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1 Introduction 

The foundation of modern Neuroscience was laid in the last decade of the 19th 

century when the anatomical basis of the nervous system moved into the 

focus of contemporary research. Already in 1839, Theodor Schwann and 

Matthias Schleiden had recognized that plants and animal tissues are 

composed of individual cells; however, the nervous system, due to its 

complexity and the limitations of the available microscopy techniques of these 

times, had not yet been integrated into this concept. In 1873 Camillo Golgi had 

developed a method that precipitated silver-chromate in a subset of cells of a 

given neuronal tissue, which finally allowed breaking down the complexity of 

the tissue and produced meticulous anatomical descriptions. Based on these 

insights, neuroanatomists of those days interpreted the newly gained 

information differently and two contradicting theories emerged: Camillo Golgi, 

among others, favored the reticular theory, in which the nervous system was a 

sort of syncytium in which many connected cells made a net of cable-like 

structures. The other theory, the so-called ‘neuron doctrine’ predicted that 

neurons were individual cells with a polarity that stood in contact through so-

called ‘synapses’. This idea was favored by the neuroanatomist Santiago 

Ramón y Cajal and the physiologist Charles Sherrington, who had coined the 

word ‘synapse’ based on his studies about reflexes and claimed that synapses 

were the sites where reflexes interacted to allow for more complex and unified 

behavior (Levine, 2007). Later, more sophisticated approaches confirmed that 

the nervous system is made up of individual neurons and glia cells, each 

enveloped by a double-layer phospholipid membrane. The gap at a contact 

site between neurons - still called synapse – is, in most of synaptic contacts 

bridged by secretion of a transmitter substance. This mechanism allows for 

transmission of electrical signals with high precision, albeit plasticity to 

accommodate for short- and long-term adaptations on cellular level, and 

integrate finely tuned information flow into neuronal circuits. 

In parallel, also Camillo Golgi’s reticular theory proved to be correct: the 

remaining fraction of synapses, so-called ‘gap junctions’ consist of electrical 

contacts via connexones, pore-forming proteins expressed in both closely 



Introduction Chemical synapses 
 

 2 

juxtaposed plasma membranes. These form tunnel-like structures, 

bidirectional permeable to ions and low molecular weight molecules, such as 

glucose, and assure fast and energy-efficient transmission in circuits that do 

not require plasticity mechanisms (Connors and Long, 2004). 

Still to date, understanding how synapses work is of outstanding 

scientific interest since they fine-tune electrical signals through plasticity, 

comprise target sites for drugs and neurotoxins and their malfunction is the 

underlying cause of neurodegenerative conditions (Mallucci, 2009; Brose et al., 

2010).   

1.1 Chemical synapses 
With great amount of simplification it is fair to say that chemical transmission 

works by the following conserved principle in most synapses: incoming 

electrical signals in form of action potentials evoke spatially and temporally 

confined Ca2+ influx in the presynaptic neuron. This triggers the fusion of 

synaptic vesicles with the presynaptic plasma membrane releasing their 

content – a neurotransmitter – into the synaptic cleft. The transmitter binds to 

specific receptors at the postsynaptic membrane that conduct an ionic current 

translating the chemical signal back into an electrical one. Neurons are 

structurally and functionally diverse and adapted to serve a specific function in 

the circuit that they are part of. Contrasting examples are the cerebellar 

Purkinje cells and the principal neurons of the medial nucleus of the trapezoid 

body (MNTB). Purkinje cells have extensive dendritic arborization and 

integrate inputs from up to a million granule cells (Kandel et al., 2000). 

Principal cells of the MNTB, on the other hand, receive a single large 

glutamatergic input and several smaller inhibitory bouton-like synapses onto 

the soma but only possess of a small tufted dendrite with few glutamatergic 

synapses (Hamann et al., 2003; Borst and Soria van Hoeve, 2012). 

As diverse and specialized as the neurons are themselves, the more 

complex are their synapses. Synapses are computational units that do not 

only transfer information between neurons but also have the capability to 

modify that information, with both, their pre- and postsynaptic properties 

(Takahashi et al., 1995).  
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1.1.1 The synaptic vesicle cycle 
Synaptic vesicles are roundish, membrane-enveloped organelles with a 

diameter of ~40 nm and densely populated by a large variety of 

transmembrane and membrane-associated proteins (Takamori et al., 2006). 

They are build as precursor vesicles at the trans-Golgi network and 

transported through the axon along microtubules with the help of motor 

proteins called kinesins until they reach the presynaptic terminal (Okada et al., 

1995). Since the 1950s it is accepted that the currency of synaptic 

transmission is the postsynaptic current elicited by the neurotransmitter 

content of one synaptic vesicle released into the synaptic cleft. “Biological 

noise” - randomly occurring, spontaneous fusion events with a relatively sharp 

amplitude distribution, were recognized as basic units termed ‘quanta’ for 

transmission (Fatt and Katz, 1950). When transmission is evoked, the usually 

larger signal is composed of several quanta released synchronously. When 

synaptic transmission is evoked repetitively in rapid succession, 

neurotransmitter release over time is not linear, but occurs within phases of 

different kinetics which suggests that neurotransmitter is released from 

functionally distinct stores (Perry, 1953; Elmqvist and Quastel, 1965). 

According to current models, vesicles are organized in at least three 

functionally distinct pools, the readily releasable pool (RRP), the recycling pool 

and the reserve pool of vesicles (Rizzoli and Betz, 2005). The schematic in 

Figure 1.1 depicts a model of how synaptic vesicles cycle between these pools, 

and the steps they undergo to reach fusion competence. The RRP constitutes 

a small fraction of all vesicles within a terminal and RRP vesicles undergo 

exocytosis upon Ca2+ influx with a certain vesicular release probability (Pvr). 

Morphologically, these vesicles appear docked, i.e. nearby, or in direct contact 

with the specialized patch of presynaptic plasma membrane called the active 

zone (AZ). The number of AZ, also referred to as release sites (N), of a given 

presynaptic terminal, together with the quantal size (q) and Pvr, determine the 

postsynaptic current (PSC) through: 

PSC = N*Pvr*q 

This relationship can be used to determine Pvr, and N from measuring PSC 

and q experimentally (Schneggenburger et al., 1999; Clements and Silver, 

2000). In the calyx of Held, N is estimated to be between 550 and 650 (Meyer 
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et al., 2001; Sätzler et al., 2002). The number of docked vesicles was 

estimated to be ~2800 (Sätzler et al., 2002), which corresponds well to 

functional RRP estimates acquired from measurements in acute brain slices 

(Sakaba and Neher, 2001a, 2001b). 

 
Figure 1.1 The synaptic vesicle cycle  
(adapted from (Jahn and Fasshauer, 2012) 

After vesicles are released, new vesicles are recruited from the 

recycling pool, docked and primed to refill the RRP (Harata et al., 2001; Lange 

et al., 2003). Docking and priming are necessary preparatory processes for 

vesicle fusion. While docking was defined on an ultrastructural basis (Verhage 

and Sørensen, 2008), priming is a term for molecular processes enabling 

vesicles to fuse instantly in response to Ca2+ influx (Klenchin and Martin, 

2000). Some of the key steps of priming will be introduced below. When the 

RRP is depleted, replenishment of vesicles occurs with two kinetic 

components, a fast initial one with time constants of around few hundreds of 

ms (depending on the preparation and the experimental outline) and a slower 

one leading to full recovery within a few seconds. The fast phase of recovery 

is dependent on calmodulin, sensitive to global intraterminal Ca2+ and 

therefore is faster after repetitive stimulation (Dittman and Regehr, 1998; 

Wang and Kaczmarek, 1998; Sakaba and Neher, 2001a; Hosoi et al., 2007). 

The recycling pool is maintained by endocytosis, which serves at least three 

functions: (i) retrieval of membrane after vesicle fusion thereby maintaining 
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shape and superposition to the postsynaptic density, recovery of (ii) synaptic 

vesicles and (iii) synaptic vesicle proteins necessary for vesicle function 

(Saheki and Camilli, 2012). The function of the reserve pool of vesicles to 

which most of the vesicles in a terminal belong is still debated. It may take part 

in synaptic transmission in phases of intense stimulation but its physiological 

relevance is unclear (Rizzoli and Betz, 2005). Additionally, it might also serve 

as a protein buffer for soluble synaptic proteins, enriching them during basal 

activity and releasing them upon more intense activity (Denker et al., 2011). 

In conclusion, presynaptic terminals are complex structures enabling 

vesicles to cycle between functionally different pools to undergo exo- and 

endocytosis in a tightly regulated manner. The molecular machinery conferring 

release competence and mediating membrane fusion will be introduced in the 

following paragraph.  

1.1.2 Molecular players in exocytosis of synaptic vesicles 
The proteins driving vesicle fusion with the plasma membrane of the AZ are 

the so-called neuronal soluble NSF attachment receptors (SNAREs; NSF 

stands for N-ethyl-maleimide-sensitive factor) proteins, which include 

SNAP-25, synaptobrevin/VAMP (vesicle associated membrane protein) and 

syntaxin-1. They are part of the evolutionary conserved superfamily of SNARE 

proteins that mediate fusion in membrane trafficking events (Jahn and Scheller, 

2006). Characteristic of SNAREs is their SNARE-motif, which is a 60-70 amino 

acid (aa) stretch arranged in heptad repeats, without secondary protein 

structure in their monomeric state (Fasshauer et al., 1997). Most SNAREs 

have a single C-terminal transmembrane domain separated from the SNARE 

motif by a short linker. The N-termini are less conserved between subgroups 

and many SNAREs exhibit independently folded domains. In the case of 

syntaxin-1, part of the N-terminal region is a natively unfolded Habc domain that 

folds over to cover the more C-terminal SNARE motif. This conformational 

state of syntaxin-1 is referred to as its closed conformation in which it is unable 

to engage into forming SNARE complexes, thereby inhibiting vesicle fusion 

(Fernandez et al., 1998). A short, N-terminal-most domain, called the 

‘N-peptide’ in syntaxin-1 has been suggested to regulate the conformational 

switch between open and closed state by binding to other factors (Burkhardt et 

al., 2008). SNAP-25 differs the most from other SNARE proteins because it 
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lacks the transmembrane domain, and has a second SNARE motif at its 

N-terminus. In order to serve their function in membrane fusion, the correct 

combination of SNARE motifs from SNARES of opposing membranes 

associates into a core complex. Here, largely unstructured SNARE motifs 

associate spontaneously in a zipper-like fashion to form a stable complex of 

four intertwined α-helices, each from one individual SNARE motif (Fasshauer 

et al., 1997; Rice et al., 1997). The center of this complex has 16 interacting 

aa residues, which are hydrophobic except of the so called ‘0’ layer in the very 

center. There, the complex has three conserved glutamines (Q) and one 

conserved arginine (R), each from a different SNARE motif. In case of the 

neuronal SNAREs a ternary complex is formed between the two Q-SNARE 

motifs of SNAP-25, one Q-SNARE motif of syntaxin-1 and the R-SNARE motif 

of synaptobrevin. Since the ternary complex is energetically favored, 

disassembly is an energy consuming process. After fusion, disassembly and 

thereby reactivation is catalyzed by the ATPase NSF with the soluble 

NSF-attachment proteins (SNAPS) as cofactors (Söllner et al., 1993).  

During membrane fusion, the two phospholipid membrane double 

layers go through a series of intermediate states in which the lipids rearrange 

without mixing of the aqueous interiors (Kozlov and Markin, 1983; Risselada et 

al., 2011). The exact way in which SNARE complex formation promotes 

membrane fusion is still a matter of research; however, simulations suggest 

that the role of SNARE complex formation is to approximate the two 

membranes below a critical distance and deform their arrangement so that 

phospholipid molecules are tilted and the inter-membrane repulsion is reduced. 

Rate limiting is the tilting of one, or few, phospholipids of the two adjacent 

monolayers of the opposing membranes thereby connecting them in a small 

molecular stalk (Risselada and Grubmüller, 2012). Then, the transmembrane 

domains of the SNARES are thought to reduce the energy required for 

formation of a full stalk, in which the adjacent monolayers have fused to form 

an hourglass-like structure, and in the following, promote the formation of a 

fusion pore (Han et al., 2004; Risselada and Grubmüller, 2012). In vitro, 

SNARE proteins alone are sufficient to drive membrane fusion when 

reconstituted into liposomes, but with slower kinetics than in vivo. Moreover, 

the Ca2+-dependence of release is virtually absent, even in the presence of full 
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length synaptotagmin-1 (Weber et al., 1998; Schuette et al., 2004; Mahal et al., 

2002). This illustrates that SNARES alone cannot account for the 

characteristics of fast and synchronous Ca2+-dependent neurosecretion.  

Several proteins that have Ca2+-binding C2 domains can mediate the 

Ca2+-dependence of vesicle fusion. In central synapses, Synaptotagmin-1 

(syt1), syt2, syt9, doc2a and doc2b have so far been identified as Ca2+ 

sensors (Walter et al., 2011). While synaptotagmins are expressed on 

synaptic vesicles, doc2a and doc2b are cytoplasmic proteins. In addition, 

analysis of synapses deficient for the respective proteins, shows distinct roles 

in secretion: syt1 mediates synchronous release upon depolarization of the 

presynaptic terminal, whereas doc2a and doc2b are required for 

asynchronous release and spontaneous release events (Geppert et al., 1994; 

Groffen et al., 2010). However, a unifying key molecular characteristic seems 

to be Ca2+-dependent binding to the SNARE complex and phospholipids (i.e. 

membranes) via C2 domains. Here, C2A domains bind multiple Ca2+ ions in a 

cooperative manner by their negatively charged aa residues, and the C2B 

domains bind phosphatidylinositol 4,5-bisphosphate (PIP2) of the target 

membrane (Walter et al., 2011). Upon Ca2+-binding the C2B domain 

penetrates the target membrane and promotes vesicle fusion by inducing 

membrane curvature, thereby lowering the energy required for fusion (Hui et 

al., 2009; Martens et al., 2007). Additionally to this mechanism, that directly 

promotes fusion, disinhibition of full SNARE complex assembly has been 

proposed. Here syt1 would release previously ‘clamped’, only partially 

assembled SNARE complexes, upon Ca2+ binding (Popov and Poo, 1993; 

Walter et al., 2011).  

As mentioned before, upstream of the Ca2+ signal, the action of syt1 

(and/ or other Ca2+ sensors) and full SNARE complex assembly, other 

molecular players engage into preparing vesicles for exocytosis. 

Sec1/Munc18s (referred to as SM proteins) are crucial proteins for the 

regulation of secretion and conserved during evolution. Secretory systems 

deficient for SM proteins have fewer vesicles in close proximity to the 

membrane and membrane fusion is impaired, suggesting a positive role in 

secretion (Voets et al., 2001; Weimer et al., 2003; Wit et al., 2006; Verhage et 

al., 2000). Paradoxically, in neurons, Munc18-1 binds with high affinity at the 
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Habc domain of syntaxin-1 in its closed conformation, thereby inhibiting SNARE 

complex formation (Dulubova et al., 1999). Later it was found that Munc18 

also binds to the N-peptide of syntaxin-1 and further to the fully assembled 

SNARE complex (Dulubova et al., 2007; Shen et al., 2007; Burkhardt et al., 

2008). Removal of the N-peptide interaction between Munc18 and syntaxin 

does not cause dissociation of the two, but apparently abolishes the inhibitory 

action of Munc18 allowing syntaxin to engage into SNARE complex assembly 

(Burkhardt et al., 2008). This led to the hypothesis that Munc18 could first 

prevent syntaxin-1 from premature SNARE complex formation and then 

promote assembly through an activation step (Jahn and Fasshauer, 2012).  

Further regulators of exocytosis are complexins, which are highly 

charged, small (134 aa) cytosolic proteins that are conserved with more than 

97 % aa identity in rat, mouse and human (McMahon et al., 1995; Brose, 

2008). Four complexins have been found in the mammalian genome: 

complexin-1 is brain specific; complexin-2 is ubiquitously expressed, 

complexin-3 and -4 are mainly expressed in ribbon synapses of the retina, and 

to a minor extent in some brain areas (Brose, 2008). Complexins have 

unstructured N- and C-terminal sequences flanking an accessory α-helix and a 

central α-helix. The central α-helix binds to a groove on the surface of the 

ternary SNARE complex between the helices of synaptobrevin and syntaxin 

with a 1:1 stoichiometry (Pabst et al., 2000; Chen et al., 2002; Bracher et al., 

2002; Giraudo et al., 2008). These findings in combination with the 

observation that cultured neurons lacking complexin-1 and complexin-2 have 

deficiencies in synchronous Ca2+-triggered vesicle fusion but not in Ca2+-

independent, sucrose-mediated release indicate a late role in vesicle fusion 

(Reim et al., 2001). Complexins seem to arrest SNARE assembly before full 

zippering is accomplished, leaving synaptic vesicles in a fully primed, release-

ready state. Then, upon Ca2+ influx the synaptotagmin-SNARE interaction 

would release the SNARE complex from its complexin-clamp (Giraudo et al., 

2006; Schaub et al., 2006). However, the simple clamp-model failed to 

accommodate the several seemingly conflicting findings. For example, 

different studies found the frequency of spontaneous fusion events to be 

unchanged (Reim et al., 2001), reduced (Xue et al., 2010; Strenzke et al., 

2009), or increased (Yang et al., 2010; Maximov et al., 2009) in neurons 
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deficient for either complexin-1 or both, complexin-1 and -2. Therefore, 

additional to the inhibitory clamping function, complexins are believed to have 

partially facilitatory roles. In this regard, while the accessory α-helix was shown 

to mediate the inhibitory function (Xue et al., 2009; Kaeser-Woo et al., 2012), 

the facilitatory action requires  the N-terminal region (Xue et al., 2010; 

Maximov et al., 2009). In light of these seemingly conflicting findings between 

different preparations, the appealing hypothesis was raised that different 

synapses could express different isoforms of the components of the release 

machinery and/or proteins with opposing actions at different levels thereby 

fine-tuning the release properties to their needs (Neher, 2010).  

1.2 The cytomatrix of the active zone 
SNAREs and SM proteins constitute the evolutionary conserved core 

machinery for intracellular membrane fusion events. The special requirement 

for fast, Ca2+-triggered fusion of synaptic vesicles during neurosecretion is 

achieved by the interaction of regulatory proteins, like the above-mentioned 

synaptotagmins and complexins, with the release machinery (Jahn and 

Fasshauer, 2012). Another feature of synaptic vesicle fusion is its spatial 

specificity, since neurotransmitter release occurs exclusively at active zones 

directly opposing the postsynaptic receptors. This spatial specificity is not 

granted by the core release machinery, since localization of neuronal SNARE 

proteins is not confined to the active zone, but they are found in a more wide-

spread fashion in presynaptic terminals and even axons (Garcia et al., 1995). 

Although disputed, a possible explanation for this is observation involves 

lateral diffusion of synaptic vesicle proteins along the plasma membrane after 

vesicle fusion and incomplete retrieval of vesicular proteins during endocytosis 

(Fernández-Alfonso et al., 2006; Granseth et al., 2006; Opazo et al., 2010). 

However, spatial specificity of vesicle fusion must be regulated upstream of 

SNARE protein core complex formation. 

Presynaptic active zones are specialized membrane domains that harbor a 

rich network of proteins and therefore appear as electron-dense structures. 

The protein network is referred to as the cytomatrix of the active zone (CAZ) 

directly juxtaposed to the postsynaptic density (PSD). Apart from determining 

the structure of the active zone, CAZ proteins also serve modulatory functions 

in vesicle recruitment, docking, priming (Gundelfinger and Fejtova, 2011), 
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Ca2+-channel organization, coupling of Ca2+ influx to release-ready vesicles 

and coupling between exo- and endocytic sites (Haucke et al., 2011). This 

modulation lends plasticity to synapses and different complements of CAZ 

proteins likely cause synapses to differ from one another (Zhai and Bellen, 

2004). Due to the ever-increasing number of newly identified CAZ- or CAZ-

associated proteins, a clear distinction between the two groups is not defined. 

However, the most prominent CAZ components - the proteins constituting the 

core of active zones encompass at least four protein families: bassoon and 

Piccolo, Rab- interacting molecules (RIMs), Munc13s and ELKS and CAST 

(Gundelfinger and Fejtova, 2011).  

 
Figure 1.2 CAZ protein domain structures 
(A) Electron micrograph showing one active zone (AZ) and the postsynaptic density (PSD) 
within an endbulb of Held terminal (electron micrograph acquired by Dr. C. Wichmann; scale: 
50 nm). The schematic below shows important proteins involved in neurotransmitter release, 
including CAZ proteins and some of their interactions (Mittelstaedt et al., 2010). (B) Domain 
structures of CAZ proteins (Zn: zinc-finger; cc: coiled-coil; poly-Q: stretch of glutamate 
repeats; PDZ: postsynaptic density protein, Drosophila disc large tumor suppressor, zonula 
occludens-1; C1, C2: protein domains homologous to the first and second domain of protein 
kinase C, respectively ; MHD: Munc-homology domain; IWA: isoleucine, tryptophan, alanine)  

1.2.1 Bassoon at central synapses 
Bassoon was discovered in 1998 by screening rat cDNA expression libraries 

with rabbit antisera against synaptic junctional preparations (Tom Dieck et al., 

1998). In mice, the coding sequence of the bassoon gene (~13 kb), comprises 

10 exons, located on chromosome 9F and codes for a large, multi-domain 

protein with a molecular weight of ~420 kDa. Interestingly, about half of its 

coding sequence is contained in the large exon five (Tom Dieck et al., 1998). 

Unlike other CAZ proteins, bassoon and its closest homolog piccolo have 

evolved only in vertebrates (Tom Dieck et al., 1998; Altrock et al., 2003). 
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 During subcellular fractionation bassoon can be identified in 

synaptosomal and synaptic junctional fractions, while it is absent from the 

soluble and myelin protein fractions (Tom Dieck et al., 1998). 

Immunofluorescent labeling of bassoon shows a pattern restricted to 

diffraction-limited puncta in synapses, which colocalize with other CAZ 

components and decorate axons. When labeled with immuno-gold particles 

and visualized by electron microcopy, bassoon is also restricted to presynaptic 

compartments where it accumulates at the electron dense material defining 

the active zone, and intersperses between synaptic vesicles (Tom Dieck et al., 

1998; Siksou et al., 2007; Tao-Cheng, 2007). Together, these findings indicate 

that bassoon is a specialized synaptic protein targeted exclusively to the active 

zone. Bassoon has two N-terminal zinc-finger domains, three coiled-coil (cc) 

domains and a synapsin-like C-terminus containing a poly-glutamine 

sequence with several CAG-repeats (Tom Dieck et al., 1998). Biochemical 

assays have found several binding partners for bassoon, which indicate an 

important contribution of bassoon to the functional network of interactions 

within the CAZ: the cc3 domain of bassoon interacts with the cc2 domain of 

CAST (Ohtsuka et al., 2002; Takao-Rikitsu et al., 2004; Wang et al., 2009). 

Interestingly, the cc3 domain of bassoon and the cc3 domain of piccolo are 

highly homologous and the latter one competes for the interaction with the cc2 

domain of CAST (Takao-Rikitsu et al., 2004). A C-terminal region of bassoon 

encompassing aa ~3600 – 3750 including the poly-glutamate sequence bind 

to the N-terminus of Munc13-1 (Wang et al., 2009). Additionally, an interaction 

to the cc2 domain of piccolo has been described but the domain responsible 

for that interaction on the bassoon protein remains to be determined (Wang et 

al., 2009). Bassoon has further been shown to interact with the ß1 and ß4 

subunits of voltage-gated Ca2+ channels at the neuromuscular junction, but 

again, the binding site remains unclear to date. This finding could not be 

reproduced in preparations of the CNS (Chen et al., 2011; Carlson et al., 

2010) and no interaction was found with Ca2+ channels composed of α11.3, β2a, 

α2δ in HEK293 cells (Frank et al., 2010). Fluorescent immunolabeling and 

immuno-gold electron microscopy had indicated interaction of bassoon with 

synaptic vesicles, even though no biochemical evidence for a direct interaction 

is available to date. Nevertheless, this interaction could be mediated indirectly 



Introduction The cytomatrix of the active zone 
 

 12 

through other proteins. One potential candidate might be the small vesicle 

protein Mover, which has been shown to bind the C-terminal region of 

bassoon (Kremer et al., 2007). However, due to its differential expression in 

the brain, mover is unlikely to represent a general link between bassoon and 

vesicles (Kremer et al., 2007). Furthermore, the primary structure of mover 

has no predicted transmembrane domain or putative membrane anchoring 

sites, and evidence for its association with synaptic vesicles is indirect and 

relies on enrichment in the synaptosomal fraction and colocalization with 

markers of synaptic vesicles (Kremer et al., 2007).  

In cultured hippocampal neurons, partial deletion of bassoon did not 

affect synaptic transmission of otherwise intact synapses per se, but rather led 

to a higher number of silent synapses (Altrock et al., 2003). For this study, the 

partial deletion mutant Bsn∆Ex4/5 had been generated, which lacks most of 

exons four and five. These code for most of the central region of bassoon, 

hence expression of a fusion protein consisting mainly of the N-terminal 

fragment remains (Altrock et al., 2003). Functionally, the Bsn∆Ex4/5 is 

considered to be a loss of function mutant because the excised region is 

required for efficient integration into the CAZ (Dresbach et al., 2003). Another 

study on autaptic hippocampal neurons did not detect any physiological 

phenotype following shRNA-mediated knock down of bassoon (Mukherjee et 

al., 2010). In contrast, a role of bassoon in vesicle replenishment has been 

described for the high throughput synapses of cerebellar mossy fibers onto 

granule cells in the cerebellum (Hallermann et al., 2010). There, analysis of 

the Bsn∆Ex4/5 mutant and another transgenic mouse line with full deletion of the 

bassoon gene showed that the lack of bassoon caused stronger depression 

and slowed vesicle replenishment during high-frequency transmission 

(Hallermann et al., 2010). Further, the authors suggest that bassoon may act 

as a vesilce tether and emphasize the role of vesilce tethers in vesicle 

replenishment by comparing their phenotype to the loss of ribbons/ ribbon-

associated vesicles at bassoon deficient inner hair cells and the loss of 

vesicles from the T- bars of bruchpilot mutants at the Drosophila 

neuromuscular junction (Hallermann and Silver, 2013). 
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1.2.2 Bassoon at the inner hair cell ribbon-type synapse 
Inner hair cells transduce pressure oscillations into graded membrane 

potential differences and further into exocytosis rates, that follow sound events 

with highly varying intensity levels and high rates with precision (Nouvian et al., 

2006). Hair cells are specialized epithelial cells that secret glutamate by 

mechanisms that are, at first sight, reminiscent of neurotransmitter release the 

central nervous system. However, intense research has revealed considerable 

differences that presumably constitute adaptations to cope with the high 

demands for fast and indefatigable transmission (Strenzke et al., 2009; 

Nouvian et al., 2011; Pangršič et al., 2012; Rutherford and Pangršič, 2012). 

The most prominent specialization is the presynaptic ribbon, an electron dense 

structure studded with synaptic vesicles, which is also found in other sensory 

systems adapted to code graded potentials, like vestibular hair cells, 

photoreceptors and bipolar cells in the retina (Sterling and Matthews, 2005). In 

ribbon-type synapses, bassoon is localized to the patch of active zone onto 

which the ribbon is tethered (Brandstätter et al., 1999; Limbach et al., 2011) 

and is required for anchoring ribbons at active zones, probably through direct 

interaction with the ribbons main component RIBEYE/C-terminal binding 

protein 2 (CtBP2; Tom Dieck et al., 2005). Genetic deletion of bassoon 

disrupts ribbon attachment at the active zone in both, retinal photoreceptors 

(Dick et al., 2003) and inner ear hair cells (Khimich et al., 2005; Buran et al., 

2010; Frank et al., 2010) and the majority of ribbons floats in the cytosol in this 

condition. In inner hair cells, where effects of bassoon disruption have been 

studied with scrutiny, progressive loss of ribbons from AZs occurs with age. At 

~p20 only ~22 % of synapses, defined by presence of clustered Ca2+ channels, 

are ribbon-occupied, compared to ~97 % in wild-type synapses (Frank et al., 

2010). As a consequence, the distribution of synaptic vesicles changed from 

ribbon-associated and membrane-proximal in wild-type, to a seemingly 

random distribution in ribbon-less AZs with a total reduction of membrane-

proximal vesicles to 50 % (Frank et al., 2010). The number of Ca2+ channels 

per AZ was reduced and the shape of the Ca2+ channel clusters changed from 

a striped to a spot-like pattern. During depolarization, this leads to decreased 

whole-cell Ca2+ currents and reduced Ca2+ microdomains at individual AZs 

(Frank et al., 2010). While the spatial coupling of Ca2+ influx and exocytosis 
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remains unaltered, exocytosis is reduced, both from the RRP and replenished 

vesicles (Khimich et al., 2005; Frank et al., 2010). However, whether these 

changes are primarily caused by the lack of bassoon or secondarily arise from 

the loss of the synaptic ribbons remains to be determined. Consistent with the 

reduction of exocytosis from inner hair cells, single unit recordings of spiral 

ganglion neurons exhibit reduced spontaneous and evoked spiking rates 

during in vivo recordings while thresholds and dynamic range were unchanged 

(Buran et al., 2010). Synchronous compound activity of the auditory nerve is 

strongly diminished in mice deficient for bassoon, evident from an almost ten-

fold reduction in the amplitude of the spiral ganglion compound action potential 

(Khimich et al., 2005).  

Despite intense research a clear, general role of bassoon for 

presynaptic function has not been identified. While bassoon is generally found 

in vertebrate active zones of central synapses, neuromuscular junctions as 

well as sensory ribbon synapses, it seems to serve different, only partially 

overlapping roles at these synapses.  

1.2.3 Piccolo 
Of all known CAZ proteins, piccolo (also called aczonin) exhibits highest 

homology with bassoon. The two genes may have emerged from gene 

duplication, as evident from their gene structure: similar to bassoon, piccolo 

has most of its coding sequence in few large exons (exons five and six), 

though, unlike bassoon, piccolo has more numerous small exons at its 3’ end 

(Fenster and Garner, 2002). The piccolo gene codes for a protein of ~5050 aa 

and a molecular weight of ~550 kDa (Wang et al., 1999; Fenster et al., 2000). 

The N-terminus has two zinc-finger domains followed by three cc domains in 

the central part of the protein. Piccolo and bassoon share 10 regions of high 

homology (50 – 80 % sequence identity) referred to as Piccolo-Bassoon 

homology domains (Fenster et al., 2000), which include the zinc-finger 

domains. Furthermore, these zinc-finger domains show homology to the zinc-

finger domains of rabphilin-3A and RIM (40 % and 39 % respectively) and 

interact with dual prenylated rab3A and Vamp2 receptor (PRA1; Fenster et al., 

2000). PRA1 had been identified by virtue of its interaction with rab3 (Martincic 

et al., 1997) and thereby likely constitutes a link between piccolo and synaptic 

vesicles (Fenster et al., 2000). The C-terminus is the region that differs most 
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between the two proteins: whilst bassoon has a poly-glutamate stretch, piccolo 

has a PDZ (PDZ stands for: postsynaptic density protein (PSD95), Drosophila 

disc large tumor suppressor (Dlg1) and zonula occludens-1 protein (zo-1)) and 

two C2 domains. The C2A domain binds Ca2+ ions which induces a 

conformational switch in the domain and leads to its dimerization as well as to 

Ca2+-dependent phospholipid binding (Gerber et al., 2001). However, the 

Ca2+-affinity is too low, and the conformational change too slow to serve as a 

Ca2+ sensor for vesicle release directly. Rather, it can be assumed piccolo 

senses the build up of residual Ca2+ with potential implications for short-term 

plasticity (Gerber et al., 2001), although, when mutated to abolish Ca2+ binding, 

cultured hippocampal neurons show normal responses to train stimulation. In 

fact, even when full-length piccolo levels are reduced to less than 5 % no 

electrophysiological or ultrastructural phenotypes can be detected (Mukherjee 

et al., 2010). However, due to the discovery of other piccolo isoforms that 

study likely underestimates the role of piccolo in presynaptic function (Waites 

et al., 2011). The C2B domain is alternatively spliced in its entirety, but does 

not bind Ca2+ and has not been found to interact with any other CAZ proteins 

to date (Wang et al., 1999; Fenster and Garner, 2002). In the central region, 

piccolo exhibits a short prolin-rich sequence that interacts with profilin, a small 

protein involved in actin-dynamics expressed in presynaptic terminals (Wang 

et al., 1999). Another prolin-rich region, on the N-terminus of piccolo interacts 

with actin binding protein 1 (Abp1;(Fenster et al., 2003). Abp1 interacts with 

filamentous actin as well as with dynamin, a GTPase that mediates fission of 

endocytic vesicles (Kessels et al., 2001). As mentioned above the cc3 domain 

of piccolo competes with the cc3 domain of bassoon for interaction with the 

cc2 domain of CAST (Takao-Rikitsu et al., 2004). Together the interaction 

scheme suggests that piccolo regulates the presynaptic actin cytoskeleton, 

and forms a link between endo- and exocytosis of synaptic vesicles by virtue 

of its large size and interaction partners. 

1.2.4 RIM 
Rabs are small GTP-binding proteins that are involved in membrane trafficking 

events and are believed to act through effector proteins in a GTP-dependent 

manner. Neuronal Rab3 isoforms regulate neurotransmitter release and are 

found on synaptic vesicles. On the search for putative Rab effectors regulating 
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synaptic vesicle release, RIM was discovered by a yeast two-hybrid screen of 

Rab3C against a rat brain cDNA library (Wang et al., 1997). The discovered 

protein contained 1553 amino acids organized in several domains (from N- to 

C-terminus): (i) a composite domain consisting of a zinc-finger surrounded by 

α-helices, followed by an alanin- and prolin-rich region; (ii) a central PDZ 

domain followed by a C2 domain (called C2A) and (iii) a second C-terminal C2 

domain (C2B). This domains structure seems to be evolutionary conserved 

and closely resembles the RIM protein of C. elegans (Wang et al., 1997; 

Südhof, 2012). However, the vertebrate genome contains at least four 

identified RIM genes (RIM1 to RIM4) compared to invertebrates that seem to 

express only a single version of RIM. Vertebrate RIM1 occurs in two 

isoforms/splice variants: RIM1α, which was the first one to be described and 

exhibits the above described domain structure, and RIM1β, which lacks the 

N-terminal α-helix – the domain which mediates the interaction with Rab3 

(Kaeser et al., 2008; Fukuda, 2003). The RIM2 gene codes for RIM2α, which 

contains all the domains described for RIM1α and only differs marginally from 

RIM1, and two shorter variants, RIM2β and RIM2γ (Wang et al., 2000). RIM2β 

lacks the composite domain comprising α-helices and the zinc-finger, while the 

RIM2γ protein consists only of the C-terminal C2B domain followed by a 

unique sequence (Wang and Südhof, 2003). RIM3 and RIM4 code for one 

protein each, called RIM3γ and RIM4γ respectively, that, similar to RIM2γ only 

consist of the C2B domain and a short N-terminal γ-specific sequence. The 

C2B domain, common to all RIM proteins, mediates the interaction with 

α-liprins and synaptotagmin-1. However, unlike the C2 domains in 

synaptotagmin-1 they do not bind Ca2+ since they lack the aspartate residues 

for coordination of the cation (Wang and Südhof, 2003; Coppola et al., 2001). 

The function of the C2A domain remains to be clarified. Finally, the central 

PDZ domain has been shown to interact with ELKS (see below) and N- and 

P-/Q-type Ca2+ channels. The latter interaction is crucial for recruiting Ca2+ 

channels to the presynaptic active zone. Genetic deletion of all RIM isoforms 

containing the PDZ domain results not only in a priming deficit (described in 

more detail below), but also leads to impaired presynaptic Ca2+ channel 

clustering, reduced depolarization-induced Ca2+ influx and decreased Ca2+ 

channel to vesicle coupling (Han et al., 2011; Kaeser et al., 2011). The 
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N-terminal α-helix binds to the vesicular Rab3, which provides one candidate 

mechanism for the tight coupling of synaptic vesicles to Ca2+ channels. 

Additionally, the adjacent zinc-finger domain binds to the C2A domain of 

Munc13-1. In RIM deficient synapses, or when the RIM/Munc13-1 interaction 

is disrupted, synaptic vesicles fail to reach fusion competence (Betz et al., 

2001). In the absence of the RIM zinc-finger domain, Munc13-1 forms 

homodimers via its C2A domain (Lu et al., 2006), which presumably 

represents an inhibited state. Disinhibition, or activation is therefore mediated 

by binding to RIM, enabling Munc13-1 to exert its priming function and convey 

fusion competence to synaptic vesicles. 

1.2.5 Munc13 
Munc13s are the mammalian homologues of unc-13, a paralyzed C. elegans 

mutant associated with deficits in neurotransmitter release (Brenner, 1974). 

Mammals express three Munc13 genes in the brain, Munc13-1, Munc13-2 and 

Munc13-3 (Brose et al., 1995). The Munc13-2 gene has two promotors, driving 

expression of the ubiquitously expressed isoform ubMunc13-2 and the brain 

specific isoform bMunc13-2 (Koch et al., 2000). They exhibit molecular 

weights between 196 kDa and 222 kDa. Around 50 % of the C-terminal amino 

acid sequence is identical between the three Munc13 isoforms. Unlike the very 

conserved and homologous amino acid sequences in the C-terminal two-thirds, 

the N-termini exhibit heterogeneity. Accordingly, while the N-terminal C2 (C2A) 

domain in Munc13-1 is absent from the other isoforms, the central C1 and C2 

(C2B) domain, as well as the C-terminal C2 (C2C) domain, are part of all 

Munc13 proteins and evolutionary conserved (Maruyama and Brenner, 1991; 

Brose et al., 1995). The C2 domains are homologous to the Ca2+-binding 

domains of protein kinase C (PKC) and, alike PKC, the central C1 domain 

binds diacylglycerol and phorbol esters (Kazanietz et al., 1995; Betz et al., 

1998). A conserved domain of Munc13-1 between the C2B and the C2C 

domains binds to the N-terminus of syntaxin and the core complex of SNAREs. 

This domain shares the binding site on syntaxin with Munc18, which led to the 

hypothesis that Munc13-1, analogous to Munc18 (see above), could be 

necessary for synaptic vesicles docking to active zones (Betz et al., 1997). 

Ultrastructural analysis of cultured glutamatergic hippocampal neurons lacking 

Munc13-1 showed that, despite total loss of evoked and sucrose-mediated 
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EPSCs in most, but not all synapses, the number of docked vesicles was 

unchanged (Augustin et al., 1999). Hence, the action of Munc13-1 was 

attributed to a maturation step after vesicle docking but before SNARE-

mediated fusion, termed as ‘priming’. A more recent study applying high-

pressure freezing and electron tomography, which allows for better tissue 

preservation and avoids aldehyde-induced artifacts, questions the sequential 

occurrence of docking and priming as discrete steps (Siksou et al., 2009). 

Synaptic vesicles of Munc13-deficient AZs were no longer found in close 

contact to the plasma membrane but remained tethered at some distance 

through filamentous structures (Siksou et al., 2009). Further analysis of 

hippocampal neurons from double knock-outs of Munc13-1 and Munc13-2, 

revealed that the portion of glutamatergic terminals that was unaffected by 

Munc13-1 deletion completely depended on Munc13-2, and that GABAergic 

hippocampal neurons expressed both Munc13s in a redundant fashion 

(Varoqueaux et al., 2002). Munc13s appear to exert their crucial role for 

synaptic vesicle maturation through the conserved domain between the C2B 

and C2C domain mentioned above. This large domain, called MUN domain, 

(aa 859-1531 in Munc13-1) folds autonomously in α-helical fashion and is 

sufficient to rescue the priming deficit in hippocampal neurons lacking 

Munc13s (Basu et al., 2005). 

1.2.6 CAST and ELKS 
CAST stands for CAZ-associated structural protein, comprises of 957 aa and 

was discovered by comparing Western blot intensities from PSD and P2 

fractions of subcellular fractionation of rat brain lysates. As the other CAZ 

proteins, CAST is enriched in the PSD fraction and colocalizes with bassoon in 

neuronal cultures (Ohtsuka et al., 2002). The protein ELKS consists of 948 aa 

and shares 71 % aa identity with CAST (Wang et al., 2002). ELKS was 

discovered in papillary carcinoma where the translocation of the receptor-type 

tyrosine kinase gene RET led to the expression of ELKS-RET fusion mRNA 

(Nakata et al., 1999). ELKS was named after the one-letter code of its most 

frequent aa, which together represent more than 41 % of ELKS: glutamate (E), 

leucine (L), lysine (K), and serine (S). ELKS is expressed in at least five 

alternatively spliced isoforms in a tissue-specific manner (Nakata et al., 1999). 

Neurons express ELKSε, which is ubiquitously found, and the neuron specific 
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ELKSα isoforms (Wang et al., 2002; Hida and Ohtsuka, 2010). CAST and 

ELKSα have a conserved domain structure consisting of four cc domains, a C-

terminal IWA motif, only consisting of an isoleucine, a tryptophan and an 

alanine residue. The IWA motif of CAST and ELKSα bind to the PDZ domain 

of RIM1 and are CAZ specific. ELKSε lacks the IWA motif, does not interact 

with RIM1 and is not enriched in active zones (Wang et al., 2002; Hida and 

Ohtsuka, 2010). The N-terminal 680 aa, including the first two cc domains, are 

required for correct targeting to the active zone in neuronal cultures, as judged 

from colocalization with bassoon (Ohtsuka et al., 2002). The cc2 domain of 

CAST binds to the cc3 domain of bassoon, which is a competitive interaction 

to the binding of CAST to piccolo (Takao-Rikitsu et al., 2004). The domain 

structure and the biochemical interactions support the notion that CAST is a 

scaffold protein involved in organizing the CAZ. When knocked-out, CAST 

deficiency has no impact on excitatory synaptic transmission in neuronal 

cultures. However, CAST is required for excitatory synaptic transmission at 

retinal ribbon synapses. When absent, the ribbon-type active zones are much 

smaller and synaptic transmission is impaired (Tom Dieck et al., 2012). 

Moreover, inhibitory synapses exhibit an enlarged RRP size suggesting that 

CAST has an inhibitory effect on priming (Kaeser et al., 2009). 

While ELKSα has a postulated role in organizing the CAZ as a scaffold protein, 

ELKSε probably functions in Rab6-dependent membrane trafficking due to its 

ubiquitous expression, absence from the CAZ and GTP-dependent interaction 

with Rab6 (Monier et al., 2002; Wang et al., 2002). 

In C. elegans, ELKS is not required for any synapse function tested so 

far (Deken et al., 2005). However, Drosophila expresses the protein bruchpilot, 

which, albeit being much larger (~1740 aa), shares high homology with CAST 

and ELKS with the N-terminal three cc domains (Wagh et al., 2006). Flies 

lacking bruchpilot exhibit impaired presynaptic AZ morphology, Ca2+ channel 

clustering and Ca2+ influx to exocytosis coupling as well as vesicle 

replenishment (Kittel et al., 2006; Wagh et al., 2006; Hallermann et al., 2010). 

Evidently, bruchpilot has a major role in AZ formation and vesicle dynamics at 

Drosophila synapses. Even though bruchpilot shares higher homology with 

CAST, its larger size and function are more reminiscent of bassoon in ribbon-

type synapses (see above). 
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1.2.7 CAZ proteins and synapse formation 
An additional role for bassoon and piccolo in synapse formation has been 

proposed based on the following observations. 1) Bassoon and piccolo are 

highly expressed in phases of neuronal differentiation and synapse formation, 

sorted to axonal growth cones and colocalize with sites of presynaptic vesicle 

cycling as soon as these are active (Zhai et al., 2000, 2001). 2) Vesicle cycling 

was observed as soon as 30 minutes after formation of pre- and postsynaptic 

contact sites, which suggests that active zones are build from pre-formed 

complexes - potentially build upon the scaffold proteins bassoon and/or 

piccolo - instead of one-by-one integration of components (Friedman et al., 

2000). 3) Piccolo and bassoon are localized to 80 nm vesicles with electron-

dense interior that travel along axons to fuse with the plasma membrane at 

sites of nascent synapses (Zhai et al., 2001). These vesicles were called 

Piccolo-Bassoon transport vesicles (PTVs) and carry crucial proteins for active 

zone function. Cultured hippocampal neurons appear to integrate two to three 

PTVs to build an active zone (Shapira et al., 2003). 4) Without piccolo and 

bassoon CAST accumulates at the Golgi and is not transported to the active 

zone (Maas et al., 2012). In contrast, Munc13-1 does not accumulate at the 

Golgi but exits it through different kind of transport vesicles and RIM1 joins 

Golgi-derived transport vesicles at a post-Golgi step. Since both, Munc13 and 

RIM1 were found to incorporate into active zone membrane patches along 

with piccolo and bassoon it is likely that PTVs undergo maturation to recruit 

other active zone proteins along their way to the AZ (Shapira et al., 2003; 

Maas et al., 2012). 

1.3 The auditory system 
Compression and rarefaction of particles in a medium propagate through 

mechanical interaction between the particles of the medium as longitudinal 

waves. Generally, waves are characterized by their waveform, amplitude, 

phase and frequency. For pressure oscillations, the range between ~20 µPa to 

~63 Pa, at frequencies between ~20 to ~20000 Hz are perceived by the 

human auditory system as sound. Sound waves travelling through air reach 

the middle ear, are transmitted onto the tympanic membrane and further onto 

the three ossicles (malleus, incus and stapes). The stapes is attached to the 

round window of the cochlea, which is a fluid filled spiral-shaped bone 
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harboring the sensory epithelium - the organ of Corti - for sound perception. 

Here, inner hair cells transform the deflection of their apical stereocilia into a 

chemical signal: pressure waves in the endolymph periodically bend these 

stereocilia, thereby evoking periodic potassium influx through 

mechanotransduction channels causing graded depolarization of the inner hair 

cell (Kandel et al., 2000). This depolarization causes Ca2+ influx through 

voltage-dependent Ca2+ channels at the basal pole, which triggers vesicle 

fusion at ribbon-type active zones to release glutamate into the synaptic cleft 

(Nouvian et al., 2006). Opposed to each ribbon-type active zone, a single 

postsynaptic bouton of a spiral ganglion neuron encodes suprathreshold 

EPSPs into action potentials (Rutherford et al., 2012). The spiral ganglion 

neurons project to the cochlear nucleus in the brainstem where the auditory 

nerve branches up to form excitatory, glutamatergic synapses with the 

principal cells of the cochlear nucleus (Fekete et al., 1984). This is the starting 

point of parallel ascending pathways that convey different aspects of sound. 

Hence, synapses and cell types within the cochlear nucleus differ according to 

their function (Oertel, 1999; Cao and Oertel, 2010). In the anteroventral 

division of the cochlear nucleus (AVCN), the main cell types are bushy and 

stellate cells (Wu and Oertel, 1984). The latter can further be subdivided into 

D stellate and T stellate cells depending on if they project dorsalwards or to 

the trapezoid body (Oertel et al., 1990). Moreover, depending on their dendritic 

organization they are referred to as planar and radiate neurons (Doucet and 

Ryugo, 1997). In response to sound the planar or T stellate cells exhibit tonic, 

sharply frequency-tuned action potential firing, hence, they were referred to as 

‘choppers’ (Smith and Rhode, 1989). Radiate or D stellate cells are onset-

choppers because they transiently exhibit tonic spiking to sound and they are 

excited by a broader range of frequencies (Smith and Rhode, 1989). D stellate 

cells are glycinergic and provide inhibitory frequency sidebands to ipsi- and 

contralateral T stellate cells (Oertel et al., 2011). The firing rate of T stellate 

cells scales with sound pressure level, hence, T stellate cells are thought to 

report on sound intensity (Oertel et al., 2011). 

Also bushy cells are subdivided into two groups: spherical bushy cells 

(SBC) and globular bushy cells (GBC; Tolbert and Morest, 1982; Cao and 

Oertel, 2010). The firing pattern of SBCs is reminiscent of the firing pattern of 
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auditory nerve fibers and therefore referred to as ‘primary-like’. It is 

characterized by a fast onset with high onset rate followed by a strong 

adaptation that quickly reaches a plateau (Rhode and Greenberg, 1992). 

GBCs are sharply frequency-tuned and exhibit a ‘primary-like with notch’ firing 

pattern in response to sound; after a brief onset and a break in firing due to the 

refractory period, GBCs fire throughout at a low, adapted rate (Rhode and 

Greenberg, 1992). Their role is to preserve timing of stimulus onset and phase 

by placing their spike at a specific time during the phase of the sound wave, a 

phenomenon called phase-locking. This timing information is required for 

sound source localization, and for ‘understanding’ complex sounds like during 

speech perception (Oertel, 2005) 

Mammals make use of binaural cues for sound-source localization in 

the horizontal plane, which are interaural time differences (ITDs) and interaural 

level differences (ILDs). The two cues are processed in parallel in many 

mammals, but their importance varies between species and depends on 

sound frequency (Grothe et al., 2010). While ILDs are mostly important for 

high frequency sounds due to poor attenuation of low frequencies, ITDs 

become very small for high frequencies and hence are mainly used by larger, 

low-frequency hearing mammals (Grothe et al., 2010). Both, ITDs and ILDs 

are processed in the nuclei of the auditory brainstem that receive inputs from 

bushy cells in the AVCN. ILDs are processed in the lateral superior olive 

(LSO), which receives excitatory input from ipsilateral SBCs and inhibitory 

input from contralateral GBCs indirectly through the MNTB (Park et al., 1996). 

GBCs exhibit better phase-locking than auditory nerve fibers and SBCs 

through higher convergence of inputs through endbulb synapses (Joris et al., 

1994a, 1994b). The temporal precision is conveyed through the GBC - MNTB 

pathway which comprises thick axons and fast transmission at the calyx of 

Held synapse. Thereby, despite longer distance and an additional synaptic 

relay, timing of inhibition of MNTB principal neurons onto LSO neurons 

coincides with ipsilateral excitation from SBCs, (Held, 1893; Borst and Soria 

van Hoeve, 2012). The firing rate of a given LSO neuron is intermediate when 

sound to both ears is of equal level and either reduced or increased when the 

contralateral or the ipsilateral ear receives louder input, respectively (Park et 

al., 2004). ITDs are processed primarily in the MSO. Here, a single principal 
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neuron receives excitatory input onto its dendrites from ipsi- and contralateral 

SBCs, and inhibitory input from the ipsilateral lateral nucleus of the trapezoid 

body (LNTB ) and the contralateral MNTB onto the soma (Grothe et al., 2010). 

While the axons of ipsilateral SBCs innervating one isofrequency band are of 

roughly the same length, the axon lengths reaching the same MSO targets 

from the contralateral side vary systematically. Through this arrangement, 

cells in the MSO of one frequency band are activated depending on the angle 

of the sound source in the horizontal plane (Carr and Konishi, 1990; Smith et 

al., 1993). This delay line model, termed ‘Jeffress model’ (Jeffress, 1948) is 

widely accepted in the avian ITD detection system but a matter of controversy 

in mammals (Grothe et al., 2010). Here, compelling anatomical evidence for 

hard-wired delay lines is lacking but rather the precisely timed inhibition is 

thought to provide internal delays (Grothe et al., 2010).  

1.3.1 The endbulb of Held synapse 
Synapses of auditory nerve fibers with bushy cells are large, calyx-shaped 

axo-somatic terminals called endbulbs of Held (Held, 1893). In mice, one to 

three endbulbs converge onto individual SBCs and four to six onto GBCs 

respectively (Cao and Oertel, 2010); however, the number of auditory nerve 

fibers converging onto GBCs differs considerably between species (Spirou et 

al., 2005). Serial sectioning and reconstruction of electronmicrographs of a 

GBC contacted by four endbulbs in rat has shown that endbulbs promote a 

high number of closely spaced release sites. In these examples, PSD counts 

ranged from 85 to 217 with a mean nearest neighbor distance of ~0.15 µm. 

PSDs varied in size between 0.01 – 0.18 µm2 with a mean value of 0.066 µm2. 

The mean number of docked vesicles per PSD was between 2.1 and 14.8 but 

scaled with PSD area (Nicol and Walmsley, 2002). Endbulb Ca2+ currents in 

mice are sensitive to ω-agatoxin IVA, showing that endbulbs express P/Q-type 

voltage-gated Ca2+ channels (Lin et al., 2011). When compared to the well-

studied calyx of Held, endbulbs are 4 times smaller, and have  ~3 times 

smaller Ca2+ current amplitudes leading to a significantly higher Ca2+ current 

density in endbulbs. The RRP of endbulbs, judged from capacitance 

measurements, comprises ~1050 vesicles (Lin et al., 2011). Morphologically, 

mature endbulbs exhibit strong fenestration for efficient glutamate clearance 

(Ryugo et al., 1996; Limb and Ryugo, 2000). In summary, the endbulb of Held 



Introduction The auditory system 
 

 24 

terminus features a large pool of vesicles by harboring many release sites and 

a high Ca2+ current density assuring precise and secure transmission. 

PSDs on bushy cell somata harbor Ca2+-permeable AMPA receptors 

composed of the fast desensitizing ‘flop’ isoforms (Sommer et al., 1990) of the 

GluR3 and GluR4 subunits, which feature fast EPSC kinetics (Wang et al., 

1998; Gardner et al., 2001). The presence of low-voltage activated K+ 

conductance (gKL) assures fast repolarization after large excitatory 

postsynaptic potentials (EPSP) that evoke one (or few) sharply timed action 

potential (Oertel, 1983; Manis and Marx, 1991; McGinley and Oertel, 2006). At 

rest, partial activation of gKL is balanced by partial activation of 

hyperpolarization-activated conductance (gh) leading to low input resistance 

and short membrane time constants (Cao and Oertel, 2011). 

The auditory system is specialized for ultrafast and precise signaling 

and therefore harbors synapses that are structurally and functionally adapted 

to cope with this challenge; the endbulb of Held terminal and postsynaptic 

bushy cell represent good examples for this. Furthermore, the capacity for fast 

and efficient vesicle cycling makes these synapses ideal models to study CAZ 

protein function.  

1.3.2 Homeostatic plasticity in the auditory system 
Generally, homeostatic plasticity mechanisms seek to maintain or stabilize the 

activity of a neuron or a circuit when facing perturbations. For this concept to 

work, a given neuron has to have means to compare its activity to a set point 

and initiate mechanisms to counter steer when deviating from it. Many 

phenomena have been integrated under the term ‘homeostatic plasticity’, 

which include post- and presynaptic, as well as local and global effects with 

diverse underlying mechanisms (Turrigiano, 2007; Pozo and Goda, 2010). To 

date, the molecular basis of the postulated set point and most mechanisms 

remain to be determined (Turrigiano, 2007; Pozo and Goda, 2010). Generally, 

two types of homeostatic mechanisms can be distinguished by site of action: 

(i) synaptic homeostasis - when changes occur at synapse level and (ii) 

intrinsic homeostasis - when a neuron changes its intrinsic excitability e.g. by 

changing its inward to outward conductance balance (Turrigiano, 2011). When 

it comes to synaptic homeostasis, synaptic scaling of excitatory synapses is 

probably the best-described phenomenon. Here, the strength of all excitatory 
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synapses are up- or down- regulated by increasing the postsynaptic 

receptiveness, i.e. the miniature excitatory postsynaptic current (mEPSC) 

amplitude, without changing their relative strengths (Turrigiano et al., 1998; 

Turrigiano, 2011). 

In physiological conditions, the auditory system accommodates cells 

with a wide range of activity levels. Spiral ganglion neurons can broadly be 

categorized into fibers with high spontaneous rate (SR) and fibers with low SR 

(Winter et al., 1990). In cats, endbulbs of Held of low SR fibers exhibit PSD 

sizes of almost double the size of high SR fibers (Ryugo et al., 1996). 

Furthermore, the auditory system promotes a place code in which cells are 

arranged in a tonotopic fashion according to the responsiveness to a certain 

characteristic frequency (Bourk et al., 1981; Kandler et al., 2009). In principal 

cells of the nucleus laminaris and the nucleus magnocellularis (the equivalent 

structure to the AVCN of mammals) of the chick, axon initial segments (AIS) 

are subject to adaptation according to their characteristic frequency. The AIS 

of neurons with high characteristic frequency are shorter, harbor more Na+ 

channels and are located more distant from the synaptic inputs compared to 

the AIS of neurons with low characteristic frequency (Kuba et al., 2006). To 

date, it remains to be determined if these processes also operate in the 

mammalian auditory system.  

Additionally to these physiologically occurring adaptations, central 

auditory neurons are subject to plasticity following sensory deprivation. This 

has been studied in either genetically deaf animals or, animals deafened by 

damage or removal of the cochlea. Here, bushy cells of genetically deaf cats 

are ~40 % smaller (Saada et al., 1996) but active zones of endbulbs of Held 

are larger than active zones of normal hearing cats (Baker et al., 2010). 

Intermediate phenotypes were found for animals with elevated thresholds, and 

the synaptic phenotype of completely deaf animals could be ameliorated by 

stimulation of auditory nerve fibers with cochlea implants (Ryugo et al., 2005; 

O’Neil et al., 2011). Cross-sectional bushy cell area in gerbils is reduced 

significantly as soon as four hours after blockade of auditory nerve activity with 

tetrodotoxin (TTX; Pasic and Rubel, 1989). After cessation of TTX blockade, 

bushy cell size recovers fully within 7 days (Pasic et al., 1994). In contrast, 

mutant mice that completely lack auditory nerve activity, exhibit extensive 
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presynaptic changes. In these animals, endbulb terminals have higher 

vesicular release probabilities, increased numbers of asynchronous events 

after train stimulation and larger evoked excitatory postsynaptic current 

(eEPSC) amplitudes compared to wild-type controls. Short-term depression 

during high frequency stimulation is more pronounced in endbulb synapses of 

deaf mice, but can be relieved by bath application of EGTA-AM, leading to the 

hypothesis that endogenous Ca2+ buffering is compromised in deaf mice 

(Oleskevich and Walmsley, 2002; Oleskevich et al., 2004). On the contrary, 

mouse models of age-related hearing-loss display lowered release probability, 

smaller mEPSC amplitudes (Wang and Manis, 2005) and normal depression 

during train stimulation (Wang and Manis, 2006). Noise-induced hearing loss 

has yet other consequences for the physiology of synapses in the cochlear 

nucleus. Here, mEPSCs recorded from stellate cells have significantly 

increased mEPSC amplitudes and frequency (Rich et al., 2010). It is 

reasonable to assume that plasticity following noise-trauma, age-related 

hearing loss and congenital deafness relies on different mechanisms. Hearing-

loss after noise-trauma is preceded by a phase of intense activity in the 

auditory pathway, which is likely to stimulate other types of plasticity than the 

reduction of activity alone. Age-related changes in plasticity have been 

reported in general (Mostany et al., 2013), but also specifically in the endbulb 

of Held synapse. In the latter regard, the rescue of bushy cell size and PSD 

size of deaf cats can only be ameliorated by electrical stimulation in young 

cats, but not after the critical period (Ryugo et al., 2005; O’Neil et al., 2011).  

Additionally to physiological setting the length of the AIS, intrinsic 

homeostatic plasticity acts upon the AIS of principal cells in the chick nucleus 

magnocellularis in pathological conditions. There, gradual increase in length of 

the AIS and its Na+ channels content has been reported depending on the 

level of impairment of presynaptic activity (Kuba et al., 2010). 

Synapses in the auditory brainstem have classically been considered as 

fast and faithful, albeit simple relays (Tzounopoulos and Kraus, 2009). 

Surprisingly, evidence suggesting that auditory synapses at the level of the 

cochlear nucleus, including the endbulb of Held, are indeed subject to 

plasticity exists for long time, throughout several model organisms. Even 

though mechanisms still wait for their discovery, some of the phenomena 
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described above can be interpreted as regulation in a homeostatic sense, both 

as intrinsic and synaptic homeostasis. 

1.4 Aims of this study 
This study aims at gaining better insight into the molecular machinery enabling 

signaling at high frequencies at auditory synapses. It focuses on the role of the 

large scaffold protein bassoon on synaptic transmission at the endbulb of Held 

synapse. For that, structural and functional changes after genetic perturbation 

of bassoon were analyzed by use of the BsnΔEx4/5 mutant (Altrock et al., 2003). 

It further aims at contributing to understanding homeostatic plasticity of the 

auditory system after partial auditory deprivation in the context of the 

previously described phenotype on the system level in the BsnΔEx4/5 mutant. 
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2 Materials and Methods 

2.1 Mice 
All animals used in this study were housed on a 12h light/dark cycle with food 

and water ad libitum. Mice with deletion of exons 4 and 5 of the bassoon gene 

(BsnΔEx4/5) and their wild-type littermates (Bsnwt) were used for experiments 

between postnatal day (p) 15 to 23 (Altrock et al., 2003). Mutants were derived 

from heterozygous breeding following backcrossing over seven generations 

with C57BL/6 mice. Genotyping was performed by polymerase chain reaction 

(PCR). A subset of experiments was carried out with mice from an inbred 

strain of C57BL/6J between p6 and p22. All experiments performed in this 

study complied with national animal care guidelines and were approved by the 

Board for Animal Welfare the University of Göttingen and the Animal Welfare 

Office of the State of Lower Saxony. 

2.2 Electrophysiology 
Animals were sacrificed by decapitation, brains were dissected and 

parasagittal slices of CN prepared as described previously (Yang and Xu-

Friedman, 2008). Briefly, brains were carefully dissected and immediately 

immersed in ice-cold low-sodium, low-calcium slicing solution containing (in 

mM): NaCl (75), NaHCO3 (26), sucrose (75), NaH2PO4 (1.25), KCl (2.5), 

glucose (25), MgCl2 (7) and CaCl2 (0.25), aerated with carbogen (95% O2 - 5% 

CO2); osmolarity of the solution was ∼312 mOsm. After the meninges were 

removed from the ventral aspect of the brainstem the two hemispheres were 

separated by a hemisection through the median plane. The pons-midbrain 

junction was cut to separate the forebrain from the brainstem. Both sides of 

the brainstem were glued onto the stage of a Leica 1200 S vibrating 

microtome with the lateral aspect of the brainstem facing upwards, allowing for 

parasagittal sectioning.  
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Figure 2.1 Illustration of the sagittal slice preparation of the CN 
(A) Ventral aspect of a mouse brain (source: www.mlb.org; Williams, 2000)). Dotted lines 
indicate the target region for slicing. (B) Photograph of an acute slice. Brocken line highlights 
the target area within the AVCN in which patch-clamp recordings were obtained. (C) Anatomic 
illustration highlighting the main structures of the slice (adapted from (Paxinos and Franklin, 
2003); AVCN: anteroventral cochlear nucleus, PVCN: posteroventral cochlear nucleus, 
DCN: dorsal cochlear nucleus, CB: cerebellum, 8n: 8th cranial nerve). 

In order to minimize tissue damage, the preparation was immersed in ice-cold 

slicing solution and the advance speed of the microtome was set to the 

slowest possible speed (0.01 mm/s). Vibrations perpendicular to the slice 

surface were reduced by using thick stainless steel blades (Cambden 

Instruments, Lafayette, IN, USA) instead of common razor blades. At 150 µm 

thickness, the first one or two (lateral-most) slices comprised of the cerebellar 

flocculus and hence were discarded. The following two or three slices, which 

contained the cochlear nucleus, were allowed to recover for 30 min in artificial 

cerebrospinal fluid (aCSF) heated to 34°C before being used for 

electrophysiological experiments. aCSF contained (in mM): NaCl (125), 

NaHCO3 (26), glucose (15), KCl (2.5), NaH2PO4 (1.25), MgCl2 (1), CaCl2 (1.5), 

Na L-lactate (4), Na pyruvate (2), Na L-ascorbate (0.4), and was aerated with 

carbogen at all times. The Mg2+ and Ca2+ concentrations were chosen to 

match closely as possible the in vivo CSF concentrations (Sun et al., 2009; 

Jones and Keep, 1988). Experiments were carried out under constant 

superfusion with pre-warmed aCSF at flow rates of 3-4 ml/min. The 

temperature was monitored by a thermistor placed between inflow site and 

tissue slice and warmed to 34-36°C by an inline solution heater (SH-27B with 

TC-324B controller; Warner Instruments, Hamden, CT, USA). 

Pipettes were pulled with a filament puller (P-97; Sutter Instrument, Novato, 

CA, USA) from borosilicate glass (outer diameter: 1.5 mm, inner diameter: 
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0.86 mm; Science Products, Hofheim, Germany) and had resistances of 

1.5-3 MΩ when filled with internal solution for voltage clamp containing (in 

mM): CsF (35), CsCl (100), EGTA (10), HEPES (10), and QX-314 (1; Alomone 

Labs, Jerusalem, Israel); or alternatively for current clamp (in mM): 130 

KMeSO3 (130), NaCl (10), HEPES (10), MgCl2 (2), EGTA (0.5), CaCl2 (0.16), 

MgATP (4), NaGTP (0.4), Na2Phosphocreatine (14), with pH adjusted to 7.3, 

and an osmolarity of 300 mOsm. The mean series resistance in voltage clamp 

recordings was around 5 MΩ and routinely compensated by 70 %. Presynaptic 

auditory nerve fibers were stimulated using a monopolar electrode in a glass 

capillary (patch pipette) filled with aCSF. The stimulation electrode was placed 

at a minimum distance of one cell diameter away from the cell being recorded 

and currents of 3–20 µA were delivered through a stimulus isolator (A360 

World Precision Instruments, Sarasota, FL, USA). For correlating 

characteristics of synaptic currents to the morphology of the cells Alexa-488 

(Molecular Probes, Eugene, OR, USA) was included in the electrode solution 

at a concentration of 0.1 mg/ml. After recording, slices were fixed according to 

route 3 (Immunohistochemistry 2.3) and imaged with a confocal microscope. 

mEPSCs were initially recorded in the presence of 0.5 µM TTX (Tocris, Bristol, 

UK), but as reported previously, no difference in the mEPSCs were noted if 

recorded without TTX (Isaacson and Walmsley, 1996; Lu et al., 2007). 

Therefore, most recordings were performed in absence of TTX with the benefit 

of being able to confirm the cell type by evoking synaptic transmission after 

recording of mEPSCs. Kynurenic acid (Tocris, Bristol, UK), a competitive 

antagonist for ionotropic glutamate-receptors with low-affinity and a high off-

rate, was added in some experiments (1 mM final concentration in aCSF) to 

prevent AMPA receptor saturation and desensitization (Wong et al., 2003). For 

measurements of sodium currents, 45 mM NaCl in the aCSF was replaced by 

40 mM TEA-Cl, 5 mM CsCl2 and 0.5 mM 4-AP (Tocris, Bristol, UK) to block 

voltage-dependent K+ currents. For further improvement of voltage clamp 

conditions a fraction of voltage gated Na+ channels was blocked by application 

of 20 nM TTX. All chemicals were purchased from Sigma-Aldrich (St. Louis, 

MO, USA) if not otherwise noted. 
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2.3 Immunohistochemistry 
The immunohistochemical procedures applied in this study were chosen and 

adapted depending on the aim of the experiment and the epitope to be labeled. 

Three main routes of preparing the tissue for immunolabeling were followed 

and will be described in the following sections: 

 

Route 1.1: Strong fixation through cardiac perfusion with formaldehyde 

Mice were deeply anesthetized by intraperitoneal injection of 250 µg/g 

ketamine and 5 µg/g xylazine. After cessation of pinch reflex the animals were 

perfused transcardially with 8 ml of Heparin (10 U/ml) in phosphate buffered 

saline (PBS, GIBCO Invitrogen) followed by 30 ml of a 4 % (v/v) formaldehyde 

(diluted from 37 % stock in PBS) solution also containing 5 % (w/v) sucrose. 

Subsequently, brainstems were dissected and immersed in the fixative for 15 

minutes. After washing with PBS the brainstem was cryo-protected by 

immersion in PBS containing 10 % (w/v) sucrose for 4 h and over-night 

immersion in PBS containing 30 % (w/v) sucrose solution. After embedding in 

Tissue Tek Cryomatrix (Thermo Fisher Scientific, Waltham, MA, USA) the 

block was fixed at the stage of a cryostat (Figocut E cryotome, Reichert-Jung, 

Depew, NY, USA) such that the caudal aspect of the brainstem was facing 

upwards. Advancing from caudal to rostral 30 µm coronal sections were cut 

(chamber temperature: -22 °C, object temperature: -20 °C) and discarded until 

the appearance of the 7th cranial nerve. Subsequent slices, containing AVCN 

and later MNTB were collected onto gelatin-coated object slides. Slices were 

dried at room temperature for 30 minutes and then either processed directly or 

kept at -80°C until further use. For immunolabeling sections were rehydrated 

and washed with PBS for 30 minutes at 35 °C. 

 

Route 1.2: Mild perfusion 

For some antibodies the protocol described above was adapted to attenuate 

epitope masking by reducing the fixation time. In these cases ice-cold fixative 

(4 % (v/v) formaldehyde solution containing 5 % (w/v) sucrose) was perfused 

for 2 minutes (5-8 ml of fixative) and the fixation was stopped thereafter by 

perfusion of 8 ml PBS without fixative. Then, brainstems were dissected and 
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immersed for 2 minutes in fixative, before being washed in PBS and cryo- 

protected as described above. 

 

Route 2: Cryo-sectioning of freshly frozen brainstem and post-hoc fixation 

Brains were dissected as described above and frozen in 2-methylbutane at —

-35—40 °C. This temperature was produced by cooling a metal container 

containing ~150 ml of 2-methylbutane in a polystyrene box with a mixture of 

approximately 2/3 ice and 1/3 dry ice. The brainstem was then quickly 

transferred into the cryotome chamber with a precooled spoon. After 

temperature equilibration (cryotome chamber: -22 °C) 30 µm thick coronal 

cryosections were cut and collected onto gelatin-coated object slides. For 

comparison of genotypes, one slice of each genotype was collected per object 

slide and subsequently processed in parallel. For fixation, object slides were 

immersed in ice-cold formaldehyde diluted to 4 % or 2 % with PBS for 2-45 

minutes depending on the antibodies to be used (for details see Results). In a 

subset of experiments Methanol (-20°C; 4 minutes) or Glyo-Fix (GIBCO, (room 

temperature for either 15, 30 or 45 minutes were applied as fixatives (Dapson, 

2007). In all cases, slices were washed for at least 10 minutes in ice-cold PBS. 

 

Route 3: Preparations of acute slices and immersion fixation 

Acute slices of auditory brainstem were prepared as for electrophysiology 

(Ref.) and fixed with methanol (-20°C; 4-5 minutes). Subsequently, slices were 

washed 3 times with PBS and further processed as detailed below. 

 

Immunohistochemistry: 

After fixation, slices were permeated and dependent on the subsequently 

employed antibodies, unspecific sites were blocked by incubation with either 

Goat Serum Dilution Buffer (GSDB: 16 % normal goat serum, 450 mM NaCl, 

0.3 % Triton X-100, 20 mM phosphate buffer, pH 7.4) or Donkey Serum 

Dilution Buffer (same as GSDB but goat serum was replaced by 16 % donkey 

serum) for one hour in a wet chamber at room temperature.  

Labeling was achieved by the simultaneous incubation of the slices with the 

respective combinations of primary antibodies. Antibodies were diluted in 

GSDB/DSDB buffer and incubated overnight at 4°C in a wet chamber. After 
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the primary antibody solution was removed from the slice remaining unbound 

primary antibody was washed off with wash buffer (450 mM NaCl, 20 mM 

phosphate buffer, 0.3 % Triton X-100) twice for five minutes and thereafter 

with PBS (2x5 minutes). AlexaFluor488-, AlexaFluor568- and AlexaFluor647-

labeled secondary antibodies (Molecular Probes, Eugene, OR, USA) were 

simultaneously applied at 1:200 or 1:400 dilution in GSDB/DSDB and 

incubated in a wet, light-protected chamber for 1 h at room temperature. Then, 

slices were washed 2x5 min in wash buffer, 2x5 min in PBS and last 1x5 min 

in 5 mM phosphate buffer to wash off the salt. Finally, slices were mounted 

with a drop of fluorescence mounting medium based on Mowiol 4-88 (Carl 

Roth, Karlsruhe, Germany) and DABCO (Carl Roth, Karlsruhe, Germany) and 

covered with a thin glass cover slip. 

The following table summarizes the antibodies tested for 

immunohistochemistry in a quest for appropriate markers and fixation 

conditions enabling to quantify AZs of endbulbs of Held. Not all of the 

antibodies reported in the table were finally used in this study but brief 

summary about the experience could result useful for future experiments. 

However, antibodies that were included in this study are printed underlined. 
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Table 2.1 Antibodies tested for immunohistochemistry 
antibody host provider route dilution fixative labeling quality 
Gephyrin M SYSY 1.1 1:200-800 FA punctate ++ 

1.2 1:200-500 FA punctate +++ 

2 1:200-500 MeOH/FA/Glyo punctate ++ 

GluR2/3 Rb Chemicon 3 1:50-200 MeOH punctate ++; variable 

1.1/1.2/2 1:50-200 FA/Glyo/MeOH not detectable - 

GluR2 M Chemicon 1.2 1:75 FA not detectable - 

GluR4 Rb Chemicon 3 1:50-200 MeOH punctate ++; variable 

1.1/1.2/2 1:50-200 FA not detectable - 

PSD95 Rb Invitrogen 1.1/1.2/2 1:100-500 FA/MeOH not detectable - 

PSD95 M SIGMA 1.2 1:100-200 FA punctate +; high bg; i.p. 

2 1:100-200 FA/MeOH/Glyo punctate +; high bg; i.p. 

1.1 1:100-200 FA non-specific - 

Vgat GP SYSY 1.1 1:200-500 FA clustered ++ 

1.2 1:200-500 FA clustered +; variable, high bg 

2/3 1:200-500 FA/MeOH not detectable - 

Vglut1 GP SYSY 1.1 1:500-1000 FA clustered +++ 

1.2/2 1:500-1000 FA clustered ++; variable; high bg 

Vglut2 GP SYSY 1.1 1:500-1000 FA clustered +++ 

VAMP1 Rb SYSY 1.1 1:500-1000 FA clustered ++ 

VAMP2 M SYSY 1.1 1:500 FA clustered +++ 

GFP Rb SYSY 1.1 1:200-500 FA - ++ 

GFP M mol. probes 1.1 1:200-500 FA - ++ 

3 1:200-500 MeOH - + 

Pan Nav Rb SIGMA 1.1/1.2/2/3 1:100-500 MeOH/FA/Glyo not detectable - 



Materials and Methods Immunohistochemistry 
 

 35 

antibody host provider route dilution fixative labeling quality 
AnkyrinG Rb Santa Cruz 1.2 1:200-500 FA/Glyo clustered stripes ++; 

1.1 1:100-500 FA diffuse non-specific - 

Na/K-ATPase M Thermo Scientific 1.2/2 1:500 FA/Glyo fiber-like in AVCN neuropil +; i.p. 

Calretinin Rb Swant 1.1 1:800-1000 FA uniform in endbulbs +++ 

Calretinin G Swant 1.1 1:300 FA uniform in endbulbs +++ 

Calretinin M Swant 1.1 1:500 FA uniform in endbulbs +++ 

Calretinin all above Swant 1.2/2/3  MeOH/FA/Glyo not detectable - 

Parvalbumin M Swant 1.2 1:250 FA not detectable in AVCN  

Calbindin M Swant 1.2 1:500 FA diffuse MNTB somata ++ 

Neurofilament M SIGMA 1.2/2 1:200-500 FA/Glyo fiber-like in AVCN neuropil ++; i.p. 

Tubullin Ch abcam 1.2/2 1:500 FA/Glyo not detectable - 

Map2 M SIGMA 1.2 1:200 FA diffuse in somata/neuropil high bg 

Bsn (sap7f) M abcam 1.1 1:500-2000 FA punctate +++ 

1.2/2 1:500-1000 FA/Glyo punctate ++ 

Bsn (C-term.) GP SYSY 1.1 1:200 FA not detectable - 

1.2/2 1:200 FA/Glyo punctate +++ 

Munc13-1 Rb SYSY 2 1:200 FA/Glyo punctate ++; variable bg; 

1.1 1:200 FA unspecific high bg 

Piccolo Rb SYSY 1.1 1:200-400 FA not detectable - 

1.2 1:200 FA punctate +++ 

2 1:200 FA/Glyo punctate ++ 

Mover Rb Dr. T. Dresbach 1.1/1.2 1:200-1000 FA non-specific high bg  

RIM1 Rb SYSY 1.1/1.2/2/3 1:200 MeOH/FA/Glyo diffuse non-specific high bg 

RIM2 Rb SYSY 1.2/2 1:200 FA/Glyo punctate ++ 
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antibody host provider route dilution fixative labeling quality 
   1.1/3 1:200 FA diffuse non-specific high bg 

CAST/ELKS M SIGMA 2 1:2000 FA punctate +; weak signal 

CAST Rb Dr. A. Fejtova 2 1:200 FA punctate ++ 

ELKS Rb Dr. A. Fejtova 2 1:200 FA punctate ++ 

M: mouse; GP: guinea pig; Rb: rabbit; Ch: chicken; G: goat; MeOH: methanol; FA: formaldehyde in PBS; Glyo: glyoxal based fixative Glyo-Fix; 
bg: background; i.p.: impaired penetration of antibody into the tissue allowing only for superficial labeling; 
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2.4 Confocal microscopy 
Confocal images were acquired using a laser-scanning confocal microscope 

(Leica TCS SP5, Leica Microsystems CMS, Wetzlar, Germany) equipped with 

488 nm (Ar) and 561/633 nm (He–Ne) lasers for excitation of the respective 

Alexa fluorophores and a 63× / 1.4 NA oil- immersion objective. Images were 

collected as stacks with step sizes of 0.20-0.25 µm. Images of bassoon-

deficient and control synapses were acquired with identical settings, 

preferentially during the same imaging session. For all experiments, the 

pinhole was set to 1 airy unit (AU; corresponding to 95.81 µm) and the scan 

speed to 400 Hz. Single cell stacks of endbulbs and calyces of Held were 

acquired with a 10 x zoom resulting in pixel sizes of 48 nm. Images comprised 

512*512 pixels and were obtained from 4 frame averages. Step size was set 

to 0.25 - 0.3 µm. In the MNTB single plane images were acquired with the 

following settings: 6x zoom, 1024*1024 image size, 40 nm pixel size, 6 frame 

averages. These images usually comprised 3-5 calyces of Held. 

2.5 Electron microscopy 
Animals were transcardially perfused with 4% formaldehyde (as described in 

2.3, Route 1) and parasagittal slices from cochlear nuclei were obtained as for 

physiology. Slices were kept in 4% formaldehyde at 4°C until fixed for 60 min 

on ice with secondary fixative comprising 2% glutaraldehyde in 0.1 M sodium 

cacodylate buffer, pH 7.2. Then, slices were washed in sodium cacodylate 

buffer and postfixed on ice for 1 h with 1% osmium tetroxide (in 0.1 M sodium 

cacodylate buffer), followed by a 1 h washing step in sodium cacodylate buffer 

and three brief washing steps in distilled water. This last and all further steps 

until image analysis were performed by Dr. Carolin Wichmann. The samples 

were stained en bloc with 1% uranyl acetate in distilled water for 1 h on ice. 

After a brief wash with distilled water, samples were dehydrated at room 

temperature in increasing ethanol concentrations, infiltrated in Epon resin 

(100% EtOH/Epon 1:1, 30 and 90 min; 100% Epon, overnight), and embedded 

for 24 h at 70°C. Following conventional embedding 55–60 nm sections were 

obtained approaching from the anterior edge. Slices were postfixed and -

stained with uranyl acetate/lead citrate following standard protocols. 

Micrographs were taken with a 1.024 × 1.024 charge-coupled device detector 
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(HSS 512/1024; Proscan Electronic Systems) in an electron microscope (EM 

902A; Carl Zeiss, Inc.) operated in bright field mode. 

2.6 Data Analysis 
Data analysis was performed using Matlab (Mathworks, Natick, MA, USA), 

Igor Pro (Wavemetrics, Lake Oswego, OR, USA) and ImageJ software 

(Schneider et al., 2012). Figures were assembled for display in the Adobe 

Illustrator (Adobe Systems, Munich, Germany) software. Means are presented 

with their standard errors (SEM), statistically significant differences between 

groups were determined by either using unpaired, two-tailed Student’s t-tests 

(if data was distributed normally and the variances between the groups were 

comparable), or Wilcoxon Rank tests where data distribution did not fulfill the 

mentioned criteria. Normality was tested with the Jarque-Bera (Jarque and 

Bera, 1987) test, and variances were compared with the F-test. 

Reconstruction of endbulb terminals was done with the Reconstruct software 

(Fiala, 2005). 

Images were analyzed with a custom written Matlab routine described earlier 

(Meyer et al., 2009) with modifications for ameliorating the intensity differences 

within a stack by linearly increasing the threshold. This allowed for localizing 

the center of mass from weakly fluorescent spots as well as separation of 

closely spaced fluorescent spots with high fluorescence intensities. 
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3 Results 

3.1 Molecular components and ultrastructure of AZs 
Bushy cells of the AVCN of hearing mice (p15 to p23) receive input of 2-3 

(SBCs) or 3-5 (GBCs) auditory nerve fibers (Cao and Oertel, 2010) via large 

endbulb synapses. The endbulb of Held synapse is composed of a 

postsynaptic bushy cell of central origin (rhombomeres 3 and 5 of the 

developing neural tube) and a presynaptic compartment of peripheral origin 

derived from the otocyst (Farago et al., 2006; Kelley, 2006). The molecular 

composition of its presynaptic machinery is largely unknown. In addition to 

endbulbs, bushy cells receive inhibitory input via small bouton-like presynaptic 

terminals that originate from the central nervous system (Spirou et al., 2005). 

In order to discriminate between different types of synapses and specifically 

analyze the AZs of endbulbs, appropriate markers and conditions for 

immunolabelling had to be elucidated. The vitamin-A derived Ca2+ buffer 

calretinin has previously been utilized as a marker for auditory nerve fibers 

and endbulbs (Chanda and Xu-Friedman, 2010b). Indeed, labeling of 

endbulbs was successful by staining for calretinin in strongly fixed tissue 

samples and hence used to quantify the convergence of endbulbs onto bushy 

cells (see below). However, except for the sap7f epitope of bassoon, which 

was labeled efficiently independent of the fixation method, labeling of other 

CAZ proteins in strongly fixed tissue, i.e. after perfusion with 4% formaldehyde, 

remained unsuccessful. Here it can be assumed that aldehyde-mediated 

protein cross-linking induced antigen masking. Conversely, calretinin is a 

cytoplasmic compound of low-molecular weight and mostly washed out under 

mild fixation conditions with aldehydes and non-crosslinking fixation agents 

such as methanol. Finally, for analysis of AZ components (see below), 

postsynaptic markers turned out to be of use because of their punctate 

expression and the resistance to being washed out under mild fixation 

conditions during immunohistochemistry. 

However, since the calyx of Held is well labeled by synaptic vesicle 

proteins like the vesicular glutamate transporters, Vglut1 and Vglut2 (Billups, 

2005), labeling of synaptic vesicle proteins was also tested for colocalization 
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with calretinin. Therefore, immunolabelling of the vesicular SNARE proteins 

VAMP1 and VAMP2 in combination with calretinin was performed (Figure 3.1). 

In these experiments, immunofluorescence of VAMP1 and VAMP2 was mostly 

segregated and only VAMP1 colocalized well with calretinin indicative of 

endbulb expression. Additionally, few, smaller terminals in between the large 

endbulbs also showed VAMP1 labeling.  

 
Figure 3.1 VAMP1, not VAMP2 is expressed in the endbulb of Held. 
A) Projection of a confocal stack of images labeled for VAMP2 (blue), VAMP1 (green) and 
calretinin (red). Insets show the same image with just VAMP1 (top) or VAMP2 (bottom) and 
the endbulb marker calretinin. B) Quantification of relative fluorescence intensities in a ROI 
defined by signal in the calretinin channel (illustrated in Figure 3.2E). Normalization was 
performed for each channel against the intensity of the largest cluster identified by image 
segmentation (analysis was done on a slice by slice basis). Six image stacks were taken from 
two C57BL/6J mice at p14 and p21. 

In contrast, VAMP2 was excluded from endbulbs and rather exclusively 

localized to smaller terminals. This finding was unexpected since VAMP2 is 

thought to be the main synaptic VAMP at central synapses (Schoch et al., 

2001). To test whether this expression pattern was only found in endbulbs of 

Held and readily explained by the peripheral origin of the spiral ganglion 

neurons, or if this may represent a specialization of large, central auditory 

synapses, additional immunolabeling was performed in the MNTB, using 

Vglut1 as a marker for the calyx of Held terminal. There, a comparable 

expression pattern was observed: while VAMP1 colocalized with Vglut1, 

VAMP2 was excluded from mature calyces and rather expressed in smaller 

spots also decorating the postsynaptic principal cell (Figure 3.2). This 

expression pattern was observed at p14 and p21 and is illustrated by high 

correlation coefficients between the VAMP1 and Vglut1 signals (0.93 and 0.96, 

respectively). 

 



Results Molecular components and ultrastructure of AZs 
 

 41 

 
Figure 3.2 VAMP1, not VAMP2 is expressed in the mature calyx of Held. 
A) Projections of confocal image stacks labeled for VAMP2 (blue), VAMP1 (green) and Vglut1 
(red) at p7, p14 and p21 from C57BL/6J mice. B) Insets show the same image with either 
VAMP1 (top) or VAMP2 (bottom) and the calyx marker Vglut1. C) Fluorescence intensity of 
Vglut1 pixels is plotted versus the intensity of VAMP1 (green) and VAMP2 (red) pixels of all 
images within the stack. Dashed lines represent linear regression fits with Pearson’s 
correlation coefficients (Pr) D) Example image used for quantification of relative fluorescence 
in a ROI (red label in image E) defined by suprathreshold signal in the Vglut1 channel as 
shown for the same image in panel (E). Normalization was performed for each channel 
against the intensity of the largest cluster identified by image segmentation (white label in 
image E). F) Relative fluorescence intensities within calyces of Held at p7, p14 and p21 for 
VAMP1, VAMP2 and Vglut1 analyzed as exemplified in E). 

However, at p7 both, VAMP1 and VAMP2 correlated relatively well with Vglut1 

(Pr=0.82 and Pr=0.65). While VAMP1 fluorescence was confined to the calyx 

(high Pr) but weak in intensity, VAMP2 was also expressed in other terminals 

(smaller Pr) but displayed stronger intensity within the calyx (Figure 3.2F). This 
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might indicate a developmental switch in expression from VAMP2 to VAMP1 

occurring between p7 and p14 at the calyx of Held. This was confirmed by 

quantifying immunofluorescence of single images, usually containing 3-5 

calyces of Held within suprathreshold Vglut1 signal as region of interest (ROI). 

While immunofluorescence intensity was low for VAMP1 and high for VAMP2 

at p7, VAMP1 intensity increased and VAMP2 immunofluorescence was 

virtually absent at p14 and p21 (Figure 3.2F). By colabeling for Vgat instead of 

Vglut1, also inhibitory synapses were probed for their expression of VAMP1 

and VAMP2. There, while VAMP2 was strongly expressed at p14 and p21, the 

VAMP1 signal was weak showing that VAMP2 is the prevalent VAMP isoform 

in inhibitory synapses in the mature MNTB (Figure 3.3). 

 
Figure 3.3 VAMP2 is expressed in inhibitory synapses of the MNTB 
A) Projections of confocal image stacks labeled for VAMP2 (blue), VAMP1 (green) and Vgat 
(red) at p7, p14 and p21 from C57BL/6J mice. B) Insets show individual channels for VAMP1 
(top) or VAMP2 (bottom) and the inhibitory synapse marker Vgat. C) Example image used for 
quantification of relative fluorescence in a ROI (red label in image D) defined by 
suprathreshold signal in the Vgat channel as illustrated in panel (D). Normalization was 
performed for each channel against the intensity of the largest cluster identified by image 
segmentation (white label in image D). E) Relative fluorescent intensities within inhibitory 
synapses of the MNTB at p7, p14 and p21 for VAMP1, VAMP2 and Vgat analyzed as 
exemplified in D). 
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In these experiments, antibody specificity was tested by several approaches: 

(i) negative control labelings were performed where primary antibodies were 

omitted and specimen exclusively incubated with secondary antibodies; (ii) 

several different secondary antibodies were tested in parallel yielded the same 

results and (iii) tissue from ‘lethal wasting’ mutants that lack VAMP1 

expression (Nystuen et al., 2007) showed no signal in the VAMP1 channel 

(data not shown).  

3.1.1 Molecular components of endbulb AZs 
 

 
Figure 3.4 Bassoon immunoreactivity of Bsn∆Ex4/5 AZs 
A) Domain structure of bassoon and the Bsn∆Ex4/5 fragment including the epitopes utilized for 
immunolabeling. B) Projection of a confocal image stack labeled for the two bassoon epitopes 
and piccolo of a Bsnwt and a Bsn∆Ex4/5 cell (Bi). C) Number of puncta and fraction of 
colocalizing bassoon puncta with piccolo of two cells for each genotype. D) Center of mass 
distance between all colocalizing C-terminal bassoon and piccolo puncta of the four cells 
depicted in (C), illustrating that the Bsn∆Ex4/5 fragment is not as tightly confined to AZs as wild-
type bassoon. (part of this analysis was done by Juan Maria Sanchez Caro). 
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Here, confocal microscopy of immunofluorescently labeled cryosections of the 

AVCN, was used to study the number and molecular composition of endbulb 

AZs facing Bsnwt and Bsn∆Ex4/5 bushy cells. First, immunoreactivity of an 

antibody selectively recognizing the wild-type bassoon protein (sap7f; Tom 

Dieck et al., 1998), an antibody also detecting the truncated bassoon fragment 

(C-terminal antibody, Figure 3.4) and an anti-piccolo antibody was analyzed. 

In wild-type AVCN, all three labels overlapped (Figure 3.4), indicating that 

bassoon and piccolo coexist at the majority of the active zones facing a bushy 

cell, which is consistent with findings at the calyx of Held (Dondzillo et al., 

2010). While spot-like sap7f-immunofluorescence was not found at BsnΔEx4/5 

bushy cells, immunoreactivity for the C-terminal antibody was still detected. 

However, this labeling was more diffuse and did not colocalize as accurately 

with piccolo as in wild-type AZs, as the center of mass distance of piccolo and 

C-terminal labeled bassoon was significantly larger and more variable (F-test: 

p<0.001) in BsnΔEx4/5 terminals. Therefore, it can be concluded that, although 

the BsnΔEx4/5 fragment is transported to the presynapse, it is less efficiently 

integrated into the CAZ and remains partially cytosolic which is consistent with 

findings in other preparations (Frank et al., 2010). 

 Next, the number of endbulbs converging onto individual bushy cells 

was quantified by reconstructing endbulbs labeled for calretinin as exemplified 

in Figure 3.5A. The number of endbulbs per bushy cell was unchanged with 

3.0 ± 0.21 and 3.1 ± 0.17 for Bsnwt and Bsn∆Ex4/5 bushy cells, respectively. The 

distribution of convergence numbers indicates sampling from SBCs and GBCs, 

which were not further discriminated, assuming that bassoon disruption affects 

them both to a similar extent. While discrimination between excitatory and 

inhibitory synapses was possible, it was not attempted to distinguish endbulb 

and excitatory bouton-like synapses, given that endbulbs contribute the vast 

majority of excitatory AZs (Nicol and Walmsley, 2002; Gómez‐ Nieto and 

Rubio, 2009). 
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Figure 3.5 Piccolo expression is increased at BsnΔEx4/5 AZs 
A) Single confocal micrograph from a stack used for reconstruction of endbulb terminals, 
immunolabeled for calretinin (red) as an endbulb marker, bassoon (green) as a marker for AZs 
and Vgat (blue) as a marker for inhibitory synapses. B) The number of endbulb terminals 
converging onto a bushy cell remained unchanged in BsnΔEx4/5 mutants. C) Projection of a 
confocal image stack labeled for piccolo (green), gephyrin (blue) and Vglut1 (red). D) The 
number of endbulb AZs was estimated from the number of piccolo puncta surrounding a 
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bushy cell, excluding the ones colocalizing with gephyrin. While the number of piccolo puncta 
was found to be unchanged in mutant endbulbs, the fluorescence intensity of piccolo puncta 
was significantly increased. E,F) Projection of a confocal image stack labeled for RIM2α 
(E,green) or Munc13-1 (F,green), respectively; co-labeled for gephyrin (blue) and Vglut1 (red). 
All scale bars: 5 µm  

A previous study, reconstructed a rat bushy cell with four endbulbs, 

each forming between 85 and 217 (mean: 155) AZs, using serial-sectioning 

electron microscopy (Nicol and Walmsley, 2002). Here, the advantage of light 

microscopy allowing for sampling larger numbers of cells was used to quantify 

the number of AZs formed by endbulbs of Held terminals. Therefore, the 

number of piccolo positive puncta and those juxtaposed to the inhibitory 

postsynapses marked by gephyrin immunofluorescence were quantified. 

Subtracting the number of puncta belonging to inhibitory synapses from the 

total count yielded the number of excitatory AZs, which was unchanged in 

BsnΔEx4/5 mutants (Figure 3.5D). When divided by the average number of 

endbulb terminals, the average number of AZs per endbulb was ~126 and 

~121 for Bsnwt and Bsn∆Ex4/5, respectively. Despite the lower resolution of light 

microscopy, these AZ numbers are comparable to the above-mentioned 

previously published estimates, validating the light microscopic approach 

employed here. Moreover, quantification of immunofluorescence intensities 

provided additional insights: piccolo puncta of Bsn∆Ex4/5 terminals showed 

significantly stronger intensities than the ones from Bsnwt terminals, indicating 

upregulation of piccolo due to loss of full-length bassoon at endbulbs (Figure 

3.5). Other AZ proteins, including RIM2α and Munc13-1 were also found to be 

present in confined puncta, partially opposing gephyrin labeling on bushy cells 

of Bsnwt and BsnΔEx4/5 mice. Therefore, endbulbs and AZs of BsnΔEx4/5 mutants 

are formed in normal quantity and, apart from potentially compensatory 

upregulation of piccolo, normal molecular composition. 
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3.1.2 Ultrastructure of Bassoon-deficient AZs 

 
Figure 3.6 Ultrastructure of Bassoon-deficient AZs.  
Example micrographs of Bsnwt (A) and Bsn∆Ex4/5 (B) bushy cells (scale bars: 2 µm) and 
endbulb of Held synapse release sites (scale bars: 100 nm). Structures highlighted in pink 
represent presynaptic terminals onto the postsynaptic soma. C) Vesicles in five 40 nm bins 
from the presynaptic membrane to the presynaptic cytosol were counted, without showing 
significant differences between the genotypes. Membrane- and dense projection- associated 
vesicles were not altered in the mutant (data not shown). D) The length of the postsynaptic 
density (PSD) was significantly increased in Bsn∆Ex4/5 synapses. E) When normalized to PSD 
length, vesicle counts in the first bin were significantly decreased, but vesicles in direct contact 
with the presynaptic plasma membrane (docked synaptic vesicles) remained unchanged. F) 
The number of presynaptic dense projections (DP) was unchanged in the mutant synapses. 
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Taking advantage of the high resolution of electron microscopy, the effects of 

bassoon disruption on synaptic ultrastructure were studied in electron 

micrographs of 55 nm thin random sections (Figure 3.6). Vesicle distributions 

were analyzed by counting vesicles in five 40 nm bins into the cytosol of the 

presynaptic terminal (Figure 3.6C); however, no statistically significant 

differences between the genotypes could be observed in these experiments. 

Similarly, docked vesicles, defined as the vesicles in direct contact with the 

presynaptic plasma membrane, showed no diverging distribution (data not 

shown). The length of postsynaptic densities (PSDs) from asymmetric active 

zones of bushy cells was increased in BsnΔEx4/5 animals (Figure 3.6D). When 

normalized per µm PSD length, vesicles in the first bin, which had their center 

within 40 nm from the presynaptic membrane, were significantly reduced in 

mutant synapses, while the morphologically docked vesicles remained 

statistically unchanged (Figure 3.6E). Synapses of inner hair cells to spiral 

ganglion neurons have prominent electron-dense presynaptic specializations 

denominated as ribbons, which were found to be detached in bassoon-

deficient inner hair cells (Khimich et al., 2005; Frank et al., 2010). Primed by 

this remarkable morphological phenotype the number of presynaptic dense 

projections (DP) were counted where possible, but found to be unaltered in 

BsnΔEx4/5 endbulb synapses (Figure 3.6F).  

3.2 Synaptic transmission in Bassoon-deficient synapses 
In whole cell voltage clamp experiments the principal cells in the AVCN can be 

distinguished by the kinetics of their postsynaptic currents and their short-term 

plasticity (Chanda and Xu-Friedman, 2010a). The morphological classification 

as bushy or stellate cell is derived from the cell’s dendritic organization. Bushy 

cells have a round or oval-shaped soma and one or two primary dendrites that 

branch extensively not far from the soma giving them their bush-like 

appearance. Stellate cells instead have multiple primary dendrites, giving the 

soma a star-like shape, and project further without branching much (Ostapoff 

et al., 1994). Bushy cells have faster EPSC kinetics in comparison to stellate 

cells, and tend to have larger EPSC amplitudes (Lu et al., 2007; Cao and 

Oertel, 2010). Wild-type bushy cells have depressing EPSC amplitudes while 

EPSC amplitudes in stellate cells typically facilitate in short-term plasticity 

paradigms. These two groups of neurons where also found based on their 
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functional and morphological properties AVCN slices of Bsnwt mice in the 

present study (Fig. 3.2). Filling cells with fluorescent dye Alexa-488 via the 

pipette, cell morphology was inspected after fixation and mounting of the slice 

at a confocal fluorescent microscope. In BsnΔEx4/5 animals, the 

correspondence of physiological response patterns to morphological cell types 

was overall maintained. Figure 3.7 shows three BsnΔEx4/5 cells that exemplify 

characteristic current patterns and the morphology of the cell obtained from a 

projection a confocal image stack. We encountered cells that showed 

facilitating responses in the beginning of action potential-like train stimulation 

like cell 3 in Figure 3.7 and cells that showed clear depression like cell 1. 

Evoked and miniature EPSCs decayed faster and had larger amplitudes in the 

cells that depressed in comparison to the cells that facilitated. The 

morphological inspection of cell 3 revealed 6 neurites and of cell 1 two 

neurites, one thin axon with a bleb (where it was cut during slicing) and one 

primary dendrite that branched in close proximity of the soma. This suggests 

that the rough characteristics of synaptic currents of principal cells in the 

AVCN remains preserved in BsnΔEx4/5 animals and the cell type can be inferred 

from the current traces. Interestingly, some cells were clearly identified as 

bushy cells – like cell 2 in Figure 3.7, which had two branching dendrites, and 

fast EPSCs that depressed in response to repetitive stimulation – depressed 

much stronger than wild-type bushy cells (3.2a), which indicated that bassoon 

disruption had effects on synaptic transmission in endbulb of Held synapses. 
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Figure 3.7 Characteristics of synaptic currents can be correlated to morphological 
features of BsnΔEx4/5 principal cells. 
Short-term plasticity in response to train stimulation (column A) and mEPSCs (column B) 
recorded from three principal cells in the AVCN of BsnΔEx4/5 animals. The insets show a single 
mEPSC illustrating the kinetics of the events. Cells were infused with Alexa-488 during 
recordings and displayed in column C as projections from confocal image stacks (scale bars: 
10µm). Cell 1 exhibits typical bushy cell characteristics, with depressing EPSCs during train 
stimulation, fast mEPSCs with large amplitudes, one axon (#) and a single dendrite (*). Cell 2 
exhibits unusually strong depression, but bushy cell-typical mEPSCs and morphology. In 
contrast, cell 3 represents a typical example of a stellate cell with facilitating EPSC amplitudes 
at the beginning of high frequency stimulation, slower kinetics of both, evoked and 
spontaneous currents and numerous (~5) primary dendrites (*) and one axon (#). Axons 
formed a bleb (b) where they were cut during slicing. 

3.2.1 Basal transmission and passive properties 
To probe whether the increase in PSD length turned into a functional 

difference between both genotypes, mEPSC were recorded (Figure 3.8) from 

bushy cells in acute slice preparations of the AVCN from and BsnΔEx4/5 animals. 

In these experiments, we found a significant increase in the amplitude of the 

mEPSCs, while their frequency and kinetics were unchanged. 
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Figure 3.8 The quantal size at Bsn∆Ex4/5 synapses is increased 
A) Typical traces of spontaneous mEPSCs (Bsnwt in black, Bsn∆Ex4/5 in grey). While the 
frequency of spontaneous release events was not significantly altered (B), the amplitude was 
significantly increased (C). mEPSCs kinetics, such as rise time (D), full-width at half-maximum 
(FWHM; E) and decay time (F) remained unchanged. 

To investigate if evoked synaptic transmission was affected by bassoon 

disruption we applied a minimal stimulation protocol in acute sagittal slice 

preparations by inducing action potentials in auditory nerve fibers with a 

monopolar electrode in the vicinity of the recorded bushy cell (Yang and Xu-

Friedman, 2008). Results from voltage clamp recordings of evoked EPSCs are 

displayed in Table 3.1. The mean amplitude of the synaptic current elicited by 

a single stimulation was unchanged in BsnΔEx4/5 endbulbs. The kinetics of 

eEPSCs was significantly slowed in mutant synapses, with the decay time 

being more affected than the rise time. The synaptic latency was measured as 

the time between the peak of the stimulus artifact and the current surpassing 

three times the standard deviation of the baseline current and was unchanged 

in mutant synapses. The AMPA/NMDA ratio was measured at a holding 

potential of +40 mV to release Mg2+- block from NMDA receptors and the two 

components were distinguished by their different kinetics. It has been reported 

earlier that the NMDA component of EPSCs diminishes during postnatal 

maturation (Isaacson and Walmsley, 1995), hence the unchanged 

AMPA/NMDA ratio suggests no maturational deficit BsnΔEx4/5 endbulbs. 
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Table 3.1 Basal synaptic transmission 
 Bsnwt 

n = 56 

BsnΔEx4/5 

n = 47 
p value 

Amplitude (nA) 10.9 ± 0.85 (0.58)# 10.1 ± 0.91 (0.62) 0.49 

10-90 % rise time (ms) 0.20 ± 0.01 (0.36) 0.23 ± 0.01 (0.31) 0.012 

FWHM (ms) 0.48 ± 0.01 (0.22) 0.54 ± 0.02 (0.21) 0.01 

τdecay (ms) 0.17 ± 7*10-6 (0.29) 0.21 ± 8*10-6 (0.3) 0.0001 

Synaptic latency (ms) 0.66 ± 0.03 (0.29) 0.75 ± 0.04 (0.33) 0.14 

AMPA/NMDA* 8.32 ± 1.6 (0.72) 7.93 ± 1.2 (0.47) 0.81 
*AMPA/NMDA ratio was measured in a subset of cells: n = 15 and n = 10, respectively. 
# Data is represented as mean ± SEM (coefficient of variation) 

The cell size, approximated by the membrane capacitance, was significantly 

reduced in BsnΔEx4/5 bushy cells (14.32 ± 0.49 pF in Bsnwt vs. 11.6 ± 0.33 pF in 

BsnΔEx4/5; p = 1*10-5; in the data set of Table 3.1, and see Figure 3.9). 

However, resting membrane potential, input resistance and membrane time 

constant of bushy cells were not significantly different between both genotypes. 

The membrane time constant was obtained from fitting a single exponential to 

the voltage change resulting from sub-threshold current injections in current-

clamp experiments (Figure 3.9A,B). The resting membrane potential was 

taken from the average zero-current potential prior to the first current step 

(Figure 3.9A,B). The input resistance was calculated from the ratio of the 

voltage change to the current change, as determined by Ohm’s law. 

Additionally, the input resistance was determined from the slope of a linear fit 

to the passive voltage-current relationship around rest that yielded similar 

results (Figure 3.9C,D). However, also in this data set the slow capacitance 

component was significantly reduced (Figure 3.9E). 
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Figure 3.9 The cell size of BsnΔEx4/5 bushy cells is reduced 
Passive membrane properties were calculated from changes in membrane potential in 
response to 50 pA depolarizing and hyperpolarizing current injections around the resting 
membrane potential as exemplified in (A). The inset shows a magnified response to 
hyperpolarizing current injection to which an exponential function was fitted (red trace) to 
determine the membrane time constant. Panel (B) shows that mean resting membrane 
potential, membrane time constant and input resistance were unchanged in mutant bushy 
cells. The input resistance was also deduced from the slope of a linear fit to the passive 
voltage-current relationship around rest (Ci) by averaging the last 10 ms of a 100 ms current 
step protocol of 50 pA steps from -700 pA to +500 pA as shown in (C), resulting in comparable 
input resistances (D) between Bsnwt and BsnΔEx4/5 bushy cells. E) The membrane capacitance 
was used as a measure of cell size and indicated that mutant bushy cells are significantly 
smaller than control cells.  

3.2.2 Short-term plasticity and pool size estimation 
Next, we studied short-term plasticity by applying 20 consecutive stimuli at 100, 

200 or 333 Hz, which represent firing frequencies naturally occurring in 

auditory nerve fibers (Taberner and Liberman, 2005). Wild-type bushy cells 

responded with short-term depression reaching steady state within the first 5-7 

stimuli. The steady state responses, determined by averaging the amplitudes 

of the last three EPSCs and normalizing against the first EPSC in the train, 

were 0.22 ± 0.01 for 100 Hz, 0.12 ± 0.05 for 200 Hz and 0.06 ± 0.02 for 

333 Hz. For comparison, published data from wild-type bushy cells recorded 

under similar conditions: 100 Hz: 0.23 ± 0.07; 200 Hz: 0.11 ± 0.04; 

333 Hz: 0.07 ± 0.03 (Yang and Xu-Friedman, 2009).  
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Figure 3.10 Short-term plasticity is altered in Bsn∆Ex4/5 mutants.  
Example traces of EPSCs evoked at 100 Hz recorded from a control (A) and a Bassoon-
deficient synapse (Ai) exemplifying the typical fast kinetics and short-term depression of 
bushy cell EPSCs in the Bsnwt and deeper depression in Bsn∆Ex4/5 synapses. (B) Short-term 
depression in response to 20 stimuli applied at 100 Hz (n(Bsnwt) = 38, n(Bsn∆Ex4/5) = 46), 
(C) 200 Hz (n(Bsnwt) = 36, n(Bsn∆Ex4/5) = 49) and (D) 333 Hz (n(Bsnwt) = 30, n(Bsn∆Ex4/5) = 41). 
Black traces are mean responses from individual control and grey traces from individual 
Bsn∆Ex4/5 cells. Grand means ± SEM for control cells are depicted in blue and mutant cells in 
red. EPSC amplitudes were normalized to the first amplitude in the train. Cells were allowed to 
recover from depression for 30 seconds after each train. For estimation of the readily 
releasable pool size, EPSCs from trains were plotted cumulatively and a linear fit to the last 
ten amplitudes was extrapolated as exemplified in panel (E). *P<0.05; **P<0.01; ***P<0.001  

Responses of BsnΔEx4/5 endbulbs showed stronger depression with lower 

values: 0.06 ± 0.03 for 100 Hz, 0.06 ± 0.02 for 200 Hz and 0.04 ± 0.017 for 

333 Hz. Example traces in response to 100 Hz stimulation are shown in Figure 
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3.10A,Ai and normalized responses allowing for direct comparison of short-

term depression are displayed in Figure 3.10B,C,D. Depression was 

significantly stronger in BsnΔEx4/5 endbulbs throughout the train for all three 

frequencies, but most pronounced for 100 Hz. Next, responses to high 

frequency stimulation for comparing release probability and RRP size were 

analyzed by the method of cumulative amplitudes (Schneggenburger et al., 

1999). For this, EPSC amplitudes from a train were plotted cumulatively and 

the last 10 of the 20 data points were fitted with a line as exemplified in Figure 

3.10E. The back-extrapolated ordinate crossing of the linear fit divided by the 

quantal size obtained from the mEPSC measurements yielded an estimate of 

the number of readily releasable vesicles. The slope of the linear fit represents 

the rate of vesicle replenishment to the active zone. The release probability is 

given by the ratio of the vesicle content of the first EPSC and the RRP size. 

The results from of short-term depression during high frequency stimulation 

and the pool size estimates are summarized in Table 3.2. The cumulative 

analysis strongly suggests that BsnΔEx4/5 endbulbs have a reduced vesicle 

replenishment rate. In addition, the RRP size seems to be reduced, whereby 

the latter became significant only for the higher stimulation rates, which are 

more effective in depleting the RRP. Here, the 200 Hz estimate is probably the 

most reliable, because the 100 Hz trains are the least efficient in depleting the 

RRP and the 333 Hz trains are most affected by receptor desensitization 

(Yang and Xu-Friedman, 2008; Chanda and Xu-Friedman, 2010a). 

 
Figure 3.11 Short-term depression at 100 Hz is not affected by desensitization. 

Short-term depression of Bsn∆Ex4/5 mutant endbulbs in response to 20 stimuli applied at 
100 Hz in normal aCSF (n(Bsn∆Ex4/5) = 46, and in the presence of 1 mM kynurenic acid 
n(Bsn∆Ex4/5 + kyn.) = 8). 
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To test whether the replenishment estimate for 100Hz was affected by 

postsynaptic mechanisms, 1 mM kynurenic acid was included into the bath 

solution to prevent receptor desensitization (Figure 3.11). Short-term 

depression of Bsn∆Ex4/5 endbulbs was unchanged by kynurenic acid, which is in 

line with a previous report on wild-type endbulbs of Held, indicating a role for 

desensitization only for stimulation at higher frequencies (Yang and Xu-

Friedman, 2008). 

 
Table 3.2 Short-term depression and pool size estimation 
Frequency Parameter Bsnwt BsnΔEx4/5 p value 

 q*  82 pA 109 pA  

100 Hz τ (ms) 20.16 ± 2.02 15.81± 1.4 0.076 

EPSC18-20 / EPSC1 0.23 ± 0.015 0.08 ± 0.006 1.3*10-12 

Pvr 0.49 ± 0.02 0.48 ± 0.02 0.63 

RRP (# vesicles) 303.39 ± 32.25 230.55 ± 22.9 0.067 

Repl. (# vesicles/ms) 3.59 ± 0.44 0.92 ± 0.10 2.0*10-11 

200 Hz τ (ms) 7.45 ± 0.83 4.88 ± 0.51 0.005 

EPSC18-20 / EPSC1 0.13 ± 0.008 0.06 ± 0.02 1.0*10-10 

Pvr 0.55 ± 0.03 0.61 ± 0.02 0.12 

RRP (# vesicles) 321.29 ± 29.10 157.70 ± 14.5 1.03*10-6 

Repl. (# vesicles/ms) 4.31 ± 0.47 1.1 ± 0.10 5.6*10-13 

333 Hz τ (ms) 3.36 ± 0.39 2.05 ± 0.17 0.005 

EPSC18-20 / EPSC1 0.07 ± 0.005 0.05 ± 0.004 0.015 

Pvr 0.59 ± 0.02 0.70 ± 0.02 0.007 

RRP (# vesicles) 245.34 ± 23.37 151.22 ± 16.2 7.0*10-4 

Repl. (# vesicles/ms) 3.01 ± 0.32 1.61 ± 0.17 6.6*10-4 

*q: the quantal size was taken from the mEPSC amplitude (Figure 3.8); τ: time constant of a 
single exponential fit to the EPSC amplitudes during train stimulation; EPSC18-20: average 
amplitude of EPSCs number 18-20; Pvr: vesicular release probability; RRP: readily releasable 
pool; Repl.: replenishment of vesicles. 

Seeking to corroborate the hypothesis of a reduced replenishment rate, 

recovery from depression was tested by probing for EPSC amplitude recovery 

at varying time points after a conditioning train of 20 stimuli with a frequency of 

100 Hz (Figure 3.12). The time course of recovery could best be described 

using a double exponential function. Time constants for the fast component 
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were 47.9 ms and 90.4 ms, and for the slow component 2.81 s and 3.64 s for 

Bsnwt and Bsn∆Ex4/5, respectively (fits constrained to reach 100 %). A linear fit 

to the first four data points (25 – 100 ms) after the end of the conditioning train, 

as a measure for the initial rate of recovery, revealed a shallower slope and 

hence a slowed initial fast component of recovery for mutant synapses.  

 

 
Figure 3.12 Recovery from short-term depression is slowed in Bsn∆Ex4/5 synapses  
After a conditioning train of 20 stimuli at 100 Hz, recovery from depression was probed by 
single stimuli evoked after (in ms) 25, 50, 75, 100, 250, 500, (further in s) 1, 2, 4 and 6. 
(A) Overlay of six recordings of a Bsnwt bushy cell, in which recovery was tested at different 
times between 100 ms to 4 s. (B) Solid lines represent the estimated mean percentage of the 
recovery of EPSC amplitude with respect to the first EPSC amplitude of the train. Dashed 
lines are double exponential fits yielding time constants of τ1 = 47.9 ms, τ2 = 2.81 s for Bsnwt 
and τ1 = 90.4 ms, τ2 = 3.64 s for Bsn∆Ex4/5 bushy cells. The inset shows the first five responses 
in detail. Dashed lines represent linear regressions to the first four responses approximating 
the initial rate of recovery, which is faster in Bsnwt (492.9 %/s) than in Bsn∆Ex4/5 (364.1 %/s) 
synapses. 

Apart from the replenishment impairment, the cumulative pool analysis for 

333 Hz indicated an increase in release probability. Furthermore, the second 

EPSC in each of the stimulation frequencies already depressed significantly 

deeper, a finding not readily explained by slowed vesicle replenishment. A 

further indication for an increased release probability came from the 

observation of increased asynchronous and delayed release. The latter was 

quantified in two 50 ms bins after train stimulation at frequencies of 100 and 

200 Hz (Figure 3.13A,B). We noticed that both the frequency and the period of 
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delayed release events increased with increasing stimulation frequency (a 

third 50 ms bin was included for analysis of 333 Hz trains). This was probably 

due to greater build-up of residual Ca2+ in the presynaptic terminal. For all 

frequencies, the number of events was increased in mutant synapses and the 

difference was most significant for 100 Hz trains (Figure 3.13). 

 
Figure 3.13 Delayed release is increased at Bassoon-deficient synapses.  
Delayed release events occurring in two 50 ms bins after AP-like train stimulation at 100 Hz 
(A), 200 Hz (B) and 333 Hz (C). Due to the prolonged occurrence of delayed release events 
after high frequency stimulation, events occurring from 100 to 150 ms after 333 Hz trains were 
additionally analyzed. D) Example trace of delayed release events after a 100 Hz train 
recorded from a Bsnwt bushy cell in black, Bsn∆Ex4/5 bushy cell in grey. The positive peak at the 
beginning of the displayed trace is the last stimulus artifact followed by the last evoked release 
event of the train response. The following peaks represent spontaneous release events.  

3.2.3 The BsnΔEx4/5 fragment does not exert dominant negative effects 
Next, we probed whether the synaptic phenotype may arise from a dominant 

negative effect from the BsnΔEx4/5 fragment expressed in the mutant synapses. 

Since the phenotype of an increased short-term depression was most 

pronounced for 100 Hz stimulation we this protocol to analyze the responses 

of heterozygous mice (Bsnhet) and did not find a significant difference 

compared to wild-type responses. Moreover, we found a punctate expression 

of bassoon colocalizing with piccolo spots, indicative of proper targeting of the 

full-length bassoon expressed from one allele to active zones. 
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Figure 3.14 No dominant negative effects in Bsnhet animals.  
A) Short-term depression does not differ between synapses from Bsnwt (n = 38) and Bsnhet 
mice (n = 7). B) Maximum projection of a confocal image stack a Bsnhet cell: Labeling of 
Bassoon’s sap7f (green) epitope shows punctate expression colocalizing with Piccolo (blue) at 
active zones. Individual channels are shown in (Bi). 

3.2.4 Reliability of transmission is preserved in BsnΔEx4/5 endbulb 
synapses 

The deeper depression of EPSCs during train stimulation may lead to more 

failures in synaptic transmission of action potentials in BsnΔEx4/5 synapses and 

the increase in delayed release might cause spikes after cessation of 

stimulation. In order to test these hypotheses the same train stimulation as in 

Figure 3.10 was performed in current clamp mode. As expected, wild-type 

endbulbs of Held very reliably transmitted at 100 Hz. Surprisingly, mutant 

synapses were almost as reliable, even at the end of the train stimulus. Spike 

latencies (measured at peak) and their standard deviation (spike jitter) were 

almost identical between both genotypes. However, while Bsnwt bushy cells 

did not fire any misplaced spike, 40 % of BsnΔEx4/5 bushy cells spiked at least 

once after stimulation had ceased. The example trace shown in Figure 3.15B 

displays such a misplaced spike after the train finished. 
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Figure 3.15 Reliability of transmission is largely preserved in BsnΔEx4/5 mutants.  
Example traces of a Bsnwt (A) and a BsnΔEx4/5 (B) bushy cell’s action potential train following 
20 stimuli at a frequency of 100 Hz. Note the occurrence of a misplaced spike in the mutant 
after stimulation has ceased (triangle). C) While misplaced spikes did not occur in wild-type 
cells, 40 % of the mutant cells fired at least one misplaced spike in one trial. Misplaced spikes 
were detected in ~12 % of all trials per cell. D,E) The spike latency, measured from the start of 
the stimulus to the peak of the action potential, and its jitter (expressed as the standard 
deviation of the latency) were unaffected in mutant synapses. F) Both, Bsnwt and BsnΔEx4/5 
synapses followed 100 Hz stimulation reliably. 

3.2.5 Partial sensory deprivation leads to homeostatic plasticity  
Reliability of synaptic transmission despite deeper depression during train 

stimulation may reflect compensation by homeostatic plasticity. Indeed, the 

increased length of the PSD (Figure 3.6) and the smaller size of the bushy cell 

(Table 3.1) can be considered to support this hypothesis. To follow it up we 

studied bushy cell biophysical properties in more detail. Figure 3.16 shows the 

active voltage-current relationship analyzed at the beginning of a current step, 

and the steady-state voltage from the end of a current step. The example cell 

depicted in Figure 3.16A shows a typical recording of a wild-type bushy cell. 

Bushy cells express gh, which often lead to spike generation at the end of 

hyperpolarizing current steps. In response to depolarizing current injection, 

bushy cells fire one or few action potentials of small amplitude. This phasic 

behavior is due to the expression of high amounts of gKL (McGinley and Oertel, 

2006; Cao and Oertel, 2011). The voltage-current relationship, as depicted in 

Figure 3.16, was comparable between bushy cells of both genotypes.  
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Figure 3.16 Voltage – current relationships remain unaffected by Bassoon disruption. 
Membrane potentials were recorded in response to current step protocols ranging 
from -700 pA to +500 pA in 50 pA steps (A). The peak of the active component in the 
beginning of a current step (open square) and the passive change averaging the last 10 ms of 
the 100 ms pulse (filled circles) was analyzed as shown for the example recording (B). The 
passive and active component was plotted for control and mutant bushy cells in (C) and (D), 
respectively. 

The same data set as shown in Figure 3.16 was used to analyze the action 

potentials produced by the bushy cells, both at the beginning of depolarizing 

(Figure 3.17A,Bi, open squares) and the end of hyperpolarizing current steps 

(Figure 3.17A,B, filled triangles). The latter occurred at comparable numbers, 

delay times and had comparable amplitudes (data not shown). Mutant bushy 

cells fired more spikes when stimulated with the same depolarizing current 

injection as control cells. The first spike latency, measured from the start of the 

current step to the peak of the first action potential, reached a minimum at 

350 pA of stimulation in BsnΔEx4/5 bushy cells, whereas Bsnwt cells did not 

reach their minimum latency even for stimulation of up to 500 pA. Therefore, to 

test whether also Bsnwt bushy cells have an optimal stimulation current, a 
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smaller data set with input currents of up to 800 pA was recorded. Indeed, 

using this paradigm, Bsnwt bushy cells reached minimum spike latency in 

response to 550 pA. This indicates that BsnΔEx4/5 bushy cells were tuned for 

optimal transmission receiving smaller inputs than Bsnwt bushy cells. Phase 

plots of the first action potential of a depolarizing current step suggest a 

tendency for BsnΔEx4/5 bushy cells to have a lower action potential onset-

potentials and also faster maximal depolarization speeds of the back-

propagated action potential.  

 As mentioned before, the phasic behavior of bushy cells is largely 

governed by gKL, which also sets the time window during which integration of 

inputs can trigger spikes (McGinley and Oertel, 2006). This time window can 

be approximated by determining the rate threshold of depolarization during 

ramp stimuli as shown in Figure 3.18. There, the initial (sub-threshold) EPSPs 

were fit with a linear function and the shallowest slope sufficient to trigger a 

spike was considered the rate threshold. Consistent with the notion that 

BsnΔEx4/5 bushy cells integrate inputs of auditory nerve fibers that are less 

precisely timed (Buran et al., 2010), these show a trend towards allowing for 

slower depolarization to trigger spikes.  

The strength-duration plots shown in Figure 3.18D depict some 

BsnΔEx4/5 bushy cells with lower rheobase current compared Bsnwt bushy cells. 

However, the reduction in the mean rheobase current was not significantly 

decreased. 
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Figure 3.17 BsnΔEx4/5 bushy cells fire more spikes during depolarizing current injection.  
Analysis of spikes at the onset of depolarizing current injection (A, open square) and after 
cessation of hyperpolarizing current injection (A, filled triangle). Spikes were counted for each 
current step as shown for the example cell (Ai). While the number of spikes after 
hyperpolarizing current injection remained unchanged (B, filled triangle), the number of spikes 
during depolarizing current steps was larger in mutant compared to control bushy cells (Bi, 
open square). The fraction of trials with a spike for 100 pA step currents is not significantly 
increased in mutant bushy cells (C). D,E) Latency of the first spike measured from the start of 
the current step to the peak of the spike and amplitude of the spike relative to the resting 
membrane potential, respectively. F) Phase plot of an action potential used for determining the 
onset voltage determined as the voltage at which the depolarization velocity exceeded 
45 mV/ms (G) and maximal depolarization speed (H) of action potentials. 
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Figure 3.18 Rate thresholds and rheobase currents remain largely unaffected  
A) Depolarization thresholds were determined by ramp stimuli of varying steepness to the 
same plateau value as shown in the example traces. The red trace was the slowest 
depolarization driving the cell to spike. The depolarization threshold was taken from a linear fit 
to the sub-threshold depolarization-phase of the slowest depolarization to elicit a spike as 
shown in the inset. For clarity, the inset shows the same family of traces as the full graph in 
reverse order. B) By trend, for BsnΔEx4/5 bushy cells slower depolarization sufficed to spike. 
C) Example traces showing the experimental paradigm used to plot strength duration 
functions shown in (D). Depolarizing step currents increasing by 2, 5 or 10 pA were injected 
and spike times were measured as the time from the current step to the peak of the action 
potential. The dashed lines the mean rheobase current, which was not significantly different.  

In the central auditory system of the chick, the axon initial segment 

(AIS) is susceptible to homeostatic regulation - both, physiologically along the 

tonotopic axis and after partial and full auditory deprivation (Kuba et al., 2010, 

2006). Physiologically, neurons of the nucleus laminaris with high 

characteristic frequency have short AISs and neurons tuned to low sound 

frequencies have long AISs harboring more sodium channels (Kuba et al., 

2006). After deprivation, the AISs of neurons of the nucleus magnocellularis 
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occupy a longer stretch along the axons and incorporate higher number 

sodium channels (Kuba et al., 2010). These reports led to the hypothesis that 

the action potential generator could contribute to the increased excitability in 

BsnΔEx4/5 bushy cells and raised the question whether the AISs of murine 

central auditory neurons in mice were equally susceptible to tonotopic 

regulation.  

 
Figure 3.19 AIS length does not contribute to increased central excitability. 
A) Schematic illustration of one hemisphere of a coronal section through the auditory 
brainstem highlighting the tonotopic gradients in the AVCN and MNTB (HF – high frequency; 
LF – low frequency; adapted from Paxinos and Franklin, 2003. B) Projection of a confocal 
stack of images from the lateral region of the MNTB (lMNTB) labeled for ankyrin-G (AnkG; 
green), Vglut1 (blue) and calbindin (red). The inset shows an example AIS labeled for AnkG 
from which the intensity line profile was obtained (red line). Beginning and end of the AIS were 
determined as the points where the intensity dropped below the ‘maximum’ intensity divided 
by 3.5. ‘Maximum’ intensity was obtained from averaging five data points centered on the 
peak of the profile as indicated by the blue overlay in the line profile plot. C) AIS length 
averaged in eight 100 µm bins from the ventral to dorsal axis of the AVCN obtained from 
AnkG immunolabeling costained for neurofilament. D) AISs in the lateral, low frequency 
lMNTB are significantly longer than in the medial, high frequency MNTB (mMNTB). AIS length 
compared between BsnΔEx4/5 and Bsnwt principal cells did not differ significantly. 

For this purpose, AISs were labeled with an antibody for the scaffold protein 

Ankyrin-G that is targeted specifically to the AIS and nodes of Ranvier in 
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neurons (Grubb and Burrone, 2010b). A simplified scheme of one hemisphere 

of a coronal slice through the murine auditory brainstem shown in Figure 3.19 

illustrates the tonotopic arrangements in the cochlear nucleus and the MNTB 

(Paxinos and Franklin, 2003; Kandler et al., 2009). Due to the simpler anatomy 

of the MNTB we started by comparing the length of Ankyrin-G (AnkG) labeled 

AISs from the lateral edge of MNTB clusters (lMNTB), corresponding to low-

frequency neurons, to the medial edge of MNTB clusters (mMNTB) 

corresponding to high frequency neurons (Kandler et al., 2009). AISs of Bsnwt 

principal neurons were significantly longer in the lMNTB compared to the 

mMNTB, suggesting that AISs are subject to physiological regulation along the 

tonotopic axis in mice. Tonotopic differences of AIS length were also 

significant in BsnΔEx4/5 principal neurons, but no significant difference was seen 

between the genotypes neither for lMNTB nor mMNTB neurons. When 

comparing AISs of neurons in the AVCN, without differentiating between cell 

types, no significant differences along the tonotopic axis were seen. Figure 

3.19D shows the length of AISs in eight 100 µm bins from the ventral, low 

frequency edge to the dorsal, high frequency edge. Here, no clear tonotopic 

gradient in AIS length was found. In the second bin, BsnΔEx4/5 neurons 

displayed significantly longer AISs than Bsnwt neurons. However, the meaning 

of this finding remains to be elucidated, since the AISs at other positions along 

the tonotopic axis remained unchanged. Hypothetically, it could be reflective of 

cell-type specific regulation of the AIS (see discussion). In order to test the 

hypothesis that more sodium channels were integrated into the AIS in 

BsnΔEx4/5 bushy cells, whole cell patch-clamp experiments were performed to 

compare sodium currents in response to depolarization. Following 

identification of bushy cells by their phasic firing pattern in response to 

depolarizing current injections, K+ currents were blocked pharmacologically 

and I-V relationships were recorded. Due to loss of voltage clamp control of 

the AIS during depolarization, sodium components of unclamped action 

currents were used to compare the sodium current amplitudes between 

BsnΔEx4/5 and Bsnwt bushy cells. In order to reduce the amplitudes and 

potentially acquire voltage control, a subsaturating concentration of the 

specific Na+ channel inhibitor tetrodotoxin (TTX; 20 nM) was applied in the 

bath. In both genotypes the sodium component of the action currents was 
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reduced by ~55 %, but action current generation could not be prevented. 

However, the Na+ current components generated by the action current did not 

differ significantly between BsnΔEx4/5 and Bsnwt bushy cells.  

Together, unchanged AIS length as determined from AnkG labeling and 

unchanged Na+ current amplitudes suggest that the AIS is not differentially 

regulated in BsnΔEx4/5 mutants to modulate excitability.  

 
Figure 3.20 Sodium currents are not increased in BsnΔEx4/5 bushy cells. 
A) After identification of bushy cells by their phasic firing when depolarized by current injection, 
K+ currents were blocked I-V relationships were recorded. B) Transient inward currents 
probably represented unclamped action currents and partial block by bath application of 
20 nM TTX reduced the amplitude by ~55 % but did not enable clamping the voltage at the 
AIS. The inset shows an example current at -40 mV before (solid line) and after application of 
20 nM TTX (dashed line). C) No significant difference was observed between current 
amplitudes of BsnΔEx4/5 and Bsnwt bushy cells, before and after application of TTX at a holding 
potential of -40 mV. Stellate cells, identified by their phasic firing (D) had very large sodium 
components of action currents as exemplified in (E) and compared to bushy cells sodium 
current amplitude in (F).  
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4 Discussion 

Presynaptic terminals are complex structures enabling synaptic vesicles to 

cycle between functionally different pools to undergo exo- and endocytosis in 

a tightly regulated manner. Exocytosis occurs exclusively at AZs, which 

feature a rich network of proteins that determine the structural and functional 

properties of individual release sites, thereby ensuring efficient transmitter 

release (Gundelfinger and Fejtova, 2011). Due to the physical properties of 

acoustic signals, the auditory system is specialized for fast signaling and 

harbors synapses that are highly adapted to cope with this challenge, making 

them ideal models for studying CAZ proteins. The presented study analyzes 

functional and structural changes at the endbulb of Held synapse upon genetic 

disruption of the CAZ protein bassoon by partial deletion (BSN∆Ex4/5; Altrock et 

al., 2003).  

4.1 Molecular components of endbulb of Held AZs 
The endbulb of Held synapse is made up from a postsynaptic bushy cell of 

central origin - derived from rhombomeres 3 and 5 of the developing neural 

tube, and a presynaptic compartment of peripheral origin derived from the 

otocyst (Farago et al., 2006; Kelley, 2006). Apart from its peripheral origin, the 

endbulb terminal differs from most synapses in the central nervous system by 

its large size, the large number of release sites and its capacity for fast and 

exceptionally precise transmission. So far, the molecular machinery of endbulb 

AZs has not been investigated in great detail. Immunolabeling revealed the 

presence of the CAZ proteins bassoon, piccolo, Munc13-1, RIM2, CAST and 

ELKS at AZs in this study. A punctate distribution of these proteins was 

detected covering the whole surface of the postsynaptic bushy cell, belonging 

to both inhibitory synapses and excitatory endbulbs of Held. 

 Apart from CAZ proteins, immunolabeling was also performed for other 

presynaptic proteins. VAMP1 and VAMP2 were found to segregate between 

excitatory and inhibitory synapses, with VAMP1 being expressed in endbulbs 

and VAMP2 in inhibitory synapses. Although unexpected first, considering the 

peripheral origin of the endbulb terminal, these findings are in line with 
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previous reports, which implicated VAMP2 in mediating vesicular fusion at 

central synapses (Südhof et al., 1989; Schoch et al., 2001), and VAMP1 at 

peripheral synapses, primarily motor neurons and few central nuclei 

modulating somato-motor functions (Trimble et al., 1988, 1990; Liu et al., 

2011). However, the labeling in the mature MNTB followed a similar pattern: 

while VAMP1 was expressed in the calyx of Held terminal, VAMP2 was 

exclusively localized to inhibitory synapses. These findings raised the question 

if the expression of VAMP1 represents an adaptation of these synapses to the 

need of fast signaling. Interestingly in this context, immature calyx of Held 

presynapses seems to mainly express VAMP2 and VAMP1 only to a minor 

extend; however, this pattern reverses during maturation. During the onset of 

hearing at ~p12 (Mikaelian and Ruben, 1965) several morphological and 

functional changes occur in the auditory brainstem to fine-tune fast and 

precise transmission (Borst and Soria van Hoeve, 2012). Even though the time 

points of the experiments at p8 and p14 do not allow for determining when 

exactly the expression pattern changes, it is tempting to speculate that they 

happen in parallel to other fine-tuning changes occurring around the onset of 

hearing. However, VAMP1 and VAMP2 are highly homologous in amino acid 

sequence and the reason why VAMP1 could be more suitable for fast 

transmission at these synapses remains to be elucidated. The most notable 

difference between the two isoforms lies within the proline-rich N-terminal 

region (Trimble et al., 1990), which has been associated with recruitment of 

fast-releasing, but slowly-recovering vesicle of the RRP in the calyx (Wadel et 

al., 2007).  

4.2 Morphological integrity of Bassoon-deficient AZs 
A role in synapse formation and maintenance of active zone integrity had been 

proposed for bassoon and its homolog piccolo soon after their discovery 

(Friedman et al., 2000; Zhai et al., 2000). This hypothesis was supported by 

the large size and domain structure of these proteins, rendering them ideal 

candidate molecules for presynaptic scaffolding. Furthermore, both proteins 

were shown to be highly expressed in phases of neuronal differentiation and 

synapse formation, where they are sorted to axonal growth cones and are 

amongst the first proteins to reach nascent synapses (Zhai et al., 2000, 2001). 

However, partial deletion or knock-down of either bassoon or piccolo did not 
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have any significant effect on synaptic morphology (Altrock et al., 2003; 

Mukherjee et al., 2010). In line with these previous observations, no difference 

in endbulb and AZ number or general synaptic morphology could be detected 

in BsnΔEx4/5 mutants. Moreover, absolute vesicle content, including 

morphologically docked vesicles, was indistinguishable from Bsnwt in the 

presented experiments. Interestingly, PSDs were significantly enlarged, a 

finding most likely reflecting an indirect compensatory mechanism due to 

absence of bassoon from the peripheral auditory system (see below). Loss of 

functional bassoon from the CAZ network did not prevent incorporation of 

piccolo, Munc13-1 and RIM-2 into the CAZ. In this context, it is likely that 

piccolo compensates for the loss of bassoon at central synapses. This 

hypothesis is supported by the overexpression of piccolo at endbulb AZs and 

a previous study (Altrock et al., 2003). Furthermore, the interactions of 

bassoon and piccolo with other core CAZ proteins including Munc13-1 and 

CAST overlap, indicating that their scaffolding function could be redundant 

(Wang et al., 2009). Finally, this hypothesis is in line with a recent study 

providing evidence that knock-down of all piccolo isoforms and bassoon 

caused dramatic defects on the integrity of presynaptic terminals of 

hippocampal cultured neurons, ultimately leading to degradation of the 

synapse (Waites et al., 2013). 

4.3 Developmental considerations 
Hippocampal mossy fibers lacking bassoon exhibit impaired maturation over 

the first two weeks of postnatal development (Lanore et al., 2010). Also the 

auditory system of mice undergoes important changes during this period, most 

prominent around the onset of hearing at ~p12 (Mikaelian and Ruben, 1965; 

Beutner and Moser, 2001; Borst and Soria van Hoeve, 2012). Several 

observations indicate that the phenotypes reported in this study are not 

caused by defects in maturation. First, the experiments conducted here were 

performed several days after the onset of hearing at p15 where most 

maturational processes should have been completed. Second, since the 

AMPA/NMDA ratio of EPSC increases during the first weeks of postnatal 

maturation, this ratio can be used to assess maturational differences 

(Isaacson and Walmsley, 1995; Futai et al., 2001). Here, no difference 

between BsnΔEx4/5 and Bsnwt bushy cells was observed. Third, changes 
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reported here, including larger mEPSC amplitude, larger PSD size and smaller 

bushy cell size are in-line with, rather than opposed to appropriate maturation 

(Lu et al., 2007; Baker et al., 2010; Crins et al., 2011). 

4.4 Synaptic transmission in Bassoon-deficient synapses 
Previous data obtained from experiments in cultured hippocampal neurons 

where bassoon function was genetically disrupted argued against a direct role 

of bassoon in presynaptic vesicle cycling. While mutant Bsn∆Ex4/5 neurons had 

a higher number of silent synapses without compromising active synapses in 

any way (Altrock et al., 2003), shRNA-mediated knock-down of bassoon did 

not have any detectable effects (Mukherjee et al., 2010). In contrast, 

transmission in Bsn∆Ex4/5 endbulbs of Held showed several differences 

compared to Bsnwt controls. Here, the quantal size in Bsn∆Ex4/5 mutants was 

increased by roughly 30 %, which is likely not to be a direct effect of bassoon 

disruption and will be discussed in more detail below. However, at the same 

time, the amplitude of single eEPSCs was unchanged, which could be 

explained by reduction of RRP size, and/or attenuated release probability. 

Surprisingly, while we found evidence for the expected reduction of the RRP, 

we also observed an increased rather than decreased release probability. 

Indeed, Bsn∆Ex4/5 mutants exhibited faster and stronger depression during 

high-frequency stimulation, indicative of a higher release probability and a 

smaller RRP. This finding was further confirmed by cumulative analysis of 

EPSC amplitudes in response to high frequency stimulation 

(Schneggenburger et al., 1999). Additionally, these experiments revealed 

slowed replenishment rates of vesicles to the RRP as shown by larger EPSC 

amplitude recovery times after high-frequency stimulation. The time course of 

recovery from depression exhibited two phases, a fast one acting within tens 

of milliseconds, and a slower one leading to full recovery over several seconds. 

Here, bassoon disruption seemed to mainly affect the fast component, which 

was slower in Bsn∆Ex4/5 mutants. Similar data has previously been presented 

for a another high throughput synapse, the terminals of cerebellar mossy 

fibers onto granule cells (Hallermann et al., 2010). In this preparation, deeper 

depression and slower recovery rates were observed and variance-mean 

analysis (Clements and Silver, 2000) and modeling revealed a specific 

impairment of vesicular replenishment (Hallermann et al., 2010). 
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Timing of vesicular release and replenishment has most thoroughly 

been studied in the calyx of Held, were also the release of vesicles during step 

depolarization exhibits two time components. ‘Fast-releasing’ vesicles are 

replenished slowly and ‘reluctantly-releasing’ vesicles are replenished quickly 

in a Ca2+- and calmodulin-dependent process (Sakaba and Neher, 2001a). 

The reluctantly releasing vesicles exhibit a 2-fold smaller Ca2+-sensitivity due 

to their more distal location to the Ca2+ channel clusters (Wadel et al., 2007) 

but are converted to ‘fast releasing’ vesicles by a slow mechanism termed 

‘positional priming’. This process is thought to target those vesicles into close 

proximity of Ca2+ channel clusters (Neher and Sakaba, 2008). During action 

potential-like train stimulation of the calyx, mainly fast-releasing vesicles 

contribute to the synchronous component of release, while asynchronous 

release is mediated by slowly-releasing vesicles (Sakaba, 2006). However, if 

the same scenario applies to the endbulb of Held and the mossy fiber terminal 

is currently unknown. In the mossy fiber terminal, the function of bassoon was 

pinpointed to facilitating the recovery of only fast-recovering and reluctantly-

releasing vesicles (Hallermann et al., 2010). At the endbulb, the main function 

of bassoon also appears to be orchestrating efficient recovery of slow-

releasing vesicles; however, an additional contribution to maintaining the 

number of fast-releasing vesicles is supported by the smaller quantal content 

of recovered eEPSCs. 

Recently, using immuno-gold labeling of synapses of the cerebellar molecular 

layer, it could be shown that the C-terminus of bassoon is located at a 

distance of roughly 36 nm from the presynaptic plasma membrane (Limbach 

et al., 2011). Super-resolution fluorescent imaging confirmed these 

estimations for the C-terminus and located the N-terminus at a distance of 

around 70-80 nm (Dani et al., 2010). These data correlate well with a potential 

role of bassoon in organizing vesicle replenishment of reluctantly releasing 

vesicles at some distance from release sites. Since no direct interaction of 

bassoon with synaptic vesicles or vesicular proteins has been described to 

date, it is possible that the linking protein still awaits discovery. A candidate 

here might be the small vesicular protein mover, which has been shown to 

bind the C-terminal region of bassoon, is enriched in synaptosomal fractions 

and colocalizes with markers of synaptic vesicles (Kremer et al., 2007). 
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However, knock-down of mover in the calyx of Held increased the 

replenishment of vesicles after short-term depression, indicating an inhibitory 

role in replenishment, opposed to that of bassoon (Körber, 2011). However, 

the exact molecular mechanism by which bassoon contributes to efficient 

vesicle replenishment remains to be elucidated. 

 A recent report implicates bassoon in Ca2+ channel clustering at AZs 

through an indirect interaction with RIM-binding protein (RBP). Loss of 

bassoon interfered specifically with the localization of P/Q-type Ca2+ channels 

but not N-type Ca2+ channels (Fejtova, 2013). In hippocampal slices, loss of 

P/Q-type Ca2+ channels from AZs was compensated by increased recruitment 

of N-type Ca2+ channels (Fejtova, 2013). Presynaptic Ca2+ influx at the mature 

calyx of Held is also predominantly mediated by P/Q-type Ca2+ channels 

(Forsythe et al., 1998). Interestingly, when the α1A-subunit is genetically 

ablated, which results in complete loss of P/Q-type channels, N-type channels 

are upregulated to compensate for this deficit (Inchauspe et al., 2004; 

Ishikawa et al., 2005). Furthermore, short-term depression of EPSCs during 

stimulation at 100 Hz was stronger, especially for the second and third 

stimulus. Though statistically not significant, cumulative analysis suggested a 

trend towards higher release probability (Ishikawa et al., 2005). At the endbulb 

of Held it has been shown previously that P/Q-type Ca2+ channels account for 

~86 % of the Ca2+ current triggering transmitter release (Lin et al., 2011). If 

bassoon is instrumental in clustering P/Q-type Ca2+ channels at the endbulb 

terminal remains speculative at this point, but could be tested 

pharmacologically by comparing the effectiveness of blocking synaptic 

transmission with specific Ca2+ channel blockers. 

The Bsn∆Ex4/5 fragment was predicted not to interfere with transmission, 

based on its inefficient association with the CAZ network (Altrock et al., 2003). 

However, it could still exert effects on transmission by potentially binding other 

CAZ proteins through the remaining domains, i.e. CAST through the cc3 

domain, thereby preventing its integration into the CAZ. This scenario is 

deemed unlikely since depression at Bsnhet endbulb synapses was not 

different from Bsnwt. Furthermore, in the mossy fiber terminal and the auditory 

nerve, loss of full-length bassoon and Bsn∆Ex4/5 mutants yielded the same 
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phenotype adding to the notion that the Bsn∆Ex4/5 fragment does not interfere 

with synaptic transmission per se (Hallermann et al., 2010; Jing et al., 2013). 

4.5 Central compensation after partial auditory deprivation 
While bassoon is generally found in vertebrate active zones of central 

synapses, neuromuscular junctions as well as sensory ribbon synapses it 

seems to play different roles at these synapses. Hence, consequences of 

bassoon disruption differ between distinct types of synapses and are most 

severe in ribbon-type synapses. Inner hair cells show a robust morphological 

and functional phenotype, ultimately leading to reduced spontaneous and 

evoked activity in spiral ganglion neurons (Khimich et al., 2005; Buran et al., 

2010; Frank et al., 2010). Furthermore, synchronous compound activity of 

spiral ganglion neurons in response to sound is evident in ABR wave one of 

wild-type mice, but almost absent in ABR recordings of BsnΔEx4/5 mutants 

(Khimich et al., 2005; Buran et al., 2010). Surprisingly, synchronous activity is 

almost fully recovered at the level of the cochlear nucleus, as manifested in 

ABR wave two generated by globular bushy cells (Melcher and Kiang, 1996; 

Buran et al., 2010). It was suggested that convergence of auditory nerve fibers 

onto bushy cells, even though less synchronous and at lower rates, could 

compensate for the peripheral phenotype. However, this assumption was 

mainly based on convergence numbers from cats, which were shown to be in 

the range of 9 - 69 (Spirou et al., 2005). In mice, more recent evidence 

suggests that globular bushy cells receive only 4 - 6 inputs from auditory nerve 

fibers (Cao and Oertel, 2010). This finding raises the question whether other 

central mechanisms by which partial auditory deprivation in BsnΔEx4/5 mutants 

is compensated for, might be prevalent. The present study suggests that 

bushy cells in the AVCN adapt their excitability to recover synchronous activity, 

by widening their PSDs and reducing soma size. Widening PSDs, yielded 

larger mEPSC amplitudes, probably by incorporation of more AMPA receptors 

likely reflects synaptic scaling (Turrigiano et al., 1998). Likewise decreasing 

the soma size of bushy cells can be interpreted as a homeostatic increase in 

intrinsic excitability (Turrigiano, 2011), thereby passively reducing the charge 

required for supra-threshold depolarization. In line with these results, 

morphological analysis of endbulbs in congenitally deaf and chemically 

deafened cats found decreased bushy cell size and increased PSD length 
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(Pasic and Rubel, 1989; Baker et al., 2010; Ryugo et al., 2010). Interestingly, 

cats that were not completely deaf, but exhibited markedly elevated thresholds, 

showed intermediate phenotypes and the phenotype of deaf cats could be 

ameliorated by stimulation of auditory nerve fibers with cochlea implants 

(Ryugo et al., 2005; O’Neil et al., 2011). Further evidence for cell size 

modulation by presynaptic activity was provided by blocking auditory nerve 

activity of gerbils with TTX, which reversibly reduced bushy cell size as soon 

as four hours after drug application (Pasic and Rubel, 1989). Cell size 

reduction in the cochlear nucleus or equivalent auditory structures after 

auditory deprivation has been reported for many model organisms including 

rats (Marianowski et al., 2000), ferrets (Moore, 1990), guinea pigs 

(Lesperance et al., 1995), Dalmatians (Niparko and Finger, 1997) and 

chickens (Lippe, 1991).  

In mice, several studies have described effects of hearing impairment 

on synaptic physiology at the level of the AVCN. Nevertheless, a unifying 

scheme is not emerging, which is probably due to differences in the 

methodology and the models for deafness used in these studies (Wang et al., 

2011b). Since bassoon disruption is likely to affect the peripheral auditory 

system from an early maturational stage, findings about age-related hearing-

loss will not be discussed here. Moreover, it seems reasonable to assume that 

alterations following noise-trauma are governed by different mechanisms and 

are of little relevance for this study. Mutant deafness mice have been used as 

a model for hereditary cochlear deafness and never hear (Bock et al., 1982). 

Compared to their wild-type littermates, endbulbs of deafness mice have 

higher release probability leading to increased eEPSC amplitudes. Short-term 

depression during high frequency stimulation is more pronounced in endbulb 

synapses of deafness mice, followed by a higher amount of asynchronous 

release events. However, bushy cells of deafness mice exhibited normal 

mEPSC amplitude and frequency, despite higher release probability 

(Oleskevich and Walmsley, 2002; Oleskevich et al., 2004). Octopus and 

stellate cells of the PVCN of mice with a mutation that induces hearing loss 

around p10 had unaltered mEPSC amplitudes but increased mEPSC 

frequency and increased depression during train stimulation, indicative of 

increased release probability (Cao et al., 2008). Notably, the amplitudes of 
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mEPSCs were not increased in these studies, suggesting that synaptic scaling 

does not occur at synapses in the cochlear nucleus of deaf mice. An important 

difference between these deaf animals and BsnΔEx4/5 mutants is that in the 

latter case sensory deprivation is rather mild with average reduction of 

spontaneous and evoked rates of single auditory nerve fibers by a factor of 4 

and 2.5, respectively (Buran et al., 2010). ABR thresholds to pure tones are 

elevated by ~15 db in BsnΔEx4/5 mutants. Strikingly, rats with ear plugs that 

elevated hearing threshold by ~20 db (measured by ABR in response to clicks) 

incorporated significantly more GluR3 containing AMPA receptors into the 

PSDs of bushy cells (Whiting et al., 2009; Wang et al., 2011a). Together with 

the finding of the presented study, these data suggest that synaptic scaling 

occurs in bushy cells of the cochlear nucleus in response to partial auditory 

deprivation. 

An alternative hypothesis could include the integration of additional 

postsynaptic AMPA receptors via transsynaptic signaling in response to loss of 

bassoon. In this scenario, the underlying mechanism might be of indirect 

nature, potentially through interaction with α-liprins via CAST (Ko et al., 2003). 

Liprins were discovered as proteins binding to LAR (leukocyte common 

antigen related) -type receptors which are transmembrane cell-adhesion 

proteins (Serra-Pagès et al., 1995) and typically found at focal adhesions and 

cell-cell interaction sites (Volberg et al., 1992). To date, no functional studies 

about the roles of α-liprins in mammals have been published. However, in this 

context it is interesting to note that when the homologous protein in C. elegans 

syd-2 (for synapse-defective) is mutated, active zones are unusually large 

(Zhen and Jin, 1999). Similar findings were described for mutants of the 

Drosophila homologs Dlar and Dliprin (Kaufmann et al., 2002). However, here, 

the transsynaptic signaling scenario is unlikely because mEPSC amplitudes 

have neither been found to be significantly increased in bassoon-deficient 

hippocampal neurons in culture nor at the cerebellar mossy fiber to granule 

cell synapse (Altrock et al., 2003; Hallermann et al., 2010). 

Bushy cells express high amounts of gKL, which determines the phasic 

firing behavior of bushy cells and limits the time window during which 

integration of EPSPs can trigger a spike (McGinley and Oertel, 2006). An 

indirect measure for the amount of gKL is the rate threshold that suffices to 
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trigger a spike during ramp stimuli. As described above, auditory nerve fibers 

of BsnΔEx4/5 mutants have not only reduced spike rates, but also a loss of 

synchronicity and hence degraded onset coding (Khimich et al., 2005; Buran 

et al., 2010). Consistent with the regained synchronicity at the AVCN evident 

in ABR measurements, BsnΔEx4/5 bushy cells tend to spike during slower 

depolarization. This mild reduction in rate threshold of depolarization could 

potential allow less synchronous inputs to trigger spikes without severely 

compromising temporal precision and phasic behavior. The increased number 

of spikes in response to depolarizing current injection in a fraction of mutant 

cells suggests that the phasic behavior is mildly perturbed. However, onset 

coding, which is a crucial function of bushy cells, seems to be preserved in 

BsnΔEx4/5 mutants as illustrated by preservation of recovered EPSC size, spike 

reliability and spike latency. Moreover, unpublished data from in vivo 

recordings suggest that the onset spike rate of BsnΔEx4/5 bushy cells in 

response to sound is less attenuated than the adapted spike rate. When 

comparing responses from BsnΔEx4/5 mutant auditory nerve fibers with 

BsnΔEx4/5 mutant bushy cells, onset rates were less affected, indicating central 

compensation on bushy cell level (data not shown, experiments performed by 

Zhizi Jing). 

The AIS of principal cells of the nucleus laminaris and magnocellularis of 

chicken is longer for neurons tuned to low-frequency than for neurons of high 

characteristic frequency (Kuba et al., 2006, 2010). The present study provides 

evidence for tonotopic modulation of the AIS of principal cells in the MNTB. 

Neurons located on the lateral edge of the MNTB respond to low frequency 

(Kandler et al., 2009) and exhibited longer AISs than neurons of high 

characteristic frequency positioned on the medial edge of the nucleus. 

However, partial sensory deprivation did not increase the length of the AIS in 

MNTB neurons. For principal cells of the AVCN no clear modulation along the 

tonotopic axis was found. However, this could be due to methodological 

deficiencies: First, the tonotopic organization of the AVCN is more complex 

than depicted in the schematic in Figure 3.19, displaying a second frequency 

gradient, perpendicular to the one depicted, located in close proximity to the 

nerve root entry (Muniak et al., 2012). Second, based on colabeling for 

neurofilament a clear identification of the respective cell soma belonging to the 
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labeled AIS and hence cell type identification was not possible in most cases. 

Differential regulation of stellate and bushy cell AISs is likely in light of the 

large difference in the sodium component of unclamped action currents 

between the two cell types. In cultured hippocampal neurons, the distance of 

the AIS from the soma, rather than the length is modulated depending on the 

activity. While cells that are stimulated strongly exhibit AISs distal to the soma, 

quiescent cells relocate the AIS to a more proximal position (Grubb and 

Burrone, 2010a). Here, retrograde labeling of bushy cells by injection of 

labeled cholera toxins into the MNTB (Körber et al., 2013), transfection with 

virus expressing fluorescent markers (Wimmer et al., 2006), or usage of a 

Krox20 (bushy cell specific; Voiculescu et al., 2000; Han et al., 2011), or 

Math5 (auditory brainstem specific; Saul et al., 2008) driver line for fluorescent 

reporters would be of immense use. However, comparable Na+ current 

amplitudes of unclamped action currents between Bsnwt and BsnΔEx4/5 mutant 

bushy cells indicate comparable Na+ channel complements and/or AIS lengths. 
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5 Summary 

Endbulbs of Held are large calyceal presynaptic terminals of auditory nerve 

fibers driving bushy cells in the AVCN. These synapses transmit precisely 

timed auditory signals up to high frequencies that provide the basis for 

downstream computation of sound localization and for speech perception 

(Oertel, 1997, 2005). The underlying molecular mechanisms in these ultrafast 

processes are largely unknown. The presented study analyzed functional and 

structural changes upon genetic disruption of bassoon, a large presynaptic 

scaffold protein in the cytomatrix of the active zone by studying the partial 

deletion mutant Bsn∆Ex4/5 (Altrock et al., 2003). Piccolo expression at active 

zones was upregulated, and RIM2 and Munc13-1 remained present at mutant 

active zones. Endbulb terminal and active zones were normal in number; 

however, postsynaptic densities (PSDs) were enlarged and the vesicle 

number in close proximity to the presynaptic plasma membrane per µm PSD 

reduced. In in vitro electrophysiological experiments in auditory brainstem 

slices, bushy cell miniature EPSCs exhibited larger amplitudes with 

unchanged kinetics. By applying a minimal stimulation technique, the 

amplitude of evoked EPSCs recorded from bushy cells was found unaltered 

while EPSC kinetics was attenuated. Short-term depression in response to 

train stimulation was increased in the mutants; most pronounced at 100 Hz 

compared to 200 Hz and 333 Hz. These findings and a reduced rate of 

recovery after short-term depression suggest that the rate of vesicle 

replenishment is compromised in the absence of full-length bassoon. The size 

of the readily releasable pool of vesicles was reduced and release probability 

was increased as estimated with the method of cumulative EPSCs 

(Schneggenburger et al., 1999). In consequence, delayed/asynchronous 

release was increased in the mutant synapses during and after train 

stimulation. Even though synaptic depression was significantly stronger in 

mutant synapses, bushy cells compensated for the loss of input and fired with 

comparable reliability during high frequency stimulation. Auditory brainstem 

responses from bassoon mutants show synchronous activity from globular 

bushy cells (as indicated by almost normal wave 2) despite almost complete 
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lack of synchronous activity in the auditory nerve (Khimich et al., 2005; Buran 

et al., 2010). Additionally to convergence that presumably contributes to this 

process, restoration of synchronous activity at the level of the AVCN is due to 

homeostatic plasticity in bushy cells encompassing increased intrinsic 

excitability and synaptic upscaling. This is manifest in increased mEPSC 

amplitudes and an enhanced response to depolarizing current injection in 

mutant bushy cells. 

In conclusion, the data reported here suggest that bassoon plays an important 

role in promoting vesicular replenishment and a large standing readily 

releasable pool. Moreover, bushy cells maintain reliability of transmission in a 

homeostatic fashion in response to partial auditory deprivation.  
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7 Appendix 

List of abbreviations 
aa amino acid  MNTB medial nucleus of the 

trapezoid body 
ABR auditory brainstem response  MSO Medial superior olive 

aCSF artificial cerebrospinal fluid  NMDA N-methyle-D-aspartate 

AIS axon initial segment  NSF N-ethyl-maleimide-sensitive 
factor 

AMPA α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid 

 PBS phosphate buffered saline 

AnkG ankyrin-G  PSD postsynaptic density 

AP action potential  PTV Piccolo-Bassoon transport 
vesicle 

AVCN anteroventral cochlear 
nucleus 

 PVCN posteroventral cochlear 
nucleus 

AZ active zone  Pvr vesicular release probability 

Bsn Bassoon  q quantal size  

CAZ cytomatrix of the active zone  Rab Ras-related in brain 

cc coiled-coil  RBP RIM-binding protein 

CN cochlear nucleus  RIM Rab interacting molecule 

CNS central nervous system  ROI region of interest 

DCN dorsal cochlear nucleus  RRP readily releasable pool of 
synaptic vesicles 

DP dense projection  SBC spherical bushy cell 

DSDB donkey serum dilution buffer  SC stellate cell  

eEPSC evoked excitatory 
postsynaptic current 

 SGN spiral ganglion neuron 

GBC globular bushy cell  SNARE soluble NSF attachment 
receptor 

GSDB goat serum dilution buffer  SM  Sec1/Munc18 

het heterozygous  SR spontaneous rate 

HFS high-frequency stimulation  SV synaptic vesicle 

ILD interaural level difference  Syt synaptotagmin 

ITL interaural time difference  TTX tetrodotoxin 

LNTB lateral nucleus of the 
trapezoid body 

 VAMP vesicle associated membrane 
protein 

LSO lateral superior olive  wt wild-type 

mEPSC miniature excitatory 
postsynaptic current 

 Zn zinc-finger domain 
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