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Chapter 1: Introduction 
 

Aims and objectives of the study 

Oilseed rape (Brassica napus L. oleifera) is at present the most important oilseed crop in 

Europe. The cultivation area in Germany was more than 1.5 M ha in 2007 (Federal Statistical 

Office, Germany, 2007; EUROSTAT, 2007). As a result of the increasing area under rapeseed 

cultivation and the relatively high crop rotation rate disease problems have become a major 

issue in current breeding efforts.  

Verticillium wilt caused by the hemibiotrophic pathogen Verticillium longisporum (ex. V. 

dahliae var. longisporum Stark; comb. nov. Karapapa) is one of the principal diseases in the 

cultivation of oilseed rape, besides blackleg and stem canker caused by Phoma lingam and 

stem rot caused by Sclerotinia sclerotiorum. Soil inoculum in form of microsclerotia can gain 

densities that lead to a disease incidence of up to 100% (Zeise & Steinbach, 2004) in heavily 

infested fields. The control of these resting structures is particularly difficult because they can 

survive in the soil for several years (Schnathorst, 1981; Heale & Karapapa, 1999). Due to the 

fact that chemical treatments have no effect on the occurrence of V. longisporum, the 

implementation of cultural practices such as crop rotation, time point of sowing, choice of 

intercrops and the use of resistant cultivars within an integrated disease management approach 

is the most promising strategy of controlling Verticillium wilt. Unfortunately, until now, 

breeding for resistance for both winter and spring type oilseed rape has been severely 

hampered by the absence of sufficient resistance in commercially available breeding material, 

however, recently, some promising genotypes of cabbage (B. oleracea) and turnip rape (B. 

rapa) with enhanced resistance were identified (Happstadius et al., 2003; Dixelius et al., 

2005). In addition, oilseed rape cultivars with partial resistance also have the potential to 

reduce crop losses in an environmentally safe, cost-effective manner. Moreover, these 

cultivars can be combined with other control measurements to achieve optimal levels of 

disease management (Debode, 2005). Thus, in order to preserve the productivity of the 

intensive oilseed rape cropping areas in a sustainable, environment-friendly manner, the most 

promising approach to control Verticillium wilt of oilseed rape is to improve the resistance of 

the cultivars currently available. This work describes results from a joint project conducted in 

collaboration with the Institute of Plant Breeding of the Justus-Liebig-University of Giessen 

and the Association of German Plant Breeders e.V. (GFP) with the ultimate goal of improving 

the resistance of commercial cultivars to Verticillium.  
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The first objective of this work was to seek for sources of resistance in different lines of B. 

oleracea, B. rapa (syn. campestris) and B. napus as well as resynthesized oilseed rape forms 

to identify genotypes that can be used in future breeding programs. The napus accessions 

tested included cultivar material as well as breeding lines of the participating breeding 

companies, the selection of varieties being geared at high-capacity quality material (00-

quality). B. rapa, B. oleracea as well as resynthesized rapeseed forms served to broaden the 

genetic variability of the testing material. Resistant B. oleracea gene bank material which has 

been characterized previously by Happstadius et al. (2003) was of particular importance in the 

project, besides B. rapa and B. oleracea wild species. Thus, a comprehensive greenhouse 

screening assay, based on former investigations by Zeise (1992), was established, followed by 

a resistance test of selected B. napus accessions under field conditions. The latter was 

performed at several locations in the North of Germany, namely Fehmarn, Thüle, Futterkamp 

(season 2005/06) and Rostock (season 2006/07), with a long history of oilseed rape 

cultivation and a known high natural infestation level. In addition, the selected material from 

the greenhouse screen was grown on a field site near Göttingen which has been artificially 

inoculated (Chapter 2). 

Based on investigations of napus genotypes and other Brassica species which have been 

shown to be moderately to highly resistant in preliminary tests, the second objective of this 

work was to characterize the resistance mechanisms involved. Two different approaches were 

pursued throughout this project: In the first approach, the interaction of the host-specific 

species V. longisporum (compatible interaction) with B. napus was compared with the non-

host interaction of B. napus with V. dahliae. The differential interactions of V. longisporum 

and V. dahliae on the root surface and in the root and shoot vascular system of B. napus were 

studied by confocal laser scanning microscopy (CLSM), using GFP tagging and conventional 

fluorescence dyes. The results of these studies are included in Chapter 3 and focus on the 

Agrobacterium tumefaciens mediated transformation of both V. longisporum and V. dahliae 

resulting in stable expression of GFP, the comparison of the suitability of the GFP reporter 

gene technique with classical fluorescence staining and the description of yet unknown 

aspects in the early and advanced stages of infection and colonization of roots and shoots of 

B. napus by V. longisporum and V. dahliae.  

In the second approach, screening material with different levels of resistance towards V. 

longisporum was used to differentially characterize relevant resistance factors. Based on the 

results obtained from the studies of the non-host interaction, emphasis was placed on 

resistance to systemic colonization. Particularly, mechanisms limiting the longitudinal as well 
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as the lateral spread of the pathogen in the plant were investigated. This included studies on 

the formation of mechanical barriers and the kinetics of accumulation of soluble and wall-

bound phenolics and lignin in a resistant and a susceptible B. napus genotype compared to a 

resistant B. oleracea variety in response to infection with V. longisporum (Chapter 4).  

The dissertation concludes with a general discussion summarizing the main findings and 

discussing the potential contributions provided by the work presented. 

 

Literature review 

 
Introduction 

Fungi of the genus Verticillium represent one of the most widespread and devastating groups 

of plant pathogens worldwide and are frequently encountered in cool and warm temperate 

regions (Pegg & Brady, 2002). After comprehensive revision six plant pathogenic species of 

Verticillium are now generally accepted (Barbara & Clewes, 2003). The two most important 

and most studied ones are V. dahliae Klebahn and V. albo-atrum Reinke & Berthold. While V. 

dahliae attacks, among others, tomato, pepper, watermelon, mint, muskmelon, lettuce, potato, 

cotton and strawberry (Gordon et al., 2006), V. albo-atrum causes wilt mainly in alfalfa, hop, 

tomato and potato (Heale, 2000). Four other species, V. tricorpus Isaac, V. nigrescens 

Pethybridgs, V. nubilum Pethybridge and V. theobromae Mason & Hughes are similar but 

weaker plant pathogens or soil saprophytes. Recently, the proposal has been made for a new 

Verticillium species, named V. longisporum, including all isolates that are long-spored and 

host-adapted to Brassica species (Karapapa et al., 1997, 2000). 

 

Taxonomy of Verticillium longisporum 

The occurrence of Verticillium spp. on cruciferous host plants has rarely been described in the 

past. Only two reports dealt with the isolation of cruciferous Verticillium isolates, from 

Brussels sprout in the 1950s (Isaac, 1957) and from horseradish in the early 1960s (Stark, 

1961). Because of the growing area under rapeseed cultivation and a relatively intense crop 

rotation the incidence of Verticillium on cruciferous oil crops (particularly oilseed rape and 

turnip rape) has been reported more frequently since then, especially in Europe (Krüger, 1989; 

Zielenski & Sadowski, 1995). In Sweden, for example, Verticillium wilt of oilseed rape, 

known since the 1960s (Svenson, & Lerenius, 1987), has become a significant problem since 

the 1970s (Dixelius et al., 2005). In the main cropping areas for winter oilseed rape in 

Germany, the occurrence of Verticillium spp. increased rapidly from the mid 1980s (Daebeler 



Chapter 1 Introduction   

 - 4 - 

et al., 1988; Zeise & Seidel, 1990; Günzelmann & Paul, 1990). Reports on Verticillium 

isolates on cruciferous hosts causing serious yield losses have emerged from all over the 

world (Karapapa et al., 1997; Portenko, 2000; Koike et al, 1994; Eastburn & Chang, 1994; 

Kemmochi et al., 2000) since the 1990s.  

Since scientists have worked with this fungus, there has been a controversy concerning the 

recognition of V. longisporum as a separate host-specific species. In 1957, Isaac reported on 

an exceptional isolate of V. dahliae from Brussels sprout. From inoculation assays with 

different Verticillium species on different host plants, he concluded that the fungus isolated 

from Brussels sprout was a distinct physiological strain with a restricted host range. Stark 

(1961) for the first time made a differentiation of long-spored Verticillium isolates collected 

from horseradish, classified as V. dahliae var. longisporum. In 1997, Karapapa et al. proposed 

a new species, V. longisporum, because they were able to clearly distinguish cruciferous 

Verticillium isolates from isolates of V. dahliae and V. albo-atrum. Besides the fact that 

isolates from crucifers produced longer conidia, as had already been noted by Stark (1961), 

they found additional differences with regard to morphological, enzymatic, molecular and 

virulence characteristics. Furthermore, due to an about 1.75fold nuclear DNA content 

compared to short-spored isolates, they suggested that V. longisporum might have emerged 

from parasexual hybridization between V. dahliae and V. albo-atrum, therefore explaining its 

'near-diploid' state.  

The determination of V. longisporum as a separate species was questioned by Collins et al. 

(2003). They argued that the investigations of Karapapa et al. (1997) did not adhere to all 

long-spored isolates, including the original strain of V. dahliae var. longisporum described by 

Stark (1961). Furthermore, the new taxon V. longisporum did not manage to taxonomically 

place those crucifer isolates that were short-spored. Based on their results they proposed that 

the establishment of a new species of long-spored isolates from crucifers was premature and 

that, by analogy with the terminology used to describe interspecific hybrids in plants, a more 

appropriate term to describe the retention of two nearly complete haploid genomes in a fused 

nucleus would be needed such as allodiploid or amphihaploid.  

The debate continued with Fahleson et al. (2004) who, based on sequence data, proposed that 

V. longisporum should be regarded as a distinct species closely related to V. albo-atrum. 

However, with respect to the results of other authors, they admitted that the name V. 

longisporum might be somewhat misleading since within the new species isolates with 

relatively short conidia could be grouped with long-spored isolates, at least on the molecular 

level (Steventon et al., 2002a), and different spore lengths have been observed for the same 
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isolate (Subbarao et al., 1995; Collins et al., 2003). In their opinion, V. longisporum cannot 

strictly be related to Brassica host plants since the latter, especially very weak plants, can host 

several Verticillium species, and V. longisporum can also infect plant species outside the 

Brassicaceae family (Johannson et al., 2003, 2005). This latter statement contradicts the 

results of several investigations of Zeise & von Tiedemann (2001, 2002a, 2002b) who showed 

that V. longisporum is a strictly host adapted pathogen specific for Brassica species. 

Additional confusion has been caused by some misidentification of V. dahliae and V. 

longisporum. In several publications, V. dahliae has been considered to be the causal agent of 

Verticillium wilt in Brassica crops (Xiao & Subbarao, 2000; Söchting & Verreet, 2004) or on 

horseradish (Babadoost et al., 2004), without considering that long-spored isolates may have 

been involved. 

On the basis of microsatellite and other marker analyses, Barbara and colleagues (Barbara & 

Clewes, 2003; Barbara et al., 2005; Clewes and Barbara, 2005) addressed the parental origin 

of the interspecific hybrid Verticillium isolates. They suggested that long-spored crucifer 

isolates have emerged through parasexual hybridisation between a species that is probably 

generally similar to other haploid V. dahliae isolates and one that is 'V. albo-atrum-like' but 

clearly distinct and of unknown morphology. In summary, the complete nomenclature of the 

genus Verticillium is still a matter of debate and the understanding of the phylogeny of the 

strains which infect crucifers is still incomplete. Thus, further research is needed to be able to 

draw general conclusions. 

 

Life cycle of Verticillium  

V. longisporum, like V. dahliae and V. albo-atrum, is a soilborne vascular fungal pathogen 

infecting plants through their roots. It causes a monocyclic disease in the sense that only one 

cycle of disease with inoculum production occurs throughout a growing season. The life cycle 

of V. longisporum largely equals that of other Verticillium species and can be divided into a 

dormant, a parasitic and a saprophytic phase. Throughout the dormant phase, which starts 

when environmental conditions are not suitable for growth, the fungus forms resting 

structures, so-called microsclerotia, which are melanized aggregates of enlarged hyphal cells 

which constitute a viable inoculum source in the soil for several years (Schnathorst, 1981; 

Heale & Karapapa, 1999). Microsclerotia must withstand microbial degradation, lysis, 

parasitism and predation, and therefore present an important trophic level in the soil 

ecosystem (Okubara & Paulitz, 2005). The germination of microsclerotia is inhibited via 

microbiostasis or mycostasis (Fradin & Thomma, 2006), which is compromised by root 
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exudates released into the rhizosphere of host or non-host plants (Schreiber & Green, 1963; 

Huisman, 1982; Olsson & Nordbring-Hertz, 1985; Mol et al., 1995; Gödecke, 2007, 

unpublished results). Supposedly following a nutrient gradient, hyphae which grow out of 

germinating microsclerotia are able to traverse a limited distance in the soil in order to reach 

the roots of potential host plants. Thus, it has been calculated that the sphere of influence of 

any root on microsclerotia of V. dahliae is about 300µM wide (Huisman, 1982).  

While entering the parasitic phase, Verticillium fungi are able to directly penetrate the 

epidermal cells of the root. Nevertheless, it is generally assumed that natural openings like 

sites of lateral root formation as well as wounds caused by nematodes or root feeding insects 

ease the ingress of the pathogen. In order to reach the xylem vessels the fungus crosses the 

root cortex and the endodermis which acts as a physical barrier due to suberin depositions 

(Talboys, 1958; Bishop & Cooper, 1983a). Several authors have proposed that crossing of the 

endodermis is accomplished when it is damaged or through penetration and longitudinal 

growth from regions near the root tip, which are devoid of a mature endodermis (Pegg, 1974; 

Schnathorst, 1981; Huisman, 1982; Bowers et al., 1996). Afterwards, the fungus colonizes the 

vascular system and does not leave this environment until senescence and maturity stages of 

the host plant. Thus, most of the time of its life cycle Verticllium is confined to the vascular 

system. The fungal spread in this environment is mainly achieved via spore release because 

colonization by vegetative growth would be too slow due to the poor mycelial growth rate 

(Presley et al., 1966). As observed for other Verticillium species (Buckley et al., 1969), V. 

longisporum does not form verticillate conidiophores (own observations) in the plant tissue, 

thus conidia are probably produced by simple conidiophores or by simple terminal or lateral 

conidiation (budding). Conidia are carried upwards with the transpiration stream and trapped 

in pit cavities or at vessel end-walls (i.e. trapping-sites). For the colonization to continue, 

conidia germinate and germ tubes penetrate through full-bordered pits into adjacent vessel 

elements (Garas et al., 1986), thus beginning another infection cycle. This mode of host 

colonization may account for both the observed discontinuous occurrence of mycelium in the 

plant vascular system (Heinz et al., 1998; Beckman, 1987) and the rapidity with which 

systemic colonisation occurs (Zinkernagel, 1982; Gold & Robb, 1995; Heinz et al., 1998; 

Chen et al., 2004).  

In the later stages of the disease cycle, as the host begins to senesce, the pathogen enters a 

limited saprophytic growth phase in which microsclerotia are formed in the dying stem 

parenchyma, (Schnathorst, 1981; Neumann & Dobinson, 2003). 
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Fig. 1.1. Life cycle of V. dahliae / V. longisporum. From Rowe & Powelson (2002). 

 

In contrast to diseases induced by other Verticillium species, V. longisporum does not induce 

wilt symptoms in oilseed rape. Due to the fact that colonization of the plant by V. 

longisporum in the field is characterized by an extended latent phase, early symptoms like 

streaky yellow to brownish discolorations of the stem and half-sided yellowing of the leaves 

as well as chlorotic patches between veins which themselves turn blackish, cannot be 

observed before the beginning of plant maturity after which the pathogen bursts out of the 

xylem vessels to produce ample masses of microsclerotia underneath the stem epidermis, in 

the stem pith and in the roots. Further symptoms of the disease are premature bloom and 

maturity as well as stunted growth, the latter occurring particularly under standardised 

conditions in the greenhouse or climate chamber. With these considerations, a more 

appropriate term to describe the disease caused by V. longisporum on crucifers would rather 

be Verticillium premature senescence (VPS) or Verticillium premature ripening (VPR) than 

Verticillium wilt.  
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Resistance to Verticillium 

According to Pegg & Brady (2002) resistance to Verticillium can be defined as ´the total or 

partial absence of symptoms in comparison with other host species or cultivars similarly 

exposed to virulent pathotypes and showing severe damage or death`. Because of the systemic 

nature of Verticillium infections, the cellular bases of resistance and susceptibility to wilt 

disease have been difficult to measure (Gold & Robb, 1995). However, resistance to 

Verticillium has mostly been studied in cotton (Hill et al., 1999), hop (Talboys, 1957, 1958a) 

and the solanaceous crops tomato (Bishop & Cooper, 1984; Gold & Robb, 1995) and potato 

(Concibido et al., 1994; Lynch et al., 1997; Jansky, 2000). In cruciferous host plants, 

resistance to Verticillium has been described in cauliflower (Koike & Subbarao, 1994; 

Debode, 2005), Japanese cabbage (Kemmochi et al., 2000), horseradish (Atibalentja & 

Eatburn, 1998), cabbage and turnip rape (Happstadius et al., 2003; Dixelius et al., 2005), and 

in oilseed rape (Steventon et al., 2002b). 

Resistance mechanisms against Verticillium may become effective either during initial (pre-

penetration) or later (post-penetration) stages of infection. According to Talboys (1957), this 

later stage can be divided into two further phases with the somewhat misleading terms 

determinative phase (establishment of the fungus in the root) and expressive phase 

(development of symptoms in aerial parts of the host), probably more appropriately termed as 

prevascular and vascular phase (Talboys, 1964).  

With respect to defence responses taking place during the prevascular phase, the formation of 

cell wall appositions and papillae (also called lignitubers) in root cells preventing further 

colonization by the fungus was reported from several authors (Van der Meer, 1925; Talboys 

1958; Presley et al., 1966; Griffiths, 1971; Bishop & Cooper 1983a). Much uncertainty exists 

with regard to the role and chemical composition of these lignitubers and their role in 

resistance is unequivocal. Thus, according to Bishop and Cooper (1983a), the frequency of 

apposition formation appeared similar in both resistant and susceptible varieties, indicating 

that a significant role in resistance is unlikely. Furthermore, the role of penetration papillae in 

plant defence has been questioned by Wood (1967) due to the fact that they were also 

generated as a response to mechanical stress. In general, no correlation has been confirmed 

between genetic resistance and lignituber formation.  

The suberinized endodermis is generally thought to act as a natural barrier against Verticillium 

infection in roots (Talboys, 1958), although penetration into stelar parenchyma through 

endodermal cells was observed. Finally, the production of phytoalexins which may act as 
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antimicrobial agents is reported to be induced in the root tissue upon infection (Bell, 1969; 

Daayf et al., 1997). 

Another set of factors which has been found to be important regarding plant defence against 

Verticillium spp., comprises those governing resistance and susceptibility to systemic 

colonization during the vascular phase. According to Pegg & Brady (2002) resistant plants 

hold a pronounced capability of quickly inducing defence responses in the vessels and thus 

containing the fungus in the root and lower stem tissue, whereas in susceptible plants the 

fungus succeeds to escape from plant defence. Often, the success of defence responses seems 

to depend on the ability of the plant to rapidly restrict the systemic spread of the pathogen 

with a combination of constitutive and induced defence mechanisms (Bell, 1994). Unlike 

most biotrophic and some necrotrophic interactions, there is no total resistance to infection. 

Induced defence mechanisms include, among others, vascular occlusion due to the production 

of vascular gums, gels and tyloses (Beckman & Talboys, 1981; Beckman, 1987; Benhamou, 

1995) which serve to impede the longitudinal spread of the pathogen due to the trapping of 

released conidia. In addition, as has been described for tomato plants resistant towards V. 

albo-atrum and V. dahliae, the deposition of suberin and other coating materials on vascular 

cell walls was reported to form a barrier preventing horizontal dispersal of the fungus 

(Beckman, 1987; Robb et al., 1984, 1989; Street et al., 1986).  

Furthermore, the induction of antimicrobial compounds, such as the pathogenesis-related 

proteins (PR proteins) chitinase and ß-1,3-glucanase (Dubery & Slater, 1997), and 

phytoalexins (Cooper et al., 1996; Williams et al., 2002), such as the flavonoid and terpenoid 

phytoalexins of cotton (Mace et al., 1990; Joost et al., 1995) as well as the accumulation of 

phenolic compounds (Beckman, 2000) have been suggested to play a pivotal role as resistance 

mechanisms. The importance of phenolic compounds in plant defence has also been stressed 

by molecular studies on tomato plants infected with V. albo-atrum which revealed that the 

fungus is able to suppress the transcription of phenylalanine ammonia lyase (PAL) genes in 

susceptible plants (Lee et al., 1992). PAL is the first key enzyme in the phenylpropanoid 

pathway and therefore its expression may have an effect on the regulation of 

phenylpropanoid-based defence compounds such as suberin (Hahlbrock & Scheel, 1989), 

lignin (Smit and Dubery, 1997), phytoalexins and some plant hormones (Jones, 1984; Mauch-

Mani & Slusarenko, 1996).  

The interplay between physical and antimicrobial defence responses might reveal an efficient 

way to restrict fungal spread. Thus, it has been suggested by many authors that the fungus is 

first trapped in so-called trapping-sites, ensued by the elimination of fungal hyphae due to the 
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release of antimicrobial compounds (Sinha & Wood, 1967; Dixon & Pegg, 1969; Benhamou, 

1995; Gold & Robb, 1995; Chen et al., 2004). 

The only inorganic and therefore most striking phytoalexin contributing to Verticillium 

resistance is elemental sulphur, which has long been known as a fungicide used in orchards 

(Smith et al., 1995a; Warkentin et al., 1996) and vineyards (Jolivet, 1993). In both resistant 

cocoa and tomato plants this element has been found to accumulate in concentrations in 

xylem vessel walls and xylem occluding gels sufficiently high to control fungal growth 

(Cooper et al., 1996; Williams et al., 2002, Williams & Cooper, 2003, 2004; Cooper & 

Williams, 2004).  

Many plants have been found encoding a distinct set of cell wall-associated glycoproteins able 

to inhibit endopolygalacturonase enzymes which are produced by fungal pathogens, the so-

called polygalacturonase-inhibiting proteins, PGIPs (De Lorenzo et al., 2001). It has been 

proposed that PGIPs and resistance gene products may function as integrated components of a 

cell surface apparatus that forms part of the plant’s immune system (De Lorenzo & Cervone, 

1997). As a matter of fact, PGIPs have been isolated from cotton (James & Dubery, 2001) and 

apple (Gazendam et al., 2004) and displayed an inhibitory effect on polygalacturonases of V. 

dahliae in vitro; however, their effect in vivo has yet to be determined. Recently, two PGIP-

encoding genes from B. napus have been characterized (Li et al., 2003) but knowledge as to 

their role in defence towards V. longisporum is still lacking.  

For the vascular pathogen Ophiostoma novo-ulmi on elms it has been demonstrated that the 

anatomy of the vascular system has a pivotal impact on the development of the disease but 

this has not yet been reported for Verticillium. Accordingly, wider and successional vessels 

favour the spread of the fungus, its propagules and metabolites (Elgersma, 1970; Mc Nabb et 

al., 1970; Solla & Gil, 2002). Likewise, the length and the extent of branching of vessels 

might have an influence on fungal dispersion (Van Alfen, 1989). Thus, the absence of 

vascular pathogens in gymnosperms is related to the short length of tracheid elements (Pegg 

& Brady, 2002). Furthermore, the differentiation of new xylem vessels from interfascicular 

cambium following infection with V. albo-atrum was reported for wilt-tolerant hop cultivars 

(Talboys, 1958b). In this respect, the net increase in fungus-free xylem was assumed to act as 

a compensatory resistance mechanism.  

Most of the mechanisms referred to may contribute to a general expression of resistance 

rather than to function alone. Above all, they represent non-specific responses, some of which 

can be found in susceptible as well as resistant hosts (Beckman & Talboys, 1981; Beckman, 

1987). 
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The genetic basis and the molecular mechanisms underlying plant defence responses to 

Verticillium are poorly understood. Many crop species, such as alfalfa and mint contain genes 

coding for tolerance, but not complete resistance, to Verticillium spp. (Hastie & Heale, 1981). 

The resistance of tetraploid cultivated potato (Solanum tuberosum L.) to V. albo-atrum and V. 

dahliae appears to be polygenic in nature (Simko et al., 2004), and is based predominantly on 

the additive effect of minor genes (Hunter et al., 1968) whereas in diploid potato hybrids 

resistance seems to be inherited in a single dominant manner (Lynch et al., 1997; Jansky et 

al., 2004). Polygenic resistance has also been reported for cotton (Bolek et al., 2005) and 

strawberry (Lynch, 1997). 

The only known Verticillium resistance gene is the tomato Ve gene, which encodes a leucin-

rich repeat (LRR) protein belonging to the class of so-called receptor-like proteins (Kruijt et 

al., 2005) and has been fully characterized by Kawchuk et al. (2001). It is inherited in a 

monogenic, dominant fashion (Gold & Robb, 1995) and confers resistance to race 1 

particularly, of both V. albo-atrum (Kawchuk et al., 2001) and V. dahliae (Schaible, 1951; 

Diwan et al., 1999). However, it is not known where and how Ve-mediated resistance is 

established in the plant. According to Fradin & Thomma (2006) the Ve resistance may 

possibly be operative in the parenchyma cells surrounding xylem vessels, a phenomenon that 

has already been implicated with the tomato I-2 gene which provides resistance to the 

vascular fungal pathogen Fusarium oxysporum (Mes et al., 2000). 

In recent years, great efforts have been made to identify genes involved in resistance to 

Verticillium in cruciferous plants. In Arabidopsis thaliana, Veronese et al. (2003) have 

identified a single dominant locus, Verticillium dahliae-tolerance (VET1) which governs the 

severity of symptom development, particularly with regard to the ageing process. However, 

this allele neither led to the reduction of pathogen growth nor did it have any influence on the 

ability of the pathogen to induce the expression of defence genes which are controlled by 

different response pathways. According to Kemmochi et al. (2000), resistance of Japanese 

cabbage is polygenic and inherited in a dominant manner. Quantitative inheritance of 

Verticillium resistance is also assumed for cauliflower, however, resistance genes have not yet 

been identified (Happstadius et al., 2003; Debode, 2005).  

 



Chapter 2 Identification of resistance sources  

 - 12 - 

Chapter 2: Identification of Brassica accessions with enhanced resistance to 

Verticllium longisporum under controlled and field conditions* 
 

*) Parts of this chapter have been submitted for publication in: C. Eynck, B. Koopmann, A. v. 

Tiedemann (2008) Identification of Brassica accessions with enhanced resistance to 

Verticillium longisporum under controlled and field conditions  

 

Plant Pathology and Plant Protection Division, Department of Crop Sciences, Faculty of Agriculture, 

Georg-August University Göttingen, Grisebachstraße 6, D-37077 Göttingen, Germany 

 

Introduction 

Oilseed rape (Brassica napus L. oleifera) is a relatively young species, compared to other 

crops; however, due to intensive breeding for seed and oil quality traits, oilseed rape 

nowadays represents one of the most important sources of vegetable oil worldwide (Kimber & 

Mc Gregor, 1995), not only for human nutrition but also for livestock feeding and the 

oleochemical industry (Murphy, 1996). The area under oilseed rape cultivation continues to 

rise dramatically, because of the high demand for rapeseed oil. This is accompanied by crop 

rotation cycles which are getting constantly shorter. 

As a consequence, Verticillium wilt has become an increasing threat to oilseed rape 

production particularly in Northern Europe (Krüger, 1989; Zielienski & Sadowski, 1995). 

While having become a prevalent disease in Germany (Daebeler et al., 1988; Günzelmann & 

Paul, 1990; Zeise & Seidel, 1990) and Sweden (Svenson & Lerenius, 1987; Dixelius et al., 

2005), Verticillium wilt has also been reported from Poland, France, Russia and the Ukraine 

(Heale & Karapapa, 1999).  

Verticillium wilt on Brassica oil crops is caused by the soilborne fungus and vascular 

pathogen Verticillium longisporum (ex. V. dahliae var. longisporum Stark; comb. nov. 

Karapapa), which quite recently has been considered as being a distinct taxonomic unit 

separate from other Verticillium species such as V. dahliae (Karapapa et al., 1997). The 

distinction of V. longisporum is based on the larger conidia, nuclei containing nearly twice as 

much DNA due to amphihaploidy, enzymatic characteristics and a significantly higher 

pathogenicity on cruciferous host plants (Steventon et al., 2002a, b; Zeise & von Tiedemann, 

2002a, b). The proposition of establishing V. longisporum as a distinct species taxon was 

supported by comprehensive molecular analyses done by Steventon et al. (2002a) and Pantou 

et al. (2006). However, there is still controversy regarding the recognition of V. longisporum 



Chapter 2 Identification of resistance sources  

 - 13 - 

as a separate, host-adapted species (Fahleson et al., 2004). Thus, according to Collins et al. 

(2003), also short-spored Verticillium isolates can infect cruciferous plants, while V. 

longisporum has been reported to infect plant species which do not belong to the 

Brassicaceae (Fahleson et al., 2004). 

The infection and colonization behaviour of V. longisporum exhibits many similarities to that 

of other Verticillium species, such as V. dahliae and V. albo-atrum. After germination of 

microsclerotia, which is induced by root exudates of host as well as non-host plants (Olsson & 

Nordbring-Hertz, 1985; Mol et al., 1995; Gödecke, 2007, unpublished results), the fungus 

infects the roots, entering mainly near the root tip. Hyphae cross the root cortex inter- and 

intracellularly and enter the vessel elements. From here on, the fungus spreads systemically in 

the vascular system by means of mycelium and conidia released into the transpiration stream 

(Zhou et al., 2006; Eynck et al., 2007). When senescence of the plant begins, the fungus 

leaves its vascular environment and produces ample masses of microsclerotia in the dying 

plant tissue. Soil management practices, in which infested plant material is buried in the soil, 

provide a pivotal role to microsclerotia as primary inoculum source for the following seasons 

(Schnathorst, 1981; Neumann & Dobinson, 2003).  

Due to the fact that microsclerotia are able to survive in the soil for several years (Heale & 

Karapapa, 1999) and as the application of fungicides is not effective to control V. 

longisporum, resistant cultivars are required (Mert & Karakaya, 2004). Resistance to 

Verticillium spp. is known from several other crops, like tomato (Diwan et al., 1999), potato 

(Simko et al., 2004; Jansky et al., 2004), cotton (Bolek et al., 2005) and strawberry (Lynch, 

1997). However, the molecular mechanisms and the genetic basis underlying such plant 

defence responses to Verticillium are poorly understood. The only known Verticillium 

resistance gene is the tomato Ve gene, which encodes a leucin-rich repeat (LRR) protein 

belonging to the class of so-called receptor-like proteins (Kruijt et al., 2005). In recent years, 

breeders have made an extensive effort to identify sources of resistance to V. longisporum in 

the primary oilseed rape gene pool, however without much success (Happstadius et al., 2003). 

The problem is aggravated by the fact that intensive selection for quality traits has resulted in 

a narrowed genetic basis of current breeding lines (Becker et al., 1995; Hasan et al., 2005). 

Nevertheless, also oilseed rape cultivars with partial resistance have the potential to reduce 

crop losses in an environmentally safe, cost-effective manner. Moreover, cultivars with partial 

resistance can be combined with other control measurements to achieve optimal disease 

management (Debode et al., 2005). Furthermore, because B. napus is derived from 

interspecific hybridisation between turnip rape (B. rapa L. syn. campestris) and cabbage (B. 
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oleracea L.) the secondary gene pools of these two progenitor species may also serve as 

potential gene donors in broadening the resistance base. Recently, some promising genotypes 

of B. oleracea and B. rapa with enhanced resistance were identified (Happstadius et al., 2003; 

Dixelius et al., 2005; Rygulla et al., 2007). 

Disease screens conducted in infested field sites represent the most accurate and reliable 

approach to evaluate the resistance response of a certain plant genotype to a pathogen, 

particularly when it is soilborne. However, field screening has limitations concerning the 

number of variants possibly tested and due to a heterogeneous disease pressure deriving from 

variations of environmental factors and the soil inoculum distribution. Due to these 

constraints most tests to identify resistance in Brassica spp. to Verticillium have been 

performed under greenhouse conditions (Zeise, 1992; Subbarao et al., 1995; Zeise & 

Buchmüller, 1997; Happstadius et al., 2003; Debode et al., 2005). However, it remains 

unclear whether accessions performing well in controlled conditions would also show an 

enhanced level of resistance in the field.  

Accordingly, the objectives of this work were (i) to screen different Brassica genotypes for 

resistance towards V. longisporum under greenhouse conditions in order to identify resistant 

or partially resistant varieties for use in future breeding programs, (ii) to test to which extent 

the results obtained under standardised conditions are valid in the field and (iii) to investigate 

the time course of V. longisporum development under field conditions in oilseed rape plants 

depending on their particular susceptibility.  

 

Materials and Methods 

Plant material in the greenhouse 

In total, 1230 accessions of B. napus, supplied by eight plant breeding companies (Deutsche 

Saatveredelung Lippstadt Bremen GmbH (DSV), Klein Wanzlebener Saat AG (KWS), 

Limagrain Nickerson GmbH (NICK), Svalöf Weibull Seed Hadmersleben GmbH (SEM), 

Syngenta Seeds GmbH (SYN), Raps GbR Saatzucht Lundsgaard (SRG), Norddeutsche 

Pflanzenzucht Hans-Georg Lembke KG (NPZ), W. von Borries-Eckendorf GmbH & Co., 

WVB), were tested in this study. In addition, a total of 80 B. rapa gene bank accessions, 

including seven cultivar groups, and 33 B. oleracea gene bank accessions, representing six of 

the fourteen cultivar groups of B. oleracea, were screened for susceptibility to V. longisporum 

in order to identify resistant genotypes useful for breeders to generate resynthesized oilseed 

rape lines potentially comprising the combination of different resistance loci. These 

accessions were obtained from eight different gene banks and three commercial seed suppliers 
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listed in Table 2.4. Furthermore, thirteen accessions with non-defined species identity and 

origin were involved in the resistance test. These were supplied by the breeding company 

DSV. The interspecific hybridisation of B. rapa and B. oleracea resistance sources identified 

throughout this screening and the generation of resynthesized oilseed rape lines with 

improved resistance to V. longisporum is described in detail by Rygulla et al. (2007a, b).  

 

Inoculation and screening procedure in the greenhouse 

Resistance tests were performed with the V. longisporum isolates VL 40 and VL 43, which 

originate from diseased B. napus plants sampled in the North of Germany. These isolates 

were chosen on the basis of results of preliminary virulence tests of several Verticillium 

strains from B. napus described by Zeise & von Tiedemann (2002a). Long-term storage of 

fungi was performed as conidial suspensions in a concentration of 1-3 x 106 conidia mL-1 in 

Czapek-Dox medium (Czapek, 1902; Dox, 1910) supplemented with 25% glycerol. Inoculum 

was produced by adding 500 µL of spore stock solutions to 250 mL potato dextrose broth. 

The cultures were subsequently incubated for 7 days at 23°C on a rotary shaker (100 RPM). 

The resulting suspension was filtered through sterile gauze. Spore concentration was 

determined with a haemocytometer and diluted to give 1 x 106 spores mL-1.  

The winter oilseed rape varieties ‘Express’ (moderately tolerant) and ‘Falcon’ (highly 

susceptible) were used as reference controls in all experiments. Seeds of the control and test 

plants were surface-sterilized by immersion in 70% ethanol for 15 min. Subsequently, seeds 

were washed in sterilized tap water before being sown in double-autoclaved silica sand. 

Seedlings appeared after 3-7 days, and another 7 days later the roots were carefully washed 

out of the sand. Inoculation was performed by cutting 2 cm off the root apex and submerging 

the capped roots for 30 min in a mixed conidial suspension of both V. longisporum isolates 

VL 40 and VL 43. Roots of control plants were also cut and submerged in tap water for the 

same length of time. A total of 20 inoculated seedlings and 20 control plants of each accession 

were transferred into a mixture of sand, peat and compost (1:1:2) in pots containing two 

plants each. Plants were grown at 23°C in a greenhouse with a lighting regime of 14/10 h 

(light/dark). Plants were not fertilized during these experiments. Weekly scoring of each plant 

for disease symptoms took place over a four-week period using a slightly modified 

assessment key (Table 2.1) from Zeise (1992). 
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Tab. 2.1. Assessment key for scoring disease severity induced by Verticillium longisporum on 
Brassica plants in the greenhouse (modified according to Zeise, 1992). 

Score Symptom development 

1 no symptoms 

2 slight symptoms on the oldest leaf (yellowing, black veins) 

3 slight symptoms on the next younger leaves  

4 about 50 % of the leaves show symptoms  

5 more than 50 % of the leaves show symptoms 

6 up to 50 % of the leaves are dead 

7 more than 50 % of the leaves are dead 

8 only apical meristem is still alive  

9 the plant is dead 

 

For each accession the area under the disease progress curve (AUDPC) was calculated from 

the disease severity values taken four times at weekly intervals, modified according to the 

following formula from Campbell and Madden (1990): 

 

Σ
i=1

n

AUDPC = (yi + yi+1 /2) * (ti+1- ti)Σ
i=1

n

AUDPC = (yi + yi+1 /2) * (ti+1- ti)
 

 

where yi is the disease severity value for observation number i, ti is the number of days after 

inoculation at the time point of observation number i, and n is the number of observations. In 

order to consider disparities with regard to the variation in the natural senescence of the 

different accessions, so as not to overestimate the disease levels of the inoculated variant, an 

AUDPC value was also calculated for the control variants. This value was subtracted from the 

AUDPC value of the inoculated variant to obtain the ´net AUDPC value` (AUDPCnet):  

 

 
 

AUDPC net = AUDPC (Xinoc.) - AUDPC (Xcontr. )
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In order to compensate for fluctuating infection levels between trials a normalization of the 

AUDPC values for each accession was performed based on the reaction of the internal 

reference controls. The normalized value (AUDPCnorm.) was calculated as follows: 

 

 
 

Due to the fact that an infection with V. longisporum results in diminished growth, the plant 

height was measured at 28 dpi. The stunting effect was expressed by performing a 

normalization procedure in analogy to the approach taken for the AUDPCnorm. values. 

 

Sites and design of field experiments 

When new resistance sources are identified under standardized conditions, a further important 

aspect is to verify these results under natural conditions. Thus, subsets of accessions that had 

been screened in the greenhouse for their resistance response towards V. longisporum were 

tested in the field. Experiments were conducted from 2004 to 2007. 

No appropriate accessions were available for sowings in summer 2004 because the project 

had just started shortly before. Therefore, promising new winter oilseed rape cultivars such as 

´Smart`, ´Trabant`, ´Oase`, ´Mohican` and winter oilseed rape cultivars already established on 

the German market such as ´Talent` and ´Elektra` were chosen. According to the greenhouse 

assay, cultivars ´Express` and ´Falcon` served as tolerant and susceptible control varieties, 

respectively. Prior to sowing, oilseed rape straw, naturally infested with microsclerotia, was 

deployed and incorporated into the upper soil layers, resulting in 15 g inoculum material per 

m2. This material originated from highly infested stubbles that had been collected after the 

previous harvest, dried and shredded. Accessions were seeded as a randomized complete 

block design with four replications at a location near Goettingen, Lower Saxony. At this site 

oilseed rape was not grown for at least ten years, thus natural infestation levels were kept to a 

minimum. The trial was maintained using standard cultural practices for oilseed rape 

production in Germany with the control of Phoma lingam and Sclerotinia sclerotiorum by 

spraying fungicides at the appropriate growth stages. To measure the extent of infestation as 

well as disease dynamics, samples (5 per plot, fourfold repetition), comprising the root and 

the lower stem part, were taken from each accession at regular intervals throughout the 

vegetation period. Subsequently, samples were examined by ELISA in order to determine the 

AUDPC

2 / )( net Falconnet Express AUDPCAUDPC +
= AUDPC norm. net (X) 
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amount of V. longisporum biomass in the particular sample. Additionally, visual scoring of 

disease severity was carried out on stubbles soon after harvest on 50 stubbles per plot.  

In 2005 three to five accessions of each participating breeding company was sown for further 

resistance testing in the field. In addition to the tolerant and susceptible standards ´Express` 

and ´Falcon` three further reference cultivars, which had been characterized in the greenhouse 

for their response to V. longisporum, were used. Those were the cultivars ´Smart` and ´Lion` 

with high and even very high tolerance to the pathogen, whereas cultivar ´Laser` was highly 

susceptible to V. longisporum. Besides the site near Goettingen, where the field was 

artificially inoculated by the same procedure as in the previous year, resistance trials were run 

on three further locations in the North and Northeast of Germany (Futterkamp and Fehmarn in 

Schleswig-Holstein, Thuele in Lower Saxony). These sites were thought to exhibit a high 

natural infection pressure, based on observations of disease incidence in previous years. Due 

to the limited availability of seeds, each accession was sown only in twofold repetition on 

each site. While root and stem material from all sites was visually scored after harvest (25 

stubbles per plot), in Goettingen, as in the season 2004/05, additional samples (5 per plot) 

were taken consecutively throughout the vegetation period to document the occurrence and 

systemic spread of the pathogen in plants of particular accessions with ELISA.  

In 2006 one further breeding company (Pflanzenzucht Dr. h.c. Carsten, Lübeck, Germany, 

DM) participated in the resistance tests in the open field. A total of forty accessions were 

tested, comprising 36 selected by the participating breeders (four accessions per breeder) and 

four reference varieties. Besides ´Falcon` and ´Express`, the latter comprised the cultivars 

´Oase` and ´Laser` as highly tolerant and highly susceptible reference varieties, respectively. 

The experimental sites were the same as in the previous seasons. Due to an extremely low 

natural infestation level in Futterkamp in the vegetation period 2005/06 this site was replaced 

by a location near Rostock (Mecklenburg-Western Pomerania). As in the previous year, 25 

stubbles per plot were collected after harvest from each experimental site for visual disease 

scorings. Plant density and cultural practices were identical in all three years.  
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Visual scoring of V. longisporum disease symptoms in the field 

Immediately after harvest, 50 (in 2005) and 25 (in 2006 and 2007) stubbles were collected 

from each plot at each experimental location. Disease severity and disease incidence due to V. 

longisporum were scored visually based on the amount of microsclerotia under the stem 

epidermis, in the stem pith and in the roots for each plant, with the help of the rating scale 

represented in Table 2.2.  

 

Tab. 2.2. Rating scale used to score the disease severity on stubbles collected in the field. 

Score Symptom 

1 healthy, no microsclerotia visible 

2 slight colonization with microsclerotia  

3 strong colonization with microsclerotia 

4 
very strong colonization with microsclerotia, epidermis is pealing off 

(stem) 

 

From the number of plants in each class, a disease index (DI) was calculated for each 

accession as follows: 

 

 
 

where Nn is the number of plants in the respective class. 

 

Quantification of V. longisporum by ELISA  

For quantification of V. longisporum biomass in the plant tissue, a direct DAS-ELISA (double 

antibody sandwich ELISA, Clark & Adams, 1977) which had been developed in the Institute 

of Plant Pathology and Plant Protection, University of Goettingen (Cernusko, 1995; Cernusko 

& Wolf, 1997) was used comprising biotinylized antibodies and their detection with a 

streptavidin alkaline phosphatase conjugate (Tian et al., 2005).  

Samples, each consisting of five stubbles, were washed under tap water to remove adhesive 

soil fragments and were divided into roots and shoots (lower 20 cm of the stem). Samples 

were air-dried and ground to a fine powder. One g of ground material was mixed with 

DI = 
(1 x N1) + (2 x N2) + (3 x N3) + (4 x N4) 

(N1 + N2 + N3 + N4)
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extraction buffer (PBS (phosphate buffered saline, pH = 7.2) + 0.05% Tween 20 + 0.2% PVP 

(Polyvinylpyrrolidone), 1:20, w/v) and rotated at 4°C and 120 RPM over night. One mL of 

each extract was transferred to a reaction tube and centrifuged for 10 min at 13000xg. The 

supernatant was used as probe for ELISA analyses. 

Wells of microtiterplates (Nunc, Wiesbaden, Germany) were filled with 100 µL coating 

buffer and serum-antibodies (1:1000) and incubated at 4°C over night. After washing the 

plates three times with washing buffer for 3 min each, free binding sites were blocked by 

adding 200 µL of blocking buffer + 0.2% BSA, followed by an incubation of one hour at 

37°C. After another washing step, 100 µL samples and protein standards were filled into the 

wells and incubated for four hours at 37°C. Again plates were washed three times with 

washing buffer. Subsequently, 100 µL of biotinylized antibodies in PBS/Tween (1:2000) were 

added and incubated at 4°C over night. After three further washing steps 100 µL streptavidin 

alkaline phosphatase (1:10000, in PBS/Tween) were added and incubated at 37°C for one 

hour, followed by another washing step. Then, 100 µL substrate (1 mg p-nitrophenyl 

phosphate per mL substrate buffer) was added and incubated at room temperature in the dark. 

Extinction was measured after 1, 2 and 3 hours at a wavelength of 405 nm and a reference 

wavelength of 592 nm on a plate reader photometer (Spectra 2, SLT Laboratories, 

Crailsheim). Each sample was measured in two replicates.  

 

Statistical analyses of data 

Data obtained in the greenhouse screening and in scorings of field samples were statistically 

analyzed using the software package StatGraphics. Differences among means were tested 

using Fisher’s least significant difference (LSD) and considered significant at p ≤ 0.05. A 

general linear model procedure was used to identify accessions with a significantly lower 

AUDPCnorm. value than the cultivar ´Express`, which shows a relatively high tolerance to V. 

longisporum. The relationship between AUDPCnorm. values and plant height was characterized 

by analysis of correlation. Significance of regression lines was tested with the Durbin-Watson 

test. Linear regression analysis was also used to determine the relationship between disease 

severity values of field samples and the corresponding phenotype data from greenhouse 

experiments and the relationship between disease levels assessed via visual scoring and the 

extent of colonization by V. longisporum, measured by ELISA. 
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Fig. 2.1. Microsclerotia of V. longisporum, produced in the stem pith (A – C), under the stem 
epidermis (D), in root tissue (E, G) and on the root surface (F, H). Samples on micrographs A 
to C represent scores 2 (A), 3 (B) and 4 (C).  
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Results 

Greenhouse screening 

Symptoms observed were typical asymmetric yellowing of leaves and the occurrence of black 

veins (measured as AUDPC value) as well as stunted growth. Plants of the control variant 

were also scored in order to take into account the unspecific symptoms occurring during the 

natural ageing process which varied between accessions.  

In total, 1348 Brassica accessions comprising genotypes belonging to the group of B. napus, 

B. rapa, B. oleracea and a small group of undefined varieties were screened for their 

resistance to V. longisporum in 26 independent screening runs over more than 2 years.  

There was a large variation in responses to inoculation with V. longisporum among the 

screened accessions. Especially the B. napus genotypes showed a broad range of resistance 

with AUDPCnorm. values between 0.02 and 3.21 (Fig. 2.2.). The AUDPCnorm. value of the 

cultivars ´Express` and ´Falcon` was 0.76 and 1.26, respectively. A total of 363 B. napus 

accessions (29.5%) possessed AUDPCnorm. values significantly lower (p ≤ 0.05) than the 

tolerant standard ´Express` (Table 2.3).  

A similar variation was observed among the progenitor species. Among the B. oleracea 

accessions, many genotypes showed strong resistance. Thus, with the exception of five, all 

accessions which had been characterized as resistant to V. longisporum in preliminary 

investigations (Happstadius et al., 2003) also showed an elevated level of resistance in our 

studies. Additionally, two new resistant B. oleracea genotypes were identified, namely 

accession 1428 (white cabbage ´Kashirka 202`) and accession 2070 (white cabbage 

´Ladozhskaya`), listed in Table 2.4. In total, 28 or 84.9% of the 33 B. oleracea accessions 

tested had an AUDPCnorm. value significantly lower than that of ´Express`. 
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Fig. 2.2: Distribution of resistance responses in the tested Brassica accessions inoculated with 
V. longisporum in 26 independent trials. The frequency distribution of the AUDPCnorm. values 
of B. oleracea accessions is shown as solid line, that of B. napus accessions as dashed line 
and that of B. rapa accessions as dotted line. The winter oilseed rape cultivars ´Express` 
(AUDPCnorm. = 0.76) and ´Falcon` (AUDPCnorm. = 1.26) served as reference varieties. 
AUDPC values were calculated based on a rating scale consisting of nine classes and 
normalized for variation (AUDPCnorm.).  

 

Tab. 2.3. Number of Brassica accessions used in this study and the respective percentage of 
accessions which had an AUDPCnorm. value significantly lower (p ≤ 0.05) than that of the 
tolerant cultivar ´Express` (AUDPCnorm. = 0.76). 

Species No. of tested accessions % sign. better than ´Express` 

B. rapa 80 12.5 

B. oleracea 33 84.9 

B. napus 1230 29.5 

not defined 13 0.0 
 

In contrast to the comparatively high level of resistance in the B. oleracea assortment, the B. 

rapa accessions showed a predominantly susceptible or moderately tolerant resistance 

phenotype. Thus, only 12.5% of the accessions screened showed a level of resistance which 
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was significantly higher than that of the tolerant standard. Particularly the accessions 13444 

and G454 ´Granat` exhibited moderate resistance phenotypes (Table 2.4). Some of the 

accessions tested here (B. oleracea accessions 8207, BRA 1398, BRA 1008, 7518, 

CGN14044; B. rapa accessions 13444, 56515) were used as parental lines for interspecific 

crossings to create resynthesized oilseed rape plants with improved resistance to V. 

longisporum (Rygulla et al., 2007a, b).  

 

Tab. 2.4. Accession numbers and sources of B. oleracea and B. rapa gene bank accessions 
and accessions from commercial breeding companies phenotyped for resistance to V. 
longisporum. All accessions listed below showed a resistance level significantly higher than 
´Express`. 

Species Subspecies Accession Name Source 
B. oleracea botrytis botrytis 372897 Venus GI 
B. oleracea capitata 1428 White cabbage 

´Kashirka 202`  
NIV 

B. oleracea capitata 2070 White cabbage 
´Ladozhskaya` 

NIV 

B. oleracea botrytis botrytis 3-01 oror HK Pl. 4/G6 GI 
B. oleracea acephala 8207 Kale HRI 
B. oleracea acephala 5085 Tainan HRI 
B. oleracea alboglabra 14044 Golden CGN 
B. oleracea alboglabra 6704 Chinese Kale HRI 
B. oleracea alboglabra 6206 Kainan HRI 
B. oleracea botrytis botrytis BRA 1398 Maximus (CSFR) IPK 
B. oleracea botrytis botrytis 4250 Kangaroo HRI 
B. oleracea capitata 5394 Cappuccio Grosso HRI 
B. oleracea capitata 10590 Spring Glory HRI 
B. oleracea capitata 7096 Filderkraut CGN 
B. oleracea capitata capitata BRA 504 De Buzan IPK 
B. oleracea capitata capitata BRA 544 Kodanske Trzni Rane 

(CSFR) 
IPK 

B. oleracea capitata capitata BRA 723 Wiener Dauer 
Weißkraut 

IPK 

B. oleracea capitata 3775 Golden Acre Early 
Ironside 

HRI 

B. oleracea capitata 4622 Cabbage (?) HRI 
B. oleracea costata 7799 Couve Murciana HRI 
B. oleracea gemmifera 2808 Brussels Sprout, 

Lenteweelde 
HRI 

B. oleracea gemmifera 10618 Brussels Sprout, Tiara HRI 
B. oleracea botrytis italica BRA 1427 Brokkoli (Irak) IPK 
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Species Subspecies Accession Name Source 
B. oleracea botrytis italica 7518 Brokkoli, (PDCTE) HRI 
B. oleracea botrytis italica 2398 Brokkoli (PDP) HRI 
B. oleracea botrytis italica 4707 Calabrese HRI 
B. oleracea acephala 

sabellica 
BRA 1008/79 Grünkohl (DDR) IPK 

B. oleracea sabellica  Frostara Cultivar, 
KK 

B. rapa pekinensis 13444 Chinese cabbage BAZ 
B. rapa narinosa 15407 unknown GI 
B. rapa pekinensis G 454 Chinese cabbage 

´Granat` 
Cultivar, 
unknown 

B. rapa rapa G 684 ´Runde weiße 
rotköpfige 
Herbstrüben` 

Cultivar, 
unknown 

B. rapa oleifera annua  ´00-Sommerrübsen` NPZ 
B. rapa oleifera biennis Q3F Q3F NPZ 
B. rapa pekinensis M241 Chinese cabbage ´Pe 

Tsai` 
GI 

B. rapa unknown unknown unknown KWS 
B. rapa oleifera annua unknown Nokonova Cultivar, 

KWS 
B. rapa oleifera hiemalis unknown Buko Cultivar, 

KWS 
Abbreviations: BAZ: Gene Bank of the Federal Centre for Breeding Research on Cultivated 
Plants, Braunschweig, Germany; CGN: Centre for Genetic Resources, Wageningen, 
Netherlands; GI: Department of Plant Breeding, Research Centre for Biosystems, Land Use 
and Nutrition, Giessen, Germany; HRI: Horticulture Research International Genetic 
Resources Unit, Warwick, UK; IPK: Institute of Plant Genetics and Crop Plant Research, 
Gatersleben, Germany; NIV: Genebank of the NI Vavilov Institute of Plant Industry (VIR), 
St. Petersburg, Russia; NPZ: Norddeutsche Pflanzenzucht Hans-Georg Lembke KG, 
Hohenlieth, Germany; KK: Bruno Nebelung GmbH & Co. KG, Kiepenkerl Pflanzenzüchtung, 
Everswinkel, Germany; PDCTE: Precoce Di Calabria Tipo Esportazione; PDP: Picolini Di 
Palermo 

 

With the exception of one trial, there was a highly significant negative correlation between V. 

longisporum resistance levels, assessed via calculation of AUDPC values from symptom 

scores, and the effect of infection on plant height, expressed as normalized plant height, with 

correlation coefficients ranging from -0.60 to -0.95. An example is shown in Figure 2.3. 

Interestingly, a relatively weak significant relationship between AUDPCnorm. values and the 

normalized plant height (r = -0.40) was found in a trial where only rapa accessions were 

tested for their resistance response.  
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Fig. 2.3. Relationship between V. longisporum resistance levels in B. napus accessions, 
assessed by calculation of AUDPC values from symptom scores, and the effect of an infection 
on plant height, expressed as normalized plant height. Data of the 22nd screening run are 
shown, carried out from 13.11. – 21.12 2006.  

 

Field resistance tests 

Following the resistance screening in the greenhouse, selected accessions of B. napus were 

tested under field conditions. After harvest, stubble samples were collected randomly from 

each plot and scored with regard to the abundance of microsclerotia. Average disease 

incidence (DI) and disease severity (DS) values were calculated from scores obtained in all 

three years of field experiments. In parallel, those accessions which were to be evaluated in 

the field were tested again in one screening run in the greenhouse.  

In the year 2004/05, the majority of the eight cultivars tested exhibited a moderate disease 

level with DI values ranging from 40 to 60% and DS varying from 1.66 (´Smart`) to 2.0 

(´Express`, ´Mohican`,´ Talent`) on the scale from 0 to 4. While cultivar ´Elektra` exhibited a 

very high disease level with a DI of up to 92% and a DS of 2.12, cultivar ´Oase` by far 

showed the lowest infestation level with a DI between 8 and 22% and a DS of 1.24 (Fig. 2.4).  



Chapter 2 Identification of resistance sources  

 - 27 - 

Cultivars

Elektra Express Falcon Mohican Oase Smart Talent Trabant

D
is

ea
se

 in
ci

de
nc

e

0

20

40

60

80

100

D
is

ea
se

 s
ev

er
ity

0

1

2

3

a A

abc

AB

bc

AB
ab

AB

d

C

c

B abc

AB

abc

AB

Cultivars

Elektra Express Falcon Mohican Oase Smart Talent Trabant

D
is

ea
se

 in
ci

de
nc

e

0

20

40

60

80

100

D
is

ea
se

 s
ev

er
ity

0

1

2

3

a A

abc

AB

bc

AB
ab

AB

d

C

c

B abc

AB

abc

AB

Fig. 2.4. Disease incidence (black) and disease severity (grey) of different winter oilseed rape 
cultivars on a site that has been artificially inoculated before sowings (Große Lage, 
Goettingen). Columns and whiskers represent mean values and standard deviations from 50 
plants of each cultivar. Data with the same letters do not differ on a significance level of p ≤ 
0.05 (LSD). 

 

The following season (2005/06) was characterized by a generally low infestation level, with 

the exception of the site at Fehmarn, a site known for its long tradition of oilseed rape 

growing. Because the tested accessions showed only poor differentiation with regard to the 

disease severity levels, only the disease incidence values will be considered in the following 

part.  

The locations Futterkamp, Thuele and Goettingen exhibited DI levels ranging from 0 to 40 %. 

By contrast, the DI reached values of up to 94% in Fehmarn. The reference varieties 

possessed DI values as expected from the results of previous greenhouse tests with the 

exception of cultivar ´Laser` which showed a low infestation level in Futterkamp and cultivar 

´Lion` possessing a relatively high DI level in Thuele. Most of the five accessions (SEM 1, 

SEM 4, DSV 4-06, and KWS 28) possessing AUDPCnorm. values significantly lower than 

´Express` under standardized conditions also showed comparatively low disease levels in the 
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field. However, at each site the other of these promising accessions, with the exception of SW 

1, exhibited DI values unexpectedly high (Table 2.6). 

In 2006/07 the incidence of V. longisporum in Thuele was nearly zero. Hence, this site was 

not included in further analyses. Contrary to the previous year, accessions showed a good 

differentiation with regard to disease severity. In Goettingen, the infestation turned out to be 

on a low to moderate level with a DI varying from 4 to 64% and DS values ranging from 1.08 

to 2.31. While the disease level was already fairly high in Rostock (DI: 20 – 94%, DS: 1.16 – 

2.52) the degree of infestation revealed to be extremely high in Fehmarn with the DI being 

86% at minimum and reaching 100% in six accessions. Accordingly, the disease severity 

ranged from 1.93 to 3.05. Similar to observations in 2005/06, some of the accessions which 

performed extremely well in the greenhouse test also showed enhanced resistance levels in the 

field, however this coherence was less pronounced under the high disease pressure in 

Fehmarn. On the other hand, some accessions exhibited low disease levels in all three field 

experiments but not under greenhouse conditions, namely accessions SEM 05019, SEM 

05027 and DM 120.05 as well as the reference variety ´Oase`. Others (KWS 66, SRG 2, SRG 

1, and NPZ 4) did exhibit high resistance at sites with lower infestation levels, such as 

Goettingen and Rostock, but did not so in Fehmarn or in the greenhouse (Table 2.7).  

 

Comparison of results from resistance tests in the greenhouse and in the field 

Regression analyses of phenotype data obtained in greenhouse experiments and disease levels 

determined in the field showed no statistically significant relationship, neither between 

greenhouse and field data nor between results of different field sites. The coefficient of 

determination ranged from 0.0002 to 0.1529 in the season 2005/06 and 0.0012 to 0.1243 in 

2006/07. Only regression analyses between data from Goettingen and Fehmarn in 2006/07 

showed a slightly positive correlation with r = 0.55. The possible reasons for these findings 

will be discussed later. 
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Disease development in the field 

The occurrence and systemic spread of V. longisporum in different cultivars and accessions 

after artificial soil infestation was followed with ELISA analysis of samples taken in the 

course of the vegetation period during two years of field experiments (2004-2006). 

In the year 2004/05, in samples taken between autumn and the next following June no 

Verticillium antigens were detected. It was not before July (GS 89) that the first verifiable 

amounts of the fungus were found in both root and shoot tissues. Four weeks later, at harvest 

time, substantial colonization, particularly of the shoots, was observed. Cultivar ´Oase` which 

showed by far the lowest disease level with respect to incidence and severity, also possessed 

the lowest amounts of Verticillium protein in the shoots. However, this was not confirmed 

statistically in comparison to cultivars ´Talent`, ´Trabant`, ´Falcon`, and ´Elektra` (Figure 

2.5). 

 

 
Fig. 2.5. Colonization of roots (dotted bars) and shoots (black bars) of different winter oilseed 
rape cultivars by V. longisporum as detected by ELISA in plant samples from the field taken 
in July and August 2005 after artificial infestation of the soil before sowing in 2004. Sampling 
time point (STP) 1 = 14th July (GS 89), STP 2 = 2nd August (harvest). Columns and whiskers 
represent the mean and standard deviations of five samples of two repetitions each; the 
experiment was conducted in Goettingen, Germany. 
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In line with the low infestation level determined by visual scorings in the season 2005/06, 

substantial amounts of V. longisporum in root and shoot tissues were not detected until 

harvest (1st August, GS 99). The amount of fungal protein in the shoots ranged from 0.02 µg / 

g dry weight (dw; DSV 2-06) to 374.43 µg / g dw (NPZ 2). In the roots values reached up to 

66.62 µg / g dw (SRG 16). Accessions which showed a mean disease incidence below 10% 

(DSV 1-06, DSV 3-06, DSV 4-06, KWS 13, SEM 1) at this site (Goettingen) also exhibited a 

limited colonization by the fungus with fungal protein amounts less than 10 µg / g dw; 

however, regression analyses comprising all accessions tested did not show a statistically 

significant relationship between disease incidence values assessed via visual scorings and the 

extent of colonization measured by ELISA after harvest (Table 2.5). 

 

Tab. 2.5. Colonization of roots and shoots of different winter oilseed rape accessions by V. 
longisporum as detected by ELISA in plant samples collected at harvest time in summer 2006 
from a field artificially infested before sowings in 2005. Data represent means of five samples 
from two replicates each. Standard deviation is shown in brackets. The experiment was 
conducted on an experimental field in Goettingen, Germany. Accessions with a disease 
incidence level below 10% are highlighted in light grey. 

µg protein / g dry weight 
Accession 

Shoot tissue Root tissue 

DSV 2-06 0.02  (± 0.02)  0.03  (±  0.01)  

Lion 0.02  (± 0.00)  0.03  (±  0.00)  

DSV 3-06  0.33  (± 0.46)  2.56  (±  3.59)  

NICK Ontario 0.45  (± 0.58)  0.03  (±  0.01)  

KWS 13  0.67  (± 0.88)  0.05  (±  0.06)  

Smart 2.17  (± 3.07)  1.18  (±  1.49)  

Express 2.27  (± 3.21)  1.07  (±  1.49)  

WVB 27 3.78  (± 5.34)  4.16  (±  2.08)  

DSV 1-06 3.88  (± 5.47)  3.17  (±  4.45)  

DSV 4-06  4.46  (± 6.18)  8.38  (± 11.64)  

KWS 25 4.71  (± 5.55)  8.78  (±  3.76)  

SYN 2 4.79  (± 6.71)  0.85  (±  0.50)  

NPZ 4 4.93  (± 6.97)  7.31  (± 10.29)  

SEM 1 5.28  (± 7.19)  2.77  (±  3.77)  

Falcon 5.58  (± 7.77)  2.88  (±  4.07)  

SEM 3 6.04  (± 2.06)  2.73  (±  2.40)  

KWS 39   8.47  (± 11.73)  1.42  (±  1.75)  
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µg protein / g dry weight 
Accession 

Shoot tissue Root tissue 

WVB 26 9.86  (± 6.51)  39.08 (± 51.19)  

NPZ 1  11.86 (± 16.72)  5.50  (±  7.54)  

SRG 38 14.94 (± 10.57)  3.83  (±  1.16)  

NPZ 3 22.16 (± 28.48)  7.13  (±  5.93)  

SRG 26 23.52 (± 32.62)  4.99  (±  6.94)  

SYN 5 24.67 (± 30.19)  28.94 (± 36.18)  

SYN 4 26.16 (± 24.69)  32.55 (± 42.74)  

WVB 28 31.53 (± 23.15)  5.01  (±  1.83)  

SEM 2 31.87 (± 29.73)  22.90 (± 28.00)  

Laser 33.57 (± 03.08)  6.53  (±  0.32)  

NICK LBN 107 37.38 (± 44.96)  19.43 (± 19.63)  

SEM 4 41.25 (± 58.34)  7.70  (± 10.66)  

KWS 28 46.18 (± 65.30)  7.39  (± 10.36)  

SYN 3  54.74 (± 32.95)  14.38 (±  9.34)  

SRG 17 71.34 (± 85.36)  23.12 (±  7.18)  

SRG 16 167.17 (± 210.19)  66.62 (± 26.54)  

SYN 1 179.50 (± 253.83)  8.98  (± 12.46)  

NPZ 2 374.43 (± 373.81)  21.44 (± 19.12)  

Abbreviations: DSV: Deutsche Saatveredelung Lippstadt Bremen GmbH, KWS: Klein 
Wanzlebener Saat AG, NICK: Limagrain Nickerson GmbH, SEM: Svalöf Weibull Seed 
Hadmersleben GmbH, SYN: Syngenta Seeds GmbH, SRG: Raps GbR Saatzucht Lundsgaard, 
NPZ: Norddeutsche Pflanzenzucht Hans-Georg Lembke KG, WVB: W. von Borries-
Eckendorf GmbH & Co.  

 

Discussion 

Great efforts are being made to develop oilseed rape cultivars with total or at least partial 

resistance to V. longisporum. For this purpose large populations of plant accessions and 

breeding progenies need to be screened for resistance. Evaluation of resistance response is 

usually performed either by dipping roots of young plants into a conidial suspension, followed 

by replanting in soil (Zeise, 1992; Koike et al., 1994; Subbarao et al., 1995; Zeise & 

Buchmüller, 1997; Steventon et al., 2002b; Happstadius et al., 2003; Debode et al., 2005, 

Dunker et al., 2006), or by sowing the seeds directly in soil that has been artificially infested 

with microsclerotia (Debode et al., 2005; Dunker et al., 2006). Most greenhouse resistance 
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tests described are based on a method developed by Koike et al. (1994) who compared 

different inoculation methods and described the root-dip method as producing the most 

consistent results in repeated experiments. However, this screening procedure is time 

consuming, plants have to be grown from 14 (Happstadius et al., 2003) to 30 days (Koike et 

al., 1994; Subbarao et al., 1995) before inoculation and scoring may not be performed until 

four (Koike et al., 1994), six (Subbarao et al., 1995), seven (Debode et al., 2005) or even ten 

weeks (Happstadius et al., 2003) after inoculation.  

Zeise (1992) developed a screening assay where seven to ten days-old plants were inoculated, 

with a disease evaluation 28 days post inoculation. This screening method provided consistent 

results in independent trials and is at least three weeks faster than the other assays listed 

above, therefore the greenhouse screening in this study followed the method by Zeise.  

Steventon et al. (2002b) developed an in vitro test, the so-called ´box test method`, in order to 

provide a rapid and reliable evaluation of the susceptibility of cultivars of B. napus to 

Verticillium wilt. Besides being in good accordance with the root-dipping method when run in 

parallel, the in vitro test was 3.5 times faster than the original root-dip method which did not 

allow for a disease rating until 12 weeks after sowing (Koike et al., 1994). Thus, disease 

rating was already possible at 25 dpi. An adaptation of this method is described by Debode et 

al. (2005). The ‘box-test’ method does not have a distinct advantage over the Zeise method 

with regard to the time required. However, it would have been impracticable to screen such 

high numbers of accessions as was necessary in our studies (60 to 70 genotypes per run) 

under sterile conditions. This again made the method developed by Zeise the preferable one 

for the purposes of this work. However, because the root dip inoculation method requires root 

damage and the use of high spore inoculum (Heale, 2000) this method a priori does not allow 

to differentiate for resistance mechanisms at the level of root penetration, since the pathogen 

may invade the plant xylem by wounded roots. However, according to Pegg & Brady (2002) 

who reviewed the comprehensive body of literature on vascular wilts, there are no reports on 

total resistance to infection. Thus, plant/Verticillium spp. pathosystems with monogenic 

and/or polygenic resistance obviously share the general feature to allow at least limited fungal 

root or hypocotyl colonization, regardless whether the roots have been damaged before 

infection or not. While wounds are not essential for invasion by V. longisporum and most 

other vascular pathogens, the provision of wounded roots in the screening assay at least 

improves the uniformity of disease development and may thus be equally important as a 

controlled environment during the screening procedure (Walker, 1965).  
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By using the root dip inoculation method the initial phases of the disease can be recorded and 

highly susceptible genotypes can be eliminated at an early stage. On the other hand, resistant 

plants can be vernalized and then be allowed to continue to grow under greenhouse conditions 

for evaluation as mature plants. This also allows for the development of seeds for progeny 

tests. This approach is of particular interest if only a limited number of seeds is available, for 

example during the evaluation of newly resynthesised B. napus genotypes in which resistance 

to V. longisporum has been introduced from B. oleracea, as was done with the help of some 

of the accessions tested in this study within the scope of a project cooperation with the 

Institute of Plant Breeding of the Justus-Liebig-University of Giessen and the Association of 

German Plant Breeders e.V. (GFP; Rygulla et al., 2007b), and also in a study of Happstadius 

et al. (2003).  

Brassica species within the gene pool of B. napus, B. oleracea and B. rapa show a large 

variation in resistance to V. longisporum. Using a mixture of isolates VL 40 and VL 43, a 

severe disease progression was induced in most B. napus and B. rapa accessions. Thus, after 

two weeks, infected plants showed yellowing of leaves, the occurrence of black veins and a 

distinct growth reduction. Particularly in the B. rapa germplasm very few genotypes (12.5 %) 

exhibited a resistance level significantly higher than that of the relatively tolerant reference 

cultivar ´Express` (Happstadius et al., 2003). This latter finding is confirmed by results of Yui 

et al (1985) who, by testing the resistance to Verticillium of several B. rapa accessions, 

demonstrated that most of the genotypes were highly susceptible and only a few cultivars of 

the Kanamachi varietal group of B. campestris var. rapifera showed almost no symptoms. In 

the present studies, resistance screening of B. rapa accessions resulted in the identification of 

two accessions (13444 and G545) of the cultivar group pekinensis with moderate resistance to 

V. longisporum (see also Rygulla et al., 2007a).  

By comparing inoculated plants of B. napus cultivar ´Express` with a collection of 33 cabbage 

accessions, several accessions with a high level of resistance to Verticillium were identified, 

meaning that plants exhibited only faint or even no symptoms after infection. This result is 

consistent with earlier findings of Happstadius et al. (2003) who tested several B. oleracea 

and wild species accessions, as did Debode et al. (2005) and Zeise & Buchmüller (1997) who 

identified B. oleracea and B. carinata as the most resistant species when compared with B. 

napus, B. rapa, B. nigra, and B. juncea. Contrary to this, Subbarao (1994) described bok 

choy, Chinese cabbage, cabbage and especially Brussels sprout to be susceptible to 

Verticillium. Again in other investigations even highly infested commercial broccoli fields 

remained unaffected (Koike et al., 1994). These contradictory results probably derive from the 
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fact that each group assumably used different V. longisporum isolates, potentially from 

distinct geographical regions and therefore representing special features of their origin. 

However, according to Happstadius et al. (2003), the Brassica C genome is most likely to 

contain resistance trait(s) to V. longisporum. Thus, resistance of Chinese cabbage (B. oleracea 

L. var. capitata) is reported to be inherited in a dominant manner mediated by multiple genes 

(Kemmochi et al., 2000). Further possible sources of resistance to the pathogen are Brassica 

wild species, like B. cretica, B. incana, B. insularis, and B. villosa. However, until now, no 

higher levels of resistance have been detected in these ancient varieties (Happstadius et al., 

2003).  

The infection progress of V. longisporum in the field is characterized by an extended latency, 

as was documented by ELISA. Thus, although it has been shown that infections do occur in 

autumn (Zeise & Seidel, 1990), the fungus seems to persevere in the hypocotyl and lower 

stem part with very little fungal biomass and it is not until the beginning of plant senescence 

that the fungus spreads systemically and produces substantial biomass, together with the 

appearance of first visible symptoms. These characteristics of the disease dynamics of V. 

longisporum in winter oilseed rape have already been described by other authors (Wolf & 

Weinert, 2003; Steinbach et al., 2005; Dunker et al., 2006). The fact that initiation of 

flowering is a critical period for disease progression in the Verticillium pathosystem has 

already been reported for Arabidopsis thaliana (Steventon et al., 2001; Veronese et al., 2003) 

and Solanum tuberosum. Early maturing potatoes generally showed a higher susceptibility to 

Verticillium (Nachmias et al., 1990; Jansky & Rouse, 2000; Simko et al., 2004b). According 

to these observations the low disease scores of winter oilseed rape cultivar ´Oase` might not 

be due to real resistance or tolerance but to the late ripening type of this cultivar (Federal 

Cultivar List of the ´Bundessortenamt`, 2007). This assumption is supported by the fact that 

the cultivar ´Oase` exhibits only moderate resistance under greenhouse conditions (data not 

shown).  

This again shows that results obtained in the greenhouse may not be easily transferred to the 

field situation. Factors such as the ripening behaviour of particular genotypes, which is not 

considered in a greenhouse assay, may interfere with mechanisms that govern the resistance 

response of the plant. In general, the fact that environmental factors commonly influence the 

rate and degree of disease development is well established. Furthermore, it is recognized by 

many breeders that the expression of resistance may also be enhanced by one or another 

external factor to which a breeding population is exposed (Walker, 1965). For example, in 

early investigations on the effect of environmental conditions on the resistance of cabbage to 
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yellows caused by Fusarium oxysporum var. conglutinans (Walker & Smith, 1930) it has 

been shown that at a constant soil substrate temperature of 24°C, all susceptible and 

multigene-resistant plants became diseased, while those ones homozygous or heterozygous 

for monogenic resistance survived. If the temperature rose much above 24°C, even 

monogene-resistant plants succumbed to root decay and if it was much lower than 24°C, some 

multigene-resistant plants survived (Walker, 1963). 

In the present studies, regression analysis of the results obtained under greenhouse conditions 

showed no correlation with field resistance tests of individual experimental sites nor with the 

average of all locations in both years of field experiments (r = 0.014 to 0.391). The possible 

reasons for this are manifold. On the one hand this might be due to an uneven distribution of 

inoculum at different field sites. This may have been the case in Thuele and Fehmarn with 

extremely low or high infestation levels in 2006/07, respectively, or even in one field, which 

in turn might lead to sporadic infection levels. The latter was especially true for single 

repetitions in Futterkamp and Thuele in 2005/06, leading to an extremely high standard 

deviation (Table 2.6). Even artificial inoculation, as performed on the Goettingen field site, 

did not guarantee for homogenous infection. This may be considered a general constraint in 

field testing against soilborne pathogens and thus the tolerance or susceptibility of an 

accession might be over- or underestimated.  

To our knowledge, only limited investigations have been carried out up to now regarding the 

occurrence of pathotypes differing through their geographic origin. Both isolates used in the 

greenhouse test constitute strains which have been isolated from diseased plants in the field 

and have been proven to be highly aggressive to Brassica species in several tests (Zeise & 

von Tiedemann, 2002a, b). A varying degree in aggressiveness of particular strains due to the 

geographic origin may additionally interfere with the field testing of different genotypes at 

various locations. However, because in most cases a mixture of isolates is present in one 

particular area, this probably plays a secondary role.  

The poor correlation between greenhouse screening and field resistance testing may also be 

due to several different resistance mechanisms acting under different conditions, as has been 

observed for Phoma lingam (Koopmann, personal communication). Whereas in the 

greenhouse the resistance test is performed by a crude inoculation of seedlings, and though 

infections in the field already occur in autumn, however, V. longisporum exhibits only 

restricted growth throughout most time of its lifecycle in the plant and it is not until late 

developmental stages (GS 89) that the fungus can be detected by ELISA. Thus, different 

defence mechanisms might possibly take effect under natural conditions. However, in both 
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the greenhouse and the field, defence mechanisms appear to become operative only after the 

pathogen has infected the plant and colonized the xylem, demonstrated by the fact that the 

fungus is placed directly into the vascular system during the greenhouse test and that the 

pathogen spreads slower and less extensively in less susceptible plants in the field (Figure 

2.5).  

Finally, the lack of homogeneity of the plant material tested may play a role. The reference 

cultivars were genetically largely homogenous and showed a consistent response to infection 

with V. longisporum, albeit the cultivars ´Lion`, ´Express`, and ´Smart` in 2005/06 and 

´Express`, ´Falcon`, and ´Laser` in 2006/07 did not differentiate in the field as distinctly as 

compared to the greenhouse tests. On the other hand, the degree of homogeneity in the 

breeding accessions was unknown. Assuming a lower homogeneity in this material might 

explain the variability in the test results. Despite the poor correlation between the greenhouse 

and field resistance trials, several genotypes were identified with equally high levels of 

resistance in both test systems (SEM 1, SEM 4, DSV 4-06, KWS 28, KWS 39 in 2005/06; 

WVB 3, SRG 4, Car 321.04, DSV 4 in 2006/07). Particularly with SEM 1 and WVB 3 two 

genotypes were identified showing an extremely high resistance in the greenhouse screening 

and in all field trials.  

According to Debode et al. (2005), differences in susceptibility of selected cauliflower 

cultivars (B. oleracea var. botrytis) were related to differences in the presence of V. 

longisporum in the plant. On the basis of re-isolation studies, it was concluded that in 

cultivars with higher resistance the ascent and proliferation of the fungus was somehow 

limited. The phenomenon of restricted fungal growth in less susceptible plants is known from 

other vascular pathogens such as V. dahliae in cotton (Garber & Houston, 1966; Garas et al., 

1986; Wilhelm et al., 1970, 1974) or Fusarium oxysporum in different host plants (Beckman, 

1987). Consequently, resistance seems to depend on the rate and extent of defence responses 

within the vascular system of the host (Beckman, 1990). Further studies on the mechanisms 

which might operate to restrict the fungal spread in Brassica are presented in Chapter 4.  

Summing up these considerations, the results of this study reveal that although the root-dip 

inoculation method is an efficient and fast tool to characterize the response of Brassica 

genotypes to V. longisporum under greenhouse conditions, this assay has not proven to be 

sufficient as an isolated screening test method to verify responses under field conditions. 

Thus, in order to identify resistant genotypes under field conditions, a combination of 

greenhouse screening and ensuing resistance tests in the field on several locations is 
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indispensable. The combination of these two methods, however, appears to be a powerful and 

reliable approach in the practical selection of resistant breeding lines.  
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Chapter 3: Differential interactions of Verticillium longisporum and V. 

dahliae with Brassica napus detected with molecular and histological 

techniques*  
 

*) Parts of this chapter have been published in: C. Eynck1, B. Koopmann1, G. Grunewaldt-

Stoecker3, P. Karlovsky², A. v. Tiedemann1 (2007) Differential interactions of Verticillium 

longisporum and V. dahliae with Brassica napus detected with molecular and histological 

techniques. European Journal of Plant Pathology 118, 259-274 

 
1Plant Pathology and Plant Protection Division, Department of Crop Sciences, Faculty of Agriculture, 

Georg-August University Göttingen, Grisebachstraße 6, D-37077 Göttingen, Germany 

² Molecular Phytopathology and Mycotoxin Research Division, Department of Crop Sciences, Faculty 

of Agriculture, Georg-August University Göttingen, Grisebachstraße 6, D-37077 Göttingen, Germany 
3 Institute for Plant Diseases and Plant Protection, University of Hannover, Herrenhäuser Strasse 2, D-

30419 Hannover, Germany 

 

Introduction 

Verticillium wilt on oilseed rape (Brassica napus L. spp. oleifera) is caused by the host- 

adapted, near-diploid fungus Verticillium longisporum (Karapapa et al., 1997b; Zeise & von 

Tiedemann, 2001, 2002). The growing area of rapeseed cultivation and the relatively intense 

crop rotation has rendered this disease an increasing threat to oilseed rape (OSR) production 

particularly in Europe (Krüger, 1989; Zielenski & Sadowski, 1995). In Sweden, Verticillium 

wilt is known to cause economic losses of OSR since the 1960s (Svenson, & Lerenius, 1987) 

and has become a significant problem since the 1970s (Dixelius et al., 2005). In the main 

cropping areas for winter OSR in Germany, the occurrence of V. longisporum has increased 

rapidly since the mid 1980s (Daebeler et al., 1988; Zeise & Seidel, 1990; Günzelmann & 

Paul, 1990). For both winter and spring type OSR, breeding for resistance has been severely 

hampered by the absence of sufficient resistance in commercially available breeding material, 

however, recently, some promising genotypes of cabbage (B. oleracea) with enhanced 

resistance were identified (Happstadius et al., 2003; Dixelius et al., 2005).  

A closely related species to V. longisporum is V. dahliae. This ubiquitous soilborne fungus 

causes wilt diseases on many economically important crops, including cotton, cucurbits, 

alfalfa, sunflower, eggplant, mint, strawberry, tomato and potato (Domsch et al., 1980; 

Schnathorst, 1981; Pegg, 1984; Subbarao et al., 1995; Bhat & Subbarao, 1999). A 
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differentiation of long-spored Verticillium isolates collected from horseradish, classified as 

Verticillium dahliae var. longisporum, was first made in the early 1960s (Stark, 1961), until 

the detailed description of distinct morphological, physiological and molecular traits led to the 

proposition of treating V. longisporum as a distinct species (Karapapa et al., 1997b). 

Nonetheless, there is still controversy concerning the taxonomy of V. longisporum as a 

separate host-specific species of Verticillium (Fahleson et al., 2004). Thus it has been reported 

that Brassica crops can occasionally host short-spored Verticillium isolates (Collins et al., 

2003) and that V. longisporum is able to infect plant species outside the Brassicaceae family 

(Fahleson et al., 2003; Johansson et al., 2005). Additional confusion has been caused by some 

misidentification of the two species. In several studies, V. dahliae has been regarded to be the 

causal agent of Verticillium wilt in Brassica crops (Xiao & Subbarao, 2000; Söchting & 

Verreet, 2004) or on horseradish (Babadoost et al., 2004), without considering that long-

spored isolates may have been involved.  

The host range, epidemiology and infection process on various hosts of V. dahliae have been 

intensely investigated in previous works (Schnathorst, 1981; Beckmann, 1987; Gold et al., 

1996; Rowe & Powelson, 2002). After germination of microsclerotia which is inducible by 

the root exudates of host plants (Mol & Scholte, 1995), the fungal hyphae reach the root 

surface, penetrate the epidermal cells, transverse the root cortex and enter the immature xylem 

elements (Beckman, 1987). Most of the time of its life cycle V. dahliae is constricted to the 

vascular system, which is a nutrient-limited environment containing low amounts of sugars, 

inorganic salts, and amino acids, to which the fungus is well adapted (Wood, 1961; Dimond, 

1970; Dixon & Pegg, 1972; Green, 1981; Pegg, 1981, 1985; Van Alfen, 1989). In this liquid 

environment V. dahliae exhibits both hyphal and a “yeast-like” growth, producing conidia 

budding directly from hyphae, or formed on short phialides (Buckley et al., 1969). With the 

transpiration stream the released conidia are carried upwards in the vascular elements where 

they are eventually trapped in bordered pits or at vessel end walls. Colonization proceeds by 

formation of germ tubes which penetrate into the upstream vessel elements where new conidia 

are produced (Beckman, 1987; Gold et al., 1996). In the later stages of the disease cycle, as 

the foliage begins to senesce, the pathogen enters a limited saprophytic growth phase in which 

microsclerotia are formed in the dying stem parenchyma, thus having a critical role as the 

primary source of disease in the field (Schnathorst, 1981; Neumann & Dobinson, 2003).  

Currently, little is known about the infection patterns of both V. longisporum and V. dahliae 

on roots of B. napus. In order to visualize their colonization of the oilseed rape rhizosphere by 

confocal laser scanning microscopy (CLSM), we used the green fluorescent protein (GFP) 
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from the jellyfish Aequorea victoria (Chalfie & Kain, 1998; Tsien, 1998) to label both V. 

longisporum and V. dahliae. Since the first report on the use of GFP as a vital marker in plant-

pathogen-interaction studies (Spellig et al., 1996), the GFP transformation has become a 

common tool in the analysis of various fungal/fungus-like plant pathogens (Lorang et al., 

2001). As a particular advantage of the method, plant infection and colonization of GFP-

expressing fungi can be followed by fluorescence microscopy in intact plant tissues or tissue 

sections without requiring cofactors or substrates (Horowitz et al., 2002; Shan & Godwin, 

2004; Bolwerk et al., 2005).  

In the present study the GFP-labelling was compared with a technique combining 

conventional fluorescence staining with confocal microscopy. We describe (i) the 

Agrobacterium tumefaciens mediated transformation of both V. longisporum and V. dahliae 

resulting in stable expression of GFP, (ii) compare the suitability of the GFP reporter gene 

technique with classical fluorescence staining and (iii) describe new aspects in the early and 

advanced stages of V. longisporum and V. dahliae on the roots and in the vascular system of 

oilseed rape. The microscopical results are further supported by the documentation of disease 

development by real- time PCR analysis of fungal DNA.  

 

Materials and Methods 

Plant material 

The susceptible winter oilseed rape variety ‘Falcon’, supplied by Norddeutsche Pflanzenzucht 

Hans-Georg Lembke KG (NPZ), was used in this study. Seeds were double surface-sterilized 

by sequential immersion in 70% ethanol for 2 min and 1% sodium hypochlorite containing 

0.1% Tween-20 for 15 min under constant shaking (Zou et al., 2004). Subsequently, seeds 

were washed two times with autoclaved tap water. 

 

Fungal isolates 

Verticillium longisporum isolate VL 43 from Brassica napus and Verticillium dahliae isolate 

VD 73 (vegetative compatibility group 2B) from Linum usitatissimum were used throughout 

this work. Both isolates originated from hosts grown in the North of Germany (Zeise & von 

Tiedemann, 2001; Zeise & von Tiedemann, 2002 a; Zeise & von Tiedemann, 2002 b). Long-

term storage was performed as conidial suspensions in a concentration of 1-3 x 106 conidia 

mL-1 in Czapek Dox medium supplemented with 25% glycerol at –80°C. For propagation, 

droplets of these suspensions were plated onto potato dextrose agar (PDA) and incubated for 

14 days at 23°C in the dark. Spores were obtained by gently flooding the dishes with 0.9% 



Chapter 3 Interaction studies  

- 46 - 

NaCl solution (modified according to Melouk, 1992). Inoculum for root dip inoculation was 

produced by adding 500 µL of the spore stock solution to 250 mL potato dextrose broth 

(PDB). The cultures were subsequently incubated for 7 days at 23°C on the rotary shaker. The 

resulting suspension was filtered through sterile gauze. Spore concentration was determined 

with a haemocytometer and diluted to 1 x 106 spores mL-1.  

 

Bacterial vector strain 

Escherichia coli strain DH5α (Hanahan, 1983) was used during construction and maintenance 

of plasmids. Agrobacterium tumefaciens strain AGL-1 (Lazo, Stein & Ludwig, 1991) was 

kindly provided by Dr. Susanne Frick, Leibniz Institute of Plant Biochemistry, Halle/Saale. 

This strain carries the hypervirulent Ti helper plasmid pTiBo542ΔT which lacks one border 

sequence and thus an intact T-DNA region (Hood et al., 1986; Komari, Halperin & Nester, 

1986; Lazo et al., 1991). For the transformation of plants or fungi, this strain has to carry a 

binary vector in which the T-DNA is defined by both left and right border sequences (Bevan, 

1984). Short-term storage of the Agrobacterium cells was performed on solid LB (Luria 

Bertani) medium (Maniatis, Fritsch & Sambrook, 1982), supplemented with 25 µg mL-1 

rifampicin and 50 µg mL-1 carbenicillin at 4°C. Cells were stored long term as 

electrocompetent cultures in the freezer at –80°C. 

 

Binary vector construction 

The binary vector used in this study was constructed on the backbone of pPK2 (Covert et al., 

2001). A fragment of about 2.9 kb of gGFP (Maor et al., 1998), containing the sgfp gene 

driven by the Aspergillus nidulans promoter and terminated by the Aspergillus nidulans trpC 

terminator (Punt et al., 1987), was isolated by digestion with XbaI and EcoRI. sGFP is a 

variant of GFP carrying S65T mutation, which was constructed with the goal to improve 

optical properties of GFP expressed in plants and proved superior to wildtype GFP when 

expressed in fungal mycelium (Maor et al., 1998).  

In two different reactions the plasmid pBluescript-SK- (Acc. No. X52330, Short et al. 1988) 

was digested on the one hand with the restriction enzymes AflIII and XbaI and on the other 

hand with AflIII and EcoRI, leading to fragments of 450 bp and 2.5 kb size, respectively. 

These fragments were ligated with the XbaI/EcoRI fragment from gGFP in a triparental 

ligation, resulting in the plasmid pBS::gpd::sgfp. Subsequently, the sGFP expression cassette 

was removed from pBS::gpd::sgfp again by digesting with XbaI and HindIII, which is located 

downstream to the EcoRI site. The resulting fragment was inserted into the corresponding 
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XbaI/HindIII sites of pPK2. The final construct, pGV04 (Fig. 3.1), was introduced into 

Agrobacterium tumefaciens by electroporation (Wen-jun & Forde, 1989) at 2.5 kV, 400 ohms 

and 25 µF using a cuvette with a 1 mm gap between the electrodes. 

 

 

Fig. 3.1. Restriction enzyme map of pGV04, an Agrobacterium binary vector constructed on 
the backbone of pPK2 (Covert et al., 2001). The T-DNA is running clockwise from the left 
border (LB) to the right border (RB). Pgpd: Aspergillus nidulans glyceraldehydes 3-phosphate 
promoter; hph: hygromycin B resistance as a selection marker; TtrpC: A. nidulans 
transcriptional terminator. 

 

Agrobacterium- mediated transformation of V. longisporum and V. dahliae 

The Agrobacterium tumefaciens strain AGL1, containing the binary vector pGV04, was 

grown at 28°C for 48h in LB medium supplemented with rifampicin (25 µg mL-1), 

carbenicillin (25 µg mL-1) and kanamycin (50 µg mL-1). After reaching an optical density of 

OD660 = 0.6 – 0.9 bacterial cells were harvested and washed with induction medium (IM, 

Bundock et al., 1995) supplemented with 200 µM acetosyringone (AS). Subsequently, the 

bacterial suspension was diluted with induction medium to OD660 = 0.15. The cells were 

grown for an additional period of 6 – 12 h before being mixed with an equal volume of a 

spore suspension of either Verticillium longisporum isolate VL 43 or Verticillium dahliae 

isolate VD 73 (1 – 3 x 106 spores mL-1). From this mixture aliquots of 200 µl were plated on a 

cellophane membrane placed on solid cocultivation medium (same composition as IM except 

that it contains 5 mM glucose instead of 10 mM glucose) supplemented with 200 µM 



Chapter 3 Interaction studies  

- 48 - 

acetosyringone. After cocultivation at 23°C for 60h the growing fungal mycelium and the 

Agrobacteria were suspended in 0.9% NaCl solution supplemented with 200 µM cefotaxim 

(for separation from Agrobacterium tumefaciens) and plated on Czapek Dox medium 

containing hygromycin B (50 µg mL-1) as a selection agent for the transformed fungi and 

again cefotaxim (200 µM). The plates were incubated at 23°C and after 8 – 10 days discrete 

colonies developed. Each colony was checked under the fluorescence microscope and those 

showing the typical GFP fluorescence were subcultured for further studies. To determine their 

mitotic stability, all transformants were successively cultured in PDB for at least seven 

generations without supplementation of hygromycin B and checked under the fluorescence 

microscope. Throughout this subcultivation, the transformants did not show any alterations in 

growth or colony morphology compared to the wild type. 

 

In vitro root inoculation assay 

Sterilized seeds of Brassica napus cv. ‘Falcon’ were sown on a cellophane membrane placed 

on water agar in Petri dishes, preventing the roots from growing into the medium and 

therefore allowing for an undisturbed microscopic analysis of the interaction between plant 

roots and fungus. The Petri dishes were sealed with Parafilm and subjected to a light regime 

of 14/10 h (light/dark) and a temperature of 23/20°C (day/night) in a climate cabinet. This 

system kept the intact plants free from contaminations by other micro-organisms. After the 

plants had developed a well-defined root system, droplets of a spore suspension of either the 

transformed V. longisporum or the transformed V. dahliae strain were placed on the 

cellophane membrane close to the roots. 

 

Gnotobiotic sand inoculation systems 

Sterilized seeds of Brassica napus cv. ‘Falcon’ were sown in pots (7 x 7 cm) containing 

double-autoclaved silica sand resulting in two plants per pot. This system was used in order to 

provide conditions for roots approximating the unsterile situation in natural soils, but 

nevertheless enabling the harvest of complete clean roots without any adhering soil or organic 

particles. The pots were watered daily and fed two times a week with a full nutrient solution 

(“Flory Basisdünger”, EUFLOR) throughout the experiments. Plants were kept in a controlled 

environment chamber at 23/20°C (day/night) and 14-h day length (Philips TL5 HO lamps).  

Inoculations were either made by direct application of spore suspensions to the sand or by 

root-dipping. Direct inoculation was conducted one week after germination. The plantlets 

were inoculated by pouring 8 mL of a spore suspension of transformed strains of V. 
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longisporum or V. dahliae per plant on the sand surface. After inoculation, all plants were 

gently watered in order to wash the inoculum into the soil and to evenly spread the spores in 

the rhizosphere of the plants.  

Root-dipping inoculation was used in the experiments for real-time PCR analysis and the 

documentation of symptom development in the B. napus/V. longisporum and B. napus/V. 

dahliae interaction. After growing for ten days, seedlings were carefully removed from the 

sand and the roots washed gently under tap water. Inoculation was performed by dipping the 

intact roots in a spore suspension of either V. longisporum isolate VL 43 or V. dahliae isolate 

VD 73 for 30 min. Control plants were dipped in sterilized tap water for the same time. 

Subsequently, 60 plantlets of each variant (non-inoculated control, VL, VD) were transferred 

into pots with a sand:soil (1:1) mixture and grown in a climate chamber under standardised 

environmental conditions (see above).  

 

Assessment of disease development 

Tab. 3.1. Assessment key for scoring disease symptoms induced by Verticillium sp. on young 
B. napus plants inoculated in the greenhouse (following Zeise, 1992, modified). 

Score Symptom description 

1 no symptoms 

2 slight symptoms on the oldest leaf (yellowing, black veins) 

3 slight symptoms on the next younger leaves  

4 about 50 % of the leaves show symptoms  

5 more than 50 % of the leaves show symptoms 

6 up to 50 % of the leaves are dead 

7 more than 50 % of the leaves are dead 

8 only apical meristem is still alive  

9 the plant is dead 

 

Plants were scored weekly for disease symptoms using an assessment key with nine classes 

(Table 1; following Zeise, 1992, modified). Scoring was conducted weekly over five weeks. 

AUDPC values (area under the disease progress curve) were calculated from the disease 

severity values according to the following formula (Campbell & Madden, 1990): 
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Σ
i=1

n

AUDPC = (yi + yi+1 /2) * (ti+1- ti)Σ
i=1

n

AUDPC = (yi + yi+1 /2) * (ti+1- ti)
 

where yi is the disease severity value for observation number i, ti is the corresponding number 

of days post inoculation of an observation, and n is the number of observations. Statistical 

analyses were conducted using the computer software StatGraphics. Differences among 

means were tested using Fisher’s least significant difference (LSD). 

 

Staining and microscopy of inoculated plant tissue 

All microscopic investigations were conducted with GFP tagged strains. Examinations of the 

in vitro infection were started 11 h post inoculation (hpi) and continued at 12-h intervals for 

the first 4 days using different plants for each time point. Additional observations were made 

after 3 weeks in order to examine the development of microsclerotia in the root tissue. 

Examinations of plants grown in the sand system were started 24 hpi and continued at 24-h 

intervals for 7 days and at 48-h intervals in the following week. Furthermore, plants were 

investigated after 3, 4, and 5 weeks for the extent of colonization of the xylem vessels. For 

interaction studies with the sGFP tagged strains, whole roots where placed directly on glass 

slides in drops of water, covered with a cover glass, and examined. For the classical 

histological studies, whole roots or free hand made sections of roots and stems were stained 

either with 0.05% acid fuchsin (C.I. 42685, Merck; 1g 100 ml-1A. dest.) dissolved 1:10 in 

lactophenol or in a 1 % acridine orange (C.I. 46005, Merck; 0,1g 100 ml-1 A. dest.) solution in 

water. After rinsing the samples either with lactophenol or water they were mounted on glass 

slides in drops of lactophenol or water, respectively, closed with a cover slip and immediately 

examined. Observations were carried out in at least four independent experiments.  

Microscopic analyses were performed with a Leica TCS SP2 Confocal Laser Scanning 

Microscope (CLSM; Leica, Mannheim, Germany). Digital images of GFP tagged strains were 

acquired by scanning with 488 nm excitation and 520-540 nm emission filters. Settings for 

acid fuchsin fluorescence were 543 nm for excitation and 560-620 nm for emission. Digital 

images of acridine orange stained specimen were acquired by two-channel-analysis with 

subsequent drafting of an overlay (488 nm for excitation/ 500-530 nm for emission and 543 

nm for excitation/ 560-650 nm for emission). Stacks of optical sections were processed to 

maximum projections.  
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DNA extraction and real-time PCR analysis 

Ten plants from each treatment were harvested for real-time PCR analysis at weekly intervals 

from 7 dpi (days post inoculation) until 35 dpi. Hypocotyls and leaves were separated 

resulting in twenty tissue samples and PCR analyses for each treatment. Roots were not 

included in the analysis as a proper discrimination between fungal biomass in the roots from 

fungus merely attached to the root surface through inoculation is not possible.  

First, the plant tissue was ground in liquid nitrogen using a mortar and a pestle resulting in a 

fine powder. DNA extraction was conducted using the DNeasy Plant Mini Kit from Qiagen 

(Hilden, Germany). Fungal biomass was quantified by determination of fungal DNA in 

infected plant extracts with real-time PCR. Primers OLG 70 

(CAGCGAAACGCGATATGTAG) and OLG 71 (GGCTTGTAGGGGGTTTAGA) (P. 

Karlovsky, unpublished) served to multiply a fragment specific for both V. longisporum and 

V. dahliae. For amplification and melting curve analysis the iCycler System (BioRad, 

Hercules, CA, USA) was used.  

The reaction mixture consisted of NH4-reaction buffer (16 mM (NH4)2SO4, 67 mM Tris-HCl, 

0.01% (v/v) Tween-20, pH 8.8 at 25°C, Bioline, Luckenwalde, Germany), 3 mM MgCl2 

(Bioline, Luckenwalde, Germany), 0.2 mM of each dATP, dTTP, dCTP and dGTP (Bioline, 

Luckenwalde, Germany), 0.3 μM of each primer, 0.25 u BIOTaq DNA polymerase (Bioline, 

Luckenwalde, Germany), 10 nM fluorescein (BioRad, Hercules, CA, USA), 100,000 times 

diluted SYBR Green I solution (Invitrogen, Karlsruhe, Germany), 2 μl of template DNA and 

ddH2O up to 25 μl. The quantification of PCR products was performed using filters with 

optimal settings for SYBR Green I which are 490 ± 10 nm for excitation and 530 ± 15 nm for 

emission. 

PCR amplification was carried out using an initial denaturation step for 2 min at 94°C, which 

is followed by 36 reaction cycles consisting of a 20 s denaturation step at 94°C, an annealing 

step for 30 s at 59°C and 40 s at 72°C. The final elongation was performed for 5 min at 72°C. 

During the amplification process, the detection of fluorescence was carried out in the 

annealing step of each cycle. To verify amplification of the specific target DNA, a melting 

curve analysis was included. Melting curves were acquired by heating the samples to 95°C for 

1 min, cooling to 55°C for another min and then slowly increasing the temperature from 65°C 

to 95°C at the rate of 0.5°C s-1, with a continuous measurement of the fluorescence. The 

amount of DNA of V. longisporum and V. dahliae, respectively, was estimated from a 

calibration curve using increasing amounts of genomic V. longisporum DNA from 0.5 to 64.0 

pg. Preliminary studies confirmed that the amplification is not hampered by the plant matrix. 
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The concentration of V. longisporum DNA used for the construction of the calibration curve 

was estimated by densitometry of agarose gels stained with ethidium bromide, using Lambda 

Phage DNA as a standard.  

 

Results 

Disease development 

Fourteen days after inoculation, first disease symptoms appeared on V. longisporum infected 

plants, in form of chlorosis and dark coloured veins especially on older leaves (Table 2). At 

21 dpi, all plants inoculated with V. longisporum showed stunted growth and moderate to less 

severe disease symptoms. Thus, 20% of the plants had symptoms on 50 or more percent of the 

leaves. This corresponds to disease scores from 4 to 8 (see Table 3.1). In the following weeks 

the disease proceeded until 35 dpi when nearly half of the inoculated plants showed severe 

disease symptoms. Plants inoculated with V. dahliae did not express any symptoms 

significantly different from the control. Occasionally, they even looked healthier than the 

control plants. The corresponding AUDPC values were 46.6 for the control, 45.9 for V. 

dahliae and 71.1 for plants inoculated with V. longisporum.  

 

Tab. 3.2: Means of disease scores on B. napus plants inoculated with V. longisporum (+ VL) 
or V. dahliae (+ VD) compared to control plants treated with water. Standard error is shown 
in brackets. Values followed by the same letter do not differ on a significance level of P ≤ 
0.05 (LSD). For disease assessment key see table 1. 

 Time post inoculation (dpi) 

Treatment 7 14 21 28 35 

control  1.00  (± 0.00) a  1.00  (± 0.00) a  2.00  (± 0.00) a  2.40  (± 0.15) a  2.50  (± 0.17) a 

+ VD  1.00  (± 0.00) a  1.00  (± 0.00) a  2.00  (± 0.00) a  2.31  (± 0.15) a  2.50  (± 0.16) a 

+ VL  1.00  (± 0,00) a  1.42  (± 0.23) b  3.31  (± 0.27) b  3.35  (± 0.31) b  4.58  (± 0.79) b 
 

GFP expression in V. longisporum and V. dahliae 

Overall, 33 transgenic V. longisporum and 20 V. dahliae isolates were obtained. Eighty 

percent of the hygromycin B-resistant V. dahliae and 60% of the obtained V. longisporum 

isolates expressed the GFP, which was a success rate similar to reports either on 

Agrobacterium-mediated transformation (Lagopodi et al., 2002; Oren et al., 2003) or 

electroporation (Robinson & Sharon, 1999). GFP expression was generally high and uniform 

in conidia and hyphae with the exception of vacuoles that did not show any fluorescence and 

appeared as dark areas in the fungal cytoplasm (Fig. 2, A-D). In contrast to this, 
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microsclerotia did not fluoresce at all, probably because of the melanin deposited in the cell 

walls. GFP expression remained stable after successive transfers on Czapek Dox medium with 

and without hygromycin B.  

 

Suitability of GFP-tagged strains vs. classical staining methods 

In this study, we compared the suitability of tagging fungi with GFP with conventional 

fluorescence staining for plant-fungus interaction studies. Due to the fact that GFP is 

constitutively expressed in the cytoplasm of the transformed fungi, only younger hyphae show 

bright fluorescence and are thus well visible under the fluorescence microscope. This hampers 

a comprehensive analysis of all stages of colonization and infection at one particular time 

point. In order to localize the fungal structures in the plant tissue we used the overlay feature 

of the CLSM in order to generate compound images of normal transmission underneath the 

corresponding fluorescence image. The result, however, was not satisfactory and allowed only 

for a rough localization of the fungus in the plant tissue (Fig. 3.2 E, F).  

By applying acid fuchsin or acridine orange as conventional dyes we obtained a strong 

staining of all fungal structures but also a faint but distinct staining of cell walls and the 

plasma membranes allowing for accurate studies of the pathogen invading the plant tissue. As 

a further problem with the GFP samples, photobleaching occurred after repeated and extended 

scanning on the same sample sites. In general, this problem can be overcome by reducing the 

energy level of the laser; however, this option is limited by the fluorescence intensity of the 

referring object. Regarding all these facts, we concluded that the conventional staining 

techniques combined with CLSM were superior to the GFP tagging for in situ studies of 

pathogens at least in the present pathosystems and we therefore decided to continue further 

studies with fuchsin and acridinorange.  

 

Plant-pathogen interaction studies  

Spores of V. longisporum and V. dahliae started to germinate after in vitro infection 11 hpi. 

Usually, a secondary germ tube developed in opposite position to the emergence site of the 

primary germ tube. In the sand culture system, hyphae of both V. longisporum and V. dahliae 

were found 24 hpi intensely interwoven with the root hairs close to the main and lateral roots. 

A tight attachment of hyphae to the root hairs was observed at random positions along the 

root hair zone for both fungi (Fig. 3.3, A-C). The root tip was the only part of the root which 

was not colonised. At 24 hpi, V. dahliae already showed colonization of the root to a much 

lesser extent than V. longisporum and started to produce ample masses of conidia in the 
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vicinity of root hairs (Fig. 3.3, B, D). In contrast, the formation of conidia by V. longisporum 

was never observed outside the roots throughout the investigations. 

Hyphae of V. longisporum showed a directed growth on and along the root hairs towards the 

root surface. At 36 hpi, the first contacts between hyphae and the root surface were observed. 

After attachment to the root surface, hyphae of V. longisporum grew strictly following the 

grooves of the junctions of the epidermal cells. At 48 hpi, the root surface was covered with a 

closely attached hyphal net depicting the cellular structure of the root epidermis (Fig. 3.3, E). 

In contrast, growth of V. dahliae hyphae on the root surface was random not following any 

such pattern (Fig. 3.3, F).  

At 60 hpi, first penetrations of V. longisporum into the roots were observed. The fungus 

entered the root tissue by direct penetration of the epidermal cells without forming any 

conspicuous infection structures like appressoria or hyphopodia. Only slight hyphal swellings 

were formed by hyphae before entering epidermal cells (Fig. 3.4, A), probably due to the 

accumulation of cytoplasm in the hyphal tip as a response to the mechanical resistance of the 

plant tissue. Plant cell walls were perforated by a thin penetration peg. In the lumen of the 

epidermal cells, the hyphae regained their regular diameter (Fig. 3.4, B). Subsequently, 

hyphae grew intracellularly and intercellularly in the root cortex, in a more or less directed 

manner towards the central cylinder (Fig. 3.4, C). Whenever growing through cell walls, 

hyphae showed the typical sequence of swelling, constriction to a narrow infection peg and 

regaining the regular size after penetration (Fig. 3.4, D). Remarkably, the roots, although 

intensely colonised by V. longisporum, did not show any responses such as discoloration or 

necrotic lesions. Even host cells invaded by intracellular hyphae showed an intact structure of 

the cytoplasm.  

V. dahliae was also able to penetrate the root tissue, but this occurred much less frequent (Fig. 

3.4, E). In the root cortex, V. dahliae was preferentially found in the intercellular rather than 

the intracellular space (Fig. 3.4, F). Also, in the in vitro inoculation system V. dahliae started 

to produce microsclerotia already after 2 weeks. Interestingly, microsclerotia of V. dahliae 

were not formed in the roots or on the root surface but were scattered on the surrounding 

medium. In contrast, microsclerotia of V. longisporum were consistently formed in the root 

cells which were filled with microslerotia 3 weeks after inoculation.  

Colonisation of the xylem vessels of the shoot with V. longisporum started three weeks after 

inoculation. However, the fungus never managed to colonise the entire vascular system. 

Moreover, it was restricted to individual vessels which, however, were entirely filled up with 

mycelium (Fig. 3.5, A, B). Adjacent xylem vessels were easily invaded through 
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plasmodesmata (Fig. 3.5, A). Conidia were formed either by budding (Fig. 3.5, C, D) or on 

simple conidiophores (not shown). 

 

 

Fig. 3.2. Confocal microscopy image of Verticillium longisporum and V. dahliae expressing 
GFP. A. Germinating spore of V. longisporum. B. Hyphae of V. dahliae, vacuoles of fungal 
cells are visible as dark areas in the fluorescing cytoplasm. C. Mycelium of V. longisporum 
showing hyphal dimorphism with very thin and normal, vacuolated hyphae. Arrow heads 
mark areas of weak fluorescence. D. Hyphae of V. longisporum. Arrows point at a very weak 
glowing hypha. sp = conidiospore, v = vacuole. E. Fluorescence image of GFP-tagged 
mycelium of V. longisporum on a root of B. napus (48 hpi). F. Compound micrograph of 
bright field transmission and corresponding fluorescence images (same as E ). 
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Fig. 3.3. Early stages of root colonization by V. longisporum and V. dahliae on oilseed rape, 
as observed by confocal laser scanning microscopy after staining with acid fuchsin. The 
classical staining method results in a stable and homogenous bright green fluorescence of the 
entire fungal biomass and a faint background staining of the plant tissue. A – D: 24 hpi; E, F: 
48 hpi. A. Contact of hyphae of V. longisporum with root hairs. B. Intermingling of hyphae of 
V. dahliae with root hairs. Already at this stage the fungus produces spores. C. Attachment 
(arrow heads) of fungal hyphae of V. longisporum to root hairs. D. V. dahliae, production of 
conidiospores in between root hairs. E. Hyphae of V. longisporum growing along the 
junctions of the epidermal cells forming a network. F. V. dahliae growing in an undirected 
manner on the root surface of B. napus. hy = hypha, ph = phialide, r = root, rh = root hair, sp 
= conidiospore. 
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Fig. 3.4. Advanced stages of the interaction of V. longisporum and V. dahliae with roots of B. 
napus. Confocal laser scanning microscopy analysis after staining with acid fuchsin and 
acridine orange (C.). A-C, E, F = 60 hpi; D = 96 hpi. A. Hyphae of V. longisporum growing 
along a root hair towards the root surface, penetrating an epidermal cell and growing further 
into the root cortex. Asterisks mark the points of intracellular penetration through plant cell 
walls. B. Intracellular growth of V. longisporum in the root cortex. Arrow heads mark the 
plant cell wall which is penetrated two times (asterisks). After penetration, hyphae regain their 
regular diameter. C. Directed growth of V. longisporum in the root cortex towards the xylem. 
Arrow heads assign points of penetration. D. Magnified view on the penetration of a plant cell 
wall (arrow heads) by V. longisporum in the root cortex. Asterisk marks the swelling of the 
hypha before penetrating with a thin penetration peg. E. Growth of V. dahliae in the root 
cortex of B. napus. Asterisk marks a primary penetration event. F. Mainly intercellular growth 
of V. dahliae in the root cortex. cw = cell wall, hy = hypha, n = nucleus, rh = root hair, xy = 
xylem, xyp = xylem parenchyma, xysr = xylem of secondary root. 
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Fig. 3.5. Colonization of the xylem of B. napus by V. longisporum. Confocal laser scanning 
microscopy analysis after staining with acid fuchsin (21 dpi). A. Hyphae of V. longisporum in 
xylem vessels of B. napus (arrow heads). B. Colonization of a single vessel element which is 
filled with mycelium. C. Hyphae of V. longisporum in xylem vessels of B. napus. 
Proliferation of mycelium into adjacent vessels through plasmodesmata (asterisk). D. Hyphal 
growth and production of conidiospores in a xylem element. E. Conidiospores clumped 
together at the end of a tracheid. F. Conidia produced by simple conidiophores in a vessel 
element. Hy = hypha, ph = phialides, sp = conidiospores, v = vessel elements. 
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Real time-PCR analysis 

 

 

Fig. 3.6. Winter oilseed rape cultivar ´Falcon` inoculated with V. dahliae (center) and V. 
longisporum (right) compared to mock-inoculated control (left) (21 dpi).  

 

Seven days post inoculation both V. longisporum and V. dahliae were detectable in the 

hypocotyls of infected plants (Table 3.3). The amount of V. longisporum DNA was 

substantially higher than that of V. dahliae, corroborating the histological studies. The amount 

of V. longisporum continued to increase in the hypocotyl until 35 dpi, whereas V. dahliae 

remained on a very low level. In leaves, V. longisporum was first detectable in one single 

plant at 14 dpi, then slightly increased until 28 dpi, and sharply spread at 35 dpi. In contrast, 

no significant colonisation of B. napus leaves with V. dahliae was detected throughout the 

time of observation. 

 

Tab. 3.3: Detection of Verticillium-DNA with real-time PCR in tissue samples (means of the 
amount of fungal DNA in leaves and hypocotyls; + standard error) of B. napus seedlings 
inoculated with V. longisporum or V. dahliae.  

leaves hypocotyl Tissue 
 

dpi ng VL-DNA/g FW ng VD-DNA/g FW ng VL-DNA/g FW ng VD-DNA/g FW 

7  0.00 (± 0.00)  0.00 (± 0.00)  2.88 (± 0.89)  0.53 (± 0.18) 
14  0.01 (± 0.01)  0.00 (± 0.00)  9.94 (± 2.79)  0.18 (± 0.09) 
21  0.51 (± 0.29)  0.02 (± 0.02)  3.95 (± 1.65)  0.05 (± 0.02) 
28  0.59 (± 0.26)  0.01 (± 0.01)  10.41 (± 1.52)  2.62 (± 1.18) 
35  6.89   (± 5.37)  0.06 (± 0.06)  25.58 (± 6.79)  0.24 (± 0.12) 
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Discussion 

This study reports on the Agrobacterium tumefaciens mediated transformation of the 

phytopathogenic fungi V. longisporum and V. dahliae, resulting in the stable expression of 

GFP. This transformation method proved to be an effective tool to introduce foreign genes 

into the genome of Verticillium species, as indicated by the relatively high number of gained 

transformants. In comparison, attempts of a DNA-mediated transformation of V. dahliae 

spheroplasts resulted in a low transformation efficiency (Dobinson, 1994). The transformants 

obtained in this study were indistinguishable from the wild type strain concerning colony 

morphology, growth rate and pathogenicity/aggressiveness (data not shown). However, the 

transformants showed differences in the fluorescence intensity due to different levels of GFP 

expression. This may be caused by positional effects resulting from different sites of 

integration into the fungal genome. The phenomenon of older hyphae showing a reduced or 

no expression of GFP has been earlier described in studies on Leptosphaeria spp. and 

Oculimacula spp (Eckert et al., 2005). This may be due to the fact that the cytoplasm in 

senescing mycelium is translocated from the older into younger hyphae.  

In our studies we directly compared GFP fluorescence with conventional staining with a 

fluorescence dye. This analysis clearly revealed a superior performance of the applied 

fluorochromes as the entire mycelium was made visible regardless of its physiologic state. In 

addition, the faint unspecific staining of the plant tissue enabled a proper localization of the 

fungus in the host. Nevertheless, there are still several advantages in the GFP labelling of 

plant pathogens. First, GFP fluorescence requires no cofactors or substrates and allows for a 

fast processing of the plant material. Further, the risk of potential artefacts is negligible due to 

the absence of additional chemicals. This enables time-lapse observations in vivo (Lagopodi et 

al., 2001). Also, studies of pathogens in non-sterile conditions would make GFP tagging the 

preferential approach. 

There are several similarities from our microscopic studies of V. longisporum on and in B. 

napus roots with earlier reports on the infection process of V. dahliae on a wide range of host 

plants (Schnathorst, 1981; Beckmann, 1987; Gold et al., 1996). However, our studies also 

provide significant novel information about colonization and infection. This particularly 

applies to the early interaction, including recognition and first contacts between host and 

pathogen. We observed that V. longisporum initially approaches the roots by following the 

root hairs. This may be due to a stronger chemical attraction of the fungus to the root hairs 

than the root surface, as suggested in an earlier study with Fusarium oxysporum f. sp. radicis-

lycopersici on tomato roots (Lagopodi et al., 2001). Thereafter, hyphae of V. longisporum 
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attach to the root surface where they preferably spread in a typical pattern of superficial 

hyphae. Primary infection occurs either at the junctions of epidermal root cells or directly into 

epidermal cells. We never observed penetration at the very root tip or into root hairs. This is 

in contrast to a former study (Zhou et al., 2006) where infection by V. longisporum was 

primarily localized in lateral roots or root hairs. Further, there was no indication that natural 

wounds from emerging lateral roots are necessary for infection, which is in agreement with 

previous studies on GFP-expressing Fusarium oxysporum f. sp. radicis-lycopersici on tomato 

roots (Lagopodi et al., 2001) and Fusarium verticillioides on maize roots (Oren et al., 2002). 

It may therefore be speculated whether there exists a common mode of root colonization and 

infection by vascular pathogens, in which the pathogens are chemically directed to the root 

hair zone where they first attach and then penetrate directly into the epidermal cells (Oren et 

al., 2002).  

The observation that even massive inoculation with V. longisporum results in a colonisation 

merely restricted to individual xylem vessels, while others remain entirely free of the fungus, 

has not been reported so far. Nonetheless, V. longisporum was able to penetrate into adjacent 

vessels after being trapped at vessel end walls, which was similar to recent studies of V. 

longisporum (Zhou et al., 2006) and V. albo-atrum (Heinz et al., 1998), but has not been 

shown for V. dahliae so far. This partial colonisation may be an explanation for the absence of 

wilting symptoms in V. longisporum infected oilseed rape, as observed both in the greenhouse 

and in the field. However, one has to keep in mind that wilting is not only caused by the 

physical blocking of vessels but may also be induced by wilting toxins, which however are 

yet unknown for V. longisporum.  

The interaction of V. dahliae with B. napus roots completely differs from V. longisporum. The 

undirected growth of hyphae which are only loosely attached to the root surface and the early, 

massive production of conidia and microsclerotia outside the root tissue strongly suggest that 

B. napus is not a suitable host plant for V. dahliae. This colonization pattern might be the 

result of a stress or deficiency situation derived from a non-host interaction. Nevertheless, V. 

dahliae was infrequently able to penetrate and colonize the root tissue, however, it rarely 

reached the shoots or leaves as indicated by histological and real-time PCR analyses. In 

conclusion, the present results demonstrate that the poor susceptibility of B. napus to V. 

dahliae is only partly due to the restriction of penetration but mainly related to inhibition of 

systemic growth into the shoot, which is in agreement with earlier observations (Zhou et al., 

2006). While V. longisporum, upon penetration, readily spreads into the vascular system, the 

systemic growth of V. dahliae is strongly inhibited due to yet unknown factors. This kind of 
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restricted invasion of a vascular pathogen represents an interesting intermediate case of 

parasitism, as root penetration is not followed by invasive spread in the host. As disease 

symptoms are lacking, the lifestyle of V. dahliae after infection resembles an endophytic state 

and implies a systemic non-host resistance. Similarly, a restriction to the basal plant parts has 

been found with certain other wilt pathogens in plants with enhanced host plant resistance 

(Beckman, 1987).  

The mechanisms governing the expression of this specific type of non-host resistance are not 

known. Increased synthesis of the aromatic glucosinolate gluconasturtiin in the roots appeared 

to be a major factor in the active resistance response of oilseed rape against a non-pathogenic 

V. dahliae strain which failed to colonize the plant (Karapapa et al., 1997a). The pathogenic 

V. longisporum strain was either capable to suppress gluconasturtiin synthesis in roots, or 

failed to trigger its synthesis by avoiding recognition. This implies an adaptation of V. 

longisporum to oilseed rape as host, potentially by being less sensitive to this kind of host-

specific defence, as compared to V. dahliae. This is corroborated by studies in which the 

pathogenicity of V. longisporum on high and low glucosinolate producing genotypes of B. 

napus did not differ (Heale & Karapapa, 1999). Similarly, Zhou et al. (2006) did not find any 

differences in the growth of V. longisporum on agar containing plant extracts from high or 

low glucosinolate oilseed rape varieties.  

Finally, the present study provides cytological evidence that infrequent infection of oilseed 

rape with V. dahliae may occur, but a vascular colonization and disease development can be 

excluded. This finding confirms earlier studies on host range (Zeise & von Tiedemann, 2002) 

and is of importance in fields where oilseed rape is grown in rotation with susceptible hosts of 

V. dahliae like potato, strawberry or sugar beet (Pegg & Brady, 2002), and where enhanced 

soil infestation with microsclerotia from both Verticillium species may occur.  
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Chapter 4: Mechanisms involved in resistance of Brassica spp. to V. 

longisporum* 
 

*) Parts of this chapter have been submitted for publication in: Eynck, C.1, Koopmann, B.1, 

Karlovsky, P.2, von Tiedemann, A.1: Internal resistance in winter oilseed rape (Brassica 

napus L. oleifera) inhibits systemic spread of the vascular pathogen Verticillium longisporum.  
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² Molecular Phytopathology and Mycotoxin Research Division, Department of Crop Sciences, Faculty 
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Introduction 

Verticillium longisporum (ex. V. dahliae var. longisporum Stark; comb. nov. Karapapa) is a 

soilborne fungal pathogen causing vascular diseases of cruciferous plants (Karapapa et al., 

1997b; Zeise & von Tiedemann, 2001, 2002). Verticillium wilt is a novel disease on oilseed 

rape (Brassica napus L. spp. oleifera), threatening its production particularly in the northern 

European countries (Krüger, 1989; Zielenski & Sadowski, 1995; Dunker et al., 2007). 

Like the closely related species V. dahliae, V. longisporum accumulates durable 

microsclerotia in the soil from which plant roots are attacked (Schnathorst, 1981; Beckmann, 

1987; Gold et al., 1996). After germination of microsclerotia, which is triggered by root 

exudates from the host plant (Schreiber & Green, 1963; Huisman, 1982; Olsson & Nordbring-

Hertz, 1985; Mol et al., 1995; Gödecke, 2007, unpublished data) the fungal hyphae grow 

towards the root surface and penetrate the root epidermal cells near the root tips (Zhou et al. 

2006; Eynck et al., 2007). Then, the fungus traverses the root cortex inter- and intracellularly 

and enters into the xylem. During most of its life cycle V. longisporum is confined to the 

vascular system, a nutrient-limited environment to which the fungus is well adapted (Wood, 

1961; Dimond, 1970; Dixon & Pegg, 1972; Green, 1981; Pegg, 1981, 1985; Van Alfen, 

1989). The pathogen spreads with growing hyphae and/or segregated conidiospores floating 

with the transpiration stream into upper parts of the plant vascular system. As the host tissue 

turns to senescence, the pathogen enters a final saprophytic growth stage in which 

microsclerotia are abundantly formed in the dying stem parenchyma.  

The fact that Verticillium in oilseed rape cannot be controlled with fungicides and the 

extended survival of microsclerotia in the soil (Heale & Karapapa, 1999) limits the control of 
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the disease on either cultural practices such as wider crop rotation or the use of resistant 

cultivars. Until recently, breeding for resistance has been hampered by the lack of sufficient 

resistance in commercially available breeding material. However, a promising level of 

resistance to V. longisporum has been identified in cabbage (B. oleracea; Happstadius et al., 

2003; Dixelius et al., 2005). More recently, significant improvement in resistance of B. napus 

to V. longisporum has been achieved by hybridization of resistant progenitor species of B. 

oleracea with B. rapa (Rygulla et al., 2007a, b).  

Resistance to wilt pathogens such as Verticillium is supposed to depend predominantly on the 

physical restriction and chemical inhibition of the pathogen during the systemic phase of 

colonization (Nicholson & Hammerschmidt, 1992). Unlike in many biotrophic and some 

necrotrophic interactions, there is no complete resistance to vascular infection on the host 

plant resistance level (Beckman, 1987). Thus host plants may lack severe symptoms although 

being systemically colonized which is commonly denoted as ‘resistant’ instead of ‘tolerant’ 

(Garber & Houston, 1966; Bishop & Cooper, 1984; Pegg & Brady, 2002). This specific type 

of ‘internal’ resistance is usually based on the rapid build-up of mechanical barriers, vascular 

occluding gels or tyloses preventing or delaying the linear spread of the pathogen in the 

vascular system (Talboys, 1958; Sinha & Wood, 1968; Elgersma et al., 1972; Tjamos & 

Smith, 1974, 1975; Beckman & Talboys, 1981; Beckman, 1987; Beckman, 1990). 

Phenolic compounds from the plant phenylpropanoid pathway play an important role in 

defence to pathogen infection either as preformed or post-infectional defence factors 

(Mansfield, 1983; Goodman et al., 1986; Candela et al., 1995). Thus, they have been assigned 

to various important biological functions in defence such as cell wall reinforcement and 

antimicrobial activity (Bell, 1970; Baranowski et al., 1980; Shuen & Buswell, 1992; Snook et 

al., 1992; Tuncel & Nergiz, 1993), as modulators of plant hormones or in defence signalling 

as well as scavengers of reactive oxygen species (Nicholson & Hammerschmidt, 1992; Dixon 

& Paiva, 1995; Dixon et al., 1996; Ryals et al., 1996; Wink, 1997; Weisshaar & Jenkins, 

1998; Dixon & Steele, 1999; Beckman, 2000).  

Lignin and cell wall lignification (Lewis & Yamamoto, 19990; Bernards & Lewis, 1992; 

Whetten & Sederoff, 1995) are important principal structural components of secondary 

vascular tissues and fibres in higher plants (Humphreys & Chapple, 2002; Dixon et al., 1996) 

and may therefore play a crucial role in the defence of vascular pathogens. Lignin plays a 

fundamental role in mechanical support, solute conductance and disease resistance (Barber & 

Mitchell, 1997; Harakava, 2005). Deposition of lignin, lignin-like polymers and other wall-

bound phenolic materials may be responses to mechanical damage or wounding or to 
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microbial infection (Boudet et al., 1995). In addition to cell wall strengthening and increased 

cell wall rigidity, lignin deposition is supposed to decrease the diffusion of toxins released 

from pathogenic fungal hyphae, and to reduce the transfer of nutrients from the host to the 

pathogen (Vance et al., 1980; Nicholson & Hammerschmidt, 1992).  

Resistance to Verticillium has been found in several cruciferous host plants, like cauliflower 

(Koike & Subbarao, 1994; Debode et al., 2005), Japanese cabbage (Kemmochi et al., 2000), 

horseradish (Atibalentja & Eatburn, 1998), cabbage and turnip rape (Happstadius et al., 2003; 

Dixelius et al., 2005; Rygulla et al., 2007a, b) as well as in oilseed rape (Steventon, 2002b). 

Notably the Brassica oleracea gene pool, i.e. the Brassica C genome contains resistance traits 

to V. longisporum (e.g. Happstadius et al., 2003). Oilseed rape (genome AACC) is an 

amphihaploid species derived from interspecific hybridizations between turnip rape (B. rapa 

L. syn. campestris; AA) and cabbage (B. oleracea, genome CC). Hence, resistance in B. 

napus might rely on similar mechanisms as in the progenitor species B. oleracea. However, 

until now, mechanisms underlying plant defence responses of B. napus to V. longisporum 

have not been studied and a possible coherence between the modes of resistance in the closely 

related Brassica species has not been investigated so far.  

This study reports on histochemical and physiological data elucidating the mechanisms 

involved in the genotype-specific resistance of B. napus to V. longisporum. In particular, 

resistance is related to changes in the phenolic composition of root and stem tissues, to 

alterations in the vascular cell walls and to vessel occlusions occurring in the vascular tissue 

during various stages of infection and systemic colonization. In parallel, the pathogen spread 

in a susceptible and a resistant B. napus cultivar is followed by qPCR. This study provides the 

first histological and biochemical characterization of quantitative resistance in rapeseed 

cultivars against V. longisporum.  
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Material and Methods 

Plant material 

A susceptible variety of winter oilseed rape, ´Falcon`, provided by Norddeutsche 

Pflanzenzucht Hans-Georg Lembke KG (NPZ, Hohenlieth, Germany) and two partially 

resistant genotypes, B. napus SEM 05-500256 from Svalöf Weibull (Svalöf, Sweden) and B. 

oleracea genotype BRA 1008/01 from the Institute of Plant Genetics and Crop Plant 

Research, Gatersleben, Germany, were used in this study. Seeds were double surface-

sterilized by sequential immersion in 70% ethanol for 2 min and 1% sodium hypochlorite 

containing 0.1% Tween-20 for 15 min under constant shaking (Zou et al., 2004). After 

washing the seeds twice with autoclaved tap water they were sown in double-autoclaved silica 

sand. Plantlets were grown in a climate chamber at 23/20°C (day/night) and 14-h day length. 

For real-time PCR analyses, disease scoring and the histochemical studies, 14 days-old plants 

were transferred to an acclimation chamber and kept at 4°C for ten weeks with light 

conditions as above to ensure vernalisation.  

 

Fungal isolate 

Verticillium longisporum isolate VL 43 from B. napus was used throughout this work. The 

isolate originates from diseased oilseed rape plants collected from a field in Northern 

Germany (Zeise & von Tiedemann, 2001; Zeise & von Tiedemann, 2002 a; Zeise & von 

Tiedemann, 2002 b). Long-term storage was performed as conidial suspension with 1 to 3 x 

106 conidia mL-1 in Czapek Dox medium supplemented with 25% glycerol at –80°C. 

Inoculum for the artificial infection was produced by adding 500 µL of the spore stock 

solution to 250 mL potato dextrose broth (PDB). The cultures were subsequently incubated 

for 7 days at 23°C on the rotary shaker. The resulting suspension was filtered through sterile 

gauze. Spore concentration was determined with a haemocytometer and adjusted to 1 x 106 

spores mL-1 for inoculation.  

 

Inoculation and growth conditions 

In all experiments described in this report, seedlings were inoculated with the root-dipping 

method. After vernalisation and recovering for one week (real-time PCR analysis, assessment 

of disease development, histochemistry) or cultivation for fourteen days after germination 

(analysis of phenolic compounds), seedlings were carefully removed from the substrate and 

the roots gently washed under tap water. Inoculation was performed by dipping the intact 

roots in a spore suspension of V. longisporum isolate VL 43 for 30 min. Control plants were 
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dipped in sterilized tap water for the same time. Plantlets for real-time PCR analysis and 

disease phenotyping (symptom development, plant height and morphological features) were 

transferred into pots with a sand:soil (1:1) mixture and grown under standardised conditions 

at 20°C and 14 h day length. Plantlets for biochemical analyses were grown in the same 

substrate and kept in a climate chamber at 23/20°C (day/night) and 14-h day length (Philips 

TL5 HO lamps).  

 

Assessment of disease symptoms 

Disease symptoms were evaluated using an assessment key with nine classes, as described 

earlier (Eynck et al., 2007). Scoring was conducted at various time points from 16 to 79 days 

post inoculation (dpi). AUDPC values (area under the disease progress curve) were calculated 

from the disease severity values according to the following formula (Campbell & Madden, 

1990):  

Σ
i=1

n

AUDPC = (yi + yi+1 /2) * (ti+1- ti)Σ
i=1

n

AUDPC = (yi + yi+1 /2) * (ti+1- ti)
 

 

where yi is the disease severity value for observation number i, ti is the corresponding number 

of days post inoculation of an observation, and n is the number of observations.  

 

DNA isolation and real-time PCR analysis 

In order to investigate the fungal spread in the plant, real-time PCR analysis was performed 

with the two oilseed rape genotypes `Falcon` and SEM 05-500256. Ten inoculated and five 

control plants were harvested for real-time PCR analyses at five time points from 16 to 79 

dpi. Samples were collected from the hypocotyl (below cotyledon node) and an above stem 

part (below basal leaf), resulting in twenty and ten tissue samples and PCR analyses for the 

treated and the control variant, respectively. Roots were not analysed because a proper 

discrimination between fungal biomass in the roots from fungus attached on the root surface 

through inoculation was not possible. DNA isolation and PCR analysis were performed as 

described previously (Eynck et al., 2007). 

 

Histological examinations 

For histological investigations all three genotypes were used. Sampling was conducted 21 

days after infection on ten inoculated and ten healthy plants. From the hypocotyls a piece of 2 
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cm in length was excised and preserved in a mixture of formalin, acetic acid and ethanol 

(AFE). For histochemical analyses, tissue samples were transverse cross-sectioned on a 

vibration microtome (Leica VT 100M, Leica, Bensheim, Germany), treated with 

histochemical reagents within 5 min and immediately examined with light or epifluorescence 

microscopy (Leica DMRB, Leica, Bensheim, Germany). Histochemical stains included 

toluidine blue (Feder & O`Brien, 1968), phloroglucinol-HCl (Jensen, 1962), and Folin-

Ciocalteu reagent (Singleton et al., 1999).  

In order to detect vascular occlusions, transverse stem sections were treated with 0.05% 

toluidine blue in Aqua dest. After staining, vascular gels and tyloses exhibited a pink colour 

due to their pectic composition. The presence of polyphenolic compounds was determined 

with toluidine blue and the Folin-Ciocalteu reagent which induced a dark blue or brown to 

black colour, respectively. The stem sections (20 to 30 µm thick) were mounted in water. 

Polyphenolic compounds were also detected by harnessing their autofluorescence under near 

UV light using the following filter set: 340-380 nm excitation filter, dichromatic mirror at 400 

nm and longpass suppression filter at 425 nm. Lignin was visualized with phloroglucinol-HCl 

(Wiesner test). Sections were immersed in phloroglucinol in 96% ethanol for 2 min, rinsed 

with 32% HCl and mounted in HCl (32%). After this procedure lignin compounds stain bright 

purple-red.  

 

Analysis of soluble phenolic acids, cell wall-bound phenolics and lignin 

Ten inoculated as well as control plants of all three genotypes were harvested for biochemical 

analysis at weekly intervals from 7 until 28 dpi. While plants harvested at 7 and 14 dpi were 

separated into roots and shoots, plants at 21 and 28 dpi were further divided into roots, 

hypocotyls and the youngest fully developed leaves. The total soluble and cell wall-bound 

phenolic content was determined with the Folin-Ciocalteau assay (Swain & Hillis, 1959). 

 

Quantification of soluble phenolic acids 

Up to 200 mg of plant tissue were extracted in 1.5 mL of 80% aqueous methanol at room 

temperature for 1 h and centrifuged (13000 x g) for 10 min at 4°C. The supernatant was saved 

and the process repeated once. After extraction, the supernatants were merged and used for 

the Folin-Ciocalteau assay (modified from Pritchard et al., 1997) as follows: 100 µL of extract 

were added to 100 µL distilled water and 200 µL of Folin-Ciocalteau reagent. After an 

incubation of 3 min at room temperature, 200 µL of 1 M Na2CO3 were added. After further 

incubation on a rotary shaker for 45 min at room temperature, the absorbance of the samples 
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was measured at 725 nm. Tannin was used as an external standard, and total soluble phenolic 

content was reported as tannin equivalents based on a calibration curve. Aliquots of the 

particular samples were frozen at -20°C for HPLC analysis. 

 

Quantification of cell wall-bound phenolic acids 

For quantification of the cell wall-bound phenolic acids, a method described by Strack et al. 

(1988) was used. After thoroughly washing the remaining pellets from the extraction of the 

free phenolic acids (see above), 1 mL of 1M NaOH was added and the samples incubated for 

one hour at 80°C and another 12 h at room temperature (alkaline hydrolysis). Subsequently 

the samples were acidified to pH < 4.0 with 100µL 86% H3PO4. Ethyl acetate (500µL) was 

added and after incubating on a rotary shaker for 30 min, the samples were centrifuged 

(13000 x g) for 5 min. After collecting the upper phase, the lower phase was extracted again 

with ethyl acetate. The combined ethyl acetate phases were then fully evaporated. The residue 

pellets obtained were resuspended in 500 µL methanol and used for further quantitative and 

qualitative analysis. Thus, one part of the samples was analysed using the Folin-Ciocaleau 

method as described above and the other was frozen at -20°C for HPLC analysis. 

 

Lignin analysis 

Lignin was analysed with the thioglycolic acid procedure according to Bruce & West (1989), 

modified by Otter (1996). After washing the pellet of the alkaline hydrolysis was treated with 

1.5 mL 2 M HCl and 0.3 mL thioglycolic acid for 4 h at 94°C. After short cooling, the pellets 

were collected by centrifugation, washed two times with distilled water and the residues 

incubated with 1 mL 0.5 M NaOH for 12 h. Subsequently, the suspension was centrifuged, 

extracted again with 0.5 mL 0.5 M NaOH and centrifuged again. The corresponding 

supernatants were merged and acidified with 300 µL of 32% HCl to precipitate the ligno-

thioglycolic acid complex. After 4 h incubation at 4°C on a rotary shaker, the precipitates 

were collected by centrifugation and the pellets were resuspended in 2 mL of 0.5 M NaOH. 

Finally, the absorbance of the samples was measured at 280 nm after adequate dilution with 

0.5 M NaOH. The assay was calibrated with alkaline lignin.  

 

Statistical analysis 

Results are given as means ± standard deviation of ten replicates. Statistical analyses were 

conducted using the computer software StatGraphics. Differences among means were tested 

with Fisher’s least significant difference (LSD) test and significances determined at p < 0.05. 
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Results 

Progression of disease 

Sixteen days after inoculation infected plants of the susceptible cultivar ´Falcon` showed first 

disease symptoms, namely yellowing and the occurrence of black veins on the oldest leaves, 

whereas no visible symptoms appeared on leaves of accession SEM 05-500256 (Table 1). At 

the same time, both genotypes exhibited significant stunted growth upon inoculation (Table 

2). While at 30 dpi only a few plants of SEM 05-500256 showed faint symptoms on the first 

true leaves, cultivar ´Falcon` exhibited severe symptoms with 90% of the plants having 50% 

or more damaged leaves. Again a significant reduction in plant height was visible in both 

genotypes. Until 79 dpi, the disease progressed in ´Falcon` and until the end of the experiment 

all plants developed severe disease symptoms. Concomitantly, plant growth was impaired 

during this time period in the infected plants, which was most obvious at 51 dpi and tended to 

be partially compensated until 79 dpi. In contrast, SEM 05-500256 plants looked similar to 

the non-inoculated control plants showing only weak symptoms (yellowing) on the oldest 

leaves and no significant stunting.  
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Fungal growth in the plant 

At 16 dpi, V. longisporum occurred in both ´Falcon` and SEM 05-500256 in about equal 

amounts but was restricted to the hypocotyls. Only at 30 dpi Verticillium DNA was detectable 

in the upper plant parts, however, displaying substantially higher amounts in the susceptible 

cultivar (Figure 4.1). The amount of V. longisporum further rose in ´Falcon` in both tissue 

types transiently arrested at 65 dpi in the hypocotyl. At 79 dpi there was twice as much 

Verticillium DNA in the upper stem parts (203.45 ng/g fresh weight) than in tissues from the 

plant base (120.35 ng/g FW). By contrast, the amount of Verticillium in stems of SEM 05-

500256 was substantially lower than in the susceptible cultivar, and never exceeded 25.0 ng/g 

FW in the hypocotyl or about 5 ng/g FW in the upper stem. 
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Fig. 4.1. Amount of Verticillium DNA detected with real-time PCR in tissue samples (means 
of fungal DNA in lower and upper stem parts + standard deviation) of B. napus cv. ‘Falcon’ 
(right bars) and SEM 05-500256 (left bars) inoculated with V. longisporum. Lower stem part 
of SEM 05-500256: black bars; upper stem part of SEM 05-500256: dashed bars; lower stem 
part of Falcon: grey bars; upper stem part of Falcon: dotted bars. 

 

Histological features of tissue from healthy plants 

There were no differences in the histology of healthy susceptible and resistant plant 

hypocotyls with regard to the staining of cell walls after treatment of sections with toluidine 

blue, Folin-Ciocalteu reagent or after observation under fluorescent light, the latter revealing 

that a background autofluorescence was a general feature of healthy hypocotyl tissue. 
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However, after treatment with phloroglucinol-HCl, hypocotyl sections from resistant control 

plants exhibited a stronger staining of xylem vessel walls and parenchyma cell walls.  

 
Histological responses in Verticillium-infected B. napus hypocotyls  

Twenty-one days after inoculation some anatomical changes associated with the infection 

with V. longisporum were visible in the hypocotyls (Figure 4.2 to 4.8). Thus, after treatment 

with toluidine blue, occlusions were noticeable in the xylem vessels of all Brassica varieties 

(Figure 4.2 B, D, F), the resistant SEM 05-500256 (Figure 4.2 D) featuring a higher number 

of occluded vessels than the susceptible ´Falcon` (Figure 4.2 B). BRA 1008/01 showed by far 

the highest proportion of occluded vessels (Figure 4.2 F; Figure 4.3 F). The majority of these 

obstructions appeared in vessels located near the centre of the hypocotyl transverse section. 

Furthermore, most of the vascular occlusions stained pink with toluidine blue, indicating that 

they originate from primary cell wall material (Gerlach, 1984). Some of the vessel plugs 

exhibited a faint blue colour (e.g. Figure 4.2 D) which might be an indication for beginning 

infusion of phenolic compounds into the plant material. Only in the cabbage genotype, some 

obstructions produced a black staining, clearly indicating an impregnation with phenolic 

material (Figure 4.2 F; Figure 4.3 F). Staining with toluidine blue also revealed structurally 

unmodified parenchyma cells adjacent to xylem vessels which were filled with material 

stained dark-blue or black (Figure 4.2 B, D, F; Figure 4.3 B, D, F). After sections were 

stained with Folin-Ciocalteu reagent, microscopic analysis likewise showed that xylem 

parenchyma cells in close proximity to xylem vessels exhibited a dark discoloration after 

infection with V. longisporum, indicating the presence of phenolic compounds (Figure 4.4 B 

D, F). Although for all genotypes the occurrence of these so-called phenolic-storing cells 

(Beckman, 2000) was observed, their distribution in the host tissue and the accumulation of 

phenolic compounds differed. While in the susceptible cultivar phenolic-storing cells only 

occurred around vessels located in the hypocotyl centre, the resistant varieties showed dark-

stained paravascular contact cells all over the cross section area. Furthermore, xylem vessels 

of the resistant genotypes were surrounded by sheath cells with a more pronounced and 

stronger staining (Figure 4.4 D, F) than in susceptible plants where phenolics appeared less 

concentrated around vessels and more diffusively scattered over the section area (Figure 4.4 

B).  

The use of the Wiesner test revealed red-stained xylem vessel walls as well as parenchyma 

cell walls (Figure 4.5; Figure 4.6). After infection all genotypes exhibited a stronger 

colouration of vessel walls and walls of adjacent cells as compared to other parenchyma cells 
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(Figure 4.5 B, D, F; Figure 4.6 B, D, F). Thus, lignification appeared to occur predominantly 

in the vascular tissue. Nevertheless, vessel elements of the susceptible genotype stained 

weaker for lignin than the corresponding cells from the resistant accessions. Similarly, a 

positive reaction was detected with material that plugged xylem vessels mainly in the centre 

region of the hypocotyl cross-sections, a reaction that was strongly developed in the 

susceptible ´Falcon` (Figure 4.5 B; Figure 4.7 C). Thus, xylem vessels of both infected 

susceptible and resistant plants were plugged by pectic and lignin-like material.  

Observations on semi-thin sections under near UV illumination (Figure 4.8) revealed 

autofluorescence to be much stronger in lignified xylem areas of infected plants (Figure 4.8 B, 

D) in comparison to healthy plants (Figure 4.8 A, C). However, this reaction occurred at a 

significantly higher intensity in the resistant plants (Figure 4.8 D). This enhanced 

autofluorescence indicating the presence of phenolic compounds was observed both in 

plugging material filling vessel elements and the paravascular contact cells. 
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Fig. 4.2. Light microscopy images of hypocotyl cross sections of cultivar ´Falcon`, B. napus 
accession SEM 05-500256 and B. oleracea accession BRA 1008/01 after staining with 
toluidine blue for detection of occlusions and phenolic substances in control plants and after 
infection by V. longisporum (21 dpi). A, ´Falcon`, control; xylem vessels completely free of 
obstructions. B, ´Falcon`, infected; occlusion of vessels particularly in the centre region due to 
purple to pink stained substances (tyloses, vascular gels). Dark staining of xylem parenchyma 
cells indicates an accumulation of phenolic substances. C, SEM 05-500256, control plants; 
infrequent closure of single vessels can be observed. D, SEM 05-500256, infected; 
considerably more vessels are blocked than in B (purple to pink colouration of accumulated 
material). E, BRA 1008/01, control; no obstructions visible, already control plants exhibit 
substantially thicker cell walls. F, BRA 1008/01, infected; a high percentage of vessels is 
blocked with pink material, some of the obstructions stain black, indicating that phenolic 
substances have been infused. Bars represent 100 µm. 
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Fig. 4.3. Light microscopy images of hypocotyl cross sections of cultivar ´Falcon`, B. napus 
accession SEM 05-500256 and B. oleracea accession BRA 1008/01 after staining with 
toluidine blue for detection of occlusions and phenolic substances in control plants and after 
infection by V. longisporum (21 dpi). Same coherences as in A to F in Figure 4.1., depicted at 
a higher magnification (see bars). A, ´Falcon`, control; xylem vessels completely free of 
obstructions. B, ´Falcon`, infected; dark colouration (arrow) indicates a pronounced 
accumulation of phenolics in xylem parenchyma cells. Arrowheads highlight obstructed 
vessels. C, SEM 05-500256, control plants; vessels and surrounding xylem parenchyma 
completely free and clear, respectively. D, SEM 05-500256, infected; the pronounced dark 
colouration of cells directly neighbouring the xylem vessels is a sign of massive accumulation 
of phenols. E, BRA 1008/01, control; dark (grey) background staining of the tissue indicates 
that this genotype exhibits a higher constitutive level of phenolics. F, BRA 1008/01, infected; 
strong accumulation of phenolic substances in xylem parenchyma (arrow). Grey arrowhead: 
occlusion of vessels due to tyloses or vascular gels (pink staining). White arrowhead: 
deposition of phenolic substances in blocking material leads to a black staining. Bars 
represent 50 µm. 
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Fig. 4.4. Light microscopy images of hypocotyl cross sections of cultivar ´Falcon`, B. napus 
accession SEM 05-500256 and B. oleracea accession BRA 1008/01 after staining with Folin-
Ciocalteau reagent for detection of phenolic substances in control plants and after infection by 
V. longisporum (21 dpi). A, ´Falcon`, control. B, ´Falcon`, infected; accumulation of phenolic 
substances in xylem parenchyma cells (arrows). C, SEM 05-500256, control. D, SEM 05-
500256, infected; strong accumulation of phenolic substances is restricted to cells directly 
neighbouring xylem vessels (arrows). E, BRA 1008/01, control. F, BRA 1008/01, infected; 
massive accumulation of phenolic substances in cells surrounding the xylem (arrows). Bars in 
A – D represent 25 µm, in E and F 50 µm. 
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Fig. 4.5. Light microscopy images of hypocotyl cross sections of cultivar ´Falcon`, B. napus 
accession SEM 05-500256 and B. oleracea accession BRA 1008/01 after staining with 
phloroglucinol-HCl for detection of lignin in control plants and after infection by V. 
longisporum (21 dpi). A, ´Falcon`, control. B, ´Falcon`, infected; massive lignification in the 
centre region of hypocotyl cross sectional area as well as occlusion of vessels. In border areas 
only a weak reaction could be detected. C, SEM 05-500256, control. D, SEM 05-500256, 
infected; increased lignification over the whole cross section, particularly of vessels and 
xylem parenchyma. E, BRA 1008/01, control. F, BRA 1008/01, infected; massive 
lignification over the complete cross sectional area, strongly thickened cell walls and 
obstruction of vessels. Bars represent 100 µm. 
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Fig. 4.6. Light microscopy images of hypocotyl cross sections of cultivar ´Falcon`, B. napus 
accession SEM 05-500256 and B. oleracea accession BRA 1008/01 after staining with 
phloroglucinol-HCl for detection of lignin in control plants and after infection by V. 
longisporum (21 dpi). Same coherences as in A to F in Figure 4.4., depicted at a higher 
magnification (see bars). A, ´Falcon`, control. B, ´Falcon`, infected; sparsely reinforced 
lignification of vessel elements and surrounding xylem parenchyma cells. C, SEM 05-
500256, control. D, SEM 05-500256, infected; increased lignification particularly of xylem 
vessels and surrounding parenchyma cells. E, BRA 1008/01, control; F, BRA 1008/01, 
infected; massive deposition of lignin particularly in vessel walls and walls of adjacent xylem 
parenchyma cells. Bars represent 50µm. 
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Fig. 4.7. Light microscopy images of hypocotyl cross sections of cultivar ´Falcon`, B. napus 
accession SEM 05-500256 and B. oleracea accession BRA 1008/01 after staining with 
phloroglucinol-HCl for detection of lignin after infection by V. longisporum, 21 dpi (A – E) 
as well as toluidine blue for the detection of vascular occlusions and phenolic substances (F). 
A, SEM 05-500256, lignin deposition in cell walls of xylem vessels and surrounding xylem 
parenchyma cells (arrows). B, SEM 05-500256, lignification of middle lamella starts in 
intercellular spaces (arrows). C, Falcon, strong lignification of cell walls in the centre of the 
cross sectional area and blocking of vessels by lignin-like material (arrows). D, BRA 1008/01, 
strong thickening of cell walls also in parenchyma cells due lignin deposition (arrows). E, 
BRA 1008/01, distinct middle lamellae (arrows). F, BRA 1008/01, strong thickened cell walls 
(arrows), occlusion of vessels due to tyloses, vascular gels (white arrow heads) and deposition 
of phenolic substances into the blocking material (grey arrow heads), beginning lignification 
in intercellular spaces is marked with circles. Bars represent 50 µm in A and 25 µm in B – F. 
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Fig. 4.8. Epifluorescence microscope images of hypocotyl cross sections of cultivar ´Falcon` 
(A, B) and B. napus accession SEM 05-500256 (C, D). Documentation of autofluorescence in 
the near-UV range typical for phenolics in control plants (A, C) and after infection with V. 
longisporum (B, D; 21 dpi). The resistant genotype SEM 05-500256 shows by far a stronger 
accumulation of phenolic substances than the susceptible genotype ´Falcon`; 200fold 
magnification.  

 

Quantitative analysis of soluble phenolics, cell wall-bound phenolic acids and lignin 

Soluble phenolic acids 

At 7 dpi both the resistant B. napus and B. oleracea accessions possessed significantly higher 

amounts of soluble phenolic acids in both roots and shoots (Table 4.3), BRA 1008/01 

exhibiting even higher amounts than SEM 05-500256. While in ´Falcon` the content of 

soluble phenolics decreased upon infection, both SEM 05-500256 and BRA 1008/01 showed 

a significant induction in the roots of inoculated compared to control plants. Furthermore, 

BRA 1008/01 exhibited a clear induction of phenols in the shoot. At 14 dpi, the level of 

phenolic acids in roots and shoots was substantially higher in control plants of the resistant 

genotypes in comparison to the susceptible genotype. However, while SEM 05-500256 

exhibited a significant rise of the phenolic content in both roots and shoots after infection, the 
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cabbage genotype did not show a significant difference between the control and inoculated 

variant and susceptible plants revealed an increase only in the shoot tissue. Along the lines of 

the controls, the amounts of free phenolic acids in the infected variant were considerably 

higher in the resistant B. napus variety (6.1 mg/g dry weight (roots) and 11.1 mg/g dw 

(shoots) in SEM 05-500256 and 4.5 mg / g dw (roots) and 12.7 mg / g dw (shoots) in BRA 

1008/01 compared to 3.8 mg/g dw (roots) and 8.2 mg/g dw (shoots), respectively. Three 

weeks after infection, in the susceptible cultivar ´Falcon`, no significant differences in the 

amount of phenolic acids between both roots and shoots of infected and control plants were 

detectable. Only hypocotyls of infected plants exhibited a slightly higher amount of soluble 

phenolics than the control. In contrast, the resistant SEM 05-500256 exhibited a considerably 

higher level of phenolics in all investigated tissues after infection, with the non-inoculated 

plants featuring values similar to ´Falcon` control plants. The cabbage variety showed a 

higher amount of soluble phenolics only in infected roots and hypocotyls, the particular value 

being on the same level as the corresponding values of SEM 05-500256 for the roots and 

´Falcon` for the hypocotyls. The total amount of soluble phenolics in leaves of control and 

infected plants of BRA 1008/01 exceeded by far the corresponding amounts of the B. napus 

genotypes. Within one week, thus at 28 dpi, the total amount of soluble phenolics decreased 

or remained at the same level in the roots as well as the hypocotyls of both genotypes.  

 

Cell wall-bound phenolic acids 

At 7 dpi, the content of cell wall-bound phenolic acids clearly decreased in infected plants of 

the susceptible cultivar ´Falcon` compared to control plants (Table 4.4). This is in contrast to 

the resistant genotypes SEM 05-500256 and BRA 1008/01, displaying no significant 

differences between the infected and control shoot (SEM 05-500256) and root (BRA 1008/01) 

tissues, however, both showing significantly higher contents than ´Falcon`. Surprisingly, 

shoots in control cabbage plants exhibited the lowest amounts of bound phenolics. However 

the particular infected tissue samples featured values similar to the corresponding samples of 

oilseed rape. Analysis of ´Falcon` plants sampled at 14 dpi again revealed no difference 

concerning the amount of wall-bound phenolics in inoculated versus control plants. Wall-

bound phenolics in roots of SEM 05-500256 were twice as high as in Falcon roots, however, 

they were unchanged due to the inoculation. In contrast, infection of shoots induced a 

significantly higher amount of phenolics in the resistant genotype. No difference due to 

infection was observed in shoots of BRA 1008/01, but in infected roots, which exhibited 

values similar to the resistant B. napus genotype, and showed a significantly higher amount in 
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comparison to controls. At 21 dpi, all examined tissues of the resistant B. napus genotype 

showed a substantially higher level of wall-bound phenolic acids in the infected variant 

compared to the control. In the susceptible cultivar, this was only true for hypocotyls and 

leaves, while the roots showed a lower level of phenolics due to infection. Similar results 

were observed for BRA 1008/01. The accumulation of cell wall-bound phenolic acids was 

most pronounced in the hypocotyls of all three genotypes as was already implied by the 

histochemical studies. Thus, cell walls of hypocotyls from infected plants contained 27% 

(susceptible oilseed rape) or 55% (resistant oilseed rape) more ester-bound phenolics than 

controls. At 28 dpi, wall-bound phenolics in infected plants of the susceptible cultivar were 

lower in roots and leaves but remained elevated in the hypocotyls compared to the control. In 

comparison, roots of SEM 05-500256 showed similar levels of bound phenolic acids and no 

changes due to infection, while hypocotyls and leaves displayed a significantly higher amount 

in the infected variants. BRA 1008/01 exhibited equal amounts of esterified phenolic acids in 

roots and leaves and a significant induction in hypocotyls.  

 

Lignin content 

Until one week after infection, there were no changes in lignin content in the root tissue of all 

three genotypes (Table 4.5). However, the resistant genotypes possessed a higher constitutive 

level of total lignin. While the amount of lignin decreased in the shoots of the infected 

susceptible genotype, it significantly rose in the shoots of the corresponding resistant plants 

(4.8 mg/g dw compared to 3.5 mg/g dw in SEM 05-500256 and 3.9 mg / g dw compared to 

2.8 mg / g dw in BRA 1008/01). From 14 to 28 dpi, lignin contents in roots and shoots were 

substantially higher in control and infected plants of the resistant genotypes. This was most 

pronounced at 21 dpi in the hypocotyl tissue. Thus, cell walls of infected susceptible or 

resistant B. napus genotypes contained about 30% or 70% more lignin than the controls, 

respectively. At 28 dpi, infection decreased lignin contents in roots of susceptible plants, 

while it increased lignin in roots of SEM 05-500256 and BRA 1008/01. At this time point, no 

effect of infection was found in the hypocotyls of susceptible plants, but in the resistant 

varieties a significantly higher level of lignin was detectable in infected plants. 
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The total content of phenolics, which included soluble phenolic acids, cell wall-bound 

phenolics and lignin, revealed that the resistant oilseed rape exhibited a higher constitutive 

levels of phenols in roots and hypocotyls throughout the experiment compared to susceptible 

plants. However, this was not always true for shoots and leaves. Interestingly, the resistant 

cabbage always showed significantly higher constitutive as well as induced amounts of total 

phenols in the upper plant parts, e.g. in shoots (at 7 and 14 dpi), hypocotyls and leaves (at 21 

and 28 dpi). In contrast, no clear differences between the resistant genotype and the 

susceptible oilseed rape was detected in the roots. Changes due to infection, i.e. an increased 

accumulation of phenolic compounds was most pronounced in the hypocotyl region of 

resistant SEM 05-500256 and BRA 1008/01 (see Figures 4.9 and 4.10). 
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Fig. 4.9. Total phenolic contents, including cell wall-bound phenolic acids (black bars), 
soluble phenolic acids (grey bars) and lignin (dotted bars) in root and shoot tissue samples of 
B. napus, cultivar ´Falcon` and genotype SEM 05-500256, and the B. oleracea genotype BRA 
1008/01at 7 and 14 days post inoculation. Content is given in mg/g dw as mean (+ standard 
deviation) of 10 samples per group. 
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Fig. 4.10. Total phenolic contents, including cell wall-bound phenolic acids (black bars), 
soluble phenolic acids (grey bars) and lignin (dotted bars) in root and shoot tissue samples of 
B. napus, cultivar ´Falcon` and SEM 05-500256, and the B. oleracea genotype BRA 
1008/01at 21 and 28 days post inoculation. Content in mg/g dw is shown as mean (+ standard 
deviation) of 10 samples per group. 
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Discussion 

Successful backfield to infection in vascular diseases depends on the plant’s capacity to react 

with a precise temporal and spatial coordination of induced defence responses during 

colonization of the vascular tissue (Hammond-Kosack & Jones, 1996, Kpémoua et al., 1996). 

When a vascular pathogen, such as Verticillium, has reached the xylem vessels, the progress 

of the systemic invasion of the plant is facilitated by water flow. At this stage, only xylem 

parenchyma cells are involved in the defence gene expression which therefore determine the 

level of plant resistance (Beckman, 1987).  

The aim of this work was to characterize resistance mechanisms of B. napus to V. 

longisporum and, based on the assumption that resistance had been introgressed from B. 

oleracea to B. napus during interspecific hybridisation (Happstadius et al., 2003; Rygulla et 

al., 2007a, b), to elucidate whether defence in B. napus and its progenitor species B. oleracea 

is mediated by similar mechanisms. Emphasis was put on resistance to systemic colonization, 

including the formation of mechanical barriers and the accumulation kinetics of soluble and 

wall-bound phenolics as well as the phenolic polymer lignin in a resistant B. oleracea 

accession and a resistant as well as a susceptible B. napus genotype in response to an infection 

with V. longisporum. However, although similar responses were observed in vascular tissues 

of both susceptible and resistant plants, they occurred with a higher intensity in the resistant 

varieties. Thus, differences in the response of susceptible and resistant host genotypes were 

not qualitative but quantitative in nature.  

A significant inhibition of fungal spread into upper stem tissues of the resistant oilseed rape 

variety was revealed by real-time PCR in comparison to susceptible plants. Thus host 

resistance does not consist in defence to penetration of the root but apparently efficiently 

restricts the fungus from further spreading upwards into the vascular system of the shoot. The 

phenomenon of ‘internal resistance barriers’ restricting fungal growth in less susceptible 

plants has already been described in other plant-vascular pathogen interactions. In 

investigations on the cultivar resistance to V. dahliae in inoculated cotton plants, the pathogen 

was isolated less frequently from the apical vascular stem and leaf petiole tissue of the 

resistant cultivar than from the tolerant or susceptible cotton cultivars. Therefore, it was 

suggested that factors are involved which inhibit the formation of conidiospores in the xylem 

(Garas et al., 1986). Studies with Fusarium oxysporum infection of different host plants 

revealed that resistance is expressed after infection and that roots of both the resistant and 

susceptible plants are infected (Beckman, 1987). Similarly, in a comprehensive field 

screening in which numerous cotton lines were tested for resistance to Verticillium wilt, 
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Wilhelm et al. (1970, 1974) showed that, although different levels of disease severity were 

exhibited, none of the tested cultivars were immune to vascular infection. Similarly, Garber 

and Houston (1966) found no differences in root penetration of resistant and susceptible 

cotton cultivars by V. albo-atrum. Consequently, success or failure of resistance seems to 

depend on the rate and extent of defence responses within the vascular system of the host 

rather than inhibition of root invasion (Beckman, 1990). 

A common phenomenon in vascular wilt diseases is the occlusion of vessel elements by gums, 

gels and tyloses which prevents the spread of the pathogen in the vascular system, a 

mechanism comprehensively reviewed by Beckman and Talboys (1981) and Talboys (1984). 

Vander Molen et al. (1977) showed that vascular occlusion by gums and gels can be regarded 

as a non-specific response of plants to vascular invasion. Beckman and Talboys (1981) 

hypothesized that the timely occurrence of such blockages serves to limit the entry into the 

vascular system and thereby functions as a defence mechanism. 

The phenomenon of vascular occlusion and particularly the occurrence of vascular gels has 

been extensely studied in the past and several possible explanations have been offered. For 

example, they were thought to result from swellings of perforation plates, end walls and side 

walls of vessels (Beckman & Zaroogian, 1967) or from the action of pectolytic enzymes on 

the primary cell walls and middle lamellae (Dimond, 1970; Gothoskar et al., 1955; Deese & 

Stahmann, 1962b), therefore explaining their principally pectic composition (Deese & 

Stahmann, 1962b). The most recent hypothesis is that in the event of pits being too small to 

allow the formation of tyloses, synthesis of wall material is induced during pathogenesis, 

however, and the wall material is extruded to form gels in the vessel lumen. Gel plugs have 

been described, amongst others, in banana (Beckman et al., 1962; Beckman, 1964; Dimond, 

1970), tomato (Scheffer & Walker, 1953) and carnation (Pennypacker & Nelson, 1972) and 

often occur together with tyloses (Pegg & Brady, 2002).  

Globular-shaped tyloses, which result from outgrowths of vessel-associated parenchyma cells 

through pit cavities into adjacent xylem vessels, often containing nuclei and cell components, 

are considered to be a common response to vascular pathogens by higher plants 

(Reichenbach, 1845; Chattaway, 1949), like banana (Beckman & Halmos, 1962; Beckman et 

al., 1962), tomato (Chanbers & Corden, 1963; Dimond, 1970), and sweet potato (Mc Clure, 

1950). They contribute to halting the pathogen conveyance within tracheary elements 

(Beckman & Talboys, 1981; Vander Molen et al., 1987; Bell, 1992; Ouelette & Rioux, 1992). 

Sometimes, tyloses become lignified or suberized, thus becoming resistant to enzymatic 

degradation (Robb et al., 1979). In a series of investigations, Talboys (1957, 1958a, b) 
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showed that there is a negative relationship between the extent of tyloses formation, the 

degree of colonisation by the pathogen and symptom expression in the interaction Humulus 

spp./V. dahliae. This is coherent with results from Sinha and Wood (1967a) on tomato plants. 

Likewise, Tjamos & Smith (1975) as well as Bishop & Cooper (1984) attributed resistance of 

tomato isolines to the formation of tyloses. These findings are in agreement with the results 

obtained in this study. Here, a positive relation between the abundance of vascular occlusions 

and the level of resistance was also observed. Furthermore, the blue and red colouration of 

vascular obstructions in B. napus and the even black staining of vascular occlusions in B. 

oleracea infected with V. longisporum after treatment with toluidine blue and phloroglucinol-

HCl, indicated that these occlusions are impregnated with phenolics and lignin as well as 

lignin-like polymers. 

There are numerous reports on either V. dahliae or V. albo-atrum providing evidence that 

mechanisms which result in the occlusion of vessels play a role in plant defence but may also 

induce water stress, i.e. the expression of wilt symptoms (Bewley, 1922; Threlfall, 1959; 

Talboys, 1968; Robb et al., 1975a, b). In contrast, the pathosystem Brassica spp./V. 

longisporum is an example where infection does not result in the typical wilt syndrome. This 

may have several reasons: First, in contrast to V. dahliae (Jiang et al., 2005; Zhen et al., 2004) 

and V. albo-atrum (El Assami, 1999), no wilting toxins of V. longisporum have been 

identified so far. Another strategy of infected resistant plants may be to compensate for the 

loss of vessels by regenerating new xylem elements as has been described in hops and tomato 

plants after infection with V. albo-atrum (Talboys, 1958b, Pegg & Selman, 1959). To what 

extent this compensation mechanism is operative in the interaction B. napus/V. longisporum 

remains to be elucidated. Finally, even massive inoculation with V. longisporum results in a 

colonisation restricted merely to individual xylem vessels, which might be an explanation for 

the absence of wilting symptoms in V. longisporum infected oilseed rape, as observed both in 

the greenhouse and in the field (Eynck et al., 2007). 

The phenomenon of vascular occlusion by gels or tyloses cannot be considered without 

including the involvement of one of the most important compound classes of secondary 

metabolism as whole and plant defence in particular: the phenylpropanoids. A rapid release of 

formerly compartmentalized phenolic compounds is thought to be responsible for the host 

reaction leading to the formation of tyloses and gels that restrict the movement of wilt 

pathogens within the vascular system (Beckman, 1987, 2000). In this context, so-called 

phenolic-storing cells play an important role. These are specialized cells that synthesize 

phenolics and store them in their vacuoles during the normal process of cell differentiation 
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(Beckman, 2000). While in most tissues phenolic-storing cells are distributed randomly, in 

some tissues they appear to be located at strategically important sites where they play a 

signalling and often a direct role in defence (Wink, 1997). Thus, phenolic-storing cells have 

been described in xylem tissues of banana, potato, tomato and roots of cotton (Waggoner & 

Dimond, 1956; Mace, 1963; Mace et al., 1972; Mace & Howell, 1974; Müller & Beckmann, 

1974, 1976; Mace et al., 1978). As a response to infection, the phenolic content of these cells 

is first decompartmentalized and free phenolic acids are secreted into the cell lumen as well as 

into the extracellular space. There they are immediately oxidized by an enzymatic reaction 

under consumption of H2O2. These phenylpropanoid derivatives are involved in the 

adjustment of the cellular redox status in plants responding to stress (Chong et al., 1999). 

Furthermore, oxidized phenolic compounds polymerize with each other to form lignin which 

contributes to sealing off infections at the immediate site of attempted penetration. Finally, if 

this defence mechanism fails and the stress persists, these same processes promote the 

prolonged build-up of auxin and ethylene causing a further metabolic cascade which includes 

secondary metabolism and growth responses. Thus, auxin was shown to promote lateral 

growth in paravascular contact cells which surround the xylem vessels resulting in the 

formation of tyloses which, when enlarged, encompass the lumen of vessels (Gordon & Paleg, 

1961; Mace & Solit, 1966; Matta & Gentile, 1968; Beckman, 2000). 

Mace, (1963) for the first time reported on so-called ´tannin` cells that were randomly 

distributed in the xylem parenchyma of freshly prepared roots of banana and did not contain 

polymerized or condensed tannins, but rather a free o-dihydroxyphenol. The observation that 

phenolics are maintained in a reduced state in the vacuole was confirmed by numerous 

investigations on phenolic-storing cells of various higher plants (Beckmann & Müller, 1970; 

Beckman et al., 1972) and we assume that this is also true for Brassica. This is an important 

finding because phenolics which are in a free state are normally oxidized and polymerize 

rapidly. Perpetuation of the reduced state is supposed to be based either on a high H+-gradient 

between vacuole and cytoplasm (Whetten et al., 1998) or on glucosylation (Dixon & Paiva, 

1995). Following vascular infection of Brassica by V. longisporum, these stored phenolics 

might be released and diffuse out of their vacuolar compartments into the cell at large. Here, 

they might become oxidized and polymerize with each other to form polyphenols. These 

polymerized compounds give a positive staining reaction with toluidine blue as well as Folin-

Ciocalteu reagent, as was observed in the susceptible as well as the resistant interaction. The 

fact, that resistant SEM 05-500256 and BRA 1008/01 plants exhibited a more distinct 

accumulation of polyphenols confined to cells immediately adjacent to xylem vessel elements 
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all over the cross sectional area of hypocotyls of infected plants, which is distinctly different 

to the means of accumulation and distribution in the susceptible ´Falcon`, leads to the 

assumption that resistance is at least partly due to a more efficient use of free phenolic 

compounds. Polymerization with other host constituents, i.e. cellular proteins and cell wall 

carbohydrates, leads to the formation of “lignified” structures, a phenomenon which was 

evenly detectable in susceptible and resistant plants infected with V. longisporum. 

One major effect of soluble phenolic acids, next to their role as regulators of host metabolism, 

is to directly inhibit microbial growth (Fisch et al, 1973). Thus, protocatechuic acid is known 

to be responsible for the resistance of pigmented onions to Colletotrichum circinans. 

Furthermore, chlorogenic acid is supposed to have a critical role in defence responses of 

plants against fungal pathogens (Yao et al., 1995). It is thought to be involved in the 

resistance of potato tubers to Phytophthora infestans (Schöber, 1971) and to Streptomyces 

scabies (Dickinson & Lucas, 1987). De Ascensao & Dubery (2000, 2003) reported a 

substantial increase in total soluble phenolics in FHIA banana roots early after treatment with 

an elicitor from F. oxysporum f. sp. cubense race 4. In addition, soluble phenolic compounds 

have been linked to the resistance of Eucalyptus marginata to P. cinnamomi (Cahill et al., 

1993) and of Capsicum annuum to P. capsici (Candela et al., 1995). In this study, the 

constitutive amounts of soluble phenolic acids present in one B. oleracea and two B. napus 

cultivars associated with differing resistance to V. longisporum showed quantitative 

differences, as well as the contents in infected tissues. Thus, we provide evidence that there 

are clear differences in phenolic contents in healthy roots and shoots of the susceptible and the 

resistant varieties at early time points (7 and 14 dpi), which may contribute to the passive 

defence of the resistant genotypes. After inoculation, pathogen invasion was associated with 

marked metabolic changes in soluble phenolics which occurred most strongly in the resistant 

oilseed rape plants.  

Interestingly, changes in phenol concentration in tomato plants infected by different forms of 

F. oxysporum specific to other hosts were very similar to those occurring as a reaction to race 

1 of f. sp. lycopersici in resistant tomato plants (Matta et al., 1969). To which extent this 

finding can be translated into the incompatible interaction between B. napus and V. dahliae, 

can only be speculated. 

Phenolic compounds have also been proposed to act as barriers to fungal colonization in 

pathogenic relationships (Woodward & Pearce 1988; Kenn, 1992). Thus, the primary 

reinforcement of the cell wall, which takes place before lignification, is due to the 

incorporation of hydroxycinnamoyl esters which is initiated immediately on exposure to 
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pathogen challenge (Ride, 1983). The ensuing esterification of hydroxycinnamics, such as 

ferulic acid, to cell wall polysaccharides (Fry, 1982, 1983; Ampomah & Friend, 1988; Iiyama 

et al. 1990, 1994) and glyoproteins (Whitmore, 1978a, 1978b) renders these compounds less 

susceptible to cell wall-degrading enzymes of pathogens. Esters bound to cell wall 

polysaccharides become cross-linked through the action of extracellular peroxidases and 

stabilize the cell wall by restricting wall extensibility and digestibility (Fry, 1982, 1987). 

Furthermore, they are supposed to provide the platform for lignin and suberin biosynthesis 

(Kolattukudy, 1981; Cottle & Kolattukudy, 1982; Bolwell et al., 1985; Farmer, 1985; 

Hahlbrock & Scheel, 1989; Schmutz et al., 1993; Lam et al., 1992; Bernards & Lewis, 1992; 

Matern et al., 1995).  

Esterification of phenols to cell-wall materials is a common mechanism in the expression of 

resistance (Fry, 1987), and the presence of phenols in host cell walls usually increases the 

resistance to fungal enzymes and represents a physical barrier against fungal penetration. 

Thus, in the interaction of barley with powdery mildew cell wall-bound phenolics have been 

reported to contribute to fungal arrest in cell wall appositions (Shiraishi et al., 1989; Zeyen et 

al., 1995; Lynkjaer et al., 1997) and they have been shown to play a role in the resistance of 

some wheat cultivars against F. culmorum (Siranidou et al., 2002). The present investigations 

are in accordance with these findings and show that cell wall-bound phenolic acids are highly 

likely to contribute to the resistance of Brassica to V. longisporum. Thus, similar to the 

soluble phenolics, the constitutive levels of ester-bound phenolics were substantially higher in 

the roots of both resistant genotypes, SEM 05-500256 and BRA 1008/01, compared to the 

roots of susceptible plants, in the first two weeks. At later time points, a pronounced 

accumulation of cell wall-bound phenolics particularly in the hypocotyls of resistant 

genotypes was recorded. 

Ester-bound phenolics appear to play a role not only in parasitic but also in symbiotic 

interactions. In investigations on Pinus banksia cells that were treated with elicitors from the 

ectomycorrhizal fungus Thelephora terrestris accumulated much larger quantities of cell 

wall-bound phenolic material than the corresponding controls (Campbell & Ellis, 1992a, b). 

Lignin is a three-dimensional phenolic polymer, derived from the free-radical polymerization 

of the monomeric p-coumaryl, coniferyl and sinapyl alcohols in the plant cell wall, which 

give rise to p-hydroxyphenyl, guaiacyl and syringyl lignins in various ratios. The relative 

abundance of these different monolignol residues in lignin varies depending on the plant 

species (Ride, 1983; Boudet et al., 1995). Vessel walls are supposed to contain only coniferyl 

alcohol derived guaiacyl lignin (Fergus & Goring, 1970; Wolter et al., 1974). However, lignin 
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synthesized as defence response, may differ in composition, adding an anti-microbial function 

to the structural one. In normal lignifying cells, lignin is reported to appear first in the 

apoplastic cellular junctions. Then it spreads between adjacent cells, i.e. in the middle lamella 

region, and from there through the primary and secondary wall layers (Wardrop, 1971). 

Accordingly, our histochemical findings of lignin assembly in B. napus and B. oleracea 

revealed that induced lignification in hypocotyls of infected plants also started in the cell 

´corners`. 

Besides the fact that a reduction in lignin content has serious physiological consequences on 

the vascular apparatus (Anterola & Lewis, 2002) lignin plays a pivotal role in plant defence 

(Ride, 1978; Nicholson & Hammerschmidt, 1992). First, lignin increases resistance of walls 

to mechanical penetration, i.e. compressive forces (Wardrop, 1971; Ride, 1983). Thus, 

investigations on banana roots infected with F. oxysporum revealed that within the context of 

inducible defence mechanisms cell wall strengthening due to the deposition of lignin plays a 

major part (De Ascensao & Dubery, 2000). Secondly, lignification of cell walls at the point of 

attack may render them resistant to dissolution by fungal enzymes. For example, saccharides 

are physically shielded from fungal saccharidases by lignin (Friend, 1976). In addition, lignin 

deposition may restrict diffusion of enzymes and toxins from the fungus to the host, and of 

water and nutrients from the host to the fungus, eventually starving the fungus. Finally, the 

hyphal tip of the invading pathogen may become lignified and may lose plasticity required for 

growth (Ride, 1978).  

Numerous reports have emphasised the importance of lignification in plant-pathogen-

interactions. Thus, accumulation of lignin and lignin-like polymeric phenolic material has 

been associated with attempted fungal infection (Bruce & West, 1989). Friend et al. (1973) 

reported an increase in lignin 12 h after inoculation of potato tubers with an incompatible race 

of P. infestans. Accordingly, elicitation of tobacco cells in suspension by elicitor molecules 

from P. nicotianae led to the accumulation of lignin complexes in cell walls 4 h after 

elicitation and increased up to ten-fold within 96 h (Oelofse & Dubery, 1996). Similarly, an 

elicitor of P. sojae was shown to induce a rapid and massive accumulation of phenolic 

polymers in Glycine max cotyledon cells proximal to the point of elicitor application (Graham 

& Graham, 1991). Interestingly, potato tuber tissue that was challenged with a non-pathogen 

accumulated higher amounts of lignin than tissue inoculated with the pathogen F. roseum f. 

sp. sambucinum (Hammerschmidt, 1983). It would be worthwhile to elucidate to what extent 

this also happens in B. napus infected with the non-pathogen V. dahliae. From microarray 

analyses of a tolerant banana cultivar infected with F. oxysporum f. sp. cubense Van den Berg 
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et al. (2004) concluded that the disease response involves lignin production and cell wall 

strengthening due to the incorporation of phenolic compounds into host cell walls. 

Suppression subtractive hybridization (SSH) revealed gene fragments which showed 

homology to defence-associated genes, including cell wall-strengthening genes. A significant 

increase in cell wall-bound esterified phenolics could be observed in this cultivar in response 

to F. oxysporum f. sp. cubense (Van den Berg, 2007) supporting these results.  

Similar to soluble and cell wall-bound phenolics, the biochemical analysis of oilseed rape and 

cabbage tissue revealed a significant higher constitutive amount of lignin in roots of resistant 

compared to susceptible plants at early sampling time points. Particularly at 21 days post 

inoculation, a striking accumulation of lignin was present in the hypocotyls of infected 

resistant plants, this observation being in good agreement with the histochemical analysis. 

This finding is supported by results from Smit & Dubery (1996) demonstrating that cotton 

hypocotyl tissue responded with increased lignification following treatment with an elicitor 

from V. dahliae. When comparing susceptible and resistant genotypes, the latter exhibited 

higher levels of lignin-like polymers and induced them earlier. These observations lead to the 

assumption that the hypocotyl tissue might have a key function in the defence against vascular 

pathogens. 

Considering the total phenolic fraction analysed, resistance of Brassica to V. longisporum is 

differentially expressed according to the time points of the prevailing interaction. Thus, at 

earlier time points, preformed phenolic compounds play an important role for limiting the 

extent of infection and colonization by the fungal pathogen. This observation is in agreement 

with findings where the rate of development of lesions induced by Cercospora nicotianae was 

considerably higher in plants containing reduced levels of constitutive phenolic compounds as 

a result of sense suppression of phenylalanine ammonia lyase (PAL) expression (Maher et al., 

1994). Similar results were obtained in transgenic potato tubers expressing the Cantharanthus 

roseus tryptophan decarboxylase gene (Dixon & Paiva, 1995). In these plants, redirection of 

tryptophan into tryptamine resulted in decreased phenylalanine pools, corresponding 

decreases in wound- and elicitor-induced chlorogenic acid and wall-bound phenolics, as well 

as increased susceptibility to the potato late blight fungus P. infestans.  

Later stages in the interaction of a resistant Brassica genotype with V. longisporum as 

detected by histochemical and biochemical methods are characterised by a strong 

accumulation of lignin, lignin-like polymers and other phenolic compounds in the hypocotyls. 

A similar observation concerning the accumulation of phenolics after infection has been made 

for stem tissue of Olea europaea infected with V. dahliae (Baidez et al., 2007). Here, the total 
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phenol content of the whole stem of infected plants was doubled compared to uninfected 

plants with oleuropein being the major active compound.  

Besides the many similarities between the expression of resistance in B. napus and B. 

oleracea found in the present studies, there was also one major difference. While the defence 

response of B. napus was most pronounced in the roots and hypocotyls, B. oleracea resistance 

appears to be expressed primarily in the hypocotyls and leaves. Nonetheless, in both host 

species defence occurs most pronounced in the hypocotyl tissue and is based on similar 

mechanisms, suggesting that resistance traits have been introgressed from the B. oleracea into 

the B. napus gene pool.  

 

Conclusion 

The results obtained in this study are a first step towards understanding the biochemical basis 

of the genetically conferred resistance of B. napus accessions to V. longisporum. Thus, the 

obstruction of xylem vessels is a conspicuous phenomenon of host response, however, of yet 

unknown significance. Furthermore, compared to cultivar ´Falcon`, the genotype SEM 05-

500256, similar to the cabbage accession BRA 1008/01, revealed a greater capacity for 

enhanced phenolic metabolism both with regard to the constitutive and the induced levels of 

metabolites. Although the present results indicate the involvement of phenolic compounds in 

defence, their actual role in resistance remains to be analysed in more detail. In conclusion, 

defence in Brassica to Verticillium can be regarded as a multicomponent dynamic response 

involving different protective mechanisms which have complementary roles in the overall 

expression of disease resistance. A better understanding of these mechanisms would 

contribute to the selection of useful traits for plant breeders attempting to create varieties with 

improved resistance to V. longisporum. 
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Chapter 5: General Discussion 
 

The genus Verticillium contains a number of soilborne, plant pathogenic species with 

worldwide distribution (Pegg & Brady, 2002), which have long been known as important 

plant pathogens. The two most common species, V. dahliae and V. albo-atrum, are 

hemibiotrophic fungi causing vascular wilts in a variety of mainly dicotyledonous hosts in 

temperate and subtropical regions, including hosts such as cotton, cucurbits, alfalfa, 

sunflower, eggplant, mint, strawberry, tomato and potato (Gordon et al., 2006; Heale, 2000). 

More recently, a closely related Verticillium species has gained importance representing a 

distinct taxon consisting of all long-spored isolates with host-adaptation to Brassica species, 

called V. longisporum (Karapapa et al., 1997, 2000; Steventon et al., 2002a; Fahleson et al., 

2003; Fahleson et al., 2004). 

Until today, there has been controversy concerning the taxonomic status of V. longisporum. 

Thus, the scientific community is still arguing about whether V. longisporum should be 

regarded as a distinct, host-specific species or not. The proposal for raising V. longisporum to 

species rank was first made by Karapapa et al. (1997) and was supported by many authors 

who conducted morphological, physiological and molecular analyses (Zeise & von 

Tiedemann, 2001; Zeise & von Tiedemann, 2002a, b; Steventon et al., 2002a, Fahleson et al., 

2003; Fahleson et al., 2004). However, reports also exist which suggest that V. longisporum 

should be regarded as a subspecies of V. dahliae (e.g. Collins et al., 2003), as originally 

proposed by Stark (1961), rather than a distinct species. However, just recently, molecular 

evidence has emerged supporting the status of this fungus as a separate species (Pantou et al., 

2006). Besides the controversial taxonomic status, the means of speciation of V. longisporum 

still remains to be clarified. Due to a nuclear DNA-content about 1.8fold greater than that of 

V. dahliae isolates, Karapapa et al. (1997) assumed that long-spored Verticillium isolates may 

have evolved by parasexual hybridization between two different haploid Verticillium species, 

therefore representing amphihaploids. They suggested that the parental strains concerned both 

a haploid V. dahliae and a haploid V. albo-atrum isolate. Recent studies (Barbara & Clewes, 

2003; Barbara et al., 2005; Clewes and Barbara, 2005) have shown that V. albo-atrum is most 

likely not one of the parents but, however, failed to resolve which parental species were 

actually involved in the parasexual hybridisations that resulted in the emergence of 

amphihaploid Verticillium isolates. Given the ambiguous state of research, one realizes what 

challenging task it is 'to taxonomically define a hybrid or hybrid complex in a way that is of 

practical use' (Brasier et al., 1999). However, as noted by Barbara et al. (2003) it is a 
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remarkable coincidence that one of the major hosts of the presumed amphihaploid 

Verticillium isolate is itself an amphidiploid species, viz. B. napus. 

V. longisporum, just as V. dahliae and V. albo-atrum, behaves like a classical soilborne 

pathogen in that its propagules can survive in the soil during extended periods of time in the 

absence of a host plant (Schnathorst, 1981; Heale & Karapapa, 1999). After germination and 

infection of the host roots, the fungus enters the vascular system and subsequently spreads 

within the sheltering confines of the plant. As the host plant becomes senescent, V. 

longisporum leaves its vascular environment, to which it has been restricted for most of its 

life cycle and again produces resting structures, so-called microsclerotia, in the dying stem 

parenchyma and in the roots. Once microsclerotia have returned to the soil, a dormant phase 

with no saprotrophic growth follows. Therefore, the fungus might be considered as an 

ecologically obligate pathogen (Barbara & Clewes, 2003).  

 

Host- and non-host- pathogen interaction studies using confocal laser scanning microscopy 

To our knowledge, this is the first study comparing the infection behaviour of both V. 

longisporum and V. dahliae on roots of B. napus. The green fluorescent protein was used to 

label both V. longisporum and V. dahliae by means of Agrobacterium tumefaciens mediated 

transformation to visualize their colonization behaviour in the oilseed rape rhizosphere by 

confocal laser scanning microscopy (CLSM). The GFP methodology was compared with 

conventional fluorescence staining for its suitability in plant-pathogen interaction studies. Our 

investigations clearly showed the applied fluorochromes (acid fuchsin, acridine orange) to be 

superior, because the entire mycelium became visible regardless of its physiologic state. In 

addition, the faint unspecific staining of the plant tissue enabled a proper localization of the 

fungus in the host. Nevertheless, labelling plant pathogens with the green fluorescent protein 

still has several advantages. The method requires no cofactors or substrates, which allows for 

a fast processing of the plant material, and the risk of potential artefacts is negligible due to 

the absence of additional chemicals, a feature that enables time-lapse observations in vivo 

(Lagopodi et al., 2001). Also, GFP tagging is the preferential approach in studies of pathogens 

under non-sterile conditions. 

Novel and significant information about the colonization and infection processes of V. dahliae 

and V. longisporum on roots of B. napus is provided in this work. This particularly applies to 

the early interaction, including recognition and first contacts between pathogen and host or 

non-host. Thus, while V. longisporum exhibited a colonization and infection behaviour similar 

to that observed for other root-infecting vascular pathogens (Lagopodi et al., 2001), the 
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interaction of V. dahliae with oilseed rape roots entirely differed from V. longisporum, 

indicated by mycelium which is only loosely attached to the root surface and the early and 

massive production of conidia and microsclerotia outside the root tissue. This observation is 

in agreement with microscopic investigations from Levy & Isaac (1976) who were able to 

show that there is more extensive growth and microsclerotia formation on the root surface of 

the resistant plant than the susceptible plant which may be regarded as analogous to a host and 

non-host/pathogen interaction, respectively. Levy & Isaac suggested that this phenomenon 

might be related to the failure of the fungus to penetrate the resistant tissue. In our studies, 

however, both fungi were able to infect epidermal cells, although penetration was observed 

less frequently for V. dahliae. Generally, there was no indication that natural wounds from 

emerging lateral roots were required for infection, which confirmed previous studies on F. 

oxysporum f. sp. radicis-lycopersici on tomato roots (Lagopodi et al., 2001), F. verticillioides 

on maize roots (Oren et al., 2002) and V. albo-atrum on roots of cotton (Smith & Walker, 

1930; Garber & Houston, 1966). In contrast, Reid (1958) suggested that penetration of 

emerging lateral roots may provide a mechanism for a vascular fungus to avoid the 

penetration barrier at the endodermis level. 

 

Host and non-host resistance 

Although V. dahliae was infrequently able to penetrate and colonize the root tissue, it rarely 

reached the shoots or leaves as indicated by histological and real-time PCR analyses. The 

present results demonstrate that the poor susceptibility of B. napus to V. dahliae is only partly 

due to the restricted penetration but mainly related to the inhibition of systemic growth, as 

reported earlier (Zhou et al., 2006). The following questions about the mechanisms governing 

the expression of this specific type of non-host resistance remain to be answered: Does it 

embrace inducible defence elicited by the recognition of molecules specific for the particular 

pathogen, or is it controlled in a non-specific manner by constitutive defence or is defence 

induced by unspecific stimuli? However, not only non-host resistance but also host-specific 

resistance expressed in the oilseed rape accession SEM 05-500256 appears to be based on 

mechanisms preventing the fungus from systemic propagation (Chapter 3, Fig. 3.3; Chapter 4, 

Fig. 4.1). Thus, while V. longisporum, upon penetration, readily spreads into the vascular 

system of the susceptible oilseed rape cultivar ´Falcon`, systemic growth of the fungus in the 

resistant genotype was strongly inhibited. These results are in agreement with a number of 

investigations leading to the assumption that plants often respond in similar ways in host and 

non-host pathogen interactions, implying the existence of similar defence responses in both 
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situations (Heath, 2000; Heath, 2001; Kamoun, 2001; Thordal-Christensen, 2003). However, 

plants responses greatly depend on the biology of the interactions; therefore it is a difficult 

task to make useful comparisons between a non-host pathogen interaction and an 

incompatible host-pathogen interaction. Thus, according to Thordal-Christensen (2003), any 

statement on the similarity of responses should be based on closely related host and non-host 

pathogens as given in our investigations.  

Some studies dealing with the genetic basis for non-host resistance suggested that non-host 

resistance that relies on the presence of single genes of the pathogen might be controlled by 

single plant genes (Fillingham et al., 1992; Wood et al., 1994). Therefore, one may assume 

that non-host resistance includes similar gene-for-gene interactions than pathogen-specific 

resistance within a host species. As a matter of fact, there is molecular evidence of gene-for-

gene interactions controlling non-host resistance of some cereals to incongruous races of 

powdery mildew fungi (Matsumura & Tosa, 1995). However, based on the assumption that 

host resistance of B. napus to V. longisporum is mediated by several resistance loci 

(Happstadius et al., 2003) it is assumed that non-host resistance of oilseed rape to V. dahliae 

relies on the expression of several genes. According to Heath (1985, 1997) non-host 

resistance to fungi is generally assumed to be under complex genetic control and therefore 

may involve a multitude of defence mechanisms. Thus, polygenic non-host resistance might 

be explained by the way that several plant resistance gene alleles respond to the products of 

several corresponding avirulence gene alleles in the pathogen (Heath, 2001). Furthermore, it 

is assumed that non-host resistance genes, like genes that code for host-specific resistance, 

may be distributed differentially among plant genotypes within the non-host species 

(Fillingham et al., 1992; Wood et al., 1994). Finally, the fact that the non-host pathogen V. 

dahliae is able to penetrate root epidermal cells and colonize the root and stem tissue of 

oilseed rape to a certain, although limited extent, might indicate that this sort of non-host 

resistance is governed by genes directly involved in defence rather than pathogen recognition.  

 

Sites of resistance expression 

The most common type of expression of host resistance, also frequently found with non-host 

resistance, is the hypersensitive response (HR), which comprises a rapid cell death 

immediately at the site of infection. This phenomenon is associated with the limitation of the 

pathogen as well as with the activation of defence-related genes (Goodman & Novacky, 

1994). However, in this study no indication for the elicitation of hypersensitivity in affected 

tissue was detectable, neither during root infection by the non-host pathogen V. dahliae nor 
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during the early stages of interaction between V. longisporum and a resistant B. napus 

genotype. According to Pegg & Brady (2002), who compiled a comprehensive review on the 

vast literature on vascular wilts, there are generally no reports on a hypersensitive response 

(HR) in roots to vascular pathogens. Furthermore, complete resistance to infection by this 

class of pathogens has never been proven. Thus host plants with monogenic and polygenic 

resistance identified so far, consistently show at least limited root or hypocotyl colonization. 

In general, HR has seldomly been described as a defence response to root-infecting fungi. 

Examples are the pathosystems Arabidopsis thaliana/Plasmodiophora brassicae (Fuchs & 

Sacristan, 1996), Gycine max/Phytophthora sojae (Kosslak et al., 1996) and Linum 

usitatissimum/Fusarium oxysporum (Olivain et al., 2003). However, the HR described in 

soybean can be regarded as an exception because it resulted from a recessive mutation and at 

least for the P. brassicae-Arabidopsis pathosystem the occurrence of HR in the roots was 

questioned (Hermanns et al., 2003), because cell death was clearly associated with 

lignification. Due to the fact that the microscopic investigations by Fuchs & Sacristan were 

performed fairly late after infection, the authors thus failed to prove that cell death was really 

a consequence of an HR in the sense of programmed cell death rather than a long-term effect 

of lignification. The majority of root-infecting fungi are necrotrophs like Pythium, or 

hemibiotrophs like Phytophthora, and resistance to these categories of pathogens is generally 

not associated with an HR (Klement, 1986). Additionally, non-host resistance to fungi often 

does not involve cell death but inhibition within intercellular spaces or growth restriction 

within cell walls (Heath, 2000). A possible reason for this might be the fact that strong 

defence responses such as HR-mediated cell death in the roots would endanger the whole 

plant. This appears particularly relevant as the roots are associated with a strongly enriched 

microflora. Thus, if roots would initiate a HR when confronted with any possibly deleterious 

microorganisms, they would die and thus endanger the existence of the whole plant 

(Hermanns et al., 2003).  

Given these considerations, it appears reasonable that primary resistance determinants in the 

roots are principally depending on mechanisms other than HR (Mansfield, 2000), such as the 

formation of so-called lignitubers which prevent further colonization of the roots by the 

respective fungi. Those have been reported by several authors (Van der Meer, 1925; Talboys 

1958; Presley et al., 1966; Griffiths, 1971; Bishop & Cooper, 1983a). However, much 

uncertainty has been associated with the role and chemical composition of these structural 

barriers and thus their role in resistance is still considered as ambiguous (Wood, 1967; Bishop 

& Cooper, 1983a). Accordingly, in our microscopic studies, we could not detect any sort of 
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cell wall appositions as a response of the plant to infection in either host- or non-host-

pathogen interaction. The Casparian strip, a suberized part of the endodermis surrounding the 

central cylinder, is generally thought to act as a natural physical barrier against Verticillium 

infection in roots (Talboys, 1958). This obstacle can be easily overcome either when damaged 

or through longitudinal growth from the elongation zone, where the vascular system is not yet 

fully developed and the endodermis has not yet differentiated (Pegg, 1974; Schnathorst, 1981; 

Huisman, 1982; Bowers et al., 1996).  

The lack of an effective defence response during the early stages of infection suggests that the 

initiation of resistance mechanisms might be displaced from the infection site to more distal 

tissue parts where strong defence responses including cell death are less harmful for the plant. 

This relocation phenomenon has been described for sunflower infected with the biotrophic 

oomycete Plasmopara halstedii, the causal agent of downy mildew (Mouzeyar et al., 1993; 

Radwan et al., 2005). Although resistance of sunflower is associated with HR in the roots, it 

fails to halt the parasite resulting in the colonization of both susceptible and resistant cultivars. 

However, the HR triggers a systemic disease response in the sense of a systemic aquired 

resistance (SAR) which takes place in the upper part of the hypocotyls and leads to the arrest 

of the pathogen. This general phenomenon in sunflower after infection with downy mildew is 

called Cotyledon Limited Infection (CLI, Gulya et al., 1991). Accordingly, in our system, 

both in the host and non-host interaction, defence mechanisms become operative in the 

vascular system of the plant resulting in the impairment of the acropetal spread of the 

pathogen, as indicated by means of real-time PCR analyses. Principally, the localization of 

vascular infections is widely recognized as a primary resistance mechanism to wilt pathogens, 

meaning that fungal dissemination is limited in resistant cultivars, while extensive 

colonization occurs in susceptible plants. In the genus Fusarium it has been reported that 

symptom expression is determined by the extent of colonization (Elgersma et al., 1972; 

Conway & Mc Hardy, 1978). With regard to this, Verticillium is exceptional as there is little 

or no correlation between fungal proliferation and symptom development (Schnathorst, 1981; 

Brandt et al., 1984; Corsini et al., 1988; Gold et al., 1996; Lynch et al., 1997; Heinz et al., 

1998; own investigations, data not shown), although the ability of the pathogen to rapidly 

colonize the host might play a role in disease development and severity (Gold et al., 1996). 

However, we obtained a clear negative correlation between the level of resistance of the host 

plant and the extent of fungal colonization of the stem. For tomato infected with F. oxysporum 

f. sp. lycopersici the slope of the regression line fitted between the height reached by the 

fungus up in the stem and the time after inoculation provided a measure of resistance in 
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different cultivars (Rodriguez-Molina et al., 2003). Other authors, using the same 

pathosystem, calculated a colonization ratio to obtain a quantitative expression of the rate at 

which the vascular system of plant stems had been colonized, which in turn served as a 

parameter of disease resistance (Gao et al., 1995a, b). The localization of infections within 

basal vascular tissues as a primary defence mechanism has been reported in several previous 

reports. A short review is given in the introductory part of this thesis. 

 

Potential resistance factors 

Considering these observations and given the challenge to identify potential resistance factors 

in the host-pathogen interaction, we placed emphasis on defence reactions occurring in the 

plant’s vascular system during the incompatible interaction between V. longisporum and a 

resistant B. napus genotype. These reactions included the formation of mechanical barriers 

and the accumulation kinetics of soluble and wall-bound phenolics as well as the phenolic 

polymer lignin. Additionally, this study provides evidence for the assumption that resistance 

in B. napus originates from B. oleracea and has probably been introgressed through 

interspecific hybridisations between the ancestral species B. oleracea (cabbage) and B. rapa 

(turnip rape).  

Microscopic observations clearly revealed the occurrence of structural alterations in both 

susceptible and resistant plants in response to infection with V. longisporum. In addition to the 

occurrence of vascular obstructions, non-specific wall-associated defence responses were 

triggered in resistant as well as susceptible plants. Although similar responses, viz. changes in 

the redox state and assembly of soluble phenolics, reinforcement of constitutive barriers and 

formation of vessel occlusions occurred in vascular tissues, they were observed with a higher 

intensity in the resistant accession of B. napus and B. oleracea. Thus, differences in responses 

between the susceptible and the resistant interaction seem to be quantitative rather than 

qualitative. However, intensities of responses were difficult to quantify, which is a general 

disadvantage of approaches based on microscopic imaging. Furthermore, histochemical 

analyses do not differentiate individual classes of compounds. In contrast, biochemical 

analyses revealed significant differences with regard to the constitutive quantities of the 

prevailing classes of phenolics (soluble or cell wall-bound phenolic acids, and lignin) in 

control plants of genotypes exhibiting different levels of resistance and with respect to events 

induced after infection. 

Similar to several previous studies on hops and tomato (Talboys, 1957, 1958a, b; Sinha and 

Wood, 1967a; Tjamos & Smith, 1975; Bishop & Cooper, 1984), our investigations indicated a 
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positive correlation between the occurrence of vascular occlusions and the level of resistance. 

Vascular gels and tyloses belong to those defence mechanisms against fungal vascular 

pathogens that have been considered most frequently to contribute to pathogen confinement in 

the vascular system (e.g. Talboys, 1958; Sinha & Wood, 1968; Tjamos & Smith, 1974, 1975; 

Beckman, 1990). Based on the assumption, that vascular occlusions represent a non-specific 

response of plants to vascular invasion (Vander Molen et al., 1977), Beckman & Talboys 

(1981) hypothesized that the timely occurrence of blockages serves as a defence mechanism. 

However, our histological data reflect the situation at one definite time point and do not depict 

a time-course development. Due to this, the question of to what extent the timely occurrence 

of occlusions, besides their quantitative incidence, might play a role in the interaction 

Brassica / Verticillium remains to be answered.  

Though we did not elucidate whether gels or tyloses caused the obstruction of vessels, 

however, the blue and red colouration of these vascular obstructions in B. napus and the black 

staining of vascular occlusions in B. oleracea after treatment with specific dyes indicates that 

oxidized phenols diffused from xylem parenchyma cells into the gel plugs or tyloses in the 

vessels, rendering them less susceptible to degradation by fungal enzymes. The capacity of 

phenolics to infuse and stabilize wall structures has been verified in vitro and in vivo 

(Beckman et al., 1974). However, phenolic compounds do not only serve as soaking 

substances. In fact, some phenolic compounds are of great significance in constitutive plant 

resistance while others are synthesized after elicitation (Mansfield, 1983) such as the 

flavonoid and terpenoid phytoalexins of cotton (Joost et al., 1995). Phytoalexins that play a 

role in the defence of Brassica spp. against fungal pathogens are for example brassinin, 

spirobrassinin, cyclobrassinin, brassilexin, rapalexin or rutalexin (Pedras et al., 2007). All 

theses compounds are not of phenolic origin; furthermore the existence of any phenolic 

phytoalexin has not been described for Brassica species so far.  

In general, phenolic compounds play an important role in stress physiology, and it is likely 

that their major effect is not direct inhibition of microbial growth but regulation of host 

metabolism in disease resistance. Thus, formerly decompartmentalized phenolics that are 

released by so-called phenolic-storing cells (Beckman, 1987, 2000) are thought to be 

responsible for the host reaction leading to the formation of tyloses and gels, under 

consumption of H2O2 (Chong et al., 1999) and the action of auxin and ethylene (Gordon & 

Paleg, 1961; Mace & Solit, 1966; Matta & Gentile, 1968; see chapter 4). Furthermore, 

oxidized phenolic compounds polymerize with each other to form lignin which contributes to 

sealing off infections at the immediate site of attempted penetration (Nicholson & 
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Hammerschmidt, 1992). Cell wall reinforcement due to phenolic infusion has also been 

described in the interaction of several plants with different formae speciales of Fusarium 

oxysporum (Baayen et al., 1989; Benhamou & Garand, 2001; Rodriguez-Galvez & Mendgen, 

1995; Salerno et al., 2000). In our studies, genotype SEM 05-500256 and cabbage accession 

BRA 1008/01 revealed a greater capacity for phenolic metabolism with regard to the basal as 

well as the induced levels of metabolites in comparison with cultivar ´Falcon`.  

The basic mode of resistance expression of both Brassica genotypes to V. longisporum turned 

out to change during the course of the interaction. Thus, at earlier time points, analyses 

revealed an important role for preformed phenolic compounds in limiting infection and 

colonization by the fungal pathogen, especially in the roots. Later stages are characterised by 

a strong accumulation of lignin, lignin-like polymers and other phenolic compounds in the 

hypocotyls. This finding is in agreement with results from Smit & Dubery (1996) who 

demonstrated that cotton hypocotyls responded with an increased lignification after treatment 

with an elicitor from V. dahliae whereby the resistant genotype exhibited higher levels of 

lignin-like polymers and induced them earlier than the susceptible one. These observations 

lead to the assumption that the hypocotyl has a key function in the blocking of vascular 

pathogens.  

The browning of vascular elements and adjacent tissue, indicative of the oxidation of free 

phenolic compounds released after infection, is a frequently observed phenomenon of wilt 

diseases similar to the presence of mycelium in the vessels (Pegg & Brady, 2002). 

Accordingly, this macroscopically visible phenomenon was also observed after infection with 

V. longisporum, being most pronounced in the susceptible oilseed rape cultivar. To date, there 

is still ambiguity as to whether an increased level of phenolics after infection might be 

regarded as a consequence of disease expression or as part of the plant’s defence apparatus 

and a distinction between these two phenomenons is diffcult to draw. However, one has to 

keep in mind that host metabolites might have multiple, as well as interacting functions that 

might have an effect on symptom development (Pegg & Brady, 2002). Davis & Dimond 

(1954), Davis et al. (1953) and Waggoner & Dimond (1956) presented data in support of the 

hypothesis that free phenols responsible for vascular browning in tomato stems are derived 

from conjugated phenols which undergo hydrolysis and enzymatic oxidation in the diseased 

plant. Same was reported for banana infected with F. oxysporum f. sp. cubense (Mace & 

Wilson, 1964). The constant association between initial vascular browning and the appearance 

of histochemically reactive phenols in scattered xylem parenchyma cells of the stem axis 

indicates that the substrates for early vascular browning are localized in these cells. The 
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failure to detect histochemically reactive phenols in the xylem parenchyma of healthy stems 

implies, as already suggested by Davis et al (1953) and Waggoner & Dimond (1956) that 

phenols may occur in conjugated forms in healthy tissue and are released as free, reactive 

phenols only after enzymatic hydrolysis in the diseased plants. In this context, the oxidation 

of phenols to brown products diverts the supply of precursors for lignin biosynthesis. This 

assumption is supported by the results of our biochemical analysis, showing a decrease of the 

total content of free phenolics in roots of the susceptible genotype. In turn, the accumulation 

of oxidized phenolic compounds might have resulted in the brown discoloration of xylem 

vessels and adjacent parenchyma tissue in both the roots and hypocotyls. We observed an 

inverse correlation between the frequency of tyloses and the occurrence of vascular browning 

in Brassica plants with different levels of resistance when infected with V. longisporum. 

According to Beckman (1966), phenolic infusion responsible for vascular browning can 

prevent the normal plasticizing of walls and inhibit the growth of tyloses at infection sites. It 

seems that a sensitive balance and timing must be maintained between the mediation of auxin 

by phenolics, and the infusion of phenolics into wall structures, if the defensive system is to 

be effective.  

During this work, many similarities in the expression of resistance in B. napus and B. 

oleracea have been observed. However, there was one major difference. While the defence 

response of B. napus was most pronounced in the roots and hypocotyls, resistance in B. 

oleracea appeared to be expressed primarily in the hypocotyls. In both species defence occurs 

most strikingly in the hypocotyl tissue and is based on the same mechanisms. This supports 

the hypothesis that resistance traits in B. napus have been introgressed from B. oleracea. 
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Fig. 5.1. Model of longitudinal and lateral acting host resistance factors within the vessel 
elements and the surrounding vascular parenchyma tissue in the interaction between Brassica 
spp. and V. longisporum. The scheme is based on histochemical as well as biochemical data 
obtained during this work.  

 

Resistance in Brassica napus 

B. napus is a spontaneous interspecific hybrid between turnip rape (B. rapa syn. campestris, 

genome AA) and cabbage (B. oleracea, genome CC) and therefore is an amphidiploid species 

(genome AACC). Intensive breeding for oil and seed quality has resulted in a fairly narrow 

genetic basis and potentially a relatively low level of resistance to V. longisporum. However, 

some promising progress in resistance breeding has recently been reported (Happstadius et al., 

2003) indicating that the related species B. oleracea represents a valuable source of resistance. 

In a comprehensive greenhouse screening, the existence of high resistance levels in several 

cabbage gene bank accessions was confirmed. In order to enlarge the gene pool available for 

resistance breeding, some of the interesting genotypes were used in interspecific crossings 

with B. rapa with the long-term goal of improving the level of resistance to V. longisporum in 
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B. napus (Rygulla et al., 2007a, b). Similar to the results of Happstadius et al. (2003), 

resynthesized oilseed rape lines with a resistance level considerably higher than the tolerant 

winter oilseed rape cultivar ´Express` were obtained. More detailed information about the 

disease response of the parental accessions and the achieved level of resistance in the newly 

generated oilseed rape genotypes is contained in the paper by Rygulla et al. (2007a, b).  

In the past, the strategy of resynthesizing novel B. napus genotypes from the two diploid 

progenitor species has been applied for the introduction of resistance genes against turnip 

yellows virus (TuYV, Dreyer et al., 2001), turnip mosaic virus (TMV, Walsh et al., 1999) and 

also fungal pathogens, such as Leptosphaeria maculans (Crouch et al., 1994) and 

Plasmodiophora brassicae (Diederichsen & Sacristan, 1996). In all these studies, the 

introduced resistance alleles originated from the B. rapa parent. However, the use of a 

specific resistance from only a single donor source in some cases might exert a strong 

selection pressure on the pathogen that can result in the resistance being overcome rapidly, as 

has recently been shown for the resistance against Plasmodiophora (Fähling et al., 2003) and 

Phoma (Sprague et al., 2006). Thus, the aim of the study by Rygulla et al. (2007a, b) was to 

identify new resistance sources against V. longisporum in B. rapa gene bank material, and to 

combine these with known B. oleracea resistance sources in novel resynthesized B. napus 

lines in order to generate long-term resistance and to avoid the formation of new pathotypes 

with enhanced aggressiveness. By combining different A and C genome resistance sources in 

new resynthesized B. napus lines, interesting new breeding material has been generated for 

the introgression of genetic variation for quantitative resistance to V. longisporum into elite 

oilseed rape cultivars.  

 

Verticillium longisporum as a model for studying vascular fungal pathogens 

In order to address the key issues in fungal pathogenesis, model systems allowing easy 

experimental manipulation and a rapid testing of hypotheses are required (Roncero et al., 

2003). For airborne plant pathogens, a number of models exist, most prominently 

Magnaporthe grisea (now: M. oryzae; Hamer & Talbot, 1998) and Ustilago maydis (Banuett, 

1995). No such model exists for soilborne fungal pathogens or particularly vascular fungal 

pathogens. This is hardly understandable given (i) the unique mode of parasitism by 

Verticillium and other species colonizing the xylem, (ii) the growing importance particularly 

in extensive oilseed rape cropping areas, (iii) the easy in vitro handling, (iv) established 

genetic transformation techniques for both Verticillium dahliae and V. longisporum 

(Dobinson, 1994; Eynck et al., 2007), (v) the abundance of biological, physiological and 
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biochemical data on pathogenesis of V. dahliae and V. albo-atrum, (vi) the existence of a 

major gene for resistance to Verticillium in tomato, cotton, sunflower and potato, and finally 

(vii) the existence of Arabidopsis thaliana as a closely related model host plant for 

Verticillium (Cooper, 1999). Thus, Verticillium holds considerable potential as an 

experimental system to advance the knowledge of fungal infection, both for aspects of general 

interest and for those specific for vascular pathogens. However, there are some constraints 

that hamper the molecular handling of the pathogen. Thus, tests for the contribution of 

particular genes to pathogenicity are thwarted by the amphihaploidy of the fungus, which is 

due to the fact that V. longisporum comprises two nearly complete sets of haploid genomes in 

one single nucleus. Therefore the production of knock-out mutants completely lacking a 

particular feature or activity through the inactivation of the responsible gene represents an 

extraordinary challenge. However, the function of genes can be elucidated through the 

generation of knock-down mutants based on sequence-specific gene silencing via transgenic 

DNA or various RNAi techniques (dsRNA interference) which result in preventing the 

translation of a particular mRNA to the corresponding protein. Since sequence data at least 

from V. dahliae will be available soon (NSF/USDA Microbial Genome Sequencing Program 

FY 2006) and functional genomic tools are being established (Pantou et al., 2006; Tappe et 

al., unpublished; Weiberg et al., unpublished), Verticillium may become an invaluable model 

for studying pathogenesis of vascular fungal plant pathogens.  

 

Conclusions 

Presently, growers have limited options to control Verticillium wilt on oilseed rape due to the 

longterm survival of inoculum in the soil and the systemic growth of the pathogen which 

renders any attempts of chemical or cultural control ineffective. Thus, planting resistant 

varieties has the potential of becoming a unique and prime strategy in the management of this 

root pathogen. Given these considerations, the results obtained in this work are a first step 

towards understanding the basis of the genetically conferred resistance of B. napus to V. 

longisporum. Although our data indicate the involvement of phenolic compounds, particularly 

lignin, in defence, their actual role in resistance needs to be subjected to further ensuing 

studies. In conclusion, defence in Brassica to Verticillium can be regarded as a dynamic 

response comprising a multiplicity of mechanisms acting in a distinct time course pattern and 

having complementary roles in the overall expression of disease resistance. The combination 

of greenhouse and field resistance trials with further investigations regarding the molecular 

and biochemical mechanisms which underlie defence may contribute to a better understanding 
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of resistance to Verticillium and thus strengthen the efforts in breeding varieties with 

improved resistance to V. longisporum. 
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Summary 
 

The increasing area of oilseed rape cultivation particularly in the northern European countries 

has significantly promoted Verticillium longisporum, the causal agent of 'Verticillium wilt' of 

Brassica crops, and thus has rendered this disease a major challenge for current resistance 

breeding efforts. 

V. longisporum (ex. V. dahliae var. longisporum Stark; comb. nov. Karapapa et al.) is a 

soilborne fungus which exhibits a life cycle similar to other plant pathogenic Verticillium 

species, like V. dahliae and V. albo-atrum. Infection is initiated by hyphae from germinating 

microsclerotia which invade the plant vascular system through penetration of the fine roots. 

Most of its life cycle, V. longisporum is confined to the vascular system of the plant. In 

oilseed rape, no typical wilt symptoms are induced but a reduction in growth and premature 

senescence are observed which may severely reduce yields. Microsclerotia produced in 

infected plant tissue are released into the soil after rapeseed harvest and represent a durable 

contamination in the soil for several years. Furthermore, V. longisporum can not be controlled 

with fungicides. The most promising means of controlling Verticillium within the scope of an 

integrated pest management in addition to the implementation of cultural practices is the use 

of resistant cultivars. Until now, for both winter and spring type oilseed rape, breeding for 

resistance has been severely hampered by the absence of sufficient resistance in commercially 

available breeding material. However, recently, some promising genotypes of cabbage (B. 

oleracea) with enhanced resistance were identified. With these considerations, the chief 

objectives of this dissertation were to identify new sources of resistance and to characterize 

resistance factors in oilseed rape genotypes as well as in related Brassica forms with the long-

term goal of improving the resistance of winter oilseed rape against V. longisporum.  

One major part of this work is concerned with the screening of different Brassica species, 

including B. napus, resynthesized oilseed rape forms and the progenitor species B. oleracea 

and B. rapa (syn. campestris) both in greenhouse and field studies. Our results confirm the 

elevated level of resistance in B. oleracea genotypes. Furthermore, it is demonstrated that the 

tested B. rapa assortment primarily exhibited a low to moderate resistance phenotype whereas 

accessions of B. napus on the average took a medial position. Due to the lack of correlation 

between greenhouse and field results, it is concluded that the eligibility of the screening assay 

as an isolated test method is equivocal. Thus, in order to identify genotypes that are 

undoubtedly resistant not only under standardized but also under field conditions, a 
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combination of upstream greenhouse screenings and ensuing resistance tests in the field at 

several locations is indispensable. 

A further objective of this work was to identify mechanisms contributing to the overall 

resistance phenotype of Brassica varieties to V. longisporum and potentially useful for oilseed 

rape breeding programmes. In principle, two different approaches were pursued throughout 

this project: In the first instance, potential levels of resistance were identified by investigating 

the interaction of B. napus with a virulent, host-specific isolate of V. longisporum in 

comparison to the interaction with a host-heterologous strain of V. dahliae.  

In the first approach, the differential interactions of V. longisporum and V. dahliae on the root 

surface and in the root and shoot vascular system of B. napus were studied by confocal laser 

scanning microscopy (CLSM), using GFP tagging and conventional fluorescence dyes. The 

results of these studies revealed a superior performance of the fluorescence dyes in 

comparison to the use of GFP. Furthermore, this study provided novel information about the 

early stages of infection and colonization in the host and non-host-pathogen-interaction. 

Although V. dahliae was infrequently able to penetrate roots of B. napus, it failed to spread 

further into the shoot, as shown with real-time PCR. This kind of restricted invasion of a 

vascular pathogen implies a systemic non-host resistance, the mechanisms governing its 

expression being not known. 

Furthermore, screening material with different levels of resistance to V. longisporum, 

including a susceptible and a resistant B. napus genotype and a resistant B. oleracea variety, 

was used to differentially characterize relevant resistance factors. Based on the results 

obtained from the non-host interaction, emphasis was placed on resistance to systemic 

colonization. As a result, mechanisms were found which become operative after the pathogen 

has entered the plant, such as the build up of mechanical barriers like tyloses or vascular gels, 

as well as the reinforcement of constitutive barriers through the deposition of cell wall-bound 

phenols and lignin. Furthermore, the accumulation of soluble phenolics potentially acting as 

inhibitors of microbial growth or also as regulators of host metabolism in disease resistance 

was observed. Although similar responses occurred in vascular tissues of both resistant and 

susceptible plants, they occurred with a higher intensity in the resistant B. napus and B. 

oleracea accessions. Thus, from these studies, differences in responses between the 

susceptible and the resistant interaction can be regarded as being quantitative rather than 

qualitative in nature. In both resistant Brassica genotypes the most active defence occurs in 

the hypocotyl tissue and seems to be based on similar if not the same mechanisms. This 
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clearly corroborates the hypothesis that resistance traits in B. napus have been introgressed 

from B. oleracea.  

The results obtained from this study are a first step towards understanding the biochemical 

basis of the genetically conferred resistance of B. napus accessions to V. longisporum. Future 

research should aim at further elucidating the underlying mechanisms of host as well as non-

host resistance. Thus, an integrated approach combining issues of plant pathology and plant 

breeding could contribute to the selection of traits which might be useful for plant breeders 

attempting to generate varieties with improved resistance to V. longisporum. 
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Zusammenfassung 
 

Die zunehmende Anbaufläche von Raps hat insbesondere in Ländern Nordeuropas zu einem 

verstärkten Auftreten von Verticillium longisporum, dem Erreger der sogenannten 

Verticillium-Welke an Brassica- Arten, geführt.  

V. longisporum (ex. V. dahliae var. longisporum comb. nov. Karapapa et al.) ist, wie V. 

dahliae und V. albo-atrum, ein bodenbürtiger Pilz mit einem monozyklischen 

Infektionszyklus. Ausgehend von keimenden Mikrosklerotien werden vornehmlich 

Feinwurzeln infiziert. Den größten Teil des Lebenszyklus ist V. longisporum auf das 

vaskuläre System der Pflanzen beschränkt. Im Gegensatz zu anderen Verticillium- Arten 

verursacht V. longisporum an Raps keine Welkesymptome, statt dessen treten Stauche und 

verfrühte Abreife auf, aufgrund derer die Bezeichnung der Krankheit als „Verticillium-

Welke“ irreführend ist und eine Umbenennung in Betracht gezogen werden sollte. 

Mikrosklerotien, die in infiziertem Pflanzengewebe gebildet werden, gelangen nach der Ernte 

in den Boden und verseuchen diesen auf Jahre hinaus. Des Weiteren kann der Pilz nicht mit 

Hilfe von Fungiziden bekämpft werden. Ein alternativer Ansatz zur Bekämpfung von V. 

longisporum im Rahmen eines integrierten Pflanzenschutzes ist der Anbau resistenter Sorten. 

Bislang wurde die Resistenzzüchtung sowohl im Winter- als auch Sommerraps erheblich 

durch das Fehlen einer ausreichenden Toleranz bzw. Resistenz im vorhandenen Zuchtmaterial 

erschwert, wenn auch kürzlich einige vielversprechende Kohl-Genotypen mit einem erhöhten 

Resistenzniveau identifiziert wurden. Vor diesem Hintergrund war es das Ziel dieser Arbeit, 

neue Resistenzquellen zu identifizieren und mögliche Resistenzfaktoren in Raps und 

verwandten Brassica- Formen zu charakterisieren, um die Resistenz von Winterraps 

gegenüber V. longisporum langfristig zu verbessern.  

Verschiedene Brassica-Arten, darunter B. oleracea- und B. rapa- (syn. campestris) Varietäten 

sowie Raps- und resynthetisierte Genotypen, wurden im Gewächshaus wie auch unter 

Feldbedingungen hinsichtlich ihrer Resistenzeigenschaften getestet. So sollten resistente oder 

zumindest teilresistente Genotypen identifiziert werden, die in künftigen Zuchtprogrammen 

Anwendung finden können. In den Untersuchungen im Gewächshaus wies eine Vielzahl von 

Akzessionen aus dem Kohl-Formenkreis ein erhöhtes Resistenzniveau auf, was vorherige 

Ergebnisse bestätigt. Des Weiteren konnten wir zeigen, dass das getestete B. rapa- Sortiment 

vornehmlich einen niedrigen bis moderaten Resistenzphänotyp besaß, während die getesteten 

napus- Typen in der Regel hinsichtlich ihrer Resistenz eine Mittelstellung einnahmen. 

Obwohl zwischen den Ergebnissen aus den Gewächshaus- Untersuchungen und den 
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Beobachtungsprüfungen im Freiland nur eine geringe Gesamtkorrelation bestand, erwies sich 

die Kombination beider Verfahren als geeignet, um robuste Resistenzquellen zu 

identifizieren. Ob niedrige Befallswerte im Feld hierbei auf im Spross greifende Toleranz- 

bzw. Resistenzmechanismen zurückzuführen sind oder sich zumindest teilweise mit der 

späten Abreife der jeweiligen Akzession erklären lassen, womit es sich um eine 

Scheinresistenz handeln würde, ist weiterhin unklar.  

Um Mechanismen zu charakterisieren, die zu dem Resistenzphänotypen von Brassica-Arten 

gegenüber V. longisporum beitragen und für Rapszüchter potentiell nutzbar sind, wurden 

grundsätzlich zwei verschiedene Ansätze verfolgt. Zum einen sollte versucht werden, 

effiziente Resistenzfaktoren in Inokulationen mit virulenten Isolaten von V. longisporum 

gegenüber wirtsheterologen Stämmen von V. dahliae zu charakterisieren. So wurde die 

Interaktion von V. longisporum bzw. V. dahliae mit Raps im Bereich der Wurzeln und im 

vaskulären System des Sprosses mit Hilfe der Confocalen Laser Scanning Mikroskopie 

(CLSM) unter Verwendung sowohl GFP-markierter Stämme als auch konventioneller 

Fluoreszenzfarbstoffe analysiert. Die Ergebnisse dieser Studien ergaben eine bessere Eignung 

der Fluoreszenzfarbstoffe im Vergleich zu der Verwendung von GFP als konstitutiv 

exprimierten Markerprotein im Rahmen von Wirt- Parasit- Interaktionsstudien. Des Weiteren 

lieferten diese Untersuchungen neue Informationen zur Frühphase in der Wirt- und Nichtwirt- 

Pathogen- Interaktion. Real- time PCR- Untersuchungen im Verlauf der Pathogenese zeigten, 

dass V. dahliae nicht in der Lage war, sich systemisch in den Spross auszubreiten, obwohl 

Infektionen der Wurzeln stattfanden. Die Nichtwirtsresistenz von Raps gegenüber V. dahliae 

beruht somit auf Mechanismen, welche die systemische Ausbreitung des Pilzes hemmen.  

Des Weiteren wurde Screeningmaterial mit vorhandenen Resistenzunterschieden zur 

differentiellen Charakterisierung von Resistenzmechanismen herangezogen. Unter den 

ausgewählten Genotypen befanden sich ein resistenter Kohl und ein anfälliger sowie ein 

resistenter Rapsgenotyp. Auf der Grundlage der Ergebnisse der Untersuchungen der 

Nichtwirt- Interaktion standen Resistenzmechanismen im vaskulären System im Mittelpunkt. 

Im Rahmen dieser Untersuchungen wurden Mechanismen identifiziert, die in Kraft treten, 

nachdem das Pathogen in die Pflanze eingedrungen ist. So wurde V. longisporum bei der 

Interaktion mit einem resistenten Wirt auf den unteren Bereich des Stängels begrenzt, eine 

akropetale Ausbreitung in den Spross war nicht möglich. Ein Aspekt der Resistenz von 

Brassica spp. gegenüber Verticillium manifestiert sich somit als Ausbreitungsresistenz. 

Histologische Untersuchungen der wirtspezifischen Interaktion führten zu der Identifikation 

folgender unspezifischer Abwehrmechanismen: Bildung von Thyllen und/oder vaskulärer 
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Gele, Akkumulation von Phenolen im Xylemparenchym und verstärkte Lignifizierung der 

Zellwände des Xylems und des Xylemparenchyms. Die Beteiligung von phenolischen Stoffen 

während der Abwehr konnte durch quantitative biochemische Analysen bestätigt werden. Bei 

der Ausprägung aller genannten Prozesse zeigte sich ein positiver Zusammenhang zwischen 

dem Resistenzniveau des betrachteten Genotyps und der Stärke der Reaktion 

(Gefäßverschluss) bzw. dem Gehalt der betrachteten Komponenten. Bei der Resistenz von 

Brassica spp. handelt es sich somit um eine quantitative Resistenz. Sowohl in dem resistenten 

Kohl- Genotypen als auch der resistenten Raps- Akzession traten Abwehrreaktionen am 

stärksten im Hypokotyl zutage und schienen zumindest zum Teil auf den gleichen 

Mechanismen zu beruhen; dies stützt die Annahme, das Resistenzmerkmale von B. oleracea 

auf B. napus im Laufe interspezifischer Hybidisierungen zwischen B. rapa und B. oleracea 

übertragen worden sind. 

Die Ergbnisse dieser Arbeit sind ein erster Schritt auf dem Weg zum Verständnis der 

biochemischen Grundlagen der genetisch determinierten Resistenz von Raps genüber V. 

longisporum. Die Kombination von Fragestellungen der Pflanzenpathologie und der 

Pflanzenzüchtung in einem integrierten Ansatz kann dazu beitragen, Merkmale zu selektieren, 

die züchterisch nutzbar sind, mit dem Ziel, die Sortenresistenz von Winterraps gegenüber V. 

longisporum zu verbessern.  
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Fig. A 1. Verticillium longisporum resistance response of Brassica rapa (light blue), B. 
oleracea (dark blue) accessions and reference rapeseed cultivars ´Express` and ´Falcon` (red) 
measured by area under the disease progress curve (AUDPC) from 23.04.2004 to 13.05.2004. 
Columns and whiskers represent mean values and standard errors from 20 infected plants of 
each accession. AUDPC value of Express represents that of the second screening run.  
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Fig. A 2. Verticillium longisporum resistance response of Brassica napus (purple) accessions 
and reference rapeseed cultivars ´Express` and ´Falcon` (red) measured by area under the 
disease progress curve (AUDPC) from 01.06.2004 to 22.06.2004. Columns and whiskers 
represent mean values and standard errors from 20 infected plants of each accession. 
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Fig. A 3. Verticillium longisporum resistance response of Brassica rapa (light blue) 
accessions and reference rapeseed cultivars ´Express` and ´Falcon` (red) measured by area 
under the disease progress curve (AUDPC) from 12.07.2004 to 02.08.2004. Columns and 
whiskers represent mean values and standard errors from 20 infected plants of each accession. 
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Fig. A 4. Verticillium longisporum resistance response of Brassica napus (purple) accessions 
and reference rapeseed cultivars ´Express` and ´Falcon` (red) measured by area under the 
disease progress curve (AUDPC) from 11.08.2004 to 01.09.2004. Columns and whiskers 
represent mean values and standard errors from 20 infected plants of each accession. 
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Fig. A 5. Verticillium longisporum resistance response of Brassica napus (purple) accessions 
and reference rapeseed cultivars ´Express` and ´Falcon` (red) measured by area under the 
disease progress curve (AUDPC) from 14.09.2004 to 05.10.2004. Columns and whiskers 
represent mean values and standard errors from 20 infected plants of each accession. 
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Fig. A 6. Verticillium longisporum resistance response of Brassica napus (purple) accessions 
and reference rapeseed cultivars ´Express` and ´Falcon` (red) measured by area under the 
disease progress curve (AUDPC) from 10.11.2004 to 01.12.2004. Columns and whiskers 
represent mean values and standard errors from 20 infected plants of each accession. 
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Fig. A 7. Fig. A 6. Verticillium longisporum resistance response of Brassica rapa (light blue), 
B. oleracea (dark blue), B. napus (purple) accessions, resynthesized rape seed lines (green) 
and reference rapeseed cultivars ´Express` and ´Falcon` (red) measured by area under the 
disease progress curve (AUDPC) from 12.01.2005 to 02.02.2005. Columns and whiskers 
represent mean values and standard errors from 20 infected plants of each accession. 
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Fig. A 8. Verticillium longisporum resistance response of Brassica rapa (light blue), B. 
oleracea (dark blue), B. napus (purple) accessions, and reference rapeseed cultivars ´Express` 
and ´Falcon` (red) measured by area under the disease progress curve (AUDPC) from 
15.02.2005 to 08.03.2005. Columns and whiskers represent mean values and standard errors 
from 20 infected plants of each accession. 
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Fig. A 9. Verticillium longisporum resistance response of Brassica rapa (light blue), B. napus 
(purple) accessions, and reference rapeseed cultivars ´Express` and ´Falcon` (red) measured 
by area under the disease progress curve (AUDPC) from 12.04.2005 to 03.05.2005. Columns 
and whiskers represent mean values and standard errors from 20 infected plants of each 
accession. 
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Fig. A 10. Verticillium longisporum resistance response of B. napus (purple) accessions and 
reference rapeseed cultivars ´Express` and ´Falcon` (red) measured by area under the disease 
progress curve (AUDPC) from 17.05.2005 to 07.06.2005. Columns and whiskers represent 
mean values and standard errors from 20 infected plants of each accession. 
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Fig. A 11. Verticillium longisporum resistance response of B. napus (purple) accessions and 
reference rapeseed cultivars ´Express` and ´Falcon` (red) measured by area under the disease 
progress curve (AUDPC) from 20.06.2005 to 11.07.2005. Columns and whiskers represent 
mean values and standard errors from 20 infected plants of each accession. 
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Fig. A 12. Verticillium longisporum resistance response of B. napus (purple) accessions and 
reference rapeseed cultivars ´Express` and ´Falcon` (red) measured by area under the disease 
progress curve (AUDPC) from 23.08.2005 to 13.09.2005. Columns and whiskers represent 
mean values and standard errors from 20 infected plants of each accession. 
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Fig. A 13. Verticillium longisporum resistance response of B. napus (purple) accessions and 
reference rapeseed cultivars ´Express` and ´Falcon` (red) measured by area under the disease 
progress curve (AUDPC) from 18.10.2005 to 08.11.2005. Columns and whiskers represent 
mean values and standard errors from 20 infected plants of each accession. 
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Fig. A 14. Verticillium longisporum resistance response of B. napus (purple) accessions and 
reference rapeseed cultivars ´Express` and ´Falcon` (red) measured by area under the disease 
progress curve (AUDPC) from 21.11.2005 to 12.12.2005. Columns and whiskers represent 
mean values and standard errors from 20 infected plants of each accession. 
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Fig. A 15. Verticillium longisporum resistance response of B. napus (purple) accessions and 
reference rapeseed cultivars ´Express` and ´Falcon` (red) measured by area under the disease 
progress curve (AUDPC) from 09.01.2006 to 30.01.2006. Columns and whiskers represent 
mean values and standard errors from 20 infected plants of each accession. 
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Fig. A 16. Verticillium longisporum resistance response of B. napus (purple) accessions and 
reference rapeseed cultivars ´Express` and ´Falcon` (red) measured by area under the disease 
progress curve (AUDPC) from 13.02.2006 to 06.03.2006. Columns and whiskers represent 
mean values and standard errors from 20 infected plants of each accession. 
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Fig. A 17. Verticillium longisporum resistance response of B. napus (purple) accessions and 
reference rapeseed cultivars ´Express` and ´Falcon` (red) measured by area under the disease 
progress curve (AUDPC) from 09.05.2006 to 30.05.2006. Columns and whiskers represent 
mean values and standard errors from 20 infected plants of each accession. 
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Fig. A 18. Verticillium longisporum resistance response of B. napus (purple), B. oleracea 
(dark blue) accessions and reference rapeseed cultivars ´Express` and ´Falcon` (red) measured 
by area under the disease progress curve (AUDPC) from 13.06.2006 to 04.07.2006. Columns 
and whiskers represent mean values and standard errors from 20 infected plants of each 
accession. 
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Fig. A 19. Verticillium longisporum resistance response of B. napus (purple) accessions, 
resynthesized oilseed rape lines (green) and reference rapeseed cultivars ´Express` and 
´Falcon` (red) measured by area under the disease progress curve (AUDPC) from 17.07.2006 
to 07.08.2006. Columns and whiskers represent mean values and standard errors from 20 
infected plants of each accession. 
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Fig. A 20. Verticillium longisporum resistance response of B. napus (purple) accessions and 
reference rapeseed cultivars ´Express` and ´Falcon` (red) measured by area under the disease 
progress curve (AUDPC) from 27.11.2006 to 18.12.2006. Columns and whiskers represent 
mean values and standard errors from 20 infected plants of each accession. 
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Fig. A 21. Verticillium longisporum resistance response of B. napus (purple) accessions and 
reference rapeseed cultivars ´Express` and ´Falcon` (red) measured by area under the disease 
progress curve (AUDPC) from 22.01.2007 to 12.02.2007. Columns and whiskers represent 
mean values and standard errors from 20 infected plants of each accession. 
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Fig. A 22. Verticillium longisporum resistance response of B. napus (purple) accessions and 
reference rapeseed cultivars ´Express` and ´Falcon` (red) measured by area under the disease 
progress curve (AUDPC) from 14.03.2007 to 04.04.2007. Columns and whiskers represent 
mean values and standard errors from 20 infected plants of each accession. 
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Fig. A 23. Verticillium longisporum resistance response of B. napus (purple) accessions and 
reference rapeseed cultivars ´Express` and ´Falcon` (red) measured by area under the disease 
progress curve (AUDPC) from 30.04.2007 to 21.05.2007. Columns and whiskers represent 
mean values and standard errors from 20 infected plants of each accession. 
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Fig. A 24. Verticillium longisporum resistance response of B. napus (purple) accessions and 
reference rapeseed cultivars ´Express` and ´Falcon` (red) measured by area under the disease 
progress curve (AUDPC) from 05.06.2007 to 26.06.2007. Columns and whiskers represent 
mean values and standard errors from 20 infected plants of each accession. 
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Fig. A 25. Verticillium longisporum resistance response of B. napus (purple) accessions and 
reference rapeseed cultivars ´Express` and ´Falcon` (red) measured by area under the disease 
progress curve (AUDPC) from 31.07.2007 to 21.08.2007. Columns and whiskers represent 
mean values and standard errors from 20 infected plants of each accession. 
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