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Summary 

Polar morphogenesis is required for the function of elongated cell types like neuronal 

cells, pollen tubes and cells of filamentous fungi. The basal signalling components 
involved are highly conserved. Defects in polar cell shape can result in developmental 
disorders or death of the affected cell. In this work two components involved in polar 

growth were analysed at a molecular level in Neurospora crassa. These are LRG1, 
which is a member of the GTPase activating proteins (GAPs), and the germinal center 
kinase POD6.  
POD6 and LRG1 are proteins essential for hyphal tip elongation. Deletion and 

temperature sensitive mutants of pod-6 and lrg-1 show phenotypic similarities to cot-1 

temperature sensitive mutant in cessation of hyphal elongation and excessive 
hyperbranching. All three proteins are also involved in determining the size of hyphal 

compartments.  
Complementation analysis revealed that both parts, the N-terminal containing three 
LIM domains as well as the C-terminal harbouring the Rho GAP domain of LRG1, are 
required for its function. Genetic evidence and in vitro GTPase assays identify LRG1 

as a RHO1 specific GAP.  
Localisation experiments revealed a partial colocalisation of POD6 and COT1 that 
depends on the oppositely directed microtubule motor proteins kinesin-1 and dynein. 

LRG1 shows a similar localisation and is enriched at septae and at hyphal tips. This 
was observed by immunofluorescence studies with antibodies generated against LRG1 
and confirmed in a strain expressing MYC9::LRG1. In strains expressing GFP::LRG1, 
the dynamic accumulation of the fusion protein as an apical cap was observed. This 

localisation depends on the three LIM domains of LRG1, a functional actin 
cytoskeleton and active growth. Similar to the localisation of COT1 and POD6, LRG1 
localisation is influenced by dynein and kinesin-1 and the microtubule cytoskeleton.  

LRG1 affects several output pathways of RHO1. Hyposensitivity of lrg-1(12-20) to 
the glucan synthase inhibitor caspofungin and synthetic lethality with a hyperactive 

1,3-glucan synthase mutant occurred. Further, suppression by the PKC inhibitors 

staurosporine and cercosporamide was observed. Hypersensitivity to the actin 
depolymerising drug latrunculin A and the suppression of defects in lrg-1 mutant 
strains by the overexpression of the dominant-negative acting N-terminus of the 

formin BNI1 indicate an influence on formin mediated actin polymerisation. In 
contrast, the cot-1 mutation has no influence regarding these RHO1 effectors.  
Taken together, these data suggest that LRG1 functions as a GAP for Rho1 that 

regulates several effector pathways. A complex of COT1 and POD6 acts in parallel to 
coordinate apical tip growth. 
 
 



 

 2 

Zusammenfassung 

 
Die Entwicklung gestreckter Zelltypen wie Nervenzellen, Pollenschläuche und Zellen 
filamentöser Pilze erfordert polare Gestaltbildung. Die grundlegenden Signalwege 
dafür sind hochkonserviert. Missbildungen der Zellform können zu 
Entwicklungsstörungen oder dem Tod der betroffenen Zelle führen. In dieser Arbeit 
werden Komponenten, die für polares Wachstum von Neurospora crassa benötigt 
werden, auf molekularer Ebene charakterisiert. Dabei handelt es sich zum einen um ein 
Mitglied der GTPase aktivierenden Proteine, LRG1 und zum anderen um die 
"germinal center" Kinase POD6. 
POD6 und LRG1 sind für das gerichtete Hyphenwachstum unabdingbar. Deletions- 
und temperatur-sensitive Allele der Gene cot-1, pod-6 und lrg-1 zeigen phänotypisch 
Ähnlichkeiten bezüglich des Abbruchs polaren Wachstums, übermäßiger 
Verzweigungsbildung und der veränderten Größe der Hyphenkompartemente. 
Komplementationsexperimente belegen, das sowohl der die drei LIM Domänen 
enthaltende N-Terminus als auch der die Rho-GAP Domäne enthaltende C-Terminus 
von LRG1 für dessen Funktion benötigt werden. Neben genetischen Hinweisen 
identifizieren in-vitro Untersuchungen LRG1 als Rho1 spezifisches GAP.  
COT1, POD6 und LRG1 befinden sich in der Zelle an Stellen aktiven Wachstums. In 
Immun-Fluoreszenz Untersuchungen wurde eine partielle Ko-Lokalisation von POD6 
und COT1 festgestellt. Diese Lokalisierung ist von Mikrotubuli Motorproteinen 
abhängig. LRG1 zeigt eine ähnliche, an Septen und der Hyphenspitze angereicherte, 
zelluläre Verteilung. Diese Lokalisation wurde sowohl mit gegen LRG1 gerichteten 
Antikörpern in Wildtyp-Zellen als auch für MYC9::LRG1 mit Antikörpern gegen das 
Myc-Epitop gefunden. Ein mit GFP fusioniertes LRG1-Protein findet sich in 
Abhängigkeit von intakten LIM Domänen und Aktin-Zytoskelett wachstumsabhängig 
als apikale Kappe, deren Größe mit der Wachstumsgeschwindigkeit korreliert. Ähnlich 
wie bei POD6 und COT1, wird auch diese Lokalisation wird von den Mikrotubuli 
Motoren Kinesin und Dynein beeinflusst.  
LRG1 beeinflusst die Aktivität verschiedener Effektorproteine von Rho1. Mutanten in 
lrg-1 sind unempfindlicher gegenüber dem Glucansynthase-Inhibitor Caspofungin und 
Doppelmutanten von lrg-1 mit einer hyperaktiven -1,3-Glucansynthase Mutante sind 
nicht lebensfähig. Die PKC-Inhibitoren Staurosporin und Cercosporamid unterdrücken 
die Wachstumssörungen von lrg-1 Mutanten, welche zudem empfindlicher gegenüber 
der Aktin depolymerisierenden Droge Latrunkulin A sind. Zudem wurde eine 
Unterdrückung der Wachstumsdefekte durch Expression des dominant negativ 
agierenden N-Terminus des Formins Bni gefunden. Die Untersuchung der Rho1 Wege 
in einer Mutante der NDR kinase cot-1 zeigte, dass diese Mutation keinen Einfluss auf 
die getesteten RHO1 Effektoren hat.  
Diese Experimente legen nahe, das LRG1 als spezifisches GAP für Rho1 verschiedene 
Effektorwege reguliert und das ein paralleler, von Rho1 unabhängiger, Signalweg zum 
polaren Wachstum erforderlich ist, in welchem COT1 und POD6 agieren. 
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1 Introduction  

1.1 Polarity in eukaryotic cells 

Determining and maintaining cell shape is a fundamental prerequisite for proper 

development of any organism. It is critical for the function of many cell types involved 

in vectorial processes such as nutrient transport, neuronal signalling, or cell motility. 

Cell polarization in response to extracellular or intracellular cues follows a common 

hierarchical schema (Drubin and Nelson, 1996). A spatial cue is required to determine 

the future site of cell polarization. The origin of this cue depends on intrinsic or 

external signals, cell type and developmental stage. The cue is serving as a positional 

mark, interpreted by receptors and the resulting signal subsequently transmitted to 

downstream signalling networks. Components including plasma membrane proteins, 

cell wall proteins, extra cellular matrix constituents and cytoskeletal elements function 

to reinforce the asymmetry induced by the cue. Reorganization of the cytoskeleton and 

the secretory apparatus follows this initial polarization to maintain cellular polarity. 

One of the best-studied model systems at molecular level is the unicellular yeast 

Saccharomyces cerevisiae. In this organism, polarity is coupled to the cell cycle and 

does not necessarily require external signals, but uses spatial information from the 

previous cell division. This spatial cue is represented in yeast by the cytoskeleton 

proteins actin and septins. It is transmitted by GTPases of the Ras (Rsr1p) and Rho 

(Cdc42p) families, which are organized in a complex with the Cdc42p guanylyl 

nucleotide exchange factor (GEF) Cdc24p and the scaffold protein Bem1p (Drubin and 

Nelson, 1996 and references therein). They in turn act to reorganize the cytoskeleton 

and secretory apparatus, where actin is a critical component for the targeting of the 

patch.  

In other systems like vertebrate epithelial or neuronal cells, the spatial mark depend 

primarily on surrounding cells or environmental signals and is widely uncoupled from 

the cell cycle. Determination of the cue requires the integration of multiple signals in 

order to react in a cell context adequate order. To determine the cue for polarity of 

epithelial cells, cells require cell-cell and cell-extra cellular Matrix (ECM) adhesion. In 

animals, this signal integration for establishment of cell polarity is mediated for 

example in epithelial tissues by the frizzeled/planar cell polarity (PCP) and anterior-
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posterior patterning signalling pathways (reviewed in Adler, 2002; Axelrod and 

McNeill, 2002; Mlodzik, 2002; Zallen, 2007). The PCP signal pathway contains six 

core components and enables the cell to recognize the sites of cell-cell or cell-ECM 

adhesion and to adapt the cell morphology. Signalling molecules relay spatial 

information to the downstream components required for polarity establishment, 

leading to asymmetric organization of the cytoskeleton. In different cell types polarity 

involves targeted secretion that leads to the deposition of molecules needed for growth, 

transport or signalling at the chosen site (reviewed in Brennwald and Rossi, 2007).  

 

1.2 Polar growth in filamentous fungi 

The fungal kingdom includes an estimated number of 1.5 million species. Fungi are of 

enormous ecological importance as decomposers of plant material and as symbiotic 

partners for higher plants. Furthermore, fungi have considerable impact on our 

economy. They are the most biotechnological useful group of organisms (Gadd, 2007), 

and cause numerous animal, human and plant diseases (Divon and Fluhr, 2007; Latge, 

1999; Ponton et al., 2000; Walsh et al., 2004). The majority of fungi grows exclusively 

at the apical tip and form filamentous, multicellular hyphae, which are separated by 

incomplete cross walls (Boyce and Andrianopoulos, 2006; Momany, 2002; Wendland 

and Walther, 2006). This mode of growth is suggested to be the key to their 

evolutionary success, which depends mainly on the ability to explore new ecological 

niches, and to quickly colonize new substrates (Magan, 2007; Morris et al., 2007; 

Pringle and Taylor, 2002). 

Factors that determine and modulate cellular polarity have been the subject of 

extensive investigations in a variety of fungal model systems (Borkovich et al., 2004; 

Drubin and Nelson, 1996; Harris, 2006; Nelson, 2003; Wendland, 2001), with the most 

substantial progress having been made in the yeasts Saccharomyces cerevisiae and 

Schizosaccharomyces pombe (Bähler and Peter, 2000; Pruyne and Bretscher, 2000a, b; 

Pruyne et al., 2004). Apical tip extension is the hallmark of filamentous fungi, and 

fungal hypha are together with neurons and pollen tubes among the most highly 

polarized cells (Chilton, 2006; Harris, 2006; Palanivelu and Preuss, 2000; Watabe-

Uchida et al., 2006), thus making them attractive models for the analysis of 
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fundamental mechanisms underlying cellular polarity. In addition, the significance of 

fungi in natural and xenobiotic substrate turnover (Dighton, 2007; Gamauf et al., 2007; 

Morris et al., 2007), secondary metabolite and protein production (Gadd, 2007; Gloer, 

2007; Punt et al., 2002) and their impact as pathogens advice the study of the most 

fundamental process required for the proliferation of the majority of fungal species – 

filamentous growth. Understanding this process will have significant implications on 

our ability to intervene in this process by either inhibiting it in case of detrimental 

fungi or enhancing it when beneficial growth is desired. 

The molecular understanding of fungal morphogenesis is still a major challenge. 

Phylogenetic analyses and the comparison of Saccharomyces cerevisiae 

morphogenetic data with the limited results from various filamentous asco- and 

basidiomycetes have established that a core set of „polarity factors“ are conserved 

between unicellular and filamentous fungi (reviewed in Borkovich et al., 2004; Harris, 

2006; Harris and Momany, 2004; Wendland, 2001). Therefore, the accumulated 

knowledge of bakers yeast is serving as an invaluable source for comparative 

morphogenetic studies. Nevertheless, it is becoming increasingly evident that subtle 

differences in the wiring of these conserved components and the presence of additional 

proteins that are absent in unicellular fungi result in dramatically different 

morphogenetic outcomes ranging from budding to true filamentous growth (Boyce et 

al., 2003, 2005; Li et al., 2006; Malavazi et al., 2006; Rottmann et al., 2003; Seiler 

and Plamann, 2003).  

Differences are also found between unicellular yeasts and filamentous fungi in the 

organisation of transport processes. Filamentous fungi transport molecules, vesicles 

and organelles over long distances to enable fast growth, while budding yeast is 

adapted to nutrient rich environments, where fast intracellular transport over long 

distances is not required. In S. cerevisiae the microtubule skeleton has only an 

essential function in mitosis. In contrast, in filamentous fungi microtubule based 

transport is required for many transport processes of cellular components like 

mitochondria and the endoplasmatic reticulum (ER) (Garcia-Rodriguez et al., 2006) 

and depends on opposite directed motor proteins, kinesins and dynein (Bruno et al., 

1996; Eshel et al., 1993; Ogawa et al., 1987; Seiler et al., 1997; Vale et al., 1985; for 

reviews see Steinberg, 2000, 2007; Vale, 2003).  
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1.3 Signal transduction pathways involved in fungal 

morphogenesis 

Polarized growth is a complex multifactorial property, which is coordinated by 

numerous signals. This signalling network includes GTPases of the Ras super family, 

the cAMP dependent protein kinase (PKA), the mitogen-activated protein kinase 

(MAPK) or the nuclear Dbf2-related (NDR) kinase pathways. These pathways are 

highly conserved and regulate numerous aspects of growth and development like 

cellular proliferation, differentiation, motility and survival. In fungal systems they are 

important for maintaining hyphal polarity, development and pathogenicity. 

 

1.3.1 Rho proteins 

Rho GTPases are found in all eukaryotic cells and constitute a distinct family within 

the superfamily of Ras-related small GTPases. The Rho family of GTPases plays a 

central role in polarized growth in animal and fungal cells (Drubin and Nelson, 1996; 

Ridley, 1995, 2006). The GTPases act as molecular switches that cycle between an 

active GTP bound and an inactive GDP bound form and reside in the plasma 

membrane (Figure 1). Transition between these two forms is achieved through 

GTPase-activating proteins (GAPs) that stimulate the intrinsic GTPase activity to 

inactivate the protein and GDP-GTP-exchange factors (GEFs) that catalyse exchange 

of GDP for GTP to activate the GTPase (Hakoshima et al., 2003; Schmidt and Hall, 

2002). In addition to these two regulators, guanine nucleotide dissociation inhibitors 

(GDIs) block spontaneous activation by forming a complex with the Rho protein and 

dissociate it from the membrane, resulting in an inactive cytoplasmic pool of GTPases 

(reviewed in Dovas and Couchman, 2005; Olofsson, 1999).  
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Figure 1: Regulation of Rho GTPase activity. 
Rho GTPases are attached to the plasma membrane by their hydrophobic C-terminal prenylation anchor (blue line; 1), where they 
can be activated. GEF proteins facilitate the GDP to GTP exchange of the GTPase by stabilization of the nucleotide free state (2). 
In the GTP bound state, Rho proteins interact with and activate different target effectors (red) (3). The intrinsic GAP activity of 
the GTPase is enhanced by GAPs (green; 4), which leads to the inactive form of the Rho protein (1). GAP proteins specifically 
influence distinct effectors pathways by their distribution in the cell. Cytosolic GDI proteins (5) bind preferentially to the GDP 
bound state of Rho proteins and extract them from the membrane by covering the C-terminal prenylation anchor.  

 

Originally, GTPases of the Rho subfamily were described as key regulators of the 

actin cytoskeleton, but up to date it has become obvious that they influence an amazing 

variety of cellular processes including cytoskeletal organisation, vesicle transport and 

transcriptional regulation (for reviews see Etienne-Manneville and Hall, 2002; Jaffe 

and Hall, 2005; Park and Bi, 2007; Van Aelst and D'Souza-Schorey, 1997). The 

position of small G-proteins at the bottleneck of many signal transduction pathways 

does explain the various defects seen in different organisms when these GTPases are 

misregulated. Twenty-two mammalian genes encoding Rho GTPases have been 

described (Aspenstrom et al., 2004), whereas Caenorhabditis elegans and Drosophila 

melanogaster are predicted to have 10 and 11 genes encoding these proteins, 

respectively. In the yeast Saccharomyces cerevisiae six Rho GTPases named Rho1p to 

Rho5p and Cdc42p are described (reviewed in Levin, 2005). N. crassa also encodes 

six Rho proteins. A challenging complication in determining the functions of small G-

proteins is the fact that the number of GAPs and GEFs is significantly larger than the 

number of GTPases. Interestingly, the number of GAPs present in most available 

genomes exceeds those of the GEFs, suggesting that fine-tuning of the “off-switch” 

may be important to provide the necessary specificity for the Rho module (Jaffe and 

Hall, 2005). Although considerable progress has been made in understanding the 

activation of small GTPases through their GEFs (Garcia et al., 2006b; Gulli and Peter, 

2001; Schmidt and Hall, 2002), full activation of a specific GTPase requires not only 
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the coordination of the “on” and “off” switches, but also the shuttling between both the 

active and inactive state (Barale et al., 2006; Fidyk et al., 2006; Irazoqui et al., 2003; 

Tu et al., 2002; Vanni et al., 2005; for reviews see also Hall, 2005; Wennerberg and 

Der, 2004). Therefore, the inactivation through the corresponding GAP is essential for 

full signalling activity of the small G-protein, but little is known about how Rho 

proteins are regulated in a spatial and temporal manner. A possible explanation for the 

high number of GEF and GAP proteins is that they contribute to the spatial and 

temporal regulation of the Rho GTPases and regulate the activity of the Rho GTPase 

for specific effectors. Most of these regulatory proteins contain additional domains, 

which are thought to integrate signals for effective crosstalk between several signal 

transduction pathways (for reviews see Cote and Vuori, 2007; Tcherkezian and 

Lamarche-Vane, 2007; Yarwood et al., 2006). 

Current fungal research focuses on the characterisation of the various Rho proteins and 

the analysis of the interplay between the different modules (reviewed in Borkovich et 

al., 2004; Harris, 2006; Wendland and Philippsen, 2001). Several studies have 

identified Rho1 as one key regulator of hyphal growth and polarity. Aspergillus 

fumigatus Rho1 has been described as part of the 1,3-glucan synthase complex that 

localizes to zones of active growth at the hyphal apex (Beauvais et al., 2001). A 

similar role in maintaining cell wall integrity was suggested for Rho1 of Ashbya 

gossypii, as deletion mutants showed reduced filamentous growth and high rates of cell 

lysis (Wendland and Philippsen, 2001). Aspergillus nidulans RhoA has been 

implicated in polar growth, branching and cell wall synthesis (Guest et al., 2004). 

Budding yeast Rho1p as the best characterized representative of the Rho1 family has 

multiple functions in regulating the two main structural features, the cell wall and the 

cytoskeleton, of the fungal cell (reviewed in Levin, 2005; Park and Bi, 2007). The 

organization of the actin cytoskeleton is controlled by the interaction of the activated 

GTPase with the polarisome component Bni1p, while maintenance of the cell wall 

integrity is achieved via two independent mechanisms. First, Rho1p activates cell wall 

synthesis via direct stimulation of the enzyme 1,3-glucan synthase, which catalyzes 

the polymerization of 1,3-glucan. In addition, it activates through the activation of 

protein kinase C the Mpk1p/Slt2p MAP kinase pathway that monitors the cell wall 

integrity. This activation coordinates the transcription of several cell wall specific 
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enzymes. The fungal cell wall composition and structure is different from plant and 

animal cell compartments and is required for the fitness of pathogenic species. Thus, 

the cell wall components and factors involved in its regulation are attractive targets for 

antifungal drug development (for reviews see Bowman and Free, 2006; Latge, 2007).  

No data are available for the function of Rho2 and Rho3 in filamentous fungi. The 

budding yeast protein Rho2p appears to function in a partially redundant manner with 

Rho1p (Helliwell et al., 1998; Madaule et al., 1987; Ozaki et al., 1996), while Rho3p 

is important for coordinated polarization of the actin cytoskeleton and the secretory 

apparatus and is active in concert with Rho4p in S. cerevisiae (Adamo et al., 1999; 

Doignon et al., 1999; Imai et al., 1996; Kagami et al., 1997; Matsui and Toh-E, 1992a, 

b; Roumanie et al., 2002). Rho4 type GTPases are evolutionary highly divergent and 

cluster in two evolutionary group. The archae- and euascomycetes Rho4 have been 

shown to be required for the formation of septae (Nakano et al., 2003; Rasmussen and 

Glass, 2005, 2007; Santos et al., 2003). Furthermore, Rho4 is involved in cell wall 

integrity (CWI) signalling in Schizosaccharomyces pombe (Santos et al., 2003).  

The main focus of research in filamentous fungi currently lies on the function of 

Cdc42 and the closely related GTPase Rac, primarily because a bona fide Rac is absent 

from hemiascomycete genomes (Boyce et al., 2001, 2003, 2005; Chen and Dickman, 

2004; Mahlert et al., 2006; Virag et al., 2007; Weinzierl et al., 2002). Rac and Cdc42 

homologues in the dimorphic fungi Penicillium marneffei or Ustilago maydis have 

overlapping, but distinct roles during polarized growth and development. Cdc42 

function is required for vegetative hyphal polarity and yeast cell growth in P. 

marneffei, but not for polarization of conidiophores. In contrast, Rac is required for 

polarized growth during hyphal and asexual development, but not during the yeast 

phase. Due to lethality of the double, but not the single mutants, both U. maydis 

proteins share at least one essential function. In addition Rac is necessary for the 

switch from budding to hyphal growth, while Cdc42 regulates cell separation. In 

Aspergillus nidulans, Rac is involved in asexual development, but is not essential for 

polarity, while Cdc42 is more important for polar growth and lateral branching. 

Double mutants are also not viable, indicating that they share at least one common 

function.  
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1.3.2 NDR kinases and germinal center kinases in morphogenesis 

In recent years, protein kinases of the NDR Ser/Thr protein kinase family have 

emerged as being important for normal cell differentiation and polar morphogenesis in 

various organisms, yet their specific functions are still elusive (Hergovich et al., 2006; 

Tamaskovic et al., 2003). In Drosophila melanogaster, the NDR kinases Tricornered 

and Warts are required for control of the extent and direction of cell proliferation as 

well as for neuronal morphogenesis (Emoto et al., 2004; Geng et al., 2000; Justice et 

al., 1995; Xu et al., 1995). The Caenorhabditis elegans NDR kinase SAX1 regulates 

aspects of neuronal cell shape and has been proposed to be involved in cell spreading, 

neurite initiation, and dendritic tiling (Gallegos and Bargmann, 2004; Zallen et al., 

2000). Verde and coworkers (1998) have shown that the fission yeast NDR kinase 

gene orb6 is required to maintain cell polarity during interphase. The budding yeast 

NDR kinase Cbk1p is involved in cell separation and modulates cell shape 

(Bidlingmaier et al., 2001; Racki et al., 2000). A number of large-scale screens have 

identified several proteins that interact with Cbk1p (Du and Novick, 2002; Ho et al., 

2002; Ito et al., 2001), establishing the idea that Cbk1p and other interacting proteins 

may represent the core components of a conserved complex required for polarized 

morphogenesis. Further work in fission and budding yeasts as well as in animal cells 

has resulted in an emerging network, which includes the NDR kinase and its binding 

partner and activator MOB2 as well as a furry-like scaffolding protein. The NDR 

kinase is further regulated through a Ste20 type kinase that interacts with MO25 

(Hergovich et al., 2006; Kanai et al., 2005; Nelson et al., 2003; Stegert et al., 2005). 

The founding member of the NDR family, the Neurospora crassa kinase COT1, is 

required for hyphal tip elongation (Collinge et al., 1978; Collinge and Trinci, 1974; 

Yarden et al., 1992), and temperature-sensitive cot-1 strains cease hyphal elongation 

after being shifted to restrictive temperature. This is accompanied by a massive 

induction of new hyphal tip formation, creating the typical barbed-wired morphology 

of cot-1 cells. A similar branching and growth-termination phenotype has been 

observed in neuronal cells of sax-1, trc, furry and hippo mutants in C. elegans and D. 

melanogaster (Emoto et al., 2004; Emoto et al., 2006; Geng et al., 2000; Zallen et al., 

2000), suggesting an evolutionarily conserved function of NDR kinase complexes in 

the formation of branched cellular structures. An important link between the 
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cytoskeleton and function and COT1 activity has been established by the analysis of 

cot-1 suppressor mutants, which are defective in the microtubule-dependent motor 

protein complex dynein/dynactin (Bruno et al., 1996; Plamann et al., 1994), but the 

underlying molecular mechanisms are unclear.  

Another large emerging group of kinases that have been implicated in various 

signalling pathways are the Ste20 kinases (Bokoch, 2003; Dan et al., 2001). Originally 

defined by S. cerevisiae Ste20p, an upstream kinase of the mitogen-activated protein 

kinase pathway, the Ste20 group of kinases is divided into the p21-activated (PAK) 

kinases and several germinal center kinase (GCK) subfamilies. A C-terminal kinase 

domain defines the true PAKs and an N-terminally located Cdc42/Rac 

interacting/binding (CRIB) motif mediates binding of the kinase to the small G-protein 

and the subsequent activation of the kinase. PAKs were originally characterized as the 

primary downstream effectors of Rac/Cdc42-type GTPases. The GCK subgroups of 

PAK kinases differ from the PAK subgroup. The GCK kinase domain is located N-

terminally, GC kinases lack the typical CRIB domain, and their noncatalytic domains 

are highly variable. In contrast to the true PAK subgroup, the function of the GCKs is 

much less defined, but they have been implicated in stress response, proliferation and 

apoptosis (Bokoch, 2003; Dan et al., 2001). GCK are suggested to act as activators of 

NDR kinases although only Cdc15p has been documented as an authentic upstream 

kinase so far (Hergovich et al., 2006 and references therein). 

 

1.4 Aims of this work 

Despite the relevance of a polar growing tip for filamentous fungi, the key components 

that are specifically required for tip extension and branch-point specification are 

poorly understood, with COT1 being the best-characterized protein at the starting point 

of this thesis (Gorovits et al., 1999; Gorovits et al., 2000; Gorovits and Yarden, 2003; 

Terenzi and Reissig, 1967; Yarden et al., 1992). In a large-scale screen conducted to 

isolate conditional mutants defective in hyphal morphogenesis Seiler and Plamann 

(2003) identified several mutants specifically defective in hyphal tip extension. The 

screen led to the identification of the GC kinase pod-6 (polarity defective-6), the    

1,3-glucan synthase (gs-1) and lrg-1 (LIM and Rho-GAP domain containing protein). 
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The morphological similarities of these mutants, indicated by excessive 

hyperbranching and cessation of hyphal elongation, suggested a common mechanistic 

basis for the corresponding proteins during tip elongation in N. crassa (Figure 2). 

 

 
Figure 2: Polarity defective cot-like strains 
Mutants impaired in hyphal tip elongation and branching were grown at permissive conditions and shifted to restrictive 
temperature for 8 h to visualise the cessation of tip extension and subsequent hyperbranching. It is important to note that all 
mutants were still able to establish polarity in germinating conidia and during branch formation at restrictive conditions, but newly 
emerged tips ceased growth with a pointed tip. (Modified from S. Seiler) 

 

In order to achieve a better molecular understanding of hyphal tip elongation, the 

functional relationship between COT1, POD6, GS1 and LRG1 was characterised in the 

course of this work. POD6 is a member of the GCK family of Ste20 kinases. In the 

first part of this work the relation between COT1 and POD6 is analysed. The main part 

focuses on LRG1, starting with phenotypical characterisation and a domain analysis. 

The specificity of the LRG1 GAP function for the six RHO GTPases of N. crassa is 

determined and defines LRG1 as a RHO1 specific GAP. The regulation of RHO1 
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specific effector pathways is analysed, with respect to GS1 and PKC activity and the 

influences on BNI1-dependent actin organization. The localization of LRG1, its 

relation to the LIM domains, active growth and the influence of the oppositely directed 

microtubule-dependent motor proteins dynein and kinesin1 are further investigated. 

Finally, connections and differences between LRG1 and COT1 signalling in 

coordinating apical tip growth are analysed.
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2 Materials and methods 

2.1 Strains, media and growth conditions 

General procedures and media used in the handling of N. crassa have been described 

(Davis and DeSerres, 1970) or are available at the Fungal Genetic Stock Center 

(www.fgsc.net). N. crassa strains used in this work are listed in table 1. Strains were 

grown in either liquid or solid (supplemented with 2% agar) Vogel’s minimal media 

with 2% (w/v) sucrose, unless otherwise stated. When required, H2O2 (7 mM), NaCl 

(0.5–1.2 M), sorbitol (0.5–1.75 M), staurosporine (5 μM) or KT5720 (50 μM), all 

purchased from Sigma (St. Louis, USA), or latrunculin A (gradient from 0 to 2 μM), 

purchased from Calbiochem (Merck KGaA, Darmstadt, Germany) were added to the 

growth medium. A crude preparation of cercosporamide was obtained from Dr. Angela 

Hoffman (Portland State University, Portland, USA). OmniTray single well plates 

(Thermo Fisher Scientific, Wiesbaden, Germany) were used as gradient plates. These 

plates contained solid Vogel’s minimal media with 1% sucrose (w/v) and 1% sorbose 

(w/v) to restrict the radial growth rate (Mishra and Tatum, 1972; Taft et al., 1991). 

Inhibitors were added to the medium at 50°C, the plates were slanted during the 

solidification of the agar, then overlaid with an equal volume of the same medium 

lacking additives in horizontal position and incubated for one day to allow equal 

diffusion of the additive. For crossings, plates with 0.1% glucose, 2% corn meal agar 

(Sigma, St. Louis, USA) and if necessary supplemented with 0.1 μg/ml panthothenic 

acid were used. 

DNA transformation of N. crassa spheroplasts was carried out as described (Vollmer 

and Yanofsky, 1986). To select for transformants, the concentrations of hygromycin B 

and nourseothricin were adjusted to 200 μg/ml and 30 μg/ml, respectively. 

To generate deletion mutant strains, homologous recombination events in N. crassa 

were forced by split marker transformation. Primers used in this study are summarized 

in table 3 and plasmids used in this study are summarized in table 4. The 3' region of 

pod-6 and lrg-1 with a part of the nourseothricin resistance were amplified from the 

plasmids pNV46 for lrg-1 and pNV79 for pod-6 by using the primers NV_nat3 in 

combination with NV_KOlrg3r2 for lrg-1 or NV_KOpod3r2 for pod-6, respectively. 

The 5' region of pod-6 and lrg-1 with an overlapping part of the nourseothricin 
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resistance were amplified from the same plasmids with primers NV_nat4 in 

combination with NV_KOlrg5f2 for lrg-1 and NV_KOpod5f2 for pod-6. The 

overlapping amplicons of the deletion constructs were transformed in the 

heterokaryotic strain HP1 (Nargang et al., 1995). Strains containing the lrg-1 or 

pod-6 nucleus were verified by the following procedure: First, phenotypic analysis of 

transformants grown on 400 μM p-fluorophenylalanine (fpa) and 200 μg/ml histidine 

or 5 μg/ml benomyl and 200 μg/ml pantothenic acid was performed and revealed 

several candidates with the expected phenotype. Integration of the deletion construct at 

the lrg-1 and pod-6 loci in the genome was verified by PCR. Homologous integration 

was verified with primers that anneal outside the sequence of the deletion construct in 

combination with primers that anneal within the resistance cassette. To confirm the 5' 

genomic integration, NV_KOlrg5_test1 and NV_KOpod5_test1 were used for lrg-1 

and pod-6, respectively, in combination with NV_nat4. To confirm the 3' genomic 

integration NV_nat3 in combination with NV_KOlrg3_test1 and NV_KOpod3_test1 

were used for lrg-1 and pod-6, respectively. Finally, complementation of the growth 

defects of potential lrg-1 and pod-6 strains with a 6 kb genomic SacII fragment 

containing lrg-1 from plasmid pNV3 (table 4) or with the pod-6 carrying cosmid X1F7 

verified that the deletion was the reason for the observed phenotype. 

A cot-1(1) strain transformed with pCZ218 resulted in myc::cot-1, which expresses a 

MYC6-tagged version of COT1, and was obtained from Carmit Ziv (The Hebrew 

University of Jerusalem, Rehovot, Israel). Further N. crassa strains obtained from S. 

Seiler or the FGSC are listed in table 1. Double mutants were obtained from crosses of 

the respective single mutants. Plasmids, which were transformed to obtain new strains, 

are also mentioned in table 1. GFP::LRG1 and GFP::LRG1* were obtained by 

transformation of the lrg-1 strain with pNV23 or pNV24, respectively. Several 

rounds of growth on selective medium separated the nuclei of these strains. 

GFP::LRG1 and GFP::LRG1* strains contain therefore only one type of nucleus and 

conidia do not separate in different phenotypes. They further require panthothenic acid 

for growth. GFP::LRG1;nkin and GFP::LRG1;ro-1 are derived from crosses of 

GFP::LRG1 with nkin or ro-1, respectively. Other plasmid containing strains of lrg-1 

are transformants derived from lrg-1(12-20). 
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Table 1: Neurospora crassa strains used in this study 
(EC): ectopically integrated; in case of ectopic integrations, the transformed plasmid is mentioned. FGSC: Fungal Genetics Stock 
Center (University of Missouri, Kansas City, USA) 

Strain Genotype Plasmid Source 
cot-1(1) cot-1(C102t)  FGSC #4066 
cot-1(1);Bni11-824 cot-1(C102t) bni-11-824(EC) pNV83 this study 

cot-1(1);Bni11029-

1817 
cot-1(C102t) bni-11029-1817(EC) pNV84 this study 

cot-1(1);gs-1(8-6) cot-1(C102t) gs-1(8-6)  this study 
cot-1(1);ro-1 cot-1(C102t) ro-1(B15)  Seiler et al. (2006) 

cot-1(1);ro-10 cot-1(C102t) ro-10(AR7)  Seiler et al. (2006) 

cot-1(1);ro-3 cot-1(C102t) ro-3(R2354)  Seiler et al. (2006) 

GFP::LRG1 benR his-3+ fpaS pan-2– natR:: lrg-1  gfp::lrg-
1::hph(EC) 

pNV23 this study 

GFP::LRG1* benR his-3+ fpaS pan-2– natR:: lrg-1  gfp::lrg-1(1-
1279; LIM1*, LIM2*, LIM3*)::hph(EC) 

pNV24 this study 

GFP::LRG1;nkin Nkin(RIP-1) nat:: lrg-1  gfp::lrg-1::hph(EC)  this study 

GFP::LRG1;ro-1 ro-1(B15) natR:: lrg-1  gfp::lrg-1::hph (EC)  this study 

gs-1(8-6) gs-1(8-6)  Seiler and Plamann 
(2003) 

gs-1(8-6);lrg-
1(12-20) 

gs-1(8-6) lrg-1(Y926H)  this study 

gul-1 gul-1(CA1)  FGSC #803 
gul-1;cot-1(1) gul-1(CA1) cot-1(C102t)  FGSC #1962 
gul-1;lrg-1(12-20) gul-1(CA1) lrg-1(Y926H)  this study 
HP1 benR his-3+ fpaS pan-2– + benS his-3– fpaR pan-2+  Nargang et al. (1995) 
LIM1* lrg-1(Y926H) lrg-1(C121S, C124S, C98L, C101S) 

::hph(EC) 
pNV13 this study 

LIM2* lrg-1(Y926H) lrg-1(H185V, C188S, C162S, 
C165A) ::hph(EC) 

pNV14 this study 

LIM3* lrg-1(Y926H) lrg-1(C492S, C495S, C469G, 
C472S) ::hph(EC) 

pNV15 this study 

LRG1* lrg-1(Y926H) lrg-1(1-1279; LIM1*, LIM2*, 
LIM3*)::hph(EC) 

pNV18 this study 

lrg-1(12-20) lrg-1(Y926H)  Seiler and Plamann 
(2003) 

lrg-1; Bni11-824 lrg-1(Y926H) bni-11-824(EC) pNV83 this study 

lrg-1;Bni11029-1817 lrg-1(Y926H) bni-11029-1817(EC) pNV84 this study 

lrg-1;ro-1 lrg-1(Y926H) ro-1(B15)  this study 
lrg-1;ro-10 lrg-1(Y926H) ro-10(AR7)  this study 
lrg-1;ro-3 lrg-1(Y926H) ro-3(R2354)  this study 
LRG11-847 lrg-1(Y926H) lrg-1(1-847)::hph(EC) pNV7 this study 
LRG1781-1279 lrg-1(Y926H) lrg-1(781-1279)::hph(EC) pNV6 this study 
LRG1781-1279::MYC lrg-1(Y926H) lrg-1(781-1279)::myc9::hph(EC) pNV21 this study 
LRG1K910A lrg-1(Y926H) lrg-1(K910A)::hph(EC) pNV9 this study 
LRG1R847L lrg-1(Y926H) lrg-1(R847L)::hph(EC) pNV82 this study 

myc::cot-1  cot-1(C102t) myc::cot-1(EC)   Carmit Ziv, Rehovot, 
Israel  

MYC::LRG11-847 lrg-1(Y926H) myc9::lrg-1(1-847)::hph(EC) pNV22 this study 
nkin nkin(RIP-1)  Seiler et al. (1997) 
nkin;lrg-1 lrg-1(Y926H) nkin(RIP-1)  this study 
pod-6(31-21)  pod-6(31-21)   Seiler and Plamann 

(2003) 
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Table 1. Neurospora crassa strains used in this study (continued) 

Strain Genotype Plasmid Source 
pod-6(31-21); cot-
1(1)  

pod-6(31-21) cot-1(C102t)   Seiler et al. (2006) 

ro-1 ro-1(B15)  FGSC #146 
ro-10 ro-10(AR7)  FGSC #3619 
ro-3 ro-3(R2354)  FGSC #3 
TAP::LRG1 lrg-1(Y926H) tap::lrg-1(EC) pNV75 this study 
wild type 74-OR23-1A  FGSC #987 

lrg-1 benR his-3+ fpaS pan-2– nat:: lrg-1  + benS his-3– 
fpaR pan-2+ lrg-1+ 

 this study 

mak-1 hph::mak-1D  FGSC #11321 
pod-6  benR his-3+ fpaS pan-2– nat:: pod-6  + benS his-3– 

fpaR pan-2+ lrg-1+ 
 this study  

 

For molecular cloning, E. coli DH5  (Invitrogen, Carlsbad, USA) and Saccharomyces 

cerevisiae strains 1278b, FY2, and BY4742 (Brachmann et al., 1998) were used 

(table 2). For pseudohyphal growth studies, BY4743, Y33937 and Y22051 were used.  

 

Table 2: Yeast strains used in this study 
a European Saccharomyces cerevisiae Archive for Functional analysis, Johann Wolfgang Goethe-University, Frankfurt, Germany 

Strain Mating type Genotype Reference 

1278b MAT  ura3-52 his3 ::hisG trp1 ::hisG (Bechet et al., 

1970) 

FY2  MAT  ura3-52 (Brachmann et 

al., 1998) 

BY4742 MAT  his3  leu2 0 lys2 0 ura3 0 (Brachmann et 

al., 1998) 

BY4743 MATa/MAT  his3 1/his3 1 leu2 0/leu2 0 met15 0/MET15 

lys2 0/LYS2 ura3 0/ura3 0 

(Brachmann et 

al., 1998) 

Y33937 MATa/MAT  his3 1/his3 1 leu2 0/leu2 0 met15 0/MET15 

lys2 0/LYS2 ura3 0/ura3 0 

YDL240w::kanMX4/YDL240w::kanMX4 

EUROSCARFa 

Y22051 MATa/MAT  his3 1/his3 1 leu2 0/leu2 0 met15 0/MET15 

lys2 0/LYS2 ura3 0/ura3 0 

YNL161w::kanMX4/YNL161w 

EUROSCARFa 

 

Saccharomyces cerevisiae strains were grown at 30°C under non-selective conditions 

on YEPD (2% pepton, 1% yeast extract, 2% glucose) or for pseudohyphal formation 

on SLAD medium (0,17% yeast nitrogen base w/o amino acids, w/o ammonium 

sulfate, 2% glucose, 2% agar complemented with 2 μg/ml histidine, 10 μg/ml leucine 

and 2 μg/ml uracil).  
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For protein expression, Pichia pastoris GS115 (his4) (Invitrogen, Carlsbad, USA), E. 

coli BL21 (DE3), E. coli Rosetta2 (DE3) (both Novagen, belongs now to Merck 

KGaA, Germany) were used. SF9 insect cells were used in cooperation with Stefan 

Lakämper (Georg-August-Universität Göttingen, Germany). E. coli strains were grown 

on lauria bertani (LB) medium (0.5% sodium chloride, 0.5% yeast extract, 1% pepton) 

if needed supplemented with 100 μg/ml ampicillin, 50 μg/ml chloramphenicol, 

20 μg/ml tetracycline, 50 μg/ml gentamycine or 50 μg/ml kanamycin (all from Sigma, 

St. Louis, USA) or LBLS medium (0.25% sodium chloride, 0.5% yeast extract, 1% 

pepton) for zeocin selection supplemented with 50 μg/ml zeocin (Invitrogen, Carlsbad, 

USA). For growth on solid media, 1.5% agar was added to the medium. For protein 

expression in E. coli Rosetta2 (DE3) LB-rich medium (0.5% sodium chloride, 0.8% 

yeast extract, 1.8% pepton, 20 mM PIPES, pH 6.7, 2% glucose) was used.  

 

2.2 Plasmid construction 

Primers and plasmids used in this study are summarized in table 3 and table 4, 

respectively.  

 

Table 3: Primers used in this study 

Name Sequence 
31-21 3’ BamHI 5'-CGG GAT CCT ACG ACA GGC AGC GGC T-3' 
31-21 5’ NcoI 5'-CAT CCC ATG GCA CCT TTG GAA AAG CTG TTT GA-3' 
Hyg3'ApaI 5'-TTT GGG CCC TGA GCG TAT TGG GTG TTA CGG AGC-3' 
Hyg3'XbaI 5'-ACC TCT AGA CAA GTG TAC CTG TGC ATT C-3' 
Hyg5'ApaI 5'-AAT GGG CCC TGA CAC AGC TCA ATA AGG CTA GCC-3' 
Hyg5'XbaI 5'-AGG TCT AGA GTC GGT GAG TTC CTT TC-3' 
LRG-3NcoI 5'-TGG CCA TGG CGA TGT CGG TCT TGG ACC CTT G-3' 
LRG-5SacI 5'-CTA TGA GCT CCC AAG TAC AGG CGA CAC-3' 
NV_CDC24_5 5'-CCC GTC GAC GCC GGG TTC TAA GAT GAC CCA TC-3' 
NV_CDC24_6 5'-CCC GCG GCC GCT CAA GCA ACT GGG GCC GCT TGC-3' 
NV_Gap1 5'-CGC GAT ATC ATG GCT CCA ATG GTG GAA GG-3' 
NV_Gap2 5'-CGC GAA TTC TCA CGT CCC GGG CCC CAC GC-3' 
NV_GAPmut_f 5'-GTT CAG GTG GCT GCC TTG CTA GCA CGA TAC CTC CGA GAG CTG 

C-3' 
NV_GAPmut_r 5'-GCA GCT CTC GGA GGT ATC GTG CTA GCA AGG CAG CCA CCT GAA 

C-3' 
NV_GFP1 5'-CCC GAT ATC TGA GCA AGG GCG AGG AGC TG-3' 
NV_GFP2 5'-TTT GAT ATC TGT ACA GCT CGT CCA TGC CGA G-3' 
NV_GFP5 5'-CCC GGA TCC GGT ACC TTA CTT GTA CAG CTC GTC CAT GC-3' 
NV_GFP10 5'-CAG ATC TAT GGG CGA GCA GAA GCT GAT CTC CGA GGA AGA CCT 

CAA CGG TGT GAG CAA GGG CGA GGA GCT G-3' 
NV_gpd1 5'-GGG TTT CGA ACT ACA TCA AGG GTC CAA GAC CGA CAT CGA GGC 

TCT GTA CAG TGA CCG GTG-3' 
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Table 3: Primers used in this study (continued) 

Name Sequence 
NV_gpd2 5'-TAC TAC CAA CAG TCT CCT CGG GTC CTT GCG GGG GCA GTC AGC 

TCT GTA CAG TGA CCG GTG-3' 
NV_GST2 5'-CAG ATC TAT GGG ACG AGG CAG CCA TCA CCA TCA CCA TCA CAA 

CAC-3' 
NV_GST3 5'-CAG ATC TGG CGC CCT GAA AAT AAA GAT TCT C-3' 
NV_KOlrg3_test1 5'-CAA AGT CTG CCT GTA AGT CTG-3' 
NV_KOlrg3f 5'-GCG AGC GGC AGG CGC TCT ACA TGA GCA TGC CCT GCC CCT GAG 

CAC TGC ATG AGC TCC TAC-3' 
NV_KOlrg3r 5'-GGA ATT GTG AGC GGA TAA CAA TTT CAC ACA GGA AAC AGC CAC 

CTG GCT CGA CTA AAA CTG-3' 
NV_KOlrg3r2 5'-CCA CCT GGC TCG ACT AAA ACT G-3' 
NV_KOlrg5_test1 5'-TCT TCT TTC TGC TGT CCT GTC-3' 
NV_KOlrg5f 5'-TAA GTT GCG TAA CGC CAG GGT TTT CCC AGT CAC GAC GCA TCG 

AAT TTG GAA AAT TGG GAC-3' 
NV_KOlrg5f2 5'-CAT CGA ATT TGG AAA ATT GGG AC-3' 
NV_KOlrg5r 5'-CTC CGC ATG CCA GAA AGA GTC ACC GGT CAC TGT ACA GAG CCT 

CGA TGT CGG TCT TGG ACC-3' 
NV_KOpod3_test1 5'-GCA AGG CTA AGC TTA CTG ACT G-3' 
NV_KOpod3f 5'-GCG AGC GGC AGG CGC TCT ACA TGA GCA TGC CCT GCC CCT GAG 

GGA GGT AGG GTC TTG-3' 
NV_KOpod3r 5'-TGG AAT TGT GAG CGG ATA ACA ATT TCA CAC AGG AAA CAG CGC 

ATG TGC GGG TGG GTA ATG-3' 
NV_KOpod3r2 5'-GCA TGT GCG GGT GGG TAA TG-3' 
NV_KOpod5_test1 5'-GTT GGA ATT GCC GGG TAC AAC TC-3' 
NV_KOpod5f 5'-ATT AAG TTG CGT AAC GCC AGG GTT TTC CCA GTC ACG ACG CTA 

CAG CAC TTG TGA TGG TGC-3' 
NV_KOpod5f2 5'-GCT ACA GCA CTT GTG ATG GTG C-3' 
NV_KOpod5r 5'-CTC CGC ATG CCA GAA AGA GTC ACC GGT CAC TGT ACA GAG CTG 

ACT GCC CCC GCA AGG ACC-3' 
NV_LIM1mut_f 5'-GAT GGG ACC TTT CAT TTG GAT TCA TTC AAG AGT CGC GTG AGT 

GCC TG-3' 
NV_LIM1mut_r 5'-CAG GCA CTC ACG CGA CTC TTG AAT GAA TCC AAA TGA AAG GTC 

CCA TC-3' 
NV_LIM1mut2_f 5'-CTA GCG GAC AAG TGC GAG TGC TTA AGA AAG GTG GTG AAC CTT 

TGA CGG G-3' 
NV_LIM1mut2_r 5'-CCC GTC AAA GGT TCA CCA CCT TTC TTA AGC ACT CGC ACT TGT 

CCG CTA G-3' 
NV_LIM2mut_f 5'-CGC AAA TAC CAC GTC GAC GTC TTT ACC AGC TCG CTT TGC CCG 

ACT GTC-3' 
NV_LIM2mut_r 5'-GAC AGT CGG GCA AAG CGA GCT GGT AAA GAC GTC GAC GTG GTA 

TTT GCG-3' 
NV_LIM2mut2_f 5'-CGC AGG TTA GGC CTG CTG AGT TAC CAG GCC GGC GGT GCT CTT 

CGG GGC-3' 
NV_LIM2mut2_r 5'-GCC CCG AAG AGC ACC GCC GGC CTG GTA ACT CAG CAG GCC TAA 

CCT GCG-3' 
NV_LIM3mut_f 5'-GAC AAG AGG TGG CAT ATC ACG TCT GTC AAC TCC TCA CGT TGC 

CAG AAA GAA C-3' 
NV_LIM3mut_r 5'-GTT CTT TCT GGC AAC GTG AGG AGT TGA CAG ACG TGA TAT GCC 

ACC TCT TGT C-3' 
NV_LIM3mut2_f 5'-GCC TCG GAC TCG GAC TCG GGT ACC CTC TCG AAA AAG CCC ATT 

GAG GAC GAG-3' 
NV_LIM3mut2_r 5'-CTC GTC CTC AAT GGG CTT TTT CGA GAG GGT ACC CGA GTC CGA 

GTC CGA GGC-3' 
NV_link7 5'-CCC AAG CTT GCG GCC GCC GGT ACC GGT CGA CTT GGC CAT GGA 

TCC GAA TTC TGA AAT CC-3' 
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Table 3: Primers used in this study (continued) 

Name Sequence 
NV_lrg3 5'-CAA GCG GCC GCG TCA CCA TGG CTC CAA TGG TG-3' 
NV_lrg14 5'-CCC CTC GAG GTC CGG GCC TGG TTC AGG C-3' 
NV_lrg18 5'-AGC GGC CGC TCA TAA TTC ATC GGG AAC CAA ACA CAT CTC TTC 

AAT ATT TGC-3' 
NV_LRG20 5'-CTT TCG GTT GAA GGC GTC TTC CTT AAG AAC GGC AAT ATC AAG 

AAG C-3' 
NV_LRG21 5'-GCT TCT TGA TAT TGC CGT TCT TAA GGA AGA CGC CTT CAA CCG 

AAA G-3' 
NV_MBP1 5'-GGT CTC GCT GAA GTC GGT AAG-3' 
NV_myc1 5'-CGG AAT TCC GGC TGG GGC AGG CCA AAC AAT GGG GTG ACT ACT 

GGC ACT GCA TCT TCT AGA GGT GAA CAA AAG TTG-3' 
NV_myc2 5'-TCC CCG CGG CTA CCC GTC AGA TCT GTT CAA G-3' 
NV_myc3 5'-GGG CCC GGA TGG CCA TCC CGT CAG ATC TGT TCA AG-3' 
NV_myc4 5'-GGG CCC CCA TGG GAT CTT CTA GAG GTG AAC AAA AGG GGC CCC 

CAT GGG ATC TTC TAG AGG TGA ACA AAA G-3' 
NV_nat1 5'-ACC CCA TGG CCA TGA CCA CTC TTG ACG AC-3' 
NV_nat2 5'-AGG GAA TTC TCA GGG GCA GGG CAT GC-3' 
NV_nat3 5'-ACT CTT GAC GAC ACG GCT TAC-3' 
NV_nat4 5'-TAC GCG TGG ATC GCC GGT G-3' 
NV_nat5 5'-CCA AAA CAA TAT GGT AGG TGA GGT AGG AGC TCA TGC AGT GCT 

CAG GGG CAG GGC ATG C-3' 
NV_nat6 5'-TTC TGA GAC AAA TAA CAT CCC GTT ACA AGA CCC TAC CTC CCT 

CAG GGG CAG GGC ATG CTC-3' 
NV_Rho1_2 5'-CAA GCG GCC GCT CTG CTG AAC TCC GCC GAA AG-3' 
NV_Rho1_3 5'-CTT GCG GCC GCT TAG ACC GAG CTC TTG CAG AGG-3' 
NV_Rho2_3 5'-CAA GCG GCC GCT CAT AGA ATC ACA CAG CAC CC-3' 
NV_Rho2_4 5'-CAA CCA TGG GCG GCC GCG CAT CAG GCA GCC CTC AG-3' 
NV_Rho3_2 5'-CAA GCG GCC GCC CTT GCG GAC TCG GAG GGT C-3' 
NV_Rho3_3 5'-CAA GCG GCC GCT TAC ATG ACC ACG CAC TTC G-3' 
NV_Rho4_2 5'-CAA GCG GCC GCA CCG AGG GCC CGG CCT AC-3' 
NV_Rho4_3 5'-CAA GCG GCC GCC TCA CAT CAT ACC ACA CTT TC-3' 
NV_SepA_1a 5’-CAG ATC TTC CTC CCA CGA CAA GAA TGG GAG-3’ 
NV_SepA_5 5’-CAC TAG TCA TCC TGT TGT TTC TTT ACT TTC TTC AG-3’ 
NV_SepA_6 5’-CCA GAT CTG GCC CTC CAC CTC CAC CAC C-3’ 
NV_SepA_7 5’-CCA CTA GTC ACC CTT GGT GGC ATT GGA GGC-3’ 
NV_tap_N_1 5'-GTT ATC CAT GGC AGG CCT TGC G-3' 
NV_tap_n_r 5'-GGG GAT ATC CTA GGG CGA ATT GGG TAC CGG G-3' 
Rho1_DN1 5’-GTC TAC GTC CCT ACC GTT TTC ATT AAT TAC GTC GCC GAT GT-3’ 
Rho1_DN2 5’-AAC CTC GAC ATC GGC GAC GTA ATT AAT GAA AAC GGT AGG GA-

3’ 
Rho1_GV1 5'-CGT CAT CGT TGG CGA CGT CGC CTG CGG CAA GAC C-3’ 
Rho1_GV2 5'-GGT CTT GCC GCA GGC GAC GTC GCC AAC GAT GAC G-3’ 
SSe_CDC42_Not3 5'-GAT GCG GCC GCT CAC AGA ATC AAG CAC TTC TTG TCC-3' 
SSe_CDC42_Sal5 5'-ACG CGT CGA CCG TGA CGG GAA CTA TCA AGT GCG-3' 
SSe_Rac_Not3 5'-GAT GCG GCC GCT TAG AGG ATA GTG CAC TTG GAC TTC-3' 
SSe_Rac_Sal5 5'-ACG CGT CGA CCG CTG CTA TCG GAG GCG TGC AGT C-3' 
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Table 4: Plasmids used in this study. 
FGSC: Fungal Genetics Stock Center (University of Missouri, Kansas City, USA) 

Name Description Source 
BAC NC20 K10 bni containing Bacmid FGSC  

pAG25 natR (yeast) 
Goldstein and 
McCusker (1999) 

pBluescript SK+ cloning vector 
Stratagene, La Jolla, 
USA 

pBS1761 encodes TAP tag Puig et al. (2001) 

pCZ218 cot-1::myc 
Carmit Ziv, Rehovot, 
Israel 

pETM-30 expression plasmid, for GST fusions 

protein expression 
facility, Heidelberg, 
Germany 

pFastBac Dual expression plasmid 
Invitrogen, Carlsbad, 
USA 

pJet1 subcloning vector  
Fermentas, Vilnius, 
LT 

pMal-c2x expression plasmid, for MalE fusions NEB, Ipswich, USA 

pMP6 

hygromycin resistance gene under control of modified CPC 
promoter (hph)  M. Plamann, USA 

pNV1 pBluescript SK+; PgpdA::natR
 this study 

pNV2 pBluescript SK+; lrg-1 coding 6 kb genomic region  this study  
pNV3 pBluescript SK+; lrg-1; hph this study 

pNV4 pBluescript SK+; lrg-1aa781-1279
 this study 

pNV5 pJet1; gfp this study 
pNV6 pBluescript SK+; lrg-1aa781-1279, hph  this study 

pNV7 pBluescript SK+; lrg-1aa1-847, hph this study 

pNV8 pBluescript SK+; lrg-1K910A
 this study 

pNV9 pBluescript SK+; lrg-1K910A, hph this study 

pNV10 pBluescript SK+; lrg-1C121S, C124S, C98L, C101S (LIM1*) this study 

pNV11 pBluescript SK+; lrg-1H185V, C188S, C162S, C165A (LIM2*) this study 

pNV12 pBluescript SK+; lrg-1C492S, C495S, C469G, C472S (LIM3*) this study 

pNV13 pBluescript SK+; lrg-1C121S, C124S, C98L, C101S (LIM1*); hph this study 

pNV14 pBluescript SK+; lrg-1H185V, C188S, C162S, C165A (LIM2*); hph this study 

pNV15 pBluescript SK+; lrg-1C492S, C495S, C469G, C472S (LIM3*); hph this study 

pNV16 pBluescript SK+; lrg-1 coding 6 kb genomic region; reverse this study 

pNV17 

pBluescript SK+; lrg-1C121S, C124S, C98L, C101S, H185V, C188S, C162S, C165A, 

C492S, C495S, C469G, C472S (LRG1*) this study 

pNV18 

pBluescript SK+; lrg-1C121S, C124S, C98L, C101S, H185V, C188S, C162S, C165A, 

C492S, C495S, C469G, C472S (LRG1*); hph this study 

pNV19 pBluescript SK+; lrg-1::myc9; hph this study 

pNV20 pBluescript SK+; myc9::lrg-1; hph this study 

pNV21 pBluescript SK+; lrg-1aa781-1279::myc9; hph this study 

pNV22 pBluescript SK+; myc9::lrg-1aa1-847; hph this study 

pNV23 pBluescript SK+; GFP::lrg-1; hph this study 

pNV24 

pBluescript SK+; GFP::lrg-1C121S, C124S, C98L, C101S, H185V, C188S, 

C162S, C165A, C492S, C495S, C469G, C472S(LRG1*); hph this study 

pNV25 pMal-c2x; lrg-1aa781-848
 this study 

pNV26 pETM-30; lrg-1aa781-848
 this study 

pNV27 pETM-30; lrg-1aa650-1035
 this study 

pNV28 pETM-30; rho-1 cDNA this study 

pNV29 pETM-30; rho-2 cDNA this study 
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Table 4: Plasmids used in this study (continued). 

Name Description Source 
pNV30 pETM-30; rho-3 cDNA this study 

pNV31 pETM-30; rho-4 cDNA this study 

pNV32 pETM-30; rac cDNA this study 

pNV33 pETM-30; CDC42 cDNA this study 

pNV34 pNV80; rho-1 coding sequence S. Seiler 
pNV35 pNV80; rho-2 coding sequence S. Seiler 
pNV36 pNV80; rho-3 coding sequence S. Seiler 
pNV37 pNV80; rho-4 coding sequence S. Seiler 
pNV38 pNV80; rac coding sequence S. Seiler 
pNV39 pNV80; CDC42 coding sequence S. Seiler 
pNV40 pNV80; rho-1G15V coding sequence this study 

pNV41 pNV80; rho-1E41I coding sequence this study 

pNV46 pRS416; 5'lrg-1::natR::3'lrg-1 this study 

pNV47 pNV80; include myc3 tag S. Seiler 
pNV63 pNV1; deletion of NcoI site  this study 
pNV70 pNV72; lrg-1aa650-1035

 this study 

pNV72 pMal-c2x; changed multiple cloning site this study 
pNV74 pQE60; pod-6aa421–675 this study 

pNV75 pBluescript SK+; TAP::lrg-1; hph  this study 
pNV79 pRS416; 5'pod-6::natR::3'pod-6 this study 

pNV80 pBluescript SK+; HygR, PCPC Seiler et al. (2006) 
pNV81 pBluescript SK+; lrg-1R847L

 this study 

pNV82 pBluescript SK+; lrg-1R847L; hph this study 

pNV83 pNV47; bni1-824
 this study 

pNV84 pNV47; bni1029-1817
 this study 

pNV85 pETM-30; cdc24204-544
 this study 

pNV86 pPicholi-C; Pcup1 substituted by natR and Eco47IR-gfp  this study 

pNV87 
pFastBac Dual; RGS-His6-GST coding sequence under PH 
promotor control  this study 

pNV88 pNV87: PP10::gfp  this study 

pPicholi-C expression plasmid 
MoBiTec GmbH, 
Göttingen, Germany 

pQE60 expression plasmid 
Qiagen, Hilden, 
Germany 

pRS316-myc9 9 fold myc epitope containing yeast plasmid AB Krappmann 

pRS416 Yeast vector used for recombinations 
Sikorski and Hieter 
(1989) 

pSM1 PgpdA::gfp  Pöggeler et al. (2003) 
XIF7 pod-6 containing cosmid Orbach (1984) 
 

To generate the GAP and LIM domain deletion constructs, a 6 kb genomic SacII 

fragment containing lrg-1 coding region and 1.5 kb 5' and 1 kb 3' regions, was inserted 

in pBluescript SK+ (Stratagene, La Jolla, USA) resulting in plasmids pNV2 and, in 

reverse orientation, pNV16. The hygromycin B resistance cassette (hph), amplified 

from plasmid pMP6 as template with the primers Hyg5’XbaI and Hyg3’XbaI was 

inserted into the unique XbaI site of pNV16 resulting in the full-length lrg-1 
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complementation plasmid pNV3. LRG11-847 containing plasmid pNV7 was generated 

by cutting pNV16 with ApaI to remove the C-terminal domain of LRG1 to insert the 

hph cassette, which was amplified from plasmid pMP6 with the primers Hyg5'ApaI 

and Hyg3'ApaI. For generation of pNV6, the lrg-1 promoter was amplified using 

oligonucleotides LRG-5SacI and LRG-3NcoI containing SacI and NcoI sites, 

respectively. The lrg-1 promoter was inserted together with an NcoI/SacII fragment 

from pNV16 containing the GAP domain-encoding region of LRG1 (aa 781-1279) into 

SacI/SacII digested pBluescript SK+ to obtain pNV4. The hph cassette from pNV3 

was ligated into the unique XbaI site to obtain pNV6. Point mutations in the three LIM 

domains were generated with the QuickChange® Site-Directed Mutagenesis Kit 

(Stratagene, La Jolla, USA) according to the manual using pNV2 as template. 

Oligonucleotides NV_LIM1mut_f, NV_LIM1mut_r, NV_LIM1mut2_f and 

NV_LIM1mut2_r were used for mutations in LIM domain 1 to obtain pNV10, 

NV_LIM2mut_f, NV_LIM2mut_r, NV_LIM2mut2_f and NV_LIM2mut2_r were used 

for mutations in LIM domain 2 to obtain pNV11 and NV_LIM3mut_f, 

NV_LIM3mut_r, NV_LIM3mut2_f and NV_LIM3mut2_r were used for mutations in 

LIM domain 3 to obtain pNV12. The zinc coordinating cysteine residues were 

substituted mainly by serines that have similar characteristics, but lack the zinc-

binding capability. The coordinating histidine was substituted by valine (LIM1: 

C121S, C124S, C98L, C101S; LIM2: H185V, C188S, C162S, C165A; LIM3: C492S, 

C495S, C469G, C472S). The hygromycin B resistance cassette from pNV3 was 

inserted into the unique XbaI site of pNV10, pNV11 and pNV12 to obtain pNV13, 

pNV14 and pNV15, respectively. The triple LIM domain mutation of plasmid pNV17 

was generated by multiple mutagenesis PCRs to obtain all 8 mutations of the first and 

second LIM domain. An MscI/SacI fragment from the resulting vector containing 

mutated LIM1,2*, and a SacI/MluI fragment of LIM3* from pNV12 was ligated into 

pNV16 digested with MscI/MluI to obtain pNV17. The hph cassette from pNV7 

harbouring Bsp120I (ApaI isoschizomere) restriction sites was subsequently inserted 

into the unique NotI site of the vector to obtain pNV18. The K910A exchange in the 

GAP domain encoded from the plasmid pNV8 was generated by PCR with pNV2 as 

template and the primers NV_GAPmut_f and NV_GAPmut_r. The hygromycin B 

resistance cassette was inserted as Bsp120I fragment from pNV7 into the unique NotI 

site of pNV8 resulting in pNV9. The R847L mutation within the GAP domain was 
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generated with pNV2 as template and primers NV_LRG20 and NV_LRG21 to obtain 

pNV81. The hph cassette from pNV3 was cloned into the XbaI site of plasmid pNV81 

resulting in pNV82. N-terminal MYC9-tagged versions of LRG1 and LRG11-847 were 

encoded from the plasmids pNV20 and pNV22. To construct these plasmids, a 9-fold 

MYC-tag was amplified from pRS316-myc9 as template using primers NV_myc4 and 

NV_myc3. The 9-fold MYC-tag was inserted into the unique MscI site one base pair 

downstream of the LRG1 start codon of plasmid pNV16. The hph cassette from pNV7 

was subsequently inserted via Bsp120I/NotI to obtain pNV20 encoding full length 

MYC9::LRG1 and via ApaI to obtain pNV22 encoding MYC9::LRG11-847. At the         

C-terminus of LRG1 and LRG1781-1279, the MYC9-tag was inserted via the EcoRI and 

SacII sites of pNV16 and pNV4, respectively. The MYC9-tag was amplified from 

pRS316-myc9 as template using primers NV_myc1 and NV_myc2. The hph cassette 

from pNV7 was subsequently inserted via Bsp120I/NotI resulting in pNV19 encoding 

LRG1::MYC9 and pNV21 encoding LRG1781-1279::MYC9. To express GFP tagged 

LRG1 in N. crassa, the GFP coding region was amplified from pSM1 (Pöggeler et al., 

2003) using oligonucleotides NV_GFP1 and NV_GFP2, and subsequently ligated via 

EcoRV into MscI digested pNV16 and pNV17. The hygromycin cassette from pNV3 

was inserted into the XbaI site of each plasmid to obtain pNV23 encoding GFP::LRG1 

and pNV24 encoding GFP::LRG1*. To construct the resistance cassette for the 

generation of lrg-1 and pod-6 strains, the Aspergillus nidulans gpdA promoter was 

obtained as an 888 base pair SacI/NcoI fragment from pSM1 (Pöggeler et al., 2003). 

The 581 base pair natR from pAG25 (Goldstein and McCusker, 1999) was amplified 

with the primers NV_nat1 and NV_nat2 containing NcoI and EcoRI sites, respectively. 

The gpdA promoter and the natR fragments were ligated into pBluescript SK+ 

(Stratagene, La Jolla, USA) via SacI/EcoRI, resulting in the plasmid pNV1. The lrg-1 

deletion cassette of plasmid pNV46 and the pod-6 deletion cassette of plasmid pNV79 

were obtained by plasmid gap repair in S. cerevisiae (Orr-Weaver and Szostak, 1983). 

The yeast vector pRS416 (Sikorski and Hieter, 1989) was cut with XbaI and XhoI. The 

following PCR fragments were used for the recombination. To generate the natR 

amplicon with pNV1 as template, for the lrg-1 deletion cassette the primers NV_gpd1 

and NV_nat5, and for the pod-6 deletion cassette the primers NV_gpd2 and NV_nat6 

were used in PCR reactions. The 5’ and 3’ flanking regions of pod-6 and lrg-1 were 
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amplified from cosmid pXIF7 from the Orbach/Sachs library (Orbach, 1984) or from 

genomic DNA, respectively. For this, primers NV_KOlrg5f, NV_KOlrg5r, 

NV_KOlrg3f and NV_KOlrg3r for lrg-1 flanking regions and NV_KOpod5f, 

NV_KOpod5r, NV_KOpod3f and NV_KOpod3r for pod-6 flanking regions were used.  

For LRG1 antigen expression in E. coli, an lrg-1aa781-848 fragment was amplified with 

the primers NV_Gap1 and NV_Gap2 containing the restriction sites Eco32I and 

EcoRI, respectively. This fragment was inserted into pMal-c2x (New England Biolabs 

(NEB), Ipswich, USA) using the XmnI and EcoRI sites resulting in pNV25. The       

lrg-1aa781-848 fragment was amplified with NV_lrg3 and NV_Gap2 containing the 

restriction sites NcoI and EcoRI, respectively and ligated into pETM-30 (EMBL 

protein expression facility, Heidelberg, Germany) resulting in pNV26. cDNAs of the 

six Rho GTPases were generated by reverse transcription with RevertAid M-MuLV 

Reverse Transcriptase (Fermentas, Vilnius, LT) from N. crassa mRNA prepared with 

PolyATtract (Promega, USA). The RHO coding sequences were amplified by PCR 

using the following primers amplifying the genes from ATG to stop codon. 

NV_Rho1_2 and NV_Rho1_3 were used for amplification of rho-1, NV_Rho2_4 and 

NV_Rho2_3 were used for amplification of rho-2, NV_Rho3_2 and NV_Rho3_3 were 

used for amplification of rho-3, NV_Rho4_2 and NV_Rho4_3 were used for 

amplification of rho-4, SSe_CDC42_Sal5 and SSe_CDC42_Not3 were used for 

amplification of cdc42 and SSe_Rac_Sal5 and SSe_Rac_Not3 were used for 

amplification of rac. Sequences were inserted via primer-based restriction sites (NcoI - 

NotI for rho-2, NotI - NotI for rho-1, rho-3 and rho-4 or SalI - NotI for cdc42 and rac) 

into pETM-30. First, the rho-2 sequence was inserted via NcoI and NotI to obtain the 

plasmid pNV29. The rho-2 sequence of pNV29 was cut out with NotI and the coding 

sequences of RHO1, RHO3 and RHO4 were inserted to obtain the plasmids pNV28, 

pNV30 and pNV31, respectively. The coding sequences of RAC and CDC42 were 

inserted as SalI/NotI fragments into pNV72 (see supplementary data), cut out with 

enzymes NcoI/NotI and ligated into pETM-30 cut with the same enzymes to obtain 

pNV32 encoding RAC and pNV33 encoding CDC42. For generation of the POD6 

antigen the coding sequence of amino acids 421–675 was amplified with the primers 

31-21 3’ BamHI and 31-21 5’ NcoI and ligated into pQE60 (Qiagen, Hilden, 

Germany), resulting in pNV74. The GAP domain of LRG1 consists of amino acids 

650-1035. The coding region of this domain was amplified with primers NV_lrg14 and 
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NV_lrg18 and inserted via the generated XhoI and NotI-sites into pNV32 cut with SalI 

and NotI to obtain pNV27 and into pNV72 resulting in the plasmid pNV70. The GEF 

domain of CDC24 consists of amino acids 204-544. The coding region cdc24aa204-544 

was amplified with NV_CDC24_5 and NV_CDC24_6 and ligated into pNV32 via SalI 

and NotI to obtain pNV85. The overexpression constructs encoding N. crassa RHO 

proteins were amplified from genomic DNA and ligated into pNV80. In this vector, 

the expression of genes is under the control of a constitutive active, modified cpc-1 

promoter derived from plasmid pMP6. The plasmid pNV80 harbours BglII and SpeI as 

unique cloning sites (Seiler et al., 2006). RHO protein coding regions and the 

dominant constructs of the formin bni-1 (NCU01431) were amplified with primers 

containing the BglII and SpeI restriction sites by S. Seiler (primers for rho genes are 

not listed), to obtain the plasmids pNV34 (for RHO1 expression), pNV35 (for RHO2 

expression), pNV36 (for RHO3 expression), pNV37 (for RHO4 expression), pNV38 

(for RAC expression) and pNV39 (for CDC42 expression). Plasmid pNV34 was used 

as template in a mutagenesis to obtain the dominant-active (G15V) as well as 

dominant-negative (E41I) RHO1 alleles. The dominant active mutation was inserted 

with Rho1_GV1 and Rho1_GV2 to obtain pNV40 and the dominant negative mutation 

was inserted with Rho1_DN1 and Rho1_DN2 to obtain pNV41. To generate BNI1 

expression constructs, genomic sequences of bni-1 were amplified from bacmid BAC 

NC20 K10 (Fungal Genetic Stock Center) and were inserted into pNV47, a modified 

pNV80 that encodes a N-terminal MYC3 fusion. For bni-1aa1-824 encoding the dominant 

negative BNI1 N-terminus the primers NV_SepA_1a and NV_SepA_7, for              

bni-1aa1029-1817 encoding the dominant active BNI1 C-terminus the primers NV_SepA_6 

and NV_SepA_5 were used, resulting in expression plasmids pNV83 (containing bni-

11-824) and pNV84 (containing bni-11029-1817). 

 

2.3 General molecular methods 

2.3.1 Bioinformatics 

Alignments were performed with MultAlin (Corpet, 1988; http://bioinfo.genopole-

toulouse.prd.fr/multalin/multalin.html). Structure predictions were used from Cn3D of 

the NCBI to study the 3D structure of protein domains. This information helped to 
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design truncated proteins for expression and ensure the use of a complete structural 

conserved domain in biochemical studies.  

 

2.3.2 General cloning procedures 

Standard methods were performed as described (Ausübel et al., 1997; Sambrook et al., 

1989) or according to manufacturers instructions with minor modifications. For 

analytical PCR 10 fold concentrated buffer (200 mM Tris, pH 8.8, 100 mM KCl, 

100 mM (NH4)2SO4, 22.5 mM MgCl2, 0.02% Nonidet P40 (NP40) and 0.02% Triton 

X-100, 40% glycerol) was used. The buffer composition was adjusted to the melting 

behaviour of the DNA by varying the di-methyl-sulfoxide (DMSO) content up to 10% 

of the PCR volume for GC-rich templates. For most PCR reactions, initial denaturation 

was performed for 2 min at 94°C, followed by 30 cycles. A cycle consists of 30 s 

denaturation at 94°C, annealing for 30 s, extension for time dependent on the 

polymerase (1 min/kb for Taq-polymerase, 2 min/kb for Pfu-polymerase, for other 

polymerases according to manufacturers instructions) and fragment length dependent 

time at 72°C. For long fragments, a terminal extension of 10 min was added in 

preparative PCR reactions. Mutagenesis PCR from the pNV2 plasmid with a size of 

9 kb was done with Pfu-polymerase in 18 cycles including 20 min extension time each. 

For analysis of transformants of E. coli or yeast, colony PCR was done. E. coli 

colonies were transferred with a sterile toothpick into the 20 μl PCR reaction. Yeast 

colonies were suspended in 15 μl 10 mM sodium hydroxide and boiled for 10 min at 

94°C. Afterwards yeast fragments including genomic DNA were pelleted by 

centrifugation at 13000 rpm for 2 min. 1 μl of the supernatant was used as template in 

50 μl PCR reactions. For yeast colony PCR 35 cycles were used.  

Ligation reactions were performed either in restriction buffers Yellow or Red 

(Fermentas, Vilnius, LT), supplemented with 1 mM ATP for at least 1 h to over night, 

or with 2 fold concentrated quick ligation buffer (100 mM HEPES, pH 7.6, 20 mM 

MgCl2, 4 mM DTT, 4 mM ATP and 14% (v/v) PEG4000) for 3 to 30 min. 

For subcloning of PCR fragments, TOPO-TA and TOPO zero blunt cloning kits 

(Invitrogen, Carlsbad, USA) or Gene Jet and Clone Jet cloning kits (Fermentas, 

Vilnius, LT) were used. pNV86 (see supplementary data) was occasionally used for 

subcloning of PCR fragments to reduce the background of further cloning steps. 
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2.3.3 Immunological methods 

For the preparation of polyclonal anti-POD6 and anti-LRG1 antibodies, a POD6 

fragment consisting of amino acids 421–675 as hexa-histidine (His6)-fusion protein 

(encoded from pNV74) and a LRG1 fragment consisting of amino acids 781 – 848 as 

maltose binding fusion protein (encoded from pNV25) were used as antigens, 

respectively.  

Pineda Antikörper Service (Berlin, Germany) generated polyclonal antisera. The sera 

were affinity-purified using the original antigen of anti-POD6 sera or a 

gluthatione S transferase (GST) fusion of the LRG1 amino acids 781 – 848 encoded 

from plasmid pNV26 for anti-LRG1 sera, respectively.  

The expression of the MYC-tagged LRG1 constructs was verified by Western Blot 

analysis using monoclonal 9E10-anti-cMYC antibodies (Santa Cruz Biotechnology, 

Santa Cruz, USA). 

For protein extraction, N. crassa mycelia samples were frozen and grinded in liquid 

nitrogen using mortar and pestle. The powder was suspended in 50 mM phosphate 

buffer, pH 7.0, 150 mM KCl, 1 mM DTT, containing protein inhibitors (0.5 mM 

phenylmethylsulphonyl fluoride (PMSF), 350 μg/ml benzamidin, 10 μg/ml aprotenin, 

10 μg/ml leupeptin and 2 μg/ml pepstatin A). Phosphatase inhibitors (1 mM sodium 

fluoride, 25 mM -glycerophosphate and sodium orthovanadate that was prior to use 

incubated for 5 min at 94°C at a final concentration of 10 mM) were added to the 

buffer for Western Blot experiments probed with anti-phospho specific antibodies 

(Cell Signaling Technology, Danvers, USA). Centrifugation of the samples was done 

at 13000 rounds per minute for 30 min at 4°C. The protein containing supernatant was 

used for further experiments. Proteins were separated by SDS-PAGE using 7.5%, 

10%, 12% or 15% gels. Western blotting was performed according to standard 

procedures (Ausübel et al., 1997). The phospho-p44/42 MAP kinase (Thr202/Tyr204) 

antibodies (Cell Signaling Technology, Danvers, USA) were used according to the 

manual.  
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2.4 Biochemical methods 

2.4.1 Protein purification 

The POD6 fragment consisting of amino acids 421–675 was expressed from plasmid 

pNV74 in Escherichia coli BL21 (DE3) as a pQE60-based His6-fusion protein and 

purified via the Ni-NTA purification system (Qiagen, Hilden, Germany). For the 

preparation of polyclonal anti-LRG1 antibodies, a LRG1 fragment containing amino 

acids 781 – 848 was expressed from plasmid pNV25 in Escherichia coli BL21 (DE3) 

as a MalE-fusion protein and was purified via affinity purification using amylose 

agarose (NEB, Ipswich, USA).  

The RHO GTPases and CDC24204-544 were purified as GST fusion proteins from 

Escherichia coli BL21 (Rosetta 2). Cells were inoculated to an OD595 of 0.1, grown at 

20°C to an OD595 of 0,45 and induced for 4 h with 0.1 mM IPTG. Cell extracts were 

generated by sonification in lysing buffer (50 mM Tris, pH 7.5, 10% sucrose, 5 mM 

MgCl2, 1 mM PMSF, 0.008% ß-Mercaptoethanol, 0.02% NP40). Proteins were bound 

to GSH sepharose (Amersham, Buckinghamshire, United Kingdom), washed in 

washing buffer (50 mM Tris, pH 7.5, 250 mM NaCl, 5 mM MgCl2, 1 mM PMSF, 

0,008 % ß-Mercaptoethanol, 0.02% NP40) and eluted with elution buffer (50 mM Tris, 

pH 8.0, 250 mM NaCl, 5 mM MgCl2, 5 mM DTT, 20 mM glutathione (red.), 0,02% 

NP40).  

 

2.4.2 Enzymatic assays 

2.4.2.1 In vitro assay for Rho GAP activity 

GTPase assays were performed as described (Gibbs, 1995; Gibbs et al., 1988; Morii et 

al., 1991). Pre-equilibration of the RHO proteins was performed for 15 minutes at 

25°C in 30 μl buffer A (20 mM HEPES, pH 7.6, 25 mM sodium chloride, 2 mM 

EDTA, 1 mg/ml BSA, 0.5 mM DTT, 0.005% cholic acid) including 0.5 μM GTPase 

and 5 μCi (0.17 μM) [ -32P]-GTP. Adding 1 μl 0.5 M MgCl2 and putting the samples 

on ice stopped GTP loading. 5 μl GTPase was added to start the reaction (final 

concentration: 20 mM HEPES, pH 7.6, 1 mg/ml BSA, 0.1 mM DTT, 1 mM GTP and 

4 μM GST::GAP or purified GST) at 25°C. 5 μl samples of the reaction were stopped 
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in 1 ml ice-cold wash buffer (50 mM Tris, pH 7.5, 50 mM sodium chloride, 5 mM 

MgCl2) and filtered trough BA85 nitrocellulose membranes (Whatman, Maidstone, 

Great Britain). The filters were washed with 6 ml wash buffer, dried and measured by 

scintillation counting in a QuantaSmart scintillation counter (Perkin Elmer, Waltham, 

USA).  

 

2.4.2.2 In vitro assay for Rho GEF activity 

Initially in cooperation with PD Dr. Jan Faix, Hannover Medical School, fluorescence 

of a GDP nucleotide exchange reaction using the modified fluorescent nucleotide      

2`, 3`-O-(N-methylanthraniloyl)-Guanosin (Mant GDP) was measured in a Jasco    

FP–6500 spectrofluorometer. Further experiments were performed in a TECAN plate 

reader (Tecan Trading AG, Switzerland). Excitation at 356 nm was used and the 

emission at 448 nm was measured for 600 seconds. The samples contained 1 μM 

GST::RHO protein (whereas RHO means Neurospora RHO1 to RHO4, RAC or 

CDC42; purified proteins) 0.1 μM Mant GDP, 30 mM Tris–HCl, 5 mM MgCl2, 

10 mM KH2PO4, 3 mM DTT, pH 7.5 at 21°C and as control 1 μM GST or for 

stimulation of the activity 1 μM of GST::CDC24204-544.  

 

2.5 Microscopy 

Low magnification documentation of fungal hyphae or colonies was performed with a 

SZX12 stereomicroscope (Olympus, Tokyo, Japan) and a PS30 video camera (Kappa 

opto-electronics GmbH, Gleichen, Germany). 

 

2.5.1 Immunofluorescence 

Immunolocalization for N. crassa hyphae was conducted following a protocol adapted 

from Minke et al. (1999). Conidia were grown for 12 h on a small piece of GN-6 

cellulose filter (Pall Corporation, New York, USA) placed on the surface of an agar 

plate. Filters were plunge-frozen in liquid propane and transferred to fixative (4% 

formaldehyde in 96% ethanol pre cooled to –80°C). Samples were maintained at –

80°C for at least 2 days and then slowly transferred to room temperature (2 h at –20°C, 
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2 h at 4°C, room temperature). Filters were rehydrated in a series of ethanol:buffer 

(100 mM phosphate, pH 7.0) solutions starting at a ratio of 90:10 and ending at 10:90. 

After several rinses in phosphate buffer, the cell wall was digested by incubating the 

filters for 5 to 8 min in 2 mg/ml lysing enzymes from Trichoderma harzianum (Sigma, 

St. Louis, USA) in buffer containing 100 mM potassium citrate (pH 6.0), 20 mM 

EGTA and 5% BSA. The lysing enzymes were washed away by several short rinses 

with phosphate buffer. To block non-specific binding of antibody, the filters were 

incubated for 1 h in 5% BSA in PBS. Samples were immersed in the primary antibody 

in 5% BSA/PBS for at least 8 h, washed several times in phosphate buffer, incubated 

with the secondary antibody for  8 h and washed again for at least 4 h with several 

changes of the phosphate buffer. Samples were visualized using standard DAPI, 

rhodamine and FITC filter sets. For immunolocalization, samples were viewed with an 

ORCA ER digital camera (Hamamatsu Photonics, Hamamatsu, Japan) mounted on an 

Axiovert S100 microscope (Carl Zeiss AG, Oberkochen, Germany). Image acquisition 

was done using the Openlab 5.01 software (Improvision, Coventry, Great Britain) and 

images were further processed using Photoshop CS2 (Adobe, San Jose, USA).  

 

2.5.2 GFP fluorescence  

To visualise GFP fluorescence of growing hyphae, strains were grown on a 2 to 5 mm 

layer of Vogels medium containing 2% agar and 0.1 μg/ml panthothenic acid on top of 

a second 1 cm agar layer at 25°C. Sections of about 5 mm x 8 mm were cut at the edge 

of colonies and incubated in water for about 10 min. Coverslips that were stuck to 

holes in small plates were used as slides. The agar blocks were put on these slides with 

the colonies directed towards the slip and 40 μl of water or for chitin staining 40 μl of 

2 μg/ml Calcofluor White were added.  

For localization studies of GFP::LRG1 and GFP::LRG1*, an AxioObserverZ.1 

microscope equipped with an ApoTome unit, an AxioCam MRm r3.0 CCD camera 

and X-Cite (EXFO) illumination source with filter sets 1 and 38 was used with 

AxioVision Software 4.6. For confocal imaging an Axiovert 100M microscope with 

the confocal module LSM 510 and LSM 510-Software was used (all from Zeiss, 

Germany). Live time measurements were performed using an ORCA ER digital 

camera (Hamamatsu Photonics, Hamamatsu, Japan) mounted on an Axiovert S100 
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microscope (Carl Zeiss AG, Oberkochen, Germany). Image acquisition was done 

using the Openlab 5.01 software (Improvision, Coventry, Great Britain) and images 

were further processed using Photoshop CS2 (Adobe, San Jose, USA).  
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3 Results 

At the starting point of this work, COT1 was the best-characterized regulator of hyphal 

elongation in N. crassa. Mutants in genes, which were specifically required for polar 

tip extension (Seiler and Plamann, 2003) were analysed to obtain evidence for their 

functional relationship. pod-6 and lrg-1 mutant alleles were chosen for a phenotypic 

characterization and a cot-1 mutant strain with similar growth defects was selected for 

a comparative analysis.  

 

3.1 POD6 and LRG1 are essential for hyphal tip extension  

RT-PCR and sequencing experiments of cDNA with POD6-specific primers were used 

to define pod-6 as a 928-amino acid protein containing an N-terminal kinase domain 

with the highest sequence similarity to members of the Ste20 group of kinases and a   

C-terminal region with no characteristic sequence motifs (Seiler et al., 2006). Based on 

the homology of the kinase domain, its N-terminal localization and the lack of defined 

sequence motifs in the C-terminus, POD6 belongs to the GCK-III subfamily of 

eukaryotic Ste20 kinases. The known vertebrate members of this subfamily, SOK1, 

MST3, and MST4, have been implicated in the regulation of stress response, apoptosis 

and proliferation, but the molecular mechanisms are unknown (Dan et al., 2002; Dan 

et al., 2001; Lin et al., 2001; Qian et al., 2001). The most closely related budding and 

fission yeast kinases are Kic1p and Nak1, respectively. Both kinases have been 

reported as part of a morphogenetic network that also contains the NDR kinases Cbk1p 

(budding yeast) and Orb6 (fission yeast), respectively, that is important for 

coordinating polarized growth with daughter cell specific transcription and cell cycle 

progression (Kanai et al., 2005; Leonhard and Nurse, 2005; Nelson et al., 2003). 

When wild type N. crassa conidia (asexual spores) germinate, they rehydrate and 

begin to grow isotropically. Growth soon becomes polarized, and usually one hyphal 

tip is generated. Continued polarized growth results in unidirectional extension of the 

straight primary hypha and branching from subapical compartments subsequently 

generates new hyphal tips. Continuous hyphal elongation and branching results in the 

formation of spreading colonies (Collinge and Trinci, 1974; Momany, 2002; Seiler and 



3 Results  

34 

Plamann, 2003). 

To determine the morphological changes conferred by the conditional mutations in 

pod-6 and lrg-1, a microscopic analysis of different temperature sensitive alleles of 

pod-6 and lrg–1 grown under permissive and restrictive temperatures was conducted. 

As no major morphological differences were observed among the seven isolated pod-6 

alleles and the 22 lrg-1 alleles of the screen (Seiler and Plamann, 2003), pod-6(31-21) 

and lrg-1(12-20) alleles were chosen for further investigations. While no differences in 

hyphal elongation or branching frequency were detected between pod-6(31-21) and 

wild type, differences could be measured between lrg-1(12-20) and wild type grown at 

permissive temperatures (19°C to 25°C) upon careful examination (Figure 3). An 

increased number of branches were detected within the apical 500 μm of lrg-1(12-20) 

resulting in denser colonies at 19°C and 25°C. In addition, the elongation rate of      

lrg-1(12-20) was slightly reduced compared to wild type at 19°C (0.74 ± 0.16 μm/h 

and 1.7 ± 0.3 μm/h, respectively). This difference was more prominent at 25°C (0.87 ± 

0.2 μm/h and 3.45 ± 0.26 μm/h, respectively). The diameter of hyphae that undergo 

subapical branching at the edge of a colony was reduced to 6.2 ± 1.0 μm (n=65) for 

lrg-1(12-20) compared with 9.8 ± 2.1 μm for wild type (n=10) at 25°C. Thus, the 

function of the mutant LRG1 is already partially impaired at permissive temperature in 

lrg-1(12-20). 

 

 
Figure 3: Morphological characteristics of lrg-1(12-20) and wild type at permissive temperature. 
A) The number of branches within the apical 500 μm of 70 hyphal tips were analysed. On average 1.4 branches for wild type 
compared to 3.1 branches for lrg-1(12-20) were detected. B) The radial growth rates of the indicated strains were measured at 
permissive temperatures (n=5). 
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A rapid cessation of tip extension was observed within 30 min after transferring      

lrg-1(12-20) and pod-6(31-21) to 37°C, while the temperature shift had no effect on 

the morphology of wild type (Figure 4). This cessation of tip extension of lrg-1(12-20) 

and pod-6(31-21) was accompanied by the appearance of numerous subapical needle-

shaped branches of 10 μm in length in case of lrg-1(12-20) and of 20-50 μm in length 

for pod-6(31-21), which also stopped growth with a pointed tip. After prolonged 

incubation at restrictive temperature, the new branches as well as the primary hyphae 

began to swell up in a bulbous and apolar manner in both strains. Transfer of such a 

culture back to permissive temperature resulted in tips resuming normal growth rates, 

diameter and morphology within 30 min for lrg-1(12-20) and within a few minutes for 

pod-6(31-21). These experiments indicate that LRG1 and POD6 are both essential for 

tip extension, but are also required to inhibit excessive branch formation in subapical 

regions of the hyphae. 

The cot-1(1) mutation has been shown to result in increased cell-wall thickness at 

restrictive temperature (Collinge et al., 1978; Gorovits et al., 2000), suggesting a 

defect in cell-wall metabolism. Chitin is the primary component of fungal septae and 

of the inner layer of the hyphal cell wall, and is therefore accessible to the Calcofluor 

White staining primarily at the hyphal tips and at septae. To investigate chitin 

deposition in the lrg-1(12-20) and pod-6(31-21) mutants Calcofluor White staining 

was used (Figure 4). At permissive temperature, hyphal tips (and to a minor extent also 

septa) of all three mutants were strongly labelled as in the wild type. After a shift to 

37°C of the lrg-1(12-20), pod-6(31-21) and cot-1(1) mutants grown at permissive 

temperature, for 1 h in case of lrg-1(12-20) and for 5 h in case of pod-6(31-21) and 

cot-1(1), the mutants showed extensive labelling. This staining occurred in a patchy, 

subapical fashion throughout the hyphae at positions of newly emerging branches, 

including strong septal staining, and indicates excessive chitin deposition at sites of 

aberrant growth in all mutants. These similar cell wall alterations further suggest a 

functional connection between POD6 and COT1. Furthermore, the strong calcofluor 

staining at the tip observed in mutants grown at the permissive temperature is nearly 

absent when the strains are cultured at the restrictive temperature for the mentioned 

times, indicating decreased chitin synthesis at these tips, which are no longer 

elongating. Septation increases after shift of lrg-1(12-20) and pod-6(31-21) to 

restrictive temperature. The length of hyphal compartments of lrg-1(12-20) were 



3 Results  

36 

53.7 μm +/- 21.0 μm (n = 50; for wild type 148 +/- 58 μm) when the strain was grown 

at 25°C, while after the transfer to 37°C for 2.5 h the compartment length was reduced 

to 11,3 μm +/- 4,3 μm (n = 50).  

 

 
Figure 4: LRG1 and POD6 are necessary for coordination of tip growth, branching and septation in N. crassa.  
(A) Wild type N. crassa was grown at 25°C and shifted to 37°C for two hours. DIC images show the morphology of the hyphae. 
Calcofluor White (Cal) stained the apex of the tips and septae. (B) A colony of pod-6(31-21) was grown on agar at room 
temperature (25°C) over night and shifted for 10 h to 37°C as the restrictive temperature. The hyphae show a typical barb-wired 
phenotype with numerous subapical branches and tapered tips. (C) Calcofluor White stained primarily the hyphal apex of pod-
6(31-21) grown at permissive temperature but after shift to restrictive temperature for 5 h the strain showed an abnormal and 
patchy labelled staining, including strong septal staining throughout the hyphae. The tip staining disappears at restrictive 
temperature. Pictures adapted from (Seiler et al., 2006). (D) lrg-1(12-20) was grown on minimal media plates at 25°C and shifted 
to restrictive temperature for the indicated times to illustrate the cessation of tip extension with pointed, needle-like tips and the 
progressive hyperbranching of the mutant (phase contrast images, upper panel). Increased septation and abnormal chitin 
distribution was monitored by staining with Calcofluor White (lower panel). Scale bar for all pictures is 40 μm. 

 

3.2 pod-6 and lrg-1 deletion mutants show identical 

phenotypes like conditional mutants 

To examine the phenotype of pod-6 and lrg-1 deletion strains, mutants were 

constructed by using the „sheltered disruption“ method (Nargang et al., 1995), which 

takes advantage of the fact that N. crassa is a multinucleated cell (Springer and 

Yanofsky, 1989). A schematic presentation of the generation of the deletion cassette is 
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shown in Figure 5.  

 

 
Figure 5: Generation of the deletion cassettes for lrg-1 and pod-6.  
(A) The new resistance marker plasmid pNV1 was established for N. crassa. The A. nidulans gpdA promoter derived from pSM1 
was inserted into pBluescript SK+ together with a nourseothricin resistance (natR) gene amplicon derived from pAG25. (B) The 
resistance marker cassette and the flanking regions of lrg-1 or pod-6, respectively, were amplified and transformed into 
S. cerevisiae together with the linearized yeast vector pRS416 to obtain the deletion cassettes. (C) The deletion cassettes were 
transformed as two PCR amplicons that do not mediate the nourseothricin resistance on their own. Primers are indicated in red, 
homologous regions as primer extensions and restriction sites in black letters. 

 

The pod-6 and lrg-1 genes were deleted via homologous recombination, which was 

forced by transformation of a split marker cassette fused with the 5’ and 3’ regions of 

the respective genes. The newly generated nourseothricin resistance marker cassette 

(natR) mediates an antibiotic resistance up to 150 μg/ml for several independent 

ectopic integrations, compared to a maximal tolerance of 7.5 μg/ml for the 
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untransformed wild type. The resistance cassette was recombined in yeast with 

flanking regions of lrg-1 and pod-6 and then transformed as two overlapping PCR 

fragments, which were only able to mediate a resistance after recombination, in the 

N. crassa heterokaryotic strain HP1 (Nargang et al., 1995). As a result of the spilt 

marker cassette, the number of resistant transformants was reduced approximately 

100 fold when compared to transformations of the same amount of plasmid DNA. 20% 

and 40% of the occurring transformants of pod-6 and lrg-1, respectively, showed 

homologous integration events as proven by PCR and complementation analysis (data 

not shown). The use of the heterokaryotic strain HP1 allowed the generation of 

mutants in genes that are essential or important for growth. The resulting mutant 

harboured two kinds of nuclei, one with a null allele of pod-6 or lrg-1, respectively, 

and one with a wild type copy. These nuclei contain selectable markers that allowed 

shifting the nuclear ratio in the heterokaryotic cells. All obtained deletion strains 

contained the null allele in the benomyl resistant nucleus (71-18). Growth on media 

containing p-Fluoro-DL-phenylalanine (fpa) and histidine favoured the propagation of 

the wild type nucleus. In contrast, growth of heterokaryotic cells on media containing 

benomyl and pantothenic acid forced the knockout nucleus of pod-6 or lrg-1 to 

predominate, and thus resulted in the depletion of POD6 or LRG1, respectively (for 

details see section 2).  

The morphological defects observed under these conditions were indistinguishable 

from pod-6(31-21) or lrg-1(12-20), respectively, when these strains were germinated 

at restrictive temperature (Figure 6). These results indicate that pod-6(31-21) and    

lrg-1(12-20) are temperature-sensitive loss-of-function alleles of pod-6 and lrg-1, 

respectively. The phenotypes of the two mutants further indicate an essential role for 

POD6 and LRG1 during the extension of the hyphal tip and in controlling the number 

and position of subapical branches similar to what has been reported for COT1. In 

addition to these significant phenotypic similarities between the three mutants, there 

are morphological differences that distinguish lrg-1 from pod-6 and cot-1. The tips of 

lrg-1 mutant strains are much thinner and shorter as those of the cot-1 and pod-6 

mutants, which suggests distinct functions of LRG1 and COT1/POD6.  
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Figure 6: POD6 and LRG1 are essential for hyphal tip extension.  
(A) Comparison of pod-6(31-21) morphology (upper panel) with pod-6 + pod-6+ (lower panal). (B) Comparison of lrg-1(12-20) 
morphology (upper panel) with lrg-1 + lrg-1+ (lower panal).  
Conditional mutants were grown on minimal medium plates at 25°C and shifted to restrictive temperature for 10 h to illustrate the 
cessation of tip extension with pointed, needle-like tips and the progressive hyperbranching of the mutants. When germinated at 
restrictive temperature, the mutants exhibited a compact, hyperbranched colonial morphology. The growth of heterokaryotic 
deletion strains on the indicated media resulted in wild type or deletion phenotypes. In both cases the gene replacements occurred 
in the nucleus containing the benomyl (ben) and pantothenic acid (Pan) markers, and growth under conditions that select for this 
nucleus (presence of ben and Pan) resulted in morphological defects identical to those of the conditional mutants germinated at 
restrictive temperature for 15 h. Scale bar is 7.5 μm for all pictures. 

 

To facilitate localisation studies and biochemical approaches an antiserum against a 

POD6421–675::His6 fusion construct was generated and affinity-purified. The antibody 
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recognized a single polypeptide of ca. 100-kDa in wild type extracts (Figure 7 A). This 

signal was strongly reduced in extracts of the heterokaryotic pod-6 strain grown on 

benomyl and pantothenic acid, indicating that the generated anti-POD6 antibody is 

specific for POD6 (Figure 7 B).  

 

 
Figure 7: Affinity purified antibody specifically detects POD6.  
(A) POD6 is detected in N. crassa extract prepared from wild-type cells. (B) Cell extracts of the nuclear-ratio-modulated 
heterokaryotic pod-6 + pod-6+ strain grown in the indicated media were adjusted to equal amounts of soluble protein and probed 
with anti-POD6 antibody to determine the effect of the predominance of pod-6 nucleus in the presence of benomyl and 
pantothenic acid on POD6 abundance. The blot illustrates the specificity of the used antibody.  

 

3.3 COT1 and POD6 act together to regulate polar tip growth  

Germination of lrg-1(12-20) and pod-6(31-21) at restrictive temperature resulted in the 

formation of compact colonies with multiple 10 or 10-50 m long germ tubes with 

pointed tips, respectively. Furthermore, pod-6(31-21) produced secondary and tertiary 

branches (Figure 8 A). 

The defects of pod-6(31-21) were strikingly similar to the known morphological 

defects of cot-1(1) (Collinge et al., 1978; Collinge and Trinci, 1974; Terenzi and 

Reissig, 1967; Yarden et al., 1992), indicating that POD6 and COT1 may have related 

functions.  

To further analyze the functional relationship between COT1 and POD6, a               

cot-1(1);pod-6(31-21) double mutant was generated (Figure 8 B). The cot-1(1),      
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pod-6(31-21) and cot-1(1);pod-6(31-21) mutants showed identical phenotypes on 

minimal media agar plates at restrictive temperature. This provides further evidence of 

the involvement of cot-1 and pod-6 in a common genetic pathway. In contrast,         

cot-1(1);lrg-1(12-20) double mutants were synthetically lethal, suggesting the 

involvement in different pathways with a common function. 

 

 

Figure 8: Growth phenotypes of temperature sensitive mutants of cot-1, pod-6 and lrg-1 at restrictive temperatures. 
(A) Conidia of the indicated strains germinated on solid medium for 12 hours at 37°C. Scale bar is 7.5 μm. (B) A                           

cot-1(1);pod-6(31-21) double mutant displayed the same morphological defects as the two parental strains. All strains were grown 
on minimal media plates shifted to restrictive temperature for 5 h after growth at permissive temperature for 10 h. Pictures in (B) 
kindly provided by Stephan Seiler. 

 

An increased thickness of the cell wall and the accumulation of small vesicles was 

previously reported in ultra structural analyses of cot-1(1) transferred to restrictive 

conditions (Collinge et al., 1978; Gorovits et al., 2000). Therefore, it was tested 

whether the observed phenotypic similarities between cot-1(1) and pod-6(31-21) 

extend to the ultra structural level. Transmission electron microscopy was used to 

determine the ultra structure of wild type and pod-6(31-21) shifted to 37°C for 10 h. A 

strongly thickened cell wall and the presence of abundant small vesicles were observed 

(Figure 9).  
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Figure 9: The cell wall of POD6 is thickened.  
Electron microscopic images of the indicated strains grown at 25°C for 8 h and shifted to 37°C for 10 h reveal an increased 
thickness of the cell wall (CW) and the presence of abundant vesicles (V) in pod-6(31-21).  

 

The identical morphological defects, the common increase of cell wall thickness in 

electron microscopic images and the morphology and chitin distribution of the double 

mutant at restrictive temperature indicate the involvement of pod-6 and cot-1 in a 

common pathway. This might be a hint for a physical interaction of the proteins. 

A potential physical interaction between COT1 and POD6 was examined in a strain 

where a myc::cot-1 transgene was ectopically integrated (kindly provided by Carmit 

Ziv, The Hebrew University of Jerusalem, Rehovot 76100, Israel). S. Seiler performed 

immune precipitation experiments and localization studies using the purified -POD6 

antibody. These studies showed a physically association and a partial colocalization of 

POD6 and COT1. The localization was dependent on opposing microtubule-dependent 

motor proteins (Seiler et al., 2006).  
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3.4 The function of LRG1 in polar tip elongation 

3.4.1 LRG1 is a fungal specific protein containing LIM and GAP domains 

Examination of the 1279 amino-acid (aa) LRG1 encoding sequence revealed two 

interesting features. The N-terminal region from aa 1 – 533 is cysteine- and histidine-

rich and contains three LIM domains. These domains are tandem zinc-finger 

containing structures that act as versatile protein-protein interaction motifs (Bach, 

2000; Brown and Turner, 2004; Kadrmas and Beckerle, 2004; Schaller, 2001). Apart 

from the fungal LRG1 relatives, the LIM domains of LRG1 are most closely related to 

the focal adhesion organizing protein paxillin with an E-value of 2e-28 for Drosophila 

pseudoobscura paxillin. Furthermore, a RHO-GAP domain was found in the              

C-terminal part from aa 791-1279 of LRG1. An alignment of fungal LRG1 

homologues is shown in Figure 10. Due to a lack of experimental data, in silico 

predictions were used for the annotated sequences. The RHO-GAP domain (red box) 

as well as the LIM domains (green boxes) are highly conserved, while the amino acids 

between these parts are more divers, indicating that the conserved domains of LRG1 

may have important functions throughout the fungal kingdom. In case of the 

basidiomycete Coprinopsis cinerea okayama the first LIM domain is missing.   
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Figure 10: Sequence alignment of lrg-1 of various fungi. 
Alignment of several fungal LRG1 proteins was done with Multalin (http://bioinfo.genopole-toulouse.prd.fr/multalin/; Um: 
Ustilago maydis (UM05343.1, only first 1600 aa were used for the alignment); Nc: Neurospora crassa (sequenced in this study, 
NCU02689); MG: Magnaporthe grisea (MGG_04377); An: Aspergillus nidulans (AN7576.2); Af: Aspergillus fumigatus 
(AFUA_2G15050); Sp: Schizosaccharomyces pombe (Rga1, SPBC3F6); Ca: Candida albicans (Ca019_7489); Cn: Cryptococcus 
neoformans (CNF02710); Sc: Saccharomyces cerevisiae (YDL240W); Cc: Coprinopsis cinerea okayama (CC1G_05680). Highly 
similar sequences (>94% identity) are shown in red, related sequences (70% to 94% identity) are shown in blue and less related 
sequences are shown in black. Whereas the fungal specific C-terminal RHO-GAP domain (red boxes) is conserved throughout 
fungi, the N-terminal, LIM domain containing part (green boxes) is shortened in the basidiomycete Coprinopsis cinerea okayama. 
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3.4.2 LIM and GAP domains of LRG1 are both essential for growth and 

septation 

To analyze the function of the two LRG1 parts of N. crassa in more detail, constructs 

lacking either the LIM (LRG11-847) or the GAP motifs (LRG1781-1279) were generated 

and expressed in lrg-1(12-20). It was found, that both domains were necessary for the 

function of LRG1 (Figure 11). The importance of the GAP domain for the LRG1 

function in hyphal morphogenesis was further supported by a construct, in which the 

conserved lysine 910 in the full-length protein was substituted with alanine. For 

p190GAP this mutation has been shown to result in a non-functional GAP due to loss 

of binding to the corresponding Rho1 (Li et al., 1997). When this construct was either 

expressed in lrg-1(12-20) or in heterokaryotic lrg-1, no complementation of the 

mutant defects was detected (Figure 11). To confirm that the GAP activity is essential 

for the function of LRG1, an allele was generated, in which the conserved catalytic 

arginine residue 847 of the GAP was substituted by a lysine. This construct was 

expressed in lrg-1(12-20), but was not sufficient for complementation (Figure 11) and 

provided strong evidence for the importance of the GAP activity for the function of 

LRG1. Sequencing of lrg-1(12-20) revealed a single amino acid substitution of the 

conserved tyrosine 926 in the GAP domain by histidine (TAC to CAC), supporting 

that the GAP domain is essential for the cellular function of LRG1.  

Functions for the LIM domains were implicated by the failure of LRG1781-1279 to 

complement lrg-1(12-20). Therefore, a series of lrg-1 alleles were generated, in which 

4 of the 8 metal-ion-coordinating cysteines or histidines of each of the three LIM 

domains were substituted mainly by serines (as illustrated as yellow residues in Figure 

11 C; for LIM domain 1: C121S; C124S; C98L; C101S; for LIM domain 2: H185V; 

C188S; C162S; C165A; for LIM domain 3: C492S; C495S; C469G; C472S). Alanine 

and serine residues have been shown to mimic the behaviour of cysteines, but lack their 

zinc-coordinating activity, which has been shown to be essential for the function of LIM 

domains (Bombarda et al., 2002; Schmeichel and Beckerle, 1997).  
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Figure 11: The N-terminus and the C-terminal Rho-GAP domain are both required for cellular functions of LRG1.  
(A) Genomic organization of lrg-1 locus. The four exons are represented as white blocks and the three introns as black bars. The 
lrg-1 gene encodes for three LIM domains (brown) in the N-terminal half and one Rho-GAP domain (blue) in the C-terminal half 
of the protein. Green arrows represent expression constructs under the control of the endogenous promoter used for 
complementation experiments. The MYC9 tag of the tagged constructs was fused to the N-terminus of the LIM and the full length 
LRG1. The MYC9 tag was fused to the C-terminus of the GAP and the full-length LRG1 construct. 
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Figure 11 (continued) 
(B) Western blot of protein extracts from MYC9::LRG11-847 and LRG1781-1279::MYC9 strains probed with anti-MYC antibody 
confirmed the expression of the MYC9 tagged deletion constructs. (C) Illustration of point mutations brought in the full-length 
protein. Conserved residues in the predicted structural domains that are mutated in the corresponding complementation constructs 
are indicated in yellow (for detailed information on mutated residues see text). (D) Colony morphology of lrg-1(12-20) 
transformed with the indicated constructs. Transformants were grown at 37°C to determine the complementation capability of the 
respective construct. Transformations with the corresponding untagged constructs resulted in the same phenotype as for the tagged 
constructs (not shown). Scale bar is 200 μm. (E) Quantification of growth rates of the indicated strains (standard deviation is 
indicated, n=3). LRG1*: construct harbouring multiple LIM point mutations (see text for details). 

 

Surprisingly, when the three constructs, each of which was defective in one of the 

three LIM domains, were tested for their ability to restore growth, they did lead to full 

phenotypic complementation of lrg-1(12-20). Also, when the three mutated LIM 

domains were combined to generate the triple LIM domain mutant LRG1*, no 

abnormal growth behaviour of lrg-1(12-20) (Figure 11 D, E) or homocaryotic lrg-1 

(data not shown) transformants were observed, and overall radial growth rates on agar 

plates were comparable to wild type (LRG1: 1,1 +/- 0,1 mm/h; LRG1*: 1,0+/- 

0,4 mm/h; n = 3). A higher variability of extension rates of individual hyphal tips was 

noted for LRG1* grown on microscopic slides (9,2 +/- 8,2 μm/min; n = 50) in 

comparison to LRG1 (6,3 +/- 5,3 μm/min; n = 50), suggesting that the dysfunctional 

LIM domains impair proper tip extension. Nevertheless, the placement of septae was 

not altered in LRG1*. The distance of the hyphal tip to the first septum was 224 +/- 

41,9 μm in LRG1 and 225,4 +/- 55,8 μm for LRG1* (n=30), while the distance 

between subapical septae was 84,9 +/- 30,9 μm in LRG1 compared to 92,5 +/- 32,4 μm 

in LRG1* (n=100), indicating that the LIM domains are dispensable for normal 

growth, in contrast to the entire N-terminus of LRG1. 

 

3.4.3 The LIM domains are required for localizing LRG1 to sites of 

growth 

To determine the cellular distribution of LRG1, N-terminal and C-terminal myc9-

tagged versions of lrg-1 were generated, which both complemented the lrg-1(12-20) 

growth defects. Immunolocalization experiments using anti-MYC monoclonal 

antibodies revealed a punctated distribution of MYC9::LRG1 throughout the cell, 

which was enriched at hyphal tips and along septae (Figure 12 A, data for septae not 

shown).  

This localization was in line with a function of LRG1 at growing tips and was also 

observed, when the generated and purified antibody against LRG1 was used to detect 
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the endogenous LRG1 in wild type hyphae (data not shown). To determine which 

region of LRG1 is responsible for its tip-enriched localization, the cellular distribution 

of MYC9::LRG11-847 and LRG1781-1279::MYC9 was determined in the wild type 

background. While LRG1781-1279::MYC9 aberrantly localized in a cortical fashion 

throughout the whole hypha and along septae, the MYC9::LRG11- 847 distribution was 

similar to the localization of LRG1, suggesting that the N-terminal part of LRG1 may 

be involved in the localization of LRG1.  

For a better resolution of the dynamics of LRG1, N-terminal GFP fusion constructs 

with LRG1 and with LRG1* (containing the three mutated LIM domains) were 

generated. Both constructs were inserted into lrg-1 and complemented the growth 

defect. ApoTome based fluorescence microscopy confirmed the apical vesicular-

reticulate localization of GFP::LRG1 and resulted in a more diffuse localization of 

GFP::LRG1* lacking the prominent streaks (Figure 12 B). In addition to this tip-

enriched vesicular-reticulate localization, a GFP::LRG1 cap along the apical cortex 

and strong staining around the septal pore was frequently observed (Figure 12 C). In 

contrast, GFP::LRG1* was distributed in a more diffuse manner throughout the hypha 

with only a weak accumulation at the hyphal apex and no localization at septal pores. 

Thus, both the immunolocalization data and the GFP-fusion proteins indicated a 

function of the LIM domains in localizing the protein with its GAP domain to sites of 

active growth in the apical region and along septae. To test whether the GFP::LRG1 

stained streaks may be any membranous compartments of the cell, colocalization 

experiments with the lipophilic life dyes ER-Tracker (staining the endoplasmatic 

reticulum), FM4-64 (staining endosomes) and Mito-Tracker (staining mitochondria) 

were performed. In all three cases, no obvious colocalisation was observed (data not 

shown).  
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Figure 12: LRG1 localization to sites of growth at the hyphal tip and the septum is dependent on functional LIM domains.  
(A) Immunolocalization of the indicated strains using anti-MYC antibodies. MYC9::LRG1 and MYC9::LRG11-847 localized in 
vesicular-reticulate structures that are enriched at hyphal tips, while LRG1781-1279::MYC9 miss-localized at the hyphal cortex all 
along the hypha. Scale bar is 10 μm. (B) Localization data generated in the ApoTome modus confirmed the apical vesicular-
reticulate localization of GFP::LRG1 and showed a more diffuse localization of GFP::LRG1* lacking the prominent streaks. (C) 
Standard fluorescence microscopy was used to deternine the localization of the indicated GFP tagged proteins. GFP::LRG1 
localized as a crescent at growing hyphal tips and at septae by (left panel), while GFP::LRG1* containing the three mutated LIM 
domains did not predominantly localize at hyphal tips and septae (right panel). Scale bar for (B) and (C) is 5μm. 

 

To characterize the dynamics of GFP::LRG1 in more detail, I first asked, if the 

localization of the apical cap is growth-dependent and analysed 100 randomly chosen 

tips of the GFP::LRG1 expressing strain (Figure 13 A). 70% grew at rates of 

 0.2 μm/sec and displayed an apical cap, while 2% grew at these rates and did not 

show a cap. In contrast, 10% of the hyphae grew at rates of < 0.2 μm/sec and displayed 

an apical cap, while 18% grew at this rate and did not show a cap. Thus, the 

localization of GFP::LRG1 as a cap-like structure at the hyphal tip was dependent on 

active growth. A different behaviour was observed, when the localization of 

GFP::LRG1* was quantified. Only 13% of the hyphal tips grew fast and 2% grew slow 

and displayed a cap, while 62% and 23%, respectively, did not, confirming that the 

LIM domains are responsible for localizing LRG1 to the growing hyphal apex. During 

this analysis a correlation between the size of the apical cap and the growth rate was 

noted (Figure 13 B).  

GFP::LRG1 accumulated primarily along the central apical cortex in slow growing 
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hyphae, while in fast growing tips, an extended cap structure was visible with the 

highest GFP intensity frequently accumulating as a subapical ring approximately 2 μm 

behind the apex. When the length of the apical cortex GFP::LRG1 was quantified 

relative to the growth rate of the tip, a positive correlation (R2 = 0,6204) between 

growth rate and size of the apical cap was observed (Figure 13 B). 

Septum formation requires the formation of actin rings as an initial step prior to cross 

wall formation. Later, active glucan and chitin synthesis (visualized by Calcofluor 

White staining) led to the completion of septation (Harris, 2001; Rasmussen and Glass, 

2005, 2007). For the understanding of LRG1’s function during septum formation, the 

dynamics of GFP::LRG1 in subapical regions was analysed (Figure 14 C). Calcofluor 

White positive cross walls appeared prior to the accumulation of weak GFP::LRG1 

dots along the cortical region of a forming septum. These dots merged into a septal 

plate, resulting in weak labeling of the whole septum after approximately 3 min. This 

diffuse septal localization then disappeared for about 10 min before GFP::LRG1 

strongly accumulated in the central region around the septal pore. This final 

localization remained permanent and was visible at most older septae. When growing 

hyphae were incubated with 1 μM latrunculin A (Figure 14 D), the apical cap 

disappeared within 1 min, prior to any morphological change that was induced by the 

actin-depolymerizing agent after about 5 min. Nevertheless, the septal pore-associated 

localization of GFP::LRG1 remained unaffected by this treatment, indicating that this 

terminal association of LRG1 with the central region of the septum is independent of a 

functional actin cytoskeleton. To test, whether the localization of LRG1 depends of on 

a functional microtubule cytoskeleton, the GFP::LRG1 strain was incubated with 

4 μg/ml nocodazole or 10 μg/ml benomyl (both drugs are microtubule depolymerizing 

agents). For both treatments, the apical GFP::LRG1 cap persisted as long as growth 

was observed, indicating that a functional microtubule cytoskeleton is dispensable for 

LRG1’s localization (data not shown). However, the size of the apical GFP::LRG1 cap 

was reduced in nocodazole treated cells when compared to untreated tips growing at 

comparable rates (Figure 13 E), suggesting that a functional microtubule cytoskeleton 

may be necessary for stable tip localisation of LRG1. 
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Figure 13: The localization of GFP::LRG1 is dependent on active growth and functional LIM domains.  
(A) The dependence of the presence of an apical GFP::LRG1 or GFP::LRG1* cap from the growth rate of 100 randomly chosen 
hyphal tips was assayed. (B) The cap size and growth rate were determined by measurement of the distance of the apical cortex of 
hyphal tips between two images that were taken with a 20 s time-lapse automatisation. The size of the apical LRG1 cap correlated 
with the growth rate of the tip. The growth rate was plotted against cap length. Examples of slow, medium and fast growing tips 
are shown in the upper panel. Scale bar is 5 μm. (C) To determine the septum localization, images of a few time points were taken. 
GFP staining was analysed for a short time every minute to reduce bleaching. When a change in GFP localization was visible, 
pictures were taken. The absolute time points of the GFP images were used for the calculation of relative time points. The 
GFP::LRG1 localization at the forming septum occurs in two phases. Approximately 1.5 min after the appearance of Calcofluor 
White positive septae (a, white arrows) GFP::LRG1 began to localize along the septal plate initially as punctate specs (b; red 
arrow) that soon merged into a diffuse plate (c; red arrow heads). This septal GFP::LRG1 localization disappeared then for ca. 
10 min (d; yellow arrow), before it strongly accumulated at the central part of the septum along the septal pore (e; white arrow 
heads). Examples of the stages are shown in the left panel for better visualisation. Scale bar is 5 μm. (D) Treatment of the 
GFP::LRG1 expressing strain with 1 μM latrunculin A affected the localization of GFP::LRG1 at the hyphal apex within 30 s 
(upper panel). This was prior to any morphological change, which occurred within 5 min (DIC image). The treatment had no 
influence on the terminal localization of GFP::LRG1 along the septal pore (lower panel). Scale bar is 5 μm. (E) 60 μl of 6 μM 
nocodazole were added to hyphae grown on agar blocks of approximately 30 μl volume. 2 min later still growing tips were 
analysed as in (B). For growth rates up to 0.15 μm/s the cap size of GFP::LRG1 was plotted against the growth rate for untreaded 
and nocodazole treaded cells. The average cap size at comparable growth rates is reduced. 
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3.4.4 LRG1 is a RHO1 specific GAP  

To determine, which of the six RHO GTPases encoded in the N. crassa genome are 

regulated by the Rho-GAP domain of LRG1, the wild type forms of all RHO GTPases 

were ectopically expressed in lrg-1(12-20) under the control of a modified, 

constitutively active cpc-1 promoter. Only RHO1 was capable of partially 

complementing the lrg-1(12-20) growth defect (Figure 14 A). Also dominant active 

(G15V) as well as dominant negative (E41I) RHO1 alleles were likewise able to 

initially overcome the lrg-1(12-20) dependent growth defect (Figure 14 A). It should 

be noted that all RHO1 transformants died within 2 days with swollen and lysed 

hyphae (Figure 14 B). This lethal phenotype was also observed when the three RHO1 

alleles were overexpressed in wild type and is probably the result of interfering with 

endogenous RHO1 function.  

To investigate the activity of LRG1 cDNAs of the six Rho genes encoded in the 

genome of N. crassa were amplified. The sequencing of the cDNA amplicons differed 

from the in silico predictions for rho-1, rac and cdc42. The obtained exon-intron 

boundaries are shown in Table 5.  

 

Table 5: Exon-intron boundaries for RHO1, RAC and CDC42 coding regions. 

Rho protein/ 

NCU number 

Chromosom/ 

Strand 
Exon number Start End Size (bp) 

1 32847 32777 70 
2 32640 32613 27 
3 32348 32151 197 
4 32083 31945 138 

RHO1/NCU01484.3 II / (-) 

5 31843 31688 155 

1 1211668 1211636 32 
2 1211476 1211444 32 
3 1211367 1211308 59 
4 1211226 1211046 180 
5 1210971 1210739 232 

RAC/NCU02160.3 I / (-) 

6 1210659 1210596 63 

1 192396 192377 19 
2 192182 192063 119 
3 191926 191548 378 

CDC42/NCU06454.3 III / (-) 

4 191475 191404 71 

 

The coding sequences were first expressed from pPicholi-C derived plasmids in Pichia 

pastoris. This led to low expression and inefficient purification of RHO proteins, 

possibly due to toxic effects. Also bacterial expressed tagged N. crassa Rho proteins 
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were expressed in low amounts and purified in low abundance (compared to 

purification of human forms). Maltose binding protein (MBP) (data not shown) or 

glutathione S-transferase (GST) fusions (Figure 14 C) of the six Rho GTPases were 

purified to an extent that was sufficient for in vitro activity studies. 

Next, in vitro GTPase assays were performed with the six bacterially expressed 

His6::GST::Rho fusion proteins (Figure 14 D, E). All G-proteins had significant and 

unexpectedly high intrinsic GTP-GDP turnover rates, indicating that the enzymes were 

active. 

 

 

Figure 14: LRG1 is a specific GTPase activating protein for Rho1.  
(A) Overexpression of wild type as well as dominant-active (Rho1G15V) and dominant-negative (Rho1E41I) RHO1 alleles, but not of 
any of the other Rho proteins was sufficient to temporarily overcome the morphological defect of the lrg-1(12-20) mutant at 
restrictive temperature. (B) Morphology is shown of wild type cells (upper panel) or lrg-1(12-20) cells (lower panel) transformed 
with the overexpression constructs of the indicated RHO1 alleles. The cells died within two days. Scale bar is 10 μm.                 
(C) Coomassie staining of bacterially expressed and affinity-purified GST::RHO proteins and of the GST tagged Rho-GAP 
domain used for the in vitro GAP assays (D) Intrinsic and GST::LRG1650-1035 stimulated GTPase activites of the six Rho proteins 
indicated that LRG1 is a RHO1 specific GAP. (E) Kinetics of in vitro RHO1 GTPase activity in the presence and absence of 
GST::LRG1650-1035. 

 

The addition of GST:: LRG1650-1035 , the GAP domain of LRG1, stimulated only the 

GTPase activity of RHO1 (approximatly ten fold). None of the other GTPases caused 

any significant change in RHO activity (a significant GTPase stimulation means at 
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least two fold higher activity). These data are consistent with the genetic analysis and 

identify LRG1 as a RHO1 specific GAP. 

 

3.4.5 LRG1 regulates several output pathways of RHO1 

RHO1 is a bona fide regulatory subunit of the cell wall enzyme 1,3-glucan synthase. 

Furthermore, it activates PKC and subsequently the cell wall integrity MAP kinase 

pathway, which in turn regulates the transcription of several cell wall specific 

enzymes. In addition, RHO1 regulates the actin cytoskeleton by directly activating the 

formin BNI1 (Beauvais et al., 2001; Evangelista et al., 2003; Levin, 2005; Sharpless and 

Harris, 2002). Therefore, the impact of defective LRG1 function on each of these 

signalling pathways was tested.  

The compensation of the lrg-1(12-20) growth defect by the osmotic stabilization of the 

medium with 1.75 M sorbitol or 1 M NaCl (Figure 15 A) and the abnormal chitin 

distribution detected by Calcofluor White staining (Figure 4 D) indicated an altered 

cell wall structure.  

Predicted genetic interactions between lrg-1 and gs-1 were analysed due to the 

involvement of RHO1 as activating regulatory subunit of the glucan synthase (GS). 

The mutant screen in N. crassa had resulted in the isolation of a temperature sensitive 

glucan synthase mutant strain called gs-1(8-6) (Seiler and Plamann, 2003). A             

lrg-1(12-20);gs-1(8-6) double mutant displayed strong synthetic defects (Figure 15 B). 

Under restrictive conditions, gs-1(8-6) generated growth-inhibited hyperbranched 

hyphae that were still capable of slow apical growth (Seiler and Plamann, 2003).       

lrg-1(12-20);gs-1(8-6) generated in contrast apolarly growing spheres when 

germinated at 37°C. When the double mutant was germinated at permissive conditions 

and transferred to restrictive temperature, chains of spherical growing cells were 

generated within 10 h. The growth rate of gs-1(8-6), lrg-1(12-20) at permissive or 

semi-restrictive temperature was reduced by 25% and 41%, respectively, when 

compared to lrg-1(12-20) as the slower growing of the two parental strains. 

Furthermore, these strains were less sensitive to Caspofungin (Figure 15 C), a specific 

inhibitor of fungal 1,3-glucan synthesis (Denning, 2003), indicating increased      

1,3-glucan synthase activity in lrg-1(12-20), gs-1(8-6) and lrg-1(12-20);gs-1(8-6). 

Thus, hyperactive RHO1 in lrg-1(12-20) is impairing the cell wall organization of      
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N. crassa by increasing 1,3-glucan formation, and the lrg-1(12-20);gs-1(12-20) 

double mutant defect is likely due to combined GS1 hyperactivities of the two strains.  

 

 
Figure 15: LRG1 affects GS1-dependent cell wall functions.  
(A) Osmotic stabilization of lrg-1(12-20) on medium containing NaCl or sorbitol results at restrictive temperature in a suppression 
of the growth defect. Scale bar is 200 m. (B) The indicated temperature-sensitive strains were grown at permissive 
temperature and shifted to 37°C for 10 h (upper panel) or germinated at restrictive temperature for 15 h (lower panel). The 
double mutant shows strong synthetic defects. Scale bar is 40 m. (C) lrg-1(12-20), gs-1(8-6) and lrg-1(12-20);gs-1(8-6) are 
hyposensitive against the 1,3-glucan synthase inhibitor caspofungin.  

 

The abnormal chitin distribution observed in lrg-1(12-20) (Figure 4 D) could be a 

result of increased activity of the N. crassa PKC/MAK1 cell integrity pathway, which 

would subsequently result in the altered expression of additional cell wall enzymes. 

Therefore, the activity level of PKC was altered in the lrg-1 mutant and in wild type. A 

partial suppression of the lrg-1(12-20) growth defect on media supplemented with 

1 μM staurosporine, a protein kinase inhibitor with highest specificity towards PKC 

was observed (Figure 16 A). Nevertheless, staurosporine is also inhibiting protein 

kinase A (although with a about ten fold lower affinity). Therefore, the impact of 

50 μM KT5720, a PKA specific inhibitor, was tested on the growth behaviour of      

lrg-1(12-20), but no morphological changes were observed, suggesting that PKC is 

hyperactive in lrg-1(12-20). This was further supported by growth tests on media 

supplemented with 60 nM cercosporamide, a new and highly specific inhibitor for 

PKC (Sussman et al., 2004).  

Next, phospho-specific antibodies against activated ERK-type MAPKs were used to 
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determine the phosphorylation of the cell integrity MAP kinase MAK1, which 

correlates with its activity. No obvious differences were found in MAK1 

phosphorylation pattern in wild type extracts from cultures grown at 25°C and 37°C. 

Stressing these cells by a temperature shift from 25°C to 37°C for 20 min resulted in 

activation of cell integrity signalling and increased MAK1 phosphorylation (Figure 

16 B). In contrast, the MAK1 phosphorylation pattern in lrg-1(12-20) shifted to 

restrictive temperature for 20 min did not result in heat stress-induced phosphorylation 

of MAK1, suggesting that MAK1 regulation may be affected in lrg-1(12-20). 

However, an increase in MAK1 activity levels would be predicted for increased RHO1 

– MAK1 signalling. No increase in MAK1 phosphorylation levels were detected in 

lrg-1(12-20) after prolonged temperature shift (Figure 16 B) or in lrg-1 germinated 

on benomyl and panthotenic acid (data not shown). To test, whether the capacity of the 

MAK1 pathway to respond to stress signals is affected in lrg-1(12-20) in a general 

manner, wild type and lrg-1(12-20) were grown at 37°C and stressed by the addition of 

7 mM H2O2 for 20 min (Figure 16 C). Both strains displayed identical activation 

patterns as detected by MAK1 phosphorylation, indicating that the response capacity 

of MAK1 is not affected in lrg-1(12-20). Taken together, these data indicate that 

RHO1 – PKC signalling is increased in lrg-1(12-20), but also suggest that the 

downstream MAK1 MAP kinase pathway is only affected to a minor extent. 

An altered organization of the actin cytoskeleton in lrg-1(12-20) became evident by 

the hypersensitivity of the mutant to the actin depolymerising drug latrunculin A 

(Figure 16 D). BNI1 is the exclusive formin encoded from the N. crassa genome and 

contains a C-terminal effector domain and a N-terminal GTPase-binding domain 

(GBD) that mediates binding to RHO1. To further support the impact of lrg-1(12-20) 

on RHO1 dependent actin polymerization, the N-terminal half (amino acids 1-824) of 

BNI1 was overexpressed in lrg-1(12-20) (Figure 16 E). This construct has been shown 

to bind to activated RHO1 and is acting in a dominant-negative fashion by quenching 

activated RHO1 (Alberts, 2001; Palazzo et al., 2001). 

The overexpression of BNI11-824 resulted in partial suppression of the lrg-1(12-20) 

defects as detected by the formation of up to 0.5 cm large colonies at restrictive 

temperatures in 2 days, compared to lrg-1(12-20) transformed with the hygromycin 

resistance marker that reached a maximal colony diameter of 0.1 cm. A microscopic 
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analysis of these colonies revealed, that the leading hyphae generated dome shaped 

tips. The tips were capable of apical extension, although hyperbranching still occurred. 

 

 

Figure 16: The MAK1 cell integrity pathway and formin regulation are affected in lrg-1 mutants.  
(A) The indicated strains were grown either for 40 h at 32°C on minimal media (MM) plates or MM plated supplemented with the 
kinase inhibitors staurosporine or KT5720 or for 6 days on plates supplemented with cercosporamide. The growth defects of  

lrg-1(12-20) were suppressed by staurosporine and cercosporamide, but not by KT5720. (B) Total soluble protein was 
extracted from wild type and lrg-1(12-20) shifted to 37°C for the indicated times. The blot was probed with anti-phospho-ERK 

(anti-P-ERK) antibody to detect activated MAK1 (upper panel). A replicate was probed with anti-ERK to confirm equal loading 

(lower panel). wild type but not lrg-1(12-20) showed stress induced MAK1 activation after 20 min at 37°C. (C) MAK1 
phosphorylation induced by the addition of 7 mM H2O2 for 20 min to wild type and lrg-1(12-20) indicate that the response 

capacity of the MAK1 pathway is not affected in lrg-1(12-20). (D) lrg-1(12-20) is hypersensitive against the actin 
depolymerising drug latrunculin A. (E) The increased colony size of BNI11-824 transformants of lrg-1(12-20) grown at 37°C for 
2 days on agar plates (upper panel; Scale bar is 0.5 cm) and the enhanced tip extension and reduced hyperbranching of the strains 
(lower panel; Scale bar is 30 m) indicate a partial rescue of lrg-1(12-20) by overexpression of BNI11-824. 

 

3.5 LRG1 acts parallel with the Ndr kinase COT1 in a motor 

protein dependent manner  

The morphological defects of lrg-1(12-20) and of lrg-1 were strikingly similar to 

those of the Ndr kinase mutant cot-1 and its upstream regulating kinase pod-6 (Seiler 

et al., 2006; Yarden et al., 1992) and allowed to hypothesize that LRG1 and the COT1 

and POD6 including pathway may have related functions. The common defects of 
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these mutants are a block in apical tip extension and the generation pointed/needle-like 

tips, the induction of multiple subapical branches, excessive and mislocalized chitin 

distribution and a highly thickened cell wall (see section 3.1). In contrast to a            

cot-1(1);pod-6(31-21) double mutant, which displayed defects identical to the two 

parental strains, cot-1(1);lrg-1(12-20) or pod-6(31-21);lrg-1(12-20) double mutants 

were synthetically lethal (Figure 17 A and data not shown). Double mutant ascospores 

of both, pod-6; lrg-1 or cot-1;lrg-1, which were germinated at permissive conditions, 

generated polar germ tubes, but grew in a compact and highly vacuolated manner with 

very slow tip extension rates and frequent lysis of hyphal tips or subapical regions. 

Germination at 37°C resulted in apolar germination and death of the double mutants, 

indicating two parallel, a COT1/POD6- and an LRG1-dependent, pathways for apical 

tip extension.  

Mutations in the dynein/dynactin complex (called ropy for their cork-screw growth 

phenotype) partially suppressed the cot-1 and pod-6 defects by a reduced retrograde 

transport rate of vesicles and subsequent accumulation of kinase in apical areas (Bruno 

et al., 1996; Gorovits and Yarden, 2003; Seiler et al., 2006). Given the genetic 

connection between lrg-1 and cot-1, both mutants may also share the same 

suppressors. Thus, growth rates of various ropy mutants as single as well as double 

mutants in combination with lrg-1(12-20) and cot-1(1) grown at restrictive 

temperatures were compared, and it was found that the dynein/dynactin mutations 

partially suppressed the lrg-1(12-20) phenotype in a manner identical to cot-1(1) 

(Figure 17 B). In contrast, gul-1, a mutant that had been implicated in phosphatase-

associated, COT1-antagonizing functions (Seiler et al., 2006; Terenzi and Reissig, 

1967), was suppressing only cot-1(1) and pod-6(31-21), but not lrg-1(12-20). Next a 

genetic connection between lrg-1(12-20) and nkin, which encodes for the microtubule 

plus-end directed motor protein conventional kinesin was investigated. Kinesin has 

been shown to counteract dynein’s retrograde transport activity. It has also been 

implicated in the localization of COT1 and POD6 (Seiler et al., 1999; Seiler et al., 

2006; Zhang et al., 2003) and may be involved in distribution of regulatory 

components. The growth rate of a lrg-1(12-20);nkinRIP double mutant at semi-

restrictive temperature was reduced by 42% when compared to lrg-1(12-20) as the 

slower growing of the two parental strains, indicating a synthetic interaction between 

lrg-1 and nkin. This suggests that both opposing microtubule-dependent motor proteins 



3 Results  

60 

may be involved in localizing LRG1 similar to what has been reported for COT1 and 

POD6 (Seiler et al., 2006).  

Therefore, the localization of GFP-tagged LRG1 in these mutant backgrounds was 

determined. As shown previously (Figure 13 A), the majority of slow growing hyphal 

tips of wild type displayed no GFP::LRG1 cap. The growth rates of the two motor 

mutants is about 20% of wild type (Seiler et al., 1997; Seiler et al., 1999), and thus, a 

visible cap should be rarely visible, if the GFP::LRG1 localization is independent of 

the two motors. Therefore, the growth rate of hyphal tips which showed an apical 

GFP::LRG1 cap in these backgrounds was determined. 22% of wild type, while 81% 

of dynein heavy chain mutant (ro-1) tips with growth rates <0,05 μm/s displayed an 

apical GFP::LRG1 cap and the number of GFP::LRG1 caps at these slow growth rates 

was reduced to 8% in the nkin background (Figure 17 C). Thus, defective retrograde 

transport in the dynein heavy chain mutant resulted in increased apical localization of 

GFP::LRG1, while reduced forward directed transport inhibited the apical 

accumulation of GFP::LRG1, indicating that the apical localization of LRG1 is 

dependent on opposing microtubule-dependent motor proteins.  

 

 
Figure 17: LRG1 acts in a pathway parallel to the Ndr kinase COT1 and is localized in a motor protein dependent manner 
 (A) lrg-1(12-20) and cot-1(1) displayed similar defects with tip extension terminating with 2-10 and 10-30 μm long pointed tips, 
respectively, when shifted from permissive to restrictive conditions for 12 h (upper panel) or when germinated at 37°C for 15 h 
(middle panel). Double mutant ascospores germinated at 20°C produced compact, highly vacuolated and slow growing hyphae. 
Germination at 37°C resulted in apolar germination and death of cot-1(1);lrg-1(12-20) ascospores. (lower panel). Scale bar is 
40 μm. (B) cot-1(1), lrg-1(12-20) and the respective double mutants with components defective in the phosphatase associated 
protein gul-1 or in the dynein/dynactin subunits ro-1, ro-3, and ro-10 were cultivated for 3 days at 37°C.  
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Figure 17 (continued) 
The increased colony diameter of lrg-1(12-20);ro-1/-3/-10 mutants compared to lrg-1(12-20) indicates suppression of the GAP 
defect by loss of dynein/dynactin function. (C) Apical GFP::LRG1 caps were detected in 78% of wild type tips with growth rates 
of >0,05 μm/s. This rate of GFP::LRG1 caps increased in mutants defective in the anterograde directed motor protein nkin to 91% 
and decreased to 19% in the mutants defective in the retrograde directed motor protein ro-1. 

 

These results may be explained by a connection between COT1 and RHO1 signalling. 

Therefore, the RHO1 effector pathways that are affected by LRG1 were analysed in 

cot-1(1). A highly thickened cell wall of cot-1(1) grown at 37°C was described in 

electron microscopic sections (Collinge et al., 1978; Gorovits et al., 2000) and is also 

found in pod-6(31-21) (Figure 9). In addition, the Calcofluor White label in 

temperature shifted cot-1 hyphae was similar to the excessive chitin distribution at 

sites of aberrant growth in lrg-1(12-20), which already indicated a defect in cell wall 

organization. However, no synthetic interaction in a cot-1(1);gs-1(8-6) double mutant 

was observed (Figure 18 A) and growth characteristics of cot-1(1) were identical to 

wild type on media supplemented with caspofungin (Figure 18 B). Thus, these data 

suggest an effect of COT1 on the cell wall, but no direct regulation of GS1 by COT1.  

Therefore, the activity of the cell wall integrity MAP kinase pathway was analysed. 

Phospho-specific antibodies detected induced MAK1 phosphorylation after 10 h at 

restrictive conditions (Figure 18 C). Thus, in contrast to lrg-1, the MAK1 levels in  

cot-1 mutants are stably induced. While the phenotype of lrg-1 was suppressed by the 

inhibition of PKC, no effect of the PKC inhibitors staurosporine and cercosporamide 

on the growth of cot-1 was observed, suggesting that the upper part of the cell integrity 

signalling pathway is not affected by cot-1 (Figure 18 D), and this may indicate an 

indirect effect of COT1 on MAK1. Furthermore, cot-1(1) grew like wild type on 

medium supplemented with 0.5 μM latrunculin A (Figure 18 E), and overexpression of 

BNI11-824 did not alter the cot-1(1) defects (Figure 18 F), demonstrating that COT1 is 

not affecting the actin organizing function of RHO1 in a manner similar to LRG1. 

Nevertheless, when the FH2 domain containing effector part of BNI1 (aa 1029-1817), 

which is predicted to regulate actin polymerisation in a dominant-active manner 

(Moseley et al., 2004), was overexpressed, this resulted in a synthetic death phenotype 

of both lrg-1(12-20) and cot-1(1) (Figure 18 G). With bni-11029-1817 transformed wild 

type and mutant strains were viable and generated normal growing colonies at 

permissive temperature. In contrast to wild type;bni-11029-1817, which was not affected 

by a shift to 37°C, growth of lrg-1(12-20);bni-11029-1817 and of cot-1(1);bni-11029-1817 was 
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terminated within 30 min after the transfer with tip-arrested, non-hyperbranched and 

vacuolated hyphae. Further, these strains were unable to resume growth at 25°C. Thus, 

an effect of COT1 on the organization of the actin cytoskeleton is likely, but is distinct 

from the LRG1- RHO1 pathway. Taken together, the different effects observed for  

lrg-1(12-20) and cot-1(1) on each of the three analysed RHO1-dependent effector 

pathways indicate that COT1 signalling does not affect Rho1 activity. 

 

 

Figure 18: The Ndr kinase COT1 functions independently of RHO1 signaling. 
 (A) Double mutants of cot-1(1) and gs-1(8-6) did not display synthetic defects after shift to restrictive temperatures 
(upper panel) or when germinated under restrictive conditions (lower panel). Scale bar is 40 m. (B) The growth behaviour of 
cot-1(1) is similiar to wild type on media supplemented with 0.5 μM caspofungin. (C) Total soluble protein of the indicated 

strains grown at 25°C or shifted to 37°C for 10 h was extracted. The blot was probed with an anti-phospho-ERK antibody, 

detecting increased MAK1 phosphorylation in cot-1(1) grown at restrictive conditions (upper panel). To confirm equal loading 
the blot was reprobed with anti-tubulin antibody (lower panel). (D) Staurosporine and cercosporamide partially suppress the tip 
extension defects of lrg-1(12-20), but not those of cot-1(1). (E) In contrast to lrg-1(12-20), cot-1(1) is not hypersensitive to the 
addition of latrunculin A to the medium. (F) Over expression of BNI11-824 in cot-1(1) did not suppress its tip extension and 
hyperbranching defects. (G) Overexpression of BNI1

1029-18 17
 in lrg-1(12-20) and cot-1(1) was lethal at restrictive temperatures. 

Growth of lrg-1(12-20);bni-1
102 9-181 7

 and of cot-1(1);bni- 1
102 9-18 17

 was blocked within 30 min after shift to 37°C, and the 

strains terminated growth with tip-arrested, non-hyperbranched and vacuolated hyphae (upper panel), which were unable to 
resume growth at 25°C (lower panel). Scale bar in (F) and (G) is 30 m. 
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4 Discussion 

4.1 Mutations in lrg-1 and pod-6 affect hyphal tip elongation, 

septation and determination of branching in N. crassa 

Cellular polarity is a fundamental property of every cell, and fungal hyphae are 

amongst the most highly polarized cells known in nature. In a visual screen several 

genes have been isolated, which encode components that are essential for apical tip 

extension and for restriction of excessive branch formation in subapical regions of the 

hypha (Seiler and Plamann, 2003). In this study, the functions of LRG1, COT1 and 

POD6 during polar tip extension were analysed in detail. 

Morphological characterization of temperature sensitive and deletion mutants revealed 

a major defect of polar tip extension along with altered branching frequencies and 

increased septation when these strains were compared to wild type. Furthermore, all 

mutant strains are impaired in cell wall functions as determined by abnormal 

Calcofluor White distribution, by increased cell wall thickness in transmission electron 

microscopic sections for pod-6(31-21) and as reported before for cot-1(1) (Gorovits et 

al., 2000) and by their growth behaviour on medium containing cell wall drugs lysing 

enzymes or the 1,3-glucan synthase inhibitor caspofungin.  

 

4.2 The germinal center kinase POD6 acts together with COT1 

in polar tip extension  

The morphological defects of both cot-1(1) and pod-6(31-21) can be partially 

suppressed by various environmental stresses that decrease PKA activity and bypass 

the requirement for functional COT1 or POD6 (Seiler et al., 2006). Both proteins can 

be co-immune precipitated and show a partial co-localisation. These results strongly 

suggest that POD6 and COT1 function in the same genetic pathway (Figure 20).  

To date, the detailed hierarchical relationship between COT1 and POD6 in N. crassa is 

still an open question. The expression level of neither kinase was altered in the other 

mutant grown at restrictive temperature and overexpression of one kinase from the 

modified N. crassa cpc-1 promoter in the other kinase mutant did not alter the mutant 
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phenotypes. Also, no co-dependence for localization was observed (Seiler et al., 2006). 

This may suggest that COT1 and POD6 operate in a network rather than act in a 

hierarchical fashion.  

Networks that regulate NDR kinase activity are also known in other systems. The 

S. cerevisiae NDR kinase Cbk1p links the regulation of cell morphology with cell-

cycle progression and acts as part of the RAM network (Hergovich et al., 2006). 

SAX1, the C. elegans orthologue of COT1, controls neurite outgrowth and dendritic 

tiling of mechanosensory neurons. SAX1 is activated by SAX2, a large conserved 

protein with HEAT/armadillo repeats (Gallegos and Bargmann, 2004). Interestingly, 

the neurite termination and tiling defects of sax-1 null animals were significantly less 

severe than those of sax-2 neurons, indicating that SAX1 may function in parallel with 

another kinase. This indicates that NDR kinases act in complex networks in fungi as 

well as in neurons. Therefore, the phenotypic complexity of filamentous fungi and 

cells of higher eukaryotes provides an opportunity to dissect the contribution of 

different COT1-interacting proteins during establishment and maintenance of cell 

polarity. Given the similarity between NDR and GC-III kinases in filamentous fungi 

and animals, N. crassa may serve as a useful model to separate signals required for 

branch formation and tip extension in neuronal cells. 

Two different mechanistic explanations for the function of the COT1/POD6 complex 

can be proposed from the pod-6 and cot-1 mutants analysis. One possibility is that 

COT1 and POD6 act as positive regulators of tip extension, or the COT1/POD6 

complex acts as inhibitory regulator of polarity establishment. The first hypothesis is 

supported by the morphological analysis of the mutants. Based on the mentioned 

observations it is conceivable that the complex functions to promote tip elongation 

while at the same time curbs excessive branch formation in subapical regions of the 

hyphal cell. This does not exclude the possibility that the involvement of COT1 and 

POD6 in regulation of tip elongation is more complex and is balanced with additional 

signal transduction pathways.  
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4.3 The LIM domains are required for the localization of LRG1  

The domain analysis of LRG1 revealed that both regions of the protein, containing 

LIM and RHO-GAP domains, are essential for its cellular function. Deletion 

constructs of either the N-terminus (LRG11-847) containing the LIM domains or the    

C-terminus (LRG1781-1279) containing the GAP domain are not sufficient to complement 

the mutant phenotype.  

A single amino acid substitution of the conserved tyrosine 926 in the GAP domain in 

the temperature sensitive allele lrg-1(12-20) indicate that the GAP domain is essential 

for the cellular function of LRG1. A construct containing a mutation of the conserved 

lysine 910 to alanine that inhibits the binding of the GAP domain to the corresponding 

RHO protein (Li et al., 1997) was not able to complement lrg-1(12-20) or lrg-1, 

indicating that binding to the corresponding RHO protein is essential for LRG1 

function in tip elongation. Further, a mutation of the catalytic arginine 847 to leucine 

failed to complement the lrg-1(12-20) growth defects, indicating that the catalytic 

activity is essential. Taken together, these experiments show, that the binding and the 

catalytic activity of the LRG1 GAP domain towards the corresponding RHO protein 

are essential for LRG1 function. The expression of RHO proteins in lrg-1(12-20) 

resulted only for RHO1 in an initial complementation of the growth defect at 

restrictive temperature. As a biochemical approach, in vitro GAP assays identified also 

Rho1 as the only RHO protein in N. crassa, which shows enhanced GTPase activity 

upon stimulation by the GAP domain of LRG1. These experiments characterize LRG1 

as a RHO1 specific GAP. 

Several lines of evidence indicate that the N-terminal part of the protein is required for 

the localization of LRG1. A construct lacking the first 780 aa (LRG1781-1279) is not 

capable of complementing the mutant defects, while the first 847 aa (LRG11-847) alone 

are sufficient for correct localization. The morphological defects observed in the 

mutant and the localization pattern of LRG1 indicate a function of LRG1 at sites of 

active growth at the hyphal tip and during septation. This is further supported by its 

growth-dependent localization at the hyphal apex and along septae and by the 

correlation between the growth rate and size of the GFP::LRG1 cap at the hyphal tip. 

A clear indication for the involvement of the three LIM domains within the N-terminus 

of LRG1 in the localization process is the altered localization pattern of the 
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GFP::LRG1* protein, in which the three LIM domains have been mutated. However, 

despite its localization defect, GFP::LRG1* was capable of rescuing the growth defect 

of lrg-1, indicating additional functional patterns within the N-terminus. In this 

respect it is interesting to note the high sequence similarity of these domains with 

paxillin (E=1e-28, while other LIM domain proteins have much weaker similarities of 

approximately E=1e-14), suggesting that LRG1 might act as a cytoskeletal organizer 

similar to paxillin in focal adhesion complexes (Brown and Turner, 2004; Schaller, 

2001). Another possibility is that the N-terminus of LRG1 interacts with microtubule-

dependent motor proteins. The plus ends of the microtubule cytoskeleton are oriented 

towards the tip of a growing hypha (Konzack et al., 2005; Schuchardt et al., 2005), 

and conventional kinesin and dynein have been shown to drive apical and retrograde 

directed transport in N. crassa, respectively (Seiler et al., 1997; Seiler et al., 1999). 

Defective retrograde transport in the dynein heavy chain mutant resulted in increased 

apical localization of GFP::LRG1. Furthermore, a synthetic growth defect of           

lrg-1(12-20);nkin was observed, and in nocodazole treated cells the size of 

GFP::LRG1 caps was reduced at the same growth rates. The opposing transport rates 

of NKIN and dynein may result in a balanced distribution of LRG1 and thus allow 

growth that is independent of the functionality of the LIM domains. The abolishment 

of the microtubule and the LIM domain dependent localization mechanisms by 

deleting the whole N-terminus could result in the loss of function of LRG1.  

A lrg-1;GFP::LRG1*;ro-1 mutant strain could further contribute to clarify the 

influence of microtubule motors and the LIM domain function on the localisation. 

However, the crosses between GFP::LRG1* and ro-1 strains were not possible and 

resulted in a developmental arrest at the stage of fertilized perithecia.  

 

4.4 LRG1 regulates the activity of several Rho1 effector 

pathways 

Rho1 is a key regulator of hyphal growth and polarity and has been described as 

integral part of the 1,3-glucan synthase (GS) complex in yeast and filamentous fungi 

(Arellano et al., 1996; Beauvais et al., 2001; Mazur and Baginsky, 1996; Qadota et al., 

1996). Furthermore, Pkc1p and the formin proteins Bni1p and Bnr1p are known 
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targets of Rho1p in S. cerevisiae. Pkc1p activates several signal transduction pathways 

including the cell wall integrity MAP kinase Mak1p. Formin proteins are activated by 

binding to Rho GTPases by their GTPase binding domain (GBD) and subsequently act 

as nucleus for polymerisation of linear actin cables (summarized in Levin, 2005). 

The in vivo results presented in this study indicate several misregulated RHO1 effector 

pathways in strains lacking functional LRG1. The observed hyposensitivity to the 

1,3-glucan synthase inhibitor caspofungin and the genetic interaction of lrg-1(12-20) 

with gs-1(8-6) are consistent with increased 1,3-glucan synthase activity in            

lrg-1(12-20) and indicate that GS activity is regulated via the GAP LRG1. 

Furthermore, the latrunculin A sensitivity of lrg-1(12-20) and the partial suppression 

of the lrg-1(12-20) growth defects by the dominant-negatively acting BNI11-824 

containing the GBD indicate that RHO1-BNI1-actin signalling is affected in            

lrg-1(12-20). BNI11029-1817 contains the FH2 effector domain and is suggested to act in a 

dominant active fashion in actin polymerization. Expression of BNI11029-1817 in         

lrg-1(12-20) resulted in synthetic defects. This suggests, that the formin mediated actin 

polymerisation is disturbed in lrg-1(12-20).  

The suppression of lrg-1(12-20) by the PKC specific inhibitors staurosporine and 

cercosporamide indicate hyperactivity of PKC in lrg-1(12-20). Interesting is that the 

activity of the downstream MAK1 pathway is not induced in lrg-1 or lrg-1(12-20), 

suggesting that the MAP kinase cascade is not regulated by LRG1. However, the 

MAK1 activation pattern in heat stressed lrg-1(12-20) is different from wild type, 

which may support a regulatory function of LRG1 on the cell integrity pathway. If this 

is the case, additional feed back mechanisms are postulated that regulate the activation 

of the PKC – MAK1 part of the cell integrity pathway in N. crassa. In contrast to   

mak-1, pkc is essential in N. crassa, indicating that PKC influences additional 

important effector pathways other than MAK1. Therefore, the observed differences 

between PKC and MAK1 activity would argue for a regulation of specific PKC 

effectors by LRG1 (Figure 19), and suggest that the signal is not transmitted to the 

MAK1 MAP kinase pathway. Based on the presented data, I propose that LRG1 

regulates RHO1-PKC signalling in Neurospora crassa, although this activation may 

not be transmitted towards the MAK1 MAP kinase cascade.  

One important question concerning the investigated Rho1 signal transduction 
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pathways is, which of these RHO1 effector pathways is primarily responsible for the 

block in tip extension and the subapical hyperbranching observed in lrg-1(12-20). 

Overexpression as well as deletion of components of PKC/MAK1 MAP kinase 

pathway results in morphological changes different from those described here for lrg-1 

mutants (Stephan Seiler, personal communication), and thus, impairment of the 

PKC/MAK1 pathway by LRG1 deficiency is probably not the primary reason for the 

block in tip extension and the induction of new hyphal tips along the entire cell. 

Nevertheless, the unregulated deposition of excessive chitin within the cell wall of  

lrg-1(12-20) may result from changed activity of the PKC pathway. As demonstrated 

in budding yeast, cell wall stress can result in an up to tenfold increase in the chitin 

content of the cell wall by stress-induced mobilization of chitin synthase III (Chs3p) 

from chitosome vesicles to the plasma membrane (Valdivia and Schekman, 2003). 

This stress signal is transmitted via Rho1p and involves components of the cell 

integrity pathway including Pkc1p, but is independent of Mak1p signalling (Valdivia 

and Schekman, 2003; summarized in Levin, 2005). Therefore the observed 

hyperactivity of PKC without affecting MAK1 signalling is consistent with the 

abnormal chitin deposition in lrg-1(12-20). 

Loss of the GAP activity of LRG1 is predicted to results in the activation of RHO1 and 

therefore increased glucan synthase activity. As predicted, increased glucan deposition 

in the cell walls of lrg-1(12-20) and gs-1(8-6) was detected by the hyposensitivity to 

the glucan synthase inhibitor caspofungin. Thus, the common hyperbranching 

phenotype observed in lrg-1(12-20) and gs-1(8-6) suggests that increased glucan 

synthase activity can result in the induction of branch formation.  

Data in S. cerevisiae argue for a connection between the actin cytoskeleton and cell 

wall synthesis. A detailed localization study in S. cerevisiae revealed that GS 

colocalizes with cortical actin patches and moves on the cell surface in a manner 

dependent on actin patch mobility (Utsugi et al., 2002). Actin patches are associated 

with the invaginated plasma membrane (Mulholland et al., 1994; Rodal et al., 2005), 

consistent with the role of actin at the internalization step of endocytosis (Kubler and 

Riezman, 1993). Endocytosis regulates cell wall assembly by controlling the levels of 

plasma membrane-associated, cell wall synthesizing enzymes such as chitin synthase 

III (Chs3p) (Valdivia et al., 2002; Ziman et al., 1996) and 1,3-glucan synthase 
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(Fks1p) (Engqvist-Goldstein and Drubin, 2003; Utsugi et al., 2002). Furthermore cell 

wall synthetic enzymes are transported and distributed by the actin cytoskeleton in 

S. cerevisiae (Utsugi et al., 2002). 

Interestingly, the lrg-1(12-20);gs-1(8-6) double mutant loses cell polarity when 

hyphae are shifted to restrictive conditions and is unable to establish polarity when 

conidia are germinated at high temperature. This phenotype is reminiscent of 

conditional mutants of key regulators of the actin cytoskeleton such as bem-1 and   

cdc-24 (Seiler and Plamann, 2003) and suggests a connection between cell wall 

function and the actin cytoskeleton (Garcia et al., 2006a; Katayama et al., 1999). 

Moreover, a microscopic analysis of lrg-1(12-20);bni-11-824 revealed a phenotype 

related to gs-1(8-6) (Figure 17 E). This GTPase binding domain (GBD) containing part 

of BNI1 can act through quenching Rho1 activity by competition with other target 

molecules for RHO1 binding. Formin proteins form autoinhibitory intramolecular 

interactions, that can be released by binding of the formin to the Rho protein (Alberts, 

2001; Palazzo et al., 2001). When the N-terminal part is overexpressed, heterodimers 

may form and inhibit the endogenous formin proteins irreversible. This suggests that 

increased GS1 and BNI1 activity are two major causes for the lrg-1 defects.  
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Figure 19 (former page): The model of potential connections of LRG1, COT1 and POD6 concerning polar tip growth in N. 
crassa.  
POD6 and COT1 act together in one pathway. POD6 represents possibly an upstream kinase of COT1 acting on the 
phosphorylation site in the hydrophobic motive. The COT1 dependent signal transduction represses MAK1 phosphorylation by an 
unknown mechanism that may involve PAK kinases, but is PKC independent.  
The glucan synthase (GS), the formin BNI1 and PKC are targets of RHO1. The potential effectors of the PKC may include the 
chitin synthase 3 (CHS3). LRG1 acts on Rho1, thereby inactivating the Rho GTPase. All tested effectors, BNI1, PKC and GS, are 
influenced by LRG1. The enhanced PKC activity does not result (as suggested from data in S. cerevisiae) in MAK1 
phosphorylation, indicating additional or different regulations that influence MAK1 activity. 

 

4.5 Comparison of LRG1 to its homologues in yeasts 

A homologue of LRG1 is found in S. cerevisiae, but conflicting evidence about the 

Rho proteins and the Rho effector pathways that are regulated by Lrg1p was reported. 

In vitro and yeast two hybrid analyses identified Lrg1p as a GAP for Rho1p, Rho2p or 

Cdc42p or for combinations of these GTPases (Fitch et al., 2004; Lorberg et al., 2001; 

Roumanie et al., 2001; Watanabe et al., 2001). However, most genetic data link Lrg1p 

with Rho1p functions (Fitch et al., 2004; Lorberg et al., 2001; Stewart et al., 2007; 

Varelas et al., 2006; Watanabe et al., 2001), suggesting that Lrg1p is a Rho1p specific 

GAP in yeast. The effector pathways that are regulated by Lrg1p are discussed in a 

controversial manner. Several studies report enhanced PKC/MAP kinase activity 

(Lorberg et al., 2001; Stewart et al., 2007; Varelas et al., 2006) in contrast to a report 

describing no effect on the cell wall integrity pathway (Watanabe et al., 2001). In 

addition, increased glucan synthase activity was reported for lrg-1 (Fitch et al., 2004; 

Lorberg et al., 2001; Watanabe et al., 2001), and no effect of Lrg1p on the formin to 

actin branch of Rho1p signalling was reported in any of these studies. In contrast, 

Nakano and coworkers (2001) reported delocalized actin patches in a mutant defective 

in rga-1, the fission yeast homologue of lrg-1. In conclusion, the results from both 

yeasts and the data presented in this study suggest that LRG1 acts as a GAP specific 

for RHO1 and regulates several RHO1-dependent effector pathways in N. crassa and 

possibly also in other fungi. 
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4.6 The COT1/POD6 complex and LRG1 act in parallel 

morphogenetic pathways  

The characterization of pod-6(31-21), pod-6, lrg-1(12-20) and lrg-1 revealed that 

deletion of pod-6 confers the same and deletion of lrg-1 confers similar defects 

concerning branching, septation, tip growth and morphology as those previously 

characterized in cot-1(1) (Collinge et al., 1978; Collinge and Trinci, 1974; Yarden et 

al., 1992). In addition a pod-6(31-21);cot-1(1) double mutant exhibits phenotypic 

characteristics identical to the parental strains (Figure 8 B) in contrast to                   

lrg-1(12-20);cot-1(1) and lrg-1(12-20);pod-6(31-21) double mutant strains that show 

synthetic defects (Figure 17 A). Furthermore, pod-6(31-21) and cot-1(1) share the 

putative phosphatase gul-1 and components of cytoplasmic dynein as common 

extragenic suppressors (Seiler et al., 2006), while lrg-1(12-20) share the components 

of the dynein complex, but not gul-1, as suppressors. Taken together, these data 

indicate that cot-1 and pod-6 may act in a common pathway in parallel to lrg-1, and 

that both are required for polar tip extension, branching and septation in N. crassa. 

COT1 and POD6 localise in a punctate pattern throughout the hypha and are enriched 

at tips and at septae (Seiler et al., 2006). In S. pombe the NDR kinase Orb6p is also 

enriched at sites of cell growth (Hirata et al., 2002; Verde et al., 1998; Wiley et al., 

2003). In immune localisation experiments, LRG1 was detected on septae and similar 

to COT1 and POD6 enriched at hyphal tips. However the localisation at the cortex of 

hyphal tips was only observed with the GFP tagged LRG1 in living cells. Therefore, it 

would be interesting to find out, whether COT1 and POD6 concentrations increase on 

the tip cortex by using GFP tagged proteins in living cells. Due to the similar immune 

localisation, further studies should also address the question, whether LRG1 

colocalises with COT1 and POD6. 

Beside the partial colocalisation, COT1 and POD6 are misslocalised in a dynein heavy 

chain mutant to the tip and in a kinesin mutant to the septae (Seiler et al., 2006). Thus, 

equal distribution of the NDR and GCK kinases COT1 and POD6 is dependent on 

microtubule dependent motor proteins. A similar dependence of localisation pattern 

was seen for the GFP::LRG1 protein in the dynein mutant background (Figure 17 C) 

and the synthetic growth defects with kinesin indicate a motor protein dependent 

distribution also for LRG1. 
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The morphological similarities between lrg-1(12-20), pod-6(31-21) and cot-1(1) at 

restrictive temperature and the common dependence of the localisation of POD6, 

COT1 and LRG1 on microtubule driven transport indicated a connection between 

COT1 and LRG1 signalling pathways. Genetic data argue for a connection between 

Ndr kinases and the actin cytoskeleton and link C. elegans sax-1 and D. melanogaster 

trc with Rho protein function (Emoto et al., 2004; Zallen et al., 2000).  

Genetic data in S. cerevisiae suggest that the COT1 homologue Cbk1p may negatively 

regulate the small GTPase Rho1p, which in turn activates the cell wall integrity 

pathway that is most similar to the N. crassa MAK1 pathway (Emoto et al., 2004; 

Jorgensen et al., 2002; Schneper et al., 2004; Versele and Thevelein, 2001; Zallen et 

al., 2000). A physical interaction has also been shown to exist between the Ndr kinase 

ORB6 and a RHO-GTPase activating protein in fission yeast (Das et al., 2007). The 

observation that in cbk1 mutants actin localizes at many cortical patches independent 

of the growing tip (Weiss et al., 2002) further indicates a possible influence of NDR 

kinases on Rho protein activity. 

However, no influence of COT1 on RHO1 effectors was observed in this work. 

Double mutants of cot-1(1) with gs-1(8-6) showed no synthetic effect and cot-1(1) was 

as sensitive as wild type to caspofungin, indicating that the glucan content in cot-1(1) 

was not altered. The sensitivity toward the actin depolymerising drug latrunculin A 

was not altered in cot-1(1). Also the expression of the N-terminus of BNI1 (BNI11-824) 

in cot-1(1) had, in contrast to the expression in lrg-1(12-20), no effect. This indicates 

that the formin dependent actin polymerisation is not disturbed in cot-1(1). 

The PKC inhibitors cercosporamide and staurosporine compensated only the 

phenotype of lrg-1(12-20), but not of cot-1(1), indicating that PKC is only hyperactive 

in lrg-1(12-20), but not in cot-1(1). Only the MAK1 kinase was misregulated in       

cot-1(1), and this in a different way from that in lrg-1(12-20). Recently, the binding of 

the NDR kinase Stk38 to Mekk was reported in mammalian cells (Enomoto et al., 

2007), indicating a possible regulation of MAK by NDR kinases that is independent of 

PKC activation. This provides evidence that the PKC is not activated by RHO1 in    

cot-1(1). 

Taken together, these data indicate that the common mutant defects and the common 

dependence for the localisation of COT1/POD6 and LRG1 on microtubule motors are 

at least in part based on different signal transduction pathways. However, a common 
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target of both signalling routes is the cell wall, suggesting that a balanced composition 

of cell wall components is critical for directed growth in N. crassa.  

 

4.7  The influence of RHO cycling on activity 

Rho proteins are well known regulators of a variety of fundamental cellular processes. 

However, to date only RHO1, CDC42 and RAC are well characterised in several 

model systems. One main goal for the future would be to understand the function and 

regulation of all Rho proteins present in N. crassa. The established purification 

procedure for the sensitive N. crassa Rho proteins and the in vitro assays for GAP and 

GEF activity are described in this study. They can be used for in vitro characterisation 

of the biochemical activity of all annotated GAP and GEF proteins towards the six 

Rho GTPases in N. crassa.  

Furthermore, the generation of deletion mutants (Colot et al., 2006; Dunlap et al., 

2007) of all RHO proteins, GAPs and GEFs and at least some effectors will contribute 

to find phenotypic similarities and genetic interactions between regulators and RHO 

proteins and alleles that show cross complementation. This will help to further 

understand the RHO regulation network in N. crassa.  

Remarkably, overexpression of wild type and of both dominant rho-1 versions partially 

compensates the lrg-1(12-20) growth defects. Similar results are known for the related 

GTPase CDC42. Stable overexpression of the constitutively active Cdc42G12V mutant 

resulted in inhibition of cell proliferation in mammalian cells, which is a dominant 

negative phenotype (Fidyk et al., 2006; Vanni et al., 2005). Also in yeast cycling of 

Cdc42p was required for efficient cell fusion in the mating process (Barale et al., 

2006). These studies concluded that the complete GTPase cycle is required for full G-

protein activity. The fact that lrg-1(12-20) cells, which are assumed to be deficient in 

Rho-GAP activity, are defective in polarized growth also suggest that cycling of 

RHO1, rather than its GTP-bound form alone is important for its function. Thus the 

suppression of the lrg-1(12-20) phenotype by both dominant alleles of RHO1 further 

suggests that polar tip extension and the regulation of branch formation involves 

cycling of N. crassa RHO1 to gain full activation, rather than functioning as simple 

on/off switch. 
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In this context a computational model was developed by Goryachev and Pokhilko 

(2006). It predicts that the activity of CDC42 at physiological concentrations in the 

absence of GAP proteins depends mainly on the GEF concentration. Expressing 

unphysiologically high amounts of CDC42 at constant GEF concentration reduces its 

relative activity, which is mainly due to titration of the GEF and dilution of the active 

by the inactive form of CDC42. This will decrease the relative activity of CDC42 in 

active cellular zones. The temporary rescue of the lrg-1(12-20) defects by expressing 

high amounts of both, constitutively active and negative alleles of RHO1 is consistent 

with this prediction. 

One open question is, why the cycling is required for proper activity of the effector 

pathways. The cycling of the nucleotide state of the Rho protein is important for the 

change of the affinity of Rho proteins towards GDI (guanidine dissociation inhibitor) 

proteins. These proteins serve as cytoplasmic storage for RHO GTPases and are 

possibly involved in transport processes to sites of active protein pools (reviewed in 

Dovas and Couchman, 2005; Olofsson, 1999). These authors speculate that GDI 

complexes may deliver RHO proteins to the membrane compartments, where they are 

activated by GEFs.  

These speculations can be integrated in a model (Figure 20) that requires shuttling 

between the GTP and GDP bound form of RHO proteins to allow the GDP bound form 

to be transported by GDI through the cytoplasm to sites of active RHO protein.  
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Figure 20 (former page): Shuttling model of GTPase cycle. 
(1) At sites of high Rho activity, the lipid composition (lipids special for these sites in red) and possibly unknown interaction 
partners recruit the cytoplasmic GDI-Rho complexes, which leads to activation of the Rho proteins due to the GEF regulators.    
(2) The active Rho protein interacts with several effectors. (3) At flanking sites of inactivation, the GAP activity is increased by 
several mechanisms, including for example phosphorylation of GAPs, altered lipid composition of the membrane and local 
increased GAP concentrations. (4) The GDP bound form of the Rho protein has higher affinity to the GDI than the GTP bound 
form, which is additionally increased by altered lipid composition in the membrane compared to active Rho compartments.        
(5) The GDI with inactive Rho may be in complex with unknown factors (yellow), which contribute to the recognition of target 
compartments in the membrane. It is possible, that active transport is involved. (6) The GDI delivers the Rho protein to special 
sites at the cell cortex on the membrane. This may be enhanced by phoshorylation of the GDI. 
These regulations enable the cell to specially increase the active pool of Rho protein in a very restricted area and therefore 
essentially require the GTP-GDP transition of the Rho protein for full activation only at the active site. Further, the locally 
available active Rho protein can be fast delivered through the cytoplasm. 

 

The displacement from the GDI is suggested to deliver the Rho proteins directly to 

GEF containing sites and may be regulated by the lipid composition at these sites 

(Dovas and Couchman, 2005). This would in part explain the observed requirement of 

cycling RHO proteins for their full activity at sites of active growth. 

In this context, a long-term goal would be to differentiate between the active part and 

the whole pool of Rho protein within a living cell. The visualisation of the activity of 

Rho1 could further address the question whether the cot-1(1) and pod-6(31-21) 

mutants influence Rho1 activity and how the local activity is altered in lrg-1(12-20) 

mutants.  

The overexpression of LRG1 or its GAP domain had no obvious effect on growth and 

morphology (data not shown), and in vitro GTPase activity of RHO1 was specifically 

induced by LRG1650-1035. A catalytic inactive mutant R847L of this domain fused to 

GFP may therefore specifically recognise GTP bound RHO1 and would be a helpful 

tool for further in vivo experiments. However, if this construct will specifically 

recognise active RHO1 and not localise at different sites of the cell, has to be shown. 

Alternatively, an RHO1 binding domain of an effector may be used in such an 

approach. 
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6 Supplementary data 

6.1 Lrg1p and Cbk1p are involved in pseudohyphae formation 

in Saccharomyces cerevisiae  

Polar growth defects of deletion mutations of S. cerevisiae orthologous of lrg-1 and 

cot-1 were investigated. Therefore the strains Y33937 ( Lrg1), Y22051 ( Cbk1, the 

cot-1 homologue) and BY4743 (wild type) were grown on SLAD-media that induces 

pseudohyphal formation. BY4743 shows high amounts of differentiated pseudohyphal 

growth after 5 days of incubation. In contrast, much less pseudohyphae formation was 

observed in Y33937 and Y22051 (Figure 21), indicating a function for the conserved 

proteins identified in N. crassa also in S. cerevisiae in polar morphogenesis, in yeast as 

pseudohyphal growth. Nevertheless, the formation of pseudohyphae still takes place in 

few colonies under these conditions, indicating that the functions of the proteins are 

not essential for pseudohyphal formation.  

 

 
Figure 21: Lrg1 and Cbk1 are necessary for normal pseudohyphal formation in Saccharomyces cerevisiae.  
Strains were grown on SLAD Medium to induce pseudohyphae formation for 5 days. Representative single colonies are shown. 
Pseudohyphal growth is strongly inhibited in Cbk1 and nearly absent in Lrg1 strains. 

 

6.2 CDC24 enhances GDP-GTP exchange in vitro 

Morphological differences in several conditional cdc24 alleles that are defective in 

polar elongation suggest, that CDC24 may regulate two related Rho proteins in 

N. crassa (Stephan Seiler, unpublished observations). One of them is CDC42, which is 

activated by CDC24 in S. cerevisiae. The other Rho protein is RAC, which is absent in 

yeasts. To elevate, if RAC and CDC42 are targets of CDC24, fluorescent in vitro 

studies of Rho proteins, preloaded with Mant-GDP for GEF activity were performed 

(initially in cooperation with Jan Faix, Hannover medical school). The impact of the 

plecstrin homology (PH) domain on the interaction and regulation of guanidine 



6 Supplementary data 

89 

nucleotide exchange activity of the corresponding Rho GTPase for                  

DH (Dbl-homologous)-PH tandem containing GEFs was previously shown (Rossman 

et al., 2002; Snyder et al., 2002). Therefore, the DH and PH domains of CDC24 

(amino acids 204-544) were heterologously purified as maltose binding protein (MBP) 

fusion proteins (encoded from pNV85) from E. coli and used to determine the 

biochemical GEF activity of CDC24 towards all N. crassa Rho GTPases. Increased 

fluorescence enhancement, which correlates with increased GTPase exchange activity, 

was specifically detected for CDC42 and RAC (Figure 22). These results fit well with 

the genetic and morphological data.  

 

 

Figure 22: CDC24 regulates CDC42 and RAC in vitro. 
Fluorescence intensity of the six Rho proteins in presence of Mant-GDP was measured all 20 seconds for 10 min and the slope in 
intensity/min is shown. RAC and CDC42 show a stimulation of their exchange activity.  
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6.3 Vector information 

6.3.1 Cloning plasmid pNV86 

The subcloning vector pNV86 or pPiNatZ (pPicholi-C, containing nourseothricin (nat) 

and zeocin resistances) was generated. The vector can be used in E. coli and Pichia 

pastoris and contains a zeocin selection for these two organisms. When ampicillin or 

kanamycin resistant vectors are used in further cloning steps, there are no more 

background colonies resulting from this subcloning vector. To achieve pNV86, the 

pPicholi-C (MoBiTec, Göttingen, Germany) backbone was in a first step cut with 

Eco32I in the corresponding buffer ON, followed by cleavage with mung bean 

nuclease after adding 0.5 mM ZnCl2 to the buffer for 15 min at room temperature. The 

vector was purified via agarose gel electrophorese and subsequently religated in the 

Eco32I restriction buffer containing ATP. A second cut with Eco32I reduces the 

amount of transformants still containing the cut site. The plasmid derived from 

transformants were analysed to ensure the deletion of the restriction site of the 

obtained pPicholi-C EcoRV. An analogous procedure was used to delete the NcoI site 

between the promoter and the nourseothricin resistance in the plasmid pNV1, leading 

to plasmid pNV63, which was further tested for mediation of the nourseothricin 

resistance to N. crassa. To derive the subcloning vector, the promoter PlacUV5 and the 

following suicide gene encoding the Eco47IR restriction enzyme were derived from 

pJet1. To enable the cloning of this suicide gene, the GFP encoding gene amplified 

from pSM1 (Pöggeler et al., 2003) via primers NV_GFP1 and NV_GFP2 was inserted 

as Eco32I fragment into the pJet1 vector, resulting in pNV5 (alternative name pJet-G). 

The cloning vector pPiNatZ was obtained by cutting the pPicholi-C EcoRV with NotI 

and SacI and introducing the silenced suicide gene from pJet-G as SalI and Bsp120I 

(in NotI) fragment together with PgpdA::natR gene from pNV5 as SacI and XhoI (in 

SalI).  

The obtained pNV86 cloning vector was cut with Eco32I to get rid of the GFP 

fragment for cloning purposes. It contains dominant selection for fragment insertion, a 

zeocin, but no ampicillin or kanamycin resistance for E. coli and P. pastoris, and a 

nourseothricin resistance under control of Aspergillus gpdA promoter for direct 

transformation in N. crassa (Figure 23). 
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Figure 23: Subcloning vector pNV86 
The backbone is derived from pPicholi-C, were the PCUP1 is replaced with the nourseothricin resistance and by the GFP 
interrupted suicide gene Eco47IR that are indicated by yellow and red boxes, respectively. 

 

6.3.2 Expression plasmids pNV87 and pNV88 

For expression of large eukaryotic proteins like the full length CDC24 from N. crassa, 

the pFastBac Dual (Invitrogen, Carlsbad, USA) was modified with a hexahistidine 

epitop that is recognised by specific antibodies (RGS-His6) and a GST tag for 

purification under control of the PH promoter. Therefore, the GST epitop was 

amplified with the sense primer NV_GST2 that inserted the MGRGSHHHHHH 

coding sequence and the reverse primer NV_GST3 and ligated via the inserted BglII 

site in the BamHI site of pFastBac Dual to obtain pNV87. For fast detection of the 

transfection efficiency of the SF9 cells, GFP was amplified with NV_GFP5 and 

NV_GFP10 thereby adding a MYC tag N-terminally under the control of the P10 

promoter and inserted as BglII/Acc65I fragment in BpiI/Acc65I of pNV87 to obtain 

pNV88 (Figure 24). 
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Figure 24: Map and multiple cloning site of pNV88 
The map (upper panel) shows the encoded MYC::GFP and GRGSHHHHHH::GST modifications of the pFastBac Dual vector (red 
boxes). The multiple cloning site is shown in the lower panel.  

 

6.3.3 Modification of the multiple cloning sites of pMal-c2x to obtain 

pNV72 

To obtain the reading frame of pPicholi-C, which was initially used to express the 

RHO proteins (data not shown), the multiple cloning sites (MCS) of pMal-c2x was 

changed. The modification of the MCS in pMal-c2x to obtain pNV72 was inserted 



6 Supplementary data 

93 

with a PCR using primers NV_link7 and NV_MBP1 with pMal-c2x as template. The 

amplicon containing of the changed multiple cloning site and a part of the MalE 

coding sequence was cut with BglII and HindIII and ligated into pMal-c2x cut with the 

same restriction enzymes to obtain pNV72. Figure 25 shows the changed MCS of 

pNV72. 

 

 

Figure 25: Changed multiple cloning site of the modified pMal-c2x. 
The MCS of pMal-c2x was adapted to pPicholi-C. Sequence is shown until the stop codon. 

 

6.4 Searching for interacting proteins of LRG1: tandem 

affinity purification 

To address the question, which protein might interact with LRG1, a protein complex 

purification was attempt. Therefore, the tandem affinity purification (TAP) coding 

sequence was amplified with the oligonucleotides NV_tap_n_r and NV_tap_N_1 from 

pBS1761 (Puig et al., 2001) and was ligated as NcoI/Eco32I fragment together with 

the lrg-1 promoter amplified with LRG-5SacI and LRG-3NcoI as SacI/NcoI fragment 

into SacI/MscI cut pNV16. The hygromycin cassette was integrated as Bsp120I 

fragment into the NotI site to obtain pNV75. 

The purification procedure did not result in the expected pure complex and therefore 

the single steps were analysed in more detail (Figure 26 A). The -LRG1 antiserum 

detected in a dilution of 1:100000 a single band in western blots of wild type extracts, 

and a second band occurs at higher molecular weight for extracts of the tap::lrg-1 

strain. This tagged protein could be enriched and a similar recognition by a -LRG1 

antiserum and an antibody against protein A indicates a specific detection of the 

TAP::LRG1 fusion protein. In the case of TAP::LRG1, the fusion protein was not 

cleaved by TEV protease, whereas a control substrate (kindly provided by Dr. Alf 

Herzig, Max Planck Institute for biophysical chemistry, Göttingen, Germany) could be 
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efficiently cleaved under the same buffer conditions (Figure 26 B).  

 

 

 
Figure 26: TAP::LRG1 is not cleavable by the TEV protease. 
(A) Ectopically expressed TAP::LRG1, which rescues lrg-1(12-20) growth defects, was detected by the LRG1 antiserum (upper 
panel) and with -protein A antibody (lower panel) through different purification steps. CE: crude extract, IgG: protein bound to 
IgG sepherose, TEV: elution fraction cleaved with TEV protease, E (pH): elution by glycin buffer, pH 1.8 from IgG sepharose, 
IgG/pH: IgG beads after the pH elution, Cm(TEV): calmodulin beads loaded with TEV eluate from IgG, Cm (pH): calmodulin 
beads loaded with fast neutralized eluate from pH elution of IgG bound proteins. (B) The TEV protease was able to cleave a 
control substrate incubated in the same buffer as the TAP::LRG1 crude extract at 4°C for 4 hours. 
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