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Chapter 1

Introduction

In practical applications over a wide �eld of study such as surface reconstruc-
tion, �uid- structure interaction, and kernel learning one often deals with the
problem of reconstructing an unknown function from irregular �scattered�
data sites, which in some applications lie in a very high�dimensional space.
One possible way to construct a function from scattered data is interpola-
tion. However, the interpolation can be done by polynomials in the univari-
ate case, but working in space dimension d ≥ 2, by the well known theorem
of Mairhuber [15], it is impossible to �x a multivariate function space for in-
terpolation on all sets of scattered data. But there is a remarkable situation,
where all space dimensions can be handled. De�ne the multivariate Radial
basis function by φ(‖x − y‖2) on Rd × Rd, where x, y ∈ Rd with a smooth
univariate function φ : [0,∞] → R. This generates a data�dependent space
of functions. In particular, the span of translates K(·, xj) := φ(‖x−xj‖2) for
scattered centers xj ∈ Ω forms a very useful trial space. Furthermore, the
theory of the radial basis functions loads the theory of the reproducing kernel
Hilbert spaces K of functions on domains Ω, where the kernel K reproduces
functions f ∈ K with the inner products (·, ·)K as

(f,K(x, ·))K = f(x), for all x ∈ Ω, f ∈ K. (1.1)

A reproducing kernel Hilbert space can be associated to any positive de�nite
kernel K : Ω × Ω → R. A symmetric kernel K is a positive (semi�)de�nite
on Ω, if for all sets X = {x1, . . . , xN} of Ω the kernel matrix

A := (K(xj , xk))1≤j,k≤N ,

is symmetric and positive (semi�)de�nite. This correspondence is the basis
of many useful algorithms.
It is well�known that the standard basis of translates leads to ill�conditioned
kernel matrices, but results of [8] show that interpolants to data on X, when
viewed as functions, are rather stable. This leads us to consider di�erent
data�dependent bases.

Chapter 3 will be concerned with suitable bases for subspaces of K, if K is
positive de�nite. We concentrate to introduce a new technique for �nding
bases in kernel spaces for multivariate interpolation on a set of scattered
data. These will come in di�erent forms, and we shall explore their variety
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2 CHAPTER 1. INTRODUCTION

and prove results about their connection.
It is evident that if a square matrix A happens to be symmetric and positive
de�nite, then it has some special e�cient decomposition. While symmet-
ric positive de�nite matrices seem to be rather special, they occur quite
frequently in some applications, so their special factorization provides a va-
riety of di�erent bases based on factorizations of the kernel matrix. These
bases di�er in their stability, orthogonality, adaptivity, duality, and com-
putational e�ciency properties. Special emphasis is given to the �Newton�
basis appeared in [18] arising from a pivoted Cholesky factorization. It pro-
vides stable and recursively computable sets of basis functions while being
orthonormal in the �native� Hilbert space of the kernel. There are e�cient
adaptive algorithms for calculating the Newton basis along the lines of Or-
thogonal Matching Pursuit. We shall describe this in Chapter 4.
We should also consider �data�independent� bases. The most natural is the
eigenfunction basis coming from the Mercer theorem. We shall describe it in
Section 2.2 and compare it later to data�dependent bases. Of course, data�
independent bases are much more �natural� than data�dependent bases, and
they provide intrinsic information about the kernel. But when starting with
a data�independent�basis, problems may arise when working on a set X of
centers later, because the Mairhuber�Curtis theorem [15] shows that matrices
of values of a data�independent basis on points of X have a data�dependent
rank, if one is in a truly multivariate and nontrivial situation. This is why
we shall use the data�independent eigenfunction basis only for theoretical
comparisons.

Chapter 5 will be concerned with suitable bases for subspaces of K. We
will de�ne di�erent bases, and explore their connection. But Chapter
3 will only deal with �unconditionally� positive de�nite kernels. The
interpolation problem does not work for all choices of radial basis func-
tions. In special cases of basis functions, for instance the thin-plate spline
φ(x) = ‖x‖22log(‖x‖2), x ∈ Rd, let N = d + 1 and let the centers be the
vertices of a regular simplex whose edges are all of unit length. Then all
entries φ(xj − xk) of the interpolation matrix are zero, so then interpolation
is not guaranteed for multivariate scattered data interpolation, unless the
data sites are in special locations. In this case, the kernel is not uncondi-
tionally positive de�nite. It belongs to the important class of conditionally
positive de�nite kernels. We shall consider data�dependent bases for these
kernels. The notation of conditionally positive kernels requires the space
Pdm of d�variate polynomials of order (= degree + 1) m, and in some sense
words modulo these polynomials. We leave details to Chapter 5, but we
should call m the order of conditional positive de�niteness of a kernel K,
and we need the notation Q := dim Pdm =

(
m−1+d

d

)
, throughout.

To deal with bases for conditionally positive de�nite kernels of order m that
provide interpolation on sets X = {x1, . . . , xN} ∈ Rd, we need �unisolvency�
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of X, meaning that zero is only polynomial in Pdm that vanishes on X. Then
there are various way to construct data�dependent bases. One can preselect
a minimal unisolvent subset of Q points �rst and then use a �reduced� kernel.
Also, one can try to reduce the conditional positive de�nite case to the
unconditionally positive de�nite case by a suitable change of the kernel, but
even this change can be done in di�erent ways. These di�erent approaches
sometimes lead to the same result, all of this will be treated in Chapter 5.
The bases we construct will in some cases be orthogonal or orthonormal.
They can be based on Cholesky or SVD factorization of certain matrices,
or just by requiring that the basis should have orthonormal vectors of value
on X. In the end of Chapter, we provide numerical examples for illustration.

Brief History

Initially, the main purpose of basic radial basis functions method comes
from application in geodesy, geophysics, mapping, or meteorology, and re-
cently in many contexts, including approximation, surface reconstruction,
and numerical analysis of �uid-structure interactions. Radial basis functions
have become a popular mathematical discipline which started with the prac-
tical work of Hardy [13] in 1971 and theoretical work of Duchon [9], lately
it developed some domain of mathematics and physics by Dyn [10], Pow-
ell [19], Schaback and Wendland [22, 20, 25], Buhmann [4],[5]. Condition-
ally positive de�nite kernels arise in many contexts including approximation
function algorithms, surface reconstruction [27], [23], numerical analysis of
�uid-structure interactions [28], computer experiments [1] and geostatistics
[6], [26]. They generalize the well known positive de�nite kernel case, that
later applications were found in many other areas such as numerical solu-
tions PDEs, computer graphics, statistical learning theory, signal and image
processing, �nance and optimization. The current theoretical framework
in conditionally positive de�nite kernel context is the native spaces theory
which recently is developed by H. Wendland [27].
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Chapter 2

Native Hilbert Spaces for

Kernels

This chapter serves as an introduction for readers working in applications. It
describes some properties of kernel functions in Hilbert space and it provides
some guidelines for error estimation and stability of interpolation in Hilbert
spaces of functions. We do this mainly by standard methods of linear algebra.

2.1 Unconditionally Positive De�nite Kernels

In practice, users have a �nite set X := {x1, . . . , xN} ⊆ Ω ⊆ Rd of centers
or data locations and work in a subspace

KX := span {K(·, xj) : xj ∈ X}, (2.1)

spanned by the basis of (generalized) translates K(·, xj), 1 ≤ j ≤ N .

De�nition 2.1.1. A kernel K : Ω × Ω → R is a positive (semi�)de�nite

symmetric kernel on Ω, if for all �nite sets X := {x1, . . . , xN} ⊆ Ω, the
kernel matrix

A := (K(xj , xk))1≤j,k≤N , (2.2)

is symmetric and positive (semi�)de�nite.

We now assume K to be a symmetric real�valued positive semide�nite
kernel on Ω. Note that general elements from KX with a ∈ RN take the
form

fa,X(x) :=
N∑
j=1

ajK(xj , x),

i.e. all �nite linear combinations of generalized translates of the kernel. We
de�ne the point evaluation functionals δx : f 7→ f(x), for f at x ∈ Ω by
δx(f) = f(x). The linear space of all linear combinations of point evaluation
functionals is de�ned as

L := span{δx : x ∈ Ω},

while X = {x1, . . . , xN} ⊆ Ω, then

LX := span{δx : x ∈ X},

5



6 CHAPTER 2. NATIVE HILBERT SPACES FOR KERNELS

and

λa,X :=
N∑
j=1

ajδxj .

For another functional

µb,Y :=

M∑
k=1

bkδyk , b ∈ RM

we have
µb,Y (fa,X) = λa,X(fb,Y ),

and can de�ne bilinear forms

(fa,X , fb,Y ) := λa,X(fb,Y ) = µb,Y (fa,X)
=: (µa,X , µb,Y ).

(2.3)

By standard arguments, there are an inner products on

KΩ := span{K(·, x) : x ∈ Ω},

and LΩ, turning them into pre�Hilbert spaces. Then one can de�ne

K := close(·,·)KΩ
KΩ

L := close(·,·)LΩ
LΩ,

using the respective inner products that we now denote by (·, ·)K and (·, ·)L,
with L = K? being the dual of K with the Riesz map that is the closure of
the map

R : λa,X 7→ fa,X , LΩ → KΩ.

The formula (2.3) then implies the reproduction formula

f(x) = (f,K(x, ·))K,

for all f ∈ K, x ∈ Ω, and in particular

(K(x, ·),K(y, ·))K = K(x, y) = (δx, δy)L

for all x, y ∈ Ω. We call K the �native� Hilbert space for K. It is unique up
to isometry, and we sometimes use the notation NK for K, if we start from
a kernel K. It is well�known (see the books [3, 27, 11] for a full account of
this research area)

Theorem 2.1.1. If the point evaluation functionals in a Hilbert space K of

functions on some domain Ω are continuous, then has a reproducing kernel

function K : Ω× Ω 7→ R with

(f,K(x, ·))K = f(x) for all x ∈ Ω, f ∈ K, (2.4)

and K is a positive semide�nite kernel. Furthermore, K can be identi�ed

with the native Hilbert space for K.
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A Hilbert space K is called reproducing kernel Hilbert space if (2.4) holds
with a positive semide�nite kernel. Thus the point evaluation functionals
δx have the functions K(x, .) as Riesz representers in the dual K∗ of K, and
satisfy

|δx(f)| = |f(x)| ≤ ‖δx‖K∗‖f‖K, for all x ∈ Ω, f ∈ K

and the kernel can be expressed as

K(x, y) = (K(x, ·),K(y, ·))K = (δx, δy)K∗ , for all x, y ∈ Ω. (2.5)

The values of such kernels can always be bounded by

|K(x, y)|2 ≤ K(x, x)K(y, y). for all x, y ∈ Ω.

Corollary 2.1.1. Let K be a Hilbert space of real- or complex- valued func-

tions on Ω, with continuous point evaluation functionals, then K is a repro-

ducing kernel Hilbert space, and its kernel K : Ω×Ω is a positive semide�nite

function.

Corollary 2.1.2. If in addition, point evaluation functionals for di�erent

points are linearly independent, then the kernel is positive de�nite.

Scattered data interpolation needs a comprehensive mathematical treat-
ment to reconstruct the value of function f by a linear combination. Now
�x a �nite set X = {x1, . . . , xN} ⊆ Ω, to interpolate values f(x1), . . . , f(xN )
of a function f on X, let us introduce the vectors

fX := (f(x1), . . . , f(xN ))T , αX = (α1, . . . , αN )T

satisfying the linear system

AX,XαX = fX ,

where AX,X is the kernel matrix on X, then the function

sX,f (x) = αTXKX(x),

where K : Ω × Ω → R, a symmetric positive de�nite kernel, interpolates f
on X and we have a basis of translates as components of the vector

KX(x) := (K(x, x1), . . . ,K(x, xN ))T .

Theorem 2.1.2. Given a function f from the native space K, then the

solution s = fa?,X of the �nite�dimensional approximation problem

min
s∈KX

‖f − s‖K = min
a∈RN

‖f − fa,X‖K,
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is an interpolant of f on X, and the coe�cients satisfy the interpolation

conditions

fa?,X(xk) =
N∑
j=1

α?jK(xj , xk) = f(xk), 1 ≤ k ≤ N.

Also, the interpolating functions fa?,X minimize the native space norm for

all g ∈ NX , i.e.

min
g=f on X

‖g‖K = ‖fa?,X‖K.

Note that the linear system with f ∈ K, and the kernel matrix AX,X is
always solvable, though the matrix may be singular. The matrix is only pos-
itive semide�nite, but the right�hand side of interpolation conditions, being
a set of values on X of a function from the native space, always lies in the
span of the columns. The coe�cients a?j and the resulting function fa?,X
may not be unique unless the kernel is positive de�nite.
De�ne the function fX(·) := K(x, .) ∈ K and carry the interpolation con-
struction for x ∈ Ω. Then de�ne and solve the system

N∑
j=1

uj(x)K(xj , xk) = K(xk, x), 1 ≤ k ≤ N, x ∈ Ω.

Since fxk = K(xk, ·) is in the native space, this system is solvable, and
its solution yields the Lagrange basis with characteristic equation uj(xk) =
δj,k, 1 ≤ j, k ≤ N . De�ne the linear Quasi-interpolation operator QX(f)
on the native space K, which reproduces all functions on X from K, i.e

QX(f) :=
N∑
j=1

uj(.)f(xj),

De�nition 2.1.2. Given the Lagrange basis uj , 1 ≤ j ≤ N on X =
{x1, . . . , xN}, and a positive de�nite kernel K, de�ne the Power Kernel

KN (x, y) = K(x, y)−
∑N

j=1 uj(x)K(xj , y)−
∑N

k=1 uk(y)K(x, xk)

+
∑N

j,k=1 uj(x)uk(y)K(xj , xk),

where K0(x, y) = K(x, y).

Then the power kernel has the following important properties

KN (xj , x) = KN (x, xj) = 0, 1 ≤ j ≤ N
KN (·, xj) ∈ span{K(·, xi) : 1 ≤ i ≤ j},

Kj+1(x, y) = Kj(x, y)− Kj(x,xj+1)Kj(xj+1,y)
Kj(xj+1,xj+1) , 1 ≤ j ≤ N − 1
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De�nition 2.1.3. Let K be a positive semide�nite kernel on Ω, and let

X = {x1, . . . , xN} ⊆ Ω be a �xed set. De�ne the power function

P 2
N (x) := ‖KN (x, ·)‖2K

= K(x, x)− 2
∑N

j=1 uj(x)K(xj , x) +
∑N

j,k=1 uj(x)uk(x)K(xj , xk).

For all points x ∈ Ω the coe�cient functions u(x) de�ne the pointwise
error functional

f 7→ δx(f)− sf (x) = δx(f)−
N∑
j=1

uj(x)δxj (f),

that has the norm

PX(x) := ‖δx −
N∑
j=1

uj(x)δxj‖.

It allows pointwise error bounds

|f(x)− sf (x)| ≤ P (x)‖f‖K, for all x ∈ Ω, f ∈ K. (2.6)

By well�known optimality arguments [27], it satis�es

P 2
X(x) = min

a∈RN
‖δx −

N∑
j=1

ajδxj‖2, (2.7)

the optimal coe�cients a∗j (x) being given by the Lagrange basis functions
u?j (x). Using this optimality, the formula (2.5) and some standard algebraic
manipulations within our formalism implies that the power function is in-
dependent of the basis chosen in KX . The power function is practically
important because for �xed X, it can be calculated explicitly everywhere in
Ω, and the error bound for interpolant allows to estimate the error of all
possible interpolants based on the data locations in X. The power function
has some more properties see [23], following from (2.7)

P 2
∅ (x) = K(x, x), for all x ∈ Ω

PY (x) ≤ PX(x) ≤ P∅(x), for all x ∈ Ω, X ⊆ Y ⊆ Ω
PX(x) = inf

g∈KX

‖K(x, .)− g‖K, for all x ∈ Ω

By an additional duality argument based on (2.6), we obtain

PX(x) = sup
f ∈ K

‖f‖K ≤ 1
f(X) = 0

f(x), for all x ∈ Ω

In addition, due to (2.7) the power function PX(x) always vanishes at the
points of X.
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2.2 Data�independent Bases

This framework of data�independent bases appeared in [14]. Generally, the
natural basis for Hilbert spaces with reproducing kernels comes from

Theorem 2.2.1. (Mercer)

Continuous positive de�nite kernels K on bounded domains Ω have an eigen-

function expansion

K(x, y) =
∞∑
n=0

λn ϕn(x)ϕn(y) for all x, y ∈ Ω

which is absolutely and uniformly convergent. Furthermore,

λnϕn(x) =

∫
Ω
K(x, y)ϕn(y)dy for all x ∈ Ω, n ≥ 0,

{ϕn}n orthonormal in K,
{ϕn}n orthogonal in L2(Ω),
‖ϕn‖22 = λn → 0, n→∞.

This basis directly describes the action of the kernel as an integral op-
erator performing a generalized convolution. In many cases, the eigenvalues
decrease very rapidly towards zero, and this implies that there is a very good
low�rank approximation to the kernel. This observation has serious conse-
quences for kernel�based algorithms, because one has to encounter rank loss
in linear systems that are based on values of K. The systems will show
very bad condition, but on the other hand one knows that the rank�reduced
system will be very close to the exact system. Thus, in many cases, lin-
ear systems arising from kernels have bad condition, but they also have a
low�rank subsystem that performs like the full system, i.e. allows to ap-
proximate the right�hand side very much the same way as the full matrix
does. This has been observed in many applications from Machine Learning
to PDE solving, and it cannot be eliminated by other choices of bases, only
by proper regularization or by adaptive techniques that �nd and use good
subproblems. We shall come back to this issue later in Chapter 5

The numerical calculation of approximations to the eigenfunction basis
can be based on a su�ciently large point set X = {x1, . . . , xN} which allows
numerical integration ∫

Ω
f(y)dy ≈

N∑
j=1

wjf(xj)

for functions f ∈ K using certain positive weights w1, . . . , wN . Then the
discretization of the eigenfunction equation

λnϕn(xk) =

∫
Ω
K(xk, y)ϕn(y)dy
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leads to

λn
√
wkϕn(xk)︸ ︷︷ ︸
v

(n)
k

≈
N∑
j=1

√
wkK(xk, xj)

√
wj︸ ︷︷ ︸

bjk

√
wjϕn(xj)︸ ︷︷ ︸
v

(n)
j

and which is an approximation to the discrete eigenvalue problem

λnv
(n)
k =

N∑
j=1

bjkv
(n)
j , 1 ≤ j, n ≤ N (2.8)

involving a scaled version of the kernel matrix (2.2). The obtained values

v
(n)
j lead to functions v(n) ∈ KX by solving the interpolation problems

v(n)(xj) = v
(n)
j , 1 ≤ j, n ≤ N,

in the space KX , and we see that we have constructed a data�dependent
basis as an approximation to a data�independent basis. Thus this case falls
into the next section, we shall come back to it later.

2.3 Conditionally Positive De�nite Kernels

The previous discussion covers kernels like

• the Gaussian K(x, y) = exp(−‖x− y‖22),

• inverse multiquadrics K(x, y) = (1 + ‖x− y‖22)−n, n > 0,

• and Wendland's compactly supported kernels like
K(x, y) = (1− ‖x− y‖2)4

+(1 + 4‖x− y‖2).

But there are other kernels, e.g.

• multiquadrics K(x, y) = (−1)dβ/2e(1 + ‖x− y‖22)β/2, β ∈ (0,∞) \ 2Z,,

• powers K(x, y) = (−1)dβ/2e‖x− y‖β2 , β ∈ (0,∞) \ 2Z, or

• thin�plate splines K(x, y) = (−1)1+β/2‖x− y‖β2 log ‖x− y‖2, β ∈ 2Z

that are not covered so far, because the kernels are not positive de�nite, but
only conditionally positive de�nite of some positive order m = dβ/2e, dβ/2e,
and m = 1 + β/2 in the above three cases, respectively.

To de�ne the general notation of conditional positive semide�nitness, we �x
the �nite dimensional space Pdm of d�variate real�valued polynomials of order
(= degree + 1) at most m, which does not necessarily consist of monomials,
with

Q :=

(
m− 1 + d

d

)
= dim Pdm.

Then we have to restrict the admissible point sets X ⊂ Rd by
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De�nition 2.3.1. A subset X = {x1, . . . , xN} ⊂ Ω ⊂ Rd is called Pdm�
unisolvent, if the only function in Pdm that vanishes on X is zero.

We consider Pdm�unisolvent sets X = {x1, . . . , xN} ⊂ Ω ⊂ Rd of N ≥ Q
points, where unisolvency means that the N ×Q matrix

PX := (pi(xj))1≤j≤N,1≤i≤Q, (2.9)

has full rank Q, if p1, . . . , pQ is an arbitrary basis of Pdm.

De�nition 2.3.2. A kernel K : Ω × Ω → Rd on a set Ω ⊆ Rd is con-
ditionally positive (semi�) de�nite of order m ≥ 0, if for all point sets

X = {x1, . . . , xN} ⊂ Ω that are Pdm�unisolvent, the quadratic forms

QX(c) :=
N∑

j,k=1

cjckK(xj , xk), c ∈ RN , (2.10)

are positive (semi�) de�nite on the subspaces

MX,m :=

c ∈ RN :

N∑
j=1

cjp(xj) = 0 for all p ∈ Pdm

, (2.11)

of coe�cients satisfying discrete moment conditions of order m on X.

We shall also use the terms �Pdm�conditionally positive (semi�)de�nite�
with a �xed m, always in the sense of �conditionally positive (semi�)de�nite
of order m�. We know assume that the kernel is assumed to be Pdm�
conditionally positive de�nite. Then on all Pdm−unisolvent sets X, we can
de�ne the symmetric kernel matrix

AX,X := (K(xi, xj))1≤i,j≤N , (2.12)

which is not necessarily positive semide�nite. Then

(cX , cY ) := cTXAXY cY (2.13)

is an inner product on vectors cX ∈ R|X|,m with P TXcX = 0 for a unisolvent
set X and vectors cY ∈ R|Y |,m with PY cY = 0 for a unisolvent set Y , if we
de�ne

AX,Y := (K(x, y))x∈X, y∈Y ,

and also the space (2.1) must now be replaced by

KX := Pdm +

∑
xj∈X

cjK(xj , ·) : X is Pdm − unisolvent, c ∈MX,m

 ,

(2.14)
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and this coincides with (2.1) for m = 0. The sum is direct if the kernel K is
Pdm�conditionally positive semide�nite.
Note that these kernels are not reproducing kernels of a certain Hilbert space,
because otherwise they would be unconditionally positive semide�nite. They
do not have any direct connection to Hilbert theory, thus we have to start
with kernels and then construct a related Hilbert space. Note that (un-
conditionally)positive (semi-)de�nite kernels are Pdm�conditionally positive
(semi-)de�nite for all �nite-dimensional spaces Pdm.
Now we can modify the assumption of the interpolation by scattered data
interpolation by adding certain polynomials to the space KX . Let us again
get a �xed Pdm−unisolvent set X = {x1, . . . , xN} in Ω for a Pdm�conditionally
positive kernel K. Thus sf (y), the interpolant on y ∈ Ω is now assumed to
be of the form

sf (y) =

N∑
j=1

cjK(xj , y) +

Q∑
k=1

bkpk(y), ∀y ∈ Ω

while enforcing the interpolation condition sf (xj) = fj , j = 1, . . . , N . This
leads to a system of N linear equations in N + Q unknowns. One usually
just adds the moment conditions, thus leading to a well-posed interpolation
system for value data f1, . . . , fN in X as

sf (xk) =
∑N

j=1 cjK(xj , xk) +
∑Q

m=1 bmpm(xk) = f(xk), 1 ≤ k ≤ N,

∑N
j=1 cjpn(xj) + 0 = 0, 1 ≤ n ≤ Q.

(2.15)
By standard and simple arguments, the matrix

AX :=

(
AX,X PX
P TX 0

)
, (2.16)

of this system. If K is Pdm�conditionally positive de�nite, and X is a Pdm�
unisolvent set this system is uniquely solvable. However, it should be noted
that if K is Pdm� conditionally positive semi�de�nite, the system is solvable
with cX = 0, if the f(xj) come from functions in Pdm see proof in [23]. Using
coe�cient vectors cX = (c1 . . . , cN )T ∈ KN and bX = (b1 . . . , bQ)T ∈ KQ, the
system of linear equations for interpolation of data yX := (y1, . . . , yN )T ∈
RN on X can be carried out by solving(

AXX PX
P TX 0

)
·
(
cX
bX

)
=

(
yX
0

)
,

where cX automatically satis�es the moment conditions. The interpolant is

sX,cX ,bX (x) := KX(x)cX + pX(x)bX , (2.17)
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with the row�vector notation

KX(x) := (K(x, x1), . . . ,K(x, xN )) ∈ R|X|,
pX(x) := (p1(x), . . . , pQ(x)) ∈ RQ,

for all x ∈ Ω. We denote the span of these functions as KX , but note that
the coe�cient vectors cX have to satisfy moment conditions.

2.3.1 Conditional Lagrange Basis

We proceed toward the conditional Lagrange basis, on a unisolvent set X by
solving the system
∑N

j=1K(xk, xj)uj(x) +
∑Q

m=1 bm(x)pm(xk) = K(xk, x), 1 ≤ k ≤ N

∑Q
j=1 uj(x)pn(xj) + 0 = pn(x), 1 ≤ n ≤ Q.

The coe�cient matrix is the same as in (2.15). Then the system is also solv-
able, if the kernel is de�nite, and then the functions uj are a Lagrange basis
on XQ with uj(xk) = δj,k, 1 ≤ j, k ≤ N . Consequently, the interpolation for
a f from KX has a solution of the form

s(y) =
N∑
j=1

uj(y)f(xj).

The conditional Lagrange basis will occur later in di�erent circumstances.

2.3.2 Reduced Kernel

We describe a way to transit from a Pdm�conditionally positive (semi-)de�nite
Kernel to an unconditionally positive (semi-)de�nite kernel. De�ne the La-
grange basis π1, . . . , πQ on a minimal Pdm�unisolvent set Ξ ⊂ Ω with |Ξ| = Q.
Then we can reproduce all p ∈ Pdm, via

p(x) =

Q∑
m=1

p(ξm)πm(x), ∀x ∈ Ω, p ∈ Pdm.

This de�nes a projector

ΠΞ(f))(x) :=

Q∑
m=1

f(ξm)πm(x), ∀x ∈ Ω. (2.18)

De�nition 2.3.3. Assume a �xed Pdm�unisolvent set Ξ, de�ne the Reduced
Kernel

K̃(x, y) := K(x, y)− (ΠΞK(x, .))(y)− (ΠΞK(., y))(x)

+ ((ΠΞK(x, .))(y).(ΠΞK(., y))(x)), ∀x, y ∈ Ω.
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Theorem 2.3.1. The reduced kernel K̃ is a symmetric and unconditionally

positive semi-de�nite kernel on Ω, which vanishes on Ω \ Ξ, which vanishes

on Ξ.

The quadratic forms for K and K̃ with moment conditions are the same

N∑
j,k=1

ajakK̃(xj , xk) =

N∑
j,k=1

ajakK(xj , xk).

Also K̃ is a reproducing kernel of the Hilbert space K̃ of functions f vanishing
on Ξ. Each function f̃(x) ∈ K̃ has the reproduction formula i.e.

f̃(x) = (f̃ , K̃(x, .))K̃, for all x ∈ Ω, f̃ ∈ K̃.

Since all elements of Pdm are represented by their value on Ξ, and also we
know that the functions of K̃ vanish on Ξ, it is reasonable to de�ne the direct
sum

K := Pdm + K̃

to be the native space for a Pdm�conditionally positive semide�nite kernel K.
For all f, g ∈ K we can de�ne

(f, g)K := (f −ΠΞf, g −ΠΞg)K̃,

to get a semi�inner product on K. Then the interpolation on X can be
written as

s := (ΠΞ)(f) + s0,

s0(x) :=
∑N

j=1 αjK̃(xj , x),

where s0 is the interpolant on data (f −ΠΞf)(xi), 1 ≤ i ≤ N , with

s0(ξj) = 0, j = 1, . . . , Q.

We just use the reduced kernel on the point set Y := X\Ξ for data f−ΠΞ(f),
then add the interpolant in Pdm to ΠΞ(f). Using the reduced kernel this way
means to use a kernel matrix

Ã := (K̃(xj , xk))Q+1≤j,k≤N ,

and to solve
Ãc̃ = f̃ ,

with Y and f̃ = (f − ΠΞf)|Y ∈ RN−Q. Another way to proceed is to split
the matrix of (2.15) into AΞ,Ξ AΞ,Y IQ×Q

ATΞ,Y AY,Y B

I BT 0Q×Q

 ·
 cΞ

cY
b

 =

 fΞ

fY
0

 ,
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in block form (Q,N − Q,Q), since the value matrix of the Lagrange basis
consists of IQ×Q for the point Ξ and a matrix B := (pj(xk))Q+1≤k≤N,1≤j≤Q
for the points Y = X \ Ξ. Finally, this way of blocking can be helpful to
investigate bases which partly obey a Lagrange rule.

In line with the previously discussed structure of the reduced kernel, one
can add polynomials to the reduced kernel to get a particular uncondition-
ally positive de�nite kernel. If we �x a unisolvent set Ξ, and K is a Pdm�
conditionally positive semide�nite kernel on Ω, then

De�nition 2.3.4. Given the Lagrange basis π1, . . . , πQ of Pdm, for all x, y ∈
Ω, de�ne the Extended Kernel

K†(x, y) := K̃(x, y) +

Q∑
m=1

πm(x)πm(y).

Theorem 2.3.2. The kernel K† is a symmetric and unconditonally positive

semi-de�nite kernel on Ω, whose native space K† coincides with the native

space K as a vector space. K† is de�nite if K is de�nite.

The new inner product on K†, for all f, g ∈ K = Pdm+K̃ and the projector
de�ned in (2.18), is

(f, g)K† :=

Q∑
m=1

f(ξm)g(ξm) + (f −ΠΞ(f), g −ΠΞ(g))K̃.

If satis�es the reproduction equation

f(x) = (f,K†(x, ·))K† , for all f ∈ K, x ∈ Ω.

We extend the reduced kernel in order to get an extended kernel with respect
to an inner product on the whole space. The extended kernel turns Pdm into
a subspace of K that is orthogonal to K̃ in the new inner product. We refer
to [23] for more details.



Chapter 3

Bases for Kernel Based Spaces

This chapter is based on the paper [14]. It is observed in [8] that standard
bases of kernel translates are badly conditioned while the interpolation itself
is not unstable in function space. The �rst sections of chapter come up with
de�nitions of useful bases. All data�dependent bases turn out to be de�ned
via a factorization of the kernel matrix de�ned by these data, hence a discus-
sion of various matrix factorizations (e.g. Cholesky, QR, SVD) provides a
variety of di�erent bases with di�erent properties. Special emphasis is given
to duality, stability, orthogonality, and computational e�ciency.
Then we describe the �Newton� basis arising from a pivoted Cholesky fac-
torization, it turns out to be stable and recursively computable while being
orthonormal in the �native� Hilbert space of the kernel. Throughout this
Chapter kernels will be unconditionally positive de�nite.

3.1 General Data�dependent Bases

Let �x a set X = {x1, . . . , xN} ⊂ Ω, the space KX of (2.1) and the kernel
matrix A = (K(xj , xk))1≤j,k≤N . Any basis u1, . . . , uN of KX has a general
expansion

uk(x) =

N∑
j=1

K(x, xj)cjk, 1 ≤ k ≤ N (3.1)

in terms of the basis of translates. In vector�matrix notation, it can be
arranged into a row vector

U(x) := (u1(x), . . . , uN (x)) ∈ RN ,

and it can be expressed by the basis of translates

T (x) := (K(x, x1), . . . ,K(x, xN ))

by a coe�cient or construction matrix CU via

U(x) = T (X) · CU , (3.2)

where CU is the coe�cient matrix

CU = (ck,m)Nk,m=1,

17
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with the �Value Matrix� on X

VU =

 u1(x1) . . . uN (x1)
...

. . .
...

u1(xN ) . . . uN (xN )

 . (3.3)

The set B of all possible data�dependent bases is the bijective image of
the group GL(n,R) of all nonsingular real N × N matrices under the map
C 7→ T (x) ·C. This means that one has a composition ◦ of two bases U and
V via

(U ◦ V )(x) := T (x) · CU · CV = T (x) · CU◦V

and thus one can de�ne the inverse of a basis. This concept, but with a
�coordinate space� being �xed instead of a �xed basis T , was introduced and
exploited by C. de Boor in [7]. Here, we just note that the full set of possible
bases U can be parametrized by arbitrary matrices CU ∈ GL(n,R). Thus
we shall express formulae for features of bases U mainly in terms of CU , but
there are other parametrizations as well, as we shall see.

The �Evaluation� operator E based on the set X will map functions f
into columns

E(f) := (f(x1), . . . , f(xN ))T ∈ RN ,

for which then we can rewrite kernel matrix A by

E(T ) = (K(xi, xj))1≤j,k≤n = A.

By equation (3.3), for a general basis U we can form the value matrix

VU = E(U) = (uk(xj))1≤j,k≤N = E(T )CU = A · CU . (3.4)

A very similar way to use columns and rows, and the connection to duality
we shall use later are nicely described already in [7]. From the identity

VU = E(U) = E(T ) · CU = A · CU ,

we immediately get that the basis U(x) is connected to factorizations of A.
In particular, the kernel matrix can be decomposed to the value matrix VU
and inverse of the coe�cient matrix.

Theorem 3.1.1. Any data�dependent basis U arises from a factorization

A = VU · C−1
U (3.5)

of the kernel matrix A into the value matrix VU = A · CU and the inverse

construction matrix C−1
U of the basis.
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The Gramian GU of a general basis U comes out to be

GU := ((uj , uk)K)1≤j,k≤N
= (

∑
k ck,jK(., xk),

∑
l cl,mK(., xl))K

=
∑

k

∑
l ck,jcl,mK(xk, xl)

= CTU ·A · CU .

(3.6)

These are the K�inner products, but we also have discrete `2(X) inner prod-
ucts forming a Gramian ΓU via

ΓU :=
(
(uj , uk)`2(X)

)
1≤j,k≤N

=

(
N∑
n=1

uj(xn)uk(xn)

)
1≤j,k≤N

= V T
U · VU

= CTU ·A2 · CU

using (3.5).

Particularly, the factorization in (3.5) for the basis of translates

T (x) := (K(x, x1), . . . ,K(x, xN ))

is A = A · I, where we use I to stand for the N ×N identity matrix, which
is clearly the coe�cient matrix CT for the basis of translates.

We now look at the standard Lagrange basis L(x) := (L1(x), . . . , LN (x)),
whose elements are data�dependent and satisfy

Lj(xk) = δjk, 1 ≤ j ≤ k.

Clearly, VL = I = ΓL and by (3.5) we get CL = A−1. The K�Gramian
is GL = A−1 by (3.6). Consequently, via the basis of translates and the
Lagrange basis, we have L(x)A = T (x), then

Theorem 3.1.2. Assume L(x) to be the Lagrange basis, then for all data�

dependent bases U(x)
U(x) = L(x)VU ,

where VU is the value matrix.

Proof: By the de�nition of the Lagrange basis and U(x) = T (x)CU , we
have

U(x) = T (x)A−1︸ ︷︷ ︸
L(x)

ACU︸ ︷︷ ︸
VU

= L(x)VU .

The value matrix VU = (uk(xi))i,k of values of the general basis expresses
the correspondence between the general basis and the Lagrange basis.
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Note that (3.5) also shows that we could as well parametrize the set of bases
U via the value matrices VU using CU = A−1 · VU to come back to the
parametrization via CU . But for sorting out special classes of bases we need
more. Multivariate interpolation on a set of X of scattered data locations for
values E(f) of functions f with a symmetric positive de�nite and continuous
kernel K is calculated via the linear system

AαX = E(f), (3.7)

where αX := (α1, . . . , αN )T and A = (K(xj , xk))1≤j,k≤N . The interpolant
sf ∈ KX can be written as

sf (x) =

N∑
j=1

αjK(x, xj),

this means with T (x) := (K(x, x1), . . . ,K(x, xN ))T , and the system (3.7)

sf (x) = T (x)α.

This is well�known, but also follows immediately from

E(sf ) = E(T )α = Aα = E(f),

using our notation. For general bases, the interpolant takes the form

sf (x) := T (x) ·A−1 · E(f)

= U(x) · C−1
U ·A

−1 · E(f)︸ ︷︷ ︸
=:ΛU (f)

=
N∑
j=1

uj(x)λj(f)

(3.8)

with a column vector

ΛU (f) := (λ1(f), . . . , λN (f))T = C−1
U ·A

−1 · E(f) (3.9)

of linear functionals. They are from the span of the point evaluation func-
tionals δx1(f), . . . , δxN (f), and they can be composed from them by

ΛU (f) = C−1
U ·A

−1︸ ︷︷ ︸
=:∆U

·E(f) = ∆U · E(f)

as a matrix operation with

∆U = C−1
U ·A−1 = V −1

U .

We have chosen the notation ∆U here, because the action of the matrix
is like forming divided di�erences from function values. For the basis T of
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translates, we have ∆T = V −1
T = A−1. Note that we could parametrize bases

U also via ∆U .
The evaluation of an interpolant sf at some point x via (3.8) can be

unstable, if either the uj(x) or the λj(f) or both are large, cancelling �-
nally when forming the result sf (x). This regularly occurs for the basis T of
translates, because the coe�cient vector A−1E(f) tends to have huge abso-
lute values of opposite sign. A measure for the stability of the evaluation of
sf (x) thus is the Hölder�Minkowski bound

|sf (x)| ≤ ‖U(x)‖p ‖ΛU (f)‖q for all f ∈ K, x ∈ Ω (3.10)

with 1/p+ 1/q = 1. We shall have to look at both factors in what follows.
In [8], there is an analysis of the stability of the Lagrange basis along

this line, proving that the right�hand side is well�behaving. This implies
that interpolation is not unstable in function space, though the calculation
of coe�cients in the basis of translates is unstable. Consequently, we have
to look for other bases which allow good bounds in (3.10).

3.2 Dual Basis

The linear functionals in ΛU are in some sense dual to the basis U , but we
de�ne duality slightly di�erently:

De�nition 3.2.1. The dual basis to a basis U is the basis U∗ of the Riesz

representers of the functionals of ΛU .

Theorem 3.2.1. There is correspondence between the dual basis U∗ and

bases of translates T (x),

U∗(x) = T (x)(V −1
U )T , (3.11)

where VU is the value matrix of the general basis U .

Proof: The dual basis functions u∗j are de�ned by

λj(f) = (u∗j , f)K, for all f ∈ K, 1 ≤ j ≤ N. (3.12)

being the Riesz representers of the λj . Thus

u∗j (x) = (u∗j ,K(x, ·))K = λj(K(x, ·)), 1 ≤ j ≤ N, for all x ∈ Ω,

U∗(x) = ΛTU (K(x, ·))
= C−1

U ·A−1 · E(K(x, ·))T
= V −1

U · E(K(x, ·))T
= T (x)(V −1

U )T .
(3.13)

Given some basis U , we now have to �nd the value matrix VU∗ and the
construction matrix CU∗ of the dual basis U

∗.
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Theorem 3.2.2. The dual basis U∗ to a data�dependent basis U satis�es

VU∗ = (CTU )−1,

CU∗ = (V T
U )−1,

A = VU · V T
U∗ ,

K(xj , xk) =
N∑
m=1

um(xk)u
∗
m(xj), 1 ≤ j, k ≤ N,

(uj , u
∗
k)K = δjk, 1 ≤ j, k ≤ N.

Proof: (3.13) prove CU∗ = (V T
U )−1, for all x ∈ Ω. Then (3.5) yields

VU∗ = A · CU∗
= A · (V T

U )−1

= A · ((A · CU )T )−1

= (CTU )−1,

and the next three relations are easy consequences. Finally,

(uj , u
∗
k)K = λk(uj)

= eTk ΛU (uj)
= eTk ∆U · E(uj)
= eTk ∆U · E(Uej)
= eTk ∆U · E(U)ej
= eTkC

−1
U A−1VUej

= eTk ej , 1 ≤ j, k ≤ N

proves the last assertion and shows that the functionals of ΛU always are a
biorthogonal basis with respect to U .

Corollary 3.2.1. Assume U∗∗ is double dual to U then

U∗∗ = U.

Proof: By the above properties for the dual basis it is just necessary to
show that

CU∗∗ = CU .

By the de�nition of the coe�cient matrix

CU∗∗ = (V −1
U∗ )T = A−1VU = CU .

Therefore, the Gramian matrix for the dual basis is

GU∗ = (u∗j , u
∗
k)K = CTU∗ACU∗ = V −1

U A(V −1
U )T .

The transition from a basis U to its dual follows a simple rule-of-thumb.
Starting with (3.5), we take the transpose and re�iterpret this in the sense
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of Theorem (3.1.1) as the product of a dual value matrix times the inverse
of a dual construction matrix:

A = VU · C−1
U

= AT = (C−1
U )T · V T

U

= VU∗ · C−1
U∗ .

For later use in stability considerations along the lines of (3.10), we use (3.8)
to get

‖sf‖2K = ΛT (f)GUΛ(f)

with the K�Gramian GU . By standard eigenvalue manipulations and the
inequality ‖sf‖K ≤ ‖f‖K, this implies

Theorem 3.2.3. For all f ∈ K and all data�dependent bases U ,

‖Λ(f)‖22 ≤ ‖f‖2Kρ(G−1
U )

with ρ being the spectral radius.

Note that this bound is particularly bad for the basis T of translates with
GT = A. By Theorem (3.2.2) or by the above rule�of�thumb in the form

A = A · I = VT · C−1
T = AT = I ·AT = VT ∗ · C−1

T ∗

we get

Theorem 3.2.4. The Lagrange basis L and the basis T of translates are a

dual pair.

Proof: The value matrix of the Lagrange basis is the identity matrix
VU = I, so by the dual property, simply

U∗(x) = T (x)(V −1
U )T = T (x).

For the value matrix of the basis of translates VK(x) = T (x), compute

T ∗(x) = T (x)(V −1
K )T = L(x).

Another way to see this duality is by noting that the functionals λj(f) =
δxj (f) of the Lagrange basis are the Riesz representers of the kernel translates
K(·, xj).
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3.3 Power Function

We use the well�known power function in (2.7) and express it for general
bases. By the formula (2.5) and some standard algebraic manipulations
within our formalism, we can express it in terms of a general basis as

P 2(x) = K(x, x)− 2
N∑
j=1

K(x, xj)Lj(x) +
N∑

j,k=1

K(xk, xj)Lj(x)Lk(x)

= K(x, x)−
N∑
j=1

K(x, xj)Lj(x)

= K(x, x)− T (x) · LT (x)
= K(x, x)− T (x) ·A−1 · T T (x)

= K(x, x)− U(x) · C−1
U ·A−1 · (C−1

U )T · UT (x)

= K(x, x)− U(x) ·G−1
U · UT (x).

(3.14)
This identity has several consequences. First, due to positive de�niteness of
the K�Gramian GU , this yields bounds

0 ≤ U(x) ·G−1
U · U

T (x) = K(x, x)− P 2(x) ≤ K(x, x)

for the pointwise behavior of the general basis U . By standard eigenvalue
bounds, this implies a bound that is useful for (3.10).

Theorem 3.3.1. For arbitrary data�dependent bases U , we have

‖U(x)‖22 ≤ K(x, x)ρ(GU ) for all x ∈ Ω

with the spectral radius ρ(GU ) of the K�Gramian. Furthermore, the stability
bound (3.10) for p = q = 2 is

|sf (x)|2 ≤ ‖f‖2KK(x, x) cond2(GU ) for all f ∈ K, x ∈ Ω, (3.15)

where cond2(GU ) is the condition number of the K�Gramian with respect to

the Euclidean norm.

3.4 K�Orthonormal Bases
We know focus on constructing the K�orthonormal bases. Using the fac-
torization technique of the kernel matrix A = VUC

−1
U to produce the value

matrix and the coe�cient matrix of all data�dependent bases, we look for
bases U with the K�Gramian matrix

GU = CTUACU = I,

i.e. for K�orthonormal bases. This obviously is equivalent to

A = (C−1
U )TC−1

U = I.
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Theorem 3.4.1. Each data�dependent K�orthonormal basis U arises from

a decomposition

A = BT ·B with B = C−1
U , VU = BT = (C−1

U )T . (3.16)

Among all data�dependent bases, the K�orthonormal bases are exactly those

which are self�dual.

Proof: Clearly, above discussion proved the �rst assertion. By Theorem
(3.2.2), all K�orthonormal bases are self�dual. Conversely, if U is a self�dual
basis, then

V −1
U = CTU ,

A = VU · (V −1
U )T ,

and the second assertion follows from CU = (V −1
U )T to get an orthonormal

basis in the native space. By above theorem, for any K�orthonormal basis
U ,

U∗(x) = T (x)CU∗ = T (x)(V −1
U )T = T (x)CU = U(x).

There are two important special cases.

The Cholesky decomposition A = L · LT with a nonsingular lower trian-
gular matrix L leads to the Newton basis N treated in [18] with a di�er-
ent normalization. It can be recursively calculated and has the property
Nj(xk) = 0, 1 ≤ k < j ≤ N like the basis of functions

Nj(x) =
∏

1≤k<j
(x− xk), 1 ≤ j ≤ N

in Newton's formula for polynomial interpolation.

The other case is induced by singular value decomposition (SVD) in the form
A = QT ·Σ2 ·Q with an orthogonal matrix Q and a diagonal matrix Σ having
the eigenvalues of A on its diagonal. This SVD basis S satis�es

B = Σ ·Q, CS = QT · Σ−1, VS = QT · Σ.

Before we analyze these special cases further, we prove slightly more than
we had for Theorem (3.3.1).

Theorem 3.4.2. For all K�orthonormal bases U , the value of ‖U(x)‖2 for

�xed x ∈ Ω is the same and bounded above by K(x, x) independent of the

placement and number of data points. Dually, the value of ‖Λ(f)‖2 for �xed

f ∈ K is the same for all K�orthonormal bases and bounded above by ‖f‖K
independent of the placement and number of data points.
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Proof: Equation (3.14) yields

N∑
j=1

u2
j (x) = ‖U(x)‖22 = K(x, x)− P 2(x) ≤ K(x, x) for all x ∈ Ω,

and this proves the �rst assertion, because the power function is basis�
independent. Writing an interpolant sf in the form (3.8) is an orthonormal
representation. Thus, being basis�independent as well,

‖sf‖2K =

N∑
j=1

λ2
j (f) ≤ ‖f‖2K (3.17)

proves the second.

In conclusion, the divided di�erences corresponding to K�orthonormal data�
driven bases are orthonormal as functionals, and also K�orthonormal bases
will lead to stable results in function space even for nearly�coalescing data
points, provided that the data come from a function in the native space. The
functionals act like divided di�erences and have unity norm in the dual of
the native space, irrespective of the placement of data points.

From Theorem (3.3.1) we get the bound

|sf (x)|2 ≤ K(x, x) ‖f‖2K for all f ∈ K, x ∈ Ω (3.18)

for all K�orthonormal bases U , implying that the evaluation of the inter-
polant is stable provided that the Uj(x) and λj(f) can be evaluated stably.
The basic equations for these are

U(x) = T (x)B−1 for all x ∈ Ω, ΛU (f) = (B−1)TE(f) for all f ∈ K,

and we see that in both cases the matrix B−1 is involved, or a system with
coe�cient matrix B has to be solved. For the condition of B we have

Theorem 3.4.3. The general solution B of (3.16) is always of the form

B = Q1ΣQ with an orthogonal matrix Q1, when A = QTΣ2Q is a SVD of

A. Thus the spectrum of A is factored by (3.16), and the spectral condition

of B is the square root of the spectral condition of A.

Proof: From A = QTΣ2Q = BTB we get I = Σ−1QBTBQTΣ−1. Thus
Q1 := BQTΣ−1 is orthogonal and B = Q1ΣQ. The matrix B has a SVD
with singular values being the square roots of those of A.

Thus all K�orthonormal bases divide the ill�conditioning of A fairly be-
tween the function and the functional part. Later, we shall consider special
adaptive algorithms for the Newton case.
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3.5 Discretely Orthonormal Bases

In line with all K�orthonormal bases, the framework for discretely orthonor-
mal bases comes out from the discrete Gramian matrix ΓU , since

ΓU = (
∑
m

Uj(xm)Uk(xm))j,k = V T
U VU = CTUA

TACU .

In order to construct discretely orthonormal bases, the value matrix VU
should be the orthogonal matrix, so that V T

U VU = I becomes

ΓU = (uj , uk)X,l2 = δj,k.

In other words

Theorem 3.5.1. Each data�dependent discretely orthonormal basis arises

from a decomposition

A = Q ·B

with Q = VU orthogonal and B = C−1
U = QT ·A.

Proof: By the formula ΓU = CTU ·AT ·A·CU for the discrete Gramian ΓU ,
and setting Q := A · CU , we see that ΓU = I is equivalent to orthogonality
of Q.

This is a matrix factorization, the so-called QR decomposition, A = QR.
Here R is upper triangular, while Q is orthogonal. A sequence of Householder
re�ections is applied to the columns of A to produce the matrix R, the jth
column of R is a linear combination of the �rst j columns of A. Consequently,
the elements of R below the main diagonal are zero. If we have the full
factorization, so the full Q is an orthogonal matrix. If A is nonsingular,
then this factorization is unique if we require that the diagonal elements of
R are positive. A standard QR decomposition A = QR will lead to a basis
we shall denote by O with CO = R−1, VO = Q. This is nothing else than
Gram�Schmidt orthonormalization of the values of the translate basis T on
X. Thus the QR basis is

UO(x) = (R−1)TT (x).

To continue it will be useful to �nd the de�nition of the basis respect
to the Lagrange basis. Since we have AL(x) = T (x), which implies
L(x) = QUO(x), the QR basis are correspondent to the Lagrange basis by
a unitary matrix Q, in addition UO(x) = QTL(x). That means we applied
a sequence of Householder re�ections on the Lagrange basis to compute the
QR basis. The bases arising from QR decompositions are not orthogonal
in native spaces. Since ‖UO(x)‖2 = ‖QTL(x)‖2 = ‖L(x)‖2, for all x ∈ Ω,
implies that QR bases are bounded. The power function formula is

P 2(x) = K(x, x)− (UO(x))TR(x),
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and the interpolant can be written as

sf (x) =
∑
j

(∆O
j f)TuOj (x),

where
∆O
j f = eTj Q

TE(f).

Moreover, we have eTj ∆(uk) = δjk, 0 ≤ j, k ≤ n. The orthogonality of the
matrix Q implies

‖∆Of‖∞ ≤ ‖∆Of‖2 = ‖QTE(f)‖2 = ‖E(f)‖2,

thus
|sf (x)| = |

∑
j(∆

O
j f)TuOj (x)|

≤ ‖∆Of‖2‖UO(x)‖2 = ‖E(f)‖2‖UO(x)‖2,

= ‖E(f)‖2‖L(x)‖2.
Thus the evaluation of sX,f (x) via the QR basis is stable, provided that the
divided di�erences and the QR bases can be stably calculated.

The second case comes from rescaling an SVD basis. In fact, any SVD basis
A = QTΣ2Q can be split into A = Q · B with B = Σ2Q. This makes the
value matrix orthonormal, while the ill�conditioning is completely shifted
into the construction matrix. Thus, if scaling is ignored, all SVD bases are
both discretely and K�orthogonal. The converse is also true:

Theorem 3.5.2. All data�dependent bases which are discretely and K�
orthogonal are scaled SVD bases.

Proof: Any such basis U can be rescaled to be K�orthonormal. We
then have A = BT · B with B = C−1

U and ΓU = CTU · A2CU = D2 with a
nonsingular diagonal matrix D. This implies I = D−1CTUA

TACUD
−1 and

that
Q := A · CU ·D−1 = BT ·B · CU ·D−1 = (C−1

U )T ·D−1

is orthogonal. But then

A ·Q = A ·A · CU ·D−1

= (C−1
U )TD−1

= Q ·D2

leads to the SVD of A = Q ·D2 ·QT with B = C−1
U = D ·QT .

For any discretely orthonormal basis U , the K�Gramian is

GU = CTU ·A · CU = QT ·A−1 ·A ·A−1 ·Q = QT ·A−1 ·Q

and thus spectrally equivalent to A−1. In view of Theorem (3.3.1), this is
comparable to the Lagrange and the translates basis.
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Theorem 3.5.3. The duals of the discretely orthonormal bases arise from

decompositions

A = B ·Q

with Q orthogonal.

Proof: Following our rule�of�thumb for a discretely orthonormal basis
U , we get

A = Q ·B = AT = BT ·QT = VU∗ · C−1
U∗ , VU∗ = BT , CU∗ = Q.

These bases have orthogonal construction matrices instead of orthogonal
value matrices. Again, a scaled SVD basis is a special case, and also the
transpose A = RT ·QT of a QR decomposition A = Q ·R. The K�Gramians
of these bases are of the form Q · A · QT , and thus again spectrally equiva-
lent to the translate and Lagrange bases, as far as the spectral condition is
concerned.

3.6 SVD Bases

Singular values are well conditioned, which means they are not extremely
sensitive to perturbations in A. The sensitivity of a singular vector depends
on how small the gap is between its singular value and any other singular
value, the smaller the gap, the more sensitive the singular vector.
The singular value decomposition is useful for numerical determination of the
rank of the matrix, and for solving linear least squares problems, especially
when they are rank de�cient, or nearly so.
Now we look at the basis coming out of a singular Value Decomposition
of the kernel matrix. The eigenvalue problem for a symmetric matrix is
considerably simpler and more stable with respect to round-o�. Therefore,
the eigenvectors have the convenient mathematical property of orthogonality
and span the entire space of A. That is, the form a basis or minimum
spanning set with

A = AT = QT · Σ2 ·Q,

where the columns of Q form the set of orthonormal eigenvectors of A.
Though their computation is rather involved, the SVD bases have some nice
properties, as we have seen in the previous sections, in particular in The-
orem (3.5.2). Going back to Section 2.2 and using an integration formula
with well�distributed points and equal weights wk = w > 0, we see that the

discretized solution v
(n)
j , 1 ≤ j, n ≤ N of the eigenvalue problem (2.8) is

related to the eigenvalue problem of A itself, and thus is a scaled SVD basis.
Thus we can expect that SVD bases for large and well�placed data point sets
are approximations of the data�independent eigenfunction basis. For kernels
with rapidly decaying eigenvalues, one has to expect numerical rank loss in
the kernel matrix A, but the SVD is the best known way to control this.
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In theory, the SVD basis S is given by S(x) = T (x) ·QT ·Σ−1, while the
value matrix is VS = QT · Σ. Moreover VS is the correspondence between
the Lagrange basis and the SVD bases where L(x) = S(x)Σ−1 ·Q. Following
the power function

P 2
X(x) = K(x, x)−

n∑
j=1

s2
j (x)

as for all K�orthonormal bases, this is a nice property but we should be sure
that the sj(x) are not too big when σj are too small. They are discretely
bounded but not in general. The representation of the interpolant in terms
of the SVD basis is

sf (x) = S(x)V −1
S E(f) = S(x)Σ−1 ·QE(f).

Then we get another version of generalized divided di�erences by ∆sf =
V −1
S E(f). We see that the Riesz representers of the generalized divided

di�erence ∆sf are given by the SVD basis, and the divided di�erences form
a dual orthogonal basis. Consequently, we get

‖Σ∆sf‖2 = ‖E(f)‖2,

which provides a balance between singular values and generalized divided
di�erences. If singular values σ2

j are sorted to decrease with increasing j,
the columns of the value matrix have decreasing norms ‖VUej‖2 = σj for
increasing j. The usual Tychonov regularization will replace small σj < ε
by zero, thus making the basis shorter. In that case, the numerical result
of the reconstruction of f from given data E(f) will be a non�interpolatory
projection of f into the span of the selected SVD basis functions, and if
these are corresponding to the eigenfunctions with large eigenvalues, the
result will be an accurate and stable reproduction of the projection of f into
the span of these eigenfunctions. If, however, f has a large projection onto
higher eigenfunctions, this will lead to unavoidable errors, but these often
look like noise, while the numerical solution looks smooth. This makes the
SVD useful for a lot of applications where deterministic worst�case error
bounds make no sense, and in particular where the data are noisy anyway
and exact interpolation is not desirable.

3.7 Newton Basis

A square symmetric and positive matrix A has a special, more e�cient, trian-
gular factorization, so-called Cholesky decomposition. Cholesky decomposi-
tion is about a factor of two faster than alternative methods for solving linear
equations. Instead of seeking arbitrary lower and upper triangular factors L
and U , Cholesky decomposition constructs a lower triangular matrix L whose
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transpose LT can itself serve as the upper triangular part. The Cholesky de-
composition is roughly twice as e�cient as the LU decomposition for solving
systems of linear equations. A Cholesky decomposition A = L · LT with
a nonsingular lower triangular matrix L leads to the Newton basis N with
N(x) = T (x) ·CN = T (x) · (LT )−1 and value matrix VN = L. Given a sym-
metric positive de�nite matrix A, the Cholesky decomposition yields a lower
triangular matrix L with strictly positive diagonal entries. This basis was
already treated in [18], but with a di�erent normalization that concealed its
K�orthonormality. Theorem (3.4.2) and the stability bound (3.18) are not in
[18], but proved here for general K�orthonormal bases. The identity VN = L
implies

Nk(xj) = 0, 1 ≤ j < k ≤ N
Nk(xk) > 0, 1 ≤ k ≤ N.

The connection to the Lagrange basis is N(x) = L(x)VN , hence, the power
function is

P 2(x) = K(x, x)− VNV T
N = K(x, x)−

n∑
j=1

N2
j (x)

like all K�orthonormal bases. The interpolant can be written as

sX,f (x) = T (x)αX = N(x)L−1E(f)

where the generalized divided di�erences shall be ∆N (f) = −1E(f), then

sX,f (x) = N(x)∆N (f).

The Newton basis is orthonormal in the native space of the kernel. The
basis functions are Riesz representers of the divided di�erences, and thus the
divided di�erences with respect to the Newton basis are a dual orthonormal
basis.

In practice, the Cholesky decomposition would be pivoted, but we shall
describe another adaptive algorithm below.

The construction of the Newton basis is recursive like the Cholesky algo-
rithm, and this means that the �rst n basis functions N1, . . . , Nn need not
be recalculated when going over from n to n+ 1. This has some remarkable
consequences which were not noted in [18]. In particular, we can interpret
(3.14) in the form

n∑
j=1

N2
j (x) = K(x, x)− P 2

n(x), (3.19)

recursively, if we denote the power function on the n points of Xn :=
{x1, . . . , xn} by Pn. Thus
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Theorem 3.7.1.

N2
n(x) = P 2

n−1(x)− P 2
n(x) ≤ P 2

n−1(x). (3.20)

If xn is chosen recursively as

xn := arg max P 2
n−1(·),

then

N2
n(x) ≤ N2

n(xn) for all x ∈ Ω,

i.e. the basis has no parasitic maxima.

Proof: The �rst statement follows from (3.19), and the second from
N2
n(x) ≤ P 2

n−1(x) ≤ P 2
n−1(xn) = N2

n(xn) because of Pn(xn) = 0.

This argument was already used in [8] for the Lagrange basis. If x1, . . . , xn
are �xed, the functions Ln and Nn di�er only by a normalization factor, but
Ln will change when we go over to n+ 1.

In (3.19), one can take the limit n → ∞ without problems, and it was
proven in [8] that

∞∑
j=1

N2
j (x) = K(x, x)

if the points x1, x2 . . . get dense in a bounded domain Ω ⊂ Rd. On such a
domain, and for a continuous kernel K, we also get

n∑
j=1

‖Nj‖2L2(Ω) ≤
∫

Ω
K(x, x)dx

by integration of (3.19), for n → ∞, and for the craziest possible point dis-
tributions. Together with (3.20), this shows that the Newton basis does not
seriously degenerate when points get close. This is in line with the nonde-
generacy of the data provided by (3.17), if the data come from a function
f in the native space. It is also in line with the behavior of the Newton
basis for polynomial interpolation of smooth univariate functions. The basis
functions do not degenerate and the divided di�erences turn into derivatives.

By construction, the functions N1, . . . , Nn are an orthonormal basis for
the span of the translates K(·, x1), . . . ,K(·, xn). Thus the action of the
reproducing kernel K on that space is given by

Kn(x, y) =
n∑
j=1

Nj(x)Nj(y)

and the action of the kernel Kn on the orthogonal complement

{f ∈ K : f(xj) = 0, 1 ≤ j ≤ n}
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is given by the kernel K(x, y) −Kn(x, y). In [17], the latter was called the
power kernel and represented di�erently, without using the Newton basis see
De�nition (2.1.2). If the points x1, x2, . . . are dense in a bounded domain Ω,
this argument proves the series representation

K(x, y) =
∞∑
j=1

Nj(x)Nj(y) (3.21)

of the kernel. From Section 2.2 we know that there may be a good low�
rank approximation to the kernel, and thus we have to anticipate that, for
a special ordering of the points, convergence of the series may be rapid and
connected to the decay of the eigenvalues of the kernel. This means that one
should consider adaptive point selections that make the series converge fast.
This will be the topic of the next section.

3.8 Generalized Interpolation

We consider data {xi, λif}, i = 1, . . . , N , where Λ = {λ1, . . . , λN} ⊂ N?
K,

is a linearly independent set of continuous linear functionals and f is some
(smooth) data function. For example, it could denote evaluation of some
derivative at the point xi. Therefore, we assume the generalized Hermite
interpolation to be of the form:

sΛ(x) =
N∑
j=1

αjλ
y
jK(x, xj), x ∈ Rs,

from the space

NΛ = span{λyjK(x, y) : j = 1, . . . , N},

and require it to satisfy

λxi sΛ = λxi f, i = 1, . . . , N

The linear system AΛα = fΛ, which arises in this case has matrix entries

AΛ = (λxi λ
y
jK(xi, xj))1≤i,j≤N ,

and right�hand side fΛ = [λ1f, . . . , λNf ]T . The generalized kernel matrix AΛ

is symmetric and positive de�nite whenever λj are linearly independent over
NK(Ω). Then a generalized recovery problem would seek to �nd a function
s ∈ K such that

λj(s) = λj(f), 1 ≤ j ≤ N,
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for some f in the native space. We will call s a generalized interpolant.
The optimal recovery problem searches for the norm-minimal generalized
interpolant,

‖s?‖ = min{‖s‖ : s ∈ K, λj(s) = λj(f), 1 ≤ j ≤ N}.

There is a generalization of this chapter to interpolation of this form, but we
leave this for future work.

3.9 Notes and comments

In this chapter, we sought to establish a methodology for all possibilities to
construct bases of data�dependent subspaces of reproducing kernel Hilbert
spaces. We described bases in general and then proceeded to special bases
with di�erent properties. In particular, we characterized all K�orthonormal
bases and proved that they lead to stable results in function space even for
nearly�coalescing data points, provided that the data come from a func-
tion in the native space. We also considered dual bases that depend on
the functionals induced by any basis change. The functionals act like di-
vided di�erences, which are bounded in the dual of the native space for all
data sets. The K�orthonormality of bases carries over to K�orthonormality
of functionals. The Newton basis seems to be a particularly good choice,
since it is K�orthonormal, allows stable evaluation in the sense of (3.10) and
can be calculated recursively and adaptively. Depending on point selections,
convergence rates of series like (3.19) and (3.21) should be investigated fur-
ther. E�cient adaptive algorithms for calculating the Newton basis along
the lines of orthogonal matching pursuit will provide some numerical results
in the next chapter.



Chapter 4

Adaptive Calculation of

Newton Bases

The Newton basis seems to be a particularly good choice, since it is K�
orthonormal, allows stable evaluation in the sense of (3.10) and also can be
calculated recursively and adaptively, which we will show it in this chapter.
We take this material from [14]

4.1 P�dependent Point Selection Strategy

We �rst consider the case where we want to �nd a good basis for all possible
interpolation problems, i.e. we do not care for single data and focus on point
selection instead. Let Ω ⊂ Rd be a bounded domain with a continuous pos-
itive de�nite kernel K on it. For applications, users will take a large �nite
subset X = {x1, . . . , xN} ⊂ Ω but avoid to form the huge N × N kernel
matrix A for all points of X. Instead, one can use a column�based version
of a pivoted Cholesky decomposition which performs m steps of computa-
tional complexity O(Nm) to stop at rank m. Its overall complexity thus is
O(Nm2), and it requires a total storage of O(mN). It builds the �rst m
columns of the value matrix VN and thus the �rst m Newton basis functions
on the full set X.

Though it is well�known how to perform a pivoted column�based
Cholesky decomposition, we describe the algorithm here because we want
to make use of the kernel background and to end up with functions, not just
with matrices. Having (3.19) in mind, we start the algorithm by choosing
x1 by permutation of points as

x1 = arg max {K(x, x) : x ∈ X}.

Since we always assume the kernel to be easily evaluated, this will use O(N)
operations, and we store the vector

z := (K(x1, x1), . . . ,K(xN , xN ))T

for later use. The �rst Newton basis function then is

N1(x) :=
K(x, x1)√
K(x1, x1)

(4.1)

35
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due to (2.5), and we evaluate it on X, giving us the �rst column v1 of the
value matrix VN . Another N�vector w should store the values v2

1(xj), 1 ≤
j ≤ N .

Assume now that we have �xed the �rstm points and the �rstm columns
of VN , forming an N×m matrix Vm. The vector w should contain the values

wj =
m∑
k=1

v2
k(xj), 1 ≤ j ≤ N.

For points xj ∈ X, the power function Pm is

P 2
m(xj) = K(xj , xj)−

m∑
k=1

v2
k(xj) = zj − wj , 1 ≤ j ≤ N,

and we �nd its maximum and assume that it is attained at xm+1. Note that
the �rst m components of z − w should be zero, giving us some check for
roundo�.

The algorithm stops if this maximum is smaller than a tolerance ε2. In
that case, Pm(x) ≤ ε holds on all of X, and all functions f in KX can be
replaced by their interpolants sf in x1, . . . , xm with errors

|f(x)− sf (x)| ≤ ε‖f‖K for all x ∈ X.

Thus, using more than our m well�selected points of X is useless if we can
tolerate the above error.

If we decide to continue, we now generate the column Aem+1 of A
consisting of values K(xm+1, xj), 1 ≤ j ≤ N and form the vector u :=
Aem+1 − Vm · (V T

m em+1) at cost O(Nm). This contains the values on X of
the function

u(x) := K(x, xm+1)−
m∑
j=1

Nj(x)Nj(xm+1), (4.2)

and this function satis�es

(u,Nk)K = Nk(xm+1)−
m∑
j=1

Nj(xm+1)(Nj , Nk)K = 0, 1 ≤ k ≤ N.

Since the span of N1, . . . , Nm coincides with the span of
K(·, x1), . . . ,K(·, xm), we also have uj = u(xj) = 0, 1 ≤ j ≤ m,
giving us another check on roundo�.

We then de�ne

Nm+1(x) :=
u(x)

‖u‖K
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and use ‖u‖2K = zm+1 − wm+1 = P 2
m(xm+1) for this. To prove this identity,

we employ orthonormality of the Nj in (4.2) to get

m∑
j=1

N2
j (xm+1) = ‖u−K(·, xm+1)‖2K

= ‖u‖2K − 2(u,K(·, xm+1))K +K(xm+1, xm+1)
= ‖u‖2K − 2u(xm+1) +K(xm+1, xm+1)

= wm+1 = ‖u‖2K − 2um+1 + zm+1

and insert um+1 = zm+1 − wm+1. We update w and add the vector u/‖u‖K
as a new column to Nm to �nish step m+ 1.

This algorithm provides the �rst m Newton basis functions on N points
at cost O(Nm2). It is particularly useful if the kernel has a good low�rank
approximation and if the user wants results on a large but �xed point set X.

If data E(f) of a function f are given on X, one might simply set up the
overdetermined system

Vmc = E(f)

and solve it in the least�squares sense for a coe�cient vector c ∈ Rm. An-
other possiblity is to take only the �rst m rows of this system, thus getting
away with an interpolant on x1, . . . , xm. This system is triangular, can be
solved at cost O(m2) and usually is quite su�cient, because the main al-
gorithm usually is stopped when the power function is very small on all of
X.

If we denote the top m × m part of Vm by Lm, we get the values of
the Lagrange basis for nodes x1, . . . , xm on all of X as the matrix Vm · L−1

m .
The divided di�erences for the Newton basis N1, . . . , Nm are obtainable as
L−1
m Em(f), if we take the �rst m components of E(f) as Em(f).
For use with meshless methods, whose bases should be expressed �entirely

in terms of nodes� [2], we suggest not to use the Lagrange basis based on
function values in x1, . . . , xm, but rather the Newton basis, the divided di�er-
ences being the parametrization instead of the function values at those nodes.
If a result is expressed as a coe�cient vector c ∈ Rm in this parametrization,
the resulting values at all nodes of X are given by Vm · c.

If the values of the Newton basis are needed at other points, or if deriva-
tives are to be calculated, we can use the standard equation (3.2) and insert
VU = C−1

U for a K�orthonormal basis U . Then we get the linear system

VN ·NT (x) = T (x)T

for the Newton basis. If the basis is shortened to m functions, this system is
shortened to bem×m, and then it has the lower triangular coe�cient matrix
Lm we had before. If linear maps L like derivatives have to be evaluated, we
use the system

VN · L(NT (·)) = L(T (·)T )
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in shortened form. These evaluations are of complexity O(m2) each, which is
compatible with the complexity O(Nm2) we already had for getting values
on N points.

4.2 f�dependent Point Selection Strategy

If we are given a speci�c vector E(f) of data on a point set X, there are fully
data�dependent adaptive techniques for approximation of f . A particularly
simple one is based on a pivoted QR decomposition and can be viewed as
an instance of Orthogonal Matching Pursuit [16] in the column space of the
kernel matrix. Starting theoretically from a huge linear system (3.7) based
on N points, the basic idea is to project the right�hand side into the column
space and to select those columns that allow to reproduce the right�hand
side with good accuracy. In principle, this could be done by applying a
column�pivoted QR algorithm to the system(

−E(f) A
1 0

)(
1
α

)
=

(
0
1

)
making sure that the �rst column is used �rst. In addition, the QR algorithm
should not start from full matrices, but rather work on columns only. Again,
this is well�known from Numerical Linear Algebra, but we want to describe
a di�erent algorithm that performs data�dependent Orthogonal Matching
Pursuit in the Hilbert space K and uses the Newton basis.

Let X be a large set of N points x1, . . . , xN , and assume the data vector
E(f) = (f(x1), . . . , f(xN ))T to be given from a function f ∈ K we do not
know explicitly, but which we want to approximate. By (2.4), we know that
the data have the semantics

f(xj) = (f,K(·, xj))K, 1 ≤ j ≤ N

though we do not know f . Selecting x1 to be the point where the data vector
E(f) attains its maximum absolute value means that we have selected the
kernel translate that will approximate f best in K. We now proceed like
in the previous algorithm, forming the �rst Newton basis function N1 :=
K(·, x1)/

√
K(x1, x1). But then we replace the data of f by the data of the

error f1 := f − (f,N1)KN1 of its best approximation by multiples of N1 or
K(·, x1) in K. For this, we only need

(f,N1)K = f(x1)/
√
K(x1, x1).

Then we proceed by choosing x2 as the point where f1 attains its maximum
absolute value.

This algorithm constructs a Newton basis, but with a di�erent, now f�
dependent selection of points. In the notation of the above algorithm, let us
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assume that we already have Vm and need

fm := f −
m∑
j=1

(f,Nj)KNj = fm−1 − (f,Nm)KNm (4.3)

on the full set X. To perform this recursively, we look at step m+ 1 and use
(4.2) to get

(f, u)K = f(xm+1)−
m∑
j=1

(f,Nj)KNj(xm+1)

and, with proper normalization,

(f,Nm+1)K = (f, u)K/‖u‖K

with ‖u‖2K = zm=1 − wm+1 as shown before. Thus we have a recursion for
these inner products, and inserting them into (4.3) allows to �nd xm+1 as
the point where fm attains its maximal absolute value.

This algorithm is Orthogonal Matching Pursuit inK, and it should be ter-
minated when |(f,Nm+1)K| is su�ciently small. By orthogonality to the span
of K(·, xj) for 1 ≤ j ≤ m, the result is the interpolant to f on x1, . . . , xm.
It should �nally be noted that the method is a reformulation of the greedy
method of [24] in terms of the Newton basis.

4.3 Numerical Tests

We consider the domain Ω de�ned by the unit disk with the third quadrant
cut away. We select a large set X of points on a �ne grid on [−1, 1]2 that fall
into Ω. Then we run the adaptive algorithm of Section (4.1) to generate a
selection of well�distributed points. For the Gaussian at scale 2, Figure (4.1)
shows the �rst 30 selected points and the decay of the maximum of Power
function for that case. For 100 points and inverse multiquadrics of the radial
form

φ(r) = (1 + r2/8)−2,

similar plots are in Figure (4.2). The Newton basis function v25 for the
Gaussian at scale 2 is in Figure (4.6). We now turn to the f�dependent point
selection strategy. Figure (4.5) shows the results for the function f(x, y) :=
exp(|x − y|) − 1 on the same domain. One can see the accumulation of
selected points close to the derivative discontinuity at x = y. And also, the
Newton basis function v25 for the Wendland functions at scale 4 is in Figure
(4.6). We ran the algorithm of all cases of data�dependent bases. The case
of interpolation by the Gaussian at scale 2 are illustrated in following �gures
up to (4.8)
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Figure 4.1: Selected points and power function decay for the Gaussian

Figure 4.2: Selected points and power function decay for an inverse multi-
quadric

Figure 4.3: Newton basis function v25 for the Gaussian
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Figure 4.4: Data�dependent greedy point selection and power function decay
for the Wendland functions

Figure 4.5: Selected points and power function decay for the Wendland
functions scale 4

Figure 4.6: Newton basis function v25 for the Wendland functions
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Figure 4.7: SVD basis and Lagrange basis for the Gaussian

Figure 4.8: Interpolation error and power function for Gaussian



Chapter 5

The Conditionally Positive

De�nite Bases

This chapter extends the previous chapter to the important case of condi-
tionally positive kernels such as thin�plate splines or polyharmonic kernels.
We go back to the notation in Section 2.3, and use m as the order of a
Pdm�conditionally positive de�nite kernel K, we use here. The interpoaltion
sets X = {x1, . . . , xN} assumed to be Pdm�unisolvent. The case m = 0 of
the chapter concerning bases for unconditionally positive de�nite kernels,
will serve as a guideline. Again, particularly interesting cases are bases of
Lagrange or Newton type, and bases which are orthogonal or orthonormal,
either discretely (i.e. via their function values on the centers) or as elements
of the underlying �native� space for the given kernel. This chapter �rst
looks at bases from a general point of view, i.e. not assigning a special rôle
to polynomials, and not reordering points. In particular, we shall consider
bases with orthogonality properties, Lagrange and Newton bases, and bases
resulting from certain modi�cations of the given kernel. We close with a
few numerical examples, including an adaptively constructed and partially
orthonormal Newton�type basis.

5.1 Notation and Basic Facts

The goal is to provide useful bases for KX of (2.14) and to exhibit relations
between these bases. Due to their dependence on the given unisolvent set
X, we call these bases data�dependent. It will turn out that Section 2.1 does
not generalize in a straightforward way, since there are many possibilities to
proceed. For instance, one can preselect a polynomial basis and complete it
by N −Q other functions, or let all basis functions contain some polynomial
part. Another option is to preselect a minimal unisolvent subset of Q points
�rst and then use a �reduced� kernel. Finally, one can try to reduce the
conditional positive de�nite case to the unconditionally positive de�nite case
by a suitable change of the kernel, but even this change can be done in
di�erent ways. These di�erent approaches sometimes lead to the same result.
With the space Pdm of d�variate real�valued polynomials of order at most m,
let Q be the dimension of Pdm and de�ne a basis p1, . . . , pQ of Pdm which does
not necessarily consist of monomials. We restrict the admissible point sets
X = {x1, . . . , xN} ⊂ Ω ⊂ Rd to be Pdm�unisolvent and �x a a conditionally

43
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positive (semi�) de�nite kernel K : Ω×Ω→ Rd of order m on a set Ω ⊆ Rd.
In view of the De�nition (2.3.2) and (2.14), we de�ne the spaces MX,m and
KX . Our goal is to derive bases of KX with certain properties. Since we �x
X, we call these bases data�dependent, and as long as we shall deal with a
�xed X, we shall drop X in the notation later.
Following (2.17), we can split each sX,cX ,bX ∈ KX into

sX,cX ,bX = sKX,cX ,bX + sPX,cX ,bX = sX,cX + pX,bX ,

sKX,cX ,bX := sX,cX := KX(x)cX , cX ∈ R|X|, P TXcX = 0,

sPX,cX ,bX := pX,bX := pX(x)bX , bX ∈ RQ.
(5.1)

Theorem 5.1.1. The split in (5.1) is unique.

Proof: It su�ces to show that any function sX,cX of the above form with
a vector cX ∈ R|X| satisfying moment conditions P TXcX = 0 vanishes, if it
coincides with a polynomial p = pX,bX ∈ Pdm. But since then sX,cX ,−bX =
sX,cX − pX,bX is in KX and vanishes on X, the nonsingularity of A implies
cX = 0 and bX = 0.

The bilinear form (2.13) now can be used to de�ne a bilinear form

(sX,cX ,bX , sY,cY ,bY ) := cTXAXY cY = (sX,cX , sY,cY ) (5.2)

on interpolants on unisolvent sets X and Y . Using this bilinear form, we
shall look at bases with orthogonality properties. We do not need the full
Hilbert space background here, but we refer the reader to Section 2.3.

For later use, we de�ne the notation

sc :=
∑
xj∈X

cjK(xj , ·) (5.3)

for functions in KX depending on a vector c ∈M = MX,m, and similarly

λc :=
∑
xj∈X

cjδxj : f 7→
∑
xj∈X

cjf(xj) (5.4)

for an associated linear functional, which vanishes on Pdm due to the moment
conditions implied by a ∈M .

Lemma 5.1.1. In (2.14), the sum is direct, the space KX has dimension

N = |X|, and interpolation on X by functions of KX is uniquely possible.

Proof If we have sc = p for some c ∈ M and some p ∈ Pdm using
(5.3), then λc(sc) = Q(c) = 0 and thus c = 0 due to conditional positive
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de�niteness. This proves the �rst assertion, and the second will follow from
the third.

The argument above also works if we have sc = p only on the points of
X. This implies that there is no nonzero function in KX that vanishes on X,
and this proves uniqueness of interpolants, if they exist. If we want to �nd a
function p+sc ∈ KX with prescribed function values fk = p(xk)+sc(xk), 1 ≤
k ≤ N , we have to solve the linear system(

A P
P T 0Q×Q

)(
c
b

)
=

(
f

0Q×1

)
where f = (f1, . . . , fN )T ∈ RN , c ∈ RN , and b ∈ RQ, while the coe�cient
matrix is the (N +Q)× (N +Q) matrix

A :=

(
A P
P T 0Q×Q

)
. (5.5)

Note that P T c = 0 is equivalent to c ∈M , making up the �nal Q equations.
Solvability of the homogeneous system means that some sc with c ∈M and
some

pb :=

Q∑
i=1

bipi ∈ Pdm (5.6)

exist such that pb + sc vanishes on X, and this is impossible unless both
pb and sc are identically zero. Thus the matrix (5.5) is nonsingular and
interpolation of arbitrary data is uniquely possible.

5.2 General Data�Dependent Bases

Each data�dependent basis w1, . . . , wN must have a nonsingular N×N value
matrix Vw = (wi(xj)) that leads to the system(

A P
P T 0

)(
Cw
Bw

)
=

(
Vw
0

)
. (5.7)

The moment conditions are employed via P TCw = 0, while the coe�cient

matrices Cw and Bw satisfy

ACw + PBw = Vw, (5.8)

that expresses the N × N matrix Cw and the Q × N matrix Bw uniquely
in terms of Vw. Clearly, this matrix is necessarily nonsingular because the
basis must allow unique interpolation on X. Here will be no special rôle of
polynomials, and no reordering of the points of X.
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De�nition 5.2.1. The value matrix of a basis w = (w1, . . . , wN ) is the

N ×N matrix

Vw = (wi(xj))1≤i,j≤N ∈ RN×N

where j is the row and i is the column index.

The value matrix Vw de�nes a basis w uniquely. Clearly the associated
basis w is then determined by the columns of Cw and Bw via

wk =

N∑
j=1

cjkK(xk, ·) +

Q∑
i=1

bikpi, 1 ≤ k ≤ N (5.9)

where we omitted w in the notation of the matrix elements.

Theorem 5.2.1. A basis w is uniquely de�ned by either a nonsingular N×N
value matrix Vw or by a N × N matrix Cw and a Q × N matrix Bw such

that P TCw = 0 holds and
(
Cw

Bw

)
has rank N .

Proof The �rst part is known already. Reading (5.7) from left to right,
one can start with matrices Cw and Bw satisfying the hypotheses, de�ne a
basis w by (5.9), and get the value matrix via (5.7).

Theorem 5.2.2. Using the notation (5.5) and (5.8), the N ×N matrix Cw
has rank N −Q, and the (N +Q)×N matrix(

Cw
Bw

)
= A−1

(
Vw
0

)
has rank N .

Proof The second statement is trivial, and the moment conditions imply
that there are Q linear independent linear relations between rows of Cw.
Thus the row rank of Cw is at most N −Q, but since the second statement
holds and Bw is an Q×N matrix, the row rank of Cw must be N −Q.

The basis functions themselves have the representation

(w1(x), . . . , wN (x)) = (K(x, x1), . . . ,K(x, xN )) ·Cw+(p1(x), . . . , pQ(x)) ·Bw
(5.10)

which splits them additively via (5.1) into

wj = wKj + wPj , 1 ≤ j ≤ N (5.11)

with
wKj (x) = (K(x, x1), . . . ,K(x, xN ))Cw ej ,

wPj (x) = (p1(x), . . . , pQ(x))Bw ej .
(5.12)

into polynomials and linear combinations of kernel translates.
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At this point we can already de�ne the unique Lagrange basis L by requiring
that the value matrix VL is the identity matrix. Its construction matrices
are then uniquely de�ned by(

CL
BL

)
=

(
A P
P T 0

)−1(
IN×N

0

)
.

We could require the basis p1, . . . , pQ of P = Pdm to be of Lagrange form on
the �rst Q points of X. However, this might have an in�uence on the general
form of data�dependent bases. But:

Theorem 5.2.3. Given a nonsingular value matrix Vw, the corresponding

basis w is uniquely de�ned and independent of basis changes in Pdm. In

particular, the coe�cient matrix Cw and the split (5.11) are unique, while

the Bw matrices change.

Proof: Each basis change in Pdm is given by the transition Q := P · C with
a nonsingular Q × Q matrix C. Then, by easy calculations, the matrix Bw
goes over to C−1Bw, but by (5.10), the basis functions wj are not changed,
as is the matrix Cw by (5.8). In the second equation of (5.12), the matrix C
cancels out.

Using a general basis w, we can write the interpolant sf to a data vector
f ∈ RN as

sf =
∑
xj∈X

wjλj,w(f) (5.13)

where the coe�cients λj,w(f) must take linear combinations of the elements
of f . If the data come from a function f in the sense that the above vector
f is (f(x1), . . . , f(xN ))T , the coe�cients λj,w(f) are linear combinations of
point evaluation functionals δx1 , . . . , δxN .

De�nition 5.2.2. The functionals λj,w(f) in (5.13) are the associated func-
tionals to the basis w.

If we assemble the associated functionals into a column vector Λw(f) ∈
RN , and if we insert points xk into (5.13), we get f = VwΛw(f) and thus

Λw(f) = V −1
w f. (5.14)

Thus, like in the unconditionally positive de�nite case see (3.9), the inverse
of the value matrix governs how the associated functionals are composed out
of the point evaluation functionals. Note the similarity to divided di�erences
here. If, for interpolation by polynomials, we consider the Newton formula,
we see the �Newton� basis and the divided di�erences making up an inter-
polant of the form (5.13). In such a case, Vw is a nonsingular triangular
matrix, as ist V −1

w . In general, (5.14) implies
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Theorem 5.2.4. The calculation of the associated functionals to a general

basis follows a triangular scheme if and only if the basis has a triangular

pattern of zeroes. Similarly, the associated functionals are orthogonally com-

posed out of the point evaluation functionals if and only if the basis has an

orthogonal value matrix.

The identity (5.14) has some in�uence on the stability of evaluation of
the interpolant (5.13). If we ignore the stability of calculating the basis w
and the functionals λj,w(f), the numerical stability of evaluating (5.13) at
some point x is governed by the expression∑

xj∈X
|wj(x)| |λj,w(f)| ≤ ‖w(x)‖p‖Λw(f)‖q

with 1/p+ 1/q = 1. We shall evaluate the right�hand side of this for various
bases.

Using (5.8) and P TCw = 0 we see that the matrix(
CTw , B

T
w

)
A
(
Cw
Bw

)
= CTwACw = Gw = CTw Vw

is symmetric. If we use the semi�inner product (5.2), the Gramian matrix

Gw = ((wi, wj))1≤i,j≤N

of semi�inner products consists of the bilinear form acting on columns of Cw,
i.e.

Gw = CTwACw = CTw Vw =
(
(wKi , w

K
j )
)

1≤i,j≤N , (5.15)

but this matrix will usually be only positive semide�nite since we have a
semi�inner product. In particular, Theorem (5.2.2) yields

Corollary 5.2.1. The Gramian in the semi�inner product (5.2) of all data�

dependent bases has rank N −Q. In particular, it is impossible to have a full

orthonormal basis of N functions of KX if Q > 0.

Note that there is another form of the Gramian due to discrete `2 inner
products on X is

H = V T
w Vw,

since the rows of Vw correspond to points, while the columns correspond
to functions. Clearly, this matrix is positive de�nite, and there are plenty
of `2�orthonormal bases of KX , in particular the Lagrange basis we shall
consider in Section 5.7.

Theorem 5.2.5. All `2�orthonormal bases w on X arise from orthogonal

value matrices Vw along the above lines. In particular, Theorem (5.2.4) is

applicable here.
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5.3 Polynomial Projectors

We now want to get rid of the polynomial part in (5.8). To this end, we
need a N ×N matrix Π with ΠP = 0 and full rank N −Q. There are many
ways to get such a matrix. Since the Q×Q matrix P TP is nonsingular due
to unisolvency, we can de�ne a symmetric projector via

Π := I − P (P TP )−1P T . (5.16)

For any vector z ∈ RN the vector Πz satis�es the moment conditions, and
that for all vectors satisfying the moment conditions there is such a represen-
tation. This follows from the fact that Π is the orthogonal projector on RN
to the kernel of P T . Note that here Π is not the general projector de�ned in
(2.18).

Another way to get an N ×N matrix Π with ΠP = 0 and full rank N −Q
is to reorder the points of X to let the set XQ := {x1, . . . , xQ} be unisolvent
and to let the polynomial basis be a Lagrange basis on XQ. Then we have

P =
(IQ×Q

P2

)
and can de�ne

Π =

(
0Q×Q 0Q×N−Q
−P2 IN−Q×N−Q

)
. (5.17)

This arises naturally here and will be useful for what follows. If seen as
actions on data vectors, the special projector Π of (5.16) replaces the data by
the error of the `2�optimal polynomial recovery on X, while (5.17) replaces
the data by the error of interpolation in XQ. In both cases, the data of
polynomials are mapped to zero, i.e. ΠP = 0 holds. However, the matrix Π
of (5.16) has the advantage to be symmetric, idempotent, and independent
of the choice of basis in Pdm.

We collect a few facts that directly follow from discrete least�squares ap-
proximation and linear algebra, In all cases, the maximal rank of Π and the
property ΠP = 0 imply

Theorem 5.3.1. 1. For all vectors z in RN seen as values on X, the

vector Πz is the error of the best `2 approximation to z by the range of
P , i.e. by the values of polynomials of Pdm on X.

2. I −Π is the orthogonal projector to the range of P .

3. Π is the orthogonal projector on RN to the kernel of P T .

4. For any vector z ∈ RN , the vector Πz satis�es the moment conditions.

5. For all vectors c satisfying the moment conditions there is a represen-

tation as c = Πz for some z ∈ RN .
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Theorem 5.3.2. The projector Π is independent of the choice of basis in

P = Pdm.

Proof: If we go from P to P · C with a nonsingular Q × Q matrix C, the
projector does not change. But the assertion also follows from the previous
theorem, since Π depends only on the range of P .

Theorem 5.3.3. The matrix ΠTAΠ is symmetric and positive semide�nite

with rank N −Q.

Proof The quadratic form z 7→ zTΠTAΠz is positive semide�nite, be-
cause the vectors Πz satisfy the moment conditions. Its kernel is the kernel
of Π and thus equal to the range of P , i.e. of dimension Q.

If we multiply (5.8) from the left by Π, we get

ΠACw = ΠVw (5.18)

also for the general situation. Note that equation (5.18) generalizes the
identity ACw = Vw obtained in the unconditionally positive de�nite case
see (3.4). For later use, we note that Theorem (5.3.1) implies that we can
factorize

Cw = ΠFw (5.19)

with a nonunique but nonsingular N × N matrix Fw. In particular, a very
natural candidate for a basis w∗ is de�nable by

Cw∗ := Π, Bw∗ = P T ,

due to the properties of Π. In the two special cases for Π provided above, the

matrix
(

ΠT

PT

)
has rank N , and thus Theorem (5.2.2) is applicable, yielding a

basis in both cases. Since Theorem (5.3.1) implies that
(

Π
PT

)
has rank N ,

and thus Theorem (5.2.1) is applicable. The value matrix of this basis is

Vw∗ = AΠ + PP T .

5.3.1 Partially Orthonormal Bases

We now can look for all bases which have Gramians Go which are N × N
diagonal matrices with Q zeros and N −Q ones on the diagonal. With the
projector

Π := I − P (P TP )−1P T

that is independent of the choice of polynomial basis, we can use (5.19) as
Cw = ΠFw and write down the necessary equation

CTwACw = F TwΠTAΠFw = Go = G2
o.
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Since Fw is nonsingular (but also nonunique), we get the decomposition

ΠTAΠ = (F Tw )−1G2
oF
−1
w = ETwEw

with the matrix
Ew := GoF

−1
w .

Theorem 5.3.4. All partially orthonormal bases of KX arise from factor-

izations

ΠT AΠ = F T F (5.20)

with N ×N matrices F of rank N −Q.

Proof: We saw above that the factorization is necessary. To prove that it is
su�cient, we start from (5.21) and perform a Singular Value Decomposition
F TF = UTΣU of the positive semide�nite and symmetric matrix F TF , with
an orthogonal N ×N matrix U . The matrix Σ of singular values will have
exactly Q zeros on the diagonal, and we introduce Go := sgn Σ = G2

o to
re�ect this pattern of zeros. If the invertible diagonal matrix S is obtained
from Σ by replacing the zeros on the diagonal by ones, we get

Σ =
√
SGo
√
S

and
ΠT AΠ = F T F = UT

√
SG2

o

√
SU.

This allows us to de�ne the N ×N matrix

C := ΠUT S−1/2

that satis�es moment conditions and is of rank N −Q. We have to comple-
ment it by a Q×N matrix B such that (CT , BT ) has rank N , and then we
get a basis w by taking Cw := C and Bw := B in (5.10). By construction,
the Gramian Gw is

Gw = CTAC

= S−1/2UΠAΠUT S−1/2

= S−1/2U F T F UT S−1/2

= S−1/2U UT
√
SG2

o

√
SU UT S−1/2

= G2
o = Go.

Note that the value matrix Vw then is obtained via (5.7).

There is a simpler form of this.

Theorem 5.3.5. All partially orthonormal bases of KX arise from factor-

izations

ΠT AΠ = ET E (5.21)

with N×N matrices E of rank N−Q that have the property that E = GoF
−1

with a nonsingular N×N matrix F , and where Go is a N×N diagonal matrix

with Q zeros and N −Q ones on the diagonal.
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Proof: We de�ne a basis w via Cw := ΠF . Then

CTwACw = F TΠAΠF
= F TET EF

= F TF T
−1
GToGoF

−1F
= Go.

Corollary 5.3.1. These partially orthonormal bases are not unique. Even if

Cw is �xed along the above lines, the matrices Bw for application of Theorem

(5.2.1) are still free.

We now consider bases that arise from pivoted Cholesky decompositions
of the symmetric positive semide�nite N ×N matrix ΠT AΠ of rank N −Q.
We assume that after reordering of points and N steps of the Cholesky
algorithm, we get

ΠT AΠ = LGo L
T

with a nonsingular lower triangular matrix L and a diagonal matrix Go with
the �rst N−Q diagonal elements being one and the �nal Q diagonal elements
being zero.

Then, in the above context, F = (LT )−1 and C = Π(LT )−1 and Go =
CTV = L−1ΠV leading to

ΠV = LGo,

generalizing what we had in the Newton case for unconditionally positive
de�nite kernels. If we decompose in SVD style

ΠT AΠ = U Go U
T

with anN×N orthogonal matrix U and a nonngegative matrixGo of singular
values with exactly N −Q positive ones, then

C = ΠU, ΠV = UGo,

again generalizing what we have in the standard case see Section 3.6.

5.4 Eliminating Moment Conditions

Unfortunately, the moment conditions in M are implicit additional condi-
tions, blowing the interpolation problem up to dimension N + Q under Q
conditions. To eliminate the conditions, we should construct an orthonormal
basis of the orthogonal complement of P (RQ), which is the kernel M of P T

in (2.11). This means that there is a N × (N −Q) matrix Z with

M = Z(RN−Q), M 3 a = Zc, c ∈ RN−Q
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whose columns are orthonormal. The matrix Z can be obtained as the left
part of the N ×N orthogonal matrix Q arising from a QR decomposition of
P . This means that the vectors a with

aj =

N−Q∑
i=1

zjici

for vectors c ∈ RN−Q make up all of M , and thus we can write

sa =

N−Q∑
i=1

ci
∑
xj∈X

zjiK(xj , ·)︸ ︷︷ ︸
=:zi+Q

=

N−Q∑
i=1

cizi

for functions

zi+Q :=
∑
xj∈X

zjiK(xj , ·), 1 ≤ i ≤ N −Q.

If we also de�ne zi = pi, 1 ≤ i ≤ Q, we get a �EMC� basis of S obtained by
eliminating moment conditions. We shall analyze it below, but note that
the interpolation problem now needs solving the N ×N system

(AZ,P )

(
c

b

)
= f

with the notation introduced above. Because of ZTP = 0, this can be split
into solving

ZTAZc = ZT f,
Pb = f −AZc,

where the second set of equations just is a solvable polynomial interpolation
problem on the full unisolvent set X. As a byproduct, we get that the (N −
Q)×(N−Q) matrix ZTAZ is symmetric and positive de�nite. Unfortunately,
forming AZ needs N2(N − Q) operations that can possibly be avoided by
using other bases.

5.5 Points and Polynomials First

One way to solve systems with the coe�cient matrix A is to sort out Q
points forming an unisolvent subset, and to reorder these points to become
x1, . . . , xQ. Splitting the matrices A and A similarly, we get

A =

 A11 A12 P1

AT12 A22 P2

P T1 P T2 0

 .
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Note that since we chose a �xed polynomial basis �rst, the matrices P1 and
P2 are determined by this basis choice. Thus the system A11 A12 P1

AT12 A22 P2

P T1 P T2 0

 ·
 C1

C2

b

 =

 V1

V2

0


has a nonsingular Q×Q matrix P1, thus by elimination, we get the following
equations

C1 = −(P T1 )−1P T2 C2

b = P−1
1

(
V1 +A11(P T1 )−1P T2 C2 −A12C2

)
ÃC2 = V2 − P2P

−1
1 V1

(5.22)

with the symmetric (N −Q)× (N −Q) matrix

Ã := A22 −AT12(P T1 )−1P T2 − P2P
−1
1 A12 + P2P

−1
1 A11(P T1 )−1P T2 . (5.23)

These equations can be solved in reverse order due to

Theorem 5.5.1. The matrix Ã is positive de�nite. The resulting matrices

C1 and C2 are independent of the choice of basis in Pdm, as is Ã.

Proof: For an arbitrary vector z ∈ RN−Q we get moment conditions

(P T1 , P
T
2 )

(
−(P T1 )−1P T2 z

z

)
= 0

and thus (
−(P T1 )−1P T2 z

z

)T
A

(
−(P T1 )−1P T2 z

z

)
= zT Ãz ≥ 0

by conditional positive de�niteness of the kernel. If the quadratic form is
zero, then z = 0. A basis change in Pdm will not change P2P

−1
1 , because P1

and P2 go over to P1C and P2C with a nonsingular Q×Q matrix C.

By a simple recalculation of (5.15), we also get

Theorem 5.5.2. In the above form, the Gramian of a basis w is

Gw = C̃Tw ÃC̃w

if we split

Cw =

(
Ĉw
C̃w

)
.
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For a split

Vw =

(
V1,w

V2,w

)
and

Ṽw := V2,w − P2P
−1
1 V1,w

we have
ÃC̃w = Ṽw,

which is a generalization of the corresponding equation in the unconditional
case. But note that both C̃w and Ṽw cannot be inverted in general, since
they are (N −Q)×N matrices of rank N −Q.

Now let the points of a Pdm�unisolvent set X = {x1, . . . , xN} be ordered
in such a way that the �rst Q points form a Pdm�unisolvent subset XQ =
{x1, . . . , xQ} ⊂ X, and assume that p1, . . . , pQ are a basis of Pdm, then

De�nition 5.5.1. Any data�dependent basis w consisting of w1 =
p1, . . . , wQ = pQ and N − Q other basis functions wQ+1, . . . , wN is called

a points and polynomials �rst (PPF) basis.

We now proceed to characterize all PPF bases. We de�ne P T = (P T1 , P
T
2 )

with matrices P1 ∈ RQ×Q, P2 ∈ R(N−Q)×Q using our ordering, and let the
value matrix of the complete basis take the form

Vw :=

(
P1 VP
P2 VR

)
with matrices VP ∈ RQ×(N−Q), VR ∈ R(N−Q)×(N−Q). By construction, the
matrix P1 is nonsingular. When taking a polynomial Lagrange basis to start
with, we get P1 = I.

Theorem 5.5.3. The identity (5.7) is necessarily of the form A11 A12 P1

AT12 A22 P2

P T1 P T2 0

 ·
 0 CP

0 CR
I B

 =

 P1 VP
P2 VR
0 0

 (5.24)

with a Q× (N −Q) matrix B and a nonsingular (N −Q)× (N −Q) matrix
CR. If CR is �xed, all choices of either B or VP are possible, and each such

choice de�nes a PPF basis.

Proof: For a PPF basis, the system (5.7) has the general form A11 A12 P1

AT12 A22 P2

P T1 P T2 0

 ·
 R CP

S CR
T B

 =

 P1 VP
P2 VR
0 0


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and consequently

A11R + A12S + P1T = P1,
AT12R + A22S + P2T = P2,
P T1 R + P T2 S = 0.

A simple elimination then yields ÃS = 0 with the matrix Ã from (5.23) which
is nonsingular due to Theorem (5.5.1). Thus S = 0, and P1 is nonsingular,
this implies that R = 0 and T = I. It is neccessary to prove (5.24).

By elimination in (5.24), we get necessary the equations

CP = −(P T1 )−1P T2 CR,

B = P−1
1

(
VP + (A11(P T1 )−1P T2 −A12)CR

)
,

VR = ÃCR + P2P
−1
1 VP

(5.25)

with the symmetric positive de�nite (N − Q) × (N − Q) matrix Ã from
(5.23). The nonsingularity of the value matrix implies that VR − P2P

−1
1 VP

must be nonsingular, and since this is ÃCR, we get that CR necessarily is
nonsingular. The above arguments can be pursued backwards to show that
each nonsingular CR and arbitrary choices of either B or VP yield a PPF
basis.

For a split

Vw =

(
P1 VP
P2 VR

)
of the corresponding value matrix and

Ṽw := VR − P2P
−1
1 VP

we have
ÃCR = Ṽw. (5.26)

There is a particular special case:

De�nition 5.5.2. A PPF basis is called canonical, if it satis�es VP = 0.

For canonical PPF bases, we have the simple identity

ÃCR = VR (5.27)

between nonsingular (N −Q)× (N −Q) matrices. Either VR or CR can be
prescribed for a canonical PPF basis to de�ne it uniquely.

The identities (5.26) and (5.27) generalize what we had in the unconditionally
positive de�nite case. It will turn out later that canonical PPF bases arise
from using the reduced kernel.

In principle, one may put B := 0, and CR := I. This special case of a PPF
basis will be treated in the next section after a short detour.
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Theorem 5.5.4. All PPF bases w with orthonormal functions wQ+1, . . . , wN
arise from a factorization

Ã = (CTR)−1(CR)−1 = ETE,

where E := C−1
R . Then the value matrix is

Ṽw = (CTR)−1

and for a canonical PPF basis we have VR = (CTR)−1.

Proof: By a simple recalculation of (5.15) using

Cw =

(
0 CP
0 CR

)
,

we get the Gramian of a PPF basis w to be

Gw = CTRÃCR.

If this is the identity, the �rst assertion follows. The rest is a consequence
of (5.26) and (5.27).

This is similar to the results in (3.6) for the unconditionally positive de�nite
case. There di�erent decompositions like Cholesky and SVD were used to
construct orthonormal bases. Here, partially orthonormal PPF bases arise
from SVD or Cholesky decompositions of the matrix Ã.
We now want to determine the discretely orthonormal PPF bases. If we split
the value matrix Vw by reordering the Q unisolvent points, then

Vw =

(
P1 VP
P2 VR

)
.

To construct all discretely orthonormal PPF bases, we start from H =
V T
w Vw = I and get

P T1 P1 + P T2 P2 = I
V T
P VP + V T

R VR = I
P T1 VP + P T2 VR = 0,

(5.28)

where P1 is nonsingular. Then from (5.26) we get

ÃCR = (I + P2(P1)−1(P T1 )−1P T2 )VR,

which is another generalization of what we know in the unconditionally pos-
itive de�nite case.

Theorem 5.5.5. Canonial PPF bases are not discretely orthonormal.

Proof: Canonical PPF bases have VP = 0. Then VR is nonsingular, and the
system (5.28) shows that P2 must be zero. Thus all polynomials must be
zero on all points, contradicting unisolvency.
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5.6 Standard Basis

Here in this section, we would like to use the K(x, xj) as a basis, but we
have to obey the moment conditions. We order the points in such a way
that the �rst Q are unisolvent, and we let p1, . . . , pQ be a Lagrange basis of
polynomial interpolation on x1, . . . , xQ. Then we can reproduce

p(y) =

Q∑
m=1

p(xm)pm(y) for all p ∈ P, y ∈ Ω,

and for the set {y} ∪ {x1, . . . , xQ} we have a coe�cient vector

1,−p1(y), . . . ,−pQ(y)

that satis�es the moment conditions on that set, i.e.

1 · p(y)−
Q∑

m=1

p(xm)pm(y) = 0 for all p ∈ P.

This allows to de�ne the functions

sy(x) := K(x, y)−
Q∑

m=1

pm(y)K(x, xm), x ∈ Ω

for all y ∈ Ω \ {x1, . . . , xQ} which are in KX . We use this to write down a
generalization of the usual reproduction formula. To this end, we take an
arbitrary sc,b ∈ KX of the form (2.17) and evaluate

(sc,b, sy) =

N∑
i=1

ci

(
K(xi, y)−

Q∑
m=1

pm(y)K(xi, xm)

)

=
N∑
i=1

ciK(xi, y)−
Q∑

m=1

pm(y)
N∑
i=1

ciK(xi, xm)

= sc,b(y)− pb(y)−
Q∑

m=1

pm(y)(sc,b(xm)− pb(xm))

= sc,b(y)−
Q∑

m=1

pm(y)sc,b(xm),

Then a standard basis generalizing the translates K(x, xj) consists of
p1, . . . , pQ and of simple linear combinations of translates of K, i.e.

sj(x) := K(x, xj)−
Q∑

m=1

pm(xj)K(x, xm), Q+ 1 ≤ j ≤ N.

If we add sj := pj for 1 ≤ j ≤ Q, we have N functions and need to prove
linear independence.
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Theorem 5.6.1. This set of functions is a basis.

Proof: De�ne P T = (IQ×Q, P
T
2 ) due to the Lagrange property on the �rst

Q points. We split A and A to get

A =

 A11 A12 I
AT12 A22 P2

I P T2 0

 .

The value matrix has P as its left N ×Q submatrix. The right N × (N −Q)
submatrix is (

A12

A22

)
−
(
A11

AT12

)
· P T2

due to the de�nition of the basis. The identity (5.7) then is A11 A12 I
AT12 A22 P2

I P T2 0

 ·
 0 −P T2

0 I
I 0

 =

 I A12 −A11 P
T
2

P2 A22 −AT12 P
T
2

0 0


which could also have been obtained via the coe�cient matrices and (5.10).
The �rst matrix is nonsingular, the second has rank N , and thus the value
matrix has rank N .

We see that we have got a PPF basis with B = 0 and CR = I. In terms of
the split (5.12), the standard basis satis�es

sj = 0 + sPj , 1 ≤ j ≤ Q,
sj = sKj + 0, Q+ 1 ≤ j ≤ N.

The Gramian follows from (5.15) and takes the form(
0 0

0 Ã

)
with the symmetric matrix

Ã := P2A11P
T
2 − P2A12 −AT12P

T
2 +A22

that can later be interpreted as a kernel matrix of the reduced kernel. This
generalizes the fact that the kernel matrix A itself is the Gramian of the
standard basis in the unconditionally positive de�nite case see (3.6).

5.7 Lagrange Basis

The Lagrange basis u1(x), . . . , uN (x) has the value matrix Vu = I and is
de�ned via (

A P
P T 0

)(
u(x)
v(x)

)
=

(
KX(x)
p(x)

)
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with
KX(x)T := (K(x1, x), . . . ,K(xQ, x)) ∈ RN ,
p(x)T := (p1(x), . . . , pQ(x)) ∈ RQ,
u(x)T := (u1(x), . . . , uN (x)) ∈ RN ,
v(x)T := (v1(x), . . . , vQ(x)) ∈ RQ.

The construction matrices of the Lagrange basis follow from Theorem (5.2.2)
by setting Vw = I. For practical calculations, one can also use the equations
(5.22) backwards. The same equations yield the Gramian of the Lagrange
basis as the symmetric positive semide�nite N ×N matrix

(−P2P
−1
1 , I)T Ã−1(−P2P

−1
1 , I)

of rank N −Q. Note that A−1 is the Gramian of the Lagrange basis in the
unconditionally positive de�nite case.

We now look at arbitrary other bases w = (w1, . . . , wN ) with nonsingular
value matrices

Vw := (wj(xk))1≤j,k≤N .

Here and elsewhere we stick to the notation that points vary with the row
index and functions vary with the column index. Then we see that

(w1(x), . . . , wN (x)) = (u1(x), . . . , uN (x))Vw

is the way the basis is composed out of the Lagrange basis.

It is tempting to ask for PPF Lagrange bases. But:

Theorem 5.7.1. For N > Q there is no PPF Lagrange basis.

Proof: If there were a PPF Lagrange basis, we must have P2 = 0 in (5.24).
But then all polynomials including 1 must vanish on xQ+1, . . . , xN .

But there clearly is a canonical PPF basis that is partially Lagrange in the
sense that VR = I and VP = 0. It has CR = Ã−1 by (5.27), and the equations
(5.25) yield B and CP for this case. Since not necessarily P2 = 0, the basis
is not Lagrange in the true sense.

In terms of the Lagrange basis, we can form the power kernel [17]

KX(x, y) := K(x, y)−
N∑
i=1

ui(x)K(xi, y)−
N∑
i=1

K(x, xi)ui(y)

+
N∑

i,j=1

K(xi, xj)ui(x)uj(y)

= K(x, y)− uT (x)KX(y)− uT (y)KX(x) + uT (x)AuT (y)
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which is symmetric and positive de�nite on Ω \X and vanishes when one of
its arguments is in X. The quadratic term can be eliminated using

uT (x)Au(y) = uT (x) (KX(y)− Pv(y)) = uT (x)KX(y)− pT (x)v(y)

at the expense of bringing polynomials into the representation.

The power function on X then is de�ned via

P 2
X(x) := KX(x, x) for all x ∈ Ω.

5.8 Newton Basis, Iterative Construction

We start with XQ := {x1, . . . , xQ} to be unisolvent, and there we take the
standard Lagrange basis v1, . . . , vQ. We need all values vi(xj), 1 ≤ j ≤
N, 1 ≤ i ≤ Q for further calculation. We already have vi(xj) = 0 for
1 ≤ i < j ≤ Q. We shall need the de�nition of the reduced kernel

KQ(x, y) := K(x, y)−
Q∑
j=1

vj(x)K(y, xj)−
Q∑
k=1

vk(y)K(x, xk)

−
Q∑
j=1

Q∑
k=1

vj(x)vk(y)K(xj , xk)

which is symmetric and unconditionally positive semi-de�nite kernel on Ω \
XQ and vanishes if one of the arguments is in XQ.

We store the actual values of the power function

P 2
Q(x) := KQ(x, x)

on the points of X. They are zero on XQ. For what follows, we start with
m := Q. Now, for induction, we assume that we already have a construction
of a basis v1, . . . , vm for someQ ≤ m < N with the orthonormality properties

(vi, vj) = δij , Q+ 1 ≤ i, j ≤ m.

Formally, we also assume that we have the values of the power function
Pm(x) on X. Note that the associated power kernel satis�es the recursion

Km(x, y) = Km−1(x, y)− Km−1(x, xm)Km−1(y, xm)

Km−1(xm, xm)

for m > Q (see [21, 17]) and has the properties

Km(xj , y) = Km(x, xj) = 0, 1 ≤ j ≤ m, P 2
m(x) = Km(x, x) for all x, y ∈ Ω.



62CHAPTER 5. THE CONDITIONALLY POSITIVE DEFINITE BASES

Then we de�ne

xm+1 := arg max {Pm(x) : x ∈ X}

and stop if Pm(xm+1) is zero or very small, because then we are done. Now
we formally de�ne

vm+1(x) :=
Km(x, xm+1)√
Km(xm+1, xm+1)

for all x ∈ Ω

to get that
vm+1(xj) = 0, 1 ≤ j ≤ m,

as required. But we have to show how vm+1 and Pm+1 can be calculated
e�ciently on X.

We see immediately that

P 2
m+1(x) = P 2

m(x)− v2
m+1(x) = P 2

Q(x)−
m+1∑
j=Q+1

v2
j (x)

holds by construction and induction. Thus we only need vm+1 on X. We
consider the recursion

Kj(x, y) = Kj−1(x, y)− Kj−1(x, xj)Kj−1(y, xj)

Kj−1(xj , xj)
= Kj−1(x, y)− vj(x)vj(y)

that comes to

vm+1(x) = KQ(x, xm+1)−
m∑

j=Q+1

vj(xm+1)vj(x)

which is computable from the values KQ(x, xm+1) for all x ∈ X. But these
are obtainable from

KQ(x, xm+1) = K(x, xm+1)−
Q∑
j=1

vj(x)K(xm+1, xj)−
Q∑
k=1

vk(xm+1)K(x, xk)

−
Q∑
j=1

Q∑
k=1

vj(x)vk(xm+1)K(xj , xk)

at reasonable cost. It remains to show that

(vm+1, vj) = 0, Q+ 1 ≤ j ≤ m,

and this follows from

(KQ(x, xm+1), vj) = vj(xm+1), Q+ 1 ≤ j ≤ m
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because these vj vanish on x1, . . . , xQ. Furthermore,

P 2
m(xm+1)(vm+1, vm+1) = (Km(x, xm+1),Km(x, xm+1))

= Km(xm+1, xm+1)
= P 2

m(xm+1)

by what is known for power kernels from [17]. This proves orthonormality.
The value matrix of this canonical PPF basis is(

I 0
P2 L

)
with a lower triangular value matrix L = VR, and we have orthonormality of
vQ+1, . . . , vN . Now Theorem (5.5.4) implies that we have CR = (L−1)T and
a Cholesky decomposition Ã = LLT . This proves

Theorem 5.8.1. The above construction generates the canonical PPF basis

with P1 = I, which coincides with the extension of the Lagrange basis of Pdm
by the Newton basis for X \XQ and the reduced kernel.

If we use the reduced kernel for constructing a Lagrange basis on X \ XQ

and use a basis of Pdm for the �rst Q basis functions, we get the canonical
PPF and partially Lagrange basis that we mentioned at the end of Section
5.7.

5.9 Dual Bases

In the unconditionally positive de�nite case, it was easy to de�ne a dual

basis to a given basis w by taking the Riesz representers of the functionals
de�ned in (5.13). This is not possible in the conditionally positive de�nite
case, since the Riesz representation theorem needs a Hilbert space and can be
only applied to functionals λc as in (5.4) that satisfy moment conditions, i.e.
with c ∈M . Thus, after starting from a basis w and forming the N linearly
independent functionals in (5.13), one has to proceed towards a subset of
N − Q linearly independent functionals that satisfy the usual Q moment
conditions.

This can be done in di�erent ways. We start with the PPF situation and
assume that the space Pdm is spanned by a basis p1, . . . , pQ on a minimal
Pdm� unisolvent set XQ = {x1, . . . , xQ} ∈ Ω. Then there is a linear projector
ΠQ onto Pdm de�ned by

(ΠQ(f))(x) :=

Q∑
m=1

f(xm)pm(x), for all x ∈ Ω
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and each functional λ can be turned into another that vanishes on Pdm by
de�ning

(Π∗Q(λ))(f) := λ(f −ΠQ(f)).

If we do this for the N linear functionals of (5.13), we get N functionals

µk(f) := λk(f −ΠQ(f)), 1 ≤ k ≤ N

which will have Riesz representers v1, . . . , vN of the form (5.3).

Theorem 5.9.1. These functions can be expressed via the reduced kernel K̃
as

vk(x) = µykK̃(x, y) = λykK̃(x, y), 1 ≤ k ≤ N, x ∈ Ω.

Proof: On each function sc of the form (5.3) we have

(sc, vk) = µk(sc) = λk(sc −ΠQ(sc))

and consequently

vk(x) = (vk, K̃(x, ·))
= µykK̃(x, y)

= λyk(K̃(x, y)−ΠQ(K̃(x, ·))(y))

= λykK̃(x, y).

Clearly, the functions v1, . . . , vN will only span a space of dimension N −
Q, since they are Riesz representers of N functionals satisfying moment
conditions. They vanish on the �rst Q points, and need to be augmented by
certain polynomials.

5.10 Numerical Tests

We consider the domain Ω similar to the one in Section 4.3, de�ned by the
unit disk with the third quadrant cut away, and select a large set X of points
on a �ne grid on [−1, 1]2 that fall into Ω. We ran the algorithm for all cases
of bases that are mentioned in this chapter. For illustration, we take the
thin�plate spline kernel which is conditionally positive de�nite of order 2.
As a �xed set X to start with, we construct a unisolvent set for P2

4 of 10
points by a pivoted QR decomposition of the value matrix of polynomials
on a �ne point set, see Figure (5.1). This set, when used for order m = 2,
has a unisolvent subset of 3 points that we determine similarly. We reorder
the data sites to have the unisolvent set in front. Then we calculate the
3 polynomial Lagrange basis functions for the unisolvent subset for further
internal use (see Figure (5.2) on the left for one of these Lagrangians). One
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of the full Lagrange basis functions based on Section 5.7 is in Figure (5.2) on
the right. The standard basis of section 5.6 vanishes on the unisolvent set, see
Figure (5.3) on the left, while on the right there is a case of the �projector�
based� strategy of (5.17). For the partially orthonormal bases see Figure
(5.4), in the Cholesky and the SVD case. Finally, Figure (5.6) shows one
of the adaptively constructed Newton basis functions for 25 points and the
associated power function based and selection points in (5.5) on Section 5.8.
Note that this starts from the �rst Q = 3 �xed points and then adaptively
selects points from the �ne set in Figure (5.1).

Figure 5.1: Selected 10 interpolation points

Figure 5.2: Polynomial Lagrange basis function and RBF Lagrange basis
function
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Figure 5.3: Standard basis function and projector basis function

Figure 5.4: Cholesky basis and SVD basis

5.11 Notes and Comments

Altogether, we provided data�dependent bases for KX and prescribed their
relations between these bases. The results cover all kernels in practical use.
There are unexpectedly many choices how to proceed to di�erent bases from
starting with the general form of bases. For instance, preselecting points
leads to basis functions containing polynomial parts, or using a reduced ker-
nel allows reduction to the unconditional case on a subset of points. More-
over, we investigated bases of Lagrange or Newton type, and orthogonal or
orthonormal bases, Finally, one can reduce the conditional positive de�nite
case completely to the unconditionally positive de�nite case by use of the
extended kernel, but we have not commented on this in detail.
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Figure 5.5: Point selection and power function

Figure 5.6: Greedy�selected Newton basis v25
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Chapter 6

Conclusion

We considered general bases, while we specialized to K�orthonormal and
discretely orthonormal bases in Sections 3.4, 3.5 and 5.3.1. Our goal is to
sort all possible bases into certain classes and to prove as much as we can
about their properties and their relations. This leads us to consider di�erent
data�dependent bases and to compare them with respect to stability, recur-
sive computability, duality, and orthogonality properties. We now have a
thorough account of the possibilities to construct bases of data�dependent
subspaces of reproducing kernel Hilbert spaces. The Newton basis seems to
be a particularly good choice, since it is K�orthonormal, allows stable eval-
uation in the sense of (3.10) and also they can be calculated recursively and
adaptively.

But if no data set is speci�ed, we should also consider �data�independent�
bases. The most natural is the eigenfunction basis coming from the Mer-
cer theorem. We described it in Section 2.2 and compared it with data�
dependent bases. Of course, data�independent bases are much more �natu-
ral� than data�dependent bases, and they provide intrinsic information about
the kernel.

We can investigate the connection of the Newton basis to Expansion
kernels. Assume that a positive de�nite kernel has a rapidly converging
series expansion

K(x, y) =
∞∑
k=0

λkφk(x)φk(y),

like in section 2.2. Then the kernel on �nite point set X with N points will
be represented by

KN (xi, xj) =
∑N

k=0 λkφk(xi)φk(xj)

= eTj ΦX,NΛNΦT
X,Nek,

with matrix ΦX,N = (φj(xi))0≤i,j≤N , and diagonal matrix ΛN with element
λ0, . . . , λN on diagonal. We obtain the kernel matrix

AX = ΦX,N

√
ΛN
√

ΛNΦT
X,N ,

showing the connection to the general bases were already de�ned by de-
composition of the kernel matrix. Particularly, we use the Cholesky decom-
position AX = RTR, and take the QR decomposition of

√
ΛNΦT

X,N = R,

69
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then
R = ΦX,N

√
ΛNQ,

holds. Consequently, the Newton basis is related to the eigenfunction basis,
the only di�erence is by a scaling and orthogonal transformation in function
space. This can be also investigated for the other choices of data�dependent
bases. In case of data�independent bases, problems may arise when working
on a set X of centers later, because the Mairhuber�Curtis theorem [15] shows
that matrices of values of the basis on points of X have a data�dependent
rank, if one is in a truly multivariate and nontrivial situation. This is why
we used the data�independent eigenfunction basis only for theoretical com-
parisons.

An important question for future studies is to construct bases iteratively
via Krylov subspace methods and using neighboring points. Such algorithms
can be very e�ective, in particular in cases where local Lagrangian basis
functions decay exponentially, e.g. for thin�plate splines. We refer to [12]
for details. Also, we neglect bases that come from special preconditioning
techniques. Instead, we mainly focused here on bases that can be derived by
standard linear algebra operations on the usual kernel matrix. Consequently,
a future approach can be to construct bases by using preconditioners for the
kernel matrix. In many algorithms it is necessary to solve a linear system
AX = Y with the kernel matrix A. In numerical analysis, a preconditioner
T of a matrix A is a matrix such that T−1A has a smaller condition number
than A. Which means one can solve the preconditioned system

T−1(AX − Y ) = 0,

instead of solving the original linear system above.
This implies the same solution as the original system so long as the

preconditioner matrix T is nonsingular. Usually the preconditioned ma-
trix is computed in iterative methods. Since the operator T−1 must be
applied at each step of the iterative linear solver, it should have a small
cost (computing time) of applying the T−1 operation. Preconditioned iter-
ative methods for AX − Y = 0 are, in most cases, mathematically equiv-
alent to standard iterative methods applied to the preconditioned system
T−1(AX − Y ) = 0. Examples of popular preconditioned iterative meth-
ods for linear systems include the preconditioned conjugate gradient method,
the biconjugate gradient method, and generalized minimal residual method.
Iterative methods, which use scalar products to compute the iterative pa-
rameters, require corresponding changes in the scalar product together with
substituting T−1(AX − Y ) = 0 for AX − Y = 0.

Popular preconditioners like Jacobi, SSOR and ILU can be used to im-
prove the convergence, however, these preconditioners for N points in the
domain have an O(N2) space and computation requirement for dense matri-
ces, which would ruin any advantage gained by the fast matrix-vector prod-
ucts. A good preconditioner will improve the convergence of the iterative
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approach at the expense of an increased cost per iteration. A preconditioner
is useful in case that the total time taken by the preconditioned approach
should be less than the unpreconditioned approach. This is achieved by
using fast matrix-vector product algorithms, resulting in a computationally
e�cient solver with faster convergence.
Consequently, preconditioners are useful in iterative methods to solve a lin-
ear system, since the rate of convergence for most iterative linear solvers
increases as the condition number of a matrix decreases as a result of precon-
ditioning. Iterative Krylov approaches are often used with fast matrix vector
products for e�cient solution. When the underlying system is ill-conditioned,
there is a degradation of the performance of iterative approaches, necessi-
tating the use of a preconditioner for the Krylov iterations. alternatively,
preconditioned Krylov methods can be considered as accelerations. This
also can be investigated for the conditional case, especially it can be crucial
for the iteratively constructed conditional Newton basis.
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