2) and
(4.3) are continuous on [−1, 1] and analytic on (−1, 1) for all λ > 0.

a) The function R−R(0) is absolutely monotone on [0, 1].
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extremal
Gaussian

extremal binary Gaussian

Brown-Resnick
with γ bounded
γ = λ(1− ρBR)

Prop. 4.2.1 b)
ρEG = Sλ(ρBR)

Prop. 4.2.1 c)
ρEBG = Tλ(ρBR)

Figure 4.1.: Intersections of sets of tail correlation functions χ arising from extremal Gaus-
sian (EG), extremal binary Gaussian (EBG) and Brown-Resnick processes (BR).

b) The function Sλ is absolutely monotone on [0, 1] for λ ≤ 8(erf−1(1/
√

2))2 ≈
4.425098.

c) The function Tλ = R◦Sλ is absolutely monotone on [0, 1] for λ ≤ 8(erf−1(1/2))2 ≈
1.8197.

Thus, we have the following coincidences of classes of TCFs as summarized in
Figure 4.1. Note that Tλ = R ◦ Sλ and the upper bound in Proposition 4.2.1 for Tλ
is smaller than the upper bound for Sλ, such that the transformation Tλ gives rise
only to elements in the intersection of all three classes of TCFs.

Example 4.2.2. The Brown-Resnick process on Rd associated to the variogram

γBR(t) = 1.62(1− exp(−‖t‖2)) t ∈ Rd,

the extremal Gaussian process on Rd associated to the correlation function

ρEG(t) = 1− 2
(
erf
[
0.45

√
1− exp(−‖t‖2)

])2
t ∈ Rd,

and the extremal binary Gaussian process on Rd associated to the correlation func-
tion

ρEBG(t) = cos
(
π erf

[
0.45

√
1− exp(−‖t‖2)

])
t ∈ Rd

all share the same TCF

χ(t) = erfc
[
0.45

√
1− exp(−‖t‖2)

]
t ∈ Rd.
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Indeed γBR is a well-known variogram on Rd (cf. e.g. [40, sect. 4]) and Proposition
4.2.1 ensures that the functions ρEG and ρEBG are correlation functions on Rd, such
that the respective processes are well-defined.

4.3. Brown-Resnick vs. Mixed Moving Maxima processes

Here, we restrict ourselves to stationary isotropic processes on Rd. When comparing
Brown-Resnick processes to M3 processes, we need to consider Brown-Resnick pro-
cesses associated to unbounded variograms. In fact, we will consider only variograms
that are radially symmetric around the origin o ∈ Rd and grow monotonously to ∞
as the radius grows. We will also involve variance-mixed BR processes and compare
them to two kinds of M3 processes – M3 processes associated to radially symmetric
non-increasing (random) shapes and Mixed Poisson storm processes. First, we iden-
tify the TCFs of these processes. Because we deal with stationary isotropic processes
here, the involved TCFs will depend on the radius (Euclidean norm in Rd) only, and
it is convenient to treat them as functions on [0,∞).

4.3.1. Identifying the classes

Mixed Poisson storm processes The TCF of a Mixed Poisson storm process on
Rd that is associated to the intensity mixing distribution function F on (0,∞) (with
F (0+) = 0) as in Example 1.2.5 is given by the Laplace transform of F as follows
(cf. Table 4.1)

χMPS(t) = L(F )
(2κd−1
dκd

‖t‖2
)

=
∫

(0,∞)
exp

(
−γ 2κd−1

dκd
‖t‖2

)
dF (γ) t ∈ Rd.

That means in every dimension d the class of TCFs arising from Mixed Poisson storm
processes coincides with the (radial) functions, which are completely monotone on
[0,∞), take the value 1 at 0 and vanish at ∞ (cf. (A.3)). In particular, this class
of functions does not depend on the specific dimension, even though the involved
factor 2κd−1/(dκd) does.

M3 processes of radial non-increasing shapes As we shall see next (Proposition
4.3.1), the class of TCFs of M3 processes on Rd of radial non-increasing (random)
shapes can be identified as the Gneiting class Hd (introduced below), which has
already been studied intensively in [37]. In fact, the class Hd can be realized as
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TCFs already by two special subclasses of M3 processes, namely M3 processes of ball
indicator functions and Moving Maxima processes of a single (deterministic) shape
function. To be more precise, we introduce the following notation: Let Bd

r (o) :=
{h : ‖h‖2 ≤ r} ⊂ Rd denote the d-dimensional ball of radius r centered at the origin
and 1Bdr (o) its indicator function. We define the following sets of (radial) functions:

Md – the set of TCFs of M3 processes on Rd of radial non-increasing shapes,
i.e. Md comprises all functions of the form

χ(‖t‖2) = Ef
(∫

Rd
f(‖z‖2) ∧ f(‖z − t‖2) dz

)
, (4.4)

where each realization of a random shape f ≥ 0 depends on the radius
only and is non-increasing in the radius, such that Ef (

∫
Rd f(‖t‖2)dt) = 1.

Mo
d – the subset of Md, where the M3 process is in fact a Moving Maxima

process with a deterministic shape function f .

Bd – the subset of Md, where the M3 process has as shape functions only
normalized indicator functions of balls Bd

R(o) , i.e.

f(‖t‖2) = 1/νd(Bd
R(o)) · 1‖t‖2≤R

with a random radius R ∈ (0,∞).

Hd – the Gneiting class (cf. [37, (17)]), i.e. the class of functions ϕ on [0,∞)
of the form

ϕ(t) =
∫

(0,∞)
hd(st) dG(s), (4.5)

where G is a distribution function on (0,∞) (with G(0+) = 0) and where

hd(t) = dΓ(d/2)√
π Γ((d+ 1)/2)

∫ 1

t
(1− v2)(d−1)/2

+ dv. (4.6)

Here the function hd(t) = h̃d(t)/h̃d(0) with h̃d is the self-convolution
of the ball indicator function 1Bd0.5(o) viewed as a radial function and
sometimes called Euclid’s hat (cf. [37, 80]).

Vd – the Mittal-Berman class (for d ≥ 2; cf. [37, (40)] and [64]), i.e. the class
of functions ϕ on [0,∞) of the form

ϕ(t) = 2
∫ ∞
t/2

Sd,u,θ(t,u)
Sd,u,π

p(u) du, (4.7)
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where p is a probability density function on (0,∞), such that p(u)/ud−1

is non-increasing, and Sd,u,θ is the surface area of the sphere {x : ‖x‖2 =
u} ⊂ Rd intersected by the cone of angle θ(t, u) = arccos(t/(2u)) (with
apex the origin).

Gneiting [37] showed already that the two classes Hd and Vd coincide for d ≥ 2.
In fact, all of these classes coincide (see Section 4.5 for a proof).

Proposition 4.3.1. a) We have Md = Mo
d = Bd = Hd(= Vd) for d ≥ 1 (d ≥ 2).

b) In the equality Hd = Bd the distribution function G corresponds to the law of
1/(2R).

c) In the equality Hd = Mo
d the deterministic shape function f from Mo

d and the
distribution function G from Hd can be recovered from each other by

f(u) = 1
bd

∫ 1/(2u)

0
sddG(s) and G(s) = bd

∫ s

0

1
ud

d
[
f

( 1
2u

)]
, (4.8)

where bd := νd
(
Bd

0.5(o)
)

= (
√
π/2)d/Γ(1 + d/2).

Thus, we can benefit from Gneitings analysis in [37], which is based on [100]
and characterizes Hd by monotonicity properties: The class H1 consists precisely
of the continuous symmetric functions on R (viewed as function on [0,∞)), which
are convex, take the value 1 at 0 and vanish at ∞. These functions are also known
from Pólya’s criterion (cf. [76, Theorem 1]), which states that elements in H1 are
positive definite. Now we know that these functions are even TCFs on R. For d ≥ 2
a function ϕ : [0,∞) → R belongs to the class Hd if and only if ϕ(0) = 1, ϕ is
continuous, limt→∞ ϕ(t) = 0 and −ϕ′(

√
·) is (d + 1)/2-times monotone on (0,∞)

(cf. [37, p. 103] and Definition A.2.6). In case d ≥ 3 is odd, this has a nice geometric
interpretation, which also reveals the connection to completely monotone functions
when d tends to ∞ (cf. [37, pp. 96]). The precise characterization of Hd for d ≥ 2
in terms of convexity properties is stated in [37, Theorems 3.1 and 3.3].
Moreover, [37, Theorems 3.2. and 3.4.] provide inversion formulas, how to gain

the distribution function G from a given ϕ ∈ Hd. If we want to recover also the
defining quantities f and R of the classes Mo

d and Bd respectively, we additionally
need to apply (4.8) or take into account that G is the law of 1/(2R). The explicit
expressions in case d = 1, 2, 3 are given in Table 4.2 and derived in Section 4.5.1
(Proof of Table 4.2). This is of special interest to us, when we want to simulate the
corresponding processes for a given TCF χ = ϕ.
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d = 1 d = 2 d = 3

f(u) −χ′(2u) 4u
π

∫ 1/(2u)

0

√
1

(2ut)2 − 1 dλχ(t) χ′′(2u)/(πu)

G(s) χ (1/s)− χ′ (1/s) /s 1
6s3

∫ s

0

√
(s/t)2 − 1

(
2(s/t)2 + 1

)
dλχ(t)

∫ s

0

1
3t3 dλχ(t)

g(s) χ′′ (1/s) /s3 1
2s4

∫ s

0

√
1

(s/t)2 − 1 dλχ(t) λ′χ(s)/(3s3)

Table 4.2.: Recovery formulas for the monotone Moving Maxima shape function f , the
distribution function G of S = 1/(2R) and its density g (if it exists) in dimensions d = 1, 2, 3
from a given TCF χ. The functions f , G and g are defined on (0,∞), where f and g may
have a pole at 0. We abbreviate λχ(t) := tχ′′(1/t). In case d = 2 we assume here that even
χ ∈ H5 holds in order to eliminate an additional integral.

The classes Hd are all nested, i.e. Hd ⊃ Hd+1 for all d ∈ N. Gneiting [37] also
characterizes the class

H∞ :=
∞⋂
d=1

Hd (4.9)

as scale mixtures of the complementary error function erfc(x) = 2√
π

∫∞
x e−y

2 dy (cf.
[37, Theorems 3.7 and 3.8]). A function ϕ : [0,∞) → R belongs to the class H∞ if
and only if it has an integral representation of the form

ϕ(t) :=
∫

(0,∞)
erfc(st) dG(s) (4.10)

for some distribution function G on (0,∞) (with G(0+) = 0). And this is the
case if and only if ϕ(0) = 1, ϕ is continuous, limt→∞ ϕ(t) = 0 and −ϕ′ (

√
·) is

completely monotone on (0,∞). In particular, this requirement of −ϕ′ (
√
·) being

completely monotone will be met if ϕ itself is already completely monotone, since
√
· is a Bernstein function.

Variance-mixed Brown-Resnick processes The TCF χ of such a process X asso-
ciated to the variogram γ and variance-mixing distribution G as in Example 1.2.6
is given by

χ(t) =
∫

(0,∞)
erfc

s
√
γ(t)

8

 dG(s).
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Distribution function G(s) or g(s) = G′(s) ϕ(t) =
∫ ∞

0
erfc(st) dG(s)

G(s) = e−1/(as)2
e−2t/a 0 < a

g(s) =
√
π

Γ(ν)Γ( 1
2 − ν)

∫ s

0

x2ν−3e−1/(4x2)

(s2 − x2)ν+1/2 dx 21−ν

Γ(ν) t
νKν(t) 0 < ν <

1
2

G(s) = erf(as) 1− 2
π

arctan (t/a) 0 < a

G(s) = 1− e−(as)2
1−

(
1 + (t/a)−2

)−1/2
0 < a

Table 4.3.: Members of the Gneiting class H∞ (cf. (4.9)) and their corresponding distri-
bution function G(s) or probability density g(s) = G′(s) on (0,∞) as scale mixtures of the
complementary error function. As special cases the exponential model, the Whittle-Matérn
family, the arctan model and the Dagum model (cf. [6]) appear. Further explicit examples
of members of the Gneiting class H∞ can be found in Table A.1.

Hence the TCFs of variance-mixed Brown-Resnick processes are precisely the func-
tions of the form

χ(t) = ϕ

√γ(t)
8

 (4.11)

for some ϕ in the Gneiting class H∞ and some variogram on Rd (cf. (4.10)). The
Tables 4.3 and A.1 give examples of corresponding pairs ϕ and distribution functions
G (or probability densities g = G′) that we need to know when we want to simulate
corresponding processes (see also Section 4.5.1: Proof of Table 4.3).

4.3.2. Comparing the classes

We summarize our findings of intersections of classes of TCFs from M3 processes and
Brown-Resnick processes in Figure 4.2. So far, we have seen that the set of TCFs of
M3 processes on Rd of radial non-increasing shapes coincides with the Gneiting class
Hd and can be realized already by either a deterministic shape function or a suitable
mixture of normalized ball indicator functions (cf. Prop. 4.3.1). By definition (cf.
(4.9)) the class H∞ is part of each Hd and H∞ comprises all completely monotone
functions on [0,∞) that take the value 1 at 0 and vanish at ∞ (cf. [37, p. 115]).
These completely monotone functions are in each dimension the TCFs of Mixed
Poisson Storm processes. On the other hand, the class of TCFs of variance-mixed
Brown-Resnick processes surely contains the TCFs of Brown-Resnick processes.



84 4. Max-stable processes sharing the same tail correlation function

Let us compare the TCFs from the Brown-Resnick constructions to the TCFs from
the M3 processes. Since the TCFs of variance-mixed Brown-Resnick processes have
the form χ(t) = ϕ(

√
γ(t)/8) for some variogram γ on Rd and some ϕ ∈ H∞ (cf.

(4.11)), the whole class H∞ itself can be realized by such processes when we choose
γ(t) = 8‖t‖22, which is a valid variogram in each dimension. Finally, we explain why
the enumerated regions in Figure 4.2 are non-empty:

(A) and (B) The variogram γ(t) = 8‖t‖2α2 is valid in each dimension for α ∈ (0, 1]
(corresponding to fractal Brownian motion). Hence erfc(tα) is a valid TCF of a
Brown-Resnick process for α ∈ (0, 1]. Moreover, the function erfc(tα) belongs
to H∞ for α ∈ (0, 1] and it is even completely monotone for α ≤ 0.5.

(C) Consider the simple erfc-mixture

χ(‖t‖2) = 0.25 · erfc(‖t‖2) + 0.75 · erfc(5‖t‖2) t ∈ Rd.

Surely, χ is a member of H∞. Suppose that there is a Brown-Resnick process
on Rd corresponding to a variogram γ̃ such that its TCF χ̃ coincides with χ.
We will show now that this cannot be true for any dimension d. Otherwise,

γ̃(‖t‖2) = 8
[
erfc−1 (0.25 · erfc(‖t‖) + 0.75 · erfc(5‖t‖2))

]2
t ∈ Rd

is a variogram for any dimension d. In particular, γ̃(‖·‖2) is for any dimension
d a continuous negative definite function on Rd. By [5, 5.1.8] it follows that
the function

ψ(r) =
[
erfc−1 (0.25 · erfc(

√
r) + 0.75 · erfc(5

√
r)
)]2

r ∈ [0,∞)

is a (continuous) negative definite function on [0,∞) in the semigroup sense
and obviously ψ(r) ≥ 0. Hence ψ(r) is a Bernstein function (cf. [5, 4.4.3]).
However, the second derivative of ψ(r) has a local minimum. So, the assertion
fails and our assumption must be wrong. That means there is a dimension d0

such that the above χ ∈ H∞ cannot be realized by a Brown-Resnick process
for any dimension d ≥ d0 as a TCF.

(D) The class Hd naturally contains functions with compact support, e.g. the func-
tion hd (cf. (4.5)), whereas the class of TCFs of variance-mixed BR processes
cannot contain such functions. To see this, recall (4.11) and observe that
members of H∞ are scale mixtures of erfc that cannot have compact support.
Thus, the involved variogram in (4.11) would have to take the value∞ outside
a compact region.
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M3 of radial non-increasing shapes = Hd

H∞

Mixed Poisson storms
= completely monotone

Brown-Resnick
with γ radial,
growing to ∞

Variance-mixed
Brown-Resnick
with γ radial,
growing to ∞

(A)

(C)

(B)

(D)

Figure 4.2.: Intersections of sets of tail correlation functions arising from Mixed Moving
Maxima (M3) of radial non-increasing shapes, Mixed Poisson storms, Brown-Resnick and
variance-mixed BR processes. Here, Hd and H∞ refer to the Gneiting classes in (4.5) and
(4.9). The Gneiting class Hd can be realized as M3 process already by either a deterministic
shape function or a suitable mixture of normalized ball indicator functions (cf. Prop. 4.3.1).

4.3.3. Sharp bounds for parametric subclasses

The considerations above also lead to sharp bounds for some well-known parametric
families of positive definite functions to be a TCF, see Table 4.4.

The first three families (powered exponential, Whittle-Matérn, Cauchy) are com-
pletely monotone for the respective parameters (cf. [63, (1.2),(1.6) and (2.32)] for
example), and thus they can be realized by an M3 process of non-increasing shapes,
by a Mixed Poisson storm process or by a variance-mixed BR process (in all cases
in any dimension). The powered error function is not completely monotone, but a
member of the Gneiting class H∞. That means it can be realized by an M3 process
of non-increasing shapes or by a variance-mixed BR process (both in any dimension),
but not by a Mixed Poisson storm process. In all of these cases, we may exclude
bigger parameters ν because the (right-hand) derivative at 0 vanishes for bigger ν,
but the triangle inequality (3.14) enforces this derivative to be negative in order to
be a TCF (cf. [58, Corollary 2] or [86, Theorem 3 (ii)]).

The truncated power function is an example of a TCF with compact support.
Because a TCF has to be positive definite, this leads to the situation that the valid
model parameter depends on the dimension. It is chosen such that the function
belongs to Hd (cf. [37, Theorem 6.3]), and thus can be realized by an M3 process of
non-increasing shapes on Rd. Because of its compact support the function cannot
belong to any of the other classes presented in Figure 4.2 (cf. the comment on region
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Parametric family TCF for

powered exponential exp(−rν) 0 < ν ≤ 1

Whittle-Matérn 21−νΓ(ν)−1rνKν(r) 0 < ν ≤ 0.5

Cauchy (1 + rν)−β β > 0 0 < ν ≤ 1

powered error function erfc(rν) 0 < ν ≤ 1

truncated power function∗ (1− r)ν+ ν ≥ bd/2c+ 1

Table 4.4.: Parametric families of radially symmetric functions on Rd and their sharp
parameter bound for being a tail correlation function (TCF), cf. Figure 4.3. ∗The bound
for the truncated power function is sharp for odd dimensions.

(D)). The bound is sharp in odd dimensions because the function is not positive
definite otherwise, cf. [41, Theorem 1 and p. 165]. For even dimensions this choice
is valid, but possibly not sharp. Again due to [41], we know at least that ν has to
satisfy ν ≥ (d+ 1)/2 in order to be positive definite.

4.4. Operations and Counterexamples

From the previous considerations one might have the impression that any continuous
radial TCF on Rd that is non-increasing and convex on [0,∞) and that vanishes at
∞, belongs to Hd or at least appears already in Figure 4.2. This is true for d = 1,
since H1 comprises all of these functions. The following operations however yield
counterexamples for d ≥ 3.
The turning bands operator has been inspired by [51] and is well-known in the con-

text of isotropic Gaussian processes. Secondly, the multiplication with the Gneiting
class Hd can shorten the range of tail dependence to a compact set. These operations
are derived from construction principles for the corresponding max-stable processes
that can be applied to (almost arbitrary) spectral representations.

4.4.1. Turning bands

The turning bands operator Let k, d ∈ N with 1 ≤ k ≤ d. The set of ordered
tuples (x1, . . . , xk) of k orthonormal vectors in Rd is known as the Stiefel manifold
of orthonormal k-frames in Rd (cf. e.g. [68, p. 131]) and denoted Vk(Rd). If we
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interpret the vectors x1, . . . , xk as columns of a matrix, we identify

Vk(Rd) = {A ∈ Rd×k : ATA = 1k×k}, (4.12)

where AT denotes the transpose of A and 1k×k the identity matrix in Rk×k. A matrix
A ∈ Vk(Rd) embeds Rk linearly and isometrically into Rd, whereas AT applied to
a vector t ∈ Rd is a vector in Rk whose coordinates can be interpreted as the
coordinates of the projection of t onto A(Rk) with respect to the orthonormal frame
defined by the columns of A. For k = 1 the Stiefel manifold is simply the sphere
V1(Rd) = Sd−1 and for k = d the orthogonal group Vd(Rd) = O(d).
In view of (4.12) the Stiefel manifold Vk(Rd) is a compact submanifold of Rd×k.

The action of the orthogononal group O(d) (from the left) exhibits Vk(Rd) as a
locally compact homogeneous space, on which a unique normalized left invariant
Haar measure σdk can be defined [68, p. 142 Example 4], which we call uniform
distribution [47, 57].

Definition 4.4.1. For 1 ≤ k ≤ d we define the turning bands operator by

TBdk : C(Rk)→ C(Rd) TBdk(f)(t) :=
∫
Vk(Rd)

f
(
AT(t)

)
σdk(dA).

Indeed, the turning bands operator is well-defined, since Vk(Rd) is compact.

Lemma 4.4.2. Let k1 ≤ k2 ≤ k3.

a) The composition map

Vk1(Rk2)× Vk2(Rk3)→ Vk1(Rk3) (A,B) 7→ B ◦A

is continuous.

b) If B ∼ σk3
k2

is uniformly distributed on Vk2(Rk3) and A is an independent (Borel-
measurable) random variable with values in Vk1(Rk2), then the composition B ◦A
will also be uniformly distributed B ◦A ∼ σk3

k1
.

c) The turning bands operator is compatible with compositions

TBk2
k1
◦ TBk3

k2
= TBk3

k1
. (4.13)

In the context of Gaussian processes and positive definite functions, the turning
bands operator TBd1 is a familiar operator, see [38, 39, 59, 84, 103], where explicit
formulas and recurrence relations are provided. Let Φd denote the set of radially
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symmetric continuous correlation functions on Rd. Then it is well-known that TBd1
yields a bijection between Φ1 and Φd. In view of (4.13) this implies that TBdk is a
bijection between Φk and Φd. The operator TBdk for arbitrary k, d ∈ N with k ≤ d

is usually implicitly addressed as TBd1 ◦ (TBk1)−1 in the references above. Because of
these bijections, the turning bands method is an important tool for the simulation
of stationary isotropic Gaussian processes.
In the context of max-stable processes and their TCFs the situation transfers to

the following extent.

The turning bands method for max-stable processes Let X be a stochastically
continuous simple max-stable process on Rk. Then the process X has a spectral
representation (1.4)

Xt =
∞∨
n=1

UnVt(ωn) t ∈ Rk, (4.14)

where {(Un, ωn)}∞n=1 denotes a Poisson point process on R+ × Ω with intensity
u−2du ν(dω) and the spectral function Vt(ω) is jointly measurable in the variables
t ∈ Rk and ω ∈ Ω. Based on this representation we define another simple max-stable
process Y on Rd with d ≥ k as follows. Let (Un, ωn, An) be a Poisson point process
on R × Ω × Vk(Rd) of intensity u−2du ν(dω)σdk(dA), where σdk(dA) is the uniform
distribution on the Stiefel manifold Vk(Rd). Set

Yt :=
∞∨
n=1

UnVAT
n (t)(ωn) t ∈ Rd. (4.15)

Then Y is a simple max-stable process on Rd with the following properties.

Lemma 4.4.3. Let X and Y be simple max-stable processes as given by (4.14) and
(4.15) respectively.

a) If X is stationary, then Y is stationary.

b) For any G ∈ O(d) the law of {YG(t)}t∈Rd and the law of Y coincide.

c) Let X be stationary. The (radial) TCF χ(Y ) of the stationary isotropic process
Y can be expressed in terms of the TCF χ(X) of X by

χ(Y ) = TBdk(χ(X)).
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Proposition 4.4.4. If χ is a continuous TCF on Rk, then TBdk(χ) is a continuous
TCF on Rd.

However, not all radially symmetric continuous TCFs on Rd arise as TBdk(χ) for
some TCF χ on Rk. As a counterexample consider the identity

exp(−t) = TB3
1(f)(t) with f(t) = d

dt (t exp(−t)) = (1− t) exp(−t)

(cf. [84, (2.22)]). While the completely monotone function exp(−t) is a valid radial
TCF on R3, the function f cannot be a TCF on R since f attains negative values.
Therefore, it is necessary to consider TBdk also for k > 1 (and not only k = 1) in the
context of radial TCFs.

Remark 4.4.5. The turning bands method is compatible with iterations in the follow-
ing sense: Let q ≥ d and construct a process Z on Rq from the spectral representation
of Y on Rd by

Zt :=
∞∨
n=1

UnVBT
n ◦AT

n (t)(ωn) =
∞∨
n=1

UnV(An◦Bn)T(t)(ωn) t ∈ Rq,

where (Un, ωn, An, Bn) is a Poisson point process on R×Ω× Vk(Rd)× Vd(Rq) with
intensity u−2du ν(dω)σdk(dA)σqd(dB). Then Lemma 4.4.2 implies that Z = {Zt}t∈Rq
has the same law as { ∞∨

n=1
UnVCT

n (t)(ωn)
}
t∈Rq

,

where (Un, ωn, Cn) is a Poisson point process with intensity u−2du ν(dω)σqk(dC).
Thus, the process Z can be constructed directly from the spectral representation of
X without involving Y as a step in between.

4.4.2. Multiplication with the Gneiting class Hd

Let X be a stochastically continuous max-stable process on Rd with spectral rep-
resentation as in (4.14) with k = d and let {B(t)}t∈Rd be a measurable process on
Rd taking values in {0, 1}. We denote the probability space corresponding to B by
(ΩB,AB,PB) and expectation w.r.t. PB by EB. Further, we require that

cB :=
∫
Rd
B(t) dt ∈ (0,∞)
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holds PB-almost surely. Based on these two processes X and B we define another
simple max-stable process Y on Rd by

Yt :=
∞∨
n=1

Un
Bn(t− zn)

cBn
Vt(ωn) t ∈ Rd, (4.16)

where (Un, ωn, zn, Bn) is a Poisson point process on R×Ω×Rd×ΩB with intensity
u−2du ν(dω) dz PB(dωB).

Lemma 4.4.6. Let X and Y be simple max-stable processes as given by (4.14) for
k = d and (4.16) respectively.

a) If X is stationary, then Y is stationary.

b) Let X be stationary. The TCF χ(Y ) of the stationary process Y can be expressed
in terms of the TCF χ(X) of X by

χ(Y )(t) = EB

[∫
Rd B(z)B(z − t)dz∫

Rd B(z)dz

]
· χ(X)(t) t ∈ Rd.

Example 4.4.7. LetX be a stationary stochastically continuous max-stable process
on Rd and let R ∈ (0,∞) be a random radius. Set B(t) := 1‖t‖2≤R the indicator
function of the ball Bd

R(o). Construct the process Y as in (4.16). Then Lemma 4.4.6
and Proposition 4.3.1 give

χ(Y )(t) = ϕG (‖t‖2) · χ(X)(t) t ∈ Rd,

where the function ϕG belongs to the Gneiting class Hd corresponding to the distri-
bution function G of 1/(2R).

Remark 4.4.8. From Proposition 3.3.1, it is already known that multiplication of
TCFs on some space yields again TCFs on the same space. The advantage here is
the explicit construction of a max-stable process from a given spectral representation.

4.4.3. Counterexamples

First, we provide for each d ≥ 3 an example of a radial continuous TCF on Rd that
is convex on [0,∞) and vanishes at ∞ (which is to say that it belongs to H1), but
does not belong to the Gneiting class Hd (cf. (4.5)). Therefore, consider the basic
function of the class H1, the tent function

h1(t) = (1− t)+ t ≥ 0.
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Surely, the tent function h1 ∈ M1 is a radial TCF on R that can be realized by an
M3 process (cf. Prop. 4.3.1). If we apply the turning bands operator we obtain

ϕd(t) := TBd1(h1)(t) t ≥ 0, (4.17)

which is a radial TCF on Rd (cf. Proposition 4.4.4). By [38, equation (6)] ϕd can be
expressed as

ϕd(t) = 2 Γ(d/2)√
π Γ((d− 1)/2)

∫ 1

0
h1(tw)(1− w2)(d−3)/2dw. (4.18)

Proposition 4.4.9. Let ϕd be the function from (4.17).

a) For d ≥ 1 the function ϕd is a radial TCF on Rd that belongs to H1.

b) For d ≥ 1 the function ϕd does not belong to Hk for k ≥ 3.

c) For d = 1 and d ≥ 6 the function ϕd does not belong to H2.

Remark 4.4.10. In the remaining cases d ∈ {2, 3, 4, 5} plots of the function c(t) from
(4.23) suggest that ϕd does not belong to H2 either, since c(t) is not convex, see
Figure 4.4 in Section 4.5.2.

Remark 4.4.11. The function ϕd decreases linearly on the interval [0, 1] (cf. (4.22))

ϕd(t) = 1− βd · t 0 ≤ t ≤ 1, where βd = Γ(d/2)√
π Γ((d+ 1)/2) . (4.19)

Therefore, the radial function χ(t) := 1 − β · t is an admissible radial TCF on the
d-dimensional ball of radius r if β ∈ [0, βd/r]. This complements results in [38],
where it is shown that ϕ(t) = 1−αt is positive definite on the d-dimensional ball of
radius r if and only if α ∈ [0, 2βd/r].

Secondly, combing the turning bands operator and the multiplication operation
leads to an example of a radial TCF on R3 that is convex on [0,∞) and vanishes
at ∞, but that is not contained in any of the classes given in Figure 4.2 for d = 3.
Therefore, consider the function

χd(t) := ϕd(2t) · hd(t) t ≥ 0, (4.20)

where ϕd is from (4.17).

Proposition 4.4.12. Let χd be the function from (4.20).

a) For d ≥ 1 the function χd is a radial TCF on Rd that belongs to H1.
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b) For d ≥ 1 the function χd does not belong to the class of TCFs of variance-mixed
BR processes on Rd.

c) The function χ3 does not belong to any of the classes given in Figure 4.2 for
d = 3.

Remark 4.4.13. It seems very likely that part c) of Proposition 4.4.12 is also true
for general d ≥ 2.

4.5. Proofs and plots

To deal with the function Sλ in Proposition 4.2.1, we first prove an auxiliary lemma,
which might be interesting in its own right.

Lemma 4.5.1. The function f(x) = 1 − (erf(
√
x))2 is completely monotone on

[0,∞).

Proof. The function f is non-negative, continuous on [0,∞) and the first derivative
of f on (0,∞) is given by

f ′(x) = − 2√
π

erf(
√
x)√
x
· e−x x > 0.

Now, the functions e−x and erf
√
x/
√
x are completely monotone on (0,∞) (cf. [63,

(1.2) and Corollary to Theorem 5]). Hence, −f ′ is completely monotone, which
shows that f is completely monotone on [0,∞).

Proof of Proposition 4.2.1. (Parts a) and c) and a first version of part b) are due to
Felix Ballani.)
It can be seen directly that the functions R, Sλ, Tλ are continuous on [−1, 1] and
analytic on (−1, 1) for all λ > 0.

a) Using the series expansion of the cosine function, we arrive at

R(x) =
∞∑
n=0

(−1)n

(2n)! π
2n (1− x)n

2n =
∞∑
n=0

π2n

2n(2n)!

n∑
k=0

(
n

k

)
xk(−1)n−k

=
∞∑
k=0

xk
∞∑
n=0

π2n+2k

2n+k(2n+ 2k)!

(
n+ k

k

)
(−1)n

= R(0) +
∞∑
k=1

xk
π2k

22kk!

∞∑
n=0

(−1)n π2n

2n(2n)!
1

(2n+ 2k − 1)(2n+ 2k − 3) . . . (2n+ 1)
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and it suffices to check, whether the coefficients

ak :=
∞∑
n=0

(−1)n π2n

2n(2n)!
1

(2n+ 2k − 1)(2n− 2k − 3) · · · (2n+ 1)

are non-negative for k ≥ 1. Since this series representing ak converges absolutely,
we may partition by even (n = 2`) and odd (n = 2`+ 1) coefficients:

ak =
∞∑
`=0

π4`

22`(4`)!
1

(4`+ 2k − 1) · · · (4`+ 1)

−
∞∑
`=0

π4`+2

22`+1(4`+ 2)!
1

(4`+ 2k + 1) · · · (4`+ 3)

=
∞∑
`=0

π4`

22`(4`)!
1

(4`+ 2k − 1) · · · (4`+ 3)

[
1

4`+ 1 −
π2/2

(4`+ 2)(4`+ 1)
1

4`+ 2k + 1

]

Now, the expression in the brackets is positive since k ≥ 1 and ` ≥ 0. Thus,
ak > 0 for k ≥ 1. In particular, R(x)−R(0) is absolutely monotone on [0, 1].

b) Lemma 4.5.1 tells us that f(x) = 1 − (erf(
√
x))2 is completely monotone on

[0,∞). Now, Sλ(x) = 2f (λ(1− x)/8) − 1. Hence, the k-th derivative for k ≥ 1
satisfies

S
(k)
λ (x) = 2

(
λ

8

)k
(−1)kf (k)

(
λ

8 (1− x)
)
≥ 0.

In particular, all but eventually the 0-th Taylor coefficient Sλ(0) are non-negative,
and Sλ(0) is non-negative if and only if λ ≤ 8(erf−1(1/

√
2))2.

c) Since Tλ = R ◦ Sλ and T ′λ = (R′ ◦ Sλ) · S′λ, it follows from the proof of a) and
b) that all but eventually the 0-th Taylor coefficient Tλ(0) are non-negative, and
Tλ(0) is non-negative if and only if λ ≤ 8(erf−1(1/2))2.

Proof of Proposition 4.3.1. We divide the proof into five steps:

1st step Hd = Bd for d ≥ 1.

By definition, members of the class Bd have the form

χ(‖t‖2) = ER

(
1

νd(Bd
R(o))

∫
Rd
1‖z‖2≤R ∧ 1‖z−t‖2≤R dz

)
= ER

(
hd

(‖t‖2
2R

))

for some random radius R ∈ (0,∞). The last equality holds, because the
integral with the minimum ∧ is in fact a convolution for indicator functions.
Therefore, the transformation S := 1/(2R) shows that this χ and ϕ from (4.5)
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are equal, when G denotes the law of S on (0,∞) and vice versa. Hence
Bd = Hd for d ≥ 1.

2nd step Mo
d = Vd = Hd for d ≥ 2 and (4.8) holds for d ≥ 2.

Members of Mo
d depend on a shape function f ≥ 0 with

∫
Rd f(‖t‖2)dt = 1,

which is non-increasing as the radius grows, whereas members of Vd depend
on a probability density function p on (0,∞) with p(u)/ud−1 non-increasing
in u > 0. Integration along the radius shows that both functions are in 1:1-
corresponcence via

f(‖t‖2) = p(‖t‖2)
Sd,‖t‖2,π

.

Moreover, since f is non-increasing, this correspondence is compatible with
the integration in (4.7) and (4.4) with deterministic f . Hence Mo

d = Vd for
d ≥ 2. From [37] we already know that Hd = Vd. In particular, f and G can
also be recovered from each other by (44) and (45) in [37] with n ≥ 2 or (4.8)
with d ≥ 2 here (where our f corresponds to g therein).

3rd step Mo
1 = H1 and (4.8) holds for d = 1.

If d = 1, it is straightforward to check that for χ ∈Mo
1 depending on a single

shape function f , we have

χ(t) =
∫
R
f(z) ∧ f(z − t) dz = 2

∫ ∞
t/2

f(u) du (4.21)

(similarly to the integration along the radius in (4.7)). Now, precisely the same
proof as the proof of Theorem 5.2. in [37] applies here, when we set n = 1,
g = f , ϕ = χ and omit the term Sn,u,θ in (48) and (49) therein, showing
that Mo

1 = H1. In particular, f and G can also be recovered from each other
by (44) and (45) in [37] with n = 1 or (4.8) with d = 1 here (where our f
corresponds to g therein).

4th step Md ⊂ Hd for d ≥ 1.

From the 2nd and 3rd step we know that Mo
d = Hd for d ≥ 1. That means for

each (single deterministic) radially symmetric non-increasing shape function
f ≥ 0 on Rd with 0 < ‖f‖L1(Rd) < ∞ we may define a unique distribution
function Gf/‖f‖L1(Rd)

via (4.8). We set

A(f)s := ‖f‖L1(Rd) ·Gf/‖f‖L1(Rd)
(s) s > 0
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such that A(f) is non-decreasing on (0,∞) with A(f)0+ = 0, right-continuous
and A(f) has total variation ‖f‖L1(Rd). It is coherent to set A(0) ≡ 0.
Now, consider a member χ of Md and its corresponding measurable process
{f(t)}t∈Rd , which satisfies Ef (‖f‖L1(Rd)) = 1. Then {A(f)s}s>0 defines a non-
decreasing, right-continuous process with E (A(f)∞) = 1 and A(f)0+ = 0.
Moreover, note that (by the correspondence Mo

d = Hd)

χ(t) = Ef
(∫ ∞

0
hd(st) dA(f)s

)
.

Set G(s) := EfA(f)s. Then G is also non-decreasing, right-continuous with
total variation 1 and with G(0+) = 0 (by dominated convergence). Finally,
we obtain again by dominated convergence that

χ(t) =
∫ ∞

0
hd(st) dEfA(f)s =

∫ ∞
0

hd(st) dG(s)

as desired. Hence Md ⊂ Hd.

5th step (Summary) From the previous steps we know that Md ⊂ Hd = Bd = Mo
d

for d ≥ 1. Clearly, Bd ⊂ Md by definition, so that Md,Mo
d ,Bd,Hd coincide for

d ≥ 1. The equality Vd = Hd for d ≥ 2 is already known from [37].

Proof of Lemma 4.4.2. a) The composition of matrices is continuous and here just
restricted to a subspace.

b) Let f be a continuous function on Vk1(Rk3), then (by dominated convergence)
the function g(b) := EA(f(b◦A)) will also be continuous on Vk2(Rk3). Therefore,
EB(g(G−1B)) = EB(g(B)) for all G ∈ O(k3), since B ∼ σk3

k2
. Thus, we also have

for G ∈ O(k3) that

Ef(G−1 ◦B ◦A) = E(E(f(G−1 ◦B ◦A)|B)) = E(g(G−1B))

= E(g(B)) = E(E(f(B ◦A)|B)) = Ef(B ◦A).

c) The assertion follows from part b).

Proof of Lemma 4.4.3. Let M be a non-empty finite subset of Rd and x ∈ (0,∞)M .
The f.d.d. of Y are determined by

− logP(Yt ≤ xt, t ∈M) =
∫
Vk(Rd)

∫
Ω

( ∨
t∈M

VATt(ω)
xt

)
ν(dω)σdk(dA).
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a) If X is stationary, then

∫
Ω

( ∨
t∈M

VAT(t+h)(ω)
xt

)
ν(dω) =

∫
Ω

( ∨
t∈M

VATt(ω)
xt

)
ν(dω),

for all h ∈ Rd and all A ∈ Vk(Rd), since A is linear.

b) This follows since σdk is O(d)-invariant.

c) The assertion follows from (3.2).

Proof of Proposition 4.4.4. In view of Lemma 4.4.3 we need to show that continuous
TCFs on Rk coincide with the TCFs of stochastically continuous processes on Rk.
Therefore, let χ be a continuous TCF on Rk and let X be a corresponding stationary
max-stable process. Let θ be the ECF of X and let X∗ be the simple max-stable
process associated to θ as in Theorem 2.3.5. Note that χ(h) = 2 − θ({h, o}). By
construction, X∗ is also stationary and has TCF χ. Additionally, X∗ is stochastically
continuous due to Theorem 2.5.4.

Proof of Lemma 4.4.6. Let M be a non-empty finite subset of Rd and x ∈ (0,∞)M .
The f.d.d. of Y are determined by

− logP(Yt ≤ xt, t ∈M) = EB
∫
Rd

∫
Ω

( ∨
t∈M

B(t− z)Vt(ω)
cBxt

)
ν(dω) dz.

a) If X is stationary, then

∫
Ω

( ∨
t∈M

B(t− z)Vt+h(ω)
xt

)
ν(dω) =

∫
Ω

( ∨
t∈M

B(t− z)Vt(ω)
xt

)
ν(dω)

for all h ∈ Rd, all z ∈ Rd and all B ∈ {0, 1}Rd . Therefore,

∫
Rd

∫
Ω

( ∨
t∈M

B((t+ h)− z)Vt+h(ω)
xt

)
ν(dω) dz

=
∫
Rd

∫
Ω

( ∨
t∈M

B(t− z)Vt(ω)
xt

)
ν(dω) dz

for all h ∈ Rd and all integrable functions B ∈ {0, 1}Rd .

b) The assertion follows from (3.2) and the fact that b1v1 ∨ b2v2 = b1b2(v1 ∨ v2) for
real numbers b1, b2, v1, v2 with bi ∈ {0, 1} for i = 1, 2.
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Lemma 4.5.2. For all 1 ≤ k ≤ d The turning bands operator TBdk transfers mem-
bers of the class H1 into members of H1.

Proof. The class H1 is the class of continuous functions h on [0,∞) that are convex
and satisfy h(0) = 1 and limt→∞ h(t) = 0. All properties are preserved under
TBdk. For continuity and limt→∞ h(t) = 0 use the dominated convergence theorem.
Preservation of convexity follows from TBdk(h)(r) = EA(h(rc(A))) for r ≥ 0 with
A ∼ σdk and c(A) = ‖AT(1, 0, . . . , 0)T‖2.

Proof of Proposition 4.4.9. A priori it is clear that ϕ1 = h1 does not belong to Hk

for k ≥ 2 [37].

a) Because of Proposition 4.4.4 the function ϕd is a radial TCF on Rd. Lemma 4.5.2
shows that ϕd = TBd1(h1) belongs to H1.

b) From (4.18), we compute that for d ≥ 2

−ϕ′d
(√

t
)

= βd

{
1 t ≤ 1
1− (1− 1/t)(d−1)/2 t > 1

, (4.22)

where βd is the constant from (4.19). Clearly, −ϕ′d(
√
t) is not convex. Therefore,

one of the conditions of Theorem 3.1 in [37] (that is necessary to belong to the
class H3) is not fulfilled.

c) We verify that one of the conditions of Theorem 3.3 in [37] (that is necessary to
belong to the class H2) is not fulfilled: Namely, we show that for all d ≥ 6 the
function

c(t) :=
∫ t

0

√
v

t− v
(
−ϕ′d

(
1/
√
v
))

dv =
∫ 1

0

√
w

1− w
(
−ϕ′d

(
1/
√
tw
)
· t
)
dw

(4.23)

is not convex. From (4.22) we see that

−ϕ′d
(
1/
√
v
)

= βd

{
1− (1− v)(d−1)/2 v < 1
1 v ≥ 1
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Since d ≥ 6 we can compute the second derivative of c at 1:

c′′(1) =
∫ 1

0

√
w

1− w ·
d2

dt2

∣∣∣∣∣
t=1

(
−ϕ′d

(
1/
√
tw
)
· t
)
dw

= βd(d− 1)
∫ 1

0
w3/2(1− w)(d−6)/2(1− w · (d+ 1)/4)dw

= βd(d− 1)
(
B

(5
2 ,
d− 4

2

)
− d+ 1

4 B

(7
2 ,
d− 4

2

))
= −βd(d− 1) · 3

√
π Γ(d/2− 2)

16 Γ((d+ 1)/2) < 0

Here B(x, y) =
∫ 1

0 t
(x−1)(1 − t)y−1dt denotes the Beta function. Since c′′(1) is

negative, the function c cannot be convex. This finishes the proof.

Lemma 4.5.3. If f, g ∈ H1 then the product also belongs to this class f · g ∈ H1.

Proof. This is an immediate consequence of [37, Lemma 4.7] (or [100, Lemma 2])
which states that if f and g are non-negative, non-increasing and convex on an
interval, then the product f · g is also non-negative, non-increasing and convex
there.

Proof of Proposition 4.4.12. a) From Proposition 4.4.9 we know that ϕd(2t) is a
radial TCF on Rd that belongs to H1. Since hd(t) belongs to Hd it follows from
Example 4.4.7 that the product χd(t) = ϕd(2t) · hd(t) is a radial TCF on Rd.
Moreover hd(t) also belongs to Hd ⊂ H1 and therefore χd ∈ H1 due to Lemma
4.5.3.

b) The function χd does not belong to the class of TCFs of variance-mixed BR
processes on Rd because of its compact support (cf. the comment on region (D)
in Figure 4.2).

c) It suffices to show that the function

f(t) := −χ′3(
√
t) = −2ϕ′3(

√
4t)h3(

√
t) + ϕ3(

√
4t)(−h′3(

√
t))

is not convex, because then one of the conditions of Theorem 3.1 in [37] (that is
necessary to belong to the class H3) is not fulfilled. From (4.6), (4.18) and (4.22)
we see that for t ∈ [0, 1]

h3(
√
t) = 1

2(2− 3t1/2 + t3/2), −h′3(
√
t) = 3

2(1− t),

ϕ3(
√

4t) =
{

1−
√
t t ≤ 1/4

1/(4
√
t) t ≥ 1/4

, −2ϕ′3(
√

4t) =
{

1 t ≤ 1/4
1/(4t) t ≥ 1/4

.
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Thus, f(t) is a decreasing function on [0, 1] with the following left-hand and
right-hand derivative at 1/4

lim
t↑1/4

f ′(t) = −3 and lim
t↓1/4

f ′(t) = −17/4.

Hence, f cannot be convex in a neighborhood of 1/4.

4.5.1. Derivation of expressions in tables

Proof of Table 4.1. The TCF of a Brown-Resnick process has been computed in [52,
Remark 25]. If X is a variance-mixed BR process and Vt = exp

(
SWt − S2

2 σ
2(t)

)
as

in Example 1.2.6, then conditioning on S yields the TCF of X

χVBR(t) = E (Vt ∧ Vo) = E (E (Vt ∧ Vo|S))

= E erfc
(√

S2γ(t)/8
)

=
∫ ∞

0
erfc

s
√
γ(t)

8

 dG(s).

For extremal Gaussian processes we refer to [11, (7)] and (3.6). Now, let X be an
extremal binary Gaussian process and let Z be a Gaussian process with correlation
function ρ as in Example 1.2.2. Then [12, Equation (10.8.3)] gives (with u = 0
therein)

χEBG(t) = P(Zt > 0 | Zo > 0) = 2P(Zt > 0, Zo > 0)

= 2
( 1

2π arcsin(ρ(t)) + 1
4

)
= 1
π

arcsin(ρ(t)) + 1
2 .

The TCF of an M3 processes has been considered before in (3.2.2). Because of (2.4)
and (3.6) the TCF of a Mixed Poisson storm process is given by

χMPS(t) = L(F ) (b ([o, t])) = L(F )
(2κd−1
dκd

‖t‖2
)
,

where b ([o, t]) denotes the mean width of the line segment [o, t] ⊂ Rd between the
origin o and t ∈ Rd (cf. [88, p. 601 (14.7)]).

Lemma 4.5.4. Let d ≥ 3 be odd and ϕ ∈ Hd = Mo
d . Let G be a corresponding

distribution function as in (4.5) in the definition of the class Hd and let f be a non-
increasing shape function as in the definition of the class Mo

d . Set k := (n − 1)/2
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and define the (right-hand) derivative

λ(t) := (−1)k dk

dtk
[
−ϕ′

(√
t
)]

t ≥ 0

Then G and f can be recovered from ϕ by

G(s) =
√
π

dΓ(d/2)

∫ s

0

1
td

dλ
( 1
t2

)
and f(u) =

( 2√
π

)d−1
λ
(
4u2

)
.

Proof. The recovery of G is precisely [37, Theorem 3.2]. By (4.8) we obtain

f(u) = 1
bd

∫ 1/(2u)

0
sddG(s) =

√
π

bd dΓ(d/2)

∫ 1/(2u)

0
dλ
( 1
s2

)
=
( 2√

π

)1/(2u) (
λ(4u2)− lim

x→∞
λ(x)

)
But limx→∞ λ(x) necessarily vanishes, since λ(t) = −a′(t) for a non-negative (i.e.
bounded from below), non-increasing and convex function a(t) due to [37, (22)].

Proof of Table 4.2. In case d = 1 we refer to [37, (18)] for the recovery of G and
g = G′. The recovery of f follows from (4.21). In case d = 3 the previous Lemma
4.5.4 can be applied to d = 3 and ϕ = χ, where we abbreviate λχ(t) = 2λ(1/t2) =
tχ′′(1/t). In case d = 2 we additionally assume that χ ∈ H5, such that

(−1)k dk

dtk
[
−χ′

(√
t
)]

exists for k ∈ {0, 1, 2} and is non-negative, non-increasing and convex for k ∈ {0, 1}
(cf. [37, p. 96]). This requirement ensures that we can apply the monotone conver-
gence theorem iteratively when differentiating within the following integral (4.24).
A priori we know from [37, Theorem 3.4] that

G(r) = 1
2

∫
(0,r)

1
s
dµ(s2) with µ(t) = d

dt

∫ t

0

√
v

t− v
[
−χ′(1/

√
v)
]
dv.

Now χ ∈ H5 ensures that µ′(t) exists by

µ′(t) = d2

dt2
∫ t

0

√
v

t− v
[
−χ′(1/

√
v)
]
dv = d2

dt2
(
t

∫ 1

0

√
w

1− w
[
−χ′(1/

√
wt)

]
dw
)

=
∫ 1

0

√
w

1− w

(
d2

dt2
[
−t χ′(1/

√
wt)

])
dw, (4.24)
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where

d2

dt2
[
−t χ′(1/

√
wt)

]
= 1

4 t
√
wt

[
χ′′
( 1√

wt

)
− 1√

wt
χ′′′

( 1√
wt

)]
.

The substitutions v = wt and v = u2 give

µ′(t) = 1
2 t2

∫ √t
0

√
u2

t− u2 dλχ(u) with λχ(u) = uχ′′(1/u).

Hence G has a density g with

g(s) = µ′(s2) = 1
2 s4

∫ s

0

√
1

(s/u)2 − 1 dλχ(u).

Fubini’s theorem and the substitution s = 1/t yield

G(r) =
∫ r

0
g(s) ds =

∫ r

0

1
2 s4

∫ s

0

√
1

(s/u)2 − 1 dλχ(u) ds

= 1
2

∫ r

0

(∫ r

u

1
s4

1√
s2 − u2

ds
)
udλχ(u) = 1

2

∫ r

0

(∫ 1/u

1/r

t3√
1− t2u2

dt
)
udλχ(u).

Applying [42, p. 96 2.264.4] we arrive at

G(r) = 1
2

∫ r

0

( 1
3u2r2 + 2

3u4

)√1− u2

r2

 udλχ(u)

= 1
6 r3

∫ r

0

(
1 + 2

(
r

u

)2
)√( r

u

)2
− 1

 dλχ(u).

To compute the shape function f we apply (4.8)

π

4 f
( 1

2u

)
=
∫ u

0
s2g(s) ds = 1

2

∫ u

0

1
s2

∫ s

0

√
1

(s/t)2 − 1 dλχ(t) ds.

By Fubini’s theorem and the substitution s = 1/r we have

π

4 f
( 1

2u

)
= 1

2

∫ u

0

(∫ u

t

1
s2

1√
s2 − t2

ds
)
tdλχ(t)

= 1
2

∫ u

0

(∫ 1/t

1/u

r√
1− r2t2

dr
)
tdλχ(t).
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Applying [42, p. 96 2.264.2] gives

π

4 f
( 1

2u

)
= 1

2

∫ u

0

(√
u2 − t2
u t2

)
t dλχ(t) = 1

2u

∫ u

0

√(u
t

)2
− 1

 dλχ(t).

Finally, we replace u by 1/(2u) and obtain

f(u) = 4u
π

∫ 1/(2u)

0

√( 1
2ut

)2
− 1

 dλχ(t)

as desired.

Lemma 4.5.5. Let g(s) =
√
π f(s2) be a probability density on (0,∞) and let

ϕ : [0,∞) → [0, 1] with ϕ(0) = 1 be such that −ϕ′ (
√
·) is the Laplace transform

of f in the following sense

−ϕ′
(√

t
)

=
∫ ∞

0
e−rtf(r) dr.

Then

ϕ (t) =
∫ ∞

0
erfc (st) g(s) ds.

Proof. (analogously to [37, p. 104]) Replacing t by t2 and r by s2 yields

−ϕ′ (t) =
∫ ∞

0
2se−s2t2f(s2) ds =

∫ ∞
0

d
dt [−erfc(st)] g(s) ds.

Applying Fubini’s theorem when integrating w.r.t. t gives

ϕ(0)− ϕ(t) =
∫ ∞

0
[erfc(0)− erfc(st)] g(s)ds,

which entails the claim, since g is a density on (0,∞) and ϕ(0) = 1.

Proof of Table 4.3. We apply Lemma 4.5.5 and derive this table from known Laplace
transforms in [77] using (in this order) equations [p. 964 5.3 (11)], [p. 964 5.3 (12),
p. 963 5.2 (12) and p. 962 5.1 (26)], [p. 963 5.3 (1)] and [p. 963 5.3. (3) with ν = 1.5]
therein.
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4.5.2. Plots

Powered exponential Whittle-Matérn

Cauchy for β = 2 Powered error function

Figure 4.3.: Parametric families of radially symmetric functions on Rd for the param-
eters ν = 0.2, 0.6, 1, 1.4, 1.8 (powered exponential, Cauchy, powered error function) and
ν = 0.1, 0.3, 0.5, 0.7, 0.9 (Whittle-Matérn). The sharp parameter bound for being a tail cor-
relation function (TCF) is marked black, blue functions are TCFs, red functions not, see
Table 4.4.
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Figure 4.4.: The function c(t)/βd with c(t) from (4.23) and βd as in (4.19) is plotted
for d ∈ {2, 3, 4, 5} (black line). Additionally a straight line (red line) indicates that the
respective functions are not convex (cf. Remark 4.4.10).



The more I see the less I know for sure.

(John Lennon)

5. Representations of Brown-Resnick
processes for group actions

In [52] Brown-Resnick processes are introduced as stationary processes on Rd. More-
over, a condition is derived that guarantees that such a process can be represented
as a Mixed Moving Maxima process (cf. [52, Theorem 14]). Here, instead of sta-
tionarity on Rd, we include other types of invariance, when a group action on some
space T is considered. As a convention we will consider left group actions.

Definition 5.0.6. Let G be a group with composition (g, h) 7→ gh and identity
element e. Let T be a set. Then we call a map G × T → T which we write as
(g, t) → gt a (left) group action if g(ht) = (gh)t and et = t for all g, h ∈ G and
t ∈ T . In that case we say that G acts on T (from the left). The orbit of an element
t ∈ T is the set

Gt := {gt : g ∈ G}.

The action is said to be transitive if there is only one orbit, i.e. T = Gt for some
(and then all) t ∈ T . The stabilizer (subgroup) of an element t ∈ T is

Stab(t) := {g ∈ G : gt = t} ⊂ G.

The action is said to be free if Stab(t) = {e} for all t ∈ T . Elements t ∈ T with
Stab(t) = G are called fixed points. If G and T are topological spaces, the action is
said to be continuous if the respective map G× T → T is continuous.

Example 5.0.7. As an example we have in mind the 2-sphere S2 (the unit sphere
in R3) and the rotating S1-action on S2 around some fixed axis. This group action is
continuous and has two fixed points n and s. The group S1 acts freely on S2 \{n, s}.
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Definition 5.0.8. Let G be a (left) group action on some space T . We say that a
stochastic process X on T is G-invariant (w.r.t. to this group action) if the law of
{Xgt}t∈T and the law of X coincide for every g ∈ G.

In the sequel we shall derive a Mixed Moving Maxima representation for G-
invariant Brown-Resnick processes (to be introduced below) when a suitable group
action of some compact group is considered. The difficulty here does not lie in
transferring the proof of [52] to the new situation, but in establishing a measurabil-
ity result. In fact, this measurability problem does not occur in the previous case,
since the question of a unique measurable argmax can be avoided by taking the
(lexicographic) infimum which commutes with the translation action of Rd on Rd.
In order to stress the parallels to previous work, we consider again Brown-Resnick

processes with standard Gumbel marginals (and not standard Fréchet marginals).
We write η(t) (and not ηt) to emphasize the continuous paths later on. To be more
precise, let (Ω,A, ν, V ) be a spectral representation of a simple max-stable process
X on T such that

Xt =
∞∨
n=1

UnVt(ωn) t ∈ T ,

where {(Un, ωn)}∞n=1 denotes a Poisson point process on R+ × Ω with intensity
u−2du ν(dω). Further, assume that (Ω,A, ν) is a probability space and

Vt(ω) = exp(ξω(t)) (ω, t) ∈ Ω× T

for a stochastic process ξ on T , which is distributed according to ν. Then we will
consider, instead of X as above, the max-stable process η = {η(t)}t∈T with

η(t) =
∞∨
n=1

Un + ξn(t) t ∈ T , (5.1)

where Un denotes a Poisson point process on R with intensity e−u du and (ξn)∞n=1
an independent sequence of i.i.d. processes on T distributed according to ν. In
what follows we omit the measure ν and write Pξ instead or Eξ when referring to
the law and expectation of ξ respectively. Because of our standing normalization
requirement

Eξ(eξ(t)) =
∫

Ω
Vt(ω)dν = 1

the process η has standard Gumbel marginals. Note that the law of the process X
equals the law of eη.
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5.1. Brown-Resnick processes for group actions

The proof of [52, Proposition 6] which is carried out for the translation action of Rd

on Rd transfers verbatim to the following situation (cf. also Proposition A.3.1).

Proposition 5.1.1. Let η = {η(t)}t∈T be a max-stable process with standard Gumbel
marginals as in (5.1). Then η is G-invariant if and only if

E (exp (u1ξt1 + u2ξt2 + · · ·+ unξtn)) = E (exp (u1ξgt1 + u2ξgt2 + · · ·+ unξgtn))

for all g ∈ G and t1, . . . , tn ∈ Rd and u1, . . . , un ∈ [0, 1] with
∑n
i=1 ui = 1.

Moreover, [52, Theorem 2] admits the following version, when the respective proof
is adapted or [49, Theorem 1] is applied (cf. also Theorem A.3.2). For convenience,
we will only consider zero mean Gaussian processes.

Theorem 5.1.2. Let {W (t)}t∈T be a zero mean Gaussian process with variance
σ2(t) = Var(W (t)) and variogram γ(s, t) = E(W (s)−W (t))2, such that

γ(gs, gt) = γ(s, t) ∀ g ∈ G, ∀ s, t ∈ T. (5.2)

Set ξ(t) := W (t) − σ2(t)/2 for t ∈ T . Then Eeξ(t) = 1 and thus, {ξ(t)}t∈T defines
a max-stable process η = {η(t)}t∈T with standard Gumbel marginals via (5.1). This
process η has the following properties.

a) η is G-invariant.

b) The law of η depends only on the variogram γ.

As in the case of stationary Brown-Resnick processes on Rd, such a process η as
in Theorem 5.1.2 will be also be referred to as Brown-Resnick process (w.r.t. the
G-action).

Remark 5.1.3. (cf. [52, Remark 12]) It is convenient to fix some to ∈ T and to consider
the process W̃ (t) = W (t)−W (to) = 0 instead of W , which is also Gaussian, has the
same variogram and satisfies W̃ (to) = 0. Its variance is σ̃2(t) = Var(W̃ (t)) = γ(t, to).

Remark 5.1.4. As in Example 3.2.3 the TCF of the Brown-Resnick process η from
Theorem 5.1.2 is given by χ(s, t) = erfc(

√
γ(s, t)/8).

Remark 5.1.5. Let {W (t)}t∈T be a zero mean Gaussian process with variogram
γ(s, t) = E(W (s) −W (t))2 and consider additionally to (5.2) the following state-
ments.
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(i) The process {W (s)−W (t)}(s,t)∈T×T is G-invariant
for the G-action g(s, t) = (gs, gt) on T × T .

(ii) The process {W (gt)−W (t)}t∈T is G-invariant for all g ∈ G.

(iii) The expression γ(gt, t) does not depend on t ∈ T for all g ∈ G.

(iv) The law of the process {W (gt)−W (t)}g∈G does not depend on t ∈ T .

Then the statements (5.2) and (i) are equivalent and secondly, the statements (iii)
and (iv) are equivalent. If G is abelian, (i) implies (ii). If additionally G acts
transitively on T , then all five statements are equivalent. To verify these implications
take into account that

2 Cov(W (s)−W (t) , W (s′)−W (t′)) = γ(s, t′) + γ(t, s′)− γ(s, s′)− γ(t, t′).

An example of a transitive action of an abelian group is, of course, the translation
action of G = Rd on T = Rd. Here, (ii) means thatW is intrinsically stationary and
(iv) means that W has stationary increments. Other cases require more caution.
Consider the rotating S1-action on the 2-sphere S2 ⊂ R3 around some fixed axis,
which has two fixed points. Then (iii) implies immediately γ(s, t) = 0 if s and t

belong to the same orbit, whereas more interesting examples for (5.2) exist. For
instance, the angular distance between s and t is a valid variogram (cf. [43]) and
clearly invariant w.r.t. rotations.

5.2. Mixed Moving Maxima for group actions

Let us modify the definition of an M3 process as in Example 1.2.1 from the transla-
tion action on Rd to certain G-actions on a space T . To this end, we use the notion
of Haar measures as treated in [68], for instance. Recall that, in contrast to Example
1.2.1, we work here with standard Gumbel marginals.

Definition 5.2.1. Let G be a locally compact topological group acting continuously
(from the left) on a topological space T . Denote by µ a (left) Haar measure on G.
If G is compact, we make our choice of Haar measure unique by µ(G) = 1.
Let κ = {κ(t)}t∈T be a measurable process on T such that

Eκ
(∫

G
eκ(g−1t)µ(dg)

)
= 1 ∀ t ∈ T. (5.3)
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Let (κn)∞n=1 be i.i.d. copies of κ and let (gn, Un)∞n=1 be an independent Poisson point
process on G× R with intensity e−uµ(dg)du. We call a process of the form

η(t) :=
∞∨
n=1

(
Un + κn(g−1

n t)
)

t ∈ T.

Mixed Moving Maxima process (M3 process) w.r.t. the G-action.

For a non-empty finite set M ⊂ T the f.d.d. of η in Definition 5.2.1 are given by

− logP(η(t) ≤ yt, t ∈M) = Eκ
∫
G

exp
( ∨
t∈M

κ(g−1t)− yt

)
µ(dg)

for y ∈ RM . In particular η is max-stable with standard Gumbel marginals. To
see the G-invariance of the f.d.d. of η, fix some y ∈ Rm and locations t1, . . . , tm
and note that the function κ̃t1,...,tm(g) := Eκ exp

(∨
t∈M

(
κ(g−1ti)− yi

))
on G is

integrable. Since µ is a (left) Haar measure, we have for any h ∈ G∫
G
κ̃ht1,...,htm(g)µ(dg) =

∫
G
κ̃t1,...,tm(h−1g)µ(dg) =

∫
G
κ̃t1,...,tm(g)µ(dg),

which shows P(η(hti) ≤ yi, i = 1, . . . ,m) = P(η(ti) ≤ yi, i = 1, . . . ,m) for all h ∈ G.

5.3. M3 representation for actions of compact groups

The following theorem is the main result of this chapter. It can be viewed as an
analogous version of [52, Theorem 14] for compact groups.

Theorem 5.3.1. Let G be a compact metric group acting continuously on a σ-
locally-compact metric space T , such that there exists to with

Stab(to) ⊂ Stab(t) ∀ t ∈ T. (5.4)

Let {W (t)}t∈T be a sample-continuous zero mean Gaussian process with variance
σ2(t) = Var(W (t)) and variogram γ(s, t) = E(W (s)−W (t))2, such that

γ(gs, gt) = γ(s, t) ∀ s, t ∈ T, ∀ g ∈ G, (5.5)

γ(s, t) 6= 0 ∀ s, t ∈ T with s 6= t. (5.6)

Set ξ(t) := W (t) − σ2(t)/2 and let η be the Brown-Resnick process from Theorem
5.1.2. Then there exists a Mixed Moving Maxima process η∗ that has the same law
as η.
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Example 5.3.2. The requirement that there exists to with Stab(to) ⊂ Stab(t) for
all t ∈ T will be met if all stabilizer subgroups Stab(t) ⊂ G for t ∈ T coincide.
For instance, there is an S3 action on SO(3) with stabilizers {±1}. The following
scenarios are also included in this situation:

(a) G acts freely on T , e.g. S1 acts freely on R2\{o} by rotation around the origin.

(a.1) Each group G acts freely on itself by left multiplication. For instance,
the 3-sphere S3 ⊂ R4 admits a group action and acts freely on itself.

(b) G acts transitively on T and the stablilizer subgroup Stab(to) ⊂ G of some to ∈
T (hence every to ∈ T ) is a normal subgroup of G (meaning gStab(to)g−1 =
Stab(to) for g ∈ G). In this case T ∼= G/Stab(to) is necessarily compact (see
Lemma 5.3.4).

(b.1) This is includes transitive actions of abelian groups, e.g. S1 × S1 acts
transitively on the 2-dimensional torus.

On the other hand, it is not necessary, to require that all stabilizer subgroups
coincide. For instance, in addition to the above scenarios fixed points t∗ (with
Stab(t∗) = G) can be admitted as in the rotating S1-action on R2 or on the 2-sphere
S2. However, (5.4) does not include the case that the stabilizer subgroups are only
conjugate. The isometric SO(3)-action on S2 may not be considered, for example.

Example 5.3.3. Consider again the rotating S1-action on the sphere S2, which has
two fixed points. This example meets (5.4). Many suitable variograms for Theorem
5.3.1 that depend only on the spherical distance can be found in [43].

The following lemma summarizes some facts concerning the group action involved
in Theorem 5.3.1. We refer to [73] and [72]. A detailed study of Haar measures on
locally compact homogeneous spaces can be found in [68].

Lemma 5.3.4. Let G be a compact metric group acting continuously on a σ-locally-
compact metric space T (from the left). Let to ∈ T and Gto ⊂ T its (compact) orbit
and Stab(to) ⊂ G the stabilizer of to, which is a closed (hence compact) subgroup of
G. Then the map

G/Stab(to)→ Gto, [g]→ gto

is well-defined and a homeomorphism. In particular Ho := G/Stab(to) ∼= Gto is
compact and locally compact. The group G acts continuously on Ho by left multipli-
cation: g[h] := [gh].
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If additionally Stab(to) is a normal subgroup in G, then Ho is also a compact
metric group and the continuous quotient map G → Ho where g 7→ [g] is a group
homomorphism. Any finite G-invariant (or equivalently Ho-invariant) measure on
the Borel-σ-algebra of Ho is a constant multiple of the (left) Haar measure µ̃ on
Ho with µ̃(Ho) = 1. The (probability) Haar measure µ̃ on Ho is the pushforward
measure of the (probability) Haar measure µ on G under the quotient map G→ Ho.

Before we can prove Theorem 5.3.1, we need to establish a crucial preparatory
result, which is also of independent interest.

Lemma 5.3.5. Let (T, d) be a compact metric space and (C(T ), ‖·‖) the Banach
space of real-valued continuous functions on T endowed with the supremum norm
‖·‖. Let Camax(T ) be the subset of functions f ∈ C(T ), such that there exists a
unique point t ∈ T , at which the maximum value of f is attained. Then Camax(T )
is measurable w.r.t. the Borel-σ-algebra of the supremum norm and the map

argmax : Camax(T )→ T,

which assigns to each function f ∈ Camax(T ) this unique point, is well-defined and
measurable.

Proof. For f ∈ C(T ) we define the set of its maximizers

set- argmax(f) :=
{
t ∈ T : f(t) = max

t∈T
f(t)

}
,

which is a non-empty compact subset of T , since T is compact and f is continuous.
Thus, we have a well-defined map set-argmax : C(T ) → K(T ) into K(T ), the set
of non-empty compact subsets of T . By choosing a countable dense subset S of the
compact metrizable space T , we can express set-argmax(f) as

set-argmax(f) =
⋂
s∈S
{t ∈ T : f(t) ≥ f(s)},

since f is continuous. Now, for each s ∈ S, the set As(f) := {t ∈ T : f(t) ≥ f(s)} is
a non-empty compact subset of T , since T is compact and f is continuous. Moreover
the assignment C(T ) → K(T ) with f 7→ As(f) is measurable with respect to the
Borel-σ-algebra of the Fell topology on K(T ). To see this, e.g. write As(f) =
{t ∈ T : fs(t) ≥ 0} as upper level set of the continuous function fs(t) = f(t) −
f(s), which depends continuously on f ∈ C(T ) (cf. [65, Example 1.2]). Hence,
also the countable intersection set-argmax(f) =

⋂
s∈S As(f) : C(T ) → K(T ) is

measurable with respect to the Borel-σ-algebra of the Fell topology on K(T ) (cf.
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[65, Theorem 2.25]). Because T is compact, the Fell topology on K(T ) coincides
with the topology of the Hausdorff distance ρd with respect to the metric d on T (cf.
[3, Theorem 3.93]). Thus, set-argmax : C(T )→ K(T ) is measurable with respect to
the Borel-σ-algebra of the Hausdorff distance ρd. Further, the map

i : T → K(T ), i(t) = {t}

embeds (T, d) isometrically intoK(T ) as a closed (hence measurable) subset ofK(T )
(cf. [3, Lemma 3.78]). We may conclude that

Camax(T ) = set-argmax−1(i(T ))

is measurable (with respect to the Borel-σ-algebra of the supremum norm). More-
over, the map

argmax := i−1 ◦ set-argmax : Camax(T )→ T

is well-defined. Let A ⊂ T be closed (and hence compact). Then i(A) ⊂ K(T ) is
also compact, since i is continuous. Therefore,

argmax−1(A) = set-argmax−1(i(A)) ⊂ Camax(T )

is measurable, which shows that the map argmax is measurable.

Proof of Theorem 5.3.1. We take the proof of Theorem 14 in [52] as a guideline
adding some subtle changes. Let (Ω,A,PW ) denote the probability space corre-
sponding to the Gaussian process W : Ω → C(T ). The process ξ : Ω → C(T ) with
ξ(t) := W (t)−σ2(t)/2 is also Gaussian and continuous. A short computation shows
that

Var(ξ(s)− ξ(t)) = γ(s, t) (5.7)

Because of (5.4), we have that Stab(to) ⊂ Stab(gto) = gStab(to)g−1 for all g ∈ G.
Hence, Stab(to) ⊂ G is a normal subgroup of G. By Lemma 5.3.4, we have that the
map G/Stab(to) → Gto given by [g] 7→ gto is well-defined and a homeomorphism.
In particular

Ho := G/Stab(to) ∼= Gto

is a compact metric group and G acts continuously on Ho by left multiplication:
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g[h] := [gh]. Moreover, the following map is well-defined and continuous

()o : C(T )→ C(Ho), f 7→ fo, where fo([g]) := f(gto). (5.8)

Applying this map ()o to ξ yields a sample continuous Gaussian process ξo : Ω →
C(Ho). Since Ho is compact metric, each sample path of ξo attains its maximum
and the set Camax(Ho) of continuous functions on Ho with unique maximizer is
measurable, cf. Lemma 5.3.5. Further, due to (5.7) and (5.6) we have

Var(ξo([g1])− ξo([g2])) = γ(g1to, g2to) 6= 0 ∀ [g1] 6= [g2].

Thus, [53, Lemma 2.6.] ensures that PW (ξ−1
o (Camax(Ho))) = 1. So, the Gaussian

process W allows for an undistinguishable process W ∗ on Ω by replacing the sample
paths on the complement of ξ−1

o (Camax(Ho)) in Ω by some continuous path, such
that the process ξ∗o([g]) := ξ∗(gto) := W ∗(gto) − σ2(gto)/2 attains its maximum at
only one point. We denote the preimage of Camax(Ho) under the continuous map
(5.8) by Camax,o(T ). Then, ξ∗ takes its values only in Camax,o(T ) ⊂ C(T ).

In what follows, we will show that the corresponding Brown-Resnick process η∗

defined through Theorem 5.1.2 (which has the same law as η) has a Mixed Mov-
ing Maxima representation. For notational convenience we will omit the index ()∗

henceforth. From now on, we can stick closer to the proof of Theorem 14 in [52].

Firstly, Lemma 5.3.5 ensures that the argmax-map argmax : Camax(Ho) → Ho is
measurable. This is the crucial point when verifying that the following maps are
measurable:

R× Camax,o(T ) π //

p
((QQQQQQQQQQQQ

Ho × R× C(T )

Camax,o(T )
Π

66mmmmmmmmmmmm

π(u, ξ) := ([g′], y′, f ′), where [g′] := argmax(ξo),

y′ := u+ max(ξo),

f ′(t) := u+ ξ(g′t)− y′

Π(f) := ([g′′], y′′, f ′′), where [g′′] := argmax(fo),

y′′ := max(fo),

f ′′(t) := f(g′′t)− y′′

p(u, ξ) := u+ ξ
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Note that p is well-defined and that the continuous functions f ′ ∈ C(T ) and
f ′′ ∈ C(T ) are only well-defined since Stab(to) ⊂ Stab(t) for all t ∈ T (as assumed,
see (5.4)). The above diagram commutes, i.e. π = Π ◦ p and

Π(g∗f) = (g−1[g′′], y′′, f ′′) ∀ g ∈ G, (5.9)

where g∗f denotes the function on T given by g∗f(t) = f(gt), which belongs again
to Camax,o(T ).

Now, the process η is constructed by (5.1) from a Poisson point process (Un, ξn)∞n=1
on R × C(T ) with intensity measure e−udu × dPξ where Pξ is the law of ξ on
Camax,o(T ). This process transforms under π to a Poisson point process on Ho ×
T × C(T ) with intensity measure

Ψ(A) =
∫
π−1(A)

e−udu× dPξ =
∫
R
e−u P[([g′], y′, f ′) ∈ A] du

for sets A in the Borel-σ-algebra of Ho × T × C(T ), cf. the mapping theorem for
Poisson point processes [54]. By the same computation as in [52] it follows that

Ψ({([h], y + z, f) : ([h], y, f) ∈ A}) = e−zΨ(A) ∀ z ∈ R. (5.10)

Because γ is G-invariant (see (5.2)) and π factorizes by the above diagram and Π
commutes with the G action in the sense of (5.9), Theorem 1 in [49] implies that

Ψ({(g−1[h], y, f) : ([h], y, f) ∈ A}) = Ψ(A) ∀ g ∈ G. (5.11)

Further, we have that

Ψ(Ho × [0, 1]× C(T )) =
∫
R
e−u P(y′ ∈ [0, 1]) du =

∫
R
e−u P(u+ max(ξo) ∈ [0, 1]) du

≤
∫
R
ev P(max(ξo) ≥ v) dv ≤

∫
R
ev P(‖ξo‖C(Ho) ≥ v) dv <∞

where the last inequality follows from the asymptotics of Corollary 3.2 in [56].

Following [52] we introduce the measure ΨA on Ho × R for a measurable subset
A ⊂ C(T ) via ΨA(B) =

∫
B×A e

ydΨ([g], y, f). Because of (5.11) the measure ΨA

is G-invariant (or equivalently Ho-invariant) in the first component Ho and due to
(5.10) it is translation invariant in the second component R. Hence ΨA is a multiple
of the product measure which is built from the (probability) Haar measure µ̃ on Ho

(see Lemma 5.3.4) and the Lebesgue measure on R. Therefore, we write dΨA =
Q(A)µ̃(d[g])dy for some positive constant Q(A), where the assignment A 7→ Q(A)
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also defines a finite measure on C(T ). Setting c := Q(C(T )) and normalizing Q to
a probability measure Q′ := Q/c, we arrive at dΨ = ce−yµ̃(d[g])dydQ′.
By construction, we get that

η(t) =
∞∨
n=1

Un + ξn(t) =
∞∨
n=1

y′′′n + f ′′′n ([g′′′]−1
n t) (5.12)

where the triple

([g′′′]n, y′′′n , f ′′′n ) = ([g′]n, y′n − log(c), f ′n + log(c))

originates from the Poisson point process ([g′]n, y′n, f ′n)∞n=1 with intensity measure
dΨ = ce−yµ̃(d[g])dydQ′. As in [52] we may conclude that, ([g′′′]n, y′′′n , f ′′′n )∞n=1 is a
Poisson point process on Ho × R × C(T ) with intensity measure e−yµ̃(d[g])dydQ∗,
where Q∗ is the law of f ′′′ = f ′ + log c. Thus, the representation (5.12) arises from
the Poisson point process ([g′′′]n, y′′′n )∞n=1 on Ho×R with intensity e−yµ̃(d[g])dy and
independently sampled i.i.d. copies f ′′′n from the probability measure Q∗ on C(T ).
Due to the Gumbel marginals of η,∫

C(T )

∫
Ho
ef([g]−1t)µ̃(d[g])Q∗(df) = − logP(η(t) ≤ 0) = 1 ∀ t ∈ T,

i.e. the representation (5.12) satisfies (5.3). Hence, (5.12) is a Mixed Moving Maxima
representation of η with respect to the group action ofHo. Furthermore, the measure
µ̃ on Ho is the pushforward measure of the (probability) Haar measure µ on G (see
Lemma 5.3.4). This implies that the representation

η(t) =
∞∨
n=1

y′′′n + f ′′′n (g′′′n
−1
t)

where (g′′′n , y′′′n )∞n=1 is a Poisson point process on G × R with intensity e−yµ(dg)dy
and f ′′′n as above, is also a Mixed Moving Maxima representation of η, now with
respect to the group action of G.

5.4. Extremal log-Gaussian representation on the sphere

We consider the Brown-Resnick process η from Theorem 5.1.2 on the 2-sphere T =
S2 w.r.t. the action of the (orientation preserving) isometry group G = SO(3).
Then the involved variogram γ(s, t) necessarily depends only on the angular distance
α(s, t) between points s and t on the sphere, since γ is symmetric and for any fixed
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distance d the group SO(3) acts transitively on {{s, t} : s, t ∈ S2 with α(s, t) = d}.
It is known that such variograms can be represented as γ(s, t) = co − C(s, t) for
some covariance function on the sphere [43, Remark 2], where co ≥

∫ π
o γ(α) sin(α)dα.

Thus, the Gaussian process W in Theorem 5.1.2 with variogram γ can always be
chosen to have covariance C(s, t)/2, which depends on the angular distance only.
Likewise, the resulting process ξ(t) = W (t)− co/4 has the same covariance function
as the process W with a different mean and the process η can be built from ξ via
(5.1). Such constructions are considered in the case of T = Rd, for instance, in
[83, Theorem 2] for Fréchet marginals. Analogously to the name extremal Gaussian
process and extremal binary Gaussian process as in Example 1.2.2, it is concise to
call this representation of the process η extremal log-Gaussian process, since the
stationary Gaussian process in the construction of extremal Gaussian processes is
simply replaced by an SO(3)-invariant log-Gaussian process.
In particular, the representation (5.1) with SO(3)-invariant ξ (instead of an “in-

trinsically SO(3)-invariant” ξ) is an important observation if one is interested in
simulating the Brown-Resnick process η on the sphere, as the “intrinsic” version can
always be avoided.
Finally, note that in general, bounded variograms γ do not need to be repre-

sentable as γ(s, t) = co − C(s, t) for some constant co and some covariance function
C, as the example in [5, 3.2.5 Remark] indicates, whereas such a representation can
still be obtained, when group invariant variograms on compact homogeneous spaces
are considered (cf. [101, p. 619]).



Ever tried. Ever failed. No matter.
Try again. Fail again. Fail better.

(Samuel Beckett)

Concluding remarks

My original interest of research was in a complete characterization of the class of tail
correlation functions. At the early stages of this project I realized that the link to the
extremal coefficient functions was a promising starting point. Chapter 2 deals now
with this approach and does not only prepare the results in Chapter 3, but contains
many observations that are of independent interest. For instance, the construction
of a process parameterized by its ECF in Theorem 2.3.5 and the sharp inequality of
Corollary 2.6.8 have been established. The characterization of the set of TCFs as an
infinite-dimensional polytope and the observations on partition TCFs in Chapter 3
have become the closest answer to the original characterization problem for TCFs.
Note that these results are not restricted to the class of max-stable processes, since
Chapter 3 also takes into account all TCFs of not necessarily max-stable processes
as well as the closure of normalized covariance functions of binary processes.
Moreover, the Gneiting class H∞ is, in my opinion, a satisfactory analogue in the

context of TCFs to the class Φ∞ in the context of correlation functions, where Φ∞
denotes the radial continuous correlation functions that are admissable on Rd for
all dimensions d. Likewise, the class H∞ contains radial continuous TCFs that are
admissable on Rd for all dimensions d. It is known that functions from Φ∞ take the
form ϕ(r2), where ϕ is a completely monotone function on [0,∞) with ϕ(0) = 1.
The functions ϕ from H∞ are continuous with ϕ(0) = 1 and decreasing to 0, such
that −ϕ′ (

√
·) is completely monotone on (0,∞). Convex combinations of functions

from H∞ and the constant function 1 form the richest class of TCFs we know that
does not depend on the specific dimension of the surrounding space (see Chapter 4).
Therefore, I think that the class of variance-mixed Brown-Resnick processes which
realizes the class H∞ offers a useful flexibility worth studying.
Further, advanced TCFs with desired properties (such as compact support) can

be constructed from the basic construction principles for TCFs from Chapters 3
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and 4. The variance-mixing in the construction of Brown-Resnick processes can also
be combined with the generalizations of Brown-Resnick processes from Chapter 5.
For instance, there exists a variance-mixed Brown-Resnick process on the 2-sphere
S2 with TCF χ(s, t) = 1− 2π−1 arctan(α(s, t)q/a) for q ∈ (0, 0.5] and a > 0, which
depends solely on the angular distance α(s, t) between points s and t.
Finally, we collect some questions that remained unsolved. Three open problems

have already been formulated in Remarks 2.6.10, 3.4.8 and 3.6.6. Further open
questions concerning the characterization of TCFs are as follows.
A complete list of all higher dimensional inequalities describing the class of TCFs

seems hard to achieve. However, the observation that partition TCFs are precisely
the vertices of TCF(M) for |M | ≤ 4 in Chapter 3 is at first sight promising for a
characterization of the general vertex set. It is unclear if this is a low-dimensional
phenomenon or a deeper structural result.
In Chapter 3 it was shown that two TCFs can be multiplied and the result is

again a TCF. However, it is not clear which products of a TCF and an arbitrary
non-negative correlation function are again a TCF. For instance, it would be nice
to incorporate a damped oscillation. Multiplication with a periodic zigzag function
(which is an admissable TCF on R) is rather unsatisfactory compared to the mul-
tiplication with a cosine that is normalized to a non-negative correlation function
(which is not a TCF).
In Remark 4.4.11 it is noted that the function χ(t) := 1 − β · t that decreases

linearly in the radius t is an admissible TCF on the d-dimensional ball Bd
r (o) of

radius r if β ∈ [0, βd/r] with βd as in (4.19). With regard to results in [38], where it
is shown that ϕ(t) = 1− α · t is positive definite on the d-dimensional ball of radius
r if and only if α ∈ [0, 2βd/r], it seems likely that the bound in Remark 4.4.11 is
sharp.



A. Appendix

A.1. Harmonic analysis on abelian semigroups

We revise several notions and results from harmonic analysis on abelian semigroups
referring mostly to [5] and [65] for the notation in Equation (A.1). For our purposes
it suffices to consider only real-valued functions. This section is particularly relevant
for Chapter 2.
Let (S, ◦, e) be an abelian semigroup (meaning that S is a non-empty set with

an associative and commutative composition ◦ on S and a neutral element e). The
composition of several elements si for i ∈ I will be abbreviated by ©i∈I si.

Definition A.1.1 (positive definite and negative definite functions in the semigroup
sense). A function ϕ : S → R is called positive definite (in the semigroup sense) if
for all n ≥ 1, {s1, . . . , sn} ⊂ S, {a1, . . . , an} ⊂ R

n∑
j,k=1

ajakϕ(sj ◦ sk) ≥ 0.

A function ψ : S → R is called negative definite (in the semigroup sense) if for all
n ≥ 2, {s1, . . . , sn} ⊂ S, {a1, . . . , an} ⊂ R with

∑n
j=1 aj = 0

n∑
j,k=1

ajakψ(sj ◦ sk) ≤ 0.

Remark A.1.2. More generally, we could define positive and negative definite func-
tions for semigroups S with involution ∗ : S → S (i.e. ∗2 = idS) by replacing the
term ϕ(sj ◦ sk) by ϕ(sj ◦ ∗(sk)) in the definition above. Instead, we work here only
with the identity as involution. If S was an abelian group (where each element s
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has an inverse −s), the choice ∗(s) = −s would be in accordance with a definition
of positive definite functions on abelian groups that might be more familiar to the
reader.
We write P (S) and N(S) for the set of positive definite and negative definite

functions on S, respectively. Further, P b(S) and N l(S) shall denote the set of
bounded positive definite functions and lower bounded negative definite functions.
Clearly, all these properties (positive and negative definiteness, being bounded or
having a lower bound) respect convex combinations and scaling. So P (S), P b(S),
N(S), N l(S) are convex cones.
The cones P (S) and P b(S) are also closed under pointwise multiplication. If ϕ1

and ϕ2 are positive definite functions (and additionally bounded), so is ϕ1 ·ϕ2. The
cones N(S) and N l(S) are closed under adding a constant. If ψ1 is negative definite
(and additionally lower bounded), so is ψ+ c for any constant c ∈ R. The following
lemma gives a relation between P (S) and N(S).

Lemma A.1.3 ([5], 3.2.1. and 3.2.2.). For a function ψ : S → R the following are
equivalent:

(i) ψ ∈ N(S)

(ii) exp(−tψ) ∈ P (S) for all t > 0.

(iii) The function (s, t) → ψ(s) + ψ(t) − ψ(s ◦ t) − ψ(e) is positive definite as a
kernel on S × S.

The functions from the convex cones P b(S) and N l(S) allow for an integral rep-
resentation in terms of bounded semicharacters.

Definition A.1.4. A bounded semicharacter ρ : S → [−1, 1] is a function that
satisfies ρ(e) = 1 and ρ(s ◦ t) = ρ(s)ρ(t) for s, t ∈ S.

The set of all bounded semicharacters is denoted Ŝ. In particular each bounded
semicharacter is a positive definite function. The set Ŝ forms itself a semigroup under
pointwise multiplication and neutral element the semicharacter ρ ≡ 1. We endow
Ŝ ⊂ [−1, 1]S with the product topology which makes Ŝ a topological semigroup.
As a topological space Ŝ is a completely regular compact Hausdorff space. The
following representation theorem holds.

Theorem A.1.5 ([5], 4.2.8. and 4.3.2. Integral representation for functions from
P b(S) and N l(S)). If ϕ ∈ P b(S), the function ϕ uniquely determines a positive
Radon measure µ on Ŝ, such that

ϕ(s) =
∫
Ŝ
ρ(s)µ(dρ).
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If ψ ∈ N l(S), the function ψ uniquely determines an additive function q : S → [0,∞)
and a positive Radon measure µ on Ŝ \ {1} (called Lévy measure) such that

ψ(s) = ψ(0) + q(s) +
∫
Ŝ\{1}

(1− ρ(s))µ(dρ).

Here q(s) = limn→∞
ψ(ns)
n for s ∈ S. If q is identically zero, then ψ is bounded if

and only if µ(Ŝ \ {1}) <∞.

Moreover, if ϕ : S → R is positive definite (and bounded) and c ∈ R a constant,
then trivially, the function ψ = c − ϕ is negative definite (and bounded). But also
conversely, any bounded negative definite function ψ : S → R has the form ψ = c−ϕ
for some positive definite ϕ and a constant c (cf. [5, 4.3.15.]).
For a function f : S → R and elements s1, s ∈ S we use the notation (cf. [65,

p. 7])

(∆s1f) (s) := f(s)− f(s ◦ s1). (A.1)

Note that the operators ∆s1 and ∆s2 commute with each other.

Definition A.1.6 (completely monotone and completely alternating functions).
A function ϕ : S → R is called completely monotone if for all n ≥ 0, {s1, . . . , sn} ⊂ S
and s ∈ S

(∆s1∆s2 . . .∆snϕ) (s) =
∑

I⊂{1,...,n}
(−1)|I| ϕ (s ◦©i∈I si) ≥ 0.

A function ψ : S → R is called completely alternating if for all n ≥ 1, {s1, . . . , sn} ⊂
S and s ∈ S

(∆s1∆s2 . . .∆snψ) (s) =
∑

I⊂{1,...,n}
(−1)|I| ψ (s ◦©i∈I si) ≤ 0.

Lemma A.1.7 ([5], 4.6.6.). Let G be a generator for the semigroup S. Then a func-
tion ψ : S → R is completely alternating if and only if for all n ≥ 1, {s1, . . . , sn} ⊂ G
and s ∈ S

(∆s1∆s2 . . .∆snψ) (s) =
∑

I⊂{1,...,n}
(−1)|I| ψ (s ◦©i∈I si) ≤ 0.

We write M(S) and A(S) for the set of completely monotone and completely
alternating functions on S, respectively. They can be characterized as follows. Let
Ŝ+ denote the set of bounded semicharacters which attain values only in [0, 1].
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Theorem A.1.8 ([5], 4.6.5. and 4.6.7.). The set M(S) is an extreme convex sub-
cone of P b(S). A function ϕ ∈ P b(S) is completely monotone if and only if the
corresponding measure µ from Theorem A.1.5 is concentrated on Ŝ+.
The set A(S) is an extreme convex sub-cone of N l(S). A function ψ ∈ N l(S) is
completely alternating if and only if the corresponding Lévy measure µ from Theorem
A.1.5 is concentrated on Ŝ+ \ {1}.

In particular, if S is 2-divisible (i.e. every element s ∈ S can be decomposed into
s = s′ + s′ for some s′ ∈ S), positive definite functions are automatically positive
(cf. [5, 4.1.6.]) and thus, Ŝ = Ŝ+. Consequently, M(S) = P b(S) and A(S) = N l(S)
if S is 2-divisible.
The cone M(S) is closed under pointwise multiplication. If ϕ1 and ϕ2 are com-

pletely monotone functions, so is ϕ1 · ϕ2. The cone A(S) is closed under adding a
constant. If ψ1 is completely alternating, so is ψ + c for any constant c ∈ R.

Lemma A.1.9 ([5], 4.6.10.). For a function ψ : S → R the following are equivalent:

(i) ψ ∈ A(S)

(ii) exp(−tψ) ∈M(S) for all t > 0.

Idempotent semigroups (cf. [5, 4.4.16.]) Let S be an idempotent semigroup, i.e.
every element s ∈ S satisfies s◦ s = s. Then S is also 2-divisible and M(S) = P b(S)
and A(S) = N l(S). Further, we can define a partial order on S by saying that
s ≤ t if s ◦ t = t. With respect to this partial order positive definite functions ϕ
are automatically decreasing satisfying 0 ≤ ϕ(s) ≤ ϕ(e), whereas negative definite
functions ψ are always increasing, thus bounded from below by ψ(e) ≤ ψ(s). It
follows that

M(S) = P b(S) = P (S) and A(S) = N l(S) = N(S). (A.2)

Consider a semicharacter ρ ∈ Ŝ. We see directly from the definition that it takes
values in {0, 1} if S is idempotent. Set I := ρ−1({1}) ⊂ S. Then I is a sub-semigroup
of S which is hereditary on the left, that is: whenever s ≤ t and t ∈ I it follows that
s ∈ I. In fact, if we denote S the set of sub-semigroups of S which are hereditary on
the left, we have an isomorphism of semigroups (Ŝ, ·, 1) ∼= (S ,∩, S) where the map
and its inverse are given by ρ 7→ ρ−1({1}) and I 7→ 1I . This is indeed an isomorphism
of topological semigroups, if S is endowed with the topology generated by the maps
(δs)s∈S where δs(I) = 1I(s). Moreover, if ψ ∈ N(S) = N l(S), the corresponding q
from Theorem A.1.5 is identically zero, since q(s) = limn→∞

ψ(ns)
n = limn→∞

ψ(s)
n =

0. Theorem A.1.5 simplifies to the following version.
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Theorem A.1.10 ([5], 4.4.17.). Let (S, ◦, e) be an idempotent semigroup.
If ϕ ∈ P (S) = M(S), the function ϕ uniquely determines a positive Radon measure
µ on Ŝ = S , such that

ϕ(s) = µ({ρ ∈ Ŝ : ρ(s) = 1}) = µ({I ∈ S : s ∈ I}).

If ψ ∈ N(S) = A(S), the function ψ uniquely determines a positive Radon measure
µ on Ŝ \ {1} = S \ {S} such that

ψ(s) = ψ(0) + µ({ρ ∈ Ŝ \ {1} : ρ(s) = 0}) = ψ(0) + µ({I ∈ S \ {S} : s /∈ I}).

The function ψ is bounded if and only if µ(Ŝ \ {1}) = µ(S \ {S}) <∞.

A.2. Monotonicity properties of continuous functions

This section is particularly relevant for Chapter 4. We consider continuous func-
tions on intervals of the real line and define certain monotonicity properties. The
definitions made here are in accordance with the previous Section A.1 if we con-
sider functions on the interval [0,∞) when viewed as a semigroup ([0,∞),+, 0).
Therefore, we refer to [5, 4.6.13.].

Definition A.2.1 (cf. [62, 100]). Let (a, b) be an open interval of the real line with
a, b ∈ [−∞,∞] and n ∈ N. A real-valued function f is called n-times monotone
on (a, b), where n ≥ 2, if it is differentiable up to order n − 2 and (−1)kf (k) is
non-negative, non-increasing and convex on (a, b) for k = 0, 1, . . . , n − 2. If n = 1,
we simply require f to be non-negative and non-increasing on (a, b).

In case n ≥ 2, we could have equivalently demanded that (−1)kf (k)(x) ≥ 0 for
x ∈ (a, b) and k = 0, 1, . . . , n − 2 and that (−1)(n−2)f (n−2)(x) is non-negative and
convex in (a, b). Thus, it becomes more apparent that for n → ∞ we arrive at the
definition of completely monotone functions.

Definition A.2.2 ([99], Chapter IV). ) Let (a, b) be an open interval of the real
line with a, b ∈ [−∞,∞]. A real-valued function f is called completely monotone on
(a, b) (resp. absolutely monotone on (a, b) if it has derivatives of all orders and if

(−1)kf (k)(x) ≥ 0 (resp. f (k)(x) ≥ 0)

for all x ∈ (a, b) and k ∈ N ∪ {0}.

Finally, we extend these notions also to closed or half-open intervals.
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Definition A.2.3. Let I be an interval of the real line. We call a real-valued
function f n-times monotone on I (resp. completely monotone on I / absolutely
monotone on I) if f has this property when restricted to the interior

◦
I and if f is

continuous at the boundary points of I.

Clearly, f(x) is absolutely monotone on I if and only if f(−x) is completely
monotone on the reflected interval −I. In the literature, the focus often lies on
the intervals I = (0,∞) or I = [0,∞), since completely monotone functions on
[0,∞) are precisely the functions f , such that f(‖·‖2) is positive definite on Rd for
all dimensions d (cf. e.g. [5, 5.1.5 and 5.1.6.]). Such functions are characterized
as Laplace transforms of non-decreasing functions (or positive measures), cf. [99,
Chapter IV Theorem 12].

Theorem A.2.4 (Bernstein). A function f : (0,∞) → R is completely monotone
on (0,∞) if and only if it has an integral representation of the form

f(x) =
∫

[0,∞)
exp(−tx) dF (t) (A.3)

for some non-decreasing function F : [0,∞) → R, such that the integral converges
for x ∈ (0,∞). Furthermore, the function f can be extended continuously to [0,∞)
– and thus, is completely monotone on [0,∞) – if and only if F is bounded. In this
case f(0) = F (∞)− F (0).

An analogous integral representation with Bernstein’s theorem as the limiting
case holds for n-times monotone functions, cf. [100]. It presents n-times monotone
functions as scale mixtures of Askey’s function (cf. [37]).

Theorem A.2.5 (Williamson). A function f : (0,∞)→ R is n-times monotone on
(0,∞) if and only if it has an integral representation of the form

f(x) =
∫

[0,∞)
(1− tx)n−1

+ dF (t) (A.4)

for some non-decreasing function F : [0,∞) → R bounded from below. (Here y+

denotes max(0, y).) This representation is unique in the sense that when F is nor-
malized to F (0) = 0, the value F (t) is determined at continuity points t > 0 of F .

Finally, this motivates the definition of α-times monotone functions for real α ≥ 1,
which indeed extends the previous Definition A.2.1. For a geometric interpretation
we refer again to [100].
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Definition A.2.6 ([100]). Let α ≥ 1 be a real number. A real-valued function f

on (0,∞) is called α-times monotone on (0,∞) if it has an integral representation
of the form (A.4) with n = α for some non-decreasing function F : [0,∞)→ R with
F (0) = 0. Analogously to Definition A.2.3 we say that a real-valued function f on
[0,∞) is α-times monotone on [0,∞) if f has this property when restricted to (0,∞)
and if f is continuous at 0.

A.3. Brown-Resnick processes

We rephrase results from [52] in our notation from Chapter 1 in order to deduce
generalized versions in two respects. On the one hand we introduce an additional
mixing in the variance term of Brown-Resnick processes in Example 1.2.6, on the
other hand we consider other types of invariance in Chapter 5.

Proposition A.3.1 ([52], Proposition 6). Let X = {Xt}t∈Rd be a simple max-stable
process with spectral process {Vt}t∈Rd = {exp(ξt)}t∈Rd. Then X is stationary if and
only if

E (exp (u1ξt1 + u2ξt2 + · · ·+ unξtn)) = E (exp (u1ξt1+h + u2ξt2+h + · · ·+ unξtn+h))

for all h, t1, . . . , tn ∈ Rd and u1, . . . , un ∈ [0, 1] with
∑n
i=1 ui = 1.

Theorem A.3.2 ([52], Theorem 2). Let {Wt}t∈Rd be a Gaussian process with sta-
tionary increments and variance σ2(t). Set Vt = exp

(
Wt − σ2(t)/2

)
for t ∈ Rd.

Then EVt = 1 and thus, {Vt}t∈Rd is the spectral process of a simple max-stable
process X = {Xt}t∈Rd. This process X has the following properties.

a) X is stationary.

b) The law of X depends on the variogram γ(t) = E(Wt −Wo)2 only.

An additional mixing in the variance of the Gaussian process can be involved as
follows.

Corollary A.3.3. Let {Wt}t∈Rd be a Gaussian process with stationary increments
and variance σ2(t). Independently from W , let S be a random variable on (0,∞)
with distribution function G (with G(0+) = 0). Set Vt = exp

(
SWt − S2σ2(t)/2

)
for t ∈ Rd. Then EVt = 1 and thus, {Vt}t∈Rd is the spectral process of a simple
max-stable process X = {Xt}t∈Rd. This process X has the following properties.

a) X is stationary.
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b) The law of X depends on the variogram γ(t) = E(Wt−Wo)2 and the distribution
function G only.

Proof. For fixed S ∈ (0,∞) the stochastic process {SWt}t∈Rd is still Gaussian with
stationary increments. Moreover, the variance of SWt is Var(SWt) = S2σ2(t) and
the variogram is E(SWt−SWo)2 = S2γ(t). Therefore, all statements can be deduced
from the analogous statement in Theorem A.3.2 by conditioning on the random vari-
able S in the respective expectations that need to be considered, these are EVt (for
EVt = 1), E (exp (u1ξt1 + · · ·+ unξtn)) with ξt = SWt − S2σ2(t)/2 (for stationarity,
cf. Proposition A.3.1) and E

∨n
i=1(Vti/xi) (for the law of X, cf. (1.6)).

Remark A.3.4. It is also possible to admit a point mass G(0+) at 0 in the law of S
in Corollary A.3.3. However, we avoid adding a trivial component.

A.4. Extremal points and the Krein-Milman-Theorem

The vector space RT×T (endowed with the topology of pointwise convergence) is
locally convex and Hausdorff for arbitrary sets T . Therefore, the Krein-Milman
theorem applies to E = RT×T as considered in Section 3.5.

Definition A.4.1. Let E be a vector space and K ⊂ E convex. An element k ∈ K
is called extremal point of K if the following implication holds

k1, k2 ∈ K, α ∈ (0, 1), k = αk1 + (1− α)k2 =⇒ k1 = k2 = k.

The set of extremal points of K will be denoted by ex(K).

Theorem A.4.2 (Krein-Milman, cf. [5] 2.5.5.). Let E be a locally convex Hausdorff
topological vector space over R. Then every compact, convex, non-empty subset K
in E is the closed convex hull of its extremal points:

K = conv(ex(K)).

A.5. Auxiliary results

Here, we collect some auxiliary results in order to avoid a diversion from the leading
ideas in the respective Sections 1.1, 2.3, 2.7 and 3.2. The following proposition shows
how to derive from [66] a characterization of the class of stable tail dependence
functions (1.2).
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Proposition A.5.1. Let M be a non-empty finite set. The function ` : [0,∞)M →
R is a stable tail dependence function if and only if the following conditions are
satisfied:

(i) ` is sublinear, i.e. `(x+ y) ≤ `(x) + `(y) for x, y ∈ [0,∞)M ,

(ii) ` is homogeneous of degree 1,

(iii) ` is max-completely alternating,
i.e. ` is completely alternating on the semigroup ([0,∞),∨,1∅),

(iv) `(1{t}) = 1 for all t ∈M .

Proof. Let ` be a stable tail dependence function. By definition (1.2) it is clear that
` is sublinear and homogeneous (since ` is a mixture of sublinear and homogeneous
functions) and that `(1{t}) = 1 for all t ∈ M (due to standard Fréchet marginals).
Because of [66, Theorem 1] the function ` can be expressed as support function
`(x) = sup{〈x, y〉 : y ∈ K} of a convex compact set K, which is a dependency set
and hence a max-zonoid, cf. [66, Definition 1]. Finally, [66, Theorem 7] implies that
` is max-completely alternating.
Reversely, let ` satisfy the properties (i) to (iv). Because ` is sublinear and ho-

mogeneous, ` can be expressed as support function `(x) = sup{〈x, y〉 : y ∈ K} of a
convex compact set K ⊂ [0,∞)M (cf. [87, Theorem 1.7.1]). Then [66, Theorem 7]
implies that K is a max-zonoid since ` was max-completely alternating. Finally, the
normalization `(1{t}) = 1 implies that K is even a dependency set. Hence ` is a
stable tail dependence function, cf. [66, Theorem 1].

Lemma A.5.2. Let M be a non-empty finite set and ` : [0,∞)M → R. Then ` is
max-completely alternating if and only if for all ∅ 6= L = {t1, t2, . . . , tl} ⊂ M and
v, y ∈ [0,∞)M with v ≥ y (componentwise)

∆∨v{t1}∆
∨
v{t2}

. . .∆∨v{tl}`(y) =
∑
I⊂L

(−1)|I|`(y ∨ vI) ≤ 0 (A.5)

where vA := v · 1A (componentwise).

Proof. The semigroup ([0,∞)M ,∨,1∅) is generated by the functions
{
w{t}

}
for t ∈

M and w ∈ [0,∞)M that have only one non-zero component. Therefore, max-
complete-alternation of ` is equivalent to ∆∨

w
(1)
{t1}

∆∨
w

(2)
{t2}

. . .∆∨
w

(n)
{tn}

`(y) ≤ 0 for w(i) ∈

[0,∞)M and ti ∈M (i = 1, . . . , n) and n ≥ 1 (cf. Lemma A.1.7). Since ∆∨a{t}∆
∨
b{t}

=
∆∨a{t}∧b{t} , it suffices to choose n ≤ |M | and to involve for each t ∈ M at most one
generator w{t}. Hence, max-complete alternation of ` is equivalent to (A.5) for all
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∅ 6= L = {t1, t2, . . . , tl} ⊂ M and v, y ∈ [0,∞)M . The values of v on M \ L do not
enter (A.5) and may be chosen arbitrary, whereas the expression is automatically
zero if vt ≤ yt for some t ∈ L. This finishes the proof.

Lemma A.5.3. Let M be a finite set and ψ : F(M) → R be a function on the
subsets of M . Let K,L ⊂M with K ∩ L = ∅. Then

∑
I⊂L

(−1)|I|+1ψ(K ∪ I) =
∑

J⊂M\(K∪L)

( ∑
I⊂L∪J

(−1)|I|+1ψ((M \ (L ∪ J)) ∪ I)
)
.

(A.6)

Proof. (by induction on the number of elements inM) The assertion is true forM =
∅. For further considerations, we abbreviate σ(ψ,L,K) :=

∑
I⊂L(−1)|I|+1ψ(K ∪ I),

such that (A.6) reads as

σ(ψ,L,K) =
∑

J⊂M\(K∪L)
σ(ψ,L ∪ J,M \ (L ∪ J)). (A.7)

Consider now a finite set M and N = M ∪ {a}, where a is not yet contained in M .
Let K,L ⊂ N with K ∩ L = ∅. We need to establish

σ(ψ,L,K) =
∑

J⊂N\(K∪L)
σ(ψ,L ∪ J,N \ (L ∪ J)). (A.8)

1st case: a ∈ K. Set ψa(C) := ψ(C ∪ {a}) and Ka := K \ {a}. Then (A.8) follows
from the induction hypothesis (A.7) with K replaced by Ka and ψ replaced
by ψa.

2nd case: a ∈ L. Set ψa(C) := ψ(C∪{a}) and La := L\{a}. Then the l.h.s. of (A.8)
is given by σ(ψ,K,La)−σ(ψa,K, La) and the r.h.s. by

∑
J⊂M\(K∪La) σ(ψ,La∪

J,M \ (La ∪ J))− σ(ψa, La ∪ J,M \ (La ∪ J)). Both terms coincide due to the
induction hypothesis (A.7) applied to ψ and La and to ψa and La (instead of
ψ and L therein).

3rd case: a ∈ N \ (K ∪ L). Then the r.h.s. of (A.8) splits according to whether a /∈
J or a ∈ J into

∑
J⊂N\(K∪L)

σ(ψ,L ∪ J,N \ (L ∪ J)) =

 ∑
J⊂M\(K∪L)

σ(ψa, L ∪ J,M \ (L ∪ J))


+

 ∑
J⊂M\(K∪L)

σ(ψ,L ∪ J,M \ (L ∪ J))− σ(ψa, L ∪ J,M \ (L ∪ J))


and therefore equals the r.h.s. of the induction hypothesis (A.7).
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Lemma A.5.4. Let c ∈ R and p : [c,∞)→ (0, 1) such that p is non-decreasing and
limx→∞ p(x) = 1. Let α ≥ 1. Then

lim
x→∞

1− p(x)α

1− p(x) = α.

Proof. This is an application of l’Hôpitals rule, since limx→∞
1−p(x)α
1−p(x) = limt↑1

1−tα
1−t .

Lemma A.5.5. Let c ∈ R and p : [c,∞)→ (0, 1) such that p is non-decreasing and
limx→∞ p(x) = 1. Let f : [c,∞) → [1,∞) be some function which is bounded from
below by 1. Then

a) If limx→∞ f(x) =: α exists, then limx→∞
1−p(x)f(x)

1−p(x) exists and equals α.

b) If limx→∞
1−p(x)f(x)

1−p(x) =: α exists, then limx→∞ f(x) exists and equals α.

Proof. a) Let ε > 0. Because of limx→∞ f(x) = α ≥ 1, we may choose x∗ ∈ [c,∞)
so big that for all x ≥ x∗ we have f(x) ∈ [max(α − ε, 1), α + ε]. We obtain the
following inequality for x ≥ x∗

1− p(x)max(α−ε,1)

1− p(x) ≤ 1− p(x)f(x)

1− p(x) ≤ 1− p(x)α+ε

1− p(x)

By Lemma A.5.4 the left-hand side converges to max(α−ε, 1) whereas the right-
hand side converges to α+ ε as x→∞. This shows the claim.

b) Set g(x) = 1−p(x)f(x)

1−p(x) . Since f(x) ≥ 1 and p(x) ∈ (0, 1), also g(x) ≥ 1 for all
x ∈ [c,∞). Let ε > 0. Because limx→∞ g(x) = α ≥ 1, we may choose x∗ ∈ [c,∞)
so big that for all x ≥ x∗ we have g(x) ∈ [max(α − ε, 1), α + ε]. We obtain the
following inequality for x ≥ x∗

log (1−max(α− ε, 1)(1− p(x)))
log(p(x)) ≤ f(x) ≤ log (1− (α+ ε)(1− p(x)))

log(p(x))

If we consider the situation as x tends to ∞, l’Hôpitals rule applies again, since
limx→∞

log(1−β(1−p(x)))
log(p(x)) = limt↑1

log(1−β(1−t))
log(t) = β for β = max(α − ε, 1) for the

left-hand side and β = α+ ε for the right-hand side. This shows the claim.
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A.6. Further members of the Gneiting class H∞

Table A.1 provides further members of the Gneiting class H∞ in addition to Table
4.3. In these examples both the probability density function and the corresponding
scale mixture of erfc can be expressed in terms of elementary functions. As for Table
4.3, this table can be derived from known Laplace transforms in [77] when Lemma
4.5.5 is applied to [p. 963 5.2 (2)], [p. 963 5.2 (9)], [p. 967 5.7 (5)], [p. 963 5.3 (2)],
[p. 963 5.3 (3) with ν = 2.5], [p. 963 5.3 (3) with ν = 3], [p. 963 5.3 (4)], [p. 966 5.6
(7)], [p. 966 5.6 (8)] therein.
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Probability density g(s) Scale mixture ϕ(t) =
∫ ∞

0
erfc(st) g(s) ds

1
b− a

1[a,b](s)
1

b− a

[
(
√
π t)−1

(
e−a

2t2 − e−b
2t2
)

0 ≤ a < b

+ b erfc(bt)− a erfc(at)
]

a2(s2 + a2)−3/2 ea
2t2 erfc(at) 0 < a

a
√
π erfc(as) 1−

(√
1
t2

+ 1
a2 −

1
t

)
0 < a

4a3
√
π
s2e−a

2s2
1−

[
2
π

arctan
(
t

a

)
+ 4
π
· t

a2 (a2 + t2)

]
0 < a

2a4s3e−a
2s2

1−
t
(
2t2 + 3a2)

2 (t2 + a2)3/2 0 < a

8a5

3
√
π
s4e−a

2s2
1−

[
2
π

arctan
(
t

a

)
+ 2

3π ·
5a3 t+ 3a t3

(a2 + t2)2

]
0 < a

s−2
(
e−a

2s2 − e−b2s2
)

√
π (b− a)

1− 1
π (b− a)

[
t log

(
t2 + b2

t2 + a2

)
0 ≤ a < b

+ 2b arctan
(
t

b

)
− 2a arctan

(
t

a

)]

2
a
√
π
s−2 sin2(a2s2) 1− 1

π

[
arctan

(
t

a
+ 1
)

+ arctan
(
t

a
− 1
)

0 < a

+ t

2a log
(

4a4

t4
+ 1
)

+arctanh
(

2at
2a2 + t2

)]
3

2a3√π
s−4 sin2(a2s2) 1− 1

π

[
arctan

(
t

a
+ 1
)

+ arctan
(
t

a
− 1
)

0 < a

+ 3t
2a arctan

(
2a2

t2

)
− t3

8a3 log
(

4a4

t4
+ 1
)

+ 1
2 log

(
2a2 − 2at+ t2

2a2 + 2at+ t2

)]

Table A.1.: Members of the Gneiting class H∞ (cf. (4.9)) and their corresponding proba-
bility density function g(s) on [0,∞) as scale mixtures of the complementary error function,
cf. also Table 4.3.
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R+ non-negative real numbers R+ = [0,∞)
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F(T ) set of finite subsets of T 15
|M | cardinality of a finite set M
P(T ) power set of T (endowed with the product topology from {0, 1}T ) 25
M non-empty finite subset of T
T arbitrary (index) set
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‖·‖ reference norm on RM 8
|·| absolute value of a real number
‖·‖2 Euclidean norm
‖·‖∞ maximum norm
‖·‖L1 L1 norm on a measure space

Operations and operators
(·)T transpose of a matrix
(·)+ max(0, ·)
∆K difference operator w.r.t. union of sets ∆Kf = f(·)− f(· ∪K) 20
∆s difference operator w.r.t. semigroup operation ∆sf = f(·)− f(· ◦ s) 121
〈x, y〉 standard scalar product of x and y 8
L(F ) Laplace transform L(F )(x) =

∫∞
0 exp(−xt)dF (t)

of a non-decreasing (distribution) function F
b·c largest previous integer of a real number (floor function)∨

maximum
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∧
minimum

TBdk turning bands operator from dimension k to d, see Definition 4.4.1 87
∨ maximum (componentwise where applicable)
∧ minimum (componentwise where applicable)

Constants and special functions
arcsin(x) inverse sine function sin−1(x)
arctan(x) inverse tangent function tan−1(x)
arctanh(x) inverse hyperbolic tangent function tanh−1(x)
βd βd = Γ(d/2)/Γ((d+ 1)/2)/

√
π 91

erf(x) error function erf(x) = 2√
π

∫ x
0 e
−t2dt

erfc(x) complementary error function erfc(x) = 1− erf(x) = 2√
π

∫∞
x
e−t

2dt

Γ(x) gamma function Γ(x) =
∫∞

0 tx−1e−t dt
κd volume of the d-dimensional unit ball κd = πd/2/Γ(1 + d/2) 13
bd volume of the d-dimensional ball of unit diameter,

bd = κd/2d = (
√
π/2)d/Γ(1 + d/2) 81

Bn nth Bell number 70
Kν(x) modified Bessel function of the second kind (cf. [98, p. 52]),

Kν(x) =
∫∞

0 e−x cosh(t) cosh(νt)dt with cosh(t) = (et + e−t)/2

Probability
Cov covariance
E expectation
P probability law
Var variance
i.i.d. independent and identically distributed

Stochastic processes and characteristics
χ tail correlation function 51
χ(X) tail correlation function of the process X 51
χΠ TCF associated to a partition Π, see Lemma 3.5.2 67
η Brown Resnick process with standard Gumbel marginals 12
γ variogram of a Gaussian process W with stationary increments 12
ρ correlation function of a Gaussian process 11
σ2(t) variance of Wt 12
θ extremal coefficient function (ECF), see equation (2.1) 15
θ(u) directional ECF w.r.t. u, see equation (2.24) 41
W Gaussian process with stationary increments 12
X stochastic process, often simple max-stable
X∗ spectrally discrete stochastic process

(associated to coefficients τML or to an ECF θ) 19
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X(u) a spectrally discrete stochastic process
(associated to coefficients τML (u) or to an ECF θ(u)) 42

Notation related to max-stable distributions
K dependency set, see equation (2.18) 33
K∗ dependency set of the process X∗ 37
K(u) dependency set of the process X(u) 46
KM (finite-dimensional) dependency set 9
`∗M stable tail dependence function of {X∗t }t∈M 37
`
(u)
M stable tail dependence function of {X(u)

t }t∈M 47
`M stable tail dependence function 8
τML matrix coefficients of the f.d.d. of a consistent max-linear model 19
τML (u) coefficients describing the f.d.d. of a consistent max-linear model 42
aML (u) matrix columns describing the f.d.d. of a max-linear model 42
H∗M finite-dimensional spectral measure of the process X∗ 18
H

(u)
M finite-dimensional spectral measure of the process X(u) 41

HM (finite-dimensional) spectral measure 8

Sets of functions on T × T or F(T )
BIN(T ) set of uncentered and normalized covariance functions on T × T

of binary processes 54
MAX(T ) set of tail correlation functions on T × T stemming from

simple max-stable processes 54
CF+(T ) set of non-negative correlation functions on T × T 70
TCF(T ) set of tail correlation functions on T × T 54
TCF∞(T ) set of tail correlation functions on T × T stemming from processes

with no jump at the upper endpoint 54
Θ(T ) set of all ECFs on F(T ), see equation (2.2) 16
Θ(u)(T ) set of all directional ECFs on F(T ) w.r.t. u, see equation (2.26) 41
Θb(T ) set of bounded ECFs on F(T ), see equation (3.9) 55
TRI(T ) set of normalized symmetric functions on T × T

that satisfy a triangle inequality 73

Classes of radial functions on [0,∞)
Φ∞ intersection of all classes Φd 117
Φd set of continuous correlation functions on Rd

depending only on the radius 87
Bd set of TCFs of M3 processes with ball indicator functions as shapes 81
H∞ intersection of all Gneiting classes Hd 82
Hd Gneiting class of scale mixtures of hd 81
hd basic function of the Gneiting class Hd 80
Md set of TCFs of M3 processes with radial non-increasing shapes 81
Mo
d set of TCFs of Moving Maxima processes with

a radial non-increasing shape 81
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Vd Mittal-Berman class 81

Miscellaneous
(Ω,A, ν, V ) spectral representation of a max-stable process 10
(Rd,B(Rd), dz) Lebesgue measure on the Borel σ-algebra of Rd 11
B(·) Borel σ-algebra of a topological space
conv(·) convex hull 17
δst Kronecker delta δst = 1s=t 52
1A indicator function of a set A
1A indicator function of an event A

ex(·) extremal points of a convex set 126
HA(θ) halfspace in [0,∞)T depending on θ and A 35
HA(θ(u)) halfspace in [0,∞)T depending on θ(u) and A 45
νd(·) d-dimensional volume w.r.t. the Lebesgue measure on Rd

conv(·) closed convex hull 126
Π(T ) set of partitions of a set T 66
Π partition of a set 66
β intensity of a Poisson hyperplane mosaic 13
EA(θ) hyperplane in [0,∞)T depending on θ and A 35
EA(θ(u)) hyperplane in [0,∞)T depending on θ(u) and A 45
prM natural projection from RT to RM for M ⊂ T 33
Ψ map from [0,∞)F(T ) to [0,∞)T×T mapping ECFs to TCFs 55
σdk uniform distribution on the Stiefel manifold Vk(Rd) 87
Stab(·) stabilizer subgroup 105
Bdr (o) d-dimensional ball of (Euclidean) radius r centered at the origin o ∈ Rd

C typical cell of a Poisson hyperplane mosaic 13
C(·) set of continuous functions on a topological space
Camax(·) set of continuous functions on a topological space

that have a unique argmax 111
Gt orbit of t under the action of a group G 105
Sn n-sphere (unit sphere w.r.t. Euclidean norm in Rn+1)
SM reference sphere in [0,∞)M 8
uA uA = u · 1A (componentwise) for u ∈ RT and A ⊂ T 41
Vk(Rd) Stiefel manifold of orthonormal k-frames in Rd 86
x∗ upper endpoint (essential supremum) of a distribution 51

Abbreviations
BR Brown-Resnick (process) 12
EBG extremal binary Gaussian (process) 12
ECF extremal coefficient function 15
EG extremal Gaussian (process) 12
l.h.s. left hand side
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M3 Mixed Moving Maxima (process) 11
MPS Mixed Poisson storm (process) 13
r.h.s. right hand side
TCF tail correlation function 51
VBR variance-mixed Brown-Resnick (process) 13
w.r.t. with respect to

As a convention we denote the sets of e.g. real-valued, [0,∞]-valued, {0, 1}-valued functions
on a set T by RT , [0,∞]T and {0, 1}T , respectively. Elements therein are addressed as
x = (xt)t∈T .
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G-invariant, 106
α-times monotone, 124
χ-measure, 1, 51
n-times monotone

for intervals, 124
for open intervals, 123

absolutely monotone
for intervals, 124
for open intervals, 123

Bell number, 69
Bernstein function, 28
BR process, 12

for group actions, 107
Brown-Resnick process, 12

for group actions, 107

Cantor cube, 25
capacity functional, 22
Cauchy family, 85
completely alternating, 121

in the semigroup sense, 121
on F(T ), 20

completely monotone
for intervals, 124
for open intervals, 123
in the semigroup sense, 121

control measure, 10
control measure ν, 9
convex hull, 17
convex polytope, 60
correlation function, 70

dependency set, 33
finite-dimensional, 9

directional ECF, 41
directional extremal coefficient function,

41

EBG process, 11
EG process, 11
Euclid’s hat, 80
extremal binary Gaussian process, 11
extremal coefficient, 15
extremal coefficient function, 1, 15, 51

directional, 41
extremal Gaussian process, 11
extremal point, 126
extremal stochastic integral, 9
extremogram, 55

finite-dimensional distribution, 8
Fréchet marginals, 8
Fréchet type, 7

generalized extreme value distribution, 7
Gneiting class, 80
group action, 105

continuous, 105
fixpoint, 105
free, 105
transitive, 105

Gumbel type, 7

Hüsler-Reiss distribution, 33

idempotent semigroup, 122
integral representation, 25
intensity mixing distribution, 13
intrinsically stationary, 108

Laplace transform, 17, 124
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Lévy measure, 121

M3 process, 11
for group actions, 109

marginal distribution, 7
max-completely alternating, 9, 42
max-linear, 17
max-stable, 7

simple, 8
max-stable process, 7
max-zonoid, 9
mean width, 17
Mittal-Berman class, 80
Mixed Moving Maxima process, 11

for group actions, 109
Mixed Poisson storm process, 13
Moving Maxima process, 11
MPS process, 13
multiply monotone

for intervals, 124
for open intervals, 123

negative definite
in the semigroup sense, 119
on F(T ), 20

norming functions, 7

orbit, 105

partition, 67
polytope

convex, 60
positive definite

as a kernel, 70
in the semigroup sense, 119

powered error function, 85
powered exponential family, 85
principal minor, 71
process

BR, 12
for group actions, 107

Brown-Resnick, 12
for group actions, 107

EBG, 11
EG, 11
extremal binary Gaussian, 11
extremal Gaussian, 11
M3, 11
for group actions, 109

max-stable, 7
Mixed Moving Maxima, 11
for group actions, 109

Mixed Poisson storm, 13
Moving Maxima, 11
MPS, 13
spectral, 10
variance-mixed Brown-Resnick, 13
VBR, 13

Pólya’s criterion, 81

Radon measure, 25
random sup-measure, 9, 10
reference norm, 8

semicharacter
bounded, 120

semigroup
abelian, 119
idempotent, 122

shape function, 11
simple, 8
simple max-stable, 8
spectral function, 10
spectral measure, 10

finite-dimensional, 8
spectral process, 10
spectral representation, 10
spectrally discrete, 17
stabilizer (subgroup), 105
stable tail dependence function, 8
standard Fréchet marginals, 8
stationary, 11
stationary increments, 12, 108
stationary isotropic, 11
Stiefel manifold, 86
support function, 9
Sylvester’s criterion, 71

tail correlation function, 51
tail dependence coefficient, 51
tent function, 90
tetrahedron inequality

for TCFs, 62
three types theorem, 7
triangle inequality

for TCFs, 62
truncated power function, 85
turning bands operator, 87

uniform distribution
Stiefel manifold, 87

upper tail dependence coefficient, 51

variance mixing distribution, 13
variance-mixed Brown-Resnick process, 13
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vertex, 60

Weibull type, 7
Whittle-Matérn family, 85
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