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1 Introduction

Gaussian random fields are the basis for modeling spatial data in meteorology, geology and
many other fields. Owing to the central limit theorem, they are well-suited for statements
on everyday phenomena such as the average amount of rainfall in a certain area. In contrast,
this framework can not be employed to derive sensible results linked to rare events, as for
instance the total amount of precipitation in the drainage basin of a river during extreme
rainfall. Extreme value theory has been developed to tackle this problem. The role of
Gaussian fields for averages is taken over by max-stable processes as appropriate models for
extreme spatial observations.
The aim of this thesis is to explore and develop further a remarkable max-stable process

introduced by Brown & Resnick (1977), and, ultimately, to provide a better understanding
of its probabilistic properties. In the rapid-growing field of research of spatial extreme value
theory, the Brown-Resnick process and its generalizations in Kabluchko et al. (2009) are
believed to take an outstanding role in modeling extreme events of natural phenomena such
as large floods, heat waves or windstorms.

1.1 Extreme value theory
A classical challenge in probability theory is to analyze the asymptotic behavior of sums∑n
i=1Xi, as n → ∞, where (Xi)i∈N are independent copies of the random variable X. In

this direction, the central limit theorem and its various generalizations give deep insight into
theoretical properties of limit distributions and domains of attraction, and they provide the
foundation for statistical inference.

The key goal of extreme value theory is to investigate maxima instead of sums, that is to
consider the weak convergence of the distributions of

c−1
n

(
max
i=1,...,n

Xi − dn
)
, (1.1)

as n→∞, for sequences cn > 0, dn ∈ R. In fact, Fisher & Tippett (1928) and Gnedenko
(1943) showed that the only possible, non-degenerate limits of (1.1) (up to linear transforma-
tions) are given by the generalized extreme value (GEV) distribution (cf. Embrechts et al.,
1997, Def. 3.4.1)

Fξ(x) =

exp
{
−(1 + ξx)−1/ξ

}
, ξ 6= 0

exp {− exp(−x)} , ξ = 0
, where 1 + ξx > 0. (1.2)

The cases ξ < 0, ξ = 0 and ξ > 0 correspond to the Weibull, the Gumbel and the Fréchet
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2 1 Introduction

distribution, respectively. If (1.1) converges to Fξ for some ξ ∈ R, X is said to be in the
max-domain of attraction of Fξ, and Fξ is termed an extreme value distribution. The slightly
more general notion of a max-stable distribution, which includes degenerate random variables,
is used exchangeably in the sequel (Resnick, 2008).

In the last decades, univariate extreme value theory has been extended to the multivariate
setting in order to allow for modeling dependencies between extreme values at different
locations. Similarly to the univariate case, a d-variate random vector is called max-stable if it
is the weak limit of (1.1) for suitable sequences cn, dn ∈ Rd, cn > 0, and Rd-valued random
vectors Xi, i ∈ N. Here, maxima as well as algebraic operations are always understood
componentwise. Clearly, a d-variate max-stable distribution has GEV margins. Multivariate
extreme value theory typically focuses on modeling the extremal dependence structure and
thus, without loss of generality, throughout this thesis, almost all results are stated for
Gumbel margins only (cf. Resnick, 2008, Prop. 5.10). The reader is referred to de Haan &
Ferreira (2006), Embrechts et al. (1997) and Resnick (2008) for details on univariate and
multivariate extreme value theory.
More recently, this approach has been generalized to max-stable processes, where all

finite-dimensional distributions are in the class of multivariate extreme value distributions.
An early example of such a process has already figured in Brown & Resnick (1977) who
analyzed pointwise maxima of a sequence (Wi)i∈N of independent standard Brownian motions
{W (t) : t ∈ R} on the real line. More precisely, they introduced the stochastic process

Ψ(t) = max
i∈N

[Xi +Wi(t)− |t|/2] , t ∈ R, (1.3)

where
∑
i∈N δXi is an independent Poisson point process (PPP) on the real axis with intensity

e−xdx, x ∈ R, which is called the Gumbel point process in the sequel. For details on PPPs
see Daley & Vere-Jones (2003). Besides its max-stability, an astonishing fact regarding
the Brown-Resnick process Ψ is that it turns out to be stationary, even though the drifted
Brownian motions Wi(t) − |t|/2 tend to −∞ for all i ∈ N, almost surely. For t ≥ 0, this
can be seen by perceiving the Brownian motion as a homogeneous Markov process and
noting that the σ-finite measure with density e−xdx is invariant (Brown, 1970). As it is
less intuitive why “mirroring” the Brownian motion is the correct choice for the negative
real axis, considering Lévy processes with suitable drifts instead of W (t)− |t|/2 in (1.3) can
provide more insight (cf. Chapter 4). See Bertoin (1996) and Sato (1999) for an introduction
to Lévy processes.
In fact, these “Lévy-Brown-Resnick” processes have already been defined and analyzed

in Stoev (2008) on the positive real axis. It was shown therein that the corresponding
max-stable process is stationary and mixing. Further, the question was raised whether
these processes admit a mixed moving maxima (MMM) representation, which refers to the
following construction principle for max-stable processes (cf. Smith (1990); Stoev (2008)):
For a measurable stochastic process {F (t) : t ∈ Rd} suppose that E

∫
Rd exp(F (t))dt = 1 and

let
∑
i∈N δ(Si,Vi) be a PPP on Rd × R with intensity ds e−vdv. Then, the process

ζ(t) = max
i∈N

[Vi + Fi(t− Si)] , t ∈ Rd, (1.4)
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is called a MMM process, where Fi, i ∈ N, are independent copies of the spectral function F .
Besides the theoretical insight, the knowledge of such a representation also facilitates the
simulation of ζ, which generally is a challenging problem for max-stable processes (Dombry
et al., 2012; Oesting et al., 2012; Wang & Stoev, 2011). For general Lévy processes such a
representation was still unknown, whereas in the special case (1.3) of a Brownian motion (and
also for other Gaussian processes) Kabluchko et al. (2009) proved the existence. Surprisingly,
even in this case, the distribution of the shape function F has never been computed.

1.2 Stochastic modeling and extreme value statistics
For extreme value statistics, it is crucial to have appropriate random field models on Rd that
take into account the dependencies between different locations in space. Even though there
is profound literature on theoretical properties of max-stable random fields (de Haan, 1984;
de Haan & Pickands, 1986; Giné et al., 1990; Kabluchko, 2009b; Kabluchko & Schlather,
2010; Stoev, 2008; Stoev & Taqqu, 2005; Wang & Stoev, 2010), concrete examples which are
both flexible and statistically tractable are scarce. An important construction principle in
this direction are the MMM processes in (1.4). For instance, using a deterministic parabola
for F yields the well-known Smith process (Smith (1990), see also de Haan & Pereira (2006)
for other choices for F ). The widely-used approach in Schlather (2002) uses stationary
Gaussian random fields to obtain max-stable processes parameterized by positive definite
functions. This class is both flexible and easily applicable to spatial data sets, but it has
the limitation of always being non-ergodic (for recent applications see Blanchet & Davison
(2011); Huser & Davison (2012)).

For practical applications, the original Brown-Resnick process Ψ is unfeasible as it is only
defined on the real line and it has a fixed dependence structure. It attracted new attention
from both probabilists (Das & Hashorva, 2012; Kabluchko, 2011a; Stoev, 2008) and extreme
value statisticians (Bacro & Gaetan, 2012; Davison et al., 2012; Turkman et al., 2010) when
Kabluchko et al. (2009) replaced the Brownian motion W in (1.3) by a general centered
Gaussian random field {Y (t) : t ∈ Rd} on Rd with stationary increments and variance
σ2(t) = E[Y (t)]2, giving rise to the process

ξ(t) = max
i∈N

[
Xi + Yi(t)− σ2(t)/2

]
, t ∈ Rd, (1.5)

where (Yi)i∈N are independent copies of Y and
∑
i∈N δXi is a Gumbel point process. Even

in this general setting, the resulting max-stable process ξ keeps the stationarity property
and its finite dimensional distributions follow the Hüsler-Reiss distribution (Hüsler & Reiss,
1989). Apart from that, the only possible limits of maxima of suitably normalized and
rescaled Gaussian random fields lie in this extended class of Brown-Resnick processes (cf.
Kabluchko et al. (2009, Thm. 20), Kabluchko (2011a)). Thus, since Gaussianity is the
common assumption for frequent observations, the processes in (1.5) constitute promising
and natural models for spatial extremes.

Statistical inference for max-stable processes from observations in its MDA is currently an
active field of research (cf. Davison & Gholamrezaee (2012); de Haan & Pereira (2006); Padoan
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et al. (2010), for instance). Estimation methods typically use aggregated data obtained as
the block maximum over many observations. These methods discard all data below the
maximum, although additional information might be contained in the non-aggregated, single
“large” observations. For this reason, inference is still particularly problematic for small
amounts of data, since in that case only very few extreme events can be extracted (see
Chapter 3 for details).

For most max-stable processes a closed form of the multivariate likelihoods is unavailable
and thus, estimation methods often rely on summary statistics. For instance, a widely used
measure of dependence for extreme value distributions is the extremal correlation ρ. For a
bivariate max-stable random vector (X1, X2) with Gumbel margins, ρ ∈ [0,1] is determined
by

P(X1 ≤ u,X2 ≤ u) = P(X1 ≤ u)2−ρ,

for some (and hence all) u ∈ R. The quantity ρ measures the degree of tail dependence with
limit cases ρ = 0 and ρ = 1 corresponding to complete independence and complete dependence,
respectively. For a stationary, max-stable process ξ on Rd, the extremal correlation function
ρ(h) is defined as the extremal correlation of (ξ(0), ξ(h)), for h ∈ Rd (Schlather & Tawn
(2003)). For instance, for the Brown-Resnick process in (1.5), this function is given by

ρ(h) = 2
[
1− Φ

(√
γ(h)/2

)]
, h ∈ Rd, (1.6)

where γ is the variogram of Y and Φ denotes the standard normal distribution function.
Since there are model-independent estimators for extremal correlation functions, e.g., the
madogram in Cooley et al. (2006), it is a useful tool for model checking.

1.3 Overview
The first part of this thesis contributes to the understanding and applicability of the Brown-
Resnick process in (1.3) and its generalizations (1.5). In the second part, the underlying
construction principle is extended in two different directions to more general frameworks.

1.3.1 Analysis and Inference
In Chapter 2 we explicitly compute the distribution of the shape functions F in the MMM
representation of the original Brown-Resnick process Ψ . It equals a well-known diffusion,
namely a standard Brownian motion with drift conditional on taking negative values only.
As an application, an efficient simulation method for Ψ is presented together with error
bounds that specify the rate of convergence of this algorithm.
Following the idea of using not only the aggregated data, Chapter 3 introduces a new

approach of inference based on a multivariate peaks-over-threshold method. It is shown
that, for any process in the MDA of the extended Brown-Resnick process in (1.5), suitably
defined conditional increments asymptotically follow a multivariate Gaussian distribution.
This leads to computationally efficient estimates of Hüsler-Reiss distributions which enable
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parametric inference for Brown-Resnick processes, even if only a small data set is available.
As an application, a non-isotropic Brown-Resnick process is fitted to the extremes of 12-year
data of daily wind speed measurements.

1.3.2 Generalizations
Based on the results in Stoev (2008), Chapter 4 is concerned with a more complete definition
of Brown-Resnick processes based on Lévy processes, particularly the non-trivial extension to
the whole real line. Amongst others, it is shown that these “Lévy-Brown-Resnick” processes
naturally arise as limits of maxima of stationary α-stable Ornstein-Uhlenbeck processes.
In particular, this extends the Gaussian (α = 2) result in Brown & Resnick (1977) to the
α-stable case with α ∈ (1,2). Furthermore, the question in Stoev (2008) on the existence of
a MMM representation is answered. Using the generalization of Lévy processes to random
fields introduced in Mori (1992), also a spatial version of the “Lévy-Brown-Resnick” process
is constructed.
Chapter 5 is devoted to the study of a triangular array Xi,n, n ∈ N, 1 ≤ i ≤ n, of in-

dependent Rd-valued Gaussian random vectors with covariance matrices Σi,n. Necessary
conditions are given under which the row-wise maxima converge to some max-stable distri-
bution which generalizes the class of Hüsler-Reiss distributions. In the bivariate case, the
conditions will also be sufficient. Using these results, new models for bivariate extremes are
derived explicitly. Moreover, a new class of stationary, max-stable processes is introduced,
which can be seen as max-mixtures of the processes in (1.5), and whose finite dimensional
margins coincide with the above limit distributions. As an application, it is shown that
these processes realize a large set of extremal correlation functions (1.6). This set includes
all functions ψ(

√
γ(h)), h ∈ Rd, where ψ is a completely monotone function and γ is an

arbitrary variogram.

1.3.3 Submissions and Publications
The main theorem of Chapter 2 has been published in Engelke et al. (2011).

The results of Chapter 3 have been submitted to the Journal of the Royal Statistical
Society: Series B (Engelke et al., 2012c). This is joint work with Alexander Malinowski, a
fellow PhD student, in which I have made the major contribution. Another outcome of this
collaboration with reversed roles is the paper Engelke et al. (2012d), which is not part of
this thesis. It studies statistical inference for max-stable processes that admit a MMM or a
certain incremental representation and has been submitted to the Applied Probability Trust.
Parts of Chapter 4 on “Lévy-Brown-Resnick” have already been presented on the 7th

Conference on Extreme Value Analysis in Lyon in 2011 and are based on the manuscript
Engelke et al. (2012a). Section 4.4 is joint work with Prof. Anthony Davison from École
Polytechnique Fédérale de Lausanne.
Chapter 5 is based on the paper Engelke et al. (2012b) which has been submitted to

Bernoulli and is now being revised.
There are two further publications which were prepared during the time as PhD student.

Engelke & Woerner (2013) analyzes fractional Lévy processes and is published in Stochastics
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and Dynamics. Engelke & Schlather (2011) reviews the book Qian (2010) and has been
published in the Biometrical Journal.



2 An equivalent representation of the Brown-Resnick
process

The original construction of the Brown-Resnick process Ψ in (1.3) turns out to be impractical
for applications such as simulation methods. When sampling the Gumbel point process on the
real axis top down and attaching a drifted Brownian motion to each point, the convergence
to a stationary process is extremely slow. The reason for this is that the Brownian motions
converge rapidly to −∞ and only because the Poisson points become very dense at −∞, there
are eventually processes that contribute to the maximum far away from the origin. It is thus
crucial to obtain exact and efficient simulation methods. Alternative techniques have already
been considered in Oesting et al. (2012) which are also applicable to the generalization of Ψ
in (1.5). See also Dombry et al. (2012) for conditional simulation of Brown-Resnick processes.
In the situation of the process in (1.3) the Markovian structure of Brownian motion can

beneficially be used to establish a MMM representation (1.4) of Ψ . In this chapter we show
that the distribution of the corresponding shape function F equals a well known diffusion
process. Namely, it is a standard Brownian motion with drift −|t|/2 conditioned on not
taking positive values.
This chapter is organized as follows. First, we state and proof the main theorem on the

MMM representation of Ψ in Section 2.1. In Section 2.2 we then discuss how this result can
be used for efficient simulation methods. Finally, in Section 2.3 we provide error bounds on
the accuracy of this algorithm.

2.1 Theorem and proof
Theorem 1. Let B be a Brownian motion on the real line with drift −|t|/2 and B(0) = 0.
Then the following two processes have the same distribution:

1.

Ψ1(t) = max
i∈N

[Xi +Bi(t)] , t ∈ R, (2.1)

where Bi, i ∈ N, are independent copies of B and
∑
i∈N δXi is a Gumbel point process

independent of the Bi, i ∈ N.

2.

Ψ2(t) = max
i∈N

[Vi +Ri(t− Si)] , t ∈ R, (2.2)

7



8 2 An equivalent representation of the Brown-Resnick process

where
∑
i∈N δ(Si,Vi) is a Poisson point process on R × R with intensity 1

2dt e
−xdx,

t,x ∈ R, independent of the Ri, i ∈ N. The Ri’s are independent copies of the process

R(t) = 1t≤0R−(−t) + 1t≥0R+(t),

where R− and R+ are independent processes which follow for t ≥ 0 the law of the
non-positive diffusion determined by the stochastic differential equation

dR̃(t) = dW (t) + 1
2 coth(R̃(t)/2) dt, (2.3)

starting at R+(0) = R−(0) = 0, where W is a standard Brownian motion.

Remark 1. For y ≤ 0, the diffusion defined by (2.3) and started at R̃(0) = y has the same
distribution as a Brownian motion {B(t)}t≥0 with drift −t/2 and B(0) = y conditioned on
not taking positive values for all t ≥ 0. For details see Lemma 55.1 in Rogers & Williams
(2000).
In fact, for y = 0, it follows from Theorem 3 in Rogers & Pitman (1981) that the opposite of
the diffusion, namely −R̃, has the same distribution as a three dimensional Bessel process of
drifting Brownian motion. More precisely, it can be obtained by taking the radial part of a
Brownian motion in R3 with drift 1/2 in the direction of the first coordinate axis. This is
particularly important with regard to efficient simulation methods.

Remark 2. In fact, we will prove more than the equality in law of Ψ1 and Ψ2. We will show
that the random families of functions {Xi +Bi(·)}i∈N and {Vi +Ri(· − Si)}i∈N considered as
point processes on C(R), the space of continuous functions on R, have the same law.

Proof of Theorem 1. Let us first set up some notation. For the Brownian motion B with
drift −|t|/2 and B(0) = 0 let Y = sups∈RB(s) and T = arg sups∈RB(s). Moreover, denote
by Z(t) = B(t+ T )− Y the process B whose supremum is shifted into the origin.
Consider the Poisson point process

∑
i∈N δ(Xi,Bi) on R× C(R) with intensity e−xdxPB(df),

where C(R) denotes the space of continuous functions on R and PB is the law of B. The
mapping

η : R× C(R)→ C(R)× R× R, (u,f) 7→ (f ((·) + arg sup f)− sup f, arg sup f, sup f + u)

is measurable (see proof of Lemma 2.13 in Oesting et al. (2012) for details), where the arg sup
is the infimum of all points where the supremum is attained. The key idea of the proof is to
compute the intensity measure Φ of the Poisson point process on C(R)× R× R induced by
η, namely ∑

i∈N
δ(Bi((·)+arg supBi)−supBi,arg supBi, supBi+Xi). (2.4)

The main difficulty here is to find the distribution of the random element (Z,T,Y ) which
is essential in the later calculations. More precisely, for t1 ≤ . . . ≤ tn ∈ R, y1, . . . ,yn < 0,
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n ∈ N, t ∈ R and y ∈ R+ we will later establish the equation

dP (Z(t1) = y1, . . . ,Z(tn) = yn, T = t,Y = y)

= dP (R(t1) = y1, . . . ,R(tn) = yn,R(−t) = −y) e
−y

2 , (2.5)

where R is the two-sided diffusion process which satisfies (2.3) and starts in 0. Thus, the
distribution of the shifted Brownian motion Z essentially equals the one of the re-weighted
diffusion R. In order to compute the measure Φ let M × I ×D ∈ B(C(R))⊗ B(R)⊗ B(R)
be a measurable set with M = Ct1,...,tn(E) = {g ∈ C(R) : (g(t1), . . . ,g(tn)) ∈ E}, where
E ∈ B(Rn). Furthermore, denote by (Ω,A,P) the underlying probability space.

Φ(M×I ×D)

=
∫
R
e−xP

(
(Z, arg supB, supB) ∈M × I ×D − (0,0,x)

)
dx

=
∫
R
e−xP ((Z(t1), . . . ,Z(tn)) ∈ E, arg supB ∈ I, supB ∈ D − x) dx

=
∫
R
e−x

∫
I

∫
D

∫
E
P (Z(t1) = y1, . . . ,Z(tn) = yn, arg supB = t, supB = y − x)

d(y1, . . . ,yn) dy dt dx

=
∫
R
e−x

∫
I

∫
D

∫
E
P (R(t1) = y1, . . . ,R(tn) = yn,R(−t) = −(y − x)) 1

2e
−(y−x)

d(y1, . . . ,yn) dy dt dx

=
∫
D

1
2 e
−y
∫
I

∫
E

∫
R
P (R(t1) = y1, . . . ,R(tn) = yn,R(−t) = −(y − x))

dx d(y1, . . . ,yn) dt dy

=
∫
D

1
2 e
−y
∫
I

∫
E
P (R(t1) = y1, . . . ,R(tn) = yn) d(y1, . . . ,yn) dt dy

= PR (Ct1,...,tn(E))
∫
I

1
2 dt

∫
D
e−y dy,

where the fourth equality follows from (2.5) and PR is the law of R on C(R).
Therefore, the intensity Φ of the Poisson point process (2.4) is given by PR(df) 1

2 dt e
−x dx. On

the other hand, if we consider a Poisson point process
∑
i∈N δ(Si,Vi) with intensity 1

2 dt e
−x dx

and independent marks Ri ∼ PR, i ∈ N, then we also obtain a Poisson point process∑
i∈N δ(Ri,Si,Vi) with intensity PR(df) 1

2 dt e
−x dx. This implies the equality in distribution of

(2.1) and (2.2).
Let us now proceed with the proof of equation (2.5). To this end, we will first relate the

distribution of (T,Y ) to the one-dimensional distributions of the diffusion R. In a second
step, we compute the distribution of the shifted Brownian motion Z conditional on (T,Y ).
By formulae 2.1.1.4 and 2.1.13.4 in Borodin & Salminen (1996) it follows that the bivariate
random variable (T,Y ) has the density

dP(T = t, Y = y) = f(|t|,y)(1− e−y) dt dy, t ∈ R,y ∈ R+, (2.6)
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where f is given by

f(t, y) = y√
2πt3/2 exp

(
−(y + t/2)2

2t

)
= −e−yf(t,−y).

Note that (1− e−y) is the probability that {B(s) : s ≥ 0} never hits y ∈ R+. On the other
hand, we can explicitly compute the entrance law and the transition densities of the diffusion
{R(t)}t≥0 satisfying (2.3) and started at R(0) = 0. For x,y < 0 let

pt(x, y) dy = dP( sup
0≤s≤t

B(s) ≤ 0, B(t) = y|B(0) = x), t > 0.

By Lemma 55.1 in Rogers & Williams (2000) we conclude that

pt(x,y) = (2πt)−1/2e−(y−x)/2−t/8
[
e−(y−x)2/(2t) − e−(y+x)2/(2t)

]
and

pt(x,y) = e−(y−x)pt(y,x). (2.7)

Thus, formula 2.1.1.4(1) in Borodin & Salminen (1996) shows that the transition density of
R has the form

qt(x, y) dy = dP(B(t) = y|B(0) = x, sup
0≤s≤∞

B(s) ≤ 0) = (1− ex)−1pt(x, y)(1− ey) dy,

for t > 0, x,y < 0. Consequently, the entrance law qt(0,·) of R, i.e., qt(0,y) dy = dP(R(t) = y)
for t > 0 and y < 0 is given by

qt(0,y) = lim
x→0

qt(x,y) = 1√
2πt

e−y/2−t/8(1− ey) lim
x→0

e−(y−x)2/(2t) − e−(y+x)2/(2t)

1− ex

= −2y√
2πt3/2 e

−(y+t/2)2/(2t)(1− ey)

= −2f(t, y)(1− ey). (2.8)

Note that this together with (2.6) implies for t ∈ R and y ∈ R+

dP(T = t,Y = y) = f(|t|,y)(1− e−y) dt dy

= −f(|t|,−y)(1− e−y)e−y dt dy = dP(R(−t) = −y)e
−y

2 , (2.9)

We now look more closely at the distribution of Z conditional on the maximum (T,Y ).
To this end, without loss of generality, let Dt,y = {T = t,Y = y} with t,y ≥ 0. By Williams’
path decomposition of Brownian motion (Theorem 55.9 in Rogers & Williams (2000)),
{Z(s) : −t ≤ s ≤ 0|Dt,y} is independent of {Z(s) : s > 0|Dt,y} and the latter has the
same distribution as {R(s) : s > 0|R(0) = 0}, where R satisfies (2.3). Furthermore, by
the construction of Z we have that the process {Z(s) : s ≤ −t|Dt,y} is independent of
{Z(s) : s > −t|Dt,y}.
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For p,l,m ∈ N and r1 ≤ . . . ≤ rp ≤ −t ≤ s1 ≤ . . . ≤ sl ≤ 0 ≤ u1 ≤ . . . ≤ um define random
events

A1 = {Z(r1) = w1, . . . ,Z(rp) = wp},
A2 = {Z(s1) = x1, . . . , Z(sl) = xl},
A3 = {Z(u1) = z1, . . . ,Z(um) = zm},

where w1, . . . ,wp,x1, . . . ,xl, z1, . . . ,zm ≤ 0. The above considerations yield

dP
(
A1 ∩A2 ∩A3|Dt,y

)
= dP

(
A1|Dt,y

)
dP
(
A2|Dt,y

)
dP
(
A3|Dt,y

)
. (2.10)

As already mentioned above, we have

dP
(
A3|Dt,y

)
= dP (R(u1) = z1, . . . ,R(um) = zm|R(0) = 0).

Moreover,

dP
(
A1|Dt,y

)
= dP (B(r1 + t) = w1 + y, . . . ,B(rp + t) = wp + y|B(0) = 0,B(s) ≤ y ∀s ≤ 0)
= dP (B(r1 + t) = w1, . . . ,B(rp + t) = wp|B(0) = −y,B(s) ≤ 0∀s ≤ 0)
= dP (R(r1 + t) = w1, . . . ,R(rp + t) = wp|R(0) = −y)
= dP (R(r1) = w1, . . . ,R(rp) = wp|R(−t) = −y) ,

where we used Remark 1 and the fact that R is Markov.
For the second factor in (2.10) we first compute explicitly dP

(
A2 ∩Dt,y

)
. To this end, put

s0 = −t, x0 = −y, ∆si = si − si−1 and ξ = (x1, . . . ,xl,t,y).

dP
(
A2 ∩Dt,y

)
= dP(Z(s1) = x1, . . . ,Z(sl) = xl, T = t,Y = y)

= f(|sl|,− xl)(1− ex0)
l∏

i=1
p∆si(xi−1,xi) dξ

= f(|sl|,− xl)(1− ex0)e−(xl−x0)
l∏

i=1
p∆si(xi,xi−1) dξ

= −f(|sl|,xl)(1− ex0)ex0
l∏

i=1
p∆si(xi,xi−1) dξ

= −f(|sl|,xl)(1− exl)ex0
l∏

i=1
q∆si(xi,xi−1) dξ

= e−y

2 q|sl|(0,xl)
l∏

i=1
q∆si(xi,xi−1) dξ

= dP(R(s1) = x1, . . . ,R(sl) = xl, R(−t) = −y)e
−y

2 ,

where we used (2.7) and (2.8). The second equation follows by an elementary computation
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of the transition probabilities for the shifted Brownian motion Z. Starting from the point
(s0,x0) it moves to (sl,xl) and then attains the one-sided maximum at the origin (with
probability f(|sl|,− xl), see (2.6)). At the same time, the process B stays below level y on
the negative half-axis, which has probability (1− ex0). Thus, (2.9) yields

dP
(
A2|Dt,y

)
= dP(R(s1) = x1, . . . ,R(sl) = xl|R(−t) = −y).

Putting the parts together, formula (2.5) follows from (2.9) and (2.10).

2.2 Simulation method
The representation of the Brown-Resnick process in (2.2) turns out to be a promising basis for
simulations. Schlather (2002) gives an algorithm for the simulation of MMM processes where
the spectral functions have finite support. Here, this approach can be adopted, the only
difference being that in our case the spectral function, i.e., the conditional negative Brownian
motion, does not have finite support. Diffusions from anywhere outside the simulation
window can therefore influence the value of the Brown-Resnick process inside the simulation
window. However, since the diffusions quickly tend to negative infinity, the probability of
this event is exponentially decreasing with the size of the interval which is added on both
sides of the simulation window. This error probability can therefore be made arbitrarily
small. In fact, the calculations below show that, independent of the size of the simulation
window, additional intervals of length 45 on both sides ensure that the probability of not
drawing a path from the desired distribution is less than 0.5%. Furthermore, paths starting
in these additional intervals do not need to be simulated on the whole enlarged area since
knowing the diffusion entrance law enables us to directly jump into the simulation window.
Owing to these facts, the algorithm based on the MMM representation is about 60 times
faster than the more general algorithms considered in Oesting et al. (2012).
Another advantage of this simulation method is its flexibility. In particular, the technique is
not restricted to grids but can easily be performed on any set of points. Moreover, also large
simulation windows are feasible since the computational costs increase first quadratically,
then linearly, for increasing simulation intervals.

2.3 Error bounds
We seek to simulate a Brown-Resnick process Ψ according to the above MMM representation
in (2.2). To this end, we fix a,b ∈ R with a < b and n ∈ N. We are interested in the
Brown-Resnick process on the interval [a,b]. Let Θ =

∑
i∈N δ(Si,Vi) be the PPP in the second

part of Theorem 1. We simulate the Poisson points of Θ on a larger interval [a− n,b+ n] in
the first component and give an estimate for the probability that points from R\ [a−n,b+n]
have an impact on the Brown-Resnick process on [a,b].
The process Θ can be split up into two independent Poisson point processes,

∑
i∈N δ(Ti,Yi,R̃i)
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with intensity 1[a−n,b+n](t)1
2 dt e

−x dxPR(df) and
∑
j∈N δ(Uj ,Zj ,Rj) with intensity

Λ(dt× dx× df) = 1R\[a−n,b+n](t)
1
2 dt e

−x dxPR(df).

Let Ψn denote the approximation of Ψ generated only by the former Poisson point process,
i.e.

Ψn(t) = max
i∈N

Yi + R̃i(t− Ti), t ∈ R,

and note that the true Brown-Resnick process generated by both Poisson point processes
equals

Ψ(t) = max
(

max
i∈N

Yi + R̃i(t− Ti),max
j∈N

Zj +Rj(t− Uj)
)
, t ∈ R.

The following theorem gives an error bound for the probability that a point outside the
interval [a− n,b+ n] influences the process Ψ on [a,b].

Theorem 2. For some n0 ∈ N suppose that we have already simulated Ψn0 and put C =
mint∈[a,b] Ψ

n0(t). The probability that the approximation Ψn, n ≥ n0, differs from the max-
stable process Ψ on the interval [a,b] decreases exponentially fast in n, conditionally on C.
More precisely,

lim sup
n→∞

√
2π P (Ψ(t) 6= Ψn(t) for a t ∈ [a,b] | C)

640 · e−Cn−3/2e−n/8 ≤ 1,

as n tends to ∞.

Proof. First, note that by the disintegration theorem (Kallenberg, 2002, Thm. 6.4)

P (Ψ(t) 6= Ψn(t) for a t ∈ [a,b] | C) ≤ P
(
∃j ∈ N with max

s∈[a,b]
Zj +Rj(s− Uj) > C

∣∣∣ C)
= 1− exp (−Λ(An,C)) ,

where

An,C =
{

(t,x,f) ∈ R× R× C(R) : t /∈ [a− n,b+ n], max
s∈[a,b]

x+ f(s− t) > C

}
.

Since for Λ(An,C) close to 0 we have 1− exp (−Λ(An,C)) ≈ Λ(An,C), we need to find an error
bound for Λ(An,C). Clearly, we have

Λ(An,C) = An,C,a ∪A∗n,C,a ∪Bn,C,b ∪B∗n,C,b, (2.11)
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where

An,C,a = {(t,x,f) ∈ R× R× C(R) : t < a− n, x+ f(a− t) > C}

A∗n,C,a =
{

(t,x,f) ∈ R× R× C(R) : t < a− n, x+ f(a− t) ≤ C, max
s∈[a,b]

x+ f(s− t) > C

}
,

and the sets Bn,C,b and B∗n,C,b being defined analogously for diffusions starting from (b+n,∞).
Thus, we evaluate

Λ(An,C,a) =
∫ a−n

−∞

∫ ∞
C

1
2e
−x
∫ 0

C−x
q0,|t−s|(y) dy dx dt

=
∫ a−n

−∞

∫ 0

−∞

−y√
2π|t− s|3/2 exp

(
−(y + |t− s|/2)2

2|t− s|

)
(1− ey)

∫ ∞
C−y

e−x dx dy dt

=
∫ a−n

−∞

∫ 0

−∞
e−C

−y√
2π|t− s|3/2 exp

(
−(y − |t− s|/2)2

2|t− s|

)
(1− ey) dy dt

≤
∫ a−n

−∞

e−C

|t− s|

∫ 0

−∞

−y√
2π|t− s|

exp
(
−(y − |t− s|/2)2

2|t− s|

)
dy dt

=
∫ a−n

−∞

e−C

|t− s|

∫ −|t−s|1/2/2

−∞

−(z|t− s|1/2 + |t− s|/2)√
2π

exp
(
−z

2

2

)
dz dt.

Splitting the expression at the + into two integrals, we obtain for first one

∫
R

1(−∞,a−n)(t)
∫
R

1(−∞,−|t−a|1/2/2)(z)
−z|t− a|1/2e−C√

2π|t− a|
exp

(
−z

2

2

)
dz dt

= e−C√
2π

∫ −n1/2/2

−∞
(−z) exp

(
−z

2

2

)∫ a−n

a−4z2

1
|t− a|1/2 dt dz

= 2e−C√
2π

∫ −n1/2/2

−∞
(2z2 + n1/2z) exp

(
−z

2

2

)
dz

= 2e−C√
2π

(
2
√

2πΦ(−n1/2/2) + n1/2 exp(−n/8)− n1/2 exp(−n/8)
)

= 4e−CΦ(−n1/2/2).

On the other hand, we have:
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∫
R

1(−∞,a−n)(t)
∫
R

1(−∞,−|t−a|1/2/2)(z)
−|t− a|e−C

2
√

2π|t− a|
exp

(
−z

2

2

)
dz dt

= −e
−C

2
√

2π

∫ −n1/2/2

−∞
exp

(
−z

2

2

)∫ a−n

a−4z2
dt dz

= −2e−C√
2π

∫ −n1/2/2

−∞
z2 exp

(
−z

2

2

)
dz + ne−C

2 Φ(−n1/2/2)

=
(
n

2 − 2
)
e−CΦ(−n1/2/2)− n1/2e−C√

2π
exp(−n/8).

Together, this yields

Λ(An,C,a) ≤
e−C√

2π

(
(2 + n

2 )
√

2πΦ(−n1/2/2)− n1/2 exp(−n/8)
)
.

Recall the definition of R via the stochastic differential equation (2.3). By Proposition
2.18 in Karatzas & Shreve (1991) it follows for y < 0 that

P
(
R(u) ≤W (u)− u/2, ∀0 ≤ u <∞

∣∣∣R(0) = W (0) = y
)

= 1,

where W is a standard Brownian motion. Consequently, for any y < x < 0 and s > 0

P
(

max
u∈[0,s]

R(u) > x
∣∣∣R(0) = y

)
≤ P

(
max
u∈[0,∞)

W (u)− u/2 > x
∣∣∣W (0) = y

)
= exp(y − x),

where the last equality follows from formula 2.1.1.4(1) in Borodin & Salminen (1996). Thus,

Λ(A∗n,C,a) =
∫ a−n

−∞

∫ ∞
C

1
2e
−x
∫ C−x

−∞
q0,|t−a|(y)P

(
max

u∈[0,b−a]
R(u) > C − x|R(0) = y

)
dy dx dt

≤
∫ a−n

−∞

∫ ∞
C

1
2e
−x
∫ C−x

−∞
q0,|t−a|(y)ey−C+x dy dx dt

=
∫ a−n

−∞

∫ 0

−∞

−y√
2π|t− a|3/2 exp

(
−(y + |t− a|/2)2

2|t− a|

)
(1− ey)ey−C

∫ C−y

C
dx dy dt

≤
∫ a−n

−∞

e−C

|t− a|

∫ 0

−∞

y2√
2π|t− a|

exp
(
−(y − |t− a|/2)2

2|t− a|

)
dy dt

=
∫ a−n

−∞

e−C

|t− a|

∫ −|t−a|1/2/2

−∞

(z2|t− a|+ z|t− a|3/2 + |t− a|2/4)√
2π

exp
(
−z

2

2

)
dz dt

Hence, we need to compute the three integrals obtained by splitting the sum:
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∫
R

1(−∞,a−n)(t)
∫
R

1(−∞,−|t−a|1/2/2)(z)
z2|t− a|e−C√

2π|t− a|
exp

(
−z

2

2

)
dz dt

= e−C√
2π

∫ −n1/2/2

−∞
z2 exp

(
−z

2

2

)∫ a−n

a−4z2
dt dz

= e−C√
2π

∫ −n1/2/2

−∞

(
4z4 − nz2

)
exp

(
−z

2

2

)
dz

= e−C√
2π

(
(12− n)

√
2πΦ(−n1/2/2) + 6n1/2 exp(−n/8)

)
,

∫
R

1(−∞,a−n)(t)
∫
R

1(−∞,−|t−a|1/2/2)(z)
z|t− a|3/2e−C√

2π|t− a|
exp

(
−z

2

2

)
dz dt

= e−C√
2π

∫ −n1/2/2

−∞
z exp

(
−z

2

2

)∫ a−n

a−4z2
(a− t)1/2 dt dz

= e−C√
2π

∫ −n1/2/2

−∞

(
−16/3z4 − 2/3n3/2z

)
exp

(
−z

2

2

)
dz

= e−C√
2π

(
−16
√

2πΦ(−n1/2/2)− 8n1/2 exp(−n/8)
)
,

∫
R

1(−∞,a−n)(t)
∫
R

1(−∞,−|t−a|1/2/2)(z)
|t− a|2e−C

4
√

2π|t− a|
exp

(
−z

2

2

)
dz dt

= e−C

4
√

2π

∫ −n1/2/2

−∞
exp

(
−z

2

2

)∫ a−n

a−4z2
(a− t) dt dz

= e−C√
2π

∫ −n1/2/2

−∞

(
2z4 − 1

8n
2
)

exp
(
−z

2

2

)
dz

= e−C√
2π

(
(6− 1

8n
2)
√

2πΦ(−n1/2/2) + (3n1/2 + n3/2

4 ) exp(−n/8)
)
,

where we used the equalities∫ −n1/2/2

−∞
ze−z

2/2dz = − exp(−n/8),∫ −n1/2/2

−∞
z2e−z

2/2dz =
√

2πΦ(−n1/2/2) + n1/2

2 exp(−n/8),∫ −n1/2/2

−∞
z4e−z

2/2dz = 3
√

2πΦ(−n1/2/2) + 3n1/2

2 exp(−n/8) + n3/2

8 exp(−n/8).
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Putting the parts together yields the following estimate.

∫ a−n

−∞

∫ ∞
C

1
2e
−x
∫ C−x

−∞
q0,|t−a|(y)P

(
max

u∈[0,b−a]
R(u) > C − x|R(0) = y

)
dy dx dt

≤ e−C√
2π

(
(2− n− 1

8n
2)
√

2πΦ(−n1/2/2) + (n1/2 + 1
4n

3/2) exp(−n/8)
)

A symmetry argument yields the same results for diffusions coming from the interval
(b+ n,∞), i.e. Λ(An,C,a) = Λ(Bn,C,b) and Λ(A∗n,C,a) = Λ(B∗n,C,b). Thus, by (2.11) we obtain:

Λ(An,C) ≤ 2
[ ∫ a−n

−∞

∫ ∞
C

e−x

2

∫ 0

C−x
q0,|t−a|(y) dy dx dt

+
∫ a−n

−∞

∫ ∞
C

e−x

2

∫ C−x

−∞
q0,|t−a|(y)P

(
max

u∈[0,b−a]
R(u) > C − x|R(0) = y

)
dy dx dt

]

≤ 2e−C√
2π

(
(2 + 1

2n)
√

2πΦ(−n1/2/2)− n1/2 exp(−n/8)

+ (2− n− 1
8n

2)
√

2πΦ(−n1/2/2) + (n1/2 + 1
4n

3/2) exp(−n/8)
)

= e−C√
2π

(
(8− n− 1

4n
2)
√

2πΦ(−n1/2/2) + 1
2n

3/2 exp(−n/8)
)

(2.12)

The last expression can be simplified by using the asymptotic expansion of the normal
distribution (cf. formula 8.254 in Gradshteyn & Ryzhik (2007)) function Φ(−n1/2/2) for
large n:

Φ(−n1/2/2) = exp(−n/8)√
2π

[
2n−1/2 − 23n−3/2 + 3 · 25n−5/2 − 15 · 27n−7/2 +R(n)

]
, (2.13)

where R(n) = O(n−9/2 exp(−n/8)), as n→∞. Plugging (2.13) into (2.12) gives

Λ(An,C) ≤ e−Ce−n/8
√

2π

(
10 · 25n−3/2 +O(n−5/2)

)
.

This concludes the proof.





3 Estimation of Hüsler-Reiss distributions and
Brown-Resnick processes

Univariate extreme value theory is concerned with the limits of linearly normalized maxima
of i.i.d. observations as in (1.1), namely the max-stable distributions in (1.2) (cf. de Haan &
Ferreira (2006)). Statistical inference of the parameters is well-developed and usually based
on one of the following two approaches. Maximum likelihood estimation is applied to block-
wise maxima of the original data, where a typical block size in environmental applications is
one year. On the other hand, the peaks-over-threshold (POT) method fits a suitable Poisson
point process to all data that exceed a certain high threshold and thus follow approximately
a generalized Pareto distribution (cf. Davison & Smith (1990)). The advantage of the latter
approach is that it avoids discarding extreme values within the blocks that are below the
maximum but nevertheless contain information on the parameters.
When interested in the joint extreme behavior of multivariate quantities, there are different
possibilities of ordering the data, though, the most common procedure is taking compo-
nentwise maxima. In multivariate extreme value theory, a random process {ξ(t) : t ∈ T}
with some index set T is called max-stable, if there exists a sequence (ηi)i∈N of independent
copies of a process {η(t) : t ∈ T} and functions cn(t) > 0, dn(t) ∈ R, n ∈ N, such that the
convergence

ξ(t) = lim
n→∞

c−1
n (t)

(
nmax
i=1

ηi(t)− dn(t)
)
, t ∈ T, (3.1)

holds in the sense of finite-dimensional distributions. In this case, the process η is said to be
in the max-domain of attraction (MDA) of ξ. Typically, T is a finite set or T = Rd, d ∈ N, for
the multivariate or the spatial case, respectively. Both theory and inference are considerably
more demanding than in the univariate framework due to the fact that no finite-dimensional
parametric model captures every possible dependence structure of a multivariate max-stable
distribution (cf. Resnick (2008)). Similarly to the univariate case, a standard approach for
parameter estimation of the max-stable process ξ from data in its MDA is via componentwise
block maxima, which ignores much of the information contained in the original data. Moreover,
even if the exact max-stable process is available, maximum likelihood (ML) estimation is
problematic since typically only the bivariate densities of max-stable distributions are known
in closed form. Composite likelihood (CL) approaches are common tools to avoid this
difficulty (cf. Padoan et al. (2010), Davison & Gholamrezaee (2012)).
Only recently, multivariate POT methods have attracted increased attention. In contrast
to the univariate case, the definition of exceedances over a certain threshold is ambiguous.
For instance, Rootzén & Tajvidi (2006) define a multivariate generalized Pareto distribution
(MGPD) as the limit distribution of some multivariate random vector in the MDA of a

19



20 3 Estimation of Hüsler-Reiss distributions and Brown-Resnick processes

max-stable distribution, conditional on the event that at least one of the components is
large. A simulation study in Bacro & Gaetan (2012) shows, that these MGPD perform well
in many situations, yet, again only bivariate densities in a CL framework are used since
multivariate densities are unknown. Alternatively, exceedances can be defined as the event
that the norm of the random vector is large, giving rise to the spectral measure (cf. Coles &
Tawn (1991)). Engelke et al. (2012d) have recently proposed to condition a fixed component
on exceeding a high threshold, which enables new methods of inference for processes that
admit a certain incremental or a mixed moving maxima representation.

With regard to practical application such as modeling extreme wind speed or precipitation
data, max-stable models need to find a compromise between flexibility and tractability.
There are several parametric families of multivariate extreme-value distributions (see Kotz
& Nadarajah (2000)) and only few max-stable models in the spatial domain (cf. de Haan &
Pereira (2006); Schlather (2002); Smith (1990)). For most of them, statistical inference is
difficult and time-intensive. Furthermore, except for the max-stable process ξ in (3.1) itself,
usually no further processes η in the MDA of attraction of ξ are known and thus, it lacks a
theoretical connection between modeling the daily processes η and modeling the extremal
process ξ.
In many applications such as geostatistics it is natural to assume that the data is normally
distributed. Under this assumption, the only possible non-trivial limit for extreme observa-
tions is the d-variate Hüsler-Reiss distribution (cf. Hüsler & Reiss (1989); Kabluchko (2011a)).
In fact, Hashorva (2006) and Hashorva et al. (2012) show that also other distributions are
attracted by the Hüsler-Reiss distribution. Hence, we can expect good fits of this model if the
daily data is close to normality. Recently, it has been shown that the class of Brown-Resnick
processes (Brown & Resnick (1977); Kabluchko et al. (2009)) constitutes the spatial analog
of the Hüsler-Reiss distributions since the latter occur as finite-dimensional marginals of
the Brown-Resnick process. The research on both theoretical properties (cf. Dombry et al.
(2011); Oesting et al. (2012) for simulation methods) and practical applications (e.g., Davison
et al. (2012)) of these processes is actively ongoing at present. Statistical inference, however,
was so far limited to the CL methods based on bivariate densities.

In this chapter, we propose new estimation methods based on a POT approach for data in
the MDA of Hüsler-Reiss distributions and Brown-Resnick processes. Similarly to Engelke
et al. (2012d), we consider extremal increments, i.e., increments of the data with respect to a
fixed component, conditional on the event, that this component is large. The great advantage
of this approach is the fact that the extremal increments turn out to be multivariate Gaussian
distributed. This enables, for instance, ML estimation with the full multivariate density
function as well as parameter estimation based on functionals of the Gaussian distribution.
Moreover, the concept of extremal increments as well as estimators derived from spectral
densities are shown to be suitable tools for fitting a Brown-Resnick process based on a
parametric family of variograms.

The remainder of the chapter is organized as follows. Section 3.1 comprises the definitions
and some general properties of Hüsler-Reiss distributions and Brown-Resnick processes. In
Section 3.2, we provide a result on weak convergence of suitably transformed and conditioned
variables in the MDA of the Hüsler-Reiss distribution, which is the basis for our estimation
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methods. It is used to derive the specific asymptotic distribution for extremal increments
(Section 3.2.1) and for conditioning in the spectral sense (Section 3.2.2). In both cases,
non-parametric estimation as well as parametric fitting of Brown-Resnick processes are
considered. A simulation study is presented in Section 3.3, which compares the performance
of the different estimators from the preceding section. As an application, in Section 3.4 we
analyze daily wind speed data from the Netherlands and use our new methods of inference
to model spatial extreme events. Proofs of the theoretical results can be found at the end of
this chapter.

3.1 Hüsler-Reiss distributions and Brown-Resnick processes
In this section we briefly review some details on Hüsler-Reiss distributions and Brown-Resnick
processes and define extremal coefficient functions as a dependence measure for max-stable
processes.

3.1.1 Hüsler-Reiss distributions
It is well known that the standard normal distribution Φ is in the max-domain of attraction
of the Gumbel distribution, i.e.

lim
n→∞

Φ(bn + x/bn)n = exp(− exp(−x)), for all x ∈ R,

where bn, n ∈ N, is a sequence of normalizing constants defined by bn = nφ(bn), where φ is
the standard normal density. By Theorem 1.5.3 in Leadbetter et al. (1983) it is given as

bn :=
√

2 logn− (1/2) log logn+ log(2
√
π)√

2 logn
+ o

(
(logn)−1/2

)
. (3.2)

Sibuya (1960) showed that the maxima of i.i.d. bivariate normal distributions with correlation
ρ < 1 asymptotically always become independent. However, for triangular arrays with i.i.d.
entries where the correlation in the different rows approaches 1 with an appropriate speed,
Hüsler & Reiss (1989) proved that the row-wise maxima converge to a new class of max-stable
bivariate distributions, namely

Fλ(x,y) = exp
[
−Φ

(
λ+ x− y

2λ

)
e−y − Φ

(
λ+ y − x

2λ

)
e−x

]
, x,y ∈ R. (3.3)

Here λ ∈ [0,∞] parameterizes the dependence in the limit, 0 and ∞ corresponding to
complete dependence and asymptotic independence, respectively. In fact, Kabluchko et al.
(2009) provide a simple argument that these are also the only possible limit points for such
triangular arrays.

The higher-dimensional Hüsler-Reiss distributions were also introduced in Hüsler & Reiss
(1989) as the limit of suitably normalized Gaussian random vectors. Suppose that the
correlation matrix Σn in the n-th row of a triangular array of (k + 1)-variate, zero-mean,
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unit-variance Gaussian distributions satisfies

Λ = lim
n→∞

b2
n(1 · 1> −Σn)/2 ∈ D, (3.4)

where 1 = (1, . . . ,1)> ∈ Rk+1 and D ⊂ [0,∞)(k+1)×(k+1) denotes the space of symmetric,
strictly conditionally negative definite matrices

D =
{

(ai,j)0≤i,j≤k = A ∈ [0,∞)(k+1)×(k+1) : x>Ax < 0 for all x ∈ Rk+1 \ {0} s.t.

k∑
i=0

xi = 0, ai,j = aj,i, ai,i = 0 for all 0 ≤ i,j ≤ k
}
.

Then the normalized row-wise maxima converge to the (k+1)-variate Hüsler-Reiss distribution
which is completely characterized by the matrix Λ. Note that (1 · 1> −Σn) automatically
lies in D if Σn is non-degenerate, n ∈ N. For any matrix Λ =

(
λ2
i,j

)
0≤i,j≤k

∈ D, define a
family of positive definite matrices by

Ψl,m(Λ) = 2
(
λ2
mi,m0 + λ2

mj ,m0 − λ
2
mi,mj

)
1≤i,j≤l

,

where l runs over 1, . . . , k and m = (m0, . . . ,ml) with 0 ≤ m0 < . . . < ml ≤ k. The
distribution function of the (k + 1)-dimensional Hüsler-Reiss distribution with standard
Gumbel margins is then given by

HΛ(x) = exp


k∑
l=0

(−1)l+1 ∑
m:0≤m0<...<ml≤k

hl,m,Λ(xm1 , . . . , xml)

 , x ∈ Rk+1, (3.5)

where

hl,m,Λ(y0, . . . ,yl) =
∫ ∞
y0

S

{(
yi − z + 2λ2

mi,m0

)
i=1,...,l

|Ψl,m(Λ)
}
e−z dz,

for 1 ≤ l ≤ k and h0,m,Λ(y) = exp(−y) for m ∈ {0, . . . ,k}. Furthermore, for q ∈ N and
Ψ ∈ Rq×q positive definite, S( · |Ψ) denotes the so-called survivor function of a q-dimensional
normal random vector with mean vector 0 and covariance matrix Ψ , i.e., if Y ∼ N(0,Ψ)
and x ∈ Rq, then S(x|Ψ) = P (Y1 > x1, . . . , Yq > xq). In the bivariate case, the distribution
function (3.5) simplifies to Fλ, where λ = λ0,1 ∈ [0,∞]. Note that the class of Hüsler-Reiss
distributions is closed in the sense that the lower-dimensional margins of HΛ are again
Hüsler-Reiss distributed with parameter matrix consisting of the respective entries in Λ.
Consequently, the distribution of the bivariate sub-vector of the i-th and j-th component
only depends on the parameter λi,j . Thus, one can modify this parameter (subject to the
restriction Λ ∈ D) without affecting the other components. This flexibility was demanded in
Cooley et al. (2010) as a desirable property of multivariate extreme value models that most
models do not possess, unfortunately.
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Remark 3. The k-variate Hüsler-Reiss distribution is usually given by its distribution
function HΛ. The density for k ≥ 3 is rather complicated and involves multivariate integration.
Hence, for maximum likelihood estimation based on block maxima, only the bivariate or
sometimes the trivariate (cf. Genton et al. (2011)) densities are used in the framework of a
composite likelihood approach.

3.1.2 Brown-Resnick processes
We review the definition of the extended class of Brown-Resnick processes in (1.5) in more
detail. For T = Rd, d ≥ 1, let {Y (t) : t ∈ T} be a centered Gaussian process with stationary
increments. Further, let γ(t) = E(Y (t)− Y (0))2 and σ2(t) = E(Y (t))2 be the variogram and
the variance of Y , t ∈ Rd, respectively. Then, for a Gumbel point process

∑
i∈N δUi on R

and i.i.d. copies Yi ∼ Y , i ∈ N, the process

ξ(t) = max
i∈N

[
Ui + Yi(t)− σ2(t)/2

]
, t ∈ Rd, (3.6)

is max-stable, stationary and its distribution only depends on the variogram γ. For the
special case where Y is a Brownian motion, the process ξ was already introduced by Brown
& Resnick (1977). Its generalization in (3.6) is called Brown-Resnick process associated to the
variogram γ (Kabluchko et al. (2009)). Since any conditionally negative definite function can
be used as variogram, Brown-Resnick processes constitute an extremely flexible class of max-
stable random fields. Moreover, the subclass associated to the family of fractal variograms
γα,s(·) = ‖ · /s‖α, α ∈ (0,2], s ∈ (0,∞), arises as limits of pointwise maxima of suitably
rescaled and normalized, independent, stationary and isotropic Gaussian random fields (cf.
Kabluchko et al. (2009)). Here ‖ · ‖ denotes the Euclidean norm. The model by Smith (1990)
is another frequently used special case of Brown-Resnick processes, which corresponds to
the class of variograms γ(h) = ‖hΣ−1h‖, for h ∈ Rd and an arbitrary covariance matrix
Σ ∈ Rd×d.
We remark that the finite-dimensional marginal distribution at locations t0, . . . , tk ∈ Rd of a
Brown-Resnick process is the Hüsler-Reiss distribution HΛ with Λ = (γ(ti − tj)/4)0≤i,j≤k.

3.1.3 Extremal coefficient function
Recall from Chapter 1 the definition of extremal correlation ρ. In this chapter we use a
similar quantity called extremal coefficient θ. For a bivariate max-stable random vector
(X1, X2) with identically distributed margins, θ ∈ [1,2] is determined by

P(X1 ≤ u,X2 ≤ u) = P(X1 ≤ u)θ,

for some suitable u ∈ R, i.e. θ = 2− ρ. Similarly, for a stationary, max-stable process ξ on
Rd, the extremal coefficient function θ(h) is defined as θ(h) = 2− ρ(h), for h ∈ Rd.
For the bivariate Hüsler-Reiss distribution (3.3) we have Fλ(u, u) = exp (−2Φ(λ)e−u) and
thus, the extremal coefficient equals θ = 2Φ(λ). Hence, for Hüsler-Reiss distributions, there
is a one-to-one correspondence between the parameter λ ∈ [0,∞] and the set of extremal
coefficients. Similarly, the extremal coefficient function of the Brown-Resnick process in (3.6)
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is given by

θ(h) = 2Φ
(√

γ(h)/2
)
, h ∈ Rd. (3.7)

3.2 Estimation
In this section, we propose new estimators for the parameter matrix Λ of the Hüsler-Reiss
distribution and use them to fit Brown-Resnick processes based on a parametric family of
variograms. We will consider both estimation based on extremal increments and estimation
in the spectral domain.
Suppose that Xi = (X(0)

i , . . . ,X
(k)
i ), i = 1, . . . ,n, are independent copies of a random vector

X ∈ Rk+1 in the MDA of the Hüsler-Reiss distribution HΛ with some parameter matrix
Λ = (λ2

i,j)0≤i,j≤k ∈ D. Recall that HΛ has standard Gumbel margins. Without loss of
generality, we assume that X has standard exponential margins. Otherwise we could consider
(U0(X(0)

i ), . . . ,Uk(X
(k)
i )), where Ui = − log(1 − Fi), and Fi is the cumulative distribution

function of the i-th marginal of X (cf. Prop. 5.15 in Resnick (2008)). In the sequel, we
denote by X̃n = X− logn and X̃i,n = Xi − logn the rescaled data such that the empirical
point process Πn =

∑n
i=1 δX̃i,n

converges in distribution to a Poisson point process Π on
E = [−∞,∞)k+1 \ {−∞} with intensity measure µ([−∞,x]C) = − logHΛ(x) (Prop. 3.21
in Resnick (2008)), as n→∞. Based on this convergence of point processes, the following
theorem provides the conditional distribution of those data which are extreme in some sense.

Theorem 3. For m ∈ N and a metric space S, let g : Rk+1 → S be a measurable transfor-
mation of the data and assume that it satisfies the invariance property g(x+ a · 1) = g(x)
for any a ∈ R and 1 = (1, . . . ,1) ∈ Rk+1. Further, let u(n) > 0, n ∈ N, be a sequence of real
numbers such that limn→∞ u(n)/n = 0. Then, for all Borel sets B ∈ B(S) and A ∈ B(E)
bounded away from −∞,

lim
n→∞

P
{
g(X̃n) ∈ B

∣∣ X̃n ∈ A− log u(n)
}

= Qg,A(B), (3.8)

for some probability measure Qg,A on S.

Remark 4. Note that due to the invariance property of g, the transformed data is independent
of the rescaling, i.e. g(X̃i,n) = g(Xi), for all i = 1, . . . ,n, n ∈ N.
In the above theorem, u(n) only has to satisfy u(n)/n→ 0, as n tends to ∞. However, for

practical applications it is advisable to choose u(n) in such a manner that also limn→∞ u(n) =
∞, since this ensures that the cardinality of the index set of extremal observations

IA =
{
i ∈ {1, . . . , n} : X̃i,n ∈ A− log u(n)

}
, (3.9)

tends to ∞ as n→∞, almost surely.

Theorem 3 implies that for all extreme events, the transformed data {g(Xi) : i ∈ IA}
approximately follow the distribution Qg,A. Clearly, Qg,A depends on the choices for g and
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A and in the subsequent sections we encounter different possibilities for which the limit (3.8)
can be computed explicitly. Furthermore, if g and A are chosen suitably, the distribution
Qg,A will still contain all information on the parameter matrix Λ. Our estimators will
therefore be based on the set of transformed data {g(Xi) : i ∈ IA} and the knowledge of
their asymptotic distribution Qg,A. For instance, a maximum likelihood approach can be
applied using the fact that Πn converges to Π. If, for a particular realization of the Xi,
IA = {i1, . . . , iN} for some N ≤ n, i1, . . . , iN ∈ {1, . . . , n}, and g(Xi) = si, i = 1, . . . ,n, a
canonical approach is to maximize the likelihood

Lg,A(Λ; s1, . . . , sn) = P
{
|IA| = N, g(Xij ) ∈ dsij , j = 1, . . . ,N

}
= P (|IA| = N)

N∏
j=1

P
{
g(X) ∈ dsij | X̃n ∈ A− log u(n)

}
.

With the Poisson approximation
∑n
i=1 1{X̃i,n ∈ A− log u(n)} ≈ Pois{µ(A− log u(n))} and

the convergence (3.8) we obtain

Lg,A(Λ; s1, . . . , sn) ≈ exp{−µ(A− log u(n))}µ(A− log u(n))N

N !

N∏
j=1

Qg,A(dsij ). (3.10)

If the ML approach is unfeasible, estimation of Λ can also be based on other suitably chosen
functionals of the conditional distribution of g(X), for instance on the variance of g(X).

3.2.1 Inference based on extremal increments
In this subsection, we apply Theorem 3 with g mapping the data to its increments w.r.t.
a fixed index, i.e., g : Rk+1 → Rk, x 7→ ∆x = (x(1) − x(0), . . . , x(k) − x(0)). In particular,
g satisfies the invariance property g(x + a · 1) = g(x) for any a ∈ R. Consequently, our
estimators are based on the incremental distribution of those data which are extreme in the
sense specified by the set A. The following theorem provides the limiting distribution Qg,A
for two particular choices of A, namely A1 = (0,∞)× Rk and A2 = [−∞,0]C .

Theorem 4. Let X be in the MDA of HΛ with some Λ ∈ D, and suppose that the sequence
u(n) is chosen as in Theorem 3. Then, we have the following convergences in distribution.

1. For k ∈ N,(
X(1) −X(0), . . . , X(k) −X(0)∣∣X̃(0)

n > − log u(n)
)

d→ N (M,Σ), n→∞,

where N (M,Σ) denotes the multivariate normal distribution with mean vector M =
−diag(Ψk,(0,...,k)(Λ))/2 and covariance matrix Σ = Ψk,(0,...,k)(Λ).

2. For the bivariate case, i.e., k = 1,(
X(1) −X(0)∣∣X̃(0)

n > − log u(n) or X̃(1)
n > − log u(n)

)
d→ Z, n→∞,
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where Z is a real-valued random variable with density given by

gλ(t) = 1
4λΦ(λ)φ

(
λ− |t|2λ

)
, t ∈ R, λ = λ0,1.

Here, Φ and φ denote the standard normal distribution function and density, respectively.

Remark 5. The positive definite matrix Σ = Ψk,(0,...,k)(Λ) contains all information on Λ.
In fact, the transformation

Λ(Σ) = 1
4

 0 diag(Σ)>

diag(Σ) 1 diag(Σ)> + diag(Σ)1> − 2Σ


recovers the matrix Λ = (λ2

i,j)0≤i,j≤k.

Based on the convergence results in Theorem 4 we propose various estimation procedures
for both multivariate Hüsler-Reiss distributions (non-parametric case) and Brown-Resnick
processes with a parameterized family of variograms (parametric case).

Non-parametric multivariate case

For the likelihood based approach in (3.10) we first consider the extremal set A1 = (0,∞)×Rk
and put N1 = |IA1 |. By part one of Theorem 4 we have

− logL(Λ; s1, . . . , sn) ≈ − log

exp(−u(n))u(n)N1

N1!

N1∏
j=1

φM(Λ),Σ(Λ)
(
sij
)

∝ N1
2 log detΣ(Λ) + 1

2

N1∑
j=1

{
(sij −M(Λ))>Σ(Λ)−1(sij −M(Λ))

}
,

(3.11)

where si is the realization of ∆Xi, i = 1, . . . , n and φM(Λ),Σ(Λ) is the density of the normal
distribution with mean vectorM(Λ) = −diag(Ψk,(0,...,k)(Λ))/2 and covariance matrix Σ(Λ) =
Ψk,(0,...,k)(Λ). The corresponding maximum likelihood estimator is given by

Λ̂MLE = arg min
Λ∈D

N1
2 log detΣ(Λ) + 1

2

N1∑
j=1

{
(sij −M(Λ))>Σ(Λ)−1(sij −M(Λ))

} . (3.12)

Notice that for this particular choice of A, the asymptotic value of P(|IA1 | = N1) does not
depend on the parameter matrix Λ. Hence, this ML ansatz coincides with simply maximizing
the likelihood of the increments without considering the number of points exceeding the
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threshold. In the bivariate case, i.e., k = 1 and A1 = (0,∞)× R, (3.11) simplifies to

− logL(λ; s1, . . . , sn) ∝ N1λ
2

2 +N1 log λ+ 1
8λ2

N1∑
j=1

s2
ij , (3.13)

and the minimizer of (3.13) can be given in explicit form:

λ̂2
MLE = 1

2

−1 +

√√√√√1 + 1
N1

N1∑
j=1

(∆Xij )2

 . (3.14)

Staying in the bivariate case, for the choice A2 = [−∞,0]C , we put N2 = |IA2 | and by
part two of Theorem 4,

− logL(λ; s1, . . . , sn) ≈ − log

exp(−2Φ(λ)u(n))(2Φ(λ)u(n))N2

N2!

N2∏
j=1

gλ(sij )


∝ 2Φ(λ)u(n) + N2λ

2

2 + 1
8λ2

N2∑
j=1

s2
ij .

Numerical optimization can be applied to obtain the estimator

λ̂2
MLE2 = arg min

θ≥0

2Φ(
√
θ)u(n) + N2θ

2 + 1
8θ

N2∑
j=1

(∆Xij )2

 .

While the above likelihood-based estimators (except for (3.14)) require numerical optimiza-
tion, the following approach is computationally much more efficient: A natural estimator
for Σ = Ψk,(0,...,k)(Λ) ∈ Rk×k based on the first part of Theorem 4 is given by the empirical
covariance Σ̂ of the extremal increments ∆Xi = (X(1)

i −X
(0)
i , . . . , X

(k)
i −X

(0)
i ) for i ∈ IA1 ,

i.e.

Σ̂ = 1
N1

N1∑
j=1

(∆Xij − µ̂)(∆Xij − µ̂)>, µ̂ = 1
N1

N1∑
j=1

∆Xij . (3.15)

By Remark 5 this also gives an estimator Λ̂Var = Λ(Σ̂) for the parameter matrix Λ, which
we call the variance-based estimator. Apart from its simple form, another advantage of
(3.15) is that Σ̂ is automatically a positive definite matrix and hence, Λ̂Var is conditionally
negative definite and therefore a valid matrix for a (k + 1)-variate Hüsler-Reiss distribution.
Note that (3.15) is not the maximum likelihood estimator (MLE) for Σ since the mean
of the conditional distribution of ∆Xi depends on the diagonal of Σ. The MLE of Σ is
instead given by optimizing (3.12) w.r.t. Σ, which, to our knowledge, does not admit a closed
analytical form.
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Applying (3.15) with k = 1 yields the bivariate variance-based estimator

λ̂2
Var = 1

4N1

N1∑
j=1

(X(1)
ij
−X(0)

ij
− µ̂)2, µ̂ = 1

N1

N1∑
j=1

(X(1)
ij
−X(0)

ij
). (3.16)

Since the mean of the extremal increments is also directly related to the parameter λ, another
sensible estimator might be

λ̂2
mean = − 1

2N1

N1∑
j=1

(X(1)
ij
−X(0)

ij
). (3.17)

Parametric approach for Brown-Resnick processes

Statistical inference for Brown-Resnick processes as in (3.6) is usually based on fitting
a parametric variogram model {γϑ : ϑ ∈ Θ}, Θ ⊂ Rj , j ∈ N, to point estimates of
the extremal coefficient function (3.7) based on the madogram. Alternatively, composite
likelihood approaches are used in connection with block maxima of bivariate data (Davison
& Gholamrezaee (2012)).
Since for t0, . . . , tk ∈ Rd, the vector (ξ(t0), . . . , ξ(tk)) with ξ being a Brown-Resnick process
associated to the variogram γ : Rd → [0,∞) is Hüsler-Reiss distributed with parameter
matrix

Λ = (γ(ti − tj)/4)0≤i,j≤k,

the above estimators enable parametric estimation of Brown-Resnick processes. In fact,
replacing Λ in (3.12) by

Λ(ϑ) = (γϑ(ti − tj)/4)0≤i,j≤k (3.18)

leads to the ML estimator

ϑ̂MLE = arg min
ϑ∈Θ
{− logL(Λ(ϑ); s1, . . . , sn)}

with L as in (3.11). Note that, other than in classical extreme value statistics, here the use
of higher-dimensional densities is feasible and promises a gain in accuracy.
Estimation of ϑ can also be based on any of the bivariate estimators λ̂2

MLE, λ̂2
MLE2, λ̂2

Var,
λ̂2

mean, or on the multivariate estimator Λ̂Var by “projecting” the latter matrix or the matrix
consisting of all bivariate estimates onto the set of matrices

{
(γϑ(ti − tj)/4)0≤i,j≤k:ϑ ∈ Θ

}
,

i.e.,

ϑ̂PROJ = arg min
ϑ∈Θ

∥∥∥∥(λ̂2
ij − γϑ(ti − tj)/4

)
0≤i,j≤k

∥∥∥∥ , (3.19)

where ‖ · ‖ can be any matrix norm.
Similar to Bacro & Gaetan (2012), the bivariate estimators can readily be used in a parametric
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composite likelihood framework.

3.2.2 Inference based on spectral densities
As at the beginning of Section 3.2, let Xi, i = 1, . . . , n, be a sequence of independent copies of
X, already standardized to exponential margins, in the MDA of the max-stable distribution
HΛ. Since we work in the spectral domain in this section, we will switch to standard Fréchet
margins with distribution function exp(−1/y), y ≥ 0. More precisely, we consider the vectors
Y = exp(X) and Yi = exp(Xi), i = 1, . . . , n, which are in the MDA of the Hüsler-Reiss
distribution GΛ(x) = HΛ(log x),x ≥ 0, with standard Fréchet margins.
The most convenient tool to characterize the dependence structure of a multivariate extreme
value distribution is via its spectral measure. To this end, let Ỹn = Y/n and Ỹi,n = Yi/n
denote the rescaled data such that the point process Pn =

∑n
i=1 δỸi,n

converges, as n→∞,
to a non-homogeneous Poisson point process P on [0,∞)k+1 \ {0} with intensity measure
ν([0,x]C) = − logGΛ(x). Transforming a vector x = (x0, . . . ,xk) ∈ [0,∞)k+1 \ {0} to its
pseudo-polar coordinates

r = ‖x‖, ω = r−1x, (3.20)

for any norm ‖ · ‖ on Rk+1, we can rewrite ν as a measure on (0,∞)× Sk, where Sk is the k-
dimensional unit simplex Sk = {y ≥ 0 : ‖y‖ = 1}. Namely, we have ν(dx) = r−2dr×M(dω),
where the measure M is called the spectral measure of GΛ and embodies the dependence
structure of the extremes. For our purposes, it is most convenient to choose the L1-norm, i.e.,
‖x‖1 =

∑k
i=0 |xi|. In this case, for the set Ar0 = {x ∈ [0,∞)k+1 \ {0} : ‖x‖1 > r0}, r0 > 0,

we obtain

ν(Ar0) = r−1
0 M(Sk) = r−1

0 · (k + 1), (3.21)

since the measure M satisfies
∫
Sk
ωi M(dω) = 1 for i = 0, . . . , k. Hence, the ν-measure of

Ar0 does not depend on the parameters of the specific model chosen for M . The distribution
function can be written as

GΛ(x) = exp
{
−
∫
Sk

max
(
ω0
x0
, . . . ,

ωk
xk

)
M(dω)

}
, x ≥ 0.

As the space of all spectral measures is infinite-dimensional, there is a need of parametric
models which are analytically tractable and at the same time flexible enough to approximate
the dependence structure in real data sufficiently well. Parametric models are usually given
in terms of their spectral density h of the measure M . The book by Kotz & Nadarajah
(2000) gives an overview of parametric multivariate extreme value distributions, most of
them, however, being only valid in the bivariate case. For the multivariate case only few
models are known, e.g., the logistic distribution and its extensions (Joe, 1990; Tawn, 1990)
and the Dirichlet distribution Coles & Tawn (1991). The recent interest in this topic resulted
in new multivariate parametric models (Boldi & Davison (2007); Cooley et al. (2010)) as well
as in general construction principles for multivariate spectral measures (Ballani & Schlather
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(2011)). All these approaches have in common that they propose models for multivariate
max-stable distributions in order to fit data obtained by exceedances over a certain threshold
or by block maxima.
Given a parametric model for the spectral density h( · ;ϑ), we have the analog result as in
Theorem 3 for the Fréchet case with A = Ar0 and g : Rk+1 → Sk,x 7→ x/‖x‖1, which now
satisfies the multiplicative invariance property g(a · x) = g(x), for all a ∈ R. The Fréchet
version of (3.8) for this choice of g and A reads as

lim
n→∞

P
{

Y/‖Y‖1 ∈ B | Ỹn ∈ Ar0/u(n)
}

= M(B)
M(Sk)

= 1
k + 1

∫
B
h(ω;ϑ)dω, (3.22)

for all B ∈ B(Sk) and u(n), n ∈ N, as in Theorem 3. Based on this conditional distribution
of those Yi for which the sum ‖Yi‖1 is large, similarly to (3.10) we obtain the likelihood

LAr0

(
ϑ;(r1,ω1), . . . , (rn,ωn)

)
≈ exp{−ν(Ar0/u(n))}ν(Ar0/u(n))|I0|

|I0|!
∏
i∈I0

r−2
i (k + 1)−1h(ωi;ϑ)

∝
∏
i∈I0

h(ωi;ϑ), (3.23)

where {(ri,ωi) : 1 ≤ i ≤ n} are the pseudo-polar coordinates of {Ỹi,n : 1 ≤ i ≤ n} as
in (3.20) and I0 is the set of all indices 1 ≤ i ≤ n with Ỹi,n ∈ Ar0/u(n). Note that the
proportional part in (3.23) only holds because the ν-measure of Ar0 is independent of the
model parameter ϑ.
For the Hüsler-Reiss distribution it is possible to write down the spectral density h( · ;Λ)
explicitly.

Proposition 1. For any matrix Λ =
(
λ2
i,j

)
0≤i,j≤k

∈ D the Hüsler-Reiss distribution can be
written as

G(x) = exp
{
−
∫
Sk

max
(
ω0
x0
, . . . ,

ωk
xk

)
h(ω;Λ) dω

}
,

with spectral density

h (ω, Λ) = 1
ω2

0 · · ·ωk(2π)k/2|detΣ|1/2 exp
(
−1

2 ω̃
>Σ−1ω̃

)
, ω ∈ Sk, (3.24)

where Σ = Ψk,(0,...,k)(Λ) and ω̃ = (log ωi
ω0

+ 2λ2
i,0 : 1 ≤ i ≤ k)>.

Non-parametric, multivariate case

Based on the explicit expression for the spectral density of the Hüsler-Reiss distribution
in (3.24), we define the estimator Λ̂SPEC of Λ as the matrix in D that maximizes the likelihood
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in (3.23), i.e.,

Λ̂SPEC = arg min
Λ∈D

 |I0|
2 log detΨk,(0,...,k)(Λ) + 1

2
∑
i∈I0

ω̃i
>Ψk,(0,...,k)(Λ)−1ω̃i

 . (3.25)

In the bivariate case, the spectral density in (3.24) simplifies to

h(ω;λ) = 1
2λω2

0ω1(2π)1/2 exp
(
−

(log ω1
ω0

+ 2λ2)2

8λ2

)

and the corresponding estimator can be given in explicit form:

λ̂2SPEC = 1
2

−1 +
√√√√1 + 1

|I0|
∑
i∈I0

{
log

(
Ỹ(1)
i

/
Ỹ(0)
i

)}2
 . (3.26)

Note that the estimators (3.25) and (3.26) have exactly the same form as the maximum
likelihood estimators (3.12) and (3.14), respectively, for the extremal increments. However,
the specification of the set A differs and so does the choice of extreme data that is plugged
in.

Parametric approach for Brown-Resnick processes

Analogously to Section 3.2.1, we obtain a parametric estimate of the dependence structure
of a Brown-Resnick process based on a parametric family of variograms by replacing Λ on
the right-hand side of (3.25) by Λ(ϑ) defined in (3.18). This yields

ϑ̂SPEC = arg min
ϑ∈Θ

{
− logLAr0

(Λ(ϑ); (r1,ω1), . . . , (rn,ωn))
}
. (3.27)

3.3 Simulation study
We compare the performance of the different parametric and non-parametric estimation
procedures of Brown-Resnick processes and Hüsler-Reiss distributions proposed in the
previous section via a simulation study.
In the first instance, we consider bivariate data that is in the MDA of the Hüsler-Reiss

distribution with known dependence parameter λ = λ0,1. For simplicity, we simulate data
from the Hüsler-Reiss distribution itself, which does not mean that the thresholding procedure
via the set A becomes obsolete. All estimators rely on considering only extremal events
and hence, there is no obvious advantage over using any other data being in the MDA of
Hλ. We compare the estimators λ̂2

MLE, λ̂2
MLE2, λ̂2

Var, λ̂2
mean and λ̂2

SPEC from Section 3.2 for
different sample sizes n ∈ {500, 8000, 100000}. The sequence of thresholds u(n) is chosen in
such a way that the number of exceedances k(n) increases to ∞, but at the same time, the
corresponding quantile q(n) = 1− k(n)/n approaches 1, as n→∞. In addition to the new
threshold based estimators, we include the classical estimators, which use block maxima,
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namely the madogram estimator λ̂mado = Φ−1(θ̂mado/2) (Cooley et al., 2006) and the ML
estimator λ̂2

HRMLE of the bivariate Hüsler-Reiss distribution. To model a year of (dependent)
data, we we choose a block size of 150 which is of order of but less than 365.
The pseudo-code of the exact simulation setup is the following:

1. for λ2 ∈ {k · 0.025 : k = 1, . . . , 30}

2. for n ∈ {500, 8000, 100000}

3. simulate n bivariate Hüsler-Reiss distributions
with parameter λ

4. for λ̂2 ∈
{
λ̂2

MLE, λ̂
2
MLE2,λ̂

2
Var, λ̂

2
mean, λ̂

2
SPEC, λ̂

2
mado, λ̂

2
HRMLE

}
5. estimate λ2 through λ̂2

6. obtain an estimate of the corresponding extremal
coefficient θ through θ̂ = θ(λ̂) = 2Φ(λ̂)

7. repeat (1)-(6) 500 times

Since the finite-dimensional margins of a Brown-Resnick process are Hüsler-Reiss distributed,
we can easily implement step (1) by simulating a one-dimensional Brown-Resnick process
with variogram γ(h) = |h| on the interval [0, 3]. Since we consider bivariate Hüsler-Reiss
distributions for different values of λ2 lying on a fine grid, we visualize the estimates θ̂ as
functions of the true λ2 (Figure 3.1). However, it is important to remark that estimation in
this first part of the study is exclusively based on the bivariate distributions. For each value
of λ2, we repeat simulation and estimation 500 times. Figure 3.1 shows the pointwise mean
value of the extremal coefficient and the corresponding empirical 95% confidence intervals.
As expected, in finite samples, all estimators based on multivariate POT methods under-
estimate the true degree of extremal dependence since they are based on an asymptotic
distribution with non-zero mean while the simulated data come from a stationary process.
As the sample size n and the threshold u(n) increase, all estimators approach the true
value. Among the POT-based estimators, λ̂2

SPEC seems to be at least as good as the other
estimators, uniformly for all values of λ2 under consideration. λ̂2

Var performs well for small
values of λ2 but is more biased than other estimators for large values of λ2. The good
performance of λ̂2

mean for large values of λ2 might be due to the fact that it only uses first
moments of the extremal increments and is hence less sensible to aberration of the finite
sample distribution from the asymptotic distribution. Compared to the two estimators based
on block maxima, the POT-based estimators all perform well even for small data sets, which
is a great advantage for many applications. Moreover, the variances of the POT-estimates are
generally smaller than those based on block maxima, since more data can be used. Finally,
note that the POT-based estimation does not exploit the fact, that the simulated data in
the max-domain of attraction is in fact the max-stable distribution itself. The speed of
convergence may though differ when using data from other models in the MDA. In contrast,
λ̂2

mado and λ̂2
HRMLE do profit from simulating i.i.d. realizations of the max-stable distribution
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itself since then, the blockwise maxima are exactly Hüsler-Reiss distributed and not only an
approximation as in the case of real data.
In the second part of the simulation study we examine the performance of parametric

estimates of Brown-Resnick processes using the same data as above. While the true variogram
is γ(h) = |h|, we estimate the parameter vector (α, s) for the family of variograms γα,s(h) =
‖h/s‖α, α ∈ (0, 2], s > 0. We compare the following three estimators: the spectral estimator
(̂α, s)SPEC, given by (3.27) and using the full multivariate density; the composite likelihood
estimator (̂α, s)SPEC, CL, defined as the maximizer of the product of all bivariate spectral
densities, implicitly assuming independence of all tuples of locations; and the least squares
estimator (̂α, s)PROJ, LS, given by (3.19) for the Euclidean norm, where λ̂2

MLE serves as
non-parametric input. The estimated values of α and s are compared in the right column of
Figure 3.2. The left panel shows the corresponding extremal coefficient functions for α and s
representing the mean, the 5% sample quantile and the 95% sample quantile from the 500
repetitions, respectively.
The estimator (̂α, s)SPEC, which incorporates the full multivariate information, performs
best both in the sense of minimal bias and minimal variance. Especially estimation of the
shape parameter of the variogram gains stability when using higher-dimensional densities.
The projection estimator seems to have the largest bias and the largest variance. The results
remain very similar if we replace λ̂2

MLE by one of the other non-parametric estimators. Let us
finally remark that all three estimators can be modified by considering only small distances
for inference. Then, since the approximation error of the asymptotic conditional distribution
decays for smaller distances, this can substantially improve the accuracy in a simulation
framework, but might distort the results in real data situations.
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Figure 3.1: Estimated extremal coefficients compared to the true ones of bivariate Hüsler-
Reiss distributions. 500 repetitions. Block size for block maxima is 150. Left: θ̂ vs. λ2. Right:
relative difference of θ̂ to the true value of θ.
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Figure 3.2: Parametric fit of Brown-Resnick process.
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3.4 Application: Wind speed data
We apply the above theory of estimating Hüsler-Reiss distributions to wind speed data
provided by the Royal Netherlands Meteorological Institute. We use the daily maxima of
wind speeds measured at 35 meteorological stations x1, . . . , x35 ∈ X , where the set X ⊂ R2

denotes the geographical coordinates of the Netherlands. The data cover a 23-year period of
8172 days from 1990/01/01 to 2012/05/12. Figure 3.3 provides an overview of the spatial
locations of the stations.

3.4.1 Stationarity assumption with zonal anisotropy
In the sequel, we use the data to fit a stationary Brown-Resnick process based on the
parametric family of variograms γα,s(h) = ‖h/s‖α, α ∈ (0, 2], s > 0. As mentioned in
Section 3.1.2, this subclass of Brown-Resnick processes is a natural choice, since they arise
as the max-limits of suitably rescaled, stationary Gaussian random fields. The stationarity
assumption, however, turns out to be unrealistic, since stations close to the coast exhibit
weaker extremal dependence to neighboring stations than inland stations. This is illustrated
in the left panel of Figure 3.4, where the estimated bivariate extremal coefficients based on
λ̂2

MLE of all stations are compared to those without the coastal stations. Hence, we restrict
our analysis to the 25 inland stations, say T = {x1, . . . , x25}, when fitting a stationary
Brown-Resnick process. We therefore need to estimate the shape parameter α and the scale
parameter s of the corresponding parameter matrix Λα,s of the Brown-Resnick process on T ,

Figure 3.3: Left: locations of the 35 meteorological stations. Right: locations of the 25 non-
coast stations before and after multiplication with the anisotropy matrix V (β̂, ĉ).
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given by Λα,s =
(
γα,s(xi − xj)/4

)
1≤i,j≤25.

While the above class of variograms assumes isotropy of the underlying process, meteorological
data and particularly wind speed data can be expected to exhibit a main direction of spatial
dependence. We capture this anisotropy by introducing a transformed space X̃ = V X (cf.
right panel of Figure 3.3), where

V = V (β, c) =
(

cosβ − sinβ
c sinβ c cosβ

)
, β ∈ [0,2π], c > 0,

is a rotation and dilution matrix; Blanchet & Davison (2011) recently applied this idea to
the extremal Gaussian process of Schlather (2002). The new parametric variogram model
becomes Λϑ =

(
γα,s(V xi−V xj)/4

)
1≤i,j≤25, where ϑ = (α, s, β, c) is the vector of parameters.

As in the above simulation study, we apply the three estimators

ϑ̂PROJ, LS = arg min
ϑ∈Θ

∥∥(λ̂2
MLE,ij)1≤i,j≤25 − Λϑ

∥∥
2, ϑ̂SPEC, ϑ̂SPEC, CL. (3.28)

For all estimators, the data is first normalized as described at the beginning of Section 3.2
and the threshold u(n) is chosen in such a way that, out of the 8172 days, all data above the
97.5%-quantile are labeled as extremal. Note that these numbers coincide with the second
set of parameters (n, q(n)) in the simulation study. Hence, the middle row of Figure 3.1
provides a rough estimate of the estimation error.

The estimation results and standard deviations for the parameters (α, s, β, c) are given in
Table 3.1. The middle panel of Figure 3.4 illustrates the effect of transforming the space via
the matrix V and displays the fitted extremal coefficient functions for the three estimators
in (3.28). Moreover, the right panel shows the estimates of pairwise extremal coefficients
based on λ̂2

MLE and the model-independent madogram estimator, where the latter exhibits a
considerably larger variation. In Figure 3.5, we illustrate the effect of transforming the space
via the matrix V (β, c) on the extremal coefficient function and on a typical realization of the
corresponding Brown-Resnick process.
In order to validate the reliability of the estimated model parameters ϑ, we re-simulate

data in the MDA of the three fitted Brown-Resnick models. Similarly to the simulation
study, we use 8172 realizations of the Brown-Resnick process itself (which is clearly in its
own MDA) for the daily data. As index set, we use the transformed locations V (β̂,ĉ)T
on which the Brown-Resnick process is isotropic. Based on this new data, we apply the
estimation procedure exactly as for the real data to obtain new estimates for ϑ and thus
for the extremal coefficient function. This is repeated 100 times and the results for the

Table 3.1: Estimation results. The values for the standard deviation are obtained from simu-
lating and re-estimating the respective models 100 times.

estimator α s β c

ϑ̂PROJ, LS 0.296 (0.0193) 0.234 (0.0744) 0.379 (0.532) 1.67 (0.1761)
ϑ̂SPEC 0.338 (0.0166) 0.687 (0.1797) 0.456 (0.439) 2.21 (0.1596)
ϑ̂SPEC, CL 0.346 (0.0234) 1.025 (0.4806) 0.144 (0.520) 1.61 (0.1846)
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Figure 3.4: Estimated extremal coefficients based on λ̂2
MLE against distance between the

stations. Left panel: original locations with and without coast stations. Middle panel: trans-
formed locations (only non-coast stations), extremal coefficient functions corresponding to the
parameters in Table 3.1 are included. Right panel: comparison to madogram estimator.
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three different estimators in (3.28) are shown in Figure 3.6. In agreement with the results
of the simulation study, the multivariate estimator ϑ̂SPEC seems to be most reliable since
the re-estimated extremal coefficient functions are close to the true value of the simulation.
In contrast, the composite likelihood estimator ϑ̂SPEC , CL significantly underestimates the
true degree of extremal dependence. This is probably a result of the false assumption of
independence of bivariate densities which underlies the concept of composite likelihoods.
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Figure 3.5: Level lines of the extremal coefficient function and realizations of the fitted
Brown-Resnick process. Left: Without transformation. Right: After space transformation.
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Figure 3.6: Validation of estimation: Fitted extremal coefficient functions for 100 simula-
tions of 8172 Brown-Resnick processes on the transformed locations according to the esti-
mated parameters.
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3.4.2 Non-stationarity
In the previous subsection we excluded the 10 coastal stations from fitting the stationary
Brown-Resnick model since they exhibit a different extremal dependence structure than the
25 inland stations. Here we fit a multivariate Hüsler-Reiss distribution as extreme value
model, which does not rely on any stationarity assumption. In particular, for T ′ being any
subset of the 35 locations x1, . . . ,x35 ∈ X , we estimate the k(k − 1)/2 parameters of the
dependence matrix Λ ∈ Rk×k, where k = |T ′|. To this end, we can use any of the three
newly proposed estimators Λ̂Var, Λ̂MLE and Λ̂SPEC. While Λ̂Var is given in explicit form and
hence computationally very efficient and applicable to arbitrary dimensions, the latter two
estimators require numerical optimization. Fortunately, the respective likelihood functions
can be still evaluated much faster than most of the commonly used spectral density models.
For the ML algorithm, Λ̂Var and, since the class of Hüsler-Reiss distributions is closed, also
the lower-dimensional parameter estimates provide reasonable starting values.
In what follows, we use Λ̂Var as a starting value for the numerical optimization of Λ̂SPEC.

We compare the likelihood values of the Hüsler-Reiss model fit to those of two other
parametric models for spectral densities, namely the Dirichlet model (Coles & Tawn, 1991)
and the weighted exponential model (Ballani & Schlather, 2011). The comparison is based on
randomly drawing k = 3, 4, 5, 6 and 7 out of the 35 stations and fitting all three models. This
is repeated 100 times. The weighted exponential model seems to fit worst for all k ∈ {3, 4, 5, 6}.
Note that numerical optimization for this model involves a rather complicated likelihood and
is extremely time-consuming. This is why the weighted exponential model is only included
for k ∈ {3, 4, 5, 6}. The Hüsler-Reiss model seems to outperform the Dirichlet model for
k ≥ 5, which is not completely surprising since the Dirichlet model has only k parameters,
while the Hüsler-Reiss model has k(k − 1)/2 parameters encoding the extremal dependence.
The results are summarized by Figure 3.7, which shows boxplots of the maximum likelihood
values for each of the 100 choices of stations, and Table 3.2, which shows the percentage of
cases in which the Hüsler-Reiss model outperforms the Dirichlet and the weighted exponential
model.

Table 3.2: Fraction of cases in which the Hüsler-Reiss model outperforms the Dirichlet and
the weighted exponential model.

number of stations k = 3 k = 4 k = 5 k = 6 k = 7
P(LHR > LDiri) 0.10 0.25 0.73 1.00 0.99
P(LHR > LwExp) 0.79 0.96 0.93 1.00 –
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Figure 3.7: Comparison of different spectral density models based on the maximized likeli-
hood. The numbers above the boxes show the average computing time (in seconds) for the
numerical maximization.
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3.5 Discussion
This chapter presents several new estimators for the Hüsler-Reiss distribution and its spatial
analog, the Brown-Resnick process. The methods are based on asymptotic conditional
distributions of random variables in the MDA of the Hüsler-Reiss model. Within the
framework of multivariate peaks-over-threshold, it is shown how conditioning on different
extreme events leads to different estimators. In particular, the concept of extremal increments
turns out to be fruitful, since for the Hüsler-Reiss model the increments conditioned on
a fixed component being large are approximately multivariate Gaussian distributed. This
enables very efficient inference even for high dimensions. The simulation study shows, that
the proposed estimators perform well, both in terms of bias and variance. Especially for
small data sets they outperform classical block methods. Moreover, the non-parametric,
bivariate estimators are a suitable tool for exploratory data analysis (such as distinguishing
between coastal and inland stations in Section 3.4.1), since they are computationally efficient
and yield reliable results.
With regard to spatial extreme value statistics, one of the most promising models is the
class of Brown-Resnick processes, due to their flexibility in connection with parametric
families of variograms. The chapter provides several methods for parametric fitting of
these models. Particularly the good performance of the multivariate spectral estimator
suggests that using higher-dimensional densities better captures the shape of the underlying
variogram than methods based on bivariate distributions only. Also for multivariate analysis
of non-stationary data, the Hüsler-Reiss model is shown to be both well fitting and applicable
in high-dimensions due to low computational costs of the estimators (Section 3.4.2).
While the simulation study in Section 3.3 already provides some empirical evidence for the
consistency of the proposed estimators, a deeper analysis of the theoretical properties such
as speed of convergence is left for future research. The main difficulty is to find appropriate
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assumptions such that the conditional increments converge not only in distribution but also
in L1 or L2.
The idea of including all single extreme events into statistical inference, in connection with
the concept of conditional increments, might also be applicable to other max-stable models
such as mixed moving maxima processes.

Supplementary material
The raw data for the application can be downloaded from http://www.knmi.nl.

3.6 Proofs
Proof of Theorem 3. Note that

P
{
g(X̃n) ∈ B

∣∣ X̃n ∈ A− log u(n)
}

= P
{
g(X̃n + log u(n)) ∈ B

∣∣ X̃n ∈ A− log u(n)
}

=
P
{

X̃n ∈ (g−1(B)− log u(n)) ∩ (A− log u(n))
}

P
{

X̃n ∈ A− log u(n)
}

= n/u(n)P
{
X− log(n/u(n)) ∈ g−1(B) ∩A

}
n/u(n)P {X− log(n/u(n)) ∈ A} .

Thus, applying Prop. 5.17 in Resnick (2008), we obtain

lim
n→∞

P
{
g(X̃n) ∈ B

∣∣ X̃n ∈ A− log u(n)
}

= µ(g−1(B) ∩A)
µ(A) .

and the measure Qg,A is given by

Qg,A(B) = µ(g−1(B) ∩A)
µ(A) , B ∈ B(S).

Proof of Theorem 4. 1. The density of the exponent measure µ of the Hüsler-Reiss distri-
bution (3.5) is given by

µ(dx0, . . . ,dxk) = e−x0

(2π)
k
2 |detΣ|1/2

exp
(
−1

2y>Σ−1y
)
dx0 . . . dxk, x0, . . . ,xk ∈ R,

where y = (x1 − x0 + 2λ2
1,0, . . . ,xk − x0 + 2λ2

k,0)> and Σ = Ψk,(0,...,k)(Λ). For s =
(s1, . . . ,sk) ∈ Rk, Bs = {y ∈ Rk : yi ≤ si, i = 1, . . . ,k}, note that g−1(Bs) = {x ∈
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Rk+1 : xi − x0 ≤ si, i = 1, . . . ,k}. Thus, for A1 = (0,∞)× Rk, we obtain

µ(g−1(Bs) ∩A1) =
∫ ∞

0
e−x0

∫ x0+s1

−∞
. . .

∫ x0+sk

−∞

exp
(
−1

2y>Σ−1y
)

(2π)
k
2 |detΣ|1/2

dxk . . . dx0

= ΦM,Σ(s1, . . . ,sk),

where ΦM,Σ is the cumulative distribution function of a k-variate normal distribution
with mean M = (−2λ2

1,0, . . . ,−2λ2
k,0)> and covariance matrix Σ = Ψk,(0,...,k)(Λ). Since

µ(A1) = 1 and the family of sets {Bs,s ∈ Rk} is a generator of the Borel σ-algebra
B(Rk) on Rk, the first assertion follows from the proof of Theorem 3.

2. In the bivariate case the density of µ simplifies to

µ(dx,dy) = e−x

2λ φ
(
λ+ y − x

2λ

)
dx dy, x,y ∈ R,

with λ = λ0,1. We consider the set A2 = [−∞,0]C ⊂ R2 and note that µ(A2) = 2Φ(λ).
It thus suffices to compute µ(g−1(Bt) ∩A2) for t ∈ R. For t < 0 we have

µ(g−1(Bt) ∩A2) =
∫ ∞

0

∫ x+t

−∞

e−x

2λ φ
(
λ+ y − x

2λ

)
dy dx = Φ

(
λ+ t

2λ

)
,

and similarly for t > 0,

µ(g−1(Bt) ∩A2) = µ(A2)− Φ
(
λ− t

2λ

)
.

By the above considerations and the proof of Theorem 3 this yields

lim
n→∞

P
{
X(1) −X(0) ≤ t

∣∣∣X̃(0)
n > log u(n) or X̃(1)

n > log u(n)
}

=


1

2Φ(λ)Φ
(
λ+ t

2λ
)

for t < 0,
1− 1

2Φ(λ)Φ
(
λ− t

2λ
)

for t > 0.

In other words, X(1) −X(0) conditional on either X̃(0)
n or X̃(1)

n being large converges
in distribution to some random variable Z with density

gλ(t) = 1
4λΦ(λ)φ

(
λ− |t|2λ

)
, t ∈ R.

Proof of Proposition 1. By Theorem 1 in Coles & Tawn (1991) we can compute the spectral
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density h as a derivative of the exponent measure ν(x) = − logGΛ(x), namely

∂ν(x)
∂x0 . . . ∂xk

= −
(

k∑
i=0

xi

)−k
h

(
x0∑k
i=0 xi

, . . . ,
xk∑k
i=0 xi

;Λ
)
.

Since all but one summands of the exponent measure ν vanish, it suffices to evaluate

∂

∂x0 . . . ∂xk
(−1)k

∫
log x0

∫
log x1−z+2λ2

1,0

. . .

∫
log xk−z+2λ2

k,0

φ (y|Σ) dy1 . . . dyk e
−z dz, (3.29)

where φ ( · |Σ) is the density function of the k-dimensional normal distribution with covariance
matrix Σ. Carrying out this computation yields (3.24).



4 A generalization of the Brown-Resnick process in
terms of Lévy processes

We recall definition (1.3) of the original process in Brown & Resnick (1977) as

max
i∈N

[Xi +Wi(t)− |t|/2] , t ∈ R, (4.1)

where Wi, i ∈ N, are independent copies of a standard Brownian motion on R and
∑
i∈N δXi

is an independent Gumbel point process. They showed that the max-stable process (4.1) is
stationary and that it is the limit of pointwise maxima of independent Gaussian Ornstein-
Uhlenbeck processes.
The Brownian motion is a Markov process with stationary and independent increments.

A natural approach is to generalize (4.1) to the class of all such stochastic processes which
have stationary and independent increments, namely Lévy processes (cf. Bertoin (1996);
Sato (1999)). In fact, Stoev (2008) introduced the process

η+(t) = max
i∈N

[Xi + L+
i (t)− tΨ+(1)], t ≥ 0, (4.2)

where
∑
i∈N δXi is as above and L+

i , i ∈ N, are independent copies of a Lévy process L+ with
finite exponential moments and Ψ+(1) = logEeL+(1). They showed that η+ is max-stable
and stationary on [0,∞). However, somehow counter-intuitively, their results cannot be
generalized by simply reflecting the Lévy processes at the y-axis (as it is seemingly done
with the Brownian motion in (4.1)). One can easily show that this would not yield a
stationary process on R. Moreover, only few theoretical properties of the process η+ are
known. For instance, it was asked in Stoev (2008) whether the one-sided process in (4.2) has
a representation as a mixed moving maxima (MMM) process.
In this chapter we give a more complete definition of Brown-Resnick processes based on

Lévy processes not only on the whole real line but also in terms of random fields on Rd.
By analyzing their properties we aim at providing a deeper understanding of the two-sided
version of (4.2), also illuminating the construction (4.1).

By a suitable change of measure, in Section 4.1 we introduce an exponentially transformed
Lévy process L−, which already figured in Kabluchko (2011b) in the construction of a certain
α-stable process. This process will give rise to an extension η− of the process η+ on the
negative real axis. Several properties of the combined process η on the whole real line are
derived and, specifically, the question on a MMM representation is answered. Section 4.2 is
concerned with the convergence of maxima of i.i.d. realizations of certain stochastic processes
to η. In particular, extending the result on the Gaussian Ornstein-Uhlenbeck process in Brown
& Resnick (1977), we present a similar result for α-stable Ornstein-Uhlenbeck processes.

45
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In Section 4.3 we use the one-dimensional results to extend the process η to d-dimensional
random fields. To this end, the notion of linearly additive, infinitely divisible random fields
introduced by Mori (1992) is crucial. Some ideas on statistical inference for the max-stable
process η are given in Section 4.4.

4.1 The one-dimensional case
Throughout this section, {L+(t) : t ≥ 0} will be a Lévy process, i.e. a stochastic process with
stationary and independent increments such that L+(0) = 0 holds a.s. and L+ already is a
version which has càdlàg paths (right-continuous with finite left limits). Denote by (0,σ2,ν+)
the characteristic triplet of L+, where σ2 is the variance of the Brownian component and ν+

is the Lévy measure. The drift is irrelevant and thus assumed to equal 0. Further, let L+

satisfy the moment condition

Ψ+(1) = logEeL+(1) <∞. (4.3)

The natural space for the sample paths of a Lévy process is the Skorokhod space of càdlàg
paths. For an interval I ⊂ R it is defined as

DR(I) = {f : I → R, f has càdlàg sample paths} ,

which becomes a Polish space when equipped with the Skorokhod metric (cf. Ethier & Kurtz
(1986)). By B(DR(I)) we will denote the corresponding Borel σ-algebra on DR(I). For
instance, with this notation, L+ is a random element in the Skorokhod space DR([0,∞)).

4.1.1 Definition of the process L−

With the Lévy process L+ above, put Z+(t) = L+(t) − tΨ+(1), such that EeZ+(t) = 1 for
t ≥ 0. We can now define a transformed Lévy process {Z−(t) : t ≥ 0} that arises from
an exponential change of measure (cf. Kabluchko (2011b)). Since Z+ is a Markov process,
say on the filtered space (Ω,F ,P, (Ft)t≥0), there is a corresponding semigroup of transition
kernels (µ+

t )t≥0 given by

P
(
Z+(t) ∈ B|Fs

)
= µ+

t−s(Z+(s),B) = µ+
t−s(0,B − Z+(s)), 0 ≤ s < t,

for any B ∈ B(R), where the second equality holds since Z+ is a Lévy process. For details
on Markov processes see Chapter 8 in Kallenberg (2002). The relation

µ−t (x,B) = Ex1B(Z+(t))eZ+(t)−x =
∫
R

1B(y)ey−xµ+
t (x,dy), x ∈ R, B ∈ B(R), (4.4)

defines another Markov process (Z−(t))t≥0 with transition kernels (µ−t )t≥0. Indeed, it is easy
to verify that the Chapman-Kolmogorov relation µ−t+s = µ−t µ

−
s is satisfied and, moreover,
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that this semigroup is space homogeneous, since

µ−t (x,B) = Ex1B(Z+(t))eZ+(t)−x = E01B(Z+(t) + x)eZ+(t) = µ−t (0,B − x). (4.5)

Thus, (Z−(t))t≥0 is in fact a Lévy process.
One can check that (4.5) implies that −Z−(t) = L−(t) − tΨ−(1), t ≥ 0, where L− is
a Lévy process with characteristic triplet (0, σ2, ν−), with ν−(dx) = e−xν+(−dx), and
Ψ−(1) = logEeL−(1). Note that Ψ−(1) is well-defined since L− satisfies the exponential
moment condition (4.3). We define the combined two-sided process {Z(t) : t ∈ R} with
sample paths in DR(R) by

Z(t) =
{
L+(t)− tΨ+(1) for t ≥ 0,
L−((−t)−)− (−t)Ψ−(1) for t < 0,

(4.6)

where L+ and L− are assumed to be independent and (u)− denotes the left limit at u > 0.

Remark 6. For instance, if L+ is a standard Brownian motion {W+(t) : t ≥ 0}, i.e.
Z+(t) = W+(t)− t/2, t ≥ 0, then Z−(t) d= W+(t) + t/2, t ≥ 0 and thus

Z(t) = W (t)− |t|/2, t ∈ R,

for a standard Brownian motion W on R. This shows that in the construction (4.1), the
Brownian motion is not “mirrored” but in fact transformed by an exponential change of
measure to obtain the process W− on the negative real axis.

Remark 7. Note that the process Z is not a Lévy process on the real axis. It still has
independent increments, however, they are no longer stationary since ν−(−dx) = exν+(dx) 6=
ν+(dx), unless ν ≡ 0.

Remark 8. For any Lévy process L+ satisfying the moment condition (4.3), the associated
process Z has the property

lim
|t|→∞

Z(t) = −∞, almost surely.

This follows from EeZ(t) = 1, t ∈ R, and Exercise VI.4 in Bertoin (1996)

Remark 9. Suppose L+ is a spectrally negative Lévy process, i.e. the support of its Lévy
measure is contained in (−∞,0] (cf. Chapter VII in Bertoin (1996) for details). Clearly, L+

satisfies the moment condition (4.3). In this case there is a concrete interpretation of the
associated process Z− obtained by the exponential change of measure (4.4) applied to Z+. In
fact, Lemma VII.7 in Bertoin (1996) states that for any t ≥ 0 and A ∈ Ft

PZ−(A) = lim
x→∞

PZ+(A | sup
t≥0

Z+(t) > x),
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where PZ− is the law of Z−. In other words, Z− is nothing else than the process Z+ (which
drifts to −∞) conditioned to drift to ∞.

4.1.2 The Brown-Resnick process η based on Z
We are now in a position to extend the construction in (4.2) to the whole real line and define
a two-sided version of the Brown-Resnick process based on Lévy processes. Here, we assume
that σ2 = 0, since the Gaussian case has already been studied in Brown & Resnick (1977).
In fact, the assertion of this theorem is a consequence of Prop. 2.8 in Kabluchko (2009a),
but we give a more elementary proof to avoid the technical methodology.

Theorem 5. Let (Z(t))t∈R be defined as above based on L+ satisfying the moment condition
(4.3). Further, let

∑∞
i=1 δXi be a Poisson point process with intensity e−xdx and let Zi be

independent copies of Z, i ∈ N. Then, the process

η(t) = max
i∈N

(Xi + Zi(t)), t ∈ R, (4.7)

is max-stable and stationary on R.

Proof. The max-stability follows directly from the construction. First note that by Theorem
25.17 in Sato (1999), EeZ(t) = 1 implies that EeuZ(t) < ∞, for all u ∈ [0,1] and t ∈ R.
We apply the stationarity criterion in Prop. 6 in Kabluchko et al. (2009). To this end, let
n ∈ N, t1 ≤ . . . ≤ tj ≤ 0 ≤ tj+1 ≤ . . . ≤ tn and u1, . . . ,un ∈ [0,1] such that

∑n
i=1 ui = 1.

Since (Z(t1), . . . ,Z(tj)) and (Z(tj+1), . . . ,Z(tn)) are independent by the definition of Z, we
compute their Laplace exponents separately. Here, let R0 = R \ {0}. Using the definition of
Z− in (4.5) we obtain

logE exp (u1Z(t1) + . . .+ ujZ(tj))

= logE exp
(
− u1(Z−((−t1)−)− Z−((−t2)−))− (u1 + u2)(Z−((−t2)−)− Z−((−t3)−))−

· · · − (u1 + . . .+ uj)Z−((−tj)−)
)

= (t2 − t1)
∫
R0
e(1−u1)x − 1− (1− u1)x1|x|≤1 ν

+(dx)+

· · ·+ (−tj)
∫
R0
e(1−(u1+...+uj))x − 1− (1− (u1 + . . .+ uj))x1|x|≤1 ν

+(dx)

−

j−1∑
i=1

(ti+1 − ti)(1− (u1 + . . .+ ui))− tj(1− (u1 + . . .+ uj))

Ψ+(1)

= (t2 − t1)
∫
R0
e(u2+...+un)x − 1− (u2 + . . .+ un)x1|x|≤1 ν

+(dx)+

· · ·+ (−tj)
∫
R0
e(uj+1+...+un)x − 1− (uj+1 + . . .+ un)x1|x|≤1 ν

+(dx)

+

 n∑
i=1

t1ui −
j∑
i=1

tiui

Ψ+(1),
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where we used
∑n
i=1 ui = 1. Furthermore,

logE exp
(
uj+1(L+(tj+1)− Ψ+(tj+1)) + . . .+ un(L+(tn)− Ψ+(tn))

)
= logE exp

(
un(L+(tn)− L+(tn−1)) + (un + un−1)(L+(tn−1)− L+(tn−2))+

· · ·+ (un + . . .+ uj+1)L+(tj+1)−
n∑

i=j+1
tiuiΨ

+(1)
)

= (tn − tn−1)
∫
R0
eunx − 1− unx1|x|≤1 ν(dx)+

· · ·+ tj+1

∫
R0
e(uj+1+...+un)x − 1− (uj+1 + . . .+ un)x1|x|≤1 ν

+(dx)

−
n∑

i=j+1
tiuiΨ

+(1).

Putting the parts together yields

log φt1,...,tn(u1, . . . ,un) = logE exp (u1Z(t1) + . . .+ unZ(tn))

= (tn − tn−1)
∫
R0
eunx − 1− unx1|x|≤1 ν

+(dx)+

· · ·+ (t2 − t1)
∫
R0
e(u2+...+un)x − 1− (u2 + . . .+ un)x1|x|≤1 ν

+(dx)

+
n∑
i=2

(t1 − ti)uiΨ+(1).

This expression does no longer depend on the assumption that t1, . . . ,tj are negative and
tj+1, . . . ,tn are positive but is true for any t1, . . . ,tn ∈ R. Since it only depends on differences
of two locations, we clearly have for any h ∈ R that

φt1+h,...,tn+h(u1, . . . ,un) = φt1,...,tn(u1, . . . ,un).

This concludes the proof.

Similar to the Gaussian case, the next result shows that the paths of the Brown-Resnick
process look essentially like those of the underlying Lévy processes.

Proposition 2. For any compact interval K ⊂ R only finitely many paths contribute to the
process {η(t) : t ∈ K} from Theorem 5 almost surely. In particular, η is again a process with
càdlàg sample paths.

Proof. Without loss of generality put K = [−T,T ], for some T > 0. Let
∑∞
i=1 δ(Xi,Zi) be a

Poisson point process with intensity e−xdx PZ and suppose that the processes Z and Zi,
i ∈ N, are as in Theorem 5. For k ∈ Z define the random number

Ik = #{i ∈ N : sup
t∈[−T,T ]

(Xi + Zi(t)) > k},
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which is Poisson distributed with parameter λk ∈ [0,∞]. Observe that

λk ≤ e−k
∫
R
ez
(
P
[

sup
t∈[−T,0]

Z(t) > z

]
+ P

[
sup
t∈[0,T ]

Z(t) > z

])
dz

≤ e−k
(
E exp

{
sup

t∈[−T,0]
Z(t) ∨ 0

}
+ E exp

{
sup
t∈[0,T ]

Z(t) ∨ 0
})

<∞,

where for a,b ∈ R we put a ∨ b = max(a,b). For the last inequality we used the assumption
that the exponential moments of Z exist together with Theorem 25.18 of Sato (1999) applied
to the sub-multiplicative function x 7→ exp(x ∨ 0). Thus, Ik is almost surely finite.
Moreover, η is almost surely càdlàg as the maximum of finitely many càdlàg functions.

Recall the definition of the extremal correlation function from Chapter 1 as a measure of
extremal dependence. Kabluchko & Schlather (2010) showed that a process with extremal
correlation function ρ is mixing if and only if

lim
t→∞

ρ(t) = 0.

Proposition 3. Let the processes η and Z be as in Theorem 5. The extremal correlation
function of η is given by

ρ(t) = 2− E
[
1 ∨ eZ(t)

]
, t ∈ R,

and, moreover, η is mixing.

Proof. Recall from Remark 8 that lim|t|→∞ Z(t) = −∞, almost surely. The first assertion
follows by a simple calculation. For the second claim we use EeZ(t) = 1 for all t ≥ 0 and
dominated convergence to obtain

E
[
1 ∨ eZ(t)

]
= P(Z(t) < 0) + 1− E1Z(t)<0e

Z(t) → 2,

for t→∞.

The mixing property was already shown in Stoev (2008) for the one-sided process (4.2).
However, an open question therein was whether the stationary process in (4.2) has a
representation as a MMM process as defined in (1.4). The following theorem answers this
question.

Theorem 6. Let the processes η and Z be as in Theorem 5. The Brown-Resnick process η
admits a MMM representation.

Proof. Note that the Borel σ-algebra on DR(R) is induced by the projections πs : D → R,
f 7→ f(s), for s ∈ Q (cf. Theorem 14.5 in Billingsley (1968)). The subset D↓ of functions in
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DR(R) that tend to negative infinity for |t| → ∞ is measurable. Indeed, we note that

D↓ =
⋂
n∈N

⋃
m∈N

⋂
s∈Q
|s|≥m

{
π−1
s ((−∞,−n])

}
,

by the right continuity of paths in DR(R). Furthermore, Remark 8 implies that PZ(D↓) = 1,
where PZ denotes the law of Z on DR(R). Let N∗Z =

∑∞
i=1 δ(Xi,Zi) be a Poisson point process

on R×D↓ with intensity e−xdx PZ . We will show below that the mapping

ϕ : R×D↓ −→ R× R×D↓

(x,f) 7→
(
x+ sup

s∈R
f(s), arg sup f, f(·+ arg sup f)− sup

s∈R
f(s)

)
(4.8)

is measurable. Applied to the points of N∗Z it then induces a Poisson point process

∞∑
i=1

δ(Xi+sups∈R Zi(s),arg supZi,Zi(·+arg supZi)−sups∈R Zi(s)),

on R× R×D↓ with a certain intensity measure Γ . Using the same estimate as in the proof
of Prop. 2 we conclude that

Γ
(
[0,1]× [0,1]×D↓

)
≤
∫
R
exP

(
sup
t∈[0,1]

Z(t) > x

)
dx <∞.

This fact and the arguments in the proof of Theorem 14 in Kabluchko et al. (2009) show
that Γ factorizes and is given by c e−xdx dt dQ, where c is a finite constant (depending on Z)
and Q is a probability measure on D↓. This gives the required MMM representation in (1.4).

For the measurability of ϕ in (4.8) we first note that due to the right continuity and the
fact that the supremum of a function f ∈ D↓ is finite we have

sup
s∈R

f(s) = sup
s∈Q

f(s) = sup
s∈Q

πs(f),

and thus, sup is measurable on D↓ as the supremum of countably many measurable functions.
Furthermore we define the arg sup to be the supremum of those points where the supremum

is attained and those where it is approached arbitrarily close. More precisely, let

arg sup : D↓ −→ R, f 7→ lim
n→∞

sup
s∈Q

hns (f),

where hns : D↓ → R for s ∈ Q and n ∈ N is defined by f 7→ s1{sup f−f(s)<1/n}. Since the hns
are measurable, so is arg sup.
For the measurability of the translation by the arg sup we note that the mapping γ :

D↓ × R → D↓, (f,t) 7→ f(· + t) is measurable thus also the concatenation of measurable
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functions

D↓ −→ R×D↓ γ−→ D↓

f 7→ (arg sup f, f) 7→ f(·+ arg sup f).

This establishes the measurability of ϕ and concludes the proof.

Remark 10. In general it is not possible to explicitly compute the distribution Q of the
process F in the MMM representation (1.4) for general processes η. However, in the special
case where Z is a standard Brownian motion with drift, Engelke et al. (2011) showed that Q
is the law of a well-known diffusion process, namely a Brownian motion with drift conditioned
to stay negative (cf. Chapter 2).

4.2 Convergence results
In this section we show that the stationary processes η defined in (4.7) arises as the max-limit
of certain suitably rescaled and normalized stochastic processes. For the sake of simplicity,
we restrict our analysis to processes on [−1,1], the case (−∞,∞) being similar.
Denote by Mp(E) the space of all Radon point measures on the complete, separable and
second countable metric space (E,B(E)). Mp(E) is equipped with the σ-algebra Mp(E)
induced by the family of all projections πA : Mp(E)→ [0,∞], τ 7→ τ(A), for A ∈ B(E).
Further, for a stochastic process {R(t) : t ∈ T} on an index set T and t = (t1, . . . ,tm) ∈ Tm,
m ∈ N, we use the shorthand notation R(t) = (R(t1), . . . , R(tm)).

4.2.1 Extremes of independent Lévy processes
Motivated by the results in Kabluchko (2009a) for sums of independent geometric Lévy
processes, in this section we consider the extremes in a similar situation. Suppose that Li,
i ∈ N, are independent copies of a non-deterministic Lévy process {L(t) : t ≥ 0} satisfying
the moment condition

Ψ(u) = logEeuL(1) <∞, for all u ∈ R,

and suppose that L(1) is non-lattice. The function Ψ is strictly convex and infinitely
differentiable with Ψ(0) = 0. Let λ be given by λ = I(Ψ ′(1)) = Ψ ′(1)− Ψ(1), where I is the
Legendre-Fenchel transform of Ψ (for details see Kabluchko (2009a)), and suppose that sn,
n ∈ N, is a sequence of non-negative real numbers such that

lim
n→∞

logn
sn

= λ.

Further, put Zi(t) = Li(t)− tΨ(1), t ∈ R, i ∈ N, and define normalizing constants by

bn = snI
−1
(

logn− log(
√

2πΨ ′′(1)sn)
sn

)
, n ∈ N.
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Theorem 7. As n→∞, we have the following convergence

max
i=1,...,n

Zi(sn + t)− bn
d→ η(t), t ∈ [−1,1],

in the sense of finite dimensional distributions, where η is the process in (4.7).

Proof. Let us first consider the one-sided case on [0,1]. Note that by the Lévy property
Zi(sn + ·)− Zi(sn) is independent of Zi(sn) and it has the same distribution as Zi(·), i ∈ N.
Thus, for u ∈ R and A ∈ B(DR[0,1]) we have the convergence

nP((Z1(sn)− bn, Z1(sn + ·)− Z1(sn)) ∈ (u,∞)×A)
= nP(Z1(sn)− bn ∈ (u,∞)) · P(Z1(·) ∈ A)→ e−uP(Z1(·) ∈ A),

as n→∞, since nP(Z1(sn)−bn ∈ (u,∞))→ e−u by Lemma 10.3 in Kabluchko (2011b). Thus,
since weak convergence on DR[0,1] implies convergence of finite dimensional distributions, it
follows by Prop. 3.21 in Resnick (2008) that for any m ∈ N and t = (t1, . . . , tm) ∈ [0,1]m,
the point processes

M∗n =
n∑
i=1

δ(Zi(sn)−bn,Zi(sn+t)−Zi(sn)),

converges weakly on R× Rm to the PPP N∗Z(t) =
∑∞
i=1 δ(Xi,Zi(t)) with intensity e−xdxPZ(t).

We observe that with M = {ψ ∈ Mp(R × Rm) : ψ({x ∈ Rm+1 : x ≤ 0}C) < ∞} ∈
Mp(R× Rm) we have P(N∗Z(t) ∈M) = 1, where AC denotes the complement of the set A.
Applying the continuous map

κ :M→ Rm,
∑
i∈N

δ(yi,si) 7→ max
i∈N

yi + si (4.9)

to M∗n, together with the continuous mapping theorem, yields the one-sided version of the
theorem. Here, the maxima in (4.9) are to be understood componentwise. The two-sided
result can now be deduced from the one-sided version following the lines of Section 10.6 in
Kabluchko (2009a).

4.2.2 Ornstein-Uhlenbeck processes driven by totally skewed α-stable Lévy processes
In this section we show that η also arises as the max-limit of independent Ornstein-Uhlenbeck
processes which are driven by totally skewed α-stable Lévy processes, for α ∈ (1,2). Brown
& Resnick (1977) proved a similar result for Gaussian (α = 2) Ornstein-Uhlenbeck processes
attracted by the original Brown-Resnick process.

Totally skewed α-stable random variables

Let us first recall some definitions on α-stable processes (cf. Samorodnitsky & Taqqu (1994)).
A real-valued random variable X is said to have an α-stable distribution Sα(σ,β,µ) with
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parameters α ∈ (1,2), σ ≥ 0, β ∈ [−1,1] and µ ∈ R if its characteristic function has the form

E exp(iθX) = exp {−σα|θ|α(1− iβsign(θ) tan(πα/2)) + iµθ} , θ ∈ R.

In general, α-stable distributions possess heavy polynomial tails and are thus not in the
max-domain of attraction of the Gumbel distribution. An exception, which we will focus on,
is the case of α-stable random variables that are totally skewed to the left, i.e. β = −1. In
fact, if X is Sα(1, − 1,0) distributed with α ∈ (1,2), then it has a positive density on the
whole real line (−∞,∞) (unlike the case α < 1, where the mass is concentrated on (−∞,0]).
In this case, its upper tail F̄ = 1− F is light and satisfies as x→∞

F̄ (x) = P(X > x) ∼ (α− 1)Aαx−α/(2(α−1)) exp{−Bαxα/(α−1)},

for some positive constants

Aα = [2π(α− 1)3]−1/2[α/| cos(απ/2)|]1/(2α−2),

Bα = (α− 1)α−α/(α−1)| cos(απ/2)|1/(α−1),

(cf. Albin (1993), Samorodnitsky & Taqqu (1994, Eq. 1.2.11)). Similarly, for the density f
we have

f(x) ∼ αAαBαx(2−α)/(2(α−1)) exp{−Bαxα/(α−1)},

as x→∞. In particular, note thatX satisfies the moment condition (4.3), since α/(α−1) > 2,
for all α ∈ (1,2). Thus, we can rewrite the tail as

F̄ (x) = c exp
{
−
∫ x

z

g(t)
a(t)dt

}
, z < x <∞,

for some c, z ∈ R, a measurable function g satisfying limt→∞ g(t) = 1 and a positive,
absolutely continuous function a with density a′ having limt→∞ a

′(t) = 0. More precisely, by
Theorem 3.3.26 in Embrechts et al. (1997) the function a can be chosen as

a(t) = F̄ (t)/f(t) = α− 1
αBα

t−1/(α−1), t ∈ R.

Suppose that Xi, i ∈ N, are independent copies of X. Then, with dn = F←(1 − n−1) and
cn = a(dn) it holds that (cf. Theorem 3.3.26 in Embrechts et al. (1997))

lim
n→∞

P
(
c−1
n ( max

i=1,...,n
Xi − dn) ≤ x

)
= exp(exp(−x)), x ∈ R, (4.10)

where F← is the pseudo-inverse of F . Note in particular, that dn →∞ and thus cn → 0 as
n tends to ∞.
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Lévy Ornstein-Uhlenbeck processes

To any totally skewed α-stable random variable X with distribution Sα(1,− 1,0), α ∈ (1,2),
there is a Lévy process {Lα(t) : t ≥ 0} such that Lα(1) d= X. It is easy to see that the
process Lα is 1/α-self-similar, i.e., the processes {Lα(ct) : t ≥ 0} and {c1/αLα(t) : t ≥ 0}
have the same finite dimensional distributions (cf. Samorodnitsky & Taqqu (1994, Section
3.1)).
Based on this, we define the associated Ornstein-Uhlenbeck process {Yα(t) : −∞ < t <∞}
by

Yα(t) = e−t/αLα(et).

By the self-similarity of Lα we note that the process Yα is stationary with Sα(1, − 1,0)
margins. In fact, for any h ∈ R we observe (cf. Breiman (1968))

{Yα(t+ h) : −∞ < t <∞} = {e−h/αe−t/αLα(ehet) : −∞ < t <∞}
d= {e−t/αLα(et) : −∞ < t <∞}
= {Yα(t) : −∞ < t <∞}.

Convergence to the max-stable process

In order to obtain convergence of the Ornstein-Uhlenbeck process to the process η in (4.7),
we need to define a version of Yα that is rescaled in time and normalized in space. More
precisely, for cn,dn as above, let

Wn
i (t) = c−1

n (Yi(snt)− dn), t ∈ [−1,1],

where Yi, i ∈ N, are independent copies of Yα and sn is given by

sn = Ψ(1)αcnd−1
n = Ψ(1)α− 1

Bα
d−α/(α−1)
n = cαn. (4.11)

Here, Ψ(1) = logE exp(Lα(1)) = | cos(απ/2)| by Prop. 1.2.12 in Samorodnitsky & Taqqu
(1994). Note that sn converges to 0 as n→∞. Since the process Lα satisfies the moment
condition (4.3), we can define the corresponding two-sided process Zα according to (4.6).

Theorem 8. As n tends to ∞ we have convergence

max
i=1,...,n

Wn
i (t) d→ η(t), t ∈ [−1,1], (4.12)

in the sense of finite dimensional distributions, where η is the process in (4.7) based on the
process Zα.

Proof. We start to show the result on the positive interval [0,1]. First, note that by the Lévy
property we have for i ∈ N the stochastic representation Li(esnt)

d= Li(1) + L∗i (esnt − 1),
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where L∗i are independent copies of the Lévy process Lα, also independent of the Li. This
yields the identity in distribution on DR[0,1]

Wn
i (t) = c−1

n (e−snt/αLi(esnt)− dn)
d= c−1

n (Li(1)− dn) +
[
c−1
n e−snt/αL∗i (esnt − 1)− tΨ(1)

]
+
[
c−1
n Li(1)(e−snt/α − 1) + tΨ(1)

]
= Xi,n + Zi,n(t) +∆i,n(t), t ∈ [0,1],

where Xi,n, Zi,n and ∆i,n are defined as the three summands, respectively. The first step is
to prove the following weak convergence on R×DR[0,1] (equipped with the Borel σ-algebra)

nP((X1,n, Z1,n +∆1,n) ∈ (u,∞)×A)→ e−uPZα(A), (4.13)

for u ∈ R and A ∈ B(DR[0,1]) with PZα(∂A) = 0. To this end, let us establish the weak
convergence

nP((X1,n, Z1,n) ∈ (u,∞)×A) = nP(X1,n ∈ (u,∞)) · P(Z1,n ∈ A)→ e−uPZα(A), (4.14)

where we used independence ofX1,n and Z1,n for the first equation. From (4.10) it follows that
nP(X1,n ∈ (u,∞))→ exp(−u), as n→∞ and we now seek to prove the weak convergence

{Z1,n(t) : t ∈ [0,1]} d→ {L∗1(t)− tΨ(1) : t ∈ [0,1]} = {Zα(t) : t ∈ [0,1]} , (4.15)

on DR[0,1], as n→∞. In fact, we can even show that this convergence holds almost surely.
To this end, recall the definition of the Skorokhod metric in Ethier & Kurtz (1986). Define a
sequence of strictly increasing, Lipschitz continuous functions for n ∈ N by

λn : [0,1]→ [0,1], t 7→ (esnt − 1)/(esn − 1).

It is easy to check that

γ(λn) = sup
0≤t<s≤1

∣∣∣∣log λn(s)− λn(t)
s− t

∣∣∣∣→ 0, n→∞.

Furthermore, we observe that by the self-similarity of L∗1

{Z1,n(t) : t ∈ [0,1]} d=
{

[c−αn (esn − 1)]1/αe−snt/αL∗1(λn(t))− tΨ(1) : t ∈ [0,1]
}

(4.16)

and also

sup
t∈[0,1]

∣∣∣[c−αn (esn − 1)]1/αe−snt/αL∗1(λn(t))− L∗1(λn(t))
∣∣∣→ 0, n→∞,

almost surely, since c−αn (esn − 1) = c−αn (sn + o(sn)) = 1 + o(1) by (4.11). Thus, by the
definition of the Skorokhod metric, [c−αn (esn − 1)]1/αe−snt/αL∗1(λn(·)) converges almost surely
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to L∗1 in DR[0,1], as n→∞. Since almost sure convergence implies weak convergence, this
together with (4.16) yields (4.15), and thus (4.14).
In order to see that (4.14) implies (4.13) we first show that

‖∆1,n‖∞ = sup
t∈[0,1]

|c−1
n L1(1)(e−snt/α − 1) + tΨ(1)| → 0, n→∞, (4.17)

in probability, conditionally on X1,n. Here ‖ · ‖∞ denotes the sup-norm on DR[0,1]. In fact,
for arbitrary ε > 0 and a < b ∈ R

P(‖∆1,n‖∞ > ε |X1,n ∈ [a,b]) ≤P
(
‖c−1
n dn(e−snt/α − 1) + tΨ(1)‖∞ > ε/2

∣∣∣X1,n ∈ [a,b]
)

+P
(
‖X1,n(e−snt/α − 1)‖∞ > ε/2

∣∣∣X1,n ∈ [a,b]
)

Clearly, the first summand tends to 0 as n→∞, since by the definition of sn in (4.11) and
the Taylor approximation of exp we have

sup
t∈[0,1]

|c−1
n dn(e−snt/α − 1) + tΨ(1)| = sup

t∈[0,1]
|c−1
n dn(−cnd−1

n tΨ(1) + o(cnd−1
n )) + tΨ(1)| → 0.

For the second summand we observe

P
(
‖X1,n(e−snt/α − 1)‖∞ > ε/2

∣∣∣X1,n ∈ [a,b]
)

≤ P
(
‖max{|a|,|b|}(e−snt/α − 1)‖∞ > ε/2

)
→ 0,

as n → ∞, since sn → 0. We are now in the position to prove that (4.17) together with
(4.14) implies

lim
n→∞

P(Z1,n +∆1,n ∈ B|X1,n ∈ A) = PZα(B), (4.18)

for all sets B ∈ B(DR[0,1]) with PZα(∂B) = 0 and A ∈ B(R). This assertion is similar to
Lemma 7.3 of Das & Hashorva (2012), where only the space C[0,1] of continuous functions
equipped with the sup-norm is considered. Our proof below in the case of the Skorokhod
space DR[0,1] follows essentially the lines of their proof.
For U ∈ B(DR[0,1]) and ε > 0 define the sets

Uε = {f ∈ DR[0,1] : f = g + h for some g ∈ U, h ∈ DR[0,1] and ‖h‖∞ ≤ ε},
U−ε = {f ∈ U : f + h ∈ U for all h ∈ DR[0,1] with ‖h‖∞ ≤ ε}.

For any ε > 0 with PZα(∂Bε) = PZα(∂B−ε) = 0 we observe

P(Z1,n +∆1,n ∈ B|X1,n ∈ A) ≥ P(Z1,n +∆1,n ∈ B, ‖∆1,n‖∞ < ε|X1,n ∈ A)
≥ P(Z1,n ∈ B−ε, ‖∆1,n‖∞ < ε|X1,n ∈ A)
= P(Z1,n ∈ B−ε)P(‖∆1,n‖∞ < ε|X1,n ∈ A)
→ PZα(B−ε), n→∞,
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where we used (4.15) and the fact that Z1,n is independent of both ∆1,n and X1,n, and,
as shown above, that limn→∞ P(‖∆1,n‖∞ < ε|X1,n ∈ A) = 1. Similarly, we can show that
lim supn→∞ P(Z1,n +∆1,n ∈ B|X1,n ∈ A) ≤ PZα(Bε). Consequently, we have

PZα
(

lim
m→∞

B−εm

)
≤ lim inf

n→∞
P(Z1,n +∆1,n ∈ B|X1,n ∈ A)

≤ lim sup
n→∞

P(Z1,n +∆1,n ∈ B|X1,n ∈ A) ≤ PZα
(

lim
m→∞

Bεm

)
,

for a sequence εm ↘ 0 such that PZα(∂Bεm) = PZα(∂B−εm) = 0,m ∈ N. Since any open
set in the Skorokhod topology is also open in the ‖ · ‖∞-norm, it follows that the interior
(in the Skorokhod metric) Bo of B is contained in the set limm→∞B−εm . Similarly, as any
accumulation point in the ‖·‖∞-norm is also an accumulation point in the Skorokhod topology,
the set limm→∞Bεm is contained in B ∪ ∂B. Since PZα(Bo) = PZα(B ∪ ∂B) = PZα(B), this
yields

PZα
(

lim
m→∞

Bεm

)
= PZα

(
lim
m→∞

B−εm

)
= PZα (B) ,

and thus, (4.18) and consequently (4.13) follow.
To complete the proof for the one-sided case, let m ∈ N and t = (t1, . . . , tm) ∈ [0,1]m be
arbitrary and consider the point processes

N∗n =
n∑
i=1

δ(Xi,n,Zi,n(t)+∆i,n(t)).

Since weak convergence on DR[0,1] implies convergence of finite dimensional distributions, it
follows from Prop. 3.21 in Resnick (2008) and (4.13) that N∗n converges weakly to the PPP∑
i∈N δ(Xi,Zi(t)) with intensity e−xdxPZα(t). Applying the continuous mapping theorem with

κ in (4.9) to this weak convergence of point processes gives the desired result on [0,1].
For the two-sided convergence of (4.12) on [−1,1] we first note that by the same arguments

as above this convergence holds on [0,2], or equivalently,

max
i=1,...,n

Wn
i (·+ 1) d→ η(·+ 1), on [−1,1].

By the stationarity of the Wn
i and η this yields

max
i=1,...,n

Wn
i (·) d→ η(·), on [−1,1].

Remark 11. Both, Theorem 7 and 8 are stated for convergence of finite dimensional
distributions. We though believe that even weak convergence on the Skorokhod space DR[−1,1]
holds true. In the proofs of the two theorems we needed to specialize to finite dimensional
margins since the statements in Resnick (2008), specifically Prop. 3.21, are valid only for
point processes on locally compact, second countable spaces. The Skorokhod space DR[−1,1]
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is however not locally compact and therefore another technique is necessary. To this end,
the weak convergence in (4.13) can probably be used together with bounds on the lower order
statistics, similar as in the proof of Theorem 1.4 in Kabluchko et al. (2009), to establish the
desired result.

4.3 The d-dimensional case: Lévy-Mori random fields
We now extend the results to d−dimensional random fields having infinitely divisible distri-
butions. Let us first set up the framework. We will follow the approach of Mori (1992) who
proved a representation theorem for stochastically continuous, infinitely divisible, linearly
additive random fields {ξ(t) : t ∈ Rd} without Gaussian components. By linearly additive
we understand that for every pair a,b ∈ Rd the stochastic process {ξ(a+ λb) : λ ∈ R} has
independent increments.
In order to describe these random fields explicitly we consider the space of all (d − 1)-
dimensional hyperplanes in Rd, denoted by Hd. Every pair (s,θ) ∈ R × Sd−1 represents
a hyperplane {x ∈ Rd : 〈x, θ〉 = s}, where (s,θ) and (−s, − θ) correspond to the same
hyperplane. We can identify Hd with the half cylinder

Cd+ = (R+ × Sd−1) ∪ ({0} × Sd−1
+ ),

where R+ = (0,∞) and Sd−1
+ is the set of all x ∈ Sd−1 whose first non-zero component is

positive. Moreover, define the set

A||B = {h ∈ Hd : h separates A and B}.

A measure m on Hd is called bundleless if m({h ∈ Hd : h ∩ {a} 6= ∅}) = 0 for all a ∈ Rd.
We now consider a measure Λ on the space Hd × R0 which satisfies the following conditions:

(Λ1) For all A ∈ B0(Hd), the space of all relatively compact Borel sets in Hd, we have∫
R0
|x|2 ∧ 1Λ(A× dx) <∞,∫

|x|>1
ex Λ(A× dx) <∞.

(Λ2) For every a > 0, the measure Λa( · ) = Λ( · × {|x| > a}) is locally finite and bundleless.

Every such measure Λ satisfying the two above conditions determines an infinitely divisible
random measure Y = YΛ on Hd, i.e., a family of infinitely divisible random variables
{Y (A) : A ∈ B0(Hd)} which satisfy the following conditions:

(i) Y (A1) and Y (A2) are independent for disjoint A1,A2 ∈ B0(Hd),

(ii) Y (
⋃∞
i=1Ai) =

∑∞
i=1 Y (Ai) a.s. if Ai ∈ B0(Hd) are disjoint and

⋃∞
i=1Ai ∈ B0(Hd),
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(iii) for A ∈ B0(Hd)

E exp{uY (A)} = exp
{∫

R0

(
eux − 1− ux1|x|≤1

)
Λ(A× dx)

}
, u ∈ [0,1].

Proposition 4.1 in Mori (1992) states that for each such measure Λ satisfying (Λ1) and
(Λ2) we can define a random field IΛ by

IΛ(t) = Y (0||t), t ∈ Rd, (4.19)

where Y is the infinitely divisible random measure associated to Λ. Furthermore, IΛ
is infinitely divisible, stochastically continuous, linearly additive and it has no Gaussian
component.
In order to define a measure Λ on Hd × R0 we want to use the half cylinder representation
of Hd. To this end, let τ be the natural bijection from Hd to Cd+ given by τh = (s,θ) if
h = {u ∈ Rd : 〈u,θ〉 = s}. Moreover, define the mapping

τ̃ : Hd × R0 → Cd+ × R0

by τ̃(h,u) = (τh, u) for h ∈ Hd and u ∈ R0.
Following Def. 4 in Kabluchko et al. (2009), we call a process {ζ(t) : t ∈ Rd} Brown-Resnick
stationary if for a Poisson point process

∑∞
i=1 δXi on the real line with intensity e−xdx and

independent copies ζi, i ∈ N, the process

max
i∈N

(Xi + ζi(t)), t ∈ Rd,

is stationary. We are now in a position to state the main result of this section.

Theorem 9. Let ν be a measure on Sd−1 × R0 such that

ν(d(−θ)× dx) = e−xν(dθ × d(−x)). (4.20)

Furthermore, suppose that ν satisfies∫
R0
|x|2 ∧ 1 ν(Sd−1 × dx) <∞,∫

|x|>1
ex ν(Sd−1 × dx) <∞.

Define the measure Λ on Hd × R0 by

Λτ̃−1(A) =
{

(λ× ν)(A) if A ∈ B(R+ × Sd−1 × R0)
0 if A ∈ B({0} × Sd−1

+ × R0),
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where λ is the Lebesgue measure on R+. Then Λ satisfies (Λ1) and (Λ2) and the process

ζ(t) = IΛ(t)− logEeIΛ(t), t ∈ Rd,

is Brown-Resnick stationary, where IΛ is defined as in (4.19).

Proof. Fix n ∈ N, t1, . . . ,tn ∈ Rd and u1, . . . ,un ∈ [0,1] with
∑n
i=1 ui = 1. We verify the

stationarity criterion by Kabluchko et al. (2009) for the process ζ.
To this end, let Nn be the set of all nonempty subsets of {1, . . . ,n}. For J ∈ Nn define the
set AJ ⊂ Hd by

AJ = ({0} ∪ {tj , j /∈ J}) ||{tk, k ∈ J}

and uJ =
∑
k∈J uk. Further, let

ψ(u,x) = eux − 1− ux1|x|≤1, u ∈ [0,1], x ∈ R0.

First, consider the easiest example for ν, namely for fixed α ∈ Sd−1 and z ∈ R0

να,z(dθ × dx) = δα(dθ)δz(dx) + e−xδ−α(dθ)δ−z(dx),

which satisfies (4.20). Indeed,

να,z(d(−θ)× dx) = δ−α(dθ)δz(dx) + e−xδα(dθ)δ−z(dx)

= e−xx
(
e−(−x)δ−α(dθ)δ−z(d(−x)) + δα(dθ)δz(d(−x))

)
= e−xνα,z(dθ × d(−x)).

This measure induces the measure Λα,z and the random field ζα,z which essentially is a
Poisson process in the direction of α which is constant on lines orthogonal to α. It follows
from Corollary 9 in Kabluchko et al. (2009) and Theorem 5 that ζα,z is Brown-Resnick
stationary.
Let Y be the infinitely divisible random measure determined by Λ, then we conclude by
geometrical considerations that

n∑
i=1

uiIΛ(ti) =
∑
J∈Nn

uJY (AJ) a.s.

and that the sets AJ , J ∈ Nn, are disjoint (cf. Mori (1992)). Thus,

logE exp
{

n∑
i=1

uiIΛ(ti)
}

=
∑
J∈Nn

logE exp {uJY (AJ)}
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and we compute for J ∈ Nn

logE exp {uJY (AJ)} =
∫
R0
ψ(uJ ,x)Λ(AJ × dx)

=
∫
AJ×R0

ψ(uJ ,x)Λ(dh× dx)

=
∫
τ̃(AJ×R0)

ψ(uJ ,x)Λτ̃−1(ds× dθ × dx)

=
∫
τ(AJ )×R0

ψ(uJ ,x) ds ν(dθ × dx)

=
∫
Sd−1×R0

∫
R+

1τ(AJ )(s,θ)ψ(uJ ,x) ds ν(dθ × dx)

=
∫
Sd−1

+ ×R0

∫
R+

1τ(AJ )(s,θ)ψ(uJ ,x) + 1τ(AJ )(s,− θ) ex ψ(uJ ,− x) ds ν(dθ × dx),

where the last equality follows from (4.20). Applying this formula to the process IΛα,z we get

logE exp
{

n∑
i=1

uiIΛα,z(ti)
}

=
∑
J∈Nn

∫
R+

1τ(AJ )(s,α)ψ(uJ ,z) + 1τ(AJ )(s,− α) ez ψ(uJ ,− z) ds.

Furthermore, for fixed i ∈ {1, . . . ,n}, by putting ui = 1 and uj = 0, j 6= i, we obtain

logEeIΛ(ti) =
∫
Sd−1

+ ×R0

∑
J∈Nn

∫
R+

1τ(AJ )(s,θ)ψ(1i∈J ,x)

+ 1τ(AJ )(s,− θ) ex ψ(1i∈J ,− x) ds ν(dθ × dx).

Thus, putting the parts together, we have

logE exp
{

n∑
i=1

ui
(
IΛ(ti)− logEeIΛ(ti)

)}

=
∫
Sd−1

+ ×R0

∑
J∈Nn

∫
R+

1τ(AJ )(s,θ)
[
ψ(uJ ,x)−

n∑
i=1

ψ(1i∈J ,x)
]

+ 1τ(AJ )(s,− θ) ex
[
ψ(uJ ,− x)−

n∑
i=1

ψ(1i∈J ,− x)
]
ds ν(dθ × dx)

=
∫
Sd−1

+ ×R0
logE exp

{
n∑
i=1

ui
(
IΛα,z(ti)− logEeIΛα,z (ti)

)}
ν(dθ × dx). (4.21)

From the Brown-Resnick stationarity of ζα,z it follows that for h ∈ Rd

logE exp
{

n∑
i=1

uiζ
α,z(ti + h)

}
= logE exp

{
n∑
i=1

uiζ
α,z(ti)

}
.
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This together with Proposition 6 in Kabluchko et al. (2009) and (4.21) shows that also ζ is
Brown-Resnick stationary.

4.4 Estimation
When modeling extreme events via max-stable processes it is important to have estimation
methods to determine the model parameters. As seen in Chapter 3 inference for max-stable
processes is a challenging task as multivariate densities are usually unknown. Fortunately,
in many cases already the bivariate distributions contain all necessary information. For
instance, the composite likelihood approach in Padoan et al. (2010) uses this fact to construct
estimators for max-stable processes.
In this section we show how inference for the max-stable, stationary “Lévy-Brown-Resnick”
processes η in (4.7) can be carried out. In fact, it turns out that by suitably conditioning
the data, the problem simplifies to estimation of the parameters of the underlying Lévy
process. Similar to the results in Chapter 3 and in Engelke et al. (2012d), the first approach
uses the incremental representation of η to derive the asymptotic distribution of extremal
increments. The second approach is based on spectral densities as in Coles & Tawn (1991)
and is applicable if the Lévy process possesses a density.
Since spectral measures are defined for Fréchet margins, in this section we consider the
transformed “Lévy-Brown-Resnick” process

η∗(t) = max
i∈N

YiVi, t ∈ R, (4.22)

where Vi = eZi(t) and the Zi, i ∈ N are as in Theorem 5 and
∑∞
i=1 δYi is a PPP with intensity

1/y2dy. In particular, η∗ is stationary with unit Fréchet margins.

4.4.1 Extremal increments
By construction, the process η∗ admits the incremental representation (4.22) (cf. Engelke
et al. (2012c,d)). Similarly to Theorem 4 in Chapter 3, the following result gives the
asymptotic distribution of suitably conditioned increments of processes in the MDA of η∗.

Theorem 10. Suppose that the stochastic process {Q(t) : t ∈ R} is in the MDA of η∗ with
standard Pareto margins, i.e., for any t0, . . . ,tk ∈ R, k ∈ N, we have the weak convergence( 1

n
max
i=1,...,n

Qi(t0), . . . , 1
n

max
i=1,...,n

Qi(tk)
)

d−→ (η∗(t0), . . . ,η∗(tk)), n→∞,

where (Qi)i∈N are independent copies of Q. Further, let U be Pareto distributed and
independent of V = exp(Z). Let a(n) be any sequence of positive numbers such that
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limn→∞ a(n) =∞. Then, as n tends to ∞, we have the convergence in distribution on Rk+1

(
Q(t0)
a(n) ,

Q(t1)
Q(t0) , . . . ,

Q(tk)
Q(t0)

∣∣∣∣∣ Q(t0) > a(n)
)

d−→
(
U, V (t1), . . . , V (tk)

)
.

Proof. The assertion of this theorem is a consequence of the more general statement of
Theorem 2.1 in Engelke et al. (2012d).

Remark 12. For statistical applications the sequence a(n), n ∈ N , should be chosen in such
a way that limn→∞ a(n)/n = 0. In this case, the number of observations that exceed the
threshold a(n), i.e., the cardinality of the index set I(n) of extremal observations

I(n) = {i ∈ {1, . . . ,n} : Qi(t0) > a(n)} ,

converges to ∞ with probability 1, as n tends to ∞. Thus, the set of extremal observations{(
Qi(t1)
Qi(t0) , . . . ,

Qi(tk)
Qi(t0)

)
: i ∈ I(n)

}
,

is approximately a sample of i.i.d. realizations of the random vector (V (t1), . . . ,V (tk)).

4.4.2 Spectral densities
Recall the definition of the exponent measure and the spectral density from Section 3.2.2 in
Chapter 3.
Suppose that the Lévy process {Z(t) : t ≥ 0} possesses the density ft at each point t ≥ 0. For
the bivariate distributions (η∗(0), η∗(t)) of the process η∗ we compute the spectral density st
of the exponent measure. To this end, note that for arbitrary t ≥ 0 we have

− logP (η∗(0) ≤ x0, η
∗(t) ≤ x1) = Emax

{ 1
x0
,

1
x1
eZ(t)

}
.

Thus, we compute

Emax
{ 1
x0
,

1
x1
eZ(t)

}
= 1
x1

∫ ∞
log x1

x0

eyft(y)dy + 1
x0

∫ log x1
x0

−∞
ft(y)dy. (4.23)

In order to obtain the spectral density st on S+ = {x,y ≥ 0 : x+ y = 1}, we observe that by
Theorem 1 in Coles & Tawn (1991) for ω ∈ [0,1], r > 0

r−3st(ω) =
(
− ∂2

∂x0∂x1
[− logP (η∗(0) ≤ x0, η

∗(t) ≤ x1)]
)
x0=rω,x1=r(1−ω)

.
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Hence, by equation (4.23)

∂

∂x0
Emax

{ 1
x0
,

1
x1
eZ(t)

}
= 1
x2

0
ft

(
log x1

x0

)
− 1
x2

0

∫ log x1
x0

−∞
ft(y)dy − 1

x2
0
ft

(
log x1

x0

)
= − 1

x2
0

∫ log x1
x0

−∞
ft(y)dy,

and consequently

− ∂2

∂x0∂x1
Emax

{ 1
x0
,

1
x1
eZ(t)

}
= 1
x2

0x1
ft

(
log x1

x0

)
,

such that

st(ω) = 1
ω2(1− ω)ft(log[(1− ω)/ω]), ω ∈ [0,1].

For Θ ⊂ Rd, let {ft,θ : θ ∈ Θ} be a parametric model for the densities of Z and suppose
that {Qi}1≤i≤n is an independent sequence of copies of a process {Q(t) : t ∈ R} with standard
Pareto margins in the MDA of η∗. Further, for fixed t > 0 put Qi = (Qi(0), Qi(t)). In this
case the spectral densities can be used to estimate the model parameters θ. In fact, after a
further transformation of Q1, . . . , Qn to pseudo polar coordinates (r1,ω1), . . . ,(rn, ωn), for
a high threshold r0 > 0, the set {(ri,ωi) : i ∈ I0}, I0 = {1 ≤ i ≤ n : ri > r0}, is fitted to a
Poisson point process on [0,∞] × S+ with intensity 1/r2dr × st,θ(ω)dω. The approximate
likelihood is given by

L(θ, {(ri,ωi), i ∈ I0}) = exp(−r−1
0 )

∏
i∈I0

r−2
i st,θ(ωi).

Note that it suffices to maximize the reduced likelihood

L̃(θ, {ωi, i ∈ I0}) =
∏
i∈I0

ft,θ(log[(1− ωi)/ωi]), (4.24)

to obtain an estimator for the parameter θ, which fully characterizes the Lévy process
{Z(t) : t ≥ 0} and thus also the “Lévy-Brown-Resnick” process η∗.

4.4.3 Examples
For most Lévy processes the densities either do not exist or are unknown in explicit form.
However, there are several important examples where the densities ft do exist and where we
can write down explicitly a parametric model for the spectral density st.
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Gamma process

Let {Γ (t; γ, δ), t ≥ 0}, γ,δ > 0, be the Gamma Lévy process, i.e. a subordinator with density

ft(x) = δγt

Γ (γt)x
γt−1e−xδ, x > 0,

where Γ denotes the Gamma function. Its Laplace transform is given by

EeλΓ (s;γ,δ) = (1− λ/δ)−γt, λ < δ,

and it thus satisfies the moment condition (4.3) if δ > 1. Taking for instance {−Γ (t; γ, δ) :
t ≥ 0} for any γ,δ > 0 or {Γ (t; γ, δ) : t ≥ 0} for γ > 0,δ > 1 for L+ in the definition (4.6) of
Z, we can estimate γ and δ as above by observing data in the MDA of the corresponding
“Lévy-Brown-Resnick” process η∗ in (4.22).

Inverse Gaussian

Consider the inverse Gaussian Lévy process {T (t; a,b) : t ≥ 0}, which is a subordinator and
defined as follows. Let {W (t) : t ≥ 0} be a standard Brownian motion and a,b > 0. Then T
is the first passage time

T (t; a,b) = inf{u > 0 : W (u) + bu = at}, t ≥ 0.

It has an inverse Gaussian distribution with density

ft(x) = at√
2π
x−3/2eabte−

1
2 (a2t2x−1+b2x), x > 0,

and Laplace transform

Ee−λT (t;a,b) = exp
{
tab

(
1−

√
1 + 2λ/b2

)}
, λ > −b2/2.

Taking {−T (t; a,b) : t ≥ 0} in the definition (4.6) of Z, we obtain a max-stable, stationary
process η∗a,b, which depends on the two parameters a,b > 0. Note that the density of Z(t) for
t > 0 is given by f̃t(x) = ft(x+ tab

(
1−

√
1 + 2/b2

)
). Hence, according to (4.24), we need

to maximize

log L̃((a,b), {ωi, i ∈ I0}) ∝ |I0| log a+|I0|abt−
1
2a

2t2
∑
i∈I0

x−1
i −

1
2b

2 ∑
i∈I0

xi,

where xi = log[(1− ωi)/ωi] + tab
(
1−

√
1 + 2/b2

)
. This problem can be solved numerically.
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Normal inverse Gaussian

Another prominent example for a Lévy process is the normal inverse Gaussian process
{R(t; a,α,β) : t ≥ 0} with parameters a,α,β > 0 and α > β (cf. Barndorff-Nielsen (1997)).
Let T be the inverse Gaussian subordinator with parameters a > 0 and b =

√
α2 − β2 as

above and define a drifted Brownian motion {W (β)(t) = W (t) + βt : t ≥ 0}, β ∈ R, where
{W (t) : t ≥ 0} is an independent standard Brownian motion. The normal inverse Gaussian
process is defined as the time-changed process {R(t) = W (β)(T (t)), t ≥ 0} and has density

ft(x) =
αatK1

(
α
√
a2t2 + x2

)
π
√
a2t2 + x2

eat
√
α2−β2+βx, x ∈ R,

where K1 denotes the modified Bessel function of the second kind. It has Laplace transform

EeλR(t) = exp
(
ta(
√
α2 − β2 −

√
α2 − (β + λ)2)

)
, −α− β < λ < α− β.

As above, this can be used to fit the corresponding “Lévy-Brown-Resnick” process η∗.





5 Maxima of independent, non-identically distributed
Gaussian vectors

Recall from Section 3.1.1 that for a triangular array with i.i.d. entries of d-variate zero-mean,
unit-variance normal distributions with covariance matrix Σn in the n-th row satisfying

lim
n→∞

b2
n(11> −Σn)/2 = Λ ∈ [0,∞)d×d, (5.1)

the row-wise maxima converge to the d-variate, max-stable Hüsler-Reiss distribution whose
dependence structure is fully characterized by the matrix Λ. Note that condition (5.1)
implies that all off-diagonal entries of Σn converge to 1 as n→∞. A slightly more general
representation is given in Kabluchko (2011a) in terms of Poisson point processes and negative
definite kernels.
In fact, it turns out that these distributions not only attract Gaussian arrays but also
classes of related distributions. For instance, Hashorva (2005) shows, that the convergence of
maxima holds for triangular arrays of general bivariate elliptical distributions, if the random
radius is in the domain of attraction of the Gumbel distribution. The generalization to
multivariate elliptical distributions can be found in Hashorva (2006). Moreover, Hashorva
et al. (2012) prove that also non-elliptical distributions are in the domain of attraction of
the Hüsler-Reiss distribution, for instance multivariate χ2-distributions.
Apart from being one of the few known parametric families of multivariate extreme value
distributions, the Hüsler-Reiss distributions play a prominent role in modeling spatial
extremes since they are the finite dimensional distributions of Brown-Resnick processes
(Brown & Resnick, 1977; Kabluchko et al., 2009).
Recently, Hashorva & Weng (2013) analyzed maxima of stationary Gaussian triangular arrays
where the variables in each row are identically distributed but not necessarily independent.
They show that weak dependence is asymptotically negligible, whereas stronger dependence
may influence the max-limit distribution.
In this chapter we consider independent triangular arrays Xi,n = (X(1)

i,n , . . . ,X
(d)
i,n ), n ∈ N

and 1 ≤ i ≤ n, where Xi,n is a zero-mean Gaussian random vector with covariance matrix
Σi,n. Thus, in each row the random variables are independent, but may have different
dependence structures. Letting Mn = (M (1)

n , . . . ,M
(d)
n ) denote the vector consisting of the

componentwise maxima M (j)
n = maxi=1,...,nX

(j)
i,n , j ∈ {1, . . . ,d}, we are interested in the

convergence of the rescaled, row-wise maximum

bn(Mn − bn), (5.2)

69
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as n→∞, and the respective limit distributions.
In Section 5.1 we start with bivariate triangular arrays. For this purpose, we introduce a
sequence of counting measures which capture the dependence structure in each row and which
is used to state necessary and sufficient conditions for the convergence of (5.2). Moreover,
the limits turn out to be new max-stable distributions that generalize (3.5). The results on
triangular arrays are used to completely characterize the max-limits of independent sequences
of bivariate Gaussian vectors. Explicit examples for the bivariate limit distributions are given
at the end of this section. The multivariate case is treated in Section 5.2, giving rise to a class
of d-dimensional max-stable distributions. In Section 5.3, we show how these distributions
arise as the finite dimensional margins of suitably normalized and randomly rescaled maxima
of n independent Gaussian processes. In fact, the limit processes are max-stable, stationary
random fields which can be seen as max-mixtures of Brown-Resnick processes. Furthermore,
it is shown that these processes offer a large variety of extremal correlation functions which
makes them interesting for modeling dependencies in spatial extremes. Finally, Section 5.4
comprises the proofs of the main theorems of this chapter.

5.1 The bivariate case
In order to state the main results in the bivariate case, we need probability measures on the
extended positive half-line [0,∞]. To this end, let ([0,∞], d) be a compact metric space such
that a function g : [0,∞]→ R is continuous iff it is continuous in the usual topology on [0,∞)
and the limit limx→∞ g(x) exists and equals g(∞).

5.1.1 Limit theorems
Consider a triangular array of independent bivariate Gaussian random vectors Xi,n =
(X(1)

i,n ,X
(2)
i,n ), n ∈ N and 1 ≤ i ≤ n, with zero expectation and covariance matrix

Cov(Xi,n) =
(
σ2
i,n,1 σi,n,1,2

σi,n,1,2 σ2
i,n,2

)
.

Further, denote by ρi,n = σi,n,1,2/(σi,n,1σi,n,2) the correlation of Xi,n. For n ∈ N, we define a
probability measure ηn on [0,∞]× R2 by

ηn = 1
n

n∑
i=1

δ(√
b2
n(1−ρi,n)/2, b2

n(1−1/σi,n,1), b2
n(1−1/σi,n,2)

) (5.3)

which encodes the suitably normalized variances and correlations in the n-th row. Here, for
any measurable space (S,S) and a ∈ S, δa denotes the Dirac measure on the point a. In
this general situation, the next theorem gives a sufficient condition in terms of ηn for the
convergence of row-wise maxima of this triangular array.
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Theorem 11. For n ∈ N and 1 ≤ i ≤ n, let Xi,n and ηn be defined as above. Further
suppose that for some ε > 0 the measures (ηn)n∈N satisfy the uniform integrability condition

lim
K→∞

sup
n∈N

∫
[0,∞]×(K,∞)×R

eθ(1+ε) ηn(d(λ,θ,γ)) +
∫

[0,∞]×R×(K,∞)
eγ(1+ε) ηn(d(λ,θ,γ)) = 0.

(5.4)

If for n→∞, ηn converges weakly to some probability measure η on [0,∞]×R2, i.e. ηn ⇒ η,
then

max
i=1,...,n

bn(Xi,n − bn) (5.5)

converges in distribution to a random vector with distribution function Fη given by

− logFη(x,y) =
∫

[0,∞]×R2

Φ

(
λ+ y − x+ θ − γ

2λ

)
e−(x−θ) (5.6)

+Φ

(
λ− y − x+ θ − γ

2λ

)
e−(y−γ) η(d(λ, θ, γ)),

for x,y ∈ R.

Remark 13. An equivalent condition for the uniform integrability in (5.4) is that for some
τ > 0

sup
n∈N

∫
[0,∞]×R2

eθ(1+τ) + eγ(1+τ) ηn(d(λ,θ,γ)) <∞.

Note in particular that this implies

sup
n∈N,1≤i≤n

1
n

(
eb

2
n(1−1/σi,n,1)(1+τ) + eb

2
n(1−1/σi,n,2)(1+τ)

)
<∞.

Since b2
n ∼ 2 logn for n large, it follows that the variances of both components are uniformly

bounded. Thus, the single random variables in each row satisfy the uniform asymptotical
negligibility condition (see for instance Balkema & Resnick (1977))

max
i=1,...,n

P(bn(X(j)
i,n − bn) > x)→ 0, n→∞, (5.7)

for j = 1,2 and any x ∈ R.

Remark 14. In fact, one can extend the distribution Fη to mixture measures η taking
infinite mass at negative infinity. The only condition which needs to be satisfied is∫

[0,∞]×R2
eθ + eγ η(d(λ,θ,γ)) <∞.

Note that the idea of constructing new extreme value distributions as in (5.6) is not new.
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Indeed, it is well-known that any mixture of spectral measures is again a spectral measure.
In our case, however, these mixture distributions also arise naturally as the max-limits of
independent Gaussian triangular arrays.

Note that the one-dimensional marginals of Fη are Gumbel distributed with different
location parameters, for instance

− logFη(x,∞) = exp
[
− x+ log

∫
[0,∞]×R2

eθ η(d(λ, θ, γ))
]
.

Moreover, Fη is a max-stable distribution since

Fnη (x+ logn, y + logn) = Fη(x,y),

for all n ∈ N. This is a remarkable fact, since in general limits of row-wise maxima of
triangular arrays are not max-stable, not even if the random variables in each row are
identically distributed.
In order to obtain a necessary condition and to simplify the sufficient condition, we need to
impose stronger assumptions on the univariate margins. We denote byM1([0,∞]) the space
of all probability measures on [0,∞]. By Helly’s theorem this space is sequentially compact.

Theorem 12. Consider a triangular array of independent bivariate Gaussian random vectors
Xi,n = (X(1)

i,n ,X
(2)
i,n ), n ∈ N and 1 ≤ i ≤ n, where X(1)

i,n and X(2)
i,n are standard normal random

variables. Denote by ρi,n the correlation of Xi,n. Let

νn = 1
n

n∑
i=1

δ√
b2
n(1−ρi,n)/2 (5.8)

be a probability measure on [0,∞]. For n→∞,

max
i=1,...,n

bn(Xi,n − bn) (5.9)

converges in distribution if and only if νn converges weakly to some probability measure ν on
[0,∞], i.e. νn ⇒ ν. In this case, the limit of (5.9) has distribution function Fν given by

− logFν(x,y) =
∫ ∞

0
Φ

(
λ+ y − x

2λ

)
e−x + Φ

(
λ+ x− y

2λ

)
e−y ν(dλ), (5.10)

x,y ∈ R. The distribution in (5.10) uniquely determines the measure ν, i.e., for two probability
measures ν, ν̃ ∈ M1([0,∞]) with ν 6= ν̃ it follows that Fν 6= Fν̃. Furthermore, Fν depends
continuously on ν, in the sense that if νn ⇒ ν, as n→∞, and νn, ν ∈M1([0,∞]), then Fνn
converges pointwise to Fν .

Remark 15. For an arbitrary probability measure ν ∈M1([0,∞]), let (Ri)i∈N be a sequence



5.1 The bivariate case 73

of i.i.d. samples of ν. Putting ρi,n = max(1− 2R2
i /b

2
n,− 1) in Theorem 12 yields

νn = 1
n

n∑
i=1

δmin(Ri,bn) ⇒ ν, a.s.,

by the law of large numbers. Hence, (5.9) converges a.s. in distribution to Fν .

Remark 16. If ν is a probability measure on [0,∞), an alternative construction of the
distribution Fν is the following (Kabluchko, 2011a, Section 3): Let

∑∞
i=1 δUi be a Poisson

point process on R with intensity e−udu and suppose that B has the normal distribution
N(−2S2,4S2) with random mean and variance, where S is ν-distributed. Then, for a sequence
(Bi)i∈N of i.i.d. copies of B, the bivariate random vector maxi∈N(Ui, Ui+Bi) has distribution
Fν .

The above theorem can be applied to completely characterize the maxima of a sequence of
independent bivariate Gaussian random vectors with unit variance.

Corollary 1. Suppose that Xi = (X(1)
i ,X

(2)
i ), n ∈ N and 1 ≤ i ≤ n, is a sequence of

independent bivariate Gaussian random vectors where X(1)
i and X(2)

i are standard normal
random variables. Denote by ρi the correlation of Xi and let

νn = 1
n

n∑
i=1

δ√
b2
n(1−ρi)/2

be a probability measure on [0,∞]. For n→∞,

max
i=1,...,n

bn(Xi − bn) (5.11)

converges in distribution if and only if νn converges weakly to some probability measure ν on
[0,∞]. In this case, the limit of (5.11) has distribution function Fν as in (5.10). Furthermore,
for all ν ∈M1([0,∞]), Fν is attained as a limit of (5.11) for a suitable sequence (Xi)i∈N.

Remark 17. It is worthwhile to note that in general, the class of max-selfdecomposable
distributions, i.e. the max-limits of sequences of independent (not necessarily identically
distributed) random variables, is a proper subclass of max-infinitely-divisible distributions,
i.e. the max-limits of triangular arrays with i.i.d. random variables in each row. The
latter coincides with the class of max-limits of triangular arrays, where the rows are merely
independent but not identically distributed (Balkema & Resnick, 1977; Gerritse, 1986).
In the (bivariate) Gaussian case the above shows that the max-limits of i.i.d. triangular
arrays, namely the Hüsler-Reiss distributions in (3.5), are a proper subclass of max-limits of
independent triangular arrays, namely the distributions in (5.10), which, on the other hand,
coincide with the max-limits of independent sequences.

In multivariate and spatial extreme value theory it is important to have flexible and
tractable models for spatial dependence of extremal events. On this account, in this section
we show how the mixtures of Hüsler-Reiss distributions give rise to new models for bivariate
spectral densities and, in the spatial domain, to new classes of extremal correlation functions.
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5.1.2 Examples
The max-stable distributions Fν in Theorem 12 for ν ∈ M1([0,∞]) are max-mixtures of
Hüsler-Reiss distributions with different dependency parameters. They constitute a large
class of new bivariate max-stable distributions. We derive two of them explicitly by evaluating
the integral in (5.10).

Example 1 (Rayleigh distributed ν). The Rayleigh distribution has density

fσ(λ) = λ

σ2 e
− λ2

2σ2 , λ ≥ 0, (5.12)

for σ > 0. Choosing the dependence parameter λ according to the Rayleigh distribution νσ,
we obtain the bivariate distribution function

− logFνσ(x,y) =
∫ ∞

0

[
Φ

(
λ+ y − x

2λ

)
e−x + Φ

(
λ+ x− y

2λ

)
e−y

]
λ

σ2 e
− λ2

2σ2 dλ, (5.13)

for x,y ∈ R. In order to evaluate this integral, we apply partial integration and use formulae
3.471.9 and 3.472.3 in Gradshteyn & Ryzhik (2007). Equation (5.13) then simplifies to

Fνσ(x,y) = exp
[
−e−min(x,y) − 1

η
e−

y+x
2 e−

|y−x|η
2

]
, x,y ∈ R, (5.14)

where η =
√

1 + 1/σ2 ∈ (1,∞). Note that σ parameterizes the dependence of Fνσ . As σ goes
to 0 (i.e., η goes to ∞), then the margins become equal. On the other hand, as σ goes to ∞
(i.e., η goes to 1), then the margins become completely independent.

Example 2 (Type-2 Gumbel distributed ν). The Type-2 Gumbel distribution has density

fb(λ) = 2bλ−3e−
b
λ2 , λ ≥ 0, (5.15)

for b > 0. With similar arguments as for the Rayleigh distribution the distribution function
Fνb, where νb has density fb, is given by

Fνb(x,y) = exp

−e−x − e−y + e−
y+x

2 e
−
√

( y−x2 )2+2b
 , x,y ∈ R. (5.16)

Also in this case, the parameter b ∈ (0,∞) interpolates between complete independence and
complete dependence of the bivariate distribution. In particular, if b→ 0, then the margins
are equal and, on the other hand, if b→∞ then the margins are independent.

Every multivariate max-stable distribution admits a spectral representation (Resnick,
2008, Chapter 5), where the spectral measure contains all information about the extremal
dependence. Recently, Cooley et al. (2010) and Ballani & Schlather (2011) constructed
new parametric models for spectral measures. For the bivariate Hüsler-Reiss distribution,
de Haan & Pereira (2006) give an explicit form of its spectral density on the positive sphere
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S1
+ = {(x1,x2) ∈ [0,∞)2, x2

1 + x2
2 = 1}. More precisely, they show that for λ ∈ (0,∞)

− logFλ(x,y) =
∫ π/2

0
max

{
e−x sin θ,e−y cos θ

}
sλ(θ) dθ, x,y ∈ R,

and give a rather complicated expression for sλ. Using the equation

φ

(
λ− log tan θ

2λ

)
= sin θ

cos θφ
(
λ+ log tan θ

2λ

)
, λ ∈ (0,∞), θ ∈ [0,π/2],

their expression can be considerably simplified and the spectral density becomes

sλ(θ) = 1
2λ sin θ cos2 θ

φ

(
λ+ log(tan θ)

2λ

)
, θ ∈ [0,π/2].

For the spectral density sν of the Hüsler-Reiss mixture distribution Fν as in (5.10), where ν
does neither have an atom at 0 nor at ∞, we have the relation

sν(θ) =
∫ ∞

0
sλ(θ) ν(dλ), θ ∈ [0,π/2].

For the two examples above we can compute the corresponding spectral densities.

Proposition 4. For the Rayleigh distribution with parameter σ > 0, sνσ is given by

sνσ(θ) = e
− 1√

2
| log tan θ|

√
1+1/σ2

4
√
σ4 + σ2 (sin θ cos θ)3/2 , θ ∈ [0,π/2].

Similarly, for the Type-2 Gumbel distribution with parameter b > 0, the spectral density has
the form

sνb(θ) = e−ub(θ)

4 (sin θ cos θ)3/2

(
1− (log tan θ)2

4ub(θ)2

)(
1 + 1

ub(θ)

)
, θ ∈ [0,π/2],

with ub(θ) =
√

(log tan θ)2 /4 + 2b.

Figure 5.1 illustrates how these spectral measures interpolate between complete indepen-
dence and complete dependence for different parameters.
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Figure 5.1: Spectral densities of the Rayleigh (left) and Type-2 Gumbel (right) mixture
distribution for different parameters σ and b, respectively

5.2 The multivariate case
Similarly as in Hüsler & Reiss (1989), the results for standard bivariate Gaussian random
vectors can be generalized to d-dimensional random vectors. To this end, define a triangular
array of independent d-dimensional, non-degenerate (i.e. with positive definite covariance
matrix) Gaussian random vectors Xi,n = (X(1)

i,n , . . . ,X
(d)
i,n ), n,d ∈ N and 1 ≤ i ≤ n, where X(j)

i,n ,
j ∈ {1, . . . ,d}, are standard normal random variables. Denote by Σi,n = (ρj,k(i,n))1≤j,k≤d
the correlation matrix of Xi,n. Let 1 = (1, . . . ,1)> ∈ Rd and

ηn = 1
n

n∑
i=1

δ√
b2
n(11>−Σi,n)/2 (5.17)

be a probability measure on the metric space [0,∞)d×d, equipped with the product met-
ric. Throughout this chapter, squares and square roots of matrices are to be understood
component-wise. For a measure τ on [0,∞)d×d we will denote by τ2 the image measure of τ
under the transformation [0,∞)d×d → [0,∞)d×d, Λ 7→ Λ2. Further, recall from Section 3.1.1
the definition of the space of strictly (conditionally) negative definite matrices D and the
d-dimensional Hüsler-Reiss distribution HΛ. In particular, note that D is a suitable subspace
for the measures η2

n since η2
n(D) = 1 for all n ∈ N. For Λ = (λj,k)1≤j,k≤d ∈ [0,∞)d×d, define

a family of transformed matrices by

Γl,m(Λ) = 2
(
λ2
mj ,ml

+ λ2
mk,ml

− λ2
mj ,mk

)
1≤j,k≤l−1

,
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where 2 ≤ l ≤ d and m = (m1, . . . ,ml) with 1 ≤ m1 < . . . < ml ≤ d. It follows from the
proof of Lemma 2.1 in Berg et al. (1984) that if Λ ∈ D, then Γl,m(

√
Λ) is a (strictly) positive

definite matrix.
With this notation we are now in a position to state the following theorem.

Theorem 13. Consider a triangular array of independent d-dimensional Gaussian random
vectors as above. If for n→∞ the measure ηn in (5.17) converges weakly to some probability
measure η on [0,∞)d×d, i.e. ηn ⇒ η, s.t. η2(D) = 1, then

max
i=1,...,n

bn(Xi,n − bn)

converges in distribution to a random vector with distribution function Hη given by

Hη(x1, . . . ,xd) = exp
(∫

[0,∞)d×d
logHΛ(x) η(dΛ)

)
, x ∈ Rd. (5.18)

Remark 18. Similarly to Remark 16, we can give an alternative construction of the dis-
tribution Hη in terms of Poisson point processes. Let

∑∞
i=1 δUi be a Poisson point pro-

cess on R with intensity e−udu and suppose that B has the multivariate normal distribu-
tion N(−diag(Γd,(1,...,d)(Λ))/2,Γd,(1,...,d)(Λ)) with random mean and variance, where Λ is
η-distributed. Then, for a sequence (Bi)i∈N of i.i.d. copies of B, the bivariate random vector
maxi∈N(Ui, Ui + Bi) has distribution Hη.

Remark 19. We believe that the above theorem also holds in the case when η has positive
measure on non-strictly conditionally negative definite matrices, i.e. η2(D) < 1. Our proof
of this theorem however breaks down in this situation such that another technique might be
necessary.

5.3 Application to Brown-Resnick processes
The d-dimensional Hüsler-Reiss distributions arise in the theory of maxima of Gaussian
random fields as the finite dimensional distributions of Brown-Resnick processes (Brown &
Resnick, 1977) and its generalizations (Kabluchko et al., 2009). In this section we introduce
a new class of max-stable processes with finite dimensional distributions given by (5.18) for
suitable measures η. In fact, they are the max-limits of Gaussian random fields with random
scaling in space.
Recall the definition and properties of the Brown-Resnick process in (3.6). Theorem 17
in Kabluchko et al. (2009) implies that the subclass belonging to variograms of fractional
Brownian motions on Rd, i.e. γ(t) = ‖t‖α, α ∈ (0,2), are the max-limits of suitably rescaled
Gaussian processes whose covariance functions satisfy the following regular variation condition.
Let {X(t), t ∈ Rd} be a zero-mean, unit variance Gaussian process with covariance function
C(t1,t2) = E[X(t1)X(t2)]. Assume that

lim
ε→0

1− C(εt1,εt2)
L(ε)εα = 2γ(t1 − t2) (5.19)
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holds uniformly for bounded t1,t2 ∈ Rd, where L is continuous and slowly varying at 0 and
γ(t) = ‖t‖α, α ∈ (0,2), is a continuous variogram. Further, define normalizing sequences bn
as above and

sn = inf{s > 0 : L(s)sα = b−2
n }. (5.20)

In the next theorem we prove, that by introducing a random space scaling in Theorem 17 in
Kabluchko et al. (2009), we obtain new stochastic processes which have finite dimensional
distributions given by (5.18) for a certain measure η.

Theorem 14. Let Xi, i ∈ N, be independent copies of the process X above, satisfying the
regular variation assumption (5.19). Further, let Si, i ∈ N, be independent random variables
distributed according to a probability measure ν on (0,∞). Then the finite dimensional
distributions of the process

Yn(t) = max
i=1,...,n

bn(Xi(S2/α
i snt)− bn), t ∈ Rd,

converge to the distribution in (5.18). More precisely, for t1, . . . ,tm ∈ Rd, the respective
measure η is concentrated on the subspace {λΛ0, λ > 0} with Λ0 =

(√
γ(tj − tk)

)
1≤j,k≤m

and is given by

η(dλΛ0) = ν(dλ), (5.21)

and by 0 everywhere else.

Remark 20. Note that, by Kolmogorov’s extension theorem, the family of finite dimensional
limit distributions in the above theorem gives rise to a new stationary, max-stable stochastic
process {Y (t), t ∈ Rd} on Rd.
In fact, it is possible to define this max-stable processes via another construction which allows
for a broader class of variograms than those in (5.19). Let

Vd =
{
γ : Rd → [0,∞) : γ(0) = 0, γ conditionally negative definite

}
denote the space of all variograms on Rd, equipped with the product σ-algebra. Further, let
Q be an arbitrary probability measure on this space and γi, i ∈ N, be an i.i.d. sequence of
random variables with distribution Q. For each i ∈ N, let ξi be a Brown-Resnick process as
in (3.6) with variogram 4γi. Consider the max-mixtures κn of the processes ξi, given by

κn(t) = max
i=1,...,n

ξi(t)− logn, t ∈ Rd,

for n ∈ N. It can be shown that, as n → ∞, the finite dimensional distributions of the
processes κn converge to those of a max-stable, stationary process κ. The latter are given by
the distribution in (5.18) with η induced by Q.

Recall from Chapter 1 that the extremal correlation function of the process in (3.6) is
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given by

ργ(h) = 2
(

1− Φ
(√

γ(h)/2
))

, h ∈ Rd.

Remark 20 defines new max-stable and stationary processes and thus also extremal correlation
functions. Moreover, from the construction it is obvious that processes with this dependence
structure can be simulated easily as max-mixtures of Brown-Resnick processes. In fact, for
an arbitrary variogram γ and mixture measure ν on (0,∞), we let the measure Q in this
remark be the law of S2γ, where S is ν-distributed. The corresponding process κ possesses
the extremal correlation function

ργ,ν(h) =
∫ ∞

0
2
(

1− Φ
(
s
√
γ(h)

))
ν(ds), h ∈ Rd. (5.22)

Gneiting (1999) analyzes this kind of scale mixtures of the complementary error function in
a more general framework. The following corollary is a consequence of Theorem 3.7 and 3.8
therein.

Corollary 2. For a fixed variogram γ the class of extremal correlation functions in (5.22)
is given by all functions ϕ(

√
γ(h)), h ∈ Rd, where ϕ : [0,∞)→ R is a continuous function

with ϕ(0) = 1, limh→∞ ϕ(h) = 0, and

(−1)k d
k

dhk
[−ϕ′(

√
h)] (5.23)

is nonnegative for infinitely many positive integers k.

For instance, if ν1 is the Rayleigh distribution (5.12) with density f1, we immediately
obtain

ργ,ν1(h) = 2
(

1−
∫ ∞

0
Φ (λ) f√

γ(h) (λ) dλ
)

= 1−
(

γ(h)
γ(h) + 1

)1/2
, h ∈ Rd,

from equation (5.14). In fact, ργ,ν1(h) = ψ(γ(h)), with ψ(x) = 1 − (x/(x+ 1))1/2 being
a completely monotone member of the Dagum family (Berg et al., 2008). However, it is
interesting to note, that when writing ργ,ν1(h) = ϕ(

√
γ(h)) with ϕ(x) = 1−

(
x2/(x2 + 1)

)1/2

as in Proposition 2, the function ϕ merely satisfies (5.23) but is not completely monotone.
Similarly, for the Type-2 Gumbel distribution with b = 1, the extremal correlation function
is given by ρ(h) = exp(−

√
2γ(h)). In particular, it follows that for any variogram γ and any

r > 0 the function

ρ(h) = exp
(
−r
√
γ(h)

)
, h ∈ Rd,

is an extremal correlation function. Since this class of extremal correlation functions is closed
under the operation of mixing with respect to probability measures, this implies that for any
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measure µ ∈M1((0,∞)) the Laplace transform Lµ yields an extremal correlation function

ρµ(h) = Lµ(
√
γ(h)) =

∫ ∞
0

e−r
√
γ(h) µ(dr), h ∈ Rd.

Equivalentely, for a completely monotone function ψ with ψ(0) = 1, the function ψ(
√
γ(h))

is an extremal correlation function. A corresponding max-stable, stationary random field is
given by a max-mixture of Brown-Resnick processes with suitable ν ∈M1((0,∞)).

5.4 Proofs
Proof of Theorem 11. Let x,y ∈ R and put un(z) = bn + z/bn, for z ∈ R.

logP
(

max
i=1,...,n

X
(1)
i,n ≤ un(x), max

i=1,...,n
X

(2)
i,n ≤ un(y)

)
=

n∑
i=1

log
(
1−

[
P(X(1)

i,n > un(x)) + P(X(2)
i,n > un(y))− P

(
X

(1)
i,n > un(x), X(2)

i,n > un(y)
) ])

= −
n∑
i=1

P(X(1)
i,n > un(x))−

n∑
i=1

P(X(2)
i,n > un(y))

+
n∑
i=1

P
(
X

(1)
i,n > un(x), X(2)

i,n > un(y)
)

+Rn (5.24)

where Rn is a remainder term from the Taylor expansion of log(1− z) = −z − z2/2 + o(z2),
as z → 0. Thus, by (5.7) there is an n0 ∈ N s.t. for all n ≥ n0 we have

|Rn| ≤
n∑
i=1

[
P(X(1)

i,n > un(x)) + P(X(2)
i,n > un(y))

]2
≤ max

i=1,...n

[
P(X(1)

i,n > un(x)) + P(X(2)
i,n > un(y))

]
(5.25)

·
n∑
i=1

[
P(X(1)

i,n > un(x)) + P(X(2)
i,n > un(y))

]
.

For the one-dimensional margins we observe

−
n∑
i=1

P
(
X

(1)
i,n > un(x)

)
= −

n∑
i=1

∫ ∞
un(x)/σi,n,1

φ(z) dz

= −
n∑
i=1

∫ ∞
x/σi,n,1−b2

n(1−1/σi,n,1)

1
bn
φ(un(z)) dz

= −
∫

[0,∞]×R2

∫ ∞
(1−θ/b2

n)x−θ
e−z−z

2/(2b2
n) dz ηn(d(λ,θ,γ)),
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where for the last equation, we used bn = nφ(bn) and the definition of the measure ηn in
(5.3) to replace the sum by the integral. For n ∈ N, let

hn(θ) =
∫ ∞

(1−θ/b2
n)x−θ

e−z−z
2/(2b2

n) dz, θ ∈ R.

Clearly, as n→∞, hn converges uniformly on compact sets to the function h(θ) = exp(θ−x).
Note that h and hn are continuous functions on R. Put ω = (λ,θ,γ) and observe for K > 0
that ∣∣∣∣∣

∫
[0,∞]×R2

hn(θ)ηn(dω)−
∫

[0,∞]×R2
h(θ)η(dω)

∣∣∣∣∣
≤
∣∣∣∣∣
∫

[0,∞]×R2
hn(θ)1hn>Kηn(dω)−

∫
[0,∞]×R2

h(θ)1h>Kη(dω)
∣∣∣∣∣

+
∣∣∣∣∣
∫

[0,∞]×R2
hn(θ)1hn<Kηn(dω)−

∫
[0,∞]×R2

h(θ)1h<Kη(dω)
∣∣∣∣∣ . (5.26)

By Theorem 5.5 in Billingsley (1968) (see also the remark after the theorem), ηnh−1
n converges

weakly to ηh−1. Moreover, since h1h<K and the hn1hn<K are uniformly bounded in n, the
second summand in (5.26) converges to 0 as n→∞, for arbitrary K > 0. By the uniform
integrability condition (5.4) and Fatou’s Lemma we have

∫
[0,∞]×R2 h(θ)η(dω) <∞ and hence,

also the first summand in (5.26) tends to zero as K,n→∞. Consequently,

−
n∑
i=1

P
(
X

(1)
i,n > un(x)

)
→ −

∫
[0,∞]×R2

exp [− (x− θ)] η(dω), (5.27)

Similarly, we get

−
n∑
i=1

P
(
X

(2)
i,n > un(y)

)
→ −

∫
[0,∞]×R2

exp [− (y − γ)] η(dω). (5.28)

It now also follows from (5.7), (5.25), (5.27) and (5.28) that the remainder term Rn converges
to zero as n→∞.
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We now turn to the third term in (5.24).

n∑
i=1

P(X(1)
i,n /σi,n,1 > un(x)/σi,n,1, X(2)

i,n /σi,n,2 > un(y)/σi,n,2)

=
n∑
i=1

∞∫
un(y)/σi,n,2

[
1− Φ

(
un(x)/σi,n,1 − ρi,nz

(1− ρ2
i,n)1/2

)]
φ(z) dz

= 1
n

n∑
i=1

∞∫
y/σi,n,2−b2

n(1−1/σi,n,2)

[
1− Φ

(
un(x)/σi,n,1 − ρi,nun(z)

(1− ρ2
i,n)1/2

)]
e−z−z

2/(2b2
n) dz

=
∫

[0,∞]×R2

∞∫
(1−γ/b2

n)y−γ

[1− Φ (sn(λ, θ, z, x))] e−z−z2/(2b2
n) dz ηn(dω),

where we used bn = nφ(bn) for the second last equation and sn is defined by

sn(λ, θ, z, x) := λ

(1− λ2/b2
n)1/2 + (1− θ/b2

n)x− z − θ
(1− λ2/b2

n)1/22λ
+ λz

(1− λ2/b2
n)1/2b2

n

.

For the last equation, we replaced the sum by the integral w.r.t. the empirical measure ηn as
in (5.3). Note that for i ∈ {1, . . . , n}, in fact a short computation yields

sn

(√
b2
n(1− ρi,n)/2, b2

n(1− 1/σi,n,1), z, x
)

= un(x)/σi,n,1 − ρi,nun(z)
(1− ρ2

i,n)1/2 .

For n ∈ N, let

gn(λ, θ,γ) = 1λ≤bn
∞∫

(1−γ/b2
n)y−γ

[1− Φ (sn(λ, θ, z, x))] e−z−z2/(2b2
n) dz

be a measurable function on [0,∞] × R2. It is easy to see, that as n → ∞, gn converges
pointwise to the function

g(λ,θ,γ) =
∫ ∞
y−γ

[1− Φ (s(λ, θ, z, x))] e−z dz,

with

s(λ, θ, z, x) := λ+ x− z − θ
2λ .

Note that g is a continuous function on [0,∞]× R2 and

g(0,θ,γ) = gn(0,θ,γ) = exp(−max(x− θ,y − γ))
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and g(∞,θ,γ) = gn(∞,θ,γ) = 0, for any (θ,γ) ∈ R2 and n sufficiently large. Here, the
values are understood as the limits as λ → 0 and λ → ∞ (using dominated convergence),
respectively, e.g., limλ→0 g(λ,θ,γ) =

∫∞
y−γ 1z>x−θe−zdz = exp(−max(x− θ,y − γ)). In order

to establish the weak convergence ηng−1
n ⇒ ηg−1, we show that gn converges uniformly on

compact sets to g as n→∞. To this end, let C = [0,∞]× [θ0,θ1]× [γ0,γ1] be an arbitrary
compact set in [0,∞]×R2 and let ε > 0 be given. First, note that instead of gn it suffices to
consider the function g̃n, defined as

g̃n(λ, θ,γ) = 1λ≤bn
∞∫

(1−γ/b2
n)y−γ

[1− Φ (sn(λ, θ, z, x))] e−z dz,

since for n large enough

sup
(λ,θ,γ)∈C

|gn(λ, θ,γ)− g̃n(λ, θ,γ)| ≤ 1λ≤bn
∞∫

−2|y|−γ1

e−z(1− e−z2/(2b2
n))dz → 0,

as n→∞, by dominated convergence. Further, for any ε > 0, let z1 > − log ε which implies∫∞
z1
e−zdz < ε. We note that for n large enough

sn(λ, θ, z, x) ≥
(
1− λ2/b2

n

)−1/2
(
λ

(
1 + −2|y| − γ1

b2
n

)
+ −2|x| − z1 − θ1

2λ

)
≥
(
λ

2 + −2|x| − z1 − θ1
2λ

)
,

for all λ ≤ bn, −2|y| − γ1 ≤ z ≤ z1 and (λ,θ,γ) ∈ C, independently of n ∈ N. Hence, there is
a λ1 > 0 s.t. for all λ1 ≤ λ ≤ bn

1− Φ (sn(λ, θ, z, x)) < ε e−2|y|−γ1 .

Thus, for all n ∈ N large enough,

sup
(λ,θ,γ)∈C,λ≥λ1

g̃n(λ, θ,γ) ≤ 1λ≤bn

(∫ z1

−2|y|−γ1
ε e−2|y|−γ1e−z dz +

∫ ∞
z1

e−z dz

)
≤ 2ε,

and in the same manner, sup(λ,θ,γ)∈C,λ≥λ1 g(λ, θ,γ) ≤ 2ε. Furthermore, we observe

lim
λ→0

Φ (sn(λ, θ, z, x)) = 1z<(1−θ/b2
n)x−θ and lim

λ→0
Φ (s(λ, θ, z, x)) = 1z<x−θ.

Choose n0 ∈ N such that for all n > n0 and all θ ∈ [θ0,θ1] we find an open interval
(aθ, bθ) of size ε/2 that contains {(1 − θ/b2

n)x − θ, x − θ}. Put Iθ = (aθ − ε/4, bθ + ε/4),
then we find a λ0 > 0, s.t. for all (λ,θ,γ) ∈ C,λ ≤ λ0, z ∈ Iθ and n > n0, we have
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|Φ (sn(λ, θ, z, x))− Φ (s(λ, θ, z, x)) | ≤ ε. Consequently,

sup
(λ,θ,γ)∈C,λ≤λ0

|g̃n(λ, θ,γ)− g(λ, θ,γ)|

≤ sup
(λ,θ,γ)∈C,λ≤λ0

∫ ∞
−2|y|−γ1

(
1z∈Iθ + ε1z∈R\Iθ

)
e−zdz ≤ 2εe2|y|+γ1 .

Choose n1 ∈ N, s.t. bn1 > λ1. For λ0 ≤ λ ≤ λ1 and n > n1,

|sn(λ, θ, z, x)− s(λ, θ, z, x)| (5.29)

=
∣∣∣∣∣
(
λ+ x− z − θ

2λ

)(
1− 1

(1− λ2
1/b

2
n)1/2

)
− λ2z − θ

(1− λ2
1/b

2
n)1/2b2

n2λ

∣∣∣∣∣
≤M1

∣∣∣∣∣1− 1
(1− λ2

0/b
2
n)1/2

∣∣∣∣∣+ M2
(1− λ2

1/b
2
n)1/2b2

n

→ 0

for n → ∞, uniformly in z ∈ [−2|y| − γ1,z1] and (λ,θ,γ) ∈ C with λ0 ≤ λ ≤ λ1. Here, M1
and M2 are positive constants that only depend on x,y,λ0,λ1,θ0,θ1,γ1. Let n2 ∈ N, s.t. for all
n > max(n1,n2) the difference in (5.29) is less than or equal to ε e−2|y|−γ1 . By the Lipschitz
continuity of Φ, we obtain for all λ0 ≤ λ ≤ λ1 and (λ,θ,γ) ∈ C,∫ ∞

−2|y|−γ1
|Φ (sn(λ, θ, z, x))− Φ (s(λ, θ, z, x))| e−z dz

≤
∫ z1

−2|y|−γ1
|sn(λ, θ, z, x)− s(λ, θ, z, x)| e−z dz +

∫ ∞
z1

e−z dz

≤
∫ z1

−2|y|−γ1
ε e−2|y|−γ1 e−z dz +

∫ ∞
z1

e−z dz ≤ 2ε.

Putting the parts together yields

lim
n→∞

sup
(λ,θ,γ)∈C

|g̃n(λ,θ,γ)− g(λ,θ,γ)| = 0.

The assumptions of Theorem 5.5 in Billingsley (1968) are satisfied and therefore ηng−1
n

converges weakly to ηg−1. By a similar argument as in (5.26) together with the uniform
integrability condition (5.4) we obtain for n→∞

n∑
i=1

P(X(1)
i,n > un(x), X(2)

i,n > un(y))→
∫

[0,∞]×R2
g(λ,θ,γ)η(d(λ,θ,γ)).

Finally, partial integration gives

g(λ,θ,γ) = e−(y−γ) + e−(x−θ) − Φ
(
λ+ y − x+ θ − γ

2λ

)
e−(x−θ)

− Φ
(
λ− y − x+ θ − γ

2λ

)
e−(y−γ).
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Together with (5.24), (5.27), (5.28) and the fact that Rn converges to zero, this implies the
desired result.

Proof of Theorem 12. The sufficient part is a simple consequence of Theorem 11, where the
covariance matrix of Xi,n is given by (

1 ρi,n
ρi,n 1

)
.

For the necessary part, suppose that the sequence (maxi=1,...,n bn(Xi,n− bn))n∈N of bivariate
random vectors converges in distribution to some random vector Y . Let the νn, n ∈ N, be
defined as in (5.8) and assume that the sequence (νn)n∈N ⊂M1([0,∞]) does not converge.
Then, by sequential compactness, it has at least two different accumulation points ν,ν̃ ∈
M1([0,∞]). By the first part of this theorem, (maxi=1,...,n bn(Xi,n − bn))n∈N converges in
distribution to Fν ≡ Fν̃ . It now suffices to show that Fν ≡ Fν̃ implies ν ≡ ν̃ to conclude that
(νn)n∈N ⊂M1([0,∞]) converges to some measure ν and that Y has distribution Fν .
The fact that there is a one-to-one correspondence between Hüsler-Reiss distributions Fλ and
the dependence parameter λ ∈ [0,∞] is straightforward (Kabluchko et al., 2009). Showing a
similar result in our case, however, requires more effort.
To this end, for two measures ν1,ν2 ∈ M1([0,∞]) define random variables Y1 and Y2 with
distribution Fν1 and Fν2 , respectively. First, suppose that ν1({∞}) = ν2({∞}) = 0. For
j = 1,2, by Remark 16 we have the stochastic representation Yj = maxi∈N(Ui,j ,Ui,j +Bi,j),
where

∑∞
i=1 δUi,j are Poisson point process on R with intensity e−udu and the (Bi,j)i∈N are

i.i.d. copies of the random variable Bj with normal distribution N(−2S2
j ,4S2

j ), where Sj is
νj-distributed. Assume that

Fν1(x,y) = Fν2(x,y), for all x,y ∈ R, (5.30)

i.e. the max-stable distributions of Y1 and Y2 are equal. Since a Poisson point process is
determined by its intensity on a generating system of the σ-algebra, it follows that the point
processes Π1 =

∑∞
i=1 δ(Ui,1,Ui,1+Bi,1) and Π2 =

∑∞
i=1 δ(Ui,2,Ui,2+Bi,2) are equal in distribution.

Therefore, the measurable mapping

h : R2 → R2, (x1,x2) 7→ (x1, x2 − x1)

induces two Poisson point processes h(Π1) and h(Π2) on R2 with coinciding intensity
measures e−uduPB1(dx) and e−uduPB2(dx), respectively. Hence, B1 and B2 have the same
distribution. Denote by ψj the Laplace transform of the Gaussian mixture Bj , j = 1,2. A
straightforward calculation yields for u ∈ (0,1)

ψj(u) = E exp(uBj) =
∫

[0,∞)
exp(−2λ2(u− u2))νj(dλ), j = 1,2.

By Lemma 7 in Kabluchko et al. (2009) this implies the equality of measures ν2
1(dλ) = ν2

2(dλ),
where ν2

j is the image measure of νj under the transformation [0,∞]→ [0,∞], λ 7→ λ2, for
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j = 1,2. Hence, it also holds that ν1 ≡ ν2.
For arbitrary ν1,ν2 ∈ M1([0,∞]), we first need to show that ν1({∞}) = ν2({∞}). For
j = 1,2, observe that for n ∈ N

− logFνj (−n,0) + logFνj (−n,n)

=
∫

[0,∞)
Φ

(
λ+ n

2λ

)
en + Φ

(
λ− n

2λ

)
− Φ

(
λ+ n

λ

)
en − Φ

(
λ− n

λ

)
e−n νj(dλ)

+ (1− e−n)νj({∞}).

Since the curvature of Φ is negative on the positive real line, we have the estimate

en
∣∣∣∣Φ(λ+ n

2λ

)
− Φ

(
λ+ n

λ

)∣∣∣∣ ≤ n

2λ
√

2π
ene−(λ+n/(2λ))2/2,

where the latter term converges pointwise to zero as n → ∞. Moreover, it is uniformly
bounded in n ∈ N and λ ∈ [0,∞) by a constant and hence, by dominated convergence

lim
n→∞

− logFνj (−n,0) + logFνj (−n,n) = νj({∞}), j = 1,2.

It therefore follows from (5.30) that ν1({∞}) = ν2({∞}). If ν1({∞}) < 1 we apply the
above to the restricted probability measures νj( · ∩ [0,∞))/(1− νj({∞})) on [0,∞), j = 1,2,
to obtain ν1 ≡ ν2.
The last claim of the theorem follows from the fact, that the integrand in (5.10) is bounded
and continuous in λ for fixed x,y ∈ R, and hence, for ν,νn ∈ M1([0,∞]), n ∈ N, weak
convergence of νn to ν ensures the pointwise convergence of the distribution functions.

Proof of Corollary 1. The first statement is a consequence of Theorem 12, because every
sequence of random vectors can be understood as a triangular array where the columns
contain equal random vectors.
For the second claim, let ν ∈M1([0,∞]) be an arbitrary probability measure. Similarly as
in Remark 15, define an i.i.d. sequence (Ri)i∈N of samples of ν. Choosing ρi = max(1 −
2R2

i /b
2
i ,− 1) as correlation of Xi yields

νn = 1
n

n∑
i=1

δ1Ri<biRibn/bi+1Ri>bibn
.

First, consider the measures ν̃n = 1
n

∑n
i=1 δRibn/bi , for n ∈ N. For y ∈ [0,∞] with ν({y}) = 0

we observe

ν̃n([0,y]) = 1
n

n∑
i=1

1[0,y](Ribn/bi). (5.31)

Fix ε > 0 and recall from (3.2) that bn/
√

2 logn → 1 as n → ∞. Hence, choose n large
enough such that i > n1/(1+ε)2 implies bn/bi < 1 + ε. Let nε denote the smallest integer
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which is strictly larger than n1/(1+ε)2 , then (5.31) yields∣∣∣∣∣ν̃n([0,y])− 1
n

n∑
i=1

1[0,y](Ri)
∣∣∣∣∣ ≤ nε

n
+ 1
n

∣∣∣∣∣∣
n∑

i=nε
1[0,y](Ribn/bi)−

n∑
i=nε

1[0,y](Ri)

∣∣∣∣∣∣
≤ nε

n
+ 1
n

n∑
i=nε

1(y/(1+ε),y](Ri).

Letting n→∞ gives

lim
n→∞

∣∣∣∣∣ν̃n([0,y])− 1
n

n∑
i=1

1[0,y](Ri)
∣∣∣∣∣ ≤ ν((y/(1 + ε),y]), a.s.

Since ε was arbitrary and ν({y}) = 0, it follows from the law of large numbers that ν̃n
converges a.s. weakly to ν, as n→∞. Similarly, one can see that the sequence (νn)n∈N has
a.s. the same limit as (ν̃n)n∈N, as n→∞.

Proof of Theorem 13. Let un(z) = bn + z/bn for z ∈ R, un(x) = (un(x1), . . . ,un(xd))> for
x ∈ Rd and for x,y ∈ Rd write x > y if xi > yi for all 1 ≤ i ≤ d.
Let x = (x1, . . . ,xd)> ∈ Rd be a fixed vector and Ali,n =

{
X

(l)
i,n ≤ un(xl)

}
for n ∈ N, 1 ≤ i ≤ n

and 1 ≤ l ≤ d.

logP
(

max
i=1,...,n

X
(1)
i,n ≤ un(x1), . . . , max

i=1,...,n
X

(d)
i,n ≤ un(xd)

)

=
n∑
i=1

logP
[
d⋂
l=1

Ali,n

]
= −

n∑
i=1

P
[
d⋃
l=1

(
Ali,n

)C]
+Rn (5.32)

where Rn is a remainder term from the Taylor expansion of log. Using the same arguments
as for the remainder term in (5.25), we conclude that Rn converges to zero as n→∞. By
the additivity formula we have

−P
[
d⋃
l=1

(
Ali,n

)C]
=

d∑
l=1

(−1)l
∑

m:1≤m1<...<ml≤d
P
[

l⋂
k=1

(
Amki,n

)C]
. (5.33)

Consequently, by (5.32) and (5.33) it suffices to show that

lim
n→∞

n∑
i=1

P (Xi,n > un(x)) =
∫

[0,∞)d×d
hd,(1,...,d),Λ(x1, . . . ,xd) η(dΛ). (5.34)

Let Z = (Z1, . . . ,Zd) be a standard normal random vector with independent margins and let
K = {1, . . . ,d− 1}. For a vector x ∈ Rd let xK = (x1, . . . ,xd−1). If A = (aj,k)1≤j,k≤d ∈ Rd×d

is a matrix, let Ad,K = (ad,1, . . . , ad,d−1), AK,d = (a1,d, . . . , ad−1,d) and AK,K = (aj,k)j,k∈K .
Similarly as in the proof of Theorem 1.1 in Hashorva et al. (2012), we define a new matrix
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Bi,n ∈ R(d−1)×(d−1) by

Bi,nB
>
i,n = (Σi,n)K,K − σi,nσ>i,n, σi,n = (Σi,n)K,d, (5.35)

which is well-defined since (Σi,n)K,K − σi,nσ>i,n is positive definite as the Schur complement
of (Σi,n)d,d in the positive definite matrix Σi,n. This enables us to write the vector Xi,n as
the joint stochastic representation(

X
(1)
i,n , . . . ,X

(d−1)
i,n

)
d= Bi,nZK + Zdσi,n, X

(d)
i,n

d= Zd.

Therefore, since Zd is independent of ZK ,

P (Xi,n > un(x)) = P (Bi,nZK + Zdσi,n > un(xK), Zd > un(xd))

=
∫ ∞
xd

P (Bi,nZK + un(s)σi,n > un(xK)) b−1
n φ(bn)e−s−s2/(2b2

n) ds

= 1
n

∫ ∞
xd

S

((
b2
n(11> −Σi,n)

)
K,d

+ xK − s1 + sb−2
n

(
b2
n(11> −Σi,n)

)
K,d

∣∣∣ b2
nBi,nB

>
i,n

)
· e−s−s2/(2b2

n) ds. (5.36)

It follows from the definition of Bi,n in equation (5.35) that

Bi,nB
>
i,n = (11> −Σi,n)K,d1> + 1(11> −Σi,n)d,K − (11> −Σi,n)K,K

− (11> −Σi,n)K,d(11> −Σi,n)d,K .

Together with (5.36) and the definition of ηn this yields

n∑
i=1

P (Xi,n > un(x)) =
∫
D
pn(A) η2

n(dA),

where pn is a measurable function from D to [0,∞) given by

pn(A) =
∫ ∞
xd

S
(
2AK,d + xK − s1 + 2b−2

n sAK,d
∣∣∣Γd,(1,...,d)(

√
A)− 4b−2

n AK,dAd,K
)

e−s−s
2/(2b2

n) ds.

Further, let p be the measurable function from D to [0,∞)

p(A) =
∫ ∞
xd

S
(
2AK,d + xK − s1

∣∣∣Γd,(1,...,d)(
√
A)
)
e−s ds.

Note that ηn ⇒ η if and only if η2
n ⇒ η2. In view of (5.34) it suffices to show that

lim
n→∞

∫
D
pn(A) η2

n(dA) =
∫
D
p(A) η2(dA). (5.37)
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To this end, let A0 ∈ D and {An, n ∈ N} be a sequence in D that converges to A0. We will
show that pn(An) → p(A0) as n → ∞. By dominated convergence it is sufficient to show
the convergence of the survivor functions. Since A0 is in D, recall that Γd,(1,...,d)(

√
A0) is

in the spaceM(d−1) of (d− 1)-dimensional, non-degenerate covariance matrices. Moreover,
since M(d−1) ⊂ R(d−1)×(d−1) is open and Γd,(1,...,d)(

√
An) − b−2

n 4(An)K,d(An)d,K converges
to Γd,(1,...,d)(

√
A0), there is an n0 ∈ N such that for all n ≥ n0 we have Γd,(1,...,d)(

√
An) −

b−2
n 4(An)K,d(An)d,K ∈ M(d−1). Since also 2(An)K,d + xK − s1 + b−2

n s2(An)K,d converges
to 2(A0)K,d + xK − s1 as n → ∞, we conclude that the survivor functions converge and
consequently pn(An)→ p(A0). Applying Theorem 5.5 in Billingsley (1968) yields (5.37) and
therefore concludes the proof.

The following lemma is needed for the proof of Theorem 14 below.

Lemma 1. For q ∈ N, let Z be random vector in Rq and Vi, i ∈ N, a sequence of i.i.d. copies
of V . Further, suppose εi,n, n ∈ N and 1 ≤ i ≤ n, is a triangular array of errors such that
‖εi,n‖ goes to 0 a.s. uniformly for bounded Vi, as n → ∞. For f ∈ Cb(Rq) the following
convergence holds almost surely,

1
n

n∑
i=1

f(Vi + εi,n)→ Ef(V ), as n→∞.

Proof. For arbitrary N > 0 note that

1
n

n∑
i=1

f(Vi + εi,n) = 1
n

n∑
i=1

f(Vi + εi,n)1‖Vi‖≤N + 1
n

n∑
i=1

f(Vi + εi,n)1‖Vi‖>N . (5.38)

Since for arbitrary δ > 0 we find n0 ∈ N such that εi,n < δ a.s. for all n > n0 and 1 ≤ i ≤ n
with ‖Vi‖ ≤ N , it follows from the uniform continuity of f on compact sets that almost
surely

1
n

n∑
i=1
|f(Vi + εi,n)− f(Vi)|1‖Vi‖≤N → 0, as n→∞. (5.39)

Further, observe that as n → ∞, the absolute value of the second sum in (5.38) is a.s.
bounded by P(‖V ‖ > N) supx∈Rq |f(x)|, which converges to zero as N → ∞. Thus, the
assertion follows from the law of large numbers, the triangle inequality, (5.38) and (5.39).

Proof of Theorem 14. First, note that sn defined in (5.20) goes to 0 for n→∞. For m ∈ N
and pairwise different t1, . . . ,tm ∈ Rd we interpret the random vector (Y (t1), . . . ,Y (tm)),
conditionally on {Si}i∈N, as the normalized maximum of n independent, yet differently
distributed, m-variate normal random vectors

Zi,n =
(
Xi(S2/α

i snt1), . . . ,Xi(S2/α
i sntm)

)
, n ∈ N, i ∈ {1, . . . ,n}.
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In view of (5.19), their covariance matrices are specified by

(1/2)b2
n(11> − Cov(Zi,n)) =

(
b2
nγ(S2/α

i (tj − tk))L(sn)sαn + b2
no(L(sn)sαn)

)
1≤j,k≤m

=
(
γ(S2/α

i (tj − tk)) + o(1)
)

1≤j,k≤m
,

because of (5.20) and the continuity of L. The remainder term goes to 0 for n→∞ uniformly
in S

2/α
i tj ,S

2/α
i tk ∈ Rd, as long as they stay bounded. In order to apply Theorem 13 we

define ηn as in (5.17) by

ηn = 1
n

n∑
i=1

δ(√
γ(S2/α

i (tj−tk))+o(1)
)

1≤j,k≤m

.

For a continuous, bounded function f ∈ Cb([0,∞)m×m), we apply Lemma 1 with V =(√
γ(S2/α

i (tj − tk))
)

1≤j,k≤m
to obtain

∫
[0,∞)m×m

f(Λ) ηn(dΛ)→
∫

[0,∞)m×m
f(Λ) η(dΛ), as n→∞,

where η is as in (5.21). Thus, ηn converges weakly to η. It remains to check the condition
η2(D) = 1, which is fulfilled if {λΛ2

0, λ > 0} ⊂ D. Since γ is a variogram, Λ2
0 is conditionally

negative definite for λ > 0. Suppose that there is an x ∈ Rm \ {0} s.t.
∑m
i=1 xi = 0 and

x>Λ2
0x = 0. For some t0 /∈ {t1, . . . ,tm} this gives

0 = −
m∑

i,j=1
xixjγ(ti − tj) =

m∑
i,j=1

xixj [γ(ti − t0) + γ(tj − t0)− γ(ti − tj)] = x>Cx, (5.40)

where C = (C(ti,tj))1≤i,j≤m is a covariance matrix of a fractional Brownian motion {X(t) :
t ∈ Rd} with X(t0) = 0 and covariance function C(s,t) = ‖s− t0‖α + ‖t− t0‖α − ‖s− t‖α,
for s,t ∈ Rd. Thus, (5.40) implies that the Gaussian random vector (X(t1), . . . ,X(tm)) is
degenerate. However, this contradicts the properties of fractional Brownian motion stated in
Lemma 7.1 in Pitt (1978) and therefore λΛ2

0 ∈ D for all λ > 0.
Hence, conditionally on {Si}i∈N, the distribution function of (Y (t1), . . . ,Y (tm)) converges by
Theorem 13 pointwise to the distribution function Hη. Finally, it suffices to note that

lim
n→∞

E [P (Y (t1) ≤ y1, . . . ,Y (tm) ≤ ym|{Si}i∈N)]

=E
[

lim
n→∞

P (Y (t1) ≤ y1, . . . ,Y (tm) ≤ ym|{Si}i∈N)
]

=EHη(y1, . . . ,ym) = Hη(y1, . . . ,ym),

where the first equation follows by the dominated convergence theorem.

Proof of Proposition 4. By the construction of the spectral measure (cf. (de Haan & Resnick,
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1977)), the spectral density sν can be computed by

sν(θ) = r3
(

∂2

∂x∂y
logFν(x,y)

)
x=r cos(θ),y=r sin(θ)

, θ ∈ [0,π/2].

Applying this to Fν = Fνσ and Fν = Fνb from (5.14) and (5.16), respectively, yields the
desired result.
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