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Chapter 1

Introduction and Objective

1.1 Background and motivation

Many (possibly most) statistical analyses involve model selection, in a process

referred to as model building. Often, selection is an iterative process, carried out

by applying a series hypothesis tests. These are used to decide on the appropriate

complexity of the model, whether certain covariates should be excluded, whether

some of them should be transformed, whether interactions should be considered,

and so on. A variety of additional methods have been specifically developed for

model selection, both in the frequentist and the Bayesian frameworks. For an

overview of model selection criteria, one may consult the monographs by Linhart

and Zucchini (1986), McQuarrie and Tsai (1998), Burnham and Anderson (2002)

and the paper by Claeskens and Hjort (2003).

After a model has been selected, one usually proceeds with inference as if

this model had been known in advance, ignoring the fact that model has been

selected using the same data. Although it has been known for some time that

this “double use” of the data leads to invalid inference, this fact is not taken into

account in the vast majority of applications. A possible explanation is that the

issue is seldom discussed in typical Statistics courses, especially in service courses

offered to non-specialists. The problem is complex and not yet well understood;

it is not clear, even to statisticians, how to carry out valid inference following

model selection.

The bias due to not taking model selection into account is referred as selection

bias (Miller, 1990; Zucchini, 2000) or model selection bias (Chatfield, 1995). The

act of using the same data for model selection and for parameter estimation is

referred as model selection uncertainty (Hjorth, 1994). We will use the term model

selection uncertainty to refer to situations in which the true model is not known,

1
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where a model is selected using the data, and then the selected model is used to

draw inferences, or to reach decisions.

A known consequence of ignoring model selection uncertainty is that, in gen-

eral, the selected model appears to fit better than it does (optimism principle).

For example, the estimated variance of estimator is likely to be too small, the con-

fidence and prediction intervals are likely to be too narrow. Estimators obtained

after a selection procedure has been performed are referred as estimators-post-

selection (Hjort and Claeskens, 2003), or post-model-selection estimators (Leeb

and Pötscher, 2005).

Since the problem is due to using the data twice, one could consider splitting

the data into two sets; to use one set for model selection and the other for infer-

ence. Such a procedure has a serious drawback; it leads to a loss of information.

This is undesirable, even unacceptable, especially when the sample size is small.

The severity and seriousness of the problem of model selection uncertainty

can be appreciated by reading some of the remarks that have been written on

the subject.

• Breiman (1992), p.738: “A quiet scandal in the statistical community.”

• Chatfield (1995), p.421: “Statisticians admit this privately, but they(we)

continue to ignore the difficulties because it is not clear what else could or

should be done.”

• Pötscher (1995), p.461: “This old and nagging problem.”

• Buckland et al. (1997): “It seems surprising that more authors have not

addressed this issue. In some fields, it would seem essential that the issue

be addressed.”

• Zucchini (2000), p.58: “The objectivity of formal model selection proce-

dures and the ease with which they can be applied with increasing powerful

computers on increasing complex problems has tended to obscure the fact

that too much selection can do more harm than good. An overdose of se-

lection manifests itself in a problem called selection bias which occurs when

one uses the same data to select a model and also to carry out statistical

inference [...] The solution is still being invented.”

• Hjort and Claeskens, 2003, p.879: “There are at least two clear reasons

fewer efforts have been devoted to these questions than to the primary

ones related to finding ‘one good model’. The first is that the selection

strategies actually used by statisticians are difficult to describe accurately,
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as they involve many, partly nonformalized ingredients such as ‘looking

at residuals’ and ‘trying a suitable transformation’. The second is that

these questions of estimator-post-selection behaviour simply are harder to

formalize and analyse.”

• Efron (2004), p.640: “Classical statistics as developed in the first half of

the 20th century has two obvious deficiencies from practical applications:

an overreliance on the normal distribution and failure to account for model

selection. The first of these was dealt with in the century’s second half [...]

Model selection, the data-based choice [...] remains mostly terra incognita

as far as statistical inference is concerned.”

The above remarks summarize the motivation for the investigation described

in this thesis. Our general objective is to contribute to an improved understanding

of this problem. Our specific objectives are outlined in Section 1.3.

1.2 Related work

The literature that is relevant to this thesis can be divided into two categories:

The first is concerned with the situation in which the data has been used to

select a model and then to estimate some quantity of interest. The general aim

of that literature has been to discover the properties of the post-model-selection

estimators (PMSEs). The second category, model averaging, is about estimators

that are not based on a single selected model, but rather on a weighted average

of estimators from all the models under consideration.

In this section we briefly outline the main milestones; specific contributions

will be acknowledged in the main text.

1.2.1 Post-model-selection estimators

Bancroft (1944) investigated the bias introduced by pre-testing the regression

coefficients and the homogeneity of variance. A special case of Bancroft (1948)

is given by Mosteller (1948) where the mean square error of pre-test estimator

is found. This result was later extended by Huntsberger (1955). Sclove et al.

(1972) pointed out the undesirable properties of pre-test estimators. The mono-

graph of Judge and Bock (1978) discussed the pre-test properties in detail. Risk

properties of pre-test can also be found in Lovell (1983), Roehrig (1984), Mit-

telhammer (1984), Judge and Bock (1983), Judge and Yancey (1986), Dijkstra

(1988). These developments are summarised in Chatfield (1995), and Magnus
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and Durbin (1999). Danilov and Magnus (2004) gave the first and second mo-

ments of the pre-test estimators, and showed that the error of not reporting the

correct moment can be large. A description of the pre-test problem is also given

in Longford (2005).

Distributional properties of PMSEs are considered by Sen (1979), Sen and

Saleh (1987), Dijkstra and Veldkam, Pötscher (1991), Giles and Srivastava (1993),

Kabaila (1995,1998), Pötscher (1995), Pötscher and Novak (1998), Ahmed and

Basu (2000), Kapetanios (2001), Dukić and Peña (2002), Hjort and Claeskens

(2003), Leeb and Pötscher (2003, 2005), Bunea (2004).

1.2.2 Model averaging

Bernard (1963) mentioned model combination in the statistical literature in the

framework of studying airline passenger data. Bates and Granger (1969) studied

how to combine predictions from different forecasting models. Roberts (1965)

suggested combining the opinions of experts in which the weights are the posterior

probabilities of the models.

A formal Bayesian solution to model uncertainty dates to Leamer (1978) in

which the posterior distribution was explicitly stated. This was the starting point

for Bayesian model averaging (BMA). Madigan and Raftery (1994) introduced

Occam’s window method, to reduce the set of competing models. Draper (1995)

advocated the same Bayesian model averaging methods with the idea of model ex-

pansion. Chatfield (1995), Kass and Raftery (1995) reviewed BMA, and the cost

of ignoring model uncertainty. Raftery et al. (1997) studied BMA in the context

of linear regression models. George (1999) discussed BMA in the framework of

decision theory. Hoeting et al. (1999) described methods of implementing BMA,

and gave practical applications. Merlise and George (2004) discussed general

issues on model uncertainty.

In the classical literature, Akaike (1978) defined the concept of the likelihood

of a model and proposed that this be used to determine the weights when se-

lecting autoregressive models for time series. Leblanc and Tibshirani (1996) use

likelihood weights in the context of linear regression. Buckland et al. (1997)

proposed using Akaike weights and bootstrap weights as a method of incorporat-

ing model uncertainty. Strimmer and Rambaut (2001) used the bootstrap of the

likelihood weights, and applied these to gene trees analysis. Candolo et al. (2003)

accounted for model uncertainty using Akaike weights. Frequentist approach for

model averaging is given in Hjort and Claeskens (2003). They give a general large

sample theory for model averaging estimators, including PMSEs, together with

their limiting distributions and risk properties.
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1.3 Specific objectives

In this thesis we are mainly concerned with inference after model selection, that is,

to understand how estimators behave if estimation is preceded by model selection

based on the same data. Our objective is to examine the real effects of model

selection uncertainty, and how these effects can be corrected. To achieve this we

investigate a number of issues that seem not to have been fully investigated in

the literature:

1. The frequency (or unconditional) performance of model averaging meth-

ods, in particular Bayesian model averaging (BMA); the Bayesian nature

of Bayesian model averaging.

2. The differences and similarities between model averaging and model selec-

tion, and whether, in terms of a measure of risk, model averaging methods

are a better alternative to model selection.

3. To describe a framework that connects model averaging and model selec-

tion, both in the frequentist framework and in the Bayesian.

4. To give simple examples in which the properties of PMSEs can be derived

and compared analytically, not only under pre-test selection, but with any

selection criterion.

5. To identify the key ingredients that complicate the model selection uncer-

tainty problem, and to investigate whether the use of consistent selection

criteria “solves” the problem.

6. To assess whether any specific model selection criterion can be generally

recommended, i.e. leads to better post-model-selection estimation.

7. To investigate the extent to which Bayesian model selection can be affected

by the model selection uncertainty problem.

8. To illustrate the model uncertainty problem in the framework of parameter

estimation.

9. To assess whether bootstrap methods can be used to correct for model

selection uncertainty.
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1.4 Outline of the thesis

In Chapter 2 we consider the problem of model uncertainty. We study an ap-

proach, known as model averaging, that is intended to deal with the problem.

The idea is to avoid the use of a single model to estimate the quantity of interest;

instead one uses a weighted average of the estimates obtained using all the models

under consideration. Model averaging can be carried out either in a Bayesian or

in a frequentist setting. In this chapter we focus mainly on the former, and inves-

tigate its theoretical properties, specifically its conditional properties (given the

data), its unconditional (frequentist) properties and its predictive performance.

We argue that, regarded unconditionally, in general, it is hard to establish that

current BMA estimators are truly Bayesian estimators. Therefore, their frequen-

tist performances (e.g. admissibility, minimaxity) are likely to be unknown. We

also argue that for model averaging in general, the properties of model averaging

estimator cannot be assessed unless one assumes some underline model. How-

ever, there is uncertainty about the choice of this model and it is precisely this

uncertainty that led to model averaging or model selection. Under such an as-

sumption, one would simply use that model without applying model selection or

model averaging. The same issue arises in the case of post-model-selection esti-

mation to be discussed in Chapter 3, and also when assessing the properties of

bootstrap-after-model-selection estimator discussed in Chapter 7. We provide an

illustration of an alternative method of weighting that provides a Fully Bayesian

model averaging (FBMA) approach when the quantity of interest is parametric.

In Chapter 3 we consider the issue of model selection. As in Chapter 2, we

assume that a set of alternative models is available, but that we will select a

single model to carry out estimation. We also assume that the same data is used

both for selecting the model and for estimation. Clearly, from a statistical point

of view, this post-model-selection estimation approach is different from the model

averaging approach considered in Chapter 2. The foundation of the problem is

identified and formulated in a probability framework that allows us to investigate

it theoretically. Properties of PMSEs are described for some simple cases, and

various model selection criteria are compared. The issue of consistency in model

selection is also discussed, and the effect of sample size is investigated.

Chapters 4 and 5 are about the issue of correcting for model selection uncer-

tainty; the former discusses the problem from the frequentist point of view, and

the latter from the Bayesian. We point out that, mathematically, post-model-

selection estimation is simply a special case of model averaging, and so these two

approaches can be compared within a single framework. Model selection and

model averaging are compared, and an alternative scheme is proposed for deal-
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ing with model selection uncertainty. We define Adjusted Akaike Weights and

Adjusted Likelihood Weights. These are introduced to take model selection into

account in classical model averaging.

Chapter 5 investigates corrections for model selection uncertainty in a Bayesian

framework. Conditional on the data, there is no model selection uncertainty

problem, only model uncertainty. We point out that, if the estimators are viewed

unconditionally and if a model is selected, then the problem of model selection

uncertainty does arise. An alternative model weighting approach, which does

take the selection procedure into account, is proposed. The approach, which is

based on prior model selection probabilities, is illustrated using a simple example

involving the estimation of proportions.

In Chapter 6 we investigate model selection uncertainty in the context of

parameter estimation within a single parametric model family. This offers an

alternative interpretation to a number of well-known distributional results. We

illustrate that these can be regarded as solutions to the model selection un-

certainty problem. In particular we show that profile likelihood, and nuisance

parameter problems are interpretable in this framework.

Chapter 7 is concerned with the applicability of bootstrap methods to deal

with model selection uncertainty. It is relatively easy to apply the bootstrap to

assess the properties of PMSEs. However, by means of a concrete theoretical

example, we illustrate that the resulting estimator can be poor. We identify the

reason for this failure as the poor performance of the bootstrap in estimating

model selection probabilities.

Chapter 8 summarises the main findings of the thesis and suggests possible

extensions for future research work.





Chapter 2

Model Uncertainty and Model

Averaging

2.1 Introduction

Consider a situation in which some quantity of interest,4, is to be estimated from

a sample of observations that can be regarded as realizations from some unknown

probability distribution, and that in order to do so, it is necessary to specify a

model for the distribution. There are usually many alternative plausible models

available and, in general, they each lead to different estimates of 4. The term

model uncertainty is used when it is not known which model correctly describes

the probability distribution under consideration. A discussion on the issue of

model uncertainty is given in, e.g., Clyde and George (2004).

In this chapter we will discuss a strategy, known as model averaging, that is

used to deal with the problem of model uncertainty. The idea is to use a weighted

average of the estimates of4 obtained using each of the alternative models, rather

than the estimate obtained using any single model. This is implemented both in

the frequentist and in the Bayesian framework.

The main problem to be solved, when applying model averaging, is that of

selecting the weights for the estimates obtained using the different models. Ideally

one would wish to use weights which minimize some specified criterion, or “loss

function”. We point out that, in general, it is not feasible to determine optimal

weights from the available information because these depend on the unknown true

distribution, i.e. the distribution for the entire population, not just the sample.

We investigate the theoretical performance of the well-known Bayesian model

averaging (BMA) from different points of view. We argue that some issues re-

garding BMA have not been clearly described in full.

9
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We begin by considering BMA conditioned on the data and point out that

the performance of the BMA estimate cannot be compared with that of any

“single-model” estimate. Each of the latter has its own posterior and is optimal

with respect to that. Similarly the BMA estimate is optimal with respect to its

posterior, which is a weighted average of the posteriors of the individual single-

model estimates.

We then consider unconditional performance, also called “long-run” or fre-

quentist properties. By frequentist properties we mean the properties of an es-

timator over repeated sampling, and not those conditioned on a particular data

set. If there are K models, each of which leads to an estimator of the quantity of

interest, then the BMA estimator constitutes an additional estimator; i.e. one has

to consider K +1 estimators. Even though the frequentist properties (e.g. admis-

sibility, minimaxity) of each of the K individual models are known (since they are

Bayes estimators), these do not suffice to determine the frequentist properties of

the BMA estimator (except for simple parametric cases). The reason is twofold:

no prior has been assigned to this (K + 1)-st estimator, the BMA. Secondly, the

distribution of the data under the BMA model hasn’t been specified; only the

posterior is known. Thus it is hard to show whether BMA is a fully Bayesian

method; it is not based on a well-defined data-generating mechanism, i.e. a true

model, which is required if one wishes to assess its frequentist performance. We

will refer to it as quasi-Bayesian.

Thirdly we consider the predictive performance of BMA estimation. In the

Bayesian literature this is often measured in terms of Good’s (1952) “logarithm

score rule” and is used to justify the use of BMA. We argue that, due to the

non-negativity of the Kulback-Leibler information divergence, such a justification

hinges critically on the assumption that the BMA model is the “true model”.

Assuming that any other model is true would automatically render the BMA

non-optimal. In other words the theoretical justification for BMA in terms of its

predictive performance is tautological. Its practical performance in applications

and simulations have been reported to be favourable (see, e.g., Clyde (1999),

Clyde and George (2000)).

We introduce a simple fully Bayesian model averaging (FBMA) approach

based on a mixture of priors, and a mixture of parametric models instead of start-

ing with posterior distribution, as in the case of BMA. This leads to a method

that is Bayesian in the strict sense. The advantage of FBMA is that both its

conditional (given the data) and unconditional (prior to seeing the data) per-

formance are available, at least in theory, as is the case with standard Bayesian

inference derived in the context of a fully Bayesian statistical model. We provide

an illustration of a simple situation in which BMA is Bayesian, FBMA reducing
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to BMA.

To reduce the enormous computational effort required to apply BMA it has

been suggested that some models be eliminated in a “preselection” step. Sug-

gestions include Occam’s window, Markov chain Monte Carlo model composition

and stochastic search variable selection. We stress the fact that the long-run per-

formance of BMA estimators will be affected if data-based model search methods

are applied. This introduces an additional source of uncertainty which we call

model space selection uncertainty. The application of preselection changes the

estimator, and therefore its properties. It is necessary to take that source of ad-

ditional uncertainty into account. For posterior analysis, i.e. conditioned on the

data, such search strategies present no problem.

We next turn briefly to frequentist model averaging (FMA), in particular to

the use of Akaike weights. We show how Akaike weights can be interpreted in the

context of Akaike’s (1978) predictive approach, and his concept of the “likelihood

of a model”. We illustrate how Akaike weights can be implemented in practice.

2.2 Model averaging and optimal weights

2.2.1 Model averaging

Suppose that the observations, x, have been generated by the model Mt. For

example, x could be a random sample from a well-defined finite population. Then

the Mt, the true model, is the distribution over the entire population.

Let M = (M1, . . . , MK) be a set of K models and 4 the quantity of interest.

Let 4̂k be the estimator of 4 (using some specified estimation procedure) when

model Mk is used. We will sometimes refer to the quantity 4 under model k as

4k, k = 1, 2, ..., K.

The application of model averaging involves finding non-negative weights,

π = (π1, . . . , πK)′, that sum to one, and then estimating 4 by

4̃MA =
K∑

k=1

πk4̂k. (2.1)

The question that arises is whether one can select the weights so as to optimize

the performance of this averaged estimator, in terms of some specified measure,

say a loss function L. Finding the optimal weights involves solving the following

optimisation problem over π:

min
π

EtL(
K∑

k=1

πk4̂k,4k), πk ≥ 0, ∀k;
K∑

k=1

πk = 1, (2.2)
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where the expectation is taken with respect to the true model, which may, or

may not, be in the set of competing models, M.

The expectation in (2.2) has to be taken with respect to the true model, Mt,

which is unknown. One is therefore not in a position to obtain optimal weights;

these have to be estimated and so the performance of the weighted estimator will

depend on a variety of factors, such as how the weights are estimated.

2.2.2 Performance of model averaging estimators

One important problem associated with model averaging is that of evaluating the

performance of the average estimator. Each estimator 4̂k is derived under model

Mk, therefore, the properties (e.g. mean, variance, MSE) of 4̂k can be computed

under this model. In general the weights are obtained using the data (i.e. they

are estimated) and the model averaging estimator is

4̂MA =
K∑

k=1

π̂k4̂k. (2.3)

The model MMA from which the average estimator 4̂MA is derived is not known.

To derive the properties of 4̂MA, one needs to assume a model Mt, then obtains

its properties under this model. There is no guarantee that the resulting weighted

estimator will outperform every individual estimator 4̂k. However, there is un-

certainty about the choice of this model and it is precisely this uncertainty that

led to model averaging. The fact of not knowing Mt that generated 4̂MA leads

to the difficulty of interpreting it. For instance, suppose that 4̂k is the MLE of

4k for model Mk. The likelihood of a set of data is the probability of obtaining

that particular set of data, given the chosen probability distribution model Mk.

The MLE is the parameter point for which the observed sample is most likely,

that is the value of these parameters that maximizes the likelihood. Now, how

can one interpret 4̂MA without the generating model? Therefore knowledge of

the (long run) properties of model averaging estimators, even with an assumed

true model is computationally difficult. Without knowing the generating model,

the properties of 4̂MA are not defined. For example, one cannot compute the

expectation of 4̂MA without specifying the distribution with respect to which

this expectation is to be taken. To illustrate the point, we consider a mixture

density problem.

Mixture models arise when an observation x is taken from a population com-

posed of different subpopulations. The problem is that one does not know from

which of these the observation is taken. Let K be the number of subpopulations,
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then X has a K-component mixture density

f(x) =
K∑

k=1

πkfk(x), 0 ≤ πk ≤ 1,
K∑

k=1

πk = 1, (2.4)

where πk is the probability that x comes from the kth subpopulation and fk(x)

is the density of X in the kth subpopulation. Let 4 the quantity of interest be

the mean of the X. It is straightforward to see that under the mixture (2.4), the

mean is given by

E(X) =
K∑

k=1

πkEk(X), (2.5)

where the E stands for the expectation under the mixture (2.4) and Ek for the

expectation under the kth subpopulation. An estimator of the expectation of X

is given by

4̂ =
K∑

k=1

π̂k4̂k, (2.6)

where 4̂ = Ê(X) and 4̂k = Êk(X).

Consider 4̂ to be an average estimator. When the subpopulations have different

parametric forms, methods exist (e.g. EM algorithm, Newton-type method) to

compute (π̂1, . . . , π̂K , 4̂1, . . . , 4̂K)′. The properties of the average estimator can

be obtained under the mixture model (2.4). In this case, only the computation

is the challenging issue. In repeating experiments, the data can be sampled from

(2.4). Now, consider a weighted estimator given by a different weighting scheme

(π̃1, . . . , π̃K)′ as usual with model averaging,

4̂MA =
K∑

k=1

π̃k4̂k. (2.7)

Model averaging estimator (2.7) looks similar to (2.6). However, in the case of

model averaging, the properties of 4̂MA cannot be assessed unless one assumes

some underline model.

The same issue arises in the case of post-model-selection estimation to be

discussed in Chapter 3, and also when assessing the properties of bootstrap model

selection discussed in Chapter 7. In fact, the properties of an estimator are well

defined if one computes with respect to the model from which this estimator is

derived.
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2.3 Bayesian model averaging

2.3.1 Description

Consider a sample of data, x, and a set of K models M = (M1, . . . , MK), which

we will assume to contain the true model Mt. Each model Mk consists of a

family of distributions P (x|θk,Mk), where θk represents a parameter (or vector

of parameters).

To implement a BMA procedure we begin by assigning a prior probability,

P (Mk), to the event that model Mk is the true model, and a prior distribution,

P (θk|Mk), to the parameters of model Mk, given that Mk is true, k = 1, . . . , K.

As outlined in Chipman, George and McCulloch (2001), the data generating

process proceeds in the following three stages:

1. generate a model, Mk, from P (M1), . . . , P (MK),

2. generate a parameter, θk, from P (θk|Mk),

3. generate the data, x, from P (x|θk,Mk).

Conditioning on the data x and integrating out the parameter θk, one has poste-

rior model probabilities:

P (Mk|x) =
P (x|Mk)P (Mk)

ΣK
j=1P (x|Mj)P (Mj)

, (2.8)

where

P (x|Mj) =

∫

Θ

P (x|θk,Mk)P (θk|Mk)dθk (2.9)

is the integrated likelihood under model Mk. If P (θk|Mk) a discrete distribution,

the integral in (5.18) is replaced by a sum.

Let 4 be a quantity of interest, for example a future observation from the

same process that generated x. Then the posterior distribution of 4 is given by

P (4|x) = ΣK
k=1P (4|x,Mk)P (Mk|x). (2.10)

We note that P (4|x) is a weighted average of the posterior distributions P (4|Mk, x), k =

1, ..., K, where the k-th weight, P (Mk|x), is the posterior probability that model

Mk is the true model. The posterior distribution of 4, conditioned on model Mk

being true, is given by

P (4|x,Mk) =

∫

Θ

P (4|θk,Mk)P (θk|x,Mk)dθk. (2.11)
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The posterior mean and posterior variance are given by

4̂bma = Ebma(4|x) = ΣK
k=1E(4|x,Mk)P (Mk|x),

Varbma(4|x) = ΣK
k=1[Var(4|x,Mk) + (E(4|x,Mk)− 4̂bma)

2]P (Mk|x).
(2.12)

Raftery et al. (1997) call this averaging scheme Bayesian model averaging.

Learmer (1978) and Draper (1995) advocate the same idea. Madigan and Raftery

(1994) note that BMA provides better predictive performance than any single

model if the measure of performance is the logarithm score rule of Good (1952),

under the posterior distribution of θ given x. Hoeting et al. (1999) give an ex-

tensive framework of BMA methodology and applications for different statistical

models. Various real data and simulation studies (e.g. Clyde (1999), Clyde and

George (2000)) have investigated the predictive performance of BMA.

Implementing BMA is demanding, especially the computation of the inte-

grated likelihood. Software for BMA implementation, as well as some BMA pa-

pers, can be found at “http://www.research.att.com/∼volinsky/bma.html”. For

computations, Monte Carlo methods, or approximating methods, are used, Thus

many BMA applications are based on the BIC, an asymptotic approximation of

the log posterior odds when the prior odds are all equal. Another problem is

the selection of priors both for models and parameters. In most cases, a uni-

form prior is used for each model, i.e. P (Mk) = 1/K, k = 1, 2, ..., K. When the

number of models is large, model search strategies are sometimes used to reduce

the set of models, by eliminating those that seem comparatively less compatible

with the data. Of course, such data-based “preselection methods” are not strictly

Bayesian, and secondly, the potential effects of preselection are ignored in BMA,

at least as it is currently being implemented.

2.3.2 Theoretical performance of BMA

2.3.2.1 Conditioning on the data

For each model Mk, short run performance of an estimate δk(x) can be measured

by the posterior expected loss

ρ(δk(x)) = Ek[L(4, δk(x))] =

∫

Λ

L(4, δk(x))P (4|x,Mk) d4,

where L is a loss function.

Since 4̂k = E(4|x,Mk) is a Bayes estimate for Mk, it is the only decision rule

with minimal posterior expected loss. BMA estimate 4̂bma is the only decision
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rule with minimum posterior expected loss with respect to the posterior distri-

bution P (4|x) given in (2.10). This means that if one needs to compare the

performances of BMA estimate with any of the estimate 4̂k = E(4|x,Mk), one

model should be used as reference. Since the true model is assumed to be one of

the competing models, the comparison should be made with respect to the true

model Mt. BMA performs better than any model Mk if the following holds

ρ(4̂bma) = Et[L(4, 4̂bma)] ≤ ρ(4̂k) = Et[L(4, 4̂k)], (2.13)

for k = 1, . . . , K, k 6= t. It is important to note that the expectation in (2.13) is

taken with respect to the same model Mt.

2.3.2.2 Frequentist properties

The long run performance of each model Mk with an estimate δk(x) can be

measured by the average loss (frequentist loss) given by

R(4, δk(x)) = Ek[L(4, δk(x))] =

∫

X
L(4, δk(x))P (x|4, Mk) dx.

BMA is better than any single model Mk if

R(4, 4̂bma) = Et[L(4, 4̂bma)] ≤ R(4, 4̂k) = Et[L(4, 4̂k)], (2.14)

for k = 1, . . . , K, k 6= t.

The expectation in (2.14) is taken with respect to the model Mt. If one is able

to find out the prior and the statistical model associated to BMA estimator, this

will be a Bayes estimator. In this case, the long run performances are known.

2.3.2.3 Predictive performance

One measure of predictive performance is the Good’s (1952) logarithm score rule.

From the nonnegativity of Kullback-Leiber information divergence, it follows that

if f and g two probabilities distribution functions,

Ef (log f(X)) ≥ Ef (log g(X)).

Applying this to model averaging and model space, we have that

Ebma[log P (4|x)] ≥ Ebma[log P (4|x, Mk)], k = 1, . . . , K (2.15)

and it also holds that

Ek[log P (4|x,Mk)] ≥ Ek[log P (4|x)], k = 1, . . . , K. (2.16)
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This means that, it is not possible to measure the performance of BMA using

only (2.15). The expectation should be taken with respect to the true model.

BMA will perform better than any single model if

Et[log P (4|x)] ≥ Et[log P (4|x,Mk)], k = 1, . . . , K; k 6= t. (2.17)

These three measures of performance mean that one should measure the perfor-

mance of BMA using an assumed true model. Therefore, there is no evidence

that BMA outperforms any single competing model.

2.3.3 A fully Bayesian model averaging approach

2.3.3.1 Bayesian decision theory

There are three fundamental factors in Bayesian decision theory:

1. A distribution family of the observation, f(x|4),

2. a prior distribution for the parameter, π(4),

3. a loss function associated to a decision δ, L(4, δ).

Using (1), (2) and from the Bayes rule, the posterior distribution of 4 is given

by

π(4|x) =
f(x|4)π(4)∫

Γ
f(x|4)π(4)d4 . (2.18)

Using the posterior distribution and (3) gives the optimal decision rule (Bayes

rule) and the variance or risk. As long as the posterior distribution of 4 is

available, one can perform Bayesian inference.

2.3.3.2 The Bayesian nature of BMA

In the BMA approach, one starts with the posterior given in Equation (2.10),

given by the total law of probability. Subsequently, using a loss function, one

computes the estimate and the associated variance. The question of what prior

and statistical model are associated to this estimate remains. The priors and

statistical model are only implicitly included in BMA estimates, through each

competing model. For BMA method to be fully Bayesian method, one needs to

know the prior P (4) and the statistical model P (x|4) from which the poste-

rior P (4|x) is derived. This explains why Bayesian model averaging can’t be

considered as fully Bayesian approach, unless the associated prior and statistical

model is known. The drawback of this quasi-Bayesian method is that, it is hard
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to know the long run performance of the resulting estimator (e.g. minimaxity,

admissibility). The reason is that, the knowledge of frequentist performance of

Bayesian rules involves that of the prior distribution and statistical model. The

frequentist performance (e.g., average risk) of BMA can be evaluated by assum-

ing a true statistical model ft(x|4) that generated the data, without knowing the

process that generated BMA estimates. Some frequentist performances of BMA

estimator are given in Hjort and Claeskens (2003), followed with a discussion by

Raftery and Zheng (2003).

2.3.3.3 Description of a fully BMA

The prior of the quantity of interest can be defined as

Pfbma(4) = ΣK
k=1P (4|Mk)P (Mk). (2.19)

The parametric statistical model Pfbma(x|4) can also be defined as

Pfbma(x|4) = ΣK
k=1P (x|4,Mk)P (Mk). (2.20)

P (x|4,Mk) is the parametric statistical model for model Mk. The use of Bayes

rule leads to the posterior of the quantity of interest Pfbma(4|x) as

Pfbma(4|x) =
Pfbma(x|4)Pfbma(4)∫

Γ
Pfbma(x|4)Pfbma(4)d4 . (2.21)

Defining a loss function, Bayesian estimates are then obtained.

This approach may be difficult to implement, but the long and short run prop-

erties are then known. That is, one can find conditions under which there are

consistent, minimax and admissible. All the frequentist properties (minimaxity,

admissibility, etc.) of Bayes rules now apply. We refer to this approach as fully

Bayesian model averaging (FBMA).

Proposition 2.3.1 Under (2.19) and (2.20), assuming that for all k and j, k 6=
j, hkj(x) =

∫
Γ
P (x|4,Mk)P (4|Mj)d4 < ∞, the posterior of the quantity of

interest in (2.21) is given by Pfbma(4|x) =

ΣK
k=1P (x|Mk)P (4|x,Mk)P

2(Mk) + ΣK
k=1Σ

K
j=1;j 6=kP (x|4,Mk)P (4|Mj)P (Mk)P (Mj)

ΣK
k=1P (x|Mk)P 2(Mk) + ΣK

k=1Σ
K
j=1;j 6=khkj(x)P (Mk)P (Mj)

.

(2.22)

Proof. Pfbma(x|4)Pfbma(4) = {ΣK
k=1P (x|4,Mk)P (Mk)}{ΣK

k=1P (4|Mk)P (Mk)}
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= ΣK
k=1P (x|4,Mk)P (Mk)P (4|Mk)P (Mk)

+ ΣK
k=1Σ

K
j=1;j 6=kP (x|4,Mk)P (Mk)P (4|Mj)P (Mj)

= ΣK
k=1P

2(Mk)P (4|Mk)P (x|4,Mk)+ΣK
k=1Σ

K
j=1;j 6=kP (Mk)P (Mj)P (x|4,Mk)P (4|Mj).

Since, P (4|Mk)P (x|4,Mk) = P (x|Mk)P (4|x,Mk) by Bayes rule,

Pfbma(x|4)Pfbma(4) = ΣK
k=1P

2(Mk)P (x|Mk)P (4|x,Mk)

+ ΣK
k=1Σ

K
j=1;j 6=kP (Mk)P (Mj)P (x|4,Mk)P (4|Mj). (1)

Pfbma(x) =
∫

Γ
Pfbma(x|4)Pfbma(4)d4

= ΣK
k=1P

2(Mk)
∫
Γ
P (4|Mk)P (x|4,Mk)d4

+ ΣK
k=1Σ

K
j=1;j 6=kP (Mk)P (Mj)

∫
Γ
P (x|4,Mk)P (4|Mj)d4

= ΣK
k=1P (x|Mk)P

2(Mk) + ΣK
k=1Σ

K
j=1;j 6=khkj(x)P (Mk)P (Mj). (2)

Dividing (1) by (2) yields the result.

The use of direct BMA yields

P (4|x) = ΣK
k=1P (4|x,Mk)P (Mk|x), (2.23)

where

P (Mk|x) =
P (x|Mk)P (Mk)

ΣK
j=1P (x|Mj)P (Mj)

. (2.24)

This means that in general, BMA and FBMA are different. It will be hard to

find the prior and statistical model associated to BMA.

Corollary 2.3.1 Suppose that all the models have the same parametric statistical

model, that is P (x|4,Mk) = P (x|4,Mj) for all k and j, then FBMA reduces to

BMA.

Proof. In the numerator of (2.22), ΣK
k=1Σ

K
j=1;j 6=kP (x|4,Mk)P (4|Mj)P (Mk)P (Mj)

= ΣK
k=1P (4|Mk)P (x|4, Mk)P (Mk)Σ

K
j=1;j 6=kP (Mj)

= ΣK
k=1P (4|Mk)P (x|4, Mk)P (Mk)(1− P (Mk)), ΣK

j=1;j 6=kP (Mj) = 1− P (Mk),

= ΣK
k=1P (x|Mk)P (4|x,Mk)P (Mk)(1− P (Mk)).

The numerator of (2.22) is therefore

= ΣK
k=1P (x|Mk)P (4|x,Mk)P

2(Mk)+ΣK
k=1P (x|Mk)P (4|x,Mk)P (Mk)(1−P (Mk))
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= ΣK
k=1P (x|Mk)P (4|x,Mk)P

2(Mk)− ΣK
k=1P (x|Mk)P (4|x,Mk)P

2(Mk)

+ ΣK
k=1P (x|Mk)P (4|x,Mk)P (Mk)

= ΣK
k=1P (x|Mk)P (4|x,Mk)P (Mk).

hkj(x) =
∫

Γ
P (x|4,Mk)P (4|Mj)d4 =

∫
Γ
P (x|4,Mk)P (4|Mk)d4 = P (x|Mk).

Therefore, the denominator of (2.22),

Pfbma(x) = ΣK
k=1P (x|Mk)P

2(Mk) + ΣK
k=1Σ

K
j=1;j 6=kP (x|Mk)P (Mk)P (Mj)

= ΣK
k=1P (x|Mk)P

2(Mk) + ΣK
k=1P (x|Mk)P (Mk)Σ

K
j=1;j 6=kP (Mj)

= ΣK
k=1P (x|Mk)P

2(Mk) + ΣK
k=1P (x|Mk)P (Mk)(1− P (Mk))

= ΣK
k=1P (x|Mk)P

2(Mk)− ΣK
k=1P (x|Mk)P

2(Mk) + ΣK
k=1P (x|Mk)P (Mk)

= ΣK
k=1P (x|Mk)P (Mk), a mixture of marginal distributions.

Therefore Pfbma(4|x) =
ΣK

k=1P (x|Mk)P (4|x,Mk)P (Mk)

ΣK
j=1P (x|Mj)P (Mj)

= ΣK
k=1{ P (x|Mk)P (Mk)

ΣK
j=1P (x|Mj)P (Mj)

}P (4|x,Mk)

= ΣK
k=1P (4|x,Mk)P (Mk|x) = P (4|x).

This means that in this special case, BMA is a fully Bayesian.

In this special case, the posterior mean and variance of the weighted estimate

4̂fbma are those of BMA and given by

4̂fbma = Efbma(4|x) = ΣK
k=1E(4|x,Mk)Pfbma(Mk|x),

Varfbma(4|x) = ΣK
k=1[Var(4|x,Mk) + (E(4|x,Mk)− 4̂fbma)

2]Pfbma(Mk|x).
(2.25)

In general, as Bayes estimate, the form of the posterior mean and variance

for FBMA are not given in advance. We can’t expect this form to be simple as

(2.25) for complex situations. It is important to note that model averaging in

the framework of FBMA is with respect to mixture of both the priors and the

parametric models. For BMA, model averaging is only with respect to mixture

of posterior distribution. FBMA estimates may be computationally demanding

(but feasible) since the posterior Pfbma(4|x) involves many sums, specially if the

number K of models is large.

2.3.3.4 Illustration of a fully BMA method

When a coin is spun on its edge, instead of being thrown in the air, the long-

run frequencies of heads is rarely 0.5. This means that one cannot model the

process by uniform prior (that is beta (1,1)). A mixture of priors may be
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appropriate. Consider X1, . . . , Xn be n independent Bernouilli trials, that is

Xi ∼ Bernouilli(4), Y =
∑n

i=1 Xi is the number of success. Y is a bino-

mial(n, 4), 4 unknown. We will base inference on Y, since the likelihood

function of the Xi’s is 4Y (1 − 4)n−Y and involves the sufficient statistic Y.

f(y|4) =
(

n
y

) 4y (1 − 4)n−y, y = 0, 1, . . . , n, is the probability mass func-

tion (PMF) of Y. Our quantity of interest is the unknown 4. Note that similar

illustrations can be made with other examples of exponential families and con-

jugate prior distributions such as (normal, normal), (Poisson, gamma), (gamma,

gamma), (negative binomial, beta), (multinomial, Dirichlet), (normal, gamma)

etc.

Y |4 ∼ binomial(n,4), 4 ∼ beta(α, β), then 4|y ∼ beta(y + α, n − y + β),

therefore

4̂ = E(4|y) = y+α
α+β+n

and Var(4|y) = (y+α)(n−y+β)
(α+β+n)2(α+β+n+1) (2.26)

are the Bayes estimates of 4 and its variance respectively.

The marginal distribution of Y is the beta-binomial(n, α, β), whose PDF is

given by

f(y) = P (y|Mk) =

(
n

y

)
Γ(α + β)Γ(y + α)Γ(n− y + β)

Γ(α)Γ(β)Γ(α + β + n)
=

(
n

y

)
B(y + α, n− y + β)

B(α, β)
,

where B(a, b) = Γ(a)Γ(b)
Γ(a+b)

and Γ(c) =
∫∞

0
tc−1 exp(−t)dt.

We consider 3 models, n = 10, y = 3. Table (2.1) shows the priors and the

posteriors of the quantity of interest for three models for FBMA.

Figures (2.1), (2.2) and (2.3) compare the posterior distribution of the FBMA

method. They are compared to each of the models viewed as true model. The

prior for each model and the mixed prior for FBMA are also compared.

Model P (M) Pfbma(M |x) P (4|M) P (4|M, x) E(4|x,M) Var(4|x,M)

M1 0.5 0.774 beta(10,20) beta(13,27) 0.325 0.005

M2 0.2 0.169 beta(15,15) beta(18,22) 0.450 0.006

M3 0.3 0.057 beta(20,10) beta(23,14) 0.575 0.006

FBMA - - - - 0.3625 0.0104

Table 2.1: Priors, posteriors, weights, mean and variance of each model.
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Figure 2.1: Prior and posterior distribution compared to model M1 as a function

of proportion.
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Figure 2.2: Prior and posterior distribution compared to model M2 as a function

of proportion.



2.3. Bayesian model averaging 23

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4

Prior distribution

proportion
P

rio
r

Single M3
FBMA

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
Posterior distribution for binomial distribution

proportion

 P
os

te
rio

r Single M3
FBMA

Figure 2.3: Prior and posterior distribution compared to model M3 as a function

of proportion.

2.3.4 Model search strategies

The implementation of BMA is demanding when the number of models consid-

ered is large. To ease the computational burden some authors have suggested

methods for reducing the number of models that are included in the BMA. Three

approaches are outlined. We then point out that, for the assessment of frequentist

properties of BMA estimators, it is necessary to take account of such preselection.

The general issue of post-model-selection estimation is discussed in Chapter 3.

2.3.4.1 Occam’s window method

The method is described in Madigan and Rafterey (1994) and the two basic

principles are:

1. If a model predicts the data much worse than the best model, then it should

be dropped,

2. models that predict the data less well than their nested submodels should

be dropped.

Based on (1) and (2), the set of considered models is reduced. Now, the point is

to find class of models to be averaged. At each step, the method compares two

models, and rejects one of them. The process is repeated until a set of acceptable

models is found.
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2.3.4.2 Markov chain Monte Carlo (MCMC) model decomposition

The method is described in (Madigan and York, 1995). A Markov chain is built

on the model space with stationary distribution P (Mk|x). If the chain is actually

at state Mj, then a neighborhood model Mi should be accepted with probability

that is the minimum between 1 and their respective Bayes factor. Otherwise, the

chain will stay on Mj.

2.3.4.3 Other methods

The stochastic search variable selection (George and McCulloch, 1993) involves

not removing a predictor from the full model, but are set to be nearly 0 with high

probability. Then a Markov chain moves through all the models and parameters.

Volinsky, Madigan, Raftery and Kronmal (1997) use the ”leaps and bound” al-

gorithm of Furnival and Wilson (1974) to identify models to be averaged. Clyde,

DeSimone and Parmigiani (1996) use importance sampling methods to identify

best subset of models.

2.3.4.4 Model space selection uncertainty in BMA

Suppose that using a model search strategy S, one obtains a subset M̂ of M
with dimemsion K̂. The weighted estimator is now given by

4̃bma(S) = E(4|x,M̂) = ΣK̂
k=1E(4k|x,Mk)P (Mk|x). (2.27)

Posterior variance and posterior risk of the estimates are computed as if M̂ was

not data dependent, like those of 4̂bma. There is no problem since the data are

held fixed. However, suppose that one wants to measure the performance of the

averaged estimator using the averaged risk (frequentist risk) defined by

R(4, 4̃bma(S)) =

∫

X
L(4, 4̃bma(S))P (x|4,Mt) dx. (2.28)

Expression (2.28) is now difficult to evaluate as it includes the model search strat-

egy S. The fact of reducing the subset of models by model search strategy S using

data introduces an additional source of uncertainty. We refer to this as model

space selection uncertainty. The difference with model selection uncertainty is

that here a subset is selected instead of one model. This fact should be taken

into account in computing the frequentist risk of the averaged estimator after a

model search strategy has been performed. Otherwise variance and these risks

are likely to be underestimated.
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2.4 Frequentist model averaging

2.4.1 Akaike weights and likelihood weights

Suppose that each model Mk is parametric with probability density function

fk(x|θk) with the quantity of interest 4k as a function of θk (e.g. 4k = gk(θk)).

Let θ̂k be the maximum likelihood estimator of θk for model Mk, Lk the likelihood

and qk the number of parameters for model Mk.

Because the optimal weights are not feasible, in general, the idea is to penalise

the likelihood. Different penalties are possible. Buckland et al. (1997) define

Akaike weights:

Wk =
exp(−sk/2)Lk

ΣK
i=1 exp(−si/2)Li

=
exp(− Ik

2
)

ΣK
i=1 exp(− Ii

2
)
, (2.29)

where Ik is an information criterion of the form

Ik = −2 log Lk + sk, (2.30)

with sk a penalty for model Mk. In particular, if the Akaike information criterion

(AIC, sk = 2qk) is used, (2.29) becomes

Wak
=

exp(−AICk

2
)

ΣK
i=1 exp(−AICi

2
)
. (2.31)

This is a penalised likelihood where each model is penalised by the number of

parameters. Extensive application of Akaike weights can be seen in Burnham

and Anderson (2002). Hjort and Claeskens (2003) define similar weights with a

smooth FIC (focused information criterion) and other model averaging schemes

for estimators, known as compromise estimators together with their limiting dis-

tributions and risk properties. One way of interpreting Akaike weights comes

from Akaike’s (1978) predictive approach who defines the likelihood of a model

to be asymptotically equivalent to exp(−AIC
2

) and uses for weights time series

autoregressive models.

In the context of regression and classification, Leblanc and Tibshirani (1996)

propose a simple likelihood given by

Wk =
Lk

ΣK
i=1Li

. (2.32)

The expectation of Wk in (2.32) followed by bootstrap was proposed by Strimmer

and Rambaut (2001) for gene trees analysis.
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2.4.2 Likelihood of a model and Akaike weights interpre-

tation

Viewed as a predictive approach, the likelihood of a model can be described as

follows.

Consider the data set x as given and suppose that the purpose is to find the

distribution of future observations x+ given x. Let f(x+|x) and f(x+) be respec-

tively the predictive density and the true density of x+. We can think of f(x+|x)

as an estimate of f(x+). Akaike (1978) defines the likelihood of a model to be

f(x+|x). The goodness of this estimation can be measured by the entropy of

f(x+) with respect to f(x+|x) by

K(f(.), f(.|x+)) = −
∫

f(x+) log
f(x+)

f(x+|x)
dx+. (2.33)

Equation (2.33) can be written as

K(f(.), f(.|x+)) =

∫
f(x+) log f(x+|x) dx+ −

∫
f(x+) log f(x+) dx+. (2.34)

The first term on the right-hand side of Equation (2.34) is the expectation with

respect to the true distribution of log f(x+|x). It is not possible to evaluate Equa-

tion (2.34) since the true model is unknown. Suppose that we have a parametric

family vector θ. If f(.|x) = f(.|θ), then log f(x|x) = log f(x|θ), but in general

this does not hold. Akaike (1978) proposes to define the log likelihood of a model

f(.|x) by

l(f(.|x)) = log f(x|x) + c, (2.35)

where c is a constant for all possible f(x). If attention is restricted to parametric

family, we can write f(x+|x) = f(x+|θ̂(x)) and θ̂(x) is the maximum likelihood

estimate of θ. Akaike (1978) proves that asymptotically

l(f(.|θ̂(x))) = log f(x|θ̂(x))− p, (2.36)

where p is the number of parameters, and then suggests exp(−AIC
2

) to be asymp-

totically a reasonable definition for the likelihood of a parametric model, for

prediction purposes.

2.4.3 Illustrative example

A method for estimating design storms is described in Zucchini and Adamson

(1984), Linhart and Zucchini (1986, p. 66) and is described as follows. The annual

maximum storms are assumed to be independently and identically distributed
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with distribution function G. The distribution of the largest storm in h years is

Gh. The storm associated with a design horizon of h years and probability (risk)

of occurence ω is the solution of the equation

1− ω = Gh(s).

Let Fθ be an approximating model for G, where θ is the parameter (possibly

vector). Then the design storm, s, estimated by fitting Gθ is given by

ŝ = 4̂ = F−1

θ̂
((1− ω)1/h).

To estimate 4, the following six models were considered: gamma (α, β), normal

(µ, σ2), lognormal (µ, σ2), exponential (ν), Weibull (%, τ) and Gumbel (ζ, η).

Data are the annual maximum 1 day storm depths (mm) at Vryheid for the

period 1951-1980. The data are given in Table (2.2). Figure (2.5) displays the

histogram and kernel density estimator.

Maximum likelihood estimates of the parameters, together with Akaike weights

are given in table (2.3). The Gumbel distribution is the one with highest Akaike

weight.

Estimates of4, the design storms and the associated standard error and mean

are given in Table (2.4), for each design horizon. The risk ω was chosen to be

0.2.

In this example, note that when the estimators for each competing model

are assumed to be perfectly correlated, model averaging using Akaike weight has

higher standard error than that of each competing model, except for the horizon

10 with exponential distribution. When they are assumed to be independent,

except for horizon 1, Akaike weights model averaging has smaller standard error

than all competing models. The variance formulae used are that of Buckland

et al. (1997). This illustrates that there is an enormous discrepancy in the

Year 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960

Depth 45.2 66.5 142.0 83.9 61.1 60.6 84.5 80.0 79.0 137.5

Year 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970

Depth 52.5 50.0 170.0 62.0 43.5 60.0 60.0 53.5 58.0 93.0

Year 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980

Depth 84.5 74.5 94.0 80.0 74.0 64.0 60.0 51.5 58.5 88.0

Table 2.2: Annual maximum 1 day storm depths (mm) at Vryheid for the period

1951-1980.
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estimates of standard errors of the model averaging estimator, depending of what

is assumed. In general, this is a major issue when attempting to determine the

properties of model averaging estimators (and post-model-selection estimators).

The properties can only be determined under a specific assumption, e.g. that a

given model generated the observations. Limiting distribution and risk properties

of model averaging and post-model-selection estimators are given in Hjort and

Claeskens (2003).

Estimate-weight gamma normal lognormal exponential Weibull Gumbel

λ̂1 8.98 75.71 4.27 0.013 2.68 64.08

λ̂2 0.12 28.65 0.32 85.08 17.86

Wak
0.059 0.000 0.333 0.000 0.001 0.607

Table 2.3: Maximum likelihood estimates of parameters and Akaike weights.
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Distribution Caracteristic h = 1 h = 5 h = 10

gamma Estimate 95.75 123.75 134.62

Standard error 8.61 14.83 17.42

Mean 94.92 121.95 132.45

normal Estimate 99.82 124.70 133.38

Standard error 9.51 14.42 16.16

Mean 98.56 122.32 130.61

lognormal Estimate 93.73 123.98 136.56

Standard error 8.11 15.28 18.68

Mean 93.06 122.31 134.60

exponential Estimate 121.86 237.10 288.74

Standard error 8.23 16.02 19.51

Mean 121.56 236.52 288.04

Weibull Estimate 101.60 130.23 140.17

Standard error 9.17 15.12 17.39

Mean 100.28 127.36 136.72

Gumbel Estimate 90.87 119.62 132.00

Standard error 7.72 13.12 15.49

Mean 90.46 118.60 130.72

Model averaging Estimate 92.13 121.30 133.68

Standard error (perfect correlation) 39.52 19.30 18.81

Standard error (independance) 28.91 12.89 11.86

Table 2.4: Estimated design storms, their standard errors and Akaike model

averaging.



Chapter 3

Model Selection Uncertainty

3.1 Introduction

In most statistical modelling applications there are several models that are apriori

plausible. It is then usual for the analyst to apply some model selection proce-

dure, such as the Akaike information criterion (AIC) or the Bayesian information

criterion (BIC), to select a single model. Although they are not generally inter-

preted as such, tests of statistical hypothesis also constitute selection procedures.

For example in a regression analysis, the result of a test of the hypothesis that

a certain regression coefficient is equal to zero is often used to decide whether

the corresponding independent variable should be included or excluded from the

regression. If so, one is applying hypothesis testing to decide between two re-

gression models; one that includes the variable under consideration, and another

without that variable. Similarly “iterative model building” is a systematic model

selection procedure. In this thesis the term model selection procedure includes

all formal or heuristic criteria (e.g. exploratory data analysis) or methodology

that use the data to select one out of a set of competing models.

The fact that the selection was data-based is often ignored in the subsequent

analysis. One proceeds as though one had chosen the model apriori, i.e. without

reference to the data. In other words the model is regarded as having been known

in advance, whereas in fact it was not. This leads to invalid inference due to model

selection uncertainty. The important distinction here is between valid inference

after model selection and a naive approach that does not take into account the

selection step. The latter proceeds as though the selected model had been chosen

in advance. We show that leads to a variety of problems. Since most statistical

data analysis involve exploratory data analysis, the model selection uncertainty

problem extends to any such analysis.

31
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The selection procedure partitions the sample space into disjoints subsets that

determine which model is selected. The selection of a particular model implies

that the sample belongs only to that subset of the sample space which leds to its

having been selected. In theory it is possible to apply a conditional analysis (e.g.

Miller (2002)), but this is not easy. Secondly one would generally prefer to use

unconditional analyses.

We will examine model selection uncertainty from the point of view of decision

theory. We define a probability framework that clarifies the difficulties of deriving

the properties of post-model-selection estimators (PMSEs), as well as the fact

that a conditional analysis is incomplete; the natural approach in this framework

is the unconditional. It also allows us to appreciate the difficulty of computing

the distribution of post-model-selection estimators, the coverage probability of

confidence intervals, the p-value of test statistics, and goodness of fits test after

model selection.

Using a simple example of linear regression, we illustrate that no single post-

model-selection estimator dominates all others in terms of risk (Nguefack and

Zucchini, 2005). Thus it is not even possible to recommend any single criterion

(e.g. AIC (Akaike, 1973), BIC (Schwarz, 1978), Cp (Mallows, 1973), Hypothesis

testing, HQ (Hannan and Quin, 1979), etc.) for model selection that is to be fol-

lowed by inference based on the selected model. In the case of hypothesis testing,

there is no optimal level of significance level in the sense of having the smallest

risk. This is not surprising when one notes that, in this framework, hypothesis

testing, like the AIC, is a penalized likelihood criterion in which the penalty term

is a function of the significance level. The example also illustrates the potential

multimodal nature of post-model-selection estimators, their bias, variance and

risk. We identify the model selection probabilities as the key quantities in this

context. We also illustrate the behaviour of the post-model-selection estimators

as the sample size increases.

Perhaps surprisingly, the use of consistent model selection procedures does not

solve the problem. Thus, if the true model is one of the competing models, and if

one uses a consistent criterion which will asymptotically choose this true model,

the problem is still not solved. In this case the distribution of the PMSE does

converge to the distribution of the true model, but convergence is only pointwise.

This can be seen using an asymptotic efficiency approach which shows that the

normalized risk continues to grow with increasing sample size. Thus even under

such ideal assumptions the problem of model selection uncertainty remains.



3.2. Decision theory approach 33

3.2 Decision theory approach

Let A be a set of actions from which a statistician will take one action or a group

of actions after observing a “fact”. We refer to the fact as data, denoted by x. As

long as this fact is not observed, the data are random and are denoted by X. The

elements of A can be random or nonstochastic. An action is random if it depends

on the X. Whether actions are random or not, the action a(X) to be taken is

a function of the data, a(X) /∈ A. The properties of a(X) will therefore be

different from that of the elements of A. After the data have been observed, the

decision a(x) now belongs to the action space. One has to find properties of this

estimate. For example, let sample action A = {a1, a2}, only 2 actions. Suppose

that action a1 will be taken if it rains and action a2 will be taken otherwise. Here

X = {rain,sun} is the sample space, the random action a(X) /∈ A. Now suppose

it rains, observed data=x=rain, then a(x) = a1 ∈ A. The properties of a(x) are

not that of action a1. This means that as long as you do not have realisation of

the random process X, the decision is not known and is not in the sample action

A. One can only say that this decision is a mixture of elements of A. Suppose

that the sample action is itself random, A(X) = {a1(X), a2(X)}. The decision

a(X) 6= a1(X) and a(X) 6= a2(X), in fact two random variables Z and Y are

equal if P (Z = Y ) = 1.

For example, suppose that a lecturer wants to report student overall perfor-

mance to the university administration and he decides to report the mean if the

mean is greater than the median and the median otherwise. As long as he did

not have the grade, the decision is neither the mean nor the median. In general,

the random decision is not in A because P (a(X) = a) 6= 1, a ∈ A.

The order statistic of the random sample X1, . . . , Xn are the sample values

placed in ascending order and they are denoted by X(1), . . . , X(n). The order

statistics are then random variables that satisfies X(1) ≤ . . . ≤ X(n). That is

X(r) is the rth smallest Xi. Suppose that X1, . . . , Xn come from a continuous

population with cdf F (x) and pdf f(x). A well known result in statistics of the

pdf of X(r) is given by

f(r)(x) =
n!

(r − 1)!(n− r)!
fX(x)[FX(x)]r−1[1− FX(x)]n−r. (3.1)

From Equation (3.1), one can see that although for a realisation of the random

sample, any x(r) is an element of the realised sample, as random variable, its

density is completely different of the common density fX(x). Even asymptotically,

the 2 distributions are not similar. For example, from extreme value theory, it is

well known that, under some conditions, the asymptotic distribution of maxima
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is extreme value distribution (Frechet, Weibull or Gumbel distributions). In this

example, we consider a selection procedure being that of finding a particular

order statistics.

Example. Let X1, . . . , Xn be iid uniform(0,1), then f(x) = 1 and F (x) = x for

x ∈ (0, 1), E(X)=1/2 and Var(X)=1/12.

The PDF of the rth order statistic is

f(r)(x) =
n!

(r − 1)!(n− r)!
xr−1(1− x)n−r =

Γ(n + 1)

Γ(r)Γ(n− r + 1)
xr−1(1− x)(n−r+1)−1.

This means that X(r) ∼ beta(r, n− r + 1) distribution completely different from

uniform(0,1)=beta(1,1), EX(r) = r
n+1

and VarX(r) = r(n−r+1)
(n+1)2(n+2)

.

3.3 Problem, concepts and definitions

Let x = (x1, . . . , xn) be n realisations (data) of the random variables X =

(X1, . . . , Xn), and let Mt be the unknown true model that generated this pro-

cess. Suppose that an approximating (parametric) model Ma is assumed, that is

Xi ∼ fa(xi|θ). Let4 be the quantity of interest (4 is a function of the parameter

θ, 4 = h(θ)). Model uncertainty refers to the fact that the true model Mt is not

known. Let 4̂ be the estimator of 4 based on Ma. The bias of 4̂ is given by

Biasθ(4̂) = Eθ(4̂)−4.

Now, suppose that one selects from a set of K models M = (M1, . . . , MK)

and let S be a selection procedure. Let M̃(X|S,M) be the selected model and

4̃(X|S,M) the corresponding estimator of 4.

These estimators are defined by

M̃(X|S,M) =
K∑

k=1

Ik(X|S,M)Mk, (3.2)

4̃(X|S,M) =
K∑

k=1

Ik(X|S,M)4̂k, (3.3)

where Ik(X|S,M) = 1 if Mk is selected by S and 0 otherwise, 4̂k is the estimator

of 4 under model Mk. The estimator M̃(X|S,M) depends on the data and the

selection procedure through the random quantity Ik(X|S,M), therefore is now

random. We want to stress the dependence of selected model and PMSEs on S

and M. The random quantity Ik(X|S,M) is a 0-1 weight, so that 4̃(X|S,M)

is a weighted estimator. We refer to 4̃(X|S,M) as the post-model-selection
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estimator (PMSE). As random quantities, M̃(X|S,M) /∈ M and 4̃(X|S,M) /∈
{4̂1, . . . , 4̂K}, therefore their properties are different of those of any competing

model in the set M. The reason is that there is no evidence that

Pθ(M̃(X|S,M) = Mk) = Pθ(4̃(X|S,M) = 4̂k) = 1, for k = 1, . . . , K.

These probabilities depend on the true parameter θ.

Each estimator 4̂k is derived from the model Mk. The model from which the

PMSE is derived is not known. It is important to note that for computing the

properties of PMSE (e.g. distribution, mean, variance, MSE), one needs to as-

sume a true model Mt. Therefore, these properties depend on the true parameter

θ. There is still uncertainty about the choice of this model. It is precisely that

uncertainty that led to perform model selection. This means that the problem

involved in model selection is not only that of obtaining the properties, but also

the choice of an assumed true model from which to get these properties.

After the data have been observed, M̃(x|S,M) ∈ M and 4̃(x|S,M) ∈
{4̂1, . . . , 4̂K}. The point is to study estimators from Equation(3.3), not those

of the realisation X = x, corresponding to a fixed model. For example, even if

the 4̂k’s are unbiased for 4, this does not guarantee unbiasness of 4̃(X|S,M).

If one does not take into account the selected procedure, we will call the subse-

quent inference the naive inference, the selected model is then called the naive

model denoted Mk∗ . Let 4̂k∗ be an estimator of 4 based on the naive model.

We define the following quantity:

model selection difference bias=Biasθ(4̃(X|S,M))-Biasθ(4̂k∗),

model selection variance difference=Varθ(θ̃(X|S,M))-Varθ(4̂k∗),

model selection risk difference=MSEθ(4̃(X|S,M))-MSEθ(4̂k∗).

Model selection density difference and model selection distribution difference are

defined to be respectively the difference between the density and distribution of

PMSE and that of the naive estimator. The sign of these quantities is not a priori

known.

More generally, we refer to model selection difference inference as the differ-

ence inference between post-model-selection inference and the naive inference.

Model selection inference is likely to be present because Pθ(M̃(X|S,M) = Mk∗)

is likely to be less than 1, since one does not know the true parameter θ. But

our interest is not of reducing the model selection inference, since we do not con-

sider naive inference to be a valid inference. Instead, we are interested in looking

for better estimators than PMSEs (improving upon PMSE) or computing exact
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Figure 3.1: Densities comparing order statistic (solid line) with a naive distribu-

tion (dotted line).

properties PMSEs. The magnitude of model selection inference depends on the

selection procedure S. Under the naive approach, all the model selection differ-

ence quantities are assumed to be 0. A valid computation of these quantities can

be performed under the model M̃(X|S,M). When a close form exists for these

quantities, this will be a function of θ and one can estimate these quantities by

using a plug-in the estimator of θ. To illustrate the fact that PMSE is different

from any competing estimator, consider the following example of order statistic.

The naive inference consists of working with one Xi, that is, making inference

with uniform distribution. Model selection difference bias and variance are de-

rived as follow

model selection bias difference=EX(r) − 1/2,

model selection variance difference=VarX(r) − 1/12.

Graphical illustrations are given for n = 25 in Figure (3.1) and Figure (3.2).

For Figure (3.1), one can see the difference between the naive distribution (uni-

form) and the right distribution (beta-distribution) of order statistic, here viewed

as PMSEs. Similar remarks apply for the bias, and the variance. Model selec-

tion bias difference and model selection variance difference shown in (3.2) are not

equal to 0.
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Figure 3.2: Model selection bias difference and model selection variance difference

as a function of order statistic.

3.4 Graphical representation and partition

We refer to the term selection procedure as any method leading to the choice of a

model. Although, for computation reasons, we restrict our attention to parsimo-

nious selection criteria like AIC and also hypothesis testing, model selection itself

is complex and can be sometimes be performed as an iterative process which is

difficult to formalise. Usually, in practice, with data at hand and knowledge of

statistical theory, explorative data analysis (EDA) is performed. One can select

a model directly or iteratively.

3.4.1 Direct selection

A set of models is considered; one model is selected using a formal selection

criterion, inference about a quantity of interest is performed.

3.4.2 Iterative approach to model building

1. Model identification: the data and any available information are used to

suggest a class of parsimonious models to consider. One model is selected

using a selection criterion.

2. Using the selected model, parameters or any quantity of interest are esti-

mated, conditioning on the adequacy of the selected model.
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Model 1 is selected

Model 2 is selected

Model 3 is selected

Model 4 is selected

Partition of the sample space

Figure 3.3: A selection procedure partitions the sample space.

3. Diagnostic checking: the fitted model is then checked to assess whether it

is really adequate (for e.g. by analysing the residuals). If it is not, one

returns to step (1). This process continues until a “good model” is found,

then inference is then made for any quantity of interest.

From Equation (3.3), one can see that model selection partitions the sample space

(for the data) X into disjoints subsets. Let Xk(S,M) be the subset for which

model Mk is selected, namely,

Xk(S,M) = {X = (X1, . . . , Xn) : Mk is selected},

then

X =
K⋃

k=1

Xk(S,M), Xk(S,M) ∩ Xl(S,M) = ∅, ∀k, l, k 6= l. (3.4)

Let Xk∗(S,M) be the set for which the naive model Mk∗ is selected. Model

selection inference is likely to be present because Xk∗(S,M) is likely to be different

of X . For AIC as information criterion, the partition is

Xk(AIC,M) = {X = (X1, . . . , Xn) : AICk = min
k

(AIC1, . . . , AICK)}.

Graphically, Figure (3.3) shows how the sample space has been partioned, for

K = 4 models, where each model is selected on a unique subset.
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3.5 Comparing classical and model selection ap-

proaches for data analysis

The aim of this section is to illustrate that in applied statistical analysis, the

use of a single model after a preliminary analysis like exploratory data analysis

(e.g. histogram or any useful plot, etc.) is also an inference after (informal)

model selection procedure. For both formal and informal selection procedures,

the model selection uncertainty problem is hard to formalise.

3.5.1 Frequentist approach to statistical analysis

The frequentist approach to statistical analysis can be sketched as follows:

1. Quantity of interest 4.

2. Data x = (x1, . . . , xn).

3. Use x for preliminary analysis, e.g. exploratory data analysis (histogram,

any useful plots).

4. Regard the data as a realisation of a random process X = (X1, . . . , Xn),

X ∼ Mt (true unknown model).

5. From (3), assume X ∼ M̂θ (4 = h(θ)): there is model uncertainty, since the

true model is unknown, and model selection uncertainty since M̂θ depends

on the data.

6. Use an estimation method, e.g. MLE, to get θ̂(X), therefore 4̂(X).

7. Find the properties of 4̂, e.g., Eθ(4̂(X)), Varθ(4̂(X)), MSEθ(4̂(X)).

8. Use the data x to compute: 4̂(x), Êθ̂(x), V̂arθ̂(x),
ˆMSEθ̂(x), confidence inter-

val or other quantities.

From the above, the data are used in steps (3) and (8). From Step (4) to step

(7), the data are viewed as random (unconditional analysis). The step (3) is

viewed as an informal model selection procedure leading to a choice of the model

M̂θ. If step (3) is not performed, the only problem is model uncertainty since the

data are used once (only in step (8)). However, in statistical data analysis, one

typically does exploratory data analysis.
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3.5.2 Frequentist model selection approach

1. Quantity of interest 4.

2. Data x = (x1, . . . , xn).

3. Use x for preliminary analysis, e.g. exploratory data analysis (histogram,

any useful plots).

4. Regard the data as realisation of a random process X = (X1, . . . , Xn),

X ∼ Mt (true unknown model).

5. From (3), postulate M̂ = (M1, . . . , MK) alternative plausible (parametric

θ) models, 4 = h(θ).

6. Use any model selection criteria and data x to select a model (Model Un-

certainty) M̂(x) = Mk̂(x) ∈ M, k̂(x) ∈ {1, . . . , K} and perform inference

(step 7-step 9) ignoring model selection: model selection uncertainty.

7. Use an estimation method with the selected model, e.g. MLE, to get θ̂(X),

therefore 4̂(X).

8. Find the properties of 4̂, e.g., Eθ(4̂(X)), Varθ(4̂(X)), MSEθ(4̂(X)).

9. Use the data x: 4̂(x), Êθ̂(x), V̂arθ̂(x),
ˆMSEθ̂(x), confidence interval or other

quantities.

Here, model selection procedures are involved in step 3 (informal) and step 6

(formal, e.g. AIC). The data are used in steps (3), (6) and (9). In steps (3)

and (6), only random data X should be used, therefore M̂(X) = Mk̂(X) /∈ M̂,

k̂(X) /∈ {1, . . . , K}. This is difficult to perform, due to the partition of the sample

space.

One can see that even classical statistical data analysis involving exploratory

data analysis suffers also of the model selection uncertainty problem. This renders

the problem difficult to formalise.

3.6 Illustrative examples of PMSEs

3.6.1 Simple linear regression

Consider two models

M0 : Yi = β0 + εi



3.6. Illustrative examples of PMSEs 41

M1 : Yi = β0 + β1xi + εi, i = 1, . . . , n, where εi ∼ N(0, σ2).

Let θ = (β0, β1)
′. The objective is to estimate 4 = E(Y |x+) for a particular x+.

Selection:

use some criterion, e.g., AIC, BIC, Cp, HQ, hypothesis test, etc. Suppose, e.g.,

that AIC(M0) > AIC(M1), then M1 is chosen.

Estimation:

4̃pretest =

{
β̂0 if M0 is selected

β̂0 + β̂1x if M1 is selected.

The estimator and the prediction interval are computed assuming that the se-

lected model is fixed, i.e. known in advance.

Problem: the same data are used to choose the model and to make inferences.

Consider a simple linear regression model

Yi = β0 + β1xi + εi, i = 1, . . . , n, (3.5)

where the εi ∼ N(0, σ2), σ known (for simplicity); the results do not change much

for unknown σ.

The OLS estimators are given by

β̂1 =
Σn

i=1(xi−x)(yi−y)

Σn
i=1(xi−x)2

; β̂0 = y − β̂1x,

Cov(β̂0, β̂1) = −σ2x
Σn

i=1(xi−x)2
.

Now, let x+ be a future value of the covariate. The aim is to estimate the mean

4 = E(Y |x+).

Consider two models: M0 : 4 = β0 and M1 : 4 = β0 + β1x+.

3.6.1.1 Pre-test estimators

One method of selecting between the 2 models is by testing

H0 : β1 = 0 against

H1 : β1 6= 0.

This means that the model selection method here is the pre-test and is given by

4̃pretest =





β̂0
|β̂1|
v
1/2
1

< z1−α
2

β̂0 + β̂1x+
|β̂1|
v
1/2
1

≥ z1−α
2
,

(3.6)

where v1 = V ar(β̂1) = σ2

Σn
i=1(xi−x)2

, x = 1
n
Σn

i=1xi and z1−α
2

the quantile of N(0,1).

The partition of the sample space is

X0(S,M) = {X = (X1, . . . , Xn) : |β̂1|
v
1/2
1

< z1−α
2
},

X1(S,M) = {X = (X1, . . . , Xn) : |β̂1|
v
1/2
1

≥ z1−α
2
}.
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Properties of 4̃pretest.

The pre-test estimator (3.6) can be written as

4̃pretest = β̂0I0(
|β̂1|
v

1/2
1

< z1−α
2
) + (β̂0 + β̂1x+)I1(

|β̂1|
v

1/2
1

≥ z1−α
2
), (3.7)

where I0 and I1 are, respectively, indicator functions under M0 and M1 with

I0 + I1 = 1. It follows that

4̃pretest = β̂0 + β̂1x+I1(
|β̂1|
v

1/2
1

≥ z1−α
2
). (3.8)

For simplicity of computations, suppose x = 0, without loss of generality, since

linear regression model (3.5) can be parametrised as

Yi = λ0 + λ1(xi − x) + εi, i = 1, . . . , n, (3.9)

where λ0 = β0 + β1x and λ1 = β1. This means that Cov(β̂0, β̂1) = 0, also β̂0 and

β̂1 are normally distributed, therefore β̂0 and β̂1 are independant.

Let Z1 = β̂1−β1

v
1/2
1

, then Z1 ∼ N(0, 1). It follows that β̂1 = v
1/2
1 (Z1 + b1).

4̃pretest = β̂0 + x+v
1/2
1 (Z1 + b1)I1(|Z1 + b1| ≥ z1−α

2
) = β̂0 + x+β̃1.

4̃pretest = β̂0 + x+β̃1pretest, (3.10)

where β̃1pretest is the pretest estimator of β1 given by

β̃1pretest =





0 |β̂1|
v
1/2
1

< z1−α
2

β̂1
|β̂1|
v
1/2
1

≥ z1−α
2
.

(3.11)

That is

β̃1pretest = v
1/2
1 (Z1 + b1)I1(|Z1 + b1| ≥ z1−α

2
) = v

1/2
1 Apretest, (3.12)

where Apretest = (Z1 + b1)I1(|Z1 + b1| ≥ z1−α
2
).

Proposition 3.6.1 Under the model (3.5), the mean, bias, variance and MSE

of the pre-test estimator (3.7) are given by

E(4̃pretest) = β0 + x+v
1/2
1 [b1(Φ(r) + 1− Φ(q))− φ(r) + φ(q)],

Bias(4̃pretest) = x+v
1/2
1 [b1(Φ(r)− Φ(q))− φ(r) + φ(q)],

Var(4̃pretest) = σ2

n
+ x2

+v1[(b
2
1 + 1)(Φ(r) + 1− Φ(q)) + 2b1(−φ(r)

+φ(q))− rφ(r) + qφ(q)− E2(4̃pretest)],

MSE(4̃pretest) = Bias2(4̃pretest) + Var(4̃pretest),

(3.13)
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where b1 = β1

v
1/2
1

(standardized slope), r = −z1−α
2
− b1, q = z1−α

2
− b1, φ and Φ are

respectively the PDF and CDF of standard normal.

Proof. The properties of the pre-test estimator 4̃ are given by that of the pre-

test of the slope (3.26). This pre-test of slope determines the behaviour of 4̃.

We will then first compute the moment of β̃1pretest. From (3.10), the moments of

4̃ are given by

E(4̃pretest) = E(β̂0) + x+E(β̃1pretest) = β0 + x+E(β̃1pretest),

Bias(4̃pretest) = E(4̃pretest)− β0 − b1v
1/2
1 x+ = x+(E(β̃1pretest)− β1),

Var(4̃pretest) = V(β̂0) + x2
+Var(β̃1pretest) = σ2

n
+ x2

+Var(β̃1pretest).

(3.14)

|Z1 + b1| ≥ z1−α
2

then Z1 ≥ q or Z1 < r.

E(Apretest) =
∫ r

−∞(b1 + z)φ(z)dz +
∫∞

q
(b1 + z)φ(z)dz

= b1

∫ r

−∞ φ(z)dz +
∫ r

−∞ zφ(z)dz + b1

∫∞
q

φ(z)dz +
∫∞

q
zφ(z)dz

= b1(Φ(r) + 1− Φ(q)) +
∫ r

−∞ zφ(z)dz +
∫∞

q
zφ(z)dz .

Now
∫ r

−∞ zφ(z)dz = 1√
2π

∫ r

−∞ ze−z2/2dz = − 1√
2π

e−z2/2
∣∣r
−∞ = −φ(r).

Similarly,
∫∞

q
zφ(z)dz = φ(q).

Therefore, E(Apretest) = b1(Φ(r) + 1− Φ(q))− φ(r) + φ(q).

Var(Apretest) = E(A2
pretest)−E2(Apretest) =

∫ r

−∞(b1+z)2φ(z)dz+
∫∞

q
(b1+z)2φ(z)dz−

E2(Apretest)

= b2
1

∫ r

−∞ φ(z)dz+2b1

∫ r

−∞ zφ(z)dz+
∫ r

−∞ z2φ(z)dz+b2
1

∫∞
q

φ(z)dz+2b1

∫∞
q

zφ(z)dz+∫∞
q

z2φ(z)dz − E2(Apretest)

= b2
1(Φ(r) + 1− Φ(q)) + 2b1(−φ(r) + φ(q))− rφ(r) + Φ(r) + qφ(q) + 1− Φ(q)−

E2(Apretest).

Now, β̃1pretest = v
1/2
1 Apretest, then E(β̃1pretest) = v

1/2
1 E(Apretest) and Var(β̃1pretest) =

v1Var(Apretest). Replacing these values in (3.14) yields the result.

The important thing to note in these derivations is that the moment of the pretest

estimator depend on the data through v1=Var(β̂1) = σ2

Σn
i=1(xi−x)2

.

This means that only the quantity Sxx = Σn
i=1(xi − x)2 is useful. This explains

why PMSEs are not sensitive to the data, therefore, it does not matter whether

one uses real or simulated data. For multivariate regression, the important quan-

tity is (X ′X)−1. The properties of PMSEs do not change too much from one data

set to another. We will therefore mostly use simulated data in the illustration.
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3.6.1.2 Post-information theory approach

To choose between M0 and M1, let consider model selection procedure of the form

ICk = −2 log Lk(θ̂k) + hnpk, (3.15)

where Lk(θ̂k) = Lk is the likelihood value for model Mk, p1 = 2, p0 = 1.

Lemma 3.6.1 Under (3.15),

L1

L0

= e
1
2
(Z1+b1)2 , (3.16)

IC1 − IC0 = −(Z1 + b1)
2 + hn. (3.17)

Proof. IC1 − IC0 = −2(log L1 − log L0) + (p1 − p0)hn = −2 log{L1

L0
}+ hn.

log L1 = −n
2

log 2π − n
2

log σ2 − 1
2σ2 Σ

n
i=1(yi − β̂0 − β̂1xi)

2.

log L0 = −n
2

log 2π − n
2

log σ2 − 1
2σ2 Σ

n
i=1(yi − β̂0)

2.

log L1 − log L0 = 1
2σ2 [Σ

n
i=1{(yi − y)2 − (yi − β̂0 − β̂1xi)

2}]

= 1
2σ2 Σ

n
i=1[2(yi − y)− β̂2

1x
2
i ] = 1

σ2 Σ
n
i=1(yi − y)− 1

2σ2 Σ
n
i=1β̂

2
1x

2
i

= − 1
2σ2 β̂

2
1Σ

n
i=1x

2
i = − 1

2σ2 β̂
2
1

σ2

v1
= −1

2

β̂2
1

v1
= −1

2
(Z1 + b1)

2, yielding the result.

Corollary 3.6.1 Under the model (3.5) and (3.15), the mean, bias, variance

and MSE of PMSE are given by

E(4̃IC) = β0 + x+v
1/2
1 [b1(Φ(rn) + 1− Φ(qn))− φ(rn) + φ(qn)],

Bias(4̃IC) = x+v
1/2
1 [b1(Φ(rn)− Φ(qn))− φ(rn) + φ(qn)],

Var(4̃IC) = σ2

n
+ x2

+v1[(b
2
1 + 1)(Φ(rn) + 1− Φ(qn)) + 2b1(−φ(rn)

+φ(qn))− rnφ(rn) + qnφ(qn)− E2(4̃IC)],

MSE(4̃IC) = Bias2(4̃IC) + Var(4̃IC),

(3.18)

where rn = −h
1/2
n − b1 and qn = h

1/2
n − b1.

Proof. The model M1 is chosen if IC1 − IC0 < 0, using Lemma 3.6.1, the

partition of the sample space is
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X0(IC,M) = {X = (X1, . . . , Xn) : |Z1 + b1| = |β̂1|
v
1/2
1

< h
1/2
n },

X1(IC,M) = {X = (X1, . . . , Xn) : |Z1 + b1| = |β̂1|
v
1/2
1

≥ h
1/2
n }.

This means that the analysis above for the case pre-test is valid by replacing z1−α
2

by h
1/2
n . The result then follows from Proposition 3.6.1.

This is an important connection between hypothesis testing as model selection

method and information criterion of the form (3.15). For z1−α
2

= h
1/2
n (that is

hn = z2
1−α

2
), the two forms of model selection methods are equivalent for

α∗ = 2[1− Φ(h1/2
n )]. (3.19)

Special cases of (3.15) are AIC (hn = 2), BIC (hn = log n), HQ (hn = log log n).

E.g., for pre-test to be equivalent to AIC, α∗ = 0.16. For information criteria of

the form Equation (3.15),

hn =





z2
1−α

2
for Hypothesis Testing

2 for AIC

log(n) for BIC

log(log(n)) for HQ.

3.6.1.3 Post-Mallows Cp estimators

Cpk = RSSk

S2
K
− n + 2pk, where S2

k = RSSk

n−2
, K = 1, corresponding to M1 and RSS

are the residuals sum of squares.

Cp0 = RSS0

S2
1
− n + 2 and Cp1 = RSS1

S2
1
− n + 2.

Model Mk is chosen if Cp1 − Cp0 < 0.

Cp1 − Cp0 = (n − 2)RSS1−RSS0

RSS1
+ 2, because of normality,

(n−2)S2
1

σ2 ∼ χ2
n−2 and

are independent of RSS1 − RSS0, this gives that RSS1 − RSS0 and RSS1 are

independent. From likelihood computations in pre-test,

RSS1−RSS0 = − β̂2
1σ2

v1
= −(b1+Z1)

2σ2, therefore Cp1−Cp0 = (n−2) (b1+Z1)2

χ2
n−2

+2 =

(n−2)
χ2

1(b21)

χ2
n−2

+2 = −F (1, n−2, b2
1)+2, a non-central F distribution with 1 and n-2

degrees of freedom with non-central parameter b2
1. The partition of the sample

space is then

X0(Cp,M) = {X = (X1, . . . , Xn) : F (1, n− 2, b2
1) ≤ 2},

X1(Cp,M) = {X = (X1, . . . , Xn) : F (1, n− 2, b2
1) > 2} .

The behaviour of post-Cp model selection can be derived as above (pre-test)

where Apretest is replaced. That is

β̃1Cp = v
1/2
1 (Z1 + b1)I1(F (1, n− 2, b2

1) > 2) = v
1/2
1 ACp,

where ACp = (Z1 + b1)I1(F (1, n− 2, b2
1) > 2).
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Figure 3.4: Mean, bias, variance and MSE of PMSEs as function of b1, pre-test

(solid line), post-BIC (dotted line), post-AIC (dashed line), post-HQ (broken

line).

3.6.1.4 Optimal selection criteria and optimal significance level α

The properties of PMSEs are given in Figure (3.4). For all model selection crite-

ria, when |b1| is large enough, |b1| > 4, the variance, bias and MSE of PMSEs are

close to the values corresponding to those of the model M1. The performances

of PMSE are similar to that of the larger model (properties of MLE full model,

the same variance, same MSE and unbiased). This is because model M1 is likely

to be selected for |b1| is large enough.

Maximum variance and maximum MSE are smaller for post-HQ, followed by

post-AIC, post-BIC and pre-test for |b1| large, and the reverse is observed for |b1|
small. The bias is always smaller for post-HQ, followed by post-AIC, post-BIC

and pre-test. As the penalty hn decreases, the bias also decreases. This means

that if a choice is based on the bias, one should choose the criterion with the

smaller penalty. However, this is only true for this simple example. In general, it

is not always possible to choose among criteria based on their bias. Post-AIC and

Cp have the same performance and are better than other criteria for |b1| large

and worse for |b1| small. Pre-test estimators just have the reverse effect. The risk

of post-BIC estimator is between that of post-AIC risk and pre-test risk. The

worse performance of post AIC near 0 is due to overfitting properties of AIC. The

variance of the prediction is 1.13. From Figure (3.5), the MSE of all the criteria

cross, meaning that there is no single criterion that dominates all the others in

terms of MSE.
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Figure 3.5: MSE of PMSEs as function of b1.
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Figure 3.6: Mean, bias, variance and MSE of pre-test as function of b1 for different

values of α ∈ [0.01 (solid line), 0.02 (dashed line), 0.05 (dotted line), 0.10 (broken

line), 0.15, 0.20].
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As can be seen in Figure (3.6), as the α increases, the bias gets smaller

uniformly. For the variance and MSE, this is only valid when the parameter is

too large, namely when the null hypothesis is clearly rejected. For b1 small, the

variance and MSE increase as α gets larger. This means that, if interest is focused

on unbiased estimation, one should choose α reasonably large. But this shows

that, in terms of risk, there is no optimal value of α, as illustrated in Figure (3.6).

In general, there is no optimal choice of the penalty h∗ from the set {h ∈
R : h > 0} to get a criterion that dominates all the others in terms of MSE

(all the risks cross). For this example, when the penalty is small, the full model

is likely to be selected, therefore the risk function is smaller for |b1| larger and

larger for |b1| smaller. The reverse happens when the penalty is larger. This

observation explains why the risks will cross, making the choice of a particular

criterion as best difficult. That there is no optimal level of significance, this fact

is not surprising since pre-testing is equivalent to using an information criterion

of the form (3.15).

3.6.2 Multiple linear regression

Consider the following multiple regression model

Y = X1β1 + . . . + Xpβp + ε = Xβ + ε, (3.20)

where Y is n × 1, X = (X1, . . . , Xp) is n × p, β = (β1, . . . , βp)
′ is p × 1, and

ε ∼ Nn(0, σ2In). Suppose that interest is focused on the estimation of the mean

4 = E(Y ) = Xβ. This means that it is enough to have an estimate of the β.

Suppose that one proceeds with hypothesis testing, and then based on the

outcome, estimation is performed. Consider the following testing problem

H0 : Rβ = r against H1 : Rβ 6= r, (3.21)

where R is m × p known matrix with rank m and r is m × 1 vector. This

corresponds to a choice between two models: unrestricted model (model M1)

and a restricted model (model M0). Let β̂0 and β̂ be restricted and unrestricted

estimators of β and let A = X ′X; δ = Rβ − r, Then under H0 : δ = 0.

The OLS estimators of β under model M1 and model M0 are given by

β̂ = (X ′X)−1X ′Y ,

β̂0 = β̂ − A−1R′(RA−1R′)−1(Rβ − r).

The OLS estimator of σ2 under M1 is given by σ̂2 = (Y−Xβ̂)′(Y−Xβ̂)
n−p

.

Let F = (Rβ−r)′(RA−1R′)−1(Rβ−r)
mσ̂2 and λ = δ′(RA−1R′)−1δ

2σ2 .

Then under H0, F ∼ F (m,n− p) and under H1, F ∼ F (m,n− p, λ) non-central
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F with non-centrality parameter λ.

The PMSE is 4̃ given by

4̃pretest =

{
Xβ̂0 F < F 1−α(m,n− p)

Xβ̂ F ≥ F 1−α(m,n− p),
(3.22)

where F 1−α(m,n− p) is the 100(1−α)th percentile of F distribution with m and

n− p degree of freedom. Since the behaviour of 4̃ is given by that of 4̃

β̃ =

{
β̂0 F < F 1−α(m,n− p)

β̂ F ≥ F 1−α(m,n− p).
(3.23)

We will restrict analysis to the properties of β̃. These properties are derived

in Judge and Bock (1978). Let W be a positive weighted matrix, a weighted

quadratic loss for an estimator 4̂ is

L(4, 4̂) = (4̂ −4)′W (4̂ −4)

and the risk of 4̂ is Risk(4̂)=E[L(4, 4̂)].

We define the following quantities:

fλ(s) = Prob(F (m + s, n− p, λ) < F 1−α(m,n−p)m
m+s

),

ζ = δ′(RA−1R′)−1RA−1WA−1R′(RA−1R′)−1δ
2σ2 ,

U = RA−1WA−1R′(RA−1R′)−1.

The properties of the estimators under M0, M1 and the PMSEs are given by

Bias(β̂0) = −A−1R′(RA−1R′)−1δ ,

Bias(β̃) = −Prob(F (m + 2, n− p, λ) < F 1−α(m,n−p)m
m+2

)A−1R′(RA−1R′)−1δ,

Bias(β̂) = 0,

Var(β̂0) = σ2[A−1 − A−1R′(RA−1R′)−1RA−1],

Var(β̂) = σ2A−1,

Var(β̃) = σ2A−1 + σ2fλ(2)A−1 − [2fλ(2)− fλ(4)

+ f 2
λ(2)][A−1R′(RA−1R′)−1δ][δ′(RA−1R′)−1RA−1],

Risk(β̂0) = σ2tr(A−1W )− σ2tr(U) + 2σ2ζ ,

Risk(β̂) = σ2tr(A−1W ) ,

Risk(β̃) = σ2tr(A−1W )− σ2tr(U)[fλ(2) + 2(fλ(4)− 2fλ(2)) ζ
tr(U)

].
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Figure 3.7: Risk bounds of the pre-test estimator as a function of the non-

centrality parameter λ for different level of significance α.

For simplicity, the risks of these estimators are computed only for orthogonal

designs, that is for A = X ′X = Ip = W . The risk of β̃ is then the same as that

of 4̃ since E[(4̃ −4)′(4̃ −4)] = E[(Xβ̃ −Xβ)′(Xβ̃ −Xβ)]

= E[(β̃ −Xβ)′X ′X(β̃ − β)] = E[(β̃ −Xβ)W (β̃ − β)] = Risk(β̃).

That is the simple risk of 4̃ is the weighted risk of β̃.

Figure (3.7) illustrates the risk for multiple regression for an orthogonal de-

sign, n = 30 and m = p = 3 (intercept and two covariates). For large values of

the non-centrality parameter λ corresponding to the rejection of the null hypoth-

esis, the risk gets smaller as the significance level increases (the maximum risk

also decreases), as illustrated in Table (3.1). For very large values of λ, the risks

are close to that of full model (MLE estimator), the horizontal line in Figure

(3.7). However, for smaller values of λ, corresponding to the non-rejection of the

null hypothesis, as the significance level increases, the risk gets larger. Therefore,

there is no optimal level of α that guarantees that its risk will uniformly dominate

α 0.01 0.05 0.10 0.20 0.30

λ∗ 9.25 6.39 5.29 4.30 3.77

risk∗ 10.70 6.62 5.12 3.80 3.13

Table 3.1: Significance level α and the corresponding maximum risk and λ.
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the other risks (all the risks cross).

3.6.3 Testing for a given variance

Consider a modification of the multiple linear regression (3.20) by allowing a pos-

sibility for known or unknown variance. Consider two models M0 corresponding

to model (3.20) with known variance, that is σ2 = σ2
0 and M1 to a model (3.20).

If σ2 = σ2
0, then M0 is selected, otherwise model M1 is selected. That is testing

H0 : σ2 = σ2
0 against H1 : σ2 6= σ2

0.

We have that T= (n−p)σ̂2

σ2
0

∼ χ2
n−p. One can base the decision on the test statistic

T and reject H0 if T is large and does not reject H0 if T is smaller. This can

be done by finding two critical points t1 = χ2
α/2(n − p) and t2 = χ2

1−α/2(n − p)

corresponding to (100α/2)th and 100(1 − α/2)th percentiles of the chi-squared

distribution with n− p degrees of freedom.

The behaviour of any quantity of interest after this test is governed by that of

the PMSE σ̃2, whose properties and risks are studied in Judge and Yancy (1986)

and expressed below

σ̃2 =

{
σ2

0 t1 < (n−p)σ̂2

σ2
0

< t2

σ̂2 otherwise,
(3.24)

where σ̂2 = (Y−Xβ̂)′(Y−Xβ̂)
n−p

.

The risk of σ̃2 under square error loss is

Risk(σ̃2) = 2σ4

n−p
+ σ4[(1/δ2 − 2/δ)P (t1/δ < χ2

n−p < t2/δ)

+ 2P (t1/δ < χ2
n−p+2 < t2/δ)− n−p+2

n−p
P (t1/δ < χ2

n−p+4 < t2/δ)], with δ = σ2

σ2
0
.

Risk(σ̂2) = 2σ4

n−p
, the risk of MLE.

To facilitate the comparison between risk of MLE and pre-test risk, we divide the

risk by that of MLE, so the MLE risk is normalized to 1. From Figure (3.8) with

σ0 = 1, n = 30, p = 2 and α = 0.05, we see that the pre-test estimator is biased

and has higher variance and MSE unless δ is larger (rejection of null hypothesis),

MLE risk and pre-test risk are close for δ close to 1, H0 not rejected and MLE is

better than pre-test in terms of variance and MSE.

3.6.4 Testing for a given mean

Let Xi ∼ N(µ, σ2), i = 1, . . . , n, σ known and interest is focused on choosing a

model M0 : µ = µ0 and M1 : µ 6= µ0.

Suppose one uses hypothesis testing H0 : µ = µ0 and H1 : µ 6= µ0. We can

assume µ0 = 0 without loss the generality since in the case µ0 6= 0, transform
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Figure 3.8: Mean, bias, variance and MSE functions of the pre-test estimator as

a function δ for α = 0.05.

λ = µ− µ0 and test for λ = 0.

The decision is then the following: choose M0 if |µ̂|
v1/2 < z1−α

2
and M1 otherwise,

where µ̂ = X and v = σ2/n. The PMSE for µ is then given by

µ̃ =

{
0 |µ̂|

v1/2 < z1−α
2

µ̂ |µ̂|
v1/2 ≥ z1−α

2
.

(3.25)

Let Z = µ̂−µ
v1/2 , δ = µ

v1/2 , δ̂ = µ̂
v1/2 , and δ̂ = Z + δ and Z ∼ N(0, 1). Equation (3.25)

can then be written as

µ̃ = v1/2(Z + δ)I(|Z + δ| ≥ z1−α
2
) = v1/2Am, (3.26)

where Am = (Z + δ)I(|Z + δ| ≥ z1−α
2
).

The properties of µ̃ can then be derived as Equation (3.11).

For a test of proportion, let Xi ∼ Bernouilli(π), i = 1, . . . , n. Choosing between

2 models M0 : π = π0 and M1 : π 6= π0, using the large sample approximation,

Z = π̂−µ0

v1/2 −→ N(0, 1), with v = π0(1−π0)
n

, properties of PMSEs for µ are given as

above.

Figure (3.9) (n = 20 and σ = 1) compares pre-test estimators for various

values of α. For any data set for testing for normality, the behaviour is the same as

illustrated in the case of simple linear regression. The horizontal line corresponds

to the properties of unbiased MLE X = µ̂. The pre-test for proportion yields the

same behaviour.
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Figure 3.9: Mean, bias, variance and MSE of pre-test as function of true stan-

dardised mean δ for different values of α ∈ [0.01 (solid line), 0.02 (dashed line),

0.05 (dotted line), 0.10 (broken line), 0.15, 0.20].

3.7 Partition of the sample space

Consider the partition of the sample space given in Equation (3.4). Let X̃ (X|S,M)

be the (random) selected subset. Let E an arbitrary even. From the law of total

probability,

Pθ(E) = ΣK
k=1Pθ(E|X̃ (X|S,M) = Xk)Pθ(X̃ (X|S,M) = Xk), (3.27)

where Pθ(X̃ (X|S,M) = Xk) is the probability of subset Xk, i.e. the probability

of selecting Mk. Pθ(E|X̃ (X|S,M) = Xk) is the probability of the event E given

that model Mk is selected. To simplify the notation, we denote by X̃k(X|S,M)

the event ”X̃ (X|S,M) = Xk”, that is the event that model Mk is selected. Later

we will also use the simpler notation X̃k.

3.7.1 Model selection probabilities

We will refer to Pθ(X̃k(X|S,M)) as the model selection probability for model Mk,

given as

Pθ(X̃k(X|S,M)) = Pθ(M̃(X|S,M) = Mk) = Eθ(Ik(X|S,M)). (3.28)

The subscript is needed to indicate that this is a function of the parameter θ.

For the simple linear model and pre-test selection procedure, the probability of
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Figure 3.10: Probability of selecting model M1 for different selection procedures

as function of standardized slope b1, α = 0.05.

selecting M1 is given by

Pθ(M̃(X|pre-test,M) = M1) = Eθ(I1(X|pre-test,M))

=P(rejecting H0)=P (Z > q or Z < r)

=Φ(r) + 1− Φ(q).

Note that Pθ(M̃(X|pre-test,M) = M1) is simply the power of the test.

For an information criterion of the form Equation (3.15), the probability of

selecting M1 is Pθ(M̃(X|ICn,M) = M1) = Eθ(I1(X|ICn,M))

=P (Z > qn or Z < rn)=Φ(rn) + 1− Φ(qn).

From Figure (3.10) with α = 0.05, as can be expected, for |b1| large, the

probability is almost 1. One is likely to choose model M1. For any b1, this

probability is smaller for pre-test, followed by post-BIC, post-AIC and post-

Cp. For b1 = 0, this probability Φ(−z1−α/2) + 1 − Φ(z1−α/2) for pre-test and

Φ(−h
1/2
n ) + 1 − Φ(h

1/2
n ) for information criteria of the form (3.15). One would

have expected these probabilities to be 0. However, due to overfitting properties

of such model selection criteria for finite sample size, this is not the case. As

is already known, AIC and Cp “overfit” more than hypothesis testing and BIC.

When the significance level α gets small, for |b1| = 0, the probability is near

0, indicating the underfitting properties of hypothesis testing. That is BIC and

pre-test for α smaller tend to select models with fewer parameters.

The partition of the sample space that leads to Equation (3.27) is not only

relevant to model selection problems, but also to any decision problem, as has

been explained in the decision part.
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Let k∗ be the index corresponding to the naive model. Then Equation (3.27) can

be written as

Pθ(E) = Pθ(E|X̃k∗)Pθ(X̃k∗)︸ ︷︷ ︸
(1)

+ ΣK
k=1,k 6=k∗Pθ(E|X̃k)Pθ(X̃k)︸ ︷︷ ︸

(2)

. (3.29)

By using the naive procedure, one assumes (implicitely) that Pθ(X̃k∗) = 1, there-

fore that (2) is zero; one then uses only the (unconditional) distribution of Mk∗ .

Some particular cases correspond to the correct distribution of PMSEs, the com-

putation of p-values, the coverage probability and the consistency of PMSE, each

being an event.

3.7.2 Distribution of PMSEs

From (3.27), the (unconditional) distribution of 4̃(X|S,M) is given by

Pθ(4̃(X|S,M) ≤ s) = ΣK
k=1Pθ(4̃(X|S,M) ≤ s|X̃k)Pθ(X̃k), (3.30)

i.e. a mixture of conditional distributions Pθ(4̃(X|S,M) ≤ s|X̃k). The moments

of this estimator can be computed, provided that they exist.

3.7.2.1 Distribution of likelihood ratio

Consider an information criterion of the form of Equation (3.15), for simplicity

with fixed h (for e.g., h = 2 for AIC), and let M0 be the true model.

ICk − IC0 = −2 log[Lk(θ̂k)

L0(θ̂0)
] + h(pk − p0). It is well known that 2 log[Lk(θ̂k)

L0(θ̂0)
] tends

in distribution to χ2 with (pk− p0) degrees of freedom, as n goes to ∞. However,

if a selection criterion is applied to get θ̃ = θ̂k̂ with the corresponding model Mk̂,

then the distribution of 2 log[
Lk̂(θ̂k̂)

L0(θ̂0)
] is not necesarily chi-squared and is not easy

to compute. Therefore the distribution of ICk̂ − IC0 is not easily obtained; it is

likely to be a mixture.

3.7.2.2 The simple linear regression example

Let Z0 = β̂0−β0

v
1/2
0

, then Z0 ∼ N(0, 1), then β̂0 = v
1/2
0 (Z0 + b0), where b0 = β0

v
1/2
0

(standardized intercept), v0 = σ2

n
.

From Equation (3.7), the pre-test estimators,

4̃pretest = v
1/2
0 (Z0 + b0) + x+v

1/2
1 (Z1 + b1)I1(|Z1 + b1| ≥ z1−α

2
), (3.31)
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Figure 3.11: Densities for PMSEs for b1 = 0.2.

where Z0 and Z1 are independent normal since β̂0 and β̂1 are independent.

For model selection criterion of the form of Equation (3.15), PMSEs (e.g. AIC,

BIC) are given by

4̃IC = v
1/2
0 (Z0 + b0) + x+v

1/2
1 (Z1 + b1)I1(|Z1 + b1| ≥ h1/2

n ) (3.32)

and for Mallows Cp, PMSE is given by

4̃Cp = v
1/2
0 (Z0 + b0) + x+v

1/2
1 (Z1 + b1)I1(F (1, n− 2, b2

1) > 2). (3.33)

Figure (3.11) illustrates the non-normal and mixture nature of PMSEs for

b1 = 0.1. Figure (3.12) displays different finite sample distributions for the post-

AIC estimation. Other PMSEs have similar behaviour. As |b1| gets larger, the

distribution becomes uni-modal. This is because, it is likely that model 1 will be

chosen, because the probability of selecting model M1 approaches one for large

values of |b1|. However, since one does not know the true value of the parameter,

from Equation (3.30), PMSEs are in general not normal.

3.7.3 Coverage probabilities

Let

CI = [4̃(x|S,M)− z1−α/2Var1/2[4̃(x|S,M)], 4̃(x|S,M) +

z1−α/2Var1/2[4̃(x|S,M)]]

be a naive confidence interval for 4 under normality assumption, and 1− α the

nominal level for each model been considered as true model, that is, Pk(θ ∈ CI) =
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Figure 3.12: Densities for post-AIC estimators for different values of b1.

1−α, under the use of model Mk. The event to consider here is ”4 ∈ CI”: from

Equation (3.30), the coverage probability of such interval is given by

Pθ(4 ∈ CI) = ΣK
k=1Pθ(4 ∈ CI|X̃k)Pθ(X̃k), (3.34)

where Pθ(4 ∈ CI|X̃k) is the conditional coverage probability. The nominal

(naive) coverage for model Mk is Pk(4 ∈ CI) = 1− α.

3.7.4 P-value and goodness of fit tests after model selec-

tion

Consider an hypothesis of the form

H0 : X ∼ g(x|θ), (3.35)

and a sample (data) x. The question is whether data x are compatible with H0.

To investigate this compatibility, one chooses a statistic 4(X). Suppose that and

large values of 4(X) indicate that data are less compatible with H0. A common

measure of compatibility is the p-value defined by p-value=Pθ(4(X) ≥ 4(x)).

The null hypothesis is rejected for smaller values, for e.g. 0.05.

We are concerned with the choice of the statistic4(X). In general4(X) depends

on the estimator θ̂ of θ. Suppose that one considers a set of models M =

(M1, . . . , MK), uses a model selection criterion, for e.g. AIC, to select a model

and then estimate θ under that model. The statistic is then 4̃(X|S,M) =

h(θ̃(X|S,M)), where θ̃(X|S,M) is the PMSE of θ. For e.g., a set of model can be



58 Chapter 3. Model Selection Uncertainty

under H0: θ ∈ Θ0 and H1: θ ∈ Θc
0 (complement of Θ0), and respective estimators

are θ̂0 and θ̂1, and one model is selected. Consider the event “4̃(X|S,M) >

4̃(x|S,M) = 4k∗(x)”,4k∗(x) being the observed statistic for the selected model.

The probability of this event is given by

Pθ(4̃(X|S,M) > 4k∗(x)) = ΣK
k=1Pθ(4̃(X|S,M) > 4k∗(x)|X̃k)Pθ(X̃k) (3.36)

where the probability is computed with respect to H0. Equation (3.36) gives the

valid p-value after model selection. A p-value of 1 will indicate that model g

fits the data well. If one does not compute p-value as in Equation (3.36), the

resulting decision could be wrong. This is not uncommon in applied work where

one first uses a selection criterion (e.g. AIC) to select a model and then tests

whether this model fits the data.

3.7.5 Consistency and PMSEs

The consistency of PMSEs is given by the event “|4̃(X|S,M)−4| > ε”, ε > 0.

The probability of this event is given by

Pθ(|4̃(X|S,M)−4| > ε) = ΣK
k=1Pθ(|4̃(X|S,M)−4| > ε|X̃k)Pθ(X̃k). (3.37)

The estimator 4̃(X|S,M) is consistent if

lim
n→∞

Pθ(|4̃(X|S,M)−4| > ε) −→ 0, ∀ε > 0 (3.38)

and uniformly consistent if

lim
n→∞

sup
θ∈Θ

Pθ(|4̃(X|S,M)−4| > ε) −→ 0, ∀ε > 0. (3.39)

The point is that it is hard to check for consistency and uniform consistency

of 4̃, as can be seen in Equation (6.7). Even, if for each model considered as

true, estimators are consistent, there is no such guarantee that this holds for the

PMSE.

3.8 Conditional analysis

A conditional analysis involves conditioning the analysis on the selected subset.

For instance, suppose that the selected subset is Xk∗ . The estimator to study is

the conditional estimator 4̃|Xk∗ . Such conditional analysis is studied by Miller

(2002) and model selection uncertainty is defined with respect to this conditional
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estimator. From this point of view, for any event E that can appear in any subset

Xk, its probability is given by

Pθ(E) = ΣK
k=1Pθ(E|X̃k)Ik(X|S,M). (3.40)

After the data have been observed, one computes Pθ(E|X̃k∗), the conditional

probability given subset X̃k∗ . One may argue that after data have been observed,

the relevant subset to consider is Xk∗ , but it is important to take into account

the probability of selecting this particular subset, which is unlikely to be one.

Equation (3.27) explains why although this approach is better than the naive

approach, it is incomplete and does not cover all aspects of the problem. In fact,

Equation (3.29) can be written as

Pθ(E) = Pθ(E|X̃k∗)︸ ︷︷ ︸
(1)

Pθ(X̃k∗)︸ ︷︷ ︸
(2)

+ ΣK
k=1,k 6=k∗Pθ(E|X̃k)Pθ(X̃k)︸ ︷︷ ︸

(3)

. (3.41)

Using a conditional analysis involves using only (1) and ignoring (2) and (3).

3.9 The use of consistent model selection crite-

ria

3.9.1 Describing consistent criteria

Consider Equation (3.29) and suppose that there exists a subset such that the

probability of selecting this subset is 1. Let k0 denoting the index of that subset

and assume that the true model is one of the competing models. If a consistent

criterion is used to select this true model, we have then the following

Pθ(E) = Pθ(E|X̃k0)Pθ(X̃k0)︸ ︷︷ ︸
(1)

+ ΣK
k=1,k 6=k0

Pθ(E|X̃k)Pθ(X̃k)︸ ︷︷ ︸
(2)

. (3.42)

Clearly, if Pθ(X̃k) = 1, then (2) is equal to 0.

Let A and B be two events such that P (B) = 1 and P (A|B) > 0, then P (A|B) =

P (A). Then applying this to Equation (3.42), Pθ(X̃k0) = 1, Pθ(E|X̃k0)Pθ(X̃k0) =

Pθ(E), assuming that Pθ(E|X̃k0) > 0. This means that inference can be based on

the selected model M0 since e.g., the distribution of PMSE and naive estimator

will be the same.

This is in fact true if Pθ(X̃k0) does not depend on the true parameter (in general

not true for every θ). For each subset Xk, one can define a parameter space Θk

for which the probability of landing on this subset is 1, namely

Θk = {θ ∈ Θ : Pθ(X̃k) = Pθ(M̃(X|S,M) = Mk) = 1}. (3.43)
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That the probability of selecting the true model is 1 for all values of the parameter

space is in general difficult to achieve. E.g., suppose that the selection criterion

is the pre-test with H0 the null hypothesis and H1 the alternative hypothesis.

Suppose that the true model is the one under H1. One would like the power of

the test to be close to 1 for parameter under H1 and close to 0 for parameter

under H0. One cannot expect the power of the test be 1 under H0 and H1. In

practice, Θk can’t be known (it can also be an empty set) and is unlikely to be

Θ.

For consistent selection procedure, for every θ, Pθ(X̃k0) → 1 as n −→ ∞. That

is we have, for every θ, P(θ,n)(X̃k0) → 1 as n −→∞ (pointwise convergence).

From Equation (3.42), one can then use the asymptotic distribution of the selected

(naive) model, M∗, namely

n1/2(4̃(X|S,M)−4) −→d G∗
θ, (3.44)

where G∗
θ is the asymptotic distribution the normalised naive estimator n1/2(4∗−

4) .

3.9.2 Asymptotic efficiency

A convenient approach to compare performance of estimators for large sample

sizes is to study the normalised risks of these estimators. Let X ∼ f(x|θ) and

4 = h(θ), the quantity of interest (function of parameter θ). Let 4̂1 and 4̂2 be

two estimators of 4 with respective risks R1n and R2n. One could compare their

normalised risks nrR1n and nrR2n, r > 0, by finding limn→∞ nrRin.

Such approaches are used in Lehmann (1983), Lehmann and Casella (1998, 2001).

Let 4̃(X|S,M) be a PMSE corresponding to a choice between the two estimators

4̂1 and 4̂2. Let Rn(4̃(X|S,M),4) = E(nd(4̃(X|S,M) −4)2 the normalised

risk of 4̃(X|S,M), we choose d = 1/2. Suppose that

lim
n→∞

Rn(4̃(X|S,M),4) = g(θ), ∀θ ∈ Θ.

The point is that there may exist a sequence of parameters θn, therefore 4n for

which

lim
n→∞

Rn(4̃(X|S,M),4n) = ∞.

It follows that

lim
n→∞

sup
Γ

Rn(θ̃(X|S,M),4) = ∞.

In this case, the convergence will not be uniform.
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Figure 3.13: Densities for Hodges’ estimator, n1/2(θ̃ − θ) for θ = 0.5 for various

values of the sample size.

3.9.3 The Hodges’ estimator example

Let θ̂ be the mean of a sample size n from N(θ, 1) distribution. For this example,

4 = θ. Define another estimator θ̃ by

θ̃ =

{
θ̂ if |θ̂| > n−1/4

0 otherwise.
(3.45)

Note that Lehmann (1983), Lehmann(1999), Lehmann and Casella (1998, 2001)

consider instead

θ̃ =

{
θ̂ if |θ̂| > n−1/4

aθ̂ otherwise,

where with |a| < 1. They were concerned to illustrate that Hodges’ estimators

were superefficient. These are estimators that are asymptotically normal, but

whose asymptotic variance is not greater than the inverse of the amount of Fisher

information at some points.

We use the simpler estimator (3.45), since the main point to be illustrated does

not change.

The idea of this estimator is that if θ̂ is close to 0, then it is set to exactly

0, otherwise it does not change. The cutoff value n−1/4 is chosen in such a way

that its limit behaviour is the same as that of θ̂ for θ 6= 0, but one tries to

improve at θ = 0. The estimator θ̃ can be viewed as a PMSE. Figure (3.13) gives
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Figure 3.14: Sample size effects on bias for Hodges’ estimator as a function of

normalised θ, n ∈ {50 (solid line), 400 (dashed line), 1000 (dotted line), 5000

(broken line)}.

the density of θ̃ for different values of n. It can be seen that its distribution is

a mixture for small sample size, but as the sample increases, this distribution

tends to be unimodal. It can be shown that limn→∞ P (θ̃ = θ̂) = 1 for θ 6= 0, and

limn→∞ P (θ̃ = 0) = 1 for θ = 0, for example Lehmann (1999), Van der Vaart

(2000).

Moreover, we have that

n1/2(θ̃ − θ) −→d N(0, g(θ)), (3.46)

where g(θ) = 1 when θ 6= 0 and g(θ) = 0 for θ = 0. At a first glance, θ̃ seems

to be an improvement over θ̂. Let look at its normalised risk. From Lehmann

(1983), Lehmann and Casella (1998, 2001), limn→∞ Rn(θ̃, θ) = 1 for θ 6= 0 and

limn→∞ Rn(θ̃, 0) = 0. Consider θn = n−1/4, then limn→∞ Rn(θ̃, θn) = ∞, therefore

limn→∞ supΘ Rn(θ̃, θn) = ∞.

Figures (3.14) and (3.15) illustrate that the maximum normalised bias, hence

MSE of θ̃ increases without bound as the sample size increases. This is the reason

why consistent selection criteria do not solve the model selection uncertainty

problem.

Unlike the case for fixed θ, Figure (3.16) shows that for θn = n−1/4, no matter

how large the sample size, the density of PMSE Hodges’ estimator is bimodal.

That is, for fixed true paramater θ, as illustrated in (3.13), the density is unimodal
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Figure 3.15: Sample size effects on MSE for Hodges’ estimator as a function of

normalised θ, n ∈ {50 (solid line), 400 (dashed line), 1000 (dotted line), 5000

(broken line)}.
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Figure 3.16: Densities for Hodges’ estimator, n1/2(θ̃ − θn) for θn = n−1/4 for

various values of the sample size.
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Figure 3.17: Sample size effects on model selection probabilities as a function of

β1. n ∈ {60 (solid line), 500 (dashed line), 1000 (dotted line)}.

as the sample size increases, but this is different when the true parameter depends

on the sample size, e.g. θn = n−1/4. Figure (3.16) shows how the non-uniformity

problem manifests for the density. Also, if θn is chosen in such a way that θn → 0,

n1/2θn →∞ and n1/4θn →∞, then n1/2(θ̃−θn) → −∞ as n →∞. This suggests

that it is not enough to study the behaviour of θ̃ pointwise (for every θ).

3.9.4 Linear regression

3.9.4.1 Model selection probabilities

Equations (3.17) and (3.18) suggest that one can see that the probability of se-

lecting the full model increases with the sample size. However, this is not always

the case. For example, in the case of multiple linear regression as illustrated

in (3.18), this probability increases for small sample size, but tends to remain

unchanged for large sample size. When these probabilities are scaled, from Fig-

ure (3.19), model selection probabilities decrease as the simple size increases for

consistent criteria (BIC and HQ), that is, for all consistent criterion where the

penalty hn satisfy: hn tends to infinity and hn/n tends to 0 as n tends to infin-

ity. These selection probabilities remain unchanged whatever the sample size for

model selection criteria with fixed penalty (AIC, Pretest).

Consider the probability of selecting the true model at b1 = 0, Pn(0),
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Figure 3.18: Multivariate regression: sample size effects on model selection prob-

ability for pre-test estimators as a function of δ with α = 0.05.
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Figure 3.19: Sample size effects on model selection probabilities as a function of

scaled β1, n = 60 (solid line), n = 500 (dashed line), n = 1000 (dotted line).
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Pn(0) =





Φ(−z1−α/2) + 1− Φ(z1−α/2) for Hypothesis Testing

Φ(−21/2) + 1− Φ(21/2) for AIC

Φ(−h1/2) + 1− Φ(h1/2) for any constant penalty h

Φ(−h
1/2
n ) + 1− Φ(h

1/2
n ) for any penalty hn depending on n

log(n) for BIC

log(log(n)) for HQ.

Under b1 = 0, the probability of selecting model the full model is Φ(−z1−α/2) +

1 − Φ(z1−α/2) for pre-test. For smaller values of α, for example 0.01, 0.005, this

probability is nearly 0, that is, the probability of selecting the true model is nearly

1. This means that hypothesis testing can be considered as consistent for very

smaller value of α. But the probability of selecting the full model is not 0 for

reasonnable level of significance level, for e.g. 0.05.

For all criteria with fixed penalty (e.g., AIC), it is clear that the probability

Pn(0) does not converge to 0 (AIC is not a consistent selection criterion).

Consider criteria with penalty hn, depending on n (e.g. BIC, HQ), then

Pn(0) = Φ(−h
1/2
n ) + 1 − Φ(h

1/2
n ) = 2(1 − Φ(h

1/2
n )). Pn(0) gets smaller as n gets

larger for a penalty that increases as n gets larger (e.g. BIC, HQ). For example,

for BIC and HQ, Pn(0) −→ 0 as n −→ ∞ . The reason is that these criteria

are consistent. For consistent model selection criteria, the penalty hn tends to

infinity and hn/n tends to 0 as n tends to infinity (Shao, 1997). These features

are illustrated in Figure (3.17).

3.9.4.2 Moments

For scaled parameters, from Figure (3.20), one can see that the bias (also the

maximum bias) increases with the sample size. The phenomenon is more pro-

nounced with BIC and HQ. Variance (Figure 3.21) and Mean square error (Figure

3.22) increase with sample size when the absolute value of the scaled parameter

is larger and decrease when it is smaller for BIC and HQ.

However, for model selection criteria with fixed penalty (Pre-test, AIC), the max-

imum bias, variance and MSE are bounded, see Figures 3.20, 3.21 and 3.22.

3.9.4.3 Densities

Of particular interest is the behaviour of consistent criteria like BIC. For any

fixed value of β1, there exists a sample size for which the density is unimodal,

Figure (3.24) shows that for some values of β1, e.g. β1 = n−2/5, there is no sample

size for which the density is unimodal. This is due to non-uniformity.
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Figure 3.20: Sample size effects on bias for PMSEs as a function of scaled β1 ,

n = 50 (solid line), n = 400 (dashed line), n = 1000 (dotted line), n = 5000

(broken line).
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Figure 3.21: Sample size effects on variance for PMSEs as a function of scaled

β1, n = 50 (solid line), n = 400 (dashed line), n = 1000 (dotted line), n = 5000

(broken line).
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Figure 3.22: Sample size effects on MSE for PMSEs as a function of scaled β1,

n = 50 (solid line), n = 400 (dashed line), n = 1000 (dotted line), n = 5000

(broken line).
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Figure 3.23: Densities for PMSEs for β1 = 0.2, α = 0.01 as a function of sample

size: n = 100 (solid line), n = 300 (dashed line), n = 500 (dotted line).
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Figure 3.24: Scaled densities for PMSEs for β1n = n−2/5 as a function of sample

size: n = 1000 (solid line), n = 2000 (dashed line), n = 3000 (dotted line).

As can be seen in Figure (3.23), as |β1| decreases, the size required for uni-

modality of PMSEs increases. This means that asymptotic unimodality depends

on the true parameter and the sample size. From Table (3.2), the minimum

sample size, n∗β1 to achieve unimodality depends on the true parameter β1. For

β1 = 0.08, this minimum is 2000 for post-AIC and post-Cp, and 3500 for pre-test

and post-BIC. The reason is that for smaller values of |β1|, the probability that

post-BIC and pre-test select the M1 is 0 whereas, it is not 0 for post-AIC and Cp.

As one can see, this convergence is then not uniform for β1, it is only pointwise

(for fixed β1), whether the selection criterion is consistent or not. In general,

PMSEs are not unimodal uniformly for large n.

β1 0.6 0.2 0.08

n∗β1 50 500 2000 or 3500

Table 3.2: Minimun sample size to achieve unimodality as function of β1, α =

0.01.





Chapter 4

Model Selection and Frequentist

Model Averaging

4.1 Introduction

The problems that arise when one has more than a single model at one’s disposal

have now been considered from two points of view. In Chapter 2 we examined

model averaging estimators, in which a weighted average of the models is used to

estimate the quantity of interest. In Chapter 3 we focused on model selection, in

which a single model is selected to estimate the quantity of interest. These two

approaches are of course different. However, mathematically, any post-model-

selection estimator is simply a special case of model averaging, the case in which

all except one of the weights are set equal to zero. Furthermore these 0-1 weights,

considered unconditionally, are, as in the model averaging case, random variables.

Before we see the data it is uncertain which model will be selected, i.e. which of

the binary 0-1 random variables (the weights) will equal 1. This point of view is

exploited to demonstrate the fact that the two methodologies are closely related

and mathematically comparable.

It has been suggested in the literature that model averaging outperforms

PMS estimation. However, our analysis shows that, as long as the selection

procedure is not taken into account in classical model averaging estimators, these

are unlikely to outperform PMSEs. We propose a method to take selection into

account in classical model averaging by making use of the key quantity in PMS

estimation, namely the model selection probabilities. In effect we are proposing

alternatives to the Akaike weights, which we call adjusted Akaike weights (AAW),

and alternatives to likelihood weights, called adjusted likelihood weights (ALW).

The adjusting factor is simply the model selection probability (Nguefack and

71
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Zucchini, 2005).

The new averaging method is applied to the estimation of the mean of a

multivariate normal distribution. It is shown that, under certain conditions, it is

a minimax estimator, and that it can outperform Stein estimation. The method

is also illustrated using a simple linear regression model, and an example on the

analysis of proportions. In both examples it is clearly better than PMSEs.

4.2 Similarities and differences

We have defined model uncertainty as the fact that the true model is not known

and model selection uncertainty as the fact that the model to be used should be

selected from a set of candidate models. Let M = (M1, . . . ,MK) be a finite set

of models, X the data and each model is parametric with parameter θ. Let 4 be

the quantity of interest (a function of θ). Let θk represent the parameter under

Mk and θ̂k be its estimator. Let 4k represent the quantity of interest under

Mk and 4̂k be its estimator. The difference between the two is that the latter

includes a selection procedure, through the quantity Ik(X|S,M) for each model

Mk. In general, likelihoods are used as weights. Since it can only be used for

models with the same dimension, different penalties have been tried to penalize

the likelihood. We will explain that, as long as weighted model scheme does not

take into account model selection procedure, the resulting weighted estimator is

not garanteed to outperform post-model-selection estimators.

4.3 Combining model averaging and model se-

lection

The PMSE is defined as

4̃(X|S,M) =
K∑

k=1

Ik(X|S,M)4̂k, (4.1)

where Ik(X|S,M) = 1 if Mk is selected by S and 0 otherwise. This PMSE is

then also a special model weighting (0-1 degenerate random weights); it depends

on the selection procedure S and the entire set of models M. An important

ingredient of Equation (4.1) is the selection procedure S. Suppose that one is

selecting between two models using hypothesis testing as the selection procedure.

A fundamental quantity is the power of test. We can expect the properties of

the estimator in (4.1) to be different if another selection procedure is used. A
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selection procedure of the form (3.15), or more generally a parsimonious selection

procedure taking into account underfitting and overfitting, will result in different

types of estimators (4.1). This suggests that taking into account the selection

procedure could improve the estimators of the form (4.1). For instance, in the

case of hypothesis testing, one may use the information concerning the power of

the test. Since the likelihood of each model contains important information about

that model, one could use this to weight competing models. In this case, the more

complex model, in terms of number of parameters, will have high weights. The

selection procedure S partitions the sample space and there is probability

Pθ(Mk|S) = Eθ(Ik(X|S,M)) (4.2)

that the subset Xk (model Mk) is selected. The selected subset is a random

subset. A common feature for classical model averaging is that the selection

procedure S is not taken into account. However it is necessary to include the

selection procedure S in the model averaging estimator. We suggest to include the

probability of selecting each model Mk into the weights, in particular in Akaike

weights and simple likelihood weights. The point is how to get these model

probabilities. As can be seen in (4.2), these are computed as an expectation and

depend on the parameter θ. If a closed form exists, one can find an estimator of θ,

and then obtain an estimator of these probabilities. In case there is no close form,

Miller (2002) suggests a Monte Carlo method based on projection to get these

probabilities. We denote by p(Mk|S), an estimator or a Monte Carlo estimator

of model selection probability for model Mk. The naive bootstrap estimates,

where estimate selection probability of model Mk is estimated by the proportion

of resample in which Mk is selected, does not work (Hjort and Claeskens, 2003).

We propose to introduce the selection procedure into classical model averaging

using Akaike weights and simple likelihood weights.

4.3.1 Adjusted Akaike weights

We define Adjusted Akaike weights as

Waak
=

p(Mk|S) exp(−sk/2)Lk

ΣK
i=1p(Mi|S) exp(−si/2)Li)

=
p(Mk|S) exp(−AICk

2
)

ΣK
i=1p(Mi|S) exp(−AICi

2
)
. (4.3)

If S is of the form Ik = −2 log Lk + sk, (for example, the AIC or BIC), then

p(Mk|S) already takes account of the penalty term sk, and so the likelihood

would be penalized twice, by exp(−sk/2) and by p(Mk|S). This “double penalty”

would apply to any selection procedure S that itself penalizes the complexity of

the model, e.g. the number of parameters. Therefore we recommend the use of

adjusted Akaike weights only for models with the same dimension.
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4.3.2 Adjusted likelihood weights

We define Adjusted likelihood weights as

Walk =
p(Mk|S)Lk

ΣK
i=1p(Mi|S)Li

. (4.4)

The likelihood, which determines the “degree of fit” of the model, enters the

weights. The selection probability p(Mk|S) adjusts the weights for the selec-

tion procedure. Note that both of these components are required. To use only

p(Mk|S) would not fully account for the fit of the model. Using only the likeli-

hood does not take into account the way in which the model is selected.

Relation between Akaike weights and adjusted likelihood weights

Walk =
p(Mk|S) exp(sk/2) exp(−AICk

2
)

ΣK
i=1p(Mi|S) exp(si/2) exp(−AICi

2
)
.

If models have the same dimension and probabilities of selection then the adjusted

likelihood weights reduce to Akaike weights.

For finite samples, one can use the variance formulae proposed in Buckland et

al. (1997); the first when estimates are perfectly correlated and the second when

they are independent:

Var(4̂MA(S)) =

{
ΣK

k=1Walk

√
Var(4̂k) + [4̂k − 4̂MA(S)]2

}2

perfect correlation,

Var(4̂MA(S)) = ΣK
k=1W

2
alk
{Var(4̂k) + [4̂k − 4̂MA(S)]2} independence.

(4.5)

where 4̂MA(S) is the weighted estimator and Walk the weight for model Mk.

For large samples, one can use the limiting risk properties and limiting dis-

tributions of general model weights as given in Hjort and Claeskens (2003). In

this way, even if a model is more complex, in terms of the number of parameters,

a “bad” model will be penalised by any reasonable selection procedure through

the probability p(Mk|S). If the model really fits the data, it will receive a higher

weight. Here we let the selection procedure determine in how far a model is

penalised.

4.4 Estimating a multivariate mean

4.4.1 Variance known

Suppose X = (X1, ..., Xp)
′ ∼ Np(θ, σ

2Ip), with unknown mean θ = (θ1, ...., θp)
′, σ

known. The quantity of interest is 4 = θ.
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It is well known that for p ≤ 2, one can just find the maximun likelihood estima-

tor θ̂ = X and the risk is R(θ̂) = MSE(θ̂) = p. However, for p ≥ 3, the maximum

likelihood estimator is inadmissible and the problem is to find alternative estima-

tors that yield small risk comparing to the MLE. Using the proposed weights, we

propose an alternative approach for estimating θ. It will also assume that model

selection probabilities are computed independently of the data, for example using

the Monte Carlo technique of Miller (2002). Let Γ(x|S,M) = ΣK
k=1p(Mk|S)Lk.

Theorem 4.4.1 Assume the following

1. X ∼ Np(θ, σ
2Ip), σ known,

2. θ̂k = X +5 log Lk;∀Mk,where 5 log Lk = (∂ log Lk/∂x1, ..., ∂ log Lk/∂xp),

3. Γ(x|S,M) is almost differentiable (a.d) for which 5Γ is also a.d ,

Γ(x + z|S,M)− Γ(x|S,M) =
1∫
0

z′5 Γ(x + tz|S,M) dt, ∀z ∈ Dom(x),

4. Γ(x|S,M) is superharmonic; that is Σp
i=1∂

2Γ(x|S,M)/∂x2
i ≤ 0,∀Mk,

5. Moment condition

(a) Eθ|∂
2Γ(X|S,M)/∂x2

i

Γ(x|S,M)
| < ∞,

(b) Eθ‖ 5 log Γ(X|S,M)‖2 < ∞.

then θ̂MA(S) = ΣK
k=1Walk θ̂kis a minimax estimator for θ and its risk is

R(θ̂MA(S)) = Eθ‖θ̂MA(S))− θ‖2 = p− 4Eθ[−5
2Γ1/2(x|S,M)

Γ1/2(x|S,M)
].

Proof. We start with the following lemma which is straightforward but impor-

tant.

Lemma 4.4.1 Under assumption (2),

θ̂MA(S) = X +5 log Γ(X|S,M). (4.6)

Proof of Lemma 4.4.1. From assumption (2), each estimator is of the form

θ̂k = X +5 log Lk.

Let denote 5f = (∂f/∂x1, . . . , ∂f/∂xp)
′ and 5Logf = 5f

f
, Walk = p(Mk|S)Lk

Γ(X|S,M)
,

therefore θ̂MA(S) = ΣK
k=1Walk θ̂k

= ΣK
k=1

{
p(Mk|S)Lk

Γ(X|S,M)

}
θ̂k
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= 1
Γ(X|S,M)

ΣK
k=1p(Mk|S)Lk[X +5 log Lk]

= X + 1
Γ(X|S,M)

ΣK
k=1p(Mk|S)Lk[

5Lk

Lk
]

= X + 1
Γ(X|S,M)

ΣK
k=1p(Mk|S)5 Lk

= X + 1
Γ(X|S,M)

5 (ΣK
k=1p(Mk|S)Lk)

= X + 1
Γ(X|S,M)

5 Γ(X|S,M)

= X +5LogΓ(X|S,M).

Using Lemma Lemma 4.4.1 and applying Stein’s results (Stein, 1981, Corollary

1, p.1139), the result follows.

4.4.1.1 Improvement over James-Stein estimator

Efron and Morris (1971, 1972) propose to modify the James-Stein estimator given

by θ̂0 = (1− p−2
‖X‖2 )+X. This modification was based on requiring that no coordi-

nate of θ̂0 be changed by more than a predetermined quantity d. This resulted in

an improvement of θ̂0 when the empirical distribution of | θi | is long tailed. We

now also consider a modification of Efron and Morris based on order statistic.

Let Yi =| Xi | and the order statistics defined by Y(1) < ... < Y(p). Let

j be a large fraction of p. Suppose also that the coordinates of h(X|S,M) =

5 log Γ(X|S,M) are defined as

hi(X|S,M) =

{
c[Σp

l=1(min(X2
l , Y 2

(j)))]
−1Xi if Yi ≤ Y(j)

c[Σp
l=1(min(X2

l , Y 2
(j)))]

−1Y(j)sgnXi otherwise,
(4.7)

where c is a constant and the optimum choice of c is determined to be (j − 2)

and the risk of θ̂MA(S)(j) is

Eθ‖θ̂MA(S)(j) − θ‖2 = p− (j − 2)2Eθ[Σ
p
l=1(min(X2

l , Y 2
(j)))]

−1.

We assume that p is large and z = j
p
, so that j is closed to p (Stein, 1981,

p.1146). We also assume that θ̂MAi
(S)(j) are independently normally distributed

with variance δ2, let w = Φ−1(0.5(1 + z)).

The estimated improvement risk for θ̂MA(S)(j) and θ̂0 over the MLE θ̂ are Imp(θ̂MA(S)(j), θ̂),

Imp(θ̂0, θ̂) defined by

Imp(θ̂MA(S)(j), θ̂) = Risk(θ̂)− Risk(θ̂MA(S)(j)) = (j − 2)2[Σp
l=1(min(X2

l , Y 2
(j)))]

−1,

Imp(θ̂0, θ̂) = Risk(θ̂)− Risk(θ̂0) = (p− 2)2[Σp
l=1X

2
l ]−1.
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Figure 4.1: Relative efficiency of θ̂MA(S)(j) compared to James-Stein estimate θ̂0

as a function of the proportion of the dimension of the parameter θ.

The relative efficiency of θ̂MA(S)(j) compared to the James- Stein estimate θ̂0 is

defined by

eff(z) =
Imp(θ̂0, θ̂)

Imp(θ̂MA(S)(j), θ̂)
=

z2

(1− z)w2 − 2wφ(w) + z
, (4.8)

where φ and Φ are the density and distribution functions of standard normal.

From Equation (4.8), it follows that eff(z) < 1, ∀z ∈ (0, 1),

⇒ Risk(θ̂MA(S)(j)) < Risk(θ̂0). This means that the modified version of the

weighted estimator given in (4.7) is better than Stein estimator, for any propor-

tion z of the data. An illustration is given in Figure (4.1). One can see that

this relative efficiency is an increasing function of z. This means that as the

proportion of data increases, the relative efficiency also increases.

4.4.1.2 Confidence sets for the mean

Here we illustrate how to obtain an approximate confidence sets for the true

parameter θ. We start with the following theorem.

Theorem 4.4.2 Suppose that h(X|S,M) = 5 log Γ(X|S,M) is twice continu-

ously differentiable and such that

Eθ[‖h(X|S,M)‖2 + Σp
j=1Σ

p
i=1(∂hi(X|S,M)/∂Xj)

2

+Σp
j=1Σ

p
i=1(∂

2hi(X|S,M)/∂Xi∂Xj)
2] < ∞,



78 Chapter 4. Model Selection and Frequentist Model Averaging

then

Eθ[‖θ̂MA(S)− θ‖2 − (p + ‖h(X|S,M)‖2 + 25′ h(X|S,M)]

= 2p + 4Eθ[‖h(X|S,M)‖2 + 25′ h(X|S,M)) + tr2(5h′(X|S,M)].

Proof. Follows directly from Theorem 3, Stein (1981), p.1149.

Let V = 2p + 4[‖h(X|S,M)‖2 + 25′ h(X|S,M) + tr2(5h′(X|S,M)] and

U = p + ‖h(X|S,M)‖2 + 25′ h(X|S,M)]

For p large, a confidence set with 1 − α approximate probability of covering θ

can be

CS(X|S,M) = {θ : ‖θ̂MA(S)− θ‖2 < U(X|S,M) + Z1−α

√
V (X|S,M)},

where Z1−α is the 1− α quantile of standard normal.

4.4.2 Variance unknown

Consider the most realistic case σ2 unknown. Let σ̂2 be an independent estimate

of σ2, such that σ̂2 ∼ σ2χ2
m, chi-square with m degree of freedom. Consider the

following estimator of θ

θ∗(X|S,M) = X +
σ̂2

m + 2
5 log Γ(X|S,M).

The risk of θ∗(X|S,M) is Eθ,σ‖θ∗(X|S,M)− θ‖2 and is given by

Eθ,σ{p σ̂

m
+

σ̂2

(m + 2)2
[‖ 5 log Γ(X|S,M)‖2 + 25 .5 logΓ(X|S,M)]}.

It can be observed that we lose the proportion 2
(m+2)

of the reduction of the risk

that would have been achieved if σ2 were known.

The proof is based on Stein (1981).

4.5 Illustrative examples

4.5.1 A simple linear regression

Consider a simple linear regression model discussed in Chapter 3.

Yi = β0 + β1xi + εi, i = 1, . . . , n, (4.9)

where the εi ∼ N(0, σ2), σ known (for simplicity), but similar results are obtained

for the case where σ is unknown. Let x+ be a future value of the covariate. The
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aim is to estimate the mean 4 = E(Y |x+).

Consider two models

M0 : 4 = β0 and

M1 : 4 = β0 + β1x+.

One method of selecting between the 2 models is testing:

H0 : β1 = 0 against

H1 : β1 6= 0.

This means that the model selection method here is the pre-test. The PMSE of

4 is then given by

4̃ = β̂0I0(
|β̂1|
v

1/2
1

< z1−α
2
) + (β̂0 + β̂1x+)I1(

|β̂1|
v

1/2
1

≥ z1−α
2
), (4.10)

where I0 and I1 are indicator functions under M0 and M1, respectively, with

I0 + I1 = 1, v1=Var(β̂1) = σ2

Σn
i=1(xi−x)2

, x = 1
n
Σn

i=1xi and z1−α
2

is the quantile of

standard normal. Now any PMSE can be written in the form of Equation (4.10).

Here we will compare the moments of PMSEs and that of AIC model weights

and the adjusted estimator defined above. Let Z0 = β̂0−β0

v
1/2
0

, then Z0 ∼ N(0, 1),

then β̂0 = v
1/2
0 (Z0 + b0), where b0 = β0

v
1/2
0

(standardized intercept), v0 = σ2

n
.

Let Z1 = β̂1−β1

v
1/2
1

, then Z1 ∼ N(0, 1), β̂1 = v
1/2
1 (Z1 + b1), where b1 = β1

v
1/2
1

(stan-

dardized slope).

From Chapter 3, the pre-test estimators and more general PMSEs are given by

4̃pretest = v
1/2
0 (Z0 + b0) + x+v

1/2
1 (Z1 + b1)I1(|Z1 + b1| ≥ z1−α

2
), (4.11)

where Z0 and Z1 are independent normal since β̂0 and β̂1 are independent.

For model selection criterion of the form

ICk = −2 log Lk + hnpk. (4.12)

The PMSEs (e.g. AIC, BIC) are given by

4̃IC = v
1/2
0 (Z0 + b0) + x+v

1/2
1 (Z1 + b1)I1(|Z1 + b1| ≥ h1/2

n ), (4.13)

and for Mallows Cp, PMSE is given by

4̃Cp = v
1/2
0 (Z0 + b0) + x+v

1/2
1 (Z1 + b1)I1(F (1, n− 2, b2

1) > 2). (4.14)

The properties of PMSEs were given in Chapter 3. For any weight scheme w0

and w1 for model M0 and model M1, w1 +w2 = 1, the model averaging estimator

is

4̂MA = w04̂0 + w14̂1 = w0β̂0 + w1(β̂0 + x+β̂1) = 4̂0 + x+w1β̂1. (4.15)
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Replacing estimators β̂0 and β̂1 by standard normal yields

4̂MA = v
1/2
0 (Z0 + b0) + x+v

1/2
1 (Z1 + b1)w1. (4.16)

We shall then use only w1 for any model averaging scheme we will consider.

We have derived in Chapter 3 the following

L1

L0

= e
1
2
(Z1+b1)2 , (4.17)

where Lk is the likelihood function under model Mk. We have closed form model

selection probabilities. For the simple linear model, the probability of selecting

M1 is given by

p(M1|pre-test,M) = Φ(r̂) + 1− Φ(q̂), estimated power of the test.

For information criteria of the form (3.15), the probability of selecting M1 is

p(M1|ICn,M) = Φ(r̂n) + 1− Φ(q̂n), and

p(M1|Cp,M) = 1− P (F (1, n− 2, b̂2
1) < 2) for the Cp criterion.

4.5.1.1 Likelihood weights

The likelihood weights are defined by Wsl1 = L1

L0+L1
=

L1
L0

1+
L1
L0

. From (4.17) the

simple likelihood weights are given by

Wsl1 =
e

1
2
(Z1+b1)2

1 + e
1
2
(Z1+b1)2

. (4.18)

4.5.1.2 Akaike weights

We have AIC1−AIC0 = 2(log L0− log L1) + 2 and Wa1 = e(AIC0−AIC1)

1+e(AIC0−AIC1) . Akaike

weights are then given by

Wa1 =
e

1
2
(Z1+b1)2−1

1 + e
1
2
(Z1+b1)2−1

. (4.19)

We do not illustrate for HQ since the same remarks apply as for the case of

BIC.

Figure (4.2) displays post-AIC, corrected by Akaike and likelihood weights.

One can see that model averaging using these classical weights methods does not

improve on post-HQ. The same is valid for other information criteria, AIC, BIC,

Cp and Pre-test. Figure (4.3) shows that no weight (simple likelihood or Akaike

weight) dominates PMSE in terms of risk and variance functions. The same is
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Figure 4.2: Properties of post-HQ (solid line), corrected by Akaike weight (dotted

line), likelihood weight (dashed line) as a function of b1.
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Figure 4.3: MSE and variance of PMSEs (solid line), corrected by Akaike weight

(dotted line), likelihood weight (dashed line) as a function of b1.
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line) as a function of b1.

valid for the variance.

Figure (4.4) illustrates the typical behaviour of Akaike weights and post-AIC. It

can be seen that Akaike weigthing does not perform better than post-AIC.

4.5.1.3 Adjusted Akaike weights

The adjusted Akaike weight is given by

Waak
=

δ1(M1|S)e
1
2
(Z1+b1)2−1

1 + δ1(M1|S)e
1
2
(Z1+b1)2−1

, (4.20)

where δ1(M1|S) = p(M1|S)
p(M0|S)

= p(M1|S)
1−p(M1|S)

.

Figure (4.5) shows that, in terms of risks, adjusted Akaike weights are better

than PMSEs. However, in terms of bias, adjusted Akaike weights do not improve

on PMSEs. The reason is that the models are not of the same dimension. The

bias is then due to the double penalty.

4.5.1.4 Adjusted likelihood weights

For any selection procedure S, with selection probability p(Mk|S) for model Mk,

the adjusted likelihood is

Wal1 =
p(M1|S)L1

p(M0|S)L0 + p(M1|S)L1

=

p(M1|S)L1

p(M0|S)L0

1 + p(M1|S)L1

p(M0|S)L0

. (4.21)
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Figure 4.5: MSE of PMSEs (solid line), corrected by adjusted Akaike weight

(dashed line) as a function of b1.
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Figure 4.6: Bias of PMSEs (solid line), corrected by adjusted Akaike weight

(dashed line) as a function of b1.
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Figure 4.7: MSE of PMSEs (solid line), corrected by adjusted likelihood weight

(dashed line) as a function of b1.

The adjusted likelihood weights can be re-written as

Walk =
δ1(M1|S)e

1
2
(Z1+b1)2

1 + δ1(M1|S)e
1
2
(Z1+b1)2

. (4.22)

Figures (4.7), (4.8) and (4.9) show that in terms of risk, variance and bias,

adjusted likelihood weights estimators improve on PMSEs. The same applies

when one uses HQ as selection criterion.

Figure (4.10) displays the bias due to using only the probability of selecting

each model as weights. One can see that, in general, this has more bias than

PMSEs, due to not taking into account the likelihood of each model.

4.5.2 Estimation of proportions

Let X1, . . . , Xn be n independent Bernouilli trials, that is Xi ∼ Be(θ), Y =∑n
i=1 Xi is the number of successes. Y is a binomial(n, θ), θ unknown. We will

base inference on Y, since the likelihood function of the Xi’s is θY (1− θ)n−Y and

involves the sufficient statistic Y.

f(y|θ) =
(

n
y

)
θy(1 − θ)n−y, y = 0, 1, . . . , n, is the probability mass function

(PMF) of Y . Our quantity of interest is the unknown 4 = θ.

4.5.2.1 A two-model selection problem

(a) Consider the choice between the 2 models: M1 : θ = θ1 and M2 : θ = θ2.

The true model may or may not belong to these 2 models.
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Figure 4.8: Variance of PMSEs (solid line), corrected by adjusted likelihood

weight (dashed line) as a function of b1.
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Figure 4.9: Bias of PMSEs (solid line), corrected by adjusted likelihood weight

(dashed line) as a function of b1.
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Figure 4.10: Bias of PMSEs (solid line), corrected only by the probability of

selecting each model (dashed line) as a function of b1.

Suppose that the selection procedure chooses the model with smaller AIC. In this

case, this reduces to choosing the model with higher likelihood, since there is no

parameter to be estimated for each model.

M1 will be chosen if f(y|θ1) > f(y|θ2) or equivalently if R = log(f(y|θ1)) −
log(f(y|θ2)) > 0.

R = log(
(

n
y

)
θy
1(1− θ1)

n−y)− log(
(

n
y

)
θy
2(1− θ2)

n−y)

= log
(

n
y

)
+ y log θ1 + (n− y) log(1− θ1)− log(

(
n
y

)
)− y log θ2 − (n− y) log(1− θ2)

= y log θ1

θ2
+ (n− y) log[1−θ1

1−θ2
] = y[log θ1

θ2
− Log[1−θ1

1−θ2
]] + n log[1−θ1

1−θ2
]

R > 0 ⇐⇒ y >
−n log[

1−θ1
1−θ2

]

log[
θ1(1−θ2)
θ2(1−θ1)

]
= an(θ1, θ2).

Let Pθ(M1|AIC,M and Pθ(M2|AIC,M = 1 − Pθ(M1|AIC,M) be the proba-

bilities of choosing models 1 and 2, respectively.

Pθ(M1|AIC,M) = Pθ(Y > an(θ1, θ2)) = 1− Pθ(Y ≤ an(θ1, θ2)) = 1− FB(n,θ)(an(θ1, θ2)),

where FB(n,θ) is the cumulative distribution function of binomial(n, θ).

The estimated probabilities are given by p(M1|AIC) = 1 − FB(n,θ̂)(an(θ1, θ2)),

where θ̂ = y/n and p(M1|AIC) = 1− p(M1|AIC).

The PMSE θ̃ = θ1 if y > an(θ1, θ2) and θ2 otherwise.

The properties of θ̃ are given by
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Eθ(θ̃) =
∑

y>an(θ1,θ2) θ1f(y|θ) +
∑

y≤an(θ1,θ2) θ2f(y|θ)

= θ1

∑
y>an(θ1,θ2) f(y|θ) + θ2

∑
y≤an(θ1,θ2) f(y|θ) = θ1p1 + θ2p2.

Varθ(θ̃) =
∑

y>an(θ1,θ2)(θ1 − Eθ(θ̃))
2f(y|θ) +

∑
y≤an(θ1,θ2)(θ2 − Eθ(θ̃))

2f(y|θ)

= Eθ(θ̃)
2 − E2

θ(θ̃) = θ2
1p1 + θ2

2p2 − (θ1p1 + θ2p2)
2.

Biasθ(θ̃) = Eθ(θ̃)− θ.

MSEθ(θ̃) = Varθ(θ̃) + Bias2
θ(θ̃).

The Akaike weights are defined by

Wa1 = f(y|θ1)
f(y|θ1)+f(y|θ2)

, Waka2 = f(y|θ2)
f(y|θ1)+f(y|θ2)

.

The adjusted likelihood weights are defined by

Wal1 = p(M1|AIC)f(y|θ1)
p(M1|AIC)f(y|θ1)+p(M2|AIC)f(y|θ2)

, Wal2 = p(M2|AIC)f(y|θ2)
p(M1|AIC)f(y|θ1)+p(M2|AIC)f(y|θ2)

.

The weighted estimators are

θ̂a = θ1Wa1 + θ2Wa2 .

θ̂al = θ1Wal1 + θ2Wal2 .

MSEθ(θ̂a) = Σn
y=0(θ̂a − θ)2f(y|θ) .

MSEθ(θ̂al) = Σn
y=0(θ̂al − θ)2f(y|θ) .

Illustrating pictures correspond to n = 41, θ1 = 0.6 and θ2 = 0.4.

Figure (4.11) concerns model selection probabilities for θ1 = 0.6 and θ2 = 0.4 for

the range of parameter space.

Figure (4.12) compares PMSE to that using AIC weights and adjusted weights

using true model selection probabilities. It can be seen that adjusted likelihood

is always better than PMSE and Akaike weights estimators. However, for some

values of the true parameter, the risk of Akaike weight tends to be slightly bigger

than that of PMSEs..

(b) Consider now a choice between the following two models:

M1 : Y ∼ binomial(θ1, n) and M2 : Y ∼ binomial(θ, n).

AIC is used to select a model, θ̂2 = y/n, for illustration, we choose θ1 = 0.5.

AICM1 = −2 log(f(y|θ1)), AICM2 = −2 log(f(y|θ̂2)) + 2.
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Figure 4.11: Model selection probabilities as a function θ, θ1 = 0.6 and θ2 = 0.4.
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Figure 4.13: Model selection probabilities as a function θ.

Model 1 is chosen if

AICM1 > AICM2 , P (M1|AIC,M) = Pθ(AICM1 > AICM2),

P (M2|AIC,M) = Pθ(AICM1 ≤ AICM2).

p(M1|AIC) and p(M2|AIC) are obtained by replacing θ by θ̂2 = y/n.

The PMSE θ̃ = θ1 if AICM1 > AICM2 and θ̂2 otherwise.

MSEθ(θ̃) =
∑

AICM1
>AICM2

θ1f(y|θ) +
∑

AICM1
≤AICM2

θ̂2f(y|θ).

The Akaike weights are defined by

Wa1 = f(y|θ1)

f(y|θ1)+f(y|θ̂2)
, Wa2 = f(y|θ̂2)

f(y|θ1)+f(y|θ̂2)

and the adjusted weights is defined by

Wal1 = p(M1|AIC)f(y|θ1)

p(M1|AIC)f(y|θ1)+p(M2|AIC)f(y|θ̂2)
, Wal2 = p(M2|AIC)f(y|θ̂2)

p(M1|AIC)f(y|θ1)+p(M2|AIC)f(y|θ̂2)
.

Figure (4.13) displays model selection probabilities and Figure (4.14) displays

risks performance of estimators. It can be seen that Akaike weighting does not

perform better than PMSEs when the true parameter is between (0, 0.3) and

between (0.7, 1). However, the adjusted weights perform better than both.

4.5.2.2 Multi-model choice

Consider also a choice between the following models: Mk : Y ∼ binomial(θk, n)

for arbitrary K models. Each parameter θk is known.

For a choice using AIC criterion, since there is no unknown parameter, this is

the same as selecting the model with higher likelihood. Model Mmax is chosen if
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Figure 4.14: Risk of two proportions comparing PMSEs, Akaike weights estima-

tors and adjusted estimators as a function of θ.

Lmax ≥ Lk,∀k ∈ {1, . . . , K}.
PMSE θ̃ = θk if Mk is selected.

θ̃ =
∑K

k=1 Ik(f(y|θk) = Lmax)θk, Ik = 1 if Mk is chosen and 0 otherwise. Model

selection probability for model Mk is given by: Pθ(Mk|AIC,M) = Pθ(f(y|θk) =

Lmax).

The estimated model selection probabilities p(Mk|AIC) are given by replacing θ

by the estimated θ̂ = y/n. The Akaike weights are defined by Wak
= f(y|θk)

ΣK
i=1f(y|θi)

,

and the adjusted weights by Walk = p(Mk|AIC)f(y|θk)

ΣK
i=1p(Mi|AIC)f(y|θi)

.

Numerical computations of the properties for these estimators are for n = 41,

K = 30, models are between 0.1 and 0.9 and are given in Figure (4.15). One

can see that Akaike weights are not better than PMSEs for certain regions of the

parameter space, but the adjusted likelihood weights are better than both.
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Figure 4.15: Risk of 30 models comparing PMSEs, Akaike weights estimators and

adjusted estimators as a function of θ.





Chapter 5

Bayesian Model Selection and

Model Averaging

5.1 Introduction

This chapter considers model selection uncertainty in the Bayesian context. We

first explain that choosing a model selection method depends on whether interest

is focused on identifying the true model, or on choosing a model for inference

purposes. We are concerned with the latter. It is explained that, as long as one

is concerned with posterior evaluation (Bayes risks, posterior variance, etc.) of an

estimate, i.e. conditional on the data, model selection uncertainty is not an issue;

the data are held fixed. In this case, model selection has no effect on subsequent

inference.

However, if interest is focused on frequentist performance of estimators (e.g.

frequentist risk) then the problem of model selection uncertainty exists and can

be really severe. This is analogous to the situation discussed in Chapter 3. The

properties of Bayesian post-model-selection estimators (BPMSEs) are difficult to

derive. For example, one can compute confidence regions, but it is not clear how

to compute their true coverage probabilities. Secondly, again in the framework

of frequentist performance, it is explained that BMA estimators are unlikely to

dominate BPMSEs. The reason is that the former do not take account of the

selection procedure. An alternative approach, adjusted Bayesian model averaging

(ABMA) is proposed which takes into account the selection procedure. The

approach, which is based on prior model selection probabilities is illustrated using

a simple example involving the estimation of proportions.

93
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5.2 Bayesian model selection

Consider the data x and the set of K models M = (M1, . . . , MK), containing

the true model Mt, where each model Mk consists of a family of distributions

P (x|θk,Mk), θk a possible vector of parameters. One assigns a prior probability

P (θk|Mk) to the parameter of each model and a prior probability P (Mk) that

model Mk is the true model. M̃(X|S,M) the selected model (depends on the

data X viewed as random), 4 the quantity of interest, Γ the parameter space for

4, 4̂k the Bayes estimate of 4 for each model Mk.

5.2.1 Utility approach and analyst’s goal

The aim of this section is to stress how various model selection criteria can been

derived from different choices of the utility function (depending on the goal of

the analyst). Let u(m,4) be the utility of negative loss of action m given the

unknown quantity of interest 4. The optimal action m∗ is that maximising

u(m|x) =

∫

4
u(m,4)P (4|x)d4, (5.1)

where P (4|x) represents the actual beliefs about 4 having observed x. One can

see that (5.1) depends on the choice of the utility function and the computation

of the posterior of 4. More on utility approach for model selection can be found

in Chipman, George and McCulloch (2001), Bernado and Rueda (2002). In our

framework, the action space is referred to model space so that (5.1) for the optimal

model choice m∗ becomes

u(m∗|x) = sup
m∈N

∫

4
u(m,4)P (4|x)d4 . (5.2)

In the following, our choice of the posterior of 4 will be based on the total law

of probability over model given

P (4|x) = ΣK
k=1P (4|x,Mk)P (Mk|x). (5.3)

The aim of the analyst could be either identifying the true model (Mt) or choosing

a model for inference.

5.2.1.1 Identifying the true model

Here we assume that the action to be taken is 4=Mt, choosing the true model.

In this case a natural choice of utility function is u(mk,4) = 1 if 4 = Mk

and 0 otherwise. A natural choice for the posterior of 4 for each model can be
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P (4|x,Mk) = 1 if 4 = Mk and 0 otherwise. From (5.3), P (4|x) = P (4|x,Mk)

if 4 = Mk and 0 otherwise. The expected utility for the decision mk given x is

u(mk|x) =

∫

4
u(mk,4)P (4|x)d4 = P (Mk|x).

This means that the optimal decision is to choose the model with the highest

posterior probability. From the Bayes factor framework, the Bayes factor for

model Mi versus model Mj is defined to be

Bij =
P (Mi|x)

P (Mj|x)

P (Mj)

P (Mi)
.

Model Mi is chosen if Bij > 1. For equal model prior probability, model Mi is

chosen if P (Mi|x) > P (Mj|x).

Hypothesis testing

Consider again that the parameter of interest is the choice of the true model

and consider 2 models M1 and M2. Define the utility function of the form:

u(mk,4) = −ukl where u11 = u22 = 0 and u12, u21 > 0. Using P (4|x,Mk) = 1 if

4 = Mk and 0 otherwise. The expected utility of mk is given by

u(mk|x) = −uk1P (M1|x)− uk2P (M2|x),

then model M1 is preferred if

P (M1|x)

P (M2|x)
>

u12

u21

.

If u12 = u21, we recognise the 0-1 utility case with the choice of model with

highest posterior.

5.2.1.2 Choosing a model for inference

Quadratic loss for prediction or estimation

Let define the utility by u(mk, 4̂k,4) = −(4̂k −4)2, 4 may be a future obser-

vation or any unknown quantity.

Conditioning on model Mk, the optimal choice is the value of 4̂ minimising

∫

4
(4̂ −4)2P (4|x,Mk)d4 . (5.4)

The optimal choice is 4̂k =
∫
44P (4|x,Mk)d4 = E(4|x,Mk).



96 Chapter 5. Bayesian Model Selection and Model Averaging

5.2.1.3 Other loss functions

For the logarithm form u(mk,4) = log P (4|x,Mk), the expected utility of choos-

ing model Mk is given by

u(mk|x) =
∫

Γ
log P (4|x,Mk)P (4|x)d4

=
∫
4 log P (4|x, Mk)(Σ

K
l=1P (4|x,Ml)P (Ml|x))d4, under(5.3)

= ΣK
l=1P (Ml|x){∫

Γ
log P (4|x,Mk)P (4|x,Ml)d4}

= ΣK
l=1P (Ml|x){∫

Γ
(log P (4|x,Ml)− log[ P (4|x,Ml)

P (4|x,Mk)
])P (4|x,Ml)d4}

= ΣK
l=1P (Ml|x){

∫

Γ

log[
P (4|x,Ml)

P (4|x,Mk)
]P (4|x,Ml)d4}

︸ ︷︷ ︸
(1)

+

ΣK
l=1P (Ml|x){

∫

Γ

(log P (4|x,Ml)P (4|x, Ml)d4}
︸ ︷︷ ︸

(2)

.

The second term (2) does not depend on Mk, therefore the selected model is given

by minimising over Mk

ΣK
l=1{P (Ml|x)

∫

4
log[

P (4|x,Ml)

P (4|x,Mk)
]P (4|x,Ml)d4}. (5.5)

For a utility function of the form

u(mk,4) = 2P (4|x, Mk)−
∫

4
P 2(4|x,Mk)d4,

similar computations yield that the selected model is given by minimising over

Mk

ΣK
l=1P (Ml|X)

{ ∫

4
{[2P (4|x,Ml)−

∫

4
P 2(4|x,Ml)d4]− [2P (4|x,Mk)

−
∫

4
P 2(4|x, Mk)d4]}P (4|x,Ml)d4

}
.

It follows that, if one needs to select a model followed by inference, other loss

functions are more appropriate. In general, a change in the utility function corre-

sponds to a different optimal decision. For instance, Bernado and Rueda (2002)

propose some continuous loss functions for that purpose. Barbieri and Berger

(2004) note also that choosing the model with higher posterior is true under more
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general conditions, for example in linear models, this is often true for orthogonal

matrices designs. Barbieri and Berger (2004) show that for normal linear model,

the optimal predictive model is the median probability model, under some strong

conditions. Their findings are also explained using a geometric representation.

5.2.2 BMA as model selection criterion

Proposition 5.2.1 Under the square error loss and the weighted posterior prob-

ability of Equation (5.3), the selected model is the one whose estimate is closest

to BMA estimate.

Proof. Conditioning on all models, that is under Equation (5.3), the optimal

choice is the value 4̂ minimising∫

4
(4̂k −4)2P (4|x)d4 . (5.6)

This is equivalent to minimise
∫
Γ
(4̂k −4)2{ΣK

l=1P (4|x,Ml)P (Ml|x)d4}

= ΣK
l=1P (Ml|x){∫

Γ
(4̂k − 4̂l + 4̂l −4)2P (4|x, Ml)d4}

= ΣK
l=1(4̂k − 4̂l)

2P (Ml|x)︸ ︷︷ ︸
(1)

+ ΣK
l=1P (Ml|x)Var(4|x,Ml)︸ ︷︷ ︸

(2)

.

The second term (2) does not depend on model Mk and denoting

4̂bma = ΣK
l=14̂lP (Ml|x), (5.7)

the first term (1) can be rearranged as

ΣK
l=1(4̂k − 4̂l)

2P (Ml|x) = ΣK
l=1((4̂bma − 4̂l) + (4̂k − 4̂bma))

2P (Ml|x)

= ΣK
l=1(4̂bma − 4̂l)

2P (Ml|x)︸ ︷︷ ︸
(1′)

+ ΣK
l=1(4̂k − 4̂bma)

2P (Ml|x)︸ ︷︷ ︸
(2′)

+ 2ΣK
l=1(4̂bma − 4̂l)(4̂k − 4̂bma)P (Ml|x)︸ ︷︷ ︸

(3′)

.

(2′) = (4̂k − 4̂bma)
2ΣK

l=1P (Ml|x) = (4̂k − 4̂bma)
2.

(3′) = 2(4̂k − 4̂bma)Σ
K
l=1(4̂bma − 4̂l)P (Ml|x).

= 2(4̂k − 4̂bma)(4̂bma − ΣK
l=14̂lP (Ml|x)) = 2(4̂k − 4̂bma)(4̂bma − 4̂bma) = 0.

(1’) does not depend on Mk, therefore the only term that depends on Mk is

(2’)=(4̂k − 4̂bma)
2.

One can see that the preferred model Mk is the one whose estimate 4̂k is closest

to the BMA estimate 4̂bma.
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Corollary 5.2.1 For two models, the selected model is the one with the highest

posterior probability.

Proof. From Proposition 5.2.1, let find the distance between each model and

BMA model. (4̂1 − 4̂bma)
2 = (4̂1 − P (M1|x)4̂1 − P (M2|x)4̂2)

2

= (4̂1(1−P (M1|x)−P (M2|x)4̂2)
2 = (P (M2|x)4̂1−P (M2|x)4̂2)

2 = P 2(M2|x)(4̂1−
4̂2)

2.

Similarly, (4̂2 − 4̂bma)
2 = P 2(M1|x)(4̂2 − 4̂1)

2.

Model M1 is selected if P 2(M2|x)(4̂1 − 4̂2)
2 < P 2(M1|x)(4̂2 − 4̂1)

2.

That is, if P (M1|x) > P (M2|x).

5.2.3 Robustness for prior specification

Besides the implementation issue of BMA, priors specification is also of concern.

For parametric priors, efforts have been made to develop priors that are robust,

even if the results are not really satisfactory. The methods include: natural

conjugate, non-informative priors, flat-tailed priors, hierarchical priors, maximum

entropy prior, ML-II priors, reference prior (Bernado and Smith, 1994). Details

on parameter prior robustness can be found in Robert (2001) and Berger (1985).

For the model space prior, a popular and simple choice is P (Mk) = 1
K

. However,

as noted in Chipman et al. (2001), when many models are very similar, and only

few are distinct, these priors are not robust and may bias the posterior away

from the good models. Many model space priors for variable selection can be

found in George and McCulloch (1993), Madigan and Raftery (1994), Hoeting et

al. (1999), Chipman and al. (2001). Spiegelhalter et al. (1993) and Lauritzen

(1996) analyse the benefits of incorporating informative prior models and show

improvement in predictive performance. Kass and Raftery (1995) and George

(1999) note that posterior model probabilities can quite be sensitive to the prior

distribution.

5.2.4 M-open framework

For the M-open framework, the true model Mt does not belong to the set of

competing models. The probabilities P (Mk) and P (Mk|x) have no meaningful

interpretation, so that the classical Bayesian model selection and BMA are not

valid. Suppose that one is interested in the choice of a model for inference about

a quantity 4. For the M-closed perspective, the optimal action m∗ is that max-

imising:

u(mk, 4̂k) =

∫

4
u(mk,4, x)P (4|x)d4, (5.8)
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where P (4|x) = ΣK
k=1P (4|x,Mk)P (Mk|x), for each model Mk, k = 1, . . . , K.

However, P (4|x) is not available and one needs to find the expected utility

function in (5.8). Consider the utility function u(mk,4, x) and a special case

where the quantity of interest is a future observation, that is 4 = z. The idea of

cross-validation is to leave out one observation, and use the set x−i = x−xi. With

this set, one computes 4̂(i)

k for each model and the selection rule in Equation (5.8)

becomes the optimal action m∗ is that maximises

u(mk, 4̂k) =
1

n
Σn

i=1u(mk, xi, 4̂(i)

k |x−i). (5.9)

For quadratic loss, this maximises over Mk

u(mk, 4̂k) =
1

n
Σn

i=1(4̂
(i)

k − xi)
2. (5.10)

For logarithm score function, this maximises over Mk

u(mk, 4̂k) =
1

n
Σn

i=1logP (xi|Mk, x−i). (5.11)

Other loss functions can be considered. More on cross-validation methods is

given in Bernado and Smith (1994), Berger and Pericchi (1996), Key, Pericchi

and Smith (1999) and Marriott, Spencer and Pettitt (2001).

5.3 Applied Bayesian inference and Bayesian model

selection inference

Here, we compare Bayesian methods in which only informal selection criteria are

used to those with both informal and formal selection criteria. Conditioning on

observed data, if the same model is selected for both approaches, their properties

are identical. If one needs to evaluate the long run performances of the resulting

estimator, these properties are different. Both approaches therefore suffer of

model selection uncertainty from a frequentist point of view.

5.3.1 Bayesian approach to statistical data analysis

Bayesian data analysis can be summarised as follows:

1. Quantity of interest 4.

2. Data x = (x1, . . . , xn).

3. use x for exploratory data analysis.
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4. From (3), specify a distribution family for the data M = f(x|θ), (4 = h(θ)):

there is model uncertainty, since the true model is unknown.

5. Specify a prior distribution for θ : π(θ).

6. Compute the posterior distribution for θ : π(θ|x).

7. Define a loss function.

8. Find the optimal decision rule. E.g. for square error loss, E(θ|x), Var(θ|x)

or any quantity, i.e. the posterior properties for 4.

Here, the analysis is conditioned on the observed data. But, if one needs the

frequentist properties, the data should be viewed as random. The step (3) is

an informal model selection procedure. Therefore, the use of exploratory data

analysis introduces model selection uncertainty.

5.3.2 Bayesian model selection approach to statistical data

analysis

1. Quantity of interest 4.

2. Data x = (x1, . . . , xn).

3. Use x for exploratory data analysis.

4. From (3), specify M = (M1, . . . , MK), alternative plausible (parametric θ)

models, 4 = h(θ).

5. Use any model selection criteria and data x to select a model (model un-

certainty) M̂(x) = Mk̂(x) ∈M, k̂(x) ∈ {1, . . . , K}.

6. Specify a prior distribution for θ : π(θ) from the selected model.

7. Compute the posterior distribution for θ : π(θ|x) from the selected model.

8. Define a loss function.

9. Find the optimal decision rule. E.g. for square error loss, E(θ|x), Var(θ|x)

or any quantity, e.g. posterior properties for 4.

The analysis is conditioned on the observed data (conditional inference). There is

no model selection uncertainty, only model uncertainty, since the data x (viewed

as fixed) are used for all steps (including steps 3 and 4). However, if one needs
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the frequentist properties, the data should be viewed as random because steps 3

and 4 introduce model selection uncertainty and M̂(X) = Mk̂(X) /∈ M, k̂(X) /∈
{1, . . . , K}. The difficulties are now similar those of frequentist model selection.

In some cases, frequentist performance is not of interest, in which case, Bayesian

methods are not concerned with model selection uncertainty. The remaining

uncertainty includes the choice of the statistical model, the prior and the loss

function.

5.4 Model selection uncertainty

5.4.1 Bayesian post-model-selection estimator

We refer to Bayesian post-model-selection estimator (BPMSE), the Bayes esti-

mator after a model selection procedure has been applied. Here, we consider

the squared error loss, but the main idea remains unchanged for any other loss

function. Given the selection procedure, BPMSE can been written as

4̃(X|S,M) =
K∑

k=1

Ik(X|S,M)E(4|X,Mk), (5.12)

where Ik(X|S,M) = 1 if model Mk is selected and 0 otherwise. In the following,

we define the posterior quantity and derive Bayesian-post-model selection in a

coherent way. For simplicity, 4k for each model Mk will be replaced only by 4
in the integrals.

5.4.2 Long-run performance of Bayes estimators

Here the goal of the analysis is to select a model for inference using any selection

procedure. One is interested in evaluating the long run performance (frequentist

performance) of the selected model. In general, Bayes estimators have good fre-

quentist properties (see, Carlin and Louis, 1996; Bayarri and Berger, 2004). The

Bayesian approach can also produce interval estimation with good performance,

for example coverage probabilities. It is also known that if a Bayes estimator

associated with a prior is unique, then it is admissible (see e.g., Robert 2001).

There are also conditions under which Bayes estimator are minimax. The point

is to see whether these good frequentist approaches still hold for Bayes estimators

after model selection.

4̃(X|S,M) /∈ {E(4|X, M1), . . . , E(4|X, MK)}.
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We are interested in studying the frequentist properties of 4̃(X|S,M). The dif-

ficulty we will describe here is similar to those encountered in frequentist PMSEs.

This is due to the partition of the sample space X by the selection procedure.

This makes it difficult to derive the coverage probability of confidence intervals.

5.4.2.1 The frequentist risk

The frequentist risk of BPMSEs is defined as

R(4, 4̃(X|S,M)) = Et[L(4, 4̃(X|S,M))], (5.13)

where L is a loss function. One can now see that this risk is difficult to compute.

It follows that it is difficult to prove admissibility and minimaxity properties of

BPMSEs, since their associated priors are not known.

5.4.2.2 Coverage probabilities

When the data have been observed, one can construct a confidence region. Sup-

pose that after observing the data, model Mk∗ is selected. For large samples,

Berger (1985) considers the normal approximation

4|x ∼ Np(E(4|x,Mk∗), Var(4|x,Mk∗)) (5.14)

and then derives an approximate region at the 1− α level given by

Cα(x) = {4; (4− E′(4|x, Mk∗)Var−1(4|x, Mk∗)(4− E(4|x, Mk∗)) ≤ d2
α},

where d2
α is the α-quantile of χ2

p.

A stochastic version (assuming normality) is given by

Cα(X) = {4; (4− 4̃′
(X|S,M)V ar−1(4̃′

(X|S,M))(4− 4̃(X|S,M)) ≤ d2
α}.

The coverage probability of the stochastic form is given by

P4(4 ∈ Cα(X)) = E4ICα(X)(4),

which is now difficult, as it involves computing the variance and expectation of

BPMSE.

5.4.2.3 Consistency

Another frequentist property of Bayes estimators is consistency. It is known (e.g.,

Bayarri and Berger, 2004) that, under appropriate regularity conditions, Bayes

estimators are consistent. A question is whether BPMSEs are consistent, but

this is difficult to prove because one does not know the priors associated with

BPMSEs.
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5.4.3 Conditional performance of Bayes estimates

We now consider the conditional performance, the properties of the Bayes es-

timates conditioned on the observed data. Consider a realisation of the data,

X = x, then

4̃(x|S,M) ∈ {E(4|x,M1), . . . , E(4|x,MK)} and

Var(4̃(x|S,M)) ∈ {Var(4|M1, x), . . . , Var(4|MK , x)}.

That is, 4̃(x|S,M) = E(4|X, Mk∗) and Var(4̃(x|S,M)) = Var(4|x,Mk∗)

where Mk∗ is the selected model. For example the posterior risk of 4̃(x|S,M) is

given by that of the Bayesian estimate under Mk∗ . That is,

ρ(4̃(x|S,M)) = ρ(E(4|X, Mk∗)) = Ek∗ [L(4, E(4|X, Mk∗))].

One can construct confidence region (but does not know the coverage). This

means that, if only posterior analysis is of interest, Bayesian model selection

does not suffer from model uncertainty problem.

5.5 Adjusted Bayesian model averaging

In this framework, we are concerned with the long run performance of BPMSES,

not on posterior evaluation, since in the posterior evaluation, the model selection

uncertainty problem does not exist. Under model selection uncertainty, from

(5.12), a fundamental ingredient is the selection procedure S. This selection

procedure should depend on the objective of the analyst and should be taken

into account in modelling uncertainty at two levels: prior and posterior to the

data analysis.

5.5.1 Prior representation of model selection uncertainty

The initial representation of model uncertainty is captured by parameter prior

uncertainty and the model space prior, the selection procedure is used to update

model prior. Formally, consider the possible models M1, . . . ,MK ; assign a prior

probability P (θk|Mk) to the parameter of each model and a prior probability

P (Mk) to each model with the data X viewed as random. Let Mk(S) be event

model Mk is selected, Mk is considered to be the event model Mk is true. We

refer to the probability of this event as prior model selection probability of model

Mk and denoted by P (Mk(S)). This is to update prior model P (Mk) using the

selection procedure S. P (Mk) may be informative or not, but P (Mk(S)) is an
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informative prior. Making use of the fact that one of the models is true, P (Mk(S))

can been computed as

P (Mk(S)) = ΣK
j=1P (Mk(S)|Mj)P (Mj), (5.15)

where P (Mk(S)|Mj) is the prior model selection probabilities of model Mk given

that Mj is the true model. P (Mk(S)|Mk) is the probability that Mk is actually

selected given that it is really the true model. The true state of the nature is

that a given model is true. The decision here is to select a model. Given that

model Mj is true, ΣK
k=1P (Mk(S)|Mj) = 1. These probabilities can be computed

as

P (Mk(S)|Mj) = Eθ
j [E

X
j (Ik(X))]. (5.16)

The expectation is taken with respect to the true model Mj, provided that these

expectations exist. Note that these probabilities do not depend on the observed

data.

Table (5.1) gives the true state of the world (nature) and the decision (the

selected model). The Pjk = P (Mk(S)|Mj), the probability that Mk is selected,

given that Mj is the true model. Suppose that Mj is the true model, one would

like Pjj to be higher, ideally 1 (the correct decision). If model Mj is not selected

with probability one, αj = 1− Pjj = 1− ΣK
k=1,k 6=jPjk is called the probability of

Type I error for model Mj. That is, if Mj is the true model and the selection

procedure S incorrectly does not select it, then the selection procedure has made

a Type I Error.

On the other hand, if Mk is the true model, but the selection procedure selects

Mj, then this selection procedure has made a Type II error, with probability Pkj,

j 6= k. The reliability of the selection criterion is given by the closeness of Pjj to

1.

Nature and Decision M1(S) M2(S) . . . Mj(S) . . . MK(S)

M1 P11 P12 - P1j - P1K

M2 P21 P22 - P2j - P2K

. . . - - - - - -

Mj Pj1 Pj2 - Pjj - PjK

. . . - - - - - -

MK PK1 PK2 - PKj - PKK

Table 5.1: True and selected models.
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5.5.2 Posterior representation of

model selection uncertainty

When the data have been observed, the posterior model selection probability for

each model Mk is given by

P (Mk(S)|x) =
P (x|Mk(S))P (Mk(S))

ΣK
j=1P (x|Mj(S))P (Mj(S))

, (5.17)

where

P (x|Mj(S)) = L(x|Mk(S)) =

∫

Θ

P (x|θk,Mk(S))P (θk|Mk(S))dθk (5.18)

is the marginal likelihood of Mk(S). For P (θk|Mk(S)) discrete, (5.18) is a sum-

mation. P (Mk(S)|x) is the conditional probability that Mk was the selected

model. Computations are conditioned on each model, since one will never know

the selection for random data. This is similar to the fact that the true model will

never be known, and each of the models can be viewed as a possible true model.

5.5.2.1 Posterior distribution

Now, after the data x is observed, and given the selection procedure S, from the

law of total probability, the posterior distribution of 4 is then given by

P (4|x, S) = ΣK
k=1P (4|x,Mk(S))P (Mk(S)|x). (5.19)

P (4|x, S) is an average of the posterior of each model Mk(S), P (4|x,Mk(S)),

weighted by posterior model selection probability.

5.5.2.2 Posterior mean and variance

Proposition 5.5.1 Under (5.19), the posterior mean and variance are given by

4̂ = E(4|x, S) = ΣK
k=1E(4|x,Mk(S))P (Mk(S)|x),

Var(4|x, S) = ΣK
k=1P (Mk(S)|x){Var(4|x,Mk(S)) + (E(4|x,Mk(S))− E(4|x, S))2},(5.20)

where E(4|x,Mk(S)) and Var(4|x,Mk(S)) are respectively the posterior mean

and the posterion variance of 4 for model Mk if Mk was the selected model.

Proof. Under (5.19), the posterior mean is

E(4|x, S) =
∫

Λ
4P (4|x, S)d4 =

∫
Λ
4{ΣK

k=1P (4|x, Mk(S))P (Mk(S)|x)}d4

= ΣK
k=1[P (Mk(S)|x){∫

Λ
4P (4|x,Mk(S))d4}] = ΣK

k=1P (Mk(S)|x)E(4|x,Mk(S)).
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The posterior variance under (5.19) is

Var(4|x, S) =
∫
4(4− E(4))2P (4|x)d4

=
∫

Γ
(4− 4̂)2{ΣK

k=1P (4|x,Mk(S))P (Mk(S)|x)}d4

= ΣK
k=1[P (Mk(S)|x) {

∫

Γ

(4− 4̂)2P (4|x,Mk(S))d4}
︸ ︷︷ ︸

Rk(4̂)

].

Rk(4̂|S) = Ek(4− 4̂)2 = Ek(4− E(4|x,Mk(S)) + E(4|x,Mk(S))− 4̂)2

= Ek(4− E(4|x, Mk(S)))2 + E(E(4|x,Mk(S))− 4̂)2

−2E[(4− E(4|x,Mk(S)))((E(4|x,Mk(S))− 4̂)]

= Var(4|x,Mk(S)) + (E(4|x,Mk(S))− 4̂)2 + 2(E(4|x,Mk(S))−
4̂) (E4k|x)(4− E(4|x,Mk(S))))︸ ︷︷ ︸

=0

= Var(4|x,Mk(S)) + (E(4|x,Mk(S))− 4̂)2.

Rk(4̂|S) is the posterior expectation loss for model Mk for taking the decision

rule 4̂ rather than E(4|x,Mk(S)).

The method can be then summarised as follows:

1. P (Mk) represents the prior model uncertainty,

2. P (Mk(S)) updates prior model uncertainty by taking into account the se-

lection procedure,

3. P (Mk(S)|x) is the overall posterior representation of the model selection

uncertainty.

Note that if the unconditional model selection probability is equal to model

prior, then the proposed weights are the same as BMA weights, namely the

probability that each model is true given the data, P (Mk|x). For the proposed

weights, one needs to compute the marginal likelihood and these model selection

probabilities. This is not an easy task. However, methods exist in the literature

for doing such computations. These include Markov chain Monte Carlo methods,

noniterative Monte Carlo methods and asymptotic methods.



5.6. Estimating a multivariate mean 107

5.5.2.3 A basic property

From the nonnegativity of Kullback-Leiber information divergence, it follows that

∀j = 1, . . . , K :

E[log{ΣK
k=1P (4|x,Mk(S))P (Mk(S)|x)}] ≥ E[logP (4j|x,Mj(S))], (5.21)

where the expectation is taken with respect to the posterior distribution in (5.19).

This logarithm score rule was suggested by Good (1952). This means that under

the use of a selection criterion and the posterior distribution given in (5.19),

FBMA provides better predictive ability (under logarithm score rule) than any

single selected model.

For computational purposes, P (Mk(S)|x) can be written as

P (Mk(S)|x) =
P (Mk(S))Bkj(x|S)

ΣK
i=1Pi(Mi(S))Bij(x|S)

, (5.22)

where Bij(x|S) is the Bayes factor, summarising the relative support for model

Mi versus model Mj using posterior model selection probabilities. Using Laplace

approximation of the marginal likekihood, the weights in (5.22) become

P (Mk(S)|x) =
Pk(Mk(S))exp(−BICk(S)

2
)

ΣK
i=1Pi(Mi(S))exp(−BICi(S)

2
)
, (5.23)

where BICk(S) is Bayesian information criterion for model Mk(S).

5.6 Estimating a multivariate mean

Let X = (X1, ..., Xp)
′ be a p-dimensional random vector, p ≥ 3. Suppose X ∼

Np(θ, Ip), with unknown mean θ = (θ1, ...., θp)
′ and θ is a random with prior

probability τ . The marginal distribution of X is given by

L(X) =
1

(2π)p/2

∫

Θ

e−‖x−θ‖2/2τ(θ)dθ. (5.24)

The Bayes estimate θ̂ of θ with respect to τ , obtained by minimising over ρ the

quantity E‖θ − ρ(X)‖2 is given by (Stein, 1981):

θ̂ = X +5 log L, (5.25)

where 5 log L = ∂ log L/∂x. Now for a set of models, suppose that the marginal

of each model, Lk, is of the form (5.24). This means that each Bayes estimator

will be of the form (5.25), that is θ̂k = X + 5 log Lk. Let P (Mk|S) be model
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selection probability of each model Mk.

Let Γ(X|S,M) = ΣK
k=1P (Mk|S)Lk and τ(θ) = ΣK

k=1P (Mk|S)τk(θ),

where Lk and τk are respectively marginal likelihood and prior for θ in each model.

Theorem 5.6.1 Assume the following

1. X ∼ Np(θ, Ip),

2. Lk = 1
(2π)p/2

∫
Θ

e−‖x−θ‖2/2τk(θ)dθ,

3. τ(θ) is superharmonic, that is Σp
i=1∂

2τ/∂θ2
i ≤ 0,

then θ̃abma(S) = ΣK
k=1P (Mk(S)|x)θ̂k is a minimax estimator for θ and its risk is

R(θ̃abma(S)) = p +
52Γ(X|S,M)

Γ(X|S,M)
− ‖5 log Γ(X|S,M)‖2.

Proof. Let start with the following lemma which is straightforward but impor-

tant.

Lemma 5.6.1 Under assumption (2),

θ̃abma(S) = X +5 log Γ(X|S,M) (5.26)

and Γ(X|S,M) is the marginal of X under mixture prior τ .

Proof of the Lemma 5.6.1. From assumption (2), and Equation (5.25) each

Bayesian estimator is of the form θ̂k = X +5 log Lk .

We have the notation 5f = (∂f/∂X1, . . . , ∂f/∂Xp)
′ and 5 log f = 5f

f
.

P (Mk(S)|X) = P (Mk|S)Lk

ΣK
i=1P (Mi|S)Li

= P (Mk|S)Lk

Γ(X|S,M)
.

then θ̃abma(S) = ΣK
k=1P (Mk(S)|X)θ̂k

= ΣK
k=1

{
P (Mk|S)Lk

Γ(X|S,M)

}
θ̂k

= 1
Γ(X|S,M)

ΣK
k=1P (Mk|S)Lk(X +5logLk)

= X + 1
Γ(X|S,M)

ΣK
k=1P (Mk|S)Lk(

5Lk

Lk
)

= X + 1
Γ(X|S,M)

ΣK
k=1P (Mk|S)5 Lk = X + 1

Γ(X|S,M)
5 (ΣK

k=1P (Mk|S)Lk)
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= X + 1
Γ(X|S,M)

5 Γ(X|S,M) = X +5 log Γ(X|S,M).

Under τ(θ), the marginal L of X is derived as:

L = 1
(2π)p/2

∫
Θ

e−‖x−θ‖2/2[ΣK
k=1P (Mk|S)τk(θ)]dθ

= ΣK
k=1P (Mk|S){ 1

(2π)p/2

∫
Θ

e−‖x−θ‖2/2τk(θ)dθ} = ΣK
k=1P (Mk|S)Lk = Γ(X|S,M).

Now we are ready to use Stein’s results. The posterior risk of θ̃abma(S) is given

by R(θ̃abma(S)) = p + 52Γ(X|S,M)
Γ(X|S,M)

− ‖5 log Γ(X|S,M)‖2.

Now, from Stein (1981), p.1141, τ(θ) is superharmonic. This implies that Γ(X|S)

is also superharmonic. Using Lemma 5.6.1 and Stein’s (1981) results, θ̃abma(S) is

a minimax estimator for θ.

The theorem remains valid if one assumes that each τk(θ) is superharmonic. The

theorem is also valid for classical BMA by just replacing P (Mk|S) by P (Mk),

the model prior probability and the weights P (Mk(S)|X) by posterior model

probabilities P (Mk|X).

5.7 Application to one-way ANOVA

A typical example for estimation of the mean of a multivariate normal distribution

is a one-way ANOVA.

Yij = θi + εij, εij ∼ N(0, 1), iid, i = 1, . . . , p, p ≥ 3, j = 1, . . . , n; θi ∼ N(0, %)

and are iid, θ = (θ1, . . . , θp)
′ .

A Bayes estimator of θi is θ̂i = ( %2

%2+1
)Yi., where Yi. = 1

n
Σn

j=1Yij.

Now, suppose that the linear form is correct and the only uncertainty is the choice

of prior probability over the parameter θ. One needs to select among different

models, where priors over θi differ.

That is, Mk is just characterised by θi ∼ N(0, %k), k = 1, . . . , K. The Bayes

estimator for each model is θ̂ki = (
%2

k

%2
k+1

)Yi. Suppose that a selection procedure

S is given, for example choosing a model with the highest posterior. The naive

procedure consists of selecting a model M0 and then obtaining the Bayes estimator

θ̂0i = (
%2
0

%2
0+1

)Yi.

Instead of applying this naive procedure, one can use the proposed method to

weight each Bayes estimator.

5.8 Estimating a proportion

In Bayesian analysis, we use the following notation: quantity of interest 4 = θ,

with prior π(θ), given data x, posterior of θ is π(θ|x), and sample space χ for any
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Figure 5.1: Risk of two proportions comparing BPMSE, BMA and ABMA esti-

mators as a function of θ.

decision rule δ(x), given θ, the distribution of X is f(x|θ). The frequentist risk

of δ(x) is

R(θ, δ) = MSEθ(δ) =

∫

χ

(δ(x)− θ)2f(x|θ)dx.

The Bayes risk of δ(x) is
∫
Θ

R(θ, δ)dθ and is constant.

For some models, we will use the beta prior for θ and make use of the following

general result about this kind of priors (see for example Casella and Berger (1990),

p.298):

X|θ ∼ binomial(n, θ), θ ∼ beta(α, β), then θ|x ∼ beta(x+α, n−x+β), therefore

θ̂ = E(θ|x) =
x + α

α + β + n

is the Bayes estimate of θ. The marginal distribution of X is the beta-binomial(n, α, β),

whose PDF is given by

f(x) =

(
n

x

)
Γ(α + β)Γ(x + α)Γ(n− x + β)

Γ(α)Γ(β)Γ(α + β + n)
.

5.8.1 Long run evaluation

5.8.1.1 Two-model choice

(a) M1 : θ = θ1 and M2 : θ = θ2, priors for models P (M1), P (M2) are given.

The same set-up, like in the frequentist approach, can be carried out in the



5.8. Estimating a proportion 111

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

2
0.

00
4

0.
00

6
0.

00
8

0.
01

0

MSE of proportion

true proportion

M
S

E

BMA
PMSE
ABMA

Figure 5.2: Risk of two proportions comparing BPMSE, BMA and ABMA esti-

mators as a function of θ.

Bayesian approach. The degenerate prior π(θ1) = π(θ2) = 1 can be used. In the

framework of hypothesis testing, Bernado and Smith (1994), p.391, refer to (a)

as ”simple versus simple test” .

P (x|Mk) = f(x|θk)π(θ = θk) = f(x|θk), k=1,2.

Posterior model probabilities P (Mk|x) are given by

P (Mk|x) = P (Mk)f(x|θk)

Σ2
i=1P (Mi)f(x|θi)

.

Model 1 is selected if P (M1|x) > P (M2|x),

⇐⇒ P (M1)f(x|θ1)

Σ2
i=1P (Mi)f(x|θi)

> P (M2)f(x|θ2)

Σ2
i=1P (Mi)f(x|θi)

,

⇐⇒ P (M1)
f(x|θ1)

> P (M2)
f(x|θ2)

,⇐⇒ f(x|θ1)
f(x|θ2)

> P (M2)
P (M1)

.

⇐⇒ R = log(f(x|θ1))− log(f(x|θ2)) > log[P (M2)
P (M1)

]

⇐⇒ x[log θ1

θ2
− log[1−θ1

1−θ2
]] + nlog[1−θ1

1−θ2
] > log[P (M2)

P (M1)
]

⇐⇒ x >
−nlog[

1−θ1
1−θ2

]

log[
θ1(1−θ2)
θ2(1−θ1)

]
− log[P (M2)

P (M1)
] = an(θ1, θ2)− log[P (M2)

P (M1)
] = bn(θ1, θ2).

p1 = Pθ(X > bn(θ1, θ2)) = 1− Pθ(X < bn(θ1, θ2)) = 1− FB(n,θ)(bn(θ1, θ2)).

BMA corresponds to weighting the models with their posterior; the corresponding

estimator is θBMA = θ1P (M1|x) + θ2P (M2|x).

The BPMSE θ̃ = θ1 if M1 is selected and θ2 otherwise.

For illustration of the case P (M1) 6= P (M2), we take n = 41, P (M1) = 0.3,

P (M2) = 0.7, θ1 = 0.6, θ2 = 0.4.
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Figure (5.1) illustrates the performance BPMSE, BMA and ABMA.

BMA and ABMA have similar performance. However, for some regions of the

parameter space, BMA tends not to be better than BPMSE.

Only points θ = θ1 = 0.6 and θ = θ2 = 0.4 are relevant since the true model is

one of the two.

Figure (5.2) shows these estimators all together.

(b) Consider the following two models: M1 : X ∼ Be(n, θ1), P (θ = θ1) = 1,

noninformative prior and M2 : X ∼ Be(n, θ), θ ∼ beta(α, β).

Let the selection procedure be choosing the model with higher posterior.

P (x|M1) = f(x|θ1) and P (x|M2) = f(x) =
(

n
x

)Γ(α+β)Γ(x+α)Γ(n−x+β)
Γ(α)Γ(β)Γ(α+β+n)

,

θ̂2 = E(θ|x) = x+α
α+β+n

.

M1 is chosen if P (M1|x) > P (M2|x).

P (M1|x) = P (M1)f(x|θ1)
P (M1)f(x|θ1)+P (M2)f(x)

.

P (M2|x) = P (M2)f(x)
P (M1)f(x|θ1)+P (M2)f(x)

.

θ̃bpmse = θ1I1(P (M1|x) > P (M2|x)) + θ̂2I2(P (M1|x) ≤ P (M2|x)).

p1 = Eθ(I1(P (M1|x) > P (M2|x)) and p2 = Eθ(I2(P (M1|x) ≤ P (M2|x)).

The parameters are: n = 41, α = β = 1, that is θ ∼ U(0, 1), θ1 = 0.5.

(c) Consider the following two models: M1 : X ∼ binomial(n, θ), π(θ) = 1

(degenerate prior) and M2 : X ∼ binomial(n, θ), θ ∼ beta(α, β).

Similar degenerate priors for model 1 can be seen in Berger (1985, p.132 and

p.230), Robert (2001, p.226 and p.404)

Estimators for M1:

marginal=f1(x) =
∫ 1

0
f(x|θ)π(θ)dθ =

∫ 1

0
f(x|θ)dθ.

f1(θ|x) = π(θ)f(x|θ)
f1(x)

, θ̂1 = E(θ|x) =
∫ 1

0
θf(θ|x)dθ.

Figure (5.4) shows the MSE of BPMSE, BMA and ABMA. As can be seen BMA

does not dominate BPMSE, but ABMA does.

5.8.1.2 Multi-model choice

(a) Consider also a choice between the following models: Mk : X ∼ binomial(n, θk)

for arbitrary K models, with degenerate π(θk) = 1.

Similar to part (a) with two models, here, instead, we have K = 30 and n = 41.
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Figure 5.3: Risk of two proportions comparing BPMSE, BMA and ABMA as a

function of θ.

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

1
0.

00
5

MSE of proportion

true proportion

M
S

E

BMA
PMSE

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

1
0.

00
5

MSE of proportion

true proportion

M
S

E

ABMA
PMSE
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function of θ.
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Figure 5.5: Risk of 30 simple models comparing BPMSE, BMA and ABMA as a

function of θ.

Figure (5.5) shows the MSE of BPMSE, BMA and ABMA. As can be seen BMA

does not dominate BPMSE, but ABMA does.

(b) Consider also a choice between the following models: Mk : X ∼ binomial(n, θk)

for arbitrary K models, θk ∼ beta(αk, βk).

For K = 30, n = 41, αk ∈ (0.5, 10) and βk ∈ (1, 20), Figure (5.6) shows the MSE

of BPMSE, BMA and ABMA. As can be seen BMA does not dominate BPMSE,

but ABMA does.

5.8.2 Evaluation with integrated risk

A good feature of integrated risk is that it allows a direct comparison of estimators

(since it is a number). Consider a choice between the following models: Mk : X ∼
binomial(n, θk) for arbitrary K models, θk ∼ beta(αk, βk), n = 41, α ∈ (1, 50),

β ∈ (2, 20). For each model (between 10 and 200), the integrated risk is computed

and comparisons of estimators is given in Figure (5.7). The ABMA dominates

BPMSE, BMA does not.
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Figure 5.6: Risk of 30 full models comparing BPMSE, BMA and ABMA as a

function of θ.
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Chapter 6

Model Selection and Nuisance

Parameter Elimination

6.1 Introduction

Let x be a realization of a random variable X whose distribution is specified by

the model Mt. Since Mt is unknown, one usually selects the “best” model from

a set of plausible models, say M = (M1, . . . , MK), i.e. one applies some model

selection procedure (between model selection).

Consider now a parametric model that is represented by a family M = {fλ, λ ∈
Λ}, and a quantity of interest of the form

4 = 4(X, λ). (6.1)

4 is a pivotal quantity for λ if its distribution does not depend on λ. Suppose

that for a known value of the parameter, the properties of 4 are also known. In

practice, λ is rarely known and one has to estimate it using an estimation method,

e.g. maximum likelihood estimation. Let λ̂(X) be an estimator of λ. Suppose

that λ̂(x) ∈ Λ. This means that the estimate is a member of the parameter

space. One can view the family M as a set of competing models. The estimation

procedure is viewed as a model selection method and the selected model is fλ̂

(within model selection).

After the parameter has been estimated, the quantity of interest is then

4̂ = 4(X, λ̂). (6.2)

One can see that a model selection procedure has been performed, followed by

inference on the quantity 4̂ . Failure to take into account this selection procedure

on the inference about 4̂ will result in invalid inference. Therefore, the problem

117
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is similar to model selection uncertainty that we described in Chapter 3. In this

context, we will refer to this as parameter estimation uncertainty. The problem

is similar for any unknown λ that needs to be estimated; the parameter need not

be related to the data generating process (e.g. bandwidth or binwidth selection

in nonparametric density estimation).

We consider the problem in the framework of nuisance parameter elimination

and compare the properties of 4 when the parameter is known to those when

it is unknown. A typical example is the profile likelihood method, which is of

the form (6.1) and then (6.2). We point out that, as long as the estimation of λ

is properly taken into account, the procedure is correct. Since profile likelihood

estimators can be biased, modified profile likelihood estimators are sometimes

used to correct for the bias. However, such modifications can lead to inferior

estimators in terms of risk measures, such as mean squared error.

The point of view presented here, of regarding parameter estimation as model

selection, leads to an alternative interpretation of certain classical distributions,

such as the t, F , Poisson, negative-binomial, beta-binomial and noncentral chi-

squared distributions. We can interpret these as examples of model averaging

to correct for model selection uncertainty. Finally, a definition of consistency is

given for a “within model selection procedure”.

6.2 Nuisance parameter elimination

In statistical problems, one tries to make inference about an unknown state of na-

ture θ (possibly an entire set of parameters). The entire parameter set is rarely of

interest. It is not uncommon to select a paramerisation θ = (ψ, λ) where ψ is the

parameter of interest and λ is a incidental or nuisance parameter. The nuisance

parameter accounts for aspects of the model that are not of main concern, but im-

portant for a realistic statistical modelling. In general, the parameter of interest

ψ has small dimension while the nuisance parameter could be high dimensional.

The presence of nuisance parameters sometimes makes inference difficult. Fre-

quentist methods have been proposed for eliminating λ. These include marginal

likelihood, conditional likelihood and profile likelihood.

In Bayesian analysis, the problem is not difficult, since it involves integrating

the joint posterior with respect to λ and using the resulting marginal posterior

of ψ. However, the problem arises in eliciting priors for λ and in implementating

the procedure. When the likelihood function can be computed exactly, marginal

and conditional likelihoods give exact inference for ψ. This often happens for

exponential families.
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For nonparametric or semi-parametric setting, Qin and Zhang (2005) intro-

duce an empirical likelihood approach with application to genetical quantitative

traits analysis.

6.2.1 Profile and modified profile likelihood

Let L(θ) = L(ψ, λ, x) be the likelihood function. If there is no nuisance pa-

rameter, one has to maximise the likelihood function in classical situation. The

properties of maximum likelihood estimator are well known, in particular under

certain conditions ψ̂ is asymptotically normal. Suppose there is nuisance pa-

rameter. Let λ̂ψ be the maximum likelihood estimate of λ when maximising the

likelihood function over λ, ψ considered to be fixed. The profile likelihood is

defined by Lp(ψ) = L(ψ, λ̂ψ). Econometricians call the concentrated likelihood.

Let ψ̂ be the maximum likelihood estimator of ψ obtained by maximising the

profile likelihood. The properties of ψ̂ are well known in the literature, e.g. Pace

and Salvan (1997). By taking the view that λ̂ψ was chosen among an infinite

class Λ of possible values (models), we see that one model is selected using the

data and to make inference on the quantity of interest ψ. However, the difference

is that usually, the moments (e.g. mean, variance) of the parameter of interest

are computed (or approximated), since substitution is directly included in the es-

timate. As long as the properties of the profile likelihood estimator are available,

the parameter estimation uncertainty does not exist, although in the literature

the modified profile likelihood method is proposed.

Methods for dealing with general form of post-model-selection estimate are

then applicable. From the literature, profile likelihood is too concentrated and

can be maximised at a wrong value, asymptotic theory does not apply when the

number of observations increase with the sample size. Many examples of mis-

leading behaviour of profile likelihood are given in Reid (1988). Modified profile

likelihood has been developed in Barndorff-Nielsen (1983,1988) and conditional

profile likelihood in Cox and Reid (1987). Difficulties with modified profile include

the fact that in some cases, modifications are not enough to establish consistency

of the resulting estimators.

6.2.2 Illustrative examples

6.2.2.1 Univariate normal distribution

Let x1, . . . , xn be independent observations from N(µ, σ2) and let σ2 be the pa-

rameter of interest and µ the nuisance parameter. The maximun likelihood

estimate of µ is µ̂ = x = 1
n

∑n
i=1 xi, then from the profile likelihood, σ̂2 =
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Figure 6.1: Variance and risk functions for the variance estimators using profile

likelihood and modified profile likelihood as a function of the true parameter σ2.

1
n

∑n
i=1(xi − µ̂)2.

This substitution of µ by µ̂ represents model selection uncertainty. Simple use of

modified profile likelihood yields σ̂2
mp = 1

n−1

∑n
i=1(xi − µ̂)2 which is an unbiased

estimate.

Var(σ̂2
mp) = 2σ4

n−1
= MSE(σ̂2

mp),

Var(σ̂2) = 2(n−1)σ4

n2 = (n−1)2

n2 Var(σ̂2
mp),

MSE(σ̂2) = (2n−1)σ4

n2 .

Simple computations yield that Var(σ̂2
mp) ≥ Var(σ̂2) and MSE(σ̂2

mp) ≥ MSE(σ̂2),

∀n ≥ 2 and ∀σ > 0. This means that although the modified profile likelihood es-

timator is unbiased, it is uniformly dominated by the profile likelihood estimator,

even if, for large samples, both have the same risk. Illustration is given in Figure

(6.1) for sample size n = 10. Although the act of replacing the unknown µ by its

estimator µ̂ represents parameter estimation uncertainty, this causes no problem

from the point of view of model selection. The reason is that the computations

of the moments, e.g. mean and variances take into account this parameter esti-

mation uncertainty (the moments of σ̂2 are known). In this case, the modified

profile likelihood is therefore not necessary.

Figure (6.2) illustrates the behaviour of the estimation for the variance for

different values of µ. The data used are flow data described in Linhart and
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Zucchini (1986).

6.2.2.2 Multiple linear regression

Consider the normal linear model where Yi = x′iβ + εi, with εi ∼ N(0, σ2) where

x′i = (xi1, . . . , xip), a vector of p regressors, and β an unknown vector of dimension

p and we have n observations. The parameter of interest is σ2 and the nuisance

parameter is β. The used profile likelihood yields σ̂2 = 1
n

∑n
i=1(yi − xiβ̂)2. This

does not take into account the fact that the unknown β of dimension p has been

estimated, leading in loss of degrees of freedom. The use of modified profile

likelihood leads to σ̂2
mp = 1

n−p

∑n
i=1(yi − xiβ̂)2, which is unbiased and is also the

estimate for residual sum of squares or the marginal likelihood of σ2. However,

the use of modified profile likelihood is unnecessary from the point of view of

model selection since the properties of the profile likelihood σ̂2 are known.

6.2.2.3 Gamma models

Consider the gamma distribution with the following parametrisation

g(x|µ, α) = ααµ−α

Γ(α)
xα−1 exp(−µ−1αx), y, α, µ > 0.

Let a = α
µ
, g is just the PDF of gamma distribution with scale a and shape α.

Then E(X) = α
a

= µ and V (X) = α
a2 = α

a
. Let the shape α be the parameter of

interest and µ the nuisance parameter. The maximum likelihood estimate of µ

is µ̂α = x and the profile likelihood is then given by Lp(α, µ̂α) = Πn
i=1g(xi|µ̂α, α).
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Figure 6.3: Profile log-likelihood for gamma distribution.

Figure (6.3) illustrates various choice of µ for the profile log likelihood and a

particular choice of µ, µ̂ has been made. This means that a difference choice of

log profile could have arisen if another set of data were used. Each choice of µ

corresponds to a different value for αmax. This represents the uncertainty on plug-

in µ̂ = 8.96. The data used are storms data described in Chapter 2. The point

is that even if, for some cases, the profile likelihood does not take into account

the number of degrees of freedom lost in estimating the nuisance parameter, as

long as the properties of the profile likelihood estimator are known, this does

not suffer from parameter estimation uncertainty. Adjusted methods like the

modified profile likelihood are unnecessary, unless they perform better than the

profile likelihood estimator.

6.3 Deriving basic distributions

Let X ∼ f(x|θ) a parameter family with Θ the parameter space (finite or infinite).

This parameter can be any fixed value in the parameter space. Let θ̂ be an

estimator of θ. For simplicity, assume that the range of the estimator is a subset

of the parameter space. This means that the estimator takes on values in the

parameter space, therefore, the event θ̂ = θ is possible, since θ is fixed. For the

model selection approach, the model space M is the same as parameter space Θ.

The true model M0 is then included in the set of models. This is a case where the

true model really belongs to the set, and so there is no model misspecification.

The estimation method for θ is now called model selection procedure, consisting
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of selecting one model in the model space M. θ̂ is now denoted by M̂ . Now

consider, 4 = 4(X, θ) and replace 4 by an estimator 4̂ = 4(X, θ̂). One is

selecting a model and making inference on the quantity of interest with the same

data. One should then take into account the variability due to that. We recognise

the parameter estimation uncertainty problem. Assume that for a fixed parameter

value, the distribution of 4 is known and depends on θ, G and the distribution

of θ̂ is also known, H and their densities by g and h. The idea is to obtain the

distribution of 4̂ = 4(X, θ̂) by averaging over possible values of 4 using the

density function of θ̂ as weights. This density function is referred as parameter

selection probabilities. The advantage of this model averaging scheme is that

there is no model misspecification. Let V and v be respectively the distribution

function and density of 4̂. Mathematically, this is given by

V (t) =

∫

Θ

G(t, θ)h(θ)dθ or (6.3)

u(t) =

∫

Θ

g(t, θ)h(θ)dθ if g is continuous. (6.4)

To see that this distribution is well defined, it is straightforward to see that the

quantity V (t) =
∫

Θ
G(t, θ)h(θ)dθ is a monotone function of t, is increasing from

0 to 1, and is a distribution function. When the parameter space Θ is discrete or

finite, the distribution of 4̂ is given by

u(t) = ΣΘg(t, θk)hk, (6.5)

where hk = P (θ̂ = θk), model selection probability for model k, that is the

probability that the estimator takes on a particular value θk.

6.3.1 Standard normal distribution and t-distribution

Let X = (X1, . . . , Xn) be a random sample from N(µ, σ2) with σ unknown. Let

drawing inference on µ be our objective. The parameter for estimation is then

θ = σ. Consider 4(X, θ) =
√

n(X−µ)
θ

where X is the sample mean. For θ known,

4(X, θ) is standard normal distributed. When θ is unknown, we want to find the

distribution of 4(X, θ̂) where θ̂2 =
∑n

i=1(Xi−X)2

n−1
. The estimator θ̂ can take any

strictly positive value, in our terminology, we call each of possible value a model.

We know that
(n− 1)θ̂2

θ2
∼ χn−1. (6.6)

Let Y = θ̂
θ
. Then realisation of Y implies also realisation of θ̂. From (6.6), it

follows that the distribution of Y is then given by 2pyfp(py
2),where p = n − 1
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and fp is the density of chi-squared with p degrees of freedom. This distribution

is the parameter selection probability. For a realisation y of Y , the distribution

of 4(X, θ̂), using the transformation Y is given by φ(ty)y where φ is the PDF

of standard normal. The distribution of 4(X, θ̂) is obtained by weighting this

distribution by parameter selection probabilities. We have the following:

u(t) =
∫∞

0
{ 1√

2π
e−

t2y2

2 y}{ 1
Γ( p

2
)2p/2 (py

2)p/2−1e−py2/22py}dy

= 2p√
2πΓ( p

2
)2p/2

∫∞
0

y2e−
t2y2

2 (py2)p/2−1e−py2/2dy

= 2ppp/2−1√
2πΓ( p

2
)2p/2

∫∞
0

e−
y2

2
(t2+p)(y2)p/2dy, let δ = y2,

(1)= pp/2√
2πΓ( p

2
)2p/2

∫∞
0

e−
δ
2
(t2+p)δ

p+1
2
−1dδ.

Since
∫∞
0

xα−1e−x/βdx = Γ(α)βα, for x > 0, β > 0, α > 0,

(1)= pp/2√
2πΓ( p

2
)2p/2 Γ(p+1

2
)( 2

t2+p
)

p+1
2 ,

= pp/2

√
2πΓ( p

2
)2p/2p

p+1
2

Γ(p+1
2

)( 2
1+t2/p

)
p+1
2 , therefore,

u(t) =
Γ( p+1

2
)

(pπ)1/2Γ( p
2
)(1+t2/p)(p+1)/2 , −∞ < t < ∞.

This yields, as expected, the PDF of t-distribution with p degrees of freedom.

The mean is 0 and the variance is p
p−2

. As expected the variance of t-distribution

is larger than that of standard normal. This is the price to pay for estimation,

although the variance tends to 1 as p increases.

Graphical illustration is given in Figure (6.4) with p = 11 degrees of freedom.

6.3.2 Equality of variance and F distribution

Let X1, . . . , Xn be a random sample from N(µ1, σ
2
1) and Y1, . . . , Ym be a random

sample from an independent N(µ2, σ
2
2). We are interested in comparing the vari-

ability of the two populations, namely, comparing the equality of variance. Let

the quantity of interest be the ratio % = σ2

σ1
. Relevant information about this

quantity is contained in ρ̂ = σ̂2

σ̂1
where σ̂1 =

∑n
i=1(Xi−X)2

n−1
and σ̂2 =

∑m
i=1(Yi−Y )2

m−1
, X

and Y are sample means. Consider the quantity: F =
σ̂2
1

σ̂2
2
ρ. F can be written as

F = 4(Z, θ̂) where Z = (X1, . . . , Xn, Y1, . . . , Ym) and θ = σ2
2, the parameter σ2

1

is implicit and will vanish because
(n−1)σ̂2

1

σ2
1

∼ χ2
n−1 and

(m−1)σ̂2
2

σ2
2

∼ χ2
m−1. For each
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Figure 6.4: Densities comparing normal distribution (fixed parameter) with stu-

dent (estimated parameter).

possible value of θ, that is for each model, the distribution of 4(Z, θ) is known

and is for each t > 0, fn−1(ty)y where fn−1 is the density of chi-squared with n−1

degrees of freedom and y = θ̂
θ

and the weights are given by (m−1)fm−1((m−1)y),

fm−1 is the density of chi-squared with m − 1 degrees of freedom, correspond-

ing to each possible value of the realisation of θ̂, that is each model. Let de-

noting p = n − 1 and q = m − 1. The density of 4(Z, θ̂) is then given by

u(t) =
∫∞
0
{pfp(pty)y}{qfq(qy)}dy

= pq
∫∞
0

fp(pty)yfq(qy)dy

= pq
∫∞
0

y 1
Γ( p

2
)2p/2 (pty)p/2−1e−pty/2 1

Γ( q
2
)2q/2 (qy)q/2−1e−qy/2dy

= pqpp/2−1tp/2−1qq/2−1

Γ( p
2
)2p/2Γ( q

2
)2q/2

∫∞
0

y(p+q)/2−1e−qy/2(1+ p
q
t)dy.

Using the fact that
∫∞
0

xα−1e−x/βdx = Γ(α)βα, for x > 0, β > 0, α > 0,

u(t) = pqpp/2−1tp/2−1qq/2−1

Γ( p
2
)2p/2Γ( q

2
)2q/2 Γ(p+q

2
)( 1

q/2(1+ p
q
t)
)(p+q)/2

= pp/2tp/2−1qq/22(p+q)/2

Γ( p
2
)2(p+q)/2Γ( q

2
)qp/2qp/2 Γ(p+q

2
)( 1

1+ p
q
t
)(p+q)/2

=
Γ( p+q

2
)

Γ( p
2
)Γ( q

2
)
(p

q
)p/2 tp/2−1

(1+ p
q
t)(p+q)/2 , t > 0.

We recognise this expression as the distribution function of F (p, q), Fisher’s F

distribution with p and q degrees of freedom. Since, the u(t) is independent of
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Figure 6.5: Densities comparing transformed chi-squared (fixed parameter) with

F (estimated parameter).

θ, 4(Z, θ̂) is in fact a pivotal quantity for θ. Graphical illustration is given in

Figure (6.5) with p = 10, q = 5 and y = 7.

6.3.3 Poisson distribution as weighted binomial

For a known θ∗, 4∗ = 4(X, θ∗) ∼ binomial(θ∗, p) and θ̂ as estimator of θ follows

Poisson(λ), model selection probabilities. The probability density function of

4̂ = 4(X, θ̂) is given by:

u(t) =
∑∞

θ=0{
(

θ
t

)
pt(1− p)θ−t}{ e−λλθ

θ!
},

= e−λ(λp)t

t!

∑∞
θ=t

((1−p)λ)θ−t

(θ−t)!
,

Since 4∗ = 4(X, θ∗) ∼ binomial(θ∗, p) for θ > t otherwise the value of the

probability is 0.

u(t) = e−λ(λp)t

t!

∑∞
θ=t

((1−p)λ)θ−t

(θ−t)!
, let z = θ − t,

= e−λ(λp)t

t!

∑∞
z=0

((1−p)λ)z

z!
, given that

∑∞
x=0

ax

x!
= ea,

= e−λ(λp)t

t!
e(1−p)λ = e−λ(λp)t

t!
e−pλ, t = 0, 1, . . .

Therefore, 4(X, θ̂) ∼ Poisson(λp). Graphical illustration is given in Figure (6.6)

with λ = 10, θ∗ = 15 and p = 0.5.
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Figure 6.6: Densities comparing binomial (fixed parameter) with transformed

poisson (estimated parameter).

6.3.4 Negative binomial as weighted gamma and

Poisson distribution

4∗ = 4(X, θ∗) ∼ Poisson(θ∗) and θ̂ ∼ gamma(α, β), with α an integer, model

selection probabilities.

The distribution of 4̂ is given by:

u(t) =
∫∞
0
{ e−θθt

t!
}{ 1

Γ(α)βα θα−1e−θ/β}dθ

= 1
t!Γ(α)βα

∫∞
0

θt+α−1e−θ(1+1/β)dθ, using
∫∞
0

xα−1e−x/βdx = Γ(α)βα, for x > 0,

β > 0, α > 0,

=
Γ(t+α)( 1

1+1/β
)t+α

t!Γ(α)βα =
Γ(t+α)( 1

1+1/β
)t( 1

1+1/β
)α

t!Γ(α)βα

=
Γ(t+α)( β

1+β
)t( 1

1+β
)αβα

t!Γ(α)βα =
Γ(t+α)( β

1+β
)t( 1

1+β
)α

t!Γ(α)
.

Let π = 1
1+β

, r = α, the distribution of 4̂ is then given by:

u(t) =
(

t+r−1
t

)
πr(1− π)t, t = 0, 1, 2, . . ., 0 < π < 1, r > 0.

We recognise this as the PDF of negative binomial with parameter π and r.

Special case include exponential(β) which is gamma(1, β) and chi-squared with

p degrees of freedom which is gamma(α = p/2, β = 2). Graphical illustration is

given in Figure (6.7) with θ∗ = 10, r = α = 25, β = 2.
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Figure 6.7: Densities comparing Poisson (fixed parameter) with negative binomial

(estimated parameter).

6.3.5 Beta-binomial distribution as weighted beta and bi-

nomial distributions

4∗ = 4(X, θ∗) ∼ binomial(n, θ∗) and θ̂ ∼ beta(α, β), model selection probabili-

ties. The distribution of 4̂ = 4(X, θ) is given by:

u(t) =
∫ 1

0
{(n

t

)
θt(1− θ)n−t}{ Γ(α+β)

Γ(α)Γ(β)
θα−1(1− θ)β−1}dθ

=
(

n
t

)
Γ(α+β)
Γ(α)Γ(β)

∫ 1

0
θt+α−1(1− θ)n−t+β−1dθ.

We have that B(a, b) =
∫ 1

0
xa−1(1− x)b−1dx = Γ(a)Γ(b)

Γ(a+b)
.

u(t) =
(

n
t

) Γ(α+β)
Γ(α)Γ(β)

Γ(t+α)Γ(n−t+β)
Γ(n+α+β)

, t = 0, 1, . . . , n.

This is the PDF of beta-binomial(n, α, β).

Graphical illustration is given in Figure (6.8) with n = 15, θ∗ = 0.5, α = 3 and

β = 5.

6.3.6 Noncentral chi-squared as weighted central chi-squared

and Poisson distributions

4∗ = 4(X, θ∗) ∼ χp+2θ∗ and θ̂ ∼ Poisson(λ), model selection probabilities. The

distribution of 4̂ = 4(X, θ̂) is given by:
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Figure 6.8: Densities comparing binomial (fixed parameter) with beta-binomial

(estimated parameter).

u(t) =
∑∞

θ=0{ 1

Γ( p+2θ
2

)2
p+2θ

2

t(
p+2θ

2
)−1e−t/2}{ e−λλθ

θ!
},

u(t) =
∑∞

θ=0{ 1

Γ( p
2
+θ)2

p
2 +θ

t(
p
2
+θ)−1e−t/2}{ e−λλθ

θ!
}, 0 < t < ∞ .

We recognize u as PDF of noncentral chi-squared with p degrees of freedom and

noncentrality parameter λ. Graphical illustration is given in Figure (6.9) with

θ∗ = 1, λ = 5 and p = 10.

Finally, it is important to note that the parameters λ or θ need not be nec-

essarily associated to a family of distributions. An example is the density (his-

togram and kernel estimation) and nonparametric regression where the binwidth

and the bandwidth are selected from the data. When a data-dependent binwith

or bandwidth is used, one should take into account in computing the properties

of the estimated density.

6.4 Consistency of a “within model selection

criterion”

This section introduces the notion of consistency of a within model selection

criterion (estimation inside a parametric model). Namely, estimation is viewed as

model selection problem and an estimation method is a model selection criterion.
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Figure 6.9: Densities comparing central chi-squared (fixed parameter) with non-

central (estimated parameter).

A within model selection procedure (e.g. MLE) is consistent if

lim
n→∞

P (Fθ̂(t) = Fθ0(t)) = 1, ∀t ∈ R, i.e. lim
n→∞

P (θ̂ = θ0) = 1, (6.7)

where Fθ̂ is estimated distribution function and Fθ0 the true distribution function.

However, for Θ infinite, (6.7) is difficult to achieve (since the probability could

tend to 0), therefore there is a need for another definition.

The only requirement for consistency will be that for large samples size, the two

distributions are close enough. A within model selection procedure is:

1. Pointwise weakly consistent if

∀ε > 0, lim
n→∞

P (d(Fθ̂(t), Fθ0(t)) < ε) = 1, ∀t ∈ R.

2. Pointwise strongly consistent (almost sure pointwise) if

P ( lim
n→∞

Fθ̂(t) = Fθ0(t)) = P ( lim
n→∞

d(Fθ̂(t), Fθ0(t)) = 0) = 1, ∀t ∈ R.

3. Uniformly consistent (almost sure) if

P ( lim
n→∞

{sup
t∈R

d(Fθ̂(t), Fθ0(t))} = 0) = 1. (6.8)

E.g. Glivenko-Cantelly theorem with Fθ̂ be the empirical CDF and d = || in (6.8).

It is important to note the difference between classical consistency of an estimator

and consistency of an estimation procedure, viewed as model selection criterion.

For within consistency, only the convergence of the distribution function is of

concern.



Chapter 7

Bootstrap after Model Selection

7.1 Introduction

This chapter is concerned with potential application of bootstrap methods in

the context of model selection. We first ask ourself whether bootstrap methods,

which are applied to solve a number of mathematically intractible problems, can

also be used to assess the properties of post-model-selection estimators (PMSEs).

We explain that this is different, and more complex, than the normal use of

bootstrap. In general PMSEs are highly variable, biased, and their distribution

is a multimodal. The bootstrap estimates of the properties of PMSEs reflect these

properties. This might tempt one to believe that the bootstrap is an appropriate

method here. However, by means of a concrete theoretical example, we illustrate

that the bootstrap can provide poor estimators of the properties of PMSEs. We

identify the reason for the failure as follows: the bootstrap can be an inaccurate

estimator of the model selection probabilities.

There is an additional issue concerning the existence of certain properties,

such as the moments, of PMSEs. For some selection procedures, e.g. forward

variable selection, it is not clear that the moments even exist. Of course the

bootstrap will always supply an estimate of the moments of PMSEs, even in

cases where these do not exist. For informal selection criteria such as exploratory

data analysis, bootstrap may not be applicable.

7.2 The complexity of PMSEs

The PMSEs depend on the selection process S and the set M of competing

models. The difficulty of computing the properties of these estimators therefore

depends on S and M. The complexity increases with the complexity of model

131
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selection procedure and the dimension ofM. The general probabilistic framework

we described does not mention the difficulty due to the model selection procedure.

Whereas in theory, in this framework, the distribution and the moments of

PMSEs can be derived, there are many types of selection process where it may

not be possible. By selection process, we mean any method leading to a choice

of a model. We do not necessarily mean only parsimonious selection procedures.

For instance, consider the following iterative model selection procedure: identi-

fication, parameter estimation, model diagnostic. If the model does not fit, we

reconsider another model until we obtain a “good” model. It is really difficult

to derive the properties of the resulting post-model-selection estimator. Other

complex procedures include: multiple testing, any iterative process, exploratory

data analysis (EDA), in regression analysis (forward selection, backward elimi-

nation, F-to-enter). In such complex selection procedures, the problem becomes

more difficult.

A natural question may be: why not try computer intensive methods? Con-

sider the PMSE θ̃(X|S,M) and the naive estimator θ̂k̃(X) of θ. It is important to

recognise that after data have been observed, these two estimates are equal, that

is θ̃(x|S,M) = θ̂k̃(x). The post-model-selection estimate and naive estimate are

the same. We have then two random variables that yield the same estimate. This

means that in practice, after obtaining estimate of the naive model, one needs

valid inference. The problem is then to obtain properties of θ̃(X|S,M). Mo-

ments of θ̃(X|S,M) involve knowlege of the unknown true model. We turn then

to the problem of making inference on a complex random variable. There are two

general approaches of evaluating the variability of an estimate: The traditional

analytic approach and the resampling approach. For the analytic approach, the

variability of θ̃(X|S,M) is evaluated by deriving an explicit theoretical formula

that approximates its distribution or other characteristics such as second order

moments. If this theoretical formulae contains unknown quantities like θ, one can

substitute the unknown parameter by its estimate. For PMSEs, the theoretical

formula is really difficult to derive. In the text, we will maintain the notation

with S and M in order to distinguish classical bootstrap and model selection

bootstrap.

7.3 Bootstrap model selection

Consider an unknown probability distribution F that has given the observed

data x = (x1, . . . , xn) by random sampling. Suppose that we want to estimate a

parameter of interest θ = h(F ) based on x, say θ̂ = v(x). The natural question
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is about the accuracy of such estimate. The bootstrap was introduced by Efron

(1979) as a computer based method for estimating the standard error of θ̂. The

key idea is to resample from the original data, directly or by a fitted model

to recreate replicates of x, and then assess the variability of θ̂. It does not

require theoretical calculations and is possible regardless how mathematically

complicated θ̂ (or the mapping v) is. Bootstrap methods can then be used to

produce statistical inferences about an unknown quantity.

The estimate of the quantity of interest θ is given by

θ̃(x|S,M) = v(x|S,M) =
K∑

k=1

Ik(x|S,M)vk(x), (7.1)

where θ̂k = vk(x), vk being a mapping generating each estimator in each model,

not necessarily the same mapping for each model. The mapping v can be quite

complicated as it depends on the selection procedure S and the set of model under

consideration. Analytical expression of the distribution of θ̃(x|S,M) as well as

its moments are difficult to formalise due mostly to the fact that the Ik(X|S,M)

are likely to be correlated with the θ̂j. Let x∗j and θ̂∗j be respectively the jth

bootstrap sample and bootstrap estimate. θ̂∗j is expressed as

θ̃∗j(x∗j|S,M) = v(x∗j|S,M) =
K∑

k=1

Ik(x
∗j|S)vk(x

∗j). (7.2)

The bootstrap algorithm is described as follows.

1. Select m independent bootstrap samples x∗ = (x∗1, . . . , x∗m), each con-

sisting of n data values drawn with replacement from x (nonparametric

bootstrap) or drawing m samples of size n from the parametric estimate

F̂para, where F̂para is an estimate of F derived from a parametric model for

the data (parametric bootstrap).

2. Evaluate the bootstrap replication corresponding to each bootstrap sample,

θ̃∗j(x∗j|S,M), j = 1, . . . , m.

3. Estimate the standard error and bias of θ̃(x|S,M).

ŝe(θ̃(x|S,M)) = { 1
m−1

∑m
j=1[θ̃

∗j(x∗j|S,M)− θ̃∗(x∗|S,M)]2}1/2,

ˆbias(θ̃(x|S,M)) = θ̃∗(x∗|S,M)− θ̃(x|S,M),
(7.3)

where θ̃∗(x∗|S,M) = 1
m

∑m
j=1 θ̃∗j(x∗j|S,M).
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The bootstrap can also be used for constructing confidence interval.

For the classical situation, suppose that θ̂ ∼ N(θ, σ2) with known standard error,

the standard confidence interval with coverage probability 1− α is

[θ̂ − φ1−ασ, θ̂ − φασ],

where φα indicates the 100αth percentile point of standard normal distribution.

However, the assumption of normality fails in many cases. θ̃(x|S,M) is likely to

be a typical case. An approximate 1− α percentile interval is

[θ̃∗(x∗|S,M)α/2, θ̃
∗(x∗|S,M)1−α/2], (7.4)

where θ̃∗(x∗|S,M)β is the 100βth empirical percentile of bootstrap samples. As

one can see, the problem is more difficult than classical situation in that it in-

volves model selection step in each resample. The important issue is whether this

bootstrap has theoretical justification. More work is required to find conditions

under which bootstrap could work in this case.

7.4 Properties of bootstrap model selection

The validity of bootstrap is usually established by showing that the conditional

distribution of θ̃∗(X∗|S,M) given X is approximatively the same as the distri-

bution of θ̃(X|S,M). Unlike the classical bootstrap with only one model, the

first difficulty here is that the true model is not known, that is the model from

which the sampling was performed. One can only assume a true model in order to

establish the validity of bootstrap and there is still uncertainty about this choice.

Let D be a ”distance” measure, and Ĝ be the distribution of D(θ̃(X|S,M), θ),

and G∗ conditional distribution of D∗(θ̃∗(X∗|S,M), θ) given X, then G ' G∗. In

terms of probability, let P , E and P ∗, E∗ be denoting probabilities and expecta-

tion under the true distribution F and its estimate F̂ , for n large, we have

‖P (D(θ̃(X|S,M), θ) ≤ t)− P ∗(D∗(θ̃∗(X∗|S,M), θ̃(X|S,M)) ≤ t)‖ −→a.s 0,

‖.‖ being an appropriate norm. The problem here is that it will be difficult to

show that θ̃(X|S,M)) converges almost surely to θ, or even to look for condi-

tions under which this convergence is possible. The difference between classical

bootstrap and model selection bootstrap is that bootstrap for classical situation

is more stable than in model selection since estimators in the later case are ex-

pected to come from various models. This is the reason why the variability is

likely to be higher.
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7.5 Naive bootstrap approximation for model

selection

The naive approach involves working with M̃(X|S) = Mk̃ or in the bootstrap

world M̃∗(X∗|S) = M∗
k̃
, in other words, no selection procedure is included in the

bootstrap estimates. When only bootstrap is used to get properties of the naive

model, it is possible to compare both estimators. We conjecture that these two

approaches are equivalent in the following circonstances:

1. For M̃∗j(x∗j|S) = M∗
k̃
, j = 1, . . . , m, that is the selected model is the

same for each resample, then θ̃∗j(x∗j|S,M) = θ̃∗(x∗|S,M) and is the naive

model.

2. When estimates for different selected models are very closed for each re-

sample.

In either of the scenarios (1) and (2), the bootstrap variance of the PMSE is close

to the naive variance. It is important to know that only bootstrap properties of

θ̃(X|S,M) and θ̃k̃(X) can be compared. For e.g., theoretical properties of naive

estimators can not be compared to bootstrap properties of PMSEs.

7.6 Failure of post-model-selection bootstrap

7.6.1 Bootstrap model selection probability estimates

To mimic the bootstrap world to that of real world, our set probability framework

is applicable in each bootstrap sample. Namely, the probabilistic argument should

apply, that is the notion of partitioning bootstrap sample space into X ∗ for model

Mk. An important ingredient there is P ∗(X ∗
k ), the probability of landing on

sample space X ∗. This probability can be viewed as assessing the uncertainty of

the selected model. This can be interpreted as a confidence level for the model

in supporting the data and is obtained as

P ∗(X ∗
k ) = P ∗(M̃∗(X∗|S,M) = Mk) = E∗(Ik(X

∗|S,M)). (7.5)

This probability aims to estimate model selection probability. An example of fail-

ure of bootstrap to converge to the same distribution like PMSEs is given in Hjort

and Claeskens (2003), p.897 for testing a model with mean 0 against a model with

non-null mean for normal distribution. From the probability framework, finite

sample distribution of PMSEs are mixtures of conditional distribution by model
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selection probabilities. For e.g., Knight (1999) provides an example in linear re-

gression where residual bootstrapping fails. This example of failure of bootstrap

for model selection will result on the failure bootstrap to accurately estimate

model selection probabilities. Therefore the failure of bootstrap to accurately

approximate the finite sample distribution. In general, the failure of bootstrap in

classical situation (without model selection) will result in a failure when taking

model selection into account.

7.6.2 One-way ANOVA theoretical example

Consider the one way ANOVA situation where data Yij are observed according

to model

Yij = θi + εij, i = 1, . . . , k, j = 1, . . . , ni, (7.6)

where the θi are unknown parameters and εij are errors.

Assumptions are the following

1. Eεij = 0, Varεij = σ2
i < ∞, for all i, j. Cov(εij, εi′j′) = 0 for all i, i’, j, and

j’ unless i = i’and j = j’; the εij are independent.

2. σ2
i = σ2 for all i (homoscedasticity).

Note that we do not assume normality. For simplicity, let assume k = 2, n =

n1 + n2. Suppose that our parameter of interest is θ1 and we perform a test

H0 : θ1 = θ2 (restricted model M0) against H0 : θ1 6= θ2 (unrestricted model M1).

For all i, let θ̂i = Yi. = 1
ni

∑ni

j=1 Yij, the sample mean in each population;

S2
i = 1

ni−1

∑ni

j=1(Yij − Yi.)
2, the sample variance for each population;

and the pooled variance by: S2
p = 1

n−k

∑k
i=1(ni − 1)S2

i ;

θ̂p = 1
n

∑k
i=1 niθ̂i a pooled estimate.

Consider the following selection procedure

If H0 is rejected, use θ̂1 as an estimate of θ1 otherwise use the pooled estimate.

The selection procedure S is pre-test and M = {M0,M1}. The test statistic is

given by T = θ̂1−θ̂2√
S2

p( 1
n1

+ 1
n2

)
.

The PMSE θ̃1 is given by

θ̃1 = θ̂1I1(T < Z1−α
2
) + θ̂pIp(T ≥ Z1−α

2
), (7.7)
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Figure 7.1: Densities of naive, PMSE and bootstrap estimator.

where I1 and Ip are respectively indicator functions for the choice of θ1 and θp,

and Z1−α
2

is the 100(1− α
2
)th the quantile of N(0,1).

We state the following theorem proved by Kulperger and Ahmed (1992), p.2076.

Theorem 7.6.1 Under the assumptions

1. n1/n = n2/n converges to τ ∈ (0, 1),

2. θ
(n)
2 = θ1 + %/

√
n, % is a fixed number, (local alternatives),

then
√

τn(θ̃1 − θ1) tends in distribution to H(Y1, Y2, τ, ν),

where H(Y1, Y2, τ, ν) = σY1 + σ
√

1− τS(τ, ν)I(|S(τ, ν)| < Z1−α
2
).

As n becomes larger, and Y1 and Y2 are independent standard normal random

variables and S(τ, ν) =
√

τY2 −
√

1− τY1 +
√

τ(1− τ)ν and ν = %/σ.

The distribution of the bootstrap estimator is given in Kulperger and Ahmed

(1992), p.2080.

Theorem 7.6.2 Under the assumptions stated in Lemma 1 in Kulperger and

Ahmed (1992), p.2077,

√
τn(θ̃1 − θ̂1) tends in distribution to H(Z1, Z2, τ,

Y2√
1− τ

− Y1√
τ + ν

), (7.8)

where Y1, Y2, Z1 and Z2 are independent standard normal.
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But the main issue is to compare the naive approach to the bootstrap and

Figure (7.1) illustrates how these three estimators perform. One can see that the

density of bootstrap-after-model-selection estimator is not close to that of PMSE.

The key issue on the validity of bootstrap is the consistency of the PMSEs, which

is difficult to check. However, Kilian (1998) advocates the success of bootstrap

procedure for selecting the order of a autoregressive models. Alonso et al. (2004)

introduce bootstrap methods for accounting for the variability for autoregressive

order selection. Bootstrap model selection estimated probabilities and how they

can be used to weighting competing models are discussed in Buckland et al.

(1997), Burnham and Anderson (2002). Although warning of no guarantee of the

use of bootstrap, we give some practical issues described in the literature.

7.7 Practical issues

As one may expect, practical difficulties in such bootstrap can be enormous. Shao

(1996) studies bootstrap model selection and shows that in linear regression, the

bootstrap procedure is inconsistent in the sense that the probability of select-

ing the optimal subset does not converge to 1 as the sample size grows. This

means that straightforward application of the model selection procedure is not

consistent. He corrects this inconsistency by modifying the sampling method.

For pairs bootstrap, he proposes to sample less than n observations and this

modified bootstrap becomes consistent if the bootstrap observations m →∞ and

m/n → 0. Changing the bootstrap sample to correct for consistency has been

shown to be successful in other problems by Hall (1990) and Swanepoel (1986).

The choice of m remains difficult and Shao (1996) recommends to choose as to

minimise the length of the bootstrap confidence interval. For residuals bootstrap,

Shao (1996) modifies the sample procedure by increasing the variability among

bootstrap observations and suggests to multiply the residuals by a factor
√

n/m

where m →∞ and m/n → 0.

Shao (1996) generalises the results to more complex models as nonlinear re-

gressions, generalised linear models, and autoregressive time series. It is impor-

tant to note that bootstrapping residuals is more appropriate for nonstochastic

regressors and pairs bootstrap are suitable for stochastic regressors. However, in

the case of residual bootstrap, the model form which the residuals are obtained

will be more often selected. Nonparametric bootstrap assumes that observations

(or residuals) are independent and identically distributed. For generalised linear

models, the variance depends on the expectation, Buckland et al. (1997) propose

a parametric bootstrap.
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7.8 An illustrative example

Let consider again the estimation of design storms. Now, we use model selection

criterion. As noted in Linhart and Zucchini (1986), it is necessary to choose a

model selection criterion that takes into account the upper tail of the distribution.

The selection criterion should also depend on the design horizon to take into

account the relevant portion of the distribution. They use the following model

selection criterion (discrepancy)

d(Fλ, G; h) = max{|G(x)h − Fλ(x)h| : x ∈ R}. (7.9)

Since the true G is unknown, the following empirical discrepancy were used

dn(Fλ, G; h) = max{|( i

n + 1
)h − Fλ(x(i))

h| : i = 1, . . . , n}, (7.10)

where the x(i)’s are the order statistics and the design horizon were chosen to be

1, 5, 10.

This is a situation where one can not apply standard selection criteria like

AIC. The discrepancy of model and the selected model for each horizon are

given in Table (7.1). These discrepancies are closed to those computed with 200

bootstrap replications given in Linhart and Zucchini (1986). For the full data

set, selected model for AIC is Gumbel.

For h = 1, selected model is lognormal, Weibull for h = 5 and exponential

for h = 10. Table (7.2) compares model selection approach with the bootstrap of

the naive model for each horizon. Table (7.3) gives bootstrap estimated of model

selection probabilities. For h = 1, the selected model is lognormal, one would

expect that it would be the model with higher estimated probability. But the

Gumbel is the model with highest probability. For h = 2, the model with highest

Distribution h = 1 h = 5 h = 10

gamma 0.13 0.31 0.47

normal 0.15 0.32 0.49

lognormal 0.12 0.30 0.45

exponential 0.40 0.32 0.39

Weibull 0.15 0.29 0.40

Gumbel 0.13 0.32 0.49

Selected Model lognormal Weibull exponential

Table 7.1: Discrepancies and selected models for each horizon.
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Figure 7.2: Comparison density of naive lognormal and bootstrap model selection

for h = 1 with 0.95 percentile intervals.

estimated probability is lognormal, whereas the selected model is Weibull. For

h = 5, exponential distribution is both the selected model and that with estimated

higher probability.

For h = 1, the naive model is lognormal, the standard error for the naive

model is 7.97 and that of model selection bootstrap is 9. Both bias are close for

the two approaches, as well as similar confidence intervals. These observations

can be seen on the histogram, Figure (7.2) where both are quite close.

For h = 5, the standard error of bootstrap is 44.36, large than that of naive

(selected) Weibull 14.99. The absolute bias is also higher for model selection

bootstrap. The later also has larger confidence interval. Graphical illustration is

given in Figure (7.3), where, whereas the histogram of naive Weibull is unimodal,

that of bootstrap model selection is bimodal.

For h = 10, the bootstrap model selection also has higher absolute bias,

higher standard error and larger confidence interval than the naive (selected)

exponential. The bootstrap model selection histogram (Figure (7.4)) is bimodal,

whereas unimodal for the naive exponential model.

One can see that the behaviour of the bootstrap-after-model-selection esti-

mators are similar to that of PMSEs: likely to have more bias, larger variance,

wider confidence interval, multimodality. This is a general fact about bootstrap-

after-model-selection estimator. This can lead one to think that this is then an

approximate solution to the problem. The point is how good is this approxima-

tion. As explained above, we can not trust this approximation.
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Figure 7.3: Comparison density of naive Weibull and bootstrap model selection

for h = 5 with 0.95 percentile intervals.
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Figure 7.4: Comparison density of naive exponential and bootstrap model selec-

tion for h = 10 with 0.95 percentile intervals.
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Horizon Selected Model Characteristic Naive Bootstrap

h = 1 Lognormal Estimate 93.73 93.73

Mean 93.06 93.55

Standard error 7.97 9.00

Bias -0.67 -0.18

Lower ci 79.08 77.57

Upper ci 109.83 111.83

h = 5 Weibull Estimate 130.23 130.23

Mean 127.36 138.07

Standard error 14.99 44.36

Bias -2.87 7.84

Lower ci 93.53 95.18

Upper ci 155.18 250.67

h = 10 Exponential Estimate 288.74 288.74

Mean 288.04 186.66

Standard error 19.37 75.34

Bias -0.7 -102.08

Lower ci 254.53 101.68

Upper ci 330.20 305.26

Table 7.2: Comparison bootstrap model selection and naive approach.

Distribution h = 1 h = 5 h = 10

gamma 0.04 0.01 0.01

normal 0.02 0.01 0.00

lognormal 0.33 0.36 0.18

exponential 0.00 0.14 0.35

Weibull 0.20 0.23 0.21

Gumbel 0.41 0.25 0.25

High model probability Gumbel lognormal exponential

Table 7.3: Bootstrap model selection probability estimates.



Chapter 8

Summary and Conclusion

8.1 Summary

Much of classical inference is based on the assumption that the model being

fitted is known, and that only the parameters are unknown. It is based on this

assumption that the standard formulae for confidence intervals, p-values, etc. are

correct. Such formulae are no longer valid if one uses the same data to first select

a model. By selection we include the case in which models are developed via tests

of hypotheses, and, in general, all procedures covered by the term “iterative model

building”. Although model selection is universally applied in statistical analyses,

its consequences are poorly understood even by statisticians. This thesis has

examined a number of these consequences.

We discussed the model uncertainty problem. A method to deal with this

is to use model averaging rather than any single model. The method of model

averaging was discussed in detail, both from the Bayesian and the frequentist

points of view. This involves using weighted averages of estimates based on the

different models.

We argue that some issues regarding Bayesian model averaging (BMA) have

not been clearly described in full. We demonstrated that BMA estimators based

on the currently applied weights are such that their long-run (frequentist) proper-

ties (e.g. minimaxity, admissibility) are difficult to assess; it is possible to examine

their conditional properties (given the data). No prior and a well-defined data-

generating mechanism have been assigned to BMA. Therefore, in general, it is

hard to show whether BMA methodology constitutes a fully Bayesian approach.

We proposed an alternative way of weighting the models, a “fully Bayesian model

averaging” (FBMA) approach, which leads to model averaging estimators whose

long-run properties are well-defined. The key ingredient is the use of an average
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of prior distributions and parametric models, the weights being the corresponding

model probability.

To reduce the enormous computational effort required to apply BMA it has

been suggested that some models be eliminated in a “preselection” step. Sug-

gestions include Occam’s window, Markov chain Monte Carlo model composition

and stochastic search variable selection. We stress the fact that the long-run per-

formance of BMA estimators will be affected if data-based model search methods

are applied. This introduces an additional source of uncertainty which we call

model space selection uncertainty. The application of preselection changes the

estimator, and therefore its properties. It is necessary to take that source of ad-

ditional uncertainty into account. For posterior analysis, i.e. conditioned on the

data, such search strategies present no problem.

We next examined the model selection uncertainty problem. The usual proce-

dure that is applied in practice is to select a single model (using some data-based

selection criterion) and then to apply the model ignoring the fact that the data

has already been used for the selection. It is known that the resulting post-model-

selection estimator (PMSE) is in general biased, and that ignoring this fact leads

to invalid inference. We examined the problem from the point of view of decision

theory. We point out that all selection procedures partition the sample space,

and so the act of selecting a particular model conditions the resulting estimator

on the fact that the sample is restricted to a subset of the sample space. We

show that, even in the context of a specified problem, no single model selection

procedure is better (has smaller risk) than any other in all circumstances. Sec-

ondly we show that the model selection uncertainty problem is not solved even if

one uses a consistent model selection procedure, i.e. a procedure that will always

select the “correct model” asymptotically. The reason is that from the asymp-

totic efficiency view, their normalised risks grow without bound as the sample

size increases.

We point out an important theoretical issue concerning the existence of mo-

ments of PMSEs. This is especially desirable for widely applied selection methods,

such as the typical methods used for variable selection in regression. The well-

established and widely-accepted approach to statistical modeling called “iterative

model building” constitutes a very complex model selection procedure. For such

criteria, the existence of moments is difficult to establish. However, these diffi-

culties should be weighed against the fact that, unless these are found, inference

following such selection cannot be regarded as valid.

Model averaging and model selection are generally regarded as two entirely

different methodologies. The former estimator is based on a weighted average of

estimators from the different models; the latter is based on a single selected model.
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We show that, suitably represented, it is possible to regard these two method-

ologies as different manifestations of the same problem. In this framework, we

point out that, in terms of risk function, neither of the above approaches can be

expected to consistently outperform the other. We propose a method that ac-

counts for the selection procedure in classical model averaging by using adjusted

Akaike weights (AAW) and adjusted likelihood weights (ALW), the adjusting fac-

tor being model selection probabilities. The resulting model averaging estimator

dominates the PMSEs.

In the Bayesian context, we argue that as long as one is concerned with

posterior evaluation (Bayes risks, posterior variance, etc.) of an estimator, i.e.

conditional on the data, model selection uncertainty is not an issue (only model

uncertainty matters); the data are held fixed. In this case it is valid to perform

post-model selection inference. That is, the model selection uncertainty problem

is eliminated by performing a conditional inference, e.g. Bayesian model selection

inference. However, if interest is focused on frequentist performance of estimators

(e.g. frequentist risk) then the problem of model selection uncertainty exists and

can be very severe. BMA estimators are not better than Bayesian post-model-

selection estimator (BPMSE). We propose a model averaging procedure, adjusted

Bayesian model averaging (ABMA). The proposed weights are functions of the

prior model selection probabilities and the approach is better than the BPMSE.

We argue that parameter estimation can sometimes also be regarded as model

selection. Therefore, a two-step estimation is viewed as model selection followed

by inference. This (unusual) point of view provides illustrations of cases in which

model selection uncertainty has been taken into account. A number of well-known

distributions can be interpreted in this way.

It would be most convenient if bootstrap methods could be used to estimate

the properties of post-model-selection estimators. We illustrate that, unfortu-

nately they do not necessarily do so.

We also point out that the properties of model averaging and post-model-

selection estimators can only be derived under an assumed true model. How-

ever, there is uncertainty about the choice of this model and it is precisely this

uncertainty that led to model averaging or model selection. Under such an as-

sumption, one would simply use that model without applying model selection or

model averaging. The same issue also arises when assessing the properties of the

bootstrap-after-model-selection estimator. However, the properties of an estima-

tor are well defined if one computes with respect to the model from which this

estimator is derived. It is this circularity that makes the problem so difficult to

deal with. For model averaging, the fact of not knowing the model that generated

the model averaging estimator leads to the difficulty of interpreting it.



146 Chapter 8. Summary and Conclusion

Finally, we point out that the use of informal model selection criteria such

as exploratory data analysis and iterative model building renders the model se-

lection uncertainty problem difficult to take into account. More generally, any

(frequentist) statistical inference after a preliminary inspection of the data (e.g.

graphical inspection as informal selection procedure) is suspect and may suffer of

model selection uncertainty. Without entering in the controversy about the mer-

its of frequentist and Bayesian methods, from the model selection uncertainty

point of view, we recommend the use of Bayesian methods for statistical data

analysis as long as one is not interested in the frequentist properties of the re-

sulting estimator. In this case, the remaining uncertainty includes the choice of

the statistical model, the prior and the loss (or utility) function.

8.2 Suggestions for future research

The performance of the proposed adjusted Akaike model averaging, adjusted

likelihood model averaging, adjusted Bayesian model averaging and fully Bayesian

model averaging have only been examined here in a few simple special cases.

Our intention has been to establish their feasibility. These methods need to be

examined in much greater detail, in a much greater variety of situations, and,

especially, in the context of applications.
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	Introduction and Objective
	Model Uncertainty and Model Averaging
	Model Selection Uncertainty
	Model Selection and Frequentist Model Averaging
	Bayesian Model Selection and Model Averaging
	Model Selection and Nuisance Parameter Elimination
	Bootstrap after Model Selection
	Summary and Conclusion
	References
	Curriculum Vitae

