
 

 

 

Grassland Management and Diversity Effects on Soil 

Nitrogen Dynamics and Losses 

 

 

Dissertation zur Erlangung des Doktorgrades der 

Mathematisch-Naturwissenschaftlichen Fakultäten der 

Georg-August-Universität Göttingen 

 

 

vorgelegt von 

Diplom Umweltwissenschaftlerin 

Ina Hoeft 

aus 

Stade 

 

 

Göttingen, Januar 2012 

ZENTRUM 
FÜR BIODIVERSITÄT UND NACHHALTIGE LANDNUTZUNG 

SEKTION 
BIODIVERSITÄT, ÖKOLOGIE UND NATURSCHUTZ 

  CENTRE OF B IODIVERSITY AND SUSTAINABLE LAND USE  

SECTION:  BIODIVERSITY,  ECOLOGY AND NATURE CONSERVATION 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Referentin/Referent: Prof. Dr. Edzo Veldkamp 

Korreferentin/Korreferent: Dr. Marife D. Corre 

Tag der mündlichen Prüfung:    27.02.2012 

 



I 

TABLE OF CONTENTS 

List of tables ......................................................................................................................................... IV 

List of figures ........................................................................................................................................ V 

List of abbreviations and acronyms ..................................................................................................... VI 

Summary ........................................................................................................................................... VIII 

Zusammenfassung ............................................................................................................................... XI 

1 General introduction ............................................................................................................ 1 

1.1 Temperate grasslands - management and biodiversity .............................................. 2 

1.2 Nitrogen in temperate grassland ecosystems ............................................................... 3 

1.3 Experimental sites .......................................................................................................... 5 

1.3.1 The BIOMIX project ............................................................................................................. 5 

1.3.2 The GRASSMAN project ..................................................................................................... 7 

1.4 Methodical outline of nitrogen losses and nitrogen dynamics ................................... 9 

1.4.1 Nitrogen losses ...................................................................................................................... 9 

1.4.2 Nitrogen dynamics .............................................................................................................. 10 

1.4.3 Calculation of nitrogen response efficiency and nitrogen retention efficiency ................... 11 

1.5 Study objectives ............................................................................................................ 12 

2 Response of nitrogen oxide emissions to grazer species and plant species composition 

in temperate agricultural grassland ..................................................................................... 14 

2.1 Abstract ......................................................................................................................... 15 

2.2 Introduction .................................................................................................................. 15 

2.3 Material and methods .................................................................................................. 17 

2.3.1 Study site ............................................................................................................................. 17 

2.3.2 Experimental setup of the main experiment ........................................................................ 18 

2.3.3 Experimental setup of the controlled application experiment ............................................. 19 

2.3.4 Soil analyses ........................................................................................................................ 20 

2.3.5 N oxide measurements ........................................................................................................ 21 

2.3.6 Soil mineral N ..................................................................................................................... 23 

2.3.7 Statistical analysis ............................................................................................................... 24 

2.4 Results ........................................................................................................................... 25 



TABLE OF CONTENTS  |  

 

II 

2.4.1 N oxide emissions and soil controls of the main experiment .............................................. 25 

2.4.2 N2O emissions and soil controls of the controlled application experiment ......................... 27 

2.4.3 Emission factors and calculation of excreta N input and N2O-losses on the paddock scale31 

2.5 Discussion...................................................................................................................... 32 

2.5.1 Grazer effects on N oxide emissions ................................................................................... 32 

2.5.2 Effects of sward composition on N oxide emissions........................................................... 34 

2.6 Conclusions ................................................................................................................... 34 

3 Nitrogen response efficiency of a managed and phytodiverse temperate grassland .... 35 

3.1 Abstract ......................................................................................................................... 36 

3.2 Introduction .................................................................................................................. 36 

3.3 Materials and Methods ................................................................................................ 40 

3.3.1 Study site ............................................................................................................................. 40 

3.3.2 Experimental set up ............................................................................................................. 40 

3.3.3 Soil characteristics ............................................................................................................... 41 

3.3.4 Biomass yield and plant N uptake ....................................................................................... 42 

3.3.5 Soil net N mineralization rates, N supply, and N response efficiency ................................ 43 

3.3.6 Statistical analyses ............................................................................................................... 44 

3.4 Results ........................................................................................................................... 44 

3.4.1 Biomass yield and plant N uptake ....................................................................................... 44 

3.4.2 Soil net N mineralization rates and N supply ...................................................................... 47 

3.4.3 N response efficiency, N uptake efficiency and N use efficiency ....................................... 49 

3.5 Discussion...................................................................................................................... 55 

3.5.1 Soil net N mineralization, plant N uptake and biomass yield ............................................. 55 

3.5.2 N response efficiency .......................................................................................................... 56 

3.6 Conclusions ................................................................................................................... 58 

4 Nitrogen retention efficiency and nitrogen losses of a managed and phytodiverse 

temperate grassland ............................................................................................................... 59 

4.1 Abstract ......................................................................................................................... 60 

4.2 Introduction .................................................................................................................. 61 

4.3 Material and methods .................................................................................................. 62 

4.3.1 Approach ............................................................................................................................. 62 



 

 

III 

4.3.2 Study site ............................................................................................................................. 63 

4.3.3 Experimental set up ............................................................................................................. 64 

4.3.4 Soil characteristics ............................................................................................................... 64 

4.3.5 Gross N transformation rates and microbial biomass .......................................................... 65 

4.3.6 Water balance, N leaching losses and N2O emissions......................................................... 67 

4.3.8 Statistical analysis ............................................................................................................... 68 

4.4 Results ........................................................................................................................... 69 

4.4.1 Gross N transformation rates and microbial biomass .......................................................... 69 

4.4.2 Water balance and N losses ................................................................................................. 71 

4.4.3 N retention efficiency .......................................................................................................... 75 

4.5 Discussion...................................................................................................................... 78 

4.5.1 Gross N transformation rates and microbial biomass .......................................................... 78 

4.5.2 N losses ............................................................................................................................... 79 

4.5.3 N retention efficiency .......................................................................................................... 81 

4.6 Conclusions ................................................................................................................... 82 

5 Synthesis............................................................................................................................... 83 

5.1 Synthesis and discussion of the major findings ......................................................... 84 

5.1.1 The effects of livestock grazing on ecosystem functioning ................................................ 84 

5.1.2 The effects of management intensity (fertilization and mowing) on ecosystem functioning

 ...................................................................................................................................................... 85 

5.1.3 The effect of sward composition on ecosystem functioning ............................................... 86 

5.2 Concluding results ....................................................................................................... 87 

5.3 Implications and suggestions for further research ................................................... 87 

References ................................................................................................................................. 89 

Appendix ................................................................................................................................... 97 

Acknowledgements .................................................................................................................. 100 

Declaration of originality and certificate of authorship ............................................................. 102 

Curriculum Vitae ..................................................................................................................... 103 



IV 

LIST OF TABLES 

Table 2.1 Set up of the controlled application experiment…………………………………..20 

Table 2.2 Soil characteristics in the Ah horizon of the treatments in BIOMIX……………..21 

Table 2.3 Mean N oxide emissions and cumulative N oxide emissions…………………….25 

Table 2.4 N2O-N emissions and emission factors in the controlled application experiment 

and calculated N input with excreta and N2O losses in the main experiment………………..31 

Table 3.1 Soil characteristics in the Ah horizon of a Haplic Cambisol in GRASSMAN…...42 

Table 3.2 Plant N uptake of a grassland under different management practices…………….46 

Table 3.3 Soil net N mineralization rates of a grassland under different management  

practices……………………………………………………………………………………....48 

Table 3.4 N response efficiency of a grassland under different management practices…….50 

Table 3.5 N uptake efficiency of a grassland under different management practices………53 

Table 3.6 N use efficiency of a grassland under different management practices……….....54 

Table 4.1 Soil characteristics in the Ah horizon of a Haplic Cambisol in GRASSMAN…...65 

Table 4.2 Gross N mineralization and nitrification rates under different management 

practices………………………………………………………………………………………70 

Table 4.3 N retention efficiency of a grassland under different management practices…….76 

Table 4.4 Spearman rank correlations between N retention efficiency and plant and soil-

microbial parameters…………………………………………………………………………77 

Table A.1 Biomass yield of a grassland under different management practices…………….99 

 



V 

LIST OF FIGURES 

Figure 1.1 Location of the BIOMIX and GRASSMAN study sites in the Solling Mountains, 

Lower Saxony, Germany……………………………………………………………………...5 

Figure 1.2 Experimental design of BIOMIX…………………………………………...…....6 

Figure 1.3 Experimental design of GRASSMAN…………………………………………....8 

Figure 1.4 Field and laboratory equipment for soil trace gas measurements and analysis….10 

Figure 2.1 Daily air temperature and precipitation rate of the main experiment in 2008 

 and 2009 and the controlled application experiment in 2009 ..……………………….…….19 

Figure 2.2 Mean N oxide emissions of the main experiment ....………………….….……..26 

Figure 2.3 Mean soil mineral N of the main experiment ……..…………………….……....27 

Figure 2.4 N2O-N emissions of the controlled application experiment…………….….……28 

Figure 2.5 Soil mineral NH4
+
 of the controlled application experiment…………….……...29 

Figure 2.6 Soil mineral NO3
-
 of the controlled application experiment……………….……30 

Figure 3.1 Trends between N response efficiency and N supply, N uptake efficiency  

and N use efficiency………………………..………………………………………………...51 

Figure 4.1 NO3
-
 and DON leaching losses under different management practices……........72 

Figure 4.2 N2O emissions under different management practices………………...……..….74 

Figure A.1 BIOMIX experiment with different swards in spring 2008……………….….…97 

Figure A.2 BIOMIX experiment with cattle and sheep grazing in spring 2008………….....97 

Figure A.3 GRASSMAN experiment in summer 2009. Photograph: Laura Rose……..……98 

 



LIST OF ABBREVIATIONS AND ACRONYMS  | VI 

LIST OF ABBREVIATIONS AND ACRONYMS 

AIC   Akaike information criterion 

BaCl2   Barium chloride 

BS    Base saturation 

C   Carbon 

CEC   Cation exchange capacity 

CFIC    Continuous flow injection colorimetry 

CO2   Carbon dioxide 

CrO3   Chromium trioxide 

DON   Dissolved organic nitrogen 

EF   Emission factor 

ET   Evapotranspiration 

Fe   Iron 

GC   Gas chromatograph 

H2O   Water 

H2O2   Hydrogen peroxide 

ICP-OES  Inductively coupled plasma - optical emission spectroscopy 

IPCC    Intergovernmental Panel on Climate Change 

K   Potassium 

K2SO4   Potassium sulphate 

LME   Linear mixed effects model 

Mol   Mole 

N   Nitrogen 

14
N   Stable N isotope, frequency of occurrence 99.634% 

15
N   Stable N isotope, frequency of occurrence 0.366% 

N2   Dinitrogen 

Nt   Total soil nitrogen 

Na   Sodium 

NH4
+
   Amonium 

NH4Cl   Amonium chloride 



 

 

VII 

NH4NO3  Ammonium nitrate 

NO   Nitric oxide 

NO2   Nitrogen dioxide 

NO3
-
   Nitrate 

N2O   Nitrous oxide 

NPK   Mineral fertilizer with nitrogen, phosphorus and potassium 

NRE   Nitrogen response efficiency 

NUE   Nitrogen use efficiency 

P   Phosphorus 

P   Significance level 

PVC   Polyvinyl chloride 

R
2
   Coefficient of determination 

SE   Standard error 

TDN   Total dissolved nitrogen  

UV   Ultraviolet 

WFPS   Water filled pour space 



SUMMARY  | VIII 

 

SUMMARY 

Grasslands play an important role in land use, covering one third of the agriculturally 

utilized landscape in Europe. As a consequence of management intensification in the last 60 

years, the productivity of grasslands increased and the diversity of these systems decreased. 

Nitrogen (N) plays a key role in these ecosystems – it limits primary productivity and affects 

biodiversity. Increasing N supply may alter nitrous oxide (N2O) and nitric oxide (NO) 

emissions, which play a major role in atmospheric chemistry and contribute to global 

warming. Nitrate (NO3
-
) leaching from soils can be a threat for groundwater quality. N losses 

of N2O and NO emissions and NO3
-
 leaching from soils result from microbial processes 

denitrification and nitrification. In this study, we analyzed the effect of different management 

intensities and plant functional diversity on N losses and ecosystem functioning. 

The study was carried out as part of the Cluster of Excellence “Functional 

Biodiversity Research” at the Georg-August-University of Göttingen and was funded by the 

State of Lower Saxony (Ministry of Science and Culture). The study was conducted in the 

framework of two interdisciplinary projects (BIOMIX & GRASSMAN) from 2008 – 2010 in 

the Solling, in Lower Saxony, Germany. We analyzed a grassland grazed by cattle or sheep 

(BIOMIX) and a cut grassland with different management intensities (GRASSMAN). In both 

projects, functional plant diversity was influenced by the use of herbicides. Our particular 

focus was on N losses (N2O and NO emissions, N leaching) and N dynamics (net and gross 

mineralization). Within GRASSMAN, we calculated N response efficiency and N retention 

efficiency on ecosystem-level. N response efficiency is defined as the product of uptake 

efficiency (defined as plant N uptake per unit of available N) and N use efficiency (defined as 

productivity per unit of plant N uptake). In addition, we defined N retention efficiency as the 

soil available N retained in an ecosystem. 

In BIOMIX, we investigated the response of N2O and NO emissions to different 

grazers and sward composition. Paddocks partly pretreated with a herbicide against dicots 

were grazed rotationally by either cattle or sheep. Mean N2O emissions were 38.7 µg N2O-N 

m
-2

 h
-1

, mean NO emissions 2.4 µg NO-N m
-2

 h
-1

. Cumulative NO-N emissions were larger 

for sheep- than for cattle-grazed paddocks. In a controlled application experiment, plots with 

cattle excreta showed larger N2O emissions than plots with sheep excreta, reaching peak 

emissions of 1921 µg N2O-N m
-2 

h
-1

 on cattle urine patches compared to 556 µg N2O-N m
-2 

h
-



 

 

IX 

1
 on sheep urine patches, related to different N-inputs per excretion. Peak emissions of dung-

treated plots were much smaller. The N2O emission factors were 0.4% for cattle urine, 0.5% 

for sheep urine, 0.05% for cattle dung and 0.09% for sheep dung. In the main and the 

controlled application experiment, plant species composition was insignificant compared to 

the effect of grazers on N oxide emissions. N oxide emissions on the paddock scale were 

larger for sheep- compared to cattle-grazing, despite larger emissions per cattle excretion. We 

attributed this to the more even spread of sheep excreta compared to cattle excreta.  

In GRASSMAN, we investigated the effects of management practices (fertilizer 

application and mowing frequency) and sward composition on N losses (N2O emissions, N 

leaching) and N dynamics (net and gross mineralization), and calculated N response 

efficiency and N retention efficiency. A three-factorial design was conducted, including two 

fertilization treatments (180 – 30 – 100 kg NPK ha
-1 

yr
-1

 and no fertilization), two mowing 

frequencies (cut once and thrice per year) and three sward compositions (control, dicot-

enhanced and monocot-enhanced swards) over a two-year period. In 2009, N2O emissions 

were significantly influenced by both management practices (fertilization and mowing 

frequency). In 2010, only fertilization affected N2O emissions. In 2009, NO3 leaching losses 

were influenced by fertilization and in 2010 by both management practices (fertilization and 

mowing frequency) influenced NO3 leaching. Net N mineralization rates were affected only 

by fertilizer application in 2009. In 2010, not only fertilization but also mowing frequency 

influenced net N mineralization rates. Neither management practices nor sward composition 

affected gross N mineralization. The N response efficiency was largely influenced by 

fertilization, followed by mowing frequency, explaining 41% and 3% of the variance, 

respectively, in 2009. In 2010, the effect of fertilization was lessened whereas the effects of 

mowing frequency and sward composition were more pronounced, accounting for 24%, 12% 

and 6% of the variance, respectively. The N response efficiency was larger in unfertilized 

than in fertilized plots, in plots cut thrice than once per year, and in control swards than in 

monocot- or dicot-enhanced swards. Fertilization decreased N response efficiency through 

decreases in both N uptake efficiency and N use efficiency whereas mowing frecuency and 

sward composition affected N response efficiency through N uptake efficiency rather than N 

use efficiency. N retention efficiency was calculated only for 2010 and was largely 

influenced by fertilization followed by sward composition explaining 22% und 17% of the 

variance, respectively. Unfertilized plots showed larger N retention efficiency than fertilized 

plots and N retention efficiency decreased in the order control > dicot-enhanced > monocot-
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enhanced swards with a significant difference between control and monocot enhanced 

swards. N retention efficiency was highly correlated with microbial ammonium (NH4
+
) 

immobilization and microbial biomass and only marginally correlated with plant N uptake, 

underlining the importance of microbial N retention in the soil-plant system. 

Our results indicated that management practices are the most important factor 

determining ecosystem functioning in grassland. Fertilization, mowing frequency and 

livestock grazing largely influenced N response efficiency, N retention efficiency and N 

losses. The sward botanical composition had a minor effect on N cycling or efficiency. 

Control sward composition of ~70% monocots and ~30% dicots, resulting from extensive 

long-term management showed the largest efficiencies. Deviations from these proportions - 

even to more balanced proportions of monocots and dicots - decreased efficiencies. N 

response efficiency and N retention efficiency are appropriate tools to evaluate environmental 

sustainability of sward compositions and management practices of grasslands. 
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ZUSAMMENFASSUNG 

Grünland spielt eine große Rolle in der Landnutzung und nimmt ein Drittel der 

landwirtschaftlich genutzten Fläche von Europa ein. Als Konsequenz der Intensivierung 

landwirtschaftlicher Bewirtschaftungsmaßnahmen der letzten 60 Jahre nahm die Produktivität 

des Grünlands zu während die Diversität dieser Systeme abnahm. In Grünland-Ökosystemen 

spielt Stickstoff (N) eine Schlüsselrolle – N bedingt die Primärproduktion und beeinflusst die 

Biodiversität. Zudem kann eine steigende N-Verfügbarkeit gasförmige Emissionen, wie z.B. 

Distickstoffoxid (N2O) und Stickstoffmonoxid (NO) fördern, die eine große Rolle in der 

Atmosphäre spielen und zur globalen Erwärmung beitragen. Eine höhere Nitratauswaschung 

(NO3
-
) aus Böden kann eine Gefahr für die Grundwasserqualität sein. N-Verluste durch 

Ausgasung von N2O und NO sowie NO3
-
-Auswaschung sind dabei die Folgen der 

mikrobiellen Prozesse Denitrifikation und Nitrifikation. In dieser Studie haben wir den Effekt 

von unterschiedlichen Bewirtschaftungsintensitäten und funktioneller Pflanzendiversität auf 

die N-Verluste und Ökosystemfunktionen untersucht. 

Die Studie ist Teil des Excellenzclusters „Funktionelle Biodiversitätsforschung“ der 

Georg-August-Universität Göttingen und wurde durch das Niedersächsische Ministerium für 

Wissenschaft und Kultur finanziert. Die Studie wurde im Rahmen von zwei interdisziplinären 

Projekten (BIOMIX & GRASSMAN) von 2008 bis 2010 im Solling, Niedersachsen, 

Deutschland durchgeführt. Wir untersuchten von Rindern und Schafen beweidetes Grünland 

(BIOMIX) und gemähtes Grünland mit unterschiedlichen Bewirtschaftungsintensitäten 

(GRASSMAN). In beiden Projekten wurde die funktionelle Pflanzendiversität durch 

Herbizide eingestellt. Der Fokus unserer Arbeit lag auf den N-Verlusten (N2O and NO 

Emissionen, NO3
-
-Auswaschung) und der N Dynamik (Netto und Brutto Mineralisation). In 

GRASSMAN berechneten wir zusätzlich die N-Nutzungseffizienz und die N-

Rückhalteeffizienz auf Ökosystemebene. Dabei ist die N-Nutzungseffizienz das Produkt der 

Aufnahmeeffizienz (definiert als N-Aufnahme der Pflanze pro verfügbares N) und der N-

Nutzungseffizienz auf Pflanzenebene (definiert als Produktivität pro N-Aufnahme der 

Pflanze). Darüber hinaus berechnen wir N-Rückhalteeffizienz in Böden als einen Index, der 

das Verhältnis von N-Verlusten zu dem im Grünland verbleibenden N beschreibt. 

In BIOMIX haben wir die Auswirkung von Beweidung und Pflanzenarten-

zusammensetzung auf N2O and NO Emissionen untersucht. Die mit einem Herbizid gegen 

Dikotyle vorbehandelten Weiden wurden mit Rindern oder Schafen Rotationsweise beweidet. 
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Mittlere N2O Emissionen lagen bei 38.7 µg N2O-N m
-2

 h
-1

, mittlere NO Emissionen betrugen 

2.4 µg NO-N m
-2

 h
-1

. Kumulative NO-N Emissionen waren höher auf den von Schafen 

beweideten Flächen als auf den von Rindern beweideten Flächen. In einem kontrollierten 

Applikations-Experiment führte die Behandlung mit Rinderurin zu höheren N2O Emissionen 

als die Behandlung mit Schafurin. Die Emissionshöchstwerte von 1921 µg N2O-N m
-2 

h
-1 

bei 

Behandlung mit Rinderurin im Vergleich zu 556 µg N2O-N m
-2 

h
-1

 bei Schafurin standen im 

Zusammenhang mit unterschiedlichen N-Einträgen pro Ausscheidung der Tiere. Die 

Emissionshöchstwerte der mit Dung behandelten Flächen waren im Vergleich mit den 

jeweiligen Urinbehandlungen viel geringer. Die N2O Emissionsfaktoren betrugen 0.4% für 

Rinderurin, 0.5% für Schafurin, 0.05% für Rinderdung und 0.09% für Schafdung. Sowohl das 

Beweidungs-Experiment, als auch das kontrollierte Applikations-Experiment zeigten, dass 

die Pflanzenartenzusammensetzung auf N-Emissionen im Vergleich zum Einfluss der 

Weidetierart auf N-Emissionen unbedeutend war. Trotz höherer N-Einträge auf 

Rinderweiden waren die N-Emissionen aus der Schafbeweidung höher. Wir führten dies auf 

die gleichmäßigere Verteilung von Schafs-Exkrementen im Vergleich zu Rindern-

Exkrementen zurück.  

In GRASSMAN untersuchten wir die Auswirkungen von unterschiedlichen 

Bewirtschaftungsregimen (Düngung und Schnittintensität) und Pflanzenarten-

zusammensetzung auf die N-Verluste (N2O Emissionen, NO3
-
 Auswaschung) und die N-

Dynamik (Netto und Brutto Mineralisation) und kalkulierten die N-Nutzungseffizienz und die 

N-Rückhalteeffizienz. Ein dreifaktorielles Design mit folgenden Faktoren wurde über einen 

Zeitraum von zwei Jahren etabliert: Düngung (180 – 30 – 100 kg NPK ha
-1

 yr
-1

 und keine 

Düngung), Schnittintensität (ein- und dreimal pro Jahr) und Pflanzenartenzusammensetzung 

(eine unbehandelte Kontrolle, eine Dikotyl-erhöhte und eine Monokotyl-erhöhte Grasnarbe). 

In 2009 wurden die N2O Emissionen erheblich von beiden Bewirtschaftungsfaktoren 

(Düngung und Schnittintensität) beeinflusst, während in 2010 nur die Düngung die N2O 

Emissionen beeinflusste. In 2009 wurden NO3
-
 Auswaschungsverluste durch Düngung und in 

2010 von beiden Bewirtschaftungsfaktoren (Düngung und Schnittintensität) beeinflusst. Die 

Netto N-Mineralisation Raten wurden in 2009 nur von der Düngung beeinflusst. In 2010, 

zeigte nicht nur die Düngung, sondern auch die Schnittintensität einen Einfluss auf die Netto 

N-Mineralisation Raten. Weder die Bewirtschaftung (Düngung) noch die 

Pflanzenartenzusammensetzung hatte einen Einfluss auf die Brutto N-Mineralisation. Die N-

Nutzungseffizienz wurde vor allem durch die Düngung und als weiterer Faktor durch die 
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Schnittintensität in 2009 beeinflusst, welche 41% bzw. 3% der Varianz erklärten. In 2010 

hatte die Düngung mit 24% der erklärten Varianz einen geringeren Effekt auf die N-

Nutzungseffizienz, während die Auswirkungen der Schnittintensität (12%) und die 

Pflanzenartenzusammensetzung (6%) stärker ausgeprägt waren. Die N-Nutzungseffizienz 

war auf ungedüngten Flächen größer als auf gedüngten, in den dreimal geschnittenen Flächen 

höher als in den einmal geschnittenen, und in der unbehandelten Kontrolle höher als in der 

Monokotyl-erhöhte oder Dikotyl-erhöhte Grasnarbe. Düngung verringert die N-

Nutzungseffizienz durch die Abnahme in der N-Aufnahmeeffizienz und der N-

Nutzungseffizienz auf Pflanzenebene, während die Schnittintensität und die 

Pflanzenartenzusammensetzung nur durch die N-Aufnahmeeffizienz beeinflusst werden. Die 

N-Rückhalteeffizienz wurde nur für 2010 berechnet und wurde durch die Düngung und die 

Pflanzenartenzusammensetzung mit 22% und 17% der erklärten Varianz beeinflusst. N-

Rückhalteeffizienz nahm in der Reihenfolge unbehandelte Kontrolle > Dikotyl-erhöhte > 

Monokotyl-erhöhte Grasnarbe mit einem signifikanten Unterschied zwischen der 

unbehandelten Kontrolle und der Monokotyl-erhöhten Grasnarbe ab. Die N-

Rückhalteeffizienz ist mit dem mikrobiellen Ammonium (NH4
+
) und der mikrobiellen 

Biomasse hoch und mit der N-Aufnahme der Pflanzen nur gering korreliert, was die 

Bedeutung der mikrobiellen N Retention im System Boden-Pflanze unterstreicht. 

Unsere Ergebnisse zeigen, dass die Bewirtschaftung der wichtigste und bestimmende 

Faktor der Ökosystemfunktionen eines Grünlands ist. Düngung, Schnittintensität und 

Beweidung beeinflussen die N-Nutzungseffizienz, die N-Rückhalteeffizienz und die N-

Verluste. Die Zusammensetzung der botanischen Grasnarbe hat einen geringen Einfluss auf 

den N Kreislauf oder die N-Nutzungs- und die N-Rückhalteeffizienz. Wobei die 

Pflanzenartenzusammensetzung der unbehandelten Kontrolle (~70% Monokotyle und ~30% 

Dikotyle), die sich unter der extensiven Langzeit-Bewirtschaftung eingestellt hatte, die 

höchsten Effizienzen zeigte - sowohl eine Erhöhung der Monokotyledonen als auch eine 

Erhöhung der Dikotyledonen führte zu einer Verringerung der Effizienzen. Darüber hinaus 

sind N-Nutzungs- und N-Rückhalteeffizienz geeignete Werkzeuge, die sich zur Evaluierung 

ökologischer Nachhaltigkeit von Pflanzenartenzusammensetzungen und Management-

Praktiken im Grünland eignen. 
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1.1 TEMPERATE GRASSLANDS - MANAGEMENT AND BIODIVERSITY 

Grasslands play an important role in the land use of the European Union (EU), 

covering more than 30% of the agriculturally utilized landscape (EUROSTAT, 2001). 

However, the distribution of natural European grassland is restricted to marshlands close to 

the coast, very dry and very wet ecosystems in the lowlands and to above the timberline in 

mountainous ecosystems. Since the Middle Ages, the human population increased and forests 

have been cleared and replaced by grassland and arable land (Ellenberg and Leuschner, 

2010). In the 20
th

 century, also semi-natural grassland was utilized agriculturally and the 

management was intensified by increasing mowing frequency, grazing pressure and 

fertilization. Grassland management shifted from extensive grazing and mowing regimes of 

one cut yr
-1

 to intensive grazing and mowing with three to six cuts yr
-1

. Fertilization has been 

increased from no or low fertilization rates to amounts of 150 – 300 kg N ha
-1 

yr
-1

. As a 

result, semi-natural grassland ecosystems were replaced by pastures and meadows or arable 

land where the soil was very fertile and non-profitable grassland on low fertile soils became 

abandoned (Isselstein et al., 2005; Krahulec et al., 2001; Tasser and Tappeiner, 2002; 

Vitousek et al., 1997).  

Permanent grassland makes an important contribution to plant diversity (Nösberger 

and Rodriguez, 1996). More diverse grassland systems have a large potential in increasing 

the productivity and the sustainability of ecosystem services and might be advantageous 

compared to simplified or less species-rich communities under the conditions of climate 

change: Hector et al. (1999) and Naeem et al. (1994) showed that more diverse grasslands 

can be more productive than less diverse grasslands. Agricultural intensification in European 

grasslands is one of the main factors for biodiversity decline (Tscharntke et al., 2005). 

Grassland is managed intensively or transferred into cropland. As a result, semi-natural 

grassland were replaced by agriculturally grasslands with a low plant and animal diversity 

(Fuller, 1987; Green, 1990; Poschlod and Bonn, 1998). A large-scale vegetation survey done 

by Krause et al. (2011) and Wesche et al. (2009) indicated that mesic and wet grasslands in 

Central Europe lost 30 – 50% of its plant species richness since the mid 20
th

 century due to 

changes in land use.  

Biodiversity and ecosystem services in grassland have received an increasing 

attention. Therefore, grassland ecosystems are intensively studied. Most of the studies have 
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so far been carried out in experimental grassland plots, sown and weeded intensively (Hector 

et al., 1999; Naeem et al., 1994; Tilman et al., 1996), making the results difficult to transfer to 

permanent grassland (Caliman et al., 2010; Petersen et al., 2012). Initiated in 2006 and 2008, 

the BIOMIX experiment and the GRASSMAN experiment aim to fill this knowledge gaps. 

Within these two experiments an untreated control sward was compared with herbicides 

treated swards. The swards received management treatments differing in grazing animals 

(BIOMIX) and in cutting frequency and fertilization (GRASSMAN).  

 

1.2 NITROGEN IN TEMPERATE GRASSLAND ECOSYSTEMS 

Nitrogen (N) is an essential plant nutrient that limits primary production in many 

ecosystems, making requirement for N fertilizers pervasive in agricultural systems (Vitousek 

and Howarth, 1991). The Haber-Bosch process was the key invention in the 20
th

 century, 

which enabled the conversion of N2 into reactive N and thus the industrial production of 

mineral N fertilizer (Gruber and Galloway, 2008). A large proportion of applied fertilizer N 

can be lost via emissions of nitrous oxides (N2O) and nitric oxide (NO) or nitrate (NO3
-
) 

leaching. These N losses from soils result from the microbial processes denitrification and 

nitrification (Firestone and Davidson, 1989). N2O is an important greenhouse gas 

contributing to global warming and the depletion of stratospheric ozone (Mosier et al., 1996; 

Schlesinger, 2009). It has a global warming potential that is 298 times larger than that of 

carbon dioxide (CO2) and its concentration increased from 270 parts per billion (ppb) during 

the pre-industrial period to 319 ppb in 2005 (IPCC, 2007). The main sink of N2O in the 

stratosphere is its destruction to highly reactive NO, which plays a crucial role regulating 

troposphere ozone concentrations (Crutzen, 1979). NO3
-
 is the dominant form of N leached 

from soil in temperate systems. Most soils are negatively charged; therefore ammonium 

(NH4
+
) concentrations are usually small due to a fast conversion into NO3

-
. Leaching of NO3

-
 

can be a threat for groundwater quality. Taken up with drinking water, NO3
- 
can be harmful 

to human health by causing methemoglobinemia (blue-baby syndrome) (Di and Cameron, 

2002). To protect humans, the European Union (EC Directive on Drinking Water 80/788) 

threshold value for drinking water is 50 mg NO3
-
 L

-1
. Furthermore, NO3

- 
leaching can cause 

eutrophication of surface waters (Di and Cameron, 2002; Howarth, 1988).  
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As a consequence of the increasing global population, a more intensive agricultural 

production and therewith increasing use of N fertilizers can be expected for the future 

(Galloway et al., 2008). Beside (mineral) fertilizer application, a main source of N losses 

results from livestock management systems (Davidson, 2009). Urine and dung patches in 

pastures have been identified as potential hotspots for N losses from soils (Ma et al., 2006). 

There are N transformation characteristics for excreta patches of different pasture animals, 

depending on the excreta-covered area and the N concentration (Ma et al., 2006; Williams 

and Haynes, 1994). Cattle excreta patches are larger than those of sheep (Bolan et al., 2004). 

However, sheep urinate more frequently than cattle and their urine is more evenly spread in 

smaller, less concentrated patches than cattle urine (Williams and Haynes, 1994). It will be 

necessary to comprise N losses in pastures and meadows, keeping theses losses as small as 

possible and ensuring soil fertility and high productivity at the same time. 

N response efficiency, as a measure of ecosystem functioning, integrates biomass 

production and N retention (Hiremath and Ewel, 2001). N response efficiency is calculated as 

the product of uptake efficiency (defined as plant N uptake per unit of available N) and N use 

efficiency (NUE, defined as productivity per unit of plant N uptake) (Pastor and Bridgham, 

1999). Experimental studies showed that the addition of species can lead to more productivity 

(Hector et al., 1999; Hooper and Vitousek, 1998; Naeem et al., 1994) and that greater 

diversity can lead to greater N retention (Tilman et al., 1996). Since increasing N response 

efficiency indicated increasing productivity and the associated retention of available N in 

plants, N response efficiency thus conversely signifies how much of available N may be lost, 

e.g. through gaseous N emissions and N leaching. In addition, we calculated N retention 

efficiency from soils as an index that describes the ratio of N losses (N2O and NO3
-
) to the N 

retained in the grassland. 
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1.3 EXPERIMENTAL SITES 

The study sites were located in the Solling Mountains, Lower Saxony, in Germany 

(Figure 1.1). 

 

 

 

Figure 1.1 Location of the BIOMIX and GRASSMAN study sites in the Solling Mountains, Lower Saxony, 

Germany. 

 

1.3.1 THE BIOMIX PROJECT 

The BIOMIX pasture project was established in 2006 at the experimental farm of the 

University of Goettingen in Relliehausen in the Solling Mountains, Germany (51°46’47’’N, 

9°42’11’’E, 184-209 m a.s.l.). Mean annual temperature is 8.2°C and the mean annual 

precipitation is 879 mm (Sahin Demirbag et al., 2009). The dominating soil type is a 

Cambisol with vertic properties developed on sediments of the Lower Triassic sandstone 

formation with a clay loam texture. The grassland is a 16-20 year old mesotrophic hill 

grassland with high productivity and moderate levels of plant diversity and is classified as a 

moderately species-rich Lolio-Cynosuretum (Seither, 2010). 
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Figure 1.2 Experimental design of BIOMIX. 

 

BIOMIX was established as a factorial experiment in a block design on 0.5 ha 

paddocks with three replicates presenting two sward compositions and two types of grazer 

(Figure 1.2). Differences in sward composition were established by applying a herbicide 

mixture against dicotyledons (Starane® (active ingredients: Fluroxypyr and Triclopyr) and 

Duplosan KV (active ingredient: Mecoprop P)), resulting in a sward dominated by grasses 

and an untreated control. The dominating plant species on grass swards after herbicide 
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treatment were Dactylis glomerata L., Festuca pratensis Huds., Lolium perenne L., Phleum 

pratense L. and Poa trivialis L. On the untreated control, further dominant species were 

Crepis biennis L., Taraxacum Sec. ruderalia Kirschner, H. Ollg. & Stepanek, and Trifolium 

repens L. (Seither, 2010). Both sward composition treatments were grazed either by sheep or 

cattle or mixed grazing. Suckler cows and calves of the breed German Simmental, and ewes 

with lambs of Blackheaded and Leine sheep were used as grazing animals. In our study, we 

only considered mono-grazed treatments with either cattle or sheep. The paddocks were 

grazed following a rotational scheme from spring to autumn. The average target animal live 

weight was 3000 kg (i.e. six livestock units of 500 kg each) in the first two rotations and was 

reduced to an average target animal live weight per paddock of 2000 kg in the third rotation. 

At the beginning of the grazing season (first two rotations), cattle and sheep stayed in one 

block for approximately 14 days, which was reduced to about seven days at the end of the 

grazing season (third rotation), because less vegetation biomass was available. In July, 

livestock was removed from the experiment for mating for six weeks. The study site received 

only N inputs from direct excreta returned by livestock without additional fertilization.  

 

1.3.2 THE GRASSMAN PROJECT 

The GRASSMAN project was established in 2008 at the experimental farm of the 

University of Goettingen on a moderately species rich grassland in the Solling Mountains in 

Lower Saxony, Germany (51°44’53’’N, 9°32’42’’E, 490 m a.s.l). Mean annual temperature 

is 6.9°C and mean annual precipitation is 1028 mm (Deutscher Wetterdienst 1961 - 1990). 

The dominating soil type is a Haplic Cambisol, developed on sediments of loess on the 

Middle Triassic sandstone formation with a loamy silt texture. The vegetation has been 

classified as a montane, semi-moist Lolio-Cynosuretum (Petersen et al., 2012). This 

permanent grassland site was used for hay making or for grazing throughout the 20
th

 century 

(Geological Map of Prussia 1910 (based on the topographic inventory of 1896), topographic 

maps of Sievershausen and Neuhaus/Solling 1924, 1956 and 1974). The study site was 

managed with moderate fertilization (80 kg N ha
-1

 yr
-1

), liming, overseeding with high value 

forage species and cattle grazing (farm records of Relliehausen since 1966) in the last five 

decades. Two years before the experiment started, fertilizer application stopped. 
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Figure 1.3 Experimental design of GRASSMAN. 

 

Within the GRASSMAN experiment, 72 plots were arranged in a full factorial design 

with six replicate plots (15 m x 15 m each) per treatment presenting three sward 

compositions, two mowing frequencies and two fertilization treatments arranged in a Latin 

rectangle (Figure 1.3). Differences in sward composition were associated with three plant 

functional groups. We established these three sward compositions by applying a herbicide 

mixture against dicotyledons (Starane® (active ingredients: Fluoroxypyr and Triclopyr) and 

Duplosan KV (active ingredients: Mecoprop-P®)) resulting in a sward with reduced herbs 

and legumes, a herbicide mixture against monocotyledons (Select 240 EC® by Stähler 

(active ingredient: Clethodim)) resulting in a sward with reduced grasses, and an untreated 

control sward. Hereafter, we refer to these sward compositions as monocot-enhanced (12-13 

species; 91-93% grasses, 7-9% herbs and 0% legumes) and dicot-enhanced (17 species; 40-

47% grasses, 49-53% herbs and 4-9% legumes) and an untreated control sward (16-18 

species; 68-76% grasses, 21-31% herbs and 1-4% legumes) (Petersen et al., 2012). Two 

mowing frequencies (once and thrice per year) were established. Grassland was mown in 
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mid-July for plots with one-cut per year and in mid-May, mid-July and end of September 

each year for plots with three-cuts per year. A Haldrup © forage combine harvester was used 

with a cutting height of 7 cm. Two fertilization treatments (180 – 30 – 100 kg NPK ha
-1

 yr
-1

 

and no fertilization) were established. The N fertilizer (calcium ammonium nitrate N27) was 

split into two equal applications per year (April and May 2009 and April and June 2010) 

while the combined P and K fertilizer was applied once a year (June 2009 and 2010).  

 

1.4 METHODICAL OUTLINE OF NITROGEN LOSSES AND NITROGEN DYNAMICS 

1.4.1 NITROGEN LOSSES 

NO was measured using the open dynamic chamber method (Figure 1.4 a). NO was 

quantified with a Scintrex LMA-3 NO2 Analyzer with chemiluminescence detector following 

oxidation by a CrO3 catalyst and reaction with a Luminol solution (Figure 1.4 b). N2O was 

measured using closed chamber method during the growing season (Figure 1.4 c). The gas 

samples were analyzed using a gas chromatograph equipped with an electron capture detector 

and an autosampler system (Figure 1.4 d). Additionally, for every gas sample, soil was 

sampled for determination of mineral N (NH4
+
 and NO3

-
), soil moisture content and 

temperature. 

N leaching losses (NO3
-
 and DON) were measured using suction cups in a depth of 

0.5-0.6 m. N concentrations were measured using continuous flow injection colorimetry. The 

total N leaching losses were calculated by multiplying the NO3
-
 concentrations with the 

accumulated daily drainage flux for the corresponding time interval. Daily drainage flux was 

modelled using the 1D hydrological model BROOK90 (Federer et al., 2003). Additionally, 

driving climatic data (precipitation sum, minimum/maximum air temperature, global 

radiation sum, average vapour pressure and average wind speed, all on a daily basis) for the 

model came from a weather station of the study site. 
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Figure 1.4 Field and laboratory equipment for soil trace gas measurements and analysis. a) Open dynamic 

chamber base and cover and b) NO2 detector and calibration gas for in situ nitric oxide (NO) flux 

measurements; c) closed chamber method for nitrous oxide (N2O) flux measurements and d) gas chromatograph 

(GC) with autosampler.  

 

1.4.2 NITROGEN DYNAMICS 

Net N mineralization rates were measured during the growing season using the buried 

bag method. Two intact soil cores were taken from the Ah mineral soil. The soil from one 

core was extruded into a plastic bag, mixed well, and extracted in 0.5 mol L
-1

 K2SO4 (average 

dry soil mass to solution ratio was 1:3). The other intact soil core was put in a plastic bag, 

loosely tied to permit aeration but prevent rain from entering, inserted back into the hole to 

incubate in-situ for ten days, and extracted in a similar manner. NH4
+
 and NO3

-
 were 

measured using continuous flow injection colorimetry.  

a) b) 

c) d) 
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Gross mineralization rates of soil N cycling were measured directly in the field using 

15
N-pool dilution technique. Two soil cores were injected with (

15
NH4)2SO4 solution (for 

gross mineralization) and two soil cores with K
15

NO3 solution (for gross nitrification) with 

99% 
15

N enrichment. After 
15

N injection one soil core of each labeled pair was broken up, 

mixed well in a plastic bag and 0.5 mol L
-1

 K2SO4 were added (average dry soil mass to 

solution ratio was 1:3). The other soil core of the labeled pair was put in a plastic bag, 

inserted back into the soil to incubate for one day, and extracted with 0.5 mol L
-1

 K2SO4. 
15

N 

analysis was done using isotope ratio mass spectrometry. 

 

1.4.3 CALCULATION OF NITROGEN RESPONSE EFFICIENCY AND NITROGEN RETENTION 

EFFICIENCY 

Data of biomass yield was reported by From et al. (2011). A Haldrup © forage 

combine harvester was used with a cutting height of 7 cm. Dry mass of the biomass was 

determined by oven-drying at 60 °C to constant mass. Oven-dried plant samples from the 

second cut (mid-July) were ground and analyzed for total N concentration using a CNS 

elemental analyser (Elementar Vario El, Hanau, Germany). Plant N uptake (kg N ha
-1

 yr
-1

) 

was calculated as: N concentration (kg N kg
-1

 ) * biomass yield (kg ha
-1

 yr
-1

) (Hiremath and 

Ewel, 2001). 

N supply of each plot is defined as the sum of cumulative net N mineralization rates 

of the soil, N fertilization and N deposition rates. Cumulative net N mineralization rates 

during a growing season (i.e. April - September) were calculated by applying the trapezoid 

rule on time intervals between measured rates. For N deposition, we used a value of 12.6 kg 

N ha
-1

 yr
-1

 from bulk precipitation measured within the scope of the EU-level II monitoring 

program (Keuffel-Türk et al., in press). N response efficiency was calculated for each plot as 

follows: N response efficiency (kg biomass kg N
-1

) = (plant N uptake ÷ N supply) * (biomass 

yield ÷ plant N uptake). The ratio of plant N uptake to N supply is referred to as N uptake 

efficiency whereas the ratio of biomass yield to plant N uptake is the N use efficiency 

(Hiremath and Ewel, 2001; Pastor and Bridgham, 1999). 

N retention efficiency was calculated comprising plots with three sward compositions 

(monocot-enhanced, dicot-enhanced and control sward), two fertilization treatments (180 - 30 
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- 100 kg NPK ha
-1

 yr
-1

 and no fertilization) and cut once per year, as follows: N retention 

efficiency = 1 – ((N losses (mg N m
-2

 d
-1

) ÷ gross N mineralization rates (mg N m
-2

 d
-1

)) 

where N losses is composed of average daily N2O (mg N m
-2

 d
-1

) + NO3
-
 (mg N m

-2
 d

-1
) + 

DON (mg N m
-2

 d
-1

); gross N mineralization rates were measured once during the growing 

season 2010. 

 

1.5 STUDY OBJECTIVES 

The aim of the present work was to investigate the soil N losses and soil N dynamics 

in a temperate pasture and a meadow differing in plant composition and management. 

The specific objectives of these studies were: 

 

I. To investigate the response of soil N oxide (N2O and NO) emissions to grazer (cattle 

and sheep) and plant species composition in a pasture. 

II. To investigate N response efficiency of a managed phytodiverse meadow. 

III. To investigate N retention efficiency, soil N cycling and losses of a managed 

phytodiverse meadow. 

 

With these aims I tested the following hypotheses: 

BIOMIX: 

1) On a paddock scale, sheep excreta result in larger N2O and NO emissions than 

cattle excreta. 

2) Grasslands with a more diverse species composition have smaller N2O and NO 

emissions than grass-dominated paddocks. 

GRASSMAN: 

3) Unfertilized plots have larger N response efficiency than fertilized plots. 

4) Plots with a high mowing frequency have larger N response efficiency than plots 

with a low mowing frequency. 

5) N response efficiency increases with increasing number of species (i.e. monocot-

enhanced swards (12-13 species) < dicot-enhanced (17 species) and control swards 

(16-18 species)). 
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6) Fertilization results to larger N losses and smaller N retention efficiency than 

without fertilization. 

7) Intensive mowing frequency decreases N losses and increases N retention 

efficiency. 

8) Swards with equal proportions of various plant functional groups would have small 

N losses and large N retention efficiency. 



 

 

CHAPTER 

2  

 

 

2 RESPONSE OF NITROGEN OXIDE 

EMISSIONS TO GRAZER SPECIES AND 

PLANT SPECIES COMPOSITION IN 

TEMPERATE AGRICULTURAL 

GRASSLAND 
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2.1 ABSTRACT 

Agriculture is an important source of the greenhouse gas nitrous oxide (N2O) and the 

atmospherically-important nitric oxide (NO). We evaluated the effects of different grazers 

and plant species composition on N2O and NO emissions in temperate grassland. Paddocks 

were grazed rotationally by either cattle or sheep. Mean N2O emissions were 38.7 µg N2O-N 

m
-2

 h
-1

, mean NO emissions 2.4 µg NO-N m
-2

 h
-1

. Cumulative NO-N emissions were larger 

for sheep- than for cattle-grazed paddocks. Plant species composition was insignificant 

compared to the effect of grazers on N oxide emissions. In a controlled application 

experiment, plots with cattle excreta showed larger N2O emissions than plots with sheep 

excreta, reaching peak emissions of 1921 µg N2O-N m
-2 

h
-1

 on cattle urine patches compared 

to 556 µg N2O-N m
-2 

h
-1

 on sheep urine patches, related to different N-inputs per excretion. 

Peak emissions of dung-treated plots were much smaller. The N2O emission factors were 

0.4% for cattle urine, 0.5% for sheep urine, 0.05% for cattle dung and 0.09% for sheep dung. 

N oxide emissions on the paddock scale were larger for sheep- compared to cattle-grazing, 

despite larger emissions per cattle excretion. We attributed this to the more even spread of 

sheep excreta compared to cattle excreta.  

 

Keywords: nitrous oxide, nitric oxide, trace gas fluxes, emission factor, dicots, monocots 

 

2.2 INTRODUCTION 

Nitrous oxide (N2O) is an important greenhouse gas that contributes about 6% to the 

anthropogenic greenhouse effect. It has a global warming potential that is 298 times larger 

than that of carbon dioxide (CO2) and its concentration increased from 270 parts per billion 

(ppb) during the pre-industrial period to 319 ppb in 2005 (IPCC, 2007). Agriculture is 

considered responsible for 58% of the anthropogenic N2O production (IPCC, 2007), with 

main sources from livestock management systems and from (mineral) fertilizer application 

(Davidson, 2009). N2O and nitric oxide (NO) emissions from soils result among other from 

the microbial processes denitrification and nitrification (Firestone and Davidson, 1989). 
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These processes are mainly controlled by available N and soil aeration status, which depend 

on soil water-filled pore space (WFPS), and other drivers like soil temperature (Keeney et al., 

1979; Linn and Doran, 1984). 

Urine and dung patches in pastures have been identified as potential hotspots for N2O 

and NO emissions from soils, as large concentrations of N, usually in excess of immediate 

plant requirements, are deposited onto a relatively small soil area (Ma et al., 2006). Urine-N 

is rapidly hydrolyzed and nitrified and the resulting large concentrations of inorganic N are a 

major source of N losses from grazed swards. In contrast, most N in dung is in organic form, 

and the mineral N contents in the soil and corresponding N losses are smaller than from urine 

patches (Flessa et al., 1996). Although several studies have been carried out to determine how 

cattle urine and dung influence N oxide emissions (e.g. Flessa et al., 1996; Van Groenigen et 

al., 2005), much fewer studies exist on N oxide emission responses to sheep urine or dung 

(Shand et al., 2002; Sherlock and Goh, 1983) or on direct comparisons of both cattle and 

sheep excreta (Williams and Haynes, 1994). The majority of these studies was conducted 

under controlled laboratory conditions (Van Groenigen et al., 2005) or with artificial urine 

(e.g. Carter, 2007). However, there is growing concern that results from studies using 

artificial rather than natural urine and from the laboratory may overestimate N oxide 

emissions (Van Groenigen et al., 2005). Nutrient dynamics of excreta patches depend on the 

area covered and on nutrient concentrations (Ma et al., 2006; Williams and Haynes, 1994). 

Cattle excreta patches are larger than those of sheep (Bolan et al., 2004). However, sheep 

urinate more frequently than cattle and their urine is more evenly spread in smaller, less 

concentrated patches than cattle urine (Williams and Haynes, 1994). Sampling directly on an 

excreta patch may lead to an underestimation of paddock-scale N oxide emissions of sheep 

compared to cattle grazing. In contrast, random sampling on the paddock may lead to an 

underestimation of N oxide emissions of cattle compared to sheep grazing, as excreta patches 

of cattle may be missed more often than those of sheep. Additionally, soil compaction in 

camping areas and overlapping of excreta patches may affect N2O emissions (Hack-ten 

Broeke et al., 1996; Van Groenigen et al., 2005). Beside the area influenced by excreta also 

the fodder or paddock size potentially affect N2O emissions (Oenema et al., 1997). 

N losses may not only be affected by grazing but also by plant diversity. There are 

hints in literature that N losses decrease with increasing plant community composition 

(Niklaus et al., 2006). This is traced back to the impact of sward composition on nitrification 

and denitrification processes in grassland soils and an improved efficiency in the uptake of 
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mineral N by more diverse sward communities (Niklaus et al., 2006; Oelmann et al., 2007). 

Differences in N2O and NO emissions between plots differing in sward composition may be 

due to interspecific discrepancies in productivity, growth rates, nutrient demands and mineral 

N-uptake efficiency of the distinct plant communities (Le Roux et al., 2003; Oelmann et al., 

2007). Hence, more diverse swards may have a complementary and therefore overall more 

efficient resource use (Scherer-Lorenzen et al., 2003; Spehn et al., 2002), e.g. due to different 

rooting depths that enable the plants to take up nutrients from different soil horizons (Tilman 

et al., 1996). However, the more efficient uptake of mineral N in more diverse swards was 

due to plant communities dominated by legumes (Niklaus et al., 2006). Furthermore, most 

studies analyzing effects of plant diversity on soil nutrient dynamics have been carried out in 

artificial grassland plots. The short-term nature of these plots, missing agricultural 

management, as well as frequent weeding make the results difficult to compare with 

permanent agricultural grasslands (Caliman et al., 2010).  

In the present study, our goal was to evaluate the effects of different grazers (cattle 

and sheep) and plant species composition on soil N cycling and related N2O and NO 

emissions in permanent, 16-20 year-old agricultural grassland. We tested the following 

hypotheses: 1) on a paddock scale, sheep excreta result in larger N2O and NO emissions than 

cattle excreta and 2) grasslands with a more diverse species composition have smaller N2O 

and NO emissions than grass-dominated paddocks. Measurements of soil N2O and NO 

emissions and supporting variables were performed throughout the grazing season on 

grassland differing in plant species composition due to herbicide treatment and managed 

according to local practices in the Solling uplands (Lower Saxony, Germany). To get a better 

understanding of the maximum N2O emissions on swards differing in species composition, 

we also applied cattle and sheep urine and dung manually in a controlled experiment at the 

same field site. 

 

2.3 MATERIAL AND METHODS 

2.3.1 STUDY SITE  

Our experiment was conducted at the experimental farm of the University of 

Goettingen in Relliehausen in the Solling uplands, Germany (51°46’47’’N, 9°42’11’’E, 184-

209 m a.s.l.) on a moderately species-rich Lolio-Cynosuretum. The grassland is a 16-20 year 
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old mesotrophic hill grassland with high productivity and moderate levels of plant diversity. 

The average annual precipitation is 879 mm, the mean annual temperature 8.2°C (Sahin 

Demirbag et al., 2009). The dominating soil type is a Braunerde-Pelosol (FAO: cambisol with 

vertic properties) developed on sediments of the Lower Triassic sandstone formation with a 

clay loam texture. 

 

2.3.2 EXPERIMENTAL SETUP OF THE MAIN EXPERIMENT 

We established a factorial experiment in a block design on 0.5 ha paddocks in three 

replicates to evaluate grazer and sward composition effects on N cycling and related N oxide 

emissions. In autumn 2006, we established two sward compositions by applying a herbicide 

mixture against dicotyledons (Starane® (active ingredients: Fluroxypyr and Triclopyr) and 

Duplosan KV (active ingredient: Mecoprop P)), resulting in a sward dominated by grasses 

(‘grass sward’; G) and an untreated control (‘diverse sward’; D). After herbicide treatment, 

the dominating plant species on G were Dactylis glomerata L., Festuca pratensis Huds., 

Lolium perenne L., Phleum pratense L. and Poa trivialis L. On D, further dominant species 

were Crepis biennis L., Taraxacum Sec. ruderalia Kirschner, H. Ollg. & Stepanek, and 

Trifolium repens L. (Seither, 2010). Both sward composition treatments were grazed either 

by sheep (S) or cattle (C). Grazing animals were suckler cows and calves of the breed 

German Simmental, and ewes and lambs of Blackheaded and Leine sheep in equal 

proportions. The average target animal live weight per paddock was 3000 kg (i.e. six 

livestock units of 500 kg each) in the first rotation and was reduced to an average target 

animal live weight per paddock of 2000 kg in the third rotation. The study site received only 

N inputs from direct excreta returned by livestock without additional fertilization. The 

experiment was grazed following a rotational scheme from spring to autumn (first, second 

and third rotation in 2008) and again in spring (fourth rotation 2009). Cattle and sheep stayed 

in one block for approximately 14 days at the beginning of the grazing season (first, second 

and fourth rotation), which was reduced to about seven days at the end (third rotation), 

because less vegetation biomass was available. No supplementary feeding took place while 

the animals were on the plots. In July, livestock was removed from the experiment for mating 

for six weeks. We conducted measurements of N oxide emissions, soil mineral N and WFPS 

shortly before and after grazing, following grazing periods from May to September 2008 and 
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additionally for N2O emissions in May 2009 as explained below. Further investigations were 

done in early spring 2009 to catch a possible peak in N2O emissions during thawing, which 

we could not detect, however. Temperature and precipitation rate for the main experiment are 

shown in Figure 2.1 a. 

 

 

 
Figure 2.1 Daily air temperature in °C (●) and precipitation rate in mm in black bars of a. the main experiment 

in 2008 and 2009 (1, 2, 3 and 4 showed the four grazing rotations) and b. the controlled application experiment 

in 2009 at a grassland site in the Solling uplands, Germany. Between May 29
th

 and June 26
th

, and the October 3
rd

 

and October 26
th

 2008 the climate stations return no values. 

 

2.3.3 EXPERIMENTAL SETUP OF THE CONTROLLED APPLICATION EXPERIMENT 

In addition to the main experiment, we conducted a controlled application experiment 

on four exclosures of 4 x 7 m
2
 established in July 2009 on the pastures described above. 

Within these exclosures, we applied urine and dung inside permanent chamber bases used for 

gas flux measurements: urine applied on grass sward/cattle grazed (GC-U), grass sward/sheep 

grazed (GS-U), diverse/cattle grazed (DC-U), diverse/sheep grazed (DS-U) and dung applied 

on grass sward/cattle grazed (GC-D), grass sward/sheep grazed (GS-D), diverse/cattle grazed 

(DC-D) and diverse/sheep grazed (DS-D). Furthermore, we established on GS and DS control 

exclosures without excreta application. Cattle urine was collected seven days before 

application from dairy cattle (German Simmental and German Holstein) at a dairy farm (tie-
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stall and extensive pasture). Sheep urine was collected five days before application from the 

Blackheaded and Leine sheep of the experiment. All samples were kept frozen at -18°C until 

used. Fresh dung was collected from the paddocks on the day of application, pooled, mixed 

and applied within two hours of collection. We applied the amount of one urination or 

defecation within one chamber base. According to own observations and published work 

(Flessa et al., 1996), a cow produces around 1.5 L urination and 1.5 kg defecation per event, 

corresponding to 18 g urine-N 1.5 L
-1

 and 6 g dung-N 1.5 kg
-1

 (Table 2.1). A sheep produces 

on average 70 ml urination and 60 g defecation per event (Ma et al., 2006), corresponding to 

0.3 g urine-N 70 ml
-1

 and 1 g dung-N 60 g
-1

 (Table 2.1). Urine-N was determined using 

continuous flow injection colorimetry (Cenco/Skalar Instruments, Breda, Netherlands) with a 

dilution of 1:100 to scale down large NO3
-
 and NH4

+
 peaks. NH4

+
 was determined using the 

Berthelot reaction method (Skalar Method 155-000) and NO3
-
 was measured using the 

copper-cadmium reduction method (NH4Cl buffer without ethylenediamine tetraacetic acid; 

Skalar Method 461-000). Dung-N was determined after air-drying on a C/N elemental 

analyzer (Vario MAX CN, Elementar, Hanau, Germany). The dry mass of dung was 

determined after air-drying to constant mass. Temperature and precipitation rate for the 

controlled application experiment are shown in Figure 2.1 b. 

 

Table 2.1 Set up of the controlled application experiment showing N-concentration, applied N per chamber base 

and dry matter content at a grassland site in the Solling uplands, Germany. For further explanations, see text. 

 

 

Cattle-urine Sheep-urine Cattle-dung Sheep-dung 

N concentration (g N L
-1

) 12.2 3.88 19.4 16.7 

N applied (g N chamber
-1

) 18.27 0.27 6.02 0.99 

Dry matter content (%) - - 20.7 99.2 

 

2.3.4 SOIL ANALYSES 

Soils were sampled in spring 2008 before the start of the grazing period and in 

summer 2009. At five sampling points per paddock, mineral soils (0-0.1 m depth) were 

sampled, oven-dried (40°C) for a week and sieved (2 mm). Soil texture was determined by 

sedimentary fractionation of the clay fraction (25°C, 21 h, 0.3 m fall height) following the 

Atterberg method after separation of sand and silt fraction (630 µm, 200 µm, 63 µm, 36 µm 

and 20 µm) by wet sieving and destruction of organic matter with 30% H2O2 and Fe oxides 
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with 4% Na-dithionite-citrate solution (Schlichting et al., 1995). Soil bulk density was 

determined in summer 2009 by the soil core method (Blake and Hartge, 1986), assuming a 

particle density of 2.65 g cm
-3

 for mineral soil (Linn and Doran, 1984). Soil pH was 

measured as pH(H2O). Soil samples were ground for analysis of total C and N on a C/N 

elemental analyzer (Vario EL III, Elementar, Hanau, Germany). Soil characteristics are 

summarized in Table 2.2. 

 

Table 2.2 Soil characteristics in the Ah horizon (0-0.1 m) of the treatments at a grassland site in the Solling 

uplands, Germany, sampled in spring 2008 and summer 2009. 

 DC DS GC GS All 

paddocks 
 

Sand (%)     6.8 ± 0.2 

Silt (%)     54.4 ± 1.5 

Clay (%)     38.8 ± 1.4 

Bulk density (g cm
-3

) 
* 

1.3 ± 0.1 1.3 ± 0.1 1.3 ± 0.1  1.3 ± 0.1   

pH (H2O) 
* 

6.8 ± 0.1 6.4 ± 0.2 6.5 ± 0.1 6.8 ± 0.1  

Total carbon (C) (mg C g
-1

) 
* 

36.7 ± 2.4 32.6 ± 4.7 38.2 ± 9.1 34.3 ± 3.8  

Total nitrogen (N) (mg N g
-1

) 
* 

3.3 ± 0.2 3.3 ± 0.4 3.8 ± 0.8 3.3 ± 0.3  

C/N 
* 

12.7 ± 0.6 11.5 ± 0.5 11.5 ± 0.4 12 ± 0.3  
DC: diverse/cattle grazed; DS: diverse/sheep grazed; GC: grass sward/ cattle grazed; GS: grass sward/sheep grazed 
* Means ( SE, n=5) did not differ between treatments.  

Soil chemical data were provided by the Department of Plant Ecology, University of Göttingen.  

 

2.3.5 N OXIDE MEASUREMENTS 

We used the closed chamber method for N2O flux measurements. In the main 

experiment, we inserted randomly three polyvinyl chloride (PVC) chamber bases (0.04 m
2
 

area, 0.35-0.4 m height of chamber base and cover) in each paddock 0.02 m deep into the 

soil. For each measurement, the chamber base was covered with a PVC chamber hood fitted 

with a vent and an air sample port. Following chamber closure, gas samples were taken at 0, 

12, 24, and 36 minutes and stored in pre-evacuated glass containers (100 ml) with teflon-

coated stopcocks. N2O was analyzed using a gas chromatograph (GC 6000, Carlo Erba 

Instruments/Thermo Fisher Scientific, Milan, Italy) equipped with an electron capture 

detector and an autosampler system (Loftfield et al., 1997). Gas concentrations were 

calculated by comparing integrated peak areas of samples with three standard gases (353, 

1005, and 1592 ppb N2O; Deuste Steiniger GmbH, Mühlhausen, Germany). NO was 

quantified using the same three chamber bases as for N2O measurements with the open 
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dynamic chamber method. Chambers were closed for five minutes and NO was quantified 

with a Scintrex LMA-3 NO2 Analyzer with chemiluminescence detector (Scintrex, Ontario, 

Canada) following oxidation by a CrO3 catalyst and reaction with a Luminol solution. The 

flow rate through the chamber was approximately 1.5 L min
-1

. The detector was calibrated 

using a standard gas (3000 ppb NO; Deuste Steiniger GmbH, Mühlhausen, Germany) diluted 

with make-up air to the range of concentrations measured in the field. Detector signal and 

time were recorded every ten seconds with a CR800 series data logger (Campbell Scientific, 

Utah, USA). We calculated N-oxide emissions (μg N m
-2

 h
-1

) from the linear increase of gas 

concentration versus time for each chamber, corrected with air temperature, chamber volume 

and air pressure (Ruser et al., 1998). Cumulative N oxide rates (kg N ha
-1

 139d
-1

) were 

calculated by linear interpolation of the average N2O and NO emissions between the 

measurements and adding the results over the total time period. 

In the controlled application experiment, we installed per exclosure three PVC 

chamber bases (0.07 m
2
 area, 0.35-0.4 m height) three weeks before the first measurements. 

Chamber bases remained at the same location for the duration of the experiment. One pre-

treatment gas flux measurement was conducted on the day of application, prior to applying 

dung and urine. Immediately following application, another N2O flux measurement was done. 

Subsequent measurements were conducted daily during the first three days of the experiment. 

This was followed by two measurements per week and finally, during the last four weeks, 

weekly measurements. Gas sampling (taken at 0, 18, 36 and 54 minutes after chamber 

closure) and N2O analyses were conducted as described above. Cumulative excreta-derived 

N2O emissions (kg N2O-Ncum m
-2 

77d
-1

) were calculated by linear interpolation of the average 

N2O emissions (N2O-Nemitted – N2O-Ncontrol in μg N m
-2

 h
-1

) between the measurements and 

adding the results over the total time period. Emission factors (EF) were then calculated with 

Eq. 1, by using the arithmetic mean per treatment of the accumulated N2O emissions over the 

experimental time of 77 days.  

EF% = [(N2O-Nemitted – N2O-Ncontrol) / N applied] * 100    (Eq. 1) 

Combining the data of the main and the controlled application experiment, we 

performed further calculations for the N input (kg N paddock
-1

 d
-1

) multiplying the number of 

cattle or sheep in a paddock with the frequency of urination or defecation per day, the amount 

and the N concentration of urine or dung per urination or defecation. The climatic conditions 

of both experiments were similar (Figure 2.1). For the duration of the controlled application 
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experiment (77 days), the mean temperature was 10.7°C in 2008 and 11.2°C in 2009, and the 

precipitation rate was 187.0 mm in 2008 and 178.5 mm in 2009. The missing values for 

temperature and precipitation in 2008 were completed by a climate station nearby (Deutscher 

Wetterdienst). According to Williams and Haynes (1994), cattle urinate on average up to 11 

times per day, while sheep urinate more frequently (18-20 times per day). Measurements of 

the soil surface area covered by urine (wetted area; measured by distribution of Br
-
 as a urine 

tracer) range from 0.16 to 0.49 m
2
 for cattle and 0.03 to 0.05 m

2
 for sheep. Cattle excreta also 

cover a larger area than sheep excreta: The surface area of cattle dung patches is about 0.05-

0.09 m
2
, while that of sheep dung patches is about 0.008-0.025 m

2
 (Haynes and Williams, 

1993; Williams and Haynes, 1994). For further calculations, we considered the mean value of 

all ranges for frequency and amount of urination and defacation as the basis for the upscaling 

on paddock size. Excreta-derived N2O emissions (kg N2O-Nemitt paddock
-1 

d
-1

) were 

determined by using the EF per treatment multiplied with the calculated N input (kg N 

paddock
-1 

d
-1

) on the paddock scale. Assuming an even and non-overlapping distribution of 

the single urine and dung patches, the area covered by excreta (m
2
 paddock

-1
 d

-1
) was 

calculated by multiplying the number of cattle or sheep in a paddock with the frequency of 

urinations or defecations and the size of a urine or dung patch.  

 

2.3.6 SOIL MINERAL N  

We sampled soil cores (diameter 2.2 cm; 0.1 m depth) at three points inside the 

chamber bases for the main experiment and at three supplementary patches each with either 

dung or urine application outside the chambers for the controlled application experiment. For 

the main experiment, soil for mineral N extraction was sampled during each N oxide 

measurement and for the controlled application experiment during every second 

measurement. Soil mineral N was determined from fresh soil samples (50-60 g) that were 

added to a 0.5 mol L
-1

 K2SO4 solution directly in the field and extracted after shaking for one 

hour in the laboratory. Soil extracts were filtered (Whatman 589/1) and stored at -18°C in 

scintillation bottles. NH4
+
 and NO3

-
 were measured using continuous flow injection 

colorimetry (Cenco/Skalar Instruments, Breda, Netherlands) as described before. Gravimetric 

moisture content was determined after drying at 105°C for 24 hours. Soil moisture content 

was expressed as WFPS.  
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2.3.7 STATISTICAL ANALYSIS 

For the main experiment, statistical analyses were carried out on N oxide emissions 

averaged over the three chambers per paddock. To test the effects of grazer and plant species 

composition in time series data (N oxide emissions and soil mineral N from rotational 

grazing), we conducted a linear mixed effects model (LME) with grazer and plant species 

composition as fixed effects and date and block as random effects. N oxide emissions and soil 

mineral N were square root transformed. As negative N oxide emissions were detected, we 

added a constant prior to square root transformations for statistics. To test for differences 

between treatments of distinct plant species composition or of different species of grazer on 

cumulative N oxide emissions, we used a T test. To test the effects of continuous variables 

(soil mineral N, WFPS, temperature) on the log-transformed N2O/NO ratio, multiple linear 

regression analysis were carried out. 

On the controlled application experiment, we were not able to measure true replicates. 

With a model of nested temporal pseudoreplicates, the temporal dynamics of the experiment 

was included into the analysis. As we assumed that “time” could have a non-linear effect on 

the development of N2O emissions, time was included into the analysis as a linear effect. We 

applied an LME with log-transformed N2O emissions and soil mineral N (representing the 

response variable). The basic model included the experimental treatments (plant species 

composition, grazer, type of manure and day) as fixed effects and day and subplot as random 

effects.  

We used LME for time series data, because they account for temporal correlation 

among observations on the same experimental unit (Piepho et al., 2004). For all LME-

models, autocorrelation effects were tested before analysis or by modelling heteroscedasticity 

of residual variance by including variance function (Bliese and Ployhart, 2002). If these 

measures improved the relative goodness of the model fit (based on the Akaike Information 

Criterion), the adjustments were included into the model for further analyses (Crawley, 

2007), followed by stepwise model simplification. Mean values in the text are given with 

standard errors. Effects were accepted as statistically significant if P ≤ 0.05. Analyses were 

conducted using R version 2.11.1 (R Development Core Team, 2009).  
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2.4 RESULTS 

2.4.1 N OXIDE EMISSIONS AND SOIL CONTROLS OF THE MAIN EXPERIMENT 

As we found no differences in N oxide emissions before and after grazing, we 

averaged the data for N2O or NO emissions. Over the whole experimental period, grazers and 

plant species composition did not significantly affect mean N oxide emissions (Table 2.3). 

Over the grazing season (139 days), cumulative (± standard error) N2O-N emissions (0.6 ± 

0.07 kg N2O-N ha
-1

) exceeded NO-N emissions (0.16 ± 0.06 kg NO-N ha
-1

) in all treatments. 

There were no significant differences among treatments for cumulative N2O emissions. 

Differences in cumulative NO-N emissions were found between treatments GC and GS (P = 

0.022), with larger NO-N emissions on GS treatments (Table 2.3). Despite the significance, 

the differences were very small. Rotation also affected NO emissions: NO emissions were 

larger during the second grazing rotation compared to the third (with net NO uptake; P < 

0.001; Figure 2.2 a). Average N2O emissions were small during the first two grazing rotations 

but increased in the last rotation 2008 and the first 2009 (P < 0.001; Figure 2.2 b).  

 

Table 2.3 Mean N oxide emissions (in µg N m
-2

 h
-1

) and cumulative N oxide emissions (in kg N ha
-1

 and 

grazing season of 139 d
-1

) in the treatments at a grassland site in the Solling uplands, Germany. 

 

Mean* DC DS GC GS 
NO-N  2.78 ± 5.1 3.98 ± 2.9 1.37 ± 3.0 1.36 ± 3.17 

N2O-N  42.9 ± 9.4 55.3 ± 26.4 28.2 ± 11.7 28.4 ± 11.6 

     

Cumulative
§ 

    

NO-N  0.31 ± 0.16 0.19 ± 0.15 0.03 ± 0.01a 0.13 ± 0.02b 

N2O-N  0.51 ± 0.13 0.79 ± 0.13 0.65 ± 0.16 0.43 ± 0.05 

NO-N+N2O-N  0.82 ± 0.10 0.98 ± 0.30 0.68 ± 0.31 0.56 ± 0.15 
DC: diverse/cattle grazed; DS: diverse/sheep grazed; GC: grass sward/cattle grazed; GS: grass sward/sheep grazed 
* Means (SE, n=6) did not differ between treatments (Linear mixed effects models, P  0.05).  
§ Means (SE, n=3) within rows followed by different letters (small letters) indicate significant differences between the 

treatments; compared were D versus G within grazer or C versus S within sward type (T test, P  0.05). 
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Figure 2.2 Mean (± SE, n=6) N oxide emissions in µg N m
-2

 h
-1

 in the treatments (DC: diverse/cattle grazed; 

DS: diverse/sheep grazed; GC: grass sward/ cattle grazed; GS: grass sward/sheep grazed) at a grassland site in 

the Solling uplands, Germany. a. NO-N and b. N2O-N measurements were calculated from measurements before 

and after grazing and taken for three and for four grazing rotations, respectively. The fourth rotation was the 

first one 2009 while the others were in 2008. Please note different scales of the y-axes. 

 

NH4
+
 was the dominant form of soil mineral N in all treatments and did not differ 

significantly among treatments. Contrary to N2O emissions, soil NH4
+
 increased during the 

first two grazing rotations and decreased by a factor two during the last two grazing rotations 

(P < 0.001; Figure 2.3 a). Soil mineral NO3
-
 was larger during rotations two and four 

compared to the others (P = 0.05). Plant species composition affected soil mineral NO3
-
 (P = 

0.034), with larger concentration in grass than in diverse swards (Figure 2.3 b). The ratio of 

N2O/NO was linearly correlated to WFPS, air temperature and NH4
+
 concentration (R

2
 = 

0.60). 

 

b. a. 
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Figure 2.3 Mean (± SE, n=6) soil mineral N in mg N kg
-1

 in the treatments (DC: diverse/cattle grazed; DS: 

diverse/sheep grazed; GC: grass sward/ cattle grazed; GS: grass sward/sheep grazed) at a grassland site in the 

Solling uplands, Germany. a. NH4
+
 and b. NO3

-
 concentrations were calculated from measurements before and 

after grazing. Shown are data for the four grazing rotations, three in 2008 and one in 2009. 

 

2.4.2 N2O EMISSIONS AND SOIL CONTROLS OF THE CONTROLLED APPLICATION EXPERIMENT 

In the short-term controlled application experiment, patches treated with cattle urine 

had a 13-fold N2O-N flux of those with sheep urine, while plots treated with cattle dung 

showed a 3-fold N2O-N flux of those with sheep dung. The effects of species of grazer (P = 

0.002), type of manure (P = 0.002) and the interaction between grazer species and manure (P 

= 0.009) on N2O emissions were significant, while plant species composition was not (Figure 

2.4). N2O emissions of DC-U rose to a peak of 1921 µg N2O-N m
-2

 h
-1

 immediately after the 

application of urine, peaking again at day 6 and 22, but decreased to the level of the control 

plot (6.3 µg N2O-N m
-2

 h
-1

) thereafter. In contrast to that, the N2O emissions of GC-U 

increased slowly until day 9 (527 µg N2O-N m
-2

 h
-1

), with largest peaks only appearing at day 

18, 24 and 51 after application (Figure 2.4 a). After application of sheep urine, N2O 

emissions of GS-U and DS-U showed distinct developments: N2O emissions increased 

immediately up to 556 µg N2O-N m
-2

 h
-1

 (GS-U) and 434 µg N2O-N m
-2

 h
-1

 (DS-U) upon 

application but decreased rapidly thereafter (Figure 2.4 b). After dung application, N2O 

emissions of DC-D and GC-D increased steadily over the first days after application, with 

peaks at day 6 (145.8 µg N2O-N m
-2

 h
-1

) and day 11 (98 µg N2O-N m
-2

 h
-1

; Figure 2.4 c). 
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N2O emissions of DS-D peaked with a slight time-delay at day 30 (104 µg N2O-N m
-2

 h
-1

). 

Plots of GS-D showed smallest N2O emissions compared to all other treatments. N2O 

emissions over the experimental period peaked here at day 22 (35.4 µg N2O-N m
-2

 h
-1

; Figure 

2.4 d). 

 

 

Figure 2.4 N2O-N emissions (± SE, n=3) in µg N m
-2

 h
-1

 of the controlled application experiment (period of 77 

d
-1

) in diverse (●), grass ( ) and control (without excreta addition) (■) plots at a grassland site in the Solling 

uplands, Germany. Shown are results for urine-treated plots of a. cattle and b. sheep and dung-treated plots of c. 

cattle and d. sheep. Please note different scales of the y-axes. 

 

The soil mineral NH4
+
 concentrations of plots treated with cattle and sheep excreta 

showed similar temporal dynamics, but – regarding urine treatments – at different levels: 

Cattle urine caused a 2-fold (diverse) to 4-fold (grass sward) increase in the concentration 
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compared to plots treated with sheep urine (Figure 2.5 a-b). Cattle dung led to similar NH4
+
 

concentrations as sheep dung, with no statistical difference to the controls (Figure 2.5 c-d). 

Grazer species (P < 0.037) and type of manure (P < 0.001) significantly affected NH4
+ 

concentration.  

 

 
Figure 2.5 Soil mineral NH4

+
 in mg N kg

-1
 of the controlled application experiment (period of 77 d

-1
) in diverse 

(●), grass sward ( ) and control (without excreta addition) (■) plots at a grassland site in the Solling uplands, 

Germany. Shown are results for urine-treated plots of a. cattle and b. sheep and dung-treated plots of c. cattle 

and d. sheep. Please note different scales of the y-axes. 

 

Soil mineral NO3
-
 concentrations of plots treated with cattle and sheep urine showed 

comparable dynamics to the NH4
+
 concentrations. Plots treated with cattle urine showed a 3-

fold (diverse) and 5-fold (grass sward) increase in the concentration compared with plots 

treated with sheep urine (Figure 2.6 a-b). Plots with cattle dung again had similar 
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concentrations as those with sheep dung (for both grass and diverse swards), with no 

significant differences to the controls (Figure 2.6 c-d). Different influences of urine- and 

dung-treatments and cattle and sheep excreta on soil NO3
-
 concentrations were only detected 

by the significant influence of day on NO3
-
 concentrations in soils (P < 0.049). 

 

 

Figure 2.6 Soil mineral NO3
-
 in mg N kg

-1
 of the controlled application experiment (period of 77 d

-1
) in diverse 

(●), grass sward ( ) and control (without excreta addition) (■) plots at a grassland site in the Solling uplands, 

Germany. Shown are results for urine-treated plots of a. cattle and b. sheep and dung-treated plots of c. cattle 

and d. sheep. Please note different scales of the y-axes. 
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2.4.3 EMISSION FACTORS AND CALCULATION OF EXCRETA N INPUT AND N2O-LOSSES ON 

THE PADDOCK SCALE 

Over the controlled application experiment (77 days), cumulative excreta-derived 

N2O-N emissions (± standard error) of plots treated with cattle urine (1.03 ± 0.55 g N2O-N m
-

2
) exceeded those of plots treated with sheep urine (0.02 ± 0.002 g N2O-N m

-2
), the same 

applied for cattle dung (0.04 ± 0.02 g N2O-N m
-2

) and sheep dung (0.01 ± 0.01 g N2O-N m
-2

) 

(Table 2.4). In line with the larger N-input with cattle excreta, the emission factor was 

smaller for cattle than for sheep urine (0.39% and 0.48%, respectively). Emission factors for 

dung were also slightly smaller for cattle (0.05%) than for sheep (0.09%; Table 2.4).  

 

Table 2.4 N2O-N emissions and emission factors (EF) in the controlled application experiment and calculated N 

input with excreta (amount and area covered) and N2O losses in the main experiment at a grassland site in the 

Solling uplands, Germany. For further explanations, see text.  

Controlled application 

experiment 

Cattle-urine Sheep-urine Cattle-dung Sheep-dung 

N2O-Ncum (g m
-2

 77d
-1

)
* 

1.03 ± 0.55 0.02 ± 0.00 0.04 ± 0.02 0.01 ± 0.01 

EF (%)
*
 0.39 ± 0.21 0.48 ± 0.05 0.05 ± 0.03 0.09 ± 0.11 

Main experiment
 

    

N input (kg N paddock
-1

 d
-1

) 1.81 0.28 1.06 0.07 

Area covered by excreta (m
2 

paddock
-1

 

d
-1

) 

32.2 41.0 8.2 16.9 

N2O-Nemitt (kg paddock
-1

 d
-1

) 0.71 0.13 0.05 0.01 
* Means (SE, n=2) were calculated from diverse and grass sward. Statistical analyses were not possible. 

 

On a paddock scale (0.5 ha), the calculated N-input with cattle urine (1.81 g N m
-2

) 

exceeded that with sheep urine (0.28 g N m
-2

); the same applied for cattle dung (1.06 g N m
-2

) 

and sheep dung (0.07 g N m
-2

) (Table 2.4). Based on the emission factors calculated above, 

the urine-derived N2O-N emissions were larger for cattle- than for sheep-grazed paddocks 

(0.71 kg N2O-N d
-1

 and 0.13 kg N2O-N d
-1

, respectively). Dung-derived N2O-N emissions 

were also larger in cattle-grazed than sheep-grazed paddocks (0.05 kg N2O-N d
-1

 and 0.01 kg 

N2O-N d
-1

, respectively; Table 2.4). However, the area covered by excreta per paddock was 

smaller for cattle than for sheep: 32.2 m
2
 d

-1
 were calculated to be covered with cattle urine, 

41 m
2
 d

-1
 with sheep urine, and an additional 8.2 m

2
 d

-1
 with cattle dung and 16.9 m

2
 d

-1
 with 

sheep dung (Table 2.4). 
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2.5 DISCUSSION 

2.5.1 GRAZER EFFECTS ON N OXIDE EMISSIONS 

The hypothesized larger N oxide losses on sheep-grazed paddocks compared with 

those grazed by cattle could only be confirmed for cumulative NO emissions in grass swards 

in the main experiment (Table 2.3). The observed effects for N oxide emissions in the other 

treatments were not consistent. N oxide losses are linked with the N-supply in the soil, which 

on pastures depends on the N applied with excreta. In the controlled application experiment, 

our finding that N2O emissions from cattle excrement-treated plots were larger than from 

sheep excrement-treated plots was consistent with results of Saggar et al. (2007), who 

reported plots treated with cattle excreta to have an 8-fold increase and sheep excreta to result 

in a 2-fold increase in N2O emissions compared to untreated plots. The aim of our 

experiments was to use maximum N2O emissions of the controlled application experiment as 

an estimate for N2O emissions of the main experiment. Beside available N, also soil aeration 

status and temperature control denitrification and nitrification processes in the soil (Keeney et 

al., 1979; Linn and Doran, 1984). We checked climate conditions for the duration of the 

controlled application experiment (77 days) of both years. Mean temperature was 10.7°C in 

2008 and 11.2°C in 2009, and precipitation rate was 187.0 mm in 2008 and 178.5 mm in 

2009. Thus, we carefully combined both experiments using the EF derived from the 

controlled application experiment and the calculated N input per paddock and day. We 

calculated expected N2O emissions per paddock that were larger for cattle- than for sheep-

grazing (Table 2.4). Thus, the amount of N per excretion cannot explain the missing effect of 

cattle and sheep on N oxide emissions in the main experiment.  

In the main experiment, measured N oxide losses were dominated by the occasional 

measurement of urine and dung hotspots. Our first hypothesis was based on the amount and 

frequency of urinations and defecations and the number of cattle and sheep per plot, which 

led to a larger cover with excrements on sheep- than on cattle-grazed plots (1.16% of the 

paddock area per day for sheep grazing, 0.81% for cattle grazing; Table 2.4) and should thus 

lead to a larger probability of measuring on hotspots in sheep- than in cattle-grazed pastures. 

Other studies also concluded that the most apparent reason for differences in N2O losses of 

cattle and sheep excrements are differing quantities of excrements covering the soil and 

different nutrient concentrations of the excrements (Ma et al., 2006; Williams and Haynes, 
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1994). The cover with excreta influences the aeration and the nutrient supply in the soil, and 

should in turn affect the rate of N2O emissions. This should lead to larger emissions from 

sheep- than from cattle-grazed paddocks, which we did not observe. This could be due to the 

large spatial and temporal variability in emissions. 

We detected larger N2O losses of urine patches than in dung patches. Urine patches of 

both sheep and cattle had larger emissions than dung patches. Due to freeze-thaw events, N2O 

emissions of dung-treated plots measured by Wachendorf et al. (2008) were above those of 

urine-treated plots, whereas studies of Yamulki et al. (2000) reported larger emissions from 

urine patches than from dung patches. The typical development of N2O emissions after 

application of urine observed in numerous studies is a rapid increase of N2O emissions with a 

successive decline thereafter, as urinary N is rapidly hydrolyzed and nitrified in pasture soils 

(Flessa et al., 1996; Saggar et al., 2007). Our study showed two different developments in 

N2O emissions of plots treated with cattle urine, depending on the plant species composition 

(Figure 2.4). There are studies yielding similar results for both developments: maximum N2O 

emissions appearing 12-24 h after application were e.g. measured by Sherlock and Goh 

(1983) and Williams et al. (1999). Studies noting a delayed maximum N2O flux after 

application of urine, showing slow increases of up to 5-14 days after application as observed 

in our grass plots, were reported by Lovell and Jarvis (1996) or Koops et al. (1997). The 

observed effect of a delayed increase in N2O emissions in the grass swards were inconsistent 

with results of soil mineral N, which did not show a delayed peak. Soil mineral NH4
+
 und 

NO3
-
 were 3-fold and 2-fold in the grass swards compared to diverse plots. However, soil 

mineral N concentrations in all treatments were the same as in the control plots when the N2O 

peaks appeared at day 18, 24 and 51 after application. The potentially higher nutrient demand 

of Lolium perenne and Dactylis glomerata compared to herbs or legumes (Mattsson et al., 

2009) or a more efficient N use in diverse swards (Scherer-Lorenzen et al., 2003; Spehn et 

al., 2002) could not explain these delayed N2O emissions in the grass paddocks. However, we 

observed that some of the plants in the grass sward died off after the cattle urine application, 

which may have played a role in the delayed N2O peaks that we observed. 
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2.5.2 EFFECTS OF SWARD COMPOSITION ON N OXIDE EMISSIONS 

The observed results for N oxide emissions were not consistent with our hypothesis 

that more diverse paddocks would have smaller N oxide emissions than grass swards. 

Mattsson et al. (2009) argued that high productive grass species such as Lolium perenne and 

Dactylis glomerata have a higher demand for nutrients from soils than other grass species, 

herbs or legumes. Legumes may lead to an accumulation of inorganic N in soils as they 

symbiotically fix atmospheric N2, but they are generally inefficient in capturing soil 

extractable N. Furthermore, they may release symbiotically fixed N into the soil through 

turnover of root and shoot tissue, which may lead to an accumulation of NO3
-
 as the substrate 

for denitrification in soils (Hooper and Vitousek, 1997; Niklaus et al., 2006). Legumes can 

therefore decrease the efficiency of capturing mineral N that normally results from species 

diverse grassland swards (Niklaus et al., 2006). However, these studies were not consistent 

with our observed findings of larger NO3
-
 concentrations in grass than in diverse swards 

despite similar N oxide losses. Our findings were supported by the results of N yield. 

Regarding plant species composition no significant differences were found for N yield 

(Seither et al., 2012). Further research is necessary to better understand influences of plant 

species composition on N dynamics in permanent agriculturally managed grassland. 

 

2.6 CONCLUSIONS 

Combining the data from the two experiments, we conclude that plant species 

composition was insignificant compared to the effect of grazers on N oxide emissions. The 

response of N oxide emissions on the paddock scale were larger for sheep- compared to 

cattle-grazing, despite larger emissions per cattle excretion due to the larger amounts of N per 

excretion event. We attributed this to a presumably larger paddock surface area covered by 

sheep than by cattle excreta. 
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3.1 ABSTRACT 

Aims Our goal was to assess how management and sward functional diversity affect nitrogen 

response efficiency (NRE), the ratio of plant biomass production to supply of available 

nitrogen (N) in temperate grassland.  

Methods A three-factorial design was employed: three sward compositions, two mowing 

frequencies, and two fertilization treatments.  

Results NRE was largely influenced by fertilization followed by mowing frequency and 

sward composition. NRE was larger in unfertilized than fertilized plots, in plots cut thrice 

than plots cut once per year, and in control swards than in monocot- or dicot enhanced 

swards. Fertilization decreased NRE through decreases in both N uptake efficiency (plant N 

uptake per supply of available N) and N use efficiency (NUE, biomass produced per plant N 

uptake) whereas mowing frequency and sward composition affected NRE through N uptake 

efficiency rather than NUE. The largest NRE in the control sward with 70% monocots and 

30% dicots attests that these proportions of functional groups were best adapted in this 

grassland ecosystem.  

Conclusions Optimum NRE may not be a target of most farmers, but it is an appropriate tool 

to evaluate the consequences of grassland management practices, which farmers may employ 

to maximize profit, on environmental quality. 

 

Keywords: N uptake efficiency, N use efficiency, net N mineralization rates, functional 

diversity 

 

3.2 INTRODUCTION 

Nutrient response efficiency, the amount of biomass produced per unit of plant-

available nutrients (Pastor and Bridgham, 1999), is a measure of ecosystem functioning that 

integrates productivity and the retention of nutrients (Hiremath and Ewel, 2001). In terrestrial 

ecosystems where nitrogen (N) is limiting net primary productivity (Vitousek and Howarth, 
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1991), the efficient use of available N may give communities a competitive advantage over 

communities that are less efficient in using N (Bridgham et al., 1995). There is no common 

agreement about the definitions of nitrogen response efficiency (NRE) and nitrogen use 

efficiency (NUE) in literature (Aerts, 1990; Vitousek, 1982; Xu et al., 2012). In our study, 

NRE is calculated as the product of N uptake efficiency (defined as plant N concentration x 

plant biomass ÷ soil available N) and NUE (defined as plant biomass ÷ plant N concentration 

x plant biomass), two indices that are commonly used to evaluate the role of N in ecosystem 

productivity (Pastor and Bridgham, 1999). However, both indices give an incomplete picture 

of how N availability affects biomass production. A large NUE does not necessarily reflect a 

large productivity because NUE can increase or decrease if the plant N concentration changes 

even if plant biomass stays the same. NUE is also often not well correlated with soil N 

availability (Iversen et al., 2010). Similarly, N uptake efficiency does not directly indicate 

productivity as it is influenced by changes in plant N concentration. In contrast, NRE is an 

index that reflects the ability of plants to acquire N from the soil and to use it for biomass 

production once it is taken up (Bridgham et al., 1995), and thus it is a better index if biomass 

production is the main goal (as is the case in most temperate grasslands). Since a large NRE 

indicates a large biomass production per unit of soil available N and thus a large N retention 

in plants, it is inversely correlated with N lost, e.g. through nitrate (NO3
-
) leaching and 

gaseous N emissions. A large NRE may thus contribute to the reduction of reactive N in the 

soil, which affects water and air pollution as well as the emission of greenhouse gases 

(Dobermann, 2005). 

Pastor and Bridgham (1999) developed a general model of NRE showing maximum 

efficiency at intermediate levels of N availability. In their model, productivity (PN supply) at a 

given level of available N (i.e. N supply in the environment) is defined as: 

PN supply = N supply * (P ÷ N supply) + 0       (Eq. 2) 

In this model, NRE is the slope of a line from the origin to a given point of the 

function that describes the relationship between productivity and N supply (Pastor and 

Bridgham, 1999). This implies that NRE changes with N supply and depends on the shape of 

the function in Eq. 2. If the relationship between productivity and N supply is linear, NRE is 

constant across a gradient of N supply. However, a linear relationship over a wide range of N 

supply is unlikely given the observation that no further increase in productivity occurs at high 

levels of N availability (Pastor and Bridgham, 1999). Studies that investigated the 
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relationships between NRE and soil N availability found increases in NRE as soil N 

availability declined in an experimental plantation of tropical trees (Hiremath and Ewel, 

2001; Yuan et al., 2006). Bridgham et al. (1995) gave a mathematical proof that nutrient 

response efficiency has to be unimodal across broad ranges of nutrient supply. However, the 

unimodal efficiency has not been observed for N so far and is debatable (Yuan et al., 2006). 

A monotonic increase of NRE with decreasing soil N availability was observed by Yuan et al. 

(2006) for Mongolian grassland. 

NRE can be influenced by management practices and plant diversity through their 

effects on N availability, uptake efficiency and NUE. Management practices commonly 

employed in grasslands are fertilization and mowing. Fertilization directly influences N 

availability. Furthermore, mowing removes available N from the ecosystem through the 

mown biomass. In systems with large nutrient availability, mowing may mitigate the negative 

effects of nutrient enrichment on plant diversity by removing excess nutrients (Ellenberg and 

Leuschner, 2010; Pykälä, 2000). Mowing can also lead to a denser root system in the top soil 

by increasing the root-to-shoot-ratio and thus causing a more effective plant N uptake 

(Kammann et al., 1998; Mooney and Winner, 1991). In contrast, an increase in allocation of 

resources to the shoots (Guitian and Bardgett, 2000) as well as a decrease in root biomass 

following defoliation have been reported by other studies (Dawson et al. 2000; Holland and 

Detling, 1990). Mikola et al. (2009) also reported that even for grazed grasslands defoliation 

is the most important mechanism explaining grazing effects on plant attributes while excreta 

return play only a minor role. To date, there are no published studies on how N fertilization, 

mowing frequency and their interactions affects NRE of temperate grasslands, and thus the 

present study is the first to report such pattern. 

Apart from direct effects, management practices may also affect NRE through a 

change in species composition of the sward. In the past six decades, European grasslands 

have undergone many changes in management (e.g. increased fertilizer input and mowing 

frequency, or abandonment from agricultural use) that had profound consequences for 

biodiversity (Isselstein et al., 2005). The impact of plant diversity on nutrient uptake, 

productivity and NRE has been subject of several studies. Hiremath and Ewel (2001) reported 

an increase in N uptake efficiency with increase in life-form diversity for a tropical tree 

plantation. Several studies showed that more diverse grasslands were more productive (e.g. 

Hector et al., 1999; Tilman et al., 1996; Weigelt et al., 2009) with an increased nutrient 
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retention from more diverse grassland ecosystems (Tilman et al., 1996). Furthermore, van 

Ruijven and Berendse (2005) observed an increase in productivity and NUE with increasing 

species richness. These studies, however, were conducted in experimentally-established plots 

that were weeded intensively, or in microcosms, making them difficult to compare with 

results from permanent grasslands where no clear effect of biodiversity on productivity has 

yet been demonstrated (Wrage et al., 2011). This may be due to the larger species richness in 

permanent grassland compared to many studies where diversity effects were largest at species 

richness levels smaller than five species (Wrage et al., 2011). Although Flombaum and Sala 

(2008) reported a larger effect of plant biodiversity on productivity in a natural grassland 

ecosystem compared to artificial ecosystems, their study only included a biodiversity gradient 

of one to six species, which is still considerably lower than managed, temperate grasslands 

with 10 to 60 plant species (Wrage et al., 2011). So far no studies on the impact of 

management practices, sward composition and their interactions on NRE in agriculturally-

managed, permanent grassland have been published. As the efficiency with which grasslands 

use available N for biomass production is the key link between management and 

biogeochemical N cycling, our goal was to evaluate how NRE changes as a function of 

different management practices and sward compositions in an agriculturally-managed, 

permanent grassland site. We measured NRE of a grassland site that was managed according 

to local practices in the Solling Mountains (Lower Saxony, Germany). Here, we only 

considered the harvestable, aboveground biomass because our study focuses on agricultural 

management practices. Plant functional group diversity was manipulated by herbicide 

treatments, resulting in dicot-enhanced swards with nearly equal proportions of dicots and 

monocots, control swards with ~70% monocots and ~30% dicots, and monocot-enhanced 

swards with ~90% monocots and ~10% dicots. Species richness was significantly smaller in 

the monocot-enhanced swards compared to the control swards (Petersen et al., 2012). N 

supply (used as the measure of N availability in the environment) was defined as the sum of 

soil net N mineralization rates during the growing season, N deposition from bulk 

precipitation, and fertilizer addition rates. We tested the following hypotheses: 1) unfertilized 

plots have larger NRE than fertilized plots, 2) plots with high mowing frequency have larger 

NRE than plots with low mowing frequency, and 3) NRE increases with increasing number 

of species (i.e. monocot-enhanced swards (12-13 species) < dicot-enhanced (17 species) and 

control swards (16-18 species)). 
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3.3 MATERIALS AND METHODS 

3.3.1 STUDY SITE 

This interdisciplinary research project, grassland management experiment or 

GRASSMAN, was conducted at the experimental farm of the University of Goettingen on a 

moderately species-rich grassland in the Solling Mountains in Lower Saxony, Germany 

(51°44'53''N, 9°32'42''E, 490 m above sea level). This permanent grassland site has 

traditionally been used as a pasture for hay making or for grazing (Geological Map of Prussia 

1910 (based on the topographic inventory of 1896); topographic maps of Sievershausen and 

Neuhaus/Solling 1924, 1956 and 1974; Braunschweigische Landesaufnahme 18th century). 

In the last five decades, the study site was managed with moderate fertilization (80 kg N ha-1 

yr-1), liming, overseeding with high value forage species and cattle grazing (farm records of 

Relliehausen since 1966). Fertilization stopped two years before our experiment started. 

Vegetation consists of a montane, semi-moist Lolio-Cynosuretum. Mean annual precipitation 

is 1028 mm and mean annual temperature is 6.9°C (Deutscher Wetterdienst, 1961 – 1990, 

station Holzminden-Silberborn, 440 m above sea level). During the study period, mean 

annual temperature and annual precipitation were 8.4°C and 1001 mm in 2009 and 8.0°C and 

1110 mm in 2010. The dominating soil type is a Haplic Cambisol, developed on sediments of 

loess on the Middle Buntsandstein formation with a loamy silt texture. 

 

3.3.2 EXPERIMENTAL SET UP 

The study had a three-factorial design: three sward compositions, two mowing 

frequencies and two fertilization treatments. In June 2008, we established three sward 

compositions by applying a herbicide mixture against dicotyledons (Starane® (active 

ingredients: Fluoroxypyr and Triclopyr) and Duplosan KV (active ingredients: Mecoprop-

P®)) resulting in a sward with reduced proportions of herbs and legumes, a herbicide mixture 

against monocotyledons (Select 240 EC® by Stähler (active ingredients: Clethodim)) 

resulting in a sward with reduced proportions of grasses, and an untreated control sward. 

Hereafter, we refer to these sward compositions as monocot-enhanced (12-13 species; 91-

93% grasses, 7-9% herbs and 0% legumes) and dicot-enhanced (17 species; 40-47% grasses, 
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49-53% herbs and 4-9% legumes) relative to the control sward (16-18 species; 68-76% 

grasses, 21-31% herbs and 1-4% legumes) (Petersen et al., 2012). In 2008, all experimental 

plots were mown, and fertilized plots received 50 kg N ha
-1

. The experiment started in spring 

2009 with two mowing frequencies (once per year in July and thrice per year in May, July 

and September) as well as two fertilization treatments (180 – 30 – 100 kg NPK ha
-1

 yr
-1

 and 

no fertilization). The N fertilizer (calcium ammonium nitrate N27) was split into two equal 

applications per year (April and May 2009 and April and June 2010) while the combined P 

and K fertilizer was applied once a year (June 2009 and 2010). The experimental treatments 

were set up with 6 replicates in a full factorial design (72 plots; 15 m x 15 m each) arranged 

in a Latin rectangle. 

 

3.3.3 SOIL CHARACTERISTICS 

Soil characteristics (Table 3.1) were determined in spring 2008 (chemical and texture 

analyses) and summer 2009 (bulk density). At nine sampling points per plot, mineral soils 

(0.01-0.1 m depth) were sampled, pooled, oven-dried (40°C) for a week and sieved (2 mm). 

Particle size distribution was determined by wet sieving (>20 <630 µm) and pipette methods 

(≤20 µm) after pre-treatment with 30% H2O2 and 4% Na-dithionite-citrate solution to remove 

organic matter and iron oxides (Schlichting et al., 1995). Soil bulk density was determined by 

soil core method (Blake and Hartge, 1986). Cation exchange capacity (CEC) was determined 

using the method of 0.1 mol BaCl2 percolation (König and Fortmann, 1996) and measuring 

cations in percolates using Inductively Coupled Plasma - Optical Emission Spectrometry 

(Optima 3000 XL, Perkin Elmer, Rodgau, Germany). Base saturation was determined as the 

percentage exchangeable base cations of the CEC. Soil pH was measured from soil:water 

suspension (ratio of 1:2). Total C and N concentrations were determined from ground soils 

using a CN elemental analyzer (Elementar Vario EL III, Hanau, Germany). 
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Table 3.1 Soil characteristics in the Ah horizon (0.01-0.1 m) of a Haplic Cambisol of a grassland site in the 

Solling Mountains, Germany. 

Physical and chemical
*
 properties Mean SE n 

Sand (%) 21.62 1.2 18 

Silt (%) 66.53 1.3 18 

Clay (%) 11.85 0.8 18 

Bulk density (g cm
-3

) 0.79 0.01 72 

Cation exchange capacity (mmolc kg
-1

)  169.00 5.2 72 

Base saturation (%)  37.18 1.4 72 

pH (1:2 H2O)  5.34 0.03 72 

Carbon : Nitrogen ratio  12.60 0.04 72 

* Soil chemical data were provided by the Department of Plant Ecology, University of Göttingen. 

 

3.3.4 BIOMASS YIELD AND PLANT N UPTAKE 

Data of aboveground biomass was reported by From et al. (2011) (see Appendix 

Table A.1). The grassland was mown in mid-July for plots with one-cut yr
-1

 and in mid-May, 

mid-July and end of September of each year for plots with three-cuts yr
-1

. A Haldrup © 

forage combine harvester was used with a cutting height of 7 cm. Dry mass of the biomass 

was determined by oven-drying at 60°C to constant mass. Oven-dried plant samples from the 

second cut (mid-July) were ground and analyzed for total N concentration using a CNS 

elemental analyser (Elementar Vario El, Hanau, Germany). Plant N uptake (kg N ha
-1

 yr
-1

) 

was calculated as: N concentration (kg N kg
-1

 ) * biomass yield (kg ha
-1

 yr
-1

) (Hiremath and 

Ewel, 2001). 
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3.3.5 SOIL NET N MINERALIZATION RATES, N SUPPLY, AND N RESPONSE EFFICIENCY 

Net N mineralization rates were measured five times (April, May, June, August and 

October) in 2009 and six times (April, May, June, July, August and September) in 2010 using 

the buried bag method. In each plot, two intact soil cores were taken from the Ah mineral soil 

(0.01-0.10 m). The soil from one core was transferred into a plastic bag, crumbled, mixed 

well, and extracted directly in the field by taking a subsample and adding this to a prepared 

bottle containing 150 ml 0.5 mol L
-1

 K2SO4 (average dry soil mass to solution ratio was 1:3) 

(T0 cores). The other soil core was put in a plastic bag that was loosely tied to permit aeration 

but prevent rain from entering, inserted back into the hole to incubate in-situ for ten days, and 

extracted in a similar manner (T1 cores). The soil-K2SO4 bottles were brought to the 

laboratory within 6 hours, where extraction continued by shaking the bottles for one hour and 

filtering through K2SO4-prewashed filter papers (4 m nominal pore size). Extracts were 

immediately frozen until analysis. Ammonium (NH4
+
) and NO3

-
 were measured using 

continuous flow injection colorimetry (Skalar, Cenco Instruments, Breda, The Netherlands), 

in which NH4
+
 was determined using the Berthelot reaction method (Skalar Method 155-000) 

and NO3
-
 was measured using the copper-cadmium reduction method (Skalar Method 461-

000). Gravimetric moisture content was determined for each soil sample by oven-drying at 

105°C for 24 hours. Net N mineralization was calculated as the difference between T1- and 

T0-mineral N (NH4
+ 

+ NO3
-
). This assay of net production of mineral N in soil under in-situ 

conditions in the absence of plants provides an index of plant-available N (Hart et al., 1994). 

N supply of each plot is defined as the sum of cumulative net N mineralization rates 

of the soil, N fertilization and N deposition rates. Cumulative net N mineralization rates 

during a growing season (i.e. April - September) were calculated by applying the trapezoid 

rule on time intervals between measured rates. For N deposition, we used a value of 12.6 kg 

N ha
-1

 yr
-1

 from bulk precipitation measured within the scope of the EU-level II monitoring 

program (Keuffel-Türk et al., in press). NRE was calculated for each plot as: 

NRE (kg biomass kg N
-1

) =  

(plant N uptake ÷ N supply) * (biomass yield ÷ plant N uptake)     (Eq. 3) 

The ratio of plant N uptake to N supply is referred to as N uptake efficiency whereas 

the ratio of biomass yield to plant N uptake is the NUE (Hiremath and Ewel, 2001; Pastor and 

Bridgham, 1999). 
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3.3.6 STATISTICAL ANALYSES 

Effects of treatments on time series data (net N mineralization rates) were conducted 

using linear mixed effects models (LME) with treatments and their interactions as fixed 

effects and spatial replication and time as random effects. The LME model includes either 1) 

a variance function that allows different variances of the response variable for the fixed 

effects, 2) a first-order temporal autoregressive process that assumes the correlation between 

measurements decreases with increasing time difference, or 3) both if this improves the 

relative goodness of model fit based on the Akaike Information Criterion (Crawley, 2007). 

Treatment effects on biomass yield, plant N uptake, N supply, NRE, NUE and uptake 

efficiency were assessed using three-way analysis of variance (ANOVA) with Tukey’s HSD 

test. In all tests, if residual plots revealed non-normal distribution or non-homogeneity of 

variance, we used either logarithmic or square root transformation (after adding a constant 

value if the dataset included negative values) and analyses were repeated. Effects were 

accepted as statistically significant if P ≤ 0.05. All statistical analyses were conducted using 

the R version 2.11.1 (R Development Core Team, 2009). 

 

3.4 RESULTS 

3.4.1 BIOMASS YIELD AND PLANT N UPTAKE  

In 2009, biomass yield ranged from 4048 to 14647 kg ha
-1

 yr
-1

 with an overall mean 

of 7758 (± 309 SE) kg ha
-1

 yr
-1

. Fertilization as well as increasing mowing frequency 

increased biomass yield, and plots cut thrice per year responded stronger to fertilization than 

plots cut once per year (Table A.1). In 2010, biomass yield decreased to values between 1960 

and 12983 kg ha
-1

 yr
-1

 with a mean of 5612 kg ha
-1

 yr
-1

. Compared to 2009, the interaction 

between mowing frequency and fertilization was even more pronounced (i.e. larger explained 

variance). Fertilization only resulted in larger yields in plots with three cuts per year whereas 

no fertilization effect could be detected in plots with one cut per year (Table A.1). Apart from 

fertilization and mowing frequency, sward composition also influenced biomass yield in 2010 

but it explained only a small fraction of the variation. Control swards had larger yields 

compared to monocot-enhanced swards and both did not differ from dicot-enhanced swards.  
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Plant N uptake in 2009 ranged from 51.37 to 340.84 kg N ha
-1

 yr
-1 

with a mean of 

147.38 (± 17.37 SE) kg ha
-1

 yr
-1

. Fertilization significantly enhanced plant N uptake and 

explained by far the largest part of its variance. This was followed by mowing frequency with 

larger plant N uptake in plots cut thrice than once a year (Table 3.2). However, an interaction 

between fertilization and mowing frequency showed that mowing frequency only affected 

plant N uptake on the fertilized plots. In 2010, plant N uptake ranged from 27.82 to 273.39 kg 

N kg
-1 

yr
-1

 with a mean of 98.87 (± 11.65 SE) kg ha
-1

 yr
-1

. As before, fertilization, mowing 

frequency and their interaction showed significant effects with larger plant N uptake in 

fertilized than unfertilized plots, and in plots cut thrice than once per year. The effect of 

fertilization was less pronounced and that of mowing frequency was larger compared to 2009. 

Mowing frequency significantly affected plant N uptake on both fertilized and unfertilized 

plots, but fertilized plots were more strongly influenced than unfertilized plots (Table 3.2).  
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Table 3.2 Plant N uptake of a grassland under different management practices in the Solling Mountains, Germany. 

 

Main factors 

 

Treatments 

 

n 

  2009       2010     

Plant N uptake SE P 

Variance 

explained  Plant N uptake SE P 

Variance 

explained  

    (kg N ha
-1

 yr
-1

)   (%) (kg N ha
-1

 yr
-1

)   (%) 

Sward composition       0.540 0.21     0.072 1.10 

 control 24 147.37  a 16.24   106.64  a 13.03   

 monocot-enhanced 24 143.20  a 15.69   94.23  a 12.26   

  dicot-enhanced 24 151.56  a 14.99     95.73  a 10.49    

Mowing frequency       <0.000 13.17     <0.000 20.78 

 once per year 36 120.11  b 8.35   71.27  b 4.06   

  thrice per year 36 174.65  a 14.50     126.46  a 11.41    

Fertilization         <0.000 66.88     <0.000 56.66 

 no 36 85.93  b 4.15   59.73  b 2.66   

  NPK  36 208.83  a 9.47     138.00  a 9.78     

Fertilization x mowing frequency        <0.000 5.40     <0.000 7.93 

no  once per year 18 76.12  c 3.33   54.39  d 3.26   

NPK  once per year 18 164.11  b 6.91   88.15  b 4.87   

no  thrice per year 18 95.75  c 6.90   65.06  c 3.88   

NPK  thrice per year 18 253.55  a 9.28     187.85  a 8.81     

Mean values with different letter indicate significant differences among treatments within main factors or within an interaction of main factors (three-way ANOVA with Tukey HSD at P ≤ 0.05). 

Treatment interactions that were not significant are not reported. 
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3.4.2 SOIL NET N MINERALIZATION RATES AND N SUPPLY 

Net N mineralization rates showed a clear seasonal pattern with large rates in summer 

and small rates in spring and fall. In 2009, net N mineralization rates varied between -13 and 

135 kg N ha
-1

 mo
-1

 with a mean of 29 (± 3 SE) kg N ha
-1

 mo
-1

. NH4
+
 was the dominant form 

of soil mineral N before incubation. On average, NO3
- 
constituted 33% of the soil mineral N 

but in 70% of all cases no NO3
-
 was detectable. Net N mineralization rates were neither 

affected by sward composition nor by mowing frequency (Table 3.3). Only fertilizer 

application influenced net N mineralization rates. In 2010, net N mineralization rates ranged 

from -29 to 105 kg N ha
-1

 mo
-1

 with a mean of 19 (± 3 SE) kg N ha
-1

 mo
-1

. Unlike in 2009, 

not only fertilization but also mowing frequency influenced net N mineralization rates: plots 

cut once per year showed larger net N mineralization rates than plots cut three times per year.  

N supply in 2009 ranged from 15 to 1003 kg N ha
-1

 yr
-1

 with a mean of 278 (± 25 SE) 

kg N ha
-1

 yr
-1

. In 2010, N supply ranged from 22 to 823 kg N ha
-1

 yr
-1 

with a mean of 217 (± 

18 SE) kg N ha
-1

 yr
-1

. In both years, fertilization (P = 0.000) was the only factor influencing N 

supply. 
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Table 3.3 Soil net N mineralization rates of a grassland under different management practices in the Solling Mountains, Germany. 

 

Main factors 

 

Treatments 

 

n 

  2009     2010   

Net N 

mineralization 

SE P Net N 

mineralization 

SE P 

(kg N ha
-1

 mo
-1

) (kg N ha
-1

 mo
-1

) 

Sward composition       0.560     0.160 

 control 24 30.69  a 11.70  16.75  a 7.87  

 dicot-enhanced 24 25.56  a 8.42  24.20  a 9.47  

  monocot-enhanced 24 21.19  a 7.58   18.05  a 5.88   

Mowing frequency       0.400     0.018 

 once per year 36 24.77  a 7.69  22.54  a 3.76  

  thrice per year 36 26.83  a 7.69   16.76  b 2.79   

Fertilization         <0.000     0.009 

 no 36 13.50  b 3.47  15.48  b 2.58  

  NPK  36 38.12  a 9.89   23.84  a 3.97   

Mean values with different letter indicate significant differences among treatments within main factors or within an interaction of main factors  

(Linear mixed effects models at P ≤ 0.05). Treatment interactions that were not significant are not reported. 
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3.4.3 N RESPONSE EFFICIENCY, N UPTAKE EFFICIENCY AND N USE EFFICIENCY 

NRE in 2009 varied in a wide range from 10 to 488 kg biomass kg N supply
-1

 with a 

mean of 48 (± 7 SE) kg biomass kg N supply
-1

. Fertilization was the main factor influencing 

NRE, with larger efficiency in unfertilized plots compared to fertilized plots (Table 3.4). 

Mowing frequency was the second important factor that explained the variance, with larger 

NRE in plots cut thrice than once per year. In 2010, NRE did not differ from 2009 with values 

ranging from 5 to 162 kg biomass kg N supply
-1

 and a mean of 42 (± 4 SE) kg biomass kg N 

supply
-1

. All three factors significantly affected NRE in 2010, with fertilization explaining the 

largest part of the variance followed by mowing frequency and sward composition. NRE was 

larger in unfertilized than in fertilized plots. The interaction between sward composition and 

mowing frequency indicated that regardless of mowing frequency, control plots showed an 

NRE comparable to the monocot- and dicot-enhanced plots that were cut thrice a year and that 

these NRE were larger than those in monocot- and dicot-enhanced plots cut once a year 

(Table 3.4). Within the covered range of N supply, NRE increased monotonically with 

decreasing N supply (Figure 3.1 a). 
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Table 3.4 N response efficiency (NRE) of a grassland under different management practices in the Solling Mountains, Germany. 

 

Main factors 

 

Treatments 

 

n 

  2009       2010     

NRE SE P 

Variance 

explained  NRE SE P 

Variance 

explained  

   

(kg biomass  

  (%) 

(kg biomass  

  (%) kg N supply
-1

) kg N supply
-1

) 

Sward composition       0.349 1.72     0.034 5.68 

 control 24 40.19  a 6.01   50.28  a 7.02   

 monocot-enhanced 24 59.99  a 18.82   42.62  ab 7.46   

  dicot-enhanced 24 45.30  a 6.10     32.94  b 4.52     

Mowing frequency       0.047 3.29     <0.000 12.40 

 once per year 36 38.67  b 4.81   35.53  b 5.68   

  thrice per year 36 58.31  a 13.30     48.37  a 5.03     

Fertilization         <0.000 41.26     <0.000 24.72 

 no 36 70.97  a 12.83   55.49  a 5.29   

  NPK  36 26.02  b 2.18     28.41  b 4.63     

Sward composition x mowing frequency       n.s. n.s.     0.036 5.54 

 control once per year 12       54.02  a 12.82   

 control thrice per year 12       46.54  a 6.77   

 monocot-enhanced once per year 12       29.84  b 8.62   

 monocot-enhanced thrice per year 12       55.40  a 11.73   

 dicot-enhanced once per year 12       22.73  b 4.48   

 dicot-enhanced thrice per year 12         43.16  a 7.04     

Mean values with different letter indicate significant differences among treatments within main factors or within an interaction of main factors (three-way ANOVA with Tukey HSD at P ≤ 0.05). 

Treatment interactions that were not significant are not reported. n.s. = not significant. 
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Figure 3.1 Trends between N response efficiency (NRE) and (a) N supply, (b) N uptake efficiency and (c) N use 

efficiency (NUE) of a grassland in the Solling Mountains, Germany. Each data point is the mean of six replicates 

per treatment (● for 2009, ○ for 2010). No statistical test was conducted because the X variables are components 

of the Y variable. 
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N uptake efficiency in 2009 was largely affected by fertilization with larger 

efficiencies in unfertilized plots compared to fertilized plots (Table 3.5). Mowing frequency 

explained a small part of the variance with larger efficiencies in plots cut thrice per year than 

plots cut only once per year. In 2010, mowing frequency explained a larger part of the 

variance than fertilization. In addition, sward composition marginally influenced N uptake 

efficiency with a larger efficiency in control swards than monocot- and dicot-enhanced 

swards (Table 3.5). The pattern between NRE and N uptake efficiency showed increasing 

NRE with increasing N uptake efficiency (Figure 3.1 b). 

NUE was affected by all three factors in 2009 (Table 3.6). Fertilization was the most 

important factor influencing NUE. Unfertilized plots showed larger NUE than fertilized plots. 

Mowing was the second most important factor. Plots cut once per year showed larger NUE 

than plots cut thrice per year. This trend, however, was only significant for the unfertilized 

plots, based on fertilization and mowing interaction effect. Sward composition had the 

smallest influence with the largest NUE in monocot-enhanced swards, intermediate NUE in 

control swards and smallest NUE in dicot-enhanced swards. In 2010, fertilization was the 

only factor influencing NUE (Table 3.6). The trend between NRE and NUE was more 

scattered (Figure 3.1 c) than the pattern between NRE and N uptake efficiency (Figure 3.1 b). 

 



CHAPTER 3 |  

 

53 

 

Table 3.5 N uptake efficiency of a grassland under different management practices in the Solling Mountains, Germany. 

Year       2009       2010     

Main factors Treatments n 

N uptake 

efficiency SE P 

Variance  

explained  

N uptake 

efficiency SE P 

Variance 

explained  

    

  

  (%) 

  

  (%) 

 (kg plant N 

uptake  

kg N supply
-1

) 

(kg plant N 

uptake  

kg N supply
-1

) 

Sward composition       0.372 2.13     0.056 6.04 

 control 24 0.65 a 0.08   0.80 a 0.11   

 

monocot-

enhanced 24 0.97 a 0.29   0.65 a 0.10   

  dicot-enhanced 24 0.80 a 0.10    0.52 a 0.06    

Mowing frequency       0.003 9.91     < 0.001 14.97 

 once per year 36 0.60 b 0.05   0.56 b 0.09   

  thrice per year 36 1.01 a  0.20    0.75 a 0.06    

Fertilization         < 0.001 16.79     0.006 7.90 

 no 36 1.05 a 0.20   0.76 a 0.07   

  NPK  36 0.56 b 0.05     0.56 b 0.08     
Mean values with different letter indicate significant differences among treatments within main factors or within an interaction of main factors (three-way ANOVA at P ≤ 0.05). Treatment 

interactions that were not significant are not reported. 
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Table 3.6 N use efficiency (NUE) of a grassland under different management practices in the Solling Mountains, Germany. 

Year       2009       2010     

Main factors Treatments n NUE SE P 

Variance 

explained  NUE SE P 

Variance 

explained  

    

  

  (%) 

  

  (%) 

(kg biomass yield  

kg plant N uptake
-1

) 

(kg biomass yield 

kg N supply
-1

) 

Sward composition       0.005 3.70     0.179 0.71 

 control 24 59.10 ab 2.71   63.07 a 2.70   

 

monocot-

enhanced 24 61.55 a 3.39   61.01 a 2.91   

  dicot-enhanced 24 54.90 b 2.59    60.60 a 2.33    

Mowing frequency       < 0.001 8.38     0.455 0.11 

 once per year 36 62.65 a 2.67   61.12 a 2.15   

  thrice per year 36 54.39 b 1.88    62.00 a 2.18    

Fertilization         < 0.001 63.42     < 0.001 83.06 

 no 36 69.88 a 1.91   73.23 a 1.04   

  NPK  36 47.16 b 0.78     49.88 b 0.71     

Fertilization x Mowing frequency       0.003 3.07     n.s.   

no  once per year 18 76.51 a 2.41        

NPK  once per year 18 48.78 c 0.99        

no  thrice per year 18 63.25 b 2.01        

NPK  thrice per year 18 45.53 c 1.10             
Mean values with different letter indicate significant differences among treatments within main factors or within an interaction of main factors (three-way ANOVA with Tukey HSD at P ≤ 0.05). 

Treatment interactions that were not significant are not reported. n.s. = not significant. 
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3.5 DISCUSSION 

3.5.1 SOIL NET N MINERALIZATION, PLANT N UPTAKE AND BIOMASS YIELD 

The substantial increase of net N mineralization following first fertilization in 2009 

was probably caused by a priming effect. Priming effects are changes in mineralization 

processes caused by moderate addition of nutrients to the soil, e.g. the input of a limiting 

factor for microbial biomass (Kuzyakov et al., 2000). Our experimental site had been used for 

hay production and cattle grazing since the early 20
th

 century. Only during the last five 

decades, a minimal fertilizer addition of 80 kg N ha
-1

 yr
-1

 was practiced. It is thus likely that 

the activity of microbial biomass was stimulated by the addition of 180 kg N ha
-1

 yr
-1

 at the 

beginning of our study. The reduction in net N mineralization rates in fertilized plots in the 

second year compared to the first year is also indicative of a priming effect, which has been 

suggested to be short term (Kuzyakov et al., 2000). While the addition of N fertilizer initially 

stimulates mineralization after a long period of N limitation, regular N additions may not 

increase N cycling continuously (Hassink, 1994). The decreased net N mineralization rates 

with increased mowing frequency in the second year could be due to reduced input of organic 

matter into the soil as a consequence of the removal of biomass (Holt, 1997; Mikola et al., 

2001; Northup et al., 1999; Sankaran and Augustine, 2004). Alternatively, it is possible that 

the reduced net N mineralization rates on the plots cut thrice per year could also be caused by 

large N immobilization by the microbial community, which may result from increased 

rhizodeposition following defoliation (Holland et al., 1996). Such an explanation is 

corroborated by the findings of Guitian and Bardgett (2000) who observed increased soil 

microbial biomass caused by defoliation of grass. 

Within the range of N supply covered in our study, the linear increase of plant N 

uptake was reflected by similar trends of increases in aboveground biomass yield and plant N 

concentrations (data not shown). The enhanced plant N uptake by more frequent mowing 

could be possibly due to 1) increased root-to-shoot ratio by intensive mowing (Kammann et 

al., 1998; Mooney and Winner, 1991), which may then result in large nutrient uptake by 

plants, and 2) defoliation-induced increase in resource allocation to shoots, as reported by 

Guitian and Bardgett (2000) for grazing-tolerant grasses. However, for our study site, fine-

root biomass and root length density measured in the control swards in September 2009 were 

not affected by mowing frequency (Rose et al., 2011a). Thus, it is likely that our observed 
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increased plant N uptake by more frequent mowing is due to increased resource allocation to 

shoots and overcompensatory response to defoliation (Ferraro and Oesterheld, 2002; Guitian 

and Bardgett, 2000).  

Our finding that the dicot-enhanced swards (with equal proportions of dicots and 

monocots) on did not result in a larger biomass yield compared to control and monocot-

enhanced swards contrasts to the findings of Hector et al. (1999) and Weigelt et al. (2009) 

who reported a reduction of aboveground biomass with loss of functional groups in European 

grasslands. Furthermore, the number of plant species was not responsible for differences in 

biomass yield. Dicot-enhanced and monocot-enhanced swards showed no significant 

differences in biomass yield although the numbers of species were different, which is not 

consistent to the biodiversity-productivity theory (e.g. Hector et al., 1999; Tilman et al., 1996; 

Weigelt et al., 2009). However, as we only considered harvestable, aboveground biomass, 

inclusion of belowground biomass may lead to different results. 

 

3.5.2 N RESPONSE EFFICIENCY 

To our knowledge, published information about NRE in grassland ecosystems is 

extremely limited and definitions of NRE are not consistent in literature (Aerts, 1990; 

Vitousek, 1982; Xu et al., 2012). Unlike other NRE and NUE studies that used litterfall N 

concentrations as an index of N availability (Vitousek, 1982) or measured mineral N 

concentrations in soil (Bridgham et al., 1995), we used in-situ measured net N mineralization 

rates as an index of soil plant-available N (Hart et al., 1994). Our measured NRE values were 

smaller than those reported by Yuan et al. (2006) for a semi-arid grassland in China. Apart 

from site-specific differences between our and their study sites, the differences in NRE could 

also be due to the different measures used for N supply and biomass production. On the one 

hand, our estimate of N supply included fertilization, N deposition and cumulative net N 

mineralization rates during the growing season, resulting in large values of N supply and thus 

small NRE. On the other hand, Yuan et al. (2006) included not only aboveground but also 

belowground biomass production, which would lead to large NRE. 

Our finding that NRE was largely influenced by fertilization was similar with those of 

Hiremath and Ewel (2001) who reported that NRE (which they termed ecosystem-level NUE) 

was negatively correlated with mean annual net nitrification rate, used as an index of soil N 
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supply. The smaller NRE of the fertilized than unfertilized plots was caused by decreases in 

both N uptake efficiency and NUE. The monotonic increase in NRE with decreasing N supply 

was also consistent with the findings of Yuan et al. (2006), and was unlike the unimodal curve 

between NRE and soil net N mineralization rates (ranging from 25-85 kg N ha
-1

 yr
-1

) 

modelled by Bridgham et al. (1995) for temperate forests. This also supports the suggestion 

that the unimodal NRE curve may only be applicable for ecosystems with small N availability 

(Yuan et al., 2006). The second most important factor influencing NRE was mowing 

frequency. The increased NRE in plots cut thrice per year was largely due to increasing N 

uptake efficiency since NUE was either showing the opposite trend or not affected by mowing 

at all. The increased N uptake efficiency in plots cut thrice per year was caused by increased 

biomass yield and N concentration in biomass. 

Finally, sward composition influenced NRE although to a lesser extent than 

fertilization and mowing frequency. Compared to the influence of sward compositions on 

biomass yield, where dicot-enhanced swards did not differ from control swards, the influence 

of sward composition on NRE was more pronounced and explained a larger part of the 

variance. The trends of NRE and N uptake efficiency among sward compositions were similar 

whereas NUE exhibited either opposite patterns or was not affected by sward composition. 

This emphasizes that NRE of the different sward compositions was influenced more by N 

uptake efficiency rather than by NUE and is contrary to the findings of van Ruijven and 

Berendse (2005) who observed an increasing NUE with increasing species richness in a 

grassland system without legumes. In our study site, legumes were only present in the control- 

(1-4% abundance) and dicot-enhanced (4-9%) swards. The presence of legumes however 

cannot support the pattern of differences in NRE among sward compositions but instead the 

interaction between sward composition and mowing frequency. For example, since we did not 

account the N input from N-fixing legumes in our NRE calculation, this could have led to an 

underestimation of N supply and thus an overestimation of NRE in the control and dicot-

enhanced swards. Instead we found that the monocot-enhanced swards (no legumes) had 

comparable NRE with the control and dicot-enhanced swards all cut thrice a year and the 

lowest NRE was found in both monocot- and dicot-enhanced swards cut once per year (Table 

3.4). The patterns of NRE cannot also be explained by the difference in plant species number. 

NRE of monocot-enhanced swards which had the smallest number (12-13) of species did not 

significantly differ from NRE of dicot-enhanced swards (17 species). According to Roy 

(2001) 90% of the biodiversity effect on productivity is reached at five species, implying that 
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the difference in plant species in our experiment is larger than the threshold number and 

effects might not be detectable (Wrage et al., 2011). In contrast to the number of species, the 

proportions of plant functional groups did have a significant impact on NRE. The proportions 

of ~30% dicots and ~70% monocots found in the control swards showed the largest NRE. We 

think that over the past decades N-limited conditions and prevailing management practices 

have led to an equilibrium in this grassland ecosystem in which optimal proportions of 

monocots and dicots developed to maximize NRE. As a result, an artificial increase in the 

proportion of dicots as well as in the proportion of monocots would lead to a smaller NRE. 

Thus, our results suggest that in addition to the effect of life-form diversity (Hiremath and 

Ewel, 2001) also the proportions of different plant functional groups affect NRE of an 

ecosystem.  

 

3.6 CONCLUSIONS 

Our results show that management largely influenced NRE whereas plant functional 

group diversity only played a minor role. Fertilization decreased NRE due to decreases in 

both N uptake efficiency and NUE whereas mowing frequency and sward composition 

affected NRE through N uptake efficiency rather than NUE. The proportions of monocots and 

dicots in the control plots that were the result of long-term management practices had the 

largest NRE. Deviations from these proportions - even to more balanced proportions of 

monocots and dicots - decreased NRE. Our results show that NRE gives important insights in 

how different management can be evaluated to come up with a more sustainable grassland 

management. However, our study can only be a first step towards definite recommendations 

and NRE should be combined with an economic analysis before advices to farmers can be 

made. 
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4.1 ABSTRACT 

Maintaining nitrogen (N) retention efficiency is crucial in minimizing N losses when 

intensifying management of temperate grasslands. Our aim was to evaluate how grassland 

management practices and sward compositions affect N retention efficiency (1 - N losses ÷ 

soil available N), defined as the efficiency with which soil available N is retained in an 

ecosystem. A three-factorial grassland management experiment was established with two 

fertilization treatments (no fertilization and combined nitrogen, phosphorus and potassium 

fertilization), two mowing frequencies (cut once and thrice per year) and three sward 

compositions (control, monocot- and dicot-enhanced swards). We measured N losses as 

leaching and nitrous oxide emissions, and soil available N as gross N mineralization rates. 

Fertilization was the dominant factor influencing N losses and N retention efficiency; it 

increased N losses due to increased nitrification and decreased microbial N immobilization, 

and consequently decreased N retention efficiency. Intensive mowing partly dampened high 

N losses following fertilization. Sward compositions influenced N retention efficiency but not 

N losses: control swards that have developed under decades of extensive management 

practices had the highest N retention efficiency whereas monocot-enhanced sward had the 

lowest N retention efficiency. Across treatments, N retention efficiency was highly correlated 

with microbial NH4
+
 immobilization and microbial biomass and only marginally correlated 

with plant N uptake, underlining the importance of microbial N retention in the soil-plant 

system. Such pathway is reflected in N retention efficiency but not in indices commonly used 

to reflect plant response. As N retention efficiency was able to capture the effects of sward 

compositions and fertilization whereas N losses were only sensitive largely to fertilization, N 

retention efficiency as a better index than just N losses when evaluating environmental 

sustainability of sward compositions and management practices of grasslands. 

 

Keywords: nitrate leaching, dissolved organic nitrogen, nitrous oxide emissions, gross N 

mineralization, microbial immobilization, 
15

N pool dilution, functional group diversity 
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4.2 INTRODUCTION 

Nitrogen (N) is an essential plant nutrient that limits primary production in many 

ecosystems, making the use of N fertilizers widespread in agricultural ecosystems (Vitousek 

and Howarth, 1991). As a result of the growing global population, a more intensive 

agricultural production and hence an increase in the use of N fertilizers can be expected in the 

near future (Galloway et al., 2008). Agricultural intensification is, however, accompanied by 

negative environmental impacts: considerable amounts of applied fertilizer N can be lost 

through nitrate (NO3
-
) leaching or gaseous emissions, e.g. in the form of nitrous oxide (N2O). 

Leaching of NO3
-
 can be a threat to ground- and surface-water quality (Di and Cameron, 

2002) whereas N2O is an important greenhouse gas that also contributes to the depletion of 

stratospheric ozone (Schlesinger, 2009). In agriculture, maintaining soil quality and high 

yields while minimizing N losses can only be achieved through efficient retention of N in the 

plant-soil system, i.e. available mineral N should be taken up by plants or immobilized by the 

microbial community before it is potentially lost through the microbial processes of 

nitrification and denitrification. N retention efficiency, defined as the efficiency with which 

available N is retained in an ecosystem, is thus an important parameter to evaluate the 

sustainability of a land use system.  

In temperate grasslands, N retention efficiency may be influenced by management 

practices and plant diversity (Christian and Riche, 1998; Flechard et al., 2005; Jones et al., 

2005). Application of N fertilizer typically increases N losses (e.g. Christian and Riche, 1998, 

Jones et al., 2005) whereas mowing can lead to a more effective plant N uptake caused by 

overcompensatory regrowth of plants (Ferraro and Oesterheld, 2002) or by a denser root 

system (Kammann et al., 1998). A more diverse grassland community may have a higher N 

retention through complementary resource use, e.g. due to different rooting depths of various 

plant communities, uptake of different forms of N, or N uptake at different times of the year 

(e.g. Hooper and Vitousek, 1998). It has been reported that increasing plant species diversity 

reduces the amount of extractable soil mineral N (e.g. Ewel et al., 1991; Niklaus et al., 2001; 

Tilman et al., 1996). However, most studies have been carried out in artificial and intensively 

weeded grassland plots, making it difficult to compare with permanent, managed grassland. 

Furthermore, soil NO3
-
 concentrations are not directly related to NO3

- 
leaching, complicating 

their interpretation (Scherer-Lorenzen et al., 2003). To our knowledge, there are only two 

studies that directly quantified NO3
-
 leaching losses as a function of plant diversity (Hooper 
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and Vitousek, 1997; Scherer-Lorenzen et al., 2003) and only one study investigated 

biodiversity effects on leaching of dissolved organic N (DON) (Dijkstra et al., 2007). No 

study had been conducted on the effects of mowing on N leaching. Moreover, the impact of 

plant functional group diversity on N2O emissions from soils has so far received only little 

research attention. In our earlier study, conducted in a ~20-year established, grazed grassland 

in Germany, N2O and NO fluxes were not affected by plant species composition but by 

different livestock grazers (Hoeft et al., 2012). Reduced N2O fluxes with increase in mowing 

frequency have been reported for a 50-year established, non-grazed grassland in Germany 

(Kammann et al., 1998). 

In the present study, our goal was to evaluate how N retention efficiency is influenced 

by different management treatments (i.e. fertilization and mowing frequency) and sward 

compositions (differing in plant functional group compositions and plant species richness) in 

a temperate grassland. We were especially interested in the question whether management or 

manipulation of plant functional groups can compensate the high N losses that are frequently 

observed following fertilizer application. We tested the following hypotheses: 1) fertilization 

results to larger N losses and lower N retention efficiency than without fertilization; 2) 

intensive mowing frequency decreases N losses and increases N retention efficiency; 3) 

swards with equal proportions of various plant functional groups would have low N losses 

and high N retention efficiency due to complementary resource use. 

 

4.3 MATERIAL AND METHODS 

4.3.1 APPROACH 

We first developed an index that can be used for the evaluation of the ecosystem 

property, N retention efficiency. Aber and collegues (1998) use the following index for N 

retention efficiency: 1 - (N outputs ÷ N inputs)  

While this index may work well for forest ecosystems where long-term data of N input and 

output have been collected, it does not account for changes in soil N cycling caused by 

management in agricultural systems. For example, when N fertilizer is applied, large 

proportions of applied mineral N are immediately immobilized by the soil microbial 

community (Bristow et al., 1987), a process which typically exceeds plant N uptake (Jackson 
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et al., 1989). This microbially-assimilated N will become again available through microbial 

turnover which occurs within about two weeks for a temperate grassland (Corre et al., 2002), 

and thus soil available N is usually larger than the mere external N input by fertilization. In 

the present study, we account for such processes by using an index of available N that is 

actively cycling in the soil and is available to plants and microbial biomass, and thus we used 

the following index for N retention efficiency:  

N retention efficiency = 

1 - (N losses (mg N m
-2

 d
-1

) ÷ gross N mineralization rates (mg N m
-2

 d
-1

))  (Eq. 4) 

where the N losses were the sum of average daily NO3
- 
and DON leaching rates (mg N m

-2
 d

-

1
) and mean daily N2O emissions rates (mg N m

-2
 d

-1
); gross N mineralization rates were 

measured once during the growing season. 

 

4.3.2 STUDY SITE 

The study (which is part of the grassland manipulation (GRASSMAN) experiment) 

was conducted on a moderately species-rich grassland in the Solling uplands of Lower 

Saxony, Germany (51°44'53''N, 9°32'42''E, 490 m above sea level). This site presently 

belongs to the Relliehausen experimental farm and has been used for grazing or hay making 

for at least 100 years (Geological Map of Prussia 1910 (based on the topographic inventory of 

1896), topographic maps of Sievershausen and Neuhaus/Solling 1924, 1956 and 1974, 

Braunschweigische Landesaufnahme, 18
th

 century). Before the experiment started, the site 

was managed extensively by moderate application of fertilizer (80 kg N ha
-1

 y
-1

), occasional 

lime application, overseeding with high value forage species and cattle grazing (farm records 

Relliehausen since 1966). Prior to the experiment, vegetation was classified as a montane, 

semi-moist Lolio-Cynosuretum. Mean annual precipitation is 1031 mm and mean annual 

temperature is 6.9°C (Deutscher Wetterdienst 1961 - 1990). The soil is a Haplic Cambisol 

(WRB 2006) that developed on loess sediments with a loamy silt texture overlying weathered 

Triassic sandstone. 
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4.3.3 EXPERIMENTAL SET UP 

The GRASSMAN experiment was set up in a three-factorial design, including three 

sward compositions, two mowing frequencies (cut once and thrice a year), and two 

fertilization treatments (with combined N, phosphorus (P) and potassium (K) addition, and no 

fertilization). In 2008, three sward compositions were established: monocot-enhanced swards 

where herbicide mixture against dicotyledons (Starane® (active ingredients: Fluoroxypyr and 

Triclopyr) and Duplosan KV (active ingredients: Mecoprop-P®)) was applied and resulted in 

a reduced herb and legume abundance; dicot-enhanced swards where herbicide mixture 

against monocotyledons (Select 240 EC® by Stähler (active ingredients: Clethodim)) was 

applied and resulted in a reduced grass abundance: and untreated control swards. The 

monocot-enhanced swards had 12-13 species, 91-93% grasses, 7-9% herbs and 0% legumes. 

The dicot-enhanced swards had 17 species, 40-47% grasses, 49-53% herbs and 4-9% 

legumes. The control swards had 16-18 species, 68-76% grasses, 21-31% herbs and 1-4% 

legumes) (Petersen et al., 2012). In 2008, all swards were mowed once and the fertilized plots 

received 50 kg N ha
-1

. Mowing and fertilization treatments started in 2009. Half of the plots 

were mown once per year and the other half of the plots were cut three times per year. 

Mowing was conducted in July for plots with one cut per year and in May, July and 

September for plots with three cuts per year. A Haldrup © forage combine harvester with a 

cutting height of 7 cm was used. Half of the plots were fertilized with 180 kg N ha
-1 

y
-1

, 30 kg 

P ha
-1 

y
-1

 and 100 kg K ha
-1 

y
-1

. Mineral N fertilizer (calcium ammonium nitrate N27) was 

split into two equal applications per year (April and May 2009 and April and June 2010) 

while the combined P and K fertilizer was applied once a year (June 2009 and 2010). The 

full-factorial combination of these treatments (three sward compositions, two mowing 

frequencies, and two fertilization treatments) led to twelve treatment combinations, each 

replicated six times. The resulting 72 plots (15 m x 15 m each) were arranged in a Latin 

rectangle. 

 

4.3.4 SOIL CHARACTERISTICS 

A summary of soil characteristics is presented in Table 4.1. In spring 2008, soil 

samples were taken at nine sampling points per plot (0.01-0.1 m depth), pooled, oven-dried 

(40°C) for a week and sieved (2 mm). Soil bulk density was measured in summer 2009 from 
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undisturbed soil cores (0.00-0.05 m) using the soil core method (Blake and Hartge, 1986). 

Particle size distribution was determined by wet sieving (>20<630 µm) and pipette methods 

(≤20 µm) after pre-treatment with 30% H2O2 and 4% Na-dithionite-citrate solution. Cation 

exchange capacity (CEC) was determined using percolation with 0.1 mol BaCl2 (König and 

Fortmann, 1996). Cations in percolates were measured with Inductively Coupled Plasma - 

Optical Emission Spectrometry (ICP-OES; Optima 3000 XL, Perkin Elmer, Rodgau, 

Germany). Base saturation was calculated as the percentage exchangeable base cations of the 

CEC. Soil pH was measured from a soil-to-distilled water ratio of 1:2. Total concentrations of 

carbon (C) and N were determined from ground soil samples using CN elemental analyzer 

(Vario EL III, Elementar, Hanau, Germany).  

 

Table 4.1 Soil characteristics in the Ah horizon (0.01-0.1 m) of a Haplic Cambisol of a grassland site in the 

Solling Mountains, Germany. 

Physical and chemical
*
 properties Mean SE n 

Sand (%) 21.62 1.2 18 

Silt (%) 66.53 1.3 18 

Clay (%) 11.85 0.8 18 

Bulk density (g cm
-3

) 0.79 0.01 72 

Cation exchange capacity (mmolc kg
-1

)  169.00 5.2 72 

Base saturation (%)  37.18 1.4 72 

pH (1:2 H2O)  5.34 0.03 72 

Carbon : Nitrogen ratio  12.60 0.04 72 

* Soil chemical data were provided by the Department of Plant Ecology, University of Göttingen. 

 

4.3.5 GROSS N TRANSFORMATION RATES AND MICROBIAL BIOMASS 

In September 2010, gross N mineralization and nitrification rates were measured using 

15
N pool dilution techniques (Davidson et al., 1991). These were measured from five 

replicates of the three sward compositions and two fertilization treatments that were all cut 

once per year (totalling to 5 x 3 x 2 = 30 plots). At each sampling plot, two intact soil cores (8 
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cm in diameter and 5 cm in height) were injected with (
15

NH4)2SO4 solution (for gross 

mineralization and NH4
+
 consumption rates) and another two intact soil cores were injected 

with K
15

NO3 solution (for gross nitrification rates). Each soil core received five 1-ml 

injections containing either 29 µg N ml
-1

 ((
15

NH4)2SO4) or 28 µg N ml
-1

 (K
15

NO3) with 99% 

15
N enrichment, which was equivalent to a rate of 0.78 and 0.73 µg 

15
N g

-1
, respectively. Ten 

minutes after 
15

N injection, the soil of each labelled pair was extruded out of the core, mixed 

thoroughly, and part of it was added to a polyethylene bottle containing 150 ml of 0.5 mol L
-1

 

K2SO4 (approximately 1:3 ratio of fresh soil to K2SO4 solution) (T0 cores). The other soil core 

of the labelled pair was put in a plastic bag, inserted back into the soil to incubate in situ for 

one day, and extracted in the same manner (T1 cores). The bottles containing soil and K2SO4 

solution were shaken for one hour; the extracts were filtered through pre-washed filter papers 

(4 m nominal pore size) and stored at -18°C until analysis. NH4
+
 and NO3

-
 concentrations of 

the extracts were measured using continuous flow injection colorimetry (CFIC), in which 

NH4
+
 was determined by Berthelot reaction method (Skalar Method 155-000) and NO3

-
 by 

copper-cadmium reduction method (with NH4Cl buffer but without ethylenediamine 

tetraacetic acid; Skalar Method 461-000). Gravimetric moisture content was determined from 

all soil samples by oven-drying at 105°C for 24 hours, and these values were used to calculate 

the dry mass of extracted soil samples. The 
15

N enrichment of NH4
+
 and NO3

-
 pools were 

determined by 
15

N diffusion with blank correction as described in details by Corre and 

Lamersdorf (2004). 
15

N analysis was done using isotope ratio mass spectrometry (Finigan 

MAT, Bremen, Germany). Gross N mineralization, gross nitrification and NH4
+
 consumption 

rates were estimated using the 
15

N pool dilution equations described by Davidson et al. (1991) 

of which also NH4
+
 immobilization rate was calculated as the difference between gross rates 

of NH4
+
 consumption and nitrification. 

For microbial biomass C and N determination, we used the fumigation-extraction 

method (Brookes et al., 1985). Part of the soil from the T1 cores were fumigated with 

chloroform for 5 days and extracted with 0.5 mol L
-1

 K2SO4 as described above. Organic C 

concentrations of the extracts from fumigated and the corresponding unfumigated soils were 

analyzed by UV-enhanced persulfate oxidation using a Dohrman DC-80 Carbon analyzer 

with an infrared detector (Rosemount Analytical Division, Santa Clara, California, USA). 

Similarly, total N concentrations of the extracts were determined by persulfate digestion, 

which involves oxidation of NH4
+
 and organic N to NO3

-
 while NO3

-
 remains unchanged, 

followed by colorimetric analysis of NO3
-
 as described above. Microbial biomass C and N 
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were calculated as the difference in organic C and total N concentrations between fumigated 

and unfumigated soils divided by kC = 0.45 for microbial biomass C and kN = 0.68 for 

microbial biomass N. 

 

4.3.6 WATER BALANCE, N LEACHING LOSSES AND N2O EMISSIONS 

N leaching losses were sampled monthly. No soil water can be withdrawn from the 

lysimeters during January - February 2009 and 2010 (mean temperature below 0°C) and 

during August 2009 and 2010 (dry months). We installed one suction cup lysimeter (P80 

ceramic, maximum pore size 1 µm; CeramTec AG, Marktredwitz, Germany) per plot at a 

depth between 0.5-0.6 m, which was beyond the rooting depth (see below), three months prior 

to the first sampling. Soil solution was sampled over a month by applying a suction of 600 

hPa to the lysimeters and was collected into a glass bottle placed in a dark bucket that was 

dug in the soil. Immediately after field collection, the water samples were stored at -18°C 

until analysis. NH4
+
 and NO3

-
 concentrations of the soil water were measured using CFIC as 

described above. Total dissolved N (TDN) concentrations were determined using CFIC by 

UV-persulfate oxidation followed by hydrazine sulphate reduction (Skalar Method 473-000). 

DON was calculated as the difference between TDN and NH4
+
 + NO3

-
. There was no 

detectable NH4
+
 in the leaching water, and thus leaching losses was mainly composed of NO3

-
 

and DON. Monthly NO3
-
 and DON leaching losses were calculated by multiplying their 

concentrations in the monthly sampled soil water with the total drainage flux of the month. 

Drainage flux was calculated on a daily time step using the 1D hydrological model 

BROOK90 (Federer et al., 2003), which was parameterized with the prevailing site 

conditions. Input climatic data (daily total precipitation, minimum/maximum air temperature, 

solar radiation, vapour pressure and wind speed) were taken from a meteorological station at 

the study site. Daily evapotranspiration (ET = evaporation + transpiration + interception) was 

calculated from the meteorological data and vegetation properties using the approach of 

Shuttleworth and Wallace (1985). The seasonal course of the leaf area index, used for the 

calculation of ET, was derived from average biomass productions according to Rose et al. 

(2011a). Root uptake of water from the soil was depth-partitioned by assuming that root 

distribution decreases exponentially within 0.3-m rooting depth with 70% of the roots in the 

top 0.1-m depth. The vertical water movement in the soil was simulated using the Richards 
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equation, from which the relationships between matrix potential, water content and hydraulic 

conductivity for the soil texture (as described by Clapp and Hornberger, 1978) similar to that 

in our study site were used. To validate the model, we compared the modelled soil matrix 

potential with the measured matrix potential. Matrix potential was measured monthly using 

tensiometers (P80 ceramic, maximum pore size 1 µm; CeramTec AG, Marktredwitz, 

Germany), which were installed at 0.2-m, 0.5-m and 0.9-m depths. Finally, the drainage flux 

was calculated as the net vertical flux at the sampling depth of soil solution (0.6 m). 

N2O emissions were measured seven times in 2009 and five times in 2010 using 

closed chamber method. One polyvinyl chloride chamber base (0.07 m
2
 area, 0.35-0.4 m 

height of chamber base and cover) was installed permanently in each plot. For each 

measurement, the chamber base was covered with a polyethylene chamber hood fitted with a 

vent and a sampling port. Following chamber closure, gas samples were taken four times at 

15-minute interval and stored into pre-evacuated 100-ml glass bottles fitted with teflon-coated 

stopcocks. N2O was analyzed using a gas chromatograph (GC 6000, Carlo Erba 

Instruments/Thermo Fisher Scientific, Milan, Italy) equipped with an electron capture 

detector and an autosampler system (Loftfield et al., 1997). Gas concentrations were 

calculated by comparing the sample peak integrals with the peak integrals of three standard 

gases (353, 1018 and 1604 ppb N2O; Deuste Steiniger GmbH, Mühlhausen, Germany). N2O 

emissions were calculated by the linear increase of N2O concentration versus time for each 

chamber, corrected with the measured air temperature and pressure at the time of sampling. 

 

4.3.8 STATISTICAL ANALYSIS 

To test treatment differences of time-series parameters (NO3
-
 leaching, DON leaching 

and N2O emissions), we used linear mixed effects models (LME): treatments (fertilization, 

mowing frequency and sward composition) and row / column of the Latin rectangle design 

were considered fixed effects whereas sampling dates and spatial replications were included 

as random effects. The LME model included either 1) a variance function that allows different 

variances of the response variable for the fixed effects (Zuur et al., 2009), 2) a first-order 

temporal autoregressive process that assumes the correlation between measurements de-

creases with increasing time difference, or both if these improve the relative goodness of 

model fit based on the Akaike Information Criterion (AIC) (Crawley, 2007). Pairwise 



CHAPTER 4 |  

 

69 

comparisons (T test with Holmes correction) were used as post-hoc tests. To test treatment 

differences of parameters measured one time (gross N transformation rates, microbial 

biomass, and N retention efficiency), we used two-way analysis of variance followed by 

Tukey’s HSD post-hoc test. In all tests, if residual plots revealed non-normal distribution or 

non-homogeneity of variance we used either logarithmic or square root transformation (after 

adding a constant value if the dataset included negative values) and analyses were repeated. 

Non-significant effects of treatment interactions and of row and column were removed 

stepwise from the statistical models if this improved AIC (Crawley, 2007). Correlations 

between N retention efficiency and soil or plant parameters were assessed using Spearman’s 

rank correlation. A significance level of P = 0.05 was used throughout unless stated 

otherwise. All statistical analyses were performed using the R version 2.11.1 (R Development 

Core Team, 2009). 

 

4.4 RESULTS 

4.4.1 GROSS N TRANSFORMATION RATES AND MICROBIAL BIOMASS 

Gross rates of N mineralization ranged from 71 to 1440 mg N m
-2

 d
-1

 with an overall 

mean of 606 (± 65 SE) mg N m
-2

 d
-1

. Neither fertilization nor sward composition affected 

gross N mineralization (Table 4.2). In contrast, gross nitrification rates were higher in the 

fertilized plots whereas sward composition showed no effect. NH4
+
 immobilization rates 

varied between 143 and 2356 mg N m
-2

 d
-1

 with an overall mean of 753 (± 100 SE) mg N m
-2

 

d
-1

 and were marginally lower in the fertilized than unfertilized plots (Table 4.2). Across 

treatments, gross N mineralization rates were positively correlated with NH4
+
 immobilization 

rates (P < 0.001, rho = 0.75, n = 23) and gross nitrification rates were negatively correlated 

with NH4
+
 immobilization rates (P = 0.013, rho = -0.52, n = 22). Microbial C was not affected 

by any of the treatments, but fertilization resulted in marginally lower microbial N. A 

marginally significant interaction between fertilization and sward composition suggested that 

the decrease in microbial N caused by fertilization was pronounced in the dicot- and monocot-

enhanced swards, which also showed in their highest microbial C:N ratios (Table 4.2). 
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Table 4.2 Gross rates of soil N cycling and microbial biomass (mean ± SE) of a grassland in the Solling uplands, Germany with different sward compositions  

and management practices. 

Main factors      Treatments n Gross N 

mineralization rate 

(mg N m
-2

 d
-1

)  

Gross nitrification 

rate 

(mg N m
-2

 d
-1

)  

NH4
+ 

immobilization 

rate  

(mg N m
-2

 d
-1

)  

Microbial C  

 

(mg C m
-2

 )  

Microbial N 

 

 (mg N m
-2

 )  

Microbial C:N 

Sward composition   P = 0.478 P = 0.367 P = 0.383 P = 0.970 P = 0.736 P = 0.348 

 control 10 730 (± 115) a 92 (± 26) a 978 (± 252) a 50295 (± 5707) a 6870 (± 999) a 7.53 (± 0.29) a 

 dicot-enhanced 10 530 (± 114) a 112 (± 47) a 665 (± 133) a 46428 (± 4908) a 5921 (± 730) a 8.03 (± 0.21) a 

  monocot-enh. 10 570 (± 113) a 123 (± 80) a 640 (± 119) a 48190 (± 3454) a 6263 (± 548) a 7.84 (± 0.33) a 

Fertilization     P = 0.513 P = 0.009 P = 0.070 P = 0.203 P = 0.088 P = 0.386 

 no 15 654 (± 93) a 48 (± 9) b 891 (± 133) a 51819 (± 2875) a 6797 (± 375) a 7.65 (± 0.18) a 

  NPK  15 554 (± 94) a 204 (± 66) a 494 (± 95) b 44789 (± 4441) a 5906 (± 798) a 7.94 (± 0.27) a 

Sward composition x 

Fertilization 

  P = 0.774 P = 0.504 P = 0.735 P = 0.103 P = 0.097 P = 0.093 

 control no 5 824 (± 170) a 77 (± 25) b 1178 (± 311) a 47798 (± 3717) a 6104 (± 226) a 7.82 (± 0.48) a 

 control NPK 5 612 (± 151) a 112 (± 55) a 478 (± 125) b 52791 (± 11354) a 7637 (± 2030) a 7.24 (± 0.34) a 

 dicot-enhanced no 5 584 (± 168) a 49 (± 8) b 788 (± 180) a 52465 (± 6236) a 6732 (± 861) a 7.85 (± 0.20) a 

 dicot-enhanced NPK 5 477 (± 167) a 190 (± 88) a 512 (± 197) b 40391 (± 7128) a 5109 (± 1148) a 8.20 (± 0.38) a 

 monocot-enhanced no 5 554 (± 146) a 24 (± 7) b 707 (± 160) a 55194 (± 5166) a 7555 (± 643) a 7.29 (± 0.07) a 

 monocot-enhanced NPK 5 586 (± 189) a 368 (± 224 ) a 473 (± 50) b 41185 (± 1508) a 4972 (± 314) a 8.40 (± 0.56) a 

Means with different letter indicate significant differences within main factors (two-way ANOVA at P ≤ 0.05). Average of the measured bulk density of 0.79 g cm-3 and a sampling depth of 0.00-

0.05 m were used to convert rates on a dry mass basis to area-based rates. 
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4.4.2 WATER BALANCE AND N LOSSES 

During the experimental period, total annual precipitation was 1001 mm in 2009 and 

1083 mm in 2010. Modelled annual evapotranspiration was 507 mm in 2009 and 484 mm in 

2010. Modelled drainage flux was 441 mm in 2009 and 609 mm in 2010. At all three soil 

depths, measured matrix potential was correlated with modelled matrix potential (Spearman’s 

correlation coefficients ranged from 0.58 to 0.75 with P < 0.02, tested for each depth). In both 

years, modelled drainage flux was negligible in the summer months and strongly increased to 

values of more than 3 mm d
-1

 in autumn. Parallel to drainage flux, NO3
-
 leaching losses were 

also negligible in the summer months (Figure 4.1 a, b, c). In fertilized plots, NO3
-
 leaching 

strongly increased during autumn. The first year of treatment (2009) showed the peak of NO3
-
 

leaching only during the spring of the following year while the second year of treatment 

(2010) showed the peaks of NO3
-
 leaching immediately during the fall of the same year. In 

2009, fertilization was the only factor that influenced NO3
-
 leaching (P = 0.026; unfertilized 

plots: 0.53 (± 0.09 SE) mg NO3
-
-N m

-2
 d

-1
; fertilized plots: 1.15 (± 0.15 SE) mg NO3

-
-N m

-2
 d

-

1
). In 2010, fertilization (P = 0.000; unfertilized plots: 2.73 (± 1.00 SE) mg NO3

-
-N m

-2
 d

-1
; 

fertilized plots: 17.18 (± 2.95 SE) mg NO3
-
-N m

-2
 d

-1
) and mowing frequency (P = 0.033; cut 

once per year: 12.96 (± 2.87 SE) mg NO3
-
-N m

-2
 d

-1
; cut three times per year: 6.61 (± 1.38 

SE) mg NO3
-
-N m

-2
 d

-1
) influenced NO3

-
 leaching. An interaction (P = 0.011) between these 

factors showed that the increase in NO3
-
 leaching losses caused by fertilization was only 

significant in plots cut once per year whereas plots cut three times per year were not affected. 

Sward composition did not affect NO3
-
 leaching. 

Leaching of DON ranged between 0 to 1.9 mg N m
-2

 d
-1

 with an overall mean of 0.26 

(± 0.01 SE) mg N m
-2

 d
-1

 in 2009. None of the treatment factors influenced DON leaching 

(Figure 4.1 d, e, f). In 2010, DON leaching increased to an overall mean of 0.6 (± 0.10 SE) 

mg N m
-2

 d
-1

, ranging from 0 to 13.06 mg N m
-2

 d
-1

. We detected interaction effect between 

fertilization and mowing frequency (P = 0.006): fertilization increased DON leaching in plots 

cut once per year but not in plots cut three times per year. No effect of sward composition on 

DON leaching was detected. 
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Figure 4.1 Nitrate (NO3
-
) and dissolved organic nitrogen (DON) leaching losses (± SE, n=6) at 0.5-0.6-m depth from a grassland in the Solling uplands, Germany with 

different sward compositions and management practices: one mowing per year without fertilization (○), one mowing per year with fertilization (●), three mowings per year 

without fertilization (□), three mowings per year with fertilization (■).  
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In 2009, fertilization (P = 0.000; unfertilized plots: 0.14 (± 0.05 SE) mg N2O-N m
-2

 d
-

1
; fertilized plots: 0.50 (± 0.22 SE) mg N2O-N m

-2
 d

-1
), mowing frequency (P = 0.031; cut 

once per year: 0.41 (± 0.22 SE) mg N2O-N m
-2

 d
-1

; cut three times per year: 0.23 (± 0.07 SE) 

mg N2O-N m
-2

 d
-1

) and their interaction (P = 0.009) influenced N2O emissions (Figure 4.2 a, 

b, c). Fertilized plots showed an increase in N2O fluxes, especially following the second 

fertilizer application in May. However, this increase was only significant for the plots cut 

once per year. Unfertilized plots only showed a marginal increase in N2O fluxes during the 

summer months. In 2010, fertilization (P = 0.000; unfertilized plots: 0.17 (± 0.05 SE) mg 

N2O-N m
-2

 d
-1

; fertilized plots: 0.73 (± 0.24 SE) mg N2O-N m
-2

 d
-1

) also affected N2O 

emissions (Figure 4.2 d, e, f). Again, the increase in N2O emissions occurred in the beginning 

of July after the second fertilization in June and the impact of fertilization tended to be 

stronger in plots cut once per year, but, unlike 2009, this treatment interaction was not 

significant (P = 0.108). In both years, N2O uptake predominantly occurred in unfertilized 

plots. There was no impact of sward composition on N2O emissions. 
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Figure 4.2 Nitrous oxide (N2O) emissions (± SE, n=6) from a grassland in the Solling uplands, Germany with 

different sward compositions and management practices: one mowing per year without fertilization (○), one 

mowing per year with fertilization (●), three mowings per year without fertilization (□), three mowings per year 

with fertilization (■).  
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4.4.3 N RETENTION EFFICIENCY 

We calculated N retention efficiency only for 2010 when gross rates of N 

mineralization was measured, and this ranged from 0.842 to 0.999 with an overall mean of 

0.976 (± 0.02 SE). Fertilization decreased N retention efficiency and explained the variance 

more than the sward composition (Table 4.3). N retention efficiency was highest in the 

control sward followed by the dicot-enhanced and monocot-enhanced swards. Only the 

difference between control and monocot-enhanced swards was significant. Across all 

treatments, N retention efficiency was correlated with microbial NH4
+
 immobilization, 

microbial N and C, marginally correlated with plant N uptake, and not correlated with 

harvested plant biomass (Table 4.4). 
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Table 4.3 N retention efficiency of a grassland in the Solling uplands, Germany with different sward compositions and fertilization. 

Main factors   Treatments               n N retention efficiency                                                                                   

[1 - (mg N losses m
-2

 d
-1 

/  

mg gross N mineralization m
-2

 d
-1

)] 

SE P Variance 

explained 

(%)  

Sward composition       0.046 16.69 

 control 12 0.991  a 0.005     

 dicot-enhanced  12 0.981  ab  0.005     

  monocot-enhanced 12 0.963  b 0.016     

Fertilization         0.007 22.06 

 no 18 0.995  a 0.002     

  NPK  18 0.960  b 0.011     

Means with different letter indicate significant differences among treatments within main factors (two-way ANOVA with Tukey’s HSD at P ≤ 0.05). 
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Table 4.4 Spearman rank correlations between N retention efficiency and plant and soil-microbial parameters of 

a grassland site across different treatments of management practices in the Solling uplands, Germany. 

Parameter Spearman’s rho P 

Plant N uptake * 0.338 0.074 

Harvested plant biomass * - 0.031 0.871 

Microbial NH4
+
 

Immobilization 

0.560 0.006 

Microbial biomass C 0.364 0.053 

Microbial biomass N 0.417 0.025 

* Plant N uptake was reported by Keuter et al. (2013) and harvested biomass was reported by From et al. (2011). 
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4.5 DISCUSSION 

4.5.1 GROSS N TRANSFORMATION RATES AND MICROBIAL BIOMASS 

Gross N mineralization and NH4
+
 immobilization rates were larger than those reported 

for temperate grasslands in northeastern USA (Corre et al., 2002) and in the UK (Jamieson et 

al., 1999; Ledgard et al., 1998). Gross nitrification rates were in the same range as those 

reported for fertilized and unfertilized temperate grasslands in Belgium (Accoe et al., 2004) 

and Northern Ireland (Watson and Mills, 1998). The marginally lower NH4
+
 immobilization 

and larger nitrification rates in the fertilized compared to the unfertilized plots demonstrated 

that fertilization decreased microbial retention of NH4
+
, possibly resulting to competitive 

advantage of the nitrifiers. This was also supported by the negative correlation between NH4
+
 

immobilization rates and gross nitrification rates across treatments. A negative effect of N 

fertilization on microbial N immobilization in a grassland was also reported by Ledgard et al. 

(1998). Near to our grassland site, fertilized plots of beech forest (receiving high ambient N 

deposition of ≥25 kg N ha
-1

 y
-1

 and on top of this chronic N fertilization of 140 kg N ha
-1

 y
-1

 

for 9 years) also showed reduced NH4
+
 immobilization rates relative to gross N mineralization 

rates compared to the control beech plots that showed similar NH4
+
 immobilization and gross 

N mineralization rates (Corre et al., 2003). The reduced NH4
+
 immobilization in fertilized 

plots of beech forest as well as our grassland site was paralleled by marginal reduction of 

microbial N, suggesting reduced N demand for build-up of microbial biomass. Other studies 

on chronic, high N fertilization consistently showed reduced microbial biomass (Compton et 

al., 2004; DeForest et al., 2004), which may be because addition of N would favored certain 

microbial community over the others. As to the effect of sward composition, the marginal 

reduction in microbial N and marginal increases in microbial C:N ratios due to fertilization 

that was more distinct in the dicot- and monocot-enhanced swards rather than in the control 

swards suggest that the control sward plots were able to take the added N without changes in 

microbial biomass size and composition (e.g. no change in microbial C:N ratio). Such 

resilience of the control swards could be due to the adaptation feedback between soil 

microbial biomass and plant functional group composition, which may have developed from 

decades of extensive management practices in this site. Conversely, modifying the plant 

functional diversity of this grassland was unable to counteract the effect of N addition on 

depressing microbial N pool and changes in microbial composition.  
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4.5.2 N LOSSES 

Increased nitrification rates in fertilized plots had resulted to increased N losses 

compared to unfertilized plots. In 2009, the average rate of NO3
-
 leaching was lower than 

those reported by other studies in fertilized temperate grasslands (e.g. Christian and Riche, 

1998). The larger increase in NO3
-
 leaching in 2010 than in 2009 in fertilized plots was 

mainly due to the larger increases in NO3
-
 concentrations of the leachate rather than any 

change in magnitude of the drainage fluxes, which indicated the continuous nature of 

fertilization effect on leaching. While in the first year of treatment (2009) the grassland was 

still able to retain most of the soil available N (e.g. higher biomass production and plant N 

uptake in 2009 compared to 2010; Keuter et al., 2013), this has diminished in the second year 

(2010) of treatment. Baker and Johnson (1981) reported a similar pattern of increased NO3
-
 

concentrations in drainage water after three years of fertilization to a cropland in central Iowa, 

USA. Also, NO3
-
 concentrations in leachate of > 60 mg NO3-N L

-1
, similar to our findings in 

2010, have been reported for fertilized (120 kg N y
-1

) Miscanthuus grassland in Great Britain 

(Christian and Riche, 1998). DON leaching rates from our study were an order of magnitude 

lower than NO3
-
 leaching rates and were lower compared to values reported from several 

agricultural studies, which range from 0.3 to 127 kg DON ha
-1

 y
-1

 (e.g. van Kessel et al., 

2009). Our low DON leaching rates may be related to the relatively low abundance of 

legumes, exclusive use of mineral fertilizer, and exclusion of grazing (van Kessel et al., 

2009), all suggesting low possible sources of DON. Our measured N2O fluxes were 

comparable to other studies conducted in temperate grasslands. Median emission rates of 0.1 

mg N2O-N m
-2

 d
-1

 (unfertilized) and 0.2 mg N2O-N m
-2

 d
-1

 (fertilized with 200 kg N ha
-1

 y
-1

) 

were reported for a grassland in Switzerland (Flechard et al., 2005), and mean emission rates 

of 0.1 - 1.2 mg N2O-N m
-2

 d
-1

 were reported for a fertilized (300 kg N ha
-1

 y
-1

)
 
grassland in 

Scotland (Jones et al., 2005). 

The observed high N losses following fertilizer application, independent of the 

pathway (NO3
-
 leaching, DON leaching and N2O emissions), is in line with our first 

hypothesis. Similar findings have been reported by studies on NO3
-
 leaching (e.g. Christian 

and Riche, 1998), DON leaching (Dijkstra et al., 2007; Fang et al., 2009) and N2O fluxes (e.g. 

Jones et al., 2005). Our finding that increasing mowing frequency can decrease leaching of 

NO3
- 
and DON and reduce N2O emissions from fertilized plots is at least partly in line with 

our second hypothesis that mowing reduces N losses. A decrease of N2O emissions with 

increasing mowing frequency was also reported for a 50-year established non-grazed 



N  RETENTION EFFICIENCY OF A TEMPERATE GRASSLAND |  

 

80 

grassland in Germany, and was interpreted as a result of a higher plant N uptake and thus 

lower nitrification and denitrification rates (Kammann et al.,  1998). In the same site as our 

present study, we observed increases in plant N response efficiency (i.e. plant biomass 

produced per unit of plant-available N) and plant N uptake efficiency (i.e. the proportion of 

plant-available N that is taken up by plants) with increasing mowing frequency (Keuter et al., 

2013), which may be caused by overcompensatory regrowth following mowing (Guitian and 

Bardgett, 2000). Furthermore, microbial immobilization of N may also contribute to the 

influence of mowing since defoliation of plants increases rhizodeposition (Holland et al.,  

1996). An increased soil microbial biomass as a result of defoliation by cutting of grasses was 

reported by Guitian and Bardgett (2000). Thus, more frequent mowing may stimulate C input 

from plants to the soil which, in turn, may stimulate microbial N immobilization. 

We observed no effect of sward compositions on NO3
- 
and DON leaching and on N2O 

fluxes, which appears to be in contrast with some other studies. Decreasing soil extractable N 

caused by increasing plant species or functional group diversity has been reported (e.g. 

Tilman et al., 1996). On the other hand, plant species diversity effects on NO3
-
 and DON 

leaching are not consistent. Hooper and Vitousek (1998) did not observe plant diversity 

effects on NO3
-
 leaching in artificial grassland plots in California whereas Scherer-Lorenzen 

et al. (2003) observed a decrease in annual NO3
-
 leaching losses with increasing plant 

functional group richness in an artificially established grassland in Germany. This effect 

however was only significant for communities containing legumes and hence may have been 

an effect of reduction in legume abundance rather than an effect of species richness per se 

(Scherer-Lorenzen et al., 2003). In contrast, significant decreases in mineral N and increases 

in DON leaching rates with increasing grass species diversity were reported for planted 

grassland plots in Minnesota, USA (Dijkstra et al., 2007). This was explained by a higher 

productivity and consequently higher organic N pools, higher microbial activity and higher 

DON production at higher levels of species richness. The study of Dijkstra et al. (2007) had 

strongly contrasting levels of species richness (1 versus 16 species) whereas the number of 

species in our site was at the high level (12-18 species) with only small differences among 

sward compositions. A review has shown that diversity effects are most pronounced in the 

range of one to five species (Wrage et al., 2011). This may be the reason why we were not 

able to detect plant diversity effects in our study. Also, in our other study (conducted in a ~20-

year established, grazed grassland in Germany) N2O and NO fluxes were not affected by plant 

diversity (Hoeft et al., 2012). 
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4.5.3 N RETENTION EFFICIENCY 

The reduced N retention efficiency in the fertilized compared to unfertilized plots 

supported our hypothesis. This fertilization effect was caused by increased N losses rather 

than changes in gross N mineralization rates as the latter were not affected by fertilization. 

The increased N losses from fertilized plots were the result of increased gross nitrification 

rates which, in turn, were due to marginal decreased in NH4
+
 immobilization rates. In the 

same study site for the same study years, we also observed that fertilized plots had lower plant 

N response efficiency and plant N uptake efficiency than unfertilized plots (Keuter et al., 

2013). Thus, decrease in retention both through microbial immobilization and plant uptake 

caused decrease in N retention efficiency under fertilization.  

Apart from fertilization, sward composition also affected N retention efficiency. The 

control sward had the highest N retention efficiency, which was in contrast to our hypothesis. 

In our earlier study, we also found higher N response efficiency and marginally higher N 

uptake efficiency for the control sward compared to the monocot- or dicot-enhanced swards 

(Keuter et al., 2013). The control sward has adapted to local soil and environmental 

conditions over decades of extensive management practices, such that this sward has probably 

developed towards a composition that is most efficient in retaining soil available N. 

Correlations of N retention efficiency with NH4
+
 immobilization and microbial biomass and 

only marginal correlation with plant N uptake (Table 4.4) corroborated that microbial 

assimilation may play a more important role than plant uptake on the efficiency with which N 

is retained in the soil-plant system. This supports the studies of Hooper and Vitousek (1997, 

1998) who showed that microbial N immobilization may be a more important pathway for N 

retention than plant N uptake, and that indirect plant effects through microbial immobilization 

may equal or even exceed direct plant uptake effects on nutrient retention. 
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4.6 CONCLUSIONS 

Fertilizer application was the dominant factor influencing N losses and N retention 

efficiency, of which the latter was strongly influenced by microbial NH4
+
 immobilization. Our 

results also show that intensive mowing can partly reduce the high N losses following N 

fertilization. We found indications that control swards that have developed under decades of 

extensive grassland management had the highest efficiency in retaining N. This high N 

retention efficiency was caused by high plant N response efficiency and N uptake efficiency 

(Keuter et al., 2013) as well as high microbial NH4
+
 immobilization in the soil. N retention 

efficiency responded to both sward compositions and fertilization whereas N losses were only 

sensitive largely to fertilization, signifying that N retention efficiency was a more sensitive 

index than just N losses when evaluating environmental sustainability of grasslands. 

Furthermore, our study underlines the importance of microbial immobilization for the 

retention of N. In contrast to other more commonly used indices for plant response (e.g. N 

response efficiency and N uptake efficiency); N retention efficiency reflected the importance 

of microbial immobilization as a pathway for N retention in the plant-soil system. 

 



 

 

 

CHAPTER 

5  

 

 

5 SYNTHESIS 



SYNTHESIS |  

 

84 

5.1 SYNTHESIS AND DISCUSSION OF THE MAJOR FINDINGS 

In the synthesis, I aim to integrate the major findings obtained from our two studies 

(BIOMIX & GRASSMAN) and to draw more general conclusions about the importance of 

management and plant diversity for the functioning of grassland ecosystems. We analyzed a 

grazed grassland (BIOMIX) and a cut grassland (GRASSMAN) with a particular focus on N 

losses (N2O and NO emissions, N leaching) and N dynamics (net and gross mineralization 

and nitrification); and calculated N response efficiency and N retention efficiency as a 

measure for ecosystem functioning. In BIOMIX, the grassland management differed in the 

type of livestock (cattle and sheep). In GRASSMAN, the management differed in fertilization 

(180 – 30 – 100 kg NPK ha
-1

 yr
-1

 and no fertilization) or in mowing frequency (once and 

thrice per year). In both study sites, sward botanical compositions were manipulated by 

specific herbicide application, i.e. by reducing the abundance of certain plant functional 

groups. 

 

5.1.1 THE EFFECTS OF LIVESTOCK GRAZING ON ECOSYSTEM FUNCTIONING 

In BIOMIX, the type of grazer (cattle and sheep) had an effect on gaseous N losses on 

pastures. The hypothesized larger N oxide losses on sheep-grazed paddocks compared with 

those grazed by cattle could be confirmed for cumulative NO emissions in grass swards. N 

losses are linked with the N supply in the soil, which on pastures mainly depend on the N 

applied with excreta. Our hypothesis was based on the amount and frequency of urinations 

and defecations and the number of cattle and sheep per paddock. The measured gaseous N 

losses were dominated by the occasional measurement of urine and dung hotspots, which we 

attributed to an apparently more even spread of sheep excreta compared to cattle excreta 

(1.16% of the paddock area per day for sheep grazing, 0.81% for cattle grazing). However, 

per excreta patch, larger N losses were found for cattle than for sheep excreta due to larger N 

supply in the soil.  
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5.1.2 THE EFFECTS OF MANAGEMENT INTENSITY (FERTILIZATION AND MOWING) ON 

ECOSYSTEM FUNCTIONING 

A pattern similar to the effect of livestock grazing in BIOMIX was found in 

GRASSMAN: fertilization was the most important factor influencing N losses with 

hypothesized larger N losses on the fertilized plots. The determined N losses
 
were relatively 

small compared to reported N2O emissions of Flechard et al. (2005) or NO3
-
 leaching losses 

of Christian and Riche (1998) on ungrazed and fertilized grassland sites. We hypothesized 

increasing N losses with decreasing mowing frequency, as our findings showed a decrease in 

N2O emissions and NO3
-
 leaching losses on the intensively mown and on the fertilized plots. 

Our results corresponded to the findings of Kammann et al. (1998) who reported a decrease of 

N2O emissions with increasing mowing frequency on a German grassland site. Our findings 

indicated that plots cut thrice per year can counteract the negative effects of N fertilization 

regarding N losses. Especially the combination of fertilization and only one cut per year 

caused larger N losses via N2O emissions and NO3
-
 leaching.  

In GRASSMAN, fertilization largely influenced N response efficiency. The 

hypothesized smaller N response efficiency of the fertilized compared to unfertilized plots 

was caused by decreases in both N uptake efficiency and N use efficiency. As we assumed, 

mowing frequency also influenced N response efficiency via increasing N response efficiency 

in plots cut thrice per year. We attributed that to increasing N uptake efficiency, because N 

use efficiency was either showing the opposite trend or was not affected by mowing at all. 

The increased N uptake efficiency in plots cut thrice per year was paralleled by increased 

biomass yield and N concentration in biomass. N retention efficiency was also influenced by 

fertilization. We hypothesized smaller efficiencies in fertilized treatments compared to 

unfertilized treatments. The effect of fertilization was due to larger N losses rather than gross 

N mineralization rates which were not affected by the N surplus. Under fertilization, the 

decrease in N retention efficiency was caused through microbial NH4
+
 immobilization. N 

retention efficiency was not calculated for the plots differing in mowing frequency. That was 

due to the fact that mowing frequency had no effect on net rates of mineralization and 

nitrification in 2009. Based on these results, we decided to sample gross rates of 

mineralization and nitrification only on plots cut once per year in 2010. 
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5.1.3 THE EFFECT OF SWARD COMPOSITION ON ECOSYSTEM FUNCTIONING 

In BIOMIX, we evaluated if sward composition has an effect on N2O and NO 

emissions in grazed grassland. Our findings for N oxide emissions were not consistent with 

our hypothesis of smaller emissions in more diverse plots, but were supported by the study of 

Seither et al. (2012) who also found no differences in N yield of different sward compositions 

in the same experiment. Combining the data from our two experiments (main and controlled 

application experiment) within the BIOMIX study, we can conclude that sward composition 

was less important compared to the effect of grazers on N oxide emissions. In GRASSMAN, 

neither N losses (N2O emissions and NO3
- 

leaching) nor N turnover (net and gross 

mineralization) was significantly affected by sward composition. This may imply that 

regardless of the plant functional composition in this grassland, N supply through 

mineralization as well as N use by the vegetation will be similar.  

In GRASSMAN, sward composition influenced N response efficiency. The trends of 

N response efficiency and N uptake efficiency were similar whereas N use efficiency 

exhibited either opposite patterns or was not affected by sward composition. This emphasized 

that N uptake efficiency influenced N response efficiency more than N use efficiency. We 

assumed that N response efficiency decreases in the order dicot-enhanced swards ≥ control 

swards > monocot-enhanced swards, but found larger efficiencies in control compared to 

dicot- and monocot-enhanced swards. N retention efficiency was affected by sward 

composition. Contrary to our hypothesis, again untreated control swards were most efficient 

in N retention efficiency. We attributed the efficient N response and N retention to the ratio of 

~30% dicots and ~70% monocots found in the control swards. This ratio developed in 

response to N limited conditions and previous management practices. In equilibrium with 

these conditions, this plant community would be expected to result in efficient N response and 

N retention. Both, an artificial increase in the proportion of dicots as well as an increase in the 

proportion of monocots resulted in smaller efficiencies, even if that leads to a more balanced 

proportion. 
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5.2 CONCLUDING RESULTS  

The indices of N response and N retention efficiency might be suitable indices and 

useful as measures for ecosystem functioning in temperate managed grassland. First, we 

considered biomass yield per unit of plant available N and second, we measured N losses per 

unit of soil available N retained in an ecosystem and did not focus on N losses exclusively. At 

the ecosystem level, these indices can be beneficial for the assessment of grassland with 

regard to sustainable land-use. Optimize N response and N retention may not be a target of 

most farmers, but they are appropriate tools to evaluate the consequenses of grassland 

management practices, which farmers may employ to maximize profit, on environmental 

quality. Our results showed that the management of grassland is the most important factor 

determining ecosystem functioning. Fertilization, mowing frequency and livestock grazing 

largely influenced N response efficiency, N retention efficiency and N losses. Sward species 

composition was still a factor influencing determining ecosystem functioning but to a minor 

importance in this context. These trends were also found in the same experiment by Rose 

(2011b) for the effect of land-use intensification and biodiversity on grassland biomass, water 

use and plant functional traits. Grassland management determined structure, productivity and 

ecosystem processes while species richness was less important.  

 

5.3 IMPLICATIONS AND SUGGESTIONS FOR FURTHER RESEARCH 

Combining all findings, we could speculate if plant diversity is important in the context of 

grassland management. If we consider only N losses, the management (grazing, fertilization 

or mowing frequency) of the grazed and the mown grasslands have a major impact, while 

sward composition was insignificant. Calculating the efficiencies of N response and N 

retention in GRASSMAN, sward composition became a significant factor. Consequently, it is 

important to consider not only N losses, but also evaluating available N in the soil (gross N 

mineralization and nitrification) and available N for the plant (net N mineralization and 

nitrification) and thus, calculating the efficiencies of N response and N retention. But the use 

of these indices on ecosystem level should be tested in future studies. 



SYNTHESIS |  

 

88 

Biodiversity studies were conducted in artificial grassland, e.g. Jena Experiment, 

Biodepth or Cedar Creek (Marquard et al., 2009; Spehn et al., 2005; Tilman et al., 1996) or as 

observational studies in permanent grassland (e.g. Kahmen et al., 2005). Our grassland studies 

(BIOMIX & GRASSMAN) combined the advantages of artificial and observational studies - 

e.g. real world, all ecosystem processes, controlled experiment, interactions can be tested. 

Starting with natural vegetation that was manipulated by removing certain species or 

functional groups, it can be tested for a set of defined environmental conditions (Diaz et al., 

2003). In our studies, we used the approach of plant species removal by herbicides. In our 

pasture experiment (BIOMIX), the herbicide treatment on forbs lasted for three years. There 

already was a large invasion of species from diverse into grass swards. Grassland removal 

experiments treated by herbicides like our studies are appropriate for short-term experiments. 

After this time, another herbicide treatment should be carried out and that may have an impact 

on the N cycling again. Further studies are required due to sensitivity of plant functional 

groups to different herbicides. Finally, we suggest that it might be more advantageous to 

reduce the N input through excreta or mineral N fertilizer than to increase plant diversity in 

order to reduce N losses from grassland ecosystems.  
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APPENDIX 

 

Figure A.1 BIOMIX experiment with different swards in spring 2008. 

       

Figure A.2 BIOMIX experiment with cattle and sheep grazing in spring 2008. 
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Figure A.3 GRASSMAN experiment in summer 2009. Photograph: Laura Rose. 

 

 

 



  

 

99 

 

Table A.1 Biomass yield of a grassland under different management practices in the Solling Mountains, Germany. 

 

Main factors 

 

Treatments 

 

n 

  2009       2010     

Biomass yield * SE P 

Variance 

explained  Biomass yield  * SE P 

Variance 

explained  

      (kg ha
-1

 yr
-1

)     (%) (kg ha
-1

 yr
-1

)     (%) 

Sward composition       0.648 0.28     0.007 2.34 

 control 24 7922.82  a 597.58    6132.01  a 536.79   

 monocot-enhanced 24 7763.22  a 508.89    5237.22  b 498.97   

  dicot-enhanced 24 7586.48  a 482.80     5467.27  ab 467.66     

Mowing frequency       0.000 12.01     0.000 34.92 

 once per year 36 6855.40  b 270.55    4146.09  b 172.92   

  thrice per year 36 8659.62  a 517.05     7078.25  a 446.14     

Fertilization         0.000 56.74     0.000 24.71 

 no 36 5797.13  b 167.30    4378.75  b 210.25   

  NPK  36 9717.88  a 373.43     6845.59  a 469.71     

Mowing frequency x fertilization       0.000 9.89     0.000 16.97 

 once per year no 18 5713.66  c  160.04   3934.60  b 248.95   

 once per year NPK 18 7997.14  b 349.87   4357.58  b 236.35   

 thrice per year no 18 5880.61  c 297.99   4822.89  b 311.13   

 thrice per year NPK 18 11438.62  a 321.60     9333.61  a 352.58     

* Biomass yield data was reported by From et al. (2011). 

Mean values with different letter indicate significant differences among treatments within main factors or within an interaction of main factors (three-way ANOVA with Tukey HSD at P ≤ 0.05). 

Treatment interactions that were not significant are not reported. 
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