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Chapter 1

Introduction

Since von Carlowitz (1713) introduced the principle of sustainability to forestry, it plays
a central role in there, and over the last centuries it has been further developed and
extended. To achieve and maintain sustainability in its di�erent speci�cations (Speidel,
1984; Schanz, 1996) can be seen as one of the main goals or even the main goal of forestry.
A prerequisite for such a sustainable forestry is information on the forest resources, their
conditions and changes. This information is usually gained through forest inventories.

The �rst ancestors of modern forest inventory might be seen in the visual assessments
that were carried out in Central Europe since the end of the Middle Ages (Loetsch &
Haller, 1973; Gabler & Schadauer, 2007). At this time, information on the growing
stock was demanded for forests close to towns and mines. There the �rst wood shortages
occurred and made forest planning necessary. Maps of these forests were created and
the growing stock was visually estimated per stand. Afterwards, these estimates were
aligned with the yields from fellings and estimates for management units like forest
districts where obtained by summarising the corresponding stand-level information.
Due to their simplicity and cheapness these visual assessments were applied for a long
time, e.g. until the 1940s in the state forest of Saxony (Loetsch & Haller, 1973).

Based on the developments in sampling theory, the �rst approaches of sample-based
forest inventories were presented in the 19th century; Examples are known from Ger-
many and Sweden (Loetsch & Haller, 1973; Gabler & Schadauer, 2007). Around 1920
the �rst sample-based National Forest Inventories (NFIs) were introduced in Scand-
inavia (Gabler & Schadauer, 2007; Tomppo et al., 2010b). Since then, such sample-
based NFIs were set up in most European and North American countries (Tomppo et al.,
2010b). With increasing statistical knowledge, technological progress and the advances
in information technology, inventory methods have become more and more sophistic-
ated, and still this development proceeds. Today, a plethora of sampling schemes exists
(Cochran, 1977; de Vries, 1986; Schreuder et al., 1993; Shiver & Borders, 1996; Särndal
et al., 2003; Kangas & Maltamo, 2006; Schea�er et al., 2006; Gregoire & Valentine,
2008; Mandallaz, 2008) and usually these methods are evaluated regarding their e�-
ciency. Either the highest precision should be achieved with prede�ned inventory costs
or a prede�ned precision should be achieved with minimal inventory costs.

Progress in the development of sampling schemes is especially important for large-
scale forest inventories. Due to their high costs, an increase of e�ciency may lead to
remarkable savings. A closer look on several NFIs (Lawrence et al., 2010; Tomppo
et al., 2010a) reveals that their sampling schemes change frequently, likely because of
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an expected increase of e�ciency. Moreover, the requirements for forest inventories
increased and made changes necessary (McRoberts et al., 2010b). Besides information
on growing stock, further information on biodiversity or carbon storage are required
from such inventories today, e.g. for reporting for international conventions such as
the Kyoto Protocol or the United Nations Framework Convention on Climate Change.
Following McRoberts & Tomppo (2007), information on 100-400 variables are collected
in typical European NFIs. Despite all development, sampling schemes and de�nitions
are still di�erent across di�erent countries (Gabler & Schadauer, 2007; Tomppo et al.,
2010a), making a common reporting for international conventions di�cult. Therefore,
currently e�orts are made to harmonise these NFIs (McRoberts et al., 2009). The idea
of harmonisation implies that it is not wanted to change existing sampling schemes sub-
stantially, once they have been established successfully. Rather, methods for making
the results of di�erent inventories comparable should be found. Thus, harmonisation
can be seen as a `bottom-up-approach' (Köhl et al., 2000; McRoberts et al., 2010a). In
contrast, standardisation, as a `top-down-approach', would aim at setting up a common
standard for all countries (Köhl et al., 2000; McRoberts et al., 2010a). Even though ex-
isting sampling schemes should be maintained, further increases of e�ciency are desired
from authorities. This wish can be seen as main driver for current research on forest
inventory. Within this research area, progress is not only restricted to the development
of new sampling designs and the incorporation of new data sources or techniques into
existing designs. Rather, also advances in sampling theory, e.g. the in�nite population
approach (Mandallaz, 2008), are made and conclusions are included in existing methods
(e.g. Saborowski et al., 2010).

Terrestrial sampling is very cost-intensive and therefore its (partial) replacement by
cheaper techniques like remote sensing is tried to be achieved. Following Gabler &
Schadauer (2007), using aerial images has become especially important in countries
with large forest areas, e.g. Canada or the USA. But, even though the results of remote
sensing techniques become better and better, terrestrial sampling cannot be replaced
completely yet (McRoberts & Tomppo, 2007; McRoberts et al., 2010b). Demands for
species-speci�c information or information on deadwood, lichens or soil carbon make
terrestrial sampling inevitable (McRoberts et al., 2010b). Nevertheless, a strong in-
corporation of remote sensing techniques may raise the e�ciency of forest inventory
designs.

A method that often uses remote sensing techniques and that is known to be e�cient
(Brassel & Köhl, 2001; Saborowski et al., 2010) is double sampling for strati�cation (2st)
(Cochran, 1977; de Vries, 1986; Schreuder et al., 1993; Shiver & Borders, 1996; Särndal
et al., 2003; Schea�er et al., 2006; Gregoire & Valentine, 2008; Mandallaz, 2008). In the
classical two-phase design (Figure 1.1), data are obtained from the target variable as
well as from an auxiliary variable. This auxiliary variable is qualitative and its sampling
is cheaper than the one of the target variable. Therefore it is obtained at all sampling
units in the �rst phase. By means of this auxiliary variable the population is strati�ed
into di�erent strata, according to di�erent rules. The variability within these strata
should be small whereas it should be high between them. Afterwards (phase II), the
target variable is sampled per stratum in a sub-sample of the �rst-phase units. Thereby,
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Figure 1.1: Sampling procedure of double sampling for strati�cation.

the sampling fraction, the ratio of the number of second- and �rst-phase plots, might
be di�erent across strata (Cochran, 1977).

The corresponding theory was given �rst by Neyman (1938). Since then this sampling
scheme has constantly been further developed. In early literature, it was usually as-
sumed that the second-phase sample size is �xed within a stratum. Sub-sampling
procedures that are mathematically sound and free of this inconsistency were presen-
ted by Singh & Singh (1965) and Rao (1973). Williams (2001) compared di�erent
estimators for sub-populations, and recently estimators for the mean and the variance
have been presented, that are based on the in�nite population approach in the �rst
phase (Saborowski et al., 2010). Furthermore 2st has been expanded to designs with
more than two phases (Frayer, 1979). Fattorini et al. (2006) expanded 2st by a further
sub-strati�cation to a three-phase design, where the second-phase sampling units are
further strati�ed.

Its high e�ciency makes 2st attractive for forest inventories, and it is applied in the
NFIs of Canada (Gillis et al., 2010) and Switzerland (Lanz et al., 2010) and di�erent
regional forest inventories in Italy (Gasparini et al., 2010). Another application of
2st is known from a private forest administration in Southern Germany (Nothdurft
et al., 2009). Chojnacky (1998) describes an application in the Interior West of the
USA. Also the forest administration of Lower Saxony, Germany, decided in favour of a
2st-design, when the Forest District Inventory was renewed in 1998 (Böckmann et al.,
1998; Dahm & Saborowski, 1998). Usually, CIR aerial images are taken and analysed
in these forest inventory applications. The results of these analyses are then used as
qualitative variables for the strati�cation. When designing strata, it has to be kept in
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mind that the allocation of sampling units to them can easily be done, trying to reduce
the risk of misclassi�cation. Therefore, the number of strata should be small. In several
forest inventory applications only two strata, e.g. forest and non-forest area, are used.
Despite the already high e�ciency of this method, further cost reductions are desired
from authorities.

Possibilities for such cost-reductions are in particular given for repeated inventories.
For these inventories multiple designs and analysis procedures exist, e.g. the possibil-
ity to use data from a previous inventory occasion as additional data source is given
(Scott et al., 1999). These data hold valuable information and often they are used in
the context of Sampling with Partial Replacement (SPR) (Ware & Cunia, 1962; Scott,
1984; Gregoire, 2005). Therein only a certain percentage of the units from the previous
occasion are remeasured at a following occasion, the omitted units are replaced by new
ones. Through regression the data from the previous occasion are then updated and
incorporated into the overall estimation (Köhl, 1994). Thus it is possible to achieve
on the one hand estimates of current status and on the other hand of changes between
the two occasions. Bickford et al. (1963) presented a combination of 2st and SPR,
and a corresponding three-phase design was given by Scott & Köhl (1994). A further
possibility for incorporating data from a previous inventory occasion is the so-called
Mixed Estimation approach for Rotating Panel Systems (van Deusen, 1996). For this
approach the sampling units are partitioned into equally sized sub-samples. Each year,
one of these sub-samples is inventoried and updates are calculated for the rest of the
sampling units. These updates are based on data from previous inventory occasions.
Thus, the inventory-cycle is as long as the number of sub-samples. This procedure be-
comes advantageous through a constant sampling e�ort and thereby planning certainty
per year.

Due to the rapid development of forest growth models and the increasing reliability
of their results (Pretzsch & �urský, 2001; Pretzsch, 2002, 2009; Schmid et al., 2006;
Albrecht et al., 2009; Härkönen et al., 2010; Vospernik et al., 2010), it seems worth-
while to think of incorporating them instead of data from a previous occasion into forest
inventory methods. But, this will only lead to good results if the growth model is para-
meterised for the inventory area, and if the time interval between inventory occasions
is relatively small. Albrecht et al. (2011) presented methods for testing the transferab-
ility of forest growth models to other regions than the one used for parameterisation.
They suggest starting with qualitative and quantitative evaluations, followed by adap-
tion through e.g. re-parameterisation of model functions. Finally, test applications are
recommended.

Another approach to reduce inventory costs is to create more e�cient sampling
designs for the execution of the terrestrial sampling. A sampling design, whose execution
is usually assumed to be e�cient, is cluster sampling (cl). In this design spatial clusters
of sampling units are formed and afterwards a sub-sample of these clusters is inventoried
(Cochran, 1977; Gregoire & Valentine, 2008). Thereby a high variability within and a
low variability between clusters is tried to be achieved. Furthermore, it is mostly desired
to execute the �eld work per cluster during one working day (Kleinn, 1996), leading
usually to clusters of homogenous size. Nevertheless, numerous di�erent cluster-shapes
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1. Introduction

such as triangle, cross or square exist. Clustering becomes especially advantageous in
remote regions with bad infrastructure, where the costs for travelling between sampling
units are high. Nevertheless, also applications from regions with a good infrastructure
are known, e.g. the NFIs of Austria (Gschwantner et al., 2010), Finland (Tomppo &
Tuomainen, 2010) and Germany (Polley et al., 2010) follow cl-designs. Even though
the precision of cl is always lower than that of Simple Random Sampling (SRS) with
the same sample size, the costs might be lower than those of other designs. This is the
case if a su�ciently high number of clusters can be sampled at lower costs than the
sampling units of other schemes.

The present thesis aims to be part of the constantly ongoing process of designing 2st
more e�cient, and in the following several approaches to achieve this goal are presen-
ted. All these approaches have been applied in case studies with data from the Forest
District Inventory of Lower Saxony, Germany, that follows a 2st-design (Böckmann
et al., 1998; Dahm & Saborowski, 1998). In a cycle of approximately ten years all forest
districts are subsequently inventoried and the �rst run has been executed between 1999
and 2008. The fact that meanwhile data from a second inventory occasion are available
for several forest districts, o�ered the opportunity to compare the classical 2st-design
with new designs that incorporate growth simulations in their estimations for these dis-
tricts. These growth simulations have been carried out with the program WaldPlaner
2.0 (Hansen, 2006; Albert & Hansen, 2007) that is based on the individual tree-growth
model BWinPro (Nagel, 1996; Nagel et al., 2002, 2006; Nagel & Schmidt, 2006). This
model has been developed at the Northwest German Forest Research Station and was
parameterised with data from Northern Germany, in particular from Lower Saxony and
was assumed to provide the most reliable and precise growth predictions for the study
area. In addition, the default settings follow the Federal State silvicultural program of
Lower Saxony (LÖWE). One aim of this silvicultural program is to raise the proportion
of mixed and broadleafed stands. Today, the forecasts of BWinPro are used in the plan-
ning process of Forest Service in Lower Saxony (Böckmann, 2004; Nagel, 2004; Nagel &
Schmidt, 2006). Based on BWinPro, the program WaldPlaner 2.0 was developed, and
with this program it is possible to run large-scale simulations, as needed for the case
studies.

In total, four approaches are presented in the following four chapters; each of them
can be read independently from the others. Within these chapters background and
methods of the respective approaches are thoroughly described, and results of the cor-
responding case studies are presented and discussed. A general discussion of the results
of all four case studies can be found in chapter 6.

In the �rst case study (chapter 2) an approach of combining current inventory data
and growth model-based updates of the data from the previous inventory occasion in a
Composite Estimator after Schaible (1978) is presented. Therein, the idea is to reduce
the sample size of terrestrial sampling units and compensate for the following loss in
precision through the incorporation of growth model-based updates. As the incurring
additional costs of growth simulations are expected to be smaller than the savings
through sample size reduction, a reduction of the overall costs might be achieved but
is expected to be small or even irrelevant. An early approach of using a Composite
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Estimator in forest inventories was given by Green & Strawderman (1986), who could
show that its use can decrease the recommended sample size but did not use it in the
context of repeated inventories.

A further approach for the combination of 2st and growth model-based updates is
presented in chapter 3. 2st and double sampling for regression are combined to a
three-phase sampling design, as described �rst by Saborowski (1994). In contrast to
the Composite Estimator, this approach directly exploits the correlations between past
or predicted and current inventory plot data, which are shown to be high. The design-
based estimators are expanded under the in�nite population approach in the �rst phase
and applied in a case study. Besides the results of forest growth simulations, data from
the preceding inventory occasion are used in this case study to assess the additional
bene�t of growth model-based predictions.

As described above, the execution of clustered sampling designs is often assumed to
be more e�cient than that of SRS-schemes. Therefore, the extension of 2st by cluster
sub-sampling to a three-phase design seems also promising for raising the e�ciency of
classical 2st. In chapter 4, such a 2st,cl-design, the corresponding estimators and an
application in a case study are presented. Again, the in�nite population approach is
used for the �rst phase. Within the case study the general performance of the estimator,
compared to 2st, is analysed as well as the e�ect of di�erent cluster types on the variance
of the estimator.

If existing sampling schemes should be converted into clustered schemes, like the
2st,cl-scheme in chapter 4, methods for building these clusters are needed. This is the
reason for the research on cluster algorithms, as presented in chapter 5 that aims to
�nd methods for building clusters of homogenous sizes. Furthermore, short within- and
large between-cluster distances are required for reducing the time-consumption and
thereby the costs of terrestrial sampling. Within the case study classical clustering
algorithms as well as algorithms of the vehicle routing problem are used, and their
results are compared.
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2. Zusammengesetzte Schätzer für periodische Waldinventuren

Summary

Composite estimators are long established (Schaible, 1978). These estimators are a
weighted mean of a direct and a synthetic estimator. Very important for the accuracy
of the estimate is the choice of a correct weight. In this article we present a composite
estimator, whose components are i) an actual double sample for strati�cation and ii)
a simulation of growth and yield of the plot data measured at the former inventory.
The direct estimator is based on a reduced forest district inventory in Lower Saxony,
which follows a double sampling for strati�cation scheme since 1999 (Böckmann et al.,
1998). The Forest growth simulations are carried out with the program WaldPlaner 2.0
of the Northwest German Forest Research Station (Albert & Hansen, 2007; Hansen,
2006). First results show that it is possible to construct a composite estimator for this
purpose. However, the di�erences between the results of the simulation and the second
inventory are too big to reduce the sample size of the second inventory remarkably.

Zusammenfassung

Zusammengesetzte Schätzer sind seit langem bekannt (Schaible, 1978). Bei diesen Schät-
zern handelt es sich um einen gewichteten Mittelwert aus einem direkten und einem
synthetischen Schätzer. Die Schätzgenauigkeit hängt dabei bedeutend von der Wahl
des richtigen Gewichtes ab. In dieser Arbeit wird ein zusammengesetzter Schätzer vor-
gestellt, dessen zwei Komponenten aus i) einer aktuellen zweiphasigen Stichprobe zur
Strati�zierung und ii) Fortschreibung der vorausgegangenen Inventur mit Hilfe von
Waldwachstumsmodellen berechnet werden. Grundlage des direkten Schätzers ist eine
reduzierte Betriebsinventur, wie sie in Niedersachsen seit 1999 als zweiphasige Stich-
probe zur Strati�zierung durchgeführt wird (Böckmann et al., 1998). Die Waldwachs-
tumssimulationen wurden mit dem Programm WaldPlaner 2.0 der Nordwestdeutschen
Forstlichen Versuchsanstalt (Albert & Hansen, 2007; Hansen, 2006) durchgeführt. Erste
Ergebnisse zeigen, dass sich ein zusammengesetzter Schätzer für diesen Fall konstruie-
ren lässt. Allerdings sind die Unterschiede zwischen den Daten der Fortschreibungen
und denen des zweiten Inventurdurchgangs noch zu groÿ, um den Stichprobenumfang
merklich zu reduzieren.

2.1 Hintergrund

Die Güte von Waldinventurverfahren wird häu�g an ihrer Kostene�zienz gemessen.
Man erwartet entweder die gröÿtmögliche Schätzgenauigkeit bei einem vorgegebenen
Kostenrahmen oder die geringsten Kosten bei einer vorgegebenen Schätzgenauigkeit.
Auch die Ausgangsfrage dieser Studie - Wie können periodische Inventurverfahren so
verändert werden, dass i) die Aufnahmekosten verringert werden und ii) die Schätz-
genauigkeit annähernd gleich bleibt? - fragt nach einer gröÿeren Kostene�zienz. Der
in dieser Arbeit vorgestellt Lösungsansatz sieht vor, den Präzisionsverlust, der durch
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2.2. Methodik

eine geringere Stichprobendichte entsteht, durch Nutzung von Informationen aus vorhe-
rigen Inventuren auszugleichen. Dabei sollen Wachstumsprognosen, basierend auf den
Daten des ersten Inventurdurchgangs, erstellt und mit den Werten einer ausgedünnten
Stichprobe beim zweiten Inventurdurchgang kombiniert werden.

2.2 Methodik

2.2.1 Zusammengesetzter Schätzer

Bei zusammengesetzten Schätzern (Θzus) handelt es sich um einen gewichteten Mit-
telwert (Gleichung 2.1) aus einem direkten (Θdir) und einem synthetischen Schätzer
(Θsyn). Anwendung �nden sie beispielsweise zur Schätzung von Durchmesserverteilun-
gen (Bierer, 2008).

Θ̂zus = φΘ̂dir + (1− φ) Θ̂syn (2.1)

Entscheidend ist dabei die Wahl des richtigen Gewichts (φ), das Werte zwischen 0
und 1 annehmen kann (Gleichung 2.2).

φ∗ =
MSE

(
Θ̂dir

)
− E

((
Θ̂dir −Θ

)(
Θ̂syn −Θ

))
MSE

(
Θ̂dir

)
+MSE

(
Θ̂syn

)
− 2E

((
Θ̂dir −Θ

)(
Θ̂syn −Θ

)) (2.2)

Nimmt man an, dass die Kovarianz im Verhältnis zum mittleren quadratischen Fehler
(MSE) des synthetischen Schätzers relativ klein ist, kann das optimale Gewicht nach
Schaible (1978) näherungsweise wie folgt berechnet werden.

φ∗app =
MSE

(
Θ̂dir

)
MSE

(
Θ̂dir

)
+MSE

(
Θ̂syn

) (2.3)

Schaible (1978) konnte zeigen, dass, bei Verwendung seiner Approximation, der MSE
eines zusammengesetzten Schätzers höchstens so groÿ wie der gröÿere MSE der beiden
Schätzer ist, bei geschickter Wahl von φ aber sogar kleiner als der niedrigere MSE der
beiden Schätzer sein kann (Abbildung 2.1).

Särndal et al. (2003) weisen darauf hin, dass der Anteil des direkten Schätzers mit
steigender Anzahl von Stichprobenpunkten in der Fläche zunehmen sollte. Bei entspre-
chendem Stichprobendesign ist dieser im Gegensatz zum synthetischen Schätzer unver-
zerrt. Mit abnehmender Anzahl von Stichprobenpunkten in der Fläche sollte dagegen
der Anteil des indirekten Schätzers zunehmen, da der direkte Schätzer dann eine hohe
Varianz aufweist (Särndal et al., 2003). Um Aussagen über die Schätzgenauigkeit des
zusammengesetzten Schätzers tre�en zu können, kann der MSE desselbigen berechnet
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2. Zusammengesetzte Schätzer für periodische Waldinventuren

Abbildung 2.1: Der normalisierte MSE des zusammengesetzten Schätzers im Vergleich
zum normalisierten MSE des direkten und synthetischen Schätzers bei
unterschiedlichen Annahmen. Links: Der MSE des direkten Schätzers
entspricht dem des synthetischen. Rechts: Der MSE des direkten Schät-
zers ist sechs Mal gröÿer als der MSE des synthetischen Schätzers.

werden (Gleichung 2.4). Bei Annahme der Approximation nach Schaible (1978) �ndet
die Kovarianz keine Berücksichtigung, der dritte Summand fällt weg.

MSE
(

Θ̂zus

)
= φ2MSE

(
Θ̂dir

)
+ (1− φ)2MSE

(
Θ̂syn

)
+

2φ (1− φ)E
((

Θ̂dir −Θ
)(

Θ̂syn −Θ
)) (2.4)

2.2.2 Die Betriebsinventur Niedersachsens

Bei der Niedersächsischen Betriebsinventur handelt es sich seit 1999 um eine zweiphasige
Stichprobe zur Strati�zierung (Böckmann et al., 1998). Diese wird in jedem Forstamt in
einem 10-jährigen Turnus durchgeführt. Zunächst werden in der ersten Phase in einem
(100 m × 100 m)-Raster Stichprobenpunkte ausgewiesen, an denen eine Luftbildin-
terpretation vorgenommen wird. Anhand des Luftbildes wird jeder Stichprobenpunkt
einem von acht Straten zugewiesen; es wird zwischen zwei Baumartengruppen (Laub-
bzw. Nadelholz, LH bzw. NH) und 4 Altersgruppen (1: ≤ 40 Jahre, 2: über 40 bis 80
Jahre, 3: über 80 bis 120 Jahre, 4: > 120 Jahre) unterschieden.

In der zweiten Phase dann wird in jedem Stratum ein bestimmter Anteil der Pro-
bepunkte der ersten Phase zufällig ausgewählt. An jedem dieser zufällig ausgewählten
Probepunkte werden zwei konzentrische Probekreise (6 m bzw. 13 m Sollradius) ein-
gemessen. Nähere Angaben zum Vorgehen bei der Betriebsinventur �nden sich in der
Aufnahmeanweisung (Niedersächsisches Forstplanungamt, 2001).
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2.3. Modellstudie

2.2.3 Direkter Schätzer

Das mittlere Volumen einer Zielpopulation (Gleichung 2.5) und die dazugehörige Vari-
anz (Gleichung 2.6) können nach Cochran (1977) geschätzt werden. Hierbei entspricht
die Varianz dem MSE.

V̂ =
L∑

h=1

n′h
n′

1

nh

nh∑
i=1

V̂hi =
L∑

h=1

n′h
n′
V̄h (2.5)

v̂ar
(
V̂
)

=
1

n′

(
L∑

h=1

n′h
n′
s2h
νh

+
L∑

h=1

n′hn
′
(
V̂h − V̂

)2)
(2.6)

Dabei bezeichnet L die Anzahl der Straten, n′h die Anzahl von Stichprobenpunkten
in Stratum h in Phase I, n′ den Stichprobenumfang in Phase I, nh die Anzahl von
Stichprobenpunkten in Phase II, Vhi das Volumen an Stichprobenpunkt i in Stratum
h, νh den Anteil terrestrischer Punkte in Stratum h und s2h die Varianz des Volumens
innerhalb eines Stratums.

2.2.4 Synthetischer Schätzer

Die synthetische Schätzung erfolgt mittels des Programmes Waldplaner 2.0 der NW-
FVA (Albert & Hansen, 2007; Hansen, 2006). Mit diesem Programm können Bestände
und deren Entwicklung auf Basis der Inventurdaten simuliert werden. Auch die Fort-
schreibungen werden mit den Formeln des direkten Schätzers ausgewertet. Der MSE
des synthetischen Schätzers lässt sich nach dem sogenannten Ordinary Approach wie
folgt bestimmen (Rao, 2003).

M̂SE
(

Θ̂syn

)
=‖ Θ̂syn − Θ̂dir ‖2 −v̂ar

(
Θ̂syn − Θ̂dir

)
+ v̂ar

(
Θ̂syn

)
(2.7)

2.3 Modellstudie

2.3.1 Datengrundlage

Für die vier niedersächsischen Forstämter Liebenburg, Reinhausen, Grünenplan und
Saupark liegen die Daten von zwei Inventurdurchgängen vor. Vor dem zweiten Inven-
turdurchgang wurden keine neuen Luftbilder aufgenommen und ausgewertet. Es wurden
fast alle Punkte des ersten Inventurdurchgangs erneut aufgenommen. Insgesamt konn-
ten so die Daten von 6.343 Stichprobenpunkten der Phase II in die Analyse einbezogen
werden (Tabelle 2.1).

Da nicht die Werte aller Baumarten und Durchmesserklassen von Interesse sind,
wurden 12 Zielpopulationen gebildet, für die die Berechnungen durchgeführt wurden
(Tabelle 2.2).
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2. Zusammengesetzte Schätzer für periodische Waldinventuren

Tabelle 2.1: Die Anzahl der Stichprobenpunkte der Phase II in den unterschiedlichen
Straten der vier Forstämter.

LH1 LH2 LH3 LH4 NH1 NH2 NH3 NH4 Summe

Liebenburg 123 166 136 180 65 343 41 9 1063
Reinhausen 191 230 287 430 153 318 112 55 1776
Grünenplan 231 197 191 316 199 37 217 42 1769
Saupark 170 141 148 376 160 627 100 13 1735

Tabelle 2.2: Die zwölf Zielpopulationen der Modellstudie.

BHD-Bereich (cm)

Buche <25 25-50 >50
Eiche <25 25-50 >50
Fichte <25 25-35 >35
Kiefer <25 25-40 >40

2.3.2 Vorgehen

Im Rahmen der Modellstudie wurden die Daten aller Probekreise des ersten Inventur-
durchgangs mit dem WaldPlaner 2.0 fortgeschrieben und der dazugehörige MSE nach
Gleichung 2.7 berechnet. Die Varianz des direkten Schätzers wurde modellhaft für alle
Stichprobenumfänge zwischen 0 und 3000 nach Gleichung 2.6 bestimmt; variiert wurde
dabei lediglich der Anteil terrestrischer Punkte je Stratum (νh). Diese 3000 MSE wur-
den mit dem MSE des synthetischen Schätzers nach Gleichung 2.4 kombiniert. Auf diese
Weise kann die Schätzgenauigkeit des zusammengesetzten Schätzers bei verschiedenen
Stichprobenumfängen beurteilt werden.

2.3.3 Ergebnisse

Im Folgenden werden die Ergebnisse beispielhaft an der Zielpopulation �Fichten > 35
cm� für die Forstämter Reinhausen und Grünenplan dargestellt.

Es zeigt sich, dass die Simulationen zu brauchbaren Ergebnissen kommen (Abbil-
dung 2.2). Der Korrelationskoe�zient nach Pearson zwischen den gemessenen und den
simulierten Volumina liegt bei 0,75 bzw. 0.79. Au�ällig sind die Probekreise, für die ein
Volumen prognostiziert aber nicht gemessen wurde, bzw. die Plots, auf denen Volumi-
na gemessen aber nicht simuliert wurden. Diese Probekreise verringern die Korrelation
deutlich. Mögliche Gründe für die Unterschiede zwischen Simulation und Wirklichkeit
sind Kalamitäten oder Nutzungen, es handelt sich nicht um systematische Fehler. Zu-
dem ist zu berücksichtigen, dass bei der Berechnung der Korrelation auch die zahlreichen
Probepunkte berücksichtigt werden, für die Volumina weder gemessen noch simuliert
wurden. Diese Punkte erklären, dass die Korrelationskoe�zienten deutlich gröÿer sind
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2.3. Modellstudie

Abbildung 2.2: Vergleich der gemessenen und der simulierten Volumina je Plot der Fich-
ten mit einem BHD > 35 cm in den Forstämtern Reinhausen (links) und
Grünenplan (rechts)

als man anhand der Abbildungen vermuten würde. Der Unterschied zwischen den Fort-
schreibungen und den Messungen ist im Forstamt Reinhausen deutlich kleiner als im
Forstamt Grünenplan.

Die Approximation nach Schaible (1978) führt zwar zu geringeren Fehlern (Abbil-
dung 2.3) ist jedoch nicht ganz korrekt, da sowohl der synthetische als auch der direkte
Schätzer die Punkte des zweiten Inventurdurchganges gemeinsam benutzen. Der Ein-
�uss der Kovarianz ist allerdings relativ gering, sie führt zu einer Erhöhung des MSE
um maximal etwa 8 %.

Durch die Kombination des synthetischen mit dem direkten Schätzer lässt sich der
mittlere quadratische Fehler im Vergleich zum MSE des direkten Schätzers verkleinern
(Abbildung 2.4). Dargestellt sind hier die Ergebnisse bei Berücksichtigung der Kovari-
anzen; eine Anwendung der Approximation nach Schaible würde die Ergebnisse noch
einmal geringfügig verbessern, ist aber nicht korrekt. Der notwendige Stichprobenum-
fang der zweiten Phase kann jedoch nur in geringem Umfang verkleinert werden, da der
MSE des synthetischen Schätzers für eine Vielzahl der Stichprobenumfänge der Phase
II wesentlich gröÿer als der MSE des direkten Schätzers ist. Es wird deutlich, dass der
MSE der Simulationen fast ausschlieÿlich durch die quadratische Di�erenz zwischen den
beiden Volumenschätzungen bestimmt wird, die als Schätzung für den quadrierten Bias
dient.

2.3.4 Vorläu�ges Fazit

Zunächst einmal ist festzustellen, dass sich ein zusammengesetzter Schätzer für diesen
Zweck konstruieren lässt. Allerdings erscheinen die Unterschiede zwischen den Werten
der Fortschreibungen und denen der Wiederholungsaufnahme noch zu groÿ zu sein.
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2. Zusammengesetzte Schätzer für periodische Waldinventuren

Abbildung 2.3: Das Verhältnis des korrekt berechneten MSE des zusammengesetzten
Schätzers zum MSE, der nach der Approximation nach Schaible (1978)
berechnet wurde, in Abhängigkeit vom Stichprobenumfang der zweiten
Inventurphase. Links: Forstamt Reinhausen, Rechts: Forstamt Grünen-
plan.

Abbildung 2.4: Die Mittleren quadratischen Fehler des direkten, des synthetischen und
des kombinierten Schätzers, sowie der geschätzte quadrierte Bias in Ab-
hängigkeit vom Stichprobenumfang in der zweiten Phase der Inventur.
Links: Forstamt Reinhausen, Rechts: Forstamt Grünenplan.

15



2.3. Modellstudie

Bisher lässt sich anhand der hier vorgestellten Ergebnisse kein nennenswertes Einspa-
rungspotenzial erkennen. Es muss an einer weiteren Verbesserung der Genauigkeit der
Fortschreibungen durch den Waldplaner 2.0 gearbeitet werden.
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3. A three-phase sampling procedure for continuous forest inventory with partial

re-measurement and updating of terrestrial sample plots

Abstract

For a current inventory using double sampling for strati�cation with a reduced second-
phase sample size, compared to a previous inventory, we develop a three-phase sampling
procedure which exploits plot data from the previous inventory or their updates based
on a growth model to increase precision. The three-phase procedure combines double
sampling for strati�cation with a two-phase regression estimator within strata. We con-
sider sampling from an in�nite population in the �rst phase. The combined estimator is
tested in a case study using data from two consecutive inventories in four State Forest
Districts in Lower Saxony, Germany. Data from a reduced number of sample plots from
the second occasion are combined with (1) volumes from the �rst occasion or (2) growth
simulations on the sample plots from the �rst occasion. The data from the previous
inventory or their updates serve as the auxiliary variable for the regression estimator of
the strata means of the target variable. This case study indicates a remarkable increase
in precision and thereby an enormous cost-saving potential for reduced intermediate
inventories in a periodic inventory design with both types of auxiliary variables.

keywords

Continuous forest inventory - Double sampling for strati�cation - Double sampling for
regression - Forest growth models

3.1 Introduction

Multipurpose resource inventories have to ful�l several demands (Lund, 1998) and their
methods are usually evaluated regarding e�ciency, which means that a required preci-
sion should be achieved with a minimum of inventory costs or that the maximum preci-
sion should be achieved with prede�ned inventory costs. Therefore, di�erent sampling
procedures have been developed over the last decades with the aim of cost-reduction in
mind. An established approach is to use auxiliary variables, the inventory of which is
cheaper than that of the target variables.

One such method is double sampling for strati�cation (2st). This is a well-known,
widely used and e�cient method (Cochran, 1977; de Vries, 1986; Schreuder et al., 1993;
Köhl, 1994; Särndal et al., 2003; Gregoire & Valentine, 2008; Mandallaz, 2008), which
has recently been studied under the in�nite population approach (Saborowski et al.,
2010). Scott & Köhl (1994) extended 2st by sampling with partial replacement (SPR).
In the �rst phase of this procedure all sampling units are strati�ed according to speci�c
rules with help of qualitative variables. Often this is done based on aerial images,
which serve as a source of auxiliary variables. After the strati�cation, within-strata
subsamples of the �rst-phase units are inventoried; in forest inventories it is common
to do this with terrestrial sampling. Even though the costs of this sampling procedure
are relatively low in comparison to other methods (Brassel & Köhl, 2001; Saborowski
et al., 2010), a further cost-reduction is desirable.
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3.1. Introduction

A special opportunity to do so occurs when data from a previous inventory exist as
is the case with periodic inventories. Saborowski et al. (2010) showed how 2st-sampling
can be applied in periodic inventories with optimised allocation of second-phase units.
In periodic inventories one may be willing to accept a slight loss of precision regularly
on every second occasion, or at least temporarily on one occasion in times of small
budgets, if that is accompanied by a remarkable cost reduction. Such "intermediate"
low-cost inventories are known e.g. from forest disease inventories in Germany, where
the regular square grid of 4 km × 4 km was reduced to 8 km × 8 km for intermediate
occasions until 2005, when the 8 km × 8 km grid became the regular grid.

Under a simple one-phase design for the periodic inventories, one might use double
sampling for regression using the plot measurements from the previous inventory as an
auxiliary variable (regressor) to compensate for the reduced sample size of the current
inventory. Here, we want to deal with the generally more e�cient 2st-design, which
could be replaced temporarily, or in a �xed cycle on every second occasion, by a new
three-phase design. The proposed design combines �rst-phase strati�cation as applied
in the 2st-design and double sampling for regression (2lr) (Cochran, 1977; Särndal et al.,
2003; Mandallaz, 2008) based on the �nite number of second-phase plots within strata.

Moreover, we use not only the most recent preceding plot measurements as auxiliary
variable, but also their updates predicted by a growth model which considers the current
silvicultural policy, at least to a certain extent, and we compare the e�ciency of both
approaches.

The three-phase design is expected to account for di�erent within-strata variances
of the target variable, what particularly will occur in case of volume or basal area if
age classes or species groups are used as strata, as well as for regression models varying
among strata (Figure 3.1). Thus an integration of 2st and 2lr in a three-phase design
seems to be a promising design, because it combines the strengths of both sampling
schemes. The strati�cation helps to create more homogeneous subpopulations, whereas
the regression includes additional information at low costs based on the preceding in-
ventory.

A combination of current sample plot measurements and model-based updates of
previous inventories was also suggested by van Deusen (1996) in a rotating panel con-
text. The di�erence from our setting is that he had to deal with auxiliary data from
a time series of previous inventories, where the target variable currently measured on
a subsample of all plots has to be predicted based on data which were measured the
furthest in the past. Sampling with partial replacement (Gregoire, 2005) is related to
our approach, insofar as we choose a subsample to estimate the regression coe�cients
and omit the rest of the sampling units from the most recent occasion. But the omitted
units are not replaced here by new ones, as it would be done with SPR, because we use
subsampling as a measure for cost reduction.

Forest growth models have experienced a rapid development during the last years
(Pretzsch & �urský, 2001; Pretzsch, 2002, 2009; Schmid et al., 2006; Albrecht et al.,
2009; Härkönen et al., 2010; Vospernik et al., 2010), and their forecasts have become
more and more reliable. Therefore it should be possible to use the results of these growth
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Figure 3.1: Three samples of size 15, showing di�erent relationships between x and y.
The overall relationship misapplies these di�erent relationships.

simulations in forest inventories. In a previous study (von Lüpke et al., 2011) 2st and
growth model based updates have been combined in a composite estimator after Schaible
(1978). The mean squared error (MSE) of this estimator - as a measure of precision - is
calculated using the estimated bias of the simulation results. Due to the fact that this
bias has been considerable high, this approach could not reduce the number of sample
points remarkably. A regression estimator seems to be the more promising approach
because it uses the correlations between previous and current inventories, which are
expected to be high.

In the following article we present results which have been obtained for the three-
phase estimator that combines 2lr with 2st. In the case study aerial images were used
as auxiliary variable to identify strata and (updated) data from the previous inventory
as volume predictors in a regression model.

3.2 A three-phase estimator for strati�cation and

regression

Due to the fact that the estimator assumes the in�nite population approach in the
�rst phase, a short explanation of the approach seems appropriate. Whereas the �nite
population approach assumes that the study area consists of a �nite number of non-
overlapping sampling units, the in�nite population approach assumes point sampling
in a given area. The local value of the target variable at a sample point is de�ned by
the tree data within a sample plot assigned to the point. An obvious disadvantage of
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the �rst approach is that not all shapes of sampling units ful�l the assumptions. With
circles for example it is impossible to sample the whole study area without overlaps.
Therefore the in�nite population approach is more realistic and preferable for forest
inventory; a comprehensive theory with applications can be found in Mandallaz (2008).

For all the schemes presented here, simple random sampling (SRS) is assumed in
the �rst phase. In practice, often only the �rst sample point is chosen randomly and
from that starting point a systematic grid is constructed to �nd the rest. Generally
unbiased variance-estimators do not exist in case of systematic sampling; therefore,
often the SRS-estimators are applied. It can be justi�ed by the fact that they lead to
an overestimation in most cases and thus are assumed to be conservative estimators
(Gregoire & Valentine, 2008; Mandallaz, 2008).

3.2.1 Double sampling for strati�cation

Two phases can be distinguished in this sampling scheme. After strati�cation of the
�rst-phase sample plots (n′), measurements only take place in a sub-sample (n). To
estimate the mean of the target variable (e.g. dbh, basal area or volume) the strata
means (yh) are weighted with the proportions of �rst-phase sample points per stratum
(n′h/n

′ = wh), as can be seen in Equation 3.1 (see e.g. Cochran, 1977).

Ŷ 2st =
L∑

h=1

wh
1

nh

nh∑
i=1

yhi =
L∑

h=1

whyh (3.1)

Equation 3.2 shows an unbiased estimator for the variance of this sampling proced-
ure under the in�nite population approach (Saborowski et al., 2010), where s2h is the
estimator for the within-stratum variance of the target variable (Equation 3.3) and
νh = nh/n

′
h the proportion of terrestrial sample points per stratum.

V̂
(
Ŷ 2st

)
=

1

n′ − 1

(
L∑

h=1

n′h − 1

n′
s2h
νh

+
L∑

h=1

wh

(
yh − Ŷ 2st

)2)
(3.2)

s2h =
1

nh − 1

nh∑
i=1

(yhi − yh)2 (3.3)

3.2.2 Double sampling for regression

In this sampling procedure, which we will later use according to the �nite population
approach given the n′h �rst-phase samples within strata, the auxiliary variable (x) is
sampled at all �rst-phase plots (n′). Again, the target variable (y) is only measured in
a sub-sample (n). For the estimation of the mean of this target variable (Equation 3.4),
the sample means of the auxiliary variable, calculated from the sample points of phases

22



3. A three-phase sampling procedure for continuous forest inventory with partial

re-measurement and updating of terrestrial sample plots

one (x′) and two (x), are required. Besides, the sample mean of the target variable (y)
and the estimated regression coe�cient b (Equation 3.5) are used (Cochran, 1977).

Ŷ 2lr = y + b (x′ − x) (3.4)

b =

∑n
i=1 (yi − y) (xi − x)∑n

i=1 (xi − x)2
(3.5)

An estimator for the variance is given in Cochran (1977), formula (12.67), with the
variance estimator of the target variable s2y and s2y.x being an unbiased estimator of
S2(1−R2), where S2 is the true variance of y and R the correlation coe�cient between
x and y. Here, N stands for the total number of all possible sampling units in the study
area. Since we will use 2lr in our three-phase estimator conditionally on the �rst-phase
sample within each of the strata, the �nite population approach is appropriate with N
replaced by n′h, n

′ by nh and n by n∗h (see Equation 3.7 and Appendix 3.15).

V̂
(
Ŷ 2lr

)
=
s2y.x
n

+
s2y − s2y.x

n′
−
s2y
N

(3.6)

3.2.3 Three-phase sampling for strati�cation and regression

The estimator used in this study was suggested by Saborowski (1994), who presented
it together with a variance estimator under the �nite population approach. In total,
three phases can be distinguished in this procedure (Figure 3.2). In the �rst phase all
sampling units (n′) are strati�ed into L strata (n′ =

∑L
h=1 n

′
h), and in the second phase

measurements of an auxiliary variable x are collected in a subsample of every stratum
(nh = νhn

′
h). Data of the target variable are �nally measured in phase three in a further

subsample of the second-phase sample per stratum (n∗h = ν∗hnh). To estimate the mean
of the target variable, the di�erences between the means of the auxiliary variable in
the second and the third phase are used together with the mean of the target variable
estimated from phase three.

The mean of the target variable can be estimated using Equation 3.7, where y∗h
denotes the sample mean of the target variable in a sub-sample of the second-phase
sample with sample size n∗h in stratum h. xh denotes the sample mean of the auxiliary
variable in stratum h (second-phase sample size nh), and x∗h stands for the mean of
the auxiliary variable in stratum h calculated from phase three with sample size n∗h.
The proportion of �rst-phase sample points per stratum is used for weighting the strata
means.

Ŷ 2st,2lr =
L∑

h=1

n′h
n′
Ŷ h,2lr =

L∑
h=1

wh (y∗h + bh (xh − x∗h)) (3.7)
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Figure 3.2: Sampling procedure of the three-phase design.

The estimated regression coe�cient bh is calculated per stratum as follows.

bh =

∑n∗h
j=1 (yhj − y∗h) (xhj − x∗h)∑n∗h

j=1 (xhj − x∗h)2
(3.8)

xhj and yhj are the auxiliary and the target variable at unit j of stratum h.

Estimator 3.7 is identical with the so-called updated �rst-occasion mean of Scott &
Köhl (1994), which is one of two components of their strati�ed SPR estimator, but their
variance estimator is based on the �nite population approach of Cochran (1977).

The approximate variance under the in�nite population approach for the �rst phase,
as a measure of precision of estimation, is given by Equation 3.9, an estimator by
Equation 3.10 (for the proofs see Appendix). s∗2h and r∗2h are the empirical variance and
the squared empirical correlation between x and y of the third-phase sample in stratum
h, s′h

2 and r′h
2 the respective statistics of the �rst-phase samples. The structure of

the variance and its estimator, simply a sum of the respective statistic for pure 2st-
sampling and an additional term accounting for the third phase variability, is a direct
consequence of the well-known variance decomposition given in Appendix (3.12).

V
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)
≈ 1
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(3.9)
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V̂
(
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)
= V̂

(
Ŷ 2st

)
+

1

n′

L∑
h=1

wh

(
1

ν∗h
− 1

)
s∗h

2
(
1− r∗h2

)
νh

n∗h − 1

n∗h − 2

(3.10)

The expectation in Equation 3.9 is calculated over all �rst-phase samples of size n′.
With increasing correlations r′h

2 the variance of the three-phase estimator converges
from above to the variance of the 2st estimator. Foresters are usually also interested in
the relative Sampling Error (rel. SE) as given in Equation 3.11.

rel.SE =

√
V arŶ 2st,2lr

Ŷ 2st,2lr

(3.11)

3.3 Case Study

3.3.1 Sampling Scheme and Inventory Data

Since 1999 the Forest District Inventory of Lower Saxony (Germany) has been carried
out in a cycle of approximately ten years according to a 2st design (Böckmann et al.,
1998; Saborowski et al., 2010). In the �rst phase of this sampling procedure sample
points are located in a 100 m × 100 m grid, and CIR aerial images are used to assess
stand age and type at these points. As a result of this assessment, every point is assigned
to one of eight strata depending on dominating species group (DEC: Deciduous; CON:
Coniferous) and age class (1: ≤ 40 years; 2: > 40 − 80 years; 3: > 80 − 120 years; 4:
> 120 years). As Saborowski et al. (2010) point out, this strati�cation assumes (1) a
close relationship between age and species group and volume, (2) that the distinction of
four age classes and two species groups can easily be done using aerial images, and (3)
that the optimum allocation is expected to hold, at least approximately, for a repeated
inventory. A certain proportion (νh) of �rst-phase points di�ering among the strata is
systematically chosen in the second phase from a list of all n′h points of stratum h. These
proportions di�er because the estimation precision required by the forest administration
was higher for trees above a speci�ed dbh-threshold (5 % rel. SE) and lower for smaller
trees (down to 30 % rel. SE). At the second-phase points, two concentric plots with a
radius of 6 m (for trees with 7 cm ≤ dbh < 30 cm) and 13 m (trees with dbh ≥ 30 cm),
respectively, are established and inventoried. In four forest districts of Lower Saxony,
Liebenburg, Reinhausen, Grünenplan and Saupark, the inventory has meanwhile been
carried out twice. Di�ering from the regular ten year time span between two inventories
it ranged here from seven to ten years. A new strati�cation with the help of aerial images
did not take place at the second occasion, and so the strati�cation of the �rst inventory
was used. Due to problems with the identi�cation of the exact plot position, not all
plots surveyed from the �rst occasion could be resampled. In total, data from 27,332
�rst- and 6,343 second phase-plots were used for this case study (Table 3.1). For these
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Table 3.1: First- and second-phase sample sizes in the eight strata of the four forest
districts.

Forest District Phase DEC1 DEC2 DEC3 DEC4 CON1 CON2 CON3 CON4
∑

Liebenburg
I 550 1064 636 624 169 589 84 18 3734

II 123 166 136 180 65 343 41 9 1063

Reinhausen
I 912 1538 1473 1503 409 548 218 104 6705

II 191 230 287 430 153 318 112 55 1776

Grünenplan
I 1710 1800 1517 1577 917 1168 788 162 9639

II 231 197 191 316 199 375 217 42 1769

Saupark
I 997 1240 1021 1790 524 1401 248 33 7254

II 170 141 148 376 160 627 100 13 1735

plots, data from two occasions were available. In our case study we assume random
sampling in the �rst and second phase, as well as for the subsampling in the third phase,
which was not carried out in practice. The third phase was only virtually implemented
in our study.

3.3.2 Tree Growth Simulation

The simulations were carried out with the program WaldPlaner 2.0, which uses the
statistical individual-tree growth model BWINPro (Nagel & Schmidt, 2006). This pro-
gram was developed by the Northwest German Forest Research Station and is used in
the planning process of the Forest Service in Lower Saxony (Nagel & Schmidt, 2006).
Therefore the default settings follow the Federal State silvicultural program (LÖWE ),
which aims to rise the proportion of mixed and broadleafed stands. Due to the fact
that it was parameterised with data from Northern Germany, particularly from Lower
Saxony, the results of this simulator are expected to be more reliable for our case study
than the results of other growth simulators such as SILVA or SIBYLA, which have been
parameterised with data from Southern Germany and Slovakia, respectively (Fabrika
& �urský, 2006; Pretzsch et al., 2006). Di�erent studies (e.g. Vospernik et al., 2010)
show that the growth projections of this program provide reasonable results.

WaldPlaner 2.0 generates a model stand of predetermined extent driven by the input-
data for better representation of neighbourhood and for the minimisation of edge-e�ects.
This model stand is built with clones of the sample-trees. Depending on their dbh and
di�ering selection probabilities (concentric circles) the measured trees are cloned several
times, smaller trees (dbh < 30 cm) more often than bigger ones (dbh ≥ 30 cm). The
coordinates of these clone-trees are initialised randomly. Afterwards an algorithm moves
the coordinates until a constellation with little competition is achieved. For height and
diameter increment a normally distributed error is computed on the tree level.

The data from the second phase of the �rst inventory were used for simulation runs
using the program WaldPlaner 2.0. The sizes of the model stands were 0.2 ha and we
derived key �gures, such as volume per ha, from these stands and assigned them to the
sample units. We tested di�erent realistic parameterisations, but due to the fact that in
most target populations the in�uence of the parameterisations on the sampling error of
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Table 3.2: The nine target populations in the case study.

DBH-Interval (cm)

Beech < 25 25− 50 > 50
Oak < 25 25− 50 > 50
Spruce < 25 25− 35 > 35

the inventory was extremely low, we used the results of the simulation runs with default
settings for further calculations. We also tested the e�ect of di�erent initialisations
and predictions in the Forest District Liebenburg with ten di�erent simulations on
the correlations between simulated and measured values. The values were calculated
stratum-wise for every target population, as needed for Equation 3.10. Due to the fact
that the e�ect was very small (the range of the squared correlations can be described by
q0.25 =0.0004 and q0.75 =0.025), we used the results of just one simulation run in each
district and did not compute mean values. In Lower Saxony clear-cuts are not allowed
as a regular silvicultural treatment and therefore it is not assumed to happen between
the two occasions of the inventory.

3.3.3 Evaluation procedure

With this case study we tried to �gure out (1) the performance of the new estimator
and (2) the e�ect of using growth model based updates instead of original data from
the �rst inventory occasion. For the latter all steps explained in the following were
done with these two types of data as auxiliary variable in the regression part of the new
estimator. The measured volumes per ha of the second occasion served as values of the
dependent variable.

Correlations between these two variables were calculated as required for Equation
3.10. Di�ering from the most general case in that Equation, we used the same third-
phase proportion in all strata (ν∗h = ν∗) instead of proportions di�ering among strata.
Values for ν∗ ranged from 1/n to 1. Wherever an estimation of the volume was required
we used the value that was calculated with the 2st-estimator and all terrestrial sampling
points. All calculations were carried out for nine di�erent target populations, de�ned
by dbh and tree species (Table 3.2). Whereas the volume per tree was calculated within
the growth model, all other calculations were done with the statistical software package
R (R Core Team, 2012).

Correlations between (updated) �rst occasion and second occasion volumes were
calculated within each stratum and across all strata for every target population. Fur-
thermore we �tted linear regressions for every target population, separately for each
stratum and over all strata.

The rel. SEs of the new estimator were compared with the corresponding values
calculated from the data of the second occasion according to the classical 2st approach.
Because the variances and thus the rel. SEs of the two estimators are identical if the
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Figure 3.3: The proportion of saved sample points (%) as a function of increasing relat-
ive sampling error (%) in the small (A), medium (B) and big (C) diameter
classes in the four forest districts. The shaded areas indicate the spread
of values across the forest districts. In the regression estimator the cor-
relations between growth model-based updates and measured values at the
second occasion were used.

values of all second phase plots (n) are included in the calculations (Equation 3.10,
ν∗ = 1), we looked at the proportion of saved sample plots in dependance on the
relative increase of the rel. SE.

To compare the two di�erent types of auxiliary data in the regression estimator
we calculated the di�erences between the proportions of saved sample points of these
estimations at the same increases of rel. SE.

3.3.4 Results

The results of the inventory on the second occasion show that the actual 2st scheme is
appropriate to generate good and reliable results (Table 3.3 in the Appendix). In 29 of
36 target populations the achieved rel. SE is below or equal to the requested precision.
The estimated rel. SEs vary between 3.04 % (Beech 25-50 in Reinhausen) and 18.33
% (Oak < 25 in Liebenburg). The precision di�ers among forest districts, species and
diameter classes. Whereas the precision is very good for the Beech and Spruce target
populations, it is lower for the Oaks. Only in the Forest District Liebenburg was the
target precision achieved for less than 75 % of the target populations. As for the
precisions in the di�erent diameter classes, the 2st scheme provides the requested rel.
SE in all small and medium, but only in 5 of the 12 big diameter classes, although in
2/3 of the latter the rel. SE is below 7 %.

Growth model based updates

The relationship between simulated and measured volumes, indicated by Pearson's cor-
relation coe�cient (see Table 3.4 in the Appendix), is very strong. Values, calculated
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over all strata, vary between 0.73 and 0.93 among target populations. Calculation of
the correlation coe�cients within each stratum shows that the values vary considerably
more among the eight strata. While for some target populations only weaker correla-
tions (-0.01 ≤ r < 0.5) could be found in one or more strata, a very strong correlation
(r ≥ 0.75) appears for other target populations in all strata. This leads to a broad
range of correlations including extremes such as -0.01 and 1.00, the quantile q0.25 is 0.71
and q0.75 is 0.9. Comparing the correlations of the di�erent species groups, it becomes
obvious that the correlations of the Beech group are very good in most cases (r > 0.75
in 86 %). In contrast, the values for the Spruce groups indicate weaker relationships
(0.5 < r ≤ 0.75 in 40 %) in a lot of strata.

Calculation of linear regressions showed that the relationships between measured
and simulated volumes vary remarkably among strata. For some target populations
the slope is the same in all strata, hence no interaction between stratum and slope
exists. Other target populations show a high variety of slope-values, indicating strong
interactions between stratum and slope. Overall the slope parameters range from -0.01
to 3.14 and the intercepts from -2.19 to 279.89. The r2-values of the linear regressions
vary from 0 to 1, the quantiles (q0.25 =0.56, q0.75 =0.82) indicate that these regressions
are able to explain the variability well in most cases.

The results for the new estimator (Figure 3.3) show, that it could reduce the number
of sample plots remarkably compared to pure 2st, accepting a certain decrease in pre-
cision. In the three diameter classes the proportions of saved sample points are highest
for the Oaks and lowest for the Spruces. The range of the proportions of saved sample
points between forest districts is very narrow for the Beech populations and wider for
the two other species groups.

For example for the big Beeches (Figure 3.3 C) a 10 % higher rel. SE, compared
to the 2st procedure with full second-phase sample size n, could be achieved with the
2st,2lr-procedure using 22 % to 33 % (depending on the district) less sample plots on
the second occasion than with the reduced 2st-procedure. For the Spruces that span is
from 10 % to 23 %, for the Oaks from 25 % to 35 %. For the smaller diameter classes
(Figures 3.3 A, B) these savings are even higher.

Data from the �rst inventory occasion

Over all strata the values of Pearson's correlation coe�cient vary between 0.6 and
0.97 among target populations (Table 3.4 in the Appendix). Like for the case described
above, the correlation coe�cients vary considerably when calculated stratum-wise. The
values range from -0.03 to 1, q0.25 is 0.66 and q0.75 0.89. In general the correlations are
highest for the Beech target populations and lowest for the Spruce target populations.

Within the target populations the relationships between the data of the �rst and the
second occasion also vary among strata, the slope parameters between -0.04 and 3.50.
The values for the intercepts range from -8.72 to 265.56. For some target populations
strong interactions between stratum and slope exist, for other target populations no
interaction is detectable. The r2 of the linear regressions vary between 0 and 1, the
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Figure 3.4: The proportion of saved sample points (%) as a function of increasing relat-
ive sampling error (%) in the small (A), medium (B) and big (C) diameter
classes in the four forest districts. The shaded areas indicate the spread of
values across the forest districts. In the regression estimator the correlations
between measured values at the �rst and second occasion were used.

corresponding quantiles are 0.57 (q0.25) and 0.84 (q0.75). Hence, it seems as if the
regressions are mostly able to explain the variability well.

In all diameter-classes the highest proportions of saved sample points could be
achieved for the Oaks and the lowest for the Spruces (Figure 3.4). Again the range
of the results is narrow for the Beeches and wider for the two other species.

Comparison of input data

In most of the cases the use of growth model based updates clearly improves the per-
formance of the 2st,2lr-estimator (Figure 3.5) compared to the approach based on the
measurements of occasion 1. Only for the Oaks with big diameters the use of the data
from the �rst occasion leads to considerable better results.

3.3.5 Discussion

Coming back to the initial question of the general performance of the 2st,2lr-estimator,
we state that it is possible to save sample plots and thereby inventory-costs, if a certain
decrease in precision is accepted. The extent of savings depends on the correlation
between the auxiliary and the original data. The main result is that in almost all
target populations of our case study the correlation between updated data from the �rst
and measured data from the second occasion is higher than the one between measured
data from the �rst and second occasion, yielding a higher cost saving potential for the
growth-model based updates of the previous inventory data.

Our results are mostly, apart from the large Oaks, consistent with di�erent other
studies (e.g. Vospernik et al., 2010), which show thatWaldPlaner 2.0 is able to produce
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Figure 3.5: The di�erences of the proportions of saved sample points (%) between the
results of the 2st,2lr with simulated values and with values of the �rst in-
ventory. Results are shown as a function of increasing relative sampling
error (%) for the small (A), medium (B) and big (C) diameter classes in the
four forest districts. The shaded areas indicate the spread of values across
the forest districts.

realistic results. The use of the results of the simulation runs with default settings can
be justi�ed by the extremely low in�uence of these settings on the sampling errors of the
inventory and the fact that the default settings follow the silvicultural program of Lower
Saxony. Moreover, changes of these settings can in principle be made in the model, but
they require further detailed knowledge of the thinning strategies applied in the forest
districts, which are di�cult to quantify in practice. A reason for the similarity between
the simulation runs can be seen in the short simulation period of approximately ten
years. In longer simulation periods the di�erences between these runs are expected to
be bigger. Also the e�ect of di�erent initialisations and simulation runs is expected
to be bigger in longer simulation periods. With larger variability among di�erent runs
several simulations should be carried out and the mean value be used, because the
auxiliary variable is assumed to be non-random. In our case study the variability was
negligible.

The many high values of Pearson's correlation coe�cient show that the growth pro-
jections produce reasonable results. Hence WaldPlaner 2.0 seems to be a suitable tool
for this study. However, it has to be considered that points, where volume of trees in a
certain target population has been neither measured nor simulated, are included in the
calculation and raise the correlation. It is interesting to note, that the correlation for
some target populations is very high in strata, where one would not expect a high occur-
rence of this population, for example, the Oaks in the coniferous strata of Liebenburg.
A possible explanation for these high correlations might be seen in the high number of
plots with a stand volume of 0 m3/ha in the considered target population.

Even though the correlations are high in most cases, a further increase of these values
is desirable but can hardly be achieved with the current growth models for several
reasons: (1) Extreme di�erences between measured and simulated volumes can partly
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be explained by calamities. At some points the standing volume has been reduced
through insect outbreaks, windstorms or �re. These calamities could not be simulated
by the growth model and therefore the di�erences between the volumes are big at
these points. (2) Another reason for discrepancies between the two volumes can be
seen in the strict thinning routine in the model, where all trees are harvested when
they reach the species-speci�c target-diameter. In reality not every tree, which reaches
the corresponding target-diameter is harvested. Rather the neighbourhood-situation
is evaluated by the forester and tree-harvesting follows his assessment. The target-
diameter is handled with much more �exibility in practical forestry than in the growth
model. In our case study this may especially be the case for the Oaks with big diameters.
(3) The combination of using clone-trees in the model and of analysing the results per
target population might explain some of the observed di�erences between the two values.
In reality a target-population might disappear, when only one tree is harvested and no
other trees of this target-population exist. Due to the use of clone-trees it is unlikely
that a target-population disappears in the model.

A recent approach for the improvement of growth models is the inclusion of calam-
ities, such as infestation by bark beetles (Overbeck & Schmidt, 2012) or windstorms
(Schmidt et al., 2010). Moreover, new approaches for modelling height growth exist.
Further enhancement of growth models can be expected from parameterisation of ad-
ditional tree species, climate-sensitive and local calibration or an improved modelling
of silvicultural treatments.

The advantage of the new approach is that it uses the correlations between simula-
tions and measurements which are high, even though the deviations of the simulations
from the measurements can be quite large. With the achieved precisions, this procedure
is attractive for periodic forest inventories under temporarily restrictive �nancial con-
straints. This is because the growth projections for the regression part of the estimator
require a data base of recent inventory data, where more terrestrial plots are measured
than is planned for the current, reduced inventory.

The results for the linear regressions support the �ndings about the correlation coe�-
cients, and the broad range of possible relationships within the di�erent strata becomes
obvious. Slope parameters of 0 or smaller indicate a bad performance of the growth
model or a volume reduction between the two occasions. These cases are assumed to
occur in target populations with a low number of plots having a stand volume > 0
m3/ha. From the slope parameters it can be seen that the growth model overestimates
the stand volume in some strata and underestimates it in others.

Of course, the new estimator could not reach the target precision in cases where the
2st scheme was already above. Looking at the savings which could be achieved with the
new sampling procedure, it has to be noted that additional costs for the simulations
and calculations incur. However, these costs will be negligible compared to those of
terrestrial sampling.
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3.4 Conclusions

Comparing classical 2st with the approach proposed here, it is clear that the new
approach coincides with simple 2st if the same second- and third-phase sample size is
realised. The new approach becomes advantageous when the sample size of the current
inventory is reduced and hence a lower accuracy of estimation is accepted. In these
cases the savings of sample plots and resultant inventory costs are remarkable. The
2st,2lr-estimator can be used with data from the last occasion or with growth model
based updates. Using the latter allows for potentially higher savings, due to higher
correlations.

The superiority of this three-phase estimator over the composite estimator analyzed
earlier (von Lüpke et al., 2011) can be explained by the often large bias of the Wald-
Planer 2.0 predictions as one component of the composite estimator. Despite this large
bias, the correlations with plot measurements are usually high and can successfully be
exploited in the regression estimator, which is part of the new three-phase approach.
Of course this sampling scheme cannot be applied continuously in forest inventories,
because a continuous reduction of sample sizes would occur. Thus, we recommend its
use as a low-cost inventory alternating with the regular full double sampling inventory
or as a temporary intermediate inventory between two regular sampling occasions of a
continuous forest inventory.

Assuming additional enhancement of forest growth models through e.g. model cal-
ibration implying higher estimation accuracies, the results of this estimator are likely
to be further improved.

Acknowledgements

We would like to thank the German Science Foundation (DFG) for �nancial support of
this study (Sachbeihilfe SA 415/5-1) and Dr. Böckmann of the Lower Saxony Forest
Planning O�ce for his kind provision of the inventory data. Moreover, we would like
to thank two anonymous reviewers for their helpful comments.

3.5 Appendix

3.5.1 Proofs

To derive the variance and a variance estimator for Ŷ 2st,2lr, we decompose the variance
as usual into

V
(
Ŷ 2st,2lr

)
= V

(
E
(
Ŷ 2st,2lr|phase1

))
+ EV

(
Ŷ 2st,2lr|phase1

)
(3.12)
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The conditional expectation of Ŷ 2st,2lr, given phase 1 (�nite populations of size n′h),
is

E
(
Ŷ 2st,2lr|phase1

)
≈

L∑
h=1

n′h
n′

1

n′h

n′h∑
i=1

yhi =
1

n′

n′∑
j=1

yi (3.13)

and its variance can be calculated as (in�nite population, Mandallaz, 2008, with
S2 = VS)

V
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E
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)
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1

n′
S2 (3.14)

For the second term of the decomposition, we need the conditional variance of Ŷ 2st,2lr
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Substituting 3.14 and 3.15 in 3.12 �nally yields
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(3.16)

Since

V
(
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(3.17)

(A.1 in Saborowski et al. (2010)) we have

V
(
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which can be estimated by
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because
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2
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2
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is an unbiased estimator of s′h
2
(
1− r′h

2
)
(Cochran, 1977, 12.66).

3.5.2 Tables

Table 3.3: Estimated volume (m3ha−1) and standard deviations (m3ha−1) of the 9 tar-
get populations in the four forest districts. The values were calculated with
the 2st-estimators from all terrestrial sampling points at the second occasion.

Liebenburg Reinhausen Grünenplan Saupark

Target Population Ŷ ŜD(Ŷ ) Ŷ ŜD(Ŷ ) Ŷ ŜD(Ŷ ) Ŷ ŜD(Ŷ )

Beech < 25 19.44 1.08 26.47 1.09 22.19 1.07 18.2 1.02
Oak < 25 2.41 0.44 3.09 0.48 3.2 0.47 2.4 0.43
Spruce < 25 3.7 0.47 4.04 0.4 7.79 0.61 5.33 0.45

Beech 25− 50 61.95 2.9 95.38 2.9 74.08 2.58 63.4 2.46
Oak 25− 50 19 1.58 11.23 1.05 8.55 1.1 7.71 1.03
Spruce 25− 35 16.83 1.23 11.64 0.73 19.86 0.96 22.41 1.01

Beech > 50 41.92 2.78 88.58 3.26 57.65 2.68 81.89 3.33
Oak > 50 25.11 2.47 19.69 1.72 15.25 1.63 18.99 2.24
Spruce > 35 34.71 2.18 27.99 1.45 49.86 2.07 47.83 1.78
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4. Combining double sampling for strati�cation and cluster sampling to a three-phase

sampling design for continuous forest inventories

Abstract

We extend the well-known double sampling for strati�cation sampling scheme by cluster
sub-sampling to a three-phase design and present corresponding estimators based on
the in�nite population approach in the �rst phase. After strati�cation of the sample
points (phase I), a second-phase sample is drawn independently among the �rst-phase
points within each stratum. For phase III, clusters are formed of those phase II points,
and a sample of clusters is �nally drawn without replacement. We used the forest
planning units compartment and sub-district as clusters and moreover formed clusters
with a heuristic for the vehicle routing problem. The precision of the new estimator was
compared to that achieved with classical double sampling for strati�cation in a case
study. The results indicate that the expected increase of sampling errors caused by
clustering cannot be compensated by the reduced inventory costs under the conditions
given in the case study.

keywords

continuous forest inventory - double sampling for strati�cation - cluster sampling -
in�nite population approach

4.1 Introduction

Generating statistically sound information is the main challenge of forest inventories,
even though they additionally have to ful�l other demands (Lund, 1998). The in-
formation gained from an inventory is valuable not only in the planning process of
the forest-authorities or -owners. Moreover, the reporting for international conventions
(e.g. biodiversity or climate change) needs statistically sound information.

An important constraint in the development of an adequate inventory design is (cost-)
e�ciency. It is desirable to either achieve the highest precision with prede�ned inventory
costs or to minimise the inventory costs for achieving a prede�ned precision.

One method that has prooved its e�ciency and practicability often in the last dec-
ades is double sampling for strati�cation (2st) (Cochran, 1977; de Vries, 1986; Schreuder
et al., 1993; Köhl, 1994; Särndal et al., 2003; Gregoire & Valentine, 2008; Mandallaz,
2008). Saborowski et al. (2010) recently studied this method for periodic inventories un-
der the in�nite population approach, and Scott & Köhl (1994) extended it by sampling
with partial replacement (SPR). Two phases can be distinguished in this procedure:
In the �rst phase qualitative information is obtained from a large number of sampling
units. Based on these qualitative data, a strati�cation of the �rst-phase units is carried
out and a sub-sample of every stratum is inventoried. The second-phase points are
usually assumed to be chosen by simple random sampling (SRS) without replacement.
Whereas it is common to obtain the qualitative data using aerial images, the quantitat-
ive data are usually gained through terrestrial sampling. The aim of the strati�cation is
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4.2. An estimator for cluster subsampling of double sampling for strati�cation

to create strata with a low within-strata variability and a high between-strata variabil-
ity. In comparison with other methods the costs of this design are usually low (Brassel
& Köhl, 2001; Saborowski et al., 2010). Nevertheless, a further reduction of costs is
desirable.

Another common and potentially e�cient method is cluster sampling (cl), where
spatial clusters of sampling units are formed and a sub-sample of these clusters is
inventoried (Cochran, 1977; Gregoire & Valentine, 2008). Usually the clusters are de-
signed in a way that makes it possible to execute the �eld work per cluster within one
day (Kleinn, 1996). Several shapes of clusters such as triangle, square or cross exist,
their e�ciency has been studied e.g. by Kleinn (1994, 1996). The aim of clustering is to
achieve a high variability within and a low variability between clusters. In comparison
to SRS this method may be advantageous because of reduced travelling costs. Although
the clustering always leads to a loss in precision compared to SRS (Cochran, 1977), it
might be more e�cient if the precision of SRS can be achieved by a larger number
of population elements sampled at lower costs. Cluster sampling is usually applied in
tropical forests, where sample plots are di�cult to access, but also for example in the
national forest inventories of Finland and Germany (Tomppo et al., 2010a).

It was conjectured by foresters that spatial clustering of second-phase units of the
Lower Saxony State Forest District Inventories might also be more e�cient, because
clusters of an appropriate size could already cover a su�ciently large amount of variab-
ility and consequently the current relation between travelling- and inventory-time was
detrimental. Therefore, we aimed at clustering the sample points of the second phase
spatially, even though a loss in precision must be taken into account. In this article
we present a new three-phase estimator with cluster subsampling of second-phase units
and its application in a case study carried out with data of the State Forest District
Inventory in Lower Saxony, Germany.

4.2 An estimator for cluster subsampling of double

sampling for strati�cation

4.2.1 Double sampling for strati�cation

In this two-phase sampling scheme, measurements only take place in a sub-sample (n)
of all �rst-phase plots (n′). Using low-cost qualitative variables, the �rst-phase sample
points are strati�ed into L strata. Strata means of the target variable (ȳh) are then
weighted with the proportion of �rst-phase sample points per stratum (n′h/n

′ = wh)
and summarised to estimate the overall mean Ȳ (Equation 4.1) (Cochran, 1977).

ˆ̄Y2st =
L∑

h=1

wh
1

nh

nh∑
i=1

yhi =
L∑

h=1

whȳh (4.1)
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sampling design for continuous forest inventories

An unbiased estimator for the variance of this estimator under the in�nite population
approach (see e.g. Mandallaz, 2008) is given by

V̂
(

ˆ̄Y2st

)
=

1

n′ − 1

(
L∑

h=1

n′h − 1

n′
s2h
νh

+
L∑

h=1

wh

(
ȳh − ˆ̄Y2st

)2)
(4.2)

s2h =
1

nh − 1

nh∑
i=1

(yhi − ȳh)2 (4.3)

(Saborowski et al., 2010). Here, s2h is the estimated within-stratum variance of the
target variable (Equation 4.3), and νh = nh/n

′
h is the proportion of terrestrial sample

points per stratum.

4.2.2 Cluster sampling

In cluster sampling, where a population is split into K clusters, k of which are randomly
sampled, two estimation approaches exist, (1) the unbiased estimator (unb) and (2) the
Ratio-to-Size estimator (RtS) (Cochran, 1977, with n = k and N = K).

Unbiased estimator

An unbiased estimator of the population total Y in a �nite population of size M0 =∑K
i=1Mi is

Ŷunb =
K

k

k∑
i=1

yi, (4.4)

where yi is the total of the target variable in cluster i. The corresponding variance
is given by Equation 4.5, where Ȳ(K) = Y/K is the population mean per cluster unit
(Cochran, 1977).

V
(
Ŷunb

)
=
K2

k

(
1− k

K

)∑K
i=1

(
yi − Ȳ(K)

)2
K − 1

(4.5)

The population mean per element ( ¯̄Y ) can then be estimated by dividing the estim-
ator of the population total by the total number of elements in the population (M0)
(Equation 4.6).

ˆ̄̄
Yunb =

Ŷunb
M0

=
K

kM0

k∑
i=1

yi (4.6)
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Ratio-to-Size estimator

In this approach the population mean is estimated by the ratio of the sum of the target
variables (yi) in the sample to the total number of elements in the sample.

ˆ̄̄
YRtS =

ŶRtS

M0

=

∑k
i=1 yi∑k
i=1Mi

(4.7)

what is known to be an approximately unbiased estimator. Multiplying by the total
number of elements in the population yields

ŶRtS = M0

∑k
i=1 yi∑k
i=1Mi

, (4.8)

an estimator for the population total. The formula of the corresponding approximate
variance is similar to Equation 4.5, the variance of the unbiased estimator. It di�ers
only in that it replaces the mean per cluster Ȳ(K) by Mi

¯̄Y .

V
(
ŶRtS

)
.
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¯̄Y
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(4.9)

4.2.3 Cluster subsampling of double sampling for strati�cation

The envisaged procedure comprises three phases (Figure 4.1). Phases I and II follow
the well-known 2st design (see �Double sampling for strati�cation�). In the third phase,
the second-phase units are clustered into K clusters and k ≤ K clusters are randomly
sampled without replacement. These k sample clusters are �nally measured in the
�eld. Due to the fact that the Ratio-to-Size estimator mostly performed better than
the unbiased estimator in our case study, we restrict the following presentation to the
estimators and the results based on (4.7) and (4.9). The estimator of the overall mean

ˆ̄Y2st,cl =
L∑

h=1

wh ˆ̄yh =
L∑

h=1

wh

∑k
i=1 y̆ih∑k
i=1Mih

(4.10)

di�ers from the 2st-estimator (Equation 4.1) merely in the estimator of the mean per
stratum (ȳh), which is now replaced by

ˆ̄yh =

∑k
i=1 y̆ih∑k
i=1Mih

. (4.11)

y̆ih =
∑Mih

l=1 y̆ihl is the sum of the target variable over all second-phase units in cluster
i which belong to stratum h (clusters may overlap di�erent strata), and Mih is the
number of those second-phase units. The estimator ˆ̄yh is nothing else than the Ratio-
to-Size estimator for the mean per element (Equation 4.7) in stratum h, if we consider
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Figure 4.1: Sampling procedure of the three-phase sampling design.

the second-phase units as a �nite population of size M0 = nh. Thus (4.10) is also
approximately unbiased.

An estimator for the variance (Equation 4.12) is given in Equation 4.13 (for the proof
see the Appendix).
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The �rst of the three main terms of (4.12) is the variance under 2st; terms for the
variances within strata and the covariances between strata are added.
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Equation 4.14 is the within-stratum variance between clusters, the corresponding
estimator is given in Equation 4.15.

S̆2
h =

1

K − 1

K∑
i=1

(y̆ih −Mihȳh)2 (4.14)

s̆2h =
1
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(
y̆ih −Mih ˆ̄yh

)2 (4.15)

s2h,cl, a conditionally unbiased estimator for s2h, given the �rst two phases, is given in
Equation 4.16, where ¯̆yih is the mean over allMih sampling units in cluster i and stratum
h.

s2h,cl =
1

nh − 1

K

k

[
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)2] (4.16)

Thus s2h,cl is also unbiased for S
2
h. The covariance between the sampling units of di�erent

strata within a cluster can be calculated using Equation 4.17, an estimator is given in
Equation 4.18.
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1
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The relative sampling error (rel. SE), as given in Equation 4.19, will also be interesting
for evaluating the performance of the estimator.

rel.SE =

√
V ar ˆ̄Y2st,cl

ˆ̄Y2st,cl
(4.19)

4.3 Case Study

4.3.1 Data Base

Since 1999 the State Forest District Inventory of Lower Saxony is carried out according
to a 2st-design (Böckmann et al., 1998). In the �rst phase CIR aerial images are
taken at every grid point of a 100 m × 100 m grid. Every sample point is assigned
to one of eight strata, de�ned by age class (1: ≤ 40 years, 2: > 40 − 80 years, 3:
> 80 − 120 years, 4: > 120 years) and dominating species group (CON: Coniferous,
DEC: Deciduous). Afterwards terrestrial sampling is carried out in a sub-sample of each
stratum. The proportion of terrestrial sample points (νh) di�ers between the strata.
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In every stratum the nh second-phase sample points are chosen systematically from
a list of all sample points in the stratum; in the following study, we deal with the
according sample plots as randomly selected plots in both phases. Measurements then
are executed in two concentric circular plots. In a plot of radius 6 m all trees with a
dbh ≥ 7 cm and < 30 cm are measured. Trees with larger dbh are measured in a plot
of 13 m radius. Tree heights were only partly measured during the inventory. In cases
without height measurements we used species-speci�c height curves for estimation of
tree heights (Sloboda et al., 1993). Finally, the solid tree volumes were calculated with
species-speci�c form factors (Bergel, 1973, 1974). The �rst run of the inventory has
been carried out between 1999 and 2008 subsequently in all forest districts. Here, we
used the data of seven state forest districts in the regions Harz (Clausthal, Lauterberg,
Riefensbeek, Seesen) and Solling (Dassel, Neuhaus, Winnefeld) (Table 4.1). Meanwhile
forest districts were merged to larger units (see www.landesforsten.de).

4.3.2 Evaluation procedure

The aim of the case study is to assess (1) the general performance of the 2st,cl-estimator
compared to simple 2st and (2) the e�ect of di�erent cluster types on the variance of
the estimator. As clusters we used (a) forest sub-districts (Revier), (b) compartments
(Abteilung) and (c) daily workloads (Table 4.2), the latter calculated with a heuristic
for the vehicle routing problem (VRP) (Dantzig & Ramser, 1959), the Record-to-Record
algorithm from Li et al. (2005).

Very famous in Operations Research, the VRP describes the problem of supplying
several customers from one depot with a truck of given capacity. It is desired to ful�l all
customer demands, which can be di�erent, and to �nd the shortest route. Adapting the
algorithm to our problem, we assumed a daily working time of eight hours as capacity.
Assuming as demand per sample plot a mean working time of 1.5 h for a two-people
inventory-team (Zinggeler & Herold, 1997; Zinggeler, 2001), it is possible to measure
�ve plots during a day on average. Due to the high number of sample plots per forest
district and the lack of realistic depots, we used the forest sub-districts as unit for the
calculations in case of this cluster type and assumed the starting point to lie in the
center of all terrestrial sample plots of a sub-district. The clusters have been post-
optimised with a 2-opt-algorithm (R library �TSP") (Hahsler & Hornik, 2007). The
workload-clusters were calculated with the VRPH-library (Gröer et al., 2010), all other
calculations were carried out with the statistical software package R (R Core Team,
2012).

Due to the fact, that data from all terrestrial sample points (phase II) and thus
all clusters K are available in the data sets, we used S̆2

h (Equation 4.14) instead of s̆2h
(Equation 4.15) and s2h (Equation 4.3) instead of s2h,cl (Equation 4.16) in the variance
estimator (Equation 4.13) to increase precision of the estimation and to avoid the
otherwise necessary simulations of cluster sampling. For the same reasons, we replaced

45



4.3. Case Study

Table 4.1: First- and second-phase sample sizes in the eight strata of the seven forest
districts.

Forest District year Phase DEC1 DEC2 DEC3 DEC4 CON1 CON2 CON3 CON4
∑

Clausthal 1999, 2002
I 287 490 362 428 1445 5084 2250 1244 11590
II 31 52 50 61 171 855 346 198 1764

Dassel 2000, 2001
I 1049 1205 1327 1613 1334 1928 895 188 9539
II 145 132 159 280 281 578 241 52 1868

Lauterberg 2002
I 945 1269 1139 2091 1833 3783 2320 897 14277
II 89 87 95 267 321 970 528 200 2557

Neuhaus 1999, 2000
I 1687 1521 1113 1663 1919 2326 1627 241 12097
II 172 102 103 218 343 614 384 60 1996

Riefensbeek 2002
I 702 888 428 1014 1911 4971 1939 1178 13031
II 68 54 37 124 293 1108 390 259 2333

Seesen 1999, 2001, 2002
I 1227 1328 707 1428 1229 3329 1306 375 10929
II 238 230 184 374 271 855 320 78 2550

Winnefeld 2000
I 1664 2312 1573 2889 1501 1656 707 165 12467
II 207 196 172 463 337 544 209 50 2178
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as an estimator for (4.12). The �rst term equals the 2st variance estimator (4.2).
Please note that this estimator is not applicable in forest inventory practice because of
the aforementioned substitutions. Finally, variances according to (4.20) were calculated
for three di�erent target populations de�ned by species group and dbh: Beech >50 cm,
Oak >50 cm, Spruce >35 cm.

For estimation of the travelling distances of 2st and 2st,cl we carried out simula-
tions. In 100 simulation runs, a random sample of a given percentage of sample points
or clusters was drawn without replacement from all terrestrial sample plots of a forest
district. During clustering we already calculated the travelling-distances within each
cluster and so the distances of the selected clusters had to be summarised for estima-
tion of the overall 2st,cl-travelling-distance within clusters. To estimate the travelling-
distance of 2st, we built clusters of sample plots per sub-district with the same procedure
as described above for the VRP-clusters. Afterwards the total distance within clusters
per forest district was calculated.

4.3.3 Results

The volumes per ha and rel. SEs, calculated with the full second phase sample size
i.e. using (4.1) and (4.2), are shown in Table 4.3. It becomes obvious that relative
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Table 4.2: Number and mean size of clusters per forest district de�ned by di�erent rules.
The values in brackets indicate the standard deviations.

Forest District compartment VRP-cluster sub-district

number size number size number size

Clausthal 667 2.6 357 4.94 9 196

(±1.35) (±0.33) (±17.01)
Dassel 524 3.56 378 4.94 8 233.5

(±2.07) (±0.41) (±48.35)
Lauterberg 726 3.52 516 4.96 11 232.45

(±1.86) (±0.34) (±69.07)
Neuhaus 517 3.86 402 4.97 10 199.6

(±1.96) (±0.25) (±34.40)
Riefensbeek 720 3.24 472 4.94 11 212.09

(±1.61) (±0.39) (±48.15)
Seesen 586 4.35 514 4.96 10 255

(±3.13) (±0.28) (±118.19)
Winnefeld 701 3.11 438 4.97 11 198

(±1.66) (±0.22) (±29.07)

precisions of about 5 % and below could be achieved for the Spruces and Beeches in
almost all forest districts. Only for the Oaks, which are generally rarer, and the small
Beech population in Clausthal we observe lower rel. precisions, mostly above 10 % and
up to 33 %.

Using the planning units compartment and sub-district as clusters leads to cluster
sizes, which are either too big or too small to be sampled within one day (Table 4.2).
In addition, their size is highly variable as the standard deviations show. In contrast,
the VRP -clusters contain on average �ve points and therefore �t better to a one day
workload. Besides, the variation in cluster size is low.

Using 2st,cl the rel. SE increases with decreasing percentage of sampled clusters
(Figure 4.2). The rel. SEs are lowest for the Spruces and highest for the Oaks. Sampling
50 % of the VRP-clusters the rel. SE varies between 7.53 % and 21.44 % for the
Beeches, between 14.28 % and 61.25 % for the Oaks and between 3.37 % and 5.5 %
for the Spruces. A comparison of the di�erent cluster-forms shows that the di�erences
between the compartments and the VRP-clusters are very small, whereas using the
sub-districts as clusters leads to higher rel. SE than using the two other cluster-forms.

Comparing the 2st,cl-results with those of 2st assuming equal numbers of terrestrial
sample plots, shows that the rel. SEs of 2st,cl are always higher than those of 2st
(Figure 4.3). When sampling 50 % of the VRP-clusters, the rel. SE of the Beeches is
at least 25.78 % and at most 33.53 % higher than the corresponding value of 2st which
can be achieved with the same number of terrestrial sample plots. Sampling the same
percentage of VRP-clusters leads to increases of the rel. SE between 25.22 % and 40.96
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Table 4.3: Estimated volumes (m3ha−1) and rel. SE (%) for the 3 target populations in
the di�erent Forest Districts using double sampling for strati�cation. Bold
numbers indicate target precisions below 5 %.

Beech>50 Oak>50 Spruce>35

Forest District ˆ̄Y rel. SE ˆ̄Y rel. SE ˆ̄Y rel. SE
Clausthal 8.61 12.10 3.33 16.00 132.96 2.19

Dassel 45.81 4.79 6.61 14.21 78.87 2.92

Lauterberg 26.05 5.61 3.89 18.07 111.88 1.97

Neuhaus 38.20 5.23 13.26 12.93 100.36 2.40

Riefensbeek 15.25 7.87 1.93 33.37 145.64 1.90

Seesen 38.15 4.44 4.57 13.98 82.97 2.44

Winnefeld 58.98 4.06 25.26 7.52 55.63 3.28

% for the Oaks and between 25.31 % and 34.82 % for the Spruces. With decreasing
number of sampled clusters the rel. increase of the rel. SE increases nearly linearly.
The cluster-forms compartment and VRP-cluster lead to similar results for all tree
species. Using the sub-districts as clusters, on the contrary leads to worse results and
pronounced di�erences between the tree species. The highest di�erences were calculated
for the Spruces and the lowest for the Beeches.

The additional sampling e�ort of 2st,cl compared to 2st is shown in Figure 4.4 as
a relative di�erence. Obviously, the same rel. SE can be achieved with less terrestrial
sample points in 2st than in 2st,cl. The rel. increase of the number of sample points lies
between 37.51 % and 44.85 % for the Beeches, between 36.26 % and 49.9 % for the Oaks
and between 40.68 % and 46.7 % for the Spruces, when using 50 % of the VRP-clusters.
These rel. increases correspond to absolute increases between 306 and 577 sample plots
for the Beeches, between 344 and 680 sample plots for the Oaks and between 389 and
640 sample plots for the Spruces. With decreasing percentage of sampled clusters the
rel. increase of sample points increases with a concave shape. Again, the di�erences
between the results of the two cluster-forms compartment and VRP-cluster are small
for all species. The use of the sub-districts as clusters leads to considerably worse
results, a much higher percentage of points has to be sampled additionally. Moreover,
the di�erences between the di�erent target populations become more pronounced with
the sub-districts as clusters. The lowest e�ciency in the case of sub-districts is achieved
for the Spruces, the highest for the Beeches.

On the other hand, drawing samples from single terrestrial sample plots leads to
longer total within-cluster travelling-distances per forest district than drawing samples
from clusters of sample plots (Figure 4.5). When sampling 50 % of the sample plots
or clusters, the di�erence between the resulting mean overall travelling-distances per
forest district lies between 94.95 km (Dassel) and 146.79 km (Seesen).
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Figure 4.2: Rel. SE (%), calculated with 2st,cl and the Ratio-to-Size approach, as
a function of the percentage of sampled clusters. The results are shown
for three di�erent target populations (columns) and cluster-forms (rows) in
seven forest districts (curves). The dotted horizontal line depicts the 5 %
level usually strived for in inventories of bigger diameter classes. The broken
lines depict Minimum and Maximum of the rel. SEs, when sampling 50 %
of the VRP-clusters.
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Figure 4.3: The di�erences between the rel. SEs of 2st,cl and 2st as percentage of the
rel. SE of 2st. The results are shown for three di�erent target popula-
tions (columns) and cluster-forms (rows) in seven forest districts (curves).
Identical numbers of terrestrial sample plots are assumed for both designs.
The broken lines depict Minimum and Maximum of the di�erence, when
sampling 50 % of the VRP-clusters.
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Figure 4.4: The relative increase of the number of sample plots (phase II) measured in
2st,cl compared to the number of sample plots which is necessary to achieve
the same precision using 2st. The results are shown for three di�erent tar-
get populations (columns) and cluster-forms (rows) in seven forest districts
(curves). The broken lines depict Minimum and Maximum of the relative
increase, when sampling 50 % of the VRP-clusters.
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Figure 4.5: The estimated total travelling-distances per forest district. In 100 simula-
tion runs a sample was randomly drawn without replacement from either
single terrestrial sample plots (SRS) or clusters of sample plots (Cl). Clus-
tering of the sample plots with a VRP-algorithm and calculation of the
travelling-distance within a cluster were executed afterwards for the �rst
case. For the second case these calculations were executed based on all
terrestrial sample plots.
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4.3.4 Discussion and Conclusions

Coming back to the initial question of the general performance of the 2st,cl-estimator,
we quanti�ed additional sampling e�orts and vice versa losses in precision, compared to
pure 2st, for three target populations in seven forest districts. The additional sampling
e�orts can be justi�ed in cases where SRS leads to a higher time consumption between
sampling points than 2st,cl. However, the results of our case study indicate that the
additional travelling-costs for SRS must be extremely large for justifying the additional
sampling e�ort through 2st,cl. Assuming a time consumption of 1.5 h per plot for a two-
people inventory-team, like in the Second Swiss National Forest Inventory (Zinggeler
& Herold, 1997; Zinggeler, 2001), an additional sampling-e�ort of 306 to 577 sample
plots corresponds to an additional time-consumption of 459 h to 856.5 h for sampling,
disregarding the additional time-consumption for travelling (Beech, 50 % of the VRP-
clusters). In contrast, the distance-reduction through clustering of the sample plots lies
between 94.95 km and 146.79 km for the same sampled perecentage and cluster-type.
These distances correspond to time-consumptions of 28.51 h and 44.08 h, assuming a
walking-speed of 3.33 km/h, as given by Scott (1993) for medium terrain. For longer dis-
tances this speed is a conservative estimation, it is likely that longer distances between
sample plots will be covered by car and hence faster. Longer distances can especially
be expected for 2st with reduced sample sizes. It has to be kept in mind that the
considered distances only account for the distances within clusters; distances between
starting point and sample points are disregarded. So, the resulting distances are only an
approximation. In our opinion it is reasonable to focus on the within-cluster distances,
because they are assumed to depend on the cluster-sizes, whereas the distances between
starting point and clusters are independent from the cluster-sizes. Due to the fact that
the same method has been applied for estimating the travel distances of the two meth-
ods, we assume the values to be comparable. Moreover, it is realistic to assume walking
between sample plots.

Thus, for relatively small planning units with a good infrastructure, like the forest
districts in our case study, 2st,cl cannot achieve a higher e�ciency than 2st. However, in
large areas with bad infrastructure and access to the points, travelling between sample
points might be so time-consuming that 2st,cl can be advantageous.

The second aim of our study was to assess the e�ect of di�erent cluster forms on
the performance of the 2st,cl-estimator. Due to their highly variable and inadequate
size, the use of the compartments and sub-districts as clusters is detrimental and VRP-
clusters thus preferable. Nevertheless, the resulting 2st,cl-variances of the compartment-
and VRP-clusters are similar and high, compared to the values of pure 2st. This may be
explained by their similar and small sizes, which most likely lead to low within-cluster
variablility. The stand type at neighbouring sample points will often be similar, con-
tradicting the aim of creating heterogenous clusters. Creating clusters being spatially
compact and, at the same time, of high within-cluster variability can hardly be achieved
under the conditions in this case study.
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4.4 Appendix

4.4.1 Proofs

To derive the variance of the new estimator, we decompose ˆ̄yh as follows

ˆ̄yh = ȳh +
(
ˆ̄yh − ȳh

)
. (4.1)

The variance of ˆ̄yh is then given as the sum of the variances of the two components,
because both components are not correlated (see (12.6) in Cochran, 1977).

V ar ˆ̄Ycl = V ar
L∑

h=1

n′h
n′
ȳh + V ar

L∑
h=1

n′h
n′
(
ˆ̄yh − ȳh

)
(4.2)

In this equation the �rst variance is the variance from 2st (Equation 4.2). Due to the
fact that E3(ˆ̄yh − ȳh) = 0,

V ar
L∑

h=1

n′h
n′
(
ˆ̄yh − ȳh

)
= EV ar3

L∑
h=1

n′h
n′
(
ˆ̄yh − ȳh

)
(4.3)

holds for the second variance. Assuming simple random sampling with drawing without
replacement for the clusters, the variance and the covariance can be calculated as

V ar3
(
ˆ̄yh − ȳh

)
= V ar3 ˆ̄yh =

1

n2
h

K2

k

(
1− k

K

)
S̆2
h (4.4)

and

Cov3
(
ˆ̄yh − ȳh, ˆ̄yh′ − ȳh′

)
= Cov3

(
ˆ̄yh, ˆ̄yh′

)
=

1

nhnh′

K2

k

(
1− k

K

)
S̆hh′ (4.5)

respectively. Substituting (4.4) and (4.5) in (4.3) yields:

V ar
L∑

h=1

n′h
n′
(
ˆ̄yh − ȳh

)
=E

L∑
h=1

(
n′h
n′

)2
1

n2
h

K2

k

(
1− k

K

)
S̆2
h

+ E
L∑

h6=h′

n′hn
′
h′

n′2
1

nhnh′

K2

k

(
1− k

K

)
S̆hh′ .

(4.6)
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5. Clustering existing sample points in resource inventories

Abstract

Cluster sampling is a well-known and widely used sampling scheme in resource invent-
ories. Shape and size of the clusters have usually to be determined when setting up a
new inventory. In cases where an existing sampling scheme of a previous inventory shall
be reduced by subsampling, e.g. for cost reduction or for a fast intermediate inventory,
it might be desirable to cluster neighbouring sample points in a way that minimises the
within-cluster distances and use clustered subsampling. This is important for achieving
high e�ciency of terrestrial sampling. Furthermore, it is mostly desirable to generate
equally sized clusters that can be sampled within a one-day workload.

The Vehicle Routing Problem (VRP), well-known in Operations Research, can be
seen as a similar problem. Its basic idea is that several customers should be supplied
from one depot. Therefore, the shortest route covering all customers and ful�lling all
customer-demands has to be found. Several heuristics exist for solving that problem.

In a case study in Lower Saxony, Germany, we applied three of these heuristics
for building clusters of sample points of the periodic forest district inventory, the (1)
Savings-Algorithm, a classical heuristic, and two metaheuristics, (2) a Record-to-Record
travel and (3) a Simulated Annealing algorithm. Beyond these VRP-heuristics, we ap-
plied (4) a k-means, (5) an equal area partitioning and (6) a hierarchical clustering
algorithm, and (7) used the planning unit compartment (Abteilung) as clusters. The
results indicate that the VRP-heuristics are well-suited for de�ning clusters of approx-
imately the same size, whereas the other algorithms produce clusters of highly variable
size. Comparing the results with computer intensive benchmark solutions, it could be
shown that the total distances are close to the optimal ones.

keywords

vehicle routing problem - k-means - hierarchical clustering - equal area partitioning -
forest inventory - cluster sampling

5.1 Introduction

High e�ciency and thus high precision at low inventory-costs are expected from forest
inventories. It can be achieved by an adequate sampling-scheme ful�lling the aims of
the inventory under the given conditions. Therefore, a multitude of e�cient inventory-
schemes has been developed over the last decades and still new methods are proposed.
Particularly, selection of clustered sampling units can often be a measure to increase
e�ciency.

When setting up a clustered sampling scheme, mainly two cases are imaginable:

1. An inventory is planned with a clustered sampling procedure from the beginning.
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2. The sampling scheme of an existing periodic inventory is to be converted into
a clustered sampling scheme with reduced sample size, temporarily or regularly,
and with the aim of cost-reduction in mind.

Several studies of the e�ciency of di�erent cluster shapes like triangle, cross or square
exist (e.g. Kleinn, 1994, 1996) and it is possible to follow the advices, given in these
studies, when setting up a new forest inventory (case 1). In national forest inventories
a multitude of di�erent cluster shapes is used (Tomppo et al., 2010a), and usually the
clusters are designed in a way that makes it possible to execute the �eld work per cluster
within one day (Kleinn, 1996). The latter commonly implies homogenous cluster sizes.

Building such equally sized clusters of existing sample plots (case 2) is especially
di�cult, when the sample plots are selected by simple random sampling (SRS) and
hence the distances between neighbouring sample plots are variable. Studies of the
national forest inventories in Switzerland (Zinggeler & Herold, 1997; Zinggeler, 2001)
and Germany (Kroiher, 2006) showed that the measurements on the plots accounted
for 25-40 % (Switzerland) and 51 % (Germany) of the total working time. It has to be
kept in mind that these numbers are highly in�uenced by road infrastructure, density
of sample plots, plot design, elevation, and slope of the study area. Nevertheless, it
becomes obvious that the time-consumption for travelling and indirect inventory-work
accounts for a high percentage of the total inventory-time. Therefore, it is desirable to
reduce this percentage wherever possible. One approach is to cluster sample plots to
daily workloads in a way which minimises the within-cluster distances and thereby the
time-consumption for travelling.

An intuitive clustering is to divide the study area into partitions of approximately the
same size. This can either be done with special algorithms or by using existing manage-
ment units such as forest districts (Forstamt), forest sub-districts (Revier) or compart-
ments (Abteilung) as partitions. Another possibility is to use cluster-algorithms, from
which a plethora exists (Anderberg, 1973; Hartigan, 1975). Well-known and established
clustering-methods are k-means and hierarchical algorithms. Whereas in k-means the
points are allocated to a given number of clusters with the aim of minimising a target-
function, in hierarchical methods points or point-clusters are combined to new clusters
in every iteration-step until all points belong to the same cluster. This is done with the
aim of combining the most similar clusters in every iteration-step (Anderberg, 1973;
Hartigan, 1975). These algorithms were not originally developed for spatial clustering,
but they can be used for that purpose using the coordinates of the sample points as
attributes.

The combination of sample plots to a cluster of spatially contiguous sample points
can also be seen as a Vehicle Routing Problem (VRP), which has been introduced
by Dantzig & Ramser (1959) and is well-known in Operations Research. The basic
idea of this problem is that several customers should be supplied from one depot and
therefore it is desirable to �nd the shortest route(s) covering all customers and thereby
ful�lling all customer-demands. Up to now heuristic methods are often used in practice
for solving VRPs, although exact algorithms exist. This is due to the facts that even
the best exact algorithms are able to solve only VRPs with approximately 100 vertices

58



5. Clustering existing sample points in resource inventories

and that quick solutions are expected from the users (Laporte, 2009). The number of
possible routes through n vertices can be calculated by (n − 1)!/2 for the symmetric
case, assuming the same distance between two points in both directions. For a problem
with 100 points 4.66 · 10155 possible solutions exist. Obviously, the calculation of an
exact solution would be extremely time-consuming.

Even though the VRP is one of the most famous problems in Distribution Science and
one of the most widely studied problems in Combinatorial Optimisation (Cordeau et al.,
2002), applications in Forest Science are still rare. Thiele (2008) presented results for
wood delivery to a �ctitious pulp mill, calculated with two classical heuristics for solving
this VRP. Flisberg et al. (2009) combined linear programming and VRP-techniques for
routing of logging trucks. Their approach is used in the decision support system for
routing of logging trucks RuttOpt (Andersson et al., 2008).

In the following article we present results that have been obtained with several meth-
ods of spatial clustering in a case study with data of the Forest District Inventory of
Lower Saxony, Germany. The resulting clusters were evaluated regarding their within-
cluster distances and their homogeneity of size; the e�ciency of clustered sampling
schemes is not part of this study. Obviously, the within-cluster distances should be
small for raising the e�ciency of an inventory design.

5.2 Methods

5.2.1 Algorithms of the Vehicle Routing Problem

Formally the VRP is de�ned as follows: G = (V,A) is a graph with a vertex set V =
{ν0, ν1, . . . , νn} and an arc set A = {(νi, νj) : νi, νj ∈ V, i 6= j}. The depot is represented
by vertex ν0, the customers by the remaining vertex set Vc = {ν1, ν2, . . . , νn}. A cost
and a travel time matrix are associated with A, and often these matrices are assumed
to be symmetrical. In such cases the VRP is de�ned on an undirected graph. A non-
negative demand qi and a service time ti are associated to every customer i. The total
number of vehicles m of capacity Q might be known in advance or treated as a decision
variable. The whole problem is a generalisation of the Traveling Salesman Problem
(TSP), which aims at determining the cheapest round-tour, covering all customers. It
arises when m = 1 and Q ≥

∑
i∈Vc

qi (Baldacci et al., 2010).

In general, it can be distinguished between (1) exact algorithms, (2) classical heur-
istics and (3) metaheuristics. Within these categories a high variety of algorithms has
been developed, the explanation of which would go beyond the scope of this article. A
good introduction to the di�erent approaches can be found in Laporte (2009). Cordeau
et al. (2002) compared di�erent heuristics under several aspects and gave advices for
the use of these methods.
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Savings-Algorithm (CW)

This algorithm has been developed by Clarke & Wright (1964), it is well-known and
widely used in practice, although its shortcomings are known (Cordeau et al., 2002).
Based on an initial solution of tours which consist of only one vertex, two routes
(ν0, . . . , νi, ν0) and (ν0, . . . , νj, ν0) are combined into one (ν0, . . . , νi, νj, . . . , ν0) at every
iteration step, as long as the restrictions are maintained. Therefore the savings sij =
ci0 + c0j − cij of these point-combinations have to be calculated based on the distance-
matrix, where ci0 is the cost for the way from νi to ν0, c0j the cost for the way between
ν0 and νj, and cij the cost for the way from νi to νj. The combination of routes which
yields the highest saving without violating the restrictions is chosen at every step. Af-
terwards a post-optimisation is carried out. Cordeau et al. (2002) attested this method
in their comparison a low accuracy and �exibility, but a very high speed and simplicity.

Record-to-Record travel Algorithm (RTR)

Dueck (1993) introduced the Record-to-Record travel Algorithm and presented applic-
ations to the TSP. During the iteration-process the results do not necessarily need to
improve the value of the target function, whose currently best value is called Record.
The iteration proceeds even if a new con�guration leads to a value worse than the cur-
rent Record as long as it does not exceed a certain deviation from the latter. Li et al.
(2005) extended this method by a variable-length neighbour list and applied it to very
large scale VRPs. Their proposal is provided in the VRPH-library (Gröer et al., 2010),
and we will describe the technique only brie�y in the following. An initial solution is
generated with a modi�ed Savings-Algorithm. Its value of the target function is used as
Record and the Deviation is de�ned as 1/10 of this Record. Within a loop the current
solution is improved, Record and Deviation are updated afterwards. Post-Optimisation
of this solution is carried out, and if an improvement is possible, Record and Deviation
are updated again. After repetitions and perturbations the best solution generated so
far is kept.

Simulated annealing (SA)

The �rst mentioning of Simulated Annealing in the context of Combinatorial Optim-
isation dates back to 1983, when Kirkpatrick et al. proposed its use, based on the
algorithm of Metropolis et al. (1953). Starting from an initial solution, a new solution
is randomly chosen from the neighbourhood of the actual one. Both solutions are com-
pared and the current solution is accepted if it leads to a better value of the target
function, or if not, with a probability that decreases with increasing simulation time
and growing di�erences between the values of the target function (Laporte, 2009).

5.2.2 K-means algorithm (KM)

The k-means algorithms belong to the partitioning-algorithms, and in contrast to the
VRP-algorithms the number of clusters (h) is known in advance and an important
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input variable for these algorithms. h centroids are initially placed and the sum of the
within-cluster sum of squares J =

∑h
k=1

∑mk

j=1

∑n
i=1 (xijk − xik)2 is calculated, wheremk

denotes the number of points in cluster k and n the dimension of the space of variables
(Anderberg 1973, Hartigan 1975). Here, n = 2 and x stands for the coordinates of
the sample points. Through shifts of the m points from one cluster to another and
recalculation of the centroids in an iteration-process it is desired to minimise J . It is
this iteration-process that makes the di�erent k-means algorithms distinct from each
other. Well-known are those of Lloyd (1982), Forgy (1965), MacQueen (1967) and
Hartigan & Wong (1979), from which we applied the latter.

5.2.3 K-means algorithm for equal area partitioning (EAP)

This method has been presented and thoroughly described by Walvoort et al. (2010) for
grid cell data. The spatial data are converted to grid cells and these cells are initially
partitioned into clusters. In an iteration process swops of two cells from di�erent clusters
are carried out if the sum of the distances between the cells and the centroids of the
clusters is shortened through this swop.

5.2.4 Hierarchical clustering (HC)

Whereas the number of clusters is an important input variable in the k-means al-
gorithms, it is not prede�ned in hierarchical clustering. Here points or point-clusters
are combined to a new cluster in every iteration step until all points n belong to the
same cluster; thus the number of iteration steps is n − 1. Di�erent algorithms use
di�erent criterions for combining sample points to a cluster (Anderberg, 1973).

Well-known is the method of Ward (1963). As in the k-means algorithms, the sum
of the within-cluster sum of squares J is used as target-variable. The combination of
point-clusters that leads to the smallest increase in J is selected in every iteration-step
(Ward, 1963; Anderberg, 1973).

5.2.5 Planning Unit (PU)

In Germany several di�erent administrative planning units exist, one of the smallest
ones is the compartment (Abteilung), on an average being of 18.84 ha in size in the
seven forest districts. We used the terrestrial sample plots within each compartment as
a cluster.

5.2.6 Benchmark Solution

As mentioned above heuristics do not guarantee optimality of a solution. To be able to
evaluate their quality, we make use of a lexicographic integer programming approach
that yields optimal solutions for the considered instances. During this process we only
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considered feasible tours, i.e. tours that can be �nished within one day and thus do not
exceed a prede�ned time-limit per tour.

First, we generate all feasible tours T . For these tours we �rst solve the integer
programme

min
∑
t∈T

xt

s.t.
∑
t∈T

contains[v, t] xt = 1 for all v ∈ V

xt ∈ {0, 1} for all t ∈ T ,

which minimises the number of tours necessary to cover all vertices.

Here, we have a binary decision variable xt associated with each tour t ∈ T that is 1
if tour t is chosen, and 0 else. The parameter contains[v, t] is 1 if tour t ∈ T contains
vertex v ∈ V , and 0 else, and therefore the constraints ensure that every vertex is
visited exactly once.

We denote by z∗ the optimal objective value of the programme above. Among all of
those cluster partitions we then want to choose a combination of z∗ tours that minimise
the total distances that need to be travelled. If we denote by length[t] the length of
tour t ∈ T , this can be done by solving the integer programme

min
∑
t∈T

length[t] xt

s.t.
∑
t∈T

contains[v, t] xt = 1 for all v ∈ V∑
t∈T

xt = z∗

xt ∈ {0, 1} for all t ∈ T .

5.3 Case study

5.3.1 Data base

For the case study we used data from the Forest District Inventory (Betriebsinventur) of
Lower Saxony, Germany. This inventory is carried out according to a double sampling
for strati�cation scheme since 1999 in a cycle of about ten years (Böckmann et al.,
1998). Sample points are located in a 100 m × 100 m grid within the �rst phase
of this procedure. Depending on dominating species group (DEC: Deciduous; CON:
Coniferous) and age class (1: ≤ 40 years; 2: 41-80 years; 3: 81-120 years; 4: > 120 years)
every point is assigned to one of eight strata. In the second phase a certain proportion
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Figure 5.1: The seven Forest Districts analysed in the case study.

of sample points, di�ering among the strata, is chosen in each stratum. The selection is
done systematically from a list of �rst-phase units per stratum, which however leads to
an irregular (random-like) spatial distribution of second-phase units on the �rst-phase
grid.

Two concentric plots (6 m radius for trees with 7 cm ≤ dbh < 30 cm and 13 m radius
for trees with dbh≥ 30 cm) are established and inventoried at these points. The �rst run
of this inventory has been carried out between 1999 and 2008, and we used the sample
points of seven forest districts (Forstämter) in the regions Harz and Solling (Figure 5.1).
Meanwhile merges of forest districts have been executed (see www.landesforsten.de), so
that not all of those forest districts still exist in the shape underlying our study. As
calculation units for the clustering we used the 70 forest sub-districts (Reviere), each
of which contains between 120 and 514 sample points.

5.3.2 Data processing

Software

For solving the VRP we used the VRPH-library of Gröer et al. (2010). In this open
access library several algorithms are implemented, from which we applied the three
algorithms mentioned earlier. Both, pre-processing of the data and evaluation of the
VRPH-results, were done with the statistical software package R (R Core Team, 2012).
The R-package "spcosa" (Walvoort et al., 2010, 2012) was used for the modi�ed k-
means algorithms for equal area partitioning. For calculation of the benchmark solution,
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the generation of the tours has been implemented in C++. The integer programme
modelling was performed in IBM ILOG OPL 6.3 and as solver we used IBM ILOG
CPLEX 12.4.

Pre-processing of the data

Originating from their original purpose in logistics, all VRP-heuristics need a load,
which the truck should deliver or pick up at each vertex, and a capacity of the trucks.
In our application we set the load at every sample point to 1 and the capacity to 5. This
assumption is based on the observations of Zinggeler & Herold (1997) and Zinggeler
(2001), who gave a per plot working time for the terrestrial inventory of 179 minutes
for one person during the Second Swiss National Forest Inventory. Due to the fact that
the sampling scheme of this inventory is similar to the one used in the Forest District
Inventory of Lower Saxony (Böckmann et al., 1998; Stierlin & Zinggeler, 2001), we
assumed a two-people inventory team to sample on average �ve sample plots per day.
We calculated results for ten randomly distributed starting points for a sub-district,
because these algorithms need a starting point, which is not naturally and uniquely
de�ned in our study. These starting points were distributed in a rectangle, de�ned by
the ranges of a sub-district in east-west and south-north direction. The side-lengths of
the rectangle were 1.25 times the respective range.

For KM, EAP and HC the number of clusters has to be de�ned in advance of the
iterations. For the three techniques we calculated the number of clusters by n/5 and
rounding up to the next integer (function "ceil") if necessary.

Whereas it was possible to use the Euclidean Distances between the sample points
in all but one algorithm, it was necessary to convert the point data to pixel data for
the application of EAP (Walvoort et al., 2010). Thus, the shape-�les were converted
into grid cell data with a cell size of 50 m.

During the calculation of the benchmark solution only feasible tours should be con-
sidered. Therefore, it was necessary to assess the time consumption for the inventory
on the plot and for walking between the plots. As for the VRP-algorithms, we assumed
a working time of 1.5 h per plot, like in the Second Swiss National Forest Inventory
(Zinggeler & Herold, 1997; Zinggeler, 2001). For walking between the plots we presumed
a walking speed of 3.33 km/h, as given by Scott (1993) for medium terrain.

Post-processing of the tours

First of all we built a circle tour, in which the last point νn is connected to the �rst
point of the tour ν1. Afterwards we further optimised this tour with a 2-opt Algorithm
(Figure 5.2) (R library "TSP", Hahsler & Hornik, 2007, 2011).
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Figure 5.2: Post-Optimisation of the generated tours with help of a 2-opt algorithm.
The start- and endpoint of the initial solution (a) are connected (b). Finally,
two edges of the tour are systematically exchanged (c) until the tour could
not further be improved.

Evaluation of the data

With this case study we tried to �gure out the performance of the seven di�erent
clustering methods and therefore calculated the total within-cluster distance and the
number of sample plots per cluster. For the comparison of the methods we used the
best as well as the worst result of VRP-algorithms in each forest district, in terms of
total distances, achieved using the di�erent starting points. Multiple comparisons were
done with pairwise, paired Wilcoxon comparisons with adjustment of p-values after
Bonferroni and a signi�cance level of 5 %.

5.3.3 Results

Already a rapid visible inspection of Figure 5.3 shows that the di�erent algorithms
lead to di�erent results in terms of di�erent tour-lengths and -sizes. Obviously, the
three VRP-algorithms generate clusters of approximately the same size, whereas the
resulting cluster-sizes of the three other algorithms and the PUs are highly variable.
It can be seen from Figure 5.4a that the VRP-algorithms and the EAP lead to nearly
the same mean tour length of approx. 1.5 km in the 70 forest sub-districts. The three
other methods lead to shorter mean tour lengths. Signi�cant di�erences could not
be detected only between CWMin and SAMin and between CWMax and SAMax. The
di�erences between the shortest and the longest total tour length per sub-district of the
VRP-algorithms, caused by di�erent starting points, are mostly small (Figure 5.5). The
longest sub-district tour is mostly less than 10 km longer than the shortest sub-district
tour. These absolute values correspond to relative di�erences of about 10 %, related to
the minimal total tour length per sub-district. The mean range of RTR is signi�cantly
di�erent from that of CW and SA. One aim of clustering was to achieve clusters of
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Figure 5.3: Clusters of sub-district 11 in the Forest District Winnefeld. The results were
generated with three VRP-heuristics (CW: Savings, RTR: Record-to-Record
Travel, SA: Simulated Annealing), two classical clustering algorithms (KM:
K-means, HC: Hierarchical Clustering), an equal area partitioning algorithm
(EAP), and by using the planning unit compartment (PU).
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Figure 5.4: Key �gures of the tours of the 70 forest sub-districts. The tours were calcu-
lated with seven di�erent algorithms. From the three VRP-heuristics CW
(Savings), RTR (Record-to-Record) and SA (Simulated Annealing) the best
(Min) as well as the worst (Max) solution of the 10 starting points was used.
Moreover, hierarchical clustering (HC), k-means (KM), equal area partition-
ing (EAP) and using compartments as clusters (PU) were applied. a) mean
tour length (km), b) Coe�cient of Variation (%) of the number of plots per
tour, c) proportion (%) of tours with 5 sample plots, d) relative deviation
(%) of the overall length from the overall length of the benchmark solution.
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Figure 5.5: Range between the total tour distances per sub-district of the worst and
the best solution. The absolute values (km) as well as the relative values
(%), relating to the best solution, are shown for the three VRP-heuristics
CW (Savings), RTR (Record-to-Record) and SA (Simulated Annealing). 10
starting points were used for every algorithm and forest district.

approximately the same size. Therefore, we looked at the Coe�cient of Variation (CV)
of the number of sample points per tour in every forest district and the percentage of
clusters that contain the desired number of sample points (5 in our case study) (Figure
5.4b, c). It is evident that the VRP-algorithms are well suited for generating clusters of
the same size. The CV is low and the percentage of plots with the desired size is high,
even for the worst solutions in terms of overall tour length per sub-district. In contrast
HC, KM, EAP and PU naturally generate clusters of variable size. This can be seen
from the low percentage of tours with 5 sampling points and the high CV.

Compared to the (optimal) benchmark solution (Figure 5.4d), the VRP-algorithms
and EAP generate longer overall distances per sub-district, whereas the three other
algorithms lead to even shorter sub-district distances. The latter is possible, because the
benchmark solution obeys the maximal cluster size constraint. Signi�cant di�erences
could not be detected between CWMax and SAMax and between CWMin and SAMin.

5.3.4 Discussion and Conclusions

Obviously, only the VRP-algorithms are suitable tools for generating clusters of approx-
imately the same size with short overall distances, even though the resulting tour-lengths
are longer than those generated with the other clustering-techniques. Homogenous
clusters are generated independently from the starting point with the VRP-heuristics.

The hierarchical clustering is not appropriate for this purpose, because clusters of
di�erent sizes result. This is due to the fact that the algorithm tries to minimise the
overall sum of the within-cluster sum of squares. Within this process the cluster-size is
irrelevant. The same holds for the k-means algorithm, where the number of clusters is
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5. Clustering existing sample points in resource inventories

pre-de�ned instead of the cluster-size. By minimising the sum of the within-cluster sum
of squares the cluster-size is again disregarded. This leads to smaller overall distances
but, seen as a drawback in our context, to highly variable cluster-sizes.

The equal area partitioning aims at dividing the study area into partitions of approx-
imately the same size. Thus, all the resulting clusters represent nearly the same area,
but not the same number of sample points, because the sampling density varies within
a sub-district. Also the use of the compartments as clusters leads to highly variable
cluster-sizes. Using the planning units as clusters yields also only small mean deviations
from the (optimal) benchmark solution, but shows the absolutely highest CV of cluster
sizes.

With mean deviations of less than 15 % from the benchmark solution, the best VRP-
solutions are close to the optimal solution. Unfortunately, some few starting points lead
to inacceptable solutions with deviations of more than 50 %. Regarding the benchmark
solutions, it has to be kept in mind that a time- and thus distance limit for every tour
exist. Such a limit does not exist within the VRP-heuristics; rather tours of �ve sample
plots are built. In contrast to the benchmark solution, tours with less than �ve plots are
exceptional. Hence, the resulting within-cluster and overall distances are longer. This
form of clustering becomes especially disadvantageous in cases where spatial clusters
of sample points exist. In such cases sample points of di�erent spatial clusters will be
combined to a tour resulting in larger tour lengths.

The comparison of the three di�erent VRP-heuristics shows that the RTR-algorithm
seems to be the preferable heuristic. It yields the smallest deviation from the benchmark
solution and the smallest range between the worst and best solution, generated with
di�erent starting points. This dependence of the results from the starting point is
one of the main problems of using the VRP-heuristics for clustering, even though the
di�erences between the two extreme values are mostly small. For practical applications
the position of the administration or the central o�ce could be used as a starting point or
several runs could be executed and the best result used. Due to the short computation-
times, the latter is easily possible. In cases where more than one starting point exists, it
should be possible to solve the routing-problem with one of the algorithms for the Multi
Depot Vehicle Routing Problem (MDVRP). Another possibility would be to split the
area of interest into several sub-units and apply the VRP-algorithms therein afterwards.

An advantage of the VRP-heuristics is that they can be applied even for a high
number of sample points, where an optimal solution cannot be calculated at all or at
least in an acceptable time. With help of the VRPH-library (Gröer et al., 2010) they
are easy to implement and can be calculated fast.

Even though we consider three of the presented heuristics as suitable tools, their use
is not free of problems and the results have to be questioned. Thus it is questionable, if
we have chosen a realistic calculation unit when deciding for forest sub-districts. A sub-
district is a human-made planning unit, the shape of which is not completely dependent
on spatial reasons. Thus, closely neighbouring sample points might belong to di�erent
sub-districts. Nevertheless, the sub-districts are a meaningful calculation unit. The
number of sample points within them is manageable for the presented heuristics and it
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makes sense to plan the execution of the inventory in accordance with existing planning
units.

Clustering is usually aimed at achieving a high variation within the clusters and a
low variation between them. Due to the fact that neighbouring sample plots often fall
into the same or similar stand type, the ful�lment of this request cannot be ensured
with the algorithms. To increase variability within clusters, the clusters would have
to be enlarged to an extent that exceeds the daily workload of an inventory team, or
spatial contiguity would have to be disregarded, in contradiction to the requirement
of short sample point distances within clusters. Unfortunately, we could not use exact
distances between the terrestrial sample plots in our calculations. This is due to the
fact, that only values of easting and northing and not of the elevation were available.
We used Euclidean Distances as proxies and are aware of the facts that this leads to
biased results and that the real distances are longer. In our application the distances
between sample points are short in most cases - with a mean tour length of 1.5 km and
a tour of 5 sample points approximately 300 m (Figure 5.4) - and so the di�erences
between the real and the Euclidean Distances will likely be negligible. Moreover, the
use of these algorithms might help to estimate the resources needed for executing the
inventory, which is interesting for the responsible authorities. The generated clusters
can be used as suggestions for the execution of the inventory or as clusters in further
clustered sub-sampling. Due to the large number of sample points in the Forest sub-
districts, the use of heuristics seems to be a good choice for calculating solutions in an
acceptable time.

Acknowledgements

We thank the German Science Foundation (DFG) for �nancial support of this study
(Sachbeihilfe SA 415/5-1) and Dr. T. Böckmann of the Lower Saxony Forest Planning
O�ce for his kind provision of the inventory data.

70



Chapter 6

General Discussion

The present thesis aims at further increasing the e�ciency of double sampling for strat-
i�cation (2st) in repeated forest inventories. Three approaches for achieving this aim
are presented in chapters 2-4. All these approaches are applied in individual case stud-
ies and the results are thoroughly discussed in the respective chapters. A further case
study deals with the problem of clustering existing sample points and compares di�er-
ent approaches (chapter 5). In the following, the results of these four case studies are
only brie�y and generally discussed.

The �rst case study (chapter 2) presents a Composite Estimator (Schaible, 1978) that
combines data from a current inventory occasion with growth model based updates of
data from a previous inventory occasion. In this study, the e�ect of reducing the number
of terrestrial sample plots at the second occasion was analysed. It was assumed that
incorporating the simulation results from all �rst occasion plots can decrease the loss
in precision, and thereby raise the e�ciency at the second occasion. This assumption
could be veri�ed in so far as the precision of the Composite Estimator was always
higher than that of pure 2st. However, considering the e�orts for updating the previous
inventory data, an increase of e�ciency could not clearly be shown in the case study.
As discussed in chapter 2.3.3, this can be explained by the fact that the bias of the
predictions was considerably high. It has to be considered that the evaluation in the
case study was done for target populations and not for the complete stand. Errors
in the simulations of these small populations cannot be outbalanced, as it is the case
for bigger populations. Applications of the Composite Estimator, as presented in this
case study, cannot be recommended for the Forest District Inventory of Lower Saxony,
due to the ine�ciency of this method. However, advances in forest growth-modelling
may lead to smaller biases of the simulations and thereby a higher e�ciency of the
Composite Estimator. The alternative estimators presented by Green & Strawderman
(1990, 1991), were shown to be superior to the composite estimator in the multivariate
case if one of the two composed estimators is biased. Our application can easily be
seen as such a multivariate case with one biased and one unbiased estimator, because
the estimated volumes per ha of the di�erent target populations can be arranged as
components of a vector. However, those alternative estimators assume independence
between the two composed estimators and, moreover, equal variances of the estimators
the vector comprises. Both assumptions are violated in our application.

Even though the bias of the growth simulations used in the preceding approach is
relatively high, the correlations between the results of these simulations and the data
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from the current inventory occasion are considerably large. These large correlations
can successfully be exploited in the three-phase design presented in chapter 3 (2st,2lr),
that combines 2st with double sampling for regression (2lr). As the case study shows,
both data from a previous inventory occasion and growth model-based updates of these
data can be used together with current inventory data in this approach. Mostly, the
correlations between the simulations and the current inventory data are higher than
those between �rst and second occasion inventory data. This positive e�ect of using the
growth model emphasises the reliability of its simulations, as already shown in di�erent
studies (e.g. Vospernik et al., 2010). Only for the big Oaks the use of simulations does
not improve the estimates; reasons are thoroughly discussed in chapter 3.3.5. In general,
the presented approach is a suitable tool for the reduction of inventory costs. If a
certain decrease of precision is accepted, the proposed design can raise the e�ciency and
thereby lead to remarkable savings. Obviously, a repeated application of this sampling
procedure would lead to a gradual reduction of sample size. Therefore, and because it
coincides with a loss in precision, this three-phase design can especially be recommended
for low-cost inventories between two full 2st inventories. The expected enhancements of
forest growth models will further increase the savings gained by including their results
into repeated forest inventories.

Using data of previous inventory occasions, as done in the �rst two case studies
is a common means for raising the e�ciency of sampling schemes. In Forest Science
applications are e.g. known from Sampling with partial replacement-schemes (SPR)
(Scott & Köhl, 1994) or in the context of Rotating Panels (van Deusen, 1996). Di�ering
from these two approaches, the two procedures presented in this thesis aim at a temporal
reduction of the number of terrestrial sample plots for reducing the inventory costs. In
contrast, the omitted sample points are replaced by others in SPR-schemes, leading
to the same sample size and thereby the same costs for terrestrial sampling. Also in
Rotating Panels no temporary reduction of sample size takes place. Rather, speci�c
representative sub-samples are measured at every inventory occasion and the data of all
other sub-samples measured before are updated, leading to a constant sampling e�ort
per time interval.

In another case study the extension of 2st by clustered sub-sampling to a three-phase
design was applied (chapter 4). New estimators for the mean and the variance were
presented for the Ratio-to-Size approach. Clustering generally leads to a loss in precision
(Cochran, 1977), and therefore the new design can only be advantageous if its inventory
costs are remarkably lower than those of pure 2st. In the test application, no remarkable
di�erences of the inventory costs could be detected between the two sampling schemes.
Possible explanations can be seen in the relatively small spatial extent of the forest
districts and in the high density and easy accessibility of terrestrial sampling points in
Lower Saxony. Thus, the presented system cannot be recommended for applications in
small and intensively sampled regions with well-developed infrastructure. Nevertheless,
reasonable applications may be possible in remote and large areas. Usually, clusters
are supposed to cover a high variability. Obviously, this aim is contradictory to the
aim of spatially connected, compact clusters. Even though the new approach could not
be proved to be advantageous in the current case study, its development provides the
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6. General Discussion

necessary estimators for applications under more appropriate conditions.

Following the case study in chapter 5, it is possible to convert existing sampling
schemes into clustered designs through a subsequent clustering of sample points. If such
a conversion is desired, the use of each of the three VRP-heuristics `Record-to-Record
Travel', `Savings' or `Simulated Annealing' seems to be an appropriate technique for
rapidly building clusters of homogenous sizes. Results of good quality can be calculated
easily and fast using these techniques, as the comparison with benchmark-solutions
shows. A problem of using these heuristics in the context of clustering may be seen
in the dependence of the results on the selected starting point, which is required for
the calculations. Yet, the results of the case study indicate that the in�uence of the
starting point position is relatively small. However, this problem cannot be neglected
and should be handled with care in applications. Using existing planning units as
clusters does not require further calculations, but the resulting clusters are of variable
size and can therefore not be recommended for e�cient forest inventories. The same
holds for the results of the three other clustering-algorithms: `k-means', `equal area
partitioning' and `hierarchical clustering'. As pointed out above, such conversion into
clustered sampling schemes can only be recommended for large and remote areas. For
other cases the expected decrease in precision will be considerably high, associated
with only relatively small savings through the reduction of travel costs. Moreover,
these clusters of sample points can be used in fully sampled inventories as proposals for
daily workloads of inventory teams.

Trying to evaluate the results of the case studies, it has to be kept in mind that they
mostly focus on e�ciency and the overall sampling error. Other errors like assessment,
prediction or non-statistical errors (Köhl et al., 2000) are not considered, even though
they are known to have an in�uence on the precision of estimation. However, it is not
possible to in�uence them through methodological developments like the ones presented
in this thesis.

Another aspect that has to be considered in the discussion of the results is the
fact, that not only the e�ciency is important in the evaluation of forest inventory
techniques. As Kleinn & Ståhl (2006) and Kleinn et al. (2010) point out there are
a lot of other aspects that are worth to be taken into consideration when setting up
new forest inventories. Nevertheless, further improvements of sampling techniques are
valuable.
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Chapter 7

Summary

Double sampling for strati�cation is an e�cient sampling scheme that could prove its
practicability in di�erent forest inventories. Nevertheless, further increases of e�ciency
are desired. Several approaches for achieving this aim are presented and discussed
separately in this thesis. The approaches are tested in case studies with data from the
Forest District Inventory of Lower Saxony.

The �rst approach (chapter 2) deals with double sampling for strati�cation in re-
peated inventories. A Composite Estimator is constructed with data from the current
inventory occasion and simulation results of the preceding occasion. Therein the sample
size of the current inventory can be reduced, whereas the full number of sample plots
of the previous occasion is used for simulations. Even though such an estimator can
be constructed, the case study indicates that no, or at least no su�cient, increase of
e�ciency can be achieved. This can be explained by the big di�erences between the
results of the reduced, current terrestrial inventory and the predicted volumes of the
simulations. An increase of the e�ciency of this approach can only become possible
through further developments of forest growth models.

With a three-phase sampling design, that combines double sampling for strati�cation
and double sampling for regression, a higher e�ciency can, however, be achieved for ap-
plications in repeated inventories (chapter 3). Estimators for the mean and the variance
are presented that are based on the so-called in�nite population approach in the �rst
phase. The correlations between current inventory data and growth-simulations on the
basis of the previous inventory are used in this approach. Instead of the simulations,
the data of the previous inventory can simply be used directly for calculating the cor-
relations. However, using the simulations as regressors mostly leads to better results.
The e�ciency of the presented three-phase design is higher than the one of the classical
two-phase design if the sample size of the second inventory occasion is reduced and a
decrease in precision is accepted. Thus, the use of the data from a previous inventory
occasion in terms of a strata-wise regression estimator could be shown to be successful
and superior to the Composite Estimator.

Another presented method is the expansion of the double sampling for strati�cation
design by clustered sub-sampling to a three-phase design (chapter 4). For the Ratio-
to-Size approach as well as for the unbiased approach estimators for the mean and
the variance are given. Compared to pure double sampling for strati�cation, using
this three-phase design cannot increase the e�ciency in the corresponding case study.
Reasons for this might be seen in the small spatial extent of the forest districts and the
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high sampling density in there. Meaningful applications of this procedure are possibly
thinkable in large areas with bad infrastructure.

In a further case study, it is aimed to cluster existing sample points into clusters
of homogenous size (chapter 5). This clustering shall help to optimise the travel time
for the inventory of sampling points. Therefore, seven di�erent methods are tested
and their results are compared. Moreover, the quality of the solutions is evaluated
through a comparison with optimised benchmark-solutions. It becomes obvious that
three algorithms of the Vehicle Routing Problem are well suited for generating such
clusters of homogenous size. Three clustering-algorithms as well as using planning
units as clusters do not produce clusters of very homogenous size, and can thus not be
recommended.
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Chapter 8

Zusammenfassung

Die zweiphasige Stichprobe zur Strati�zierung ist ein e�zientes Inventurverfahren, das
seine Praxistauglichkeit in verschiedenen Waldinventuren unter Beweis stellen konnte.
Dennoch sind weitere E�zienzsteigerungen wünschenswert. In der vorliegenden Arbeit
werden verschiedene Ansätze die E�ektivität dieses Verfahrens zu steigern separat
vorgestellt, in Fallstudien mit Daten der Niedersächsischen Betriebsinventur getestet
und diskutiert.

Der erste Ansatz (Kapitel 2) beschäftigt sich mit der Anwendung der zweiphasigen
Stichprobe zur Strati�zierung in Wiederholungsinventuren. In einem Zusammengeset-
zten Schätzer werden Daten eines aktuellen mit Simulationsergebnissen des vorherge-
henden Inventurdurchgangs kombiniert. Dabei kann der Stichprobenumfang der aktuel-
len Inventur verringert werden, während die Daten aller Inventurpunkte des vorherigen
Durchgangs für Simulationen genutzt werden. Zwar kann ein solcher Schätzer konstru-
iert werden, jedoch lässt die Fallstudie darauf schlieÿen, dass keine, oder zumindest
keine ausreichende, E�zienzsteigerung erzielt werden kann. Erklärt werden kann dies
durch die groÿen Unterschiede zwischen den aktuellen Inventurergebnissen aus den re-
duzierten Inventuren und den prognostizierten Volumina aus den Simulationen. Eine
Erhöhung der E�zienz dieses Verfahrens könnte nur durch Weiterentwicklungen der
Waldwachstumsmodelle möglich werden.

In Wiederholungsinventuren kann jedoch eine höhere E�zienzsteigerung mit einem
dreiphasigen Verfahren erreicht werden, das die zweiphasige Stichprobe mit der zwei-
phasigen Regressionsstichprobe kombiniert (Kapitel 3). Mittelwert- und Varianzschätzer,
die auf dem sogenannten in�nite population approach in der ersten Phase beruhen,
werden präsentiert. Genutzt werden dabei die Korrelationen zwischen den aktuellen
Inventurergebnissen und den Wachstumssimulationen auf der Basis des vorherigen In-
venturdurchgangs. Statt der Simulationsergebnisse können auch einfach die Ergebnisse
des vorherigen Inventurdurchgangs zur Berechnung der Korrelationen genutzt werden.
Allerdings führt die Nutzung der Simulationsergebnisse als Regressor in den meisten
Fällen zu besseren Ergebnissen. Bei verringertem Stichprobenumfang der Folgeinven-
tur und damit einhergehendem Präzisionsverlust, ist die E�zienz des dreiphasigen Ver-
fahrens höher als die des klassischen zweiphasigen Verfahrens. Die Nutzung der Vorin-
ventur in Form eines stratenweisen Regressionsschätzers hat sich damit als erfolgreich
und gegenüber dem zusammengesetzten Schätzer als deutlich überlegen gezeigt.

Als weiterer Ansatz wird die Erweiterung der zweisphasigen Stichprobe zur Strati-
�zierung um eine geclusterte Unterstichprobe zu einem dreiphasigen Design vorgestellt
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(Kapitel 4). Sowohl für den Ratio-to-Size- als auch für den unverzerrten Ansatz wer-
den entsprechende Mittelwert- und Varianzschätzer präsentiert. Verglichen mit dem
zweiphasigen Verfahren, führt dieses dreiphasige Design in der Fallstudie zu keiner
E�zienzsteigerung. Gründe hierfür können in der vergleichsweise kleinen Gröÿe der
Forstämter und der hohen Stichprobendichte der Niedersächsischen Betriebsinventur
gesehen werden. Sinnvolle Anwendungen dieses Verfahrens sind aber möglicherweise
unter anderen Erschlieÿungsbedingungen in Groÿgebieten denkbar.

In einer weiteren Fallstudie wird versucht existierende Probepunkte in Clustern von
homogener Gröÿe zusammenzufassen (Kapitel 5). Eine solche Zusammenfassung soll
der Optimierung der Wegzeiten bei der Aufnahme von Inventurpunkten dienen. Dazu
werden sieben verschiedene Methoden getestet und deren Ergebnisse miteinander ver-
glichen. Durch einen Vergleich mit optimierten Richtwert-Lösungen wird zudem die
Qualität dieser Lösungen evaluiert. Es zeigt sich, dass drei Algorithmen des Vehicle
Routing Problems gut dazu geeignet sind, Cluster von homogener Gröÿe zu erstel-
len. Nicht empfohlen werden kann dagegen die Verwendung von drei anderen Cluster-
Algorithmen, sowie die Nutzung von Bewirtschaftungseinheiten als Cluster, da diese
Methoden zu Clustern von sehr heterogener Gröÿe führen.
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