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1. General Introduction  

1.1 Biomass as renewable energy source 

Fossil fuels from coal, natural gas and petroleum (oil) have been the main sources of energy 

since the mid 1800s. In 2005, fossil energy s contribution to total energy consumption was 

about 79% in the European Union (EU) countries and 81% worldwide (EC 2007). However, 

there is worry about using up all of the earth s resource of fossil fuels in future. Also the 

mining, processing, and combustion of fossil fuels produce CO2 and other gases which are 

contributing significantly to the increase in atmospheric CO2 concentration (IPCC 2001).  

The first global attempt to search for solutions to these problems was the Kyoto accord 

which was introduced in 1997 by the United Nations. There after, renewable energy sources 

(RES) of bio-, water-, wind- and solar- energy is being promoted because they are neutral to 

the production of CO2 and replaceable. Presently, RES have gained much support politically 

and factors such as subsidies, tax exemptions, and research grants to increase the share of 

RES in energy sectors have been adopted. The EU target is to increase its RES from 5.4 % in 

1997 to 12.0% by 2010.   

Recently, Biomass among other RES is highly being promoted. This is because the 

resources are vastly abundant, can be generated in a short period of time and obtained from 

different sources (waste products, forest, annual, biennial and perennial crops). Biomass 

production would provides employment opportunities through the cultivation, harvesting, 

transporting and conversion to bioenergy (Rosillo-Calle 2006). Also, it can be used to 

generate different forms of energy including heat, electricity and fuel. In 2000, 79.8% out of 

13.8% of RES used worldwide was from biomass (IEA 2002) and in Europe, 66.1% of RES 

used was biomass (EC 2006). 
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Traditionally, bioenergy has been the main source of energy in developing nations, 

particularly in the native form when used as firewood for cooking and heating. Presently, 

modern technologies are increasing rapidly and both total biomass and grains are utilized for a 

number of different bioenergy products. Different biomass crops ranging from herbaceous 

annuals (alfalfa, sorghum, maize, barley, rapeseed, rye, triticale and wheat) to perennials 

which can be grouped into herbaceous (Miscanthus and grasses), and woody (forest trees)  are 

cultivated purposely for bioenergy (Sims et al. 2006).  

Also, the technology used in the conversion of biomass to bioenergy is advancing 

rapidly and methods such as pyrolysis to produce liquid fuels, combustion alone or in 

combination with fossil fuels to produce heat or electricity, gasification to produce 

combustible gas, and anaerobic fermentation (biogas) to produce heat and electricity are 

employed (Rosillo-Calle 2006). 

In the past five years, anaerobic fermentation (biogas) is gaining interest as a biomass 

conversion technology in Europe (Wellinger 2007). This is because it has low establishment 

cost, is flexible in its operation and variable substrates such as organic and industrial waste, 

animal slurries, agricultural residues and a variety of biomass energy crops can be used 

(Svensson et al. 2006). Biogas production is a way of managing organic waste products by 

producing methane for bioenergy and organic fertilizers obtained from the digest (Abraham et 

al. 2007; Börjesson and Berglund 2007). 

The biogas produced from biomass depends on substrates that can be degraded to CH4 

and CO2. Therefore, content of organic matter and lignin in plant substrate is important 

(Stewart et al. 1984). A substrate with higher amount of organic matter and with low level of 

lignin implies less decomposition time. Lignin is a complex phenolic polymer with phenyl 

propane units cross-linked to each other by different chemical bonds. These complex bonds 

make it difficult for plant material to decompose and they in turn increase with increasing 

maturity in plants (Grabbers 2005).  
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Amon et al. (2007) mentioned that the quality of energy crops for biogas production is mainly 

influenced by field conditions. The content and availability of substance that influence 

methane production depends on crop variety, cultivation and the stage of maturity at 

harvesting. In maize, they reported a range of 22 to 62 % dry matter content (DMC) at 

different harvesting periods. Anaerobic digestion showed that on specific methane yield 

production basis, methane decreases with increasing DMC. However, methane yield per 

hectare basis, thus the product of DMC, volatile solids and specific methane yield increases 

with increasing DMC up to about 50% DMC after which a further increase is not significant.   

1.2 Brassica rapa as potential biomass crop for biogas production 

The use of plant biomass as substrate for biogas production has recently become an important 

and popular practice in Europe. The number of biogas plants has been increasing rapidly and 

in Germany, about 3.500 were in operation at the end of 2006 (Weiland 2007), which is an 

increase of 75% between 2004 and 2006.  Presently, over 350.000 ha, representing 2% of 

agricultural land in Germany, is used for the cultivation of biogas energy crops. However, 

about 80% of the biogas substrate in Germany comes from maize (Weiland 2007), a crop of 

sub-tropical origin with low cold tolerance that can not be sown before May, and is harvested 

in September/October.  

For maximum utilisation of land and availability of biogas substrate through out the 

year, biomass crops that are winter hardy and can be harvested early in the year are required. 

This will give growers the option to grow two crops in one season. The first one sown in 

autumn and harvested in spring followed by a second crop sown in May and harvest in 

autumn. Examples of crops adapted to higher temperatures are sunflower or the C4 crops 

maize and sorghum, and those with high biomass production even under low temperatures are 

C3 plants as rye and triticale, forage grasses, and also Brassica crops.   
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Among the Brassicas, B. rapa is of special interest because it has a higher early 

biomass and is flowering earlier than B. napus with fewer frost free days requirement to 

complete its life cycle (CFIA 1999; Pertl et al. 2002; Halfhill et al. 2005). Today, B. rapa is 

mainly grown as spring oilseed crop in Canada and in some marginal regions in Northern 

Europe where the growing season is very short.  Traditionally, also winter B. rapa was grown 

as oilseed crop in Northern and Central Europe, but cultivation has nearly ceased.  

The European winter B. rapa is the first among winter crops to develop early biomass 

because of its high growth rate at low temperature during spring. As source for bioenergy, 

also older cultivars of winter B. rapa can be used. They have sometimes low grain yield and 

relatively poor seed quality. The open pollinated nature of B. rapa has made it difficult to 

introduce seed quality genes into cultivars. However, they might be suitable for biomass 

production because seed yield and seed quality are not important for biomass production. 

Also, this could positively contribute to increased biodiversity.  

Winter B. rapa is an herbaceous winter annual crop and sown in Europe between 

September/October. It is stress tolerant and can be cultivated on a variety of soils. On the 

average, it can grow to a height of 1.5 m with profuse branching. Winter B. rapa blooms in 

April or May since it can grow under lower temperatures (CFIA 1999). It could be harvested 

during flowering where the biomass yield is nearly as high as the maximum (Diepenbrock 

2000). Though water content at flowering period is high, it could either be stored or used 

directly after harvesting for biogas production since it has high soluble cell and low lignin 

contents which is suitable for anaerobic digestion (Stewart et al. 1984).   

1.3 Origin and importance of winter Brassica rapa   

The Brassica genus consists of three monogenomic diploid species, B. rapa (A genome 

n=10), B. oleracea (C genome n=9), B. nigra (B genome n=8) and three amphidiploids, B. 

napus (AC genome n=19), B. carinata (BC genome n=17), B. juncea, (AB genome n=18) (U 
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1935). The amphidiploid species originated through spontaneous inter-specific hybridization 

of the diploids and are believed to be of recent origin with narrow genetic base (Song and 

Osborn 1992). The diploid species have a long history of domestication and B. rapa was 

cultivated already during the Bronze Age in Northern Europe (Persson et al. 2001), towards 

the end of the sixteenth century in Holland and Belgium, and in the eighteenth century in 

Britain (Riddet 1925).  

Molecular and morphological studies have proposed that B. rapa originated from two 

independent centers; Europe and Asia (Song et al. 1988; He et al. 2003; Zhao et al. 2005). The 

Asian types consist of several subgroups of species which are mainly used as leafy vegetables, 

while the European types are used as oilseed (Reiner et al. 1995). Based on vernalization 

requirement before flowering, B. rapa can be grouped into winter and spring types and 

presently for oilseed production, mainly spring type is cultivated.  

The Brassica species together are the second largest oilseed crop produced worldwide 

(FAO 2006). The most important Brassica species is B. napus, but B. rapa is also of special 

interest as a progenitor of B. napus and B. juncea. The oil is presently processed as a 

renewable energy in the petrochemical industry for biodiesel and over 3.9 million tonnes of 

biofuel was produced by the EU in 2005 (EC 2006).  

The subspecies rapifera of B. rapa is cultivated either for its turnips or leaves.  In 

Northern Spain, Portugal and Southern Italy (Padilla et al. 2005), it is used either as leafy 

vegetable for human consumption or fodder for feeding animals, depending on the 

morphotype. The swollen root is consumed by both human and animals. In China, different 

morphotypes of B. rapa are vegetable cultivars, which includes Chinese cabbage (subsp. 

pekinensis) characterized by its large leaves with wrinkled surfaces, and Pak choi (subsp 

chinensis) which does not form heads (Zhao et al. 2005).   
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1.4 Genetic diversity of B. rapa 

The maximum utilization of any species for breeding and its adaptation to different 

environments or stress conditions depend on the level of genetic diversity it holds. In out-

crossing species, a more variable germplasm implies high heterozygosity levels (Mohammedi 

and Prasanna 2003), with high stability to changing environments. For breeding, information 

about germplasm diversity in cultivated species is important to identify diverse parental 

combinations for hybrid breeding or to create variable segregating progenies for inbred lines.  

Also, information on the identity and genetic diversity of accessions is necessary for 

the management, conservation and utilization of crop germplasm (Cruz et al. 2006). Genetic 

diversity in plants can be investigated with either data from pedigree, morphology, isozymes, 

storage proteins, or DNA markers. Examples of DNA markers presently used in Brassica are 

restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism 

(AFLP), random amplified polymorphism DNA (RAPD), simple sequence repeat (SSR) and 

single nucleotide polymorphisms (SNP) (Snowdon and Friedt 2003). Genetic diversity may 

be studied at the level of individual genotypes, populations or species, and a number of 

studies on genetic diversity in B. rapa have been carried out with different methods.  

Padilla et al. (2005) using 34 morphological and agronomical traits differentiated 120 

populations of B. rapa landraces collected throughout northern Spain into five groups; worst 

agronomic potential, rosette growth habits, without rosette growth habits, highest early vigour 

and number of secondary stems per plants, large flowering period and large seed weight. 

Mukhlesur et al. (2004) with seed protein and isozymes distinguished clearly between yellow 

sarson (self-compatible) and brown sarson (self-incompatible) in 32 B. rapa cultivars 

collected from China, Bangladesh and Japan.  

Genetic diversity in B. rapa in relation to crop type (oilseed, turnip and vegetable) and 

geographical origin (Central Asia, India, and Europe) was also investigated with isozymes 

and RFLP (McGrath and Quiros 1992). The RFLP diversity within populations was higher 
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than variation in isozymes and a clear separation was observed between European accessions 

whereas the Chinese and Indian accessions were more similar. The Asian accession and the 

Indian types showed the highest genetic diversity followed by the European. The within 

populations diversity accounted for about 70% of the total population variation.  

Persson et al. (2001) employing allozymes reported 81% of the genetic diversity 

within accessions and 19% among accession in turnip B. rapa coming from Northern Europe. 

Zhao and Becker (1998) also with isozymes observed in cultivars of winter and spring types 

obtained from Europe, China and Canada a high genetic diversity of which 70% was 

attributed to within cultivar variation.  

Das et al. (1999) compared the performance of AFLP and RAPD markers in detecting 

genetic diversity between different oilseed morphotypes (self-compatible and self-in 

compatible) of B. rapa. Genetic similarities based on Jaccard coefficient ranged from 0.42 to 

0.73 for RAPD and 0.48 to 0.93 for AFLP, indicating a large genetic diversity and both AFLP 

and RAPD separated the self-compatible and self-incompatible cultivars. Simonsen and 

Heneen (1995) in Chinese accessions and Swedish B. rapa cultivars, observed a larger genetic 

diversity within the Chinese accessions than the Swedish cultivars, even though both were 

larger than in B. oleracea when compared with isozymes.   

1.5 Mating system and self incompatibility  

Brassica rapa is a cross pollinated crop with the exception of yellow sarson which is self 

pollinated (Becker et al. 1999; Das et al. 1999).  The cross pollination is the result of self-

incompatibility (SI) which is the inability to produce zygotes when stigma is self pollinated. 

Self-incompatibility in B. rapa is of sporophytic type, where the incompatibility phenotype in 

the pollen is determined by the pollen producing plant and controlled by a single multi-allelic 

S locus (Franklin-Tong and Franklin 2000). To induce self pollination in SI plants, treatments 

such as high humidity, high temperature, bud pollination, CO2, chloroform and salt could be 
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applied (Johnson 1972).  

Self-incompatibility in B. rapa influences the agronomical performance by increasing 

the out-crossing rate and minimizing inbreeding; the mating between closely related 

individuals. Inbreeding in turn increases homozygosity which leads to the exposure of 

deleterious alleles that have been masked by dominant effect. This consequently negatively 

affects the development of seed set, germination, survival and resistance to stress (Keller and 

Waller 2002). Self-incompatibility mechanism results in complete cross-pollination in B. rapa 

(Becker et al. 1999). It can also be used as mechanism for producing F1 hybrids (Sakamoto 

and Nisio 2001; Shen et al. 2005). However, this requires the development of SI inbred lines 

by one of the artificial methods mentioned above to induce self pollination.   

1.6 Breeding methods 

Different methods are used to test for performance in cross pollinated crops and these have 

resulted in the development of different breeding methods. Examples are mass selection, 

recurrent selection, half-sib selection, full-sib selection and synthetic cultivars, and all these 

methods have been applied in Brassica breeding (for review see Becker et al. 1999).  

Mass selection is a selection method where individual plants are selected based on 

their phenotypic (mother) performance. The seed of selected plants are bulked and sown for 

the next generation. The cycle of selection, bulking and sowing continues until no further 

improvement is achieved. It is an oldest system of selection, very simple, easy and completes 

its cycle in one year. However, its selection response is very low because pollen flow is not 

controlled and each plant is randomly mated with the population. It is suitable for traits that 

are of high heritability and controlled by few genes (Falconer and Mackey 1996).  

Recurrent selection involves the evaluation of individual plants which have been 

selected from a base population.  After evaluation, best plants identified are mated randomly 

before used for the next generation. Thus it is a cyclic breeding procedure designed to 
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increases the frequency of favourable alleles while maintaining genetic variation in breeding 

populations and was proposed by Hull (1954). It may be applied in both self and cross 

pollinated crops and has been extended to different mating systems. Examples are full-sib 

recurrent selection, half-sib recurrent selection and S1 recurrent selection (Hallauer et al. 

1988). The different recurrent selection methods differ in their cycle length and are mostly 

effective when the genetic variance is controlled by mainly general combining ability (GCA).  

A half-sib progeny is the results of random mating of an individual plant as female 

pollinated by many other plants. In population improvement, a portion of seed produced from 

selected half-sibs is evaluated based on progeny performance. The best productive progeny 

seed is bulked and used for the next generation. Mating can be either polycross where all lines 

to be tested are allowed to randomly mate or top cross which is the mating of test lines with 

their base population (Falconer and Mackey 1996). The variance of general combining ability 

of half-sibs is mostly small because pollen movement is not controlled and only between 

family variations is utilized (Aastveit and Aastveit 1990). Half-sib family selection is simple 

and has been used in population improvement of B. rapa (Bradshaw et al. 2002) 

In full-sib, crosses between two plants are produced and evaluated. Based on results of 

progeny evaluation, the high yielding full-sibs seed are sown and used for the next generation. 

Thus pollen movement is controlled and combining ability and heterosis are directly utilized 

(Lambeth et al. 2001). In addition, it utilizes both within and between family variation 

(Aastveit and Aastveit 1990) and population improvement is quite fast because only high 

yielding plants are allowed to cross.  It has commonly been used in population improvement 

of cross pollinated crops and examples are maize (Pixley et al. 2006) and forage grasses 

(Aastveit and Aastveit 1990; Fang et al. 2004). 

Synthetic cultivars are specific kinds of population cultivars, typically produced 

through random mating of selected components based on their performance and combining 

ability (Becker et al. 1999). The mixtures of parental components are referred to as Syn-0 and 
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their offspring as Syn-1. The following generations are produced by random mating without 

selection and are referred to as Syn-2, Syn-3, and so on. Synthetics could be utilized even at 

Syn-1 level, where for two parental cultivars it composes of 25% each of plants from crosses 

within the parental components and of 50% of plants from crosses between the two 

populations. Yield performance of synthetic has been experimentally demonstrated in B. rapa 

(Falk et al. 1994; Falk et al. 1998) and is effective in cases where genetic variance is 

controlled by specific combining ability with high out crossing rate (Becker et al. 1998).  

1.7 Combining ability  

Selection of parents for synthetic or hybrids breeding is based on their combining ability. 

Combining ability is the ability of a parent to produce superior progeny and has been divided 

into general combining ability (GCA) and specific combining ability (SCA). The GCA effect 

of a population is an indicator of the relative value of the population in terms of frequency of 

favourable genes and of its divergence, as compared to the other populations. The SCA effect 

of two populations expresses the differences of gene frequencies between them and their 

divergence, as compared to the diallel populations (Viana 2000).   

The mating design most often employed in the assessment of combining ability is the 

diallel (Griffing 1956; Gardner and Eberhart 1966). This allows the selection of superior pure 

lines for hybridization and, in cross-pollinating species, to screen populations for use in within 

and between population breeding programs. 

Studies on combining ability for traits such as yield and other agronomic traits are 

available in different Brassica species with diallel analysis. Qian (2003) evaluated 

intraspecific hybrid between B. rapa x B. napus for biomass yield in two years. Significant 

variation was observed for both GCA and SCA, indicating that both additive and non additive 

effects influenced biomass yield production. The ratios of variance component for GCA to 

SCA were 89% in 1999 and 88% in 2000, showing that GCA played a more important role 
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though both were significant.  

Wang et al. (2007) studied combining ability for different traits in subspecies of 

Chinese B. rapa. They observed that yield per plant and length of main inflorescence were 

mainly controlled by SCA; plant height, number of primary branches, siliques of primary 

branches, seed per silique and 1000-seed weight were controlled by both GCA and SCA; and 

number of secondary branches, siliques of secondary branches and siliques per plant were 

mainly controlled by GCA.  

Combining ability of 15 B. rapa subspecies yellow sarson was estimated by using 

diallel including reciprocals for 12 characters related to yield and oil content (Singh and 

Murty 1980). Gene action was predominantly controlled by SCA effects with GCA effects 

playing a minor role in oil content and 50% flowering. Yadav et al. (1988) in nine inbred lines 

of brown sarson used as females and three other cultivars as male examined the combining 

ability of their 27 hybrids. Specific combining ability was observed to control all traits when 

the hybrids were evaluated for plant height, number of branches per plant, number of seed per 

pot, 1000-seed weight and seed yield per plant.   

1.8 Heterosis utilization  

Heterosis is the difference in performance between F1 generation and mid parent or high 

parent and has been a major breeding tool for plant productivity improvement. Preferably, 

inbred lines with genetically distinct backgrounds are used as parent for F1 production. It 

makes maximum use of heterosis by combining favorable alleles of the individual 

homozygous parents. In populations such as B. rapa, a part of heterosis is already utilized in 

base population due to their open pollination with plants being partly heterozygous.  

However, it can take advantage of the homozygous plants within the population for 

heterosis, and also heterotic increase which could result by crossing heterozygous plants. 

Parental populations with different genetic make-up such as cultivars (Shuler et al. 1992) 
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synthetics (Falk et al. 1998), and subspecies (Wang et al. 2007) have been used in heterosis 

studies in B. rapa. For estimating heterosis in crosses between population, Lamkey and 

Edwards (1999) suggested the term panmictic mid parent heterosis for the difference 

between the mean of two random mating populations and the mean of a hybrid population 

produced by crossing individual plants of the two populations. 

Dominance, over dominance and epistasis are the three principal genetic explanations 

for heterosis. The dominance hypothesis stipulated that heterosis is contributed by favorable 

alleles of both parents.  Over dominance is a condition where loci in the heterozygous state 

are superior to parents and epistasis is the complex interactions of favorable alleles of the two 

parents (Crow 1999). Heterosis can only occur when parental cultivars used for F1 production 

differ in gene frequencies (Falconer and Mackay 1996). 

Heterosis for different agronomic traits has been reported. Schuler et al. (1992) in 

inter-cultivar F1s of B. rapa reported mid parent heterosis (MPH) of 18% for seed yield. Falk 

et al. (1998) in cultivars of spring B. rapa reported 25% MPH in seed yield. Kaur et al. (2007) 

in B. rapa subspecies of toria, brown sarson and yellow sarson observed 31% heterosis in 

intra group crosses and 17% in inter group crosses for seed yield. Wang et al. (2007) in 

Chinese B. rapa vegetables reported MPH of 10% for plant leaves, 44% for petiole fresh 

weight and 17% for the length of biggest leaf.   

One of the most expensive steps in heterosis utilization is the identification of parental 

combinations that produce F1 with superior yield. Therefore, the prediction of F1 performance 

with accuracy from morphology or molecular data is important. This could reduce the cost 

involved in evaluating parent and crosses in field trials to identify parental combinations that 

will give high F1 performance. The predictions of heterosis from parental genetic distance 

have been widely studied in many crops though hardly utilized. It is estimated by calculating 

distances of molecular or phenotypic data and comparing it with heterosis from field 

experiments (Teklewold and Becker 2005).  



Chapter 1  General Introduction 

 

13

 
Reports on the extent of correlation between genetic distance and heterosis have varied 

for traits and studies. Liu et al. (2002) and Qian et al. (2003) in interspecific hybrids between 

B. rapa and B. napus reported a larger genetic distance based on molecular marker resulted in 

a higher biomass yield. Qian et al. (2007) observed a weak correlation between genetic 

distance and heterosis for interspecific crosses of European spring and Chinese semi winter 

lines. Kaur et al. (2007) observed a negative correlation between genetic diversity and hybrid 

performance in diverse morphotypes of B. rapa.  

1.9 Objectives of the study 

A winter crop widely grown in Europe for oil is Brassica. It is able to develop high early 

biomass because of its high growth rate under low temperatures during spring. It could be 

used as a pre-crop harvested earlier in the year for biogas followed by a second crop such as 

maize. Nevertheless, to date B. rapa has been bred primarily to enhance its nutritional value 

(seed quality) as an oilseed crop for humans and animals consumption, where zero erucic acid 

and low glucosinolate (GSL) are important. These targets are quite different from the criteria 

for bioenergy (biogas) for which high biomass yield is required.  

The improvement of seed quality in winter B. rapa by introducing genes for low 

erucic acid and glucosinolate content implies that its germplasm had to go twice through a 

breeding bottleneck, possibly causing a reduction in genetic diversity. For a successful 

application of B. rapa as a biogas crop, we need to broaden our knowledge on the level of 

genetic diversity in the different seed quality groups.  

The general objective of the study was to determine the genetic variation, heterosis 

and genetic diversity in B. rapa for biomass yield. This will be used as bases for selection of 

appropriate breeding strategy and cultivars for biomass production of European winter B. 

rapa which can be used for biogas production.   
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The specific objectives were; 

1. To develop a breeding strategy for biomass production of European winter Brassica rapa 

for biogas production: Heterosis and combining ability for biomass yield, 

2. To determine the biomass yield and heterosis of crosses within and between European 

Brassica rapa cultivars,  

3. To examine the effect of crop improvement on genetic diversity in oilseed Brassica rapa 

cultivars detected by molecular markers.
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2. Breeding of Brassica rapa for biogas production: Heterosis and combining 

ability of biomass yield  

2.1 Abstract 

The use of plant biomass as substrate for biogas production has recently gained major 

interest in Europe. Winter Brassica rapa produces high early biomass and could be 

grown as a pre-crop harvested early in the year followed by a second crop such as 

maize. The objectives of this study were to estimate heterosis and combining ability of 

present and older 15 European winter B. rapa cultivars for biomass yield at flowering. 

A half-diallel without reciprocals was conducted among the cultivars to produce 105 

crosses. These crosses and their parents were evaluated in two years at two locations 

in Northern Germany. Data collected were days to flowering (DTF), fresh biomass 

yield (FBY), dry matter content (DMC), dry biomass yield (DBY) and plant height 

(PH). The mean DBY was 5.3 t/ha for the parental cultivars and 5.6 t/ha for their 

crosses. The crosses surpassed in average their parents by 7.6 % for FBY and 5.9% for 

DBY whereas DMC was 1.4 % higher in the parents. Maximum mid parent heterosis 

was 21.0 % for FBY and 30.4 % for DBY. Analysis of variance showed that genetic 

variance was mainly due to specific combining ability (SCA). The correlation between 

parental performance and general combining ability (GCA) was 0.42** for FBY and 

0.53** for DBY. In conclusion, the amount of heterosis in crosses between European 

winter B. rapa cultivars is not very high on average, but can be up to 30 % in the best 

crosses. Selection of parents with high specific combining ability to produce synthetic 

cultivars can rapidly improve biomass yield.   

Key words:  biogas, diallel, full-sibs, general combining ability, synthetic cultivars, specific 

combining ability 
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2.2 Introduction  

Different technologies to convert biomass to bioenergy have been developed and biogas 

production among them has become of major interest in the past years in Europe. The number 

of biogas plants operating in Germany at the end of 2006 was 3.500 (Weiland 2007), which is 

an increase of 75% between 2004 and 2006. Presently, over 350.000 ha, representing 2% of 

agricultural land in Germany is used for the cultivation of biogas energy crops (Weiland 

2007).  

The majority of the biogas substrate in Germany comes from maize, a sub-tropical 

crop, which can not be sown before May and is harvested in September/October. For 

maximum utilisation of land and availability of biogas substrate through out the year, biomass 

crops that are winter hardy and can be harvested early in the year are required. This will give 

growers the option to grow two crops in one season: the first one sown in autumn and 

harvested in spring, followed by a second crop adapted to higher temperatures like maize, 

sorghum or sunflower. Crops with high biomass production even under low temperatures are 

rye, some forage grasses, and also Brassica crops. Among the Brassicas, B. rapa is of special 

interest, because it has a higher early biomass than B. napus (CFIA 1999; Halfhill et al. 2005).  

Today, B. rapa is mainly grown as spring oilseed crop in Canada and in some 

marginal regions in Northern Europe. Traditionally, also winter B. rapa was grown as oilseed 

crop in Northern and Central Europe, but cultivation has nearly ceased. However, there is a 

renewed interest in the cultivation of winter B. rapa in Europe to produce biomass, because of 

its high growth rate under low temperatures during early spring. For biomass production, 

older cultivars of winter B. rapa can be used. They have low grain yield and relatively poor 

seed quality which is not important for biomass production. Also, this could positive 

contribute to increased biodiversity.    
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Brassica rapa is a cross-pollinated and self-incompatible crop with high genetic diversity 

within cultivars (Zhao et al. 2005). Different methods such as hybrid breeding, full-sib 

selection, recurrent selection and development of synthetic cultivars have been exploited in 

Brassica population improvement (for review see Becker et al. 1999). From these methods, 

full sib selection makes direct use of combing ability and heterosis (Lambeth et al. 2001).  

It utilizes both within and between family genetic variation (Aastveit and Aastveit 

1990). For heterosis determination in population, Lamkey and Edwards (1999) suggested the 

term panmictic mid parent heterosis for the difference between the mean of two random 

mating populations and the mean of a hybrid population produced by crossing individual 

plants of the two populations. 

A number of studies on combing ability and heterosis for yield and yield components 

have been carried out. Singh and Murty (1980) in B. rapa subspecies yellow sarson and Wang 

et al. (2007) among different subspecies of B. rapa observed predominance of non additive 

genetic effects. Yadav et al. (1988) in nine inbred lines of brown sarson used as females and 

three other cultivars as males also observed predominance of specific combining ability for 

seed yield and other related traits. In heterosis studies, Falk et al. (1998) observed a mid 

parent heterosis of 25 % for seed yield, Schuler et al. (1992) in inter-cultivar F1s of B. rapa 

reported mid parent heterosis of 18% for seed yield. Kaur et al. (2007) in B. rapa subspecies 

toria, brown sarson and yellow sarson observed heterosis of 17% for seed yield in intra group 

crosses. 

The aim of this study is to analyse the genetics of biomass yield of 15 winter B. rapa 

cultivars and F1s derived from crosses amongst them. The specific objectives were: (i) to 

evaluate the biomass yield at end of flowering, (ii) to estimate the effects of general and 

specific combining ability (GCA and SCA), and (iii) to estimate the magnitude of heterosis in 

population crosses. The results will allow the development of efficient breeding strategies for 

B. rapa as new bioenergy crop in Europe.  
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2.3 Material and methods  

2.3.1 Parental cultivars  

The plant materials used in this experiment consisted of 15 winter B. rapa cultivars 

(Table 2.1). They were of European origin and were obtained from either genebanks or 

breeding companies. They represent a large range of genetic material from different 

geographical regions within Europe and both forage and oilseed types are included. Their 

seed quality differed with respect to erucic acid and seed glucosinolate content.   

2.3.2 Material development  

The 15 winter B. rapa cultivars were crossed in a half-diallel manner without 

reciprocals at Reinshof experimental station in May 2005 and 2006. Three full sibs (FS) were 

produced from each of the 105 parental combinations by isolating two plants each under one 

large bag before beginning of flowering. In this way nearly complete cross-pollination can be 

achieved. Bags were gently shaken every other day during flowering. To control 

hybridization, 40 seeds each were randomly selected from the crosses; Largo x Weibull 

Storrybs (ee x EE) and Lemkes Winterrübsen x Opava (EE x EE) and analyzed with near 

infrared reflectance spectroscopy (NIRS). Seeds were further analyzed with the gas 

chromatography to confirmation results.   

2.3.3 Field Evaluation 

For evaluation, equal amounts of seed from the three FS of each combination were 

bulked. The 15 parental cultivars, their 105 crosses, and the check cultivar Perko were 

grown in two years at the two locations Göttingen and Einbeck in Northern Germany. The FS 

produced in 2005 were tested in 2005/06, the FS produced in 2006 were tested in 2006/07. 

The experimental design was an 11 x 11 lattice with two replications.   
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Table 2.1 Brassica rapa cultivars used in this study with their country of origin 

Cultivar name Country of 

 origin 

Seed 

qualitya 

Sources/ Breeder Accession No  

Steinacher Germany ++ BAZ, Braunschweig, Germany BAZ 18101  

Weibulls Storrybs Sweden ++ CZ, Czechoslovakia  

BRA 245 Bulgaria ++ IPK, Gatersleben, Germany BRA 245  

Lemkes Winter  Germany ++ BAZ, Braunschweig, Germany BAZ 34349  

Lemkes Malchower Germany ++ BAZ, Braunschweig, Germany BAZ  34342 

Arktus Germany ++ BAZ, Braunschweig, Germany BAZ  34354 

Schneiders Sprengel  Germany ++ IPK, Gatersleben, Germany BRA 11  

Hege s Winter  Germany ++ BAZ, Braunschweig, Germany BAZ 34335 

Janetzki s Germany ++ BAZ, Braunschweig, Germany BAZ  31204 

Opava Czechoslovakia ++ BAZ, Braunschweig, Germany BAZ   

Grubes Winter   Germany ++ BAZ, Braunschweig, Germany BAZ 34346 

Wild accession b   Germany ++ Bonn, Germany  

Orbit Sweden 0+ SW Seed, Sweden              - 

Largo Sweden 00 SW Seed, Sweden              - 

Rex Germany 0+ NPZ, Germany              - 

 

a ++ high erucic acid, high glucosinolate;  0+ - zero erucic acid, high glucosinolate;  00 

 

zero 

erucic acid, low glucosinolate 

b by courtesy of the collector, Dr. Thomas Gladis, University of Kassel,   

Sowing dates were 24th of August at Einbeck and 31st of August at Göttingen in 2005 and 31st 

of August at Einbeck and 5th of September at Göttingen in 2006. Rate of sowing was between 

90 and 110 seeds m-2. Plot sizes were 11.25 m2 in Göttingen and each plot consisted of 6 

rows, 7.5 m long and 0.3 m between rows. In Einbeck, plot size was 9.0 m2 and consisted of 5 

rows, 6.0 m long and 0.3 m between rows. Standard crop management practices for weed 

control and fertilization were followed. 

Data were recorded on days to flowering (DTF, from the day of sowing until 50% of 

plants were flowering), fresh biomass yield (FBY, kg/m2), dry matter content (DMC, %), dry 

biomass yield (DBY, g/m2) and plant height (PH, cm). Plots were harvested on the 8th of May 
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at Einbeck and 15th of May at Göttingen in 2006 and 2ed of May at Einbeck and 21st of May at 

Göttingen in 2007. This was at end of flowering, using a harvester that cut at 5 cm above 

ground and the total fresh biomass yield was measured. From each plot a sub-sample of 300 g 

fresh weight was dried at 60oC for 6 days to determine the dry matter content. Based on this, 

total dry biomass yield per plot was calculated.  

2.3.4 Statistical analysis  

Analyses of variance (ANOVA) were first run separately for each experiment using 

PLABSTAT software (Utz 2001) based on the model: Yijk= u + ri + gj + ßk +eijk, where Yijk = 

observation of genotype j in block k and replication i; u = general mean; ri = effect of 

replication; gj = effect of genotype j; ßk = effect of blocking; eijk = error of observation. A 

combined analysis of variance of the adjusted means was then computed individually for 

years 2006 and 2007, and then for the four environments with model: Yij= u + li + gj + lgij + 

eijk, where Yij = observation of means of genotype j in location i; u = general mean; li = effect 

of location; gj = effect of genotype j; lgij is the interaction effect between location i and 

genotype j and eijk = error of observation of lattice. 

Random effects model was assumed for years and locations. The sum of squares for 

entry effects were partitioned into parents, crosses and parents vs. crosses effects. The 

variance of crosses was further partitioned into general combining ability (GCA) and specific 

combining ability (SCA), according to analyses III of Gardner and Eberhart (1966) using 

PZ14 software (Utz 1992).  

Heterosis increase was calculated as follows: absolute mid-parent heterosis MPH = 

(Crosses 

 

MP), relative mid-parent heterosis MPH % = (Crosses 

 

MP)/MP*100, absolute 

high-parent heterosis HPH = (Crosses 

 

HP) and relative high-parent heterosis (HPH %) = 

(Crosses  HP)/HP*100, where MP is mid parent and HP is high parent. To test for significant 

differences in heterosis, analysis of variance (ANOVA) was performed for MPH % and HPH 
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% values. The error of the variance of heterosis was calculated as follows;  

Taken the variance of a component X1 to be 

   Variance (X1) : 
2 

(x1) = 2
e         (1) 

where, 2
x1 is the error variance of X1 

For variance of the different or the sum of two components X1 and X2 and assuming that the 

error variance of the two components is equal and not correlated, 

Variance of (X1-X2) : 
2
x1-x2 = 2

x1 + 2
x2 = 2 2

e                (2) 

where 2
x1-x2 is error of X1 - X2. 

Variance (X1 + X2) : 
2
x1+x2 = 

2
x1 + 2

x2 = 2 2
e                  (3) 

where 2
x1+x2 error of X1 + X2. 

In the case of dividing the variance of a component X1 of (1) by a factor n 

Variance (X1)/n : 2 
(x1)/n = 2

e/n                                             (4) 

According to (Pers. com. Utz 1988) the variance of a component X divided by another 

component Y and assuming that the errors are not correlated is  

Variance (x/y) : 2 (x/y) ~ (x/ ) 2 [var. (x)/x
2 + var. (y)/ 

 

2]       (5) 

From the above definitions, with equal variance for all components, the following can be 

deduced. From (2) and (4), variance of MPH = 2 [Cross  (P1+P2/2)] = 

2
e + 2

e/2 = 1.5 2
e                                                           (6) 

From (2), error of HPH = 2 [Cross  PH] = 

2
e + 2

e  = 2 2
e                                                                (7) 

For MPH % = [Cross  (P1+P2)/2)] / (P1+P2)/2)* 100, let [Cross  (P1+P2)/2)] = X 

and (P1+P2)/2) = Y, From (4), (5) and (6), error of MPH %  = 

(x/ )2 [(1.5 2
e )/x

2 + (0.5 2
e)/  

2 ]                                          (8)  
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(1), (4) and (6), error HPH % = (Crosses  HP)/HP*100 ~ Crosses/HP= 

        (x/ )2 [ (2 2
e )/x

2 + ( 2
e)/  

2 ]                                                 (9)  

2.4 Results   

2.4.1 Parental cultivars and crosses 

The mean values for traits and GCA for the 15 parents, their 105 crosses and SCA 

effects are listed in appendix. An overview of the results is given in Table 2.2. Comparison of 

locations for the year 2006 showed a higher performance at Göttingen than Einbeck for all 

traits except fresh biomass yield (FBY). This ocuured in both parents and full-sibs (FS). Full-

sibs were higher than the parents whereas flowering was late in the parents at both locations. 

In the year 2007, all traits showed higher values in Göttingen than in Einbeck including plant 

height which was not measured in 2006. Full-sibs were also higher than the parents at both 

locations except dry matter content (DMC) and FBY which were higher in the parents at 

Einbeck.  

Flowering was almost at the same time for parents and FS in both locations. Full sib 

means in 2007 were higher than 2006 by 40% for DMC, 8% for FBY, 42% for dry biomass 

yield (DBY) and flowering was earlier by 24 days. In the parents, yields in 2007 were also 

higher than 2006 by 45% for DMC, 9% for FBY, 46% for DBY and flowering was 25 days 

earlier. 

The mean biomass yield over two years and two locations were higher in the crosses 

than in the parents (Table 2). The crosses out yielded the parents for fresh biomass yield 

(FBY) by 7.5% and for dry biomass yield (DBY) by 5.8%. Dry matter content was 1.5 % 

higher in the parents. Flowering was earlier in the crosses than in the parents. The variation of 

parent and crosses, differences in maximum and minimum values, were low in DTF but 

relatively higher in DMC, DBY and FBY. The parents with highest DBY were Opava (605 
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g/m²), Arktus (576 g/m²) and Lembkes Malchower (554 g/m²). The highest yielding crosses 

were Orbit x Lembkes Winter (666 g/m²), Orbit x Opava (665 g/m²) and Orbit x Arktus (657 

g/m²).  

Table 2.2 Minimum, maximum, mean, least significant difference (LSD) for 15 winter B. 

rapa cultivars and their 105 diallel crosses at Göttingen, Einbeck and across the four 

environments  

Parents Crosses Traits/ 

locations Min Max Mean Min Max Mean 

LSD 

(5%) 

2006  

Göttingen        

    DTF(days) 240.50 246.00 243.54 240.00 247.00 242.90 3.09 

    DMC (%) 12.11 15.27 13.93 11.46 16.00 14.14 1.59 

    FBY (kg/m2) 2.64 3.70 3.22 2.68 4.55 3.37 0.49 

    DBY(g/m2) 336.04 503.49 449.75 372.58 577.80 475.5 80.89 

    PH(m) 129.77 147.97 139.21 115.00 152.32 140.1 12.88 

Einbeck   

     DTF(days) 251.54 255.84 253.06 249.51 256.47 252.8 2.65 

     DMC (%) 9.55 11.93 10.90 9.08 14.32 11.04 2.03 

 

    FBY(kg/m2) 2.96 4.49 3.86 2.54 5.25 4.12 0.63 

     DBY(g/m2) 351.91 498.63 419.61 274.20 572.71 451.3 99.37 

2007        

Göttingen   

     DTF(days) 219.50 230.50 225.40 219.50 230.50 225.6 1.45 

     DMC (%) 17.21 21.51 19.32 15.52 22.61 19.37 2.60 

 

    FBY(kg/m2) 2.86 4.19 3.58 2.98 4.99 3.96 0.83 

     DBY(g/m2) 555.39 779.37 691.13 576.20 1023.82 764.9 158.4 

     PH(m) 125.00 152.50 138.67 125 157.50 142.3 8.69 

Einbeck   

     DTF(days) 218.89 223.11 221.77 218.94 223.13 221.9 1.61 

     DMC (%) 12.48 24.37 17.31 10.68 23.08 15.86 6.67 

  

   FBY(kg/m2) 3.02 3.90 3.40 2.71 4.43 3.59 0.66 

     DBY(g/m2) 369.69 778.93 577.09 345.77 982.91 553.4 206.3 

     PH(m) 121.78 152.20 140.95 130.38 155.04 143.5 7.26 

Across environments       

     DTF(days) 232.95 238.32 235.95 232.69 238.30 235.8 2.05 

 

    DMC (%) 13.67 17.32 15.33 12.86 16.88 15.10 2.34 

     FBY(kg/m2) 3.14 3.85 3.49 3.26 4.29 3.75 0.46 

     DBY(g/m2) 447.18 605.19 530.55 442.66 666.35 561.30 105.40 
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2.4.2 Analysis of variance for traits 

The climatic conditions in the two years were very different. Therefore, the results are 

presented for each year separately and combined over all environments. The combined 

ANOVA for 2006 showed highly significant variance between the two locations for all traits 

(Table 2.3). Significant differences among genotypes were also observed for all traits except 

DTF.  

Separation of entries into parents, parents vs. crosses and within crosses indicated 

significant variation for FBY and DBY in parents whereas the parents vs. crosses effects were 

highly significant for DTF, FBY and DBY. The crosses were also highly significant for 

DMC, FBY and DDY. Partitioning of crosses into GCA and SCA showed significant GCA 

for DMC and FBY whereas SCA showed significant differences for DBY, DMC and FBY.  

The variance components were larger in SCA than GCA for all traits. The different sources 

(entries, parents, crosses, SCA and GCA) significantly interacted with the environment for all 

traits, except DMC.  

In the year 2007, highly significant variation between locations was observed for all 

traits. With the exception of DMC, genotypic variance was significant for all traits including 

PH. Separation of genotypes into parents, parents vs. crosses and crosses indicated significant 

variation for only DBY in parents and the parents vs. crosses effects was highly significant for 

FBY, DDY and PH. The crosses were also highly significant for DTF, FBY, DBY and PH.  

Partitioning of crosses into GCA and SCA showed significant GCA for only DTF and 

PH whereas SCA showed significant differences for all traits except DMC.  The variance 

components were larger in SCA than GCA for FBY and DBY, and larger in GCA than SCA 

for DTF and DMC. The different sources showed different levels of significance for 

interaction with the environment for all traits. The means squares of error were higher in 2007 

than in 2006.  
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The combined ANOVA pooled over two years and two locations showed highly 

significant variation across environments for all traits (Table 2.3).  Partitioning of 

environment into locations, years and location x year interactions showed highly significant 

variation for all traits in the year x location interactions. Significant differences among entries 

were observed for all traits accept DMC and entries x environments were significant for all 

traits.  

Partitioning of entries into parents and crosses showed significant variation of the 

parents only for DTF whereas the parent x environments were highly significant for all traits. 

The variances due to crosses were significant for all traits except DMC and their interactions 

with environments were highly significant for all traits. The effect of parent vs crosses, 

indicating the presence of heterosis, was significant for FBY and DBY, and parent vs crosses 

x environments were highly significant for all traits. 

Seperation of the variance among crosses into GCA and SCA gave different results for 

different traits. Significant differences were for FBY in GCA and for FBY and DBY in SCA. 

For DTF and DMC the variance component for GCA was larger than for SCA, whereas for 

FBY and DBY the SCA was of larger importance.  The GCA significantly interacted with 

environments only for DTF and the SCA showed highly significant interactions with 

environments for all traits.         
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Table 2.3 Mean squares and variance components from combined analysis of variance for 15 winter B. rapa cultivars and their 105 diallel crosses 

for four traits in 2006, five traits in 2007 and four traits over environments 

Source/ Year df DTF (days) DMC (%) FBY (kg/m2) DBY (g/m2 )  

  
MS Vc MS Vc MS Vc MS Vc   

2006            

Environment (E) 1 5741.5** 47.91 565.52** 4.71 31.27** 0.260 37454.52** 300.66   

     Genotypes (G) 119 2.23 0.174 11.1** 0.324 0.19** 0.06 2666.83** 645.94   

     Parents 14 2.39 0.544 0.84 0.136 0.06+ 0.061 2857.84+ 804.54   

     Parent vs Crosses 1 4.69**  0.33  1.79**  29164**    

     Crosses 104 2.18 0.109 1.15** 0.352 0.17** 0.049 2386.35** 491.65   

              GCA 14 4.39 0.039 3.91** 0.123 0.26+ 0.004 2253.73 26.40   

             SCA 90 1.81 0.041 0.72* 0.137 0.15** 0.041 2406.98* 445.45   

G x E 119 1.86** 0.811 0.46 0.042 0.08** 0.035 1374.95* 337.31   

Parent x  E 14 1.30 0.252 0.571 0.150 0.09** 0.053 1248.77 211.14   

    Parent vs Crosses x E 1 1.01  0.38  0.44**  219.00    

    Crosses x E 104 1.94** 0.893 0.44 0.028 0.71** 0.031 1403.05** 365.42   

     GCA x E 14 3.30** 0.121 0.45 0.000 a 0.07 0.000 676.41 0.000   

    SCA x E 90 1.72** 0.681 0.45 0.028 0.07** 0.032 1516.09* 478.45   

Error 198 1.05  0.42  0.04  1037.65    

   



Chapter 2                                                         Heterosis and combining ability in 15x15 diallel  

 

27

 
Continuation of table 2.3 for the year 2007  

DTF (days) DMC (%) FBY (kg/m2 DBY (g/m2 ) PH (m) 2007 

         Sources 

df 

MS Vc MS Vc MS  MS Vc MS Vc 

Environment (E) 1 817.80** 6.804 679.33** 5.62 7.00** 0.057 2401496** 19945.7 108.83** 0.80 

   Genotypes (G) 119 7.04** 2.853 5.02 0.038 0.17** 0.037 13586.55** 2789.45 66.59** 27.22 

         Parents 14 12.23** 5.169 5.99 0.00 0.12 0.016 9158.81 0.00 140.17** 62.28 

         Parent vs Crosses 1 0.69  8.61  1.86**  20903.00**  237.73**  

         Crosses 104 6.40** 2.57 4.86 0.077 0.15** 0.032 14112.25** 3453.42 55.05** 21.68 

                GCA 14 28.78** 0.833 5.06 0.051 0.26 0.003 13843.51 0.00 234.79** 7.96 

                 SCA 90 2.92** 1.108 4.82 0.000 0.14** 0.027 14154.05** 3797.00 27.07** 7.76 

G x E 119 1.33** 1.036 4.94** 1.703 0.09* 0.024 8007.65** 3783.33 12.14** 3.98 

       Parent x E 14 1.89** 1.594 6.39* 3.148 0.09 0.020 10641.42** 6417.09 15.62* 7.46  

      Parent vs Crosses x E 1 0.17  10.01+  0.28**  54570.07**  11.55  

       Crosses x E 104 1.27** 0.973 4.7* 1.46 0.09+ 0.022 7.205.39** 2981.07 11.68* 3.52 

                GCA x E 14 4.91** 0.323 3.75 0.000 0.13+ 0.004 11354.39+ 368.80 12.41 0.065 

                SCA x E 90 0.71** 0.407 4.85* 1.608 0.8 0.015 6559.99** 2335.67 11.56* 3.412 

Error 198 0.30  3.24  0.07  4224.33  8.16  
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Continuation of table 2.3 over environments 

DTF (days) DMC (%) FBY (kg/m2) DBY (g/m2 )  Over  environments 

      Sources 

df 

MS Vc MS Vc MS  MS Vc  

Environments (E)  3 25533.2** 212.75 1460.75** 12.14 12.80** 0.106 2356116** 19586.4   

       Years (Y) 1 70031.14 269.08 3137.38+ 13.06 0.13 0.00 4629399 15457.61   

        Locations (L) 1 1115.63 0.00 1242.24+ 5.17 4.34 0.00 1519386 2499.26   

Y x L 1 5452.93** 45.43 2.61 0.01 33.93** 0.28 919563** 7622.86**   

        Genotypes (G) 119 5.91** 0.934 3.05 0.05 0.20** 0.023 8373.36** 654.78   

        Parents 14 9.79** 1.781 3.90 0.149 0.14 0.045 4998.32 0.00   

        Parent vs Crosses 1 0.87  2.79  3.57**  49722.1**    

        Crosses 104 5.44** 0.831 2.93 0.048 0.17** 0.017 8430.11** 717.78   

                   GCA 14 24.92** 0.358 5.48* 0.061 0.35* 0.004 9496.28 9.209   

                   SCA 90 2.41** 0.205 2.54 0.00 0.16* 0.011 8264.27** 701.66   

G x E 357 2.18** 1.500 2.83** 1.000 0.11** 0.053 5754.21** 3123.23   

       Parent x E 42 2.67** 1.999 3.30** 1.468 0.12** 0.070 6302.84** 3671.86   

       Parent vs Crosses x E 3 5.61**  16.52**  0.45**  55131.32**    

       Crosses x E 312 2.11** 1.44 2.74** 0.910 0.10** 0.049 5558.98** 2927.00   

                GCA x E 42 5.48** 0.300 2.56 0.00 0.12 0.002 6210.163 57.92   

                SCA x E 270 1.59** 0.915 2.77** 0.938 0.10** 0.047 5457.61** 2826   

Error 390 0.67  1.83  0.05  2630.98    

 

a  negative estimates of variance component  

 +, *, ** statistically significantly different from zero at P = 0.10, P = 0.05 and P = 0.01, respectively  
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2.4.3 Heterosis measurement  

The mean values MPH% and HPH% for 105 crosses are listed in appendix. An overview 

of the results is given in Table 2.4. The AMPH, AHPH, MPH% and HPH% estimates varied for 

the different traits. In 2006, positive mean heterosis was observed for FBY DBY, DMC and DTF 

flowered earlier in the crosses. The average effects of heterosis for DMC  was 1% and small 

compared to FBY and DBY which were about 8% and 3%, for MPH% and HPH%, respectively.  

In 2007, the amount of heterosis was not much different from the previous year except 

for DBY which was about 3% lower and for HPH% even negative. Flowering in the crosses was 

later than for the parents. Over all environments, positive mean heterosis was observed for FBY 

and DBY and negative for DTF and DMC in all cases. Negative heterosis in DTF might be 

desirable as it expresses the earlier flowering time of crosses compared to their parents. The 

effects of heterosis were generally low; for FBY the average mid parent heterosis (MPH) was 

8.0% and ranged from -8.0 to 21.0, and for DBY the average MPH was 6.0% and ranged from  

-15.2 to 30.4.  The average high parent heterosis (HPH) was 4.5% for FBY and 2% for DBY.   

2.4.4 Variance analysis for heterosis 

Analysis of variance for AMPH, AHPH, MPH% and HPH% showed the level of 

variation for location, crosses and their interaction (Table 5). In 2006, significant variation in 

heterosis over locations was observed for all traits except FBY and DBY. Crosses were also 

significant for all traits except DTF. The interaction between crosses and locations were 

significant for most traits.  

In 2007, significant variation in heterosis over locations was observed for all traits except 

DTF. Variation among crosses was also significant for all traits except DMC. The interactions 

between crosses and locations were significant for all traits. Over all environments, both MPH% 

and HPH% showed significant variation among environments. The variation among crosses was 

significant only for DTF, and the crosses x environment interactions were significant for all 
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traits.  

Table 2.4 Minimum, maximum, mean and standard error (SE) of AMPH, AHPH, MPH% and 

HPH% for four traits in 2006, five traits in 2007 and four traits over environments 

Trait/year Min. Max Mean SE Min. Max Mean SE 

  

2006 AMPH AHPH 

  DTF (days) -3.27 3.05 -0.42 0.11 -4.44 2.49 -1.02 0.13 

  DMC (%) -2.13 2.27 0.12 0.07 -1.93 2.26 -0.20 0.08 

  FBY (kg/m2) -0.68 1.01 0.26 0.03 -0.96 0.78 0.07 0.03 

  DBY (g/m2 ) -92.28 130.32 33.32 3.90 -92.65 114.50 11.69 3.99 

 

MPH% HPH% 

  DTF (days) -1.32 1.23 -0.17 0.05 -1.77 1.23 -0.40 0.05 

  DMC (%) -16.10 18.11 1.02 0.56 -14.19 18.02 -2.63 0.61 

  FBY (kg/m2) -18.89 29.36 7.65 0.96 -24.60 23.80 2.22 0.92 

  DBY (g/m2 ) -20.70 32.76 8.04 0.92 -20.70 27.20 2.90 0.99 

  

2007 AMPH AHPH 

  DTF (days) -3.95 4.33 0.16 0.13 -6.47 3.84 -1.22 0.16 

  DMC (%) -4.88 3.45 -0.57 0.17 -6.47 2.18 -1.56 0.19 

  FBY (kg/m2) -0.53 0.86 0.27 0.03 -0.75 0.82 0.12 0.03 

  DBY (g/m2 ) -208.19 265.58 28.22 8.89 -252.53 200.45 -9.74 9.16 

  PH (m) -15.125 18.10 2.02 0.73 -20.19 17.50 -1.98 0.76 

 

MPH% HPH% 

  DTF (days) -1.75 1.97 0.07 0.06 -2.86 1.74 -0.54 0.07 

  DMC (%) -24.20 20.02 -2.85 0.93 -29.72 13.09 -7.73 0.94 

  FBY (kg/m2) -14.32 26.27 7.81 0.89 -19.28 24.85 3.76 0.94 

  DBY (g/m2 ) -30.97 42.75 4.92 1.43 -35.24 35.98 -0.96 1.39 

  PH (m) -10.55 13.99 1.56 0.52 -13.61 13.35 -1.23 0.53 

  

Over environments                     AMPH AHPH 

  DTF (days) -2.19 2.55 -0.13 0.09 -4.63 2.47 -1.03 0.12 

  DMC (%) -2.56 2.01 -0.23 0.09 -3.16 1.16 -0.79 0.10 

  FBY (kg/m2) -0.28 0.7% 0.26 0.02 -0.35 0.74 0.15 0.02 

  DBY (g/m2 ) -79.59 155.37 30.77 4.59 -105.94 140.47 10.38 4.83 

 

MPH% HPH% 

  DTF (days) -0.93 1.09 -0.05 0.04 -1.95 1.06 -0.43 0.05 

  DMC (%) -16.63 13.52 -1.42 0.56 -18.25 8.04 -4.78 0.61 

  FBY (kg/m2) -8.04 21.02 7.56 0.62 -9.19 20.85 4.37 0.62 

  DBY (g/m2 ) -15.241 30.41 5.93 0.88 -18.75 28.03 2.10 0.89 
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Table 2.5 Mean squares of analysis of variance for AMPH, AHPH, MPH% and HPH% of 105 crosses of winter B. rapa cultivars for four traits in 

2006, five traits in 2007 and four traits over environments   

AMPH     AHPH   Source/year df 

DTF DMC FBY DBY PH DTF DMC FBY DBY PH 

2006  

Environment (E) 1 8.50* 2.97* 1.28** 1747.47  12.09* 5.04* 0.05 2060.73  

       Crosses (C) 104 2.64 1.04* 0.22** 13195.12**  3.33 1.21** 0.21** 3318.63**  

        C x E 104 2.21* 0.71 0.09** 1929.26+  2.68+ 0.76 0.11* 2258.79  

Error 198 1.57 0.63 0.06 1556.45  2.09 0.84 0.08 2075.26  

2007  

(E) Environment 1 1.09 76.0** 2.30** 436571.7** 92.19* 41.29** 324.1** 0.98* 815660** 228.76* 

     Crosses (C) 104 3.66** 6.18 0.20 16596.44* 42.33** 5.30** 7.81 0.22* 17683.57* 60.85** 

     C x E 104 0.77** 6.93* 0.16** 10666.42** 21.65** 1.33** 9.11* 0.16 12456.63* 33.75** 

Error 198 0.44 4.86 0.10 6336.48 12.24 0.59 6.48 0.16 8448.64 16.3 

Across Environments  

Environment (E) 3 15.13** 41.9** 1.20** 147021.6**  17.94** 180.8** 0.41+ 316873**  

      Crosses (C) 104 3.46** 3.09 0.19 8850.35  5.17** 4.17 0.19 9856.74  

      C x E 312 1.94** 3.92** 0.16** 7845.63**  2.49** 4.91* 0.17** 8620.30**  

Error 398 1.01 2.74 0.08 3746.47  1.34 3.66 0.11 5260.0  
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Continuation of table 2.5 

%MPH %HPH 

 
Source/year  df DTF DMC FBY DBY PH DTF DMC FBY DBY PH 

2006  

Environment (E) 1 1.48* 140.6+ 676.53** 209.66  3.33* 409.6** 33.76 244.74  

      Crosses (C) 104 0.43 69.23* 191.96** 185.79**  0.54 74.39** 155.1** 170.47*  

     C x E 104 0.36* 48.43+ 82.86** 114.44*  0.43+ 46.12 81.92* 116.67+  

Error 198 0.25 40.61 50.13 84.30  0.34 54.81 60.43 91.29  

2007  

Environment (E) 1 0.22 1792** 1873** 8538.87** 49.83* 7.65** 7142** 780.26* 15810** 121** 

Crosses (C) 104 0.73** 203.98 167.59 470.84* 22.22** 1.04** 194.28 169.53* 408.99** 28.94** 

C x E 104 0.15** 225** 136.07** 318.83** 11.22** 0.25** 220.05+ 120.7+ 283.60** 15.79** 

Error 198 0.09 136.97 83.55 156.25 6.25 0.12 180.55 104.17 190.74 8.08 

Over environments  

Environment (E) 3 2.65** 1079** 852.39** 3315.94**  3.51** 3663** 323.7+ 6568.73**  

     Crosses (C) 104 0.64** 114.22 162.01 283.36  0.98** 119.57 140.66 263.66  

    C x E 312 0.35** 144.1* 138.83** 268.85**  0.44** 138.43 128.9** 238.69**  

Error 390 0.18 116.89 67.24 140.36  0.24 146.48 84.85 174.28  

 

+, *, ** statistically significantly different from zero at P = 0.10, P = 0.05 and P = 0.01, respectively  
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3.4.5 Correlations among parameters and traits 

Highly significant correlation was observed for the different parameters studied 

(Table 2.6). In 2006, highly significant positive correlation (P = 0.01) between GCA and 

parent were observed for all traits. Also, mid parent value and MPH% significantly correlated 

negatively and MPH% and crosses significantly correlated positively for all the traits. The 

correlations between mid parent value and the crosses were weak though positive for the 

traits.  

Table 2.6 Correlation coefficient between different parameters in winter B rapa for four traits 

in 2006, five traits in 2007 and four traits over environments 

Traits/ year GCA vs PV Crosses vs 

MPV 

MPH% vs 

MPV 

MPH% vs  

Crosses 

2006 

     DTF (days) 0.35** 0.19+ -0.46** 0.79** 

     DMC (%) 0.55** 0.36** -0.21* 0.84** 

     FBY (kg/m2) 0.36** 0.17+ -0.51** 0.76** 

     DBY (g/m2) 0.36** 0.13 -0.52** 0.78** 

2007 

     DTF (days) 0.89** 0.69** -0.29** 0.49** 

     DMC (%) 0.47** 0.18+ -0.49** 0.77** 

     FBY (kg/m2) 0.13 0.06 -0.46** 0.86** 

     DBY (g/m2) 0.28** 0.10 -0.40** 0.87** 

     PH (m) -0.16 -0.13 -0.72** 0.78** 

Over environments 

     DTF (days) 0.83** 0.65** -0.29** 0.53** 

     DMC (%) 0.69** 0.34** -0.41** 0.72** 

     FBY (kg/m2) 0.42** 0.22* -0.37** 0.83** 

     DBY (g/m2) 0.53** 0.21* -0.29** 0.87** 

 

+, *, ** statistically significantly different from zero at P = 0.10, P = 0.05 and P = 0.01, 

respectively   
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The pattern in 2007 was not different from 2006 with highly significant positive correlation 

(P = 0.01) between GCA and parent whereas mid-parent value and MPH% significantly 

correlated negatively. The MPH% and crosses significant correlated positively for all the 

traits. The correlations across environment between GCA and parent were positive and highly 

significant for all traits (Table 2.6).  

The correlations between crosses and parents were also always positive and 

significant. However, mid parent value and MPH% significantly correlated negative for all 

traits. The correlations between MPH% and crosses were positive and significant for all the 

traits, ranging from r = 0.53** for DTF to r = 0.87** for DBY.  

Correlations for the different traits varied for the individual locations and years (Table 

2.7). The DBY significant correlated positively with FBY with a mean of 0.57**, ranging 

from 0.22* to 0.83**.  Significant correlation ranging from 0.23* to 0.76** and with a mean 

of 0.59** was also observed between DBY and DMC whereas between FBY and DMC were 

negative and ranged from -0.07 to -0.40** with a mean of -0.16. The FBY correlated 

negatively with DMC and DTF also correlated negatively with DMC.             



Chapter 2                                                         Heterosis and combining ability in 15x15 diallel  

 

35

 
Table 2.7 Correlation coefficient between 5 traits of B. rapa for locations over 2006, 2007 

and across environments (bold) 

Traits/ 

locations  DTF (days)  DMC (%)  FBY (kg/m2)  DBY (g/m2)  PH (m) 

         DTF (days)

      

2006 Göttingen  0.003 -0.086 -0.112 -0.076 

2006 Einbeck  -0.320** 0.060 -0.197* - 

2007 Göttingen  -0.366** 0.003 -0.190* 0.238** 

2007 Einbeck  -0.115 -0.048 0.048 0.165 

  over environments  -0.310** 0.039 -0.215* - 

            DMC (%)      

2006 Göttingen   -0.351** 0.374** 0.117 

2006 Einbeck   -0.401** 0.230* - 

2007 Göttingen   -0.213* 0.343** -.103 

2007 Einbeck   -0.077 0.764** -0.063 

over environments   -0.160 0.595** - 

FBY (kg/m2)      

2006 Göttingen    0.659** 0.170 

2006 Einbeck    0.741** - 

2007 Göttingen    0.832** 0.289** 

2007 Einbeck    0.22* 0.263** 

over environments    0.569** - 

DBY (g/m2)

      

2006 Göttingen     0.207* 

2006 Einbeck     - 

2007 Göttingen     0.251** 

2007 Einbeck     0.027 

Over environments      

 

+, *, ** statistically significantly different from zero at P = 0.10, P = 0.05 and P = 0.01, 

respectively      
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2.5 Discussion  

2.5.1 Self incompatibility   

The crosses were produced without emasculation, assuming that the material used is 

self-incompatible. Erucic acid in B. rapa is a qualitative trait and controlled by one gene 

(Downey 1964) Therefore, it is a very suitable marker to control the success of the crossing. 

Results from both near infrared reflectance spectroscopy and gas chromatography confirmed 

the self-incompatibility of the material. Crosses between high erucic acid cultivars showed 

high erucic acid content, between high erucic acid and zero erucic acid cultivars showed 

intermediate erucic acid content, and between zero erucic acid cultivars showed low erucic 

acid content.    

2.5.2 Parents and crosses performance 

The higher yield performance recorded at Göttingen than Einbeck may be attributed 

to environmental and management practices at each location.  Differences between years 

observed for the traits may be due to the relatively long winter in 2006 compared to the warm 

early spring in 2007. Therefore, flowering started about three weeks earlier in 2007. 

The crosses surpassed on average their parents for FBY and DBY indicating the 

presence of heterosis (Table 2.2). However, mid parent heterosis was only 7.6 % for FBY and 

5.9 % for DBY. This observation was not unexpected since parents used in the study were 

not chosen on the basis of genetic relatedness but rather geographical regions (Germany, 

Sweden, Czechoslovakia, and Bulgaria), and the extent of heterosis is influenced by the level 

of genetic distances between parents (Falconer and Mackay 1996). Heterosis for grain yield 

of B. rapa has been reported to be much higher with 18% for seed yield (Schuler et al. 1992), 

25% for seed yield (Falk et al. 1998) and 17% for fresh leaves in inter group crosses (Kaur et 

al. 2007). 
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However, all these experiments were conducted with spring type B. rapa, which might show 

a higher genetic diversity. The gene pool of European winter oilseed B. rapa is narrow (Zhao 

and Becker 1998). When analyzing the diversity of three cultivars Rex, Largo and Steinacher 

by molecular markers based on 32 individual plants sampled from each population, we 

observed most of the variation within populations and only a relatively small part of the 

variation between populations (Chapter 4).  

This can explain the relative low amount of heterosis in crosses between different 

cultivars.  Variation in heterosis was low (Table 2.5) and significant only for DTF. The 

possible explanation may be the very high crosses x environment interactions and also the 

different years in producing the full-sibs crosses used. This interaction is also large because, 

for each cross three different full-sibs were used in the two years.  

2.5.3 Genetic effects 

The experiment showed that the genetic variance is mainly due to variation in specific 

combining ability (SCA), indicating the predominance of non-additive gene action and the 

importance of specific cross combinations. This is in agreement with the observation that in 

specific crosses heterosis can be up to 30 % for DBY. The three crosses with the highest 

biomass yield were always between cultivars from different European countries. Further 

improvements in yield can therefore be made by identifying specific high yielding crosses 

among good combiners. To select parents with high general combining ability (GCA), the 

always positive correlation between GCA and parental performance can be helpful. 

The lower crosses x environment variance compared to the parents x environment 

variance for most traits (Table 2.3) agrees with the philosophy, that hybrids are more stable 

than parents. However, Singh and Murty (1980) in B. rapa observed a higher crosses x 

environment variance compared to the parents x environment and concluded that stability of 

a cultivar is influenced by a lot of factors other than heterozygosity alone. 
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2.5.4 Correlations among traits 

The correlations among traits are important for selection. There were no or only small 

correlations between flowering time and FBY and DBY, indicating that selection for early 

flowering does not necessarily improve biomass yield in B. rapa. The correlation between 

FBY and DBY over all four locations was only 0.57**, which is much lower than the value 

of 0.95** reported in biomass yield of interspecific crosses of B. rapa and B. napus by Liu et 

al.  (2002). When analyzing the two locations separately, correlations were 0.85** in 

Göttingen, but only 0.22 in Einbeck in 2007, perhaps indicating a technical problem with 

taking a representative sample of leaves and stem for  DMC determination.  

Correlations between mid-parent and MPH% were negative for all traits. After 

observing 50% less MPH% for seed yield in inter population F1s when compared with inbred 

parent derived F1s in B. carinata, Teklewold and Becker (2005) concluded that populations 

used as parents already utilize a considerable level of heterozygosity. 

Brassica rapa is a diploid species, but tetraploid cultivars with the double number of 

chromosomes have been developed. For comparison, we included the tetraploid cultivar 

Perko in the experiments. This cultivar had a FBY of 4.42 kg/m² and a DBY of 600 g/m². 

These yields are only surpassed by one of the parents and by seven of the crosses for FBY 

and 21 for DBY. Future winter B. rapa biomass breeding programmes should therefore 

consider also the potential of tetraploid genotypes.  

2.6 Conclusions 

In conclusion, the high importance of SCA implies that identifying the best 

combinations among parents is an efficient way to increase biomass yield. The production of 

hybrid cultivars will be probably too expensive at the moment, due to the self incompatibility 

of B. rapa and the lack of an easily available hybridizing system. However, large quantities 

of seed can be produced by the approach of synthetic cultivars when mixing different parents 
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and propagating them under open pollination. When starting with two populations, the first 

generation after random mating (syn-1) should theoretically be composed of 25% each of 

plants from crosses within the parental populations and of 50% of plants from crosses 

between the two populations. In this way, heterosis can be at least partly utilized for yield 

improvement in B. rapa cultivars for biomass production. The first B. rapa synthetic cultivars 

were Hysyn 100 and Hysyn 110 released in Canada in 1994 (Falk and Stoenescu 1996a; 

1996b).
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3. Biomass yield and heterosis of crosses within and between European Brassica 

rapa cultivars  

3.1 Abstract  

The use of plant biomass as substrate for biogas production has gained major interest 

in recent years in Europe. Winter B. rapa produces high early biomass and could be 

used as a pre-crop harvested earlier in the year for biogas followed by a second crop 

adapted to higher temperatures like maize. A promising strategy for B. rapa breeding 

is the development of synthetic cultivars that utilize the heterosis by combining 

genetically diverse parents. The objective of this study was to estimate the 

performance of full-sib crosses between and within three cultivars and to compare it 

with the performance of corresponding synthetic cultivars. Nine full-sibs each coming 

from the three possible combinations, three mixtures of ten full-sibs each within the 

three parental cultivars, and synthetics composed of the three possible cultivar 

combinations were produced. These different groups and their parents were evaluated 

at two locations for two years in Northern Germany. Data recorded were days to 

flowering, fresh biomass yield, dry matter content, dry biomass yield and plant height. 

The mean of full-sibs were higher than the mean of the parents for most traits. 

Analysis of variance showed significant variation for environments and genotype x 

environment interactions for all traits. The full-sibs within and between cultivars 

differed significantly for fresh biomass yield and dry biomass yield. Relative mid 

parent heterosis estimated as superior of between full-sibs over within fill-sibs was 

9.2% for dry biomass yield, 4.4% for fresh biomass yield and 3.1% for dry matter 

content over environments. The correlation between dry biomass yield and fresh 

biomass yield was 0.61** and between dry biomass yield and dry matter content was 

0.86**. In conclusion, heterosis for biomass production observed in cultivar crosses
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was only 9 % or less, which indicates a relatively low genetic diversity between the 

three cultivars though they largely differ in breeding history. However, performance 

of synthetics was comparable to full-sibs between cultivars. The development of 

synthetic cultivars is a possibility to utilize heterosis in biomass production.  

Key words:  between cultivar full-sibs, biogas, winter Brassica rapa, within cultivar full-

sibs, synthetics  

3.2 Introduction  

Maize has been the main biogas substrate in Germany because of its high yield per hectare. It 

is sown in May and harvested in September/October. The growing of other crops that can be 

harvested earlier in the year could give the possibility for growing two crops in one season: 

the first one sown in autumn and harvested in spring, followed by a second crop adapted to 

higher temperatures like maize, sorghum or sunflower. Crops with high biomass production 

even under low temperatures include winter triticale, rye, some forage grasses, and also 

Brassica crops. B. rapa is of special interest among the Brassica because it has a higher early 

biomass than B. napus (CFIA 1999; Halfhill et al. 2005).  

Previous experimental results on early biomass yield of B. rapa showed an average 

dry biomass yield between 440 to 600 g/m2 (Chapter 2). This can be increased through 

breeding, and information on variation between and within cultivar heterosis is important for 

determining a breeding method to be applied. A possibility mating system which utilizes both 

within and between family variation is full-sibs (Aastveit and Aastveit 1990) and it has large 

selection response because best plants are allowed to cross. It has commonly been used in 

population improvement of the cross pollinated crops maize (Pixley et al. 2006) and forage 

grasses (Aastveit and Aastveit 1990; Fang et al. 2004).  
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Heterosis has been a major breeding tool for plant productivity improvement and in 

population, Lamkey and Edwards (1999) suggested the term panmictic mid parent 

heterosis for the difference between the mean of two random mating populations and the 

mean of a hybrid population produced by crossing individual plants of the two populations. 

Studies in B. rapa have indicated high levels of heterosis between 10% and 25% (Schuler et 

al. 1992; Falk et al. 1998; Kaur et al. 2007).  

The development of superior cultivars is expensive and time consuming. This 

involves the selection, crossing and testing of many parental cultivars to identify parental 

combinations that can produce F1s with superior yield. In a breeding program, parental 

cultivars are mostly selected based on genetic relatedness and combining ability (Melchinger 

and Gumber 1998). In cases where genetic effect of cultivars is controlled by general 

combining ability, many parental combinations are considered for breeding whereas specific 

combinations are used when genetic effects is controlled by specific combining ability.  

Different breeding methods have been development and examples of those that utilize 

specific combinations are hybrid development, full-sibs and synthetic breeding. The results 

presented in chapter 2 showed that variation in crosses among European winter B. rapa 

cultivars is mainly due to specific combining ability. Therefore, we investigated the 

performance of synthetic populations among cultivars since hybrid development will be 

probably too expensive at the moment, due to the self incompatibility of B. rapa.  

Synthetic populations may be produced by simply mixing different parents and 

propagating them under open pollination. When starting with two populations, the first 

generation after random mating, which is called synthetic-1 should theoretically be composed 

of 25% each of plants from crosses within the parental populations and of 50% of plants from 

crosses between the two populations. The commercial use of synthetic cultivars for seed yield 

has been experimentally demonstrated in B. rapa (Falk et al. 1994) for which up to 60% 

heterosis was observed. 
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The aim of this study was to estimate the early biomass yield of winter B. rapa with 

the following objectives; (1) to determine the biomass yield performance and genetic 

variation in between full-sibs and within full-sibs; (2) measure heterosis of between full-sibs 

calculated over within full-sibs and (3) compare the performance of between full-sibs, within 

full-sibs and synthetic in three European winter B. rapa cultivars.    

3.3 Material and methods   

3.3.1 Parental cultivars 

The three European B. rapa winter oilseed cultivars Largo, Rex and Steinacher used 

in this experiment were released in the years 1954, 1984 and 2002, respectively (Table 3.1). 

Steinacher was obtained from the genebank BAZ Braunschweig (accession BAZ 18101) and 

multiplied with about 800 plants under isolation in a cage with pollinators. For the other two 

cultivars, breeders seed was used. Diploidy of each cultivar was confirmed by using a Partec 

Flow Cytometer (Münster Germany).   

Table 3.1 Characteristics of the B. rapa cultivars used and their country of  

Cultivar Breeder country Year of release Seed quality a 

Steinacher Saatzucht Steinach Germany 1954 ++ 

Rex Norddeutsche Pflanzenzucht Germany 1984 0+ 

Largo SW Seed Sweden 2002 00 

 

a ++ high erucic acid, high glucosinolate;  0+ - zero erucic acid, high glucosinolate;   

00  zero erucic acid, low glucosinolate   

3.3.2 Material development 

The three parental cultivars were crossed to produce both between cultivar full-sibs 

(FSb) and within cultivar full-sibs (FSw) seed at Reinshof experimental station in the years 

2005 and 2006. For FSb, two plants from different parental cultivars were isolated under one 
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large bag before beginning of flowering. In this way nearly complete cross-pollination can be 

achieved. In the case of FSw, isolation was between two plants of the same parental cultivar. 

Nine crosses each of Rex x Largo, Rex x Steinacher and Largo x Steinacher were produced 

for FSb.  

For FSw, ten crosses each of Rex x Rex, Largo x Largo and Steinacher x Steinacher 

were produced. In addition, three plants of each parental cultivar were selfed to determine 

their self-incompatibility level. The bags were gently shaken every other day during 

flowering, to enhance pollen transfer and seed set.    

3.3.3 Field evaluation 

Three different FSw mixtures were formed by bulking equal amounts of seed from 

each of the ten FSw produced. To evaluate the performance of synthetic (Syn-1), 50% FSb 

and 25% FSw of each of the two parental cultivars was composed for the three possible 

cultivar combinations  

The 27 FSb, the three FSw mixtures, the three syn-1 produced in 2005 and their 

parents were sown at two locations; Göttingen and Einbeck in northern Germany in 2005/06. 

Sowing dates were 24th and 31st of August 2005 at Einbeck and Göttingen, and at a rate of 

90- 110 seeds m-2. Experimental design was a 6x6 lattice with two replications. Plot sizes in 

Göttingen were 11.25 m2 and each plot consisted of 6 rows, 7.5 m long and 0.3 m between 

rows. In Einbeck, plot sizes were 9.0 m2 and each plot consisted of 5 rows, 6.0 m long and 

0.3 m between.  

Standard crop management practices such as weed control and fertilization 

application were followed. Data were recorded on days to flowering (DTF, from the day of 

sowing until 50% of plants were flowering), fresh biomass yield (FBY, kg/m2), dry matter 

content (DMC, %), dry biomass yield (DBY, g/m2) and plant height (PH, cm). Plots were 

harvested on 8th and 15th of May 2006 at Einbeck and Göttingen, respectively. This was done 
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at end of flowering, using a harvester that cut at 5 cm above ground and the total fresh 

biomass yield was measured. From each plot a sub-sample of 300g fresh weight was dried at 

60oC for 6 days to determine the dry matter content. Based on this, total dry biomass yield 

per plot was calculated. 

In 2006/07, the remaining 27 FSb, the three FSw mixtures, the three syn-1 produced in 

2005 and their parents were evaluated. However, in cases where the 2005 seed were not 

enough, they were supplimented by seed produced in 2006. Sowing was on 31st of August 

2006 in Einbeck and 5th of September 2006 in Göttingen. Plot sizes, sowing rate, 

experimental design, replications, crop management practices, data recorded and harvesting 

methods were the same as that of 2005/06 experiment. Harvesting was on 2nd of May 2007 at 

Einbeck and 4th of May 2007 at Göttingen.  

3.3.4 Statistical analysis 

Separate analysis of variance (ANOVA) for each location was run for the 36 entries 

using PLABSTAT software (Utz 2001) based on the model: Yijk= u + ri + gj + ßk +eijk, where 

Yijk = observation of genotype j in block k and replication i; u = general mean; ri = effect of 

replication; gj = effect of genotype j; ßk = effect of blocking; eijk = error of observation. A 

combined analysis of variance using adjusted means obtained from each location was then 

computed individually for years, 2006 and 2007, and over the four environments with the 

model: Yij= u + li + gj + lgij + eijk, where Yij = observation of means of genotype j in location 

i; u = general mean; li = effect of location; gj = effect of genotype j; lgij is the interaction 

effect between location i and genotype j and eijk = error of observation of lattice. 

Random effects were assumed for years and locations in the analysis. Entries sum of 

squares was partitioned into parental cultivars, syn-1, FSw, FSb and FSw vs FSb. The FSb vs 

FSw effects were calculated as follows; SSwvb = SSe - SSw - SSb; where SSwvb is the sum 

of squares for FSb vs FSw, SSe is the sum of squares for entries,  SSw is the sum of squares 
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for FSw and SSb is the sum of squares for FSb. The FSb was further partitioned into between 

crosses (variation between crosses) and within crosses (variation between FS within crosses).  

Heterosis was estimated for percent mid-parent heterosis (MPH %) and percent high-

parent heterosis (HPH %). In order to avoid overestimation of heterosis that might have been 

caused by unconscious selection during FSb production, FSw was used in the calculation 

instead of parents. The formulae were MPH% = (FSb 

 

mean FSw) / mean FSw x 100, and 

HPH% = (FSb 

 

highest FSw) / highest FSw x 100.  To test for significant differences in 

heterosis for the studied traits, combined ANOVA was computed using MPH% and HPH % 

values obtained from individual locations. For model and error calculations, see statistical 

analysis of chapter 2.  

3.4 Results  

The climatic conditions in the two years were very different. Therefore, the results are 

presented for each year separately and combined over all environments.  

3.4.1 Biomass yield among full-sib groups  

The different full-sib groups were higher than the parents for most traits (Table 3.2). 

In 2006, the pattern at Göttingen was in the order syn-1 > FSw > FSb > parental cultivars for 

DBY, FSw > syn-1 > FSb FSw > parental cultivars for FBY and FSb > syn-1 > FSw > parental 

cultivars for DMC. At Einbeck, the pattern observed was FSb > FSw > syn-1 > parental 

cultivars for DBY, FSb > syn-1 > FSw > parental cultivars for FBY and FSw > FSb > syn-1 > 

parental cultivars for DMC.  

In 2007, the pattern was FSb > syn-1 > parents = FSw for DBY, syn-1 > FSb > parental 

cultivars > FSw for FBY and FSb > syn-1 > FSw > parental cultivars for DMC at Einbeck. At 

Göttingen, the pattern was syn-1 > FSb > FSw > parental cultivars for DBY, FSw > FSb > 

parental cultivars > syn-1 for FBY and FSw > parental cultivars > syn-1 > FSb for DMC. The 
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mean over environments were FSb > syn-1 > FSw > parental cultivars for DBY, syn-1 > FSb > 

FSw > parental cultivars for FBY and FSb > FSw > syn-1 > parental cultivars for DMC (Table 

3.3).  

3.4.2 Biomass yield within full-sibs 

The individual crosses varied among the different full-sib groups (Table 3.2). In 2006, 

the FSw (S x S) was highest for DMC and DBY, and FSw (R x R) for FBY and Synthetics (R 

x Ssyn-1) for PH at Göttingen. In Einbeck, the FSb (R x L) was highest for FBY and DBY, 

and FSb (S x S) for DMC.  

In 2007, the Synthetics (L x Ssyn-1) were highest for FBY, DBY and PH. The 

parental cultivars Steinacher was highest for DMC in Göttingen. At Einbeck, FSw (R x R) 

was highest for PH, Synthetics (L x Ssyn-1) for DBY, Synthetic (R x Lsyn-1) for FBY and 

FSw (S x S) for DMC. The mean over environments showed the Synthetics (L x Ssyn-1) 

being highest for DBY, FSb (R x L syn-1) for FBY whereas FSw (S x S) was highest for 

DMC (Table 3.3).  
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Table 3.2 Means of between cultivar full-sibs, within cultivar full-sibs, synthetics cultivars and parents cultivars evaluated for five traits at 

Göttingen in 2006 and 2007 and four traits at Einbeck in 2006 and five traits in 2007 

Göttingen Einbeck Groups/ 

years  No BTF(days) DMC (%) FBY(k/m2) DBY(g/m2) PH (m) BTF(days) DMC (%) FBY(k/m2) DBY(g/m2)  

2006    

FSb    

R x L 9 244.67 13.66 3.30 451.67 135.00 252.07 10.68 3.86 408.83  

R x S 9 242.99 14.46 3.09 463.14 137.50 251.35 10.92 3.69 404.39  

L x S 9 242.79 14.17 3.24 440.64 130.83 251.21 11.12 3.48 388.46  

FSb  mean 243.48 14.09 3.21 451.82 134.44 251.52 10.96 3.66 400.74  

      FSw   

R x R 1 245.39 13.19 3.44 456.74 135 252.12 10.25 3.44 359.18  

L x L 1 244.98 12.45 3.40 404.34 127.5 251.88 10.72 3.42 362.42  

S x S 1 241.73 16.02 3.16 513.24 137.5 251 12.11 3.32 402.75  

 

FSw mean 244.03 13.89 3.33 458.11 133.33 251.44 11.42 3.37 382.58  

Synthetics    

R x L syn-1 1 244.89 14.75 3.29 467.75 135 252.8 10.83 3.73 399.4  

R x S syn-1 1 241.68 13.51 3.18 467.06 142.5 251.06 10.43 3.40 354.57  

L x S syn-1 1 241.59 13.69 3.33 458.24 130 251.06 10.42 3.66 386.35  

Syn-1  mean 242.72 13.98 3.27 464.35 135.83 251.06 10.43 3.53 370.46  

Parental cultivars   

Parent R 1 243.41 14.11 2.74 391.32 135 250.12 10.66 3.27 346.78  

Parent L 1 246.00 12.27 2.88 332.41 117.5 252.06 10.89 3.25 356.51  

Parent S 1 242.25 15.99 3.79 400.00 130 251.18 11.85 3.44 399.46  

parental mean 243.89 14.12 3.14 374.58 127.50 251.62 11.32 3.35 377.98  
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Continuation of table 3.2  

Göttingen Einbeck Groups/ 

years  No 
BTF(days) DMC (%) FBY(k/m2) DBY(g/m2) PH (cm) BTF(days) DMC (%) FBY(k/m2) DBY(g/m2) PH (cm) 

2007            

FSb            

R x L 9 226.78 17.26 2.60 449.63 133.56 222.83 15.89 3.88 621.32 142.34 

R x S 9 224.39 16.55 2.90 476.51 130.99 222.00 17.27 4.04 715.28 140.22 

L x S 9 225.44 17.36 2.51 432.69 132.38 222.66 17.44 4.00 719.82 142.56 

FSb mean 225.25 17.03 2.69 456.51 132.04 222.51 16.85 3.97 684.28 141.72 

FSw    

R x R 1 226 18.11 2.76 507.9 132.2 223.11 13.13 3.93 523.25 148.44 

L x L 1 226 17.29 2.36 416.9 123.76 223.10 12.12 3.38 410.31 126.82 

S x S 1 223 18.29 2.40 406.89 126.29 221.05 18.22 3.88 708.79 144.74 

FSw mean 225 17.89 2.51 443.89 127.42 222.39 14.49 3.73 547.45 140.00 

Synthetic    

  R x L syn-1 1 225.5 17.7 2.89 498.55 130.71 223.05 15.09 4.29 594.33 143.18 

  R x S syn-1 1 224 17.58 2.85 451.01 127.1 222.05 11.53 4.00 458.11 147.09 

  L x S syn-1 1 225 16.97 2.93 503.19 140.55 222.89 19.21 3.90 742.17 138.54 

syn-1  mean 224.83a 17.42 2.89 484.25 132.79 222.66 15.28 4.06 598.20 142.94 

Parental cultivars   

Parent R 1 226.5 16.84 2.85 467.7 141.46 223.05 14.76 4.17 616.5 151.2 

Parent L 1 227 16.72 2.35 380.55 123.02 223 12.62 3.52 454.43 139.89 

Parent S 1 223 18.88 2.53 499.89 129.16 221.05 15.43 3.62 573.7 138.54 

parental mean 225.5a 17.48 2.58 449.38 131.21 222.37 14.27 3.77 548.21 143.21 
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Table 3.3 Mean of between cultivar full-sibs, within cultivar full-sibs, synthetic cultivars 

 and parental cultivars evaluated for four traits over environments 

Groups 

/years  n1  BTF(days)  DMC (%)  FBY(k/m2)  DBY(g/m2) 

FSb

      

R x L 9 236.49 14.36 3.42 482.37 

R x S 9 235.18 14.8 3.43 514.83 

L x S 9 235.53 15.02 3.31 495.40 

FSb  mean  235.73 14.70 3.38 495.50 

FSw

   

R x R 1 236.65 13.67 3.39 461.77 

L x L 1 236.46 13.15 3.14 398.49 

S x S 1 234.19 16.16 3.19 507.92 

FSw mean  235.77 14.32 3.24 456.06 

Synthetic

    

R x L syn-1 1 236.56 14.59 3.55 490.01 

R x S syn-1 1 234.7 13.26 3.36 432.69 

L x S syn-1 1 235.13 15.07 3.45 522.49 

Syn-1  mean  235.46 14.31 3.45 481.73 

Parent cultivars  

Parent R 1 235.77 14.09 3.26 455.58 

Parent L 1 237.01 13.13 3.00 380.98 

Parent S 1 234.37 15.54 3.35 468.26 

parental mean 235.72 14.25 3.21 434.94 

n1 number of crosses among groups  

3.4.3 Analysis of variance  

Combined ANOVA showed highly significant variation between the four 

environments for all traits (Table 3.4). In the year 2006, significant variation among 

genotypes were observed for DTF (p = 0.01), FBY (p = 0.10) and DBY (p = 0.10). 

Partitioning of genotypes into parents, synthetic, FSb, FSw and FSw vs FSb showed no 

significant differences for any of the traits except DTF for FSb, Syn-1 and FSw. Nevertheless, 
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highly significant variation for DBY and FBY was observed when the contrast was calculated 

between parents vs FSb effects (data not shown). The genotype x environment interactions 

were significant for DBY, FBY and DMC. 

In the year 2007, highly significant variation between environments for all traits was 

observed (Table 3.4). The genotypes were significantly different for all traits except DMC. 

Partitioning of genotypes into parents, synthetics, FSb, FSw and FSw vs FSb showed 

significant variation for all traits except DMC in the parents and FSb. The synthetics and FSw 

showed significance for only DTF. The FSw and FSw vs FSb were significant for DMC, FBY, 

DBY and PH. The genotypes x environment interactions were significant for DTF and DMC. 

The combined ANOVA over environments were highly significant for all traits. 

Partitioning of environment into locations, years and location x year interactions showed 

highly significant variation for all traits in the year x location. The genotypes were 

significantly different for only DTF. Separation of genotypes into parents, synthetics, FSb, 

FSw and FSw vs FSb showed significant variation for only DTF in the synthetics and FSb. The 

parents and FSw showed significant difference for DTF and DMC, and FSw vs FSb was also 

significantly different for FBY and DBY. The genotype x environment interactions were 

highly significant for all traits.  

3.4.4 Heterosis determination  

Percent mid parent heterosis (MPH %) and percent high parent heterosis for FSb 

calculated over FSw varied between the different crosses groups for the two locations and 

years (Table 3.5). In 2006, MPH% among FSb ranged from -3.95 to 5.65 with a mean of 2.2 

for DBY and -6.39 to -1.15 with a mean of -3.7 for FBY at Göttingen. At Einbeck, it ranged 

from 1.53 to 13.76 with a mean of 7.15 for DBY and 3.33 to 13.25 with a mean of 8.65 for 

FBY. At both locations, FSb (R x L) was highest for DMC and PH, and FSb (R x S) for FBY.   
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In 2007, MPH% among the different FSb, ranged from -2.76 to 5.05 with a mean of 2.1 for 

DBY and 1.82 to 12.36 with a mean of 6.61 for FBY at Göttingen. In Einbeck, it ranged from 

16.11 to 32.34 with a mean of 25.69 for DBY and 3.51 to 10.29 with a mean of 6.58 for FBY.  

The FSb (R x L) was lowest in performance for FBY and DBY at Göttingen and FSb (R x S) 

for DMC, FBY, DBY and PH at Einbeck.  

The MPH% over environments was 9.21, ranging from 9.31 to 12.14 for DBY and 

4.41, ranging from 4.22 to 4.65 for FBY (Table 3.6). Mean MPH% determined over parents 

was 29.66 for DBY, 7.47 for FBY, 0.50 for DMC and -0.11 for DTF (data not show).                    
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Table 3.4 Mean squares from combined analysis of variance for parents and the three full-sib 
groups for five traits at tow locations in 2006 and 2007 and across environments  

DTF (days) DMC (%) FBY (kg/m2) DBY (g/m2 ) PH (m) 

 
Source/years  df MS MS MS MS MS 

2006       

Environment (E) 1 1172.1** 181.6** 2.69** 2.69**  

     Genotypes (G) 35 3.29** 0.97 0.09+ 0.09+  

            Parents 2 4.31 2.42 0.002 0.002  

            Synthetics 2 4.18+ 0.38 0.002 0.002  

            FSw 2 3.47 3.95 0.02 0.02  

            FSb  vs FSw  1 0.61 0.02 0.07 0.07  

            FSb 26 3.44** 0.78 0.08 0.08  

                 Between crosses  2 1.16 0.17 0.04 0.04  

                 Within crosses  24 2.86** 0.71 0.06 0.06  

     G x E 35 0.54 0.73+ 0.06* 0.06*  

Error 50 0.37 0.48 0.03 0.03  

2007  

Environment (E)  1 141.65** 14.04** 29.19** 29.19** 1783** 

     Genotypes (G)  35 4.07** 7.49 0.128* 0.128* 39.48** 

           Parents  2 5.49+ 3.00 0.18* 0.18* 127.6+ 

           Synthetic  2 0.84* 7.05 0.02 0.02 4.26 

           FSw  2 4.18* 6.79 0.11 0.11 117.85 

           FSb  vs FSw 1 0.33 4.50+ 0.226+ 0.226+ 60.00* 

           FSb   26 4.65** 8.47 0.13+ 0.13+ 31.33** 

                  Between crosses  2 0.97 0.35 0.03 0.03 3.11 

                   Within crosses 24 5.04** 9.18 0.139+ 0.139+ 33.94** 

    G x E 35 0.91** 8.18** 0.06 0.06 13.91 

Error  50 1.42 1.34 0.06 0.06 11.39 

Over environments  

Environment (E)  3 7128.79** 283.1** 10.82** 10.82**  

          Year (Y) 1 20080.77 654.677 0.48 644272.43  

          Locations (L) 1 246.75 147.74 25.40 195199.76  

 L x Y 1 1058.85** 46.92** 6.77** 573590.4**  

      Genotypes (G) 35 4.59** 4.77 0.09 0.09  

               Parents  2 7.00* 5.89** 0.24 0.24  

              Synthetics 2 3.79* 3.52 0.04 0.04  

               FSw 2 7.49** 10.38* 0.07 0.07  

               FSb  vs FSw  1 0.02 1.80 0.22* 0.23*  

               FSb   26 4.73** 4.70 0.07 0.07  

                     Between crosses  2 1.83* 0.45 0.01 0.01  

                     Within crosses  24 5.13** 5.10 0.078 0.078  

        G x E   105 1.39** 4.41** 0.09** 0.09**  

Error  100 0.25 0.92 0.049 0.049  

+, *, ** statistically significantly different from zero at P = 0.10, P = 0.05 and P = 0.01, 
respectively 
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Table 3.5 Mean of MPH% and HPH% for between cultivar full-sibs calculated over within 

cultivar full-sibs for five traits at Göttingen in 2006 and 2007 and four traits at Einbeck in 

2006 and five traits in 2007. 

Göttingen Einbeck 

 
Crosses 

/years 

BTF 

(days) 

DMC 

(%) 

FBY 

(k/m2) 

DBY 

(g/m2) 

PH (m) BTF 

(days) 

DMC 

(%) 

FBY 

(k/m2) 

DBY 

(g/m2) 

PH 

(m) 

2006

 

MPH%     

R X L -0.21 6.52 -3.57 4.91 2.86 0.05 1.66 13.25 13.76  

R X S -0.23 -0.97 -6.40 5.65 0.92 -0.08 -2.34 9.37 6.15  

L X S -0.23 -0.55 -1.15 -0.40 -1.25 -0.09 -2.59 3.33 1.54  

Mean -0.23 1.67 -3.71 2.20 0.84 -0.04 -1.09 8.65 7.15  

HPH%   

R X L -0.30 3.52 -.4134 -1.11 0.003 0.002 -0.57 12.92 13.25  

R X S -0.98 -9.72 -10.21 -9.76 -0.01 -0.304 -9.84 7.46 0.41  

L X S -0.89 -11.6 -4.64 -14.10 -4.84 -0.265 -8.18 1.82 -3.55  

Mean -0.72 -5.94 -6.33 -8.34 -1.61 -0.189 -6.19 7.40 3.37  

      2007 

MPH%     

R X L 0.12 -2.47 1.82 -2.76 4.36 -0.08 25.52 5.94 32.34 3.46 

R X S 0.05 -9.07 12.36 4.18 1.36 -0.04 10.15 3.51 16.11 -4.35 

L X S 0.42 -2.44 5.65 5.05 5.88 0.28 14.93 10.3 28.64 4.99 

Mean 0.16 -4.66 6.61 2.16 3.86 0.06 16.86 6.58 25.69 1.37 

HPH%   

R X L 0.12 -4.68 -5.56 -11.3 1.03 -0.11 20.69 -1.47 18.1 -4.07 

R X S -0.71 -9.52 5.03 -6.18 -0.91 -0.50 -5.23 2.85 0.92 -5.54 

L X S -0.25 -5.11 4.77 3.79 4.82 -0.15 -4.31 3.18 1.56 -1.51 

Mean -0.28 -6.44 1.42 -4.62 1.64 -0.25 3.72 1.52 6.84 -3.71 

        



Chapter 4                                                            Yield  of crosses between and within cultivars  

 

55

 
Table 3.6 Mean of MPH% and HPH% for between cultivar full-sibs calculated over within 

cultivar full-sibs for four traits over environments  

BTF(days) DMC (%) FBY (k/m2) DBY (g/m2) 

  MPH%     

R X L -0.03 7.06 4.65 12.14 

R X S -0.10 -0.77 4.22 6.18 

L X S 0.09 2.84 4.55 9.31 

Mean -0.01 3.04 4.41 9.21 

MPH%  

R X L -0.07 5.02 0.77 4.46 

R X S -0.62 -8.42 1.15 1.36 

L X S -0.40 -7.07 3.73 -2.46 

Mean -0.35 -3.71 1.00 0.33 

  

3.4.5 Variation among heterosis 

Significant variation based on MPH% and HPH% for environments was observed for 

all traits except DMC in 2006 (Table 3.7). The crosses were significant for DTF in MPH% 

and DTF and DMC in MPH%. In 2007, environments showed significant variation for all 

traits except FBY whereas only DTF and PH were significant in the crosses for both MPH% 

and HPH%.  

The mean over environments were highly significant for MPH% and HPH% in all 

traits. Crosses were significant only for DTF in MPH% and HPH% whereas crosses x 

environment interactions were significant for all traits in MPH% and for DTF and DMC in 

HPH%.    
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Table 3.7 Mean squares of analysis of variance for MPH% and HPH% for four traits in 2006, five traits in 2007 and four traits over 

environments 

MPH%  HPH% 

 
Source/years  df DTF DMC FBY DBY  PH  DTF DMC  FBY DBY  PH  

2006

    

Location (L) 1 0.456* 102.5 2061** 936.91**  4.28** 0.894 2544.10** 936.1**  

       Crosses (C) 26 0.439** 55.32 65.46 96.52  0.55** 94.54* 73.48 135.68  

       C x L 26 0.064 47.49 66.27+ 92.46  0.07 44.77 61.78 107.91  

Error 50 0.08 46.79 43.72 71.73  0.12 55.27 55.7 90.34  

2007

    

Location (L) 1 0.1608 6258** 0.0122 7482.64** 83.99** 0.024 1392+ 0.152 1774.5+ 386** 

       Crosses (C) 26 0.857** 435.69 129.299 792.03 34.59** 0.93** 402.18 134.98+ 584.129 23.4** 

       C x L 26 0.211** 445** 99.06 661.39** 7.93 0.22** 404.5** 75.387 537.4** 5.09 

Error 50 0.04 77.20 102.03 270.61 9.56 0.06 91.35 123.55 281.55 11.89 

Across environments   

Location (L) 3 0.738+ 2425** 840.3** 3884.76**  1.73** 663.85* 855.897** 925.54*  

       Crosses (C) 26 0.67** 265.76 67.937 481.27  0.88** 322.82+ 62.94 389.04  

       C x L 78 0.30** 239.5** 97.38+ 387.05**  0.29** 207.7** 94.22 325.35  

Error 100 0.09 91.42 70.78 187.98      0.09 83.13 96.22 289.52  

 

+, *, ** statistically significantly different from zero at P = 0.10, P = 0.05 and P = 0.01, respectively
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3.4.6 Correlation among traits 

Correlations for the different traits studied varied for the individual locations and years (Table 

3.8). Significantly positive correlation between DBY and DMC of r = 0.86**, ranging from -

0.001 to 0.95**, and between DBY and FBY of r = 0.61**, ranging from 0.34* to 0.86** 

were observed over the environments. The over environment correlations between DTF and 

the other traits were negatively and weak, and with DMC was r = - 037*, FBY was r = 0.02 

and DBY was r = 0.29. The correlation between DMC and FBY was r = - 0.25.  

Table 3.8 Correlation coefficient between five traits of winter B. rapa for two locations in 

2006 and 2007, and over environments (bold)  

DTF (days) DMC (%) FBY (Kg/m2) DBY (g/m2) PH (m) 

DTF (days)      

           2006 Göttingen  -0.403* 0.010 -0.367* -0.117 

          2006 Einbeck  -0.457** 0.390* 0.027 - 

          2007 Göttingen  -0.424* 0.054 -0.120 0.220 

          2007 Einbeck  0.053 -0.111 0.019 -0.042 

     over Environments  -0.370* 0.017 0.287 - 

DMC (%)      

           2006 Göttingen   -0.289 0.677** 0.172 

          2006 Einbeck   -0.252 0.358* - 

          2007 Göttingen   -0.449 -0.001 -0.140 

          2007 Einbeck   0.244 0.950** -0.129 

     over Environments   -0.245 0.864** - 

FBY (kg/m2)      

         2006 Göttingen    0.343* 0.108 

         2006 Einbeck    0.794** - 

         2007 Göttingen    0.867** 0.054 

         2007 Einbeck    0.481** 0.516** 

     over Environments    0.614** - 

DBY (kg/m2)      

         2006 Göttingen     0.295 

         2006 Einbeck     - 

         2007 Göttingen     0.046 

         2007 Einbeck     0.011 
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3.5 Discussion  

3.5.1 Performance of full-sib groups 

Theory and earlier studies have demonstrated that between cultivar heterosis is higher 

than within cultivar heterosis (Ali et al. 1995; Falconer and Mackey 1996). Synthetic (syn-1), 

which composes of 25% within cultivar full-sibs (FSw) of each parental cultivar and 50% 

between cultivar full-sibs (FSb) are expected to show heterosis within the range of FSw and 

FSb.  

This was the case for DMC at Göttingen and FBY at Einbeck in 2006, and for DMC at 

Einbeck in 2007 and for DBY over environments. For unknown reasons, FSw yields were 

higher than syn-1 in DMC, and syn-1 was also higher than FSb in FBY over environments. 

Higher heterosis in within-group hybrids than between group hybrids in diverse morphotypes 

of B. rapa has however been reported (Kaur et al. 2007).  

The mean performance of FSw developed randomly by crossing individuals plants 

within population, is expected to be the same as the parental cultivar mean (Falconer and 

Mackay 1996). The observed yields in FSw were higher than the parents for all traits over 

environments except DBY. This deviation may have been caused by the unconscious 

selection during the production of FSw. Basis of population improvement is the selection and 

mating of superior plants within populations to produce progenies whose mean performance 

is higher than their parents.  

Generally, significant variation was observed for all traits except DTF in the different 

components and heterosis was low. A random model that allows the different components to 

be tested against their environment x genotype interactions was used for the analyses. The 

observed interactions were high since the two years were very different in climatic conditions. 

Differences between years may be due to the relatively long winter in 2006 compared to the 

warm early spring in 2007. Therefore, flowering started about three weeks earlier in 2007.  
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An alternative would have been to test the genotypes against the error by using a fixed model. 

In that case, mores sources of variation would have become significant. However, to get 

results that can be generalized, the more conservative random model was chosen.   

3.5.2 Heterosis determination 

To avoid the overestimation of heterosis, FSw was used for the determination because 

unconscious selection may have taken place during the bagging of plants for FSb and FSw 

seed production. Heterosis observed for traits were quite low and this was unexpected, 

because parental cultivars were selected based on differences in seed quality (high erucic acid, 

high glucosinolate; low erucic, high glucosinolate; low erucic, low glucosinolate). Also, the 

extent of heterosis is expected to be influenced by the level of genetic distances between 

parents (Falconer and Mackay 1996).  

However, this was supported by 17% between cultivars diversity observed when 

genetic diversity of 32 individual plants sampled from each of Rex, Largo and Steinacher, 

were analysed (chapter 4) and earlier study asserted that the gene pool of European winter 

oilseed B. rapa is narrow (Zhao and Becker 1998).   

The high yielding cross combination FSb (R x S) was surpassed by both FSb (R x L) 

and FSb (L x S) when MPH% was determined, indicating that higher per se performance of 

crosses doesn t imply higher heterosis. Percent mid parent heterosis depends on the mean of 

parents involved and a cross between parents with high per se performance will give low 

heterosis (Hegde et al. 2007). Also, the issue of heterosis is complex and involves the 

interaction of genes with dominance, over dominance or epistasis (Crow 1999). 

Heterosis for grain yield of B. rapa has been reported to be much higher with 18 % 

MPH for seed yield observed in inter-varietal hybrids (Schuler et al. 1992), 25% for dry 

matter yield in turnip B. rapa after six generations of cultivar improvement by half-sib family 

selection (Bradshaw et al. 2002) and 25% for seed yield in B. rapa spring cultivars (Falk et al. 
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1998).  

The correlations among traits are important for selection. There were no or only small 

correlations between flowering time and FBY and DBY, indicating that selection for early 

flowering does not necessarily improve biomass yield in B. rapa. The correlation between 

FBY and DBY over locations was only 0.62**, which is much lower than the value of 0.95** 

reported by Liu et al.  (2002) in biomass yield of interspecific crosses of B. rapa and B. 

napus. The traits DBY relates linearly to both FBY and DMC and will increase with 

increasing DBY or DMC and vice versa. However, the effect is large if correlation between 

FBY and DMC is high.  

When the two locations were separately analyzed for the different years, we observed 

a correlation between FBY and DBY of 0.79** at Einbeck and 0.34* at Göttingen in 2006. In 

2007, correlation of 0.87** at Göttingen and 0.48* at Einbeck were observed between FBY 

and DBY. These low correlations reported indifferently in the two locations may probably be 

due to a weak correlation between FBY and DMC, indicating a technical problem with taking 

a representative sample of leaves and stem for DMC determination.   

3.6 Conclusions 

In summary, the mean yields of the different full-sibs were higher than the parents at the four 

locations. Heterosis of FSb measured over FSw was also quite low and most traits deviated 

from the expected order FSw > syn- > FSb = parents except for DBY. However, the yields of 

syn-1 were comparable with FSb and could be used in large scale biomass production. 

Synthetic is envisaged as simple, less laborious and high amounts of seed could be produced 

compared to other methods such as full-sibs selection which requires the isolation of two 

plants.  

The seeds of two parents with high specific combing ability are mixed and then 

cultivated under isolation. At this stage, the parental seed is referred to as Syn-0 and after 
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random mating, their offspring as syn-1 which produces high amounts of seed. The syn-1 is 

composed of 25% each of parental cultivar full-sibs and 50% of between cultivar full-sibs 

could be utilized for biomass production. Previous generations of random mating without 

selection are referred to as Syn-2, Syn-3 etc, and FSb cultivars increases with increasing 

synthetic generation. In this way, heterosis can be at least partly utilized for yield 

improvement in B. rapa cultivars for biomass production.
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4. Effect of crop improvement on genetic diversity in oilseed Brassica rapa 

cultivars detected by SSR markers  

4.1 Abstract  

With the improvement of seed quality, Brassica rapa oilseed germplasm went through 

two major breeding bottlenecks during the introgression of genes for zero erucic acid 

content and low glucosinolate content, respectively. This study investigates the impact 

of these bottlenecks on the genetic diversity in European winter B. rapa by comparing 

three open pollinated cultivars, each representing a different breeding period. Diversity 

was estimated on 32 plants per cultivar with 16 simple sequence repeat (SSR) markers 

covering each of the B. rapa linkage groups. Loss of genetic diversity over the three 

cultivars was indicated by a slight non significant ( = 0.05) decrease in allele number 

(59 

 

55), alleles mean number (3.68 

 

3.50), information index (0.94 

 

0.87) and 

expected heterozygosity (0.53 

 

0.48). Eighty three percent of the total variation was 

attributed to within cultivar and the remaining 17% to between cultivar variations by the 

analysis of molecular variance (AMOVA). Individual plants were separated into the 

according cultivars by both principal coordinate analysis (PCoA) and dendrogram based 

on Dice s similarity coefficient. In conclusion, genetic diversity within cultivars was 

high and quality breeding in B. rapa did not significantly reduce genetic diversity of B. 

rapa winter cultivars. To a large extent, there is no risk of decline in performance due to 

quality improvement.  

Key words: Brassica rapa - breeding bottlenecks - erucic acid - germplasm - glucosinolate - 

genetic diversity - simple sequence repeat
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4.2 Introduction  

Brassica rapa (2n = 20) has been proposed to originate from two independent centres in Asia 

and Europe (Zhao et al. 2005) and domesticated as leafy vegetables, roots, fodder and oilseed 

cultivars. Oilseed cultivars dominate the European centre (Reiner et al. 1995) and extracted 

oil is either used for human consumption or further processed as a renewable resource in the 

petro-chemical industry. A by-product of oil extraction is the meal that is a valuable protein 

source for animal production. 

While erucic acid is a valuable resource for the non food industry, this long chain fatty 

acid is not desired in oil for human consumption. To improve edible oil quality, breeding for 

erucic acid free cultivars was initiated in Canada in the early 1960 s. By selecting zero erucic 

acid strains within B. rapa germplasm, the first low erucic acid cultivar was released soon 

after (Downey 1964).  To improve meal quality, low glucosinolate (GSL) genes were 

introgressed from B. napus into B. rapa during the late 1960 s (Krzymanski 1970) which 

drastically increased the economic value of the crop.   

The improvement of seed quality in B. rapa implies that its germplasm had to go twice 

through a breeding bottleneck possibly causing a reduction in genetic diversity. Such 

reduction has been observed in Canadian oats cultivars (Fu et al. 2003), French bread wheat 

(Roussel et al. 2004) and Canadian hard red spring wheat (Fu et al. 2005). Nevertheless, no 

significant change was observed in current and historical maize inbreds (Lu and Bernardo 

2001), European and Asian wheat accessions (Khlestkina et al. 2004) and British barley 

cultivars (Koebner et al. 2003).  

For B. rapa, up to date no studies have been reported on the effects of different 

breeding periods on genetic diversity. However, studies on diversity within and between 

cultivar groups have been reported. Zhao et al. (2005) applying AFLP markers reported 

comparable genetic diversity between and within different B. rapa accession groups (leafy 
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vegetables, oilseed, roots and fodder) collected world-wide. Das et al. (1999) using AFLP and 

RAPD markers detected wide genetic diversity between different oilseed morphotypes of B. 

rapa.  

Zhao and Becker (1998) with isozymes observed high genetic diversity of which 70% 

of the total diversity was attributed to within cultivars of winter and spring types obtained 

from Europe, China and Canada. Persson et al. (2001) also with allozymes reported 81% 

within genetic diversity in turnip B. rapa coming from Northern Europe. The high genetic 

diversity within cultivars of B. rapa is important for performance and minimizing inbreeding 

due to its open pollination nature.  

Today, B. rapa is mainly grown as spring oilseed crop in Canada, some marginal 

regions in Northern Europe, and in Asia as well (Gu et al. 2003; Zhang et al. 2004). 

Traditionally, winter B. rapa was grown also as oilseed crop in Northern and Central Europe, 

but the cultivation nearly ceased. However, there is a renewed interest in cultivation of winter 

B. rapa in Europe to produce biomass, because of its high growth rate under low temperatures 

during early spring. To design breeding programs for the development of winter B. rapa 

cultivars for biomass production it is very important to know more about the genetic diversity 

of the European winter B. rapa gene pool.  

The gene pool of European winter oilseed B. rapa is narrow (Zhao and Becker 1998). 

There are many old cultivars with high erucic acid and glucosinolate content, which however 

are genetically rather similar (Chapter 3). Only few erucic acid free cultivars have been 

developed, and for canola quality, there has been only one breeding program to our 

knowledge. Therefore we selected three cultivars for comparison, each representing one of the 

periods of winter B. rapa breeding in Europe.  

The objectives of this study were (i) to genotype three open-pollinated B. rapa  

cultivars released in different breeding periods between 1954 and 2002 with SSR markers, (ii) 

to estimate the genetic diversity within and between cultivars and (iii) to test the effect of crop 
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improvement on within cultivar diversity. 

4.3 Material and methods  

4.3.1 Plant material  

Three European winter cultivars of B. rapa, namely Largo (modern cultivar), Rex 

(older forage cultivar) and Steinacher (old oil seed cultivar) were used in this study. The 

materials have been described in detail in chapter 3. Briefly, Largo is a Swedish cultivar with 

zero erucic acid; low glucosinolate and released in 2002. Steinacher and Rex originated from 

Germany and were released in 1954 and 1984, respectively. Steinacher is of high erucic acid; 

high glucosinolate seed quality whereas Rex is zero erucic acid; high glucosinolate seed 

quality.   

4.3.2 DNA extraction 

DNA was extracted from young leaflets of two weeks old seedlings by using DNeasy 

Plant Mini Kits (Hilden Germany). Seeds of the different populations were sown in the green 

house and after three weeks, 32 individual plants from each population were randomly 

sampled and young leaflets harvested for marker DNA extraction. Approximately, 0.1g of leaf 

was taken for each plant. The fluorescent spectroscopy using Hoechst 33258 calf thymus 

DNA as standard was used to determine plant DNA concentration. Accordingly, DNA 

samples were diluted to a 5ng/ul working concentration.   

4.3.3 Genetic marker analysis 

The markers employed covers each of the B. rapa linkage groups according to 

previous works done in B. napus (Piquemal et al. 2005; Mladen Radoev and Wolfgang Ecke 

pers. com.). BRAS and CB denoted primer pairs were developed by Celera AgGen with 

funding provided by a consortium of the seed companies Advanta, Calgene, Caussade, 

Danisco, DLF, Euralis, Koipesol, KWS, Limagrain, Monsanto PGS, Pioneer Seminis, 
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Serasem, SW seeds and Syngenta. Primer pairs denoted MR and MD were developed by the 

Department of Crop Sciences at the University of Göttingen (Uzunova and Ecke 1999; 

Rudolph 2001).  

Table 4.1 Number of different alleles observed at 16 SSR loci in three open pollinated B. rapa 

oilseed cultivars, each representing a breeding period. Genotyping was done on 32 plants per 

cultivar  

Allele number within cultivars 

 

Linkage 

Group  

Markers Steinacher 

(1954 a) 

Rex 

(1984) 

Largo 

(2002) 

Allele number 

across 

cultivars 

1 CB1099 4 3 4 4 

1 CB10206 4 5(1 b) 5 6(1) 

2 BRAS037 5 5 4 5 

2 CB10416 4 3 3 4 

3 MR197 2 2 2 2 

4 CB10484 2(1) 3 4(1) 5(2) 

5 CB10051 2 3 3(1) 4(1) 

5 BRAS095 4 4(1) 3(1) 6(2) 

7 CB10439 4 4 4 4 

7 MD20 4 4 5 5 

8 BRAS039 4(2) 2 2 4(2) 

8 CB10448 4 5 4(1) 6(1) 

9 BRAS020 3 3 2 3 

9 CB10373 6(2) 4 4(1) 8(3) 

10 CB10109 3 2 3 3 

10 MR156 4(1) 5(1) 3 6(2) 

Total 16 59(6) 57(3) 55(5) 75(14) 
a year of release 
b number of alleles that are unique to the respective cultivar  

In an initial screen, 55 SSR primer pairs were used on 5 plants per population (data not 

shown). Sixteen of them were then selected based on their amplification strength, 

polymorphism, and resolution (Table 2). SSR analysis were done following the 13-tailing 
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ppolymerase chain reaction (PCR) techniques, where each forward primer carries a nucleotide 

tail which is complementary to a fluorescent labelled M13-universal primer. The 

amplification primed products with the M13-universal and the reverse primers are detected, 

after the fluorescence is excited with a laser beam. The universal M13 was labelled with the 

florophone (6FAMTM), (VICTM) (NEDTM) and (PETTM) which fluoresce in blue, green, yellow 

and green respectively.  

4.3.4 Polymerase chain reactions (PCR) 

The PCR was carried out in a final volume of 25µl containing 5 µl DNA template 

(5 g/µl), 2 µl dNTPs (2mM), 1 µl 10x PCR buffer, 2 µl MgCl2 (25 mM), 0.2 µl Taq 

polymerase (5 U/µl), 0.2 µl of each of the two primers (5 M) and 0.2 µl fluorescent labeled 

M13 primers (5 M).  

Amplifications were performed in a thermocycler (Perkin Elmer 480) under the 

following conditions:  2 min at 95 oC, followed by a touchdown profile consisting of 10 

cycles of 45 sec at 95 oC, 1 min at 68 oC and 1 min at 72 oC. Then 27 cycles of 45 min at 95 

oC, 1 min at 47 oC and 1 min at 72 oC, and a final extension step at 75 oC for 10 min.  

The different colors used make it possible to load four different PCR products at the 

same time. Markers with non overlapping fragment size were labeled with the same dye. 

Multiplexed PCR products were then separated and visualized on an ABI-3100 capillary 

sequencer (Applied Biosystems). The protocol used was, 0.5ul of internal line size standard 

(GeneScan-500 LIZ), 7.5ul of HiDi formamide and 0.2ul of the multiplex PCR product.  The 

mixture was denatured for 2min at 95 oC and analyzed on an ABI 3100 genetic analyzer 

(Applied Biosystems).   

4.3.5 Data analysis 

To partition genetic diversity, an analysis of molecular variance (AMOVA) was 
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computed with the software GenAlEx v.6 (Peakall and Smouse, 2006) and significance was 

determined with 9999 permutations. A similarity matrix of the 96 genotypes based on Dice s 

similarity coefficient (Dice, 1945) was used for dendrogram construction using unweighted 

pair-group method with arithmetic average (UPGMA) and for principal coordinate analysis 

(PCoA) by employing the computer program NTSYS-pc version 2.1 (Rohlf, 2001). Bootstrap 

values to ascertain the internal support of clusters were calculated with the software 

WINBOOT (Yap and Nelson, 1996).  

Based on the estimated fragment sizes of each marker and each genotype, the genetic 

diversity parameters of mean number alleles (An), Shnnon information index (I) and expected 

heterozygosity (He) were estimated for each B. rapa cultivar with GenAlEx v.6 (Peakall and 

Smouse, 2006). In addition, pair wise similarity distances of Dice s was transformed to 

dissimilarity coefficient (1- similarity coefficient) for each B. rapa cultivar with the software 

WINDIST (Yap and Nelson, 1996). Confidence levels for above parameters were determined 

based on standard deviation of all pair-wise combinations after adjustment for the actual 

population size of 32.   

4.4 Results  

4.4.1 Distribution of alleles  

The number of detected alleles per SSR marker across cultivars ranged from two to 

eight and summing up to a total of 75 alleles and an average of 4.69 alleles per primer pair 

(Table 4.1). For the individual cultivars with respect to breeding period, the number of alleles 

per primer pair ranged from two to six with a total of 59 for Steinacher, two to five with a 

total of 57 for Rex and two to five with a total of 55 for Largo. Six alleles were unique for 

Steinacher, three for Rex and five for Largo. Common alleles were 44.1% for all three 

populations, 18% for Steinacher and Largo, 14.7% for Rex and Largo, and 11.4% for 
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Steinacher and Rex.    

4.4.2 Genetic diversity within cultivars          

             Results from the AMOVA method of variance component analysis are presented 

(Table 4.2). As expected with cross pollinated species, genetic diversity within cultivars was 

high and accounted for 83% of the total variation while between cultivar variation was 

moderate but highly significant (P = 0.001) with 17%.  

Table 4.2 AMOVA performed with 16 SSR loci in three open pollinated B. rapa oilseed 

cultivars, each representing a breeding period 

Source df SS MS Var. comp % Fst P 

Between cultivars

  

2 116.323 58.161 0.843 17%  0.167  0.001 

Within cultivars  189 794.234 4.202 4.202 83%   

Total  191 910.557 62.364 5.045    

  

4.4.3 Genetic diversity between cultivars 

Across individual cultivars, total number of allele decreased from 59 to 55, allele mean 

number from 3.68 to 3.50, information index from 0.91 to 0.87 and expected heterozygosity 

from 0.53 to 0.48. A slight decrease in mean genetic distances across individual cultivars was 

also observed by the Dice s similarity coefficient (Table 4.3). However, these decreases were 

not significant ( = 0.05) for any of the parameters.         
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Table 4.3 Genetic diversity parameter values (± confidence intervals of the means) observed 

at 16 SSR loci in three open pollinated B. rapa oilseed cultivars, each representing a breeding 

period 

a year of release 
b 95% confidence interval  

4.4.4 Genetic relationships based on principal coordinate analysis 

            A PCoA based on Dice similarity was carried out to show the genetic similarity of the 

three cultivars and a plot of the first and second coordinates are shown (Figure 4.1). The first 

two principal coordinates explained 50.3 % of the total variance and separated the 96 

genotypes into the three cultivars with a slight overlap between Steinacher and Rex.    

4.4.5 Genetic relationships based on dendrogram 

The relationship among the 96 individuals of B. rapa comprising of the three cultivars 

based on genetic similarity (genetic distance) values were further determined with UPGMA 

cluster analysis (Figure 4.4). Cluster analysis showed a good fit with distance matrix as 

reflected in cophenetic correlation coefficient (r = 0.62). With the exceptions of two cultivars 

of Steinacher that each clustered with Rex or Largo, dendrogram perfectly separated the three 

cultivars into three main groups at about 0.48 genetic similarities. However, bootstrap values 

in support for individual cultivar groups were less than 1% in all cases (data not shown).  

Cultivars 

 

Diversity parameters   Steinacher  (1954 a) Rex (1984) Largo (2002) 

Across 

cultivars 

Mean number of alleles (An)

 

3.68 (±0.37 b) 3.56 (±0.37) 3.5 (±0.35) 4.68 

Information  index (I) 0.94 (±0.11) 0.91 (±0.10) 0.87 (±0.13) 1.14 

Expected heterozygosity (He)

 

0.53 (±0.05) 0.51 (±0.05) 0.48 (±0.07) 0.58 

   Dissimilarity index (1-Dice) 0.45 (±0.032) 0.42 (±0.029) 0.42 (±0.033)  
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Figure 4.1 Association among 3 open pollinated B. rapa oilseed cultivars revealed by 

principal coordinates analysis at 16 SSR loci. Genotyping was done on 32 plants per cultivar  

On average, within the cultivar Steinacher the genetic similarity values (cluster) ranged from 

0.80 to 0.46 and a mean of 0.63, 0.97 to 0.45 and a mean of 0.66 for Rex, and 0.83 to 0.47 and 

mean of 0.67 for Largo. All 96 genotypes were genetically unique with the exception of two 

plants of Steinacher that. Confidence values for determining the degree of support for major 

nodes were generally low and those above 30% are indicated in the dendrogram.   

4.4.6 Relationship between genetic distance and heterosis 

The mean Dice genetic distances (Table 4.4) calculated from the 16 SSR markers, 

ranged from 0.54 to 0.56 with mean of 0.55 for among cultivars. For distances between 

cultivars, it was highest in L x S and lowest in R x S. Heterosis ranged from 6.18 to 12.14 for 

dry biomass yield (DBY) and from 4.22 to 4.65 for fresh biomass yield (FBY).  

PCo 1 (30.7) 

PCo 2 (19.6) 

Steinacher 

Largo 

Rex 

 

-0.50 

-0.37 

-0.05 0.40 
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Table 4.4 Mean performance of between cultivar full-sibs and %MPH for four traits across 

environments. 

Across environments 

BPFS %MPH 

 

Crosses BTF 

(days) 

  DMC  

( %) 

FBY 

(k/m2) 

DBY 

(g/m2) 

BTF 

(days) 

  DMC 

(%) 

FBY 

(k/m2) 

DBY 

(g/m2) 

Genetic 

distance 

R x L 236.5 14.4 3.42 482.3 -0.03 7.06 4.65 12.14 0.55 

R x S 235.2 14.8 3.43 514.8 -0.10 -0.77 4.22 6.18 0.54 

L x S 235.5 15.0 3.31 495.4 0.09 2.84 4.55 9.31 0.56 

Mean 235.7 14.7 3.38 495.5 -0.01 3.04 4.41 9.21 0.55 

  

Dice Similarity Coefficient 
0.45

 

0.58

 

0.71

 

0.85

 

0.98

 

STE0
1

       
Steinacher 

Steinacher

 

Rex

 

Steinacher 

Largo 

Figure 4.2 UPGMA dendrogram showing genetic relationships among 96 individuals of 
three B. rapa cultivars using 16 SSR markers. Numbers on branches are bootstrap values 
and only those above 30 are indicated  
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4.5 Discussion  

4.5.1 Genetic diversity within and between cultivars  

With the advance of DNA markers, fingerprinting has been widely used to estimate 

genetic diversity on a molecular level. Out of the different marker technologies employed in 

Brassica crops (Snowdon and Friedt 2004), SSR markers have the advantage of being robust, 

cost effective and high informative due to their co-dominant expression (Zhou et al. 2006). 

However, they have hardly been used for diversity studies in B. rapa, though been employed 

in other species of B. napus (Plieske and Struss 2001), B. oleracea (Tonguc and Griffiths 

2004) and B. nigra (Westman and Kresovich 1999).  

An obvious limitation of our study is that only three cultivars were compared. 

However, the gene pool of European winter oilseed B. rapa is rather narrow (Zhao and 

Becker 1998) and due to the small present interest mainly old cultivars are available, which 

are high in erucic acid and glucosinolate content. A diallel cross among 15 old European B. 

rapa cultivars from Germany, Sweden, Czechoslovakia, and Bulgaria showed only 8% 

average heterosis increase across between cultivars, indicating their genetic similarity 

(Chapter 3).  

There are very few erucic acid free winter B. rapa cultivars registered. The available 

germplasm for winter B. rapa of Canola quality is even much more limited because only SW 

Seed, Sweden, developed such cultivars. Therefore we consider the three selected cultivars as 

a representation of the available winter B. rapa breeding material, and principally do not 

expect different results if a study with a large number of accessions was to be performed.  

The moderate genetic diversity of 17% between cultivars showed that the cultivar 

origin (country and breeding company) had only a minor impact on the outcome of our study. 

This is also indicated by the partly overlapping cultivar cluster derived from PCoA (Figure 

4.1) and in the dendrogram (Figure 4.2). In in a study with winter and spring types obtained 
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from Europe, China and Canada (Zhao and Becker 1998), only 30% of the genetic diversity 

was between cultivars and for turnip B. rapa from the Northern Europe (Persson et al. 2001), 

19% of the genetic diversity between cultivar was observed. 

Our results are supported by a field experiment with the same three cultivars, where 

we compared full-sib progenies produced within cultivars with full-sib progenies between 

cultivars (Chapter 3). The biological yield of between cultivar crosses was only 2.6 % higher 

than the yield of within cultivar crosses. These results support the marker data reported here; 

genetic distance between plants of two different cultivars is not much larger than the average 

distance between two plants of the same cultivar.   

4.5.2 Effect of crop improvement on genetic diversity  

We observed a slight but non significant decrease of genetic diversity at the molecular 

level across three different B. rapa winter cultivars, each representing a different stage of seed 

quality improvement towards double low quality. This slight decrease in genetic diversity 

could be attributed to continuous plant breeding activities which is expected to narrow down 

crop germplasm, sometimes referred to as genetic erosion (Harlan 1972).  

With the two major breeding bottlenecks thus breeding for low erucic acid content 

(Downey 1964) followed by the introgression of low GSL genes from B. napus (Krzymanski 

1970), it is surprising that we observed only a slight decrease in genetic diversity indicating 

that allele diversity at erucic acid and GSL loci has little effect on the average genetic 

diversity of B. rapa oilseed cultivars. Bottlenecks may not necessarily result in reduced 

diversity within open pollinated cultivars, because breeders probably selected unconsciously 

for heterozygous allele frequencies at loci expressing heterosis, they maintain some level of 

diversity (Falconer and Mackay 1996).   
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Fu et al. (2003) in Canadian oats cultivars, Roussell et al. (2004) in French bread wheat and 

Fu et al. (2005) in Canadian hard red spring wheat showed significant effect of modern plant 

breeding on genetic erosion in different crops. However, other studies by Lu and Bernardo 

(2001) in current and historical maize inbreds, Khlestkina et al. (2004) in European and Asian 

wheat accessions and Koebner et al. (2003) in British barley cultivars  failed to show such 

effect.   

4.5.3 Relationship between genetic distance and heterosis 

The highest genetic distance was observed between 00 and ++ quality, supporting that 

crop improvement may reduce genetic diversity. However, no significant differences among 

the different quality pools were observed. Genetic distances did not translate to performance 

and cross between 0+ and ++ were better in yields than the cross between 00 and ++ quality.  

Nevertheless, the distances between parental cultivars for hybrid performance has 

limit, above which performance may decreased (Falconer and Mackay 1996). The differences 

in genetic distance among the cultivars were low. This was the case in heterosis for FBY and 

DTF but not for DMC and DBY.   

4.6 Conclusions 

Our results also do not support concerns about major genetic erosion caused by quality 

breeding in B. rapa. Genetic diversity within cultivars was high and quality breeding in B. 

rapa did not significantly reduce genetic diversity B. rapa winter cultivars. To a large extent, 

there is no risk of reduction in performance due to inbreeding. With respect to relationship 

between marker distances and heterosis, correlations were higher for DTF and FBY compared 

to DMC and DBY.
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5. General Conclusions 

The study investigates the genetic diversity, heterosis and general combining ability of winter 

Brassica rapa biomass yield for which results and discussion have been presented in the three 

previous chapters. This concluding section relates the different chapters and proposes some 

recommendations based on major findings for future consideration.   

5.1 Brassica rapa for biomass production  

For biomass production winter B. rapa can be rotated with crops adapted to higher 

temperatures like maize, sorghum or sunflower. Our trials were sown in September even 

though sowing could have been delayed. Plant biomass was harvested in early May during 

end of flowering. Until that time a dry biomass yield (DBY) of up to 6.6 t/ha could be 

produced. Results of days to flowering (DTF) showed that some genotypes flowered earlier 

than others and could be utilized for early harvesting of biomass because no or only small 

correlations exist between flowering time and FBY and DBY. This indicate that selection for 

early flowering does not necessarily improve biomass yield in B. rapa.  

Of importance to biogas production is methane and methane yield that has been 

observed to increase with increasing dry matter content (DMC) up to 50% DMC on per 

hectare basis in maize (Amon et al. 2007). The DMC in the range of 14-18 % at the time of 

harvesting (at end of flowering) was low and would economically increase the cost of biogas 

production due to the cost for transportation and silage.  

A diallel cross among 15 old and newer European B. rapa cultivars showed only 8% 

average heterosis, indicating a low genetic diversity between cultivars. Grouping of 

germplasm into heterotic structure before crossing increases hybrid performance (Melchinger 

and Gumber 1998). Later studies should consider grouping cultivars into distinct groups by 

either morphology or molecular markers before heterosis utilization. Nevertheless, specific
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 crosses showed percent mid parent heterosis (MPH %) of 21% for DBY and could be utilized 

for biogas production through the development of synthetic cultivars.  

5.2 Genetic diversity and heterosis   

Genetic diversity study based on SSR markers was efficient and characterized the different 

cultivars into different groups, though distances among cultivars were not significant. This 

indicates that no major genetic erosion was caused by quality breeding in European winter B. 

rapa. Breeders should be credited for preventing genetic reduction in the improved cultivars. 

They may have unconsciously selected for heterozygous allele frequencies at loci expressing 

heterosis, by maintaining some level of diversity (Falconer and Mackay 1996) This in part 

explains the high genetic diversity within cultivars, which is important for open pollinated 

crops such as B. rapa to offset inbreeding and for adaptation to different environmental 

conditions.  

Alternatively, the between genetic diversity could be increased by germplasm 

introduction. The European gene pool is narrow and their genetic base could be broadened by 

the exchange of breeding material between the Europe and Chinese gene pool (Zhao and 

Becker 1998). The Chinese material that would be introduced should be checked for 

adaptation to European conditions, because experiments from B. napus (Qian et al. 2007) 

showed that the Chinese cultivars do not adapt well to European environment.  

The order of FSb > syn-1 > FSw = parental cultivars observed for DBY, was in 

accordance with theory and has important implications for our understanding of population 

breeding (Ali et al. 1995; Falconer and Mackay 1996) and synthetic utilization. This indicates 

that population improvement depends not only on the parental cultivars, but also on their 

combining ability. Performance of crosses between populations is higher than crosses within 

population. The performance of mixture of seeds from two populations under random mating 

will range between within populations and between population crosses performance.  
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The genetic distances did not translate to performance and crosses between 0+ and ++ were 

better in yields than the cross between 00 and ++ quality. The differences in genetic distances 

among the cultivars correlated with traits, FBY and DTF compared to DMC and DBY. Thus, 

differences in genetic distances among the cultivars were low and this was the case in 

heterosis measured among crosses for FBY and DTF but not DBY and DMC, indicating that 

correlation between genetic distance and heterosis could vary from trait to trait.   

5.3 Breeding methods 

The breeding of cross-pollinated crops have involved methods such as mass selection, 

recurrent selection, half-sib selection, full-sib selection and synthetic cultivars. The methods 

of mass selection, recurrent selection and half-sib selection are effective when the genetic 

variation is due to general combining ability (GCA) whereas full-sib selection and synthetics 

are effective when the genetic effect is controlled by specific combining ability (SCA). Our 

results showed high significant genetic variation of SCA for biomass yield and other 

components, implying that the best breeding method to increase biomass yield is to identify 

the best combinations among parents.  

This could be utilized through hybrid, full-sib or synthetic breeding. However, the 

production of hybrid cultivars will be probably too expensive at the moment, due to the self 

incompatibility of B. rapa.  There is also lack of an easily available hybridizing system. Even 

some cytoplasm male sterility methods developed in B. rapa are hardly used for seed 

production because of the lack of stable maintainers or restorer lines (Verma et al. 2000).  

Production of full-sibs between different parental populations could be utilized, but it 

is however very laborious. Plants need to be isolated for seed production, and hardly suitable 

for large scale seed production. In the case of synthetics, large quantities of seed can be 

produced by mixing different parents and propagating them under open pollination.   
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When starting with two populations, the first generation after random mating (syn-1) 

should theoretically be composed of 25% each of plants from crosses within the parental 

populations and of 50% of plants from crosses between the two populations. In this way, 

heterosis can be utilized for yield improvement in B. rapa cultivars for biomass production. 

The practical utilization of heterosis in synthetic breeding of B. rapa will rely on self-

incompatibility to promote out crossing and the identification of best specific combinations. 
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6. Summary  

Biogas production has recently become of major interest in Europe. The substrate mainly used 

is biomass from energy crops and 2% of agricultural land in Germany is presently used for the 

cultivation of energy crops. However, about 80% of the biogas substrate is today coming from 

maize, a crop of sub-tropical origin with low cold tolerance which can not be sown before end 

of April.  

For maximum biomass production per year, cold tolerant crops like some cereals, 

forage grasses, and also Brassica with high biomass production even under low temperatures 

could be rotated with higher temperatures crops like maize, sorghum or sunflower that are 

adapted to higher temperature. This will give the possibility for growing two crops in one 

season: the first one sown in autumn and harvested in spring, followed by a second crop sown 

in spring and harvested in autumn.  

Brassica rapa was traditionally grown as winter oilseed crop in Northern and Central 

Europe, but the cultivation has nearly deceased. However, there is a renewed interest in 

cultivation of winter B. rapa in Europe to produce biomass, because of its high growth rate 

under low temperatures during early spring. To design breeding programs for the 

development of winter B. rapa cultivars for biomass production, a better knowledge on the 

genetic diversity of the European winter B. rapa gene pool is required.  

To date, the European winter B. rapa has been bred primarily to enhance its nutritional 

value for human and animal consumption, for which seeds with zero erucic acid and low 

glucosinolate content are important. These targets are quite different from the criteria for 

bioenergy (biogas) for which high biomass yield is required. The improvement of seed quality 

in B. rapa implies that its germplasm had to go twice through a breeding bottleneck possibly 

causing a reduction in genetic diversity. Therefore it is of interest to evaluate also the 

potential of older cultivars.
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This study was carried out with the following objectives; 1. To develop a breeding strategy 

for biomass production of European winter Brassica rapa for biogas production, 2. To 

determine the biomass yield and heterosis of crosses within and between European Brassica 

rapa cultivars, 3. To examine the effect of crop improvement on genetic diversity in oilseed 

Brassica rapa cultivars detected by molecular markers.   

To analyze heterosis and combining ability, 15 winter B. rapa cultivars of European 

origin were used. These cultivars were crossed in a half-diallel without reciprocals to produce 

105 combinations. The parents and the 105 combinations were evaluated for days to 

flowering (DTF), fresh biomass yield (FBY), dry matter content (DMC), dry biomass yield 

(DBY)  and plant height (PH) in a lattice design with two replicates at two locations in 

Germany for two years.  

The crosses surpassed in average their parents by 7.6 % for FBY and 5.9% for DBY. 

Maximum mid parent heterosis was 21.0 % for FBY and 30.4 % for DBY. Analysis of 

variance showed that genetic variance was mainly due to specific combining ability (SCA). 

The correlation between parental performance and general combining ability (GCA) was 

0.42** for FBY and 0.53** for DBY. Selection of parental combination with high specific 

combining ability to produce synthetic cultivars could rapidly improve biomass yield.  

Based on predominance of SCA and the high within cultivar diversity, the 

performance of synthetics, within cultivar full-sibs and between cultivar full-sibs were studied 

in three European winter cultivars of B. rapa. The mean of full-sibs were higher than the 

mean of the parents for most traits. The full-sibs within and between cultivars differed 

significantly for fresh biomass yield and dry biomass yield.  

Relative mid parent heterosis of between cultivar full-sibs calculated over within 

cultivar full-sibs was 9.2% for DBY, 4.4% for FBY and 3.0% for DMC across environments. 

The correlation between DBY and FBY was 0.61** and between DBY and DMC was 0.86**. 

Heterosis for biomass production observed in cultivar crosses was low, indicating a relatively 
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low genetic diversity between the three cultivars.  

To investigate the impact of bottlenecks in B. rapa breeding on the genetic diversity, 

three open pollinated cultivars were compared, each representing a different breeding period. 

Diversity was estimated on 32 plants per cultivar with 16 simple sequence repeat (SSR) 

markers covering each of the B. rapa linkage groups. Loss of genetic diversity over the three 

cultivars was indicated by a slight, but non significant decrease in allele number, information 

index and expected heterozygosity. This indicates that no major genetic erosion caused by 

quality breeding in European winter B. rapa.  

Eighty three percent of the total genetic variation was attributed to within cultivar 

variation and the remaining 17% to between cultivar variation by analysis of molecular 

variance (AMOVA). Individual plants of the three cultivars were characterized by both 

principal coordinate analysis (PCA) and a dendrogram from cluster analysis. These show that 

high genetic diversity exists mainly within cultivars which explain the relative small amount 

of additional heterosis in crosses between cultivars.  However, the performance of synthetic 

cultivars was comparable to between cultivar full-sibs and could be utilized for biomass 

production.
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7. Zusammenfassung  

Die Erzeugung von Biogas gewinnt in Europa zunehmend an Bedeutung. Als Substrat dienen 

dabei überwiegend Energiepflanzen, und zur Zeit werden etwa 2% der landwirtschaftlichen 

Fläche in Deutschland für den Anbau von Pflanzen zur Biogaserzeugung verwendet. Etwa 80 

% davon ist Mais, eine ursprünglich subtropische Pflanze mit niedriger Kühletoleranz, die erst 

Ende April gesät werden kann. Zur Erzeugung hoher Biomasseerträge ist es daher sinnvoll, 

den Anbau von Mais oder anderer wärmeliebender Arten wie Hirse oder Sonnenblume zu 

kombinieren mit dem Anbau von Arten mit hoher Biomasseproduktion auch unter niedrigen 

Temperaturen wie Getreidearten, Gräsern, oder Brassica-Arten. So können zwei Kulturen in 

einer Saison angebaut werden: die erste wird im Herbst gesät und im Frühjahr geerntet, und 

die zweite wird anschließend im Frühjahr gesät und im Herbst geerntet.   

Rübsen (Brassica rapa) ist eine traditionelle Ölfrucht in Mittel- und Nordeuropa, aber 

ihr Anbau ist heute nahezu erloschen. Allerdings gibt es ein erneutes Interesse am Anbau von 

B. rapa in Europa zur Erzeugung von Biomasse, da es kaum eine andere Fruchtart mit ähnlich 

hohen Wachstumsraten unter niedrigen Temperaturen im zeitigen Frühjahr gibt. Die 

Entwicklung von Zuchtprogrammen für B. rapa zur Erzeugung von Biomasse erfordert aber 

eine bessere Kenntnis der genetischen Variation im europäischen Genpool dieser Art.    

Bisher hat sich die Züchtung von Rübsen vor allem auf die Verbesserung der Qualität 

für die menschliche Ernährung oder zur Verwendung als Futtermittel konzentriert, wofür die 

Erucasäurefreiheit und ein niedriger Glucosinolatgehalt von Bedeutung sind. Diese Zuchtziele 

unterscheiden sich stark von den Anforderungen an eine Sorte für die Biogaserzeugung. Die 

Qualitätszüchtung hat dazu geführt, dass das Zuchtmaterial für heutige Sorten zweimal durch 

eine genetischen Flaschenhals gehen musste, wodurch möglicherweise die genetische 

Variation reduziert wurde. Daher ist es von Interesse, auch das Potential älterer Sorten zu 

untersuchen.
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Diese Arbeit hatte die folgenden Zielsetzungen: (1) die Entwicklung einer Züchtungsstrategie 

für B. rapa zur Biogaserzeugung unter besonderer Berücksichtigung von 

Kombinationseignung und Heterosis; (2) die Bestimmung von Biomasseertrag und Heterosis 

in Kreuzungen innerhalb und zwischen Europäischen Rübsensorten.; (3) die Untersuchung 

des Einflusses der Qualitätszüchtung auf die genetische Diversität mit Hilfe von molekularen 

Markern.  

Zur Untersuchung von Kombinationseignung und Heterosis wurden 15 europäische 

Winterrübsensorten verwendet. Durch diallele Durchkreuzung dieser Elternsorten wurden 105 

Keuzungskombinationen erzeugt. Die Eltern und ihren Kreuzungen wurden in einer 

Gitteranlage mit zwei Wiederholungen in zwei Jahren an zwei Orten geprüft. Dabei wurden 

die Merkmale Tage bis Blühbeginn (DTF), Frischmasseertrag (FBY), Trockenmassegehalt 

(DMC) und Trockenmasseertrag (TBY) erfasst. 

Die Kreuzungen hatten gegenüber ihren Eltern eine Mehrleistung von 7,6 % für FBY 

und 5,9 % für DBY. Die höchsten relativen Heterosiswerte waren 21,0 % FBY und 30,4 % 

für DBY. Die Varianzanalyse zeigte, dass vor allem die spezifische Kombinationsfähigkeit 

(SCA) von Bedeutung war. Die Korrelation zwischen allgemeiner Kombinationsfähigkeit 

(GCA) und Elternleistung betrug 0.42** für FBY und 0,53** für DBY. Durch eine Selektion 

von Elternkombinationen mit hoher SCA für die Herstellung synthetischer Sorten sollte eine 

schnelle Steigerung der Biomasseleistung von Rübsen möglich sein. 

Die Leistung synthetischer Sorten im Vergleich zu Vollgeschwister-

Nachkommenschaften innerhalb bzw. zwischen Sorten wurde an drei europäischen 

Winterrübsensorten näher untersucht. Die Vollgeschwister übertrafen die Leistung der Eltern 

in den meisten Merkmalen. Die Vollgeschwister aus Kreuzungen zwischen Sorten hatten 

einen signifikant höheren Frisch- und Trockenmasseertrag als die Vollgeschwister aus 

Kreuzungen innerhalb der Sorten.   
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Die Heterosis der Vollgeschwister zwischen Sorten im Vergleich zu den 

Vollgeschwistern innerhalb Sorten betrug 9,2 % für DBY, 4,4 % für FBY, und 3,0 % für 

DMC. Die Korrelation zwischen DBY betrug FBY war 0,61** und die zwischen DBY und 

DMC 0,86**. Insgesamt gesehen war die Heterosis relativ gering, was darauf hinweist, dass 

die untersuchten Elternsorten eine geringe Diversität hatten.  

Um zu untersuchen, ob die Züchtung zu einer Einengung der genetischen Diversität 

geführt hat, wurden drei unterschiedlich alte Sorten verglichen, die verschiedene 

Züchtungsperioden repräsentieren. Ihre Diversität wurden an je 32 Pflanzen mit Hilfe von 

Mikrosatelliten (SSR) untersucht, die alle Kopplungsgruppen des Genoms abdecken. Es 

wurde nur eine sehr leichte, nicht signifikante Abnahme der Diversität beobachtet, gemessen 

an der Allelanzahl, dem Informationsindex, und der erwarteten Heterozygotie. Die 

Qualitätszüchtung hat daher bei Rübsen kaum zu einem Verlust an genetischer Variation 

geführt.  

Eine Analyse der molekularen Variation (AMOVA) zeigte, dass 83 % der genetischen 

Variation innerhalb der Sorten und nur 17 % zwischen den Sorten auftrat. Einzelpflanzen der 

drei Sorten wurden durch Hauptkoordinatenanalyse sowie durch ein Dendrogram aua einer 

Clusteranalyse charakterisiert. Auch hier zeigte sich, dass die genetische Variation vor allem 

innerhalb der Sorten auftrat, wodurch sich der relativ geringe Heterosiszuwachs in 

Kreuzungen zwischen Sorten erklären lässt. Dennoch trat bei einigen Kombinationen eine 

deutliche Heterosis auf, die sich zur Steigerung der Biomasseleistung relativ einfach durch die 

Entwicklung von synthetischen Sorten nutzen lässt. 
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9. Appendices  

Appendix 9.1 Mean values for the four traits among 15 cultivars B. rapa over environments  

PG no. Parents cultivars DTF (days) DMC (%) FBY (kg/m2) DBY (g/m2 ) 

1 Steinacher 237.81 14.1 3.55 499.73 

2 Weibulls Storrybs 237 15.03 3.42 521.82 

3 BRA 245 235.84 15.53 3.56 549.8 

4 Lemkes Winter  236.66 15.65 3.5 550.22 

5 Lemkes Malchower 236.09 14.41 3.54 490.34 

6 Arktus 236.46 13.67 3.49 477.18 

7 Schneiders Sprengel  235.01 14.42 3.81 554.16 

8 Hege s Winter  238.32 15.6 3.85 576.1 

9 Janetzki s 236.33 16.07 3.22 544.78 

10 Opava 236.23 15.25 3.41 509.11 

11 Grubes Winter  237.82 15.02 3.59 494.99 

12 Wild accession   233.91 15.33 3.28 501.21 

13 Orbit 235.13 17.32 3.56 605.19 

14 Largo 233.74 15.6 3.48 541.91 

15 Rex 232.95 16.99 3.14 541.69 

   



Chapter 9                                                                                                                    Appendices 

 

97

  
Appendix 9.2 Mean values for general combining ability effects for four traits among 15 

cultivars B. rapa over environments 

Parents DTF (days) DMC (%) FBY (kg/m2) DBY (g/m2 ) 

1 0.8** -0.55** 0.07* -24.52** 

2 0.77** -0.44** 0.04 -14.28* 

3 0.11 0.13 -0.11** -8.47 

4 0.27* 0.25 -0.16** -12.32+ 

5 0.38** -0.09 0.09** 6.48 

6 0.2+ -0.22 -0.02 -4.91 

7 -0.16 0.05 0.01 6.06 

8 0.37** -0.17 0.11** 7.52 

9 -0.29** 0.35* -0.13** 0.37 

10 0.12 -0.29+ 0.03 -7.68 

11 0.38** -0.27 0.02 -2.69 

12 -0.39** 0.03 -0.03 6.09 

13 0.16 0.25 0.1** 30.66** 

14 -0.68** 0.47** -0.03 -0.37 

15 -2.04** 0.50** -0.01 18.04** 

 

*, ** and +   statically significantly different from zero at respectively P = 0.10, P = 0.05 and 

P = 0.01 respectively (LSD -test) 
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Appendix 9.3 Mean days to flowering of 105 full-sib crosses of 15 European winter B. rapa over environments   

2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1

 
237.72 235.3 236.82 236.93 238.3 235.41 237.82 234.98 236.94 236.74 237.1 237.84 236.01 234.0 

2

  
236.06 236.93 237.2 236.52 236.79 236.15 236.56 237.74 237.11 235.44 237.3 236.26 233.83 

3

   

237.5 236.34 236.03 235.48 236.73 235.39 236.01 237.23 235.88 234.98 236.12 233.91 

4

    

235.15 237.11 235.35 236.5 236.18 236.87 236.08 235.39 236.88 234.54 233.73 

5

     

236.31 237.76 235.88 236.14 237.05 236.21 235.89 236.29 235.66 233.61 

6

      

236.32 236.59 235.61 235.29 235.93 235.68 236.37 233.71 234.4 

7

       

235.78 234.55 235.16 236.5 235.46 236.9 233.98 234.0 

8

        

236.34 236.37 236.59 236.02 236.12 234.75 234.7 

9

         

234.59 237.04 234.35 235.93 235.84 234.26 

10

          

236.39 235.96 234.83 235.52 234.39 

11

           

236.14 235.68 235.63 233.19 

12

            

233.66 236.38 233.09 

13

             

235.56 235.22 

14

              

232.69 
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Appendix 9.4 Mean dry matter content of 105 full-sib crosses of 15 European winter B. rapa over environments   

2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1

 
14.58 13.41 13.79 13.36 14.37 14.65 13.31 15.34 14.24 14.65 15.15 16.15 15.78 15.51 

2

  
15.22 15.84 14.43 13.65 15.28 14.38 13.83 14.7 14.79 14.84 14.71 14.27 15.10 

3

   

15.84 15.58 13.85 15.03 15.89 14.62 14.92 15.58 15.1 16.08 15.07 16.85 

4

    

15.89 14.09 14.42 15.75 15.82 14.96 15.76 16.13 14.28 16.15 15.87 

5

     

15.2 15.57 14.13 15.31 14.69 15.13 14.92 15.32 15.84 14.85 

6

      

15.03 14.96 16.88 14.35 15.28 15.34 15.66 15.4 14.52 

7

       

16.28 16.09 16.28 14.22 13.45 15.58 16.05 14.19 

8

        

15.75 12.86 14.46 14.85 14.53 15.93 16.09 

9

         

13.69 14.76 15.91 16.68 14.98 16.28 

10

          

15.11 15.08 14.16 16.19 16.41 

11

           

13.98 14.37 14.55 15.31 

12

            

15.97 16.31 14.70 

13

             

14.97 16.20 

14

              

16.05 
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Appendix 9.5 Mean fresh biomass yield of 105 full-sib crosses of 15 European winter B. rapa over environments   

2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1

 
3.96 3.69 3.59 4.29 3.4 4.04 3.59 3.56 3.86 3.81 4.12 3.99 3.77 3.8 

2

  
3.97 3.89 3.61 4.05 3.87 3.94 3.34 3.66 3.96 3.55 3.61 3.83 3.82 

3

   

3.26 3.70 3.58 3.79 3.65 3.79 3.48 3.53 3.84 3.85 3.43 3.55 

4

    

3.63 3.44 3.46 3.73 3.59 3.94 3.26 3.54 3.76 3.71 3.63 

5

     

3.82 3.64 3.97 3.69 3.93 3.87 3.85 4.2 3.69 3.87 

6

      

3.56 3.58 3.7 3.79 3.65 3.91 3.99 3.93 3.92 

7

       

3.91 3.57 3.86 3.64 3.81 3.83 3.71 3.99 

8

        

4.11 3.91 4.19 3.61 3.69 4.26 3.87 

9

         

3.51 3.67 3.68 3.82 3.28 3.58 

10

          

3.79 3.84 4.01 3.7 3.6 

11

           

3.75 3.92 3.93 3.89 

12

            

3.74 3.46 3.52 

13

             

3.77 3.69 

14

              

3.69 
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Appendix 9.6 Mean dry biomass yield of 105 full-sib crosses of 15 European winter B. rapa across environments   

2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1

 
514.42 484.86 489.68 549.18 481.76 589.14 470.16 442.66 536.68 571.66 641.68 620.91 583.17 563.86 

2

  
620.61 618.76 523.47 551.84 560.09 561.48 463.57 519.2 570.17 521.32 536.59 538.62 572.69 

3

   
513.09 572.27 493.2 553.71 567.16 547.46 523.15 556.62 587.39 635.68 496.83 596.43 

4

    

573.14 471.59 503.45 588.01 563.44 613.37 511.9 578.28 523.26 573.43 576.99 

5

     

576.38 560.63 498.55 577.8 583.9 585.59 567.7 633.87 570.2 570.13 

6

      

558.39 526.92 666.35 544.9 549.02 604.13 593.43 612.16 564.66 

7

       

623.2 571.11 614.05 516.75 512.9 599.62 603.21 571.08 

8

        

657.93 499.32 634.87 579.83 531.95 615.54 601.35 

9

         

499.26 538.02 603.14 665.31 495.04 572.28 

10

          

577.52 573.68 562.83 532.41 578.37 

11

           

518.32 560.26 551.86 580.99 

12

            

601.42 521.11 526.84 

13

             

567.39 624.52 

14

              

592.78 
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Appendix 9.7 Estimates of specific combining ability effects for day to flowering among 105 full-sib crosses in winter B. rapa over environments   

2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1

 
0.32 -1.43 -0.07 -0.07 1.48 -1.05 0.83 -1.35 0.19 -0.26 0.87 1.06 0.07 -0.58 

2

  
-0.65 0.06 0.22 -0.28 0.36 -0.82 0.25 1.02 0.13 -0.77 0.54 0.34 -0.73 

3

   

1.29 0.03 -0.11 -0.30 0.42 -0.25 -0.05 0.92 0.34 -1.11 0.87 0.01 

4

    

-1.32 0.81 -0.58 0.03 0.38 0.66 -0.39 -0.31 0.63 -0.87 -0.32 

5

     

-0.10 1.72 -0.69 0.23 0.73 -0.37 0.08 -0.06 0.14 -0.55 

6

      

0.45 0.19 -0.13 -0.85 -0.48 0.04 0.19 -1.63 0.41 

7

       

-0.25 -0.83 -0.62 0.46 0.19 1.08 -1.00 0.37 

8

        

0.43 0.06 0.02 0.22 -0.23 -0.76 0.55 

9

         

-1.07 1.13 -0.79 0.24 0.99 0.77 

10

          

0.06 0.4 -1.27 0.26 0.48 

11

           

0.32 -0.68 0.11 -0.97 

12

            

-1.93 1.63 -0.30 

13

             

0.26 1.28 

14

              

-0.41 
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Appendix 9.8 Estimates of specific combining ability effects for dry matter content among 105 full-sib crosses in winter B. rapa across 
environments    

2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1

 
0.47 -1.27 -1 -1.1 0.04 0.04 -1.07 0.43 -0.02 0.36 0.57 1.35 0.75 0.46 

2

  
0.44 0.94 -0.14 -0.79 0.57 -0.11 -1.18 0.34 0.4 0.16 -0.2 -0.86 -0.06 

3

   

0.37 0.44 -1.16 -0.25 0.84 -0.96 -0.02 0.62 -0.16 0.61 -0.62 1.12 

4

    

0.63 -1.04 -0.98 0.58 0.12 -0.09 0.68 0.76 -1.32 0.33 0.03 

5

     

0.41 0.51 -0.71 -0.05 -0.03 0.39 -0.11 0.06 0.36 -0.66 

6

      

0.09 0.25 1.65 -0.24 0.66 0.43 0.53 0.05 -0.87 

7

       

1.29 0.59 1.42 -0.67 -1.73 0.17 0.42 -1.46 

8

        

0.48 -1.78 -0.2 -0.1 -0.65 0.53 0.66 

9

         

-1.47 -0.42 0.44 0.98 -0.94 0.33 

10

          

0.56 0.24 -0.90 0.90 1.10 

11

           

-0.88 -0.71 -0.76 -0.03 

12

            

0.59 0.71 -0.92 

13

             

-0.85 0.34 

14

              

-0.03 
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Appendix 9.9 Estimates of specific combining ability effects for fresh biomass yield among 105 full-sib crosses in winter B. rapa over environments    

2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1

 
0.09 -0.02 -0.07 0.37 -0.41 0.21 -0.35 -0.14 0.01 -0.04 0.32 0.06 -0.03 -0.02 

2

  
0.29 0.26 -0.28 0.27 0.06 0.04 -0.32 -0.16 0.14 -0.22 -0.28 0.06 0.04 

3

   
-0.22 -0.04 -0.05 0.14 -0.11 0.28 -0.19 -0.14 0.22 0.11 -0.18 -0.08 

4

    

-0.06 -0.13 -0.14 0.02 0.13 0.33 -0.35 -0.03 0.07 0.15 0.05 

5

     

-0.01 -0.22 0.01 -0.03 0.05 0 0.03 0.25 -0.13 0.04 

6

      

-0.19 -0.27 0.09 0.03 -0.11 0.2 0.16 0.22 0.19 

7

       

0.03 -0.07 0.07 -0.15 0.08 -0.04 -0.03 0.23 

8

        

0.37 0.02 0.31 -0.23 -0.28 0.43 0.01 

9

         

-0.14 0.02 0.08 0.09 -0.32 -0.04 

10

          

-0.02 0.09 0.13 -0.05 -0.17 

11

           

0 0.04 0.18 0.12 

12

            

-0.09 -0.24 -0.20 

13

             

-0.06 -0.16 

14

              

-0.02 
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Appendix 9.10 Estimates of specific combining ability effects for dry biomass yield among 105 full-sib crosses in winter B. rapa over environments    

2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1

 
-8.11 -51.59 -34.81 5.89 -50.14 46.27 -74.17 -94.52 7.55 37.54 98.78 53.45 46.73 9.02 

2

  
82.04 84.04 -30.05 9.71 6.99 6.92 -83.84 -20.16 25.82 -31.81 -41.1 -8.05 7.62 

3

   
-27.45 12.93 -54.75 -5.21 6.78 -5.77 -22.02 6.46 28.44 52.16 -55.66 25.53 

4

    

17.65 -72.51 -51.62 31.49 14.06 72.05 -34.41 23.18 -56.4 24.79 9.95 

5

     

13.48 -13.24 -76.78 9.62 23.78 20.47 -6.2 35.41 2.76 -15.71 

6

      

-4.09 -37.01 109.56 -3.83 -4.7 41.62 6.35 56.11 -9.79 

7

       

48.3 3.36 54.35 -47.95 -60.58 1.57 36.19 -14.34 

8

        

88.71 -61.84 68.72 4.9 -67.55 47.07 14.47 

9

         

-54.76 -20.99 35.35 72.96 -66.29 -7.45 

10

          

26.57 13.94 -21.46 -20.86 6.69 

11

           

-46.41 -29.03 -6.4 4.32 

12

            

3.35 -45.94 -58.61 

13

             

-24.22 14.51 

14

              

13.79 
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Appendix 9.11 Mid parent heterosis for fresh biomass yield among 105 full-sib crosses of 15 European winter B. rapa across environments  

2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1

 
4.54 -8.47 -2.39 13.28 -10.03 1.74 -8.18 -4.69 5.18 12.06 17.83 16.03 -4.34 3.52 

2

  
16.33 16.96 10.78 10.54 12.02 6.77 -5.03 -1.31 4.77 2.29 -2.10 4.04 11.49 

3

   
-8.01 6.54 2.86 2.45 -4.39 4.68 10.68 6.80 18.88 25.07 12.40 9.20 

4

    

2.03 -4.47 -14.36 2.94 3.87 22.57 -5.49 8.67 9.86 -12.45 10.45 

5

     

8.94 5.16 9.84 15.35 26.71 14.24 12.72 24.85 6.80 14.92 

6

      

0.39 -0.77 6.55 8.01 12.36 25.09 19.91 13.35 17.20 

7

       

2.67 -5.45 7.27 10.08 2.37 7.32 4.35 9.24 

8

        

16.68 4.53 15.57 22.07 2.11 18.12 9.10 

9

         

1.75 1.96 8.04 19.18 -5.27 2.62 

10

          

21.49 18.63 21.55 0.23 7.19 

11

           

13.22 16.50 13.90 14.15 

12

            

25.66 -1.72 9.09 

13

             

16.96 22.08 

14

              

7.95 

     



Chapter 9                                                                                                                    Appendices 

 

107

 
Appendix 9.12 Mid parent heterosis for dry biomass yield among 105 full-sib crosses of 15 European winter B. rapa across environments  

2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1

 
-7.48 -15.36 -7.60 -0.53 2.82 12.60 -20.72 -32.06 -3.03 21.18 40.57 15.80 11.06 -3.50 

2

  
12.46 14.66 1.36 -6.42 7.99 -1.21 -29.18 -14.55 7.16 -2.80 -18.11 -10.01 -1.23 

3

   
-13.35 10.29 -9.30 -1.67 -1.66 -7.88 0.38 3.39 9.01 19.07 -10.07 12.56 

4

    

12.22 -18.27 -20.12 5.84 -2.57 19.36 -1.10 13.38 -18.42 -5.88 3.07 

5

     

29.65 22.57 -12.74 12.20 29.60 29.74 17.25 24.62 8.40 6.91 

6

      

13.28 -1.84 46.85 8.93 26.35 46.99 11.20 22.54 7.24 

7

       

8.44 -0.21 26.52 9.59 -3.07 11.39 20.02 -1.89 

8

        

18.90 -15.30 20.29 27.16 -11.05 7.02 5.89 

9

         

-14.09 -7.02 9.27 23.81 -15.43 -0.75 

10

          

29.76 16.58 -5.58 -15.14 10.93 

11

           

0.55 4.13 3.08 11.31 

12

            

21.19 -10.01 -4.73 

13

             

-2.99 12.70 

14

              

-1.87 
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