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1 INTRODUCTION 

Plants are a rich source of nutrients for many micro-organisms. Although lacking an adaptive 

immune system comparable to animals, plants are able to defend themselves against most 

pathogens. Strategies adopted by plants to combat pathogen attack are either dependent on 

constitutive barriers or on the activation of multi-component defense responses. Constitutive 

defenses include preformed barriers such as cell walls, waxy epidermal cuticles as well as 

chemical substances with antimicrobial effects (phytoanticipins). In addition to preformed 

barriers, plants have the ability to detect pathogens and respond with inducible defenses 

including the production of toxic chemicals, enzymes, and deliberate cell death. If pathogens are 

able to overcome these defense barriers, often devastating effects are caused. In nature, 

various types of plant microbe interactions have been described. In necrotrophic interactions 

pathogens kills infected plants cells (e.g. Botrytis cinerea; Colmenares et al., 2002). In 

biotrophic interactions resources from living host cells are exploited (e.g. Cladosporium fulvum; 

Joosten and de Wit, 1999) and in symbiotic interactions both partners benefit each other (e.g. 

Laccaria bicolor; Lammers et al., 2004). Many pathogens first colonize their host plant as 

biotrophs and then switch to a necrotrophic phase in the later stages of infection by killing the 

host plant (e.g. Verticillium spec.; Klosterman et al., 2009). Such pathogens are called hemi-

biotrophs.  

1.1 Induced plant defense responses 

Plants activate inducible defense responses after detecting pathogen or danger associated 

molecular patterns (PAMPs/DAMPs). A well studied PAMP is flagellin (Zipfel & Felix, 2005) 

which is recognized by the specific membrane bound pathogen recognition receptor (PRR) 

FLS2: FLAGELLIN INSENSITIVE2 (Gómez- Gómez & Boller, 2002, Jones & Dangl, 2006). 

Flg22 is a synthetic 22-amino-acid peptide from a conserved flagellin domain which is sufficient 

to induce many cellular responses (Felix et al., 1999). A genetic screen using flg22 defined the 

Arabidopsis leucine-rich repeat (LRR)-receptor kinase FLS2, which binds flg22 (Chinchilla et al., 

2006) resulting in PAMP-triggered immunity (PTI) that can halt further pathogen colonization. 

Successful pathogens deploy effectors that contribute to pathogen virulence. For example, 

AvrPto and AvrPtoB are unrelated type III effectors that may contribute to virulence by inhibiting 

early steps in PTI (He et al., 2006). Effectors can interfere with PTI resulting in effector-triggered 

susceptibility (ETS). Effectors that enable pathogens to overcome PTI are specifically 

recognized by NB-LRR proteins, resulting in effector-triggered immunity (ETI). ETI  often 
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culminates in a form of programmed cell death called the hypersensitive response (HR; 

Greenberg & Yao, 2004).  

 

Infection of plants with diverse pathogens results in changes in the levels of phytohormones. On 

the basis of the interactions that have been studied, a general rule of hormonal action has been 

proposed in which resistance responses to biotrophs require salicylic acid (SA), whereas 

responses to necrotrophs require jasmonic acid (JA) and ethylene (ET) (Feys & Parker, 2000). 

Roles for ET, SA, and JA have also been proposed in regulation of susceptible responses (Bent 

et al., 1992; Greenberg et al., 2000; Lund et al.,1998; Pilloff et al., 2002). The gaseous hormone 

ET is a critical component of responses to mechanical damage, herbivory (De Vos et al., 2005), 

and pathogen attack in addition to normal developmental processes such as fruit ripening and 

senescence (Abeles et al., 1992). Because of the involvement of many hormones in responses 

to multiple stresses, there must be mechanisms in place to integrate these signals in an orderly 

manner. Thus, complex networks of hormonal interactions, both agonistic (O'Donnell et al., 

1996) and antagonistic (Pieterse & van Loon, 1999) must be rapidly integrated into a single 

response appropriate for an external stimulus. Like many other complex biological processes, 

plant defense responses upon pathogen infection involve transcriptional regulation of a large 

number of plant host genes (Rushton & Somssich, 1998). These differentially regulated plant 

genes encode regulatory factors that are involved in the activation, suppression, and modulation 

of various signaling pathways in plant cells upon pathogen infection. Thus, transcriptional 

regulation of plant host genes is an integral part of plant defense responses with a critical role in 

induced plant disease resistance (Chen, 2002).  

 

Plants, when exposed to variety of pathogens, induce defense responses comprising 

reinforcement of the cell walls, production of phytoalexins and the synthesis of defense-related 

proteins. The cell wall is reinforced by callose deposition, stronger lignifications and embedding 

of phenylpropanoids in the cell wall (Dixon et al., 1994, Lamb & Dixon 1997, Nuernberger & 

Lipka, 2005). In Arabidopsis, camalexin is known as the characteristic phytoalexin possessing 

antimicrobial activity. It has been shown that Camalexin disrupts bacterial membranes 

suggesting its toxic effect on Pseudomonas (Rogers et al., 1996). Synthesis of camalexin is 

induced by a variety of pathogens but it does not lead to resistance against all of them 

(Glawischnig, 2007). Another class of defense related proteins that are strongly induced when 

host plant cells are challenged by pathogen stress is Chitinases. They possess significant 

antifungal activities against many plant pathogenic fungi. Chitinases hydrolyzes the chitin 
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polymers (Van Aalten et al., 2000) which are the main structural components of fungal cell wall 

resulting in a weakened cell wall and rendering fungal cells osmotically sensitive (Jach et al., 

1995).  

Next to the local resistance, plants can evolve a systemic resistance which requires a signal that 

is transferred through the plant. This phenomenon is known as systemic acquired resistance 

(SAR) and a known possible inducer of SAR is the phytohormone SA (Durrant & Dong, 2004). 

SAR is based on the changes in gene expression and leads to systemic synthesis of 

phytoalexin and pathogenesis-related proteins (PR proteins) as well as to an increased 

responsiveness of the tissue to further pathogen attack. 

1.2 Phytohormones in plant defense responses 

Plant hormones are a structurally unrelated collection of small molecules derived from various 

essential metabolic pathways. These molecules act as important regulators of growth and 

mediate responses to both biotic and abiotic stresses.  

1.2.1 Salicylic acid: biosynthesis and signaling in plants 

Upon infection of plants with biotrophic pathogens, the biosysnthesis of the phytohormone SA is 

induced. Increased SA levels lead to transcriptional reprogramming involving the induction of up 

to 2000 genes. The defense gene PR-1 has been used as a marker gene for the whole defense 

response (Durrant & Dong, 2004, Glazebrook, 2005). Two pathways of SA biosynthesis have 

been shown to be active in plants. Plants can synthesize SA from cinnamate produced by the 

activity of phenylalanine ammonia lyase (PAL) (Chen et al., 2009, Lee et al., 1995; Mausch-

Mani and Slusarenko, 1996). Silencing of PAL genes in tobacco or chemical inhibition of PAL 

activity in Arabidopsis, cucumber and potato reduces pathogen-induced SA accumulation 

(Meuly et al., 1995, Coquoz et al., 1998, Mausch-Mani and Slusarenko, 1996). Genetic studies, 

on the other hand, indicate that the bulk of pathogen-induced SA is produced from 

isochorismate (Wildermuth et al., 2001a). Arabidopsis contains two ICS (isochorismate 

synthase) genes encoding SID2, and ICS2. Figure 1 depicts the pathway of SA biosynthesis 

(Wildermuth et al., 2001a, Chen et al., 2009) on the left and SA signaling (Pieterse et al., 2009) 

on the right.  
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Figure 1 Simplified scheme of SA biosynthesis and signaling in plants  

Isotope feeding experiments suggest that plants synthesize SA from cinnamate produced by PAL (El-Basyouni et al., 
1964). Genetic studies have indicated that the bulk of SA is produced from isochorismate (Wildermuth et al., 2001a). 
The recently identified PBS3 and EPS1 are important for pathogen-induced SA production and may encode enzymes 
catalyzing reactions in the synthesis of a precursor or regulatory molecule for SA biosynthesis. SA accumulation 
changes the cellular redox potential, resulting in the reduction of the NPR1 oligomer to its active monomeric form 
which is then translocated into the nucleus where it functions as a transcriptional co-activator of TGA transcription 
factors. (Pieterse et al., 2009)  
 

In the absence of SA, NPR1 (NONEXPRESSOR of PR GENES1) is localized in the cytoplasm, 

where it forms multimers. When SA levels increase, a redox change takes place in the cell (Mou 

et al., 2003) and the NPR1 oligomers dissociate into monomers due to reduction of disulfide 

bonds holding the monomers together. The monomers then enter the nucleus, where they 

function as transcriptional co-activators of bZIP transcription factors of the TGA family. 

1.2.2 Jasmonic acid: biosynthesis and signaling in plants 

The oxylipin JA and its metabolites, collectively known as jasmonates, are known to be plant 

signaling molecules mediating biotic and abiotic stress responses apart from playing important 

roles in the aspects of plant growth and development (Wasternack, 2007). In higher plants, JA is 

synthesized via the octadecanoid pathway (Figure 2). JA can be conjugated to form JA-IIe 

(active form) or converted to the volatile methyl-JA. Increased JA synthesis in response to 

pathogen attack, like B. cinerea, leads to an induction of defense genes such as PDF1.2 (Plant 

Defensin 1.2). Concomitant activation of JA and ET response pathways is required for the 

induction of PDF1.2 (Penninckx et al., 1998). In contrast, ET is not required for the expression 

of VSP1 (Vegetative storage protein1; Glazebrook, 2005), which is induced after wounding. 

Most JA responses are mediated through the F-box protein COI1 (CORONATINE INSENSITIVE 

1).  

Shikimate pathway

Chorismate

ICS1/ICS2

isochorismate

phenylalanine

cinnamate

benzoate

PBS3

EPS1

PAL
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Figure 2 Simplified scheme of jasmonate biosynthetic pathway in Arabidopsis 

Enzymes involved in biosynthesis of Jasmonate: fatty acid desaturase 3, 7 and 8 (FAD); phospholipase A1 (DAD1); 
lipoxygenase (LOX); allene oxide synthase (AOS); allene oxide cyclase (AOC); OPDA reductase (OPR); jasmonic 
acid carboxyl methyl-transferase (JMT) (Turner et al., 2002). 
 

 The jasmonate response requires SCFCOI1 – dependent degradation of repressors much like 

SCFTIR1 targets the AUX-IAAs. JAZ proteins are degraded in a proteasome-dependent manner 

upon jasmonate perception by the F-box protein COI1. Based on genetic evidence that JAZ 

proteins negatively act on the JA pathway and the finding that JAZ proteins interact with the JA-

induced transcription factor MYC2, it was proposed that JAZ proteins interfere in a JA-

modulated manner with MYC2 activity (Chini et al., 2007, Fernández-Calvo et al., 2011, Song et 

al., 2011). Degradation of JAZ leads to the activation of JA-inducible defense genes like VSP2 

and PDF1.2. Pauwels and co-workers showed that the JAZ proteins recruits co-repressor 

TOPLESS (TPL) and TPL-related proteins (TPRs) through an adaptor protein designated Novel 

INteractor of JAZ (NINJA) and that both the NINJA and TPL proteins function as negative 

regulators of jasmonate responses. 
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Figure 3 Signaling cascades including similarities between Auxin (IAA) and JA downstream 
signaling pathways (Robert-Seilaniantz et al., 2011). 

(A) Inactive state of IAA and JA pathways. The negative regulators (AUX-IAA and JAZ) bind to the positive 
regulators (ARF and MYC2) and inactivate these transcription factors. The repression is mediated through the co-
repressor TOPLESS (TPL). TPL is able to bind directly to AUX-IAA whereas it requires NINJA to bind to JAZ 
proteins.  
(B) Active state of IAA, and JA pathways. Upon perception of the active hormones, AUX-IAA and JAZ are glued 
to the IAA and JA receptors- TIR1 and COI1, resp. and the degradation of the negative regulators by the 26S 
proteasome is triggered.  
 

 

1.2.3 Ethylene: biosynthesis and signaling in plants 

The plant hormone ethylene is involved in many aspects of the plant life cycle, including seed 

germination, root hair development, root nodulation, flower senescence, abscission, and fruit 

ripening (Johnson & Ecker, 1998). The biosynthetic pathway of ET was unraveled to a large 

extent by Yang and co-workers in 1970-1980s (Kende, 1993).  The ACC Synthase (ACS) and 

ACC Oxidase (ACO) are the key enzymes in ET synthesis. It is synthesized from methionine 

which is converted to S-adenosyl-methionine (AdoMet) by the enzyme S-AdoMet synthase 

(ADS). AdoMet is converted by the enzyme ACS to 5’ –methylthioadenosine (MTA), which is 

converted back to methionine via the Yang cycle and to 1-aminocyclopropane-1-carboxylic acid 

(ACC), the precursor of ET. ACC is finally oxidized by ACC oxidase (ACO) to form ET. The rate 

limiting step in ET biosynthesis is the conversion of AdoMet to ACC by ACS.   Various signals 

modulate ET levels by regulating ACS protein levels. This is accomplished by the action of E3 
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enzyme of the BTB type (broad-complex, Tramtrack and bric-a-brac). Three BTB proteins, 

called ETHYLENE OVERPRODUCER1 (ETO1), ETO1-like1 (EOL1) and EOL2, are responsible 

for promoting degradation of ACS proteins via the ubiquitin-26S-proteasome pathway (Wang et 

al., 2004). They also reported that ETO1 interact directly with both ACS5 and CUL3 using an in 

vitro pull-down assay, and, in the case of ACS5, also a yeast two-hybrid assay. Together, these 

studies suggest that ETO1 acts as a substrate-specific adaptor protein for ACS5, and possibly 

for other ACS isoforms, to target it for degradation by the 26S proteasome. Moreover, in 

Arabidopsis, previous studies provide explicit indications that protein phophorylation regulates 

the turnover of the ACS proteins (Chae & Kieber, 2005, Liu & Zhang, 2004). Findings from Liu 

(2004) suggests that MPK6-mediated phosphorylation inhibits the degradation of AtACS2 and 

AtACS6 proteins and that both enzymes are stabilized in response to pathogens and other 

stresses through direct phosphorylation by MPK6 (Chae & Kieber, 2005).  

 

ET is perceived by a two-component protein kinase receptor. The Arabidopsis genome encodes 

five ET receptors: ETR1, ERS1, ETR2, ERS2 and EIN4. These are localized in the endoplasmic 

reticulum (ER) and negatively regulate ET signaling. The physical interaction between the 

receptors and CTR1 in the absence of ET keeps the downstream signaling components, EIN2 

and EIN3, inactive (Stepanova and Alonso, 2009). ET binding causes inactivation of the 

receptor-CTR1 complex and the accumulation of EIN3 and EIN3-like transcription factors in the 

nucleus (Guo and Ecker 2003). EIN2 activates EIN3 via an unknown mechanism. In the 

absence of ET, SCFETP1/2 (EIN2 targeting protein1, ETP1 and ETP2) promotes degradation of 

EIN2 thereby attenuating the ET response (Qiao et al., 2009). ET decreases the ETP 

expression hence permitting the accumulation of EIN2. Similarly, another pair of F-box proteins 

called EIN3-BINDING F-BOX1 (EBF1) and EBF2 promotes degradation of EIN3 at low levels of 

ET (Figure 4A). As the levels increase EIN3 degradation is reduced and ET regulated 

transcription is activated (Figure 4B). EIN3 is a short lived transcription factor stabilized by ET 

and accumulates in nuclei after an increase in ET levels (Gagne et al., 2004, Guo & Ecker, 

2003). The expression of many defense target genes, such as ORA59 and ERF1, are regulated 

by EIN3.  There are 5 homologs in Arabidopsis (EIN3 like 1-5), with EIL1 most closely related to 

EIN3 (Chao et al., 1997). EIL1 is capable of complementing the ein3 mutation resulting in 

constitutive activation of ET response. EIN3 can bind directly to the promoter of EBF2, 

suggesting negative feedback regulation desensitizing ET signaling (Konishi & Yanagisawa, 

2008).  
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Figure 4 Scheme of ET signaling in Arabidopsis (Robert-Seilaniantz et al., 2011) 

(A) Inactive state of ET signaling. The ET receptors negatively regulate the ET pathway. EIN3 is a transcription 
factor positively regulating the signaling. In the absence of ET, EIN3 is ubiquitinated and targeted to proteasome 
degradation by the F-box proteins EBF1 and EBF2.  
(B) Active state of ET signaling. Upon ET perception, the ET receptor cannot repress the signaling pathway. 
EIN3 is not ubiquitinated and therefore ET signaling pathway is induced leading to the expression of ET-responsive 
genes.   
 
 

Overexpression of ERF1 enhances resistance against B. cinerea and increases susceptibility to 

the hemibiotroph Pst (Berrocal-Lobo et al., 2002, Blanco et al., 2005). ein2 seedlings are known 

to be impaired in all FLS2-mediated responses (Boutrot et al., 2010). Chen et al., 2009 has 

shown that ein3-1/eil1-1 and ein2 mutants exhibit enhanced resistant to Pst inspite of 

suppressed FLS2 signaling.  

1.2.4 Abscisic acid: biosynthesis and signaling 

ABA is an isoprenoid that controls seed germination and further developmental processes and 

induces plant responses to stresses such as salt, cold, drought etc. Figure 5 depicts a simplified 

scheme of ABA biosynthetic pathway adapted from (Nambara & Marion-Poll, 2005). Many 

genetic studies of the mutants have suggested that the ring transformations occur first to 

produce ABA aldehyde and then the oxidation of aldehyde leads to the final step of ABA 

synthesis.   

A B
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Figure 5 Simplified scheme of ABA biosynthesis  

Violanxanthin is synthesized by zeaxanthin epoxidase (ZEP). A reverse reaction occurs in chloroplast in high light 
conditions catalysed by violaxanthin de-epoxidase (VDE). Cleavage of cis-xanthophylls is catalysed by a family of 9-

cis-epoxycarotenoid dioxygenases (NCED). Xanthoxin is then converted by a short-chain alcohol dehydrogenase 
(ABA2) into abscisic aldehyde, which is oxidized to ABA by AAO3 (abscisic aldehyde oxidase). 
 
 

ABA signaling is known to be regulated by at least two different pathways (Figure 6). One 

pathway involves the family of PYRABACTIN RESISTANCE (PYR)/REGULATORY 

COMPONENT OF ABA RECEPTOR (RCAR) receptor proteins (Cutler et al., 2010 ,Hubbard et 

al., 2010, Nishimura et al., 2010). ABA binds to PYLs (PYRABACTIN RESISTANCE LIKE) and 

causes a conformational change generating a new protein-protein interaction enabling ABA-

bound PYLs to bind PP2Cs (Protein/threonine Phosphatase 2Cs) and inhibit their active sites. 

The negative regulation on PP2Cs’ targets (SnRK2s) is alleviated leading to the activation of 

ABA signaling (Figure 6 A). Another possible way of ABA signaling is via proteasomal 

degradation. KEG (KEEP ON GOING) is a RING-fingure ubiquitin E3 ligase which degrades the 

transcriptional activator ABI5 in the absence of ABA (Figure 6 B). ABI5 accumulation is induced 

Zeaxanthin

Antheraxanthin
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VDE

VDEZEP
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Neoxanthin

NSY?

Isomerase?

9’-cis-Neoxanthin 9’-cis-Violaxanthin
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by ABA through transcriptional activation and enhanced protein stability. Notably, AFP (ABI 5 

binding protein) is a novel negative regulator promoting ABI5 proteasomal degradation (Liu & 

Stone, 2010, Lopez-Molina et al., 2003, Stone et al., 2006). 

 

 

Figure 6 ABA signaling pathway 

(A) In the absence of ABA, PP2Cs inhibit protein kinase (SnRK2) activity through removal of activating 

phosphates. ABA is bound by intracellular PYR/PYL dimers, which dissociate to form ABA receptor–PP2C 
complexes. Complex formation therefore inhibits the activity of the PP2C in an ABA-dependent manner, allowing 
activation of SnRK2s. 

(B) Proteasome-mediated ABA signaling. At low ABA levels, the transcription factor ABI5 is targeted for 

ubiquitine mediated degradation, possibly through interaction with the negative regulator AFP and the RING-finger 
ubiquitin E3 ligase KEG. At high ABA levels, KEG is ubiquitinated and targeted for degradation, releasing ABI5. AFP 
is predicted to be unable to bind to ABI5 when ABA levels are high. The mechanism by which ABA concentration 
abolishes AFP binding to ABI5 is still unknown (Robert-Seilaniantz et al., 2011). 

 

Negative or positive impact of ABA on the outcome of plant-microbe interaction depends on the 

pathogen lifestyle. ABA negatively regulates defense against the soil-borne fungus F. 

oxysporum, by antagonising JA-ET signaling pathway (Anderson et al., 2004). Also, 

A

B
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pretreatment of potato plants with ABA increased susceptibility to Phytophthora infestans and 

Cladosporium cucumerinum (Henfling et al., 1980). In mutants deficient in ABA biosynthesis, 

the resistance to the biotrophic pathogens, Hyaloperonospora parasitica and Blumeria graminis 

is enhanced (Jensen et al., 2008, Mohr & Cahill, 2003).  

1.2.5 Cytokinin: biosynthesis and signaling 

Cytokinins (CKs) are derived from N6-substituted adenine and regulate root and shoot growth 

and leaf longevity. In addition, CK has an important role in the formation of nitrogen-fixing 

nodules and other plant microbe interactions (Frugier et al., 2008, Murray et al., 2007). The first 

step in CK biosynthesis is the production of N6-(2-isopentenyl) adenine (iP) riboside 5’ –tri-, 5’ –

di- or 5’ –monophosphate by the enzyme adenosine phosphate-isopentenyl-transferase (IPT). 

Active CKs are produced by a phosphoribohydrolase enzyme that converts the nucleotide to the 

free base (Kurakawa et al., 2007). The regulation of CK levels is complex and involves changes 

in both synthesis and metabolism. Role of other hormones, auxin and ABA, have been 

described recently in the regulation of CK biosynthesis.  

 

 

Figure 7  Cytokinin signaling pathway (Santner et al., 2009) 

Cytokinin is perceived by the AHK plasma membrane receptors. Cytokinin signal is further amplified by phophorelay 
events starting from AHKs, which lead to the activation and subsequent nuclear translocation of AHP proteins. AHP 
proteins transfer the phosphoryl group to type A or type B ARR proteins. The former act as repressors of cytokinin 
signaling, whereas the latter act as positive transcriptional regulator of cytokinin-induced genes, including those 
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encoding type A ARRs. CRF proteins are also activated by cytokinin, and after translocation to the nucleus they act 
as activators of cytokinin-regulated genes. 

 

Regulation of gene expression modulated by CK perception is poorly understood. Upon 

perception, autophosphorylation of the receptors takes place and then the phosphorylation is 

transferred via a phospho-relay to Arabidopsis histidine phosphotransfer proteins (AHPs). 

Phosphorylated AHPs are then relocated to the nucleus where their phosphate group is 

transferred to the response regulators (ARR) (To et al., 2007). Two types of ARRs are known: 

Type A and Type B. Type As are negative regulators of CK signaling pathway and are induced 

by CK, indicating negative feedback of CK on its own signaling. Type Bs are positive regulators 

and upon phosphorylation Type B ARRs bind to the DNA and activate gene expression (Muller 

& Sheen, 2007, Perilli et al., 2010). 

 

Using mutant and transgenic Arabidopsis lines it has been previously demonstrated that high 

CK levels correlate with the increased resistance to Pseudomonas syringae pv. tomato DC3000 

(Pst), increased SA biosynthesis and PR1 expression. By contrast, plants with low CK levels are 

more susceptible to Pst (Choi et al., 2010). Suppression of high CK accumulation by 

overexpression of CKX1 (CYTOKININ OXIDASE/DEHYDROGENASE 1) can affect both CK 

and PR1 expression. Direct interaction between TGA3 and ARR2 has been reported suggesting 

that TGA3 recruits ARR2 to defense gene promoters when SA signaling is activated.  

 

Production of phytohormones and their mimics by plant pathogens has been well documented. 

Many microbes involved in pathogenic interactions can produce various phytohormones 

(Costacurta & Vanderleyden, 1995). To date, production of cytokinin (CK) (Murphy et al., 1997), 

abscisic acid (ABA); (Siewers et al., 2006), auxin (Spaepen et al., 2007), jasmonic acid (JA) 

(Mittal & Davis, 1995), and ethylene (ET) (Weingart et al., 2001) have been reported in different 

bacterial and fungal species. For example, ET and indolic compounds related to auxin are 

known to be produced by Ralstonia solanacearum (Valls et al., 2006). Marumo et al., (1982) 

demonstrated that the necrotrophic fungus Botrytis cinerea produces ABA and CK. Microbial 

pathogens have also developed the ability to manipulate the defense-related regulatory network 

of plants by producing phytohormones or their functional mimics. For example, many strains of 

P. syringae produce coronatine (COR), a mimic of the bioactive JA-isoleucine (Fonseca et al., 

2009). COR is described as a multifunctional suppressor of plant immunity by activating or 

modulating the JA signaling to suppress SA signaling (Laury-Berry et al., 2006). In addition to 

producing hormones themselves pathogens induce hormone production by their host. O'Donnell 
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et al (2003), Schmelz et al (2003) showed that type III effectors (TTEs) delivered by P. syringae 

pv. tomato (Pst) DC3000 are able to induce auxin and ABA production which acts 

antagonistically on the plant defense pathways (Adie et al., 2007, de Torres-Zabala et al., 2007, 

Mohr et al., 2007). Further support for effector-driven increase in ABA as virulence mechanism 

is derived from the enhanced resistance to bacterial and fungal pathogens in ABA biosynthetic 

mutants (Asselbergh et al., 2007, de Torres-Zabala et al., 2007) and enhanced susceptibility in 

NCED5 (9 cis-epoxycarotenoid dioxygenase 5) overexpressors (Fan et al., 2009). 

1.3 Verticillium species 

Verticillium species belong to the phylum Ascomycota. The genus includes six plant pathogenic 

species (Barbara & Clewes, 2003) of which V. dahliae and V. albo-atrum attack a high number 

of host species. Verticillium spp are soil-borne phytopathogenic fungi causing vascular diseases 

in various plant species in the moderate and subtropic regions (Pegg & Brady, 2002). Many 

important crop plants like sunflower, cotton, potato, tomato, olive trees and woody plants are 

infected by V. dahliae. Disease symptoms of these plants vary from species to species and 

include growth retardation, wilt (e.g. in case of V. dahlia), chlorosis, necrosis and discoloration 

of the vascular tissue (Beckman, 1987). The host range of V. longisporum is mainly restricted to 

cruciferous hosts (Zeise & Von Tiedemann, 2002). 

1.3.1 Verticillium longisporum 

V. longisporum was described as a variant to V. dahliae by (Stark, 1961). Karapapa et al (1997) 

proposed V. longisporum as a new species, based on molecular and morphological differences. 

It was suggested to be a heterozygous diploid of V. dahliae and V. albo-atrum. In further studies 

it was shown that the spores of V. longisporum are twice as long as V. dahliae and the 

morphology of the microsclerotia also differs (Zeise & Tiedemann, 2001). The DNA content in V. 

longisporum is usually twice as high as that found in other non-longispored Verticillium isolates 

(Steventon et al., 2002). A recent phylogenetic study based on seven nuclear loci showed that 

V. longisporum may have evolved in different ways (Inderbitzin et al., 2011). They have 

suggested that it originated three times in independent hybridization events with all hybrids 

sharing V. dahliae and a common parent of a so far unknown taxon. V. longisporum infects 

predominantly crucifers and belongs to the most important diseases of Brassicaceae, in 

particular oil seed rape (Zeise & Von Tiedemann, 2002, Zhou et al., 2006) which are not 

infected by V. dahliae. The yield depression can be expected between 10-15% based on soil 

and climatic conditions (Dunker et al., 2008). V. longisporum does not cause wilting in the 
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infected plants rather the symptoms includes chlorosis and necrosis of the lateral branches and 

leaves, brown coloration of the stems and premature ripening. The symptoms of infection are 

visible at late stages of the disease and can be easily confused with the symptoms of 

senescence or infection by other fungi (Dunker et al., 2008).  

1.3.2 Disease cycle 

The infection cycle of V. dahliae and V. longisporum is quite comparable (Johansson et al., 

2006). As already described, these pathogens possess a hemibiotrophic life cycle (Figure 8). It 

starts with microsclerotia which are abundant in contaminated soils and which can survive for 

more than a decade (Wilhelm, 1955). The microsclerotia are dark melanized thick-walled 

hyphae. The germination of microsclerotia is stimulated by root exudates (Mol et al., 1995) 

secreted from the root tip and the root hair. After germination V. longisporum hyphae get in 

contact with the root hairs and form a hyphal network (Eynck et al., 2007). The hyphae enter the 

roots through the junction of epidermal cells or through direct penetration of the cells. They grow 

inter- and intracellular to the central cylinder where they have to pass the endodermis (Eynck et 

al., 2007). It is proposed that the infection takes place in young parts of the roots where no 

endodermis is developed yet or at sites of damage of this barrier (Bishop & Cooper, 1983, Pegg 

& Brady, 2002). After entering the xylem, the fungus stays most of its life cycle in this mal-

nutritional environment. It spreads through the plant by generating conidia which are transported 

upwards with the vascular stream in the plant (Beckman, 1987). These spores can be trapped 

at the end of vessel cells where they germinate and invade the neighboring vessels (Beckman, 

1987). In contrast to V. dahliae, V. longisporum is restricted to individual vessels, which may be 

the cause of the absence of wilting symptoms in these infections (Eynck et al., 2007). At the 

later stages of the infection cycle, the pathogen starts colonizing the non-vascular tissue 

(necrotrophic or saprophytic phase) and forms microsclerotia on the senescing and dead tissue.  

 



15 
 

 

Figure 8 Disease cycle of Verticillium species (Berlanger & Powelson, 2000) 

1.3.3 Disease control 

Verticillium-induced diseases are difficult to control. Because of the very high viability of 

microsclerotia and broad host range of Verticillium species, the fungus can persist in the soil for 

many years. At early stages of the infection, the pathogen grows and propagates inside the 

vascular tissue of the plants which make any chemical control impossible without killing the 

plant. The microsclerotia in the soil are resistant against many chemicals (Berlanger & 

Powelson, 2000, Pegg & Brady, 2002). There are different efforts in the resynthesis of resistant 

plants by interspecific hybridization of Brassica rapa and Brassica oleracea. In B. oleracea 

different lines are known to be resistant against V. longisporum, which are therefore promising 

candidates for hybridization (Rygulla et al., 2007). Several specific loci have been identified that 

are involved in resistance against Verticillium wilt. For example, Ve locus provides resistance in 

tomato ((Schaible et al., 1951)). Ve1 and Ve2 genes encode leucine –rich repeat (LRR) proteins 

that belong to the class of receptor-like proteins (RLP; (Kruijt et al., 2005)). A separate locus 



16 
 

(VET1: V. dahlia tolerance) controlling V. dahlia-induced disease in Arabidopsis has been found 

(Veronese et al., 2003).  

1.4 Plant defense against Verticillium infection 

The knowledge about genetic bases of defense against V. longisporum is insufficient. 

(Ratzinger et al., 2009) have shown that SA and its glucoside (SAG) are enriched in infected 

xylem sap of root and hypocotyls of B. napus after V. longisporum infection. Induction of 

different proteins in the apoplast of infected B napus has been demonstrated (Floerl et al., 

2008). Some of these protein were identified as endochitinase, peroxidase, PR4-proteins and α-

1,3-glucanase. Additionally, it could be shown that the xylem sap from infected plants leads to 

reduction in fungal growth which supports the idea that plants secreted some defense proteins 

in response to fungal infection. Several studies using Arabidopsis mutants were done using an 

in vitro infection system where Arabidopsis seedlings were grown axenically and inoculated on 

MS medium supplemented with sugar while the response of soil-grown Arabidopsis plants to V. 

longisporum infection still remains elusive. One study reported that Arabidopsis mutants 

impaired in SA pathway (eds1-1, nahG, npr1-3, pad4-1 and sid2-1) did not show enhanced 

susceptibility towards V. dahliae. In contrast npr1-1 mutant showed enhanced V. dahliae 

susceptibility and decreased responses after ACC and MeJA pretreatment. Expression of the 

SA-dependent PR1, PR2 and ET-dependent PR4 was enhanced after 7 dpi. It has been 

reported by (Veronese et al., 2003) that impairment in the SA or JA dependent signaling did not 

cause hypersensitivity to V. longisporum infection, whereas ET insensitivity led to reduced 

chlorosis and ABA deficiency led to reduced anthocyanin accumulation. Floerl et al., 2012 

suggested that V. longisporum enhances its virulence by down regulation and delay of induction 

of plant defense genes for e.g transcript levels of germin-like protein GLP3 and lectin-like, chitin 

inducible protein (CILLP) were reduced at early time points in the apoplast of infected plants. 

 

Arabidopsis and Brassica are very closely related based on average coding domain sequence 

similarity of 86% (Parkin et al., 2005). Arabidopsis is a model system with short generation time 

and multiple mutants generated in defined pathways. Various publications showed that it is a 

suitable host to study the V. longisporum pathosystem (Floerl, 2010; Haffner et al., 2010; 

Johansson et al., 2006). In Arabidopsis, Verticillium infection leads to stunting of the aerial parts, 

comparable to the stunting of the stem of B. napus plants in the greenhouse. At later stages, 

chlorosis and necrosis of the leaves occur. It was already investigated that these symptoms are 

not related to water clogging or nutrient depletion (Floerl, 2010). In this thesis Arabidopsis was 
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used as a model organism to elucidate several different processes and defense responses 

against V. longisporum. 
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2 MATERIAL AND METHODS 

2.1 Materials 

2.1.1 Organisms 

Strain Reference 

Agrobacterium tumefaciens GV3101 (Deak et al., 1986) 

Botrytis cinerea BMM Brigitte Mauch-Mani, University of Neuchatel, Switzerland 

eGFP-Vertcillium longisporum 43 (Deak et al., 1986, Eynck et al., 2007) 

Escherichia coli DH5α (Hanahan, 1983) 

Pseudomonas syringae pv maculicola ES4326 (Whalen et al., 1991) 

Verticillium longisporum 43 (Zeise & Von Tiedemann, 2002) 

 

2.1.2 Genotypes 

Genotype Description Reference 

aba2-1 ABA-deficient 2 mutant N156* 

acx1/5 JA-biosynthesis mutant (Schilmiller et al., 2007) 

coi1-1 
Knock out line lacking COI1, impaired in most JA 
dependent responses (Feys et al., 1994, Xie et al., 1998) 

coi1-1/nahG Col-gl background Dr. Mark Zander 

coi1-1/sid2-2 Col-gl background This thesis 

coi1-t T-DNA insertion within COI1 gene (Mosblech et al., 2011) 

Col-gl Wild type 

 Columbia, Col-0 Wild type N1092* 

dde2-2 mutation in the ALLENE OXIDE SYNTHASE  (Park et al., 2002) 

tir-nbs-lrr class T-DNA insertion mutant (AT1G57630) N441305 (This thesis) 

ein2-1 ethylene insensitive (Guzmán & Ecker, 1990) 

ein3-1/eil1-2 

 
(Binder et al., 2007) 

erf53/erf54 

 
This thesis 

etr1-1 

 

Prof. Corne' Pieterse  (Bleecker et al., 
1988) 

fad3,7,8 JA-deficient mutant (McConn & Browse, 1996) 

jar1-1 mutant deficient in JA-Ile biosynthesis (Staswick et al., 1992) 

nahG Col-0 carrying NahG transgene (Lawton, 1995) 

npr1-1 

 
(Cao et al., 1994) 

PPER21:luciferase 
PER21 gene promoter cloned upstream of FIREFLY 
LUCIFERASE reporter gene (Col-0) Hella Tappe, 2008 

sid2-2 

 

SA biosnthesis mutant 
 
 

(Nawrath & Métraux, 1999) 
(Wildermuth et al., 2001a) 
 

sid2-2-gl Col-gl background This thesis 
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2.1.3 Enzymes and size markers 

Enzymes and size markers Suppliers 

DNAse I MBI Fermentas 

GeneRUler 1kb DNA ladder MBI Fermentas 

BP clonase-Mix Invitrogen, karlsruhe, Germany 

LR clonase-Mix Invitrogen, karlsruhe, Germany 

Biotaq DNA polymerase Bioline 

HiDi Mix ABI PRISM 

iProof High-Fidelity DNA Polymerase BioRad 

Reverse transcriptase H- MBI Fermentas 

Restriction endonucleases MBI Fermentas, New England Biolabs 

RNase A (DNAse free) Qiagen 

Advantage 2 polymerase Mix Clonetech 

 

2.1.4 Kits 

Kits Suppliers 

BigDye Trminator Cycle Sequencing Ready 
Reaction Kit v.3.1 

Perkin-Elmer Corporation 
 

DNeasy Kit Quiagen (Hilden, Germany) 

Nucleo Spin Extract II Macherey-Nagel 

Nucleo Spin Plasmid Macherey-Nagel 

 

2.1.5 Buffers and solutions 

Buffers/Solutions Components and Concentration 

Buffer I for alkaline lysis 
 

50 mM Tris-HCl, pH 8.0,  
 
10 mM EDTA,  
 
100 μg/μl RNase A  

Buffer II for alkaline lysis 

0.2 M NaOH,  
 
1 % (w/v) SDS 

Buffer III for alkaline lysis 
 

29.4 g potassium acetate,  
 
5 ml formic acid,  
 
water up to 100 ml 

DNA Extraction Buffer 
 

200 mM tris HCl pH 7,5;  
 
250 mM NaCl;  
 
25 mM EDTA pH 8,0;  
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0,5 % SDS 

HSB 

1.2 M NaCl,  
 
0.8 M tri-sodium-citrate 

MEN (10x) 
 

200 mM MOPS, 
 
50 mM NaOAc,  
 
10 mM EDTA, pH 7.0 with 1 M NaOH 

RNA loading buffer (3x) 
 
 
 
 
 
 

100 μl bromphenolblue/xylenecyanol,  
 
80 μl 0.5 M EDTA, pH 8.0,  
 
3333μl 10x MEN,  
 
1200 μl glycerol (100 %),  
 
4286 μl formamide,  
 
1001 μl fomaldehyde,  
 
add 6 μl EtBr per ml loading buffer direct before using 

TAE (20 x) 

0.8 M Tris, 2.3 % (v / v) acetic acid,  
 
20 mM EDTA 

TE 

10 mM Tris,  
 
1 mM EDTA, pH 7.5 

Trizol buffer 
 
 

 
380 ml/l phenol with 0.1M citric buffer, pH 4.3 saturated;  
 
0.8 M guanidinium thiocyanat,  
 
0.4 M ammonium thiocyanat, 33.4 ml Na-Acetate, 3 M, pH  
 
5.2, 5% glycerol 

 

2.1.6 Media  

Media Components and Concentrations/ Suppliers 

CPD 
 
Czapek Dox (SIGMA, Steinheim, Germany) 

LB 
 

 
10 g/l tryptone,  
 
5 g/l yeast extract,  
 
10 g/l NaCl, pH 7.0 (NaOH) 

MS 

 
4.4 g/l MS medium, pH 5.7 with KOH,  
 
6.8 g/Llselect agar 

PDB Potato Dextrose Broth (SIGMA, Steinheim, Germany) 
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dYT  
 

 
20 g/l tryptone,  
 
10 g/l yeast extract,  
 
10 g/l NaCl 

LB 
 

 
10 g/l tryptone,  
 
5 g/l yeast extract,  
 
10 g/l NaCl 

 

2.1.7 Additives 

Additives Working Concentration Stock Solution, Solvent 

Cefotaxim 500 mg /l 250 mg/ml, H2O 

Kanamycin 50 mg/l 50 mg/ml, H2O 

Gentamycin 25 mg/l 25 mg/ml, H2O 

Rifampicin 50 mg/l 10 mg/ml, H2O 

MeJA 50 μM 0,5 M, EtOH 

 

2.1.8 Plasmids 

Plasmids Description Reference/Source 

pB2GW7 

 
gateway™ vector for plant transformation, contains the CaMV 35S promoter 
and a BASTA resistance gene as selection marker, spnr (Karimi et al., 2002) 

pB2GW7-HA 

gateway™ vector for plant transformation, contains the CaMV 35S promoter, 
a 3× HA-tag (N-terminal), and a BASTA resistance gene as selection 
marker, spn 

C. Thurow, 
personal 
communication 

 
pB2GW7-HA-
AtERF54 

pB2GW7-HA derivative containing the AtERF54 coding sequence 

 
This thesis 
 

pDONOR201 gateway™ entry vector for cloning of PCR fragments, km Invitrogen 

pDONOR201
-AtERF54 

 
This thesis 

 
 
pSK-T 
 

Cloning and sequenicing vector; pBluescriptII SK (Stratagene, Cedar Cree, 
Texas) was restricted with EcoRV and treated with terminal transferase in 
presence of ddTTP; lacZα, ampr 

 
Guido Kriete, 
unpublished 
 

pSK-T_actin8 pSK-T vector with actin8 insert (genomic DNA); ampr 
Katja Rindermann, 
unpublished  
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2.1.9 Oligonucleotides 

Oligonucleotides for RT-PCR 

Primer Sequence 5’→3’  

act8fwd GGT TTT CCC CAG TGT TGT TG 

act8rev CTC CAT GTC ATC CCA GTT GC 

AT1G33960 (AIG1) QT00873117* 

AT1G57630 (TIR-NBS-LRR class) QT00882448* 

AT1G60190 (Armadillo) QT00883547* 

AT1G74590 (GSTU10) QT00893396* 

AT2G20880 (AtERF53) QT00753662* 

AT3G01420 (AtALPHA-DOX) QT00772737* 

AT3G13790 (AtFRUCHT1) QT00769055* 

AT4G05100 (AtMYB74) QT00799015* 

AT4G28140 (AtERF54) QT00816893* 

AT4G29740 (CKX4) QT00818034* 

AT4G33550 (LTP) QT00820764* 

AT5G59780 (MYB59) QT01134791* 

Olg70 CAG CGA AAC GCG ATA TGT AG 

Olg71 GGC TTG TAG GGG GTT TAG A 

PDF1.2 RT fwd CTTGTTCTCTTTGCTGCTTTC 

PDF1.2 RT rev CATGTTTGGCTCCTTCAAG 

PER21 QT00718277* 

PR1 fwd CTG ACT TTC TCC AAA CAA CTT G 

PR1 rev GCG AGA AGG CTA ACT ACA ACT AC 

UBQ5fwd GAC GCT TCA TCT CGT CC 

UBQ5rev GTA AAC GTA GGT GAG TCC A 

VSP2 fwd RT CAAACTAAACAATAAACCATACCATAA 

VSP2 rev RT GCCAAGAGCAAGAGAAGTGA 

 

*= catalog number of Qiagen for QuantiTect® 

Oligonucleotides for genotyping 

Primer Description Sequence 5’→3’ 

08409 mod Gabi-Kat lines CCATATTGACCATCATACTCATTGC 

drp-tir-class_LP GK_431C01 TGTCTCTCACGTTCAGGCTATGC 

drp-tir-class_RP GK_431C01 GCTTGTGCGTTTCATTGCTATTTC 

erf53_LP SM_3_16589 TGACGACAAATCGCTAACCTTCG 

erf53_RP SM_3_16589 TTGAGCCTAGCGGTCTCTCCCCTC 

erf54_LP SAIL_73_C12   TCTTGCATGATAGGCAGAGGTCATTATAAC 
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erf54_RP SAIL_73_C12   TCCACGTCCCCAAGATCTATGAAG 

LB3 SAIL lines TAGCATCTGAATTTCAATACCAATCTCGATACAC 

LBb1 SALK lines GCG TGG ACC GCT TGC TGC AAC T 

Spm32 JIC SM lines TACGAATAAGAGCGTCCATTTTAGAGTGA 

 

Oligonucleotide for sequencing 

Primer Sequence 5’→3’ 

pDonor201 (Seq-L1) TCGCGTTAACGCTAGCATGGATCTC 

pDonor201 (Seq-L2) GTAACATCAGAGATTTTGAGACAC 

pB2GW7(-HA) fwd CACAATCCCACTATCCTTCGCA 

pB2GW7(-HA) rev CATGAGCGAAACCCTATAAGAACC 

 

Oligonucleotide for cloning 

Primer Sequence 5’→3’ 

At4g28140upGW GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGACTTTGACGAGGAGCTAAATC 

At4g28140lowGW GGGGACCACTTTGTACAAGAAAGCTGGGTCTCAAAAGAAAGGCCTCATAGGACAAG 

 

2.1.10 Consumables 

Material Supplier 

Fluted filter Macherey-Nagel (Düren, Germany) 

Aqua-Deco Bodengrund (silica grit) Vitakraft, Nr. 12262 (Bremen, Germany) 

Ton-Granulat für Zimmerpflanzen (clay granulate) Masterfoods GmbH (Verden/Aller, Germany) 

 

2.1.11 Software 

Software Supplier 

Arabidopsis eFP Browser http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi 

Bildanalyseprogramm 1.0.4.6 Datinf GmbH (Tübingen, Germany) 

Bio-Rad iQ5 BioRad (Munich, Germany) 

Chromas 1.55 Technelysium Pty Ltd (Shannon Co. Clare, Ireland) 

Clone v7 Scientific and Educational Software (Groningen, Netherlands) 

Graphpad Prism 5 http://www.graphpad.com/welcome.htm 

LAS AF lite  Leica Microsystems CMS GmbH 

NCBI http://www.ncbi.nlm.nih.gov/ 

Oligo 4.0 MedProbe (Olso, Norway) 

Tair http://www.arabidopsis.org/ 
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2.2 Methods 

2.2.1 V. longisporum growth and cultivation 

V. longisporum was cultivated in PDB medium supplemented with 0.5 mg l-1 cefotaxim. 120ml of 

PDB was inoculated with glycerol stock solution in a special indented conical flask. The fungal 

culture was grown for 2-3 weeks on a rotary shaker at 85 rpm and 23ºC in the dark. Sporulation 

was induced by transferring the mycelium to CPD medium for 2-4 days. The spores were 

harvested by filtering through Nucleo Bond Folded filters. The flow through was centrifuged at 

4000 x g for 10 min at RT. After discarding the supernatant spores were re-suspended in sterile 

tap water and subsequently washed 2 times. Spore concentration was determined by using 

Thoma cell counting chamber and diluted to 1 x 106 spores ml-1 for further infection studies. 

2.2.2 Plant growth and cultivation 

Arabidopsis seeds were grown either on soil or under sterile conditions on Murashige and 

Skoog (MS) medium.  

For soil grown plants, sterilized seeds were sown on autoclaved soil and stratified for 2 days in 

the dark at 4 °C. The plants were grown under long day (16 h light/8 h dark) condition in climate 

chambers at 22 °C, 60 % humidity and light intensity of 120-150 μmol m-2 s-1.  

For growth on sterile medium, seeds from all genotypes were surface sterilized and sown on 

agar plates containing MS medium. 50 µM MeJA was added to the plates in order to segregate 

homozygous coi1 population. Plates were stratified for two days in case of coi1-t and coi1-1 or 

three days in case of wild-type and other mutants at 4oC in the dark. Plates were incubated 

subsequently under controlled conditions (22 °C, ~ 140 µmol m-2 sec-1 PAR; 8-h-light/16-h-dark 

photoperiod). After two weeks, plants were transferred to boxes containing a 1:1 mixture of 

silica grit (Vitakraft, Nr 12262, Bremen, Germany) and soil (Archut, Fruhstorfer Erde, T25, Str1 

fein) over a layer of seramis (Masterfoods GmbH, Verden/Aller, Germany) and were grown in a 

short day chamber. Initial watering of the boxes was done with 0.1% of the fertilizer Wuxal 

(Manna, Düsseldorf, Germany) using a 50 ml needle syringe. 
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2.2.3 Plant treatments 

2.2.3.1 V. longisporum infection 

For infection of Arabidopsis plants in a soil system, root dip infection method was used. Seeds 

were sown directly on silica grit:soil mixture (1:1) over a layer of seramis or first on MS plates 

supplemented with MeJA (Section 3.2.2) and then transferred on silica grit and soil mixture as in 

case of coi1 seed population. After stratification at 4 °C for 2 days, plants were grown for three-

four weeks under short day conditions in climate chambers. The boxes were covered with 

transparent hoods to maintain initial humidity. After 7 days the hood was removed and plants 

were watered at regular intervals with tap water. For the infection, plants were uprooted and the 

roots were gently rinsed with tap water to remove the residual amount of soil substrate. Roots 

were then incubated in conidial suspension (106 spores ml-1) for 45 min. For mock treatment, 

roots were incubated in autoclaved tap water and plants were re-planted into the pots containing 

soil. Plants were then grown under high humidity conditions covered with a plastic hood for 2 

days under short day conditions. 

For the investigation of lignin accumulation in root tissue, Arabidopsis plants were grown and 

infected on MS plates. Surface sterilized seeds were sown on angular 0.5 MS-plates and were 

stratified for 24 h at 4°C. They were grown for two weeks under long day conditions (16 h light-

dark, 22 ° C / 8 h, and 18 ° C). Seedlings were then transferred to angular 1% agarose plates to 

facilitate the fungal entry into the roots in a nutrient deficient environment. After three days, V. 

longisporum infection was done by spraying the roots with fungal spore suspension (105 spores 

ml-1) and mock infection was done by spraying autoclaved tap water. The ¾ of the plates were 

wrapped with aluminium foil. After 3, 4, 6 and 7 dpi roots were removed from the agar surface 

for lignin staining and microscopy. 

2.2.3.2 Sampling 

In general, for infection experiments, plants were either mock-infected or infected with V. 

longisporum. After 15 dpi, petiole and lamina from ~16 plants were harvested separately and 

the material was stored at -80 °C for further measurements. Due to the amount of material 

needed for the analysis, petiole and lamina from 4 plants were pooled respectively to make 3-4 

pools per treatment per genotype.  

For fungal quantification in V. longiporum-infected Arabidopsis roots infected in a soil system, 

roots were harvested at 10 and 16 dpi. First they were washed under running tap water to get 
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rid of the adhering soil substrate. After washing, individual roots were kept in a glass petri dish 

containing tap water and were sonicated (TranssonicTP690, ELMA®) for 3 minutes. Sonication 

procedure helps in removing the hyphal fragments adhering to or protruding from the root cortex 

and thus minimizing the risk of quantifying fungal biomas that is merely attached at the outer 

surface of the root.  

2.2.4 Leaf area measurement 

To measure the projected leaf area of the whole rosette for mock and infected Arabidopsis 

plants photographs from single plants were taken using a digital camera and the leaf area was 

quantified using custom-made software (Bildanalyseprogramm, Datinf GmbH Tübingen, 

Germany). 

2.2.5 Molecular biology methods 

2.2.5.1 DNA isolation  

2.2.5.1.1 Genomic DNA isolation from Arabidopsis leaves for genotyping (Quick and Dirty) 

For genotyping, frozen leaf material was pulverized in a 1.5 ml reaction tube using a pestle. 

DNA extraction buffer containing EDTA was added to inactivate the DNAses. After 

centrifugation (RT, 14000 rpm) for 5 min isopropanol was added to the supernatant for 

precipitation. Additional centrifugation (RT, 14000 rpm) was performed for 5 min and the 

smeared DNA pellet was washed subsequently with 70% EtOH. After centrifugation (5 min, RT, 

14000 rpm) and drying (10 min, 37 °C) DNA was extracted in 100 µl Milli-Q water.  

2.2.5.1.2 Genomic DNA isolation from Arabiodpsis petioles for fungal DNA quantification 

DNA extraction from infected petioles was done by using the DNeasy Plant Mini Kit (Qiagen, 

Hilden, Germany) following manufacturer’s instructions including the optional recommendations. 

The DNA was eluted two times with 30 μl of EB provided. 

2.2.5.1.3 Alkaline lysis 

Plasmid DNA was isolated from E. coli using a modified alkaline lysis method (Le Gouill et al., 

1994). First, 1.5 ml of overnight culture of E. coli (stationary phase) was collected by 

centrifugation at 13000 rpm for 1 min. The supernatant was removed and the cells were 

resuspended in 100 μl buffer I (50 mM Tris-HCl pH 8.0, 10 mM EDTA, 100 μg/μl RNase A). 200 

μl buffer II (0.2 M NaOH, 1 % (w/v) SDS) was added to the cell suspension and incubated for 5 

min on ice. The suspension was neutralized by adding 150 μl buffer III (29.4 g potassium 
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acetate, 5 mL formic acid and water to 100 ml) and inverted 6–8 times. The suspension was 

centrifuged for 10 min at 13000 rpm at RT, and the aqueous solution (~400 μl) was transferred 

into a new microcentrifuge tube containing 1 ml 96 % (v/v) ethanol. The DNA was precipitated 

from the solution by incubating for 20 min at –20°C. Plasmid DNA was collected by 

centrifugation with 13000 rpm for 10 min at 4°C. The pellet was washed with 70 % (v/v) EtOH 

and dried for 10 min at 37°C. The DNA was extracted in 20 μl EB buffer (10 mM Tris-HCl pH 

8.5). 

2.2.5.1.4  Isolation of high-quality plasmid DNA 

For sequencing and gateway® cloning, high-purity plasmid DNA was isolated using the 

Nucleospin Mini Kit (Macherey-Nagel) following the manufacturer’s instructions including 

recommended optional steps. 5-ml overnight culture was used to isolate plasmids and the 

isolated DNA was eluted with 50 μl (high-copy plasmids) or 30 μl (low-copy plasmids) EB buffer 

or water (ultra-pure). 

2.2.5.2 RNA isolation 

The TRIZOL extraction method was used in this study to isolate RNA from plant material. ~100 

mg of plant material was pulverized in liquid nitrogen and 1.3 ml trizol buffer (380 ml/l phenol 

saturated with 0.1 M citrate buffer pH 4.3, 0.8 M guanidiniumthiocyanate, 0.4 M 

ammoniumthiocyanate, 33.4 ml 3 M Na-acetate pH 5.2, 5 % glycerol) was added. The tubes 

were vortexed continuously for 15 min. After adding 260 μl chloroform the tubes were vortexed 

for another 15 minutes. Centrifugation step with 14000 rpm at 4 °C for 45 min was performed. 

900 μl of supernatant was taken in a separate microcentrifuge tube. 325 μl precipitation buffer 

(HSPB, 1.2 M NaCl, 0.8 M Na-citrate) and 325 μl 2-propanol were added to each sample. The 

tubes were inverted several times and were incubated for 10 min at RT. After the centrifugation 

step with 14000 rpm at 4 °C for 45 min, pellets were washed with 70% EtOH. After complete 

removal of EtOH, pellets were dried at 37 °C for 5 min. The pellet containing RNA was dissolved 

in 40-60 μl of autoclaved MilliQ water.  

2.2.5.3 cDNA synthesis 

cDNA synthesis was performed with 1 μg of DNA-free RNA. In order to prevent genomic DNA 

contamination, 1 μl of 10x DNAase I reaction buffer (Fermentas, St. Leon- Roth, Germany) 

along with 1 μl DNase I (RNase free) were added to the RNA samples. RNAase free water was 
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added to make up the volume uptil 10 μl. The mixture was incubated at 37 °C for 30 min. 

DNAase I was denatured by adding 1 μl 25 mM EDTA and incubated at 60 °C for 10 min.  

In order to synthesize cDNA, 20 pmol of oligo-dT primer and 200 pmol of random nonamer 

oligonucleotides were added. The reaction mixture was heated to 70 °C for 10 min and 

immediately cooled down on ice. Subsequently, 20 nmol dNTPs, 4 μl RT 5x first-strand reaction 

buffer and 60 U reverse transcriptase H– were added and brought to a final volume of 20 μl with 

H2O. The mixture was incubated at 42°C for 70 min and then heated to 70°C for 10 min.  

2.2.5.4 Microarray analysis 

Wild-type, dde2-2 and coi1-t mutants were grown and infected as described in section 2.2.3.1. 

Petioles from 12 plants per treatment (mock and infected) were combined giving 6 samples per 

experiment and genotype. From three independent experiments 18 pools were generated. RNA 

was extracted as described in section 2.2.5.2 and purified using the RNeasy Plant Mini Kit 

(Quiagen, Valencia, CA, USA). Microarray analysis were performed with Arabidopsis ATH1 

genome arrays and done by the NASC´s International Affymetrix Service. The data from the 

scanned arrays was normalised using the Robust Multichip Average (RMA) methodology 

(Bolstad et al., 2003) with the publicly available RMA Express package. For data analysis and 

statistics the Robin software was used (Lohse et al., 2010). Cluster analysis was performed with 

MarVis (Kaever et al., 2009).  

2.2.5.5 Polymerase chain reaction (PCR) based genotyping 

In order to identify homozygous mutant-lines, PCR with genomic DNA as a template (isolated as 

described in section 2.2.4.1.1) and Advantage Taq DNA polymerase was performed.The wild 

type allele was identified with the combination of RP and LP primers. Correspondingly, the T-

DNA insertion was indentified with the combination of LB and RP primers. Eventually, 

homozygous mutant plants were identified only by a PCR-fragment with LB and RP primers, 

heterozygous plants yielded a PCR fragment with both primer combinations and homozygous 

wild type plants yielded with LP and RP primers corresponding to the wild type allele. 

The PCR reaction was carried out in a 20 μl reaction volume with the following constituents: 1 μl 

template DNA, 10 pmol of each primer (LP, RP and LB), and 0.2 mM dNTPs, 1 μl of 10 x 

Advantage buffer, 2 U polymerase and H2O filled to a total volume of 20 μl. The amplification 

reaction was done in a PCR thermocycler. 
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2.2.5.6 Quantification of V. longisporum DNA  

Fungal biomass was quantified by determination of fungal DNA in infected plants with q-real-

time PCR. DNA extraction from infected petioles was conducted as described in section 

2.2.4.1.2. The iCycler System (BioRad, Hercules, CA, USA) was used for the amplification and 

quantification of V. longisporum DNA using primers OLG70 (5’-CAGCGAAACGCGATATGTAG-

3’) and OLG71 (5’-GGCTTGTAGGGGGTTTAGA-3’) spanning internal transcribed sequences of 

ribosomal RNA genes (Eynck et al., 2007). The amplification mix consisted of Advantage buffer 

(Clontech, Mountain View, CA, USA), 200 μM of each dNTP, 0.3 μM of primer OLG70 and 

OLG71, 0.25 U Advantage cDNA polymerase (Clontech, Mountain View, CA, USA), 10 nM 

Fluorescein (BioRad, Hercules, CA, USA), 100,000 x diluted SYBR Green I solution (Cambrex 

Bio Science Rockland Inc., Maine, USA) and 25 ng of template DNA. The total reaction volume 

was made upto 25 μl with double distilled water. To normalize for different DNA preparations, 

the Arabidopsis Actin8 gene (At1g49240) was amplified with the primers act8fow (5’-

GGTTTTCCCCAGTGTTGTTG-3’) and act8rev (5’-CTCCATGTCATCCCAGTTGC-3’). 

2.2.5.7 Quantitative real time RT-PCR 

The iCycler System (Bio Rad, Hercules, CA, USA) was used for the amplification and 

quantification of cDNA using QuantiTect®-primers (Qiagen, Hilden, Germany). The amplification 

mix consisted of 1x NH4-reaction buffer (Bioline, Luckenwalde, Germany); 2 mM MgCl2; 100 

μM of dNTPs; 0.4 μM of primers, 0.25 U BIOTaq DNA polymerase (Bioline Luckenwalde, 

Germany); 10 nM Fluorescein (BioRad, Hercules, CA, USA); 100,000 times diluted SYBR 

Green I solution (Cambrex, Rockland, ME, USA); 1 μl of a 1:10 diluted cDNA as template. 

Double distilled water was used to make up the total volume to 25 μl. Calculations were done 

according to the 2– CT method (Livak & Schmittgen, 2001). The Ct values of both mock- and 

Verticillium-infected samples were normalized to an endogenous housekeeping gene (UBQ5, 

(Kesarwani et al., 2007)).  

2.2.5.8 Separation of DNA on agarose gel 

The electrophoretic separation of DNA for analytical preparations was done in a horizontal 

agarose gel (10 cm x 7 cm x 0.3 cm, 16 lanes) with 1x TAE as running buffer. DNA fragments 

ranging between 500 bp and 14 kb were run on 1 % agarose gel and lower size DNA fragments 

were run on 2 % (w/v) agarose gel. DNA samples were mixed with 1/10 volume of 10 x DNA 

loading buffer, loaded in separate lanes and run at 120 V for 35-45 min. DNA fragments were 
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stained with 0.1% w/v EtBr. UV light (260 nm) was used to detect the DNA. Preparative gels 

were examinated at larger wavelengths UV light (320 nm). Gels were visualized under a UV 

trans-illuminator in a gel-documentation set up. The sizes and amount of the DNA fragments 

were determined using a DNA standard, MassRuler™ DNA Ladder Mix (MBI Fermentas, St 

Leon Rot, Germany). 

2.2.5.9 Isolation of DNA fragments from agarose gel 

The elution of DNA fragments from agarose gel was done using the Nucleospin Extract II Gel 

Extraction kit (Macherey-Nagel, Düren, Germany) following the manufacturer’s instructions. The 

eluted fragments were verified by electrophoresis as described in section 2.2.5.8. 

2.2.5.10 BP clonase II recombination reaction and restriction digestion 

To generate AtERF54 over expresser plants, the AtERF54 fragment was amplified using iProof 

high-fidelity DNA polymerase. For creating an appropriate entry vector for gateway cloning, BP 

clonase II recombination reaction was performed. The fragment was cloned into pDONR-201 

Gateway-adapted vector and attL-flanked entry clone was generated. To perform BP 

recombination reaction equimolar amounts of pDONR201 vector and AtERF54 fragment were 

taken. To stop the reaction 1 µl protienase K was added. The mixture was incubated for 10 min 

at 37 ºC. The whole reaction mixture was then transformed (section 2.2.5.12) into DH5α 

competent E. coli cells. After alkaline lysis was performed, restriction digestion of the alkaline 

lysate was done using HpaI (KSpA) using 3 μl of alkaline lysate, 3 U KspA in 1 μl blue buffer 

and total volume was made up to 10 μl. The restriction reaction was incubated overnight at 37 

°C.  

2.2.5.11 LR clonase II recombination reaction and restriction digestion 

LR-Clonase II was used following manufacturer’s instructions. Clonase reaction was performed 

by mixing 1 µl of the pDONR201 entry vector including ERF54 contruct, 1 µl pB2GW7 and 1 µl 

pB2GW7-HA Gateway vectors in two separate cloning reactions. 2 µl of Clonase II enzyme was 

added and the total volume was made up to 10 µl. The mixture was incubated at room 

temperature over night. To stop the reaction 1 µl protienase K was added. The mixture was 

incubated for 10 min at 37 ºC. The whole reaction mixture was then transformed (section 

2.2.5.12) into DH5α competent E. coli cells. After alkaline lysis was performed, restriction 

digestion of the alkaline lysate was done using Nco I and Hind III  using 3 μl of alkaline lysate, 3 
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U enzyme in 1 μl buffer tango (1x) and total volume was made up to 10 μl. The restriction 

reaction was incubated overnight at 37 °C. 

2.2.5.12 Transformation of competent E. coli cells 

The transformation procedure was followed as per Hanahan (1983). In brief, 200 μl competent 

E. coli cells were thawed on ice for 20 min, ~50 ng of plasmid DNA were added to the cells and 

mixed gently. The mixture was incubated on ice for 30 min. After a heat shock for 90 sec at 

42°C the cells were placed immediately on ice for 5 min. 800 μl of dYT medium were added to 

each vial and the suspension was mixed on a horizontal roller for 60 min at 37°C depending on 

selectable antibiotic resistance marker. Different volumes of the culture were plated on plates 

containing dYT medium supplemented with antibiotics. The plates were incubated overnight at 

37°C. 

2.2.5.13 Transformation of Agrobacterium tumefaciens 

Gene transfer in A. tumefaciens was done by electroporation using Gene Pulser II. Bacterial 

competent cells were thawed on ice slowly before adding 0.5 μl of plasmid DNA. The mixture 

was transferred into an ice-cooled electroporation cuvette (2 mm electrode distance). The 

cuvette was subjected to electroporation at 25 μF, 2.5 kV, 400 Watt. The cells were suspended 

immediately in 1 ml YEB medium and incubated for 2 h at 29 °C. The culture was plated on YEB 

medium supplemented with antibiotics (Ref/Gen/Spec) and incubated for 2 days at 29 °C.  

2.2.5.14 Transformation of Arabidopsis thaliana 

Arabidopsis plants were transformed via A. tumefaciens mediated gene transfer using the floral 

dip method (Clough und Bent, 1998). Cells were precultured overnight v in 20 ml YEB medium 

supplemented with 25 μg ml-1 kanamycin and 50 μg ml-1 rifampicin. This culture was used to 

inoculate 400 ml YEB medium and incubated at 28 °C under constant shaking. Cells were 

harvested by centrifugation (2000 x g, 20 min) and the resulting pellet was dissolved in 200 ml 

of 5 % (w/v) saccharose solution. After dissolving the pellet, 100 μl SylWet was added and 

inflorescences of Arabidopsis plants were dipped into the solution. Plants were kept under high 

humidity over night. Positive T1 transformed lines were selected by BASTA selection. 

2.2.5.15 Sequencing reaction 

DNA sequencing was done using the BigDye Terminator RR Mix Cycle Sequencing Kit. The 

principle of DNA sequencing is based on the chain termination method (Sanger, 1977). The 
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PCR sequencing reaction was performed using 500–1000 ng plasmid DNA, 5 pmol primer, 2 μl 

ready reaction (RR) mix and H2O up to 10 μl. The samples were subjected to 25 cycles of 10 s 

at 95°C, 5 s at 50°C, and 4 min at 60°C in a thermocycler. Precipitation of DNA product was 

done by using 9.5 μl water and 30.5 μl absolute ethanol and left for 1 h. The DNA was collected 

by centrifugation for 20 min at 13,000 rpm. The pellet was washed using 125 μL 70 % ethanol 

and then centrifuged for 10 min at 13,000 rpm. The pellet was dried at 95°C for 1 min and 

resuspended in 10 μl of HiDi reagent. The samples were placed on ice. The reactions were 

loaded onto an ABIPrism 3100 capillary electrophoresis sequencing station for analysis. 

2.2.6 Microscopy of V. longisporum infected plant material 

2.2.6.1 Confocal laser scanning microscopy (CLSM) with infected roots 

GFP-tagged V. longisporum strain was used in this particular experiment. Wild type, dde2-2, 

and coi1-t plants were infected as described in section 2.2.3.1. To observe the initial 

colonization events of the fungus in these three genotypes, roots at different time points were 

analyzed. Starting from 1 dpi until 10 dpi 6-8 roots were observed everyday under CLSM 

(Leica, SP5). 

2.2.6.2 Anatomical studies with infected petiole cross sections 

Petioles (2 to 4 mm) were stored in a mixture of 37 % formaldehyde, 100% acetic acid and 70 % 

ethanol (FAE, 5:5:90, v/v/v). Samples were successively infiltrated with the following solutions: 

70% ethanol for 24 h, 80% ethanol for 2 h, 90 % ethanol for 2 h, 100% ethanol for 2 h, 100 % 

ethanol for 12 h, 100 % ethanol : 100% acetone (1:1) for 2 h, 100 % acetone for 2 h (2 times), 

acetone : plastic (1:1) for 4 h, acetone : plastic (1:3) for 12 h, 100 % plastic for 12 h (2 times). 

Plastic was a mixture of styrene (Merck, Darmstadt, Germany) and butyl methacrylate (Sigma, 

Steinheim, Germany) (1:1) containing 2 % dibenzoylperoxide with 50 % phthalate (Peroxid 

Chemie GmbH, Pullach, Germany). The samples were transferred into gelatine capsules (Plano 

GmbH, Wetzlar, Germany), mounted with fresh plastic solution which were polymerized at 60°C 

for 3 days and at 37°C for 10 additional days. Transverse cross-sections (1 µm) of the 

embedded samples were obtained with a microtome (Autocut, Reichert-Jung, Heidelberg, 

Germany) using a diamond knife (Chisto Diatome, Drukker International, Cuijk, Netherlands). 

The sections were placed on glass slides which were covered with 0.5 % (w/v) gelatine 

containing 1.77 mM KCr(SO4)2 in distilled H2O. For histochemical analyses, cross sections were 

stained with 0.05 % toluidine blue in 1% boric acid for 10 min at 60°C, mounted in DePex 
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(Serva, Heidelberg, Germany) and observed under a bright field microscope (Axioskop, Zeiss, 

Oberkochen, Germany). Cross sections and staining was performed by the department of Prof. 

Andrea Polle, University of Goettingen (Germany). 

2.2.6.3 Lignin accumulation in root tissue 

To stain the lignin in root tissues, the phloroglucinol-HCl stain (1.6 M Phloroglucinol stain, 76% 

EtOH and 7.4% HCl (37%)) is used. The cinnamaldehyde end groups of lignin appear to react 

with phloroglucinol-HCl to give a red-violet color (Gahan and B., 1984.). The whole root was 

stained for 6-7 min directly on a clean glass slide and covered with a cover slip. Roots were kept 

in dark during the staining procedure because of the light sensitive nature of the stain. The roots 

were examined under a light microscope. The lignified tissues in the root should appear red. 

2.2.7 Phytohormone analyses  

Determination of phytohormone concentrations was performed by the Department of Plant 

Biochemistry (Prof. Dr. I. Feußner), University of Göttingen (Germany), using GC-MS/MS 

analyses. 
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3 RESULTS 

3.1 Disease phenotype of Verticillium longisporum-infected Arabidopsis plants 

Arabidopsis plants were infected via root dip infection as described in section 2.2.3.1. In short, 

plants were grown on a sand-soil mixture for three to four weeks. After uprooting, the roots were 

washed gently with tap water and were incubated in a spore suspension for 45 min before being 

transplanted back into soil. Reduction in the leaf area after infection was already visible at 15 

dpi. Yellowing of the leaf veins could be noticed in infected leaves at this time point of infection 

(Figure 9A and 9B). At 21 dpi, petioles started to become yellow (Figure 9C) and as the disease 

progressed, the lamina also started to become senescent. In contrast to the natural 

senescence, this process started from the bottom of the leaf. At 32 dpi, the growth of fungal 

hyphae and the development of microsclerotia on dead and senescent plant material, especially 

on the petioles, was visible (Figure 9D). Cross sections of uninfected and infected petioles 

revealed that the paired cells derived from pro-cambium had disappeared in the infected tissue. 

Formation of additional xylem-like cells was observed. At 15 dpi, these cells appeared at the 

abaxial side in the wild-type, where the phloem is normally localized. The layer of cells with 

dense cytosol was interspersed with cells displaying a xylem vessel-like appearance (large 

lumen, lignified cell walls; Figure 9E). 
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Figure 9 Disease phenotype of V. longisporum infected Arabidopsis plants 

(A) Four week old Col-0 plants were inoculated with V. longisporum. Typical stunting of the leaf area was observed 
at 15 dpi. 

(B) V. longisporum-infected leaf showing yellowing of the leaf veins at 15 dpi. 
(C) Typical yellowing of the leaf at 21 dpi starting from the bottom of the leaf. 
(D) Formation of microsclerotia on infected Col-0 petiole at 32 dpi.  
(E) Cross section of petioles from mock and V. longisporum infected Col-0 plant at 15 dpi. Sections were stained 

with toluidine blue to detect lignifications of secondary cell walls (AG Polle). Xy: xylem vessels, Ph: Phloem, Pc: 
Procambium-derived paired cells. Red arrow: xylem-like cells, Green arrow: Phloem-like cells more to the center 
of the vascular bundle. Bar= 20 µm (Photos: AG Polle).  
 

3.2 Role of salicylic acid in Arabidopsis/Verticillium longisporum interaction 

3.2.1 V. longisporum-induced set of genes reveals strongest correlation with SA 

In general, infection of Arabidopsis plants with biotrophic pathogens leads to the activation of 

salicylic acid (SA)-mediated defense responses. A whole genome microarray at 15 dpi reveals 

significant up-regulation of 1219 genes (> 2-fold. p < 0.05) and down regulation of 473 genes in 

the petioles of V. longisporum-infected wild type plants as compared to the control plants. The 

transcriptional response of V. longisporum-infected Arabidopsis wild-type plants was compared 

with publically available microarray database (Genvestigator; Hruz et al., 2008) obtained from 

various Arabidopsis mutants and wild-type plants exposed to biotic, abiotic, chemical stresses 

and hormone treatments. To evaluate the extent of correlation Spearman rank correlation 

coefficient (rs) was calculated (Corinna Thurow; Spearman, 1904). The rs value can range from 

+1.0 to -1.0 and this is used to rank the correlation list. Perfect positive and negative correlation 

of expression gives an rs value of +1.0 and -1.0 respectively. When analyzing the 1693 genes 

either induced or repressed after infection, the strongest correlations were found with the 

datasets from Pseudomonas syringae-infected leaves (rs = 0.603, p < 0.0001), leaves from the 

cpr5 mutant (rs = 0.59, p < 0.0001) which is characterized by enhanced SA levels (Bowling et 

al., 1997) and SA treated leaves (rs = 0.58, p < 0.0001). This correlation between V. 

longisporum and SA-regulated genes was further supported by the negative correlation with SA 

signaling mutants, npr1 and pad4 (Supplement table 1).  

To elucidate the role of SA in response to V. longisporum, levels of free SA and its conjugates 

were measured in V. longisporum-mock and -infected petioles at 15 dpi (measurements were 

done by the department of Prof. Feussner). Free SA levels did not increase after infection in the 

wild-type plants. On the contrary, the SA glucoside (SAG) and the SA-derived metabolite 

dihydroxybenzoeic acid (DHBA) levels were found to be elevated after infection (Figure 10A). 
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PR1 expression, known to be a marker gene for SA defense response, was also elevated after 

Verticillium infection correlating with the increased SA-derived metabolite levels (Figure 10B).  

 

To further characterize the SA defense response, Arabidopsis mutants deficient in SA 

biosynthesis as well as signaling were inoculated. The disease symptoms were scored by 

measuring the projected leaf area at 15 dpi from mock as well as infected plants. The SA 

induction deficient 2 (sid2-2) mutant (Nawrath and Metraux, 1999; Wildermuth et al., 2001) and 

transgenic plants expressing the SA-hydrolyzing bacterial enzyme NahG (Lawton et al., 1995) 

showed wild-type-like reduction of leaf area at 15 dpi. Consistently, reduction in the leaf area of 

Arabidopsis plants impaired in NPR1 (nonexpressor of pathogenesis related genes), a key 

regulator of the SA-dependent defense response (Cao et al., 1997), was comparable to the wild 

type plants at 15 dpi (Figure 10C and 10D). To measure the fungal biomass, petioles were 

harvested at 15 dpi. No significant differences in the amounts of fungal DNA were detected in 

sid2-2, nahG and npr1-1 as compared to the wild type (Figure 10E). To further characterize the 

disease phenotype, photos from single plants were taken at 21dpi (Supplement figure S1). 

Stunting and yellowing of the leaves were comparable in all the genotypes at later stages of the 

infection. 

 

To show that the induction of PR1 after Verticillium infection is indeed due to the known 

pathogen-induced SA biosynthesis pathway, PR1 expression was assessed in sid2-2, nahG 

and npr1-1 mutant plants after infection at 15 dpi. Induction of the PR1 transcript was 

completely abolished in sid2-2 (Dewdney et al., 2000, Wildermuth et al., 2001b) and nahG 

(Lawton et al., 1995) (Figure 10B). Also, the SAG and DHBA levels were reduced in sid2-2 and 

nahG, when measured at 21 dpi in mock and infected petioles of the respective genotypes 

(Figure 10F) and correlated with the PR1 levels (Figure 10B) indicating SAG and DHBA as 

possible inducers of PR1 transcripts at least after Verticillium infection. In summary, our data 

indicate that the SA pathway is induced. However, this defense program is not effective against 

V. longisporum. 
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Figure 10 SA, SAG and DHBA measurements, PR-1 gene expression, disease phenotype of SA 
biosynthesis and signaling mutants and fungal DNA quantification 

(A) HPLC-MS/MS analysis for detection of SA, SAG and DHBA levels in petioles from Col-0 plants at 15 days 
after mock and V. longisporum infection.  Data are the means (+/- SEM) of four replicates with each replicate 
consisting of a pool of petioles from four plants. 
(B) Quantitative real time RT PCR analysis of relative PR-1 transcript levels in petioles of Col-0, sid2-2, nahG 
and npr1-1 plants at 15 days after mock and V. longisporum infection. Data indicate means (+/- SEM) of four 
biological replicates with each replicate consisting pool of petioles from four plants. 
(C) Representative pictures of Col-0, sid2-2, nahG and npr1-1 plants 15 days after mock and V. longisporum 

infection.  
(D) Projected leaf area of mock and V. longisporum infected Col-0, sid2-2, nahG and npr1-1 at 15 dpi. Data 
indicate means (+/- SEM) of 29-34 replicates from two independent experiments. Stars indicate significant differences 
between mock and V. longisporum infected samples (two-way ANOVA followed by Bonferroni multiple comparison 

test; P< 0.0001). 
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(E) Quantification of fungal biomass by real time RT PCR in 15 dpi Col-0, sid2-2, nahG and npr1-1. DNA was 
extracted from V. longisporum infected petioles. Data indicates means (+/- SEM) of four biological replicates with 
each replicate consisting of petioles from four plants. Letters on the bar denote significance test performed using one-
way ANOVA followed by Tukey-Kramer multiple comparison test). 
(F) HPLC-MS/MS analysis for detection of SA, SAG and DHBA levels in petioles from Col-0, sid2-2, nahG and 
npr1-1 at 21 days after mock and V. longisporum infection. Data denote means (+/- SEM) of four replicates with each 
replicate consisting pool of petioles from four plants. Different letters show significant differences between the 
samples (one-way ANOVA followed by Tukey Kramer multiple comparison test; P< 0.0001 for (B); P< 0.05 for (F); SA 
and SAG; P< 0.001 for (F) 

 

3.3 Role of jasmonic acid in Arabidopsis/Verticillium longisporum interaction 

Infection with necrotrophic pathogens generally elicits jasmonic acid/ethylene (JA/ET)-

dependent defense responses. To assess the role of JA in A. thaliana after V. longisporum 

infection, jasmonate levels were measured in wild-type mock and infected petioles at 15 dpi 

(measurements performed by AG Feussner). JA levels were increased significantly in infected 

wild-type plants (Figure 11A) and so were the levels of the active form JA-Ile (Figure 11B). To 

compare the overall activation of the JA pathway after infection with that induced after 

wounding, JA and JA-Ile levels were measured in the petioles two hours after wounding. The JA 

levels increased to a higher extent after wounding than after V. longisporum but JA-Ile levels 

were comparable in both the treatments.  

 

Figure 11 Activation of the JA biosynthesis pathway in V. longisporum-infected wild type plants 

(A) HPLC-MS/MS analysis for detection of JA levels in petioles from wild-type plants at 15 days after mock and 
V. longisporum infection.  
(B) HPLC-MS/MS analysis for detection of JA-Ile levels in petioles from wild-type plants at 15 days after mock 
and V. longisporum infection. 

Data are the means (+/- SEM) of eight replicates from two independent experiments. Each replicate is a 
pool of four plants. As positive controls, petioles were wounded with forceps and harvested after 2 hours. 
Data are from 3 biological replicates. 
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3.3.1 Disease phenotype of jasmonic acid biosynthesis and signaling mutants 

Further, to dissect the role of JA biosynthesis and signaling in plant defense against V. 

longisporum, mutants impaired in JA biosynthesis and early signaling were screened for altered 

resistance/susceptibility. The mutants used for this analysis included dde2-2, fad3-2 fad7-1 

fad8, acx1/5, jar1-1, coi1-t and coi1-1. Among the JA biosynthesis mutants, fad mutants have 

defective levels of three fold unsaturated fatty acids that are JA precursors, with fad3-2 being 

defective in the desaturation of linoleic acid (18:2) to linolenic acid (18:3) (Browse et al., 1993), 

and the fad7-1 fad8 double mutant showing decreased levels of trienoic fatty acids (16:3 and 

18:3) (McConn et al., 1994). Similarly, the dde2-2 is defective in the catalysis of the first step in 

the conversion of 13-hydroperoxy linolenic acid (13-HPOT) to 12-oxophytodienoic acid (12-

OPDA) (Stintzi and Browse, 2000; Park et al., 2002) and the acx1/5 (Schilmiller et al., 2007) 

double mutant is impaired in two of the acyl-coenzyme A oxidases (ACX1 and ACX5) involved 

in the conversion of OPDA to JA. Another JA-Ile-deficient mutant, jar1-1, exhibits a defect in an 

enzyme converting JA to its amino acid conjugate JA-Ile. JA-Ile receptor mutant, coi1-t, exhibits 

a T-DNA insertion in the COI1 gene (Mosblech et al., 2010). At 15 dpi, leaf area was reduced 

down to 50 to 60% in wild-type and the JA biosynthesis mutant dde2-2 but not in the JA 

receptor mutant coi1-t (Figure 12A and 12B). Also, as shown in (Figure 12I), the very well 

characterized coi1-1 mutant had less severe reduction in leaf area. Reduction in leaf area of the 

two independent JA biosynthesis mutant fad3-2 fad7-2 fad8 and acx1/5 and JA-Ile-deficient 

mutant, jar1-1 was also consistent with dde2-2 and wild type plants (Figure 12G and H). At 22 

dpi, senescence-like symptoms became apparent in infected wild-type and dde2-2 plants. 

These symptoms were much less pronounced in coi1-t. At 35 dpi, most of the wild-type and 

dde2-2 plants were dead while most of the coi1-t plants had remained green (Figure 12D). 

Appearance of microsclerotia correlated with this disease phenotype resulting in 73% wild-type, 

79% dde2-2 and 25% infected coi1-t plants carrying microsclerotia primarily around the petioles 

(Figure 12E and 12F).  
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Figure 12 Disease phenotype of JA biosynthesis (dde2-2, fad3/7/8, jar1-1 and acx1/5) and 
perception (coi1-t and coi1-1) mutants after V. longisporum infection 

(A)  Typical V. longisporum (V.l.) disease symptoms of wild-type (upper row), dde2-2 (middle row) and coi1-t 

(lower row) plants at 15 dpi. One representative mock-treated plant of each genotype (left row) and 4 representative 
infected plants of each genotype are shown.  
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(B)  Projected leaf area of mock-infected and V. longisporum-infected wild-type, dde2-2 and coi1-t plants. Data 
indicate means (+/- SEM) of 3 independent experiments with 14 to 16 mock-infected and 14 to 16 V. longisporum-
infected plants/experiment. Stars indicate significant differences at P < 0.0001 (two-way ANOVA followed by 
Bonferroni multiple comparison test; ns, not significant) between V. longisporum (V.l.)- and mock-infected samples.  

(C)  Single leaves of mock-infected and V. longisporum-infected wild-type, dde2-2 and coi1-t plants at 22 dpi. 
Leaves from corresponding positions (mock- and V. longisporum-infected) are shown.  

(D)  Representative disease symptoms of wild-type (upper row), dde2-2 (middle row) and coi1-t (lower row) 

plants at 35 dpi. One representative mock-treated plant and one infected plant are shown.  

(E)  Percentage of wild-type, dde2-2 and coi1-t plants with microsclerotia after 35 dpi. Numbers are from three 
independent experiments with 16 mock- and 16 V. longisporum-infected plants per experiment. Microsclerotia were 
only observed on plants showing the severe phenotype as shown in (d). Different letters indicate significant 
differences at P < 0.01 (one-way ANOVA followed by Tukey-Kramer multiple comparison test).  

(F)  Photograph of a typical V. longisporum-infected Col-0 leaf at 35 dpi showing microsclerotia primarily around 

the petiole.  

(G) and (H)  Projected leaf area of mock-infected and V. longisporum-infected wild type, dde2-2, coi1-t, 

fad3/7/8, jar1-1 and acx1/5 plants. Data indicate means (+/- SEM) of 1 experiment with 16-18 mock- and V. 
longisporum infected plants per experiment. Stars indicate significant differences at *P<0.05 and ***P< 0.0001 (two-
way ANOVA followed by Bonferroni multiple comparison test; ns, not significant) between V. longisporum- and mock-
infected samples. 

(I)  Projected leaf area of mock- and V. longisporum-infected wild type and coi1-1 plants at 15 dpi. Data indicate 
means (+/- SEM) of 1 experiment with18 mock- and V. longisporum-infected plants. Stars indicate significant 
differences at *P<0.05 and ***P<0.0001 (two-way ANOVA followed by Bonferroni multiple comparison test; ns, not 
significant) between V. longisporum- and mock-infected samples.  

 

Alterations in vascular bundle of wild-type, coi1-t and dde2-2 plants were analyzed as well. 

Sampling was done at three different time points as part of one time course experiment at 10, 

12, and 15 dpi. At 10 dpi, the cytosol of the phloem cells became denser in infected wild-type 

vascular bundles. At 15 dpi, the layer of cells with dense cytosol was interspersed with cells 

displaying a xylem vessel-like appearance (large lumen, lignified cell walls) and the paired cells 

derived from pro-cambium had disappeared. Consistent with the less severe disease 

phenotype, these changes were less pronounced in coi1-t: At 10 dpi, the layer of cells with a 

denser cytosol was thinner as compared to the wild-type and at 15 dpi; cells with lignified cell 

walls were not yet formed (Figure 13A, B and C). Again, the dde2-2 mutant showed comparable 

phenotype to the wild-type in this assay. 
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Figure 13 Structure of the vascular bundle in petioles of V. longisporum-infected plants  

(A) Cross-sections of petioles from mock-inoculated and V. longisporum-infected Col-0 and coi1-t plants at 10 
dpi. Sections were stained with toluidine blue to detect lignification of secondary cell walls. 
(B) Cross-sections of petioles from V. longsiporum-infected Col-0 plants at 12 dpi (bar = 20 µm). 
(C) Cross-sections of petioles from V. longisporum-infected Col-0, dde2-2 and coi1-t plants at 15 dpi (bar=20 

µm).Xy, xylem vessel; Ph, phloem; Pc, procambium-derived paired cells. Red arrows exemplarily denote two cells 
which look like xylem vessels at the abaxial side, the green arrow exemplarily marks putative phloem cells in the 
middle of the vascular bundle (bar = 20 µm). 

 

3.3.2 Verticillium longisporum propagation in coi1-t  

To determine whether V. longisporum penetration in coi1-t roots was hampered, roots of GFP-

tagged V. longisporum inoculated plants were examined by confocal laser scanning microscopy. 

15 dpi

Xy

Pc

Ph

Mock

V.l. 43

Col-0 coi1-tdde2-2

Col-0

Mock

V.l. 43

coi1-t10 dpi 12 dpiCol-0A

B

C



43 
 

As previously observed when analyzing Brassica napus roots with GFP-tagged V. longisporum, 

the fungus could indeed penetrate into the xylem vessels of Arabidopsis roots (Figure 14B). 

Although the results of confocal microscopy are considered qualitative and not quantitative, 

microscopic analysis of roots from 6-8 plants/genotype indicated equal amount of fungal 

colonization of the vascular system of wild type, dde2-2 and coi1-t roots. To test whether a 

restriction of post-penetration fungal growth has a role in the coi1-t resistant phenotype, the 

fungal biomass was measured in petioles of infected wild type, dde2-2 and coi1-t plants via 

quantitative real time RT-PCR analysis of extracted DNA, using Arabidopsis and V. longisporum 

specific primers. At 10 dpi, no significant differences in the amounts of fungal DNA were 

detected in coi1-t as compared to the wild-type (Figure 14A). At later time points, fungal 

proliferation was less efficient in coi1-t as compared to wild-type and dde2-2 plants. At 15 and 

19 dpi, dde2-2 plants contained more fungal DNA than wild-type plants supporting the idea that 

the JA-Ile-mediated defense pathway can restrict fungal growth whereas a yet unknown COI1-

dependent pathway supports fungal proliferation. 

 
Figure 14 Fungal biomass of Verticillium longisporum infected wild type, dde2-2 and coi1-t plants 
(petioles and roots) and root colonization of coi1-t 

(A)  Relative quantification of fungal biomass by real time PCR on DNA isolated from petioles of V. longisporum 

infected wild type, dde2-2 and coi1-t plants at 10, 15 and 19 dpi. Amplification values for fungal internal ribosomal 
spacer regions were normalized to the abundance of Arabidopsis Actin8 sequences. Relative amounts of fungal DNA 
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were set to 100% for the wild type. 10 and 15 dpi: Bars indicate means (+/- SEM) of 11 biological replicates from 
three independent experiments. Each replicate contains petioles from four plants. 19 dpi: Bars indicate means (+/- 
SEM) of three independent experiments, with three biological replicates. Each replicate represents a pool of four 
plants. Stars indicate significant differences at P < 0.0001 (unpaired t-test) between Col-0 and coi1-t. 
 
(B)  Confocal image of a coi1-t root infected with a GFP-tagged V. longisporum strain at 7 dpi. 

 
(C)  Relative quantification of fungal biomass by real time PCR with DNA isolated from roots of V. longisporum 
infected wild type, dde2-2 and coi1-t plants at 10 and 16 dpi. Amplification values for fungal internal ribosomal spacer 
regions were normalized to the abundance of Arabidopsis Actin8 sequences. Relative amounts of fungal DNA were 
set to 100% for the wild type. 10 and 16 dpi: Bars indicate means (+/- SEM) of 8 biological replicates from two 
independent experiments. Each replicate contains roots from four plants. Stars indicate significant differences (ONE-
WAY ANOVA followed by Tukey-Kramer multiple comparison test) between dde2-2 and coi1-t. 

 

 

In addition, efforts were made in quantifying the fungal biomass in the roots of wild type, dde2-2 

and coi1-t plants at 10 and 16 dpi via quantitative real time RT-PCR. Since the soil system was 

used for the infection, harvested roots were cleaned and sonicated (section 2.2.3.2) prior to 

DNA extraction. 3 pools containing roots from 4 plants per genotype and treatment were made. 

At 10 dpi, equal amounts of fungal DNA were detected in all three genotypes including coi1-t 

roots indicating that the initial penetration of the roots by the fungus is independent of the 

genotype. Since this analysis does not confirm that the fungal biomass is actually from the 

vascular tissue, confocal studies confirmed the fact that the vascular colonisation is not 

hampered in all three genotypes. However, at 16 dpi, the fungal biomass was reduced 

significantly in coi1-t roots as compared to dde2-2 roots (Figure 14C), in accordance with the 

reduction of fungal biomass in the petioles.  

3.3.3 Expression analysis of known defense genes of the JA pathway in dde2-2 

and coi1-t mutants 

Since disease development depends on COI1 but not on plant-derived JAs, jasmonate levels 

were determined (measurement done by the department of Prof. Feussner) in all three 

genotypes at 15 dpi in mock and infected petioles (Figure 15A). JA levels were increased 

significantly in infected wild type plants and were absent in dde2-2. In coi1-t, JA levels were 

slightly elevated in mock-infected plants and did not show a significant increase after infection. 

Like JA levels, levels of the active hormone JA-Ile were increased in wild-type petioles and was 

absent in the dde2-2 mutant. The coi1-t mutant had increased JA-Ile levels already after mock 

infection and reacted to the fungus with a further increase. The lack of any biochemically 

detectable JA or JA-Ile in the infected dde2-2 mutant suggested that V. longisporum cannot 

synthesize JA. In order to investigate whether V. longisporum might produce a yet unknown JA 

mimic to activate COI1, transcript levels of two marker genes of the JA-Ile-dependent COI1 
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response, namely VSP2 and PDF1.2, were determined in petioles at 15 dpi,. Both genes were 

only induced in wild-type plants (Figure 15B) indicating that no fungal-derived JAs or JA mimics 

that would activate the established COI1-dependent defense genes are effective in V. 

longisporum-infected dde2-2 plants. Consistent with the result those similar amounts of JA-Ile 

were found in wild-type plants after V. longisporum infection and wounding (Figure 11A and B), 

VSP2 transcript levels were induced to comparable levels under both conditions. In contrast, the 

JA/ET marker gene PDF1.2, which is highly expressed after infection with the foliar pathogen 

Botrytis cinerea, is not efficiently induced in V. longisporum-colonized plant tissue. The 

observed increase in ABA (Figure 15A), which is known to inhibit the JA/ET pathway, might 

explain the low PDF1.2 transcript levels (Anderson et al., 2004).  

 

Figure 15 Activation of JA biosynthesis and signaling pathways in V. longisporum-infected wild-
type, dde2-2 and coi1-t plants   

(A)  HPLC-MS/MS analysis for detection of JA-, JA-Ile and ABA levels in petioles from wild-type dde2-2 and 
coi1-t plants at 15 days after mock and V. longisporum infection. Data are the means (+/- SEM) of eight replicates 
from two independent experiments. Each replicate is a pool of four plants.  
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(B)  Quantitative RT-PCR analysis of relative VSP2 and PDF1.2 transcript levels in petioles from wild-type dde2-
2 and coi1-t plants at 15 days after mock and V. longisporum infection. Data indicate means (+/- SEM) of three 
independent experiments with 16 individual plants/experiment. Wounded petioles were harvested for RNA extraction 
after two hours (three biological replicates), Botrytis cinerea-infected samples were harvested after three days (four 
biological replicates). Relative transcript levels of the infected wild-type were set to 100%.  Different letters denote 
significant differences between samples (one-way ANOVA followed by Tukey-Kramer multiple comparison test; P < 
0.05 for (a) and (b) PDF1.2; P < 0,001 for (b) VSP2 and (c). 

 

3.3.4 The role of salicylic acid defense pathway in the coi1-mediated tolerance 

Increased resistance of the coi1 mutant has been detected before in a screen for resistance 

against the hemibiotrophic pathogen Pseudomonas syringae (Kloek et al., 2001). In this 

interaction, the bacterial JA-Ile mimic COR activates COI1 to suppress the SA pathway (Kloek 

et al., 2001, Laurie-Berry et al., 2006). To analyze, whether a similar scenario would explain the 

coi1-mediated tolerance towards V. longisporum, SA synthesis and SA signaling were analyzed 

in infected wild-type, dde2-2 and coi1-t plants (Figure 16A). Free SA levels did not increase 

after infection in wild-type plants and reached similar levels in all three infected genotypes. 

Lower basal SA levels were detected in dde2-2. In contrast, the SA glucoside (SAG) and the 

SA-derived metabolite dihydroxybenzoeic acid (DHBA) were elevated in all three genotype after 

infection. Like the relative levels of SAG and DHBA, which showed the highest values in the 

wild-type followed by intermediate levels in the dde2-2 mutant and even lower levels in coi1-t, 

PR-1 expression followed the same pattern (Figure 16B). However a slight increase in the SAG 

and DHBA levels was observed in mock-treated coi1-t plants. 
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Figure 16 Activation of SA biosynthesis and signaling pathways in V. longisporum-infected wild-
type, dde2-2 and coi1-t plants  

(A)  HPLC-MS/MS analysis for detection of SA-, SAG and DHBA levels in petioles from wild-type, dde2-2 and 
coi1-t plants at 15 days after mock and V. longisporum infection. Data are the means (+/- SEM) of eight replicates 

from two independent experiments. Each replicate is a pool of four plants (same material as in Fig. 4).  

(B)  Quantitative RT-PCR analysis of relative PR-1 transcript levels in petioles from wild-type dde2-2 and coi1-t 
plants at 15 days after mock and V. longisporum infection. Data indicate means (+/- SEM) of three independent 
experiments with 16 individual plants/experiment (same material as in Fig. 4). Pseudomonas syringae pv. maculicola 
ES4326/avrRps4-infected leaf samples were harvested after three days (three biological replicates). Relative 
transcript levels of the V.l.-infected wild-type were set to 100%.  

Different letters denote significant differences between samples (one-way ANOVA followed by Tukey-Kramer multiple 
comparison test; P < 0.01 for (a), SA and SAG; P < 0,05 for (a), DHBA and (b).  

 

To investigate whether this slight increase in the SAG and DHBA levels confers resistance in 

coi1 plants, coi1-1/nahG double mutant plants were checked for susceptibility. coi1-1/nahG 

plants have also been previously known to lack induced expression of PR1 (Kloek et al., 2001). 

Like coi1-t, coi1-1/nahG, nahG, coi1-1 and Col-gl were inoculated with a V. longisporum spore 

suspension. In two independent experiments, the leaf areas of mock and infected plants were 

measured at 15 dpi (Figure 17). coi1-1 showed similar resistance to the fungus like coi1-t but 

coi1-1/nahG, in contrast, showed significant reduction in the leaf area comparable to the wild 
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type in one experiment (Figure 17A). In the second experiment, coi1/nahG showed no reduction 

in the leaf area after infection as compared to the wild type (Figure 17B). Since catechol, 

produced as a result of SA hydrolyses by NahG enzyme, might alter the susceptibility an 

independent crossing between coi1-1 and sid2-2 was initiated and analyzed. coi1-1/sid2-2 

plants also showed reduced disease symptoms like coi1-1 plants (Figure 17C). These results 

indicate that the resistant/tolerant coi1 phenotype is not due to pre-induction of the SA pathway.  

 

 

Figure 17 Disease phenotype of V. longisporum-infected wild type, nahG, coi1-1 and coi1-1/nahG 
plants  

(A) Projected leaf area of mock- and V. longisporum-infected wild-type, nahG, coi1-1 and coi1-1/nahG plants 
first experiments.  
(B) Projected leaf area of mock- and V. longisporum-infected wild-type, nahG, coi1-1 and coi1-1/nahG plants 

from second experiments. 
(C) Projected leaf area of mock- and V. longisporum-infected wild-type, coi1-1, sid2-2 and coi1-1/sid2-2 plants 
from a single experiment at 19 dpi.  

Data indicate means (+/- SEM) of 16-18 replicates. Stars indicate significant differences at P < 0.0001 (two-way 
ANOVA followed by Bonferroni multiple comparison test; ns, not significant) between V. longisporum - and mock-
infected samples.  

 

3.3.5 Analysis of wild type, dde2-2 and coi1-t roots after V. longisporum infection 

To provide evidence that the roots of the V. longisporum-infected plants are still intact and have 

not been harmed after infection and also that the wild-type roots do not show any difference 

than the coi1-t roots after fungal penetration, photographs of mock and infected roots were 

taken at 10 dpi (Figure 18A). Roots of all three genotypes did not show any signs of maceration 

or browning after infection. Another observation revealed that the wild-type roots after infection 

became smoother and easier in removing the soil debris. Interestingly this effect was observed 

already in coi1 mock roots and was not reinforced after infection. Infected dde2-2 roots showed 
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similar effects like the wild-type.This observation suggests that the V. longisporum-induced cell 

wall damage in the root cells might trigger ectopic lignin deposition. These results prompted us 

to stain mock and infected roots of all the three genotypes with a lignin stain to observe any 

lignin deposition. Phloroglucinol-HCl stained whole roots grown and infected on 0,5 MS plates 

(Section 2.2.3.1) were examined under a light microscope at 3 dpi and 7 dpi. Representative 

pictures from two independent experiments are shown in Figure 18B. At 3 dpi moderate 

amounts of lignin were observed in mock treated wild-type roots. In contrast, more lignin spots 

observed in the roots of dde2-2 and coi1 plants. No obvious difference between mock and 

infected roots of all three genotypes was observed at this time point.  

At 7 dpi, the difference between mock and infected roots became more prominent in the wild 

type roots. Lignin deposition in dde2-2 plants showed a difference between mock-treated and 

infected roots. However, coi1 in general showed more lignin already in the mock-treated roots 

especially in the xylem which did not change after infection. The lignified spots appeared mostly 

near the root cap in the wild type roots whereas in coi1 and dde2-2 roots, they got more 

prominent in the lateral roots including the area of the main root from where it begins (Figure 

18B). This difference in the lignifications of roots of Col-0, dde2-2 and coi1 does not affect initial 

penetration by the fungus.  
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Figure 18 Root phenotype and lignin deposition in V. longisporum-infected wild type, dde2-2 and 
coi1 plants 

(A)  Representative picture of mock-(left panel) and V .longisporum-infected (right panel) roots of wild type, 
dde2-2 and coi1-t. Pictures were taken at 10 dpi from 4 plants. Plants were grown and infected in the soil system. 

(B)  Roots of wild type, dde2-2 and coi1-16 were stained with Phloroglucinol-HCl stain and red color of lignin was 
observed in mock- (left panel) and V. longisporum-infected (right panel) at 3 dpi and 7 dpi. Plants were grown and 
infected in 0.5 MS plates. 

 

3.4 Microarray analysis of Col-0, dde2-2 and coi1-t infected petioles at 15 dpi 

In order to evaluate whether V. longisporum-induced resistance in coi1 is due to the up-

regulation of defense genes that might confer resistance or whether it is due to the reduced 

expression of genes that might be important for V. longisporum-induced susceptibility, 
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microarray analysis was performed with wild type, dde2-2 and coi1-t plants. The sampling was 

done with 16 plants per treatment and genotype from three independent experiments. As shown 

in section 3.3.1, petioles were severely affected in wild-type and dde2-2 but not in coi1-t. Since 

microsclerotia also developed primarily around this tissue, petioles were harvested for RNA 

extraction. 15 dpi was chosen as a time point because the disease phenotype had already 

become visible, but tissue damage was not yet detected. In infected wild type plants, 1219 

genes were more than 2-fold (p < 0.05) up-regulated and 475 genes were more than 2-fold (p < 

0.05) down-regulated. In dde2-2 plants, 1007 genes were up-regulated and 298 genes were 

down-regulated. In coi1-t, 489 and 59 genes were up- and down- regulated respectively.1385 

genes were induced at least 2-fold (p < 0.05) in one of the three genotypes. MarVis cluster 

analysis (Kaever et al., 2009) was performed with this set of genes (Analysis performed by: Dr. 

Corinna Thurow). The programme arranged the genes in a way that started with those genes 

that were higher expressed in the wild type as compared to dde2-2 and coi1-t (Figure 19A). This 

cluster contained 38 JA/COI1-dependent genes that were inducible by V. longisporum (Cluster 

I; Table 1). 112 genes were expressed to similar levels in wild-type and dde2-2 plants (+/- 20.3) 

and more than 2-fold between dde2-2 and coi1-t (Cluster II, Table 2). 262 genes were induced 

to a similar extent in all three genotypes (+/- 20.3) (Cluster III; Table 3). The above results were 

confirmed using quantitative real time RT-PCR with RNA from an independent experiment 

which included another JA biosynthesis mutant acx1/5 (Figure 19B-19D). Apart from these, 

other clusters were identified. For example, in cluster IV, many genes were higher expressed in 

the wild-type with a slight decreased expression in dde2-2 and further decreased expression in 

coi1-t (e.g. PR-1). Cluster V contained genes that showed highest differences between wild type 

and coi1-t, but genes of this cluster were higher expressed in dde2-2 than in the wild type. A 

cluster containing genes that were higher expressed in infected-coi1-t than in the wild type and 

dde2-2 was also identified (Cluster VI). The expression pattern of these genes correlated with 

the expression pattern of genes those are down-regulated after infection in wild-type and dde2-2 

but to a lesser extent in the coi1-t plants. As an example, expression levels of two of such genes 

were confirmed using quantitative real time RT-PCR with the same RNA as for figure 19B-19D. 

Figure 19E and 19F represents that genes like, XTH17 and GA2OX1 are down-regulated in the 

wild-type and dde2-2 but their expression remains high in the coi1-t after infection. 
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Figure 19 MarVis clustering and verification of microarray expression data from V. longisporum-
infected Arabidopsis plants   

(A)  Clustering of 1358 genes that were induced 2-fold (p < 0.05) in one of the genotypes was done by using 

MarVis clustering tool. The vertical axis represents three genotypes. The horizontal axis corresponds to the cluster 
numbers. Three important clusters are indicated in brackets. The color was coded according to the indicated scale. 
Clustering was performed by Corinna Thurow.   

(B)  Cluster 1, JA/COI1-dependent genes: Quantitative real time RT-PCR analysis of relative PDF1.2 transcript 
levels in petioles from wild type, dde2-2, coi1-t and acx1/5 plants at 15 days after mock- and V. longisporum-infection. 

Data indicate means (+/- SEM) of 4 replicates from 1 experiment with each replicate containing pool of four plants.  

(C)  Cluster II, genes expressed to similar levels in wild type and dde2-2 plants but to lower levels in coi1-t 

plants: Quantitative real time RT-PCR analysis of relative GSTU10 levels in petioles from wild type, dde2-2, coi1-t 
and acx1/5 plants at 15 days after mock- and V. longisporum-infection. Data indicate means (+/- SEM) of 4 replicates 
from 1 experiment with each replicate containing pool of four plants.  

(D)  Cluster III, genes induced to the same extent in all three genotypes: Quantitative real time RT-PCR analysis 

of relative LTP1 levels in petioles from wild type, dde2-2, coi1-t and acx1/5 plants at 15 days after mock- and V. 
longisporum-infection. Data indicate means (+/- SEM) of 4 replicates from 1 experiment with each replicate containing 
pool of four plants.  
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(E)  Quantitative real time RT-PCR analysis of relative XTH17 transcript levels in petioles from wild type, dde2-2, 
coi1-t and acx1/5 plants at 15 days after mock- and V. longisporum-infection. Data indicate means (+/- SEM) of 4 
replicates from 1 experiment with each replicate containing pool of four plants. 

(F)  Quantitative real time RT-PCR analysis of relative GA2OX1 transcript levels in petioles from wild type, 
dde2-2, coi1-t and acx1/5 plants at 15 days after mock- and V. longisporum-infection. Data indicate means (+/- SEM) 
of 4 replicates from 1 experiment with each replicate containing pool of four plants.  

 

Table 1 List of 38 JA/COI1-dependent genes from cluster I of Verticillium-induced genes according 

to MarVis clustering. 

Table represents genes with higher expression levels in the wild-type and similar expression levels in 

wild-type and dde2-2. Values denote the fold-induction between mock and infected plants with p< 0.05.  

    

Col-0 inf/ 
Col-0 mock 
 

dde2-2 inf/ 
dde2-2 mock 
 

coi1-t inf/ 
coi1-t mock 
 

  
 

x-fold 
 ind 

p-value 
 

x-fold 
 ind 

p-value 
 

x-fold  
ind 

p-value 
 

Cell Wall               

AT4G24000 ATCSLG2 2.4 5E-04 1.3 2E-01 1.1 6E-01 

Amino Acid metabolism             

AT1G64660 ATMGL  3.2 2E-02 1.9 2E-01 1.5 4E-01 

Secondary metabolism             

AT1G61120 TPS04 (TERPENE SYNTHASE 04) 2.4 5E-07 1.0 9E-01 1.0 8E-01 

AT1G54020  myrosinase-associated protein, putative 14.7 1E-09 0.9 7E-01 1.1 6E-01 

AT1G52030 MBP1 (MYROSINASE-BINDING PROTEIN 1) 5.9 8E-09 0.4 1E-04 0.7 2E-02 

AT3G55970  oxidoreductase 44.6 4E-12 1.0 9E-01 1.1 7E-01 

AT2G38240  oxidoreductase 5.1 4E-08 0.9 7E-01 0.8 3E-01 

AT5G05600  oxidoreductase 3.8 2E-04 1.3 4E-01 1.2 5E-01 

AT4G22870  leucoanthocyanidin dioxygenase, putative   2.3 4E-02 0.5 1E-01 0.9 7E-01 

Hormone metabolism             

AT1G44350  ILL6 2.0 1E-02 0.7 2E-01 1.2 6E-01 

AT1G19640 JMT  6.8 3E-09 1.0 9E-01 1.1 6E-01 

AT3G25780  AOC3  2.1 1E-01 4.3 3E-03 3.3 1E-02 

Major CHO metabolism             

AT4G15210 BAM5  4.8 6E-05 0.3 1E-03 0.9 9E-01 

Stress               

AT1G72260 THI2.1 (THIONIN 2.1) 26.0 5E-07 1.0 1E+00 1.0 1E+00 

AT5G09980 PROPEP4  2.9 2E-05 1.1 5E-01 1.0 8E-01 

Nucleotide metabolism             

AT1G14230 nucleoside phosphatase family protein 2.1 1E-04 1.5 1E-02 1.2 2E-01 

Biodegradation of Xenobiotics             

AT5G16080  AtCXE17  2.6 3E-04 0.9 7E-01 0.9 5E-01 

Misc.               

AT5G36220 CYP81D1 (CYTOCHROME P450 81D1) 4.6 1E-08 2.0 2E-04 1.4 3E-02 

AT2G39330 JAL23 (JACALIN-RELATED LECTIN 23)  5.1 1E-05 0.4 2E-03 0.9 6E-01 

AT1G52000  jacalin lectin family protein  2.6 5E-03 0.7 3E-01 1.2 6E-01 

AT4G22610 lipid transfer protein (LTP) family protein  3.9 1E-11 1.1 4E-01 1.1 2E-01 

AT2G39030 GCN5-related N-acetyltransferase (GNAT) family protein  40.2 6E-15 1.0 8E-01 1.2 2E-01 

AT1G66280  BGLU22 2.9 3E-06 0.9 6E-01 1.0 8E-01 

RNA               

AT1G43160 RAP2.6 6.0 1E-06 1.4 1E-01 1.0 9E-01 

Protein               

AT4G17470 palmitoyl protein thioesterase family protein  2.5 1E-04 0.9 7E-01 1.0 8E-01 



54 
 

AT4G15100 scpl30 12.0 1E-12 1.4 6E-03 1.1 3E-01 

AT4G11320 cysteine proteinase, putative  2.4 8E-03 0.9 6E-01 0.8 5E-01 

Signalling               

AT3G24982  protein binding  2.7 8E-06 1.4 4E-02 1.3 9E-02 

AT1G52410 TSA1 2.5 1E-03 0.4 1E-03 0.9 6E-01 

Cell cycle               

AT3G43250 cell cycle control protein-related  2.1 9E-04 1.1 7E-01 1.2 4E-01 

Development               

AT5G24770  VSP2  8.2 6E-08 1.2 4E-01 1.4 1E-01 

Not assigned               

AT5G19110 extracellular dermal glycoprotein-related 2.2 5E-03 0.6 4E-02 0.7 3E-01 

AT4G30460  glycine-rich protein  23.6 3E-08 27.1 2E-08 28.6 1E-08 

AT2G47950 unknown protein 10.0 2E-11 3.7 6E-08 3.2 2E-07 

AT5G13220 JAZ10  2.5 3E-03 0.9 8E-01 1.1 6E-01 

AT2G06255  ELF4-L3 (ELF4-Like 3)  2.5 5E-07 1.4 4E-03 1.1 5E-01 

AT4G02360 unknown protein 2.2 2E-05 0.9 6E-01 1.0 9E-01 

OPP               

AT5G24420 
glucosamine/galactosamine-6-phosphate isomerase-
related 6.4 3E-05 0.5 2E-02 0.9 7E-01 

 

Table 2 List of genes from cluster II of Verticillium-induced genes according to MarVis analysis. 

Table represents 112 genes expressed to similar levels in the wild type and dde2-2 (+/- 2 
0.3)

 and to a 

lower level in coi1-t. Values denote the fold-induction between mock and infected plants with p< 0.05.  

  

Col-0 inf/ 
Col-0 mock 
 

dde2-2 inf/ 
dde2-2 mock 
 

coi1-t inf/ 
coi1-t mock 
 

  

x-fold 
ind 

p-value 
 

x-fold 
ind 

p-value 
 

x-fold 
ind 

p-value 
 

Cell wall               

AT1G76930  ATEXT4 (EXTENSIN 4) 3.1 4E-08 2.5 7E-07 1.4 1E-02 

AT5G62150 peptidoglycan-binding LysM domain-containing protein 4.0 5E-05 2.9 6E-04 1.7 5E-02 

AT5G06860 PGIP1  4.0 2E-06 3.0 3E-05 1.6 2E-02 

Lipid metabolism             

AT1G06520 GPAT1 7.3 1E-04 8.4 5E-05 3.5 5E-03 

AT5G22500 FAR1  5.2 4E-04 3.3 5E-03 1.5 3E-01 

Metal 
handling               

AT1G07610 MT1C  5.4 3E-04 5.7 2E-04 1.9 1E-01 

Secondary metabolism             

AT1G74010 strictosidine synthase family protein 3.5 7E-05 2.6 1E-03 1.2 4E-01 

AT5G39050 transferase 4.2 6E-04 5.4 1E-04 1.8 9E-02 

Hormone metabolism             

AT3G60690 auxin-responsive family protein 6.7 4E-05 6.6 4E-05 1.3 5E-01 

AT2G03760 ST1 4.2 7E-08 3.5 4E-07 1.4 3E-02 

AT4G29740 CKX4  2.6 6E-04 1.4 1E-01 0.7 8E-02 

AT1G05680 UDP-glucoronosyl/UDP-glucosyl transferase family protein 3.7 9E-08 2.8 1E-06 2.0 1E-04 

Major CHO 
metabolism               

AT3G13790 ATBFRUCT1 3.9 1E-07 3.5 3E-07 1.1 4E-01 

 Stress               

AT4G23260 ATP binding  9.5 2E-05 6.0 2E-04 1.2 6E-01 

AT2G15120 disease-resistance family protein 3.3 1E-03 2.7 4E-03 1.1 6E-01 

AT1G19610 PDF1.4 4.8 3E-09 3.6 5E-08 2.2 2E-05 

AT2G43580 chitinase, putative 11.0 7E-12 11.1 6E-12 4.0 2E-08 

AT2G38870 protease inhibitor, putative  2.5 3E-03 1.8 5E-02 1.0 9E-01 

AT1G33960  AIG1 (AVRRPT2-INDUCED GENE 1) 2.8 3E-03 1.9 4E-02 0.8 6E-01 

AT1G72890 disease resistance protein (TIR-NBS class), putative  2.4 5E-04 1.7 2E-02 1.0 8E-01 

AT1G57630 disease resistance protein (TIR class), putative  5.7 1E-06 6.4 6E-07 3.1 2E-04 

AT3G04320 endopeptidase inhibitor 3.7 5E-05 4.1 3E-05 1.7 3E-02 

AT3G01420 ALPHA-DOX1 3.6 2E-07 3.8 9E-08 1.9 5E-04 
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 Redox               

AT1G69880 ATH8 6.1 1E-07 7.0 5E-08 3.0 5E-05 

AT1G03850 glutaredoxin family protein  3.9 2E-04 2.1 2E-02 0.7 3E-01 

Nucleotide metabolism             

AT4G29570 cytidine deaminase, putative 2.1 4E-03 1.9 1E-02 0.9 7E-01 

Misc.               

AT5G67310 CYP81G1  4.0 1E-07 4.0 1E-07 1.6 4E-03 

AT2G45570 CYP76C2  2.2 5E-04 2.0 1E-03 1.2 4E-01 

AT2G34500 CYP710A1 2.6 2E-03 3.7 2E-04 1.4 2E-01 

AT3G26230 CYP71B24 5.4 4E-05 4.4 2E-04 2.7 4E-03 

AT2G01890 PAP8 5.1 1E-05 5.6 7E-06 2.8 1E-03 

AT5G53870 plastocyanin-like domain-containing protein  5.0 2E-06 3.4 5E-05 1.4 1E-01 

AT1G62510 protease inhibitor 4.5 1E-03 7.3 7E-05 2.2 5E-02 

AT5G50700 AtHSD1  23.9 7E-08 15.7 5E-07 3.6 1E-03 

AT1G65610 ATGH9A2 10.4 9E-11 10.8 7E-11 4.4 5E-08 

AT3G04010 glycosyl hydrolase family 17 protein 2.9 3E-05 4.0 1E-06 2.1 8E-04 

AT4G12290 copper amine oxidase family protein 3.3 2E-04 2.7 1E-03 1.7 6E-02 

AT1G30720 FAD-binding domain-containing protein  5.1 6E-05 3.7 4E-04 1.3 4E-01 

AT1G30700 FAD-binding domain-containing protein 3.5 8E-08 3.0 4E-07 1.7 1E-03 

AT5G02780 In2-1 protein, putative  3.8 4E-05 3.9 3E-05 1.4 2E-01 

AT3G09270 ATGSTU8  3.4 9E-05 3.1 2E-04 1.3 2E-01 

AT1G74590 GSTU10 3.2 8E-06 4.1 7E-07 1.2 3E-01 

AT1G69930 ATGSTU11  7.2 2E-10 6.0 7E-10 1.7 1E-03 

 RNA               

AT2G02990 RNS1 2.6 2E-04 3.2 2E-05 1.4 1E-01 

AT3G11580 DNA-binding protein, putative 9.4 5E-06 8.8 8E-06 2.0 5E-02 

AT1G13300 myb family transcription factor 2.4 2E-03 1.5 9E-02 1.1 7E-01 

AT5G59780 MYB59 13.7 7E-09 11.9 2E-08 2.3 3E-03 

AT4G05100 AtMYB74 5.1 4E-08 4.6 9E-08 2.0 7E-04 

AT3G04070 anac047 5.5 2E-05 4.6 8E-05 2.6 4E-03 

AT4G39780 AP2 domain-containing transcription factor, putative  13.1 9E-10 9.7 5E-09 4.2 2E-06 

AT5G61890 AP2 domain-containing transcription factor family protein 6.8 2E-11 7.3 1E-11 3.0 5E-08 

AT2G20880 AP2 domain-containing transcription factor, putative 5.6 2E-08 4.1 3E-07 1.2 3E-01 

AT5G46350 ATWRKY8  13.8 3E-09 6.6 2E-07 1.4 1E-01 

AT1G76590 zinc-binding family protein 4.8 1E-05 3.6 1E-04 0.9 6E-01 

Protein               

AT1G32940 SBT3.5 2.6 3E-03 2.3 7E-03 0.5 1E-02 

AT1G22500 zinc finger (C3HC4-type RING finger) family protein 2.5 5E-05 2.0 7E-04 1.0 9E-01 

AT1G60190 armadillo/beta-catenin repeat family protein 4.8 2E-07 4.7 2E-07 1.9 2E-03 

AT2G42360 zinc finger (C3HC4-type RING finger) family protein  2.9 3E-03 3.7 6E-04 1.9 4E-02 

AT3G61390 U-box domain-containing protein 2.9 7E-07 2.1 4E-05 1.0 9E-01 

AT5G50260 cysteine proteinase, putative 7.3 4E-09 5.0 7E-08 2.3 2E-04 

AT3G12240 SCPL15 7.8 2E-09 5.2 3E-08 1.4 8E-02 

AT3G28540 AAA-type ATPase family protein 20.1 3E-11 8.2 5E-09 1.5 4E-02 

AT5G40010 AATP1 6.6 8E-05 4.6 6E-04 1.7 2E-01 

AT3G28510 AAA-type ATPase family protein 5.5 3E-03 4.8 5E-03 2.9 4E-02 

Minor CHO metabolism             

AT2G37760 aldo/keto reductase family protein 7.6 2E-07 6.4 7E-07 1.6 5E-02 

Signalling               

AT5G09440 EXL4 6.4 4E-08 5.1 2E-07 0.9 5E-01 

AT5G48400 GLR1.2  6.1 1E-03 6.4 1E-03 1.3 6E-01 

AT2G02710 PLPB  7.2 2E-05 5.6 7E-05 1.8 9E-02 

AT5G24080 protein kinase family protein  9.1 8E-11 6.7 7E-10 1.5 1E-02 

AT1G51860 leucine-rich repeat protein kinase, putative 4.4 4E-08 2.8 4E-06 1.1 4E-01 

AT3G22060 receptor protein kinase-related 8.7 4E-08 6.5 3E-07 1.7 2E-02 

AT1G51890 leucine-rich repeat protein kinase, putative 8.5 2E-07 6.7 1E-06 1.5 1E-01 

AT3G46280 protein kinase-related 32.6 2E-12 25.7 5E-12 4.0 5E-07 

AT1G51800 leucine-rich repeat protein kinase, putative  4.7 1E-04 3.9 3E-04 1.0 1E+00 

AT4G18430 AtRABA1e  6.4 2E-05 3.0 3E-03 0.9 8E-01 

Cell               

AT5G55400 fimbrin-like protein, putative  11.6 6E-06 8.0 4E-05 1.3 4E-01 

Development               

AT1G52690 LEA protein, putative  10.2 5E-06 8.8 1E-05 1.1 7E-01 

AT1G69490 NAP (NAC-like, activated by AP3/PI) 15.5 3E-09 15.0 4E-09 2.4 1E-03 

AT2G41380 embryo-abundant protein-related 11.4 9E-09 10.3 2E-08 1.5 7E-02 

AT2G39210  nodulin family protein 4.4 1E-07 5.9 1E-08 1.3 2E-01 

AT3G49780 ATPSK4 7.4 2E-08 6.6 4E-08 2.7 6E-05 

AT5G13170 SAG29 3.6 1E-04 3.2 3E-04 1.1 6E-01 

AT4G01430 nodulin MtN21 family protein 3.0 1E-03 1.9 3E-02 0.5 1E-02 

Transport               
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AT4G23700 ATCHX17 4.6 1E-09 4.8 1E-09 1.6 1E-03 

AT5G46050 PTR3  15.1 1E-07 11.9 3E-07 3.8 3E-04 

AT3G60970 ATMRP15 3.3 3E-05 3.1 6E-05 1.4 1E-01 

AT2G39350 ABC transporter family protein 13.1 8E-09 13.2 8E-09 5.9 1E-06 

AT1G71890 SUC5 35.5 2E-08 25.9 8E-08 9.4 8E-06 

AT5G17860 CAX7  10.9 5E-09 7.0 8E-08 1.7 2E-02 

AT4G21120 AAT1 2.9 3E-05 2.7 5E-05 1.2 4E-01 

AT5G50200 WR3 10.2 1E-05 8.6 3E-05 4.1 1E-03 

Not assigned               

AT4G15120 VQ motif-containing protein 2.4 3E-04 2.2 9E-04 1.1 7E-01 

AT1G55780 metal ion binding 4.2 2E-05 4.9 5E-06 2.5 1E-03 

AT1G15040 glutamine amidotransferase-related 9.9 2E-06 7.8 7E-06 2.1 3E-02 

AT1G65690 harpin-induced protein-related 3.4 3E-04 2.2 8E-03 1.0 1E+00 

AT2G44380 DC1 domain-containing protein 2.5 2E-04 2.5 2E-04 1.4 1E-01 

AT2G28400  unknown protein 2.3 3E-04 2.1 8E-04 1.1 7E-01 

AT2G29995 unknown protein 7.1 1E-07 9.3 2E-08 4.4 4E-06 

AT5G61820 unknown protein 12.1 4E-05 11.9 4E-05 2.6 4E-02 

AT5G10210 unknown protein 2.8 2E-04 3.2 5E-05 1.5 9E-02 

AT5G02020 unknown protein 11.5 3E-06 12.6 2E-06 1.6 2E-01 

AT5G39520 unknown protein 3.2 5E-06 4.0 6E-07 2.3 2E-04 

no_match no match 3.3 2E-04 2.9 6E-04 1.8 3E-02 

AT3G18250 unknown protein 6.2 2E-06 5.1 8E-06 1.4 2E-01 

AT1G73750 unknown protein 52.4 6E-11 46.5 9E-11 7.7 5E-07 

AT4G33666 unknown protein 31.0 5E-11 24.3 1E-10 13.2 3E-09 

AT3G13950 unknown protein 1.9 1E-04 2.1 2E-05 1.2 1E-01 

AT2G44240 unknown protein 5.1 1E-05 7.2 1E-06 2.2 8E-03 

AT1G27990 unknown protein 10.6 2E-08 12.2 1E-08 3.4 6E-05 

AT2G32190 unknown protein 2.4 1E-03 2.9 2E-04 1.3 3E-01 

AT2G20875 EPF1  4.7 1E-06 5.7 2E-07 1.4 9E-02 

AT3G57950 unknown protein 2.7 5E-04 2.7 5E-04 2.0 8E-03 

 

Table 3 List of genes from cluster III of Verticillium-induced genes according to MarVis analysis 

Table represents genes those are expressed to a similar level in all three genotypes after infection. 

Values denote the fold-induction between mock and infected plants with p< 0.05.  

    

Col-0 inf/ 
Col-0 mock 
 

dde2-2 inf/ 
dde2-2 mock 
 

coi1-t inf/ 
coi1-t mock 
 

  

x-fold 
ind 

p-value 
 

x-fold 
ind 

p-value 
 

x-fold 
ind 

p-value 
 

Cell wall               

AT2G28760  UXS6 1.9 2E-05 1.7 9E-05 2.1 3E-06 

AT3G46440 UXS5 2.2 2E-03 1.8 2E-02 1.3 2E-01 

AT4G18780  IRX1 2.4 4E-04 2.3 7E-04 2.7 1E-04 

AT5G44030  CESA4 2.9 1E-04 2.8 1E-04 3.2 5E-05 

AT5G17420 IRX3 2.4 5E-04 2.4 5E-04 2.6 2E-04 

AT5G15630 IRX6  2.5 2E-04 2.4 4E-04 2.6 2E-04 

AT2G37090  IRX9 4.2 6E-07 4.5 4E-07 4.5 4E-07 

AT2G22470 AGP2 4.1 5E-06 3.4 3E-05 3.3 3E-05 

AT5G56540 AGP14 7.5 1E-08 8.0 9E-09 7.1 2E-08 

AT4G16790 hydroxyproline-rich glycoprotein family protein  10.1 5E-12 9.4 7E-12 6.8 7E-11 

AT1G21310 ATEXT3 (EXTENSIN 3) 3.1 4E-04 2.7 1E-03 1.5 1E-01 

AT5G01930 (1-4)-beta-mannan endohydrolase, putative  3.3 2E-07 3.7 6E-08 4.3 1E-08 

AT4G33810 glycosyl hydrolase family 10 protein  2.0 7E-05 2.5 3E-06 2.5 4E-06 

AT1G23760 JP630 8.1 5E-09 9.3 2E-09 9.2 2E-09 

AT1G23470 polygalacturonase (pectinase) 12.5 5E-12 14.9 2E-12 13.2 4E-12 

AT3G61490 glycoside hydrolase family 28 protein 9.2 4E-09 9.2 4E-09 11.1 1E-09 

AT2G18660  EXLB3 32.1 6E-09 16.4 1E-07 2.6 6E-03 

AT1G05310 pectinesterase family protein 3.2 2E-06 3.2 2E-06 3.7 5E-07 

AT5G09760 pectinesterase family protein  3.6 1E-06 5.2 5E-08 4.6 1E-07 

AT3G09410 Unknown 2.9 2E-02 2.2 6E-02 1.3 6E-01 

AT3G47400 pectinesterase family protein  2.8 3E-05 2.6 5E-05 2.5 9E-05 

Lipid metabolism               

AT5G59320 LTP3  37.3 7E-06 15.2 1E-04 10.6 6E-04 

AT5G54500 FQR1  2.5 1E-05 2.1 1E-04 1.5 9E-03 
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AT1G52760 thioesterase family protein 1.8 6E-07 2.1 3E-08 1.8 1E-06 

AT3G14360 lipase class 3 family protein 2.5 9E-07 2.1 1E-05 2.2 5E-06 

AT4G18550 lipase class 3 family protein 2.3 3E-05 2.5 1E-05 2.2 8E-05 

AT5G65110 ACX2 (ACYL-COA OXIDASE 2) 2.2 4E-04 1.9 3E-03 1.4 6E-02 

Amino acid metabolism             

AT1G22410 2-dehydro-3-deoxyphosphoheptonate aldolase, putative  2.0 2E-05 2.4 2E-06 2.1 1E-05 

AT5G22630  ADT5  2.1 1E-02 4.1 5E-05 2.8 1E-03 

AT1G08250 ADT6  1.4 7E-02 1.9 2E-03 2.0 9E-04 

Metal handling               

AT5G60950 COBL5 (COBRA-LIKE PROTEIN 5 PRECURSOR)  3.9 2E-06 3.5 6E-06 1.2 4E-01 

AT3G56240 CCH (COPPER CHAPERONE) 3.3 1E-08 3.1 3E-08 2.6 3E-07 

Secondary metabolism             

AT5G05390 LAC12  1.9 3E-03 1.5 3E-02 2.0 1E-03 

AT5G60020 LAC17  2.8 2E-06 2.9 2E-06 3.1 8E-07 

AT5G01190 LAC10  3.7 4E-07 3.8 3E-07 4.3 1E-07 

AT2G38080 IRX12  3.4 1E-07 3.9 4E-08 4.2 2E-08 

AT2G37040 ATPAL1  3.2 5E-04 7.1 2E-06 6.8 2E-06 

AT3G21240 4CL2  1.9 2E-02 2.9 3E-04 2.9 3E-04 

AT4G34050 caffeoyl-CoA 3-O-methyltransferase, putative  2.7 9E-05 3.5 8E-06 3.0 3E-05 

AT4G31500 CYP83B1 1.0 9E-01 2.1 3E-03 1.7 2E-02 

AT1G02205 CER1 1.4 3E-01 1.3 4E-01 2.5 2E-02 

AT5G49690 UDP-glucosyl transferase family protein 3.2 8E-07 3.1 1E-06 2.7 6E-06 

AT1G75280 isoflavone reductase, putative 2.6 3E-04 3.1 6E-05 3.6 2E-05 

Hormone metabolism             

AT5G57050 ABI2 (ABA INSENSITIVE 2) 2.1 8E-05 1.6 6E-03 1.7 1E-03 

AT5G50720 ATHVA22E  6.3 4E-07 4.9 3E-06 4.2 8E-06 

AT2G04850 auxin-responsive protein-related 3.3 1E-05 3.4 9E-06 4.7 5E-07 

AT3G12830 auxin-responsive family protein  2.7 1E-03 1.7 5E-02 1.1 8E-01 

AT5G53590 auxin-responsive family protein  3.0 9E-06 3.4 3E-06 3.1 6E-06 

AT3G23150 ETR2  2.3 3E-04 1.6 2E-02 1.3 1E-01 

AT2G40940 ERS1 2.3 2E-03 1.9 8E-03 1.3 3E-01 

Tetrapyrrole synthesis             

AT1G58300 ho4  2.6 7E-05 2.3 2E-04 1.5 4E-02 

Major CHO metabolism             

AT1G06020 pfkB-type carbohydrate kinase family protein 2.1 8E-06 1.6 2E-03 2.0 3E-05 

AT5G20830 SUS1 3.3 3E-05 2.1 2E-03 1.4 9E-02 

Stress               

AT4G39030 EDS5 3.0 7E-04 3.8 1E-04 2.3 5E-03 

AT3G16920 chitinase 2.7 7E-06 2.7 7E-06 3.1 1E-06 

AT3G11660 NHL1  2.0 5E-03 2.4 8E-04 1.6 3E-02 

AT5G40020 pathogenesis-related thaumatin family protein 16.5 9E-10 21.6 3E-10 15.4 1E-09 

AT3G52430 PAD4  4.6 1E-05 5.1 5E-06 1.7 5E-02 

AT4G33300 ADR1-L1 2.4 4E-05 2.2 2E-04 1.5 2E-02 

AT2G24160 leucine rich repeat protein family 2.2 3E-04 2.1 5E-04 1.0 9E-01 

AT2G02100 LCR69  2.3 2E-02 1.4 3E-01 1.5 2E-01 

AT1G64060 ATRBOH F  2.5 1E-05 2.8 3E-06 2.7 4E-06 

AT3G25020 AtRLP42 2.6 1E-05 1.9 6E-04 1.0 8E-01 

AT1G55210 disease resistance response 2.9 5E-06 3.7 4E-07 3.4 1E-06 

AT2G14580 ATPRB1 1.7 8E-03 2.3 2E-04 1.0 8E-01 

AT4G23690 disease resistance-responsive family protein  8.3 3E-09 12.5 3E-10 12.7 3E-10 

AT3G05650 AtRLP32  2.3 3E-03 1.8 2E-02 1.3 2E-01 

AT3G08970 ATERDJ3A 1.7 1E-02 2.0 1E-03 1.7 1E-02 

AT4G36988 CPuORF49  3.5 1E-05 3.8 7E-06 2.8 1E-04 

AT4G15910 ATDI21 2.5 4E-08 2.4 5E-08 2.1 6E-07 

AT5G42050 Unknown 2.2 2E-02 2.4 1E-02 2.0 4E-02 

AT3G10080 germin-like protein, putative  1.8 5E-05 1.7 2E-04 2.3 1E-06 

AT3G62020 GLP10 4.1 6E-09 4.0 7E-09 4.1 5E-09 

AT5G66400 RAB18  4.1 5E-04 2.6 1E-02 2.4 2E-02 

Redox               

AT4G39830 L-ascorbate oxidase, putative 3.7 2E-03 2.4 3E-02 1.6 2E-01 

AT4G11600 ATGPX6 2.1 3E-03 1.7 3E-02 1.3 2E-01 

AT5G63030 glutaredoxin, putative  2.2 7E-07 2.1 2E-06 1.4 2E-03 

Nucleotide metabolism             

AT4G20320 CTP synthase 5.3 2E-04 5.1 2E-04 3.5 2E-03 

AT5G09290 3'(2'),5'-bisphosphate nucleotidase, putative  3.4 7E-07 2.5 2E-05 1.4 4E-02 

AT1G14240 CD39 family protein  4.6 1E-06 5.3 4E-07 4.3 2E-06 

AT5G64000 SAL2 3.3 2E-05 2.7 1E-04 1.4 1E-01 

AT4G25434 ATNUDT10  3.5 3E-06 3.5 3E-06 3.2 8E-06 

AT2G01670 atnudt17 2.2 2E-04 1.9 1E-03 1.3 9E-02 

AT3G53620 AtPPa4  1.7 2E-04 1.7 1E-04 2.0 7E-06 
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Misc.               

AT3G26125 CYP86C2 3.8 1E-08 3.6 2E-08 4.8 1E-09 

AT2G37130 peroxidase 21 (PER21)  5.7 4E-09 4.0 9E-08 2.9 2E-06 

AT5G15180 peroxidase, putative 8.1 4E-10 7.6 7E-10 6.3 3E-09 

AT1G13750 calcineurin-like phosphoesterase family protein  2.5 5E-05 2.0 7E-04 1.1 5E-01 

AT3G52820 PAP22  5.1 3E-08 3.9 3E-07 4.0 2E-07 

AT2G38600 acid phosphatase class B family protein 11.6 5E-10 16.6 7E-11 17.6 5E-11 

AT5G18470 curculin-like (mannose-binding) lectin family protein  5.7 4E-03 4.7 8E-03 3.3 3E-02 

AT1G33790 jacalin lectin family protein 3.0 1E-04 2.8 2E-04 1.8 2E-02 

AT2G47670 invertase/pectin methylesterase inhibitor family protein  5.3 3E-08 4.9 6E-08 6.0 1E-08 

AT5G26330 plastocyanin-like domain-containing protein 2.3 1E-04 2.4 7E-05 3.1 3E-06 

AT3G27200 plastocyanin-like domain-containing protein  4.3 6E-07 3.8 2E-06 4.1 9E-07 

AT2G16890 UDP-glucosyl transferase family protein  2.8 8E-04 2.7 1E-03 5.1 8E-06 

AT4G27480 glycosyltransferase family 14 protein 2.7 7E-05 2.6 7E-05 1.8 5E-03 

AT4G33330 PGSIP3 2.2 8E-05 1.8 1E-03 2.0 2E-04 

AT1G27440 GUT2 2.5 5E-08 2.6 2E-08 2.4 7E-08 

AT3G53980 lipid transfer protein (LTP) family protein 31.7 8E-10 43.1 3E-10 37.5 4E-10 

AT5G55450 lipid transfer protein (LTP) family protein 3.6 6E-06 3.0 3E-05 1.1 5E-01 

AT1G54790 GDSL-motif lipase/hydrolase family protein  3.8 1E-06 4.6 2E-07 3.7 1E-06 

AT5G11320 YUC4 (YUCCA4) 3.4 4E-06 3.2 5E-06 3.2 6E-06 

AT2G17720 2OG-Fe(II) oxygenase family protein 1.8 8E-06 2.0 1E-06 1.3 1E-02 

AT2G43080 AT-P4H-1 2.1 3E-05 2.0 6E-05 1.6 3E-03 

AT2G34790 MEE23  12.0 1E-11 13.2 7E-12 11.3 2E-11 

RNA               

AT1G26820 RNS3  6.3 8E-10 7.4 2E-10 6.6 5E-10 

AT3G60580 zinc finger (C2H2 type) family protein  2.1 2E-05 1.6 1E-03 1.3 5E-02 

AT3G13810 AtIDD11 2.2 4E-03 2.0 8E-03 1.2 4E-01 

AT5G03510 zinc finger (C2H2 type) family protein 4.6 8E-08 6.1 8E-09 4.2 2E-07 

AT1G68360 zinc finger protein-related 2.2 8E-05 2.3 3E-05 2.6 6E-06 

AT4G32880 ATHB-8 (HOMEOBOX GENE 8) 1.9 5E-04 2.0 2E-04 2.0 1E-04 

AT1G67970 AT-HSFA8; DNA binding / transcription factor  3.8 8E-04 2.0 5E-02 1.4 3E-01 

AT5G12870 MYB46  2.9 9E-08 3.0 6E-08 3.7 8E-09 

AT2G16720 MYB7 3.5 4E-07 4.6 3E-08 3.5 3E-07 

AT1G79180 MYB63 1.8 6E-06 2.1 2E-07 1.8 5E-06 

AT3G25730 AP2 domain-containing transcription factor, putative 2.1 4E-04 1.8 3E-03 1.7 4E-03 

AT5G07310 AP2 domain-containing transcription factor, putative 5.3 6E-07 5.7 3E-07 6.0 2E-07 

AT2G38250 DNA-binding protein-related  2.7 1E-06 2.3 6E-06 2.3 9E-06 

AT2G25000 WRKY60 4.0 4E-05 3.5 1E-04 2.8 6E-04 

AT1G31290 PAZ domain-containing protein  2.4 2E-04 2.3 3E-04 2.0 2E-03 

AT1G61660 basic helix-loop-helix (bHLH) family protein  2.1 2E-03 2.2 1E-03 2.1 1E-03 

AT5G09800 U-box domain-containing protein  1.8 6E-03 1.9 2E-03 2.2 4E-04 

AT1G20900 ESC (ESCAROLA) 2.3 1E-03 2.3 1E-03 1.7 2E-02 

AT3G57540 remorin family protein  2.1 4E-03 2.0 6E-03 1.7 3E-02 

AT5G63880 VPS20.1  2.1 2E-03 1.4 1E-01 1.0 1E+00 

DNA               

AT3G52900 unknown protein  2.4 2E-05 2.5 1E-05 2.7 5E-06 

AT1G11190 BFN1  14.7 5E-12 15.1 5E-12 10.3 4E-11 

AT1G75090 methyladenine glycosylase family protein 2.5 2E-04 1.9 5E-03 2.0 2E-03 

Protein               

AT1G13950 ELF5A-1 1.8 4E-03 2.7 4E-05 1.4 7E-02 

AT3G27070 TOM20-1  2.2 8E-05 1.9 6E-04 2.6 1E-05 

AT1G20350 ATTIM17-1 4.7 5E-07 5.6 1E-07 2.6 1E-04 

AT1G30640 protein kinase, putative  2.3 1E-03 2.2 1E-03 1.5 5E-02 

AT5G01700 PP2C, putative 2.0 4E-05 2.0 3E-05 1.9 8E-05 

AT1G07430 PP2C, putative  3.6 1E-06 2.7 2E-05 2.7 2E-05 

AT3G17420 GPK1 2.4 3E-04 2.5 2E-04 2.2 7E-04 

AT5G56460 protein kinase, putative  2.0 4E-04 2.5 3E-05 2.1 3E-04 

AT3G45010 scpl48 3.6 4E-09 4.4 6E-10 3.9 2E-09 

AT4G00230 XSP1  2.1 5E-06 2.4 8E-07 2.3 2E-06 

AT1G01900 SBTI1.1 3.2 4E-06 3.0 9E-06 3.5 2E-06 

AT5G55170 SUMO3 3.9 1E-06 3.2 7E-06 1.4 1E-01 

AT5G42300 UBL5 2.1 6E-07 2.0 1E-06 1.4 8E-04 

AT5G10650 zinc finger (C3HC4-type RING finger) family protein 3.0 6E-05 2.2 2E-03 1.7 2E-02 

AT5G10380 RING1 6.7 1E-07 6.1 2E-07 2.1 3E-03 

AT2G20650 zinc finger (C3HC4-type RING finger) family protein 2.1 4E-04 2.0 7E-04 2.0 7E-04 

AT1G67800 copine-related  2.0 1E-05 1.8 5E-05 1.4 1E-02 

AT5G18780 F-box family protein  2.3 4E-04 1.6 2E-02 1.1 7E-01 

AT3G07870 F-box family protein 2.8 3E-07 2.2 1E-05 1.2 1E-01 

AT1G01640 speckle-type POZ protein-related  5.6 2E-05 4.8 4E-05 2.5 5E-03 

AT3G45620 WD-40 repeat family protein 2.1 9E-08 1.8 2E-06 1.1 2E-01 

AT4G35350 XCP1  7.3 7E-10 6.3 2E-09 6.8 1E-09 



59 
 

AT1G20850 XCP2 3.2 3E-07 3.1 5E-07 3.4 2E-07 

AT4G39090 RD19 2.5 2E-04 1.7 2E-02 1.2 3E-01 

AT3G22260 OTU-like cysteine protease family protein 1.8 4E-04 2.2 2E-05 1.7 9E-04 

AT1G49050 aspartyl protease family protein 2.6 6E-07 2.2 5E-06 1.3 3E-02 

AT1G63120 ATRBL2 3.9 1E-07 3.3 7E-07 3.6 2E-07 

AT4G12910 scpl20  6.5 2E-09 6.3 2E-09 6.4 2E-09 

AT2G45040 matrix metalloproteinase  2.1 1E-06 1.5 4E-04 2.0 5E-06 

AT3G28580 AAA-type ATPase family protein 5.3 3E-05 5.2 4E-05 3.5 5E-04 

Minor CHO metabolism             

AT4G12430 trehalose-6-phosphate phosphatase, putative  2.3 3E-04 2.8 4E-05 3.6 4E-06 

AT4G22590 trehalose-6-phosphate phosphatase, putative  2.9 9E-03 3.3 4E-03 4.0 1E-03 

AT5G08380 AtAGAL1 3.1 3E-05 2.4 4E-04 1.7 1E-02 

Signalling               

AT3G26740 CCL (CCR-LIKE)  2.2 6E-03 1.3 3E-01 0.9 7E-01 

AT2G31880 LRR transmembrane protein kinase, putative  2.5 5E-04 2.1 3E-03 1.3 3E-01 

AT3G45860 receptor-like protein kinase, putative  3.2 1E-05 2.8 5E-05 0.8 3E-01 

AT1G79620 LRR transmembrane protein kinase, putative 2.7 1E-05 2.7 1E-05 3.1 3E-06 

AT3G15050 IQD10  2.0 1E-04 2.5 6E-06 2.3 1E-05 

AT1G73805 calmodulin binding  4.2 2E-03 3.4 5E-03 1.7 2E-01 

AT1G76040 CPK29 2.7 9E-03 2.9 6E-03 2.2 3E-02 

AT2G41410 calmodulin, putative 3.0 1E-03 2.9 2E-03 1.9 4E-02 

AT3G47480 calcium-binding EF hand family protein  16.4 2E-10 14.5 4E-10 4.1 2E-06 

AT4G29900  ACA10  3.1 9E-07 3.1 8E-07 1.9 3E-04 

AT1G73805 calmodulin binding 4.1 6E-04 3.7 1E-03 1.4 3E-01 

AT5G26920 CBP60G  3.2 1E-02 2.6 4E-02 1.4 5E-01 

AT1G08450 CRT3  3.4 9E-08 3.4 1E-07 1.4 3E-02 

AT5G61900 BON1  2.4 2E-02 2.6 1E-02 2.2 3E-02 

AT2G17290 CPK6 2.4 2E-02 2.5 2E-02 2.0 7E-02 

AT2G46600 calcium-binding protein, putative 1.9 3E-02 2.1 1E-02 1.6 9E-02 

AT5G45970 ARAC2  4.5 5E-08 3.2 1E-06 3.7 3E-07 

AT1G08340 rac GTPase activating protein, putative 2.4 9E-06 2.6 4E-06 2.3 2E-05 

AT1G49740 phospholipase C/ phosphoric diester hydrolase 3.0 3E-05 3.5 7E-06 3.8 3E-06 

Cell               

AT3G53350 myosin heavy chain-related  2.6 2E-06 2.7 2E-06 2.7 1E-06 

AT1G10340 ankyrin repeat family protein  5.6 2E-05 4.7 5E-05 1.6 1E-01 

AT2G31200 ADF6 2.0 8E-05 2.4 5E-06 1.6 2E-03 

AT2G16700 ADF5  3.0 2E-04 2.3 3E-03 1.3 2E-01 

AT4G26120 ankyrin repeat family protein  2.9 6E-04 2.7 9E-04 2.1 8E-03 

AT5G16490 RIC4  2.0 2E-03 2.2 5E-04 2.7 8E-05 

AT5G02100 UNE18 2.0 1E-03 2.1 6E-04 1.3 1E-01 

AT1G76970 VHS domain-containing protein  2.4 2E-05 2.1 8E-05 1.1 3E-01 

Development               

AT1G01470 LEA14  2.3 7E-03 1.9 4E-02 1.5 1E-01 

AT4G02380 SAG21 2.6 4E-02 1.7 2E-01 0.9 7E-01 

AT5G65870 ATPSK5 2.7 5E-03 4.5 2E-04 3.6 9E-04 

AT3G50650 SCL7 2.1 6E-04 1.3 2E-01 1.4 9E-02 

AT5G62380 VND6 1.6 2E-02 2.0 2E-03 2.5 1E-04 

AT1G71930 VND7 15.7 1E-11 14.7 2E-11 15.6 1E-11 

AT2G25690 senescence-associated protein-related  3.9 1E-06 4.4 5E-07 3.6 3E-06 

AT1G68795 CLE12  2.0 4E-04 1.8 1E-03 2.0 4E-04 

AT2G40900 nodulin MtN21 family protein  2.2 1E-04 2.5 3E-05 2.1 3E-04 

AT4G17670 senescence-associated protein-related 6.4 8E-08 5.8 2E-07 3.1 3E-05 

AT1G12260 ANAC007 2.6 4E-05 2.5 6E-05 2.1 4E-04 

AT1G34180 anac016 4.5 2E-08 5.7 2E-09 1.9 3E-04 

AT1G28470 ANAC010 3.1 7E-06 3.2 6E-06 3.0 1E-05 

AT5G47060 senescence-associated protein-related  2.1 4E-05 1.7 1E-03 1.2 2E-01 

AT3G48740 nodulin MtN3 family protein  1.5 4E-02 2.1 9E-04 1.8 5E-03 

Transport               

AT1G14360 UTR3 1.8 1E-02 2.2 2E-03 1.7 2E-02 

AT2G02810 UTR1 1.9 1E-02 2.5 7E-04 1.7 2E-02 

AT5G45380 DUR3 4.9 1E-06 4.5 2E-06 1.5 5E-02 

AT1G30420 ATMRP12 2.1 5E-05 1.7 6E-04 1.4 2E-02 

AT3G16340 PDR1 1.9 2E-05 2.2 3E-06 2.3 2E-06 

AT3G47780 ATATH6 4.0 4E-08 3.7 1E-07 2.9 1E-06 

AT3G54820 PIP2;5 14.5 4E-11 14.0 5E-11 16.9 2E-11 

AT2G37180 PIP2B 5.3 2E-06 9.4 6E-08 8.9 8E-08 

AT2G36830 GAMMA-TIP 2.1 1E-04 2.3 5E-05 2.2 8E-05 

AT1G22710 SUC2  2.8 7E-08 2.3 1E-06 2.0 1E-05 

AT4G01010 ATCNGC13 2.2 2E-03 2.0 4E-03 1.3 2E-01 

Not assigned               

AT5G62180 AtCXE20  2.4 5E-05 1.9 1E-03 1.4 4E-02 
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AT5G45500 unknown protein 2.0 6E-04 1.6 9E-03 0.9 7E-01 

AT5G05460 
mannosyl-glycoprotein endo-beta-N-
acetylglucosaminidase 2.0 4E-03 1.8 2E-02 1.1 8E-01 

AT3G11230 yippee family protein 2.0 1E-04 1.6 2E-03 1.0 8E-01 

AT1G74440 unknown protein 2.3 1E-04 1.8 3E-03 1.0 8E-01 

AT2G46760 FAD-binding domain-containing protein 4.3 1E-07 3.8 3E-07 4.5 6E-08 

AT5G07080 transferase family protein 4.9 2E-07 5.1 1E-07 5.5 7E-08 

AT3G62160 transferase family protein  2.4 7E-05 2.7 2E-05 2.7 2E-05 

AT4G18280 glycine-rich cell wall protein-related  1.9 2E-02 1.6 6E-02 2.1 7E-03 

AT1G48280 hydroxyproline-rich glycoprotein family protein  2.1 2E-05 1.8 1E-04 1.7 4E-04 

AT5G09530 hydroxyproline-rich glycoprotein family protein  2.0 1E-02 2.2 6E-03 1.8 4E-02 

AT3G60470 unknown protein 3.9 2E-05 2.9 3E-04 1.4 1E-01 

AT3G50220 unknown protein 2.0 3E-05 2.1 2E-05 2.5 2E-06 

AT3G47510 unknown protein 2.9 1E-04 2.2 1E-03 2.0 4E-03 

no_match no match 2.2 1E-05 1.8 2E-04 1.2 9E-02 

AT2G20500 unknown protein 1.9 7E-05 2.0 2E-05 1.8 1E-04 

AT4G23885 unknown protein 2.1 1E-05 2.4 1E-06 2.0 3E-05 

AT1G64370 unknown protein 2.0 4E-03 2.3 1E-03 1.8 1E-02 

AT2G44000 unknown protein 1.9 6E-06 1.9 1E-05 2.2 6E-07 

AT5G60720 unknown protein 4.4 5E-08 5.2 1E-08 5.2 1E-08 

AT5G14550 unknown protein 2.8 2E-02 1.5 3E-01 1.2 6E-01 

AT5G01360 unknown protein 3.3 2E-06 3.0 6E-06 3.8 5E-07 

AT1G33700 catalytic/ glucosylceramidase  4.7 5E-07 5.9 8E-08 5.9 8E-08 

AT1G10800 unknown protein 5.8 5E-07 5.3 1E-06 5.0 1E-06 

AT5G22540 unknown protein 3.6 2E-04 3.2 5E-04 1.4 2E-01 

no_match no match 2.1 2E-04 2.1 2E-04 1.8 1E-03 

AT4G16240 unknown protein 2.2 7E-04 1.7 1E-02 1.9 4E-03 

AT2G05910 unknown protein 2.1 1E-05 1.9 3E-05 1.6 5E-04 

AT2G02370 unknown protein 2.2 3E-05 1.8 6E-04 1.5 6E-03 

AT4G18425 unknown protein 16.1 3E-09 17.4 2E-09 12.7 1E-08 

AT2G38820 unknown protein 2.3 8E-07 2.1 2E-06 1.9 1E-05 

AT2G18690 unknown protein 2.5 2E-02 2.2 4E-02 1.0 1E+00 

AT5G19870 unknown protein 3.1 1E-06 3.3 6E-07 3.1 1E-06 

AT5G66440 unknown protein 6.8 1E-11 6.9 1E-11 6.3 3E-11 

AT5G46230 unknown protein 4.6 3E-08 4.0 1E-07 1.7 2E-03 

AT3G21550 unknown protein 3.0 1E-06 3.3 5E-07 3.2 8E-07 

AT1G43790 TED6  2.9 3E-06 3.4 5E-07 2.8 4E-06 

AT1G22885 unknown protein 3.3 1E-08 3.6 5E-09 2.9 5E-08 

AT2G44080 ARL  2.3 9E-03 1.6 1E-01 1.1 6E-01 

AT5G25470 DNA binding 1.6 1E-03 2.0 5E-05 1.3 4E-02 

AT5G64510 unknown protein 1.9 9E-02 3.6 3E-03 1.9 9E-02 

AT5G45320 unknown protein 2.4 5E-04 3.0 4E-05 3.0 5E-05 

AT2G32160 unknown protein 2.6 6E-05 2.6 6E-05 1.0 9E-01 

AT2G41800 unknown protein 2.7 8E-07 3.1 2E-07 3.4 6E-08 

Glycolysis               

AT4G26270 PFK3  2.5 7E-05 1.7 8E-03 1.1 4E-01 

Fermentation               

AT1G23800 ALDH2B7 2.2 3E-05 2.0 1E-04 2.1 4E-05 

Gluconeogenese               

AT2G42790 CSY3  2.4 1E-05 1.7 2E-03 1.5 1E-02 

 

3.5 Functional analysis of selected genes  

3.5.1 Infection of drp-tir-class mutant 

The cluster analysis has revealed 112 genes whose expression levels correlated with the 

disease phenotype. The expression levels were found to be low in the coi1-t mutant as 

compared to the other two susceptible genotypes. Expression of selected genes was re-

analyzed in the nahG plants, which were as susceptible as the wild-type. If the expression 

would be lower in the nahG plants, these genes can be excluded from the further analysis. For 



61 
 

this purpose, genes from cluster II (Figure 19, Table 2), like disease resistance protein (DRP-

TIR-class; AT1G57630), MYB DOMAIN PROTEIN 59 (MYB59; AT5G59780) and AP2/B3 like 

TF (AT3G11580) were selected. Quantitative real-time RT-PCR revealed that these genes were 

expressed in the susceptible genotypes as shown by the analysis of the wild type and the nahG 

plants but remained low in the resistant coi1-1 and coi1-1/nahG double mutant plants (Figure 

20A-20B), in contrast to the lower expression levels of ALPHA-DOX1 that were lower in nahG 

plants (Figure 20D). 

 

Figure 20 Gene expression analyses of mock and V. longisporum-infected wild type, nahG, coi1-1 
and coi1-1/nahG plants. 

(A)  Quantitative RT-PCR analysis of relative transcript levels of DRP-TIR-Class (AT1G57630) in petioles from 
wild-type, nahG, coi1-1 and coi1-t1/nahG plants at 15 days after mock and V. longisporum infection.  

(B)  Quantitative RT-PCR analysis of relative transcript levels of AP3/B3-Like TF (AT3G511580) in petioles from 
wild-type, nahG, coi1-1 and coi1-t1/nahG plants at 15 days after mock and V. longisporum infection. 

(C)  Quantitative RT-PCR analysis of relative transcript levels of MYB59 (AT5G59780)in petioles from wild-type, 
nahG, coi1-1 and coi1-t1/nahG plants at 15 days after mock and V. longisporum infection 

Data indicate means (+/- SEM) of 3-4 pools per treatment and genotype (same material as in Figure 15B) with each 
pool containing petioles from 4 plants. Relative transcript levels of the V.longisporum.-infected wild-type were set to 
100%. 

(D) Quantitative RT-PCR analysis of relative transcript levels of ALPHA-DOX1 (AT3G01420) in petioles from 
wild-type, nahG, coi1-1 and coi1-t1/nahG plants at 15 days after mock and V. longisporum infection.  
 
Data indicate means (+/- SEM) of 4 pools per treatment and genotype with each pool containing petioles from 4 
plants. Relative transcripts levels of the V. longisporum-infected wild-type were set to 100%.  

  

The overview pictures in Figure 21A shows a direct comparison of wild type and mutant plants 

after mock and V. longisporum infection. Pictures taken after 19dpi revealed that the mutant 

plants were as susceptible as the respective wild type. Measurement of projected leaf area at 

19 dpi (Figure 21B) also confirmed the fact that the mutant was not compromised in disease 

symptoms.  
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Figure 21 Disease phenotype of V. longisporum infected wild type, dde2-2, coi1-t and drp-tir class 
plants 

(A)  Typical V. longisporum disease symptoms of Col-0, dde2-2, coi1-t and drp-tir class plants at 19 dpi. One 

representative mock treated plant of each genotype (upper row) and one representative infected plant of each 
genotype (lower row) is shown. 

(B)  Projected leaf area of mock-infected and V. longisporum-infected wild type, dde2-2, coi1-t and drp-tir class 

plants. Data indicates means (+/- SEM) from one experiment with 14-16 plants mock infected and 14-16 V. 
longisporum infected plants. Stars indicate significant differences at P < 0.0001 (two-way ANOVA followed by 
Bonferroni multiple comparison test) between V. longisporum and mock-infected samples. 
 

3.5.2 Infection of ckx4 and ckx2,4,5,6 quadruple mutant 

The role of cytokinin (CK) in V. longisporum/Arabidopsis interaction has been previously shown 

by Michael Reusche (Reusche 2011). He could demonstrate that exogenous application of CK 

resulted in the reduction of V. logisporum-induced disease symptoms, especially the premature 

senescence. However, decrease in the fungal biomass was only observed at the later stages of 

the infection. Arabidopsis cytokinin oxidase/dehydrogenase (CKX) enzymes are responsible for 

the inactivation of the CK. In the present study, expression of CKX4 is induced in infected wild 

type and dde2-2 plants but not in coi1-t plants (Figure 22A) indicating that V. longisporum might 

promote senescence through inducing CK degradation. A ckx4 knock out mutant and ckx2,4,5,6 

quadruple mutant were subjected to V. longisporum infection. 16-18 plants per treatment 

(Mock/Infected) and genotype were infected. In Figure 22B the representative pictures show 

typical disease symptoms caused by V. longisporum in the wild type, ckx4 and ckx2,4,5,6 

mutant plants. Figure 22B shows that the reduction in projected leaf area of ckx4 and ckx2,4,5,6 

mutants were comparable to the infected-wild type plants at 15 dpi. 
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Figure 22 Gene expression analysis of CKX4 in V. longisporum-infected wild type, dde2-2 and 
coi1-t plants and disease phenotype of V. longisporum-infected wild type, ckx4 and ckx2456 
plants. 

(A)  Quantitative RT-PCR analysis of relative transcript levels of CKX4 in petioles of wild-type, dde2-2 and coi1-t 

plants at 15 days after mock and V. longisporum infection. Data indicate means (+/- SEM) of 3-4 pools per treatment 
and genotype  with each pool containing petioles from 4 plants. Relative transcript levels of the V.longisporum.-
infected wild-type were set to 100%.  

(B)  Typical V. longisporum disease symptoms of wild type, ckx4 and ckx2456 plants at 15 dpi. One 

representative mock treated plant of each genotype and one representative infected plant of each genotype is shown. 

(C)  Projected leaf area of mock-infected and V. longisporum-infected wild type, ckx4 and ckx2456 plants. Data 

indicates means (+/- SEM) from 14-16 plants mock infected and 14-16 V. longisporum infected plants from one 
experiment. Stars indicate significant differences at P < 0.0001 (two-way ANOVA followed by Bonferroni multiple 
comparison test) between V. longisporum and mock-infected samples. 
 

3.5.3 Infection of erf53/erf54 double mutant  

This AP2 domain-containing transcription factor family protein (ATERF54) was found to be up-

regulated in petioles five days post Verticillium infection (H. Tappe 2008). Expression of 

AtERF54 was studied in V. longisporum-infected petioles of wild type, dde2-2 and coi1-t at 15 

dpi and in the roots of wild type, dde2-2 and coi1-t at 5 dpi. It was induced in the petioles of wild 

type with a decrease in its expression level in the petioles of dde2-2 plants and a further 

decrease in the coi1-t plants at 15 dpi (Figure 23A). Expression analysis of the roots indicated 

that the regulation of transcription of AtERF54 started already at 5 dpi in the roots independently 

from the genotype (Figure 23B). Since the AtERF54 single mutant showed a susceptible 

phenotype like the wild type and due to the existence of strong co-expression of AtERF53 and 

AtERF54 (ATTED; http://atted.jp/data/locus/At4g28140.shtml), an erf53/erf54  double mutant 

was generated in this study. AtERF53 is also an AP2 domain containing transcription factor 

belonging to AP2/ERF subfamily and is induced with a lower expression in the petioles of V. 

longisporum infected coi1-1 plants at 15 dpi when compared to the wild type plants (Supplement 

figure S3). To elucidate the role of these transcription factors in the disease against V. 
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longisporum, double mutant was subjected to infection as described in section 2.2.3.1. Figure 

23C shows typical V. longisporum induced disease symptoms in wild type as well as in the 

double mutant plants. The projected leaf area from 18 plants per genotype and treatment were 

measured at 15 dpi. The relative leaf area was calculated from three independent experiments.  

 

 

Figure 23 Gene expression analysis of ERF54 in V. longisporum-infected wild type, dde2-2 and 
coi1-t plants and disease phenotype of V. longisporum-infected wild type and erf53/erf54 plants. 

(A)  Quantitative RT-PCR analysis of relative transcript levels of ERF54 in petioles of wild-type, dde2-2 and coi1-
t plants at 15 days after mock and V. longisporum infection. Data indicate means (+/- SEM) of 3-4 pools per treatment 
and genotype with each pool containing petioles from 4 plants. Relative transcript levels of the V.longisporum.-

infected wild-type were set to 100%. 

(B)  Quantitative RT-PCR analysis of relative transcript levels of ERF54 in roots of wild-type, dde2-2 and coi1-t 

plants at 5 days after mock and V. longisporum infection. Data indicate means (+/- SEM) of 3-4 pools per treatment 
and genotype with each pool containing petioles from 4 plants. Relative transcript levels of the V.longisporum.-
infected wild-type were set to 100%. 

(C)  Typical V. longisporum disease symptoms of wild type (left panel and erf53/erf54 (right panel) plants at 15 

dpi. One representative mock treated plant of each genotype (upper row) and one representative infected plant of 
each genotype (lower row) is shown. 

(D)  Projected leaf area of mock-infected and V. longisporum-infected wild type and erf53/erf54 plants. Data 
indicates means (+/- SEM) from three independent experiments with 14-16 plants mock infected and 14-16 V. 
longisporum infected plants/experiment.  
 
Stars indicate significant differences at P < 0.0001 (two-way ANOVA followed by Bonferroni multiple comparison test) 
between V. longisporum and mock-infected samples. 
 

3.6 Role of the ethylene pathway in defense against Verticillium longisporum 

ET is a gaseous hormone that influences germination, plant growth and development (Abeles et 

al. 1992). It is also known to be involved in plant responses to biotic stresses (Broekaert et al., 

2006). Previously, the role of ET as a root-borne susceptibility factor has been demonstrated. 

The expression of an ACC-deaminase in roots of tomato plants renders tolerance towards V. 

dahliae (Robinson et al., 2001). Moreover, the Arabidopsis ET receptor mutant etr1-1 showed 
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reduced symptoms and reduced V. dahliae biomass from 5 dpi on. To assess the role of ET in 

Arabidopsis in response to V. longisporum, mutants impaired in ET signaling, ein2-1 (ethylene 

insensitive mutant; Guzman and Ecker, 1990), etr1-1 (carries a dominant negative mutation in 

one of the ethylene receptor genes) and ein3-1/eil1-1 (two closely related Arabidopsis 

transcription factors known to regulate downstream ethylene signaling) were infected.  

 

Under the infection conditions used here (Section 2.2.3.1) the ein2-1 mutant showed a variable 

disease phenotype. Figure 24 represents a direct comparison of wild type and the ein2-1 mutant 

plants infected with V. longisporum. Disease scoring was done at 13 dpi, 24dpi, and 28 dpi. Leaf 

area of 16-18 plants from wild-type and ein2-1 per treatment was measured at 13 dpi. Infected 

ein2-1 plants showed similar reduction (~40%) in the leaf area as in the wild-type (Figure 24A). 

At 24 dpi and 28 dpi ein2-1 showed consistent reduction in the leaf area which was comparable 

to the wild-type (Figure 24B and 24C). Stunted growth and premature senescence were as 

pronounced in the etr1-1 mutant as in the infected wild type plants at 28 dpi (Figure 24C). Apart 

from reduced leaf area, the ein2-1 mutants showed reduced senescence which is in contrast to 

the wild type. To support this idea, compilations of all single photos from two independent 

experiments are presented in supplement figure S4. These results suggest that EIN2 might 

control partially the premature senescence-like phenotype in response to V. longisporum.  
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Figure 24 Disease phenotype of V. longisporum infected Col-0, ein2-1 and etr1-1 plants 

One representative picture of mock-treated plant per genotype and one for infected plant/ genotype are shown. 
Projected leaf area of mock- and V. longisporum-infected wild type, ein2-1 and etr1-1 plants was measured at 13 dpi, 
24 dpi and 28 dpi. Data indicates means (+/- SEM) from 14-16 plants mock infected and 14-16 V. longisporum 
infected plants. 
 
Stars indicate significant differences at P < 0.0001 (two-way ANOVA followed by Bonferroni multiple comparison test) 
between V. longisporum and mock-infected samples. 

 

The ein3/eil1 double mutant was consistently more resistant than the wild type in two 

independent experiments. Leaf area from 16-18 plants per genotype and treatment and 

experiment was measured at 19dpi (Figure 25A). To quantify the fungal biomass in infected 

plants, 4 pools of petioles from 4 plants per genotype and treatment were made in descending 

order of the severity of the disease symptoms. The overall tendency of low amounts of fungal 

DNA in the resistant ein3/eil1 double mutant plants was consistent when compared with the wild 

type pools (Figure 25B). 

 

Figure 25 Leaf area measurement and fungal DNA quantification of V. longisporum-infected wild 
type, ein3/eil1 and ein3/eil1/sid2-2 plants  

(A)  Projected leaf area of mock- and V. longisporum-infected wild-type, ein3/eil1-2 and ein3/eil1 plants from two 

independent experiments. Data indicate means (+/- SEM) of 16-18 replicates/experiment. Stars indicate significant 
differences at P < 0.0001 (two-way ANOVA followed by Bonferroni multiple comparison test; ns, not significant) 
between V. longisporum (V.l.)- and mock-infected samples.  

(B)  Quantification of fungal biomass by real time RT-PCR with DNA isolated from petioles of V. longisporum 
infected wild type, ein3/eil1 and ein3/eil1/sid2-2 plants at 19 dpi from two independent experiments. Amplification 
values for fungal internal ribosomal spacer regions were normalized to the abundance of Arabidopsis Actin8 
sequences. Bars indicate means (+/- SEM) of 8 biological replicates from two independent experiments. The infected 
wild-type, ein3/eil1 and ein3/eil1/sid2-2 plants were sorted according to their disease phenotype; therefore the 
numbers represents different pools. The severity of the symptoms decreases from pool 1 to pool 4. 
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Furthermore, EIN3 and EIL1 have been previously shown to act as negative regulators of 

PAMP-triggered immunity with SALICYLIC ACID INDUCTION DEFICIENT2 (SID2) being a key 

target. The ein3/eil1 double mutant plants displayed enhanced PAMP defenses and heightened 

resistance to Pseudomonas syringae bacteria and a mutation in SID2 can restore normal 

susceptibility in this double mutant (Chen et al. 2009). To evaluate if the mutation in SID2 could 

also restore V. longisporum-induced susceptibility in the ein3/eil1 double mutant, the 

ein3/eil1/sid2-2 triple mutant was inoculated. From Figure 25A it is evident that there was a 

partial restoration of disease symptoms in the triple mutant which was consistent in two 

independent experiments. Measurement of fungal biomass showed that ein3/eil1/sid2-2 plants 

exhibit more fugnal DNA as compared to the ein3/eil1 double mutant plants (Figure 25B). 

Together these results demonstrated that EIN3 and EIL1 negatively regulate resistance to 

V.longisporum which is partially SID2-dependent. 

3.7 Role of absisic acid in defense against V. longisporum  

Since ABA plays a major role in resistance against pathogens (Adie et al., 2007, de Torres-

Zabala et al., 2007, Cao et al., 2011), an A. thaliana mutant deficient in ABA biosynthesis was 

examined for V. longisporum-induced disease development. The aba2-1 mutant is impaired in 

ABA biosynthesis, being blocked in the conversion of xanthonin to ABA-aldehyde (Schwartz et 

al., 1997), and exhibits substantial ABA deficiency and impairment of shoot growth in well 

watered plants (Leon-Kloosterziel et al., 1996). In three independent experiments, 12-16 plants 

per genotype and treatment were subjected to V. longisporum infection. Leaf area was 

measured at 15 dpi in one experiment and at 19 dpi in two experiments. Infected aba2-1 mutant 

plants showed consistently reduced disease symptoms like stunting and senescence at both 

time points (Figure 26A). From the fungal biomass measurement at 15 dpi it was learnt that 

there was no significant difference between the wild type and the mutant. At 19dpi, sampling of 

infected wild-type plants was done according to the severity of the disease symptoms. Pool 1 

contained plants with a severe disease phenotype and pool 4 contain plants with almost no 

symptoms. In both the experiments, the aba2-1 mutant showed a tendency of having less fungal 

DNA which correlates with the disease phenotype (Figure 26B). To test whether enhanced 

disease resistance of aba2-1 plants against V. longisporum is attributed to the ABA-suppression 

of the JA/ET signaling pathway (Anderson et al., 2004), PDF1.2 expression was studied in V. 

longisporum-infected wild type and aba2-1 mutant plants. It was observed that infection with V. 

longisporum induces PDF1.2 in the infected petioles of wild type plants relative to the mock-

treated plants, whereas higher basal transcript levels of PDF1.2 were found already in the 
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mock-treated aba2-1 plants (Figure 26C). However, no hyper induction of PDF1.2 transcript 

level was observed in infected aba2-1 plants. These high levels of PDF1.2 defense gene 

observed in the mock-treated aba2-1 plants might lead to reduction in the fungal proliferation. 

Next, the transcript levels of DRP-TIR Class (At1G57630) were studied in V. longisporum-

infected wild type and aba2-1 mutant plants. The expression levels were strongly induced in the 

V. longisporum-infected wild type plants whereas higher basal transcript levels were observed in 

mock-treated aba2-1 plants which did not change after infection (Figure 26D). Even though the 

knock out mutant of DRP-TIR gene was as susceptible as the wild type plants, still higher basal 

levels of this putative disease resistance protein might activate some antimicrobial processes 

that lead to reduced fungal proliferation in these plants. 
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Figure 26 Disease phenotype, fungal DNA quantification and gene expression analysis of V. 
longisporum-infected wild type and aba2-1 plants  

(A)  Projected leaf area of mock- and V. longisporum-infected wild-type and aba2-1 plants from 3 independent 

experiments. One experiment was at 15 dpi and two-independent experiments at 19 dpi. Data indicate means (+/- 
SEM) of 16-18 replicates/experiment. Stars indicate significant differences at P < 0.0001 (two-way ANOVA followed 
by Bonferroni multiple comparison test; ns, not significant) between V. longisporum- and mock-infected samples.  

(B)  Quantification of fungal biomass by real time RT-PCR with DNA isolated from petioles of V. longisporum 
infected wild type and aba2-1 plants at 15 and 19 dpi from two independent experiments. Amplification values for 
fungal internal ribosomal spacer regions were normalized to the abundance of Arabidopsis Actin8 sequences. Bars 
indicate mean (+/- SEM) of 4 replicates from single experiment at 15 dpi. Bars indicate 7-8 biological replicates from 
two independent experiments for 19 dpi. The infected wild-type plants were sorted according to their disease 
phenotype; therefore the numbers represents different pools. The severity of the symptoms decreases from pool 1 to 
pool 4. 
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(C)  Quantitative RT-PCR analysis of relative transcript levels of PDF1.2 in petioles from wild-type and aba2-1 
plants at 19 days after mock and V. longisporum infection. Bars indicate 3-4 pools per treatment and genotype (with 
each pool containing petioles from 4 plants) in two independent experiments. The infected wild-type plants were 
sorted according to their disease phenotype; therefore the numbers represents different pools. The severity of the 
symptoms decreases from pool 1 to pool 4. 
(D)  Quantitative RT-PCR analysis of relative transcript levels of DRP-TIR class in petioles from wild-type and 
aba2-1 plants at 19 days after mock and V. longisporum infection. Bars indicate 3-4 pools per treatment and 

genotype (with each pool containing petioles from 4 plants) in two independent experiments. The infected wild-type 
plants were sorted according to their disease phenotype; therefore the numbers represents different pools. The 
severity of the symptoms decreases from pool 1 to pool 4.  
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4 DISCUSSION 

Verticillium longisporum is a soil-borne fungal pathogen that enters the host plant via roots and 

the hyphae invade the xylem vessels where conidia are formed.  Vascular colonization occurs 

as conidia are transported along with transpiration stream. Later, tissue damage and plant 

senescence takes place after which the fungus forms resting structures like microsclerotia. 

Following dispersal of dead plant tissue into the soil, the microsclerotia are released where they 

can remain viable for longer than 10 years (Heale, 1999). The long persistence of these resting 

structures is one of the main causes of the control problems related to this disease. The main 

hosts of V. longisporum have been reported to be Brassicaceae. Compared to V. dahliae 

(Fradin & Thomma, 2006), very limited knowledge is available when it comes to issues like 

defense responses (Floerl et al., 2008, Johansson et al., 2006, Veronese et al., 2003). In the 

present study, investigations were focused on the interactions between V. longisporum and A. 

thaliana to unravel the role of known defense signaling pathways by utilizing A. thaliana mutants 

and gene expression studies.  

4.1 Salicylic acid does not play a major role in resistance/susceptibility towards 

Verticillium longisporum 

In A. thaliana, the role of the SA pathway in response to Verticillium infection has been studied 

previously (Fradin et al., 2011, Johansson et al., 2006, Veronese et al., 2003). Veronese et al., 

2003 investigated the inducibility of the SA marker gene, PR-1, in Arabidopsis after V. 

longisporum inoculation and found no detectable pathogen-induced activation up to 9 dpi.  

Johannson et al., 2006 reported the induction of PR-1 and PR-2 as early as 7 dpi, but found that 

the plants with a defective SA pathway (eds1-1, NahG, npr1-3, pad1-4 and sid2-1) did not 

exhibit enhanced susceptibility. As Arabidopsis seedlings grown on sucrose-containing medium 

were analyzed in both studies, the reason for the discrepancy regarding the activation of PR-1 

transcript is unclear. Fradin et al., 2011, described no difference in susceptibility for eds1-2, 

eds5-1 and eds9-1 and enhanced susceptibility for npr1-3 when challenged with V. dahliae. A 

protective role of the SA pathway in Arabidopsis resistance to Fusarium oxysporum, another 

vascular pathogen, has been implicated before: (Edgar et al., 2006) showed that exogenously 

applied SA before Fusarium inoculation provided increased resistance to the plant. Plants 

defective in SA accumulation/biosynthesis (e.g. NahG and eds5) but not in SA signaling (e.g. 

npr1-1) showed increased susceptibility towards F. oxysporum (Berrocal-Lobo & Molina, 2004, 
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Diener & Ausubel, 2005, Dombrecht et al., 2007) but no change in susceptibility has been 

reported by Thatcher et al., 2009. 

 

Since a data set obtained from the microarray analysis showed strong correlation with the data 

sets from plants with an elevated SA defense response (Supplement table 1), levels of free SA 

and its metabolites were measured in mock-treated and infected wild-type samples (Figure 

10A). Metabolites of the SA pathway were increased after V. longisporum infection, leading to 

the induction of the SA marker gene PR-1 (Figure 10B). Interestingly, the levels of free SA did 

not change after infection. This leads to a suggestion that SA derivatives are responsible for the 

increased expression of PR-1. SAG and DHBA, deriving from the activated isochorismate 

synthase pathway after infection, can be speculated as potential candidates. SAG is generally 

assumed to serve as a storage form of SA. Therefore, it is unclear whether increased SAG 

levels contribute to the activation. In contrast DHBA, which has weak PR-1 inducing activity 

(Bartsch et al., 2010), might act as an active metabolite. Ratzinger et al., 2009 have already 

found SAG in the xylem sap of V. longisporum-infected Brassica napus plants. However, it is 

not known whether it contributes to the defense. In Arabidopsis, PR-1 induction was abolished 

in sid2-2 and NahG plants after infection (Figure 10B). Mutants defective in the SA pathway 

(sid2-2, NahG and npr1-1) were as susceptible as the wild-type (Figure 10C and 10D). Single 

photos taken at 21 dpi showed comparable alterations in the senescence or stunting phenotype 

in infected npr1-1, sid2-2 and nahG plants as in the wild type (Supplement figure S1). 

Measurement of fungal biomass in infected petioles also revealed similar amounts of fungal 

DNA in all genotypes at 15 dpi (Figure 10E). Overall, these results suggest a very minor role of 

SA in Arabidopsis/V. longisporum interaction under our conditions.  

 

However, exogenous application of SA provided increased resistance against F. oxysporum 

(Edgar et al., 2006). Therefore it can be assumed that an already activated SA defense pathway 

might provide resistance against V. longisporum. Previous studies have demonstrated that the 

ein3/eil1 double mutant constitutively express SID2 and other PAMP responsive genes. 

Consistently it over accumulates SA, and shows increased resistance to Pseudomonas 

syringae bacteria. The enhanced resistance to P. syringae and defense gene expression was 

abolished in the ein3/eil1/sid2 mutant (Chen et al., 2009). Similarly, in the present study 

resistant phenotype of ein3/eil1 double mutant was compromised in ein3/eil1/sid2 triple mutant 

when infected with V. longisporum (Figure 25A). Therefore, it can be assumed that the 

activation of the SA defense pathway after V. longisporum infection does not influence the 
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disease phenotype or fungal propagation but an already activated SA defense pathway (e.g. in 

mock-treated ein3/eil1 plants) might confer resistance to such plants.  

4.2 Jasmonic acid does not play a major role in resistance/susceptibility 

towards Verticillium longisporum 

Previously, it has been shown that the Arabidopsis mutant impaired in JA-Ile conjugate 

formation (jar1-1), did not possess enhanced susceptibility in response to V. longisporum and V. 

dahliae when grown on MS media (Johansson et al., 2006, Veronese et al., 2003). In another 

study, it has been described that jar1-1 plants, grown on soil, show similar level of disease 

severity as compared to the wild-type plants after V. dahliae inoculations (Tjamos et al., 2005, 

Pantelides et al., 2010). However, (Fradin et al., 2011) observed enhanced susceptibility in jar1-

1 plants inoculated with V. dahliae. In the present study, V. longisporum infection leads to 

enhanced accumulation of JA and JA-Ile in Arabidopsis petioles (Figure 11A and B). JA-Ile 

accumulation reached similar levels after V. longisporum infection as well as after wounding. In 

contrast, JA levels showed a stronger increase after wounding as compared to V. longisporum 

infection. Similar amounts of JA-Ile were in accordance with the VSP2 transcript levels that were 

induced to comparable amounts under both conditions. In contrast, the JA/ET marker gene 

PDF1.2, which is highly expressed after infection with B. cinerea, is not efficiently induced in V. 

longisporum-infected plant tissue (Figure 15B).  Efficient induction of JA pathway and inefficient 

induction of JA/ET pathway after V. longisporum infection might indicate low levels of ET (Ellis & 

Turner, 2001, Lorenzo et al., 2004). However, enhanced levels of ABA after V. longisporum 

infection (Figure 15A) could also explain the suppression of the JA/ET pathway (Anderson et al., 

2004). Constitutive expression of PDF1.2 defense gene was observed in mock-treated aba2-1 

plants but hyper induction was not observed after V. longisporum infection (Figure 26C). 

Enhanced JA responses in the mock-treated aba2-1 plants might posses’ antifungal properties 

leading to reduced fungal growth and therefore reduced disease phenotype in aba2-1 mutant 

plants (Figure 26). The weak activation of the JA/ET signal transduction pathway after V. 

longisporum infection explains that it does not contribute to the defense in a substantial way as 

revealed by the fact that the dde2-2 mutant and other JA-Ile biosynthesis mutants showed 

similar disease phenotype as the wild type. 
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4.3 COI1 influences the disease phenotype in the absence of JA-Ile or fungal 

derived jasmonate mimics 

It has been shown in previous studies that the Arabidopsis mutant impaired in JA signaling 

(coi1-16) did not possess enhanced susceptibility in response to V. longisporum and V. dahliae 

when grown on MS media (Johansson et al., 2006, Veronese et al., 2003) and no difference in 

susceptibility in coi1-16 plants when challenged with V. dahliae. In the present study, coi1-t 

showed less severe disease progression (stunted shoot growth, premature senescence, 

alterations of the anatomy of the vascular bundle and reduced microsclerotia formation) as 

compared to the wild-type and JA biosynthesis mutants (dde2-2, fad3,7,8 acx1/5 and jar1-1) 

(Figure 12B and 12H). Reduced symptom development of coi1-1 in comparison to JA 

biosynthesis mutants (aos, opr3 and jar1-1) has also been described for the F. 

oxysporum/Arabidopsis interaction. In this system, wild-type-like initial colonization of coi1-1 by 

F. oxysporum was followed by compromised fungal propagation at later stages of the infection 

(Thatcher et al., 2009). Results in this thesis put forward a similar scenario. V. longisporum can 

colonize the xylem of coi1-t roots (Figure 14B) and almost similar levels of the fungal biomass 

were detected in coi1-t petioles at 10 dpi (Figure 14A). At later time points (15 and 19 dpi) 

differences in fungal biomass between coi1-t and wild-type increased leading finally to a higher 

percentage of wild-type plants with microsclerotia development as compared to coi1-t (Figure 

14A and 12E). Therefore it can be demonstrated that it is COI1 and not JA-Ile, which is required 

for disease symptom development following infection by V. longisporum.  

 

Even though the initial V. longisporum colonization is similar in dde2-2 and coi1-t roots, more 

fungal biomass was measured in dde2-2 as compared to coi1-t at later stages of the infection 

(Figure 14A). This phenomenon can be explained by assuming that the fungus might synthesize 

JA-Ile or a JA-Ile mimic that can activate COI1 in dde2-2 plants leading to disease phenotype. 

For the V. longisporum infections, this explanation is considered as unlikely because any JA-

mimic should induce the known COI1-dependent defense genes. However, this does not seem 

to be the case since V. longisporum-infected dde2-2 mutant plants do not activate known COI1-

dependent responses that are induced by JA-Ile like, activation of the marker genes VSP2 or 

PDF1.2 (Figure 15B). Rather the idea that COI1 functions in a JA-Ile-independent manner is 

favored. Thus, V. longisporum requires COI1 through a mechanism that is different from that 

evolved by virulent Pseudomonas strains (Laurie-Berry et al., 2006). Their group provide 

experimental data in support of the hypothesis that P. syringae pv. tomato produces the JA-Ile 
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mimic COR to suppress SA-dependent defense responses in a COI1-dependent manner. A 

higher susceptibility of the JA biosynthesis mutant dde2-2 as compared to the JA perception 

mutant coi1-1 has also been described for the F. oxysporum/Arabidopsis interaction (Thatcher 

et al., 2009). It was speculated that the F. oxysporum-derived oxylipins might induce a 

senescence-promoting COI1 function that would facilitate disease. V. longisporum induces a 

novel COI1 function that enhances susceptibility through yet unknown compounds that do not 

elicit VSP2 and PDF1.2 expression. Since the expression of JA or JA/ET-responsive genes was 

not analyzed in the F. oxysporum-infected dde2-2 mutant, the above explanation might be 

considered for this pathosystem as well.  Another example for a non-canonical COI1 function 

was described in the root knot nematode (Meloidogyne spp.)/Tomato interaction. Root knot 

nematodes produce less number of eggs per g root on the tomato JA-receptor mutant jai1 than 

on the tomato JA biosynthesis mutant def1 (Bhattarai et al., 2008). This might be due to a 

nematode-derived effector triggering COI1 to promote egg production. Analysis of JA-Ile-

dependent responses in the infected def1 mutant would reveal whether this effector is a JA-Ile 

mimic or a different signal. A JA-Ile-independent COI1 function in roots was recently described 

for ET-mediated root-growth inhibition in Arabidopsis (Adams & Turner, 2010). The two JA 

biosynthesis mutants dde2-2 and opr3 show a wild-type root growth inhibition response on 4 µM 

of the ET precursor ACC, whereas root growth of the coi1-16 mutant was less sensitive. 

4.4 Possible mechanisms involved in coi1-mediated resistance in Arabidopsis 

Previous studies have shown that PR-1 expression is hyper-induced in coi1 mutant plants after 

infections with P. syringae (Kloek et al., 2001) and P. cucumeria (Hernández-Blanco et al., 

2007) where coi1 shows a resistant phenotype, suggesting that increased SA-responsive 

defense gene expression might be responsible for the increased resistance observed in the coi1 

mutant. In the P. syringae/ A. thaliana interaction, suppression of SA pathway by the JA-Ile 

mimic COR induced resistance in coi1 plants which was reverted to susceptibility after 

transformation with NahG gene (Berrocal-Lobo & Molina, 2004, Laurie-Berry et al., 2006). When 

the transcript levels of PR-1 were measured in V. longisporum-infected wild type, dde2-2 and 

coi1-t plants, it was observed that the expression was partially reduced in dde2-2 plants and 

even further compromised in coi1-t (Figure 16B). The reduction of PR-1 gene expression in 

infected dde2-2 and coi1-t plants corresponds well with the relative amounts of SAG and DHBA 

(Figure 16A). Consistent with our hypothesis that COI1 is not induced by a JA or JA-Ile mimic, 

PR1 is not hyper induced. However, microarray analysis of the mock-treated wild-type, dde2-2 

and coi1-t petioles revealed 354 genes that were differentially expressed (> 2 fold, p < 0.05) in 



76 
 

at least one of the three genotypes, out of which of 47 genes were expressed to a higher level in 

coi1-t mock petioles as compared to wild type and dde2-2 (Supplement table 2). Higher 

expression levels of genes related to SA signaling (e.g. ATNUDT6 and PAD4) were detected in 

this dataset. Moreover, enhanced levels of SA metabolites were also observed in coi1-t mock-

infected plants (Figure 16), which could lead to enhanced resistance in coi1-t plants. However, 

the resistant phenotype of coi1 in the sid2-2 or nahG background Figure 17B) rules out the 

possibility that the enhanced SA defense in coi1 mock plants can provide resistance against V. 

longisporum. Given the observation that the SA pathway is not up-regulated in V. longisporum-

infected coi1-t plants and that coi1/nahG or coi1/sid2 plants show resistance against V. 

longisporum, it can be concluded that the coi1-mediated tolerance is independent of SA. 

Moreover, by comparing the expression levels of all the genes between the three genotypes 

after infection, further insights whether V. longisporum elicits any known developmental or 

defense programs in coi1 leading to the resistant phenotype can be deduced. Out of 697 genes 

those were expressed to a different level (> 2 fold, p < 0.05) in at least one of the three 

genotypes, 22 genes were expressed to a higher level (> 2 fold, p < 0.05) in coi1-t as compared 

to the expression levels in wild type and dde2-2 plants (between 2-0.3 and 2+0.3, Supplement 

Table 3). Comparing the induction levels of these genes it was observed that they were down 

regulated in the wild type and dde2-2 plants after infection but were down regulated to a lesser 

extent in the coi1-t plants. Considering the result that coi1-t possess less fungal biomass at 15 

dpi, this might be a possible reason of less down-regulation of these set of genes in infected 

coi1-t plants. Therefore, it can be concluded that the resistance in coi1 is not due to the 

induction of any resistance genes. However, the suppression of these genes in wild-type and 

dde2-2 suggests that V. longisporum can inhibit the expression of certain defense genes in 

these susceptible genotypes but not as efficiently in the resistant coi1-t plants. 

V. longisporum might induce susceptibility genes which require COI1 leading to effective 

disease progression. These susceptibility genes must be highly induced in the susceptible 

genotypes (wild-type and dde2-2) whereas to a lower extent in the coi1 resistant genotype. 

From the 1358 genes that were significantly up-regulated in at least one of the three genotypes, 

112 genes were expressed to similar levels in wild-type and dde2-2 plants but to a lower extent 

in coi1-t after V. longisporum infection (Table 2). However, reduced amounts of V. longisporum 

biomass at 15 dpi in coi1-t petioles might be a possible reason for the reduced expression of 

these genes. Expression analysis of the Arabidopsis disease resistance protein- Toll-Interleukin-

Resistance Class (DRP-TIR-Class) correlated with the reduced disease phenotype of coi1-1 
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and a susceptible phenotype of wild-type and nahG plants (Figure 20A) suggesting that it might 

act as a susceptibility gene after V. longisporum infection. But, infection studies with the drp-tir 

class mutant revealed that mutant plants were as susceptible as the wild type plants (Figure 

19A and B). On the other hand, the transcript levels of DRP-TIR gene were elevated in the 

mock-treated aba2-1 mutant plants (Figure 26D) showing resistance to V. longisporum. 

Therefore, DRP-TIR gene, when present in abundance, might act as a resistance protein that 

can inhibit fungal growth in aba2-1 plants. To further elucidate whether DRP-TIR behaves as a 

disease resistance protein against V. longisporum, DRP-TIR overexpressor lines and a double 

cross between drp-tir class and aba2-1 must be tested for fungal susceptibility.  

Analysis of alterations in vascular bundle of wild type, dde2-2 and coi1-t revealed differences in 

wild-type and coi1-t plants (Figure 13). At 15 dpi, the newly formed cells appeared at the abaxial 

side in the wild-type, whereas the coi1-t mutant contained several layers of cells with denser 

cytosol in this region. The difference between wild-type and coi1-t vascular alterations at 15 dpi 

might be the transition state of these cells which seems to be delayed in coi1-t. To investigate 

this further, V. longisporum-induced alteration in vascular bundles were studied in wild-type and 

coi1-t plants at 10 dpi and was found that these characteristically stained cells were also 

observed in the wild-type at this early stage of the disease. The appearance of cells with dense 

cytosol in the vascular bundle has been described before when petioles were treated with 1 

mg/L 2,4-dichlorophenoxyacetic (Li et al., 2012). As previously observed for V. albo-atrum-

infected hop (Talboys, 1958), Arabidopsis forms additional xylem-like cells. This hyper induction 

of the xylem-like vessels might be important for the fungus to cause senescence-like phenotype 

in Arabodpsis. Reusche (2011) could demonstrate that by genetically inhibiting the process of 

hyperplastic xylem formation and trans-differentiation in Arabidopsis, there was reduced 

senescence-like phenotype at least at the upper part of the rosette. Therefore it can be 

speculated that V. longisporum causes alterations in the vascular tissue (like; formation of 

xylem-like cells) which might require COI1 at the early stages of the infection to promote 

disease symptoms. In coi1-t plants, the de-differentiation process is already visible at 10 dpi, but 

less intense than in the wild-type. At 15 dpi, these cells have not yet re-differentiated into xylem-

like cells. Whether the delayed restructuring of the vascular system in coi1-t limits proliferation 

of the fungus, or slight reductions in fungal biomass already at 10 dpi are responsible for the 

observed slower restructuring is still unclear.   

Moreover, up regulation of cytokinin oxidase (CKX4) in wild type and dde2-2 but not in coi1-t 

implicates that the fungus might promote senescence through inducing cytokinin degradation. 
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Role of cytokinin in delaying senescence and nutrient mobilization has been previously 

demonstrated (Walters, 2006). Single knock out mutant of cytokinin oxidase 4 (ckx4) and ckx 

quadruple mutant did not show any delay in senescence when infected with V. longisporum 

(Figure 22B and C). This implicates that cytokinin oxidation might not be the only susceptibility 

factor in V. longisporum infections. However, the Arabidopsis plants lacking EIN2 showed 

reduced senescence-like phenotype when compared to wild-type (Supplement figure 4) 

although the stunting phenotype was clearly visible (Figure 24). This result suggests that the 

COI1-dependent senescence program induced by V. longisporum might be mediated through 

components of ET pathway. 

4.5 COI1 in the roots influences the disease phenotype of the shoots 

V. longisporum colonizes the vascular system of the roots and subsequently invades the aerial 

parts of the plants. Therefore resistance to this pathogen might be determined by the roots, 

shoots or both the tissues. In the present study it is observed that at 10 dpi, petioles of all three 

genotypes showed similar amounts of fungal biomass which became less vigorous at later 

stages of the infection (15 dpi and 19 dpi; Figure 14A). Microscopic studies of the roots, at early 

stages of the infection, revealed that the coi1 roots were as prone to fungal colonization as the 

wild type or the dde2-2 roots (Figure 14B). Also, similar amounts of fungal biomass were 

observed in roots of V. longisporum infected wild type, dde2-2 and coi1-t plants at 10 dp. At 16 

dpi, reduced amounts of fungal biomass were observed in the roots of coi1-t plants as 

compared to the roots of dde2-2 plants (Figure 14C). Wild type like initial colonization of coi1 

roots followed by compromised fungal propagation in the shoots at later stages of the infection 

was also observed in the F. oxysporum/Arabidopsis interaction (Thatcher et al., 2009). In this 

system, the similar amount of fungal DNA was detected in wild-type and coi1 shoots before the 

onset of necrosis indicating that fungal entry and initial fungal growth was not restricted. Only 

later, when senescence processes were initiated in a COI1-dependent manner, fungal growth 

was restricted in coi1. Moreover, when wild-type scions were grafted onto coi1 roots, foliar 

chlorosis and wilting symptoms were inhibited as observed in intact coi1 plants. A similar 

grafting study with coi1 roots was performed by Sonja Schoettle (Ralhan et al., 2012). For this 

purpose, chimeric plants with either a wild-type shoot grafted on a coi1-16 root or a coi1-16 

shoot grafted on a wild type root were generated. It was shown that impaired shoot growth and 

early senescence was dependent on a functional COI1 allele in the roots, whereas COI1 in 

shoots was not necessary for a visible disease. In accordance to what has been described for 

the F. oxysporum/Arabidopsis system, a wild-type shoot developed lesser disease symptoms 
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when the root stock was from the coi1-16 genotype whereas a coi1-16 shoot showed disease 

symptoms when the root stock was from wild-type plants. Since V. longisporum does not 

change the water status (Floerl, 2010, Floerl et al., 2008), clogging of the vessels in the root 

might not be responsible for the induction of disease symptoms of the shoot. Rather the idea 

that susceptibility of the shoot is caused by a mobile signal generated in the roots can be 

postulated. One option is that a mobile signal released from coi1 roots induces a yet unknown 

antifungal resistance program in the shoot. This possibility seems unlikely because the 

microarray from the coi1 shoots did not reveal any over representation of such processes. An 

alternative explanation is that the mobile signal is synthesized in a COI1-dependent manner and 

favors premature senescence. This developmental program initiates the mobilization of nutrients 

from the mesophyll (Quirino et al., 2000). The mobile signal might either be sufficient to induce 

premature senescence, or alternatively, it might alter the responsiveness of the above-ground-

tissue to the infection. In the latter case, a feed-forward loop would be generated, with initial 

small manipulations of the senescence program facilitating fungal growth which in turn leads to 

an acceleration of these disease-promoting processes.  

In the present study disease symptoms were similar in wild-type, dde2-2 and sid2-2 hence, 

plant-derived jasmonates or salicylates as potential candidates for the postulated mobile signal 

are questioned. ET has been shown to influence senescence and growth of the plant therefore 

the disease phenotype might be related to this hormone or its precursor 1-aminocyclopropane-

1-carboxylic acid (ACC). Experimental evidence for the role of ET as a root-borne susceptibility 

factor has been reported before: expression of an ACC-deaminase in roots of tomato plants 

generated tolerance (e.g. reduced symptoms albeit wild-type-like colonization) towards V. 

dahliae (Robinson et al., 2001). Moreover, in the current work it has been shown that the 

Arabidopsis ET receptor mutant ein3-1/eil1-2 is resistant against V. longisporum and possess 

reduced fungal biomass at 19 dpi suggesting a negative regulation between component of ET 

signaling and V. longisporum responses (Figure 25). Whether this EIN3/EIL1-mediated 

response is occurring in the roots as in the case of COI1 or if this is regulated in the shoots after 

a signal is generated in the roots in a COI1-dependent manner, is still inconclusive. Also, ein2-1 

showed similar reduction in the leaf area as compared to the wild type but partial dependence of 

the senescence phenotype was observed as V. longisporum infected ein2-1 plants showed 

reduced senescence-like phenotype as compared to the wild type plants (Figure 24 and 

Supplement figure 4). No significant alterations in disease resistance/susceptibility towards F. 

oxysporum were found in ET-signaling mutants ein2 and etr1-1 (Thatcher et al., 2009). Still, as 

these alleles might not affect all ET responses, further studies with transgenic or mutant 
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Arabidopsis plants with reduced production of ACC in the roots are required. Additionally, 

measurement of ET in the roots and petioles at early time points of the infection can provide 

important evidence in support of the above hypothesis. In future, analyzing the V. longisporum-

infected roots via whole genome microarray and metabolomic studies can elucidate the 

mechanism of JA-independent COI1 function in roots which leads to enhanced susceptibility in 

shoots.  However, other hormones which may be discussed with respect to root-to-shoot 

signaling like e.g. cytokinins have to be taken into account (Dodd, 2005).  
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5 SUMMARY 

Verticillium longisporum is a soil-borne fungal pathogen causing vascular disease predominantly 

in oilseed rape. The pathogen enters its host through the roots and maintains a parasitic life 

stage in the xylem before invading other tissues late in the infection cycle. Arabidopsis thaliana 

was used as a model plant to characterize the response of the aerial parts of the plants towards 

this pathogen. It was shown that V. longisporum infections lead to increased amounts of 

salicylic acid metabolites, jasmonic acid-isoleucine and abscisic acid in the petioles of infected 

Arabidopsis plants at 15 dpi. Infection of salicylic acid biosynthesis and signaling mutants 

resulted in similar disease phenotype as in the wild type depicting a weak role of salicylic acid in 

V. longisporum/Arabidopsis interaction. It was found that the jasmonic acid/ethylene pathway 

was not as highly activated as by the necrotrophic pathogen Botrytis cinereae, whereas the 

jasmonic acid pathway was as efficiently induced as after wounding. Infection of the jasmonic 

acid receptor mutant, coi1, led to reduced disease symptoms towards V. longisporum as 

compared to the corresponding wild type and the jasmonic acid biosynthesis mutant dde2-2. 

Initial colonization of the roots was comparable in wild type and coi1 plants and similar amounts 

of fungal biomass were accumulated in petioles of both genotypes at 10 dpi. It was shown that 

COI1 acts independently of any JA-Ile or JA-Ile mimics. Whole genome microarray experiments 

using petioles of wild type, dde2-2 and coi1-t plants at 15 dpi did not reveal over/under- 

representation of any known defense pathways in coi1-t plants that might lead to the resistance 

phenotype. However, genes related to cell wall processes were over-represented in the cluster 

of genes that were induced to a similar extent in all three genotypes. Assessment of V. 

longisporum-induced alterations of the vascular bundles revealed that the de-differentiation 

process is visible in the wild type petioles at 10 dpi and appeared to be less pronounced in the 

resistant coi1-t plants. Grafting studies revealed that impaired shoot growth and early 

senescence was dependent on a functional COI1 allele in the roots, whereas COI1 in the shoots 

was not necessary for a visible phenotype (Ralhan et al., 2012). Since V. longisporum infection 

does not lead to the clogging of the vessel (Floerl et al., 2008, 2010), a mobile signal generated 

in the roots has been postulated that might be responsible for the induction of the disease 

symptoms in the shoots. 
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8 SUPPLEMENTAL MATERIAL 

Supplement Table 1 Correlation analysis using Spearman rank correlation 
coefficient. 

Spearman rank coefficient (rs) was calculated (p < 0.0001) for 1693 genes that were up or down 

regulated in one of the three genotypes. The chosen parameters from the microarray database 

(GENEVSTIGATOR) are indicated.   AT-numbers represents the name of the microarray 

experiments. 

Parameter AT-Number Genevestigator Spearman rs 

P. syringae study 15 (Col-0) AT-00406 0.6061 

cpr5 AT-00175 0.5971 

salicylic acid study 3 AT-00320 0.5856 

osmotic (late) AT-00120 0.5843 

K+ starvation (shoot) AT-00234 0.5783 

mkk1/mkk2 AT-00291 0.573 

B. tabaci type B AT-00203 0.5348 

wounding (late) AT-00120 0.5257 

CaLCuV AT-00318 0.5235 

B. cinerea AT-00147 0.509 

night extension (late) AT-00281 0.5073 

penta AT-00391 0.5039 

HrpZ (4h) AT-00107 0.4727 

P. infestans AT-00108 0.472 

N depletion (Col-0) AT-00405 0.4634 

ahk2/ahk3/ahk4 AT-00341 0.4623 

senescence AT-00088 0.4602 

benzothiadiazole (Col-0) AT-00278 0.4455 

csn5 (csn5a-2 csn5b) AT-00276 0.4399 

salt (late) AT-00120 0.4278 

drought (Lawton et al.) AT-00290 0.4222 

sni1 AT-00236 0.4158 

FLG22 study 2 (3h) AT-00253 0.4103 

nudt7-1 AT-00421 0.3932 

mannitol (4h) AT-00199 0.3898 

35S::CKX1 AT-00156 0.3773 

circadian clock (Ca2+)cyt / ni AT-00398 0.3499 

B. graminis (Col-0) AT-00309 0.3486 

low nitrogen AT-00154 0.3415 

E. orontii AT-00146 0.3394 

E. cichoracearum AT-00085 0.3248 
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syringolin study 3 (late) AT-00325 0.3237 

phytoprostane A1 (Col-0) AT-00293 0.3139 

P deficiency study 4 (leaf) At-00122 0.3055 

ABA study 4 (Col-0) AT-00241 0.3037 

OPDA study 2 (Col-0) AT-00293 0.2913 

nitrate starvation AT-00155 0.2809 

M. persicae AT-00082 0.2683 

IAA AT-00110 0.2585 

wounding (early) AT-00120 0.2565 

GA3 AT-00110 0.2196 

camta3-1 AT-00289 0.1988 

shift SD to LD (9d) AT-00326 0.1902 

BL AT-00110 0.1864 

high light study 7 (exposed) AT-00345 0.1761 

MeJa study 4 (Col-0) AT-00251 0.173 

light/drought (Col-0) AT-00319 0.1649 

anoxia AT-00158 0.1162 

ga1-3 AT-00210 0.1062 

BL/H3BO3 AT-00174 0.1007 

BA (Col-0) AT-00351 0.04926 

abi1-1#1 AT-00196 0.03643 

aba1-1#1 AT-00196 0.01663 

sid2 AT-00278, AT-00393, AT-00406 -0.0606 

heat study 6 (Col-0) AT-00402 -0.135 

ctr1 AT-00180 -0.1567 

coi1 AT-00406 -0.1928 

cold study 9 (Col-0) AT-00389 -0.2082 

atgsnor1-3 AT-00393 -0.2249 

etr1 AT-00099 -0.2433 

A. brassicicola (Ler) AT-00391 -0.2453 

ein2 AT-00406 -0.2986 

npr1-1 AT-00406 -0.3036 

pad4 AT-00406 -0.462 
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Supplement Table 2 List of 47 genes having higher expression levels in coi1-t 
mock plants 

354 genes that were differentially expressed (> 2- fold, p< 0.05) in at least one of the three 

genotype were sorted such as their expression levels remains similar between wild-type and 

dde2-2 (+/- 2 0.3) and > 2-fold between wild-type and coi1-t mock plants. 

AGI 
 

Description 
 

coi1-t mock/Col-0 
mock 

Col-inf/Col-
mock 

aos-inf/aos-
mock 

ecoi-inf/ecoi-
mock 

            

    x-fold x-fold x-fold x-fold 

AT3G30720 QQS  6.60 0.82 1.06 0.83 

AT4G10500  oxidoreductase, 2OG-Fe(II) oxygenase family protein 4.63 19.94 14.22 1.55 

AT3G28510 AAA-type ATPase family protein  4.52 11.52 12.59 1.56 

AT2G04450 ATNUDT6  4.31 13.51 12.66 2.54 

AT5G52760 heavy-metal-associated domain-containing protein  3.82 4.82 4.68 1.56 

AT4G13920 AtRLP49  3.67 13.25 15.42 2.22 

AT3G23120 AtRLP38  3.41 7.78 9.97 2.77 

AT3G47480 calcium-binding EF hand family protein  3.30 16.43 14.54 4.07 

AT1G33960 AIG1  3.29 52.39 46.54 7.66 

AT5G60950 COBL5 3.27 3.93 3.48 1.18 

AT5G45380 ATDUR3 3.15 4.90 4.49 1.52 

AT5G11920 AtcwINV6 3.13 7.97 8.50 2.20 

AT3G26470 ADR1-L1 (ADR1-like 1) 3.09 8.47 9.19 2.27 

AT5G25260 unknown protein 3.09 3.63 2.87 1.00 

AT3G51330 aspartyl protease family protein 3.06 3.47 4.29 1.04 

AT5G40230 nodulin-related  2.98 3.45 2.52 0.79 

AT1G35710 
leucine-rich repeat transmembrane protein kinase, 
putative  2.94 3.95 4.65 1.26 

AT5G10380 RING1  2.91 6.74 6.14 2.07 

AT5G24530 DMR6  2.86 8.57 6.90 1.49 

AT1G08450 CRT3  2.70 3.45 3.36 1.38 

AT1G73805 calmodulin binding  2.69 4.13 3.65 1.39 

AT2G32160 unknown protein  2.68 2.60 2.60 0.98 

AT5G59670 leucine-rich repeat protein kinase, putative  2.62 0.98 0.98 0.44 

AT3G52430 PAD4 2.54 4.64 5.12 1.66 

AT5G55170 SUM3 2.49 3.89 3.18 1.36 

AT1G43910 AAA-type ATPase family protein  2.42 11.79 17.45 5.80 

AT5G52750 heavy-metal-associated domain-containing protein  2.41 1.54 1.75 0.87 

AT4G23610 unknown protein  2.39 3.66 3.26 1.23 

AT3G26220 CYP71B3  2.38 6.66 4.31 0.92 

AT1G13300 myb family transcription factor 2.37 2.60 2.30 0.47 

AT4G30640 FBL19 2.37 2.85 2.52 0.91 

AT2G26400 ATARD3  2.35 6.61 4.95 1.16 

AT3G28540 AAA-type ATPase family protein 2.30 6.67 6.60 1.27 

AT2G24160 leucine rich repeat protein family 2.29 2.19 2.13 0.99 

AT2G34940 vacuolar sorting receptor, putative  2.28 2.72 2.86 0.96 

AT4G01700 chitinase, putative  2.28 17.95 12.58 5.48 

AT5G60900 RLK1  2.26 2.67 1.84 0.83 

AT5G59680 leucine-rich repeat protein kinase, putative  2.22 1.06 0.72 0.41 

AT1G69720 ho3 2.12 2.73 2.26 0.95 

AT3G13950 unknown protein  2.06 6.35 5.11 0.89 

AT1G30900 vacuolar sorting receptor, putative  2.06 7.17 6.73 2.34 

AT5G53550 YSL3 2.05 1.76 1.21 0.57 

AT3G24900 AtRLP39  2.04 2.33 3.05 1.12 

AT3G48640 unknown protein  2.03 2.94 4.84 1.90 

AT1G15790 unknown protein  2.02 3.48 3.14 1.26 

AT1G10970 ZIP4 2.02 0.40 0.40 0.40 

AT5G61250 AtGUS1  1.82 2.31 1.48 0.72 
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Supplement table 3 List of 22 genes having higher expression levels in infected-

coi1-t plants 

697 genes, that were differentially expressed (> 2- fold, p< 0.05) in at least one of the three 

genotype after infection, were sorted such as their expression levels remains similar between 

wild-type and dde2-2 (+/- 2 0.3) and > 2-fold between wild-type and coi1-t mock plants. 

AGI 
 

Description 
 

col-inf/ 
coi1-t-inf 
 

aos-inf/ 
coi1-t-inf 
 

Col-inf/ 
Col-mock 
 

aos-inf/ 
aos-mock 
 

coi1-t-inf/ 
coi1-t-mock 
 

    x-fold x-fold x-fold x-fold x-fold 

AT1G52190 
proton-dependent oligopeptide transport (POT) family 
protein  3.1 2.5 0.3 0.4 0.8 

AT5G12940 leucine-rich repeat family protein 2.6 2.2 0.6 0.5 0.7 

AT5G53250 AGP22  2.5 2.2 0.4 0.5 1.1 

AT1G74670 gibberellin-responsive protein, putative  2.5 2.2 0.4 0.4 0.6 

AT1G78450 SOUL heme-binding family protein 2.4 2.2 0.2 0.2 0.5 

AT1G56430 NAS4  2.3 2.0 0.2 0.3 0.5 

AT1G10550 XTH33 2.2 1.9 0.6 0.5 0.8 

AT3G48970 copper-binding family protein 2.2 1.8 0.4 0.3 0.5 

AT1G78020 senescence-associated protein-related 2.2 1.9 0.3 0.4 0.6 

AT5G03120 unknown protein  2.2 1.9 0.5 0.6 0.8 

AT5G25810 TINY 2.2 1.9 0.4 0.3 0.6 

AT5G56040 leucine-rich repeat protein kinase, putative  2.1 1.8 0.6 0.7 1.0 

AT3G12610 DRT100 (DNA-DAMAGE REPAIR/TOLERATION 100) 2.1 1.9 0.5 0.5 0.8 

AT4G01680 MYB55  2.1 1.9 0.5 0.6 1.0 

AT5G64770 unknown protein 2.1 1.9 0.4 0.4 0.7 

AT4G28250 ATEXPB3 (ARABIDOPSIS THALIANA EXPANSIN B3) 2.1 1.7 0.3 0.4 0.9 

AT3G07010 pectate lyase family protein  2.0 1.7 0.5 0.4 0.7 

AT1G10970 ZIP4  2.0 1.7 0.4 0.4 0.4 

AT1G20190 ATEXPA11  2.0 1.6 0.7 0.6 0.8 

AT1G67750 pectate lyase family protein  2.0 2.1 0.3 0.3 0.6 

AT1G04240 SHY2 (SHORT HYPOCOTYL 2) 1.7 2.0 0.5 0.3 0.6 
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Supplement figure 1 

 

Supp. Fig 1 Disease phenotype of V. longisporum infected wild type, sid2-2, npr1-1, nahG plants 

Single photos from mock-treated and V. longisporum-infected at 21 dpi. 
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Supplement figure 3 

 

 

Supp. Fig. 3 Expression analysis of AtERF53 in V. longisporum-infected wild type and coi1-1 plants 

Quantitative RT-PCR analysis of relative transcript levels in petioles from wild-type and coi1-1 plants at 15 days after 

mock- and V. longisporum infection. Data indicate means (+/- SEM) of 3-4 pools per treatment and genotype with 

each pool containing petioles from 4 plants. Relative transcript levels of the V.l.-infected wild-type were set to 100%. 
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Supplement figure 4 

 

Supp. Fig. 4 Disease phenotype of V. longisporum-infected wild type, ein2-2, etr1-1 and ein3-1/eil1-2 plants  

(A) Single photos from mock-treated (upper panel) and V. longisporum-infected (lower panel) wild type, ein2-1, etr1-1 
and ein3-1/eil1-2 plants at 28 dpi. 

(B) Single photos from mock-treated (upper panel) and V. longisporum-infected (lower panel) wild type and ein2-1 
plants at 24 dpi. 
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9 ABBREVIATIONS 

2,4-D 2,4-dichlorophenoxyacetic acid 
°C Degree Celsius 

µl Micro litre 

µM Micromolar 

A Adenine 

A Ampere 

A. thaliana Arabidopsis thaliana 

A. tumefaciens Agrobacterium tumefaciens 

ABA Abscisic acid 

AHK Arabidopsis-Histidin-Kinase 

AHP Arabidopsis-Phosphattransmitter-Proteine 

AOS ALLENE OXIDE SYNTHASE 

APS Ammonium persulphate 

aq aqueous solution 

ARR Arabidopsis Response Regulator 

ATCWINV1 ARABIDOSIS THALIANA CELL WALL INVERTASE 1 

Aλ absorbance or optical density 

B. cinerea Botrytis cinerea 

bp base pair 

bZIP basic leucine zipper 

C Cytosine 

c concentration 

CDB Czapek dox broth 

cDNA complementary DNA 

cm centimetre 

COI1 CORONATINE INSENSITIVE 1 

Ct Cycle threshold  

CWD Cell wall damage 

dde2-2 delayed-dehiscence 2-2 

DNA Deoxyribonucleic acid 

DNase Desoxyribonuclease 

dNTP deoxynucleoside triphosphate 

dpi day(s) post infection 

DRP-TIR Class Disease resistance protein-Toll-Interleukin-Resistance Class 

dsDNA double strand DNA 

E. coli Escherichia coli 

e.g. exempli gratia; for example 

EB  Elution buffer 

EDTA Ethylenediaminetetraacetic acid 

EIL1 ETHYLENE INSENSITIVE3-LIKE1 

EIN3 ETHYLENE INSENSITIVE3 

ERF B-4 ETHYLENE RESPONSE FACTOR subfamily B-4 

ET Ethylene 

et al. Et alii; and others 

EtBr Ethidium bromide 

EtOH ethanol 

fwd forward 

G Guanine 
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GL1 GLABROUS1 

h Hour 

HCl Hydrochloric acid 

IPT Isopentenyltransferase 

JA Jasmonic acid 

l Litre 

LB Left border primer 

LD Long day 

LP Left primer 

M Molarity 

mA Milliampere 

MeJA Methyl jasmonate 

MES 2-[N-Morpholino]-ethanesoulfonic acid 

mg Milligram 

MgCl2 Magnesium chloride 

min Minute 

ml Millilitre 

mM  Millimolar 

mRNA messenger RNA 

MS Murashige & Skoog medium 

MYB59 MYB DOMAIN PROTEIN 59 

NaCl Sodium chloride 

NaClO Sodium hypochlorite 

nm Nanometer  

NPR1 Non expresser of PR Genes 1 

OPDA 12-oxophytodienoic acid 

PCR Polymerase chain reaction 

PDB Potato dextrose broth 

PDF1.2 Plant defensin 1.2 

pH negative log
10

 of proton concentration 

PR-1 Pathogenesis related-1 
qRT-PCR  Quantitative real time PCR 

rev Reverse 

RNA  Ribonucleic acid 

Rnase Ribonuclease 

RP Right primer 

rpm Rotations per minute 

RT Reverse transcriptase 

RT Room temperature 

s Second 

SA Salicylic acid 

SAG Salicylic acid glucoside 

SD Short day 

SDS Sodium dodecylsulfate  

SEM Standard error of the mean 

SID2 SALICYLIC ACID INDUCTION DEFICIENT2 

T Thymine 

TAE tris-acetate-EDTA 

taq Thermus aquaticus 

T-DNA Transfer DNA 
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TEMED N,N,N’,N’-tetramethylethane-1,2-diamine 

TF Transcription factor 

Tris tris-(hydroxymethyl)-aminomethane 

UBQ5 Ubiquitin 5 

UV Ultra violet 

V Volt 

V. albo-atrum Verticillium albo-atrum 

V. dahliae Verticillium dahliae 

V. l. 43 Verticillium longisporum isolate 43 

V. longisporum Verticillium longisporum 

W Watt 

w/v weight per volume 
WT Wild-type 
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