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Abstract 

Alzheimer’s disease (AD) is pathologically characterized by the deposition of amyloid beta 

(Aβ) and neurofibrillary tangles (NFT) consisting of hyperphosphorylated tau protein. Since 

familial mutations in proteins involved in the Aβ generating cascade inevitably lead to AD, 

the deposition of Aβ is widely believed to be the underlying pathological mechanism of AD. 

In contrast, mutations in tau lead to frontotemporal dementia. The amyloid hypothesis states 

that the accumulation of Aβ42 is the underlying cause of AD driving neuron and synapse 

impairment and loss, eventually leading to behavioral deficits. For many years, the focus of 

the Aβ hypothesis has been the extracellular deposition of Aβ plaques; however numerous 

mouse models have been generated based on the familial AD mutations successfully 

modeling the deposition of Aβ plaques, but with little or no behavioral deficits and only 

seldom showing a loss of neurons. Furthermore, Aβ plaque deposition does not correlate well 

with cognitive decline in AD patients and can be found in non-demented controls as well as in 

AD patients. Recently, a modification of the amyloid hypothesis has been introduced 

suggesting that intraneuronal accumulation of Aβ rather than extracellular Aβ plaque 

deposition may be an early pathological hallmark of AD initiating pathological events. 

However, the presence of intraneuronal Aβ in the human AD brain is currently under debate. 

The present thesis investigates the presence of intraneuronal Aβ in human AD brain tissue and 

studies the role of intraneuronal Aβ versus plaques in transgenic mouse models of AD 

focusing on neuron loss, fiber pathology, and functional deficits concerning immediate early 

gene (IEG) regulation. Concerning pathological alterations, the present thesis corroborates the 

intraneuronal Aβ hypothesis, supporting the view of intraneuronal Aβ as an early pathological 

initiator and showing strong implications for intraneuronal Aβ in the generation of large 

plaque-independent axonal fiber pathology and neuronal loss. In contrast, plaques are found 

likely to cause functional disturbances such as deficits in the induction of IEGs upon neuronal 

activity, but seem not to be involved in the loss of neurons. Optimization of the 

immunohistochemical staining method for the detection of intraneuronal Aβ peptides 

provided a strong and robust staining of intraneuronal N-terminal Aβ peptides as well as 

fibrillar oligomeric Aβ and Aβ fibrils in neurons of the hippocampal formation of AD brain 

tissue. Finally, a highly significant correlation was identified between the accumulation of 

intraneuronal N-terminal Aβ peptides and the well-recognized AD risk factor of having one 

ApoE4 allele, emphasizing an important role of intraneuronal Aβ in AD pathology. 
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1 Introduction 

1.1 Alzheimer’s disease 

Alzheimer’s disease (AD) is a severely disabling neurodegenerative disorder characterized by 

progressive cognitive decline and accounts for 50-70% of all cases of dementia, thereby 

representing the main cause of dementia among the elderly population. Alzheimer’s 

association reports that AD was the fifth-leading cause of death for those aged 65 and older in 

2006 in US, only surpassed by heart disease, breast cancer, prostate cancer, and stroke 

(Alzheimer's Association Report 2009). However, AD was the only one of these indications 

actually showing an increasing rate of deaths from 2000 to 2006 of as much as 47%, which 

emphasizes a continuing lack of effective treatments of AD. Patients often live about 10 years 

after appearance of the first symptoms and end up completely dependent on care givers. Thus 

WHO predicted the direct costs of AD in US alone to be about US$ 500 billion in year 2000 

making AD a major socioeconomic problem that will expand in near future (Vas et al. 2002). 

1.1.1 Clinical features 

The final diagnosis of AD is based on neuropathological hallmarks and can therefore only be 

given for certain after autopsy. In the clinic, the diagnosis is described as senile dementia of 

the Alzheimer type (SDAT) until confirmed by neuropathology. Unlike dementia, AD does 

not only affect memory function, but also other cognitive functions such as language, 

planning ability, attention, and orientation in time and space. Many patients start to forget 

recent events and appointments and progress to forgetting year and location. As the disease 

progresses, patients may have difficulties finding words and suffer from impairments in 

abstract thinking and judgment such as related to the concept of money. Problems start to 

arise with familiar tasks as buttoning a shirt or placing things at their right location. Mood 

changes can also appear with the patient showing anger for no apparent reason and with 

changes in personality showing paranoia, jealousy, and confusion. Eventually, patients often 

end up without initiative and completely passive without any language having reached the so 

called “bed-state” (Alzheimer´s Association Brochure 2005). To give the clinical diagnosis of 

SDAT, an individual is assessed by for example the Mini-Mental State Examination (MMSE), 
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which is a practical method for grading the cognitive state of patients (Folstein et al. 1975). 

Still, the symptoms vary with each patient often complicating the assignment of a diagnosis, 

but appearance of any of the early symptoms may be a sign of AD. Clinicians assign the term 

“mild cognitive impairment” (MCI) to patients where problems with memory, language, or 

other cognitive functions are severe enough to be noticed by others and show up on cognitive 

tests, but are not severe enough to interfere with daily life (Alzheimer's Association Report 

2009). It is estimated that as many as 10-20% of people age 65 and older have MCI 

(Alzheimer's Association Report 2009; Levey et al. 2006), but not all of these develop AD. 

The definition of MCI is broad and encompasses several subtypes. Amnestic MCI is 

characterized by memory deficits. Multiple-domain MCI is characterized by impairments in 

several cognitive functions such as language, executive functions, and visuospatial skills, but 

may also include memory deficits. A third subtype of MCI involves patients with impairment 

in a single cognitive domain that does not involve memory. Multiple-domain MCI without 

memory impairment can progress to dementia with Lewy bodies as can MCI affecting a 

single non-memory domain, which in addition can progress to frontotemporal dementia. Only 

MCI patients with memory impairment are likely to progress into AD. Although they may 

also suffer from depression, patients with 

amnestic MCI are very likely to develop 

AD with an incidence of 10-15% per year 

compared to 1-2% in healthy controls 

(Levey et al. 2006). All three types of MCI 

can also show complete remission; 

however, in a longitudinal study from the 

Mayo clinic, 80% of 76 patients with 

amnestic MCI had converted to AD after 6 

years, translating into the annual incidence 

of 15% (Fig. 1) (Levey et al. 2006; 

Petersen et al. 2001; Petersen et al. 1999). 

Fig. 1 Progression of amnesic mild cognitive 
impairment to AD. After 6 years, one study showed a 
rate of 80% conversion to Alzheimer’s disease for 
individuals with amnesic mild cognitive impairment 
(Petersen et al. 2001; Petersen et al. 1999). 
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1.1.2 Neuropathology 

Already in 1906, two major neuropathological lesions of AD were identified by the German 

psychiatrist Alois Alzheimer in his investigations of the most famous AD patient, Auguste D, 

a woman in her early 50s that suffered from progressive senile dementia (Hardy 2006). At 

that time, life expectancy was low compared to today, and what Alois Alzheimer thought to 

have identified as a rare dementia occurring in the “presenile” period of life, was only much 

later recognized to be the most common cause of dementia with an incidence rising 

exponentially with age. Using the limited microscopic technology of the time, Alois 

Alzheimer identified extracellular senile plaques and intracellular neurofibrillary tangles 

(NFTs) as the two major neuropathological lesions of AD, which are still thought to underlie 

AD pathogenesis and to date defines the final diagnosis of AD that can only be given after 

neuropathological examination following autopsy (Selkoe 2001).  

Much later, the extracellular plaques were found to 

consist of amyloid beta (Aβ) peptides, and two types 

of plaques were identified (Dickson 1997; Masters et 

al. 1985; Selkoe 1989). Neuritic plaques, or cored 

plaques (Fig. 2A), are microscopic foci of 

extracellular filamentous Aβ deposits surrounded by 

dystrophic neurites, which are swollen axons and 

dendrites that accumulate amongst others enlarged lysosomes and numerous mitochondria. 

The neuritic plaques are surrounded by microglia and Optimization for intraneuronal Aβ1-x 

staining in reactive astrocytes and are found in large numbers throughout limbic and 

association cortices. In contrast, diffuse amorphous plaques are not surrounded by dystrophic 

fibers or glial changes (Fig. 2B). They are thought to consist of less aggregated Aβ and might 

represent a stage of precursor lesions for neuritic plaques. Another form of Aβ deposition 

often observed in AD brains is cerebral amyloid angiopathy (CAA), where Aβ is found to 

accumulate inside the walls of blood vessels (Fig. 2C) (Alafuzoff et al. 2008; Selkoe 1989).  

Fig. 2 Aβ pathologies visualised by Aβ
immunohistochemistry. A) Cored or 
neuritic plaque. B) Diffuse amorphous 
plaque. C) cerebral amyloid angiopathy 
(CAA) (Alafuzoff et al. 2008). 

The NFTs are large non-membrane bound bundles of fibers occupying much of the 

perinuclear cytoplasm and consist of paired helical filaments (PHFs) wound into larger 

helices (Fig. 3). During the 1980´s, the PHFs were found to be composed of microtubule-

associated protein tau (MAPT) commonly referred to as “tau”, which is a protein normally 
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associated with microtubules supporting their assembly (Selkoe 

1989). The tau protein in PHFs is hyperphosphorylated, which is 

thought to be an initiating factor promoting the tau protein to 

dissociate from the microtubules and aggregate into PHFs 

forming the NFTs. Many kinases have been found capable of 

phosphorylating tau at various sites, amongst others the glycogen 

synthase kinase 3 (GSK3), mitogen-activated protein kinase 

(MAPK), cyclic AMP-dependent protein kinase (PKA), and, 

more recently, cyclin-dependent kinase 5 (cdk5). Nevertheless, 

the identities of the true physiological and pathological kinases in vivo remain unknown 

(Hanger et al. 2009). Many in vitro studies show neurotoxicity of hyperphosphorylated tau 

protein, however, the in vivo consequences of the hyperphosphorylation are still a matter of 

debate. One study of European ground squirrels in torpor during hibernation described the 

formation of highly phosphorylated tau in large amounts especially in the entorhinal cortex, 

hippocampus, and isocortical areas. The PHF-like phosphorylation of tau did not lead to fibril 

formation and was fully reversible after arousal, indicating that hyperphosphorylation itself is 

not the irreversible step in a fatal cascade (Arendt et al. 2003). Still, tau pathology has been 

found to correlate better with cognitive decline than Aβ plaques and the extend of tau 

pathology in AD brains is therefore used to stage the severity of the disease into six stages, 

Braak I-VI (Braak et al. 2006; Braak and Braak 1991). 

Fig. 3 Confocal image of 
neurofibrilary tangle (NFT). 
Aggregated hyperphosphory-
lated tau protein stained by 
immunohistochemistry (red) 
accumulates in the cytoplasma 
and surrounds the nucleus (N) 
(Luna-Munoz et al. 2005). 

Another pathological determinant of AD is brain atrophy and loss of neurons, which occurs 

predominantly in the cortex, hippocampal formation, and nucleus Basalis of Meynert. The 

loss of cholinergic neurons of the nucleus basalis of Meynert provided the first evidence of 

neuron loss, where as much as 90% neuron loss can be observed (Davies and Maloney 1976; 

Whitehouse et al. 1982). In comparison, neuron losses of approximately 50% have been 

established in the superior temporal cortex as well as in the enthorinal cortex proximate to the 

hippocampal formation (Gomez-Isla et al. 1997; Gomez-Isla et al. 1996). Concerning the 

hippocampal formation, there are some disagreements concerning the specific loss of neurons 

in subregions, but one study reported neuron losses of 23% in the subiculum and granule cell 

layer of the dentate gyrus (DG) (Simic et al. 1997), and another reported as much as 68% in 

the CA1, 47% in the subiculum and 25% in the hilus also named the CA4 region of the 

hippocampal formation (West et al. 1994). Accordingly, only the CA2-3 region of the 
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hippocampal formation seems to be 

somewhat resistant to neuronal loss in AD. 

The brain atrophy is evident by macroscopic 

examination and is characterized by 

enlargement of the ventricles and loss of 

volume especially in the hippocampal region 

concerned with memory processing and in 

cortical regions concerned with amongst 

others language skills, correlating well with 

the deficits in cognitive functions observed in 

AD patients (Fig. 4). Thus a total volume 

loss of about 30% has been found in the 

hippocampal formation using in vitro 

microscopy (Huesgen et al. 1993; Simic et al. 1997), which is in line with in-vivo magnetic 

resonance imaging (MRI) studies showing hippocampal and entorhinal cortical atrophy of 40-

50% (Erkinjuntti et al. 1993; Kesslak et al. 1991). Recently, significant atrophy of the 

olfactory bulb has been reported that probably accounts for the decrease in olfactory function 

also observed in AD patients (Thomann et al. 2009).  

Fig. 4 Brain atrophy in AD. Coronal brain sections of 
normal control subject (left) and a patient with 
Alzheimer’s disease (right) showing enlargement of 
ventricles and evident tissue loss especially in the
hippocampal region concerned with memory and in the 
cortex amongst others dealing with language function 
(www.ahaf.org/alzdis/about/BrainAlzheimer.htm). 

Also synapses are lost in AD and is believed to be an early pathological alteration in the brain, 

especially in the frontal cortex where a loss of 30-40% of the synapses in layer III and V of 

AD biopsy tissue has been reported (Scheff et al. 1990; Tiraboschi et al. 2000). As synaptic 

plasticity is a key player in cognitive function, the loss of synapses could very well result in 

cognitive impairments. Accordingly, the loss of synapses seems to strongly correlate with the 

cognitive decline in AD patients (DeKosky and Scheff 1990; Dickson et al. 1995; Terry et al. 

1991). 

In addition, abnormalities and impairments in axonal transport have been reported in a variety 

of neurodegenerative diseases (Yagishita 1978) and are suggested to be an important 

pathological alteration underlying AD (Roy et al. 2005; Stokin and Goldstein 2006; Zhu et al. 

2005). The axonal pathology in AD is evident by swollen dystrophic fibers in which various 

proteins accumulate including APP (Cras et al. 1991), synaptic proteins like alpha-synuclein 

(Wirths et al. 2000), glycogen (Mann et al. 1987), or abnormal filaments (Praprotnik et al. 

1996) (Fig. 5). With the implementation of new imaging techniques it has recently been 
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shown in in-vivo studies that impairment of axonal transport 

mechanisms and decreased axonal transport rates early in the 

disease process might have a significant impact on the 

pathogenesis of AD (Cross et al. 2008; Minoshima and Cross 

2008; Smith et al. 2007; Teipel et al. 2007). 

Fig. 5 APP-positive dystrophic 
neurites surrounding neuritic 
plaque (Cras et al. 1991). 

 

 

1.1.3 Risk factors 

The major risk factor of AD is aging, which is evident 

by the exponential increase in AD incidence with age. 

Thus, a study performed by the American National 

Institute on Aging estimated a fairly low incidence rate 

of 0.08% per year in the 60-65 year age group that was 

found to double each 4.4 years resulting in 6.48% new 

AD cases each year in the 85+ age group (Fig. 6A) 

(Kawas et al. 2000). In prevalence, this means that 

1.4% of the population aged 60-65 suffers from AD, 

whereas this applies to 23.6% of people aged 85 or 

more (Fig. 6B). The world health organization (WHO) 

estimates that there are currently 18 million people 

worldwide suffering from AD and expects this number 

to have doubled by 2025 (Vas et al. 2002). Since aging 

is the major risk factor of AD, much of this dramatic 

increase in the number of AD patients is expected to be 

caused by an ongoing demographic change with an 

increasing proportion of elderly people owing to 

higher living standards, medical improvements, and 

better care that altogether prolongs life expectancy.  

Fig. 6 Aging is a major risk factor of AD.
AD incidence rate increases exponentially 
with age (A) (Kawas et al. 2000) causing a 
dramatic increase in AD prevalence in 
older age (B) (Vas et al. 2002). 

Alzheimer’s association reports a higher prevalence of AD in women compared to men in the 

US, but also concludes that this is caused by the longer life span of women, and not by 
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women having a higher risk of developing AD. This is in line with reports of no differences in 

AD risk factor between men and woman as well as the observed incidence rate in men and 

woman rising equally exponentially with age (Fig. 6A) (Kawas et al. 2000; Sandberg et al. 

2001).  

Whereas the majority of all cases of AD occur sporadically, 2-5% are caused by familial 

inherited mutations most often resulting in an early onset of the disease before the age of 65 

years that can be as early as around 30 years of age (Bentahir et al. 2006; Kumar-Singh et al. 

2006). So far, all mutations resulting in familial AD (FAD) have been identified in only three 

genes encoding the beta amyloid precursor protein (APP), presenilin 1 (PS1) or presenilin 2 

(PS2), which are all proteins involved in the cascade leading to Aβ deposition (Janssen et al. 

2003). Most of these mutations have been shown to elevate the levels of the Aβ isoform 

ending at amino acid 42 (Aβ42), which is considered to be highly neurotoxic and tends to 

aggregate into amyloid fibrils more rapidly that then isoform ending at amino acid 40 (Aβ40) 

(Iwatsubo 1998). Mutations in the MAPT gene encoding the tau protein have also been 

identified; however, these cause frontotemporal dementia and not AD (Kumar-Singh and Van 

Broeckhoven 2007).  

Whereas FAD can be caused by a single mutation, sporadic AD is generally believed to be a 

multifactorial disease and is therefore not expected to be caused by a single genetic mutation 

or variation. So far, the strongest genetic variation linked to AD is that of apolipoprotein E 

(ApoE) of which three different alleles can be found in the general population: 2, 3, and 4. 

The ApoE3 is the most common allelic form and is found in 77-78% of the general 

population. The ApoE2 is rather rare and is found in only 7-8% of the population. The ApoE4 

constitutes the remaining 14-16%, however, in people with AD, the ApoE4 genotype is found 

in about 40% of the patients being much more common than in the general population. Thus 

the ApoE4 genotype is believed to be a major risk factor of AD, and individuals with one 

ApoE4 allele are considered 3-4 times as likely to develop AD as those without ApoE4 (Bu 

2009; Corder et al. 1993; Schmechel et al. 1993; Strittmatter et al. 1993). Why ApoE4 

predisposes to AD is yet unclear, however, ApoE4 has been shown to directly influence APP 

processing to Aβ. More indirectly, apolipoproteins are the major carriers of cholesterol in the 

blood and delivers cholesterol to cells that incorporate it into cell membranes, where 

cholesterol is considered important for the function of lipid rafts that are considered to 

regulate the cleavage of APP to Aβ (Riddell et al. 2001; Vetrivel et al. 2004).  
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1.2 APP processing 

The major breakthrough in AD biochemistry happened in the mid 1980’s when Aβ was 

isolated and characterized as the core peptide of amyloid plaques (Glenner and Wong 1984; 

Masters et al. 1985), which was shortly followed by the identification of the gene encoding 

the peptide’s parent protein, the APP (Kang et al. 1987; Tanzi et al. 1987). The APP gene was 

mapped to the Down’s syndrome region of chromosome 21, which was especially intriguing 

since Down’s syndrome is a chromosomal disorder where the patients have three copies of 

chromosome 21 and invariably develops AD at an early age (Kang et al. 1987; Wisniewski et 

al. 1978). The APP protein turned out be a type 1 transmembrane glycoprotein (Tanzi et al. 

1987) that is widely expressed in many cell types of the brain including neurons, glial cells, 

astrocytes, and endothelial cells as well as in many peripheral tissues (Beer et al. 1995; 

Schmechel et al. 1988). Anchored in the membrane, full-length APP undergoes post-

translational proteolytic processing through at least two distinct pathways, differing in the 

proteases involved and the resulting production of protein fragments (Fig. 7A). In the non-

amyloidogenic pathway, cleavage of APP by α-secretase results in release of the large soluble 

ectodomain fragment α (sAPPα) from the membrane. The resulting membrane-associated 83-

amino-acid long C-terminal fragment (C83) remains associated with the membrane and is in 

turn processed by the γ-secretase generating the so-called P3 peptide and the APP intracellular 

domain (AICD, also referred to as CTFγ). In this pathway, cleavage within the Aβ sequence 

Fig. 7 Proteolytic processing of APP. A) In 
the nonamyloidogenic pathway (left) cleavage 
of APP by the α-secretase results in the release 
of the large soluble ectodomain fragment α 
(sAPPα). The membrane-associated 83-amino-
acid long C-terminal fragment (C83) is further 
processed by the γ-secretase within the 
transmembrane domain (TM) liberating the P3 
peptide and the APP intracellular domain 
(AICD/CTFγ). Alternatively, APP can undergo 
the amyloidogenic pathway (right) in which 
APP is initially cleaved by the β-secretase 
releasing the soluble ectodomain fragment β
(sAPPβ).    Subsequent processing of the C-
terminal derivative (C99) by the γ-secretase 
generates the Aβ peptide and the C-terminal 
AICD fragment (inspired by (Senechal et al. 
2006)) B) The generation of Aβ is believed to 
take place in the membranes of intracellular 
compartments, most likely the endosomes, 
accumulating Aβ inside the vesicle structures 
(adapted from (Small and Gandy 2006)).
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by the α-secretase prevents the formation of Aβ peptides. Alternatively, APP can be cleaved 

in the amyloidogenic pathway in which APP is initially cleaved by the β-secretase resulting in 

the formation of an N-terminal ectodomain fragment β (sAPPβ) that is released from the 

membrane and a membrane-bound 99-amino-acid long C-terminal derivative (C99). 

Subsequent processing of C99 by the γ-secretase within the transmembrane domain releases 

the Aβ peptide and the C-terminal AICD fragment from the membrane (Senechal et al. 2006).  

The nature of the secretases as well as the intracellular localization of the cleavage process 

has been of great interest and many questions are not yet finally answered. Three enzymes 

have been identified having α-secretase activity, 

ADAM9, ADAM10, and ADAM17, all 

belonging to the ADAM family (a disintegrin- 

and metalloproteinase-family enzyme) of  

integral membrane proteins (Allinson et al. 

2003). They are thought to cleave the APP at 

the cell surface membrane releasing sAPPα into 

the extracellular space (Laferla et al. 2007). 

Several groups have identified the β-secretase to 

be the β-site APP-cleaving enzyme 1 (BACE 1), 

which is, like APP, a type 1 integral membrane 

protein (Hussain et al. 1999; Sinha et al. 1999; 

Vassar et al. 1999). Like most transmembrane 

proteins, APP and BACE1 are sorted via the 

secretory and endocytic pathways where the 

trans-Golgi network (TGN) and the endocomes 

function as coordinators of the complex 

movement of transmembrane proteins within the 

cell (Fig. 8A) (Small and Gandy 2006). The 

sorting through the different compartments is 

highly regulated and clathrin has been identified 

to mediate the movement from the TGN to 

endosomes and between the endosomes and the 

Fig. 8 Sorting of APP and BACE1. A) Both are 
sorted via the secretory and endocytic pathways 
where the trans-Golgi network (TGN) and the 
endocomes function as coordinating compartments. 
B) The retromer complex transports type-I 
transmembrane proteins from the endosome to the 
TGN. VPS35 is the core of the retromer and binds 
directly to the protein cargo (red bar). VPS26, 
VPS29, and sortin nexins (SNX) 1 or 2 assemble 
onto VPS35 to generate the complete functional 
retromer complex. The retromer sorts APP and
BACE1, either by direct binding to the retromer or 
by indirect binding through the adaptor protein 
sorLA (light blue) (Small and Gandy 2006). 
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cell surface (Wahle et al. 2005). A novel coat complex, the retromer, has been found to be 

involved primarily in retrograde transport from the endosome to the TGN where an adaptor 

protein, sorLA, is thought to bind the retromer complex to cargo proteins such as APP and 

BACE1 and could provide interaction between the two proteins (Seaman 2004). Both APP 

and BACE1 can be found, at least transiently, in almost all membranous compartments of 

these pathways as well as on the cell surface, but biochemical studies suggest maximal 

BACE1 activity in an acidic environment, making the lysosomes a likely compartment for the 

initial cleavage. However, mature BACE1 is found predominantly in the endosomes with 

lower levels on the cell surface and in the TGN and not in lysosomes or in the endoplasmic 

reticulum (Small and Gandy 2006). A fluorescence resonance energy transfer (FRET) study 

analyzed the interaction between APP and BACE1 and confirmed that wild-type APP binds 

BACE1 with greatest efficiency in the endosomes, lesser on the cell surface, and to a 

negligible degree in the TGN and secretory pathway (Kinoshita et al. 2003). The γ-secretase 

has been identified as a multimeric complex of at least 4 enzymes being the PS1 or PS2, 

nicastrin, anterior pharynx defective enzyme 1 (APH-1), and presenilin enhancer 2 (PEN-2) 

(Fig. 9) (Gandy 2005). The multimeric nature of the γ-secretase has made the localization of 

its cleavage even more complicated than that of β-secretase. The best clue is that γ-secretase 

cleavage takes place in presynaptic terminals of neurons where the only existing organelles 

involved in the γ-cleavage are the endosomes (Kamenetz et al. 2003). Thus both β- and γ-

cleavage is thought to take place in endosomes (Fig. 7B), but it remains unsolved whether γ-

secretase cleavage also takes place in other compartments of the secretory and endocytic 

pathways.  

Fig. 9 The structure of γ-secretase. γ-secretase is a 
complex of 4 enzymes: presenilin (PS1 or PS2), 
nicastrin, anterior pharynx defective enzyme (APH-1), 
and presenilin enhancer 2 (PEN-2). The complex is a 
zymogen being inactive until the presenilin is cleaved at 
the black bar causing the complex to self associate and 
form the active enzyme (Gandy 2005). 

1.2.1 APP physiological functions 

The APP gene sequence shows extensive conservation throughout evolution suggesting an 

important physiological function of the APP protein (Coulson et al. 2000), which is 

alternatively spliced resulting in three major isoforms differing in length, functional domains, 
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and expression pattern in the brain (Sola et al. 1993; Tanaka et al. 1989). The APP695 

consists of 695 amino acids and is the most abundant form in the brain expressed 

predominantly in neurons, whereas the APP751 and APP770 isoforms have one additional 

domain and are present mostly in glial cells and other non-neuronal tissues. Within neurons, 

the highest expression levels of APP are found in the hippocampal formation and cerebellum, 

where APP undergoes fast anterograde axonal transport, is expressed at neuronal synapses, 

and is found throughout vesicular structures of the cell bodies, axons, and dendrites (Koo et 

al. 1990; Sola et al. 1993). The physiological role of APP is not as extensively investigated as 

its pathological role and is thus not very well understood, however, some information are 

supplied from KO or knock-down studies of APP expression as well as mutations of the 

different domains. APP KO or deficient mice are in fact viable but show weight loss, reduced 

forelimb grip strength and decreased locomotor activity, suggesting impairment in muscular 

or motoneuronal function (Muller et al. 1994; Zheng et al. 1995). On the biochemical level, 

the APP protein has been found to contain many domains capable of interacting with a variety 

of proteins as well as metal ions. For example, the extracellular part of APP was shown to 

interact with ApoE and Notch receptors involved in development, during which APP 

expression actually increases in correlation with intense neurite outgrowth and synaptogenesis 

(Moya et al. 1994; Senechal et al. 2006). Thus APP is thought to play an important role in 

synaptic development, cell migration, early postnatal survival, and neurogenesis, and possibly 

has a role in maintenance and repair (Senechal et al. 2006). In the periphery, APP is highly 

expressed in Sertoli cells, follicle cells, secretory cells, podocytes, and macrophages found in 

the spleen, liver, kidney, testis, ovary, pancreas, and salivary glands (Beer et al. 1995). 

Common to these cells is their high membrane turnover and their functional characteristics 

mediating endocytosis and exocytosis supporting a peripheral role of APP in tissue 

maintenance and repair. 

1.2.2 Aβ toxicity 

Aβ is a 4 kDa peptide that shows a high tendency to polymerize and aggregate. Thus Aβ can 

self-associate to form oligomers ranging from dimers and trimers to larger oligomers of more 

than 100 kDa, although it mostly forms low-n oligomers (dimers to octamers). The oligomers 

are described as soluble as they are soluble in aqueous buffer and remain in solution following 

high speed centrifugation. Monomers are thought to be in equilibrium with the oligomers, but 
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when a certain threshold amount of monomers is reached, they initiate a nucleation-dependent 

polymerization process in which monomeric Aβ forms nuclei that are polymerized into Aβ-

derived diffusible ligands (ADDLs), which assemble into larger protofibrils. The ADDLs and 

protofibrils are plastic structures that can again dissociate to monomers, but the protofibrils 

can also aggregate further into full-length fibers (Fig. 10). Aβ fibers are insoluble and 

represent the major constituents of plaques, whereas the solubility of ADDLs and protofibrils 

following high speed centrifugation has not yet been addressed (Roychaudhuri et al. 2008; 

Walsh et al. 1997; Walsh and Selkoe 2007).  

Aβ peptides have been shown to have toxic properties in cell cultures (Kihara et al. 1997; Loo 

et al. 1993; Yankner et al. 1990), but so far, the mechanism whereby Aβ induces cell death 

has not been clarified and there is an ongoing debate concerning which type of Aβ peptides 

represents the most toxic species. Most people agree that Aβ42 peptides are more neurotoxic 

than Aβ40, probably owing to their increased tendency to aggregate (Small and McLean 

1999). However, variations also exist at the N-terminal region where a considerable part of 

the Aβ found in AD brains is N-terminally truncated beginning for example with 

phenylalanine at position 4, or with a pyroglutamate modification at position 3 (AβN3pE) 

(Masters et al. 1985; Saido et al. 1995). The N-terminal truncated Aβ peptides generally show 

Fig. 10 Aβ fibrillogenesis. Monomers are in equilibrium with oligomers that can be of low-n (2-12) or further 
associate to larger oligomers. Monomers initiate a nucleation-dependent polymerization process in which 
nuclei are the basis for generation of Aβ-derived diffusible ligands (ADDLs) that further assemble into
protofibrils. Protofibrils give rise to full-length fibers by simple end-to-end annealing, lateral association of 
protofibrils followed by addition of monomers or oligomers to ends, and lateral association followed by end-to-
end annealing (adapted from (Walsh et al. 1997)). 
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enhanced tendency to aggregate in vitro (Pike et al. 1995), and especially AβN3pE shows 

increased cellular toxicity compared to full-length Aβ (Russo et al. 2002) and has been shown 

to mediate neuron death in a mouse model expressing specifically AβN3pE (Wirths et al. 

2009). AβN3pE also shows high stability (Kuo et al. 1998) and aggregation propensity (He and 

Barrow 1999), and is thought to have seeding properties inducing the aggregation of other Aβ 

peptides (Schilling et al. 2006). Thus prevention of the aggregation of Aβ peptides by 

inhibition of AβN3pE generation is considered a potential target in AD (Schilling et al. 2008). 

Not only the Aβ species, but also the confirmation of Aβ peptides is currently under 

discussion. Early studies demonstrated that aggregation of Aβ is essential for its toxicity 

(Yankner 1996), however, it has recently been suggested that soluble oligomeric Aβ is more 

toxic than the aggregated fibers (Walsh et al. 2000), and one study even isolated a specific 

oligomeric Aβ species, the Aβ56*, claiming that this is solely responsible for the memory 

impairment caused by Aβ in a mouse model of AD (Lesne et al. 2006). Thus there seems to 

be a lack of agreement within the field as to which primary species of Aβ is actually 

mediating its toxic effects. Supporting the hypothesis of the toxic oligomers to be the most 

toxic is the lack of correlation between the accumulation of aggregated Aβ in plaques and the 

deterioration in memory and cognitive functions of AD patients (Aizenstein et al. 2008; 

Dickson et al. 1995; Terry et al. 1991), whereas soluble Aβ species have recently been 

reported to correlate much better with the cognitive decline in AD (McLean et al. 1999; 

Naslund et al. 2000).   

Only very little is known about the physiological role of Aβ, but the peptide has been reported 

to play a role in the regulation of neuronal excitation (Kamenetz et al. 2003), and a very 

recent finding identifies Aβ as an antimicrobial peptide of the innate immune system (Moir et 

al. 2009). Others have found a link between APP processing and the metabolism of 

cholesterol and sphingomyelin, both part of cellular membranes. According to these studies, 

Aβ42 should reduce the level of sphingomyelin by activating the sphingomyelin degrading 

enzyme, whereas Aβ40 reduces cholesterol de novo synthesis by inhibiting its synthesizing 

enzyme. This regulation strictly depends on γ-secretase, and cholesterol and sphingomyelin 

should directly affect the γ-secretase activity providing a feedback mechanism where 

cholesterol induces the activity of the γ-secretase (Grimm et al. 2005). Corroborating these 

results, hypercholesterolemia has been suggested as an early risk factor in the development of 
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AD, and cholesterol-lowering drugs are being evaluated as a potential treatment for AD 

(Cutler et al. 2004; Simons et al. 2002; Sparks et al. 2005). 

1.3 Mouse models of Alzheimer’s disease 

The knowledge of identified FAD mutations can be used to generate model systems for 

studying the pathology and course of AD. The most widely used model organism is the 

mouse. The choice is a compromise between having a mammalian organism being in many 

ways similar to humans and practical considerations such as handling, generation time, and 

the extensive knowledge of the mouse genome obtained in 2002 by complete sequencing. 

Owing to the complicated techniques of introducing mutations, the mouse is in fact the only 

mammal in which targeted mutation is yet possible (Pluck and Klasen 2009). However, 

drosophila is also quite often applied because of its very easy handling, extremely fast 

generation time, low costs, and the ability to conduct fast screenings of drug candidates (Sang 

and Jackson 2005). 

1.3.1 Generation of mouse models 

Presently, two technically different approaches can be applied to generate a mouse model. 

Pronuclear injection of a vector containing a relevant DNA sequence into fertilized oocytes 

generates transgenic mice by introducing a foreign target gene, however, with random 

integration into the genome. Targeted mutagenesis using homologous recombination in 

embryonic stem (ES) cells can be used to specifically modify a target gene and is thus used to 

produce genetically modified mice where a gene is knocked in (KI) to obtain a gain of 

function or knocked out (KO) to obtain inactivation of gene expression. 

Pronuclear injection is the most widely used technique to generate transgenic animals as it is a 

straightforward method to consistently integrate a transgene at a single site in the 

chromosome (Ittner and Gotz 2007). Female mice are superovulated, mated to fertile males 

and sacrificed the following day to recover fertilized oocytes from the oviducts. The DNA of 

interest is injected into the male pronucleus of the oocytes using a micro injection pipette, and 

surviving oocytes are reimplanted into the oviducts of a pseudopregnant foster female (Fig. 

11). During this procedure, the microinjected DNA randomly integrates into the chromosomal 

DNA at nicks, usually at a single site, however, often containing multiple head-to-tail copies 
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of the transgene. To target specific 

tissues and cell types, e.g. neurons of the 

brain, expression vectors are applied 

containing promotors specific for the 

target tissue. To express APP in neurons 

of the brain and spinal cord, the prion or 

Thy1 promotor are often used of which 

the latter has shown to give a high APP 

mRNA level throughout the brain, being 

most notably in the hippocampal 

formation and cerebral cortex (Ittner and 

Gotz 2007). If the foreign DNA has 

integrated at the one-cell stage of 

development, it should be transmitted to 

50% of the offspring, which is checked 

by polymerase chain reaction (PCR) for 

the presence of the desired DNA 

sequence. The advantage of the 

pronuclear injection is that the molecular 

biology work is quite simple and development time to first offspring is rather low (~22 

weeks), however, as the transgenic integration is random it can disrupt an existing gene 

possibly causing phenotypic changes or lethality. Also, the transgene usually integrates with a 

non-predictable copy number, and expression patterns and levels are usually highly variable 

in different transgenic founders. Therefore, several mouse lines have to be screened for the 

optimal transgenic phenotype until one is chosen for further breeding and characterization. 

Extensive housing capacity must therefore be available for the breeding procedure and it takes 

approximately a year from making the DNA construct for pronuclear injection to the 

establishment of a new transgenic mouse strain with some phenotypic characterization (Ittner 

and Gotz 2007; Strachan and Read 1999). 

Fig. 11 Generation of transgenic mice by pronuclear 
microinjection. A micro injection pipette is used to inject 
the DNA into the male pronucleus of the oocyte. The 
introduced DNA clones integrate into the chromosomal 
DNA at nicks, forming transgenes, usually containing 
multiple head-to-tail copies. The oocytes are reimplanted 
into the oviducts of pseudopregnant foster females. 
Newborn mice resulting from development of the 
implanted embyos are checked by PCR for the presence of 
the desired DNA sequence (Strachan and Read 1999).  

Specific genetic modifications in a mouse genome can be obtained by isolating and culturing 

ES cells from the inner cell mass of blastocytes. While in culture, the ES cells can be 

genetically modified by homologous recombination. The modified ES cells are injected back 
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into isolated host blastocysts and 

reimplanted into a pseudopregnant foster 

mother. The developing embryo is a 

chimera which contains two populations 

of cells derived either from ES cells of 

the host blastocyst or from the implanted 

ES cells (Fig. 12). If the two strains of 

cells are derived from mice with 

different coat colors, chimeric offspring 

can be easily identified on their mixed 

fur coat color. Backcrossing of the 

chimeras can then generate mice that are 

heterozygous for the genetic 

modification, and subsequent cross-

breeding of heterozygous mutants can 

generate homozygous animals (Pluck 

and Klasen 2009; Strachan and Read 

1999). The specific DNA changes 

performed on the cultured ES cells are 

introduced using vectors designed to 

target the locus of interest through 

sequence homology between the 

introduced DNA and the target gene. Two types of vectors are used. Insertion vectors target 

the locus of interest by a single homologous sequence causing insertion of the entire 

introduced DNA including the vector sequence. By inserting foreign DNA into the target 

gene, this is the most reliable way of causing a KO mutation. Replacement vectors target the 

locus of interest by containing the DNA of interest flanked by two homologous sequences that 

then recombinate with the chromosomal DNA resulting in replacement of some of the 

sequence in the chromosomal gene. The result can inactivate the gene of interest if the 

introduced sequence contains a premature termination codon or lacks a critical coding 

sequence, but can also be used to change the coding sequence producing a change of function 

for the encoded protein thus producing a KI mutation (Strachan and Read 1999). The main 

Fig. 12 Specific modification of target gene by 
homologous recombination in ES cells. Embryonic stem 
(ES) cells from the inner cell mass of blastocytes are 
cultured, genetically modified, injected into isolated 
blastocyte of another mouse strain with different fur color, 
and then implanted into pseudopregnant foster mother. 
Development of introduced blastrocyst results in a chimera 
containing two populations of cells evident by the presence 
of differently colored coat patches. Backcrossing produces 
mice that are heterozygous for the genetic modification 
(Strachan and Read 1999).  
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disadvantage of the ES cell method is that gene cloning and construction of the targeting 

vector is quite time consuming and technically advanced. However, a huge advantage is that 

specific genetic modifications can be obtained and that these can be verified in the tissue 

culture, before insertion of the genetically modified cells are implanted into the foster mother. 

This renders the genetic manipulation highly effective and minimizes the time spend on 

breeding and phenotypic screening as the insertion can be performed in a single mouse line.  

1.3.2 FAD mutations in mouse models of AD 

Even though FAD only makes up 2-5% of AD cases, the many identified FAD mutations 

have the major advantage of being able to modulate the pathology of the disease in model 

organisms. Many mouse models of AD have been generated utilizing FAD mutations of APP 

and PS1 or PS2 causing the mice to develop an age-dependent Aβ deposition. FAD mutations 

in APP are generally named after the population in which they were first identified thus 

leading to amongst others the Swedish, Flemish, Dutch, Italian, Arctic, Iowa, French, 

German, Florida, London, Indiana, and Australian mutations of which the Swedish and 

London mutations are probably the most extensively studied (Fig. 13) (Janssen et al. 2003). 

The mutations segregate around the secretase cleavage sites affecting the activity of the 

restriction enzymes. Only one mutation has been identified at the β-cleavage site, the Swedish 

double mutation, which generally increases the production of Aβ (Scheuner et al. 1996). 

Mutations near the γ-secretase 

cleavage site generally increase 

the production of the more 

amyloidogenic Aβ42 (Scheuner 

et al. 1996), although the 

French mutation results in a 

reduction of Aβ40 without 

affecting Aβ42 production, 

suggesting that it is the 

increase in the ratio of Aβ42 to 

Aβ40 that is important rather 

than the absolute amount of 

Aβ42 (Ancolio et al. 1999). 

Fig. 13 Pathogenic mutations in APP. The mutations are given 
according to the APP amino acid sequence producing the Aβ peptide, 
related to β-, α-, and γ-cleavage sites as well transmembrane domain 
(TM). For each mutation is given name, amino acid mutation, and 
number in APP sequence (Janssen et al. 2003). 
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Intra-Aβ mutations near the α-secretase cleavage site as the Dutch and Flemish mutations are 

generally associated with CAA amyloid deposition in blood vessels in addition to amyloid 

plaque formation, however, the effect of these mutations on the levels of Aβ40 and Aβ42 are 

less clarified with evidence of reduced Aβ42 or generally reduced Aβ levels in cell culture 

studies (Janssen et al. 2003). More than 150 mutations have been identified in PS1 and PS2, 

which are part of the γ-secretase complex. PS1 mutations are the major cause of FAD 

accounting for 18-55% of all families. The PS1/PS2 mutations are scattered throughout the 

presenilin protein and generally result in an increased ratio of Aβ42/Aβ40 causing early and 

aggressive forms of AD (Bentahir et al. 2006; Kumar-Singh et al. 2006). 

The mouse models generated by introduction of, often several, FAD mutations are numerous. 

Much important information has come from the analysis of these mouse models; however, the 

differences in background, transgenic expression pattern, and combination of mutations 

render the comparison between the models almost impossible and irrelevant. Still, many show 

pathological features also observed in AD patients. For example, extracellular deposition of 

Aβ in plaques and vasculature as well as the accumulation of different forms of Aβ having N-

terminal modifications and being of different aggregation states correlates with findings in 

AD patients (Duyckaerts et al. 2008). Disturbances of neuronal structure in the form of 

dystrophic neurites surrounding plaques, decreased fiber and synapse density, and synaptic 

dysfunctions also correlate to observations in AD patients (Aucoin et al. 2005; Bellucci et al. 

2006; Bronfman et al. 2000; Hu et al. 2003; Luth et al. 2003; Wong et al. 1999), as does the 

observation of inflammatory changes (Baron et al. 2007; Eikelenboom et al. 2006). Neuron 

loss, however, assessed by stereological quantification is a feature only observed in very few 

mouse models, which complicates the study of the mechanism behind the massive neuron loss 

observed in AD patients and weakens the hypothesis of the Aβ deposition driving the AD 

pathogenesis (Casas et al. 2004; Schmitz et al. 2004). Also, none of the mouse models 

containing FAD mutations develop tau pathology in the form of NFT, making the link 

between Aβ and tau pathology a still unsolved mystery.  

1.3.3 The APP/PS1KI mouse model 

The bigenic APP/PS1KI mouse model is a result of the breeding of two different lines, a 

PS1KI mouse line and a transgenic APP Swedish London (APPSL) mouse line. The PS1KI 

mouse line was derived using a two-step mutagenesis strategy, based on the construction of a 
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targeting vector that bears base changes in the coding region at codons M233T and L235P and 

surrounding introns of the murine Ps1 gene. Homozygous mice were established and referred 

to as PS1KI. PS1KI mice on a mixed 129SV-C57BL/6 genetic background were bred with 

APPSL transgenic mice generated by pronuclear injection overexpressing human APP751 

carrying the London (V717I) and Swedish (K670N, M671L) mutations under the control of 

the Thy1 promoter on a mixed C57BL/6-CBA genetic background. When present, the APP 

transgene was heterozygote, and the resulting APP/PS1KI animals statistically have the same 

genetic background: 50% C57BL/6, 25% CBA, and 25% 129SV (Casas et al. 2004).  

The bigenic APP/PS1KI mice accumulates almost exclusively Aβ42, but with different N-

terminal modifications. The model is one of the currently most interesting as the mice develop 

an extensive neuron loss of about 30% in the CA1 region of the hippocampal formation 

already at 6 months, which is even more obvious in 10-month-old mice (Fig. 14A) (Breyhan 

et al. 2009; Casas et al. 2004). The bigenic mice are smaller and have a thoracolumbar 

kyphosis observed as a characteristic bend in the spinal cord compared to PS1KI control mice 

and they show a severe motor pathology evident by a hind limb clasping phenotype when 

dispensed by the tail. Significant impairments in the balance beam, string suspension, and 

vertical grip hanging tasks become obvious at the age of 6 months (Wirths and Bayer 2008). 

The APP/PS1KI mice also show inflammatory changes (Wirths et al. 2008a) and many 

dystrophic neurites marking axonal degeneration throughout the brain and spinal cord (Fig. 

14B) (Wirths et al. 2007; Wirths et al. 2006). The observed extensive pathology apparently 

results in behavioral deficits, which can be detected in working memory assessed by Y- and 

T-maze at the age of 6 months (Fig. 14C) (Wirths et al. 2008b). 

Fig. 14 Data from APP/PS1KI mice. A) Micrographs of hippocampal cresyl violet stained sections from 10-
month-old PS1KI, APPSL, and APPSLPS1KI mice. Massive cell loss is observed in the CA1 of bigenic 
APPSLPS1KI mice only (arrows) (Casas et al. 2004). B) Large axonal spheroids stained with antibody against 
NF200 labeling neurofilaments in neurons of 10-month-old APP/PS1KI mice (Wirths et al. 2007). C) Analysis of 
alternation behavior in T-maze revealed significant impairment in working memory at the age of 6 and 12 months 
in the APP/PS1KI mice compared to PS1KI controls (Wirths et al. 2008b). 
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1.4 The amyloid hypothesis 

For many years, scientists have been split concerning the etiology of AD depending on their 

belief in Aβ or tau as the driving pathological mechanism of AD. The amyloid hypothesis 

states that the accumulation of Aβ, preferable Aβ42, is the underlying cause of AD driving 

neuron and synapse impairment and loss, eventually leading to behavioral deficits (Hardy 

2006; Hardy and Allsop 1991). The major argument for the amyloid hypothesis is the genetics 

of FAD in which mutations have been identified only in genes linked to the Aβ generating 

cascade, whereas mutations in tau lead to frontotemporal dementia (Kumar-Singh and Van 

Broeckhoven 2007). Thus at present, the amyloid hypothesis is widely believed to be the 

primary pathological mechanism of AD, whereas the tau pathology is believed to be 

downstream of Aβ pathology since FAD also show NFTs, but frontotemporal dementia 

caused by tau mutations shows no Aβ pathology. Another argument for the Aβ hypothesis is 

the discovery of the familial British and Danish dementias. These dementias are caused by 

two different mutations in the BRI2 gene generating two similar proteins of 34 amino acids 

varying in their C-terminal part (Vidal et al. 1999; Vidal et al. 2000). These two proteins 

aggregate and form amyloid plaques similar to Aβ plaques in AD and the proteins are thus 

named amyloid Bri (ABri) and amyloid Dan (ADan) according to their presence in British 

and Danish dementia. Interestingly, the processing of the BRI2 gene reminds a lot of that of 

APP as it can also be cleaved by ADAM10 and has been shown to undergo regulated 

intramembrane proteolysis (Martin et al. 2008), and the British and Danish dementias also 

develop tau pathology, which further suggest that tau pathology is downstream of the amyloid 

pathology (Holton et al. 2001).  

Plaques have been shown to cause toxic effects such as disturbances in the fiber network with 

development of dystrophic swellings in surrounding fibers and loss of dendritic spines, as 

well as decreased synaptic bouton density, preferably of cholinergic cortical fibers (Blanchard 

et al. 2003; Delatour et al. 2004; Hu et al. 2003; Tsai et al. 2004; Wirths et al. 2007). Still, 

much remains to be resolved about their actual toxicity as the accumulation of extracellular 

Aβ plaques does not seem to correlate with the cognitive decline observed in AD patients and 

can be found in non-demented control subjects (Aizenstein et al. 2008). Furthermore, loss of 

neurons is rarely observed in the various mouse models generated accumulating abundant Aβ 

plaque pathology (Duyckaerts et al. 2008; Games et al. 2006). 
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1.4.1 The intraneuronal amyloid hypothesis 

A possible modification of the 

amyloid hypothesis is that the driving 

pathological factor is not Aβ 

accumulation in extracellular plaques, 

but rather Aβ accumulation inside 

neurons. Intraneuronal accumulation 

of Aβ has received considerable 

attention in the past recent years and 

is believed to precede extracellular 

plaque deposition (Gouras et al. 2005; 

Gyure et al. 2001; Laferla et al. 2007; 

Wirths et al. 2004). Thus the 

intraneuronal Aβ hypothesis of AD is 

a modification of the original amyloid 

hypothesis and suggests that risk 

factors such as aging, ApoE4 

polymorphism, trisomy 21 (Down 

Syndrome), or FAD mutations 

initially cause Aβ accumulation inside neurons, leading to functional deficits and loss of 

neurons and synapses ending up in cognitive decline (Fig. 15) (Gouras et al. 2005; Laferla et 

al. 2007; Wirths et al. 2004). In this model, plaques are considered a result of Aβ leakage or 

release from the intraneuronal pool, or to originate from the lysis of neurons accumulating 

intraneuronal Aβ. The plaques are believed to cause disturbances of the neuronal network, but 

they are not considered the primary cause of AD pathogenesis (D'Andrea et al. 2001; Gouras 

et al. 2005; Wang et al. 2002). 

Fig. 15 The intraneuronal Aβ hypothesis of AD. Due to risk 
factors as ageing, Trisomy 21 and FAD mutations, 
intraneuronal Aβ42 levels increase and leads to synaptic and 
neuronal dysfunction followed by neurodegeneration. In 
parallel, increased release and deposition of Aβ42 leads to 
extracellular plaque formation, from which Aβ can possibly 
again be internalized and contribute to the intraneuronal pool of 
Aβ peptides. (Wirths et al. 2004). 

The accumulation of intraneuronal Aβ peptides in AD brains has been sporadically reported 

since the late 1980´s (Grundke-Iqbal et al. 1989), however, initial problems with the inability 

of the antibodies to distinguish full length APP from Aβ founded a skepticism towards the 

presence of intraneuronal Aβ that has been exceedingly difficult to eliminate (Gouras et al. 

2005; Laferla et al. 2007). Despite the initial technical complications, several studies using 

Aβ40/42 end-specific antibodies have since reported the presence of intraneuronal Aβ in AD 
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brains (D'Andrea et al. 2002a; D'Andrea et al. 2002b; D'Andrea et al. 2001; Fernandez-

Vizarra et al. 2004; Gouras et al. 2000; Mochizuki et al. 2000; Nagele et al. 2002; Wegiel et 

al. 2007), as well as in Down Syndrome patients who are known to develop AD in early age 

(Gyure et al. 2001; Mori et al. 2002). One study even isolated human hippocampal granular 

neurons from the CA1 of AD patients by laser capture microdissection and identified an 

increased intraneuronal ratio of Aβ42/Aβ40 in AD patients compared to controls (Aoki et al. 

2008). However, people still remain skeptical towards the presence of intraneuronal Aβ in 

human AD brains, probably because most of the studies show pictures of variable quality and 

often reports of findings in only one or a very low number of AD cases. Also, some 

antibodies, especially monoclonal, directed toward an internal part of Aβ seem to cross-react 

with lipofuscin, which is a protein that accumulates abundantly in neurons with age showing a 

very distinct cap-like granular staining nearby the nucleus (Bancher et al. 1989). The reports 

of intraneuronal Aβ have thus been inconsistent with pictures showing very different patterns 

of intraneuronal Aβ accumulation of which some have actually been lipofuscin, and the 

accumulation of intraneuronal Aβ remains under discussion (Duyckaerts et al. 2008).  

In AD mouse models, intraneuronal Aβ was first reported in familial PS1 transgenic mice that 

also showed neurodegeneration without the formation of plaque pathology (Chui et al. 1999), 

and has since been convincingly reported in several mouse models including APPSDLPS1M146L 

(Wirths et al. 2001), Tg2576 (Takahashi et al. 2002), 3xTg-AD (Oddo et al. 2003), 5xFAD 

(Oakley et al. 2006), APPArc (Knobloch et al. 2007; Lord et al. 2006), APPT714I (Van Broeck 

et al. 2008), as well as in APP/PS1KI mice (Casas et al. 2004). In the mouse models, 

intraneuronal Aβ has amongst others been reported to disrupt fast axonal transport in isolated 

axoplasms (Pigino et al. 2009) and impair multivesicular body sorting by inhibiting the 

ubiquitin-proteasome system (Almeida et al. 2006). In addition, it induces synaptic 

dysfunction leading to reduced postsynaptic density 95 protein (PSD-95) levels and 

consequently reduces the levels of the glutamate receptor subunit, GluR1, in synapses 

(Almeida et al. 2005). Strikingly, of the very few mouse models based on FAD mutations 

which have been documented to show robust neuron loss, two are accumulating intraneuronal 

Aβ: the APPSLPS1M146L and the APP/PS1KI models (Casas et al. 2004; Schmitz et al. 2004). 

The 5xFAD mice, which also accumulate intraneuronal A peptides, have been described to 

have a lower density of neurons in the cortex and subiculum based on a qualitative evaluation 

of a cresyl violet staining, however, this needs to be confirmed by unbiased stereological 
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quantifications (Oakley et al. 2006). This renders the mouse models accumulating 

intraneuronal Aβ especially interesting for studying the neuron loss in AD, which most likely 

symbolizes the irreversible step in the pathological cascade of AD where clinical deficits 

become apparent (Price et al. 2001).  

1.5 Transmitter deficits in Alzheimer’s disease 

The first transmitter specific deficits to be identified in AD were of the cholinergic system 

utilizing acetylcholine (ACh) as a neurotransmitter that were reported already in the 1970s 

leading to the cholinergic hypothesis of AD (Davies and Maloney 1976). Parallel to 

Parkinson´s disease, which is primarily a neurodegenerative disease of the dopaminergic 

neurons of the substantia nigra, AD was hypothesized to be a neurodegenerative disease of the 

cholinergic system, owing mainly to degeneration of cholinergic neurons of the nucleus 

basalis of Meynert, which is the largest cholinergic nucleus of the human basal forebrain 

projecting to the cortex (Coyle et al. 1983). The cholinergic system of the brain comprises two 

projecting neuron complexes: the basal forebrain and the pons complex, as well as motor 

nuclei projecting to the periphery and interneurons located mainly in the striatum. In the 

present thesis, the cholinergic projecting nuclei will be designated according to the Ch1-6 

nomenclature, which is based on common connectivity patterns that are virtually identical in 

human and rodents (Lucas-Meunier et al. 2003; Mesulam et al. 1983). From the basal 

forebrain complex, cholinergic neurons from the medial septum (Ch1) and the vertical limb of 

the diagonal band (Ch2) project to the hippocampal formation, whereas those of the basal 

nucleus of Meynert (Ch4) mainly 

project to the cortex (Fig. 16). The Ch3 

is a minor nucleus of the horizontal 

part of the diagonal band and its 

cholinergic neurons project to the 

olfactory bulb. The cholinergic 

neurons of Ch5-6 belong to another 

projecting complex located in the pons 

projecting mainly to the thalamus. 

Initially, a reduction in the activity of 

Fig. 16 Overview of Ch1-6 nomenclature and projections.
The figure is based on a sagital section of the rat brain. 
Hatched area: the diagonal band (Lucas-Meunier et al. 2003). 
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both the ACh synthesizing enzyme, choline acetyltransferase (ChAT), and the ACh degrading 

enzyme, acetylcholine esterase (AChE), was reported being most severe in the cortex (Davies 

1979; Davies and Maloney 1976). Subsequently, a loss of cholinergic forebrain neurons of the 

nucleus basalis of Meynert was discovered as the first evidence of neuron loss in AD (Arendt 

et al. 1988; Mufson et al. 1989; Whitehouse et al. 1981). These cholinergic forebrain neurons 

projecting to the cortex participate in the mediation of attention, and their degeneration is thus 

thought to cause part of the cognitive decline observed in AD (Sarter et al. 2005).  

Based on the cholinergic hypothesis, AD patients have long been treated with AChE 

inhibitors to decrease the breakdown of ACh and thereby prolong its action in the synaptic 

cleft. However, the clinical impact of the AChE inhibitors has turned out to be quite 

disappointing with only minor beneficial effects and it was soon recognized that AD is a 

complex disease affecting multiple transmitter systems, although perhaps with the cholinergic 

basal forebrain neurons being especially vulnerable. According to the nerve growth factor 

(NGF) hypothesis, this vulnerability is thought to be caused by decreased NGF stimulation of 

the cholinergic basal forebrain neurons as their survival is highly dependent on NGF being 

retrogradely transported from the hippocampal formation or cortex (Counts and Mufson 

2005). Thus in vivo, cholinergic Ch4 neurons of the nucleus basalis degenerated following 

experimental neocortical infarction in monkeys (Burgos et al. 1995) or excitotoxic neocortical 

lesions in rats (Charles et al. 1996), but were rescued by exogenous NGF treatment. In 

parallel, infusion of NGF can prevent death of cholinergic Ch1/2 neurons following 

septohippocampal axotomy (Hefti 1986; Tuszynski and Gage 1995; Williams et al. 1986) or 

hippocampal lesions (Burke et al. 1994). Finally, transgenic mice that express anti-NGF 

antibodies in adulthood display an age-dependent specific loss of cholinergic basal forebrain 

neurons (Capsoni et al. 2000; Ruberti et al. 2000). In AD patients, the NGF system has been 

found to be dysregulated early in the disease progress and in end-stage AD patients, 

cholinergic basal forebrain neurons have reduced protein levels of NGF and its high and low 

affinity receptors, TrkA and p75, whereas both stable, increased, as well as decreased levels 

of NGF have been reported in the cortical and hippocampal projection regions of end-stage 

AD (Mufson et al. 1995; Scott et al. 1995). Thus impairment in retrograde transport of NGF is 

thought to be responsible for the lack of trophic support of Ch4 neurons, rendering the 

cholinergic neurons more vulnerable, or directly mediate their degeneration (Lad et al. 2003). 

NGF treatment is therefore another potential treatment for AD directly targeting the 
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degeneration of the cholinergic basal forebrain neurons, however, there is a need for highly 

specific delivery to avoid aberrant sprouting of neuronal fibers. So far, one successful phase I 

clinical trial has been conducted in which mild AD subjects received grafts of autologous 

fibroblasts genetically modified to secrete human NGF (Tuszynski et al. 2005). The cells were 

implanted directly in the nucleus basalis of Meynert bypassing putative defects in the 

retrograde transport of NGF and avoiding systemic exposure. The patients showed minor 

improvements in cognitive decline and cortical glucose uptake; still, more studies are needed 

to confirm a positive effect of NGF treatment in AD patients. Apart from administration, a 

major challenge of NGF treatment will be early intervention, as NGF must be given prior to 

degeneration of the cholinergic neurons to have any effect on their survival (Montero and 

Hefti 1988). 

To date, only 5 drugs have been approved by the food and drug administration (FDA) in the 

US for treatment of AD. These are tacrine (Cognex), rivastigmine (Exelon), galantamine 

(Razadyne), donepezil (Aricept), and memantine (Namenda), of which the first four are all 

AChE inhibitors. It has been evaluated that at least rivastigmine, galantamine, and donepezil 

have similar efficacy showing only minor benefits of treatment on cognitive function, 

activities of daily living, and behavior and there is currently a debate concerning whether the 

AChE inhibitors have any effect at all (Birks 2006).  

Also receptors of the cholinergic system are being discussed as potential targets for future 

treatments of AD. Two types of cholinergic receptors exist, the nicotinic ACh receptors 

(nAChRs) which are ligand-gated ion channels, and the muscarinic receptors that are 7-

transmembrane receptors coupled to G proteins. The muscarinic receptors, especially the M1 

receptor, have received much attention in the past showing stimulation of α-secretase 

cleavage by Protein Kinase C (PKC) activation (Nitsch et al. 1992), but presently, the 

nAChRs are at the center of most attention (D'Andrea and Nagele 2006). The nAChRs are 

composed of 5 transmembrane subunits of which there are 2 major types, α and β. At least 9 

α-type subunits (α2 through α10) and 3 β-type subunits (β2 through β4) are expressed 

throughout the CNS, where two of the most abundant neuronal nAChRs are the heteromeric 

high affinity α4β2 and the homomeric low affinity α7 receptors (Alkondon and Albuquerque 

2004). All the nAChRs are stimulated by ACh and nicotine with varying affinities and are 

cation selective, being permeable to small monovalent and divalent cations, where the α7 

nAChR has a high relative permeability of Ca2+ to Na+ of ≥ 10 as compared to ~ 2.0 for the 
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heteromeric neuronal receptors (Dani and Bertrand 2007). The nAChRs mediate fast synaptic 

signal transmission and are involved in learning, memory, and attention (Hasselmo 2006; 

Sarter et al. 2005). In AD post-mortem studies, reductions in both α4 and α7 subunits have 

been reported in the cortex and hippocampal formation (Guan et al. 2000; Teaktong et al. 

2004). Although, increased immunohistochemical staining of α7 reactive neuropil was 

observed in some areas of the hippocampus (Teaktong et al. 2004) and cholinergic neurons of 

the nucleus basalis of Meynert express an increased level of  α7 nAChRs, probably as a 

compensatory mechanism in reaction to their dysfunction and degeneration (Counts et al. 

2007). In contrast, little depletion or dysregulation of muscarinic cholinergic receptors has 

been found in patients with AD (Nordberg et al. 1992). 

The nAChR showing most implication in AD is the α7 nAChR, of which a direct interaction 

with Aβ42 has been repeatedly reported, and genetic variation in the α7 nAChR gene has 

recently been shown to influence AD susceptibility (Carson et al. 2008). In human AD brain 

tissue, α7 nAChRs show co-localisation with Aβ42, and also co-immunoprecipitate with 

Aβ42 in AD hippocampal neurons, as does α7nAChRs purified from culture and incubated 

with synthetic Aβ42 (Wang et al. 2000). In membranes, the same study found that Aβ42 

displaces α-bungarotoxin (α-BTX) binding specific for α7nAChRs (Wang et al. 2000). In 

contrast, another study in cultured cells found that Aβ does not bind to α7nAChRs, but binds 

to lipids within the plasma membrane that could, potentially, influence the function of a 

variety of receptors and channels on the cell surface (Small et al. 2007). However, Aβ42 

specifically blocks the response evoked by ACh or nicotine of α7 nAChRs in cell culture and 

hippocampal neurons (Liu et al. 2001; Pettit et al. 2001; Spencer et al. 2006), and α7 nAChR 

activation protected against Aβ-induced neurotoxicity (Kihara et al. 1997). Interestingly, the 

α7 nAChR has been suggested to mediate endocytosis of Aβ42, facilitating intraneuronal 

accumulation of Aβ (Nagele et al. 2002).  

In addition to direct cholinergic behavioral deficits, the α7 nAChRs can cause behavioral 

symptoms by interaction with other transmitter systems. For instance, α7 nAChRs are located 

presynaptically at excitatory synapses and enhance both glutamatergic and cholinergic 

synaptic transmission by increasing presynaptic intracellular Ca2+ levels (McGehee et al. 

1995). This suggests that fluctuations in α7 receptor levels may lead to functional deficits in 

the glutamatergic excitatory system thus influencing processes of learning, memory, and 

synaptic plasticity, or even influence excitotoxicity. In fact, the AChE inhibitor, galantamine, 
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is thought to also block glutamate toxicity through α7 mediated phosphatidylinositol 3-kinase 

(PI3K) activation (Kihara et al. 2004). 

The involvement of the cholinergic system in the pathogenesis of AD is supported by the 

observation that nicotine reduces Aβ levels in APPswe mice (Hellstrom-Lindahl et al. 2004a), 

which correlated with the finding that smoking had a lowering effect on Aβ and an increasing 

effect on radioactive-ligand binding of nicotinic receptors in the brains of AD patients and 

control subjects (Hellstrom-Lindahl et al. 2004b). These studies indicate that selective 

nicotinic agonists may be beneficial in AD by lowering Aβ levels and even increasing nAChR 

levels. Accordingly, some pharmaceutical companies are presently developing α7 agonists for 

AD patients; however, many believe that the best strategy to treat neurotransmitter deficits in 

AD will be to use a combination of drugs toward multiple targets within neurotransmission 

(Geerts and Grossberg 2006; Grossberg et al. 2006; Gsell et al. 2004).  

1.6 Introduction to experiments 

The loss of neurons in AD represents a fatal irreversible step in the cascade of AD 

development; however, thus far, the mechanism of the neuron loss remains unclear. As 

specified, very few mouse models generated by use of FAD mutations have so far shown any 

loss of neurons, and especially, the specific loss of the cholinergic neurons of the nucleus 

basalis of Meynert lacks to be modeled. The intraneuronal Aβ hypothesis is a fairly new 

modulation of the amyloid hypothesis, stating that intraneuronal Aβ rather than plaque 

pathology is the primary toxic mechanism of AD pathogenesis. The present thesis focuses on 

the impact of intraneuronal Aβ on neuron function and degeneration, mainly utilizing the 

APP/PS1KI model, which is one of the presently most interesting mouse models of AD 

showing cognitive deficits, extensive neuron degeneration in the CA1, and abundant 

accumulation of intraneuronal Aβ in many regions prior to development of plaque pathology 

in early age (Casas et al. 2004; Wirths et al. 2008b; Wirths et al. 2007). The following studies 

were undertaken to investigate the impact of Aβ, especially intraneuronal, on neuron function 

and degeneration, and their backgrounds are further explained below: 

1. The neuron number in selected parts of the cholinergic system of the APP/PS1KI 

mouse model was quantified and correlated to the accumulation of intraneuronal Aβ.  
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2. The impact of intraneuronal Aβ versus plaques on neuronal survival was studied in the 

APP/PS1KI mouse model by neuron quantification in an area with plaques only 

compared to an area with plaques as well as intraneuronal Aβ. 

3. Intraneuronal Aβ staining was optimized in four AD mouse models as well as human 

AD tissue, and subsequently used to semi-quantify the intensity of intraneuronal Aβ 

staining in human sporadic AD brains that was correlated to patient data. 

4. The toxic effect of Aβ on axonal pathology was studied in APP/PS1KI mice.  

5. Collaboration was established with Neurosearch A/S in Denmark to evaluate the 

impact of the potential interaction between Aβ and the α7 nAChR in AD.  

6. Through collaboration with Neurosearch as well as the group of Mark West in Århus, 

Denmark, the potential dysfunction of the Arc system was investigated in the 

APP/PS1ΔE9 mouse model of AD following novelty stimulation. 

1.6.1 Neuron loss in the cholinergic system of APP/PS1KI mice 

Because the APP/PS1KI mice develop an extensive neuron loss in the CA1 region of the 

hippocampal formation, the present study investigated Aβ accumulation and its influence on 

neuronal survival in the cholinergic system of this bigenic mouse model. The objective of the 

study was to establish whether the APP/PS1KI mouse model represents a valid model for the 

cholinergic neuron loss observed in AD. The expression of the APP transgene and 

accumulation of intraneuronal Aβ was initially investigated by qualitative fluorescent 

immunohistochemistry using antibodies towards ChAT to indentify neurons of the cholinergic 

system. The pattern of APP transgene expression and corresponding intraneuronal Aβ 

accumulation was applied as a model system to study the effect of intra- and extracellular Aβ 

accumulation on neuron loss in the cholinergic system analyzed by design-based stereology 

quantifying ChAT-positive neurons stained by free-floating immunohistochemistry.  

1.6.2 Effect of intraneuronal Aβ versus plaques on neurodegeneration 

The study of the impact of intraneuronal Aβ on neuronal survival in the cholinergic system 

was extended to a study comparing the impact of intraneuronal Aβ versus plaques on neuron 

loss. For this purpose, the APP/PS1KI mice presented an optimal model system as they have 

regions of the brain not accumulating intraneuronal Aβ, but with abundant deposition of 
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plaques as well as regions accumulating intraneuronal Aβ together with the deposition of 

plaques. The thalamus was chosen as a region accumulating plaques only, whereas the frontal 

cortex was used to study the impact of the combined accumulation of plaques and 

intraneuronal Aβ. Initially, the Aβ deposition was thoroughly investigated in the two chosen 

regions and neuron quantifications were subsequently performed using design-based 

stereology comparing the APP/PS1KI mice to PS1KI control mice showing no Aβ pathology. 

1.6.3 Intraneuronal Aβ staining in AD patients and transgenic AD mouse 

models 

Many scientists remain skeptical toward the presence of intraneuronal Aβ in human AD 

brains. Thus the present study had the objective of optimizing and confirming the staining of 

intraneuronal Aβ in human AD tissue using a highly specific N-terminal Aβ antibody, 

whereas other studies have mainly targeted the C-terminus of Aβ. Compared to mouse tissue, 

human tissue offers challenges such as post-mortem delay and less consistent tissue fixation, 

which might cause problems with the immunohistochemical staining techniques. Also, the 

staining protocols so far applied to study intracellular Aβ accumulation in human tissue have 

been inconsistent with varying use of heat and formic acid (FA) for antigen retrieval. 

Microwave heat treatment has been reported to enhance the staining of intraneuronal Aβ as 

compared to no or enzymatic pretreatment (D'Andrea et al. 2002b). FA is widely used to 

increase the staining of plaque pathology in AD, yet, the effect of FA on intraneuronal Aβ 

staining has been reported to be low and similar to the effect of heat (D'Andrea et al. 2003) or 

even to counteract the enhancing effect of heat pretreatment on intraneuronal Aβ 

immunohistochemical detection (Ohyagi et al. 2007).  

The study was divided in two parts. First, the staining protocol for intraneuronal Aβ was 

optimized in relation to heat and FA in four different mouse models being positive controls 

known to accumulate intraneuronal Aβ. Secondly, the optimization was extended to human 

brain tissue from AD patients.  

Optimization for staining of intraneuronal Aβ in mouse models of AD 

The effect of FA versus microwave heating on the staining of plaques and intracellular Aβ 

was quantified in the APP/PS1KI mouse model utilizing the regional discrepancy of Aβ 

deposition in relation to plaques and intraneuronal Aβ accumulating in the thalamus and CA1, 
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respectively. The quantification of Aβ staining was performed using ImageJ, where a fixed 

intensity threshold was applied to micrographs defining the 3,3-diaminobenzidine (DAB) 

staining, and the percentile area covered by Aβ staining was calculated. The results of the 

quantification were confirmed in a qualitative optimization in three other mouse models using 

two different Aβ antibodies, where four conditions were compared; no pretreatment, FA 

pretreatment, heat pretreatment, and combined FA and heat pretreatment, applying time 

intervals optimized in the quantitative study in the APP/PS1KI mice.  

Staining of intraneuronal Aβ in brain tissue of AD patients 

The four optimized conditions from the studies in the mouse models were applied to human 

brain tissue of sporadic, familial Swedish and familial Arctic AD cases as well as non-

demented controls. The best protocol was used to screen 10 controls and 20 sporadic AD 

cases for the intensity of intraneuronal Aβ staining, which was correlated to patient data 

including gender, Braak stage, plaque load, and ApoE genotype.  

1.6.4 Effect of Aβ on axonopathy in transgenic AD mouse models 

Abnormalities and impairments in axonal transport are suggested to strongly contribute to the 

pathological alterations underlying AD (Roy et al. 2005; Stokin and Goldstein 2006; Zhu et 

al. 2005). Indications for axonopathy resulting in disturbances in axonal transport have also 

been described in various APP-based transgenic AD mouse models (Salehi et al. 2006; Stokin 

et al. 2005; Wirths et al. 2007; Wirths et al. 2006). Surprisingly, it has recently been shown 

that an increase in the A42/A40 ratio, as well as an increased deposition of A peptides, 

resulted in a suppression of APP-induced axonal deficits in both transgenic mouse and 

drosophila models, leading to the suggestion that APP-induced axonal defects are not caused 

by Aβ peptides (Stokin et al. 2008). To evaluate the effect of Aβ accumulation on axonopathy 

in our APP/PS1KI model, the present study quantified large plaque-independent axonal 

spheroids in the brain of APP single transgenic mice overexpressing APP751 with the 

Swedish and London mutations under control of the Thy-1 promotor, as well as in APP 

transgenic mice co-expressing the mutant PS1KI gene on endogenous levels in either a hemi- 

(APP/PS1KIhe) or homozygous (APP/PS1KIho) manner. Using this strategy, APP expression 

levels did not differ between the different mouse lines, however, increased PS1KI gene 
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dosage caused a dramatic increase in Aβ peptide levels, allowing the study of the impact of 

Aβ independently of APP expression. 

APP can be applied as a marker of axonopathy since it is transported into fibers and 

accumulates in dystrophic swellings and APP is thus often used in the detection of axonal 

pathology for example in the analysis of traumatic brain injury (Pierce et al. 1996) and has 

previously been used to detect axonal degeneration in APP/PS1KIho mice (Wirths et al. 2007). 

However, a problem of using APP as a marker of axonal degeneration in APP-transgenic 

mouse models is its very broad staining pattern. This includes cell bodies, axonal swellings 

and dystrophic neurites in the vicinity of amyloid plaques, thereby complicating the analysis 

of distinct pathological alterations like axonal pathology especially in plaque-rich brain areas. 

One solution is to use an antibody which detects APP phosphorylated at T668 (anti-pT668) 

that has proved not to stain cell bodies, but only stains dystrophic neurites that can be plaque-

associated or plaque-independent. NF-200 is a 200 kDa neurofilament and is another possible 

marker of axonopathy. Neurofilaments are the most abundant fibrillar components of the axon 

and serve as major elements of the cytoskeleton supporting the axonal structure and NF-200 

has the advantage of mostly staining the large axonal swellings independent of plaques. Thus 

antibodies toward phosphorylated APP and NF-200 were applied as markers in the 

quantification of axonopathy in the APP, APP/PS1KIhe, and APP/PS1KIho mice. 

Equal APP expression levels in the three mouse lines were confirmed qualitatively and 

quantitatively by APP immunohistochemical staining and western-blots. The accumulation of 

Aβ was likewise evaluated by western-blots and Aβ immunohistochemical staining, which 

was quantified by micrographs and Image-J software analysis.  

To study possible mechanism of the axonopathy observed in the APP/PS1KI mice, the level 

of ubiquitin and ubiquitinated proteins was qualitatively investigated in the different mouse 

lines using immunohistochemistry and western-blotting. Furthermore, yellow fluorescent 

protein (YFP) transgenic mice expression YFP in 2-3% of neurons were crossed with 

APP/PS1KIhe mice to obtain visualization of fibers in fluorescent analyses and the presence of 

intracellular Aβ in dystrophic fibers was directly analyzed using confocal microscopy. 
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1.6.5 Interaction between α7 nAChR and Aβ 

The cholinergic system modulates cognitive functions such as attention and memory, and 

smoking was found to have a lowering effect on Aβ and an increasing effect on radioactive-

ligand binding of nicotinic receptors in the brains of AD patients and control subjects, 

indicating that selective nicotinic agonists may be beneficial in AD (Hellstrom-Lindahl et al. 

2004b). This was supported by a study in APPswe mice, where 10 days of treatment with 

nicotine reduced insoluble Aβ40 and Aβ42 levels with 80% in brain tissue (Hellstrom-Lindahl 

et al. 2004a). Which of the nAChRs that mediates the beneficial effects of nicotine is 

unknown, but many studies have reported a direct interaction between the α7 nAChR and 

Aβ42, implicating the α7 nAChR in AD. If Aβ in fact interacts with the α7 nAChR it could 

mediate part of its toxic effect by inducing desensitization of the α7 nAChR. The present 

study thus set out to investigate if specific activation of the α7 nAChR could mediate a 

lowering effect on the generation of Aβ, and whether endogenous accumulation of Aβ had an 

effect on the binding capacity of the α7 nAChR in vivo.  

The study was performed as cooperation with the group of Mark West at the department of 

Neurobiology, Anatomical Institute, Aarhus University, Denmark. Three groups of 9-month-

old APP/PS1ΔE9 mice were treated twice daily for 10 days with subcutaneous injections of 

saline, 10 mg/kg of the α7 nAChR agonist SSR180711 (1,4-Diazabicyclo[3.2.2]nonane-4-

carboxylic acid, 4-bromophenyl ester, synthesized at Neurosearch A/S, DK), or 10 mg/kg 

nicotine ((−)-1-Methyl-2-(3-pyridyl)pyrrolidine (+)-bitartrate salt, Sigma-Aldrich, St Louis, 

USA) as a positive control replicating the data from the APPswe mice. The mice were 

decapitated and half of the brains were directly frozen on dry ice and stored at -80°C, whereas 

the other halves were immersion fixated in 4% formaldehyde for 5 days until they were 

embedded in paraffin. Aβ levels were quantified in micrographs of Aβ immunohistochemistry 

on 2 µm paraffin sections using Image-J software. A radioactively labeled α-BTX binding 

assay was set up at Neurosearch A/S in Denmark and applied to brain sections from 9-month-

old APP/PS1ΔE9 and C57Bl6 control mice to evaluate the effect of in vivo Aβ accumulation 

on α7 nAChR binding levels in the brain.  
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1.6.6 Functional integrity of immediate early gene responses following novelty 

stimulation 

Immediate-early genes (IEGs) are the first genes to be expressed following synaptic activity, 

they do not require de novo synthesis for expression, and are considered to play a key role in 

activity-dependent synaptic modification and memory consolidation (Guzowski 2002; 

Steward and Worley 2002). The activity-regulated cytoskeletal-associated protein (Arc) and 

the regulatory transcription factor, c-fos, are IEG products produced by the corresponding 

IEGs, Arc, and c-fos. An especially interesting feature of the Arc protein is that newly 

synthesized Arc mRNA is rapidly delivered into the active synaptic sites based on a targeting 

signal in the mRNA sequence and is translated locally in the synapse (Wallace et al. 1998). 

Taking part in the targeting of Arc mRNA, N-Methyl-D-Aspartat (NMDA) receptor activation 

has been shown to be sufficient and necessary to trigger the translocation of Arc mRNA into 

dendrites, and upon translation, the Arc protein forms an integral part of the synaptic 

junctional complex that also involves the NMDA receptor, which strongly support a role of 

Arc in synaptic plasticity underlying the consolidation of long-term memory (Steward and 

Worley 2001). Accordingly, infusion of Arc antisense oligonucleotides directly into the 

hippocampus in vivo not only blocked the expression of the corresponding protein, but also 

disrupted the maintenance of LTP and impaired memory in a spatial maze task (Guzowski et 

al. 2000). In vivo, IEGs take part in encoding observations from the surrounding environment. 

Thus a five-minute exposure to a novel environment has been shown to dramatically increase 

the expression of IEGs such as Arc and c-fos in neurons of the CA1, CA3, and upper DG of 

the hippocampal formation as well as in the parietal cortex, and medial prefrontal cortex 

(Chawla et al. 2005; Guzowski et al. 1999; Klebaur et al. 2002; Vazdarjanova and Guzowski 

2004; Vazdarjanova et al. 2002). The population of neurons thereby upregulating Arc 

expression in the CA1 has even been shown to be specific for a certain environment, and the 

induction of IEG expression is therefore thought to be linked to neural encoding processes of 

the surrounding environment (Guzowski et al. 1999). An inability to upregulate expression of 

IEGs could thus lead to deficits in cognitive functions and disable the encoding of memories, 

which could underline part of the functional deficits observed in AD patients showing 

disturbances in cognitive functions such as memory deficits and orientation in time and space 

(Reisberg 2006). The present study therefore investigated the ability of APP/PS1ΔE9 mice to 

upregulate the expression of the two IEGs, Arc and c-fos, upon experiencing a novel 
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environment. The study was performed as cooperation with the group of Mark West at the 

department of Neurobiology, Anatomical Institute, Aarhus University, Denmark, where 4 

groups of 9-month-old APP/PS1ΔE9 or C57BL6 wild-type control mice were either 

decapitated directly from their home-cage or stimulated for 5 min in a novelty paradigm after 

which they were returned to their home cage for 30 min before decapitation. The levels of Arc 

and c-fos mRNA were analyzed at Neurosearch A/S in Denmark by semi-quantitative in situ 

hybridization and compared to the expression levels of the house keeping gene synaptophysin. 

Because exposure to a novel environment is a light stressor and has been shown to induce the 

hypothalamic-pituitary-adrenal (HPA) axis, trunk blood was collected for plasma 

corticosterone quantification and used to verify the effect of the novelty paradigm (Briski 

1996; Chandramohan et al. 2007). 
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2 Methods and Materials 

2.1 Transgenic mice 

Several mouse models of AD have been applied in the current thesis and their genetic 

modifications are described in Table 1. The most extensively used mouse model is the 

APP/PS1KI model which has been described in the introduction (Chapter 1.3.3) and was bred 

at the University of Göttingen, Germany. All mice designated PS1KI were homozygous for 

PS1KI mutations, in comparison to the APP/PS1KI mice that were hemizygous for the 

APP751 isoform carrying the Swedish and London mutations (APP751SL transgene). PS1KI 

mice showed no pathology or phenotype and were generally used as littermate controls. In the 

study of axonopathy were applied variations of the APP/PS1KI mouse model. APP mice were 

hemizygous for the APP751SL transgene, whereas APP/PS1KIhe and APP/PS1KIho mice 

additionally carried one or two alleles with the PS1KI mutations, respectively. 

YFP/APP/PS1KI mice were generated by crossing of APP/PS1KIhe mice and yellow 

fluorescent protein (YFP) transgenic mice overexpressing YFP in a proportion of neurons in 

the brain under the control of the Thy 1 promoter (Feng et al. 2000) (The Jackson Laboratory, 

US). APP/PS1KI mice were a generous gift of Dr. Laurent Pradier, Sanofi-Aventis, France. 

Only female mice were applied for stereological quantifications, whereas males were also 

applied for qualitative immunohistochemical analyses.  

APP/PS1ΔE9 transgenic mice were hemizygous for the APP and PS1 mutations (Borchelt et 

al. 1996). Only female mice were applied and non-transgenic wild-type female littermates 

were used as controls. The mice were bred at the Anatomical Institute, Aarhus University, 

Denmark, where in vivo experiments were also carried out.  

APP/PS1 transgenic mice (Blanchard et al. 2003; Wirths et al. 2002) were hemizygous for 

both transgenes and three 8-month-old mice were used in the qualitative optimization for 

intraneuronal Aβ. APP/PS1 mice were a generous gift of Dr. Laurent Pradier, Sanofi-Aventis, 

France. The 5xFAD mice (Oakley et al. 2006) (The Jackson Laboratory, US) were likewise 

hemizygous for the APP and PS1 transgenes and three 6-month-old mice were used in the 

qualitative optimization study. 
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All animals were handled according to German guidelines for animal care and the European 

Communities Council Directive European Communities Council Directive of 24 November 

1986 (86/609/EEC). 

Mouse model Gene Protein Mutations Promotor 

APP APP751 
Swedish (K670N, M671L) and 

London (V717I ) 
murine Thy-1 

APP/PS1KI 

PSEN1 PS1 M233T and L235P endogenouse PS1 

APP APP APP751 
London (V717I ) and Swedish 

(K670N, M671L) 
murine Thy-1 

APP APP751 
Swedish (K670N, M671L) and 

London (V717I ) 
murine Thy1 

APP/PS1 

PSEN1 PS1 M146L HMG-CoA reductase 

APP APP695 

Swedish (K670N, M671L), 

Florida (I716V), and London 

(V717I) 

murine Thy-1 
5xFAD 

PSEN1 PS1 M146L, L286V murine Thy-1 

APP APP695 Swedish (K670N, M671L) murine prion protein 

APP/PS1ΔE9 
PSEN1 PS1 ΔE9 murine prion protein 

Table 1 Mutations in mouse models specified according to APP isoform, promoter, and amino acid exchange. 

2.1.1 Genotyping 

Genotyping of APP/PS1ΔE9 mice was performed at the Anatomical Institute, Aarhus 

University, Denmark, and analysis of YFP hemizygosity or homozygosity was carried out by 

quantitative real time polymerase chain reaction (qRT-PCR) explained below. Genotyping of 

APP/PS1KI, APP/PS1, and 5xFAD mice was performed by a technician in our laboratory and 

will be briefly explained. 

Using specially designed DNA-primers and PCR, a specific gene of interest can be amplified 

and its presence verified by agarose gel-electrophoresis. The PCR reaction is composed of 

cycles of brief temperature stages in which different reactions take place. First step is 

denaturation of the DNA strands at high temperature (95°C) followed by a lower temperature 
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(50-70°C) at which the oligonucleotide primers are allowed to anneal to the denaturated DNA 

strands. The temperature is then raised to 70-75°C for optimal function of the DNA 

polymerase which syntheses new DNA strands. The cycle is then repeated 35-40 times.  

For DNA isolation, 500 µL of lysis buffer (100 mM Tris/HCl pH 8.5, 5 mM EDTA, 0.2 % 

sodium dodecyl sulphate (SDS), 200 mM NaCl, 10µL/mL Proteinase K) were added to mouse 

tail clippings obtained from the animal facility and shaken overnight at 55 °C and 400 rounds 

per minute (rpm) in a heating block. Next day, the solutions were centrifuged for 10 min at 

13000 rpm and the supernatants were transferred to a new 1.5 mL tube containing 500 µL of 

isopropanole. Samples were again vortexed and centrifuged for 10 min at 13000 rpm. Pellets 

were then washed by vortexing in 500 µL of 70% ethanol and centrifuged for 10 min at 13000 

rpm. The supernatants were discarded and the pellets dried on a heating block at 37 °C and 

subsequently dissolved  in  70  µl  H2O  (Aqua  ad iniectabilia)  (37°C,  30  –  45  min  or 

overnight at 4°C). 

PCR was then used to exponentially amplify a DNA fragment of the transgene of interest. The 

reaction was performed in a total volume of 10 µL (0,5 µL 10 pM primer forward, 0,5 µL 10 

pM primer reverse, 1 µL 10 x PCR-Puffer, 1 µL 200 µM dNTPs, 5.9 µl H2O, 0.1 µL Taq-

Polymerase, 1 µL diluted DNA containing 25 ng of genomic DNA) and run with the 

following cycling parameters: heating at 94°C for 5 min followed by 35 cycles of 94°C for 60 

sec, 55°C for 60 sec, and 72°C for 1.5 min mediating denaturing, annealing, and extension of 

the DNA. The PCR reaction was finished at 72°C for 5 min and stored at 4°C until further 

processing. Primers targeted the APP transgenes, forward: 5’-

GTAGCAGAGGAGGAAGAAGTG-3’, revers: 5’- CATGACCTGGGACATTCTG -3’ 

generating a product of either a 505 bp (APP/PS1KI and APP/PS1 mice) or 324 bp (5xFAD 

mice).  

The presence of the desired PCR products was verified by agarose gel-electrophoresis that 

separates DNA fragments according to size. A 2.5% agarose gel was prepared in a tris-

acetate-EDTA (TAE) buffer with 1 µg/mL ethidiumbromide that intercalates into the double-

stranded DNA structure and allows visualization of DNA bands by UV-light-

transillumination at a wavelength of 366 nm. The 10 µL PCR products were loaded along 

with a suitable DNA ladder to enable analysis of the size of the separated DNA fragments, 

each were added an equal volume of loading dye and the gel was run at 170 V. PCR product 
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bands were visualized in an UV-chamber (Gel-Doc 2000, Bio-Rad) connected to a computer 

and using QuantityOne software program (Bio-Rad) producing a photo of the gel. 

2.2 Novelty exposure 

APP/PS1ΔE9 and wild-type littermate control mice were divided in 4 groups of 6 animals per 

cage and housed for 1 week before the experiment. The groups were as follows:  

 Group 1: Wild-type non-handled, home-cage controls (n=6) 

 Group 2: Wild-type novelty-exposed (n=6) 

 Group 3: APP/PS1ΔE9 non-handled, home-cage controls (n=6)  

 Group 4: APP/PS1ΔE9 novelty-exposed (n=6)  

The mice to be exposed to novelty were transferred to a box one at a time. The box was 41 x 

21 cm and 18 cm high and was made of see through plastic. Red and blue cardboard paper 

was placed at bottom and sides: blue paper on the longer sides and red at the ends, blue paper 

was placed underneath the box to be able to clean the box between each mouse. The room 

was enlightened by standard bright light and the box was placed in the middle of the room so 

that the mice could look up and find itself in a novel environment. The mice were placed in 

the box for a total of 5 min, and they were sitting still for more than 5 sec, they were moved to 

another area of the box by gently pulling them by the tail. The mice were replaced to the 

home-cage and killed 30 min after novelty-exposure. After each animal, the box was cleaned 

in 70% ethanol and allowed to evaporate for another 5 min. Non-handled home-cage control 

animals were taken directly from their cage and care was taken that non-handled animals were 

not exposed to novelty. All animals were killed by decapitation, trunk blood was collected in 

EDTA-vials (kept on ice), and brains were immediately removed and directly frozen in 

crushed dry-ice. Blood samples were centrifuged at 300 rpm for 10 min and plasma was 

collected and frozen at -20ºC. Plasma corticosterone levels were measured directly without 

prior extraction using a commercial [125I]-radioimmunoassay kit (TKRC1, Siemens Medical 

Solutions Diagnostics). 
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2.3 Tissue collection and preservation 

Tissue is collected and preserved in different ways according to the following analyses. 

Directly frozen tissue is needed for mRNA and protein extractions as well as for ligand 

binding and in situ hybridization. For these purposes, mice were either directly killed by 

decapitation using a sharp scissor or briefly anaesthetized by 1 min exposure to CO2 in a box 

with dry-ice and then killed by spinal dislocation and decapitated. Brain and spinal cord tissue 

was quickly removed at directly frozen on dry ice, and the tissue was kept at -80C until 

further processing.  

For immunohistochemical staining, the tissue must be preserved by fixation in 4% 

paraformaldehyde (PFA). The best is to do a perfusion fixation in which the mouse is 

anesthetized by 10 mL/kg intraperitonal injection of 1% Ketamin (Pharmanovo GmbH, 

Hannover, Germany) and 0.1% Xylazin (Riemser, Gristow, Germany) in aqua ad injectabilia. 

When the mouse is deeply anesthetized transcardial perfusion is carried out through the left 

ventricle with 30 mL ice-cold phosphate buffered saline (PBS) followed by 30 mL 4% PFA 

dissolved in PBS. Brains and spinal cords are carefully removed and brains were divided at 

the midline. Alternatively, the tissue can be directly removed as for direct freezing and then 

immersion fixed by storage in 4% PFA over night, however, this method does not remove the 

blood cells as well as the perfusion fixation, which can increase background staining when 

applying immunohistochemistry. The PFA fixed tissue will be frozen or embedded in 

paraffin. For fixed frozen tissue preparation, the tissue is post fixed in 4% PFA for at least 2 

hrs and then cryo protected in 30% sucrose in PBS overnight. Next day, the tissue is quickly 

frozen on dry ice and stored at -80°C until further processing. The fixed frozen tissue can be 

sectioned on a cryostat and was used for free-floating immunohistochemistry as well as for 

cresyl violet histochemistry. For paraffin embedding, the tissue is post fixed in 4% buffered 

formalin at 4°C for a minimum of 1 day before the tissue was embedded in paraffin by 

dehydration in a series of ethanol of 50%, 60%, 70%, 80%, 90%, and 2x 100% followed by 

Xylol treatment and a final emersion in liquid paraffin for 2 hours before being embedded in 

solid paraffin blocks. The paraffin embedded tissue was used for immunohistochemistry in 

thin slices of 2-4µm that gives the best pictures of pathological structures when using a 

normal transmitted light or fluorescent microscope. The tissue processing is summarized in 

Table 2. 
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Tissue preservation Storage Analyses 

Directly frozen -80°C mRNA/protein extraction, radioactive 

Frozen -80°C 
Free-floating immunohistochemistry and 

cresyl violet histochemistry 
Fixed 

tissue 
Paraffin embedded Room temperature Immunohistochemistry on glass slide 

Table 2 Summary of tissue preservation, storage, and applied analyses. 

2.4 Histological staining 

Histological structures in tissue can be 

revealed by using various dyes specific for 

e.g. cell nucleic proteins or aggregated 

proteins, however, they can also be revealed 

by using highly specific antibodies 

recognizing a target protein of interest. The 

primary antibody is applied to the tissue of 

interest and its FC region can then be 

identified by a secondary antibody generated 

in another species. The secondary antibody 

can be conjugated directly to different enzymes mediating colorimetric reactions or to 

fluorescent molecules, or be conjugated to proteins with specific affinities such as the avidin-

biotin complex (ABC). In the ABC method, the secondary antibodies are biotinylated. Upon 

addition of avidin and a peroxidase enzyme bound to biotin, the peroxidase enzyme will be 

indirectly bound to the secondary antibody. When a colorimetric substrate is added such as 

DAB, the enzyme mediates accumulation of a reddish brown product (Fig. 17). 

Fig. 17 The avidin-biotin complex (ABC) method.
A primary antibody (Ab) is used to recognize a 
target protein, and the substrate diaminobenzidine 
(DAB) is applied to visualize the protein by a 
reddish brown color.

Free-floating immunohistochemistry was applied for antibody staining of rather thick sections 

for stereology or confocal microscope imaging. Immunohistochemistry of paraffin embedded 

tissue was performed directly on glass slides and was used for qualitative antibody staining as 

well as Aβ and dystrophic fiber quantifications. Immersion in cresyl violet solution provided a 

blue staining of nuclei that were used for general quantification of neurons by design-based 
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stereology, whereas immersion in Thioflavin S was used to visualize aggregated proteins. 

Primary antibodies applied for immunohistochemistry are specified in Table 3 and secondary 

antibodies in Table 4. 

Target Name Host Dilution Manufactor 

Aβ1-x Aβ[N] Rabbit 1:200 - 1:1000 IBL, Germany 

Aβ1-x AβN1(D) Rabbit 1:500 
Takaimo Saido, RIKEN 
Institute, Japan 

Aβ17-24 4G8 Mouse 1:1000 - 1:10.000 Covance, USA 

Fibrillar Aβ 
oligomers 

OC Rabbit 1:200 - 1:2000 Gift of C. Glabe and R. Kayed 

Aβ31-40 G2-10 Mouse 1:500 Genetics company, Switzerland 

AβN3pE N3pE Rabbit 1:500 
American Research Products, 
USA 

APP 22C11 Mouse 1:1000 Millipore, Germany 

APP 23850 Rabbit 1:500 Gift of Gerd Multhaup 

Phosphorylated 
APP 

anti-pT668 Rabbit 1:500 
Cell Signalling Technologies, 
Germany 

Neurofilaments NF-200 Rabbit 1:1000 Millipore, Germany 

GFAP GFAP Mouse 1:1000 Synaptic Systems, Germany 

ChAT AB144P Goat 1:300 - 1:1000 
Millipore, Schwalbach, 
Germany 

Ubiquitin Z0458 Rabbit 1:500 DAKO, Denmark 

Table 3 Details of primary antibodies applied for immunohistochemistry. All mouse antibodies were 
monoclonal, whereas all rabbit and goat antibodies were polyclonal.  

 

Antibody Product number Manufactor 

Rabbit anti-mouse immunoglobulins, biotinylated E0465 DAKO, Denmark 

Swine anti-rabbit immunoglobulins, biotinylated E0353 DAKO, Denmark 

Rabbit anti-goat immunoglobulins, biotinylated E0466 DAKO, Denmark 

AlexaFluor568-conjugated immunoglobulins. 
goat anti-rabbit 

A11036 Invitrogen, Germany 

AlexaFluor594-conjugated immunoglobulins,  
donkey anti-goat 

A11058 Invitrogen, Germany 

AlexaFluor488-conjugated immunoglobulins, 
chicken anti-rabbit, rabbit anti-mouse 

A21441, A11059 Invitrogen, Germany 

Table 4 Details of polyclonal secondary antibodies applied for immunohistochemistry. 
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2.4.1 Free-floating immunohistochemistry 

For ChAT stereology, fixed frozen brain tissue was cut on a cryostat in 10 series of 40 µm 

coronal sections with collection of every 10th section throughout the brain. For qualitative 

evaluation of fiber pathology in YFP mice, the brains were cut in 8 series of 50 µm coronal 

sections collecting every 8th section throughout the forebrain. All sections were stored frozen 

at -80°C until further processing. One series from each animal comprising either every 8th or 

10th section was carefully transferred to a net well and stained by free-floating technique with 

a 12-well net system (Costar, Corning, New York, USA) on a horizontal stirring table 

providing constant floating of the sections. Sections were hydrated for 15 min in PBS (0.01M, 

throughout staining techniques) and endogenous peroxidases were blocked in PBS containing 

0.3% H2O2 for 30 min (only for DAB staining). Antigen retrieval was achieved by 10 min 

incubation in 88% FA (only for A staining) followed by thorough washing for 3 x 5 min in 

PBS. Sections were washed 3 x 10 min in PBS containing 0.1% Triton X-100 for membrane 

permeabilization, and unspecific binding was blocked by treatment with 4% skim milk 

powder and 10% fetal calf serum (FCS) in PBS for 1 hour prior to overnight incubation in 

primary antibodies with 10% FCS in PBS (Table 3). Next day, sections were washed 3 x 10 

min in PBS containing 0.1% Triton X-100 followed by 2 hrs incubation with secondary 

antibodies in 10% FCS in PBS. Following secondary fluorescent antibody incubation, 

sections were washed 3 x 10 min in PBS, mounted onto super frost glass slides, and left to dry 

overnight. Following secondary biotinylated antibody incubation, sections were washed 3 x 

10 min in PBS and then incubated 1.5 h in ABC Vectastain kit (1:300 in PBS, Vector 

Laboratories, Burlingame, USA). The staining was finally visualized in a DAB solution 

(Sigma, Taufkirchen, Germany) of 0.5 mg/mL in Tris/HCl pH 7.5 for 5-10 min providing a 

reddish brown color. Sections were washed 3 x 10 min in PBS, mounted onto super frost glass 

slides, and left to dry over night. Next day, sections were rehydrated for 10 min in PBS, after 

which fluorescent staining were counterstained for 1 min in 1 µg/ml 4’6-diamidine-2’-

phenylindole dihydrochloride (DAPI, Sigma, Taufkirchen, Germany) and washed 3 x 5 min 

in PBS containing 0.1% Triton X-100. Embedding was performed in an aqueous fluorescent 

protecting mounting medium (Vectashield Hard Set, Linaris, Wertheim, Germany) and upon 

drying, the edges were sealed with transparent lacquer to prevent evaporation of the mounting 

medium. DAB stainings were counterstained with hematoxylin for 40s followed by 5 min 

under running tap water providing a blue staining of nuclei. The sections were then 
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dehydrated in a series of ethanol (1 min 70%, 5 min 95%, 10 min 100%) and xylol (2 x 5 min) 

and embedded in Roti-Histokitt mounting medium (Carl Roth GmbH, Germany).  

2.4.2 Immunohistochemistry of paraffin embedded sections 

Paraffin embedded fixed tissue blocks were cut on a microtome in 2-4 µm sagital sections and 

carefully transferred to a container with double distilled water of room temperature. The 

sections were collected on super frost glass slides, briefly dipped in a heated water bath 

containing double distilled water of 52-56C, and left to dry on a hot plate of same 

temperature for about 15 min or until the sections had dried. Sections were left overnight at 

37C to dry completely before staining. Glass slides with paraffin embedded sections were 

deparaffinized 2 x 5 min in xylol and rehydrated in a series of ethanol (10 min 100%, 5 min 

95%, 1 min 70%, 1 min H2O). Endogenous peroxidases were blocked for 30 min in 0.3% 

H2O2 in PBS (only for DAB staining), and antigen retrieval was achieved by boiling sections 

10 min in 0.01 M citrate buffer pH 6.0 in a microwave after which the sections were left 15 

min at room temperature to cool down. Membrane permeabilization was carried out by 3 x 5 

min washes in PBS containing 0.1% Triton X-100, followed by antigen retrieval in 88% FA 

for 3 min (only for A staining). Non-specific binding sites were blocked by 1 hour treatment 

with 4% skim milk and 10% FCS in PBS, prior to over night incubation in a humid chamber 

at room temperature with primary antibodies (Table 3) in PBS containing 10% FCS. Next 

day, sections were washed 3 x 5 min in PBS containing 0.1% Triton X-100 and incubated 

with secondary antibodies (DAKO, Glostrup, DK) at 37°C for 1 hour (DAB staining) or 1.5 

hrs (fluorescent staining). Following secondary fluorescent antibody incubation, sections were 

washed 3 x 5 min in PBS, directly counterstained for 1 min in DAPI, washed 2 x 3 min in 

PBS, and embedding in Vectashield aqueous fluorescent protecting mounting medium. 

Following secondary biotinylated antibody incubation, sections were washed 3 x 5 min in 

PBS and incubated 1.5 h in ABC Vectastain kit (1:100) at 37°C. The staining was finally 

visualized in a 0.5 mg/mL DAB solution in Tris/HCl pH 7.5 for 1-5 min providing a reddish 

brown color, followed by 3 x 5 min PBS washes. DAB staining were counterstained with 

hematoxylin for 40s followed by 5 min under running tap water, and sections were dehydrated 

in a series of ethanol (1 min 70%, 5 min 95%, 10 min 100%) and xylol (2 x 5 min) and 

embedded in Roti-Histokitt mounting medium. For double ABC staining, DAB visualization 

was followed by repetition of the protocol from the blocking step in 4% skim milk applying a 
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second primary antibody produced in a species different from the first. The second primary 

antibody was visualized using the ABC method with Vectastain kit, however, with the 

HistoGreen kit (Linaris, Germany) as chromogen providing a blue color.  

To prevent autofluorescence from lipofuscin, 20 min incubation was performed in a saturated 

Sudan Black B solution of 1g dissolved in 200 ml methanol following antigen retrieval in FA 

prior to non-specific blocking in 4% skim milk.  

2.4.3 Thioflavin-S staining 

Thioflavin-S is a fluorescent dye that binds to aggregated β-sheet conformations thus labeling 

aggregated forms of Aβ, but not monomers or dimers (LeVine 1993). The staining was 

performed in paraffin embedded sections with 1% Thioflavin S (Sigma, Taufkirchen, 

Germany) dissolved in distilled water. The sections were deparaffinized and rehydrated as for 

the immunostaining, washed 2 x 1 min in distilled water and immersed for 8 min in the 

Thioflavin S solution. Sections were then washed 2 x 1 min in distilled water and once more 

immersed for 4 min in the Thioflavin S solution. The last incubation was followed by 2 x 1 

min washes in 80% ethanol and 3 x 1 min washes in distilled water before being 

counterstained with DAPI and embedding in Vectashield aqueous fluorescent protecting 

mounting medium. 

2.4.4 Cresyl violet histochemistry 

For neuronal stereology, fixed frozen brains were cut in 10 series of 30 µm coronal sections 

with collection of every 10th section throughout the brain and stored frozen at -80°C until 

further processing. One series comprising every 10th section from each animal was carefully 

mounted in PBS onto super frost glass slides. When dried, sections were washed 2 x 10 min 

in 0.04 M Sodiumacetate/0.1% acetic acid solution (B1), delipidated 20 min in 0.025% Triton 

X-100/75% ethanol, washed 2 x 10 min in B1 and stained for 2 x 8 min in 0.01% cresyl violet 

disolved in B1. The sections were then washed 3 x 1 min in B1, 3 min in 100% ethanol, 10 

min in isopropanol, and 2 x 5 min in xylol before being embedded in Roti-Histokitt mounting 

medium. 
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2.5 Microscopy and photography 

Photomicrographs were taken using an Olympus BX51 microscope equipped with an 

Olympus DP-50 digital camera. Final figures were constructed using Image-J (NIH, USA) 

and GIMP 2.6 software and only minor adjustments of contrast and brightness were made, 

which in no case altered the appearance of the original images. 

Confocal microscopy was performed in cooperation with the Max Planck Institute for 

Experimental Medicine, Göttingen. Images were acquired with a Leica SP2 laser scanning 

confocal microscope equipped with an acousto-optical beam splitter (Leica, Germany) using a 

63x/1.4 oil-immersion objective. The 405-nm line of a blue laser diode (DAPI), 488-nm line 

of an argon laser (YFP), and 561-nm line of a DPSS laser (AlexaFluor568) were used at 40%, 

5-10%, and 5-10% power, respectively. Reasonable detector gains were used between 550 

and 650 AU in the Leica LSC software. Pictures were processed in Image-J using a Median 

filter to smoothen the images.  

2.6 Quantification of plaque independent dystrophic neurites 

For each animal, two series of three paraffin embedded sections at least 25 µm afar were 

stained simultaneously using either the NF-200 or anti-pT668 antibodies with DAB as 

chromogen, followed by an ABC staining with the 4G8 antibody using Histogreen as 

chromogen marking Aβ plaques in blue. Quantification of plaque-independent dystrophic 

neurites was performed using the meander scan option of StereoInvestigator 7 

(MicroBrightField) and a BX51 microscope (Olympus) to count dystrophic fibers larger than 

10 µm that were not plaque-associated. The average of the counting from the three sections 

per animal was used for statistical analyzes. Quantifications were performed in two regions; 

pons and spinal cord as these regions had obvious dystrophic fiber pathology together with 

moderate plaque pathology, making it possible to distinguish plaque-associated from plaque-

independent axonal swellings. Quantification was performed in 6 mice of each of the 

genotypes APP, APP/PS1KIhe, and APP/PS1KIho. 
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2.7 Quantification of Aβ staining 

For each animal, 5 paraffin embedded sections at least 25 µm afar were stained 

simultaneously for Aβ immunoreactivity using DAB as chromogen. Micrographs of the Aβ 

staining were systematically captured in the region of interest with an Olympus BX-51 

microscope equipped with an Olympus DP-50 camera. Using the ImageJ software (NIH, 

USA), pictures were binarized to 8-bit black and white pictures, a fixed intensity threshold 

was applied defining the DAB staining, and the percentile area covered by Aβ DAB staining 

was calculated together with the number and size of Aβ grains. 

2.8 Stereology 

Stereological counting procedures were 

developed in order to estimate a massive 

amount of cells in the brain in an unbiased 

systematic random fashion without 

considering size, shape and orientation of the 

cells being counted. Thus quantification of 

neurons can be obtained by the optical 

fractionator stereological method (Fig. 18), 

where the “fractionator” is the systematic 

random sampling of sections, sampling e.g. every 10th with random selection of the first 

section in the area of interest, and the “optical dissector” is a three-dimensional probe 

associated with a set of rules for counting neurons (West 1993; West et al. 1991). In practise, 

an unbiased counting frame divided in grids is superimposed on the section being counted. 

The optical dissector is systematically applied to the grid taking up a defined area (aframe) of 

the grid area (astep).  The optical dissector probe is three dimensional, and when counting 

through the thickness (t) of the section, guard zones of e.g. 2 µm can be left uncounted near 

the surfaces and counting is then performed within a certain dissector height (h) being less or 

equal to t. According to the principle of stereology (Schmitz and Hof 2005; West 2002; West 

et al. 1991), the total number of neurons (N) in an area of interest can be estimated by: 

Fig. 18 The optical dissector method. An optical 
dissector with areal (a) and height (h) is defined by a 
superimposed counting frame (x,y) (West et al. 
1991). 

tsfasfssf
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Where ∑Q- is the sum of the neurons 

counted by the optical fractionator in 

the area of interest. The remaining 

stereological parameters are 

explained in Table 5.  

Two overall quantifications were 

performed: One of ChAT-positive 

neurons throughout the brain 

cholinergic system, and another of 

cresyl-violet stained neurons. The optical fractionator method was applied by probes 

constructed to count approximately 300-400 cells in each region for each animal resulting in 

coefficient of errors around 0.05, and the quantification was performed by an observer blinded 

to the genotype of the animals using StereoInvestigator 7 (MicroBrightfield) together with a 

BX51 microscope (Olympus). Only female mice were quantified, and the number of mice in 

each group is given directly in the graphs of the respective results chapters.  

Stereological parameters: 

ssf Fraction of sections sampled 

asf Fraction of area of sections sampled 

tsf Fraction of sections thickness sampled (h/t), µm 

aframe Area of optical dissector counting frame, μm2 

astep Area associated with movement to next frame, μm2 

h Height of optical dissector, μm 

t Section thickness, μm 

CE Coefficient of error 

Table 5 Definition of stereological parameters. 

For quantification of ChAT-positive neurons, frozen fixed hemispheres were cut in 10 series 

of 40 µm coronal sections that were systematically collected resulting in 10 series containing 

every 10th section throughout the forebrain to the ventral hippocampus (bregma 2.22 mm  -

3.64 mm) (Paxinos and Franklin 2001). The posterior brains were cut throughout in 40 µm 

with collection of all sections (bregma -3.64 mm  -6.84 mm) (Paxinos and Franklin 2001). 

The following brain regions were 

selected for quantification: The 

caudate putamen (CPu); Ch1/2 

comprising the medial septum and 

the vertical limb of the diagonal 

band; Ch4 comprising the horizontal 

limb of the diagonal band, the ventral 

pallidum, the basal nucleus, and 

substantia innominata; as well as the 

brainstem motor nuclei Mo5 and 7N. 

The identification of a neuron was 

 CPu Ch1/2 Ch4 Mo5 7N 

ssf 10 5 10 1 1 

asf 0.38  1 0.44 0.33  

tsf 1 1 1 1 1 

aframe,  µm2 34500 28000 10000 10000 5625 

agrid,  µm2 90000 28000 22500 30000 40000 

h,  µm 18.2 14.8 17.7 16.9 17.3 

t,  µm 18.2 14.8 17.7 16.9 17.3 

Sec.counted 11 8 7 20 27 

CE 0.040 0.09 0.052 0.052 0.046 

Table 6 Sampling scheme for stereological analysis of the 
cholingeric system. CE, t, and tsf are average values. 
Sec.counted is average number of sections counted per animal. 
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performed on the basis of the typical shape of a neuron with at least one visible process. The 

stereological parameters of the counting are given in Table 6. 

Stereological quantification of neurons in the frontal cortex and thalamus was performed in 30 

µm cresyl-violet stained frozen hemisphere sections systematically collected in 10 series 

containing every 10th section 

throughout the brain. Neurons were 

identified based on their typical 

morphology with large nuclei. The 

frontal cortex was quantified from 

Bregma 3.08 to 0.26 (Paxinos and 

Franklin 2001), and the thalamus was 

quantified from Bregma -0.94 to -

2.54 (Paxinos and Franklin 2001). 

Stereological parameters for the 

counting are given in Table 7. 

 Frontal cortex Thalamus 

ssf 10 10 

asf 0.00357 0.0246 

tsf 0.61 0.65 

aframe,  µm2 625  1600 

agrid,  µm2 175000  65000 

h,  µm 6 6 

t,  µm 9.8 9.3 

Sec.counted 11 6 

CE 0.045 0.045 

Table 7 Sampling scheme for stereological analysis of 
neurons in the frontal cortex and thalamus. CE, t, and tsf are 
average values, and sec.counted gives the average number of 
sections counted per animal. 

2.9 qRT-PCR 

Assesment of gene dosage was carried out using qRT-PCR in YFP transgenic mice to identify 

homozygous mice for the breeding with APP/PS1KIhe mice. In qRT-PCR, mRNA or DNA is 

purified from a sample of interest, and for analysis of mRNA, reverse transcription is 

performed to generate cDNA. A PCR reaction is initiated and continuously monitored by the 

incorporation of a dye that becomes fluorescent when incorporated into the PCR product as 

the reaction proceeds. The fluorescence of the sample correlates with the concentration of 

amplified product and is continuously plotted as a function of cycle number. As the amount of 

PCR product increases exponentially with time, the fluorescent will start to rise dramatically 

after a certain amount of cycles. The Threshold cycle (CT) is the cycle value at which a 

statistically significant increase in fluorescence is first detected. The CT value is of a 

continuous scale and at this cycle, the concentration of the amplified gene will be the same in 

all samples, assuming the efficiency of the amplification is the same in all tubes. The lower 

the amount of starting DNA, the longer time it will take for the fluorescence to reach 
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threshold level and thus the higher the CT value. Based on measured CT values, the expression 

level of a gene or gene dosage can be quantified.  

DNA isolation was performed from mouse tail biopsies in 500 µL of lysis buffer (100 mM 

Tris/HCl pH 8.5, 5 mM EDTA, 0.2 % SDS, 200 mM NaCl, 10µL/mL Proteinase K) and 

shaken overnight at 55 °C and 400 rpm in a heating block. Next day, the solutions were 

centrifuged for 10 min at 13000 rpm and the supernatants were transferred to a new 1.5 mL 

tube containing 500 µL of isopropanole. Samples were again vortexed and centrifuged for 10 

min at 13000 rpm. Pellets were then washed by vortexing in 500 µL of 70% ethanol and 

centrifuged for 10 min at 13000 rpm. The supernatants were discarded and the pellets dried on 

a heating block at 37 °C and subsequently dissolved  in  70  µl  H2O  (Aqua  ad iniectabilia)  

(37°C,  30  –  45  min  or overnight at 4°C). 

qRT-PCR was performed using a Stratagene MX3000P Real-Time Cycler and 10 ng of DNA 

was used per reaction. For quantification of the PCR product was applied the SYBR-green 

based 2x SensiMix DNA Kit containing ROX as an internal reference dye (peqLab, 

Germany). Measurements of CT values were performed in duplicates, and relative 

quantification was performed using APP as a housekeeping gene normalising the expression 

level of YFP to that of APP and calibrating it to a chosen YFP heterozygous animal using the 

ΔΔCt method (Livak and Schmittgen 2001): 

 TC
GeneAmount  2

For an animal (q) quantifying the level of YFP gene expression normalized to the expression 

of APP as a reference gene and calibrated to the animal (cb), -ΔΔCT is calculated as follows: 

 
APPTYFPTT CCC ,, 

 )( ,, cbTqTT CCC 
 

An example of the identification of homozygous animals by qRT-PCR is given in Fig. 19. 

YFP and APP amplification efficiencies were analysed and found to be equal. 
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Fig. 19 Identification of homozygous YFP animals by RT q-PCR. The YFP expression is quantified relative 
to APP. All animals were calibrated according to mouse number 5. Mouse 1, 2, 3, 7, 23, and 27 were identified 
as homozygous for YFP, whereas the rest were considered to be heterozygous. 

2.10 Western blot 

Proteins can be separated based on their size by SDS polyacrylamide gel electrophoresis 

(SDS-PAGE) in which protein samples are loaded in equal amounts onto the gel. SDS is an 

anionic detergent that denatures secondary and non–disulfide–linked tertiary structures, and 

applies a negative charge to each protein in proportion to its mass as smaller proteins travel 

faster. Thus when an electric field is applied over the gel, the proteins will be separated based 

on their size. The proteins can then be blotted onto a nitrocellulose membrane where 

antibodies can be applied to recognize specific proteins of interest. Secondary antibodies 

proteins conjugated to horseradish peroxidase (HRP) can be used to visualize the proteins as 

HRP oxidizes amongst others luminol, after which protein bands can be detected by light 

sensitive films. 

Qualitative western blots were made for two proteins: APP and ubiquitin. As ubiquitin is 

attached to many proteins of varying size, the protocol was varied to extract a higher 

proportion of high-molecular weight proteins. Directly frozen brain hemispheres stored at -80 

°C were homogenized using 10 strokes of a glass Teflon homogenizer at 800 rpm in 150 mM 

NaCl, 50 mM Tris, 1% Triton X-100, 5 mM EDTA, pH 7.6 extraction buffer, supplemented 

with complete protease inhibitor cocktail (Roche, Germany). The amount of buffer was 

adjusted to the brain weight in a 10:1 ratio. Lysates were centrifuged at 4°C and 13.000 rpm 

http://en.wikipedia.org/wiki/Sodium_dodecyl_sulfate
http://en.wikipedia.org/wiki/Polyacrylamide_gel
http://en.wikipedia.org/wiki/Electrophoresis
http://en.wikipedia.org/wiki/Detergent
http://en.wikipedia.org/wiki/Denaturation_(biochemistry)
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for 30 min, and the supernantant was collected and stored at – 80°C for quantification of 

soluble proteins. The pellets were dissolved in 0.01 M PBS buffer containing 2% SDS, pH 7.4 

and homogenized on ice using a Branson Ultrasound Homogenizer followed by centrifugation 

at 4°C and 17.000 rpm for 30 min to obtain the SDS-soluble fraction. Protein concentrations 

were measured by the commercially available Roti-Quant universal solution (C. Roth, 

Germany). Of each sample, 20 µg (APP) or 50 µg (ubiquitin) proteins as well as 5 µL color 

plus prestained protein marker (BioLabs, England) were mixed 1:1 with Vario loading buffer 

(Anamed Elektrophorese, Germany) and heated for 4 min at 95°C, after which they were 

loaded onto precast 4-12% vario gels (Anamed Elektrophorese, Germany) and run in Vario 

running buffer for approximately 45 min at 200 V. Proteins were transferred to nitrocellulose 

membranes (Hybond-ECL, Amersham Biosciences, USA) using either semidry blotting for 

30 min at 25 V or wet blotting for 2 hr at 25 V in 48 mM Tris, 39 mM glycine, and 20% 

methanol, pH 9.2 transfer buffer. Membranes were blocked in 10% non-fat dry milk in Tris 

buffered saline buffer (0.01 M Tris, 0.15 M NaCl) containing 0.05% Tween-20 (TBS-T), 

pH=8.0 (TBS-T) for 1 hour. Monoclonal mouse anti-APP (1:5000, 22C11) or rabbit anti-

ubiquitin (1:5000, DAKO, Denmark) primary antibodies were applied overnight in TBS-T 

buffer at 4°C followed by a 2 hrs incubation with goat anti-mouse or swine anti-rabbit HRP-

conjugated secondary antibodies (1:3000, DAKO, Denmark) at room temperature. Blots were 

developed using light sensitive X-ray films and a 0.25 mg/mL luminol solution in 0.1 M 

Tris/HCl, pH 8.6 together with a 1.1 mg/mL para-hydroxycoumarine acid solution in DMSO 

mixed 9:1 just before use and with the addition of 0.03% H2O2. A mouse monoclonal β-Actin 

antibody (1:5000, Chemicon, USA) was used as a reference protein to assure equal loading of 

the samples. 

2.11 Radioactive ligand binding 

The level of receptors expressed in a tissue can be semi-quantified using receptor 

autoradiography that can be conducted in tissue homogenates or in tissue slides in which the 

latter offers the advantage of anatomical resolution and was the method of choice in this thesis 

(Kuhar et al. 1990). The basic principle of receptor autoradiography is the addition of a 

radioactively labelled ligand (radioligand) that binds to the receptor of interest. The amount of 

bound radioactivity in the tissue will then be proportional to the amount of receptors. Non-
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specific binding (NSB) to glass surfaces etc., is determined by displacing the radioligand with 

an excessive amount of non-labeled receptor ligand and is subtracted from the total binding 

resulting in the specific binding. 

Directly frozen half brains were cut in 12 µm serial coronal sections on a cryostat and directly 

mounted onto super frost glass slides. Sections were collected in parallel series with 4 

sections per glass slide throughout the prefrontal cortex (8 series, bregma 1.98 mm) (Paxinos 

and Franklin 2001) and the dorsal hippocampal region (15 series, bregma -1.46 mm  -2.18 

mm) (Paxinos and Franklin 2001). Two slides from each animal were dried at room 

temperature for 30 min, followed by 30 min hydration in 50 mM Tris buffer, pH 7.3 (binding 

buffer). Slides were incubated 2 hrs in binding buffer with 0.5 nM [125I]Tyr54-mono-iodo-α-

bungarotoxin (2,200Ci/mmol, #NEX126H, Perkin Elmer, DK) to asses total binding. For 

analysis of non-specific binding, incubation was performed together with 1 mM (-)-nicotine 

(#N5260, Sigma-Aldrich, DK). After the incubation, slides were dipped in buffer, followed 

by 2 x 30 min wash in ice-cold buffer. Finally, slides were rinsed briefly in ice-cold distilled 

water, dried for 24 hrs, and exposed to a radioactive sensitive Kodak Biomax MS film (GE 

Healthcare) for 24 hrs. Optical densities were measured using Quantity One software 

(BioRad) by bilateral delineation of PFC in at least two sections per animal and of the 

hippocampal formation in at least three sections per animal. Specific α-BTX binding was 

calculated by subtracting non-specfic binding from total binding. 

2.12 In situ hybridization 

The expression level of a particular gene expressed in a tissue can be semi-quantified using in 

situ hybridisation in which a radioactively labeled probe is applied to tissue sections. The 

amount of bound radioactivity in the tissue will then be proportional to the mRNA produced 

by the target gene.  

Twelve-μm parallel coronal brain sections were cut through the PFC, and the dorsal 

hippocampus as explained in the chapter of radioactive ligand binding (2.11). One glass slide 

with four brain sections from each animal was processed in the same experiment for one 

transcript to achieve the highest level of standardization. The slides were incubated for 5 min 

in 4% PFA in 0.2 M PBS, and then washed twice for 1 min in PBS. This was followed by 

acetylation (0.25% acetic anhydride, 0.1 M triethanolamine in 0.9% NaCl, pH 8,0) for 10 min 
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at room temperature. The slides were then delipidated and dehydrated in a series of ethanol 

(70%/5 min; 80%/1 min; 95%/2 min; and 99%/1 min) and finally incubated for 5 min in 

chloroform. Excessive chloroform was washed off the slides in 99% and 96% ethanol, and the 

slides were air-dried. Synthetic oligonucleotide DNA probes complimentary to the rat Arc 

mRNA (targeting bases 789-839; Genbank accession number: NM019361), c-fos (targeting 

bases 133-180; Genbank accession number: X06769), synaptophysin (codon 131-175, TGT 

TGG CAC ACT CCA CGC TCA GCC GAA GCT CCC CGG TGT AGC TGC), and PSD-95 

(codon 383-393, GTT TAT ACT GAG CGA TGA TCG TGA CCG TCT GAC CC) genes 

were applied (DNA Technology, Risskov, Denmark). The probes were labeled at the 3’-end 

with α[35S]-dATP (>3000 Ci/mmol, Amersham Bioscience) using terminal transferase. 

Labeled probe was added at a specific activity of 106 cpm/100 μL to the hybridisation buffer 

containing 45% formamid (v/v), 4X saline sodium citrate (SSC) (1XSSC is 0.15M NaCl, 

0,015M NaCitrate*2H2O, pH 7.2), 1X Denhardts solution (0,02% ficoll, polyvinylpyrrolidone 

and BSA), salmon sperm ssDNA (0.5 mg/ml), 0.25 mg/mL yeast transfer RNA, 10% (w/v) 

dextran sulfate, and 10 mM dithiotreitol. After incubation overnight (37°C), the sections were 

initially transferred to 4 rapid consecutive washes in 1XSSC (room temperature) and then 

washed 4 times 15 min in 1XSSC (55°C) and 2 times 30 min in 1XSSC at room temperature. 

Finally, the sections were air dried and exposed together with [14C]-standards to a Kodak 

Biomax MR film (Amersham Bioescience) for 8-14 days. Optical densities were quantified in 

medial PFC, CA1, CA3, upper DG, and parietal cortex (S1) using Quantity One software 

(BioRad) performed by an observer blinded to the genotype and treatment of the animals. The 

optical densities were converted to nCi/g tissue using the [14C]-standards and the individual 

values for each animal were calculated as the average of three sections measured within the 

areas of interest. A background measurement outside the sections was subtracted from each 

measurement. 

2.13 AD brain tissue 

Familial Swedish and Arctic brain tissue was kindly provided by Lars Lannfelt, Uppsalla 

University, Sweden. Sporadic AD brain tissue was supplied from the Netherlands Brain Bank, 

Amsterdam, The Netherlands. 
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2.14 Statistical analysis 

Data were analyzed using unpaired t-tests, two-way analysis of variance (ANOVA) or one-

way ANOVA followed by post-hoc tests as specified in the figure legends of the results 

chapter (3). Data are presented as mean  s.e.m. Significance levels were given as follows: 

***P < 0.001; **P < 0.01; *P < 0.05. All statistical analyses were conducted using GraphPad 

Prism version 4.03 for Windows (GraphPad Software, San Diego, CA, USA). 

The correlation analysis between intraneuronal Aβ and the following parameters was 

performed by Thomas Schneider-Axmann. Diagnosis, gender, age, brain weight, post-mortem 

delay, number of ApoE4 alleles, and Braak stage data were supplied directly from the Brain 

bank. Atherosclerosis and plaque stage were extracted from a document describing the 

patients’ disease history and post-mortem examination.  

Kolmogorov-Smirnov test was applied to examine which variables showed significant 

deviations from normal distribution. Most of the parameters, especially intraneuronal Aβ, 

showed significant deviation from normal distribution and thus the following tests are non-

parametric. Non-linear Spearman correlations were used to analyze the correlation between 

intraneuronal Aβ and atherosclerosis, followed by Spearman rank correlations between 

intraneuronal Aβ and age, brain weight, and post-mortem delay. Non-parametric Mann 

Whitney U test was performed between intraneuronal Aβ and the factors gender, diagnosis 

and number of ApoE 4 alleles. Non-parametric Kruskal Wallis tests were performed between 

intraneuronal Aβ and Braak stage and plaque stage, where subgroup analysis between two 

groups was performed with Mann Whitney U tests. As the study is explorative, the p-values 

are given without Bonferroni adjustments. 
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xamine A-related effects 

3 Results 

The background of the individual experiments is described in chapter 1.6. The details of the 

methods applied are given in the previous section. The results are discussed separately in 

section 4, and a final unified conclusion is given in section 5. 

3.1 Neuron loss in the cholinergic system of APP/PS1KI mice 

Cholinergic pathology 

To initially characterize cholinergic fiber pathology in the APP/PS1KI mice, staining for 

ChAT was qualitatively analyzed in relation to A deposition throughout the brain in a double 

ABC staining in paraffin embedded sections. ChAT-positive dystrophic neurites, which are 

swollen neuronal processes, were found to decorate amyloid plaques in the cortex and 

thalamus (Fig. 20A, B) as well as in the hippocampal formation occasionally disrupting the 

granular cell layer of the DG (Fig. 20C). This pathology starts already at 2 months of age, but 

is most abundant in 6- to 10-month-old mice. At later time points, ChAT-positive axonal 

varicosities independent of plaques were detected in some brain regions e.g. in the lateral 

septum (Fig. 20D, E), probably indicating axonal transport disturbance. Strong plaque 

associated ChAT-positive 

dystrophic neurites were also 

detected in the striatum; whereas 

control animals were consistently 

negative (Fig. 20F, G).  

To e

on the number of cholinergic 

neurons in the present 

APP/PS1KI mouse model, we 

analyzed the expression pattern 

of the human mutant APP 

transgene and the associated A 

deposition in the brain 

Fig. 20 Cholinergic fiber pathology in APP/PS1KI mice. Six to 10 
months old APP/PS1KI mice showed ChAT-positive dystrophic 
neurites (reddish brown) decorating Aβ[N]-positive amyloid plaques 
(blue) in the cortex (A) and thalamus (B), as well as occasionally in 
the granular cell layer of the dentate gyrus (C). ChAT-positive axonal 
varicosities independent of plaques were detected e.g. in the lateral 
septum (D, E). Strong plaque-associated ChAT-positive neurites 
were also detected in the striatum (F); whereas control animals were 
consistently negative (G). Scale bars: (A, B) 20 µm, (C - E) 33 µm, 
(F, G) 50 µm. 
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cholinergic system by double-labeled fluorescent immunohistochemistry. In the brain 

cholinergic system, human APP was found to be expressed in motor nuclei of the brain stem 

that also accumulated intracellular Aβ peptides (Fig. 21M - P). In contrast, no APP expression 

and almost no deposition of Aβ plaques was observed in either of the two cholinergic 

projecting nuclei groups of the brain, the forebrain (Ch1-Ch4, Fig. 21K, L) and pons (Ch5-

Ch6, Fig. 21I, J) complexes. However, fibers from these nuclei were severely affected as 

many plaques surrounded by cholinergic dystrophic neurites could be found in their 

projecting areas: cortex, hippocampus, and thalamus (Fig. 21A - F). The APP transgene was 

also found not to be expressed in the cholinergic interneurons of the caudate putamen, a 

region containing numerous smaller plaques and dystrophic neurites (Fig. 21G, H). Thus in 

the brain cholinergic system, only motor nuclei of the brain stem were found to express the 

APP transgene and consequently accumulate intracellular Aβ peptides (Fig. 21N- P). Of the 

motor nuclei in the brain stem, Mo5 and 7N are fairly large and were chosen for stereological 

Fig. 21 Expression of APP transgene and Aβ1-x deposition in the cholinergic system of APP/PS1KI mice.
In 6-month old APP/PS1KI mice, ChAT is visualized in red, APP and Aβ1-x in green using the 23850 and 
Aβ[N] antibodies, respectively, and cell nuclei in blue by DAPI staining. Cholinergic dystrophic neurites were 
found surrounding plaques in the cortex (A, B), hippocampus (CA1; C, D), and thalamus (E, F). No expression 
of the APP transgene or accumulation of intracellular Aβ was observed in either the forebrain (K, L) or pons 
(I, J) complex. The same held true for the cholinergic interneurons of the caudate putamen (CPu: G, H). 
However, cholinergic neurons of the motor nuclei Mo5 and 7N were found to express the APP transgene (M, 
N) and accumulate intracellular Aβ (N, P). Scale bars: (A-F) 33 µm, (G-P) 50 µm. 
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Analysis of cholinergic neuron numbers 

 by stereology at 2, 6, and 12 months of age in 

quantification representing areas with accumulation of intracellular Aβ. In comparison, the 

forebrain cholinergic neurons projecting to the hippocampus (Ch1/2) and cortex (Ch4) were 

chosen representing areas with cholinergic fiber pathology, and the interneurons of the 

caudate putamen of the striatum were chosen representing an area with cholinergic fiber 

pathology as well as extracellular Aβ plaque deposition surrounding the neuron bodies, 

however, without any intracellular A accumulation.  

Cholinergic neuron numbers were quantified

APP/PS1KI and PS1KI control mice by counting ChAT-positive neurons in caudate putamen, 

the forebrain complex (Ch1/2 and Ch4), and in the two motor nuclei: Mo5 and 7N (Fig. 22A). 

Depending on age and genotype as cofactors, quantification revealed no changes in the 

number of cholinergic neurons in the caudate putamen or in any of the cholinergic projecting 

nuclei of the forebrain complex (Ch1/2, Ch4) (Fig. 23A - C). In contrast, Mo5 and 7N 

accumulating intracellular Aβ peptides showed a significant loss of cholinergic neurons in the 

APP/PS1KI mice. Thus the number of cholinergic neurons was decreased by 27% in the Mo5 

already at 6 months of age (P < 0.001) and by 33% at the age of 12 months (P < 0.001), 

whereas the cholinergic neuron number in the 7N was significantly decreased only at 12 

months of age (-19%; P < 0.01) (Fig. 23D, E). 

Fig. 22 Definition of counting areas. A) Schematic presentation of stereologically quantified cholinergic areas: 
Caudate putamen (CPu, Bregma 1.70 to -2.30 mm), Ch1/2 comprising the medial septal nucleus and vertical 
limb of the diagonal band of Broca (Bregma 1.34 to 0.26 mm), Ch4 comprising the horizontal limb of the 
diagonal band of Broca, ventral pallidum, nucleus basalis, and substantia innominata (Bregma 0.26 to -1.34 
mm), as well as motor nuclei Mo5 (Bregma -4.84 to -5.34) and 7N (Bregma -5.68 to -6.48). Figures were created 
from the mouse atlas by Paxinos and Franklin (2001) with orientation according to Bregma beneath each section. 
B) 12-month-old APP/PS1KI and PS1KI control mice showing examples of the free-floating ChAT staining in 
the quantified regions. Scale bar = 100µm. 
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Fig. 23 Stereological quantification of ChAT-positive neurons in APP/PS1KI mice. No change in 
cholinergic neuron numbers was found depending on either age or genotype neither in the hippocampal 
projecting Ch1/2 nuclei (A), in the cortical projecting Ch4 nuclei of the forebrain complex (B), nor in the 
cholinergic interneurons of the caudate putamen (C). However, in the motor nuclei of the brain stem, a 
cholinergic neuron loss in the APP/PS1KI mice compared to the PS1KI control mice was found. In the Mo5 
(D), the cell loss was 27% in 6-month-old mice and 33% in 12-month-old mice, whereas the cholinergic neuron 
number in the 7N was significantly decreased only in 12-month-old mice (E, -19%; P). Data were analyzed 
using two-way ANOVA followed by Newman-Keuls posthoc test. The number of animals per group is given 
directly in the bars. All error bars represent mean  s.e.m. ***P < 0.001; **P < 0.01. 

Intracellular Aβ accumulation and cell death 

Loss of cholinergic neurons occurred earlier and to a larger extent in the motor nucleus Mo5 

compared to the 7N (Fig. 23D, E). Therefore, a qualitative fluorescent immunohistochemical 

analysis was carried out in paraffin sections, comparing the accumulation pattern of different 

A species in the two motor nuclei. The accumulation of intracellular Aβ1-x began earlier and 

to a larger degree in the Mo5 than in the 7N. This difference in Aβ1-x accumulation was 

especially evident at 2 and 6 months of age where the Mo5 showed extensive accumulation of 

Aβ peptides that were virtually absent in the 7N at these time points (Fig. 24A – F, J – O). 
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This distinction was less evident at 12 months, where substantial intracellular Aβ1-x 

accumulation could be detected also in the 7N (Fig. 24P - R). The same held true for fibrillar 

oligomeric and fibrillar Aβ, visualized by use of OC antibodies (Kayed et al. 2007) (Fig. 25A 

- C, G - I), as well as for highly aggregated Aβ visualized by use of the amyloid binding dye 

Fig. 24 Intracellular Aβ accumulation in the cholinergic motor neurons of Mo5 and 7N in APP/PS1KI 
mice. In 2-, 6-, and 12-month-old APP/PS1KI mice, the Mo5 was found to accumulate intracellular Aβ1-x

labeled by Aβ[N] antibodies at an earlier age than the 7N. ChAT staining is shown in red and Aβ1-x in green. 
Merged images are shown in C, F, I, L, O, R. Scale bars: 50 µm. 



Results  65

 

Thioflavine S, which detects aggregated beta sheet structures and disclosed a punctuate 

somatodendritic staining pattern already in 2-month-old mice in the Mo5 being much more 

prominent than in the 7N (Fig. 25D - F, J - L).  

 

Fig. 25 Fibrillar oligomeric Aβ and Thioflavin S positive material in motor neurons of the 
Mo5 and 7N. In 2-, 6-, and 12-month-old APP/PS1KI mice, fibrillar oligomeric and fibrillar Aβ 
(OC antibody, green) as well as Thioflavin S positive material (green) were found to accumulate 
intracellular in a larger amount and at an earlier age in the Mo5 as compared to the 7N. DAPI 
staining in blue shows cell nuclei and only merged pictures are shown. Scale bars: A – C, G – I: 
100 µm; D – F, J – L: 50 µm. 
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3.2 Effect of intraneuronal Aβ versus plaques on 

neurodegeneration 

Aβ accumulation in the frontal cortex and thalamus 

Massive intra- and extracellular Aβ accumulations were observed in the frontal cortex by 

immunohistochemical staining using the 4G8 antibody recognizing the central epitope Aβ17-24 

(Fig. 26A - H). The intraneuronal pathology of the frontal cortex is already very prominent at 

the age of 1.5 months, where virtually no or very few plaques are visible (Fig. 26A, E). 

Already at 2 months, plaque pathology starts to develop at a greater degree; however, 

Fig. 26 Aβ peptides in frontal cortex and thalamus of APP/PS1KI mice. Micrographs shows immunostaining 
of Aβ peptides using 4G8 antibodies in frontal cortex (A - H) and thalamus (I - P) of 1.5-, 2-, 6-, and 12-month-
old APP/PS1KI mice in paraffin embedded sections. Prominent accumulation of intraneuronal Aβ is seen in the 
frontal cortex already at 1.5 months with only little plaque pathology (A, E). More plaques are evident in the 
frontal cortex of 2-month-old mice where intraneuronal Aβ is still highly abundant (B, F). Plaque pathology 
dramatically increases in the frontal cortex from 2 to 6 months, with a concomitant decrease in intraneuronal Aβ 
accumulation (C, G), whereas the pathology is mostly unchanged from 6 to 12 months (D, H). No Aβ pathology 
is observed in the thalamus of 1.5-month-old mice (I, M) which start to develop plaques at the age of 2 months
with no accumulation of intraneuronal Aβ (J, N). Plaque pathology increased dramatically in the thalamus from 
2- to 6-month-old mice (K, O) and even further to 12-month-old mice (L, P). Scale bars: A – D, I – L: 200 µm; E 
– H, M – P: 33 µm. 
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intraneuronal Aβ is still abundantly present (Fig. 26B, F). At the age of 6 months, plaque 

pathology has been dramatically developed, however, the staining of intracellular Aβ 

aggregates decreases and is no longer a dominating pathological feature (Fig. 26C, G). From 6 

to 12 months, the pathology of the frontal cortex does not seem to change much except that 

the plaques may become more densely packed (Fig. 26D, H). The thalamus is found to 

develop only plaques and no intraneuronal aggregates (Fig. 26I - P). The pathology of this 

region starts later than in the cortex at about the age of 2 months with no pathology at 1.5 

months (Fig. 26I, M). From 2 to 6 months, numerous plaques develop and the pathology even 

increases further till the age of 12 months (Fig. 26J - L, N - P). As the 4G8 antibody has been 

shown to weakly cross react with APP in western blots, the antibody was highly diluted 

(1:10,000) in order to recognize only A. Using a variety of different dilutions, this 

concentration was found to show no staining of APP. The presence of intracellular Aβ 

aggregates was confirmed by immunostaining with the N-terminal specific Aβ antibody, 

Aβ[N]. Again, prominent accumulation of intraneuronal Aβ staining was found in the frontal 

cortex already at the age of 1.5 and 2 months, but being absent at 6 and 12 months (Fig. 27A - 

D). Furthermore, confirming the 4G8-staining, no intraneuronal Aβ immunoreactivity was  

Fig. 27 Confirmation of intracellular Aβ accumulation in APP/PS1KI mice by Aβ[N] antibody. As 
observed with the 4G8 antibody, intracellular Aβ1-x staining was found to be prominent in AP/PS1KI 
mice already at 1.5 months of age (A) as well as at 2 months (B), but decreased at 6 and 12 months (C, 
D). No intraneuronal Aβ1-x staining was detected in the thalamus regardless of age (E - H). Scale bar: a –
h: 33 µm. 
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detected in the thalamus regardless of age (Fig. 27E - H). In addition, different end-specific 

A antibodies were used to demonstrate the specificity of intraneuronal A immunorectivity 

in the frontal cortex (Fig. 28E – G). The regional difference in the accumulation of 

intraneuronal Aβ seems to be a consequence of the APP transgene expression pattern, as the 

APP transgene is abundantly expressed in the pyramidal layers of the frontal cortex, whereas 

no expression is found in the thalamus (Fig. 28A - D). To further characterize the 

development of Aβ pathology over time in the two regions chosen for stereology, the Aβ 

accumulation was quantified using the 4G8 antibody and a software density measurement 

technique (Fig. 29). At 2 months of age, the area covered by Aβ deposits was already 4.7 % in 

the frontal cortex owing to the massive accumulation of intraneuronal Aβ, but only 1.5 % in 

the thalamus because of the absence of intracellular Aβ and the later onset of extracellular 

plaque pathology. At 6 months of age, the percentage of the area covered by Aβ deposits had 

increased to 12.1 % in the frontal cortex and 8.5 % in the thalamus. From the age of 6 to 12 

months, the A-covered area remained stable in the frontal cortex, but increased further to 

13.9 % in the thalamus (Fig. 29A, B). Looking at average Aβ grain size and grain numbers in  

Fig. 28 APP transgene expression and further confirmation of intracellular Aβ in APP/PS1KI mice.
Immunostaining of human APP using the 23850 antibody in paraffin embedded sections of 2-month-old 
APP/PS1KI mice showed that the APP transgene is expressed in the neurons of the frontal cortex (A, C) but 
not of those in the thalamus, where only dystrophic fibers mostly surrounding plaques were stained (B, D). The 
following endspecific Aβ antibodies were applied to further confirm the intraneuronal Aβ staining in the frontal 
cortex: N1D (E, N-terminal Aβ starting with aspartate at position 1), N3pE (F, N-terminal Aβ starting with 
pyroglutatmate at position 3), and G2-10 (G, C-terminal Aβ40 peptides). Scale bars: A, B: 200 µm; C, D: 50 
µm; E – G: 33 µm. 
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Fig. 29 Quantification of Aβ accumulation in frontal 
cortex and thalamus. About 5% of the frontal cortical 
area is covered by Aβ peptide in 2-month-old 
APP/PS1KI mice increasing to 12.1% in 6-month-old 
mice with no further increase in 12-month-old mice (A). 
Only 1.5% of the thalamic area was covered by Aβ
peptide in 2-month-old APP/PS1KI mice, which
increased to 8.5% in 6-month-old mice, and further 
progressed to 13.9% at the age of 12 months (B). The 
increase in Aβ load in the frontal cortex from the age of 2 
to 6 months was due to an increased number of deposits 
(C) as no change in average deposit size was detected 
(E). In the thalamus, the steady increase in Aβ load was 
solemnly due to increased number of deposits (D) as the 
average deposit size did not change with age (F). The 
number of animals analyzed was at 2 months: 3; 6 
months: 5; and 12 months: 4. Data were analysed using 
one-way ANOVA followed by Tukeys post-hoc test. All 
error bars represent mean  s.e.m. ***P < 0.001; **P < 
0.01; *P<0.05. 

each region, it is evident that the steady increase in the percentile Aβ-covered area observed 

in the thalamus over time is solemnly due to a dramatic increase in plaque number, as the 

grain number increases a total of 11 times from 2 to 12 months, without major changes in 

their size (Fig. 29D, F). In the frontal cortex, the increase observed in the percentage of the 

Aβ-covered area between 2 and 6 months of age is also exclusively dependent on a 2.7-fold 

increase in grain numbers as the average grain size is unchanged. However, in contrast to the 

thalamus, changes are seen in the composition of frontal cortical deposits as the average size 

decreases, confirming the observation that the plaques become more dense and the number of 

deposits tend to increase being close to significance. 

In order to separate the effect of intracellular Aβ and plaques on neuronal survival in the 

frontal cortex, we selected the thalamus as an appropriate region for comparison as the 

amount of extracellular accumulated plaques is in a comparable range to the A load 
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observed in the frontal cortex, however, without any accumulation of intraneuronal Aβ 

peptides. 

Stereology in the frontal cortex and thalamus 

The counting areas of the frontal cortex and thalamus were defined according to Fig. 30A. A 

loss of neurons of 28 % and 35 % was found in the frontal cortex of the APP/PS1KI mice 

compared to PS1KI control mice at the age of 6 and 12 months, respectively (Fig. 30B, 

P<0.001). However, the loss did not significant progress between these ages in APP/PS1KI 

mice correlating with the finding of no further changes in Aβ accumulation in the frontal 

cortex after 6 months of age. Corresponding reductions in frontal cortical volumes were found 

at the age of both 6 (25%, P<0.001) and 12 months (23%, P<0.01) (Fig. 30D). Due to normal 

growth, frontal cortical volumes increased 86% and 50% between the age of 2 to 6 months in 

PS1KI control and APP/PS1KI mice, respectively. Strikingly, no change was observed in the 

neuron numbers of the thalamus between 2-, 6-, and 12-month-old mice despite the 

development of massive plaque pathology (Fig. 30C). Correspondingly, no differences in 

thalamic volume were found between APP/PS1KI and PS1KI control mice at any age 

investigated (Fig. 30E). As for the frontal cortex, normal growth from 2 to 6 months was 

Fig. 30 Schematic presentation of counting areas and stereological quantification of neuron numbers. A) 
The frontal cortex was quantified from Bregma 3.08 to 0.26 and the thalamus from -0.94 to -2.54. Adapted from
(Paxinos and Franklin 2001) with orientation according to Bregma below each section. Significant neuron 
losses of 28% and 35% were found in the frontal cortex of APP/PS1KI mice 6 and 12 months, respectively (B). 
Corresponding decreases of 25% and 23% were observed in frontal cortical volumes (D). No differences in 
neuron numbers or volumes were observed of the thalamus between APP/PS1KI and PS1KI control mice at 2-, 
6-, and 12 months of age (C, E). The number of animals analyzed is given directly in the bars (B, C). Data were 
analyzed by two-way ANOVA followed by Tukeys post-hoc test. All error bars represent mean  s.e.m. ***P < 
0.001; **P < 0.01; *P<0.05. 
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evident by an increase in the thalamic volume of 75 % (P<0.05) in the PS1KI mice and 30 % 

in the APP/PS1KI mice, however, only being close to significance (P = 0.072).  

3.3 Intraneuronal Aβ staining in AD patients and transgenic AD 

mouse models 

Optimization for staining of intraneuronal Aβ in mouse models of AD 

Quantitative optimization for staining of intracellular Aβ as compared to plaques was 

performed in 6-month-old APP/PS1KI transgenic mice in the CA1 and thalamus 

Fig. 31 Quantitative optimization of intracellular Aβ1-x staining in APP/PS1KI mice. Parallel sections from 
6-month-old APP/PS1KI transgenic mice stained with Aβ[N] antibodies in paraffin embedded sections showing 
micrographs of intracellular Aβ1-x in CA1 and plaque labeling in thalamus using protocols with either no antigen 
retrieval (A, G), 3 min formic acid (FA) pretreatment (B, H), 10 min FA pretreatment (C, I), 10 min microwave 
heating in a citric acid buffer pH 6 (D, J), combined heating and 3 min FA pretreatment (E, K), or combined 
heating and 10 min FA pretreatment (F, L). Area percentile quantifications of the corresponding Aβ loads showed 
that FA pretreatment regardless of exposure time is essential for the intraneuronal staining of Aβ in the CA1 (M), 
whereas heat and FA treatment have equal antigenic retrieval effect on extracellular Aβ plaque pathology in the 
thalamus (N). Scale bars: (A-F) 50 µm, (G-L) 100 µm. Three sections from 5 mice were analyzed in each group. 
Data were analyzed by One-way ANOVA followed by Newman Keuls post-hoc test.*P<0.05; **P<0.01; 
***P<0.001. 
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accumulating either intracellular Aβ or plaques, respectively. Parallel sections containing the 

two areas of interest were stained with the Aβ[N] antibody that recognizes Aβ1-x comparing  

protocols with either no antigen retrieval, 10 min microwave heating in a citric acid buffer pH 

6 (heat), 3 and 10 min FA pretreatments, or combined heat and FA pretreatments. Virtually no 

intracellular Aβ staining and only very little labeling of Aβ plaques were observed in the CA1 

and thalamus without any pretreatment (Fig. 31A, G). FA pretreatments revealed an obvious 

Fig. 32 Optimization of intraneuronal Aβ[N] staining in APP, APP/PS1KI, APP/PS1, and 5xFAD mice.
Qualitative optimization for intraneuronal Aβ staining in the medial cortex of APP, APP/PS1KI, APP/PS1, and 
5xFAD mice was performed with the N-terminal specific antibody Aβ[N]. No clear intraneuronal Aβ1-x

staining was observed in APP, APP/PS1KI, and APP/PS1 mice without heat or FA treatment (A, B, C), 
whereas 5xFAD mice showed some intraneuronal Aβ staining without any pretreatment (D). Ten min heat 
treatment in citric acid buffer pH 6 had a minor increasing effect on the intracellular staining in all 4 mouse 
models (E, F, G, H), however, 3 min FA pretreatment markedly increase the intracellular Aβ1-x disclosing a 
distinct granular pattern being most obvious in the APP/PS1KI, APP/PS1, and 5xFAD mice (I, J, K, L). The 
combination of heat and FA pretreatment further increase the intracellular staining in APP mice and had a 
minor intensifying effect in the APP/PS1KI, APP/PS1, and 5xFAD mice (M, N, O, P). Scale bar: 33 µm. 
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granular intracellular staining in CA1 as well as a much clearer labeling of plaques with both 

3 and 10 min exposure times (Fig. 31B, C and H, I). Applying the heat pretreatment alone did 

not reveal much staining of intracellular Aβ in the CA1, however, staining of plaques was 

dramatically increased in the thalamus (Fig. 31D, J). Combining the heat and FA treatments 

seemed to intensify the staining of intracellular Aβ as compared to FA treatment alone, 

whereas plaques were equally well disclosed (Fig. 31E, F and K, L). These observations were 

confirmed by quantification of the area covered by Aβ1-x staining where it became evident 

that heat pretreatment alone did not increase the staining of intraneuronal Aβ in the CA1. FA 

pretreatments for 3 and 10 min both significantly increased the intraneuronal staining 

independent of exposure time (Fig. 31M). The combined effect of heat and FA also 

significantly increased the area of intraneuronal Aβ staining compared to no pretreatment, but 

not compared to FA pretreatment alone (Fig. 31M). Concerning plaque pathology in the 

thalamus, all pretreatments significantly increased the plaque staining in an equal manner as 

compared to no pretreatment (Fig. 31N). 

The analysis of optimization for staining of intraneuronal Aβ was extended to a qualitative 

comparison in four different AD mouse models: APP, APP/PS1KI, APP/PS1 and 5xFAD 

mice of ages where intraneuronal accumulation of Aβ was evident in the medial cortex above 

the hippocampus. No pretreatment was compared to the antigen retrieving effect of heat, FA 3 

min, and the combined effect of heat and FA 3 min. Applying the Aβ[N] antibody, APP, 

APP/PS1KI, and APP/PS1 mice showed no detection of intraneuronal Aβ1-x without heat or 

FA pretreatment (Fig. 32A, B, C, respectively), in contrast to 5xFAD mice that showed some 

intraneuronal Aβ staining without any pretreatment (Fig. 32D). Heat pretreatment had a minor 

increasing effect on the intracellular Aβ1-x staining in all mouse models (Fig. 32E, F, G, H), 

however, 3 min FA pretreatment revealed an intense granular intracellular staining being most 

evident in the APP/PS1KI, APP/PS1, and 5xFAD mice (Fig. 32I, J, K, L). The combination of 

heat and FA treatment further increased the intracellular staining of Aβ1-x in single transgenic 

APP mice and had an intensifying effect in the bigenic APP/PS1KI, APP/PS1, and 5xFAD 

mouse models (Fig. 32M, N, O, P). 

The effect of heat and FA was additionally studied in the same four mouse models using the 

4G8 antibody recognizing Aβ17-24. Applied in the concentration of 1:10.000 this antibody 

previously showed no cross-reaction with APP in immunostainings in APP/PS1KI transgenic  
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mice (Christensen et al. 2008). As observed with the Aβ[N] antibody, weak intraneuronal Aβ 

staining without any pretreatment was only observed in the 5xFAD model (data not shown) 

and 3 min FA pretreatment was found to reveal a granular intracellular staining pattern in all 

four mouse models being most intense in the APP/PS1KI mice (Fig. 33A, B, C, D). However, 

in contrast to the Aβ[N] staining, heat pretreatment of 4G8 stained sections revealed a 

staining pattern of much smaller Aβ granules dispersed throughout the cytoplasm of cortical 

neurons in all four mouse models (Fig. 33E, F, G, H). This heat-induced Aβ staining was 

Fig. 33 The effect of formic acid (FA), heat, and combined heat and FA antigen retrieval on intracellular 
4G8 staining was qualitatively compared in the medial cortex of APP, APP/PS1KI, APP/PS1, and 5xFAD mice. 
Three min FA pretreatment was found to reveal a distinct granular intracellular staining pattern as observed with 
the Aβ[N] antibody  (A, B, C, D). In contrast, 10 min heating in citric acid buffer pH 6 revealed a more 
homogenous intracellular staining pattern in all four mouse models (E, F, G, H), however, this seemed to 
decrease with combined pretreatment of heat and 3 min FA showing mainly the granular intracellular staining 
observed with FA pretreatment alone (I, J, K, L). Thioflavin S staining in green disclosed the same granular 
intracellular staining pattern as observed with the 3 min FA treatment alone in all four mouse models (M, N, O, 
P). Scale bar: 33 µm. 
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decreased with combined pretreatment of 

heat and 3 min FA, disclosing mainly the 

granular intracellular staining similar to the 

effect of FA alone (Fig. 33I, J, K, L). To 

investigate the specificity of the heat-

induced 4G8 staining, 4G8 (red) and APP 

(green) were fluorescently labeled in 

APP/PS1KI mice (Fig. 34). With application 

of the heat pretreatment alone, most of the 

4G8 staining co-localized with the APP 

staining within the cytoplasm of cortical 

neurons (Fig. 34A, B, C). With the 

combination of heat and FA pretreatment, 

the 4G8 antibody mainly labeled the larger 

granules at the axon hillock, which did not 

co-localize with the APP staining (Fig. 34D, 

E, F). Fluorescent green Thioflavin S staining visualizing aggregated proteins was applied to 

analyze the aggregation state of the intraneuronal Aβ peptides and disclosed the same 

granular intraneuronal staining pattern as observed with 3 min FA pretreatment alone or 

together with heat in all four mouse models (Fig. 33M, N, O, P), indicating that the 

intraneuronal Aβ enhanced by FA is in an aggregated state. 

Fig. 34 Fluorescent double labeling of 4G8 and APP 
in APP/PS1KI mice. 4G8 (red) and APP (green) was 
fluorescently double labeled in heat and heat + FA 
pretreated sections from 1.5-month-old APP/PS1KI 
mice. With heat pretreatment alone, much of the 4G8 
staining co-localized with the APP staining within the 
cytoplasm of cortical neurons (A, B, C). With the 
combination of heat and FA, the 4G8 antibody mainly 
labeled larger granules at the axon hillock of cortical 
neurons and did not co-localize with APP staining (D, 
E, F). Blue counterstaining of nuclei in the merged 
pictures was performed with DAPI. Scale bar: 10 µm. 

Staining of intraneuronal Aβ in brain tissue from AD patients 

Optimization for intraneuronal Aβ staining was performed in hippocampal paraffin sections 

of sporadic, familial Swedish, and familial Arctic AD cases using the Aβ[N] antibody. Even 

without any antigen retrieval, a faint fairly homogenous intraneuronal Aβ1-x staining could be 

detected in all three types of AD cases (Fig. 35A, E, I). Yet, 10 min heat treatment in 0.01 M 

citric acid buffer pH 6 dramatically increased the intraneuronal Aβ1-x staining that in higher 

magnification showed a granular appearance and concentration around the nucleus (Fig. 35B, 

F, J). Compared to no pretreatment, 3 min FA pretreatment did not improve the staining of 

intracellular Aβ1-x (Fig. 35C, G, K), and actually very clearly counteracted the enhancing 

effect of the heat pretreatment on intraneuronal Aβ1-x staining (Fig. 35D, H, L). In addition to 
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the fairly homogenous cytoplasm staining, some nuclei were observed to be surrounded by a 

highly granular Aβ staining pattern, which were present in all three AD cases with all applied 

protocols (Fig. 35C, G, K; black arrows). Double labeling of Aβ1-x and astrocytes using the 

Aβ[N] antibody visualized by DAB and a GFAP antibody visualized by Histogreen proofed 

this highly granular staining pattern to be astrocytes accumulating Aβ, which could be found 

abundantly in CA4 and CA3 of the hippocampal formation of many sporadic AD cases (Fig. 

36A, B; black arrows). In a few cases, astrocytes with no granular Aβ accumulation could be 

found in close proximity to neurons (Fig. 36C, D).  

Fig. 35 Optimization for intraneuronal Aβ[N] staining in the CA4 region of AD brain tissue. The 
optimization was performed in hippocampal sections from sporadic, familial Swedish, and familial Arctic AD 
cases using the Aβ[N] antibody in paraffin embedded sections. A faint homogenous intraneuronal Aβ1-x staining 
could be detected even without any antigen retrieval in all three types of AD cases (A, E, I). However, 10 min 
heat pretreatment in citric acid buffer pH 6 dramatically increased the intraneuronal Aβ1-x staining that in higher 
magnification show granularity and concentration around the nucleus (B, F, J). Compared to no treatment, 3 min 
formic acid (FA) pretreatment did not improve the staining of intraneuronal Aβ1-x (C, G, K) and  in the 
combined treatment of heat and FA, FA actually counteracted the enhancing effect of the heat pretreatment (D, 
H, L). Besides the intraneuronal Aβ1-x staining, smaller nuclei surrounded by a highly granular Aβ staining 
pattern were observed in all three AD cases with all protocols (C, G, K, black arrowheads). Scale bar: 50 µm. 
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The presence of intraneuronal Aβ in the 

hippocampal region of sporadic AD cases was 

confirmed by staining with OC antibodies 

recognizing Aβ fibrils and fibrillar oligomers 

(Kayed et al. 2007). The OC antibody produced 

an intraneuronal staining much like that of 

Aβ[N] with heat pretreatment alone (Fig. 37A, 

B) as well as with combined heat and 3 min FA 

pretreatment, actually being slightly more 

intense than that enhanced by heat alone (Fig. 

37C, D). The 4G8 antibody was applied to 

further confirm the presence of intraneuronal 

Aβ using heat pretreatment, but was found to 

produce a highly abundant intense granular 

staining very different from that detected by OC 

or Aβ[N] antibodies (Fig. 37E, F) with the 

granules being much larger and surrounding the 

nucleus in a cap-like manner. Fluorescent 

labeling of 4G8 and Aβ[N] with and without Sudan Black B pretreatment proved this 4G8 

staining to be a cross-reaction with lipofuscin (Schnell et al. 1999). Thus, staining with 4G8 

antibodies using a green secondary antibody showed only the intense staining of large 

intracellular granules (Fig. 38B) which were also evident in the blue DAPI channel (Fig. 38A) 

and as red auto fluorescence (Fig. 38C). Merging of the pictures showed complete co-

localization of this intense labeling of large cap-like granules (Fig. 38D). Pretreatment with 

Sudan Black B abolished the fluorescent staining observed in all channels (Fig. 38E, F, G), 

and merging of the pictures showed no remaining specific staining from the green 4G8 

channel (Fig. 38H). In contrast, visualization of intraneuronal Aβ using the Aβ[N] antibody 

with a green fluorescent secondary antibody showed the same intense labeling of large 

intracellular granules, however, with an additional staining of smaller granules dispersed 

throughout the cytoplasm as well as at the axon hillock (Fig. 38J). DAPI and red auto 

fluorescence (Fig. 38I, K) showed only the very intense labeling of the larger granules, and 

merging of the pictures revealed co-localization of the very intense cap-like staining, but with 

Fig. 36 Double labeling of Aβ1-x and astrocytes.
Using a double ABC labeling in paraffin 
embedded sections is shown Aβ[N] staining in 
reddish brown (DAB) and GFAP  in blue 
(Histogreen, black arrowheads). The highly 
granular staining pattern surrounding smaller 
nuclei was found to be astrocytes accumulating 
Aβ and could be found in CA4 (A) as well as in 
CA3 (B) of many sporadic AD cases. However, 
in some AD cases, astrocytes without granular 
staining were found close to neurons in both CA4 
(C) and CA3 (D). Scale bar: 33 µm. 
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an additional green staining of the smaller granules (Fig. 38L). Pretreatment with Sudan 

Black B abolished the intense cap-like granular staining from all channels (Fig. 38M, N, O), 

and the merged picture showed only the green staining of the smaller granules specific for the 

Aβ[N] antibody (Fig. 38P).  

 

Fig. 38 Analysis of 4G8 and Aβ[N] cross reactivity 
with lipofuscin in CA4 of a sporadic AD case.
Fluorescent staining using 4G8 antibodies with a 
green secondary antibody showed an intense 
intracellular labeling of large granules (B). However, 
merging of the 4G8 staining in green (B) with 
autofluorescence from the DAPI (A) and red channel 
(C) showed complete co-localisation (D). 
Pretreatment with Sudan Black B abolished the 
fluorescence observed in all channels (E, F, G), and 
the merged picture showed no remaining specific 
staining in the green channel (H). In contrast, 
fluorescent staining using Aβ[N] antibodies with a 
green fluorescent secondary antibody produced the 
same intense staining of large intracellular granules, 
but with an additional staining of smaller intracellular 
granules throughout the cytoplasma and in the axon 
hillock (J). The DAPI (I) and red channels (K) 
showed only the very intense large granules and 
merging of the pictures showed co-localisation only 
of the intensely labeled large granules (L). 
Pretreatment with Sudan Black B abolished the 
intense granular staining from DAPI (M), Aβ[N] 
green labeling (N), and red autofluorescence (O), and 
the merged picture showed only the weaker green 
staining specific for the Aβ[N] antibody (P). Scale 
bar: 20 µm. 

Fig. 37 Intraneuronal staining detected by OC 
and 4G8 antibodies in a sporadic AD brain tissue.
The OC antibody disclosed intraneuronal Aβ 
staining much like that of Aβ[N] with both 10 min 
heat pretreatment alone (A: CA4, B: CA1) and 
combined heat and 3 min formic acid (FA) treatment 
(C: CA4, D: CA1). With 10 min heat pretreatment, 
the 4G8 antibody produced a much different highly 
abundant and granular intracellular staining (E: CA4, 
F: CA1). Bottom left corners of A, C, and E show 
intracellular staining in high magnification. Scale 
bar: 50 µm. 
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Intraneuronal Aβ staining intensity in sporadic AD patients 

Hippocampal sections from 10 controls and 20 

AD patients were stained with Aβ[N] 

antibodies and their intraneuronal Aβ1-x 

intensity was analyzed based on evaluation of 

the staining intensity in CA4, CA3, and CA1. 

Thus “+++” was assigned to cases with very 

strong intraneuronal Aβ staining in CA4, CA3, 

as well as in CA1 (Fig. 39A, B, C). “++” was 

assigned to cases with weaker but still obvious 

intracellular Aβ staining in CA4 and CA3, but 

low or no staining in CA1 (Fig. 39D, E, F). “+” 

was assigned to cases with a very faint 

intracellular staining in CA4 and CA3 and no 

staining in CA1 (Fig. 39G, H, I), and “0” was 

assigned to cases showing no intracellular Aβ1-x 

staining either in CA4, CA3, or CA1 (Fig. 39J, 

K, L). Four AD patients and 2 controls were 

found to accumulate the highest degree of 

intraneuronal Aβ1-x peptides, whereas 9 AD 

patients and 2 controls accumulated a moderate 

amount of these Aβ peptides. Six AD patients 

and 4 controls accumulated low amount of Aβ peptides, whereas only 1 AD patient and 2 

controls showed no accumulation of Aβ1-x peptides (Table 8). By non-parametric statistical 

analysis, the accumulation of intraneuronal Aβ1-x was found not to correlate with age, brain 

weight, post-mortem delay, gender, diagnosis, and Braak stage, whereas a weak but 

significant correlation was found with atherosclerosis and plaque pathology. Yet, ApoE 

genotype was found to very strongly correlate with the presence of intraneuronal Aβ where 

having one ApoE4 allele highly significantly correlated with increased intraneuronal Aβ1-x 

staining (Table 9, P=0.002), which was even significant after Bonferroni adjustment 

(P=0.023). 

Fig. 39 Rating of intraneuronal Aβ[N] staining 
intensity. +++ was assigned to cases with very 
strong intraneuronal Aβ staining in CA4, CA3, as 
well as in CA1 (A, B, C). ++ was assigned to cases 
with weaker but still obvious intracellular Aβ
staining in CA4 and CA3 and low staining in CA1 
(D, E, F). + was assigned to cases with a very faint 
intracellular Aβ staining in CA4 and CA3 and 
apparently no staining in CA1 (G, H, I). 0 was 
assigned to cases showing no intracellular Aβ
staining either in CA4, CA3, or CA1 (J, K, L). Scale 
bar: 50 µm. 
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Table 8 Patient data giving diagnosis, gender, age, post mortem delay (PMD, hrs:min), Brain weight (g), Braak 
stage, Plaque load, ApoE genotype (combination of alleles 2, 3,and 4), intraneuronal Aβ1-x staining intensity, 
and level of atherosclerosis. 
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Table 9 Statistical analysis of the correlation between intraneuronal Aβ accumulation and the following data 
from AD patients and control cases: atherosclerosis, age, brain weight (g), post mortem delay, gender, 
diagnosis, number of ApoE4 alleles, Braak stage, and plaque stage. 20 AD patients and 10 controls were 
included in the statistical analysis, which is described in Chapter 2.14. 
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3.4 Effect of Aβ on axonopathy in transgenic AD mouse models 

APP expression and Aβ load with increasing PS1KI gene dosage  

Staining with antibodies against human APP 

revealed approximately equal numbers of 

APP-positive cells in APP, APP/PS1KIhe 

and APP/PS1KIho mice at 10 months of age, 

but with dystrophic fibers accumulating 

APP in APP/PS1KIhe and APP/PS1KIho 

mice (Fig. 40A – C). A qualitative western-

blot analysis confirmed that the overall 

expression of human full-length APP in the 

three mouse lines was equal with no 

considerable variation between the different 

genotypes. In contrast, the levels of the -

secretase cleavage product C99 as well as 

A increased with increasing mutant PS1 

gene dosage (Fig. 40D). 

The accumulation of Aβ was quantified in 

the frontal cortex, pons and spinal cords of 

10-month-old APP, APP/PS1KIhe, and APP/PS1KIho mice using computer-based analysis of 

4G8 DAB stained sections (Fig. 41). Very little or no Aβ accumulation was observed in the 

pons and spinal cords of APP transgenic mice harboring no PS1KI mutations (Fig. 41E, H, I, 

L), whereas 3.9% of the frontal cortex was covered by Aβ staining (Fig. 41A and D). 

Introducing one PS1KI allele generating APP/PS1KIhe mice caused a significant increase in 

the Aβ load in the frontal cortex by 80% leading to an overall Aβ load of 7% (Fig. 41A). 

Also, considerable pathology was observed in the pons and spinal cord which had Aβ loads of 

3.6% and 3.3%, respectively (Fig. 41F, H, J, L). A further increase in the PS1KI gene dosage 

resulting in the APP/PS1KIho mice caused an approximate doubling of the Aβ load in all three 

Fig. 40 Analysis of APP transgene expression in 
APP, APP/PS1KIhe, and APP/PS1KIho mice.
Immunostaining of human APP in spinal cords of 
APP (A), APP/PS1KIhe (B), and APP/PS1KIho (C) 
mice showing comparable numbers of APP-
expressing cells in all three genotypes. Western-blot 
analyses revealed no differences in the amount of 
human full-length APP among the three genotypes, 
however, the levels of C99 and Aβ increased with 
increasing PS1KI gene dosage (D). Scale bar: 50 µm.
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regions measured (Fig. 41C-D, G-H, K-

L), whereas PS1KIho mice were 

consistently negative for 4G8 staining 

(data not shown). This directly 

proportional rise in Aβ load observed 

with increasing PS1KI gene dosage in 

mice hemizygous for the APP transgene 

also applied to intraneuronal Aβ as 

exemplified in motor neurons of the 

spinal cord (Fig. 42).  

Fig. 41 Immunostaining of Aβ in APP, APP/PS1KIhe, and APP/PS1KIho mice. Aβ accumulation was 
analysed using 4G8 immunostaining, which is shown in 10-month-old APP, APP/PS1KIhe, and APP/PS1KIho

mice in frontal cortex (A-C), pons (E-G), and spinal cord (I-K) together with their respective quantifications 
of the percentile area covered by DAB staining (D, H, L). Virtually no Aβ peptide accumulation was 
detected in the pons and spinal cord of APP mice, whereas about 4% of the frontal cortical area was covered 
by Aβ staining. Upon introduction of one PS1KI gene (APP/PS1KIhe mice), the accumulation of Aβ was 
found to rise significantly in all three regions investigated and further approximately doubled with the 
introduction of an additional PS1KI gene (APP/PS1KIho mice), reaching percentile Aβ covered areas of 14%, 
8%, and 6.5% in the frontal cortex, pons, and spinal cord, respectively. Data was analyzed from 6 mice of 
each genotype and analyzed using one-way ANOVA followed by t-tests. All error bars represent mean 
s.e.m. **P < 0.01; *P<0.05. Scale bar: 200µm. 

Fig. 42 Intraneuronal Aβ accumulation in APP, 
APP/PS1KIhe, and APP/PS1KIho mice. In spinal cords, 
intraneuronal Aβ accumulation was found to rise 
proportionally with increasing PS1KI gene dosage in 10-
month-old APP (A), APP/PS1KIhe (B), and APP/PS1KIho

mice (C) visualized by the 4G8 antibody. Scale bar: 50 µm.
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Quantification of dystrophic fibers with increasing PS1KI gene dosage 

The number of plaque-independent dystrophic neurites was quantified in the pons and spinal 

cord using antibodies toward phosphorylated APP (anti-pT668) and neurofilament (NF-200) 

as markers of axonopathy in double ABC-stainings with 4G8 visualizing Aβ plaques. 

Examples of the quantification of plaque-independent dystrophic fibers in 10-month-old APP, 

APP/PS1KIhe, and APP/PS1KIho mice are visualized in Fig. 43, showing NF-200 staining in 

the pons (Fig. 43A-C) and anti-pT668 staining in the spinal cord (Fig. 43E-G). The 

quantification showed practically no dystrophic neurites in the pons and spinal cord of APP 

mice with either NF-200 (Fig. 44A, C) or anti-pT668 (Fig. 44B, D). In contrast, a 

considerable amount of dystrophic fibers was found in the APP/PS1KIhe mice using both NF-

200 and anti-pT668 in pons as well as spinal cord, and increased even further in APP/PS1KIho 

mice (Fig. 44). No dystrophic fibers were found in PS1KIho (Fig. 43D and H) or wildtype 

control mice (not shown). Thus using the two markers NF-200 and anti-pT668, the amount of 

dystrophic fibers was found to rise proportionally to the dosage of the PS1KI gene and was 

absent in mice harboring either only the APP transgene or the PS1KIho gene alone. 

Fig. 43 Dystrophic fibers together with Aβ pathology in APP, APP/PS1KIhe, and APP/PS1KIho mice.
Double ABC-immunostaining showed Aβ in blue using 4G8 antibodies together with visualization of fibers in 
reddish brown using either NF-200 or anti-pT668. The number of plaque-independent dystrophic neurites (black 
arrowheads) was found to increase with PS1KI gene dosage; examples of stainings from APP, APP/PS1KIhe, 
APP/PS1KIho, as well as PS1KIho mice are shown using the NF-200 antibody in the pons (A-D) and anti-pT668 
antibody in the spinal cord (E-H). Scale bar: 100µm.
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Intraneuronal accumulation of ubiquitin and Aβ peptides 

Immunostaining of ubiquitin in the spinal 

cord of 10-month-old APP, APP/PS1KIhe 

and APP/PS1KIho mice revealed 

considerable intracellular accumulation 

of ubiquitin in all three genotypes. 

However, APP/PS1KIhe and 

APP/PS1KIho mice in addition 

accumulated large amounts of ubiquitin-

positive material in both plaque-

independent and plaque-dependent 

dystrophic fibers (Fig. 45A-C). Ubiquitin 

western-blot analysis confirmed the 

finding of dramatically increased levels 

of ubiquitinated proteins ranging from 

approximately 70-180 kDa in 

APP/PS1KIhe and APP/PS1KIho mice as 

compared to wildtype (WT) and PS1KIho 

Fig. 44 Quantification of plaque-independent dystrophic fibers in APP, APP/PS1KIhe, and 
APP/PS1KIho mice. Increasing numbers of NF-200 and anti-pT668-positive plaque-independent dystrophic 
fibers were found with increasing PS1 gene dosage in both pons (A, B) and spinal cord (C, D) with 
practically no dystrophic fibers in the APP mice. Data from 6 animals of each genotype was analyzed using 
one-way ANOVA followed by t-tests. All error bars represent mean  s.e.m. **P < 0.01; *P<0.05. 

Fig. 45 Ubiquitin in APP, APP/PS1KIhe, and 
APP/PS1KIho mice. Ubiquitin staining showed many 
ubiquitin-positive dystrophic fibers in spinal cords of 10-
month-old APP/PS1KIhe (B) and APP/PS1KIho mice (C) 
with only cell body staning in APP mice (A). Western-blot 
analysis (D) confirmed increased levels of ubiquitin in 
APP/PS1KIhe and APP/PS1KIho mice compared to 
wildtype (WT) and PS1KIho. Protein size bar in kDa and β-
actin blot below showing equal loading of samples. Scale 
bar: 50 µm. 
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mice, but with no obvious difference 

in the amount of ubiquitin monomers 

(7 kDa band) (Fig. 45D). 

In double ABC-immunostaining using 

a combination of NF-200 and 4G8 

(Fig. 46A) or anti-pT668 and 4G8 

(Fig. 46B), A could be detected in the 

close vicinity of plaque-independent 

axonal spheroids, suggesting that 

axonal swellings are able to release Aβ 

peptides locally. This was confirmed by confocal imaging showing accumulation of Aβ inside 

and in the vicinity of large plaque-independent axonal spheroids using the OC antibody 

recognizing fibrillar Aβ oligomers and Aβ fibrils (Fig. 47A-C). Generally, many plaque-

Fig. 46 Aβ deposits in the vicinity of large dystrophic 
neurites.  Double ABC immunostaining 4G8 antibodies (blue) 
together with either anti-pT668 (A) or NF-200 (B) (reddish 
brown) occasionally showed small Aβ deposits (black 
arrowheads) in the vicinity of large dystrophic neurites in both 
APP/PS1KIhe and APP/PS1KIho mice. Scale bar: 12.5 µm. 

Fig. 47 Confocal images of fibrillar Aβ oligomers and Aβ fibrils inside dystrophic fibers. Using confocal 
imaging in 6-month-old YFP/APP/PS1KIhe mice with DAPI counterstaining confirming the lack of nuclei 
(blue), fibrillar Aβ oligomers and Aβ fibrils (OC antibody, red) were found to accumulate inside large 
dystrophic fibers (green). Merged images are shown (A, D, G) together with the isolated OC (B, E, H), and 
DAPI staining (C, F, I). Extracellular accumulation of Aβ (White arrowhead) could be detected near large 
dystrophic fibers accumulating intracellular Aβ (A-C). The intracellular accumulation of intracellular granules 
of OC-stained Aβ peptides were observed in many large dystrophic neurites, both plaque-independent (D-F) as 
well as occasionally in the vicinity of plaques (G-I). A-C are generated as a sum of 20 confocal images within 
the dystrophic fibers, whereas D-I are images in a single confocal plane. Scale bars: 10µm. 
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independent swollen fibers were found to accumulate Aβ showing a weaker scattered staining 

of smaller granules throughout the lumen together with the accumulation of larger Aβ 

granules (Fig. 47D-F). The same pattern could also be found in some large dystrophic neurites 

in the vicinity of plaques (Fig. 47G-I). Abundant accumulation of intraneuronal Aβ inside cell 

bodies, especially in the cortex, was confirmed using the OC antibody, where Aβ granules 

were also observed in the axon (Fig. 48A) and large apical dendrite (Fig. 48B) projecting 

from the cells, indicating that Aβ can be transported into axons as well as dendrites. 

Furthermore, occasionally, axonal swellings accumulating Aβ could be found directly 

connected to cortical neurons accumulating abundant amounts of intraneuronal Aβ at the axon 

hillock (Fig. 48C, D). This might indicate that the intracellular Aβ accumulating in large 

plaque-independent dystrophic neurites originates from neurons accumulating intraneuronal 

Aβ in their cell bodies from where it is transported into the fibers. 

 

 

 

Fig. 48 Confocal images of intraneuronal Aβ accumulation in cortical neurons. Using confocal imaging in 
the cortex of 6-month-old YFP/APP/PS1KIhe mice, Aβ was found to accumulate inside cell bodies as well as in 
axons (A) and large apical dendrites (B) projecting from the cell body (OC antibody, red). Also, axonal 
swellings accumulating intracellular Aβ were found directly connected to cortical neurons accumulating 
abundant amounts of intraneuronal Aβ at the axon hillock (Aβ[N] antibody, red) (C, D: enlargement of C). 
Scale bars: 10µm (A, B, D), 40µm (C). 
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3.5 Interaction between α7 nAChR and Aβ 

Effect of an α7 nAChR agonist on Aβ pathology 

The Aβ pathology of 9-month-old APP/PS1ΔE9 mice chronically treated with saline, 10 

mg/kg SSR180711, or 10 mg/kg nicotine twice daily for 10 days was assed by quantification 

of 4G8, LOC, and Aβ[N] immunostainings (Fig. 49), where LOC is an OC-like antibody also 

Fig. 49 Aβ staining in saline, SSR180711, and nicotine treated APP/PS1ΔE9 mice.  Immunostaining 
of Aβ was performed using 4G8, LOC, and Aβ[N] antibodies and micrographs show 4G8 staining in the 
parietal cortex (A-C) and LOC (D-F) and Aβ[N] (G-I) staining in the hippocampal region of 9-month-
old APP/PS1ΔE9 mice chronically treated with saline, 10 mg/kg SSR180711, or 10 mg/kg nicotine 
twice daily for 10 days. Quantification showed no significant differences in 4G8 (J) and LOC (K) 
pathology, whereas a significant increase in Aβ[N] pathology (L) of the hippocampal region was 
observed in chronically nicotine treated animals as compared to control saline treated mice. In each 
group of treatment, 4-6 APP/PS1ΔE9 mice were analyzed using one-way ANOVA followed by 
Dunnett’s post-hoc test. Error bars represent mean  s.e.m. ***P < 0.001.
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recognizing Aβ fibrils and fibrillar oligomers (Kayed et al. 2007). The percentile areas 

covered by Aβ immunoreactivity were measured in the hippocampal formation as well as in 

the parietal cortex just above the hippocampal formation and showed no significant 

differences in either 4G8 (Fig. 49J) and LOC (Fig. 49K) pathology, however, a significant 

increase in Aβ[N] pathology (Fig. 49L) was observed in the hippocampal region of 

chronically nicotine treated APP/PS1ΔE9 mice as compared to control saline treated animals.  

To asses the effect of Aβ accumulation in vivo on the level of α7 nAChRs, α-BTX 

autoradiographic binding studies were carried out in the 9-month-old saline treated 

APP/PS1ΔE9 and wild-type mice. Measurements were performed in the medial prefrontal 

cortex, the parietal cortex (S1) as well as in the hippocampal region (Fig. 50A-H). No 

significant differences were observed in α-BTX binding level between the two genotypes in 

any of the quantified regions (Fig. 50 I, J).  

Fig. 50 α-BTX radioactive ligand binding in wild-type and APP/PS1ΔE9 mice. Autoradiograms show 
total α-BTX binding in coronal sections at the level of the frontal cortex and hippocampal region of 9-month-
old wild-type (A, C) and APP/PS1ΔE9 mice (B, D) together with their corresponding non-specific binding 
(NSB, E-H). Quantification in 5 wild-type and 6 APP/PS1ΔE9 mice showed no significant differences in 
specific α-BTX binding either in the medial prefrontal cortex (mPFC), the parietal cortex (S1), or the 
hippocampal formation (I), which were delineated as illustrated (J). Data was analyzed by unpaired Student’s 
t-tests in each region. 



Results  90

 

3.6 Functional integrity of immediate early gene responses 

following novelty stimulation 

The regulation of Arc and c-fos gene expression was measured 

by in situ hybridization in the mPFC, the parietal cortex (S1), 

CA1, CA3, and the upper DG (Fig. 51) following a single 

episode of novelty in APP/PS1ΔE9 as compared to wild-type 

mice. Examples of the quantified autoradiograms are given for 

the Arc gene expression analysis (Fig. 52). A single episode of 

novelty increased Arc gene expression about 60% in the mPFC 

(Fig. 53A) and 30% in the parietal cortex (Fig. 53D) of wild-type 

mice, where the corresponding percentile increases in the 

APP/PS1ΔE9 mice were 90% in the mPFC and 65% in the 

parietal cortex. The cortical inductions of Arc gene expression 

was thus higher in the transgenic mice than in the wild-type, 

however, basal Arc gene expression levels in home-cage control 

mice were found to be about 40% lower in APP/PS1ΔE9 mice as 

compared to wild-type mice in both the mPFC (Fig. 53A) and the 

Fig. 51 Quantified areas of 
the in situ hybridization 
analysis. Quantification was 
performed in the medial 
prefrontal cortex (mPFC), 
cortex (S1), CA1, CA3, and 
upper DG. 

Fig. 52 Arc in situ hybridization in wild-type and APP/PS1ΔE9 novelty stimulated and control mice.
Autoradiograms show the pattern of Arc mRNA hybridization using pseudo colors at the level of the prefrontal 
cortex (A-D) and the hippocampal region (E-H) in wild-type and APP/PS1ΔE9 mice in home-cage control (A, E 
and C, G, respectively) and novelty stimulated animals (B, F and D, H, respectively). To the right is found the 
14C-calibration scale used for quantification of the autoradiograms. 
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parietal cortex (Fig. 53D). The induced levels of Arc gene expression after novelty thus 

remained significant lower in the APP/PS1ΔE9 mice as compared to wild-type. In the 

hippocampal formation, percentile inductions of Arc gene expression following novelty were 

about 50%, 40%, and 35% in the CA1, CA3, and upper DG of wild-type mice as compared to 

70%, 20%, and 30% in APP/PS1ΔE9 mice (Fig. 53G, J, M), although the increase in the CA3 

of APP/PS1ΔE9 mice was only significant with a t-test (p=0.0043) and not with the one-way 

ANOVA Newman-Keuls post-hoc test. Only in the CA1 was the basal level of Arc gene 

expression found to be lower in APP/PS1ΔE9 than in wild-type mice (Fig. 53G, 26%), but 

induced levels of Arc gene expression were found to be lower in the APP/PS1ΔE9 mice as 

compared to the wild-type in all three measured regions of the hippocampal formation.  
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Fig. 53  Quantification of Arc, c-fos and synaptophysin expression. Mean (± SEM) levels of Arc, c-fos and 
synaptophysin expression is shown in the medial prefrontal cortex (mPFC, A, B, C) and parietal cortex (D, E, 
F) as well as in the CA1 (G, H, I), CA3 (J, K, L), and upper dentate gyrus (DG) (M, N, O) of the hippocampal 
formation. Data was analyzed by one-way ANOVA followed by Newman Keuls post-hoc test (n = 6). Error 
bars represent mean  s.e.m. *P<0.05; **P<0.01; ***P<0.001.
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novelty exposure and showed an

mRNA levels of 

ly stimulated the 

In comparison, only cortical deficits in the induction of c-fos gene expression following a 

single episode of novelty were detected in the APP/PS1ΔE9 mice compared to wild-type 

mice, whereas no differences in basal or induced c-fos expression levels were detected in 

either the CA1, CA3, or upper DG of the hippocampal formation (Fig. 53H, K, N). In the 

mPFC, APP/PS1ΔE9 mice completely failed to up-regulate c-fos expression following 

 80% higher basal expression level of c-fos as compared to 

wild-type mice (Fig. 53B). In the parietal cortex, the pattern 

of c-fos expression was similar to that of Arc with about 

70% induction of c-fos expression in wild-type mice and 

105% induction in APP/PS1ΔE9 mice following novelty 

exposure, but with a basal difference of 40% resulting in a 

25% lower induced c-fos expression level after novelty in 

APP/PS1ΔE9 as compared to wild-type mice (Fig. 53E). 

In contrast, no changes were observed in 

the house keeping gene synaptophysin, in any of the 

quantified regions (Fig. 53C, F, I, L, O).  

The five-min exposure to novelty strong

HPA axis in mice of both genotypes as a significant increase 

in plasma levels of corticosterone was found in novelty 

exposed wild-type (2.4 fold) as well as APP/PS1ΔE9 (3.8 

fold) mice as compared to home-cage controls (Fig. 54). 

 

Fig. 54 Plasma corticosterone in 
wild-type and APP/PS1ΔE9 
novelty stimulated and control 
mice. The level of corticosterone 
was measured in plasma of home-
cage control and novelty stimulated 
wild-type and APP/PS1ΔE9 mice, 
and showed an increased 
corticosterone level after novelty 
exposure in both genotypes. Data 
was analyzed by unpaired Student’s 
t-tests. Error bars represent mean  
s.e.m. **P<0.01. 



Discussion  94

 

4 Discussion 

4.1 Neuron loss in the cholinergic system of APP/PS1KI mice 

Numerous transgenic mouse models have been generated and investigated over the past years 

in order to amongst others model the cholinergic neuron loss of the basal forebrain found in 

AD patients. So far, most AD mouse models have shown either no change or even an increase 

in the number of forebrain cholinergic neurons (Boncristiano et al. 2002; Bronfman et al. 

2000; German et al. 2003; Hartmann et al. 2004; Jaffar et al. 2001; Perez et al. 2007). 

Exceptions are the TgCRND8 mouse model of AD showing a loss of Ch4 neurons (Bellucci 

et al. 2006), and the Ts65Dn mouse model of Down’s syndrome showing loss of Ch1/2 

neurons (Salehi et al. 2006; Seo and Isacson 2005). Regarding other cholinergic regions, a 

neuron loss in the pons complex was described using a semi-quantitative assessment (Zhang 

et al. 2005), and another recent study reported a minor loss of cholinergic interneurons in the 

motor cortex (Perez et al. 2007). However, cholinergic cortical interneurons are bipolar 

GABAergic interneurons co-expressing ChAT and cannot be found in all rodent species, thus 

they may not be regarded as part of the cholinergic system (Bhagwandin et al. 2006). None of 

the studies showing loss of cholinergic neurons mentioned whether or not the degenerating 

neurons accumulated intraneuronal Aβ, though the degenerating cholinergic forebrain neurons 

in the Ts65Dn mouse model of Down’s syndrome were shown to accumulate APP in early 

endosomes, leading to a blockage of neuronal growth factor transport (Salehi et al. 2006). 

The objectives of the present study were a quantitative assessment of cholinergic neuron 

numbers in the APP/PS1KI mouse model of AD as well as the potential impact of 

intraneuronal Aβ deposition and accumulation on neuronal survival. Therefore, areas showing 

different degrees of Aβ pathology were included in the quantitative analysis. The cholinergic 

forebrain complex consisting of Ch1-4 showed virtually no Aβ pathology with neither 

extracellular Aβ plaque deposition, nor intracellular accumulation of Aβ peptides. However, 

fibers from this region displayed swollen ChAT-positive dystrophic neurites surrounding Aβ 

plaques in the cortex and hippocampal formation as previously reported in other mouse 

models of AD (Aucoin et al. 2005; Bellucci et al. 2006; Bronfman et al. 2000; Hu et al. 2003; 

Luth et al. 2003; Wong et al. 1999). The Ch1/2 and Ch4 regions of the cholinergic forebrain 
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complex were quantified separately as they project to separate areas: the hippocampal 

formation and the cortex, respectively. No cholinergic neuron loss was found in either the 

Ch1/2 or Ch4 cholinergic nuclei. The Ch1/2 region of the forebrain complex projects to the 

hippocampal formation which in the present mouse model is known to develop a significant 

neuron loss of more than 50% in the CA1 at 10 months of age (Casas et al. 2004). This could 

have had additional influence on the survival of the Ch1/2 cholinergic neurons, as they have 

been shown to be highly dependent on external growth factor stimuli retrogradely transported 

from the hippocampus (Burke et al. 1994). However, growth factor stimuli could be provided 

by hippocampal cell types other than the degenerating CA1 neurons. In conclusion, the 

APP/PS1KI mouse model does not model the well-established loss of cholinergic forebrain 

neurons of the nucleus basalis of Meynert in AD patients (Arendt et al. 1988; Mufson et al. 

1989; Whitehouse et al. 1981). However, pathological alterations in transgenic mouse models 

must be considered to be determined by the expression pattern of the respective transgene. 

Thus as the APP transgene is not expressed in the forebrain complex of the APP/PS1KI 

mouse model, the lack of neuron loss in this region does not subtract from the valid use of this 

model to study the impact of Aβ in the regions of APP transgene expression. Accordingly, the 

motor nuclei Mo5 and 7N accumulating intracellular Aβ were found to exhibit significant loss 

of cholinergic neurons. This loss was most prominent in the Mo5 and was found to coincide 

with a more robust accumulation of various A species including Aβ1-x, fibrillar oligomers 

and fibrillar Aβ, aggregated Aβ, as well as AN3pE compared to the 7N. This finding is 

particularly interesting and corroborates our earlier reports of spinal cord axonal degeneration 

(Wirths et al. 2007) and severe motor pathology in aged APP/PS1KI mice that show severe 

deficits in motor performance, as analyzed by a series of motor tasks including the balance 

beam, string suspension test, vertical grip hanging task, and rotarod (Wirths et al. 2008b). 

These deficits occurred as early as at the age of 6 months and were preceded by a strong 

accumulation of various A peptides in motor neurons in the ventral horn of the spinal cord in 

APP/PS1KI mice (Wirths et al. 2007). In the light of the present results this accumulation of 

Apeptides could very well contribute to degeneration of the motor neurons in the spinal 

cord causing the detected motoric deficits.  
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The ChAT-positive cholinergic interneurons of 

the caudate putamen that did not accumulate 

intraneuronal Aβ, but were surrounded by 

numerous smaller Aβ plaques, also showed no 

loss of neurons. This adds further evidence to 

the assumption that extracellular plaques are not 

a substantial factor in mediating cell death 

(Wirths et al. 2004).  

In summary, Aβ plaque pathology leading to 

plaque associated dystrophic neurites was not 

sufficient to cause neuron loss in the cholinergic 

system of APP/PS1KI mice. However, 

accumulation of intracellular Aβ aggregates 

represented an early pathological alteration that 

strongly correlated with neuron death in brain 

stem motor nuclei (Fig. 55). 

Fig. 55 Summary of Aβ-mediated cell death in 
the cholinergic system. Extracellular plaque 
deposition leading to plaque associated dystrophic 
neurites was not sufficient to cause significant 
neuron loss in Ch1/2, Ch4, or caudate putamen 
(CPu). However, accumulation of intraneuronal
Aβ is considered an early pathological alteration 
that correlated with neuron loss in the Mo5 and 
7N.

4.2 Effect of intraneuronal Aβ versus plaques on 

neurodegeneration 

The previous study of Aβ pathology and neurodegeneration in the cholinergic system of the 

APP/PS1KI mouse model strongly supported the hypothesis of intracellular Aβ being a major 

trigger of neuron death in AD, and the present study was designed to more specifically 

investigate the toxic effect of intracellular Aβ versus extracellular Aβ plaques on neuronal 

survival. For this reason, the present study focused on two regions with distinct pathological 

differences regarding plaque development and intraneuronal Aβ accumulation. The frontal 

cortex was chosen for stereological quantification representing a region with massive and 

early accumulation of intraneuronal Aβ, with concomitant strong extracellular plaque 

pathology covering 12.1 % of the frontal cortex at the age of 12 months. To dissect the impact 

of intraneuronal A accumulation, the thalamus was chosen as a control region for 

stereological quantification representing a region with no accumulation of intraneuronal Aβ 

but harboring a comparable amount of extracellular plaques that covered 13.1% of the region 
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at the age of 12 months. Despite the massive amount of plaques, the thalamus was strikingly 

found to suffer no neuron loss in either 6- or 12-month-old APP/PS1KI mice as compared to 

PS1KI control mice. This is in line with the many negative results reporting no loss of 

neurons in many mouse models of AD accumulating various amounts of Aβ plaques 

(Duyckaerts et al. 2008; Games et al. 2006), and altogether suggests that plaques have no 

significant effect on neuronal survival. In contrast, a neuron loss of about 30 % was found in 

the frontal cortex already at 6 months of age, which did not significantly worsen from 6 to 12 

months. Importantly, the only evident pathological difference between the two regions in 

question was the massive transient accumulation of intraneuronal Aβ in the frontal cortex, 

which thus must be considered as a major trigger of the neuron loss observed in this region. 

Nevertheless, we can not completely rule out that thalamic neurons differ from cortical 

neurons in their cellular properties and may somehow be less vulnerable in general. Also, the 

recent finding of soluble oligomeric Aβ species being highly toxic could argue that the neuron 

loss in the frontal cortex could be caused by the presence of extracellular soluble Aβ that is, 

perhaps, not detected by our immunohistochemical protocol. However, in our opinion, it is 

unlikely that soluble extracellular Aβ oligomers are causing the observed neurotoxic effects as 

they should be present in all plaque-rich areas including the frontal cortex as well as the 

thalamus. In addition, mutant PS1 may induce toxic effects due to alterations in biological 

functions of PS1; however, as we have used PS1KI littermates as control mice, which showed 

unchanged neuron numbers during aging in the thalamus as well as frontal cortex, we 

conclude that the applied PS1-FAD mutations have no effect on neuronal survival. Only in 

the combination of the PS1-FAD mutations with transgenic APP, A-related 

neurodegeneration was observed.  

The transient nature of the intraneuronal accumulation of Aβ observed in the frontal cortex 

adds further support to the hypothesis of its toxicity. Thus significant neuron loss became 

evident at the age of 6 months; exactly the time point when a decreased intraneuronal A 

accumulation was evident. This corresponds to the possibility that the neurons accumulating 

intracellular Aβ at earlier time points are those lost at a time between the age of 2 and 6 

months and correlates with an earlier report claiming that neurons which accumulate A 

peptides undergo lysis to give rise to extracellular deposits (D'Andrea et al. 2001). However, 

the strong accumulation of plaques in the thalamus of the present mouse model which 

contains no neurons expressing the APP transgene suggests that plaques can be formed by Aβ 
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deposition from fibers. Thus other hypotheses exist for plaque formation, and compact 

plaques with high A40 load are suggested to have a different etiology than diffuse plaques 

with predominant A42 deposition, as in the current model. The transient nature of 

intraneuronal A accumulation preceding massive extracellular plaque pathology has been 

previously reported in a different APP/PS1 transgenic mouse model (Langui et al. 2004; 

Wirths et al. 2002). The relevance of this finding of an early transient accumulation of Aβ is 

supported from studies in Down’s syndrome (DS) patients who develop Aβ plaques and NFTs 

as found in AD patients. Intraneuronal Aβ42 was found to accumulate only in younger DS 

patients declining with the development and maturation of plaques (Gyure et al. 2001; Mori et 

al. 2002). In addition, another study claims that intraneuronal Aβ42 in human AD is only 

detectable in patients with low Braak stages and short disease duration and that the 

intraneuronal Aβ immunoreactivity is lost in patients with more progressive AD (Gouras et al. 

2000). This would correlate with the fact that neurons are not yet lost in pre-clinical AD 

(West et al. 2004) where intraneuronal accumulation of Aβ42 would still be detectable; 

however, with the transition to AD, the intraneuronal immunoreactivity will be strongly 

decreased or undetectable, due to the loss of the respective neurons. The possibility of a 

transient intraneuronal Aβ accumulation is of great importance for the difficulties of 

providing proof of the intracellular Aβ hypothesis in human AD tissue. As this most often 

represents end stage pathology where adverse neuron loss has already occurred, intraneuronal 

Aβ may no longer be present.  

Altogether, the present study strongly suggests that plaques have no effect on neuronal 

survival, but that a transient intraneuronal accumulation of Aβ coincides with neuron loss. 

These findings are in line with the modified β-amyloid cascade hypothesis, in which early 

intraneuronal Aβ accumulation represents the central pathological alteration upstream of 

extracellular plaque deposition and neuronal dysfunction (Wirths et al. 2004). 
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4.3 Intraneuronal Aβ staining in AD patients and transgenic AD 

mouse models 

Optimization for staining of intraneuronal Aβ in mouse models of AD 

FA is widely used to enhance immunostaining of plaques and has been shown to covalently 

modify Aβ by formate esterification of serine residues, leading to solubilization of the peptide 

(Alafuzoff et al. 2008; Klunk et al. 1994). The effect of FA on the immunohistochemical 

staining of intraneuronal Aβ is currently debated with reports of low or similar effects to heat, 

as well as FA having a counteracting effect on the heat-induced enhanced intraneuronal Aβ 

staining in human AD tissue (D'Andrea et al. 2003; Ohyagi et al. 2007). In addition, the  

exposure time for FA pretreatment varies greatly between studies; however, one study showed 

no significant difference in the intensity of the amyloid plaque detection between 10 min and 

12 hours of FA pretreatment in AD tissue (D'Andrea et al. 2003). Corroborating this result, 

we did not find any significant difference between 3 and 10 min FA treatment in the 

percentile area of intraneuronal Aβ or plaque staining in the CA1 and thalamus of APP/PS1KI 

mice, respectively. The effect of a short FA exposure is also in line with other studies in mice 

where intraneuronal Aβ could be detected in paraffin embedded sections using only 5 min FA 

incubation (Knobloch et al. 2007; Van Broeck et al. 2008).  

Regarding the effects of heat versus FA on intraneuronal Aβ detection, FA pretreatment was 

found to be essential for the staining of Aβ1-x peptides in the CA1 of APP/PS1KI mice, 

whereas no or heat antigen retrieval alone disclosed no or very little detection of intraneuronal 

Aβ1-x. Yet, the combination of FA and heat seemed to even further intensify the staining of 

intraneuronal Aβ1-x, although no significant increase in the stained area was observed 

compared to FA pretreatment alone. Regarding the detection of plaques, heat and FA were 

found to have an equal enhancing effect on the extracellular staining of Aβ plaques in the 

thalamus of APP/PS1KI mice. This finding of FA to enhance staining of plaques is in general 

agreement with the literature (Alafuzoff et al. 2008; Kitamoto et al. 1987), however, the 

equally enhancing effect of heat pretreatment does not seem to have been systematically 

investigated in AD tissue. The enhancing effect of FA on intraneuronal Aβ staining in mouse 

tissue is in contrast to the observations in human AD tissue reporting FA to have no effect or 
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even to counteract the heat-inducing effect on staining of intracellular Aβ (D'Andrea et al. 

2003; Ohyagi et al. 2007).  

To further compare the effect of heat and FA pretreatment on the detection of intraneuronal 

Aβ, the three protocols using heat, 3 min FA exposure, or their combination were compared to 

no pretreatment in three additional mouse models. Corroborating the observations in 

APP/PS1KI mice, 3 min FA was confirmed to have a markedly increasing effect on the 

staining of intraneuronal Aβ1-x peptides revealing an intense staining of large granules at the 

axon hillock of cortical neurons in APP, APP/PS1, and 5xFAD mice, whereas heat 

pretreatment was found to have a minor increasing effect on intracellular Aβ staining. Yet, the 

combination of heat and FA pretreatment showed the highest staining intensity. The same 

protocols were applied for immunostaining with the 4G8 antibody, recognizing the central 

epitope Aβ17-24. The 4G8 is a highly sensitive antibody used in routine staining of Aβ in AD 

tissue (Alafuzoff et al. 2008), and was found not to cross-react with full length APP at high 

dilutions (1:10.000) using a combined heat and FA protocol in the APP/PS1KI mouse model 

(Christensen et al. 2008). With the application of FA, the 4G8 antibody revealed the same 

intense granular staining pattern as the Aβ[N] antibody, however, surprisingly, heat 

pretreatment alone disclosed an obvious homogenous staining pattern of smaller granules 

dispersed throughout the cytoplasm in all four mouse models investigated that decreased upon 

the combination with FA. When the two protocols of heat and heat + FA were compared in a 

fluorescent double labeling of APP and 4G8, the fainter heat-induced intraneuronal Aβ 

staining turned out to largely co-localize with APP, in contrast to the FA-induced staining of 

larger granules, suggesting that heat pretreatment alone increases the cross-reaction of the 

4G8 antibody to APP. Alternatively, heat and FA could induce the staining of Aβ peptides of 

different aggregation states corresponding to a suggestion that two unique forms of Aβ exist 

as a function of their sensitivity to FA (D'Andrea et al. 2003). These heat-induced 4G8 stained 

Aβ peptides would then be co-localized with APP in intracellular compartments and their 

decreased reactivity by FA corroborates a previous result of a counteracting effect of FA on 

heat enhanced Aβ staining in human AD tissue (Ohyagi et al. 2007). 

To investigate the aggregation state of the intraneuronal Aβ revealed by FA pretreatment, the 

immunohistochemical stainings were compared to a Thioflavin S staining labeling aggregated 

Aβ peptides (LeVine 1993). In all four mouse models, the Thioflavin S pattern was found to 

correspond to the intense granular intraneuronal Aβ staining disclosed by FA or FA together 
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with heat using 4G8 as well as Aβ[N] antibodies, suggesting that the intraneuronal Aβ 

peptides induced by FA are highly aggregated in mouse models of AD. That FA reveals 

aggregated Aβ is further supported by the observation that the FA worked best in the three 

mouse models with PS1 mutations, and to a lesser extend in the APP single transgenic mice 

not harboring the PS1 mutations that are known to increase the production of the more 

aggregation prone Aβ42 peptides (Guo et al. 1999; Jankowsky et al. 2004).  

Our optimization of the staining protocol with regard to FA and heat shows that the two 

antigen retrieval methods may disclose separate species of Aβ peptides with FA, especially 

detecting aggregated Aβ, leading to the assumption that in mouse models of AD, FA is an 

essential pretreatment for immunohistochemical detection of intraneuronal aggregated Aβ 

peptides. 

Staining of intraneuronal Aβ in brain tissue of AD patients 

The four protocols qualitatively investigated in the mouse models were applied to human AD 

tissue using Aβ[N] antibodies specific to Aβ1-x. The optimization was performed in paraffin 

embedded hippocampal sections from sporadic as well as Swedish and Arctic FAD brain 

tissue since the familial cases were considered more likely to show similarities to the mouse 

models and thus accumulate intraneuronal Aβ. Also, the Arctic mutation has been shown to 

favor intracellular Aβ production in cultured cells and mouse models (Sahlin et al. 2007). 

Some intraneuronal Aβ1-x staining was evident even without any pretreatment, but heat 

dramatically increased the intraneuronal staining of smaller granules throughout the 

cytoplasm concentrating around the nucleus in all three types of AD hippocampal tissues, 

especially in the CA4 region. In contrast, FA pretreatment did not increase the staining of 

intraneuronal Aβ1-x as compared to no antigen retrieval and even counteracted the enhancing 

effect of heat as the combination of heat and FA only slightly increased the staining of Aβ1-x 

as compared to no pretreatment with much less inducing effect than heat alone. The 

counteracting effect of FA on the heat-induced staining of intraneuronal Aβ1-x peptides 

corroborates one other study using an Aβ42(43) specific antibody (BC-05) and an autoclave 

heating protocol reporting a counteracting effect of FA on heat-induced Aβ42 staining 

(Ohyagi et al. 2007). These findings are in contrast to the observations in the mouse models 

where FA clearly enhanced the staining of intraneuronal Aβ peptides and heat had no or only 

a minor increasing effect. The difference in the effect of heat and FA between mouse and 
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human tissue could be explained by differences in Aβ species accumulating within the cells. 

In the AD mouse models, much of the intraneuronal Aβ induced by FA pretreatment seemed 

to be aggregated peptides. Possibly, the intraneuronal Aβ1-x in AD tissue could be mostly 

soluble oligomeric species that may be enhanced by heat but counteracted by FA. In 

agreement, low-n oligomeric Aβ have been detected inside primary human neurons (Walsh et 

al. 2000). The presence of soluble oligomeric Aβ inside neurons would add further 

importance to the impact of intraneuronal Aβ since two studies have so far indicated that 

soluble Aβ may be the best correlate of cognitive decline in AD (McLean et al. 1999; Naslund 

et al. 2000). 

 The presence of intraneuronal Aβ in sporadic AD tissue was confirmed by staining with the 

polyclonal OC antibody recognizing fibrillar Aβ oligomers and Aβ fibrils (Kayed et al. 2007). 

The OC antibody disclosed an intense intraneuronal Aβ staining with heat as well as with 

additional FA pretreatment that had an intensifying effect on the intraneuronal OC staining. 

This is in contrast to the counteracting effect of FA on the detection of Aβ1-x, but is in line 

with the suggestion that FA enhances the staining of aggregated Aβ fibrils that are recognized 

by the OC antibody. The staining disclosed by heat could be owing to detection of oligomeric 

Aβ fibrils that are also recognized by the OC antibody and would thus agree with two 

previous studies stating that Aβ oligomerization starts within neurons (Takahashi et al. 2004; 

Walsh et al. 2000). 

It was attempted to further confirm the presence of intraneuronal Aβ using the 4G8 antibody 

recognizing the central epitope Aβ17-24, as this is a commercially available widely used Aβ 

antibody. However, the 4G8 antibody produced an intracellular staining pattern with a large 

granular cap-like staining adjacent to the nucleus that was completely different from the 

staining patterns of the Aβ[N] and OC antibodies. This 4G8 staining proved to be caused by a 

cross-reaction with lipofuscin as Sudan Black B pretreatment abolished all intraneuronal 

fluorescence detected with the 4G8 antibody as well as autofluorescence from the UV and red 

channel. This observation corroborates another study suggesting cross-reaction between 

lipofuscin and several monoclonal antibodies toward the Aβ17-24 sequence, including the 4G8 

antibody (Bancher et al. 1989). Despite this report of cross-reactivity to lipofuscin, the 4G8 

antibody has been repeatedly applied to show intraneuronal Aβ in AD disclosing this large 

granular cap-like staining adjacent to the nucleus characteristic of lipofuscin (LaFerla et al. 

1997; Ohyagi et al. 2007; Wegiel et al. 2007). In contrast, the Aβ[N] antibody disclosed a 
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highly specific staining pattern of small granules throughout the cytoplasm that remained 

following Sudan Black B pretreatment, which thereby is in good agreement with a previous 

study showing that lipofuscin and Aβ peptides do not co-localize inside neurons (D'Andrea et 

al. 2002a).  

The mechanism whereby intraneuronal Aβ could mediate toxicity is yet unclear. Most 

evidence points to the accumulation of Aβ in the endocytic pathway where it has been 

reported to accumulate in multi-vesicular bodies (MVB) (Takahashi et al. 2002) and impair 

their sorting (Almeida et al. 2006). In agreement, we observed a staining pattern of smaller 

granules dispersed throughout the cytoplasm, but often concentrated around the nucleus with 

both the Aβ[N] and OC antibodies. This corresponds to earlier observations using an Aβ42 

specific antibody (D'Andrea et al. 2002a) and cell biology studies locating the intracellular 

generation of Aβ from the endoplasmic reticulum to the trans-Golgi network and the 

endosomal-lysosomal system (Cook et al. 1997; Perez et al. 1999; Rajendran et al. 2007; 

Selkoe 1998; Xu et al. 1997). Accordingly, abnormalities in the endocytic pathway have been 

reported to precede Aβ plaque deposition in sporadic AD as well as Down´s syndrome 

patients (Cataldo et al. 2000), indicating that intraneuronal Aβ may be a mediator of early 

pathological changes. 

Whether intraneuronal Aβ origins exclusively from intraneuronal sources or if it can in 

addition be internalized from external sources is not yet clarified. Yet, much evidence support 

the possibility of reuptake of Aβ peptides into cells by endocytosis. Thus members of the 

lipoprotein receptor (LDLR) family (Bu et al. 2006), α7 nicotinic receptors (Nagele et al. 

2002), as well as scavenger receptor for advanced glycation end products (RAGE) (Deane et 

al. 2003; Sasaki et al. 2001; Yan et al. 1996) have all been reported to interact with Aβ and 

lead to internalization of extracellular Aβ peptides. In particular, RAGE-Aβ complexes have 

been shown to be internalized and co-localize with the lysosomal pathway in astrocytes in AD 

brains (Sasaki et al. 2001), which is supported by our observation of astrocytes accumulating 

high amounts of intraneuronal Aβ granules. The LDLR-related protein (LRP) is a member of 

the LDLR family and functions as an ApoE receptor. LRP has been shown to facilitate rapid 

endocytosis of APP thereby promoting APP processing and thus Aβ generation. In addition to 

the effect on APP trafficking, LRP-induced rapid endocytosis also facilitates cellular uptake 

of Aβ peptides from the extracellular space, either directly through binding to Aβ or indirectly 

through interaction with ligands such as ApoE (Bu et al. 2006). Accordingly, knock out of 
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APOE in PDAPP transgenic mice reduced the accumulation of intracellular Aβ (Zerbinatti et 

al. 2006). With these implications for a role of ApoE in the accumulation of intraneuronal Aβ, 

we correlated the intensity of the intraneuronal Aβ1-x staining in the hippocampal regions of 

20 AD patients and 10 controls to ApoE genotype and found a highly significant correlation 

between the intensity of intraneuronal Aβ1-x staining and the presence of at least one ApoE4 

allele (P=0.002). This correlation nicely concurs with the observation of ApoE4 being a major 

risk factor of sporadic AD (Ashford 2004; Raber et al. 2004) and further supports an 

important role of intraneuronal Aβ in the pathogenesis of AD. 

 A possible criticism of the importance of intraneuronal Aβ is its presence in AD patients as 

well as in non-demented controls, which could be observed in the present study and is also 

reported by others (D'Andrea et al. 2002a; D'Andrea et al. 2002b; D'Andrea et al. 2001; 

Gouras et al. 2000; Wegiel et al. 2007). However, this is to be expected since plaques are 

likewise found in non-demented controls (Aizenstein et al. 2008) and the pools of intracellular 

and extracellular Aβ most likely have a common origin. What needs to be investigated is 

whether there are differences in the Aβ species accumulating within neurons of AD patients 

versus non-demented controls. Furthermore, an obstacle in immunopathological studies is that 

we are most often dealing with end-stage pathology where many neurons are already lost and 

early pathological mechanisms are not easily identified. Thus a transient nature of 

intraneuronal Aβ accumulation preceding massive extracellular plaque pathology has 

previously been reported in transgenic mouse models (Christensen et al. 2008; Langui et al. 

2004; Wirths et al. 2002), as well as in Down’s syndrome (DS) patients (Gyure et al. 2001; 

Mori et al. 2002), and intraneuronal Aβ42 in human AD has been claimed to be most 

detectable in patients with low Braak stages and short disease duration (Gouras et al. 2000). It 

is therefore very likely that the accumulation of intraneuronal Aβ may be much more 

prominent in MCI patients in which AD symptoms only begin to emerge and neurons have 

not yet been lost (West et al. 2004). 

The present study is a thorough report of intraneuronal N-terminal Aβ species in human AD 

which have so far believed not to accumulate inside neurons (Chui et al. 2001; Mori et al. 

2002) and confirmed the presence of intraneuronal Aβ in human AD by staining with the OC 

antibody recognizing fibrillar oligomers and fibrillar Aβ. Our optimization of the staining 

protocol regarding FA and heat shows that heat is essential for the detection of intraneuronal 

Aβ1-x peptides in human AD tissue and is counteracted by FA. However, the effects of heat 
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and FA seem to depend on the specificity of the antibody applied since intraneuronal staining 

with the OC antibody was increased and not counteracted by FA, probably owing to the 

observation from AD mouse models that FA enhances the staining of aggregated Aβ peptides. 

In addition, a highly significant correlation was identified between the accumulation of 

intraneuronal Aβ1-x peptides and ApoE4 genotype, supporting the view that the ApoE4 

isoform is a major risk factor of AD. 

4.4 Effect of Aβ on axonopathy in transgenic AD mouse models 

Axonal deficits and impairment of motor performance are common pathological alterations in 

mouse models expressing different isoforms of human mutant tau protein (reviewed in 

(Wirths and Bayer 2008)). However, in recent years, similar phenotypes have been reported 

for AD mouse models based on APP overexpression (Stokin et al. 2005; Wirths et al. 2007; 

Wirths et al. 2006), and disturbances of axonal transport rates have been reported in APP-

based transgenic mouse models of Down syndrome (Salehi et al. 2003) and AD (Smith et al. 

2007). Accordingly, APP has been demonstrated to undergo fast axonal transport (Koo et al. 

1990), presumably by a kinesin-I-mediated mechanism (Kamal et al. 2000). In addition, the β-

site cleaving enzyme (BACE) and PS1 have been shown to be associated with APP-resident 

membranous cargos, implying that Aβ can be produced directly in the axons (Kamal et al. 

2001), although this finding has recently been questioned (Lazarov et al. 2005). Accordingly, 

APP, BACE and PS1 were found to co-accumulate in swollen axons following traumatic 

brain injury (Chen et al. 2004). 

A recent report claiming that axonopathies in APP-transgenic mouse models entirely depend 

on APP overexpression and that co-expression of FAD-linked PS1 mutants and related 

increased Aβ levels suppress axonal defects (Stokin et al. 2008), prompted us to analyze 

axonal degeneration in our APP/PS1KIho mouse model, as well as in APP single transgenic 

and APP/PS1KIhe mice, all harboring equal APP transgene expression. Previous work in the 

APP/PS1KIho mouse model has demonstrated a severe age-dependent axonal degeneration 

phenotype, which is characterized by the accumulation of large axonal swellings. These 

swellings were most abundant in fiber-rich regions of the central nervous system such as 

corpus callosum, pons, medulla, and spinal cord. We demonstrated a significant increase in 

these swellings between 6 and 10 months of age, which only marginally worsened at the age 
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of 14 months (Wirths et al. 2007). The mice used in the present study are based on Thy1-

driven overexpression of APP751 with the Swedish and London mutations and carry either no 

(APP), one (APP/PS1KIhe) or two (APP/PS1KIho) mutant murine PS1 alleles under the 

control of the endogenous PS1 promoter. Using this strategy, we ensured that the APP 

expression level did not differ between the different mouse lines, which was confirmed by 

immunostaining using APP antibodies and western-blotting. However, the amount of Aβ 

peptides differs significantly between the analyzed mouse lines, leading to dramatic increases 

in the Aβ load comprising plaques as well as intraneuronal Aβ depending on the mutant 

PS1KI gene dosage. It has been previously shown that expression of mutant PS1 allele 

together with an APP transgene does not only lead to a higher overall Aβ load, but in addition 

causes a significant rise in the Aβ42/Aβ40-total ratio and an earlier plaque onset (6m in APP 

versus 2 m in APP/PS1KIho mice) (Casas et al. 2004).  

To quantify axonal defects we applied antibodies toward phosphorylated APP as well as NF-

200 as markers of axonal degeneration. Upon quantification of pAPP as well as NF-200-

positive plaque-independent axonal swellings in the pons and spinal cord, significant 

increases in the numbers of dystrophic spheroids were detected in APP/PS1KIhe mice 

compared to APP single transgenic mice, which were almost devoid of any axonal swellings 

in the analyzed regions. When comparing APP/PS1KIhe with APP/PS1KIho, a further 2 – 4 

times increase of spheroids was detected in both pons and spinal cord. This result is in 

apparent contradiction to the recently published finding that axonal defects were unchanged 

or even suppressed in mice expressing FAD mutant PS1 in combination with FAD mutant 

APP (Stokin et al. 2008). One major difference between the APP/PS1 double-transgenic mice 

used in this report and our mouse model is the fact that the endogenous murine PS1 gene was 

still present in the APP/PS1 transgenic mice, whereas it has been sequentially replaced by the 

FAD mutant form in our APP/PS1KI model. It has been hypothesized that kinesin-based 

axonal transport is compromised by mutations in PS1 via interaction with glycogen synthase 

kinase 3β (GSK3β) and it has been recently reported that the relative levels of GSK3β activity 

were increased in the presence of mutant PS1, as well as in the absence of wildtype PS1. This 

results in increased phosphorylation of kinesin-light chain and reduced anterograde transport 

(Pigino et al. 2003). In addition, anterograde fast axonal transport of APP and Trk receptors is 

impaired in the sciatic nerve of mice expressing FAD-linked PS1 mutations, resulting in an 

increased phosphorylation of tau and neurofilaments in the spinal cord (Lazarov et al. 2007). 
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No fiber pathology was detected in PS1KI mice, however, it is possible that disturbances in 

axonal transport may become evident upon additional mutant APP overexpression thereby 

contributing to the observed fiber disturbances in the APP/PS1KI mice. 

Ubiquitinated proteins were found to accumulate in the fibers of APP/PS1KIhe and 

APP/PS1KIho mice in higher levels than in APP single transgenic mice, indicating an overload 

of the protein degrading system in the transgenic mice carrying the PS1KI allele. This could 

be explained by the dramatically increased accumulation of Aβ peptides in these two models 

resulting in general accumulation of ubiquitinated proteins in the fibers that could contribute 

to the observed dystrophic axons. Furthermore, Aβ peptides were found to accumulate in the 

axonal swellings being plaque-independent as well as in the vicinity of plaques, raising the 

possibility that these swellings precede and contribute to the formation of extracellular 

plaques. Whether Aβ peptides are generated and released at the site of axonal swellings is 

currently unclear, however, Aβ-positive granules were also detected in the axons and apical 

dendrites of cortical neurons, indicating that Aβ can be transported within fibers. It has been 

hypothesized that if Aβ generation occurs at the sites of axonal blockage, amyloid deposition 

might be due to focally increased Aβ secretion or lysis of axonal spheroids that were enriched 

in Aβ peptides (Stokin et al. 2005). Our finding of Aβ transport and accumulation in fibers 

together with diffuse extracellular Aβ deposits in the close vicinity of axonal spheroids adds 

further evidence to the hypothesis that Aβ can be released from fiber swellings.  

4.5 Interaction between α7 nAChR and Aβ 

Much evidence supports a role of the α7 nAChR in the pathological mechanism of AD. Thus 

a direct interaction between the α7 nAChR and Aβ42 has been reported stating that Aβ42 

displaces α-BTX binding specific for α7nAChRs (Wang et al. 2000), although this has 

recently been questioned by a study reporting that Aβ does not bind to α7nAChRs, but to 

lipids within the plasma membrane (Small et al. 2007). However, Aβ42 has been shown to 

specifically block the response evoked by ACh or nicotine of α7 nAChRs in cell culture and 

hippocampal neurons (Liu et al. 2001; Pettit et al. 2001; Spencer et al. 2006), and α7 nAChR 

activation protected against Aβ-induced neurotoxicity (Kihara et al. 1997). In AD post-

mortem studies, reduction of the α7 subunit have been reported in the cortex and hippocampal 

formation (Guan et al. 2000; Teaktong et al. 2004), and α7 nAChRs have shown co-localise as 
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well as co-immunoprecipitate with Aβ42 in AD hippocampal neurons (Wang et al. 2000). In 

vivo, smoking was found to have a lowering effect on Aβ in the human brain (Hellstrom-

Lindahl et al. 2004b), which was supported by a study in APPswe mice where 10 days of 

treatment with nicotine reduced insoluble Aβ40 and Aβ42 levels by 80% in the mouse brain 

tissue (Hellstrom-Lindahl et al. 2004a). This prompted us to study whether this lowering 

effect of nicotine on Aβ levels could be mediated through the α7 nAChR and we thus 

chronically treated 9-month-old APP/PS1ΔE9 mice with nicotine as a positive control, saline 

as a negative control, and the α7 nAChR agonist SSR180711 twice daily for 10 days. 

Surprisingly, no changes in 4G8 and LOC immunohistochemical pathology were found in the 

hippocampal formation or parietal cortex of the nicotine treated animals that even showed an 

increase in Aβ[N] pathology of the hippocampal formation. The mice treated with α7 nAChR 

agonist showed no difference in Aβ pathology with any of the three applied antibodies, and 

we were thus not able to replicate the findings of nicotine to lower Aβ levels using the same 

dosing scheme as in the study of APPswe mice (Hellstrom-Lindahl et al. 2004a). Two main 

differences could potentially explain the lack of effect from the administration of nicotine in 

our studies versus its beneficial effect in the previous study in APPswe mice. First, our mouse 

model contains a familial PS1 mutation in addition to the Swedish mutations in APP and thus 

if any effect of nicotine should be mediate through interaction with PS1 they could be 

prevented by PS1 mutations as is observed for some γ-secretase inhibitors that only show 

effects on wild-type PS1 activity (Czirr et al. 2007). However, to the best of our knowledge, 

no studies have suggested such an interaction. In AD, it has been mainly been suggested that 

the effects of nicotine are mediated through a direct interaction of the α7 nAChR with Aβ. 

Secondly, we evaluated the drug effects by quantification of immunostainings applying Aβ 

specific antibodies, whereas the study in the APPswe mice measured Aβ levels in brain 

homogenates by ELISAs. Although our method may only be semi-quantitative, the study in 

the APPswe mice reported an 80% lowering effect of nicotine on insoluble Aβ40 as well as 

Aβ42 levels, and such a dramatic effect should also have been evident by our method of 

quantification, especially with the application of the LOC antibody recognizing fibrillar Aβ 

oligomers and Aβ fibrils that should be part of the insoluble Aβ species (Kayed et al. 2007).  

If Aβ interacts with the α7 nAChR it could mediate part of its toxic effect by inducing 

desensitization of the α7 nAChR, and we therefore measured the binding level of α7 nAChRs 

in APP/PS1ΔE9 mice as compared to wild-type C57Bl6 mice. No significant differences 



Discussion  109

 

could be detected in the mPFC, the parietal cortex, or the hippocampal formation; although a 

weak tendency towards lower α7 nAChR levels seemed to be present, especially in the 

hippocampal formation, which might become significant with the inclusion of more animals.  

In summary, our studies of a potential interaction between the α7 nAChR and Aβ in 

APP/PS1ΔE9 mice were not sufficient to support a role of the α7 nAChR in AD. However, a 

recent study showed that deletion of the α7 nAChR gene in an AD mouse model actually 

improved cognitive deficits and synaptic pathology without any evident effect on 4G8-

reactive Aβ immunoreactivity (Dziewczapolski et al. 2009). Interestingly, this is consistent 

with the intraneuronal Aβ hypothesis of AD since the α7 nAChR has been reported to mediate 

endocytosis of Aβ42 facilitating intraneuronal accumulation of Aβ and deletion of the α7 

nAChR may thus decrease the level of intraneuronal Aβ peptides (Nagele et al. 2002). It is 

therefore possible that α7 nAChR antagonists rather than agonists may be beneficial in AD 

patients.  

4.6 Functional integrity of immediate early gene responses 

following novelty stimulation 

It is well known that the expression levels of Arc together with other IEGs are significantly 

up-regulated in response to various stimuli. Seizure activity upregulates Arc mRNA levels in 

the hippocampal region and parietal cortex (Guzowski et al. 1999). Arousal stimuli such as 

acute restraint stress up-regulate Arc mRNA levels in the mPFC but not in the hippocampal 

formation or parietal cortex (Guzowski et al. 1999; Mikkelsen and Larsen 2006). Novel 

environment, a further emotional stressor, induces Arc and c-fos gene expression in the 

parietal cortex and the hippocampus as well as in forebrain regions including the mPFC and 

orbitofrontal cortex, and one study even saw an up-regulation in the caudate nucleus (Klebaur 

et al. 2002; Ons et al. 2004; Pinaud et al. 2001). However, there seem to be some anatomical 

specificity to the regulation of IEG mRNA where seizure activity upregulates Arc expression 

in neurons of the hippocampal formation or parietal cortex, whereas the pure stress stimuli up-

regulate Arc mRNA in the forebrain region, but not in the hippocampal region. This regional 

specificity could be explained by the effect of corticosterone on cognitive function. Thus two 

systems within memory generation have received a lot of attention: The hippocampal system 

and the caudate nucleus system each depending on the surrounding cortices (Packard and 
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Knowlton 2002). The hippocampal memory system is thought to be predominately 

cognitively driven depending on spatial cues, whereas the caudate nucleus memory system is 

thought to be driven more by instinct depending on single cues and is termed “stimulus-

response” or “habit” memory. Corticosterone is known to influence memory through 

corticosteroid receptors located in the hippocampal region as well as in the amygdala, and it 

has been shown in humans as well as mice that increased stress levels leading to increased 

blood corticosterone levels do not decrease the learning ability in total. However, they 

facilitate stimuli-response learning strategies at the expense of hippocampal-dependent 

cognitive learning strategies (Kim et al. 2001; Schwabe et al. 2007). Thus an increased 

corticosterone level seems to work as a switch between the hippocampal and the caudate 

nucleus based memory systems, which may explain why Arc mRNA is up-regulated only in 

mPFC and not in hippocampus or surrounding cortices after pure stress stimuli. The induction 

of Arc gene expression in the mPFC by acute stressors emphasizes that the mPFC is a central 

component of stress perception and the region is accordingly considered a key component of 

the neuronal circuitry mediating responses to stressful situations and contributes to the 

interplay between emotions and memory (Roozendaal 2002). The novelty paradigm is only a 

light stressor and has in addition the element of exploration; however, we found considerable 

increased plasma corticosterone levels in both genotypes and accordingly found the highest 

induction of Arc and c-fos gene expression following novelty in the mPFC providing input to 

the caudate nucleus. Relating to the genotypes, we found a difference in basal levels of Arc 

gene expression being most pronounced in the cortices (40%). The APP/PS1ΔE9 mice were 

generally capable of increasing the Arc gene expression in response to a novel environment, 

in some regions even with higher percentages; however, the absolute Arc mRNA level never 

reached the same level as in the wild-type mice. This could mean that a lesser number of 

neurons is activated in the APP/PS1ΔE9 mice or that their neurons are not activated as much 

as in the wild-type mice. Basal differences and deficits in c-fos expression and induction 

following novelty were only identified in the cortical regions with the parietal cortex showing 

the same pattern as for Arc mRNA, but with dramatically increased basal c-fos mRNA levels 

in the mPFC of APP/PS1ΔE9 mice and an inability to up-regulate c-fos expression in this 

region upon a novel environment. As no effect of novelty or genotype was observed in the 

house keeping gene synaptophysin, the effects on Arc and c-fos gene expression are not 
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artifacts of the plaque deposition and no neuron loss has been observed in any of the 

investigated regions of this AD mouse model (Oh et al. 2008).  

Three other studies have previously investigated the effect of novelty on the expression of 

immediate early genes in AD mouse models. One was conducted in another APP + PS1 

trangenic model and reported reduced basal expression levels of Arc, Nur 77, and Zif 268 in 

6-month-old APP + PS1 transgenic mice by qRT-PCR in hippocampus, posterior cortex, and 

caudate nucleus. Following 5 min environmental novelty in 18-month-old mice, they 

observed a decreased percentile induction of Arc and Nur77 expression in the hippocampal 

region by qRT-PCR in transgenic mice compared to littermate controls (Dickey et al. 2004). 

The finding of decreased basal cortical EIG expression levels is in agreement with our 

observations; however, we only found a minor decrease in basal expression of Arc in the CA1 

of the hippocampal formation in contrast to no difference in the CA3 or upper DG. No basal 

hippocampal differences were found in c-fos expression of the hippocampal formation. 

Likewise, the blunted induction of Arc gene expression following novelty observed by qRT-

PCR agrees partly with our findings as we observe a reduced percentile reduction of Arc gene 

expression in the CA3, however, in the CA1 and upper DG, the percentile inductions are 

equal or even higher in the transgenic animals, but reach a lower absolute level of Arc gene 

expression due to reduced basal expressions. However, in relation to c-fos, we did not observe 

any deficits in the functional response to novel environment in the hippocampal formation. 

Another study investigated EIG gene expression following novelty in hAPPFAD mice carrying 

the Swedish and Indiana FAD mutations using in situ hybridization and 

immunohistochemistry in the neocortex, CA1, and granular layer of the DG. They found 

decreased basal Arc and c-fos expression as well as protein accumulation only in the DG , 

which was also the only investigated region to show a complete abolishment of induced Arc 

and c-fos gene expression after novelty in the transgenic mice (Palop et al. 2005). We did not 

observe the same reduced basal expression levels of Arc and c-fos in the DG, and only found 

a minor decrease in the induction of Arc expression following novelty in this region, whereas 

no deficits were found in c-fos induction. Generally, we observe much greater deficits in the 

functional response of Arc and c-fos expression following novelty in cortical regions as 

compared to the hippocampal formation, which seems to have been the greater focus of earlier 

studies. A very recent study investigated the impact of different amyloid pathologies in three 

AD mouse models including an APP/PS1 model overexpressing APP carrying the Swedish 
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mutations together with hPS1 carrying the L166P mutation, the APP23 model harboring the 

Swedish double mutation, and APPDutch mice (Wegenast-Braun et al. 2009). By in situ 

hybridization as well as stereological quantification of Arc mRNA positive cells, this study 

reports decreased percentile inductions of Arc mRNA in the neocortex and granular cell layer 

of the DG following novelty in all three mouse models at old age compared to age-matched 

non-transgenic mice, which is in general agreement with our results. Interestingly, this study 

also found decreased induction of Arc mRNA before plaque deposition in young APP23 and 

APPDutch mice, but not in young APP/PS1 mice, correlating with only APP23 and 

APPDutch mice accumulating intraneuronal Aβ at young age. However, as the accumulation 

of intraneuronal Aβ was transient and APP/PS1 mice also develop deficits in Arc mRNA 

induction with advanced age, intraneuronal Aβ, plaques, as well as vascular CAA pathology 

were suggested to cause separate deficits in the induction of Arc mRNA expression 

(Wegenast-Braun et al. 2009). Not much intraneuronal Aβ could be detected in our 9-month-

old APP/PS1ΔE9 mice; however, they accumulated a vast amount of Aβ plaques as well as 

vascular CAA depositions, which, according to the previous results, are then both likely to 

contribute to the observed deficits.  

The present data reveal a suppressing effect of Aβ on basal and novelty induced neuronal 

activity in APP/PS1ΔE9 mice being most pronounced in cortical regions, where the mPFC 

seems to be especially affected showing an increased basal level of c-fos expression that did 

not increase upon novelty stimulation. This finding is in line with data from AD patients 

where increased protein levels of c-fos, c-jun, and Arc have been reported (Engidawork et al. 

2001; Marcus et al. 1998). It is thus possible that a decreased functional response in IEG 

systems could in part mediate cognitive deficits relating to environmental encoding as well as 

the interplay between emotions and memory in AD patients. 
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5 Summary and Conclusions 

The present thesis investigated the role of intraneuronal Aβ in pathological alterations in AD 

on a neuroanatomical level by the application of methods such as immunohistochemistry, 

image analysis, stereological quantification, as well as in situ hybridization and radioactive 

ligand binding. In two independent studies, the accumulation of intraneuronal Aβ was found 

to correlate with neuron loss in the APP/PS1KI mouse model of AD. Thus in the brain 

cholinergic system of APP/PS1KI mice, accumulation of intracellular Aβ aggregates 

represented an early pathological alteration that strongly correlated with neuron death in brain 

stem motor nuclei. In contrast, Aβ plaque pathology leading to plaque associated dystrophic 

neurites was not sufficient to cause neuron loss. A second study comparing neuron numbers 

in two regions accumulating either intraneuronal Aβ together with plaque pathology or 

plaques only, found that neurons were lost only in the region with accumulation of 

intraneuronal Aβ, whereas no neuron loss was observed in the region accumulating only 

extracellular plaques. Furthermore, the presence of intraneuronal Aβ was found to be transient 

and was virtually absent at the age where neuron loss was first detected, indicating that the 

neurons accumulating intraneuronal Aβ were the ones to be lost. 

The current ongoing debate concerning the presence of intraneuronal Aβ in human AD brains 

prompted an optimization of the immunohistochemical staining method for the detection of 

intraneuronal Aβ peptides. The optimization provided a strong and robust staining of 

intraneuronal N-terminal Aβ peptides as well as fibrillar oligomers and Aβ fibrils in the 

hippocampal formation of AD tissue, adding a valuable contribution to the evidence of 

intraneuronal Aβ in human AD brains. In the same experiment, a highly significant 

correlation between the accumulation of intraneuronal N-terminal Aβ peptides and the ApoE4 

genotype was identified, further emphasizing the impact of intraneuronal Aβ in AD pathology 

as the ApoE4 isoform is recognized to be the major risk factor for sporadic AD. 

Axonopathy recognized by dystrophic swellings of fibers is a well-known pathological 

alteration found in the human AD brain as well as in mouse models of AD; however, the 

origin of the dystrophic fibers is presently unclear. Using YFP transgenic mice crossed with 

APP/PS1KIhe mice and confocal imaging, Aβ-positive granules were detected in the axons 

and apical dendrites of cortical neurons, indicating that Aβ can be transported within fibers. 



Summary and Conclusions  114

 

Accumulation of intracellular Aβ was also identified within large dystrophic fibers 

independent of plaques as well as in the vicinity of plaques and with diffuse Aβ deposits 

nearby the axonal swelling, suggesting that Aβ accumulation inside fibers may contribute to 

the generation of axonal spheriods and adding further evidence to the hypothesis that Aβ can 

be released from fiber swellings. 

Concerning functional deficits, the studies of an interaction between Aβ and the α7 nAChR in 

APP/PS1ΔE9 mice were not sufficient to support a role of the α7 nAChR in AD. 

Furthermore, the reported lowering effect of nicotine on Aβ pathology could not be 

confirmed; on the contrary, an increase in full-length Aβ plaques was observed in the 

hippocampal formation of nicotine treated APP/PS1ΔE9 mice. However, in the studies of the 

functional integrity of the IEG response systems, a suppressing effect of Aβ on basal and 

novelty induced expression of Arc and c-fos was identified in the APP/PS1ΔE9 mice being 

most pronounced in cortical regions, where the mPFC seemed to be especially affected 

showing an increased basal level of c-fos expression that did not increase upon novelty 

stimulation. Such a decreased functional response in IEG systems could in part mediate 

cognitive deficits relating to environmental encoding as well as the interplay between 

emotions and memory in AD patients. 

In conclusion, the present thesis corroborates the modified intraneuronal Aβ cascade 

hypothesis. It provides additional evidence for the presence of intraneuronal Aβ in human AD 

tissue and supports the view of intraneuronal Aβ as an early pathological initiator contributing 

strongly to pathological alterations in AD including large plaque-independent dystrophic fiber 

pathology and neuronal loss. In contrast, plaques are found likely to cause functional 

disturbances such as deficits in the induction of IEG systems upon neuronal activity, but seem 

not to be involved in the loss of neurons. 
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