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Abstract 
During development various structural and molecular changes take place in the brain leading to 

its maturation. These changes occur at multiple levels, including the alterations in protein 

expression level of single cells and in the synaptic strength of neuronal connections. PSD-95, 

one of the most important scaffold proteins, in excitatory synapses, was shown to be involved 

in some of these developmental processes. In this study, by using diverse electrophysiological 

and biochemical methods in combination with in vivo and in vitro lentiviral injection 

techniques, I examined the role of PSD-95 and its domains in the regulation of basal synaptic 

transmission and developmental NMDA receptor subunit switch. 

NMDA receptor subunit switch is one of the most important events taking place during 

early postnatal development. The regulation of the GluN2B-containing NMDA receptor surface 

expression was proposed to involve PSD-95 and Src kinase interaction, and this interaction was 

shown to depend on the CDK5 phosphorylation state of PSD-95. However, the effect of this 

phosphorylation on synaptic transmission is unknown. In this study, I showed that a mutant 

form of PSD-95 mimicking the phosphorylated state enhanced both AMPAR and NMDAR 

transmission in a Src kinase- and GluN2B subunit-dependent manner. In addition, I could 

demonstrate that PSD-95 is indeed involved in the developmental NMDAR subunit switch in 

layer 2/3 neurons of mouse visual cortex and that the expression of the phospho-mimicking 

mutant of PSD-95 in these neurons prevented the NMDAR subunit switch. 

Besides the changes in the phosphorylation state, the importance of the SH3 and GK 

domains of PSD-95 was emphasized in the regulation of basal synaptic transmission. In order 

to dissect the specific roles of these domains, we generated molecular replacement constructs of 

PSD-95 lacking one or more of its domains. Expression of these constructs in CA1 region 

neurons of rat and PSD-95 knockout mouse hippocampus, demonstrated that the SH3 domain is 

necessary for creating a functional link between PSD-95 and SAP102, whereas GK domain in 

the absence of SH3 domain funcitons in a SAP102 independent way.  

Overall, these data suggest a domain- and CDK5 phosphorylation state-specific effect of 

PSD-95 on the basal synaptic transmission of CA1 region neurons as well as a CDK5 

phosphorylation state-specific effect of PSD-95 on the NMDAR subunit switch in layer 2/3 

neurons of visual cortex. These findings contribute to a better understanding of synaptic 

regulation mechanisms, hence of learning and memory. 
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1 Introduction 
 

Starting with the first written evidence about the nervous system in 1600 BC, Edwin 

Smith papyrus (Elsberg, 1931; Kamp et al., 2012), many scientists wondered about the 

function of the brain. While extensive efforts are invested each year into brain research 

and to find out possible ways to cure its malfunction, the biggest question of how the 

brain works is not yet fully answered.  

Despite the large gaps we need to fill for a complete understanding, there is a 

considerable amount of data regarding how 75 million neurons in a mouse brain, 

respectively 100 billion neurons in a human brain can communicate with each other.  

Until now, we have evidence that neurons communicate with each other through 

electrical and chemical means. The structures where the information exchange takes 

place are called synapses. Electrical synapses are formed by gap junctions which are 

intercellular channels composed of connexon molecules (Goodenough et al., 1996). 

Gap junctions connect the plasma membranes of two adjacent cells and allow the 

passage of ions as well as molecules smaller than 1.5 nm such as Ca2+ and secondary 

messengers like cyclic AMP. Exchange of these molecules results in a direct coupling 

between two neurons, synchronizing their act (Bennett and Zukin, 2004). Chemical 

synapses, on the other hand, are structures where the plasma membranes of two 

neurons are closely positioned to each other with a separation of 20-30 nm. This space 

between the pre and postsynaptic neuron is named as synaptic cleft and allows the 

successful diffusion of neurotransmitter molecules which are the essence of synaptic 

communication in neuronal systems. Neurotransmitters are classified as excitatory, 

inhibitory and modulatory depending on their action on selected receptor types. In the 

brain, L-glutamate is considered to be the most abundant excitatory neurotransmitter, 

whereas γ-Aminobutyric acid (GABA) is known to be the main inhibitory 

neurotransmitter. Serotonin, dopamine and noradrenaline on the other hand, are some 

of the neurotransmitters known for their modulatory effect on neuronal function 

(Panula et al., 2006).  

Neurotransmitters are stored in synaptic vesicles at the presynaptic terminal and are 

released into the synaptic cleft in a Ca2+-dependent manner after a depolarizing event 
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(McMahon and Nicholls, 1991). This release triggers the activation of neurotransmitter-

specific receptors on the postsynaptic membrane. Postsynaptic receptors can trigger 

different actions depending on the receptor type, either mediating ion exchange 

between the extra-cellular matrix and the cytoplasm (ionotropic receptors) or activating 

molecules to manipulate down-stream secondary messenger pathways (metabotropic 

receptors). Both of these actions are crucial to maintain the connections in a neuronal 

network as well as to change the strength of existing connections in different brain 

regions which underlies the mechanism of long-term plasticity, a cellular model of 

learning and memory (Bliss and Lomo, 1973; Komatsu and Iwakiri, 1993; Malenka and 

Nicoll, 1993; Greenamyre and Porter, 1994; Stelzer et al., 1994; Malinow and Malenka, 

2002).  

 

1.1   Glutamatergic transmission  
Excitatory transmission is one of ways to keep a neuronal system communicating, 

besides the inhibitory and modulatory transmission. In the brain, most of the excitatory 

transmission is mediated through L-glutamate. Its action is exerted on four types of 

glutamate receptors, which are located on the postsynaptic membrane. These receptors 

include three types of ionotropic, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 

acid (AMPA) receptors, N-methyl-D-aspartate (NMDA) receptors, kainate receptors 

and different metabotropic glutamate receptors (mGluRs) (Watkins et al., 1990; 

Nakanishi, 1992; Dingledine et al., 1999).  In this study, I will focus on the function of 

AMPA and NMDA receptors. 

 

1.1.1 AMPA receptors 

AMPA receptors are tetrameric entities composed of four subunits, GluA1-4 (Wisden 

and Seeburg, 1993; Hollmann and Heinemann, 1994). The subunits differ from each 

other primarily by the structure of their C-termini. GluA1 and 4 subunits have longer 

C-termini whereas GluA2 and 3 have shorter C-terminal tails (Song and Huganir, 2002). 

The combination of different subunits determines the functional properties of the 

receptors. These properties can range from specific protein-protein interactions 

(Gardner et al., 2005) and phosphorylation sites (Roche et al., 1996; Carvalho et al., 
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1999; Matsuda et al., 1999) to Ca2+ permeability and rectification of the receptors 

(Hayashi et al., 2000; Song and Huganir, 2002; Kakegawa et al., 2004). The two 

mechanisms determining the subunit structure are governed by the post-transcriptional 

Q/R mRNA editing (Seeburg, 2002) and also by the alternative splicing mechanism 

(Sommer et al., 1990). The majority of AMPA receptors are formed by GluA1 and 

GluA2 or by GluA2 and GluA3 heteromeres. The GluA2 subunit confers Ca2+ 

impermeability due to the post-transcriptional Q/R editing and also provides linear 

rectification for the channels whereas GluA2-lacking receptors are Ca2+ permeable and 

have higher rectification (Burnashev et al., 1992). This difference is considered to be 

crucial for the type of fast excitatory transmission that a synapse conveys. The 

composition of synaptic AMPA receptors change from dominantly GluA2-lacking to 

GluA2-containing receptors over the course of early development in rat neocortex 

(Kumar et al., 2002) as well as in response to the changes in the strength of synaptic 

transmission (Plant et al., 2006).  

The role of AMPA receptors is intensively studied both in basal synaptic 

transmission and different plasticity forms such as long-term potentiation and long-term 

depression, which are suggested to be the underlying mechanisms of learning and 

memory processes. Both of these processes demand accurate targeting and maintenance 

of AMPA receptors at the synaptic membrane.  

Synaptic AMPA receptor are located in the postsynaptic density (PSD) of 

excitatory neurons, which is a 30-40 nm thick electron-dense structure underneath the 

postsynaptic membrane (Ziff, 1997; Scannevin and Huganir, 2000; Feng and Zhang, 

2009). PSD is organized as a network of ion channels, scaffold proteins and signaling 

pathway elements. Among various binding partners, AMPA receptors are known to 

directly interact with transmembrane AMPAR regulatory proteins (TARPs) in the 

postsynaptic density of excitatory synapses (Chen et al., 2000; Tomita et al., 2005). 

This enables the functional connection between AMPA receptors and postsynaptic 

scaffold proteins, one of the most important being postsynaptic density 95 (PSD-95) 

protein. The interaction between AMPARs and PSD-95 is known to be crucial for 

AMPA receptor trafficking at the synapse (El-Husseini et al., 2000c; Béïque et al., 

2006; Elias et al., 2006). Moreover, AMPA receptor function and trafficking can be 
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modulated further by the binding of various proteins such as, protein interacting with C 

kinase 1 (PICK1) (Terashima et al., 2004; Jaafari et al., 2012) and glutamate receptor 

interacting protein (GRIP) (Yamazaki et al., 2001; Lu and Ziff, 2005).   

Besides their function in basal synaptic transmission, changes in  the AMPA 

receptor number is one of the key regulations in the establishment of long-term 

plasticity. In this regard, two important kinases were shown to modulate the function of 

AMPA receptors and thus modulate their contribution to the synaptic plasticity. The 

first kinase, protein kinase A (PKA), phosphorylates the Ser845 residue on GluA1 

subunit and triggers the insertion of GluA1 containing AMPA receptors to the 

postsynaptic membrane (Malinow, 2003; Man et al., 2007). The second kinase, well-

known for its action in long-term potentiation is the calcium-calmodulin dependent 

kinase II alpha (CamKII). CamKII phosphorylates Ser831 and increases the single 

channel conductance of GluA1 homomeres (Barria et al., 1997; Lee et al., 2000).  

In addition to the aforementioned control mechanisms, other pathways and proteins 

orchestrate the AMPA receptor synthesis, function and transportation, hence the 

transmission through a single synapse. These mechanisms may involve the activation of 

distinct receptors such as D1/D5 dopamine (Smith et al., 2005), NMDA (Delgado et al., 

2007) or metabotropic glutamate receptors (Kelly et al., 2009; Casimiro et al., 2011; 

Sanderson et al., 2011) to regulate the synthesis of AMPA receptors directly, or the 

manipulation of other pathways and kinases such as MAPK/ERK (Grooms et al., 2006) 

and Protein kinase C (PKC) (Boehm et al., 2006) to control the AMPA receptor 

function. 

 

1.1.2 NMDA receptors 
With their involvement in the induction of long-term plasticity, in the regulation of 

basal synaptic transmission and in pathological brain disorders, NMDA receptors have 

been a major focus of research in the last 30 years (Watkins, 1981). 

NMDA receptors are cationic channels allowing the flow of Na+, K+ and Ca2+ ions 

through their channel pores. The ability to transmit Ca2+ ions upon a stimulation gives 

them the exceptional feature to control and contribute to many regulatory pathways in 

the postsynaptic side of a neuron, including increasing and decreasing the strength of an 
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existing synapse. As AMPA receptors, NMDA receptors are also composed of four 

subunits, GluN1-4 (Nakanishi, 1992; Hollmann and Heinemann, 1994). Two GluN1 

subunits being obligatory for all the receptors (Fukaya et al., 2003), differentially 

combined with GluN2, 3 and 4 subunits can result in the formation of di- or tri-

heteromeric channels. The combination of these different subunits assigns specific 

characteristics to each channel (Monyer et al., 1992). GluN2 is the subunit responsible 

of binding the excitatory neurotransmitter glutamate and is essential for the regulation 

of channel gating by mediating the Mg2+ blockade and Ca2+ permeability (Mayer and 

Armstrong, 2004). On the other hand, the GluN1 subunit is necessary for the ion 

selectivity and binding the co-agonists glycine and D-serine (Cull-Candy and 

Leszkiewicz, 2004). In addition to the GluN2 subunit, GluN3 also has the ability to 

bind glycine. Thus the combination of GluN1 and 3 subunits can render the channel 

Ca2+ impermeable (Henson et al., 2010).  

In order to be activated, NMDA receptors rely on the mechanism called 

“coincidence detection”. This requires the simultaneous triggering of presynaptic 

release of glutamate and the depolarization of the postsynaptic membrane. Only then, 

the Mg2+ block within the channel pore is relieved, and the flux of cations is established 

(Mayer et al., 1984; Nowak et al., 1984). The following influx of calcium ions is the 

main signal to initiate NMDA receptor-dependent synaptic plasticity.  

 

1.1.2.1 NMDA receptor-dependent synaptic plasticity 
The first model to understand learning and memory formation was proposed in 1973, 

when Bliss and Lomo triggered an increase in the synaptic responses of dentate gyrus 

neurons following a tetanic stimulation (Bliss and Lomo, 1973). The phenomenon was 

termed as long-term potentiation and since then was taken as an exciting model to 

underlie information storage in neurons which was correlated with the activity-

dependent changes in synapses (Hebb, 1949). Following this study, more evidence was 

collected over time, indicating that in CA1 region of hippocampus, as well as in some 

other brain regions, the induction of long-term plasticity is NMDA receptor dependent 

(Cull-Candy and Leszkiewicz, 2004; Malenka and Bear, 2004; Rebola et al., 2010). 

These information made the NMDA receptor-dependent plasticity the most extensively 
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studied plasticity form in order to understand the molecular mechanisms underlying 

learning and memory, particularly in hippocampus, a brain region which is believed to 

acquire new memory traces (Zola-Morgan et al., 1986; Rempel-Clower et al., 1996). 

The formation of new memories is established by generating new synaptic connections 

or by changing the strength of the already existing ones within a neuronal network. The 

process for mediating such a change is called synaptic plasticity. Long-term plasticity is 

classified into long-term potentiation (LTP) and long-term depression (LTD), which 

respectively result in the strengthening or weakening of the synaptic connections 

between the neurons. This alteration in the synaptic strength is achieved through the 

change in the postsynaptic Ca2+ concentration via NMDA receptor activation. The 

elevation in the Ca2+ levels at the postsynapse modulates the activity of various kinases 

such as CamKII, PKA, MAPK and PKC, or phosphatases such as protein phosphatase 

2B (PP2B) to eventually alter the function and/or number of AMPA receptors (Lisman, 

1994; Rebola et al., 2010). Most known changes on AMPA receptors following LTP 

and LTD inductions are the phosphorylation state of S831 and S845 on GluA1 subunit. 

While LTP induction favors the phosphorylation of these residues by CamKII and PKA, 

LTD induction eliminates the phosphorylations through phosphatase activity (Kessels 

and Malinow, 2009). However, altering the phosphorylation state of GluA1 subunit is 

not sufficient to explain the long-term plasticity mechanisms, since mice with a knock-

in of S831 phosphorylation deficient GluA1 exhibited normal LTP and LTD, and mice 

with the knock-in of S845 phosphorylation deficient GluA1 was deficient only in LTD 

(Lee et al., 2010). 

In addition to the manipulations of the AMPA receptor function and number, many 

studies within the last 20 years pointed out activity-dependent modifications on 

synaptic NMDA receptors following different LTP protocols in hippocampal areas 

(Bashir et al., 1991; Berretta et al., 1991; Kwon and Castillo, 2008; Rebola et al., 2008). 

Not surprisingly, several kinases indicated in long-term potentiation mechanisms to 

alter the AMPA receptor function, also phosphorylate and bind to NMDA receptors. 

One such example is the phosphorylation of both GluN1 and GluN2 subunits of 

NMDA receptors by PKC. The GluN1 subunit is phosphorylated on two serine residues, 

S890 and S896, which regulate the surface expression and the clustering of the 
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receptors (Tingley et al., 1997; Scott et al., 2003). On the other hand, the GluN2A 

subunit has two potential phosphorylation sites, S1291 and S1312, to increase the 

conductance of the GluN2A-containing receptors (Gardoni et al., 2001; Grant et al., 

2001; Jones and Leonard, 2005). A similar potentiation was observed with GluN2B-

containing receptors when S1303 and S1323 residues on GluN2B subunit were 

phosphorylated by PKC (Liao et al., 2001).  

Besides PKC, CamKII is the second kinase indicated with its ability to bind GluN2 

subunits A and B. However, the affinity of CamKII to bind GluN2B is much higher 

than binding GluN2A subunit (Bayer et al., 2001). The binding itself and its specificity 

are crucial steps in the maintenance of LTP at the synapses (Barria and Malinow, 2005; 

Sanhueza et al., 2011; Halt et al., 2012). In both cases, a cross-talk between PKC and 

CamKII pathways is suggested to regulate the CamKII binding to GluN2A and B 

subunits. It was reported that CamKII phosphorylates S1303 residue on the GluN2B 

subunit, which also is a substrate of PKC. Phosphorylation of this serine residue alters 

the strength of CamKII and GluN2B binding (Strack et al., 2000; Liu et al., 2006; 

Raveendran et al., 2009). In a similar way, the interaction between alpha-CamKII and 

GluN2A subunit is perturbed if the S1416 residue in the CamKII binding region of 

GluN2A is phosphorylated by PKC (Gardoni et al., 2001). 

Further kinases, such as PKA, CDK5 and CKII, were implicated with their role in 

the phosphorylation of NMDA receptor subunits and thus the regulation of the receptor 

function (Chen and Roche, 2007). PKA activity was shown to increase the synaptic 

targeting, Ca2+ permeability and also the conductance of NMDA receptors (Raman et 

al., 1996; Crump et al., 2001; Skeberdis et al., 2006). A rather subunit-specific action 

was proposed through CDK5 and CKII activity. While CDK5 phosphorylates only 

GluN2A subunit and enhances the transmission (Li et al., 2001), CKII specifically 

phosphorylates the S1480 residue on GluN2B and results in the disruption of PSD-95 

and NR2B interaction (Chung et al., 2004). The regulation of PSD-95-GluN2B 

interaction through CKII is important for the clustering of GluN2B-containing NMDA 

receptors at the synapse (Sanz-Clemente et al., 2010).  

Finally, a family of non-receptor tyrosine kinases, the Src kinase family, was 

brought to light with its substantial role in regulating NMDA receptor surface 
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expression through the phosphorylation of several residues on GluN2 subunits. The 

family consists of five members (Src, Fyn, Lyn, Lck, and Yes) all of which are present 

in the PSD of glutamatergic synapses (Kalia et al., 2004). However, among the family 

members, two particular kinases, Src and Fyn, received most attention and were studied 

extensively for their regulatory actions on NMDA receptors. This interest was triggered 

by the fact that both of the kinases could be extracted within the synaptic NMDAR 

complex (Yu et al., 1997; Yaka et al., 2002). Src kinase was shown to phosphorylate 

Y1292, Y1325 and Y1387 residues on GluN2A subunit, which results in the 

enhancement of NMDAR transmission (Köhr and Seeburg, 1996; Zheng et al., 1998). 

Additionally, the phosphorylation of Y842 residue was pointed to regulate the surface 

expression of GluN2A-containing receptors via preventing the interaction with AP-2 

complex, the core component of clathrin-mediated endocytosis (Vissel et al., 2001). On 

the other hand, Fyn kinase was reported to phosphorylate Y1252, Y1336 and Y1472 

residues on GluN2B subunit (Nakazawa et al., 2001; Takasu et al., 2002). Particularly, 

Y1472 is an important site to control GluN2B-containing NMDA receptor surface 

expression, as it is located in the internalization motif, YEKL. Phosphorylation of this 

site prevents the binding of AP-2 adaptor complex hence enhances the surface 

expression of GluN2B-containing NMDAR’s (Roche et al., 2001). A recent study also 

suggested the phosphorylation of Y1472 residue by Src kinase, again controlling the 

surface expression of the receptors (Zhang et al., 2008). Tyrosine phosphorylation on 

NMDA receptors is at the same time regulated and balanced by the activity of specific 

protein tyrosine phosphatases. Striatal enriched tyrosine phosphatase (STEP), as an 

example, is involved in the dephosphorylation of the Y1472 site on GluN2B and 

promotes the endocytosis of the GluN2B-containing receptors (Snyder et al., 2005). 

Such interplay between the tyrosine kinases and phosphatases is vital to regulate the 

NMDA receptor function, as a consequence control the synaptic plasticity. 

 

1.1.2.2 NMDA receptor subunits and the developmental NMDA 

receptor subunit switch 
It is well documented that the expression of NMDA receptor subunits changes in a 

spatio-temporal manner in the brain. GluN1 subunit is expressed before and after birth 
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ubiquitously throughout the brain, whereas GluN2 subunit isoforms have a rather 

specific distribution and expression profile. GluN2B and GluN2D subunits are present 

in the embryonic stage. In contrast, GluN2A and GluN2C subunits appear in different 

brain regions postnatally. While the GluN2B expression in the adult brain is enriched in 

the forebrain, GluN2C is highly abundant in the cerebellum and GluN2D expression 

shifts to spinal cord in later developmental stages (Monyer et al., 1994). GluN3 

subunits also differ in their expression levels, GluN3A being more prominent in the 

early development and GluN3B increasing through late developmental stages (Henson 

et al., 2010).  

Among different NMDA receptor subunits and their diverse roles, GluN2A and 

GluN2B subunits got into the spotlight of research due to their significant functional 

contribution to various plasticity forms, such as long term plasticity in several brain 

areas (Dickenson and Sullivan, 1991; Szinyei et al., 2003; Foster et al., 2010), 

metaplasticity (Yashiro and Philpot, 2008) and ocular-dominance plasticity (Fagiolini 

et al., 2003); developmental processes, as in cortical development (Wang et al., 2011) 

and hippocampal synaptogenesis (Gambrill and Barria, 2011); also via their act in 

several neurodegenerative disorders, for instance in Alzheimer’s disease (Snyder et al., 

2005; Wu and Hou, 2010; Rönicke et al., 2011), Schizophrenia (Gaspar et al., 2009) 

and Parkinson’s disease (Dunah et al., 2000), just to mention a few. 

The uniqueness of NMDA receptor subunits to play a role in different processes 

comes from their functional and kinetic properties as well as the set of specific proteins 

they interact with. The very first characteristic, distinguishing GluN2A and GluN2B 

subunits, is the kinetic features they give to the receptors. The GluN2A subunit 

demonstrates faster kinetics with respect to the open probability (Erreger et al., 2005) 

and the deactivation time constant. GluN2B-containing receptors deactivate with a 

constant of 250 ms, whereas GluN2A-containing NMDA receptors deactivate with a 

constant of 100 ms (Cull-Candy and Leszkiewicz, 2004). This difference in kinetics is 

one of the important factors determining the response of the neurons to synaptic stimuli. 

In addition to the open probability and deactivation time constant, the subunits can be 

differentially blocked by specific inhibitors. Ifenprodil was shown to specifically block 

GluN2B-containing receptors with an IC50 of 0.3 µM whereas the same inhibitor gives 
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an IC50 value of 146 µM for GluN1/GluN2A receptors (Williams, 1993; Bhatt et al., 

2013). In contrary, Zinc was indicated to be specific GluN1/GluN2A receptor blocker 

with its biphasic inhibition profile and voltage dependence, with IC50 values of 80 nM 

to 79 µM depending on the high- and low-affinity phase. However for GluN1\GluN2B 

receptors, IC50 values were 9 µM (Williams, 1996; Paoletti et al., 1997). 

Regarding the requirement of co-agonists to activate NMDA receptors, a recent 

article reported a binding preference of GluN2A and 2B subunits to different co-

agonists. The study suggested high affinity binding of GluN2B to glycine and GluN2A 

to D-serine (Papouin et al., 2012). The usage of these specific blockers and co-agonists 

during synaptic stimulation, led to further observations that NMDA receptors localize 

in a subunit-specific manner around the synapse. Even though previous studies 

suggested a strict synaptic localization for GluN2A and extra-synaptic localization for 

GluN2B-containing receptors (Stocca and Vicini, 1998; Mohrmann et al., 2000; Tovar 

et al., 2000; Townsend et al., 2003), follow-up studies showed the presence of both 

subunits in both compartments, still preserving the hypothesis of GluN1/GluN2A 

receptors mainly cluster at the synaptic site whereas GluN1/GluN2B receptors 

accumulate in the extra-synaptic site (Thomas et al., 2006; Papouin et al., 2012). In 

addition, GluN2B-containing receptors are more mobile in the synapse in comparison 

to the receptors with GluN2A subunit (Groc et al., 2006b). 

Another important feature of GluN2A and GluN2B subunits is the difference in 

their expression profile during the development. Various studies conducted in different 

brain regions demonstrated a developmental NMDA receptor subunit switch, which is 

an activity-dependent process (Dumas, 2005). The occurrence of this switch within the 

critical period makes it an attractive topic to study activity-dependent synaptic 

plasticity forms, which involve NMDA receptors.  

One of the first evidence to report the change in NMDA receptor subunit 

composition during development was gathered from the experiments done on rat cortex, 

and demonstrated that the GluN2B subunit is already present in the cortical neurons at 

birth whereas the expression of GluN2A subunit increases during the first two weeks of 

development (Sheng et al., 1994). Electrophysiological properties of cortical neurons 

also changed accordingly, showing faster kinetics and ifenprodil sensitivity over the 
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course of development (Hestrin, 1992; Flint et al., 1997; Tovar and Westbrook, 1999). 

Additional studies contributed to the existence of this phenomenon. A similar switch 

was observed in mouse thalamic and cortical synapses during early development, where 

GluN2A subunit expression elevated until the post-natal day 15 (Liu et al., 2004b). A 

relatively recent study by Bellone & Nicoll suggested an activity-dependent 

bidirectional switch of the NMDA receptor subunits in the hippocampus of young rats 

(Bellone and Nicoll, 2007). Application of the LTP protocol resulted in faster kinetics 

and less ifenprodil sensitivity of NMDA receptors. Accordingly, depotentiating the 

synapses slowed down the decay of the NMDAR excitatory postsynaptic currents 

(EPSCs) while increasing the ifenprodil sensitivity. Another study examined the change 

in NMDAR subunit composition thus their contribution to long-term synaptic plasticity 

in rat organotypic hippocampal slice culture system (Foster et al., 2010).  In 

consistency with the hippocampal study by Bellone & Nicoll, a bidirectional change in 

NMDA receptor subunit was observed in layer 2/3 neurons of rat visual cortex upon 

visual stimulation (Philpot et al., 2001). Visual experience resulted in a decrease of the 

GluN2B involved currents, whereas visual deprivation enhanced the GluN2B 

contribution.  

Even though the existence of such a subunit switch is reported in several cases, the 

exact mechanism mediating the switch itself is not well understood. However, it is 

possible that the subunit-specific localization as well as the developmental expression 

profile of GluN2 subunits are correlated with the distinctness of their interacting 

partners.  

Among the various proteins that NMDA receptors interact with, membrane-

associated guanylate kinase (MAGUK) family members are special with their role in 

the regulation of NMDA receptor function and clustering at the synapse. Their ability 

to directly interact with NMDA receptors and link them to down-stream molecular 

pathways renders them potential candidates for mediating such a switch. 
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1.1.3 DLG-Membrane-associated guanylate kinase (MAGUK) 

family 

Drosophila melanogaster Discs-large (DLG)-MAGUKs, a subcategory of synaptic 

membrane-associated proteins, are the major scaffolding proteins found in the PSD of 

excitatory synapses. Their role encompasses the tethering of K+ channels and AMPAR 

receptors to postsynaptic membrane, regulating the trafficking and function of AMPA 

and NMDA receptors in addition to sustaining a very complex yet highly organized 

molecular network. 

The DLG-MAGUK protein family in mammals consists of four members, synapse-

associated protein-90 (SAP-90)/postsynaptic density protein 95 (PSD-95) (Cho et al., 

1992), chapsyn-110 (PSD-93) (Brenman et al., 1996), synapse-associated protein 102 

(SAP102) (Müller et al., 1996) and synapse-associated protein 97 (SAP97) (Lue et al., 

1994). All four of these proteins share a common domain structure. They consist of 

three PSD-95/Discs large/zona occludens-1 (PDZ) domains, one Src-homology 3 (SH3) 

domain and a catalytically inactive C-terminal guanylate kinase (GK) domain (Figure 

1). PDZ domains are responsible for the major protein-protein interactions involving 

binding to voltage- and ligand-gated ion channels as well as cell adhesion molecules. 

On the other hand, SH3 and GK domains contribute to intra-molecular and inter-

molecular connections besides mediating non-PDZ protein interactions (McGee et al., 

2001a; Montgomery et al., 2004). The interacting partners of SH3 and GK domains 

include microtubule associated protein (MAP1A), guanylate kinase domain-associated 

protein/synapse-associated protein-associated protein (GKAP/SAPAP) family which 

generates a link between the activity of ionotropic and metabotropic glutamatergic 

receptors and A kinase-anchoring protein 79/150 (AKAP79/150) important for 

NMDAR-dependent LTD in Schaffer collaterals (Montgomery et al., 2004; Xu et al., 

2008; Bhattacharyya et al., 2009; Xu, 2011). In addition, SH3 and GK domains form a 

hook region which allows specific protein binding sites to be exposed according to the 

open and closed state (Masuko et al., 1999; Paarmann et al., 2002).  
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Figure 1: DLG-MAGUK family members. 
DLG-MAGUKs consist of four members, which share a common domain structure with three PDZ, one 
SH3 and one GK domain. The N-termini of the proteins differ in an isoform-specific manner. Abundant 
forms of PSD-95 and PSD-93 contain two cysteine residues at the N-terminus, whereas SAP97 has a L27 
and SAP102 a zing-finger motif.  
 

Despite the fact that all DLG-MAGUKs share a common structure, the N-terminus 

of the proteins vary in a great extent hence giving them unique properties. The N-

terminus variation is also correlated with differences in the isoform function. Two 

isoforms of PSD-95 and SAP97 were introduced, functioning in an activity-dependent 

and independent manner. Alpha isoforms work in an activity-independent fashion and 

possess two cysteine residues at their N-termini, which are accessible to palmitoylation 

(Schlüter et al., 2006). Particularly for PSD-95, the palmitoylation of these residues (C3 

and C5) were indicated to be crucial for the protein function, regarding the N-terminal 

multimerization (Hsueh and Sheng, 1999), synaptic targeting and clustering (Topinka 

and Bredt, 1998; Craven et al., 1999; El-Husseini et al., 2000a). On the other hand, beta 

isoforms are involved in the activity-dependent events and contain an L27 domain (Lee 

et al., 2002b; Nakagawa et al., 2004; Schlüter et al., 2006). Even though both isoforms 

exist, PSD-95 is mainly expressed as the alpha isoform (Chetkovich et al., 2002) 

whereas SAP97 is found abundantly with its beta isoform in the synapse (Schlüter et al., 

2006). Besides these two MAGUKs, PSD-93 has six isoforms (Parker et al., 2004). 
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Two of the isoforms exhibit similarity to alpha isoform carrying two cysteine residues 

at the N-terminus (El-Husseini et al., 2000b). Another isoform resembles beta N-

terminus with the L27 domain and the remaining three isoforms are unique to PSD-93. 

Lastly, SAP102 remains as a single isoform and hosts a zinc-finger motif at the N-

terminus (El-Husseini et al., 2000b). 

The expression profile of MAGUKs changes over the course of development 

similar to GluN2 subunits. SAP102 is highly expressed starting around P2 whereas the 

expression of PSD-95 and PSD-93 expression starts low directly after birth and 

increases over the first three weeks of the postnatal period. This increase is kept stable 

throughout the adulthood (Sans et al., 2000).  

The mobility and the localization of the MAGUKs differ as well. For instance, 

PSD-95 is highly concentrated at the PSD of the synapses with a low mobility (only 

36% being mobile at the spines), in contrary, SAP102 is highly mobile (80%) and is 

found both in PSD and the cytoplasm of spines (Zheng et al., 2010, 2011). 

These differences in the structure, expression profile, localization and mobility of 

the MAGUKs assigns them to specific functions regarding the basal synaptic 

transmission and synaptic plasticity.  

 

1.1.3.1 The role of DLG-MAGUKs in basal synaptic transmission and 

synaptic plasticity 
DLG-MAGUKs exert their effect on AMPAR and NMDAR function by interacting 

with the receptors in direct and indirect means.  PSD-95, PSD-93 and SAP102 regulate 

the AMPA receptor transportation via their interaction with transmembrane AMPAR 

regulatory proteins (TARPs), which bind both MAGUKs and AMPA receptors. On the 

other hand, SAP97 is the only member, which can directly bind to GluA1 subunit of 

AMPARs (Leonard et al., 1998). Besides interacting with AMPA receptors, the 

members of this family were shown to bind the C-terminus of GluN2 subunits A and B 

through their PDZ domains (Kornau et al., 1995; Niethammer et al., 1996). The ability 

of MAGUKs to interact with both AMPA and NMDA receptors makes them suitable 

signal conveyers linking both receptor types thus regulating basal synaptic transmission 

and synaptic plasticity in excitatory synapses.  
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The functional relevance of these proteins was revealed by the studies over-

expressing or knocking-down each protein via RNA interference (RNAi) in different 

culture systems, as well as generating knockout mouse lines to examine the 

consequences of single or double MAGUK absence.  

Overexpression studies of the dominant form of SAP97, SAP97 beta, showed 

inconclusive effects on the basal synaptic transmission. The results were either pointing 

to an enhancement of AMPAR (Rumbaugh et al., 2003; Nakagawa et al., 2004) and 

NMDAR transmission (Howard et al., 2010) or to no change in both components 

(Schnell et al., 2002; Ehrlich and Malinow, 2004; Schlüter et al., 2006). Germ-line 

deletion of SAP97 resulted in a lethal phenotype of the mouse line (Caruana and 

Bernstein, 2001), however conditional knockout mice demonstrated no deficit in basal 

synaptic transmission and long-term potentiation (Howard et al., 2010).  

SAP102, on the other hand, slightly enhanced basal synaptic transmission when it 

was over-expressed (Schnell et al., 2002), but it did not cause any change when 

knocked-down (Elias and Nicoll, 2007). Interestingly, this knock-down effect was 

time-dependent, as only the manipulations in early development would result in a 

decrease in AMPA receptor responses but not in adulthood (Elias et al., 2008). 

Additionally, when tested in PSD-95/PSD-93 double knockout animals, SAP102 

absence resulted in a 55% reduction in AMPAR mediated responses (Elias and Nicoll, 

2007). Knockout of SAP102 exhibited normal basal synaptic transmission, but showed 

an increase in high-frequency induced and spike-timing dependent LTP (Cuthbert et al., 

2007). 

The last two MAGUKs, PSD-93 and PSD-95, were considered similar with their 

roles in basal synaptic transmission and regulation of AMPA receptor function. 

Nevertheless, differences exist regarding their effect on synaptic plasticity (Carlisle et 

al., 2008). Overexpression of PSD-93 displays an enhancement of AMPA receptor 

responses. In consistency with this result, acute knock-down of PSD-93 results in 50% 

reduction of AMPAR mediated transmission (Elias et al., 2006). Analysis of PSD-93 

knockout mice revealed normal basal synaptic transmission (McGee et al., 2001b; Elias 

et al., 2006) and LTD but deficits in LTP (Carlisle et al., 2008).  
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PSD-95, the classic scaffolding protein found in the PSD of excitatory synapses, is 

the last member of the DLG-MAGUK family deliberately investigated with its role in 

neurodegenerative diseases and neurodevelopmental disorders in addition to its role in 

synaptic processes such as synaptic maturation and synaptic transmission. 

Overexpression studies of PSD-95 beget an enhancement in the AMPAR transmission 

without a change in NMDAR responses (El-Husseini et al., 2000c; Schnell et al., 2002). 

It also resulted in an increase of miniature EPSC amplitude and frequency (Stein et al., 

2003; Ehrlich and Malinow, 2004). Following this line, knock-down of PSD-95 caused 

a 50% reduction in AMPAR mediated responses (Nakagawa et al., 2004; Elias et al., 

2006; Schlüter et al., 2006). These effects on AMPA receptor responses were 

accompanied in some cases by minor changes in NMDAR EPSC amplitudes (Ehrlich et 

al., 2007; Futai et al., 2007; Kim et al., 2007). Efforts to dissect further the involvement 

of specific PSD-95 domains revealed that the expression of the first PDZ1-2 domains in 

conjunction with the intact N-terminus was not enough to generate a functional PSD-95 

protein. Moreover, this observation was dependent on the presence of endogenous 

PSD-95, in the presence of endogenous PSD-95, PDZ1-2 expression could enhance the 

AMPAR responses but knocking-down the endogenous form in combination with 

PDZ1-2 expression through the molecular replacement technique decreased the AMPA 

receptor transmission (Migaud et al., 1998; Schnell et al., 2002; Schlüter et al., 2006). 

A further study by Xu et al., 2008 demonstrated the requirement of SH3 and GK 

domains in basal synaptic transmission. However, the separate roles of SH3 and GK 

domains in this process are not fully understood. Knockout mouse lines of PSD-95 

showed differences in basal synaptic transmission based on the strategy used to 

generate the knockout animals. Migaud et al. and Yao et al. observed no difference in 

basal synaptic transmission, where either a truncation of PSD-95 gene was used only 

leaving PDZ1 and 2 domains (Migaud et al., 1998) or a deletion of GK domain leaving 

no residual PSD-95 was introduced (Yao et al., 2004). In contrast to these results, a 

knockout line with a complete PSD-95 gene deletion showed reduced AMPAR 

responses (Béïque et al., 2006). Nevertheless, all of these knockout mice displayed 

enhanced LTP and an absence of LTD (Migaud et al., 1998; Béïque et al., 2006). This 

observation was supported by the acute knock-down of PSD-95 exhibiting enhanced 
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LTP and absence of LTD (Ehrlich et al., 2007; Xu et al., 2008), and overexpression of 

PSD-95 exerting the opposite effect by occluding LTP and enhancing LTD (Béïque and 

Andrade, 2003; Stein et al., 2003). In addition, the effect of PSD-95 knock-down on the 

basal synaptic transmission was going in line with the studies showing decreased 

AMPA/NMDA EPSC ratios (Béïque et al., 2006; Carlisle et al., 2008). 

Despite the absence of basal synaptic transmission deficits observed in most of the 

single knockouts of DLG-MAGUKs (Migaud et al., 1998; McGee et al., 2001b; 

Cuthbert et al., 2007; Howard et al., 2010), if two or more of them are vanished from 

the neurons via knockout and/or knock-down techniques, bigger impacts on AMPAR 

mediated transmission is noticed. This implies a compensation mechanism among the 

MAGUK family members (Cuthbert et al., 2007), which is also supported by the 

increase in SAP102 levels in PSD-95 and PSD-93 double knockout animals (Elias et al., 

2006) and by the compensation of PSD-95 loss through SAP97 beta expression 

(Schlüter et al., 2006).  

The correlation of PSD-95 levels with the strength of AMPAR transmission and the 

fact that PSD-95 interacts with AMPA receptors through stargazin (one of the TARP 

members) triggered the hypothesis that PSD-95 should act like a ‘slot’ protein for 

AMPA receptors.  

TARP TARP

CamKII

Neuroligin
Neurexin

Shank

GKAP AK
AP

AMPAR NMDAR
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Figure 2: A minimized sketch of PSD-95 interactions with synaptic receptors, ion channels and 
signaling molecules in the postsynaptic density. 
PSD-95 interacts with AMPA receptors through TARPs and binds to NMDA receptors directly. This 
allows it to work as a crucial signaling scaffold molecule, connecting synaptic receptor activations to 
down-stream molecules. 

However, the absence of LTD and the enhancement of LTP in knockout animals 

counteract this hypothesis and rather suggest PSD-95 as a regulatory element of 

AMPAR trafficking at the synapse. In addition to its role in the regulation of AMPA 

receptor trafficking, PSD-95 binds to NMDA receptor C-terminus directly through its 

PDZ2 domain. This enables PSD-95 to act as a signal-conveyer between the NMDA 

receptors and down-stream signaling molecules (Figure 2). Owning such an important 

task, PSD-95 is engaged in several synaptic processes, starting from synapse 

development and maturation to the regulation of synaptic receptor function involving 

NMDARs. 

 

1.1.3.2 The role of PSD-95 in synaptic maturation and developmental 

NMDA receptor subunit switch 

The contribution of PSD-95 to synaptogenesis and synapse maturation was shown by 

the studies where PSD-95 expression and clustering in different brain regions was 

correlated with an increase in spine morphogenesis regarding the number and size of 

the spines (Okabe et al., 1999, 2001; El-Husseini et al., 2000c; Losi et al., 2003a). A 

similar maturation pattern related to PSD-95 expression was observed in the 

presynaptic terminals, most likely due to the fact that PSD-95 interacts with neuroligin 

on the postsynaptic side, which in turn binds to neurexin, a presynaptic protein, and 

exerts a retrograde effect (Scheiffele et al., 2000; Futai et al., 2007). Supporting this 

observation, the acute knock-down of PSD-95 prevents proper synapse formation and 

function. It also elicits smaller increase in the spine size after chemical LTP induction 

(Ehrlich et al., 2007). Knockout animals of PSD-95 present higher number of silent 

synapses, synapses containing NMDA but not AMPA receptors (Béïque et al., 2006). 

Lastly, PSD-95 clustering was emphasized in the stabilization of newly formed spines 

(Prange and Murphy, 2001).  

One of the most important processes taking place during synaptic maturation is the 

developmental NMDA receptor subunit switch, which was mentioned in section 1.1.2.2.  
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Until now several groups collected data pointing out the involvement of PSD-95 in 

this particular switch. The first strong evidence was raised by the detection of the 

changes in protein levels, regarding SAP102, PSD-95, GluN2B and GluN2A in rat 

hippocampus. The elevation in GluN2A level was corresponding with the one of PSD-

95 and the high expression level of GluN2B in early postnatal period corresponds to 

strong expression of SAP102 within this time frame (Sans et al., 2000). This 

observation suggests that the GluN2A level increase might be linked to the elevation in 

the PSD-95 expression levels (Figure 3). Indeed the co-immunoprecipitation 

experiments demonstrated a preference in the binding of PSD-95 to GluN2A and a 

preference of SAP102 binding to GluN2B (Sans et al., 2000). Following these results, 

in PSD-95 knockout animals stronger GluN2B mediated currents were observed 

(Béïque et al., 2006). In addition, NMDA receptor subunit switch was absent in PSD-

95 and PSD-93 double knockout animals. In the same study, it is proposed that PSD-95 

takes over the role from SAP102 to regulate the AMPAR and NMDAR trafficking in 

the later stages of development (Elias et al., 2008). Yet, another interesting point in this 

respect is the similarity of SAP102 to GluN2B and of PSD-95 to GluN2A regarding 

their localization and mobility. PSD-95 and GluN2A are located mostly at the synaptic 

site with a low turn-over rate, whereas SAP102 and GluN2B are detected also at the 

extra-synaptic site with higher mobility (Groc et al., 2006b; Zheng et al., 2010, 2011).  

GluN2B containing NMDAR

GluN2A containing NMDAR

PSD-95

 
Figure 3: Developmental NMDA receptor subunit switch observed in synapses. 
During early development NMDA receptors mostly consist of GluN2B-containing receptors. Upon 
activation a switch is triggered in NMDA receptor subunit composition from GluN2B-containing to 
GluN2A-containing receptors. This switch is accompanied by an increase in PSD-95 levels. 
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Albeit some other studies in hippocampus could not observe a striking difference in 

the association of MAGUKs with GluN2 subunits (Al-Hallaq et al., 2007) and in the 

levels of GluN2A and GluN2B in the PSD-95 knockout mouse (Migaud et al., 1998), 

data from other brain regions provide means to believe that PSD-95, indeed, mediates 

such a switch. In cerebellar neurons, PSD-95 expression decreased the ifenprodil 

sensitivity of NMDAR responses and PSD-95 showed higher co-localization with 

GluN2A subunits in comparison to GluN2B (Losi et al., 2003a). In addition, in cortical 

and thalamic neurons, a GluN2B to GluN2A switch was accompanied by an increase in 

PSD-95 expression (Liu et al., 2004b).  

Finally, another line of evidence assisting this phenomenon was obtained from 

visual cortex. Townsend et al. proposed an activity-dependent NMDA receptor subunit 

switch, which involves the targeting of PSD-95 to the synapse (Townsend et al., 2003). 

Moreover, Yoshii et al., 2003 showed an activity-dependent redistribution of PSD-95 in 

visual cortex neurons upon eye opening and an enhanced interaction between PSD-95 

and GluN2A (Yoshii et al., 2003). Visual cortical pyramidal neurons of dark-reared 

animals exhibited higher number of silent synapses (Funahashi et al., 2013), which 

might be due to aberrant distribution of PSD-95.   Furthermore, the synaptic 

distribution of PSD-95 could be manipulated via opening the eyes of the animal at a 

premature age or suturing and reopening the eye at a later stage (Yoshii et al., 2003). 

The possibility of controlling the activity-dependent subunit switch in visual cortex 

through eye opening makes it a special model to study the subunit switch concept.  

Attempts to understand the mechanism underlying the NMDA receptor subunit 

switch yielded few data exposing the participation of group 1 metabotropic receptors 

and CKII kinase in this process. A knockout mouse line of mGluR5 exhibited deficits 

in the GluN2B to GluN2A switch both in CA1 region of hippocampus and the visual 

cortex. This pathway involved the activation of phospholipase C (PLC) and PKC 

(Matta et al., 2011). Another member of group 1 metabotropic receptor’s, mGluR1’s, 

dysfunction prevented the switch from taking place in ventral tegmental area (Bellone 

et al., 2011).  Lastly, CKII activity was shown to promote the GluN2A-containing 

receptor presence in the synapse by stimulating the endocytosis of GluN2B-containing 

receptors (Sanz-Clemente et al., 2010). Interestingly, the endocytosis action is triggered 
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by the phosphorylation of S1480 residue by CKII, which is located in the PDZ binding 

domain of GluN2B. The phosphorylation consequently disrupts the interaction between 

GluN2B and PSD-95 (Chung et al., 2004), which gives PSD-95 a potential role in the 

regulatory mechanism of NMDA receptor subunit switch. However, CKII is not the 

only kinase mediating PSD-95 and GluN2 subunit interaction thus controlling GluN2 

subunit surface expression. 

PSD-95 and kinase interactions were shown to be involved in the phosphorylation 

of PSD-95 itself as well as other proteins by using PSD-95 as the mediator (Gardoni et 

al., 2009). Some of the kinases directly phosphorylating PSD-95 include CamKII, c-Jun 

NH2-terminal kinase (JNK) and cyclin-dependent kinase 5 (CDK5). CamKII 

phosphorylates S73 within the PDZ1 domain of PSD-95, which in turn regulates the 

interaction of PSD-95 and CamKII with GluN2A subunit (Gardoni et al., 2006). JNK, 

on the other hand, phosphorylates S295 on PSD-95 and the phosphorylation of this 

residue promotes the PSD-95 clustering at the synapse and increases the amplitude of 

AMPAR EPSCs (Kim et al., 2007). CDK5, in addition, phosphorylates three 

aminoacids (T19, S25 and S35) at the N-terminus of PSD-95. Elimination of the CDK5 

activity, hence the dephosphorylation of these sites, results in larger clusters of PSD-95 

at the synapse, potentially regulating ion channel clustering (Morabito et al., 

2004). Regarding the kinase interactions where PSD-95 is the mediator, the most 

prominent example is the interaction of Src kinase family with PSD-95 to modulate the 

phosphorylation state of NMDA receptors, particularly GluN2B. Src kinase binds to the 

N-terminus of PSD-95 via its SH2 domain (Kalia et al., 2006). Binding of Src kinases 

to PSD-95 allows the kinase interaction with GluN2B subunit, phosphorylating Y1472 

site and blocking AP2-clathrin mediated endocytosis of GluN2B-containing NMDA 

receptors (Prybylowski et al., 2005). Moreover, the ability of Src kinases to interact 

with MAGUK family members was shown to be restricted to PSD-95 (Kalia and Salter, 

2003).  

Interestingly, a recent study by Zhang et al., 2008 proposed a mechanism where the 

interaction between PSD-95, Src kinase and GluN2B is regulated according to the 

phosphorylation state of PSD-95 by CDK5. Once PSD-95 is phosphorylated at CDK5 

phosphorylation sites, its interaction with Src kinase is interrupted. This interruption 



1. Introduction  Page 23 
 

causes dephosphorylation of GluN2B Y1472 site and eventually triggers the 

endocytosis of GluN2B-containing NMDA receptors through the AP2-clathrin 

mediated pathway (Zhang et al., 2008).  

Such interplay between PSD-95, Src kinase and GluN2B opens the possibility to 

understand more about the developmental NMDA receptor subunit switch, which might 

be CDK5 activity-dependent. 

 

1.2  Scope of the thesis 
PSD-95, an important scaffold protein in the postsynaptic density, is known to regulate 

the AMPA receptor function at the excitatory synapses. PSD-95 was shown to be 

phosphorylated by CDK5 at its N-terminus, however the functional consequences of 

this phosphorylation are not known yet. Moreover, it is not clear how the specific 

domains of PSD-95 contribute to the regulation of basal synaptic transmission. 

In this project by using dual whole cell patch-clamp technique in combination with the 

molecular replacement strategy, in vivo & in vitro viral injections and biochemical 

assays I aimed to understand the following points: 

- The CDK5 phosphorylation effect on PSD-95 with respect to the basal synaptic 

transmission in CA1 region neurons of rat hippocampus.  

- The CDK5 phosphorylation effect on PSD-95 with respect to the developmental 

NMDA receptor subunit switch in layer 2/3 neurons of mouse visual cortex.  

- The specific functions of single PSD-95 domains with respect to the basal 

synaptic transmission in CA1 region neurons of rat and PSD-95 knockout 

mouse hippocampus. 

Addressing these concepts will create a better understanding about the mechanisms 

regulating the basal synaptic transmission and will help us to understand how learning 

and memory is governed in the brain.  
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2 Materials & Methods 
 

2.1  Molecular Biology 
2.1.1  Cloning  

Standard methods were used for the cloning procedure (Sambrook, 2001). The 

chemicals and kits used for the cloning steps were obtained from Bioline (Luckenwalde, 

Germany), Fermentas/Thermofischer Scientific (Waltham, MA, USA), NEB (Frankfurt, 

Germany) and Qiagen (Hilden, Germany). 

The generation of the DNA constructs involved the use of the following primers 

produced by Sigma- Genosys (Steinheim, Germany) or MPI-EM AGCT Sequencing 

Facility (Göttingen, Germany) (Table 1).  
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Table 1: The list of forward and reverse primers used for the cloning and sequencing 

of the constructs. 
 

Primer list  

Cloning  

PacI fwd GGGTTTATTACAGGGACAGC 

P95 19A rev TCGTCTCAAGAGGAGGCGCGTCTTCATCTTGGTAGCGG 

P95 19D rev TCGTCTCAAGAGGAGGATCGTCTTCATCTTGGTAGCGG 

P95 S35A fwd AGCACACCTACCTAATCAGGCCAATGCTCCCCCTGTGA

TTGTCAACAC 

P95 S35D fwd AGCACACCTACCTAATCAGGCCAATGATCCCCCTGTGA

TTGTCAACAC 

P95 Nde rev ERI GCGAATTCGGTACACAACGTCATATGTGTTC 

P95 25A fwd TCGTCTCACTCTGGAACACGCACCAGCACACCTACCTA

ATCAGG 

P95 25D fwd TCGTCTCACTCTGGAACACGATCCAGCACACCTACCTA

ATCAGG 

rP95 fwd XbaI(16682) TCGTCTAGACCACCATGGACTGTCTCTGTATAGTG 

IRES fwd AgeI CGACCGGTCCCCTCTCCCTCCCC 

P95 rev AgeI CGACCGGTTCAGAGTCTCTCTCGGGCTGG 

EGFP rev (14952) ACCCCGGTGAACAGCTCC 

DNK5 fwd XbaI CGCTCTAGACCACCATGCAGAAATACGAGAAACTGG 

DNK5 rev BamHI CGGGATCCTTAAFFCGGACAGAAGTCGGAG 

P25 fwd XbaI ATCTCTAGACCACCATGGCCCAGCCCC 

P35 fwd XbaI ATCTCTAGACCACCATGGGCACGGTGCTG 

P35 rev BamHI CGGGATCCCACCGATCCAGGCCTAG 

Sequencing  

PacI fwd GGGTTTATTACAGGGACAGC 

EGFP rev ACCCCGGTGAACAGCTCC 

pUb fwd GTCCGCTAAATTCTGGCCGTT 

WPRE rev 2 GCAGCGTATCCACATAGCGT 
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2.1.1.1 Polymerase chain reaction (PCR) 
For the amplification of specific DNA fragments via PCR (Saiki et al., 1985), the 

indicated amounts of the following contents were used (Table 2).  

 

Table 2: Reaction mix for polymerase chain reaction. 

 
PCR Mix 

 

Template DNA 
 

20 ng 

10x Reaction Buffer (Bioline/Fermentas) 2 µl 

dNTP’s (2.5 mM each, Bioline) 2 µl 

50 µM Forward primer 0.5 µl 

50 µM Reverse primer 0.5 µl 

Taq*/ Pfu** Polymerase (Bioline/Fermentas) 1 µl 

  

20 µl 

* (Saiki et al., 1988) 

** (Lundberg et al., 1991) 

 
PCR products were run on 1% agarose gel prepared with TAE Buffer (0.2% 0.5 M 

EDTA, 1.14 ml/l Acetic acid, 30 mM Tris) in order to purify and confirm the 

amplification of PCR products. 

 

2.1.1.2 Restriction digestion 

For digestion reactions, restriction enzymes from Fermentas and NEB were used with 

their respective buffers. The typical digestion reaction protocol was as shown in Table 

3. 
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Table 3: Reaction mix for restriction digestion. 

 
Restriction Digestion Reaction Mix 

 

Sample 
 

1µl (1.5 µg) 

10x Enzyme Buffer 5 µl 

Restriction Enzyme 2 µl 

H2O 42 µl 

  

50 µl 

 
The reaction was kept for 2 hours at 37oC unless a different temperature was 

specified for the selected enzyme. The digested sample was run on 1% agarose gel 

prepared with TAE buffer. The expected band was excised from the gel and purified 

according to the protocol indicated in section 2.1.1.3. 

 

2.1.1.3 PCR product and agarose gel purification 
The PCR purification and restriction digest products were isolated according to the 

manufacturer’s protocol of Qiagen. The isolated fragments were collected in 20 – 30 µl 

of 1:10 diluted elution buffer (Qiagen).  

 

2.1.1.4 Ligation 

The inserts were ligated into different vector backbones with a 1:3 vector to insert 

molar ratio. For a total volume of 30 µl ligation mix, 3 µl of T4 DNA Ligase Buffer 

(Fermentas) and 1 µl of T4 DNA Ligase (Fermentas) were used. The ligation reaction 

was kept at 16oC overnight. 
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2.1.1.5 Transformation 
The ligation product was introduced into XL1-Blue Escherichia coli (E. coli) strain 

(Stratagene, Santa Clara, CA, USA) and colonies were grown on ampicillin-containing 

LB agar plates (100 µg/ml, Roth).  

 

2.1.1.6 Plasmid preparation 
Single colonies were picked from the transformed bacteria plates. The colonies were 

inoculated either in 5 ml LB medium for mini-prep or 50 ml LB medium for maxi-prep. 

In both cases, ampicillin (100 µg/ml) was added to the media to promote selective 

bacteria growth. The bacteria were allowed to grow overnight at 37oC under vigorous 

shaking.  

The bacteria were collected via centrifugation and the DNA was isolated according 

to Qiagen (Hilden, Germany) DNA isolation protocol following alkaline lysis 

(Birnboim and Doly, 1979). In order to eliminate protein contamination, phenol-

chloroform extraction was applied.  First the DNA solution first was mixed with equal 

volume of phenol:chloroform:isoamyl alcohol (25:24:1) (Applichem) and centrifuged.  

Then the obtained aqueous phase was isolated and mixed with equal volume of 

chloroform. After the purification, DNA was precipitated with 0.7 volumes of 

isopropanol and resuspended in 30 µl elution buffer (Qiagen) for mini prep and 200 – 

300 µl for maxi-prep.  

Sequencing of the generated constructs was performed at the AGCT Sequencing 

Facility of MPI-EM (Göttingen). 

 

2.1.2 Expression constructs 

For the generation of all lentiviral vector based constructs, FUGW (Lois et al., 2002), 

FRUGW containing RNAi against endogenous PSD-95 (provided by Dr. Dr. Oliver 

Schlüter) or bicistronic lentiviral vector FUp93a1viGW (provided by Dr. Juliane 

Krüger) were used as backbone. The production of FRUGW construct involved the 

swopping of the RNAi sequence in FHUGW (Schlüter et al., 2006) with 

‘TCACGATCATCGCTCAGTATA’ sequence (Elias et al., 2006)  to achieve higher 
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knock-down efficiency both in rat and mouse cultures. The scheme of the vector 

backbones used is shown in Figure 4. 

 

 
Figure 4: Lentiviral vectors used for cloning. 

(A) FUGW vector with the EGFP expression under the Ubiquitin promoter. The transcription is 
enhanced through the WPRE cassette downstream of EGFP coding sequence. 

(B) FRUGW vector with H1 promoter enabling the shRNA expression targeting endogenous PSD-
95 and Ubiquitin promoter expressing EGFP and the protein of interest. The transcription is 
enhanced through the WPRE cassette downstream of EGFP coding sequence. 

 

The constructs generated throughout this study are listed in Table 4. 
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Table 4: List of the DNA constructs generated during the study. 

 
Expression constructs  
 

FRUr95A3GW 

(sh95 + p95A3::GFP) 

 

Triple alanine substituted PSD-95 with 

GFP fusion and WPRE cassette 

FRUr95D3GW 

(sh95 + p95D3::GFP) 

Triple aspartate substituted PSD-95 with 

GFP fusion and WPRE cassette 

FRUr95G 

(sh95 + p95::GFP without WPRE) 

Wild-type PSD-95 with GFP fusion and 

without WPRE cassette 

 

FRUr95A3G 

(sh95 + p95A3::GFP without WPRE) 

Triple alanine substituted PSD-95 with 

GFP fusion and without WPRE cassette 

 

FRUr95D3G 

(sh95 + p95D3::GFP without WPRE) 

Triple aspartate substituted PSD-95 with 

GFP fusion and without WPRE cassette 

 

FRUr95viG 

(sh95 + p95viGFP) 

Wild-type PSD-95 with separate GFP 

expression via IRES cassette, no WPRE 

cassette 

FRUr95A3viG 

(sh95 + p95A3viGFP) 

Triple alanine substituted PSD-95 with 

separate GFP expression via IRES 

cassette, no WPRE cassette 

FRUr95D3viG 

(sh95 + p93D3viGFP) 

Triple alanine substituted PSD-95 with 

separate GFP expression via IRES 

cassette, no WPRE cassette 

FUDNK5viGW 

(DNK5viGFP) 

Overexpression of dominant-negative 

CDK5 with separate GFP expression via 

IRES cassette  

FUp25viGW 

(p25viGFP) 

Overexpression of CDK5 co-activator 

p25 with separate GFP expression via 



2. Materials & Methods  Page 31 
 

IRES cassette 

 

FUp35viGW 

(p35viGFP) 

Overexpression of CDK5 co-activator 

p35 with separate GFP expression via 

IRES cassette 

 

2.1.2.1 Generation of CDK5 mutants of PSD-95 as GFP fusion 

protein under the transcription enhancer WPRE cassette in lentiviral 

vector 

To generate mutants of PSD-95 mimicking two different states of CDK5 

phosphorylation, three aminoacid residues at the PSD-95 N-terminus, T19, S25 and 

S35 were substituted either with alanine or aspartate aminoacids, mimicking 

phosphorylated or non-phosphorylatable states respectively. The N-terminal of PSD-95 

sequence was amplified from FUp95GW template (PSD-95 overexpression vector 

provided by Dr. Dr. Schlüter) by using PacI fwd and p95 19A/ p95 19D rev primers. 

The product was cut with SpeI and Esp3I, and a100 bp band was isolated. A second 

nested PCR was done on FUp95GW with the primers p95 S35A/95 S35D fwd and p95 

Nde rev ERI. The 700 bp PCR product was then amplified with p95 25A/S25D fwd and 

p95 Nde rev ERI primers. The final product was cut with EcoRI and Esp3I. Both 100 

bp and 700 bp fragments were subcloned into pBluescriptII SK(-) (pBSKII) (Stratagene, 

Santa Clara, CA, USA) cut with SpeI and EcoRI. pBSKII carrying the mutant PSD-95 

forms were digested with XbaI and NdeI, and a 700 bp band was isolated. FRUr95GW 

vector (wild-type PSD-95 replacement construct provided by Dr. Dr. Schlüter) was cut 

with NdeI and BsrGI, and a 2.2 kb band was isolated. Both 700 bp and 2.2 kb bands 

were cloned into FRUr95GW digested with XbaI and BsrGI. The constructs were 

called FRUr95A3GW for non-phosphorylatable mutant and FRUr95D3GW for 

phosphor-mimicking mutant. 
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Figure 5: CDK5 mutant constructs of PSD-95 with GFP-tag and enhanced expression.  
Endogenous PSD-95 was knocked-down by the expression of shRNA sequence under the H1 promoter.  
The expression of PSD-95 with GFP-tag was carried on under the Ubiquitin promoter and enhanced by 
the down-stream WPRE cassette. T19, S25 and S35 aminoacids at the N-terminus of PSD-95 were 
substituted with either alanine or aspartate aminoacids to mimick non-phosphorylatable or continously 
phosphorylated states respectively. 
 

2.1.2.2 Generation of CDK5 mutants of PSD-95 as GFP fusion 

protein without the WPRE enhancer cassette in lentiviral vector 

Wild-type replacement construct of PSD-95 as well as the replacement with CDK5 

mutants of PSD-95 were cloned without the WPRE cassette in order to have lower 

expression levels to match the endogenous state. WPRE cassette was cut out from the 

FRUr95GW (provided by Dr. Dr. Schlüter), FRUr95A3GW and FRUr95D3GW 

constructs with ClaI enzyme and the rest of the vector was ligated again (Figure 6). The 

constructs were named as FRUr95G, FRUr95A3G and FRUr95D3G. 

 

 
Figure 6: CDK5 mutant constructs of PSD-95 with GFP-tag and without the enhancer effect. 
The expression of PSD-95 shRNA was preserved under the H1 promoter and the mutant PSD-95 proteins 
were expressed following the Ubiquitin promoter. Transcription was not enhanced through the WPRE 
cassette.  
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2.1.2.3 Generation of CDK5 mutants of PSD-95 in bicistronic 

lentiviral vector with separate GFP expression via IRES cassette 

The PSD-95 mutant constructs showed a very strong expression level, potentially 

masking the mutation effect. In addition, the GFP fusion interfered with the interaction 

of PSD-95 with its binding partners. Therefore, the mutants were also cloned in the 

bicistronic lentiviral backbone that included the separate translation of GFP via IRES 

(internal ribosome entry side) sequence and lacked the WPRE transcription enhancer 

cassette (Figure 7). The bicistronic vector backbone (FUp93a1viGW) was provided by 

Dr. Juliane Krüger (former Molecular Neurobiology lab member, ENI, Göttingen, 

Germany)(Krüger, 2010a). PSD-95 sequences were amplified from FRUr95GW, 

FRUr95A3GW and FRUr95D3GW vectors using rP95 fwd XbaI and P95 rev AgeI 

primers, and then were digested with XbaI. The digest products were subcloned into 

pBluescriptII SK(-) (pBSKII) (Stratagene, Santa Clara, CA, USA) cut with XbaI and 

SmaI . The PSD-95 sequence was cut out from pBSKII by XbaI and AgeI enzymes. 

IRES-GFP sequence was amplified from FUp93a1viGW vector with IRES fwd AgeI 

and EGFP rev primers and was subcloned into pBSKII cut with SmaI. IRES-GFP 

sequence was cut out from pBSKII by AgeI and BsrgI enzymes. FRUr95GW vector 

was cut with XbaI and BsrGI restriction enzymes and a triple ligation was set with 

vector backbone, PSD-95 sequences and IRES-GFP sequence.  The constructs were 

named as FRUr95viG (wild-type replacement), FRUr95A3viG (non-phosphorylatable 

mutant replacement) and FRUr95DviG (phospho-mimicking mutant replacement).This 

approach enabled the endogenous expression levels of the mutants and prevented any 

potential interference with protein-protein interactions through GFP-tag.  
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Figure 7: CDK5 mutant constructs of PSD-95 with non-tagged GFP and endogenous levels of 
expression. 
Endogenous PSD-95 was knocked-down by the expression of shRNA sequence under the H1 promoter. 
GFP was expressed separately from PSD-95 through the insertion of an IRES cassette between PSD-95 
and EGFP coding sequences. The transcription enhancer WPRE was not included in order to establish 
endogenous levels of expression. T19, S25 and S35 aminoacids at the N-terminus of PSD-95 were 
substituted with either alanine or aspartate aminoacids to mimic non-phosphorylatable or continuously 
phosphorylated states respectively. 
 

2.1.2.4 Generation of dominant-negative CDK5, p25 and p35 

overexpression constructs in lentiviral vector 

Overexpression constructs of dominant-negative form of CDK5 (DNK5), p25 and p35 

were generated by cloning the sequences (kindly provided by Prof. Dr. André Fischer) 

into bicistronic lentiviral vector (FUp93a1viGW) (Krüger, 2010b). For the 

amplification of DNK5 sequence DNK5 fwd XbaI and DNK5 rev BamHI primers were 

used, and the PCR product was inserted into the XbaI and BamHI restricton sites of the 

lentiviral backbone Sequences of CDK5 co-activators (p25 and p35) were amplified 

with p25 fwd XbaI and p35 fwd XbaI forward primers and p35 rev BamHI reverse 

primer. The sequences were inserted into the XbaI and BamHI restriction sites of the 

vector backbone. The constructs were names as FUDNK5viGW, FUp25viGW and 

FUp35viGW.  
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Ubq. p DNK5 IRES EGFP

Ubq. p p25 IRES EGFP

Ubq. p p35 IRES EGFP

A

B

C

WPRE

WPRE

WPRE

 
Figure 8: Overexpression constructs of dominant-negative CDK5 (DNK5), p25 and p35 in 
bicistronic lentiviral backbone. 

(A) DNK5 expression was established under the Ubiquitin promoter. GFP expression was separated 
via IRES sequence and the construct expression was enhanced by WPRE cassette.  

(B) P25 expression was established under the Ubiquitin promoter. GFP expression was separated 
via IRES sequence and the construct expression was enhanced by WPRE cassette.  

(C) P35 expression was established under the Ubiquitin promoter. GFP expression was separated 
via IRES sequence and the construct expression was enhanced by WPRE cassette.  

 

2.1.2.5 PSD-95 domain mutants in lentiviral vector 
Mutants of PSD-95 lacking one or more domains, as well as the combination of the 

mutants with PSD-95, SAP102 shRNA’s were generated by Dr. Stéphanie Bonnet 

(Bonnet, 2011). In addition, sh102 + p95ΔPDZ3::GFP and sh97 + p95ΔGK::GFP 

construct were generated by swopping the shRNA sequence of PSD-95 with shRNA 

sequence of SAP102 or SAP97 (Li et al., 2011). The constructs sh95 + PDZ1/2-

SH3::GFP and sh102 + PDZ1/2-SH3::GFP were provided by Dr. Dr. Oliver Schlüter. 

 

2.2  Cell & slice Culture 
The chemicals and the cell culture material were obtained from Biochrom (Berlin, 

Germany), Sigma Aldrich (München, Germany), Millipore (Schwalbach, Germany), 

Roth (Karlsruhe, Germany), Merck (Darmstadt, Germany), Greiner Bio-one 

(Frickenhausen, Germany), Invitrogen/Life Technologies (Darmstadt, Germany), 

Thermofischer Scientific (Waltham, MA, USA) and Roche (Mannheim, Germany). 
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2.2.1 HEK293T cell line 
Human embryonic kidney, HEK293T, cell line was used for the purposes of small and 

large scale virus preparation (Graham et al., 1977) as well as coimmunoprecipitation 

assays. The cells were cultured on 10 cm cell culture dishes in the presence of High 

glucose Dulbeccos’s Modified Eagle’s Medium (Biochrom) containing 10% fetal calf 

serum (Biochrom). The cultures were kept in 37oC incubator with an equilibrated 5% 

CO2 concentration. Every 2-3 days, when the cells reached 75-80% confluency, a 

passage of a dilution of 1:12-20 was performed (Masters and Stacey, 2007).  

 

2.2.2 HEK293T cell transfection 
Transfection of the HEK293T cells was achieved by the means of polyethylenimine 

transfection method.  3 µg of DNA was used to transfect a single well of a 6-well plate.  

The DNA was mixed with 100 µl of 150 mM NaCl solution. After 10 minutes, 14 µl of 

15 mM linear polyethylinimine solution was added to 100 µl of 150 mM NaCl in a 

separate tube and the mixtures were incubated for 10 minutes. Finally, both of the tube 

contents were mixed and the transfection solution was added onto freshly split 

HEK293T cells. 

Transfected cells were collected after 1.5 - 2 days of transfection for the purposes 

described in the following sections.  

 

2.2.3 Lentivirus production 

Lentiviral particles (Lewis et al., 1992) were produced by transfecting HEK293T cells 

with the vector of interest to be expressed, HIV-1 packaging vector Δ8.9 and envelope 

glycoprotein vector vsvg.  For small scale virus production, 6 well cell culture plates 

and for large scale virus production T-75 cell culture flasks were used.  The amounts of 

DNA used for each viral production are listed below (Table 5). 
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Table 5: DNA construct and amounts used for small and large scale virus production. 

 
                  Small scale virus production         Large Scale virus 

production 

 

Vector of interest   2 µg     10 µg 

Δ8.9 vector    1.5 µg     7.5 µg 

Vsvg vector    0.5 µg     2.5 µg 

 
One day after transfection, the cultures were transferred to 32oC incubator with 5% 

equilibrated CO2 concentration in order to enhance viral production.  

For the production of small scale virus, the supernatant was harvested after 2 days of 

transfection and centrifuged at 800g for 5 minutes, in order to isolate viral particles 

from the rest of cell debris. The supernatant was aliquoted and stored at -80oC for 

further use.   

For the production of large scale virus, the supernatant from T-75 flask was collected 

and centrifuged at 2.000 g for 5 minutes. The solution was then run through the PVDF 

membrane with 0.45 µm pore size (Millipore) and the viral particles were precipitated 

via ultracentrifugation at 36.500 g for 1.5 hours.  The pellet was dissolved in virus 

storage buffer (20 mM Tris-HCl (pH = 8.0), 250 mM NaCl, 5% Sorbitol). The aliquots were 

kept at -80oC for further use. 

 

2.2.4 Dissociated hippocampal neuron culture 
Dissociated hippocampal neuron cultures were prepared from P0 mouse or rat 

hippocampi (Huettner and Baughman, 1986). The animals were decapitated and the 

brain was gently placed in the dissection solution. The hemispheres were separated 

with two micro-dissecting tweezers. The meninges were removed and the portions 

corresponding to the ending and the beginning of hippocampus were cut off with a 

sharp spatula. The hippocampus was folded out from the cortex and detached. The 

dentate gyrus was removed from the rest of the hippocampus. All hippocampi were 

collected in Enzymatic Solution (ES: 11.39 mM L-cysteine, 50 mM NaEDTA pH=8, 10 ml 

DS, 10 mM CaCl2, 1 N HCl, 100 µl 10 mg/ml DnaseI, 100 µl Papain) and put on a rotator in 
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37oC incubator for 30 minutes. After digestion, the solution was replaced by 

Inactivation Solution (IS: 10 ml 5% Serum Medium (25 ml Fetal Bovine Serum, 500 ml 

MEM without Earle’s salts and L-glutamine, 7.5 ml Hi-Glucose MEM, 1 ml Mito+Serum 

Extender), 100 µl 10 mg/ml DnaseI, 25 mg BSA) and the hippocampi were settled for 2 

minutes. The inactivation solution was removed after the cells had settled.  The rest was 

mixed with 5% Serum Medium slowly by adding small drops of the medium and 

applying gentle trituration couple of times.  After the larger undigested pieces had 

settled down, the solution was removed with a sterile Pasteur pipette. Then, the 

suspension was centrifuged for 5 minutes at 500 g. The supernatant was removed and 1 

ml of 5% Serum Medium was added per animal. The cells were counted in a Neubauer 

chamber and 100.000 cells were plated onto each well of Poly-D-lysine (PDL) pre-

coated 24 well plate.  

Infection of the cultured neurons with lentivirus expressing specific constructs was 

done at DIV7. The infected neurons were collected on DIV14 for biochemical analysis.  

For the infection of a single well of 24 well plate, 1 µl of large scale virus was used.  

The cultures were treated with FUDR (Sigma Aldrich) on DIV5 in order to prevent 

astrocyte growth and fed on DIV7 by exchanging half of the media for fresh one. 

Feeding procedure was repeated every 3-7 days. 

 

2.2.5 Organotypic rat hippocampal slice culture 

Organotypic slice cultures were prepared from P8 Wistar rat hippocampi (Stoppini et 

al., 1991).  The rats were decapitated after being anesthetized with Isoflurane. The 

hippocampi were carefully isolated in ice cold sterile filtered sucrose cutting buffer 

(204 mM sucrose, 26 mM NaHCO3, 10 mM D-Glucose, 2.5 mM KCl, 1 mM NaH2PO4*H2O, 4 

mM MgSO4*7H2O, 1 mM CaCl2*2H2O, 4 mM L-ascorbic acid). After removing the 

meninges, 300 µm thick hippocampal slices were cut by using a guillotine slicer. The 

slices were then separated gently in the sucrose cutting buffer and transferred into 

sterile filtered and artificial cerebrospinal fluid (ACSF) (119 mM NaCl, 26 mM NaHCO3, 

20 mM D-Glucose, 2.5 mM KCl. 1 mM NaH2PO4, 4 mM MgSO4*7H2O, 4 mM CaCl2*2H2O) 
for recovery for 30 minutes. Both the sucrose cutting buffer and artificial cerebrospinal 
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fluid for recovery were bubbled 30 minutes before the slicing, to reach 5% CO2 and 

95% O2 equilibrium. 

Meanwhile, cell culture dishes were prepared with 20% HK media (28 mM D-Glucose, 

51% BME (Biochrom), 25% EBSS (1.8 mM CaCl2*2H2O, 1 mM NaH2PO4*H3O, 0.8 mM 

MgSO4*7H2O, 116 mM NaCl, 26.2 mM NaHCO3, 5.4 mM KCl, 5 mM D-Glucose), 2.5% 1 M 

HEPES (Biochrom), 20% Horse Serum (55oC 30 min. heat inactivated, Gibco/Invitrogen), 

0.5% Glutamax (Biochrom), 88µg/ml Ascorbic acid (Sigma), 1 µg/ml Insulin (Sigma), 0.25% 

100x MEM Vitamin (Biochrom), 0.5% 50x MEM Aminoacid (Biochrom)) on which 5mm x 

5mm membrane pieces were placed on plastic inserts with 0.4 µm porous membrane 

(Millipore). After recovery, slices were plated onto the small membrane pieces and the 

dishes were kept in 37oC incubator with equilibrated 5% CO2 concentration. One day 

after slicing, the medium was changed for fresh 20% HK and the slices were 

transferred in a 34oC incubator with equilibrated 5% CO2 concentration. 

At DIV2, the slices were injected with large scale lentivirus by using Nanoject II 

injection device (Drummond Scientific, Broomall, USA). Two spots in CA1 region 

pyramidal cell layer were targeted for the injections and each injection resulted in the 

emulsion of 9.2 µl of concentrated virus solution.  For the injection, 3’’ glass pipettes 

(Drummond Scientific Company, USA) were used. 

Three days after the injection, the slices were fed with 5% HK medium (28 mM D-

Glucose, 65% BME (Biochrom), 25% EBSS, 2.5% 1 M HEPES (Biochrom), 5% Horse Serum 

(55oC 30 min. heat inactivated, Gibco), 1% Glutamax (Biochrom), 88µg/ml Ascorbic acid 

(Sigma), 1 µg/ml Insulin(Sigma), 0.32% 100x MEM Vitamin (Biochrom), 0.65% 50x MEM 

Aminoacid (Biochrom)) and the feeding procedure was repeated every second day. 

  

2.2.6 Organotypic mouse hippocampal slice culture 
Mouse hippocampal slices were prepared in a special dissection solution (50 ml GBSS 

(Sigma Aldrich), 1% (v/v) of 45% D-Glucose and 1% Penicillin-Streptomycin (Sigma Aldrich) 

(v/v)). After the dissection, the slices were recovered at 4oC for 30 minutes. The rest of 

the procedure was carried on as described in section 2.2.5, differing only in the addition 

of Penicillin-Streptomycin antibiotics into the feeding media (HK20 and HK5).  
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2.2.7 Acute mouse visual cortex slice preparation 
To analyze the subunit composition of NMDA receptors in visual cortex layer 2-3 

pyramidal cells, acute visual cortex slices were prepared from P11 – P20 C57BL/6 

wild-type or PSD-95 knockout mice (Elias et al., 2006). The solutions were prepared as 

described by Matta et al., 2011 methods. 

The animals were decapitated after isoflurane-mediated anesthesia. The brain was 

isolated and submerged in ice cold sucrose cutting buffer (87 mM NaCl, 2.5 mM KCl, 0.5 

mM CaCl2, 1.25 mM NaH2PO4, 25 mM NaHCO3, 25 mM D- Glucose, 75 mM Sucrose).  300 

µm thick whole brain slices were cut from two hemispheres in sucrose cutting buffer by 

using Leica VT 1200S slicing device (Leica, Solmes, Germany). After cutting, the 

slices were kept in ACSF solution (119 mM NaCl, 25 mM KCl, 2.5 mM CaCl2, 1 mM 

Na2HPO4, 25 mM NaHCO3, 25 mM D – Glucose, 1.3 mM MgSO4) at 35oC for 30 minutes 

under continuous bubbling with 5% CO2.  After the incubation at 35o C, the slices were 

transferred to room temperature and kept for another 30 minutes for the recovery before 

starting electrophysiological recordings.   

 

2.3 In vivo injection into mouse visual cortex 
In order to investigate the involvement of PSD-95 in the developmental NMDA 

receptor subunit switch in visual cortex, in vivo injection technique was applied on P0 

C57BL/6 mouse pups. Newborn animals were anesthesized on ice for 10 minutes prior 

to the injection. After the anesthesia, the animals were stabilized on the injection plate. 

65 nl of high titer large scale virus solution, carrying an RNAi construct against mouse 

PSD-95 or replacement constructs with CDK5 mutants of PSD-95, were injected 

through glass capillaries into the visual cortex in both hemispheres with Nanoject II 

injection device (Drummond Scientific, Broomall, USA). The injection was carried on 

in a pseudo-stereotactic manner.  

After the injection, the animals were kept on a heating plate for the recovery. The 

mother and the pups were then transferred to a new cage. When the animals reached the 

age of P14, acute brain slices were prepared for electrophysiological recordings. 
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Figure 9: In vivo injection applied on P0 mouse visual cortex. 
Lentivirus carrying PSD-95 RNAi or mutant constructs of PSD-95 were injected into the visual cortex of 
newborn animals. After 2 weeks, the animals were sacrificed to perform electrophysiological recordings 
on the infected cells in the layer 2-3 of visual cortex electrically stimulated by layer 4 projections. 
 

2.4 Genoytyping 
PSD-95 knockout mice were genotyped prior to electrophysiological experiments.  A 

small tail piece from P0-3 animals were taken as sample and lysed overnight in PBND 

lysis buffer (10 mM Tris, 50 mM KCl, 2.5 mM MgCl2*6H2O, 0.1mg/ml Gelatine, 0.45% (v/v) 

Nonident P40, 0.45% (v/v) Tween 20, pH = 8,3) containing 1.2 mg/ml Proteinase K (Roth) 

at 55oC under 1000 rpm agitation or two hours under 1400 rpm agitation. Then the 

samples were transferred to 99oC for 10 minutes in order to inactivate Proteinase K and 

centrifuged to remove of the non-lysed particles. The supernatant was separated and 

used as sample for the PCR. The wild-type gene yielded in a 255 bp long band size, 

whereas knockout gene showed a 355 bp band size. 
 

Table 6: Primers used for wild-type and PSD-95 knockout animal genotyping. 

 
Primers for genotyping 

 

GKopt fwd2 
 

CAGGTGCTGCTGGAAGAAGG 

GKopt rev2 CTACCCTGTGATCCAGAGCTG 
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Table 7: Content of the PCR mix used for wild-type and PSD-95 knockout animal 

genotyping. 

 
PCR Mix 

 

Sample 
 

2    µl 

10x TNK Buffer 2.2 µl 

dNTP’s (2.5 mM each, Bioline) 2    µl 

50 µM Fwd Primer 0.2  µl 

50 µM Rev Primer 0.2  µl 

H2O 15.2 µl 

Mango Taq polymerase (Bioline) 0.2  µl 

  

22 µl 

 

 
Table 8: PCR program used for wild-type and PSD-95 knockout animal genotyping. 

 
PCR Program 

  

Time 
 

Temperature 

Preincubation 5’ 94oC 

   

Denaturation 45’’ 94oC 

Annealing 45’’ 55oC            x35 

Elongation 1’ 72oC 

   

Final elongation 10’ 72oC 
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2.5 Electrophysiology 
All the electrophysiological recordings were performed using the instruments 

indicated below. 

 

Table 9: Equipment used for electrophysiological recordings. 

 
Instruments  

Microscope Olympus 51WI (Olympus, Germany) 

Amplifier MultiClamp700B (Molecular Devices, Sunnyvale, CA, 

USA) 

Stimulator ISO-FLEX (A.M.P.I., Jerusalem, Israel) 

Micromanipulator MP-225 (Sutter Instrument, Novato, CA, USA) 

Camera IR-1000 Infrared CCD Camera (DAGE-MTI, Michigan 

City, IN, USA) 

 
 

2.5.1 Data acquisition and analysis 

For electrophysiological recordings and data analysis, custom programmed IGOR Pro 

6.2 software was used. In all the recordings, the signal was filtered at 4 kHz and 

digitalized at 10 kHz. 

Dual whole cell patch-clamp recordings were analyzed by using paired Students t-

test. Results are represented as mean values ± standard error of the mean (SEM). 

Results presenting p values smaller than 0.05 were considered statistically significant, 

and p values smaller than 0.001 were considered highly significant.  

For the analysis of miniature EPSCs, Kolmogorov Smirnov test was used. Visual 

cortex NMDA receptor recordings were analyzed by one-way ANOVA and post-hoc 

Tukey test. 
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2.5.2 Basal synaptic transmission recordings in rat hippocampal 

slices 

For dual whole cell patch clamp experiments to measure the basal synaptic 

transmission, hippocampal slices were placed in the recording chamber containing 

voltage clamp ACSF (119 mM NaCl, 26 mM NaHCO3, 20 mM Glucose, 2.5 mM KCl, 1 mM 

NaH2PO4, 4 mM MgSO4*7H2O, 4 mM CaCl2*2H2O, 1-2 µM 2-chloroadenosine, 50 µM 

picrotoxin, oxygenated with 5% CO2 30 min before starting the recording). Picrotoxin was 

added to isolate only excitatory transmission and 2-chloroadenosine was added to 

prevent polysynaptic activity in the slices. The chamber was preheated at 32 oC and 

kept at the same temperature throughout the recordings with a perfusion speed of 3 ml 

ACSF/min. For patching, borosilicate KG-33 glass pipettes were used with a resistance 

of 2.5 - 4 MΩ filled with cesium-based voltage-clamp internal (117.5 mM MeSO3H, 

10 mM HEPES, 17.75 mM CsCl, 10 mM TEA-Cl, 0.25 mM EGTA, 10mM Glucose, 2 

mM MgCl2-6H2O, 4mM Na2ATP, 0.3mM NaGTP, CsOH (50% w/v), osm ≅ 290, 

pH= 7) 

AMPAR EPSCs were recorded at -60 mV and NMDAR EPSCs at +40 mV. For the 

quantification, the peak of the AMPAR EPSC amplitude was taken, whereas for 

NMDAR EPSCs, 60 ms after the peak value was taken to assure the contribution of 

only NMDARs and exclude that of AMPARs. 40 sweeps with 5 sec interval were 

recorded both for AMPAR and NMDAR EPSCs. 

 

 
 
Figure 10: Rat hippocampal slice culture preparation and recording scheme. 
Hippocampal slice cultures were prepared from P8 rats. 2 days after the culturing, lentivirus expressing 
the desired construct was injected into the CA1 region. 4 days after the injection, dual whole cell patch 
clamp recordings were performed to measure the AMPAR and NMDAR transmission in both infected 
and control cells by electrically stimulating the Schaffer collaterals.  
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2.5.3 Miniature EPSC recordings in rat hippocampal slices 
The ACSF solution for miniature EPSC (mEPSC) recordings was prepared as described 

above, only differing in MgCl2 concentration (1 mM instead of 4 mM), the addition of 

0.5 µM TTX and exclusion of 2-chloroadenosine.  

The cells were voltage clamped at -60 mV. For the data analysis, cells which had at 

least 200 events during a time course of 10 minutes were taken. 

 

2.5.4 NMDAR EPSC recordings in mouse visual cortex  

After the slices were prepared from mice with different ages, half an hour recovery 

time was given before the start of recordings. Afterwards, the slices were transferred 

into the recording chamber containing the same composition of ACSF used for 

recovery, supplemented with 50 µM picrotoxin, 1 µM 2-chloroadenosine and 5 µM 

NBQX to isolate NMDAR EPSCs. The recordings were performed at +40 mV with 

glass pipette resistances of 4-5 MΩ. The voltage-clamp internal used for the recordings 

was prepared according to Matta et al., 2011. 

The baseline was recorded for 20 minutes and after establishing a stable baseline, 5 

µM ifenprodil was washed in to specifically block NR2B content of NMDAR EPSCs. 

Peak values of the responses were taken as NMDAR excitatory postsynaptic current 

(EPSC) amplitude. The last 5 minutes of the baseline were taken as the reference point 

and the recording was continued for 25 minutes after the drug entered the chamber. The 

responses were normalized to the initial value of the NMDAR EPSCs before the drug 

treatment.  

 
Figure 11: NMDAR EPSC recording in mouse visual cortex. 
In order to record NMDAR EPSC’s, layer 2-3 pyramidal cells in mouse visual cortex from P11-20 
animals were patched and clamped at +40 mV. The cells were stimulated electrically through layer 4 
connections. 
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2.5.5 Drugs used for pharmacological manipulations on 

hippocampal and brain slices 

For all the recordings indicated above, as well as the acute and chronic drug treatments 

on the slices, below listed drugs were used. 

 

Table 10: Concentrations, effects and the sources of the drugs used for 

electrophysiological recordings. 

 
Drug name Concentration Effect Supplier 

Picrotoxin 50 µM GABAA receptor 

blocker 

Ascent 

Scientific/Abcam, 

Germany 

2-chloroadenosine 1-2 µM Blocking 

polysynaptic activity, 

A1 adenosine receptor 

agonist 

Biolog (Bremen, 

Germany) 

NBQX 5 µM AMPA receptor 

blocker 

Ascent 

Scientific/Abcam, 

Germany 

Ifenprodil 5 µM NR2B subunit 

blocker 

 

DL - TBOA 100 µM Glutamate transporter 

blocker 

Tocris bioscience, 

Germany 

TTX 1 µM 

(for act. block.) 

500 nM 

(for mEPSC rec.) 

Na+ channel blocker Ascent 

Scientific/Abcam, 

Germany 

PP2 10 µM Src kinase family 

blocker 

Sigma-Aldrich 

(München, 

Germany) 

SFK 20 µM D1 dopamine receptor Tocris Biosciences 
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agonist (Bristol, UK) 

PACAP 10 nM Pituitary adenylate 

cyclase receptor 

agonist 

Tocris Biosciences 

(Bristol, UK) 

MPEP 25 µM mGluR5 blocker Abcam, Germany 

 
 

2.6 Biochemistry 
The chemicals and materials used for biochemical analyses were obtained from Roth 

(Karlsruhe, Germany), Serva (Heidelberg, Germany), Biochrom (Berlin, Germany), 

Roche (Mannheim, Germany), Whatman/GE Healthcare (Maidstone, UK), Sigma 

Aldrich (München, Germany) and Merck (Darmstadt, Germany). 

 

2.6.1 Dissociated neuron culture sample collection 
Western Blot samples were collected from rat or mouse dissociated neuron cultures of 

hippocampus or cortex. Neurons were first washed with PBS containing Mg+2 and Ca+2 

and then scraped out from culture dishes in 2x SDS sample buffer (3.3% Tris-HCl , 3.4% 

Tris, 8% SDS, 0.02% Sucrose, 0.03% EDTA, 0.02% bromophenol blue, 0.27% DTT (w/v)). 

After collection, the samples were boiled at 100oC for 5 minutes and then cooled down 

to room temperature. 

 

2.6.2 Co-immunoprecipitation assay 
In order to test specific protein-protein interactions, co-immunoprecipitation assay was 

used. After transfecting HEK293T cells with desired constructs and establishing the 

expression, the cells were washed once with PBS without Mg+2 and Ca+2. The cells 

were collected in RIPA lysis buffer (50 mM NaH2PO4, 150 mM NaCl, 1% Triton X-100, 

0.1% SDS, 0.5% deoxycholic acid, 2 mM EDTA and Roche protease inhibitor cocktail, pH = 

7.4) and rocked at 4oC for 1 hour. After 1 hour, the lysates were centrifuged at 15000 

rpm for 30 minutes at 0oC. The clean supernatant was pre-washed with Protein A/G-

conjugated beads for 1 hour at 4oC to prevent any unspecific binding during the 

immunoprecipitation procedure. The supernatant was then centrifuged at 7000 rpm and 
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4oC for 10 minutes. After the centrifugation, 1 µg of antibody was added into each 

sample to pull-down the selected protein. The binding was established via over-night 

incubation at 4oC. The day after, Protein A- (for rabbit originated antibodies) or 

ProteinG-conjugated (for mouse originated antibodies) beads were added onto the 

antibody-bound samples. Another incubation step was applied at 4oC for 1 hour. The 

antibody and bead bound proteins were pulled down at 7000 rpm for 5 minutes at 4oC. 

The precipitates were washed 3 times with washing buffer (10 mM Tris/HCl, 1 mM 

EDTA, 250 mM NaCl, 0.5% TX-100,  pH = 7.4) and finally once with 1X TBS (pH = 7.4). 

Lastly, 2X SDS sample buffer was added on the bead bound proteins and the samples 

were boiled at 60oC for 5 minutes. 

 

2.6.3 Subcellular fractionation 
Preparation of the crude synaptosome and PSD fractions were done from mice cortices 

which were homogenized in homogenization buffer (10 ml/one mouse cortex, 320 mM 

sucrose, 10 mM HEPES/NaOH, pH 7.4) (Cho et al., 1992; Schlüter et al., 1999). After 

the homogenization the samples were centrifuged for 10 minutes at 1000 g at 0oC and 

the supernatant was isolated. A second step of centrifugation was performed on the 

supernatant for 15 minutes at 15000g at 0oC to isolate crude synaptosomes. The pellet 

was resuspended in the resuspension buffer (50 mM NaF, 50 mM HEPES/NaOH, 

pH7.4, 1 mM EDTA, 0.2 mM NaVO4, protease inhibitor cocktail (Roche)) for a final 

concentration of 1 µg/µl. Resuspended samples were treated with 0.5%Triton X100 for 

15 minutes and were centrifuged at 32000 g for 20 minutes at 0oC. The supernatant 

formed the Triton 100x soluble (1TS) fraction and the pellet Triton 100x insoluble 

fraction (1TP). The 1TP fraction was resuspended in the resuspension buffer and was 

treated with 3% N-lauroylsarcosine for 10 minutes on ice. The treated suspension was 

centrifuged at 200000 g for 1 hour at 0oC. The pellet formed the N-lauroylsarcosine 

insoluble PSD fraction (TSP) and the supernatant N-lauroylsarcosine soluble fraction 

(TSS). TSP fraction was used as the sample for western-blotting after being 

resuspended in 2% SDS. Protein concentrations were measured with BCA kit (Pierce). 
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2.6.4 Western blotting 
For the biochemical analysis of the proteins isolated from dissociated neuron cultures 

or HEK293T cells, samples were run by SDS-PAGE on Bis-Tris gels (Shapiro et al., 

1967; Graham et al., 2005) followed by western-blotting (Towbin et al., 1979). The 

gels for sample running were prepared according to the following recipes. 

 

Table 11: Recipes of Bis-Tris gels used for Western-blotting. 

 
7.5% Separating Gel (375 mM Bis-Tris, pH=6.4) 

H2O 9 ml 

AMBA 5 ml 

3.5% gel buffer 6 ml 

TEMED 25 µl 

10% APS 60 µl 

 

3.75% Stacking Gel (125 mM Bis-Tris, pH=6.4) 

H2O 6.2 ml 

AMBA 1 ml 

3.5% gel buffer 0.8 ml 

TEMED 20 µl 

10% APS 48 µl 

 

3.5 % gel buffer: 1.25 M Bis-Tris, pH = 6.5 – 6.8 

 
The samples were run at 120 V for 2 hours to achieve a good resolution of the high 

molecular weight protein bands. The proteins were transferred onto nitrocellulose 

membranes in the transfer buffer (25 mM Tris, 191 mM Glycin, 20% Methanol) at 250 mA 

for two hours. The membranes were prestained with Panceau S to confirm the success 

of the protein transfer. The membranes were blocked either in 5% milk powder in TBS-

T for regular antibody blotting (20 mM Tris/HCl, 140 mM NaCl, 0.1% Tween20, pH = 7.6) 

or in 3% BSA in TBS-T for the phospho-antibody blotting. Primary antibody solutions 

were prepared in 2.5% milk powder or 3% BSA containing TBS-T. Primary antibody 
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binding was performed at 4 oC for 2 hours or overnight. The membrane was washed 

three times for 5 minutes with TBS-T and the secondary antibody binding was done at 

room temperature for 2 hours.  

Afterwards, the membrane was washed three times for 10 minutes with TBS-T and 

once for 10 minutes with TBS (20 mM Tris/HCl, 140 mM NaCl, pH = 7.6). Visualization 

of the protein bands and the analysis of the band intensity were done by using Odyssey 

Infrared Imaging System (Li-COR Biosciences, Bad Homburg, Germany). Proteins 

were visualized at 700 or 800 nm according to the secondary antibody used.  

 

2.6.5 Antibodies used for Immunoblotting 

To probe the membranes for specific target proteins, following antibodies were used 

according to the indicated dilutions (Table 12).  
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Table 12: List of the antibodies used for immunoblotting. 

 
Antibodies Dilution Company 

Primary antibodies   

α-PSD-95 (mouse) 1:10000 Neuromab 

α-Src kinase (rabbit) 1:2000 Genescript 

α-NR2B (mouse) 1:2000 Neuromab 

α-phospho NR2B (Y1472) (rabbit) 1 :1000 Cell Signalling 

α-Mortalin (mouse) 1:10000 Neuromab 

α-NR2A (mouse) 1:5000 Millipore 

α-PSD-93 (mouse) 1:2000 Neuromab 

α-SAP102 (mouse) 1:2000 Neuromab 

α-SAP97 (mouse) 1:2000 Neuromab 

α-GluA1 (mouse) 1:2000 Abcam 

α-β-tubulin (mouse) 1:2000 Sigma Aldrich 

α-GDI (mouse)  (Schlüter et al., 1999) 

α-synaptophysin (mouse)  (Schlüter et al., 1999) 

   

Secondary antibodies   

α-mouse Alexa Flour 680 (goat) 1:10000 Invitrogen 

α-rabbit Alexa Flour 680 (goat) 1:10000 Invitrogen 

α-mouse IR 800 (goat) 1:10000 Li-COR Biosciences 

α-rabbit IR 800 (goat) 1:10000 Li-COR Biosciences 
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3 Results 
 

3.1 The effect of CDK5 phosphorylation mutants of PSD-

95 on basal synaptic transmission in rat hippocampal slice 

culture 
3.1.1 Optimization of the CDK5 phosphorylation mutant constructs 

of PSD-95 

CDK5 phosphorylation of PSD-95 has been shown to regulate the synaptic clustering 

of PSD-95 in hippocampal neurons (Morabito et al., 2004). Moreover, the 

phosphorylation status of PSD-95 had been associated with an indirect role to regulate 

the NR2B subunit containing NMDA receptor surface expression (Zhang et al., 2008). 

However, these results were gathered from biochemical and imaging assays, leaving an 

open question concerning the understanding of the functional consequence of such a 

regulation on synaptic transmission. 

In order to assess this question, I used the rat organotypic hippocampal slice culture 

as a model system and first tested the AMPAR and NMDAR transmission properties of 

CA1 region neurons mimicking different CDK5 phosphorylation states of PSD-95 by 

dual whole cell patch-clamp technique. 

This method involved the replacement of the endogenous PSD-95 with a 

recombinant version, either mimicking the CDK5 phosphorylation (sh95 + 

p95D3::GFP) or mimicking the non-phosphorylated version (sh95 + p95A3::GFP) 

through the substitution of T19, S25, S35 aminoacids with aspartate and alanine 

residues respectively.  

Initially, I expressed the above-mentioned recombinant PSD-95 proteins as well as 

the pure wild-type expression of PSD-95 with a GFP-tag under the influence of WPRE 

transcription enhancer cassette (Figure 5). The expression of the mutants showed 

significant increases in AMPAR mediated transmission (sh95 + p95A3::GFP, 

uninfected: -108.7 ± 13.8 pA, infected: -206.7 ± 24.4 pA, p<0.05 ; sh95 + p95D3::GFP, 

uninfected: -90.2 ± 7.9 pA, infected: -155.4  ± 16.7 pA, p<0.001).  
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Figure 12: Expression of GFP-tagged CDK5 mutants of PSD-95 under the influence of WPRE 
transcription enhancer results in overexpression effect comparable to wild-type PSD-95 
overexpression in CA1 region of rat hippocampus.  

(A) PSD-95 overexpression in CA1 region hippocampal cells resulted in a significant increase in 
AMPAR transmission (p<0.001) without a change in NMDAR transmission (p=0.06). 

(B)  The replacement of endogenous PSD-95 by the non-phosphorylatable mutant increased the 
AMPAR transmission significantly (p<0.05) but not the NMDAR transmission (p=0.40). 

(C) There was a highly significant increase in the AMPAR transmission (p<0.001) as well as a 
significant increase in NMDAR transmission (p<0.05) when phospho-mimicking PSD-95 was 
expressed in the presence of the shRNA against endogenous PSD-95. 

(The scale bars correspond to 50 pA and 25 ms. Green traces indicate the infected and the black traces 
indicate the control cell responses. The red marker corresponds to the average of all data points on the 
plot.) 
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Only the phospho-mimicking mutant displayed a significant increase in NMDAR 

transmission in comparison to the control cells (sh95 + p95A3::GFP, uninfected: 63.5 ± 

5.0 pA, infected: 64.3 ± 5.9 pA, p<0.40 ; sh95 + p95D3::GFP, uninfected: -90.2 ± 7.9 

pA, infected: -155.4  ± 16.7 pA, p<0.05) (Figure 12 B, C). The increases observed in 

AMPAR transmission levels were comparable to the increase observed with pure PSD-

95 overexpression (AMPAR, uninfected: -68.7 ± 9.1 pA, infected: 165.9 ± 19.9 pA, 

p<0.001; NMDAR, uninfected: 75.4 ± 9.3 pA, infected: 102.2 ± 14.9 pA, p=0.06)  

(Figure 12 A). 

As both of the constructs showed an increase in AMPAR transmission level 

comparable to the overexpression of PSD-95, a critical point was to differentiate the 

overexpression effect from the mutant effects on the basal synaptic transmission. In 

order to achieve this, the expression level of the constructs was lowered by excising the 

WPRE enhancer cassette from the vector backbones (Figure 6). At the same time, I 

generated a wild-type PSD-95 replacement construct without the WPRE cassette as a 

control. This approach brought the AMPAR and NMDAR transmission strength of the 

cells expressing wild-type PSD-95 replacement (sh95 + p95::GFP without WPRE) to 

the same level as controls (AMPAR, uninfected: -55.6 ± 7.8 pA, infected: 46.8 ± 8.5 

pA, p=0.84 ; NMDAR, uninfected: 22.5 ± 4.1 pA, infected: 19.5 ± 3.4 pA, p=0.35) 

(Figure 13 A). On the other hand, the increase in AMPAR transmission observed with 

the non-phosphorylatable mutant was absent once the expression levels were lowered, 

and there was no change in the NMDAR transmission (sh95 + p95A3::GFP without 

WPRE) (AMPAR, uninfected: -48.2 ± 6.5 pA, infected: 45.3 ± 7.2 pA, p=0.72 ; 

NMDAR, uninfected: 31.7 ± 8.4 pA, infected: 28.5 ± 5.8 pA, p=0.56) (Figure 13 B). 

The phospho-mimicking mutant, on the other hand, (sh95 + p95D3::GFP without 

WPRE) preserved a significant increase in AMPAR transmission but lost the 

enhancement in NMDAR transmission (AMPAR, uninfected: -31.8 ± 3.4 pA, infected: 

45.3 ± 5.5 pA, p=0.72 ; NMDAR, uninfected: 29.6 ± 7.8 pA, infected: 25.1 ± 5.7 pA, 

p=0.56) (Figure 13 C). These results clearly demonstrate the importance of the 

expression levels, as overexpression might mask the mutation effect. 
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Figure 13: Expression of GFP-tagged CDK5 mutants of PSD-95 without the WPRE transcription 
enhancer distinguishes the mutation effect from the overexpression effect.  

(A) PSD-95 wild-type replacement in CA1 region hippocampal neurons without the WPRE cassette 
exhibited AMPAR (p=0.84) and NMDAR transmission (p=0.35) as the same level as the control 
cells.  

(B) The replacement of endogenous PSD-95 by the non-phosphorylatable mutant without the 
WPRE cassette showed no change in AMPAR (p=0.72) and NMDAR responses (p=0.56). 

(C) The replacement of endogenous PSD-95 by the phospho-mimicking mutant without the WPRE 
cassette resulted in a significant increase in AMPAR (p<0.05) but not in NMDAR transmission 
(p=0.20). 

(The scale bars correspond to 50 pA and 25 ms. Green traces indicate the infected and the black traces 
indicate the control cell responses. The red marker corresponds to the average of all data points on the 
plot.) 
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In parallel to the electrophysiological recordings, I tested the binding ability of 

PSD-95 to the constitutively active Src kinase (Y527F) (Polte and Hanks, 1997), since 

the control of NMDA receptor transmission was indicated to involve Src kinase 

interaction with PSD-95 (Zhang et al., 2008). In order to test the binding ability, I 

expressed both GFP-tagged PSD-95 and active Src kinase in HEK293T cells. After  

expression, Src kinase was immunoprecipitated and tested for the interaction with GFP-

tagged PSD-95. 

Interestingly, there was no PSD-95 band observed in the pull-down assay (Figure 

14A). To test whether the GFP-tag may interfere with the Src kinase and PSD-95 

interaction, HEK293T cells were transfected with active Src kinase and non-tagged 

PSD-95. Surprisingly, this combination resulted in the successful co-

immunoprecipitation of PSD-95 and Src kinase (Figure 14B).   
 

 
 
Figure 14: The C-terminal GFP-tag of PSD-95 interferes with the PSD-95 – Src kinase interaction. 

(A) HEK293T cells were transfected with GFP-tagged PSD-95 and constitutively active Src kinase 
(Y527F). Immunoprecipitation was done with Src kinase antibody. There was no co-
immunoprecipitation observed with Src kinase and PSD-95. 

(B) The transfection of HEK293T cells with non-tagged PSD-95 and active Src kinase enabled the 
co-immunoprecipitation of PSD-95 with Src kinase. Immunoprecipitation was done with Src 
kinase antibody. 

 

Due to the results obtained with the GFP-tag, which seemed to interfere with the 

PSD-95 – Src kinase interaction and also the effect of expression levels on the synaptic 

transmission strength, which can potentially mask the mutation effects, a new set of 

lentiviral constructs were generated (Figure 7). The new constructs enabled endogenous 

levels of PSD-95 expression by excluding the WPRE transcripton enhancer cassette 

from the vector. In addition, an IRES (internal ribosome entry site) sequence was 

introduced between the PSD-95 and GFP coding sequences so that untagged PSD-95 
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can be expressed and infected cells can still be highlighted with GFP. In addition to the 

electrophysiological recordings, I tested the expression levels of the replacement 

constructs in dissociated neuron cultures. The expression of the shRNA against 

endogenous PSD-95 results in a 90% knock-down efficiency (data not shown but see 

(Schlüter et al., 2006)). Exclusion of WPRE cassette from the vector clearly prevents 

overexpression such that the expression of PSD-95 in the bicistronic construct results in 

a similar level as the endogenous PSD-95. However, it is not possible to differentiate 

the bands of the endogenous PSD-95 from the recombinant form of sh95 + 

p95A3viGFP and sh95 + p95D3viGFP constructs (Figure 15).  
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Figure 15: Expression levels of CDK5 phosphorylation mutants of PSD-95 in dissociated neuron 
culture extracts. 
Dissociated mouse neuron cultures prepared from P0 mice were infected at DIV7 with the indicated 
constructs, all of which contain shRNA against endogenous PSD-95. Proteins were extracted from the 
cultures on DIV14 and were immunoblotted by PSD-95 and mortalin antibodies. 
 

3.1.2 AMPAR and NMDAR transmission properties of CDK5 

mutants of PSD-95 in CA1 region rat hippocampal neurons 
To ensure that the bicistronic construct could maintain the endogenous levels of PSD-

95 expression and that its expression does not affect the AMPAR and NMDAR 

transmission per se, wild-type PSD-95 replacement without WPRE and GFP-tag was 

recorded as a control for the electrophysiological measurements. 

Indeed, replacing endogenous PSD-95 with wild-type PSD-95 (sh95 + p95viGFP) 

did not result in any change in AMPAR and NMDAR transmission in comparison to 

control cells (AMPAR, uninfected: -60.9 ± 7.1 pA, infected: 75.4 ± 8.0 pA, p=0.13; 

NMDAR, uninfected: 48.4 ± 6.6 pA, infected: 54.1 ± 7.1 pA, p=0.29) (Figure 16A). 
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The recordings were repeated for the non-phosphorylatable (sh95 + p95A3viGFP) and 

the phospho-mimicking (sh95 + p95D3viGFP) mutants of PSD-95. There was no 

change observed with the non-phosphorylatable mutant regarding the AMPAR and 

NMDAR transmission (AMPAR, uninfected: -76.6 ± 9.5 pA, infected: 89.6 ± 11.6 pA, 

p=0.25; NMDAR, uninfected: 52.6 ± 12.3 pA, infected: 60.5 ± 11.9 pA, p=0.29), but 

the phospho-mimicking mutant demonstrated significant increases for both of the 

components (AMPAR, uninfected: -64.1 ± 7.6 pA, infected: 89.9 ± 10.7 pA, p<0.05; 

NMDAR, uninfected: 52.5 ± 9.5 pA, infected: 84.1 ± 15.5 pA, p<0.05) (Figure 16B,C). 

The NMDAR transmission mediated by the GFP-tagged and non-tagged phospho-

mimicking mutant was significantly different. This data indicates that the GFP-tag 

disrupts the effect of the phospho-mimicking mutant on NMDAR transmission.   
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Figure 16: The AMPAR and NMDAR transmission is significantly increased with the non-tagged 
phospho-mimicking mutant of PSD-95 under endogenous levels of expression.  

(A) Replacing the endogenous PSD-95 with wild-type PSD-95 did not alter the AMPAR (p=0.13) 
and NMDAR transmission (p=0.29) of the neurons, when endogenous level of expression is 
established and GFP expression was separated.  

(B) The replacement of the endogenous PSD-95 by the non-phosphorylatable mutant of PSD-95 
resulted in no change for both AMPAR (p=0.25) and NMDAR transmission (p=0.29), similar to 
the wild-type replacement. 

(C) Replacing the endogenous PSD-95 by the phospho-mimicking mutant of PSD-95 significantly 
increased both AMPAR (p<0.05) and NMDAR (p<0.05) transmission. 

(The scale bars correspond to 50 pA and 25 ms. Green traces indicate the infected and the black traces 
indicate the control cell responses. The red marker corresponds to the average of all data points on the 
plot.) 
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3.1.3 Activity manipulation of endogenous CDK5 in CA1 region 

neurons 

To check whether the endogenous CDK5 activity would yield the same effects as the 

PSD-95 mutant constructs, I over-expressed the CDK5 co-activators p25 and p35 to 

increase its endogenous activity (Tsai et al., 1994; Patrick et al., 1999). On the other 

hand, to block CDK5 activity, I overexpressed the dominant-negative mutant of CDK5 

(DNK5). The results showed no change in AMPAR and NMDAR transmission 

between the p35 (AMPAR, uninfected: -46.1 ± 6.5 pA, infected: 53.0 ± 6.8 pA, p=0.46; 

NMDAR, uninfected: 34.5 ± 6.8 pA, infected: 42.8 ± 7.5 pA, p=0.13), p25 (AMPAR, 

uninfected: -86.2 ± 13.9 pA, infected: 66.3 ± 7.3 pA, p=0.11 ; NMDAR, uninfected: 

70.5 ± 19.4 pA, infected: 45.9 ± 8.5 pA, p=0.08), DNK5 (AMPAR, uninfected: -80.4 ± 

10.9 pA, infected: 84.5 ± 10.6 pA, p=0.76 ; NMDAR, uninfected: 48.7 ± 6.9 pA, 

infected: 41.6 ± 7.2 pA, p=0.19) expressing neurons and control cells (Figure 17). 

Expression of the constructs was confirmed by the immunoblotting of CDK5, p25 and 

p35 in rat hippocampal dissociated neuron culture extracts infected with either of the 

construct. The result of the DNK5 expression was consistent with the non-

phosphorylatable mutant expression, as both of the expressions did not alter the 

AMPAR and NMDAR transmission. However, the effect of p35 and p25 expression, 

which showed no change in AMPAR and NMDAR responses, was different from the 

phospho-mimicking mutant expression. This might either point to an artificial effect 

observed with the phospo-mimicking mutant construct or inefficient activation of the 

endogenous CDK5. 
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Figure 17: Overexpression of CDK5 co-activators p25 and p35 and a dominant-negative form of 
CDK5 (DNK5) do not alter the AMPAR and NMDAR transmission in CA1 region neurons. 

(A) Expression of a dominant-negative CDK5 construct (DNK5) did not change AMPA (p=0.76) 
and NMDA receptor responses (p=0.19) in comparison to control cells. Rat hippocampal 
dissociated neuron culture extracts show the expression levels of endogenous CDK5 and over-
expressed DNK5 probed with CDK5 antibody. 

(B) Expression of CDK5 co-activator p25 did not change AMPA (p=0.11) and NMDA receptor 
responses (p=0.08) in comparison to control cells. Rat hippocampal dissociated neuron culture 
extracts show the expression levels of endogenous and over-expressed p25 probed with p35 
antibody. 

(C) Expression of CDK5 co-activator p35 did not change AMPA (p=0.46) and NMDA receptor 
responses (p=0.13) in comparison to control cells. Rat hippocampal dissociated neuron culture 
extracts show the expression levels of endogenous and over-expressed p35 probed with p35 
antibody. 

(The scale bars correspond to 50 pA and 25 ms. Green traces indicate the infected and the black traces 
indicate the control cell responses. The red marker corresponds to the average of all data points on the 
plot.) 
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3.1.4 Involvement of Src kinase family in AMPAR and NMDAR 

transmission mediated by CDK5 phosphorylation mutants of PSD-95 

According to the study from Zhang et al., 2008, Src kinase was suggested to play a role 

in the regulation of the GluN2B-containing NMDA receptor surface expression. This 

regulation was established by the phosphorylation of Y1472 residue on the GluN2B 

subunit C terminus by Src kinase and it was dependent on the phosphorylation state of 

PDS-95 by CDK5. In addition, Src kinase family members were indicated to 

phosphorylate C terminus of AMPAR GluA2 subunit at the residue Y876 (Hayashi and 

Huganir, 2004). Due to the involvement of Src kinase family members in both AMPAR 

and NMDAR phosphorylation, I tested the possibility of their involvement in AMPAR 

and NMDAR transmission of neurons expressing CDK5 phosphorylation mutants of 

PSD-95. The recordings were performed in the presence of the selective Src kinase 

family blocker PP2 and both AMPAR and NMDAR transmission were measured. The 

slices were pretreated with 10 µM PP2 for 20 minutes before the recording and the drug 

was kept in the recording chamber throughout the recordings. 

There was no difference between the AMPAR and NMDAR transmission 

properties of non-phosphorylatable mutant expressing and control cells (AMPAR, 

uninfected: -49.6 ± 11.6 pA, infected: 49.0 ± 7.9 pA, p=0.96; NMDAR, uninfected: 

105.4 ± 19.4 pA, infected: 110.8 ± 23.0 pA, p=0.44) (Figure 18A). However, the 

application of Src kinase family blocker (PP2) abolished the significant increases in 

AMPAR and NMDAR transmission observed with the phospho-mimicking mutant of 

PSD-95 (AMPAR, uninfected: -80.7 ± 8.4 pA, infected: 95.9 ± 9.5 pA, p=0.18; 

NMDAR, uninfected: 79.3 ± 12.6 pA, infected: 64.3 ± 12.7 pA, p=0.47) indicating that 

Src kinase family members are indeed involved in the AMPAR and NMDAR 

transmission mediated by phospho-mimicking mutant of PSD-95 (Figure 18B).  
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Figure 18: Src kinase family members are involved in the significant increase of AMPAR and 
NMDAR transmission observed with the phospho-mimicking mutant of PSD-95 in CA1 region 
neurons. 

(A) Application of Src kinase family inhibitor PP2 did not change AMPAR (p=0.96) and NMDAR 
transmission (p=0.44) of non-phosphorylatable mutant expressing cells in comparison to control 
cells.  

(B) Application of Src kinase family inhibitor PP2 abolished the significant increase in AMPAR 
(p=0.18) and NMDAR transmission (p=0.47) observed with the phospho-mimicking mutant of 
PSD-95.  

(The scale bars correspond to 50 pA and 25 ms. Green traces indicate the infected and the black traces 
indicate the control cell responses. The red marker corresponds to the average of all data points on the 
plot.) 

 

Src family kinases were shown to phosphorylate both GluN2A and GluN2B 

subunits of NMDA receptors (Köhr and Seeburg, 1996; Zheng et al., 1998; Nakazawa 

et al., 2001; Vissel et al., 2001; Takasu et al., 2002). In order to understand whether the 

increase in NMDAR transmission of phospho-mimicking mutant is subunit-specific, I 

subjected the slices to 5 µM ifenprodil, a GluN2B subunit specific blocker. The slices 

were pre-incubated with ifenprodil for 20-30 minutes prior to the recording. The drug 

was kept in the chamber during the experiments. Simultaneous recording of the 
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NMDAR responses from untreated and treated slices revealed a GluN2B subunit 

specific effect of the phospho-mimicking mutant. In the absence of the drug, NMDAR 

responses were significantly higher than the control cells (uninfected: 97.1 ± 13.2 pA, 

infected: 144.2 ± 22.3 pA, p<0.05). However, with ifenprodil application this effect 

vanished (uninfected: 130.8 ± 13.4 pA, infected: 117.9 ± 14.1 pA, p=0.36), implying 

that the enhancement in NMDAR transmission is dependent on GluN2B-containing 

NMDA receptors. 
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 Figure 19: The increase in NMDAR response observed with phospho-mimicking mutant is 
GluN2B subunit specific in CA1 region neurons. 
Slices without ifenprodil treatment showed a significant increase in NMDAR responses with the 
phospho-mimicking mutant expression (p<0.05). Incubating the slices in 5 µM ifenprodil for 20-30 
minutes abolished this increase (p=0.36).  
(The scale bars correspond to 50 pA and 25 ms. Green traces indicate the infected and the black traces 
indicate the control cell responses. The red marker corresponds to the average of all data points on the 
plot.) 
 

Since the increase in the NMDAR transmission of the phospho-mimicking mutant 

expressing cells is GluN2B dependent, I checked whether this enhancement is due to an 

increased phosphorylation of the Y1472 residue on GluN2B subunit. I infected 

dissociated hippocampal neuron cultures with the wild-type replacement construct as 

well as the CDK5 phosphorylation mutant replacement constructs and immunoblotted 

GluN2B subunit with the phospho-Y1472 specific antibody. In addition, I blocked the 

activity of Src kinase family members with 10 µM PP2 in the cultures and checked the 

additive effect of Src kinase blockade and PSD-95 mutants on GluN2B Y1472 

phosphorylation. The analysis showed that, there was no difference in the total GluN2B 
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levels in wild-type PSD-95 and phosphorylation mutant expressing cells (one-way 

ANOVA, F(2,6)=0.09, p=0.91; WtviG: 1 ± 0.08; A3viG: 1.03 ± 0.20, D3viG: 0.95 ± 

0.02, N=3) (Figure 20C). However, there was a tendency for an increase in Y1472 

phosphorylation levels of phospho-mimicking mutant expressing neurons (one-way 

ANOVA, F(2,6)=0.50, p=0.63; WtviG: 1 ± 0.19; A3viG: 1.02 ± 0.25, D3viG: 1.41 ± 

0.46, N=3) (Figure 20B). These results suggest that the NMDAR transmission 

enhancement observed with phospho-mimicking mutant might be dependent on 

GluN2B Y1472 phosphorylation. At the same time, application of PP2 in all cases 

reduced GluN2B phosphorylation dramatically (Figure 20A). 

2.0

1.5

1.0

0.5

0.0

 N
or

m
al

iz
ed

 p
ho

sp
ho

-G
lu

N
2B

 
ba

nd
 in

te
ns

ity
 (a

.u
.)

WtviG A3viG D3viG

 The effect of CDK5 phosphorylation mutants 
of PSD-95 on GluN2B phosphorylation

 

Contro
l

Contro
l +

 PP2

WtviG
WtviG + PP2

A3viG + PP2

A3viG
D3viG

D3viG + PP2

Phospho-Y1472
GluN2B

Mortalin

A

B

2.0

1.5

1.0

0.5

0.0N
or

m
al

iz
ed

 G
lu

N
2B

ba
nd

 in
te

ns
ity

 (a
.u

.)

WtviG A3viG D3viG

 The effect of CDK5 phosphorylation mutants 
of PSD-95 on the total amount of GluN2B

C

 
Figure 20: Phospho-mimicking mutant has a tendency to enhance Y1472 phosphorylation on 
GluN2B without changing total levels of GluN2B. 
Dissociated mouse hippocampal neuron cultures were infected with wild-type PSD-95 and CDK5 
phosphorylation mutant replacement constructs at DIV7. Cultures were collected at DIV14 and the 
extracts were immunoblotted with phospho-Y1472, GluN2B and mortalin antibodies. GluN2B and 
phospho-Y1472 bands were normalized to the mortalin band. 

(A) Phospho-Y1472, GluN2B and mortalin bands are shown from cells extracts of control and virus 
infected neurons, in the presence and absence of 10 µM PP2. 

(B) Quantification was performed by normalizing the phospho-Y1472 band intensity to the mortalin 
band intensity. The results from the CDK5 phosphorylation mutant expressing cells are 
normalized to wild-type PSD-95 expressing cells. Bar graphs represent the mean ± SEM. (one-
way ANOVA, F(2,6)=0.50, p=0.63; WtviG: 1 ± 0.19; A3viG: 1.02 ± 0.25, D3viG: 1.41 ± 0.46, 
N=3 for all) 

(C) Quantification was performed by normalizing the total GluN2B band intensity to the mortalin 
band intensity. The results from the CDK5 phosphorylation mutant expressing cells are 
normalized to the wild-type PSD-95 expressing cells. Bar graphs represent the mean ± SEM. 
(one-way ANOVA, F(2,6)=0.09, p=0.91; WtviG: 1 ± 0.08; A3viG: 1.03 ± 0.20, D3viG: 0.95 ± 
0.02, N=3 for all) 
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The results collected from the phospho-mimicking mutant expressing cells indicate 

a GluN2B subunit specific NMDAR enhancement, which is mediated by the Src kinase 

family. However, it is not clear which member of the Src kinases plays a role in this 

regulation. A recent study by Yang et al., 2012 suggested two possible mechanisms of 

NMDAR enhancement, one in which dopamine 1 (D1) receptors specifically activate 

Fyn kinase and another in which pituitary adenylate cyclase activating peptide 1 

receptors (PAC1Rs) selectively activate Src kinase. Stimulation of these receptors 

resulted in the activation of endogenous Src and Fyn kinases and phosphorylation of 

GluN2A and GluN2B subunits, respectively (Yang et al., 2012). Taking advantage of 

these pathways, I aimed to dissect the role of Src and Fyn kinases in the regulation of 

NMDAR transmission displayed by the phospho-mimicking PSD-95 mutant. I used 1 

nM pituitary adenylate cyclase activating peptide 38 (PACAP38) to stimulate PAC1 

receptors thus Src kinase, and 10 µM SKF81297 to stimulate D1 receptors hence Fyn 

kinase. The slices were perfused with the drugs in the recording chamber for 10-15 

minutes prior to and during recordings.  

Application of PACAP38 modified the AMPAR and NMDAR transmission 

mediated by the non-phosphorylatable mutant and control cells to the same extent 

(AMPAR, uninfected: -76.3 ± 8.7 pA, infected: -97.9 ± 10.9 pA, p=0.15; NMDAR, 

uninfected: 47.9 ± 8.7 pA, infected: 46.6 ± 5.8 pA, p=0.77)  (Figure 21 A). However, 

the significant increase in NMDAR responses observed with the phospho-mimicking 

mutant was this time absent. AMPAR transmission was still significantly higher than 

the control cells, which implies that PAC1R activation affected AMPAR, but not 

NMDAR transmission of infected and control cells in the same way as the phospho-

mimicking mutant (AMPAR, uninfected: -71.4 ± 8.0 pA, infected: 118.9 ± 18.8 pA, 

p<0.05; NMDAR, uninfected: 71.1 ± 17.3 pA, infected: 84.8 ± 20.3 pA, p=0.18) 

(Figure 21 B).  
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Figure 21: Activation of PAC1Rs, known to activate Src kinase, brings the NMDAR transmission 
of phospho-mimicking mutant expressing cells to the same level as control cells in CA1 region 
neurons. 

(A) PAC1R activation affected the non-phosphorylatable mutant expressing and control cells in the 
same rate. There was no difference observed between the infected and control cells regarding 
AMPAR (p=0.15) and NMDAR transmission (p=077).  

(B) PAC1R activation brought the NMDAR transmission of control cells to the same level as 
phospho-mimicking mutant expressing cells (p=0.18). AMPAR responses of infected cells were 
still significantly higher than the control cells (p<0.05). 

(The scale bars correspond to 50 pA and 25 ms. Green traces indicate the infected and the black traces 
indicate the control cell responses. The red marker corresponds to the average of all data points on the 
plot.) 
 

Interestingly, application of 10 µM SFK81297 to activate D1 receptors thus Fyn 

kinase, significantly enhanced the AMPAR and NMDAR responses of the non-

phosphorylatable mutant expressing cells (AMPAR, uninfected: -67.6 ± 10.0 pA, 

infected: -117.7 ± 16.2 pA, p<0.001; NMDAR, uninfected: 71.0 ± 14.2 pA, infected: 

84.4 ± 14.5 pA, p<0.05)  (Figure 22 A). On the other hand, the increase in AMPAR and 

NMDAR transmission observed with the phospho-mimicking mutant was absent after 

the drug application (AMPAR, uninfected: -84-2 ± 2-8 pA, infected: -114.1 ± 23.1 pA, 
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p=0.26; NMDAR, uninfected: 67.7 ± 8.4 pA, infected: 62.9 ± 14 pA, p=0.61) (Figure 

22 B). These results suggest that eliminating the CDK5 phosphorylation on PSD-95 

enhances the effects of D1 receptor activation. In contrast, the effect of the phospho-

mimicking mutant and D1 receptor activation are not additive, indicating that there 

might be an overlap between these two pathways.  
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Figure 22: Activation of D1 dopamine receptors, known to activate Fyn kinase, enhances both 
AMPAR and NMDAR transmission of non-phosphorylatable mutant expressing cells, at the same 
time bringing the AMPAR and NMDAR transmission of control cells to the same level as phospho-
mimicking mutant expressing cells in CA1 region neurons. 

(A) Application of SFK81297 has a bigger effect on non-phosphorylatable mutant expressing cells 
than the control cells, regarding AMPAR (p<0.001) and NMDAR transmission (p<0.05). 

(B)  Application of SFK81297 brings AMPAR (p=0.26) and NMDAR transmission (p=0.61) of 
control cells to the same level as phospho-mimicking mutant cells. 

(The scale bars correspond to 50 pA and 25 ms. Green traces indicate the infected and the black traces 
indicate the control cell responses. The red marker corresponds to the average of all data points on the 
plot.) 
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3.1.5 Activity-dependent effects of CDK5 phosphorylation mutants 

of PSD-95 on AMPAR and NMDAR transmission 

As AMPA receptor transmission can be modulated via NMDA receptor activation, one 

important question raised was whether the increase in AMPAR responses of phospho-

mimicking mutant expressing neurons is due to the increased levels of NMDAR 

transmission. In order to test this possibility, I injected the rat hippocampal organotypic 

slices with a phospho-mimicking mutant expressing virus. After two days of infection, I 

subjected the slices to 5 µM ifenprodil for two days in order to block GluN2B-

containing receptors before the virus expression is fully established. At the end of the 

two days, I measured the AMPAR and NMDAR transmission in the presence of 5 µM 

ifenprodil. The results showed that the significant increase in AMPAR responses 

observed with the mutant was still present and, as expected, the increase in NMDAR 

responses was absent due to the ifenprodil treatment (AMPAR, uninfected: -36.8 ± 2.9 

pA, infected: -56.6 ± 7.9 pA, p<0.05; NMDAR, uninfected: 18.0 ± 3.2 pA, infected: 

24.1 ± 5.3 pA, p=0.18) (Figure 23). This data suggests that the increase in AMPAR 

transmission is not due to the enhancement in NMDAR transmission. 
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Figure 23: The significant increase in AMPAR transmission of phospho-mimicking mutant 
expressing cells is not due to the enhancement in NMDAR transmission in CA1 region neurons. 
Exposing the slices at DIV 4 to 5 µM ifenprodil for 2 days did not inhibit the significant increase in 
AMPA receptor transmission (p<0.05). NMDA receptor responses were not different between the control 
and infected cells due to ifenprodil treatment (p=0.18). 
(The scale bars correspond to 50 pA and 25 ms. Green traces indicate the infected and the black traces 
indicate the control cell responses. The red marker corresponds to the average of all data points on the 
plot.) 
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A recent study by Zhang et al., 2012 demonstrated that the overexpression effect of 

PSD-95, leading to the enhancement of AMPA receptor responses, is activity 

dependent. Blocking the overall activity of rat organotypic hippocampal slices either 

with TTX or group 1 metabotropic glutamate receptor (mGluR) antagonists, especially 

mGluR5 antagonist, prevented the AMPAR transmission increase caused by PSD-95 

overexpression (Zhang and Lisman, 2012). At the same time, it is known that group 1 

mGluRs modulate the NMDA receptor function through pathways changing the 

phosphorylation state of GluN2A and B subunits (Rojas and Dingledine, 2013). A 

member of the group 1 mGluRs, mGluR5, has been shown to activate PKC, which in 

turn activates Src kinase, resulting in the phosphorylation of GluN2B subunit in 

hippocampal neurons (MacDonald et al., 2007). To understand, whether the effects of 

the CDK5 phosphorylation mutants of PSD-95 on AMPAR and NMDAR transmission 

are activity-dependent, I blocked the overall activity of the slices with 1 µM TTX or 

treated the slices with 25 µM MPEP, a specific mGluR5 blocker, for two days before 

the recordings.  

Blockade of the network activity by TTX did cause a slight but not significant 

increase in AMPAR responses of the non-phosphorylatable mutant expressing cells in 

comparison to the control cells. NMDAR responses were not any different than the 

controls (AMPAR, uninfected: -69.2 ± 17.7 pA, infected: -99.7 ± 20.7 pA, p=0.06; 

NMDAR, uninfected: 45.5 ± 12.8 pA, infected: 48.0 ± 8.9 pA, p=0.77) (Figure 24A). 

Interestingly, AMPAR responses of phospho-mimicking mutant expressing cells were 

enhanced even further, when activity in the slices was blocked. Without the blockade 

there was a significant 45% increase in AMPAR responses, whereas the blockade 

resulted in a four-fold increase. NMDAR transmission was again significantly higher in 

the phospho-mimicking mutant expressing cells and this enhancement was not 

particularly different when the activity was blocked or not (AMPAR, uninfected: -41.3 

± 4.5 pA, infected: -168.4 ± 29.5 pA, p<0.002; NMDAR, uninfected: 49.8 ± 11.6 pA, 

infected: 80.9 ± 15.3 pA, p<0.05) (Figure 24B). Thus, activity blockade revealed a 

sensitivity of the phospho-mimicking mutant specifically in AMPA receptor 

transmission. 
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Figure 24: Blockade of the slice activity for two days by TTX treatment enhances the effect of 
phospho-mimicking mutant of PSD-95 on AMPAR transmission in CA1 region neurons. 

(A) Activity blockade did not cause a significant difference in AMPAR (p=0.06) and NMDAR 
transmission (p=077) between the non-phosphorylatable mutant expressing and control cells. 

(B) Activity blockade caused a four-fold increase in AMPAR transmission when phospho-
mimicking mutant was expressed in the cells (p<0.002). NMDAR transmission was still 
significantly higher than the control cells (p<0.05).  

(The scale bars correspond to 50 pA and 25 ms. Green traces indicate the infected and the black traces 
indicate the control cell responses. The red marker corresponds to the average of all data points on the 
plot.) 
 

On the other hand, blocking the mGluR5 activity with 25 µM MPEP, a specific 

mGluR5 inhibitor, resulted in a significant increase in AMPAR responses of non-

phosphorylatable mutant expressing cells, whereas NMDAR transmission was no 

different than the control cells (AMPAR, uninfected: -106.8 ± 24.1 pA, infected: -158.7 

± 25.9 pA, p<0.05; NMDAR, uninfected: 48.1 ± 9.4 pA, infected: 65.4 ± 12.9 pA, 

p=0.08) (Figure 25A). In contrast, MPEP application eliminated the significant increase 

in NMDAR transmission normally detected with the phospho-mimicking mutant 
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expressing cells. However, it did not effect the AMPAR transmission of the infected 

cells, which was still significantly higher than the control cells (AMPAR, uninfected: -

37.2± 4.8 pA, infected: -44.2 ± 16.2 pA, p<0.05; NMDAR, uninfected: 79.3± 12.6 pA, 

infected: 64.3 ± 2.7 pA, p=0.32)  (Figure 25B). These results demonstrate that mGluR5 

activity affects the function of the mutants differently regarding AMPAR and NMDAR 

transmission.  
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Figure 25: Blockade of mGluR5 activity in the slices for two days enhanced the AMPAR 
transmission of non-phosphorylatable mutant while eliminating the increase in NMDAR responses 
normally observed with phospho-mimicking mutant in CA1 region neurons. 

(A) mGluR5 blockade by MPEP resulted in a significant increase in AMPAR (p<0.05) but not in 
NMDAR transmission of non-phosphorylatable mutant expressing cells (p=0.08). 

(B) mGluR5 blockade by MPEP eliminated the significant increase in NMDAR transmission 
(p=0.32), which is normally observed with phospho-mimicking mutant expression. AMPAR 
transmission was still significantly higher in infected cells (p<0.05) in comparison to the 
controls, which seems to be independent of mGluR5 activity. 

(The scale bars correspond to 50 pA and 25 ms. Green traces indicate the infected and the black traces 
indicate the control cell responses. The red marker corresponds to the average of all data points on the 
plot.) 
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3.1.6 Pre- and postsynaptic properties of the CDK5 phosphorylation 

mutants of PSD-95 

Besides stimulating the Schaffer collaterals and recording evoked responses, I wanted 

to test the integrated input received by neurons expressing either of the PSD-95 mutants. 

This approach would demonstrate whether the effects of the mutants are pathway-

specific or valid for all the synapses. For this purpose, I recorded miniature EPSCs 

from the CA1 region rat neurons infected with the phosphorylation mutants of PSD-95. 

Control and infected cells in each group were recorded from the same slices in the 

presence of TTX. There was a significant decrease in the mEPSC amplitudes of 

phospho-mimicking mutant expressing cells but the mEPSC frequency was not 

different than the control cells (D3viG mean ± SEM, amplitude, control: 20.74 ± 0.79 

pA, infected: 17.66 ± 0.69 pA; frequency, control: 1.86 ± 1.26 s, infected: 1.96 ± 0.26 

s; Kolmogorov-Smirnov test, amplitude: p<0.05, frequency: p=1) (Figure 26B). Only a 

small but non-significant increase was observed in the amplitude of mEPSCs with the 

non-phosphorylatable mutant and the frequency of the events was not altered between 

the infected and control cells (A3viG mean ± SEM, amplitude, control: 20.83 ± 0.70 

pA, infected: 23.28 ± 1.12 pA; frequency, control: 2.42 ± 0.24 s, infected: 2.32 ± 0.24 

s; Kolmogorov-Smirnov test, amplitude: p=0.19, frequency: p=0.47) (Figure 26A). 
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Figure 26: CDK5 phosphorylation mutants of PSD-95 do not alter the frequency of miniature 
EPSCs in CA1 region neurons. 
Cumulative distribution plot represents the amplitude and frequency distribution of infected and control 
cell mEPSCs. 

(A) There was only a slight but non-significant increase in the mEPSC amplitude of non-
phosphorylatable mutant expressing cells. The frequency was not changed between the control 
and the infected cells. (A3viG mean ± SEM, amplitude, control: 20.83 ± 0.70, infected: 23.28 ± 
1.12; frequency, control: 2.42 ± 0.24, infected: 2.32 ± 0.24; Kolmogorov-Smirnov test, 
amplitude: p=0.19, frequency: p=0.47) 

(B) There was a significant decrease in the mEPSC amplitude of phospho-mimicking mutant 
expressing cells. The frequency of mEPSC events was not altered between the control and 
mutant expressing cells. (D3viG mean ± SEM, amplitude, control: 20.74 ± 0.79, infected: 17.66 
± 0.69; frequency, control: 1.86 ± 1.26, infected: 1.96 ± 0.26; Kolmogorov-Smirnov test, 
amplitude: p<0.05, frequency: p=1) 

(Red data points represent the infected and black data points represent the control cell values. For 
statistics Kolmogorov-Smirnov test was used. N = number of cells / number of cultures) 
 

This result was unexpected, as the phospho-mimicking mutant demonstrated an 

increase in the AMPAR transmission in evoked events, however showed a decrease in 

the amplitude of mEPSCs. At the same time, having no change in the frequency of 
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mEPSCs with both of the mutants hinted that the presynaptic properties of the mutant 

expressing neurons were not affected. In order to confirm that the presynaptic release 

property of the neurons were not altered I measured the paired-pulse ratio of evoked 

AMPAR responses of infected and control cells in a dual-patch configuration. The 

responses were triggered with 100 ms interval. Both control and mutant expressing 

cells showed an increase of 1.4 fold at the second pulse and there was no significant 

difference between the ratios of infected and control cells (D3viG, control: 1.47 ± 0.06, 

infected: 1.44 ± 0.04; A3viG, control: 1.38 ± 0.08, infected: 1.33 ± 0.07) (Figure 27).  
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Figure 27: No difference was observed between the paired-pulse ratio of mutant expressing and 
control cells in CA1 region neurons. 
Two stimulations were applied with 100 ms time interval at – 60 mV. Both control and CDK5 
phosphorylation mutants of PSD-95 expressing cells showed a facilitation of 40%. Bar graphs represent 
the mean ± SEM values. (D3viG, control: 1.47 ± 0.06, infected: 1.44 ± 0.04; A3viG, control: 1.38 ± 0.08, 
infected: 1.33 ± 0.07) Tested by Students t-test. 
(The scale bars correspond to 50 pA and 25 ms. Grey sample traces represent the control, black sample 
traces represent the infected cell responses. For statistical analysis Students t-test was used.  
N = number of cells / number of cultures) 
 

Besides the presynaptic properties, Morabito et al., 2004 showed that the blockade 

of CDK5 activity via a dominant negative construct, or the expression of the non-

phosphorylatable mutant of PSD-95 would form bigger PSD-95 clusters at 

hippocampal synapses (Morabito et al., 2004). With respect to this result, one can 

speculate that the AMPAR responses of the non-phosphorylatable mutant expressing 

cells would be higher than the controls. Interestingly, this was not the case for the 

evoked responses. This observation might be due to an effect on extrasynaptic AMPA 

receptor population, which will not be targeted by the synaptic stimulation. To examine 

whether the non-phosphorylatable mutant increases the extra-synaptic AMPA receptor 
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pool, I performed a glutamate spill-over experiment by using a competitive glutamate 

transporter blocker, 100 µM DL-TBOA. The responses from the control and non-

phosphorylatable mutant expressing cells were recorded again in the presence of DL-

TBOA. Application of DL-TBOA did not reveal a difference between the infected and 

control cells (AMPAR, uninfected: -55.1 ± 10 pA, infected: -44.4 ± 7.2 pA, p=0.25; 

NMDAR, uninfected: 47.4 ± 12.1 pA, infected: 35.1 ± 5.9 pA, p=0.17) (Figure 28), 

suggesting that the non-phosphorylatable mutant does not regulate the extra-synaptic 

receptor pool. 
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Figure 28: Non-phosphorylatable mutant of PSD-95 does not affect the extra-synaptic AMPA 
receptor pool in CA1 region neurons. 
Application of DL-TBOA, thus glutamate spill-over did not cause a change in AMPAR and NMDAR 
transmission between the non-phosphorylatable mutant expressing and control cells. 
(The scale bars correspond to 50 pA and 25 ms. Green traces indicate the infected and the black traces 
indicate the control cell responses. The red marker corresponds to the average of all data points on the 
plot.) 
 

3.2  The role of CDK5 phosphorylation mutants of PSD-

95 in the regulation of developmental NMDA receptor subunit 

switch in mouse visual cortex 
The composition of NMDA receptors has been shown to shift from GluN2B-containing 

NMDARs to dominantly GluN2A-containing receptors over the course of development 

(Bellone and Nicoll, 2007). This change takes place in an activity-dependent manner 

within the first 2-3 weeks of the postnatal period in different brain areas, including 

hippocampus and various cortical regions (Dumas, 2005). In the visual cortex, the 

switch is precisely triggered by the first visual stimulus upon eye opening (Philpot et al., 
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2001) This makes it a suitable system to investigate the NMDA receptor subunit switch. 

Although the involvement of PSD-95 in this process has been suggested by several 

studies (Losi et al., 2003a; Yoshii et al., 2003; Liu et al., 2004c; Funahashi et al., 2013), 

the exact mechanism mediating this switch is not known. Recently, it has been shown 

that the interaction between PSD-95, CDK5 and Src kinase is involved in the regulation 

of GluN2B-containing NMDA receptor surface expression. In order to understand 

whether this can be a mechanism to regulate the NMDAR subunit switch, I decided to 

test the components of this pathway. At first, I needed to confirm that the 

developmental NMDAR subunit switch takes place in the mouse visual cortex layer 2/3 

neurons upon eye opening. To accomplish this, I recorded the NMDAR responses of 

layer 2/3 neurons from the animals with the ages corresponding to before (P10-12) and 

after eye opening (P14-20). The recordings were performed in the presence of 5 µM 

NBQX and at +40 mV to isolate pure NMDAR responses. After the baseline was 

established, 5 µM ifenprodil was washed in for 25 minutes to check the contribution of 

GluN2B-containing receptors in NMDAR responses. The results clearly showed that 

upon eye opening, GluN2B-containing receptors contribution to NMDA receptor 

responses was reduced. Ifenprodil wash-in in younger animals resulted in a 50% 

blockade of the responses, whereas the effect in animals after eye opening was only 

20% (Last 4 minutes of the recordings were compared. Students t-test, AEO: 0.83 ± 

0.04; BEO: 0.51 ± 0.02, p<0.0001) (Figure 29). 
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Figure 29: The contribution of GluN2B-containing NMDA receptors to NMDAR responses is 
reduced after eye opening in visual cortex later 2/3 neurons. 
Application of ifenprodil blocked 50% of the NMDAR responses before the eye opening period. 
However, this blockade was only 20% after the eye opening. The responses were normalized to the initial 
NMDAR amplitude. Bar graphs represent the mean ± SEM of binned responses of the last 4 minutes of 
the recordings (Students t-test, AEO: 0.83 ± 0.04; BEO: 0.51 ± 0.02, p<0.0001). 
(The scale bars correspond to 50 pA and 25 ms. Black sample traces indicate NMDAR responses before 
and red sample traces after ifenprodil wash-in. Green data points indicate responses of neurons 
corresponding to before eye opening (BEO) period and the blue data points indicate the responses of 
neurons after eye opening (AEO). The gray dashed line indicates the time point where the ifenprodil 
wash-in started. N = number of cells / number of animals) 

 

After confirming that the NMDA receptor subunit switch indeed takes place in 

visual cortex layer 2/3 neurons upon first visual stimulus, I examined the effect of PSD-

95 absence on subunit switch by recording from the slices of PSD-95 knockout animals 

after the eye opening. The recordings demonstrated that the lack of PSD-95 prevented 

the switch from taking place, since the knockout animals exhibited a blockade rate of 

50%, even though eye opening took place (Last four minutes of the recordings were 

compared. one-way ANOVA post-hoc Tukey test, F(2,90) = 26.20, p<0.0001; AEO: 

0.83 ± 0.04; BEO: 0.51 ± 0.02; P95 KO AEO: 0.44 ± 0.04) (Figure 30).  
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Figure 30: PSD-95 knockout animals are deficient in establishing the NMDA receptor subunit 
switch upon eye opening in mouse visual cortex layer 2/3 neurons. 
Application of ifenprodil blocked 50% of the NMDAR responses of the neurons from PSD-95 KO slices, 
eventhough the eye opening took place. The responses were normalized to the initial NMDAR amplitude. 
Bar graphs represent the mean ± SEM of binned responses from the last four minutes of the recordings 
(one-way ANOVA post-hoc Tukey test, F(2,90) = 26.20, p<0.0001; AEO: 0.83 ± 0.04; BEO: 0.51 ± 
0.02; P95 KO AEO: 0.44 ± 0.04). 
(The scale bars correspond to 50 pA and 25 ms. Black traces indicate NMDAR responses before and red 
traces after ifenprodil wash-in. Green data points indicate responses of neurons corresponding to before 
eye opening (BEO) period and the blue data points indicate the responses of neurons after eye opening 
(AEO). Red data points indicate the responses of PSD-95 KO neurons after eye opening (P95 KO AEO). 
The gray dashed line indicates the time point where the ifenprodil wash-in started. N = number of cells / 
number of animals) 
 

Although the recordings from the knockout animals imply that PSD-95 is involved 

in the NMDAR subunit switch, it is possible that knockout systems generate 

compensatory mechanisms and network changes, which can interfere with the results. 

In order to exclude these factors and dissect the specific role of PSD-95 in the process, 

I injected lentivirus carrying an shRNA sequence against PSD-95 into the visual cortex 

of newborn mice. After the viral expression was established, the animals were 

sacrificed at an age (P=14-20) after eye opening has taken place. Very convincingly, 

the single cell knock-down of PSD-95 resulted in a phenotype similar to knockout 

animals and demonstrated a 50% blockade of NMDAR responses upon GluN2B 

blockade (Last four minutes of the recordings were compared. one-way ANOVA post-

hoc Tukey test, F(3,128) = 29.73, p<0.0001; AEO: 0.83 ± 0.04; BEO: 0.51 ± 0.02; P95 
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KO AEO: 0.44 ± 0.04; PSD-95 in vivo KD: 0.42 ± 0.03) (Figure 31). This result 

strongly demonstrates the importance of PSD-95 in NMDAR subunit switch in a single 

cell level. 
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Figure 31: PSD-95 is involved in the NMDAR subunit switch in mouse visual cortex. 
Injection of lentivirus carrying shRNA against PSD-95 prevented the switch in single cells, 
demonstrating that PSD-95 is crucial for the developmental NMDAR subunit switch. The responses were 
normalized to the initial NMDAR amplitude. Bar graphs represent the mean ± SEM of binned responses 
from the last four minutes of the recordings (one-way ANOVA post-hoc Tukey test, F(3,128) = 29.73, 
p<0.0001; AEO: 0.83 ± 0.04; BEO: 0.51 ± 0.02; P95 KO AEO: 0.44 ± 0.04; PSD-95 in vivo KD: 0.42 ± 
0.03). 
(The scale bars correspond to 50 pA and 25 ms. Black traces indicate NMDAR responses before and red 
traces after ifenprodil wash-in. Green data points indicate responses of neurons corresponding to before 
eye opening (BEO) period and the blue data points indicate the responses of neurons after eye opening 
(AEO). Red data points indicate the responses of PSD-95 KO neurons after eye opening (P95 KO AEO). 
Dark green data points represent the responses of neurons injected with PSD-95 shRNA, after the eye 
opening took place (PSD-95 in vivo KD). The gray dashed line indicates the time point where the 
ifenprodil wash-in started. N = number of cells / number of animals) 
 

After validating the involvement of PSD-95 in NMDAR subunit switch, the next 

step was to test the involvement of PSD-95, CDK5 and Src kinase interaction in this 

switch. To address this, I used the CDK5 phosphorylation mutants of PSD-95. First, I 

injected newborn animals with wild-type PSD-95 replacement construct. Recording 

from the animals injected with wild-type replacement after the eye opening showed a 

blockade of 30% in NMDAR transmission upon ifenprodil wash-in, which was 10% 

less than the blockade rate observed in wild-type animals after the eye opening (WtviG 

AEO: 0.67 ± 0.02, AEO: 0.83 ± 0.04, Students t-test, p<0.05). Next, I injected animals 
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with the virus carrying non-phosphorylatable and phospho-mimicking mutants of PSD-

95 and again measured the blockade rate of NMDAR responses after the eye opening. 

Interestingly, non-phosphorylatable mutant expressing cells behaved in the same way 

as the wild-type replacement, whereas phospho-mimicking mutant expressing cells 

were deficient in NMDAR subunit switch. The blockade rate observed with phospho-

mimicking mutant was almost 60% similar to before eye opening period of wild-type 

animals (Last four minutes of the recordings were compared. one-way ANOVA post-

hoc Tukey test, F(2,68) = 25.21, p<0.0001; WtviG AEO: 0.67 ± 0.02; A3viG AEO: 

0.70 ± 0.03; D3viG AEO: 0.40 ± 0.03) (Figure 32). 
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Figure 32: Phospho-mimicking mutant of PSD-95 prevents the NMDAR subunit switch upon eye 
opening. 
Injection of lentivirus carrying wild-type replacement construct of PSD-95 resulting in a 30% blockade 
of the NMDAR responses after ifenprodil wash-in. Non-phosphorylatable mutant expressing neurons 
demonstrated a similar blockade pattern, whereas phosphor-mimicking mutant expressing cells showed a 
60% reduction in NMDAR responses after ifenprodil wash-in. The responses were normalized to the 
initial NMDAR amplitude. Bar graphs represent the mean ± SEM of binned responses from the last four 
minutes of the recordings (one-way ANOVA post-hoc Tukey test, F(2,68) = 25.21, p<0.0001; WtviG 
AEO: 0.67 ± 0.02; A3viG AEO: 0.70 ± 0.03; D3viG AEO: 0.40 ± 0.03). 
(The scale bars correspond to 50 pA and 25 ms. Black traces indicate NMDAR responses before and red 
traces after ifenprodil wash-in. Orange data points indicate responses of neurons expressing wild-type 
replacement of PSD-95, after the eye opening took place (WtviG AEO). Purple data points represent 
non-phosphorylatable mutant expressing cell responses (A3viG AEO) and yellow points phospho-
mimicking mutant expressing cell responses (D3viG), after the eye opening. The gray dashed line 
indicates the time point where the ifenprodil wash-in started. N = number of cells / number of animals) 
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The results collected from the mutant recordings demonstrate that the NMDA 

receptor subunit switch might be regulated depending on the CDK5 phosphorylation 

state of PSD-95.  

3.3  Minimal PSD-95 to mediate the basal synaptic 

transmission and a molecular interplay between the MAGUK 

family members 
It has been shown by Xu et al., 2008 that the expression of a PSD-95 deletion mutant 

with only the first two PDZ domains was not functional in CA1 region neurons of rat 

hippocampus, when endogenous PSD-95 was knocked-down via shRNA mediated 

silencing. In addition, the expression of PSD-95 lacking SH3 and GK domains resulted 

in a similar phenotype, pointing out the importance of SH3 and GK domains in the 

regulation of hippocampal basal synaptic transmission. In order to investigate the role 

of PDZ3, SH3 and GK domains in this regulation, a set of experiments using different 

domain mutants of PSD-95 was performed in collaboration with Dr. Stéphanie Bonnet 

(former member of Molecular Neurobiology lab, ENI, Goettingen, Germany) and Dr. 

Yanling Liu (Molecular Neurobiology lab, ENI, Goettingen, Germany).  

First, we recorded the AMPAR and NMDAR responses of neurons transduced with 

viruses expressing shRNA construct against endogenous PSD-95 (sh95), wild-type 

PSD-95 replacement (sh95 + p95::GFP) and PDZ1/2 (sh95 + PDZ1/2::GFP) 

replacement to confirm the previously published data. As shown before, knock-down of 

endogenous PSD-95 by shRNA mediated silencing resulted in a 50% decrease in 

AMPAR responses (uninfected: - 92.7 ± 9.6 pA, infected: - 54.4 ± 7.6 pA, p < 0.001) 

without a change in NMDAR responses (uninfected: 60.0 ± 6.7 pA, infected: 57.6 ± 6.9 

pA, p = 0.59) (Figure 33A). Wild-type PSD-95 replacement demonstrated a significant 

increase in AMPAR mediated responses (uninfected: - 43.0 ± 9.5 pA, infected: - 83.0 ± 

13.5 pA, p < 0.005) with a slight increase in NMDAR responses (uninfected: 41.4 ± 7.5 

pA, infected: 58.0 ± 8.0 pA, p < 0.05) (Figure 33B). Lastly, replacement of endogenous 

PSD-95 with PDZ1/2::GFP construct showed significant decrease in AMPAR 

responses (uninfected: - 47.1 ± 7.1 pA, infected: - 30.3 ± 5.6 pA, p < 0.001) with no  
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Figure 33: PSD-95 replacement increases AMPAR responses while knock-down of endogenous 
PSD-95 or replacement of it by PDZ1\2::GFP cause a significant decrease in AMPAR transmission 
in CA1 region rat hippocampal neurons. 

(A) Knock-down of endogenous PSD-95 significantly reduced AMPAR mediated responses in 
infected cells (p<0.001) while not changing NMDAR mediated transmission (p=0.59) 
(Performed by Stéphanie Bonnet). 

(B) Replacement of endogenous PSD-95 by wild-type PSD-95 significantly increased AMPAR 
(p<0.005) and NMDAR responses (p<0.05) of infected cells (Performed by Stéphanie Bonnet).  

(C) Replacement of endogenous PSD-95 by PDZ1/2::GFP mutant of PSD-95 depressed AMPAR 
mediated responses (p<0.001) without altering the NMDAR transmission (p=0.089) (Performed 
by Stéphanie Bonnet). 

(The scale bars correspond to 50 pA and 25 ms. Green traces indicate the infected and the black traces 
indicate the control cell responses. The red marker corresponds to the average of all data points on the 
plot.) 
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change in NMDAR responses (uninfected: 34.3 ± 6.7, infected: 26.9 ± 4.9, p = 0.089) 

(Figure 33C).  

The next step was to separately test the involvement of PDZ3, SH3 and GK 

domains in the regulation of basal synaptic transmission in rat hippocampus. With this 

aim, PSD-95 mutants lacking either of the domains were expressed in CA1 region 

neurons and AMPAR and NMDAR responses were recorded simultaneously from 

infected and control cells. Replacing endogenous PSD-95 with a mutant form lacking 

the PDZ3 domain (sh95 + PSD-95 ΔPDZ3::GFP) did not enhance the AMPAR 

(uninfected: - 93.0 ± 8.8 pA, infected:  - 103.4 ± 9.3 pA, p = 0.22) and NMDAR 

responses (uninfected: 70.0 ± 6.5 pA, infected: 66.0 ± 6.0 pA, p = 0.55) of the infected 

cells (Figure 34A). This result indicated that the PSD-95 ΔPDZ3::GFP construct does 

not act in the same way as the full-length PSD-95, as the increase in AMPAR responses 

observed with full-length PSD-95 replacement was absent. On the other hand, 

expression of a PSD-95 mutant lacking the SH3 domain (sh95 + PSD-95 ΔSH3::GFP) 

demonstrated significant increases both in AMPAR (uninfected: - 33.4 ± 4.6 pA, 

infected: - 64.9 ± 8.2 pA, p < 0.001) and NMDAR transmission (uninfected: 49.5 ± 7.7 

pA, infected: 66.8 ± 10.2 pA, p < 0.005) in a similar manner to the full-length PSD-95 

replacement (Figure 34B). A third PSD-95 mutant lacking the GK domain (PSD-95 

ΔGK::GFP) exhibited similar effects on AMPAR and NMDAR transmission as the 

PSD-95 ΔPDZ3::GFP mutant replacement. There was no difference between the 

AMPAR (uninfected: - 55.4 ± 5.1 pA, infected: - 65.8 ± 6.7 pA, p = 0.14) and NMDAR 

transmission (uninfected: 39.9 ± 3.5 pA, infected: 45.6 ± 4.2 pA, p = 0.09) of infected 

and control cells (Figure 34C). The effect of the mutants on AMPAR and NMDAR 

transmission suggests that the SH3 domain of PSD-95 is dispensable for regulating the 

basal synaptic transmission in CA1 region neurons. However, at this state of study no 

conclusion about the roles of PDZ3 and GK domains could be made, as the 

replacement by mutants lacking either of the domains resulted in a partial rescue of 

AMPAR responses. 
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Figure 34: SH3 domain of PSD-95 is dispensable for the regulation of basal synaptic transmission 
in CA1 region of rat hippocampus, whereas the role of PDZ3 and GK domains is not clear. 

(A) Replacement of endogenous PSD-95 by a mutant form lacking PDZ3 domain does not enhance 
AMPAR (p=0.22) and NMDAR transmission of infected cells (p=0.55) (Performed by Derya 
Akad) 

(B) Replacement of endogenous PSD-95 by a mutant form lacking SH3 domain shows significant 
enhancement of AMPAR (p<0.001) and NMDAR responses (p<0.005), similar to full-length 
PSD-95 replacement. (Performed by Stéphanie Bonnet) 

(C) Replacement of endogenous PSD-95 by a mutant form lacking GK domain shows no difference 
in AMPAR (p=0.14) and NMDAR transmission (p=0.09) in comparison to control cells. 
(Performed by Stéphanie Bonnet) 

(The scale bars correspond to 50 pA and 25 ms. Green traces indicate the infected and the black traces 
indicate the control cell responses. The red marker corresponds to the average of all data points on the 
plot.) 
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To check whether the partial rescue observed with the PSD-95 ΔGK::GFP mutant is 

due to its functionality, we over-expressed PSD-95 ΔGK::GFP in CA1 region rat 

neurons and compared the results with the full-length PSD-95 overexpression (PSD-

95::GFP). Overexpression of PSD-95 ΔGK::GFP showed a significant increase in 

infected cell AMPAR responses (uninfected: - 32.2 ± 5.3 pA, infected: - 74.4 ± 12.0 pA, 

p < 0.001) similar to PSD-95::GFP overexpression (uninfected: - 68.7 ± 9.1 pA, 

infected: - 165.9 ± 19.9 pA, p < 0.001). In both cases, there was no significant change 

in NMDAR responses between the infected and uninfected cells (PSD-95 ΔGK::GFP, 

uninfected: 24.9 ± 5.0 pA, infected: 32.4 ± 5.7 pA, p = 0.16; PSD-95::GFP, uninfected: 

75.4 ± 9.3 pA, infected: 102.2 ± 14.9 pA, p  = 0.06). This result confirmed that the 

PSD-95 ΔGK::GFP construct is functional and it can achieve the overexpression effect 

in the same way as full-length PSD-95 overexpression.  

At the same time, we generated another construct to test the importance of GK 

domain by merging the GK domain to the first two PDZ domains of PSD-95 (sh95 + 

PDZ1/2-GK::GFP). This approach aimed at analyzing the effect of GK domain addition 

instead of its loss. Replacement of the endogenous PSD-95 with PDZ1/2-GK::GFP 

construct showed no significant change in AMPAR (uninfected: -60.4 ± 9.4 pA, 

infected: - 83.5 ± 14.9 pA, p = 0.10) and NMDAR transmission of infected cells in 

comparison to control cells (uninfected: 21.0 ± 2.8 pA, infected: = 22.6 ± 3.7 pA, p = 

0.68). These results were consistent with the data acquired from the sh95 + PSD-95 

ΔPDZ3::GFP expressing neurons, as both of the constructs lacked the PDZ3 domain. 

However, having a partial rescue in the AMPAR transmission still generated an 

inconclusive result regarding the significance of GK domain.   
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Figure 35: PSD-95 lacking the GK domain is functional and the addition of GK domain to 
PDZ1/2::GFP does not fully rescue the AMPAR transmission loss generated by PDZ1/2::GFP 
expression in CA1 region rat hippocampus. 

(A) Overexpression of PSD-95 lacking GK domain significantly increases AMPAR responses of 
infected cells (p<0.001), without affecting the NMDAR transmission (p=0.16). (Performed by 
Stéphanie Bonnet)  

(B) Overexpression of full-length PSD-95 significantly increases AMPAR responses of infected 
cells (p<0.001), without changing the NMDAR transmission (p=0.06). (Performed by Derya 
Akad) 

(C) Replacement of endogenous PSD-95 by PDZ1/2-GK::GFP mutant does not alter AMPAR 
(p=0.10) and NMDAR transmission (p=0.68) of infected cells in comparison to uninfected cells. 
(Performed by Stéphanie Bonnet) 

(The scale bars correspond to 50 pA and 25 ms. Green traces indicate the infected and the black traces 
indicate the control cell responses. The red marker corresponds to the average of all data points on the 
plot.) 
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To yield a more conclusive result regarding the function of GK domain we tested 

the effect of sh95 + PSD-95 ΔGK::GFP construct in mouse hippocampal slice culture. 

We recorded first the pure expression of the shRNA construct against endogenous 

PSD-95 in hippocampal slice culture prepared from P8-9 mice. The recordings showed 

that the expression of sh95 significantly diminishes the AMPAR mediated responses by 

20%, without affecting the NMDAR mediated responses (AMPAR, uninfected: -75.4 ± 

10.8 pA, infected: -63.2 ± 9.5 pA, p<0.05; NMDAR, uninfected: 56.2 ± 8.1 pA, 

infected: 47.3 ± 7.5 pA, p=0.08) (Figure 36A). In addition, expression of sh95 + PSD-

95 ΔGK::GFP construct resulted in a significant increase in AMPAR transmission. 

NMDAR transmission was not altered (AMPAR, uninfected: -75.4 ± 10.8 pA, infected: 

-63.2 ± 9.5 pA, p<0.05; NMDAR, uninfected: 56.2 ± 8.1 pA, infected: 47.3 ± 7.5 pA, 

p=0.08) (Figure 36B).  
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Figure 36: PSD-95 lacking the GK domain is functional in CA1 region neurons of mouse 
hippocampal slice culture. 

(A) Expression of shRNA targeting endogenous PSD-95 decreased AMPAR responses by 20% 
(p<0.05) but does not alter the NMDAR responses (p=0.08). (Performed by Derya Akad) 

(B) Expression of sh95 + PSD-95 ΔGK::GFP construct enhanced the AMPAR mediated responses 
significantly (p<0.001) and does not change the NMDAR transmission (p=0.27). (Performed by 
Derya Akad) 

(The scale bars correspond to 50 pA and 25 ms. Green traces indicate the infected and the black traces 
indicate the control cell responses. The red marker corresponds to the average of all data points on the 
plot.) 
 

Since the results of sh95 + PSD-95 ΔGK::GFP, sh95 + PDZ1/2-GK::GFP and sh95 

+ PSD-95 ΔPDZ3::GFP expressions in rat slice culture showed neither significant 

increase nor significant decrease in AMPAR responses, whereas sh95 + PSD-95 

ΔGK::GFP expression in mouse culture showed a significant increase in AMPAR 

responses, we wanted to understand whether this phenotype is caused by the non-

efficient knock-down of PSD-95 in rat hippocampal slice cultures. To eliminate this 

factor, we decided to analyze the effect of the mutants in PSD-95 knockout background. 

At first we tested the effect of PDZ1/2::GFP and the full-length PSD-95 (PSD95::GFP) 

construct on CA1 region neurons of PSD-95 knockout mouse hippocampal slice culture. 
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As expected, the expression of PDZ1/2::GFP could not enhance the AMPAR 

(uninfected: - 70.6 ± 12.0 pA, infected: - 66.6 ± 14.4 pA, p = 0.63) and NMDAR 

responses of the infected cells in comparison to controls (uninfected: 110.6 ± 20.9 pA, 

infected: 100.0 ± 17.9 pA, p = 0.25). PSD-95::GFP expression, on the other hand, 

increased the AMPAR transmission by 2.5 folds (uninfected: - 38.1 ± 5.0 pA, infected: 

- 96.0 ± 17.6 pA, p < 0.05) without changing the NMDAR transmission (uninfected: 

83.3 ± 22.7 pA, infected: 113.2 ± 34.5 pA, p = 0.065).  
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Figure 37: Full-length PSD-95 expression increases AMPAR responses in infected cells by 2.5 fold 
in CA1 region hippocampal PSD-95 knockout slices, whereas PDZ1/2::GFP expression does not 
enhance the AMPAR transmission. 

(A) Expression of PDZ1/2::GFP construct in CA1 region neurons of PSD-95 knockout slices did not 
alter the AMPAR (p=0.63) and NMDAR transmission (p=0.25) of the infected cells. (Performed 
by Stéphanie Bonnet) 

(B) Expression of full-length PSD-95 construct in CA1 region neurons of PSD-95 knockout slices 
significantly enhanced the AMPAR transmission (p<0.05) without a change in NMDAR 
transmission (p=0.065). (Performed by Stéphanie Bonnet) 

(The scale bars correspond to 50 pA and 25 ms. Green traces indicate the infected and the black traces 
indicate the control cell responses. The red marker corresponds to the average of all data points on the 
plot.) 
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After confirming the control conditions by the expression of PDZ1/2::GFP and 

PSD-95::GFP constructs, we tested the effect of PSD-95 ΔPDZ3::GFP and PSD-95 

ΔGK::GFP mutants on the basal synaptic transmission in hippocampal PSD-95 

knockout slice culture. Interestingly, expression of these constructs significantly 

increased the AMPAR transmission of the infected cells (PSD-95 ΔPDZ3::GFP, 

uninfected: - 78.4 ± 12.3 pA, infected: - 102.9 ± 18.3 pA, p<0.05; PSD-95 ΔGK::GFP, 

uninfected: - 51.9 ± 7.8 pA, infected: - 120.5 ± 22.5 pA, p < 0.05), without altering the 

NMDAR transmission (PSD-95 ΔPDZ3::GFP, uninfected: 60.1 ± 12.0 pA, infected: 

54.6 ± 9.9 pA, p=0.37; PSD-95 ΔGK::GFP, uninfected: 94.5 ± 11.8 pA, infected: 121.7 

± 21.9 pA, p = 0.20).  
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Figure 38: PSD-95 mutants lacking PDZ3 or GK domain enhance AMPAR mediated transmission 
in PSD-95 knockout background without altering the NMDAR transmission.  

(A) Expression of sh95 + PSD-95 ΔPDZ3::GFP construct in PSD-95 knockout background 
significantly increased AMPAR mediated responses (p<0.05) but does not change NMDAR 
mediated responses (p=0.37). (Performed by Derya Akad) 

(B) Expression of PSD-95 ΔGK::GFP construct in PSD-95 knockout background significantly 
increased AMPAR mediated responses (p<0.05) but does not change NMDAR mediated 
responses (p=0.20). (Performed by Stéphanie Bonnet) 

(The scale bars correspond to 50 pA and 25 ms. Green traces indicate the infected and the black traces 
indicate the control cell responses. The red marker corresponds to the average of all data points on the 
plot.) 
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The difference between the results obtained from the rat and PSD-95 knockout 

mouse slices raised the question to whether there is a compensatory mechanism taking 

place between within MAGUK family. It was shown that the absence of one or more 

MAGUK members can be compensated by the elevated levels of other MAGUKs 

(Elias et al., 2006). In order to test this possibility, we checked the levels of different 

MAGUKs in the PSD fraction of PSD-95 knockout, PSD-93 knockout and wild-type 

animals. The results demonstrated that SAP102 and SAP97 but not PSD-93 levels were 

significantly increased in the PSD fraction of adult PSD-95 knockout mice (Figure 39). 

There was no difference in the levels of SAP102, SAP97 and PSD-95 in PSD-93 

knockout mice (SAP97: F(2,11) = 21.44, p < 0.001, one-way ANOVA; wt, 100 ± 8.0, n 

= 4 vs. p95 KO, 174.3 ± 9.9, n = 6, p < 0.001; Bonferroni post-test; wt vs. p93 KO, 

114.4 ± 5.3, n = 4, p > 0.05; Bonferroni post-test; SAP102: F2,7 = 17.50, p < 0.01, one-

way ANOVA; wt, 100 ± 4.0, n = 4 vs. p95 KO, 187.6 ± 16.4, n = 3, p < 0.01; 

Bonferroni post- test; wt vs. p93 KO, 115 ± 13.2, n = 3, p > 0.05). 
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Figure 39: SAP102 and SAP97 levels are elevated in the PSD fraction of PSD-95 knockout animals. 
Cortices of PSD-95 knockout, PSD-93 knockout and wild-type mice were subjected to subcellular 
fractionation. The proteins in different fractions were immunoblotted with indicated antibodies. 
(Performed by Yanling Liu) 

(A) Different fractions obtained after detergent treatment and the centrifugation steps are presented. 
The levels of synaptic proteins are indicated in the fractions.  

(B) Quantification of MAGUK members in the PSD fraction of wild-type, PSD-95 knockout and 
PSD-93 knockout animals. For the statistical analysis one-way ANOVA with Bonferroni post-
test were used. The graphs present the mean ± SEM values. 
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Encouraged by these results, we decided to test the involvement of SAP102 and 

SAP97 in the basal synaptic transmission of CA1 region PSD-95 knockout neurons. 

We combined the expression of PSD-95 domain mutants with the knock-down of 

endogenous SAP102 or endogenous SAP97. Knock-down of SAP102 in hippocampal 

slices prepared from PSD-95 knockout animals did not alter the AMPAR and NMDAR 

transmission of infected cells (AMPAR, uninfected: -96.5 ± 22.1 pA, infected: -79.6 ± 

14.7 pA, p=0.24; NMDAR, uninfected: 69.1 ± 11.8 pA, infected: 62.1 ± 9.6 pA, 

p=0.11). The expression of PSD-95 ΔGK::GFP mutant in combination with shRNA 

against SAP102 interestingly eliminated the significant increase in AMPAR 

transmission observed with PSD-95 ΔGK::GFP expression alone (uninfected: - 46.6 ± 

6.7 pA, infected: - 56.8 ± 7.1 pA, p = 0.22). There was a slight and significant increase 

observed with the NMDAR responses of sh102 + PSD-95 ΔGK::GFP expressing cells 

(uninfected: 41.6 ± 5.8 pA, infected: 57.7 ± 9.1 pA, p < 0.05). In contrast to sh102 + 

PSD-95 ΔGK::GFP construct expression, combination of PSD-95 ΔGK::GFP 

expression with a shRNA against endogenous SAP97 did not eliminate the significant 

increase observed with PSD-95 ΔGK::GFP expression alone (uninfected: - 87.7 ± 10.5 

pA, infected: - 123.9 ± 13.5 pA, p = 0.002). There was no difference in NMDAR 

transmission of infected cells in comparison to control cells (uninfected: 68.4 ± 8.3 pA, 

infected: 63.6 ± 6.6 pA, p = 0.65). These results imply that the AMPAR response 

enhancement of PSD-95 ΔGK::GFP expressing cells in PSD-95 knockout background 

is SAP102  but not SAP97 dependent.  
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Figure 40: The AMPAR response enhancement of cells expressing GK domain lacking PSD-95 in 
PSD-95 knockout background is SAP102 dependent.  

(A) Knock-down of endogenous SAP102 in PSD-95 knockout neurons did not alter the AMPAR 
(p=0.24) and NMDAR transmission (p=0.11). (Performed by Derya Akad) 

(B) Expression of GK domain-lacking PSD-95 in combination with sh102 did not enhance AMPAR 
responses (p=0.22) but slightly increased NMDAR mediated responses (p<0.05). (Performed by 
Stéphanie Bonnet) 

(C) Expression of GK domain-lacking PSD-95 in combination with sh97 significantly enhanced 
AMPAR responses (p=0.002) but did not change NMDAR responses (p=0.65). (Performed by 
Derya Akad) 

(The scale bars correspond to 50 pA and 25 ms. Green traces indicate the infected and the black traces 
indicate the control cell responses. The red marker corresponds to the average of all data points on the 
plot.) 
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We next tested the involvement of SAP102 in basal synaptic transmission mediated 

by PSD-95 ΔPDZ3::GFP and PDZ1/2-GK::GFP mutants in PSD-95 knockout CA1 

region hippocampal neurons. Expression of PSD-95 ΔPDZ3::GFP in combination with 

the shRNA against SAP102 (sh102) did not enhance the AMPAR responses of infected 

cells (uninfected: 65.4 ± 6.7 pA, infected: 77.7 ± 10.8 pA, p = 0.29). NMDAR 

responses were slightly decreased in the infected cells (uninfected: 53.4 ± 12.9 pA, 

infected: 40.3 ± 4.3 pA, p = 0.005) (Figure 41A). The effect of sh102 on AMPAR and 

NMDAR responses suggested that the function of PSD-95 ΔPDZ3::GFP is also 

SAP102 dependent.  

In addition, we expressed PDZ1/2-GK::GFP mutant in the presence and absence of 

SAP102 in PSD-95 knockout neurons. Similar to the other mutants, expression of 

PDZ1/2-GK::GFP alone increased the AMPAR transmission significantly while there 

was no change in NMDAR transmission of the infected cells (AMPAR, uninfected: -

48.2 ± 5.4 pA, infected: -92.0 ± 13.9 pA, p<0.05; NMDAR, uninfected: 61.2 ± 11.3 pA, 

infected: 79.8 ± 12.5 pA, p=0.86) (Figure 41B). However, combining the mutant 

expression with sh102 did not abolish the increase in the AMPAR transmission, 

pointing out that the function of PDZ1/2-GK::GFP is not SAP102 dependent (AMPAR, 

uninfected: -37.7 ± 5.7 pA, infected: -103.7 ± 23.3 pA, p=0.003; NMDAR, uninfected: 

44.9 ± 9.7 pA, infected: 55.6 ± 17.1 pA, p=0.24) (Figure 41C).  
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Figure 41: The function of PSD-95 lacking the PDZ3 domain, but not the function of PDZ1/2-
GK::GFP protein is SAP102 dependent in the CA1 region of PSD-95 knockout mouse 
hippocampus. 

(A) Expression of PSD-95 ΔPDZ3::GFP mutant in combination with shRNA against SAP102 
(sh102) did not enhance AMPAR transmission (p=0.29), but caused a decrease in NMDAR 
transmission (p=0.005). (Performed by Derya Akad) 

(B) Expression of PDZ1/2-GK::GFP mutant alone enhanced the AMPAR transmission of infected 
cells (p<0.05), without changing the NMDAR transmission (p=0.86). (Performed by Stéphanie 
Bonnet) 

(C) Expression of the PDZ1/2-GK::GFP mutant in combination with sh102 maintains the increase 
in AMPAR transmission (p=0.003) and does not affect the NMDAR transmission (p=0.24). 
(Performed by Stéphanie Bonnet and Derya Akad) 

(The scale bars correspond to 50 pA and 25 ms. Green traces indicate the infected and the black traces 
indicate the control cell responses. The red marker corresponds to the average of all data points on the 
plot.) 
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Since both PSD-95 ΔPDZ3::GFP and PSD-95 ΔGK::GFP constructs showed a 

significant increase in AMPAR transmission in neurons from the CA1 region of PSD-

95 knockout mice, we assumed that a PSD-95 form consisting of the first two PDZ 

domains and the SH3 domain could be sufficient to mediate basal synaptic transmission 

in PSD-95 knockout background. In order to this assumption, we generated a mutant of 

PSD-95, PDZ1/2-SH3::GFP, and expressed it in the CA1 region neurons of PSD-95 

knockout hippocampal slices. The recordings showed a significant increase in both 

AMPAR and NMDAR transmission of the cells expressing PDZ1/2-SH3::GFP 

(AMPAR, uninfected: -62.2 ± 7.5 pA, infected: -120.5 ± 17.3 pA, p=0.004; NMDAR, 

uninfected: 86.9 ± 20 pA, infected: 112.6 ± 22.2 pA, p=0.006) (Figure 42A). The 

increase observed with the AMPAR and NMDAR transmission was dependent on 

SAP102, as combining the expression of PDZ1/2-SH3::GFP with shRNA against 

SAP102 in PSD-95 knockout neurons abolished the significant increases in AMPAR 

and NMDAR transmission (AMPAR, uninfected: -70.5 ± 10.6 pA, infected: -93.6 ± 18 

pA, p=0.17; NMDAR, uninfected: 57.3 ± 12.9 pA, infected: 61.4 ± 9.4 pA, p=0.67) 

(Figure 42B). 

The results hitherto present two forms of minimal PSD-95, PDZ1/2-GK::GFP and 

PDZ1/2-SH3::GFP, which function similarly to the full-length PSD-95 in mediating 

AMPAR transmission in PSD-95 knockout neurons where SAP102 levels are 

upregulated. However, only PDZ1/2-SH3::GFP seems to be dependent on elevated 

SAP102 levels to be functional, whereas PDZ1/2-GK::GFP is not. 
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Figure 42: A minimal PSD-95 with the first two PDZ domains and the SH3 domain enhances basal 
synaptic transmission in CA1 region PSD-95 knockout neurons in a SAP102 dependent manner. 

(A) Expression of PSD-95 with the first two PDZ domains and the SH3 domain significantly 
enhances the AMPAR (p=0.004) and NMDAR transmission of the infected neurons (p=0.006). 
(Performed by Derya Akad) 

(B) Expression of PSD-95 with the first two PDZ domains and the SH3 domain in combination with 
shRNA against SAP102 blocks the significant increases in AMPAR (p=0.17) and NMDAR 
responses (p=0.67) observed with PDZ1/2-SH3::GFP expression alone. (Performed by Derya 
Akad) 

(The scale bars correspond to 50 pA and 25 ms. Green traces indicate the infected and the black traces 
indicate the control cell responses. The red marker corresponds to the average of all data points on the 
plot.) 
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4 Discussion 
 

4.1  Important optimization steps in the generation of 

molecular replacement constructs 
Protein overexpression and molecular replacement techniques via lentiviral vectors are 

powerful tools to study the function of a protein on a single cell level (Schlüter et al., 

2006). Commonly used vectors enable enhanced construct expression through a WPRE 

transcription enhancer cassette and allow the visualization of the proteins through the 

GFP-tag (Lois et al., 2002). Although these are helpful tools, they can generate 

drawbacks depending on the aim of the study. 

During my project, expression of CDK5 phosphorylation site mutants of PSD-95 

under the influence of the WPRE cassette exhibited enhancement of excitatory synaptic 

transmission for both of the mutants, although they mimicked opposite phosphorylation 

states (Figure 12). Discarding the WPRE cassette brought the expression of the 

constructs to the endogenous levels and unmasked the specific effects of the mutants on 

AMPAR and NMDAR transmission in rat CA1 region hippocampal neurons (Figure 13, 

Figure 16). In addition, the expression of the mutants with a GFP-tag interfered 

strongly with the PSD-95 – Src kinase interaction (Figure 14). This interference could 

be avoided by expressing PSD-95 mutants and GFP separately in a bicistronic construct. 

GFP is recommended as a reporter to detect the localization of the proteins and help to 

quantify the expression levels due to its small size and non-toxicity. However, it might 

still induce conformational changes of the constructs and alter the protein processing 

and flexibility (Cabantous et al., 2005). Thus, in my study I could demonstrate the 

importance of the expression level and the usage of the GFP-tag as two important 

factors to consider when using lentiviral replacement vectors.  

 

 

 

 



4. Discussion  Page 101 
 

4.2  CDK5 phosphorylation site mutants of PSD-95 have 

different effects on AMPAR and NMDAR transmission 
CDK5 is a proline-directed serine/threonine kinase which is implicated with its effect in 

the development of the nervous system, migration of the cortical neurons and 

lamination of the cortex (Chae et al., 1997; Fang et al., 2011). Besides its function in 

the development, CDK5 is also known to be an important regulator of the synaptic 

transmission, such that its malfunction is indicated in neurodegenerative diseases as in 

Alzheimer’s disease (Cruz and Tsai, 2004; Malenka and Malinow, 2011). The 

importance of CDK5 arises from its ability to phosphorylate various pre- and 

postsynaptic proteins, one of which is PSD-95 (Morabito et al., 2004; Cheung et al., 

2006). CDK5 and its co-activator p35 are highly enriched in the postsynaptic 

membranes (Humbert et al., 2000; Niethammer et al., 2000). PSD-95 is phosphorylated 

on three N-terminal aminoacid residues by CDK5 in hippocampal neurons, T19, S25 

and S35 (Morabito et al., 2004). The localization of these phosphorylation sites is 

critical, since two of the serine residues are part of the putative PEST sequence in the 

N-terminus of PSD-95. PEST sequence was indicated to be responsible of PSD-95 

ubiquitination (Colledge et al., 2003), which recently has been correlated with non-

proteosomal pathways and with no change in PSD-95 protein levels (Bianchetta et al., 

2011). However, in the absence of the PEST sequence, PSD-95 could not form dimers 

and enhance AMPAR responses in rat hippocampus (Xu et al., 2008). Thus, the CDK5 

phosphorylation state of PSD-95 might be an important determinant of its function. In 

consistency with this idea, the absence of CDK5 phosphorylation on PSD-95 or the 

blockade of the endogenous CDK5 activity demonstrated an increase in PSD-95 cluster 

size in cultured neurons (Morabito et al., 2004). However the functional consequence 

of such a phosphorylation mechanism was not examined.  

Here, I could demonstrate that the CDK5 phosphorylation state of PSD-95 indeed 

has a functional consequence on the AMPAR and NMDAR transmission in the neurons 

of the rat hippocampus CA1 region. While the replacement of the endogenous PSD-95 

by the non-phosphorylatable mutant had no effect on AMPAR and NMDAR 

transmission, phospho-mimicking mutant replacement significantly enhanced both 

AMPAR and NMDAR transmission by 30-40% (Figure 16). The increase in both 
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components might indicate a role of the phospho-mimicking mutant in the induction or 

stabilization of new synapses. Interestingly, as it will be discussed in section 4.5, 

blocking neuronal activity for 2 days by TTX caused a 4-fold increase in the AMPAR 

transmission of the phospho-mimicking mutant expressing neurons, pointing to a 

potential effect on synapse unsilencing (Figure 24). This effect could be tested by 

measuring the miniature EPSC (mEPSC) frequency of the phospho-mimicking mutant 

expressing neurons and analyzing the AMPA/NMDA EPSC ratio via minimal 

stimulation.  

These results were different from the imaging data presented by Morabito et al. 

2004, which showed that the non-phosphorylatable mutant of PSD-95 formed larger 

clusters at the synapse. Even though clustering does not necessarily need to reflect the 

effects on the function, the difference in the results may arise from the experimental 

conditions used in the studies. Imaging experiments by Morabito et al., 2004 were 

performed on dissociated hippocampal neuron cultures and the immunostaining results 

were obtained after 18-20 hours of viral infection (Morabito et al., 2004). On the other 

hand, electrophysiological recordings I performed were performed in hippocampal slice 

culture system after 5 days of the viral infection. The difference in the timing can reveal 

a temporal effect of CDK5 phosphorylation on PSD-95. Another difference could be 

due to a pathway specific effect of CDK5 phosphorylation on PSD-95. AMPAR and 

NMDAR transmission of CA1 region neurons were measured by specifically 

stimulating the Schaffer collaterals, whereas Morabito et al., 2004 demonstrated a 

global effect of the CDK5 phosphorylation on PSD-95 regarding the cluster size.  The 

possibility of having a pathway specific effect could be addressed by performing 

miniature EPSC recordings on CA1 region neurons. This method reveals the collective 

input from all synapses a neuron receives instead of the contribution from a single 

pathway. mEPSC recordings did not show a difference between the control and non-

phosphorylatable mutant expressing cells regarding the mEPSC amplitude and 

frequency (Figure 26). Interestingly, miniature EPSC recordings from the phospho-

mimicking mutant expressing neurons exhibited a significant decrease in the amplitude 

of mEPSC events, while the frequency was not altered (Figure 26). In both cases the 

control cell amplitude and frequencies were equal, suggesting that the difference 
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observed in the amplitude is certainly mutant specific. The mEPSC results from the 

phospho-mimicking mutant expressing neurons were different from the evoked EPSC 

data, implying that there might be a pathway specific effect of CDK5 phosphorylation 

on PSD-95. Nevertheless, there are additional factors which might cause this difference. 

First, it was shown that the synapse and AMPA receptor number change according to 

the distance from the soma (Andrasfalvy and Magee, 2001; Nicholson et al., 2006). 

This might be an important factor to consider while comparing evoked and mEPSC 

events. Second, recording evoked responses targets and stimulates the same synaptic 

pathway, which may cause the stabilization of these particular synapses (Groc et al., 

2006a). Lastly, Sara et al., 2011 demonstrated the distinction between two pools of 

AMPA receptors mediating evoked and spontaneous glutamatergic transmission, which 

will be targeted separately during the mEPSC recordings. 

In addition, unaltered mEPSC frequency of phospho-mimicking mutant expressing 

neurons undermines the assumption that this mutant has an impact on synapse 

unsilencing. However, one should take into consideration that a change of 30% in 

evoked AMPAR and NMDAR responses might not be detected in mEPSC recordings. 

To get a better understanding about the abundance of the silent synapses, one can apply 

minimal stimulation protocol and analyze the AMPA/NMDA EPSC ratio. 

Another possibility that could explain the difference between the imaging and the 

electrophysiological results would be non-phosphorylatable mutant of PSD-95 affecting 

the extrasynaptic receptor pool hence forming bigger clusters without affecting the 

AMPAR transmission. In order to test this possibility, I performed glutamate spill-over 

experiments on the non-phosphorylatable mutant expressing cells. The results did not 

show a difference between the infected and control cells (Figure 28), making the 

hypothesis of non-phosphorylatable mutant of PSD-95 affecting the extrasynaptic 

AMPA receptor pool very unlikely. 

 Lastly, as I could demonstrate, high protein expression levels can mask the effect 

of the mutant constructs. In my experiments, replacement of endogenous PSD-95 by 

the non-phosphorylatable mutant under the influence of WPRE cassette resulted in a 2-

fold increase in AMPAR responses, similar to the PSD-95 overexpression effect 

(Figure 12). However, the replacement construct with the endogenous levels of 
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expression abolished this increase (Figure 16). In the study of Morabito et al., 2004 

non-phosphorylatable mutant of PSD-95 was overexpressed in dissociated neuron 

culture. Considering the fact that a similar difference in the synaptic transmission could 

be reflected on the cluster size of PSD-95, replication of the imaging experiments with 

replacement constructs exhibiting endogenous levels of expression will be important.  

 

4.3 Endogenous CDK5 activity manipulation to confirm 

the mutation effects 
It is important to confirm that the mutations generated on the proteins indeed reflect the 

in vivo changes of the phosphorylation state. To address this point, I overexpressed the 

dominant-negative form of CDK5 (DNK5) and CDK5 co-activators p25 and p35 in 

CA1 region neurons, in order to compare them to the non-phosphorylatable and 

phospho-mimicking mutants of PSD-95 respectively. Expression of DNK5 showed no 

change in AMPAR and NMDAR transmission in consistency with the data obtained 

from the non-phosphorylatable mutant (Figure 17). In contrast, the enhancement in 

AMPAR and NMDAR transmission observed with the phospho-mimicking mutant was 

absent when p35 and p25 were expressed (Figure 17). Even though co-activator 

expression did not support the phenomenon observed with the phospho-mimicking 

mutant, we do not know whether the co-activators could accomplish CDK5 

overactivation. This point can be tested by blotting the targets of the CDK5, such as 

Nudel protein, with and without co-activator overexpression (Niethammer et al., 2000). 

In addition, several studies enhance the endogenous CDK5 activity via the expression 

of a p35/CDK5 co-expression construct instead of the co-activator expression alone 

(Tsai et al., 1994; Van den Haute et al., 2001; Morabito et al., 2004; Zhang et al., 2008). 

Thus, it might be necessary to generate a construct as the p35/CDK5 co-expression. To 

prove that the mutations generated on PSD-95 indeed reflect the phosphorylation 

regulation by CDK5, expression of the phospho-mimicking mutant together with 

DNK5 and the non-phosphorylatable mutant together with p35/CDK5 construct will be 

crucial.  

In such a case, it will be crucial to differentiate the effect of CDK5 phosphorylation 

mutants of PSD-95 from the effect of CDK5 activity itself, because CDK5 was shown 
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to phosphorylate GluN2A subunit of NMDA receptors at S1232 residue (Li et al., 

2001). In order to differentiate these effects, GluN2A subunit phosphorylation can be 

quantified via immunoblotting when the phosphorylation mutants of PSD-95 are 

expressed in dissociated neuronal cultures in the presence and absence of CDK5 

overactivation. 

 

4.4  Src kinase family is involved in the regulation of 

AMPAR and NMDAR transmission mediated by CDK5 

phosphorylation site mutants of PSD-95 
Recently, a mechanism regulating the tyrosine phosphorylation of NMDA receptors 

was proposed by Zhang et al., 2008. The mechanism involved the binding of Src kinase 

to PSD-95 in a CDK5 phoshorylation state-dependent manner. This binding was 

followed by the phosphorylation of the Y1472 residue on GluN2B subunit 

phosphorylation, enhancing the surface expression of GluN2B-containing NMDA 

receptors in hippocampal neurons (Zhang et al., 2008). In addition, it is well known that 

Src kinase family members not only phosphorylate NMDA receptor subunits but also 

AMPA receptor subunits (Hayashi and Huganir, 2004; Kalia et al., 2004). Although 

Zhang et al., 2008 displayed the GluN2B phosphorylation by Src kinase in a CDK5 

phosphorylation state-dependent fashion, the effect of the interaction between Src 

kinase and the CDK5 phosphorylation mutants of PSD-95 on AMPA and NMDA 

receptor function was not shown. With my study, I could demonstrate that the effect of 

the phospho-mimicking mutant of PSD-95 on AMPAR and NMDAR transmission is 

Src kinase family-dependent (Figure 18). This result also reveals a new mechanism to 

control AMPAR transmission through the interaction of PSD-95 and Src kinase, which 

is CDK5 phosphorylation state-dependent. Moreover, I could show that the 

enhancement observed in NMDAR transmission with the phospho-mimicking mutant is 

GluN2B subunit specific (Figure 19). However, electrophysiological recordings cannot 

reveal whether this enhancement is due to an increase in the phosphorylation levels of 

GluN2B or in the total numbers of GluN2B-containing receptors. Immunoblotting of 

the total GluN2B and phospho-Y1472 from the phospho-mimicking mutant expressing 
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cells demonstrated a trend towards an increase in GluN2B phosphorylation without a 

change in the total numbers of GluN2B (Figure 20). Even though the difference in the 

phosphorylation level is not significant yet, it points to an effect of phospho-mimicking 

mutant on NMDAR transmission which might go through the regulation of GluN2B 

phosphorylation. To confirm this hypothesis, N numbers for each group should be 

increased.  

In order to specify which Src kinase family member is responsible for the 

enhancement in AMPAR and NMDAR transmission mediated by the phospho-

mimicking mutant of PSD-95, I activated PAC1R and D1 receptor pathways, which 

were shown to activate Src and Fyn kinases respectively (Yang et al., 2012). 

Stimulation of PAC1Rs brought the NMDAR transmission of control cells to the same 

levels as phospho-mimicking mutant expressing cells (Figure 21). This suggests that 

the enhancement in NMDAR transmission with the phospho-mimicking mutant 

expressing cells might be Src kinase-dependent. Stimulation of D1 receptors, on the 

other hand, brought both AMPAR and NMDAR transmission of the control cells to the 

same level as the phospho-mimicking mutant expressing cells (Figure 22). These 

results imply that there might be an overlap between the pathways of the phospho-

mimicking mutant effect and D1 receptor activation involving Fyn kinase activity. At 

the same time, stimulation of PAC1Rs affected the non-phosphorylatable mutant 

expressing and control cells in the same rate, as there was no significant difference 

between the infected and control cell AMPAR and NMDAR transmission (Figure 21). 

However, activation of D1 receptors caused an enhancement in both AMPAR and 

NMDAR transmission of non-phosphorylatable mutant expressing cells (Figure 22). 

This phenotype might imply that the non-phosphorylatable mutant of PSD-95 is more 

susceptible to the D1 receptor thus Fyn kinase activation. 

However, it is not trivial to dissect the role of single Src kinase members in the 

regulation of AMPAR and NMDAR transmission mediated by the mutants, via 

stimulation of PAC1R and D1 receptor pathways, because stimulation of PAC1Rs and 

D1 receptors were shown to activate several other proteins besides Fyn and Src kinase. 

Activation of PAC1Rs in CA1 region neurons were shown to increase AMPAR 

mediated transmission through pathways involving cAMP and PKA activation (Costa 
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et al., 2009). PAC1R activation also enhances NMDAR receptor function through the 

secondary messenger pathways activating PKC and Src kinase (Macdonald et al., 2005) 

or through the exposure of GluN2B Y1474 residue for the phosphorylation by Fyn 

kinase due to the dissociation of Rack1 and NMDAR complex (Yaka et al., 2003). At 

the same time, application of PAC1R agonist, PACAP38, was shown to modulate the 

NMDA receptor function independent of the secondary messenger pathways (Liu and 

Madsen, 1997). Similarly, stimulation of D1 receptors modify NMDAR transmission in 

PKA and PKC dependent pathways (Lee et al., 2002a). Taking into account that both 

AMPA and NMDA receptor subunits possess PKA and PKC phosphorylation sites, it is 

hard to conclude the direct effect of Src and Fyn kinases on the basal synaptic 

transmission mediated by CDK5 phoshorylation mutans. A better approach would be 

the use of shRNA constructs against endogenous Src and Fyn kinases or the use of 

pYEEI peptide activating Src kinases (Yu et al., 1997) to expose their direct role on the 

function of AMPA and NMDA receptors. Combination of the shRNA constructs with 

the CDK5 phosphorylation mutants of PSD-95 would reveal the specific Src kinases 

the mutants interact with.  

 

4.5  CDK5 phosphorylation site mutants of PSD-95 

respond to activity changes differently 
NMDA receptor subunits, GluN2A and GluN2B, have been indicated with their role in 

changing the threshold of long-term potentiation and depression, and the ratio of 

GluN2A\GluN2B has been shown to modulate the plasticity of neurons (Liu et al., 

2004a; Fox et al., 2006; Cho et al., 2009). Since phospho-mimicking mutant of PSD-95 

exhibited significant increases both in AMPAR and NMDAR transmission (Figure 16), 

we asked whether these synapses start from a ‘potentiated’ state which gives rise to the 

enhanced AMPAR responses. However, blocking the GluN2B-containing NMDA 

receptors of phospho-mimicking mutant expressing neurons for two days did not 

abolish the enhancement in AMPAR transmission (Figure 23), indicating that the 

increase in AMPAR and NMDAR transmission is independent of each other.   

It was shown by Zhang and Lisman, 2012 that the overexpression effect of PSD-95 

is activity-dependent. We also hypothesized that the phospho-mimicking mutant of 
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PSD-95 could contribute to the new synapse generation and stabilization. As PSD-95 

was shown to be involved in synaptic maturation (Okabe et al., 1999; El-Husseini et al., 

2000c; Losi et al., 2003b), we wanted to see whether the expression of the 

phosphorylation mutants in a state, where the synaptic activity and maturation are 

blocked, would have an impact.  

Blockade of the neuronal activity for two days by TTX application enhanced the 

AMPAR transmission of phospho-mimicking mutant expressing cells dramatically 

(Figure 24). There was no difference observed between the non-phoshorylatable mutant 

expressing and control neurons regarding the AMPAR and NMDAR responses after the 

TTX treatment (Figure 24). It was shown by Turrigiano et al., 1998, that synaptic 

scaling is a mechanism to maintain the homeostasis of a neuronal system in response to 

the changes in the network activity. Chronic blockade of neuronal activity was shown 

to increase the mEPSC amplitudes, which was correlated with AMPA receptor function 

(Turrigiano, 2008). Follow up studies demonstrated that the PSD-95 abundance is an 

important factor for scaling down the synaptic activity. But for scaling up, the 

abundance and presence of PSD-95 was not crucial (Sun and Turrigiano, 2011). Here in 

my study, the dramatic increase in the AMPAR transmission of phospho-mimicking 

mutant expressing neurons after the activity blockade might suggest two options. First, 

PSD-95 might be involved in the homeostatic plasticity, particularly in scaling up, in a 

CDK5 phosphorylation state-dependent manner and this could be detected in an 

increase in mEPSC amplitudes after the activity blockade. Second, expression of the 

phospho-mimicking mutant of PSD-95 could induce silent synapse formation, upon 

activity blockade (Arendt et al., 2013). This effect can be demonstrated in an increase 

in mEPSC frequency after the activity blockade. 

A second activity manipulation described by Zhang and Lisman, 2012 involved the 

blockade of mGluR5 receptors to block the overexpression effect of PSD-95. In 

addition, mGluR5 was proposed to regulate the NMDAR subunit switch in neurons of 

hippocampus and visual cortex (Matta et al., 2011). In order to test the effect of 

mGluR5 activity on the regulation of AMPAR and NMDAR transmission mediated by 

CDK5 phosphorylation mutants of PSD-95, I used MPEP, a selective mGluR5 

antagonist. Application of MPEP for two days affected the basal synaptic transmission 



4. Discussion  Page 109 
 

properties of the phosphorylation mutant expressing neurons differently. MPEP 

application abolished the increase in NMDAR transmission of phospho-mimicking 

mutant expressing neurons and enhanced the AMPAR transmission of non-

phosporylatable mutant expressing neurons (Figure 25). It is known that mGluRs 

modulate the AMPAR and NMDAR function in different brain regions, including 

hippocampus (Rojas and Dingledine, 2013).  mGluR5 was shown to modulate AMPA 

receptor endocytosis (Lüscher and Huber, 2010). Thus, it is possible that the non-

phosphorylatable mutant of PSD-95 is resistant to the influence of mGluR5 activity, 

which prevents the AMPAR endocytosis upon mGluR5 activation. In addition, group 1 

mGluRs were shown to enhance NMDAR transmission in hippocampus through Src 

kinase (Benquet et al., 2002). The result from the phospho-mimicking mutant 

expressing cells shows that the mGluR5 blockade eliminates the significant increase in 

the NMDAR transmission of the infected cells. This might suggest an overlapping 

pathway for mGluR5 and phospho-mimicking mutant action which involves the Src 

kinase activity. However, as mentioned before for PAC1R and D1 receptor activation, 

stimulation of mGluR5 triggers pathways not only involving Src kinase but also PKC 

activity (Benquet et al., 2002; Rojas and Dingledine, 2013). Therefore, it is not clear 

which kind of effect mGluR5 blockade would have on the basal synaptic transmission 

properties of the CDK5 phosphorylation mutants of PSD-95. 

Nevertheless, the activity manipulation via TTX and mGluR5 blockade affects the 

mutants differently, rendering them as potential candidates not only for the regulation 

of the basal synaptic transmission, but also for the synaptic plasticity. 

Besides its effect on basal synaptic transmission and synaptic plasticity, PSD-95 

was shown to be involved in the pathogenesis of several neurodegenerative disorders, 

one of them being Alzheimer’s disease. It was shown that PSD-95 levels are reduced in 

the pathology of the Alzheimer’s disease (Roselli et al., 2005; Liu et al., 2010). 

Overactivation of NMDA receptors was indicated to be the cause of the synaptic loss of 

PSD-95 which was accompanied by a decrease in the GluA2 levels (Roselli et al., 

2005; Chang et al., 2006; Liu et al., 2010). Interestingly, Roselli et al. 2005, 

demonstrated that in rat cortical neurons, amyloid-beta induced NMDAR activation 

causes PSD-95 loss in a CDK5 activity-dependent manner. Blocking the CDK5 activity 
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or expressing the non-phosphorylatable mutant of PSD-95 could eliminate the PSD-95 

loss upon amyloid-beta application (Roselli et al., 2005). In addition, it was shown that 

the application of amyloid-beta, a component of the amyloid plaques observed in the 

disease pathology, enhances the phosphorylation of GluN2A subunit of NMDA 

receptors and the association of GluN2A, PSD-95 and Src kinase complex (Wu and 

Hou, 2010). Stimulation of this complex is one of the triggers leading to 

neurodegeneration due to NMDAR overactivation.  

Thus, besides their effect on the basal synaptic transmission, CDK5 

phosphorylation mutants of PSD-95 may contribute to the pathogenesis of Alzheimer’s 

disease through mediating the AMPAR and NMDAR transmission. However, further 

investigations should be conducted in order to conclude about the contribution of these 

mutants in the disease pathology. 

 

4.6  CDK5 phosphorylation mutants of PSD-95 regulate 

the developmental NMDAR subunit switch 
Until now, PSD-95 was suggested to be involved in the developmental NMDAR 

subunit switch in different brain regions. This hypothesis was supported by the 

experiments indicating higher levels of NR2B containing NMDA receptors in PSD-95 

knockout animals (Béïque et al., 2006; Elias et al., 2008) and also by the correlation of 

the increased PSD-95 protein levels with the synchronous elevation in the synaptic 

GluN2A-containing NMDAR levels (Sans et al., 2000; Losi et al., 2003b; Bellone and 

Nicoll, 2007). However, there is no exact mechanism known how PSD-95 mediates 

such a developmental subunit switch at synapses. In this project, I tested the 

involvement of PSD-95 in the NMDAR subunit switch of visual cortex layer 2/3 

neurons, which takes place upon eye opening.  

First, I could prove that PSD-95 indeed is involved in the developmental NMDAR 

subunit switch in visual cortex layer 2/3 neurons. Both PSD-95 knockout neurons and 

neurons expressing shRNA against endogenous PSD-95 could not establish the 

NMDAR subunit switch (Figure 30, Figure 31). Recordings from the neurons 

expressing the shRNA against endogenous PSD-95 demonstrated the importance of 

PSD-95 in this process in a cell-autonomous manner which is excludes the changes in a 
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network level due to PSD-95 deletion. Second, I could show that the phospho-

mimicking mutant of PSD-95 prevents this switch, even though the first visual stimulus 

is received (Figure 32). These results suggest a mechanism where PSD-95 mediates the 

NMDA receptor subunit switch in a CDK5 phosphorylation state-dependent manner.  

Recently it was shown that CKII plays a role in the NMDAR subunit switch of 

hippocampal neurons. CKII levels were shown to increase in hippocampus during the 

critical period. The increase in CKII levels were accompanied by a decrease in 

GluN2B-containing receptors due to the phosphorylation of GluN2B subunit followed 

by their endocytosis (Sanz-Clemente et al., 2010). Interestingly, CKII was shown to 

inhibit CDK5 activity in neurons (Lim et al., 2004). It is possible that increases in the 

CKII levels reduces the CDK5 activity thus the phosphorylation on PSD-95 and 

allowing the subunit switch to take place. Therefore, keeping PSD-95 in the 

phosphorylated configuration might interfere with the mechanism to mediate the switch. 

The regulation of the NMDAR subunit switch within the critical period has several 

important consequences. First, the composition of NMDA receptors was indicated to be 

crucial for the synaptogenesis. GluN2A overexpression in hippocampus was shown to 

reduce synapse numbers, volume and dynamics of the spines, whereas overexpression 

of GluN2B subunit maintained increased mobility of the spines (Gambrill and Barria, 

2011). Thus, delaying the subunit switch would postpone the stabilization of the 

neuronal network thus alter its activity. Second, the composition of NMDA receptor 

subunits is an important determinant for different plasticity forms, such as ocular 

dominant plasticity and metaplasticity. Cho et al., 2009 demonstrated that the ratio of 

GluN2A/GluN2B in visual cortex is important for enabling the activity-dependent 

weakening of the synapses upon monocular deprivation. In addition, the function of 

GluN2A- and GluN2B-containing receptors was shown to mediate metaplasticity by 

lowering or raising the thresholds for LTP and LTD (Yang et al., 2012). Besides the 

molecular level, the absence of GluN2A in the synapses demonstrates behavioral and 

learning deficits, such as impaired spatial learning memory, decreased anxiety and 

depression-like behavior (Boyce-Rustay and Holmes, 2006; Bannerman et al., 2008).  

With respect to all important consequences of NMDA receptor subunit composition, 

CDK5 phosphorylation mutants of PSD-95 yet present another cue how the subunit 
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switch might be regulated. In order to understand whether the mechanism involving the 

phospho-mimicking mutant of PSD-95 requires Src kinase activity and GluN2B 

phosphorylation, further experiments should be conducted by manipulating endogenous 

activity of CDK5 and Src kinase, as well as by checking the phosphorylation state of 

different AMPAR and NMDAR subunits. 

 

4.7  Minimal PSD-95 to regulate basal synaptic 

transmission in CA1 region of hippocampus 
The function of PSD-95 strongly depends on its N-terminus. Two cysteine residues, 

C3 and C5, which are located at the N-terminus of PSD-95, were shown to undergo 

palmitoylation. This modification is required for the multimerization of PSD-95 thus its 

proper membrane tethering in order to regulate the AMPA receptor function in CA1 

region hippocampal neurons (Schnell et al., 2002; Xu et al., 2008). At the same time, 

the expression of a PSD-95 mutant containing only its first two PDZ domains in 

addition to the intact N-terminus, failed to rescue AMPAR responses in the absence of 

the endogenous PSD-95 (Xu et al., 2008). However, it could enhance the AMPAR 

transmission in the presence of endogenous PSD-95 (Schnell et al., 2002). Moreover, a 

PSD-95 mutant lacking the GK and SH3 domains was shown to be not functional when 

endogenous PSD-95 was knocked-down (Xu et al., 2008). These data suggested that 

GK and SH3 domains are necessary for mediating the basal synaptic transmission in 

CA1 region hippocampal neurons, but the contribution of each domain is not clear.  

With this project to understand the minimal form of PSD-95 for the regulation of 

the basal synaptic transmission in hippocampus, we examined the roles of PDZ3, GK 

and SH3 domains separately.  

Expression of a SH3 deletion mutant of PSD-95 in combination with the shRNA 

against endogenous PSD-95 enhanced the basal synaptic transmission properties of rat 

CA1 region hippocampal neurons, implying that the SH3 domain is dispensable for the 

purpose of regulating the basal synaptic transmission (Figure 34). This result is 

supported by a recent study by Jo et al., 2010 showing a similar increase in AMPAR 

responses of neurons expressing the SH3 deletion mutant of PSD-95 when combined 

with the knock-down of endogenous PSD-95. In addition to being involved in intra-
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molecular interactions, SH3 binds to different proteins such as hippocalcin and Pyk2 

(Seabold et al., 2003; Jo et al., 2010). These proteins are indicated with their role in 

hippocampal long-term plasticity (Bartos et al., 2010; Jo et al., 2010). Thus, the results 

from the rat slice culture recordings rat suggest that SH3 might be not required for the 

regulation of basal synaptic transmission but might be necessary for the processes in 

hippocampal long-term plasticity.  

Deletion of the GK domain from PSD-95 or expression of PDZ1/2-GK could only 

partially rescue the knock-down effect of endogenous PSD-95 in CA1 region neurons 

of rat hippocampus (Figure 34, Figure 35). This partial rescue was not due to a 

functional impairment of the PSD-95 ΔGK construct, as overexpression of the mutant 

could significantly increase the AMPAR transmission of the infected neurons (Figure 

35). We asked whether this partial rescue is due to a partial knock-down effect in the 

rat slice culture system, that’s why we tested the effect of the PSD-95 ΔGK mutant on 

wild-type and PSD-95 knockout mouse background. Expression of the same mutant on 

these backgrounds showed a significant increase in AMPAR transmission similar to the 

full-length PSD-95 expression (Figure 36, Figure 38). The result from the wild-type 

and PSD-95 knockout mice slices suggested that the GK domain is not crucial for 

mediating the basal synaptic transmission in CA1 region mouse hippocampal neurons. 

This result was in consistency with the data published by Jo et al., 2010, showing that 

the replacement of endogenous PSD-95 by the mutant form lacking the GK domain still 

enhances the AMPAR transmission of hippocampal neurons. GK domain is known to 

interact with several proteins, some of which are Shank (Naisbitt et al., 1999), MAP1 

(Reese et al., 2007), SPAR (Pak et al., 2001) and GKAP/SAPAP (Kim et al., 1997; 

Takeuchi et al., 1997; Ehlers, 2003). Shank and GKAP/SAPAP are important to attach 

PSD-95 to the cytoskeleton of the postsynaptic density thus regulate the transmission 

strength of the excitatory synapses (Valtschanoff and Weinberg, 2001; Hayashi et al., 

2009). This data suggests that using its interaction partners a minimal form of PSD-95 

composing of the first two PDZ domains and the GK domain is functional to regulate 

the AMPAR transmission in PSD-95 knockout hippocampal neurons.  

We also wanted to test the involvement of PDZ3 domain in the regulation of basal 

synaptic transmission in CA1 region hippocampal neurons. For this purpose, we 
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replaced the endogenous PSD-95 with a mutant form lacking the PDZ3 domain in rat 

hippocampal slices. Recordings showed a partial rescue by the mutant, similar to the 

GK domain-lacking mutant (Figure 34). Additionally, expression of the PDZ3 lacking 

PSD-95 in the PSD-95 knockout background enhanced the AMPAR responses of the 

infected neurons significantly (Figure 38). This observation indicates that the PDZ3 

domain of PSD-95 is not necessary for the regulation of the basal synaptic transmission 

in CA1 region neurons of PSD-95 knockout animals. PDZ3 domain of PSD-95 binds to 

proteins like CRIPT, neuroligins and Frizzled which are important for the cytoskeletal 

interaction, cross-synaptic adhesions, cell polarization and synaptogenesis (Irie et al., 

1997; Niethammer et al., 1998; Wheeler et al., 2011). Regarding the results gathered 

from the PDZ3 domain-lacking mutant expression in the PSD-95 knockout slices, these 

interactions do not seem to be crucial for the regulation of basal synaptic transmission 

in CA1 region neurons of knockout animals.  

Lastly, since the PDZ3 and GK domains in the PSD-95 knockout background 

occurred to be dispensable for the regulation of the basal synaptic transmission in CA1 

region neurons, we analyzed whether a PSD-95 form composing of the first two PDZ 

domains as well as the SH3 domain would be adequate to regulate the basal synaptic 

transmission. Interestingly, this mutant form of PSD-95 could rescue the AMPAR 

transmission in PSD-95 knockout neurons in CA1 region of hippocampus (Figure 42).  

Herewith, we suggest two minimal PSD-95 forms expressing the first two PDZ 

domains and either of the GK or SH3 domain (PDZ1/2-GK and PDZ1/2-SH3) for the 

regulation of basal synaptic transmission in PSD-95 knockout background. Both of the 

mutants enhance the AMPAR transmission of CA1 region neurons in PSD-95 knockout 

slices in a similar way to the full-length PSD95. Since DLG-MAGUKs were shown to 

interact with each other through their SH3 and GK domains (McGee et al., 2001a),  it is 

possible that having only the GK or the SH3 domain in addition to the first two PDZ 

domains is enough for PSD-95 to create intermolecular connections hence regulate the 

basal synaptic transmission in the CA1 region neurons of PSD-95 knockout animals. 
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4.8 Compensation mechanism between the MAGUK 

members regarding the basal synaptic transmission in CA1 

region neurons 
Recordings obtained from the rat and PSD-95 knockout mouse slices demonstrated a 

difference in the effects of the PSD-95 ΔGK, PSD-95 ΔPDZ3 and PDZ1/2-GK mutants 

on the AMPAR transmission of CA1 region neurons.  One of the reasons which might 

cause this difference is a potential compensation mechanisms among different members 

of the MAGUK family (Elias et al., 2006; Cuthbert et al., 2007). DLG-MAGUKs were 

shown to interact with each other via their GK and SH3 domains (McGee et al., 2001a). 

To test the possibility that this could be the case in the PSD-95 knockout slices, we 

quantified the amount of PSD-93, SAP102 and SAP97 in the PSD of PSD-95 knockout 

animal brain homogenates (Figure 39). We observed a significant increase in the levels 

of SAP102 and SAP97 but not in PSD-93 levels in the PSD-95 knockout animals. In 

addition, when we tested the levels of the MAGUKs in the PSD of PSD-93 knockout 

animals, there was no significant increase in PSD-95, SAP102 and SAP97 levels. This 

implies that the compensation mechanism observed among the MAGUKs is specific for 

the PSD-95 knockout animals. At the same time, the difference in the protein levels of 

MAGUKs suggests a difference in the maturational state of rat and PSD-95 knockout 

mouse slices at the time point where the experiments were performed. Rat hippocampal 

slices are prepared when PSD-95 expression is present, thus the development takes 

place without an interruption, whereas PSD-95 knockout mouse slices cannot reach a 

mature state due to the lack of PSD-95 and keep higher levels of SAP102 and SAP97 

which traps them in an immature state. This concept is supported by the findings of 

Snyder et al., 2009 showing that the hippocampal neurons in rat mature faster than the 

neurons in mouse.  

Hence, the compensation in the levels of DLG-MAGUKs of the PSD-95 knockout 

animals and the maturation state of the knockout slices can account for the differences 

observed with the electrophysiological recordings. 
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4.9  Molecular interplay between PSD-95 and SAP102 in 

CA1 region neurons of PSD-95 knockout animals 
After observing the increased levels of SAP102 and SAP97 in PSD-95 knockout 

animals, we tested the constructs in combination with the shRNA against SAP102. 

SAP102 was shown to be important for the basal synaptic transmission in early 

development and the knock-down of SAP102 had different impacts depending on the 

developmental stage (Elias et al., 2008). In the presence of high SAP102 levels, all 

mutants of PSD-95 (PSD-95 ΔGK, PSD-95 ΔPDZ3, PSD-95 ΔSH3 (data now shown, 

see (Bonnet, 2011), PDZ1/2-GK and PDZ1/2-SH3) showed a significant increase in 

AMPAR responses of CA1 region neurons (Figure 38, Figure 41, Figure 42). However, 

knocking-down SAP102 eliminated the increase in AMPAR transmission observed 

with the PSD-95 ΔGK, PSD-95 ΔPDZ3 and PDZ1/2-SH3 mutants (Figure 40, Figure 

41, Figure 42). At the same time we tested the PSD-95 ΔGK mutant in combination 

with the shRNA against SAP97.  PSD-95 ΔGK could still enhance the AMPAR 

transmission of the infected neurons, when SAP97 was knocked-down (Figure 40). 

These results suggest that PSD-95 ΔGK, PSD-95 ΔPDZ3 and PDZ1/2-SH3 mutants 

require increased levels of SAP102 to be functional in PSD-95 knockout background 

and for PSD-95 ΔGK function SAP97 is not a requirement.  

On the other hand, knock-down of SAP102 did not affect the significant increases 

in AMPAR transmission mediated by the PSD-95 ΔSH3 (data now shown, see Bonnet, 

2011) and PDZ1/2-GK mutants (Figure 41), implying that these mutants do not require 

SAP102 for the enhancement of AMPAR responses in the PSD-95 knockout 

background.  

An interesting conclusion regarding these results was that SAP102 knock-down 

could abolish the AMPAR enhancement only if the PSD-95 mutant contained the SH3 

domain. The mutants which did not contain SH3 but the GK domain maintained the 

significant increase in AMPAR responses, even if SAP102 was knocked-down. A 

potential candidate to support the function of these mutants might be SAP97. However, 

for such a conclusion, PSD-95 ΔSH3 and PDZ1/2-GK mutants should be expressed in 

combination with shRNA against SAP97 or in a PSD-95/SAP97 knockout background. 
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If SAP97 is not required, the enhancement in AMPAR responses might be due to the 

intrinsic properties of the mutants. 

The data until now shows that the SH3 domain is required to link SAP102 to PSD-

95 either directly or through AMPAR and NMDAR complexes. GK domain, on the 

other hand, might be necessary for PSD-95 to be linked to SAP97. Such a mechanism 

would suggest a domain-specific interaction among DLG-MAGUKs, which will 

increase the complexity of the MAGUK function field. 

 

4.10 NMDAR transmission of minimal PSD-95 constructs 
During the recordings, some minor but significant changes were observed in the 

NMDAR transmission of certain minimal PSD-95 mutant constructs. In rat slice culture, 

wild-type PSD-95 and PSD-95 ΔSH3 replacement constructs enhanced both AMPAR 

and NMDAR transmission (Figure 33, Figure 34). In addition, sh102 + PSD-95 ΔGK 

and PDZ1/2-SH3 expression in the PSD-95 knockout mouse slices showed a significant 

increase (Figure 40, Figure 42), whereas sh102 + PSD-95 ΔPDZ3 construct 

demonstrated a significant decrease in NMDAR transmission of the infected neurons 

(Figure 41). 

It is known that PSD-95 is involved in the trafficking and function of AMPA 

receptors specifically (Schnell et al., 2002; Ehrlich and Malinow, 2004; Schlüter et al., 

2006; Xu et al., 2008). Nevertheless, some groups demonstrated changes on NMDAR 

transmission upon PSD-95 manipulation, which might be due to the changes in PSD-95 

levels as well as the number of neurons affected (Futai et al., 2007; Kim et al., 2007).  

PDZ3 domain was shown to interact with neuroligin, an important protein 

contributing to the synapse formation and stability (Irie et al., 1997; Washbourne et al., 

2004). The decrease observed in the NMDAR transmission of the neurons expressing 

sh102 + PSD-95 ΔPDZ3 might be due to an interruption in the PDZ3 and neuroligin 

binding. This might result in a decreased number of synapses.  However, expression of 

sh 102 + PDZ1/2-SH3, which also lacks the PDZ3 domain, exhibited normal levels of 

NMDAR transmission, making it unlikely to have decreased synapse number in the 

absence of PDZ3 domain. Thus, even though small changes in NMDAR transmission 

are observed, PSD-95 domains mainly exert their effect on AMPAR transmission.   
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4.11 Conclusions and Outlook 
With the presented studies, we could show that PSD-95 regulates the basal synaptic 

transmission in CA1 region neurons of rat hippocampus in a CDK5 phosphorylation 

state-dependent manner. This regulation requires the activity of Src kinases and the 

involvement of GluN2B-containing NMDA receptors. 

Furthermore, we could demonstrate that PSD-95 mediates the developmental 

NMDA receptor subunit switch in layer 2/3 neurons of mouse visual cortex. Expression 

of a PSD-95 form mimicking the CDK5 phosphorylation state prevents the switch from 

taking place, pointing to the potential involvement of CDK5 in the regulation of 

NMDAR subunit switch. 

Lastly, we revealed two important domains of PSD-95 (SH3 and GK) for mediating 

the basal synaptic transmission in CA1 region neurons of PSD-95 knockout mouse 

hippocampus. Presence of these domains is required for specific molecular interactions 

among the DLG-MAGUK members. SH3 domain of PSD-95 is necessary for linking 

PSD-95 to SAP102, whereas GK domain in the absence of SH3 domain regulates the 

AMPAR transmission in a SAP102 independent way. Furthermore, we could show that 

there is a difference in the maturational state of rat and PSD-95 knockout mouse 

hippocampal neurons, which may count for the differences in the electrophysiological 

results obtained from the same constructs. 

Nevertheless, there are still open questions to address to create a better 

understanding about the mechanisms regulating the above-mentioned processes. These 

questions need to be addresses by: 

- Manipulating the endogenous CDK5 and Src kinase activity to validate the 

effects of the CDK5 phosphorylation mutants of PSD-95 as well as to analyze 

the contribution of the kinases to the basal synaptic transmission in CA1 region 

neurons 

- Quantifying the phosphorylation levels of AMPAR and NMDAR subunits in 

the CDK5 phosphorylation mutant expressing and control neurons 

- Manipulating the endogenous CDK5, Src kinase and CKII activity to 

understand the mechanism of the developmental NMDAR subunit switch 

mediated by the CDK5 phosphorylation mutants of PSD-95 
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- Analyzing the requirement of GK domain in the context of PSD-95 and SAP97 

interaction. 
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