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1. Introduction 

1.1. Somatosensation 

Being exposed to myriad forces and environmental signals, higher organisms adapted 

by acquiring mechanisms to detect external stimuli, to process the information and to 

react accordingly. Force sensing is essential for nearly all behaviors that range from 

avoiding bodily harm to social exchange and is therefore fundamental for development 

and survival (Lumpkin et al., 2010). Many types of specialized receptors transduce 

light, heat, mechanical or chemical stimuli into a change in the cell’s membrane 

potential, the common language of neurons (Squire et al., 2008). Somatosensory 

neurons detect the information about noxious stimuli, touch, temperature and 

proprioception in skin, viscera and muscle and bridge the distance between peripheral 

transduction and central processing in the central nervous system (CNS) (Lewin and 

Moshourab, 2004; Bourane et al., 2009; Lumpkin et al., 2010). These pseudo-unipolar 

neurons cluster in the dorsal root ganglia (DRGs) and extend one axon collateral 

branch to the periphery, whereas the other collateral branch penetrates the spinal 

cord. The central axon collaterals form, depending on the type of stimulus they relay, 

synapses upon second order neurons in the dorsal horn, in the intermediate spinal 

cord or directly connect with motor neurons in the ventral horn (Figure 1.1) (Li et al., 

2011). The CNS then constructs a topographical representation of the body, compares 

the input with further sensory signals and past events and processes the information, 

enabling animals to adapt their behavior to the changing environment (Squire et al., 

2008). 

 

All species rely on touch-dependent behaviors ranging from the simplest activities in 

daily life to extremely sophisticated tasks, like highly precise object manipulation or 

braille reading (Luo et al., 2009; Lumpkin et al., 2010). Different types of functionally 

specialized mechanoreceptors along with their corresponding receptor end organs in 

the skin encode the different qualities of touch and selectively respond to vibration, 

static indentation or stretch (Heidenreich et al., 2011; Li et al., 2011). The receptor 

density covering the body’s surface is tightly correlated with the spatial acuity, ranging 

from higher frequency at the finger tips to lower frequency at the back (Squire et al., 
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2008). The interplay of the distinct mechanoreceptive subtypes provides sensory 

richness to touch-related percepts and encodes complex textures with fine tactile 

acuity (Bourane et al., 2009; Luo et al., 2009). Additionally, nociceptors and 

proprioceptors provide an organism with knowledge of pain sensations for avoidance 

behaviors and give feedback to control and coordinate muscle action, respectively 

(Squire et al., 2008; Arber, 2012).  

 

 

Dysregulation of sensory signaling caused by disease or injury can lead to 

hypersensitivity and chronic pain (Lumpkin et al., 2010). Recent studies reported of a 

congenital insensibility to pain caused by gene mutations (Frenzel et al., 2012). 

Further groups provided evidence that shared genetic factors influence different 

mechanosensitive systems, such as hearing and touch (Frenzel et al., 2012). Despite 

more than 100 years of study and its overwhelming importance in daily life, 

surprisingly little is known about the cellular substrate of touch sensations, including 

the specification of the corresponding primary somatosensory neurons, their unique 

function and the logic of mechanoreceptive circuit organization (Marmigère and 

Ernfors, 2007; Lumpkin et al., 2010; Nilius, 2010; Li et al., 2011).  

  

 
Figure 1.1: Connectivity of somatosensory neurons 

(a) Somatosensory neurons accumulated in dorsal root ganglia (DRGs) penetrate the spinal cord and 

form synapses upon second order neurons in the dorsal horn and intermediate spinal cord or directly 

connect motor neurons, dependent on their distinct subtypes for signal transduction. 

(b) Somatosensory afferents detect and transmit the sensory information about noxious stimuli, touch, 

temperature and proprioception from the skin and muscle to the central nervous system. 

(Adapted from Lallemend and Ernfors, 2012)
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1.2. Somatosensory neurogenesis 

The assembly of precise neuronal circuits is crucial for the function of the nervous 

system and depends on the specification of well-defined neuronal subpopulations that 

arise during embryogenesis (Kandel et al., 2000). Neurulation is initiated by the 

induction of the neural plate from the dorsal ectoderm of the gastrula-stage embryo, 

whereby the most anterior region of the neural plate forms the forebrain, progressively 

more posterior regions give rise to midbrain, hindbrain and spinal cord structures 

(Figure 1.2 a) (Tanabe and Jessell, 1996). The neural plate is subsequently converted 

into a tube by the shaping and folding of the neuroepithelium, involving coordinated 

changes in cell shape, cell division, cell migration and cell-cell interaction 

(Figure 1.2 b) (Squire et al., 2008; Greene and Copp, 2009). Finally, the inner neural 

tube and the outer surface ectoderm are created by adhesion, fusion and remodeling 

of the midline (Figure 1.2 c) (Copp et al., 2003). The patterning of the neuraxis is 

mediated by factors released from the axial and paraxial mesoderm (Tanabe and 

Jessell, 1996; Lumsden and Krumlauf, 1996).  

 

These secreted factors induce the localized expression of cell-intrinsically acting 

factors along the rostrocaudal and dorsoventral axis of the neural tube, which, in turn, 

are involved in the generation of a large diversity of neuronal cell types (Muhr et al., 

1999; Le Dréau and Martí, 2012). The dorsal cell fate determination depends on a 

cascade of secreted proteins, which are initiated by cells of the epidermal ectoderm 

and propagated by roof plate cells within the neural tube. The main instructive cues 

are members of the Transforming growth factor β / Activin / Bone morphogenetic 

protein (BMP) family, complemented by additional signals involving the Wnt and 

Fibroblast growth factor families, which also contribute to the dorsal neuronal identity 

(Liem et al., 1997; Lee and Jessell, 1999; Helms and Johnson, 2003; Le Dréau and 

Martí, 2012). The ventral neuronal patterning of the CNS is induced by signaling of the 

notochord and later on by the floor plate through secretion of the glycoprotein Sonic 

hedgehog, which has been shown to direct different cell fates, such as motor neurons 

and ventral interneurons, at different concentration thresholds (Chiang et al., 1996; 

Briscoe et al., 2000). Selective cross-repressive interactions convert the dorsoventral 
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signaling activity into discrete progenitor domains (Sander et al., 2000; Liem et al., 

2000; Jessell, 2000).  

 

 

Concomitant with the fusion of the neural folds during neurulation, neural crest cells 

(NCCs) subsequently emerge from the most dorsal portion of the neural tube. These 

multipotent, SRY box 10 (Sox10)-positive progenitor cells give rise to a wide variety of 

cell types and form most of the peripheral nervous system, including dorsal root, 

sympathetic, parasympathetic and enteric ganglia. Furthermore, NCCs generate non-

neuronal cells like glia, Schwann cells, adrenal cells and melanocytes (Bronner-Fraser 

and Fraser, 1988; Frank and Sanes, 1991; Gilbert, 2000; Kim et al., 2003). NCC 

progenitor cell fate arises prior to neurulation within a band of cells at the border 

between the neural plate and the non-neuronal ectoderm (Le Douarin and Kalcheim, 

1999; Squire et al., 2008). Premigratory NCC development is induced by signaling 

factors, including BMP and WNT, whereas a variety of further factors can bias the cells 

toward certain lineages (Bronner-Fraser, 2004; Huang and Saint-Jeannet, 2004; 

 

Figure 1.2: Vertebrate neurulation 

(a) The induction of the neural plate is initiated from the 

dorsal ectoderm of the gastrula-stage embryo as a 

consequence of inducing factors released from the 

mesoderm and notochord.  

(b) Shaping and folding of the neuroepithelium converts the 

tube in a neural fold. Somites originate from the paraxial 

mesoderm. 

(c) Fusion and remodeling of the midline creates the neural 

tube and the outer ectoderm. Neural crest cells (NCCs) 

emerge from the dorsal part of the neural tube. 

(Adapted from Jessell, 2000)
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Marmigère and Ernfors, 2007). NCCs undergo a transition from epithelial to migratory 

mesenchymal cells with changes in their adhesive properties (Sauka-Spengler and 

Bronner-Fraser, 2008; Squire et al., 2008). Downregulation of cell adhesion molecules 

like N-cadherin and cadherin 6 are thought to drive the transition from epithelial to 

motile mesenchymal characteristics (Nakagawa and Takeichi, 1998; Pla et al., 2001). 

During this process, the basal lamina around the neural tube dissolves, NCCs 

delaminate and directionally emigrate, a process involving homotypic cell-cell 

interactions (Kandel, 2000; Carmona-Fontaine et al., 2008). Many NCCs appear to be 

multipotent both before and after emigration, and their fate is to large degree 

determined in response to extracellular signals (Hari et al., 2012). However, several 

lines of evidence suggest the existence of subpopulations of lineage-restricted 

premigratory NCCs (George et al., 2007; Lefcort and George, 2007). NCCs migrate 

along defined pathways in chain-like structures towards their respective peripheral 

targets between embryonic day (E) 8 and E10 in the mouse and between Hamburger-

Hamilton stage 11 and 21 in the chick (Hamburger and Hamilton, 1951; Serbedzija 

et al., 1990; Frank and Sanes, 1991; Kasemeier-Kulesa et al., 2005; Krispin et al., 

2010). Attractive and repulsive environmental adhesion molecules and secreted 

guidance cues influence NCC migration before they differentiate into their target-

appropriate cell types (Ruhrberg and Schwarz, 2010; Theveneau and Mayor, 2012). 

Currently, little is known about how NCCs stop their migration after reaching their 

appropriate destination (Squire et al., 2008; Theveneau and Mayor, 2012). 

 

Neurogenesis occurs in three successive waves of NCC migration between E9.5 and 

E11 in the mouse, in which the Wnt/β-catenin pathway and the BMP signaling play an 

instructive role concerning the specification of the sensory lineage (Hari et al., 2002; 

Lee HY et al., 2004; Bronner-Fraser, 2004; Kléber et al., 2005; Marmigère and 

Ernfors, 2007). After their delamination a subpopulation of NCCs migrates along a 

ventral pathway and coalesces into dorsal root ganglia (DRGs) adjacent to the neural 

tube at regular intervals (Lallemend and Ernfors, 2012). The first wave of 

neurogenesis is initiated during early NCC migration by the expression of the 

transcription factor (TF) Neurogenin 2 (Ngn2) that directs NCC differentiation mainly 

into mechanoreceptive and proprioceptive sensory neurons, which localize in the 

ventrolateral part of the DRG (Figure 1.3 a) (Ma et al., 1999; Perez et al., 1999). These 
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Ngn2+ cells show limited cell division with three neurons per NCC and constitute 

around four percent of the adult DRG neurons (Frank and Sanes, 1991; Anderson, 

2000).  

 

 

With around 91%, the major proportion of the DRG neurons is generated in the second 

wave of sensory neurogenesis due to a high cell division rate that produces an 

average of 36 neurons per NCC (Figure 1.3 b) (Frank and Sanes, 1991; Marmigère 

and Ernfors, 2007). High levels of the TF Neurogenin 1 (Ngn1) drive the postmigratory 

differentiation of the multipotent Sox10+ NCCs towards small nociceptive neurons 

located in the dorsomedial region of the DRG, as well as towards large-size 

mechanoreceptive and proprioceptive neurons (Ma et al., 1999; Kim et al., 2003). 

Furthermore, in a third wave of neurogenesis, boundary cap cells, a specialized 

population of postmigratory NCCs contributing to up to five percent of total DRG 

neurons, are thought to produce DRG neurons of exclusively nociceptive type 

 
Figure 1.3: Waves of sensory neurogenesis 

(a) Multipotent neural crest cells (NCCs) delaminate from the neural tube and migrate along ventral 

pathways to accumulate in dorsal root ganglia (DRGs). Neurogenin 2 initiates a first wave of 

neurogenesis producing mechanoreceptive and proprioceptive neurons (4% of total DRG neurons). 

(b) Postmigratory differentiation of NCCs towards nociceptive, mechanoreceptive and proprioceptive 

neurons is mediated by Neurogenin 1 in a second wave of neurogenesis. High cell division rates lead to 

the emergence of around 91% of total DRG neurons. 

(c) In a late neurogenic wave boundary cap cells generate a small amount of nociceptive neurons (5% 

of total DRG neurons). 

(Adapted from Marmigère and Ernfors, 2007)
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(Figure 1.3 c) (Maro et al., 2004; Lallemend and Ernfors, 2012). NCCs of the second 

and third waves also differentiate into peripheral glia in addition to neurons (Frank and 

Sanes, 1991; Maro et al., 2004). The Neurogenin TFs initiate pan-neuronal programs 

leading to the establishment of neuronal fate accompanied by the expression of other 

key TFs like Brn3a, Islet1 or Foxs1 (McEvilly et al., 1996; Perez et al., 1999; Kim et al., 

2003; Montelius et al., 2007). The initiated transcriptional programs cause 

downregulation of multipotency factors like Sox10 and suppression of dorsal spinal 

cord and other non-neuronal fates, while downstream signaling cascades promote 

neuronal differentiation and sensory neuron subtype specification (Marmigère and 

Ernfors, 2007; Sun et al., 2008; Lanier et al., 2009). 

 

 

 

1.3. Somatosensory neuron specification and connectivity 

The determination of a neuronal cell fate is controlled by the interplay between 

environmental cues and cell-intrinsic information. Therefore, the birth of a neuron at a 

specific time and position determines its identity (Lallemend and Ernfors, 2012). 

Shortly after their accumulation in DRGs the immature NCC-derived neurons start to 

differentiate into various types of sensory neurons, including nociceptive and 

mechanosensitive neurons terminating in the skin, as well as proprioceptive neurons 

innervating deep structures, such as muscle spindles and golgi tendon organs (Lupkin 

et al., 2010). Intrinsic and local environmental signals drive the segregation into unique 

subtypes by transcriptional activation and repression of specific genes, encoding key 

cell fate determinants. The earliest known markers for sensory subtypes are the 

growth factor receptors Tropomyosin receptor kinase A (TrkA), TrkB, TrkC, Met and 

Ret which serve as receptors for the Neurotrophins (Nerve growth factor, NGF; Brain-

derived neurotrophic factor, BDNF; Neurotrophin 3, NT-3), Hepatocyte growth factors 

and Glia-derived neurotrophic factor (GDNF) ligands produced by cells from sensory 

target tissue (Snider and Wright, 1996; Huang and Reichardt, 2001).  
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These factors and their receptors play important roles in shaping the functionality and 

specific connectivity of the primary somatosensory neurons by their involvement in 

neuron diversification, peripheral innervation, cell survival and central axon collateral 

targeting (Huang et al., 1999; Fünfschilling et al., 2004; Marmigère and Ernfors, 2007; 

Luo et al., 2009; Gascon et al., 2010). Furthermore, several differentially expressed 

TFs begin to be expressed in early neurogenesis, including MafA and c-Maf, as well 

as the Runx family members Runx1 and Runx3 (Kramer et al., 2006; Bourane et al., 

2009; Wende et al., 2012). It is generally thought that these factors participate via 

combinatorial expression profiles in the basic establishment of sensory neuron 

diversification and maturation, a process that extends well into postnatal stages in 

mammals (Figure 1.4). Genetic programs that direct neuronal subtype specification 

are likely to also control connectivity. However, the regulatory mechanisms driving 

 
Figure 1.4: Genetic cascades of somatosensory subtype specification 

All sensory neurons arise from neural crest cells (NCCs). Further in their development, they become 

specified according to the combinatorial expression of key regulators like the growth factor receptors 

TrkA, TrkB, TrkC, Ret and Met and the transcription factors Runx1, Runx3 and MafA. Sensory 

specification and maturation of mechanoreceptors, proprioceptors and nociceptors extends to postnatal 

stages in mice. E, embryonic day; P, postnatal day; interrogation mark, unknown origin. 

(Adapted from Lallemend and Ernfors, 2012)
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both sensory subtype specification and connectivity remain incomplete and additional 

participating factors need to be identified (Liu and Ma, 2011; Lallemend and Ernfors, 

2012). 

 

 

1.3.1. Nociceptive neurons 

The major part of unmyelinated nociceptive neurons is generated from the Ngn1 

dependent wave of neurogenesis, followed by the upregulation of high TrkA and 

Runx1 expression levels at E11.5 in mice (Ma et al., 2003; Kramer et al., 2006; Chen 

CL et al., 2006). Runx1 is important for the emergence of Ngn1-dependent small-

diameter neurons by activation of TrkA via direct promoter binding (Marmigère et al., 

2006). At later embryonic stages around E12.5 - E15.5 in mice, Runx1 expression 

becomes more subtype-restricted and the function switches from a general nociceptive 

transcriptional activator to a repressor (Chen CL et al., 2006). Thus, Runx1 mediates 

the further diversification of immature TrkA+ neurons. Maintained Runx1 expression 

drives a TrkA- non-peptidergic phenotype, whereas downregulation of Runx1 allows 

neurons to acquire a TrkA+ peptidergic phenotype (Chen CL et al., 2006; Marmigère 

and Ernfors, 2007). 

 

 
Figure 1.5: Connectivity of nociceptive neurons 

(a) Nociceptive subtypes terminate in different laminae in the spinal cord. Peptidergic C-fibers innervate 

laminae I and II (outer), non-peptidergic neurons project mainly into lamina II (inner), whereas lightly 

myelinated Aδ-nociceptors terminate in laminae I and V of the dorsal horn. 

(b) In the periphery, peptidergic C-fibers terminate as free nerve endings in the epidermis close to the 

dermis border and as circular nerve endings at hair follicles. Non-peptidergic peripheral projections 

terminate superficially in the epidermis. 

(Adapted from Lallemend and Ernfors, 2012)
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Peptidergic nociceptors, which serve as polymodal pain-sensing neurons responding 

to noxious heat and mechanical stimuli, express high levels of TrkA, Met and the 

neuropeptides CGRP and Substance P (Lewin and Moshourab, 2004). Their slowly 

conducting C-fibers terminate close to the epidermis-dermis border as free nerve 

endings and as circular nerve endings at hair follicles (Figure 1.5). Their central 

afferents project into laminae I and II (outer) in the spinal cord for pain transmission 

(Fitzgerald, 2005; Zylka et al., 2005; Squire et al., 2008). Activation of TrkA has been 

shown to induce Met, which defines the peptidergic phenotype by extinguishing Runx1 

expression via cross-repressive interactions between Met and Runx1 (Kramer et al., 

2006; Gascon et al., 2010). Additionally, Met and TrkA activate peptidergic expression 

profiles (Lumpkin and Caterina, 2007; Lallemend and Ernfors, 2012).  

 

Non-peptidergic nociceptors are responsible for the detection of thermal pain, 

inflammatory pain and are involved in neuropathic pain (Chen CL et al., 2006). Their 

C-fiber terminals innervate the epidermis and their central projections terminate in 

lamina II (inner) in the spinal cord (Figure 1.5) (Fitzgerald, 2005; Zylka et al., 2005; 

Squire et al., 2008). Non-peptidergic neurons display a unique expression of Runx1 

and Ret, which together induce the progressive extinction of TrkA around P14 in mice, 

while at the same time these neurons acquire isolectin B4 (IB4) binding (Molliver et al., 

1997; Abdel Samad et al., 2010). During segregation of the peptidergic and non-

peptidergic subtypes, Runx1 is important for inducing Ret expression and for 

repression of the peptidergic neuron markers CGRP and Met (Luo et al., 2009; 

Gascon et al., 2010). The upregulation of non-peptidergic-specific ion channels and 

transmembrane receptors shapes the receptive properties and the neuronal 

connectivity (Lumpkin and Caterina, 2007; Golden et al., 2010). Additionally, Ret, 

whose expression is initiated by NGF and consolidated by Ret itself, accompanies the 

Runx1 function in repressing TrkA during the segregation of the lineages (Luo et al., 

2007). At approximately E16.5 in mice further nociceptive subtype specification occurs 

by the expression of different Mas-related G protein-coupled receptors (Mrgprs) whose 

functions are thought to underlie the acquisition of distinct pain sensitivities (Liu et al., 

2008; Lallemend and Ernfors, 2012). 
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It has been shown, that Runx1 is also necessary for the specification of DRG neurons 

expressing the Transient Receptor Potential channel family member TrpM8 (Chen CL 

et al., 2006). These TrpM8+, but CGRP- and IB4- unmyelinated or lightly myelinated 

neurons probably arise from early TrkA+/Runx1+ progenitors and mediate innocuous 

and painful sensations to cold and cooling compounds (Peier et al., 2002; Takashima 

et al., 2010). New data further revealed an early TrkA lineage of Aδ-nociceptors, 

generated at E10.5 by a Ngn1-independent neurogenesis terminating in laminae I and 

V of the dorsal horn (Lallemend and Ernfors, 2012). This DRG neuron subtype 

expresses CGRP and the myelination marker Neurofilament 200 (NF200), whereas no 

expression of Runx1, Ret or Met could be detected (Gascon et al., 2010; Bachy et al., 

2011). In summary, based on current literature, at least two bursts of birth of TrkA+ 

neurons exist in sensory neurogenesis (Figure 1.4).  

 

 

1.3.2. Proprioceptive neurons 

Large-size proprioceptive neurons play a prominent role in coordinated muscle control 

by detecting changes in muscle length (Arber, 2012). Type Ia heavily myelinated Aα-

fibers innervate muscle spindles, whereas the central afferents project to the 

intermediate and ventral spinal cord where they directly synapse with α-motor neurons 

to establish monosynaptic reflex circuits (Chen et al., 2003). Group Ib Aα-afferents 

which innervate golgi tendon organs project mainly to lamina VI in the intermediate 

spinal cord. Proprioceptive Aβ-fibers of group II DRG neurons also terminate at 

muscle spindles and, like type Ia afferents, concentrate their central afferents in the 

intermediate and ventrolateral gray matter (Figure 1.6) (Scott, 1992; Riddell and 

Hadian, 2000). 

 

The progenitors that give rise to proprioceptive neurons arise from the first and second 

waves of neurogenesis in the DRG (Ma et al., 1999). Early in sensory DRG neuron 

diversification, two TrkC+ populations can be observed until E12.5 in mice: one 

population expresses TrkC in combination with TrkB, whereas the other one 

expresses TrkC alone. At approximately E10.5, expression of Runx3 is initiated 

leading to the repression of TrkB and Shox2 (Kramer et al., 2006; Abdo et al., 2011; 

Scott et al., 2011). This direct repression can be explained by the dependence of a 
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TrkB gene silencer on the Runx protein complex and on NT-3 signaling (Inoue et al., 

2007).  

 

 

The initiation of Runx3 expression in immature proprioceptive neurons occurs before 

peripheral target innervation and implies the regulation of determinants in the local 

DRG environment for proprioceptive cell fate (Lallemend and Ernfors, 2012). 

Additionally, Runx3 maintains TrkC expression via cross-activating loops between 

Runx3 and TrkC to consolidate a proprioceptive phenotype between E11 and E13.5 

(Figure 1.4) (Kramer et al., 2006; Nakamura et al., 2008). The TrkC ligand NT-3, which 

is expressed in early muscle mass and later on in muscle spindles, has been shown to 

induce the ETS family TF ER81, an important regulator of central connectivity (Patel 

et al., 2003). Together, Runx3 and TrkC are the key factors in molecular specification 

and functional circuit formation of proprioceptive neurons (Inoue et al., 2002; Levanon 

et al., 2002; Chen AI et al., 2006). At later embryonic stages, additional general 

proprioceptive markers like Parvalbumin begin to be expressed, but no genes 

exclusively expressed by type Ia, Ib or II neurons have been identified so far (Chen 

et al., 2003). 

 

 

 
Figure 1.6: Connectivity of proprioceptive neurons 

(a) Type Ia proprioceptive neurons terminate in the ventrolateral spinal cord and directly connect motor 

neurons (IX). Type Ib afferents project to the intermediate zone (mainly lamina VI), whereas type II 

neurons occupy both intermediate and ventral domains of the spinal cord.  

(b) Type Ia Aα-fibers and type II Aβ-fibers innervate muscle spindles. Type Ib Aα-afferents form endings 

at golgi tendon organs.  

(Adapted from Lallemend and Ernfors, 2012)
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1.3.3. Mechanoreceptive neurons 

Mechanoreceptive neurons comprise various myelinated and unmyelinated types, 

terminating throughout laminae II (inner) and V in the dorsal horn of the spinal cord 

and innervating their corresponding peripheral end organs in the hairy and glabrous 

skin (Figure 1.7) (Brown, 1982; Squire et al., 2008). 

 

 

In contrast to proprioceptors and nociceptors, little is known about the molecular 

mechanisms governing the early differentiation and later specification into 

mechanosensitive subtypes (Lecoin et al., 2010). Mechanoreceptive neurons arise 

mainly from the Ngn2-dependent wave of neurogenesis (Ma et al., 1999). Soon after 

DRG accumulation, mechanoreceptive progenitors segregate into Ret/Gfrα2 

expressing (earlyRet+) and TrkB+/TrkC+ populations (Luo et al., 2009; Honma et al., 

2010). This lineage diversifies further into Ret+/MafA+, Ret+/MafA+/TrkB+ and 

Ret+/MafA+/TrkC+ expressing neurons, for which Ret signaling appears to be crucial 

(Bourane et al., 2009; Lecoin et al., 2010). The more broadly expressed c-Maf controls 

MafA expression in these cells and further regulates the expression of ion channels 

 
Figure 1.7: Connectivity of mechanoreceptive neurons 

(a) Mechanoreceptive central afferents project into deeper laminae of the spinal cord. Rapidly adapting 

(RA) and slowly adapting (SA) low-threshold mechanoreceptors (LTMRs) terminate throughout laminae 

III-V, Aδ-LTMRs mainly connect with interneurons from lamina III and unmyelinated C-afferents project 

into lamina II (inner).  

(b) Pacinian corpuscles and Merkel cells present in both, glabrous and hairy skin, are innervated by 

RA-afferents and SA-afferents, respectively. Meissner corpuscles exclusively found in glabrous skin 

and hair follicles are also innervated by RA Aβ-LTMRs, whereas SA-afferents additionally terminate at 

Ruffini corpuscles in glabrous skin. Aδ- and C-fibers were found to form lanceolate and circular nerve 

endings at hair follicles. 

(Adapted from Lallemend and Ernfors, 2012)
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important for mechanoreceptor functions (Wende et al., 2012). MafA, which is 

expressed in all of the three earlyRet+ mechanoreceptive subtypes, shows the ability 

to repress TrkB (Ma, 2009). TrkB expression in one of the subtypes can only be 

maintained by additional expression of Shox2 (Abdo et al., 2011). The regulatory 

mechanism of the differentiation into Ret+/MafA+ or Ret+/MafA+/TrkC+ 

mechanoreceptors still remains unknown (Lallemend and Ernfors, 2012). The 

earlyRet+ neurons have been shown to predominantly label rapidly adapting low-

threshold mechanoreceptors (LTMRs) innervating Meissner corpuscles, Pacinian 

corpuscles and hair follicles (Ma, 2009). Ret, MafA and c-Maf mutant mice all show 

dramatic defects in rapidly adapting mechanoreceptors function, as well as their 

central and peripheral connectivity (Table 1.1) (Bourane et al., 2009; Luo et al., 2009; 

Honma et al., 2010; Wende et al., 2012). Whether the different earlyRet+ subtypes are 

restricted to different mechanoreceptive end organs demands further investigation. 

Therefore, additional participating factors, like ion channels responding to mechanical 

stimuli, still need to be identified (Ma, 2009). One putative candidate could be the 

potassium channel Kcnq4, which is expressed in earlyRet+ neurons exclusively 

innervating Meissner corpuscles and hair follicles and plays an important role in 

controlled low-frequency vibration detection (Heidenreich et al., 2011). 

 

The TrkB+ lineage of mechanoreceptive neurons arises from early TrkB+/TrkC+ 

progenitors and might include slowly adapting LTMRs innervating Merkel and Ruffini 

end organs and lightly myelinated Aδ-LTMRs (Abdo et al., 2011; Li et al., 2011). The 

co-expression of Shox2 in the progenitors promotes TrkB and represses TrkC 

expression and thereby directs the neurons to escape from a proprioceptive 

phenotype (Scott et al., 2011). The cross-activation between Shox2 and TrkB and the 

cross-repression between Shox2 and TrkC are suggested to be the major 

determinants in TrkB+ mechanoreceptive versus TrkC+ proprioceptive cell fates 

(Lallemend and Ernfors, 2012). 

 

Furthermore, Li and colleagues identified a DRG neuron population representing 

unmyelinated C-LTMRs, that is positive for Ret, tyrosine hydroxylase (TH) and vGlut3+, 

but negative for the common nociceptive markers TrkA, TrpV1, Mrgps and IB4 (Li 

et al., 2011). These recent findings imply the existence of at least five molecularly 
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unique mechanoreceptive subtypes: Ret+/MafA+, Ret+/MafA+/TrkB+, Ret+/MafA+/TrkC+, 

TrkB+ and Ret+/TH+ (Figure 1.4). However, in most cases their correlation with distinct 

mechanoreceptive end organs needs to be examined in more detail (Table 1.1).  

 

 

The current knowledge regarding the process of sensory neuron diversification is still 

rudimentary. The discovery of somatosensory subtype-specific direct cell lineage 

tracings, co-activators, co-repressors and further downstream substrates would help to 

understand the definite hierarchical organization, sensory cell fate determining 

mechanisms or the precise connectivity of somatosensory neuronal circuits 

(Marmigère and Ernfors, 2007; Lallemend and Ernfors, 2012). 

 

  

 
Table 1.1: Correlation of mechanoreceptive subtypes with their innervated end organs 

The comparison of the results from different studies revealed consensuses and a few discrepancies in 

their observations of peripheral sensory end organ innervation. The labeling methods used for the 

sensory subtypes (genetically, antibody) and the mutant mice are stated. The innervation of Ruffini 

corpuscles was not analyzed by any of the groups. (c)KO, (conditional) knockout mouse; interrogation 

mark, not stated. 
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1.4. Low-threshold mechanoreceptor characteristics 

Low-threshold mechanoreceptors (LTMRs) sense a range of innocuous mechanical 

stimuli and are subdivided according to their temporal response properties and their 

receptive field size. LTMRs differ in their conduction velocities which are affected by 

the nerve diameter, the myelination and the internal axon resistance. Accordingly, 

rapidly adapting (RA) and slowly adapting (SA) types can be distinguished (Lewin and 

Moshourab, 2004; Lumpkin and Caterina, 2007; Ma, 2009). LTMRs possessing a 

small receptive field size in the skin are referred to as type I, while LTMRs with a large 

receptive field are termed type II (Woolfe et al., 2008). In mammals, RA type I and RA 

type II Aβ-mechanoreceptors innervate Meissner corpuscles and Pacinian corpuscles, 

respectively, that dynamically respond to low and high-frequency vibration (Lewin and 

Moshourab, 2004; Heidenreich et al., 2011). Hair follicles are innervated by heavily 

myelinated RA Aβ-LTMRs, lightly myelinated Aδ-LTMRs (D-hair receptors) and 

unmyelinated C-LTMRs, all of which are stimulated by hair deflection (Lewin and 

Moshourab, 2004; Lumpkin et al., 2010). The peripheral collaterals of SA type I and 

SA type II Aβ-mechanoreceptors terminate in Merkel discs and Ruffini corpuscles, 

respectively, that relay static responses to dermal stretch and indentation (Lewin and 

Moshourab, 2004; Lumpkin and Caterina, 2007; Lumpkin et al., 2010). The different 

large-diameter Aβ-LTMRs, as well as the medium-diameter Aδ-neurons and small-

diameter C-fibers can be differentiated electrophysiologically via in vitro skin nerve 

preparations, whereby response properties of single axon fibers are recorded after 

variable mechanical stimulation of the skin (Figure 1.8) (Lewin and Moshourab, 2004; 

Heidenreich et al., 2011; Wende et al., 2012). 

 

Through whole cell patch clamp recordings, it is further possible to discriminate 

isolated adult and embryonic nociceptive and mechanoreceptive sensory neurons by 

their characteristic action potential waveforms (Koerber et al., 1988; Djouhri et al., 

1998; Fang et al., 2005). The nociceptive action potentials show a ‘hump’ on the falling 

phase, long half peak durations and longer afterhyperpolarization durations. In 

contrast, mechanoreceptors fire narrow uninflected spikes with short half peak and 

afterhyperpolarization durations (Lechner et al., 2009). Additionally, all sensory 

neurons acquire a mechanotransduction competence, the ability to transduce 
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mechanical stimuli into electrical signals (Lechner et al., 2009). In mechanoreceptors 

and proprioceptors, this mechanically-activated rapid and highly sensitive 

mechanosensitive current activates and inactivates within a few milliseconds and 

appears as soon as the receptors innervate their peripheral targets (Lechner et al., 

2009). LTMRs thus possess a so-called RA-mechanosensitive current, while the 

majority of nociceptors exhibit intermediately adapting and SA inactivating currents 

(Drew et al., 2002; Hu and Lewin, 2006; Lechner et al., 2009). 

 

 

It is therefore possible to classify LTMRs based on their peripheral innervation of 

distinct morphologically unique end organs, as well as on their characteristic 

physiological properties. The central afferents of LTMRs also differ from other sensory 

types in their termination zones in the spinal cord. RA and SA Aβ-LTMRs terminate 

throughout laminae III to V, Aδ-LTMRs mainly connect with interneurons from lamina 

III and unmyelinated C-afferents project into lamina II (inner) (Light and Perl, 1979; Li 

et al., 2011). In contrast, the majority of nociceptive afferents project in the most 

superficial laminae I and II of the dorsal horn, while proprioceptive projections 

terminate in laminae VI and XI of the intermediate and ventrolateral gray matter 

 
Figure 1.8: Electrophysiology of somatosensory neuron subtypes 

In vitro mouse skin nerve preparations reveal typical electrophysiological differences between sensory 

neuron subtypes and their approximate incidence of total cutaneous sensory neurons. 

(a) Low-threshold mechanoreceptors robustly respond to the ramp phase of the stimulated skin. RA, 

rapidly adapting; SA, slowly adapting. 

(b) Nociceptors respond primarily to the static phase of the stimulus. 

(Modified from Lewin and Moshourab, 2004)
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(Brown, 1982; Chen AI et al., 2006). In analogy to the fine-grained laminar and 

sublaminar segregation patterns of the molecularly defined nociceptor identities, the 

different subtypes of LTMRs could consequently also terminate in discrete laminar 

targets (Zylka et al., 2005; Li et al., 2011). Li and colleagues could recently show that 

the major hair follicle types (guard hair, zigzag hair and awl/auchene hair) are 

innervated by a unique and invariant combination of LTMRs (Figure 1.9). Strikingly, 

they could also show a topographical arrangement of the corresponding central 

afferents in columns, whereby the projections of the different LTMRs innervating the 

same or adjacent hair follicles terminate within narrow columns in the dorsal horn (Li 

et al., 2011). The dorsal horn could therefore combine 2000-4000 columns of LTMR 

units in 3D space that reflect the respective peripheral receptive fields (Li et al., 2011; 

Arber, 2012). A similar concept has been proposed for nociceptive withdrawel reflex 

modules (Ladle et al., 2007; Arber, 2012).  

 

 

Molecularly, at least five unique mechanoreceptive subtypes (Ret+/MafA+, 

Ret+/MafA+/TrkB+, Ret+/MafA+/TrkC+, TrkB+, Ret+/TH+) were identified, but their 

correlation with distinct mechanoreceptive end organs and their central terminations in 

the spinal cord need to be determined in more detail (Table 1.1) (Bourane et al., 2009; 

Luo et al., 2009; Honma et al., 2010; Abdo et al., 2011; Heidenreich et al., 2011; Li 

 
Figure 1.9: Subtypes of low-threshold mechanoreceptors in hairy skin 

(a) Different types of low-threshold mechanoreceptors (LTMRs) innervating the same or adjacent hair 

follicles form narrow columns in the dorsal horn. The peripheral receptive fields are reflected by a 

central topographical arrangement in columns. RA, rapidly adapting; SA, slowly adapting; interrogation 

mark, no specific markers. 

(b) The major hair follicle types, guard hair, zigzag hair and awl/auchene hair, are innervated by a 

unique and invariant combination of LTMRs. Merkel cells associated with guard hair are innervated by 

SA Aβ-LTMRs. The ratio indicates the composition of a peripheral LTMR unit. 

(Modified from Li et al., 2011)
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et al., 2011; Wende et al., 2012). Further analysis becomes difficult, however, due to 

the scarcity of available gene expression profiles or specific markers that would help to 

directly identify the mechanoreceptive subtypes (Ma, 2009; Lallemend and Ernfors, 

2012). 

 

Surprisingly, little is known about the establishment of well-defined sensory circuits. 

Gene programs that direct the sensory subtype specification are likely to control 

connectivity (Hippenmeyer et al., 2004). It has been shown that key determinants for 

the establishment of sensory phenotypes like Runx1, Runx3 and Ret also have an 

impact on the neuron subtype-specific connectivity, presumably by influencing the 

expression of cell-surface receptors for axon guidance cues (Chen AI et al., 2006; 

Chen CL et al., 2006; Kramer et al., 2006; Marmigère and Ernfors, 2007; Bourane 

et al., 2009; Luo et al., 2009). Recent evidence indicates that peripheral target-derived, 

yet-to-be-identified retrograde signals prompt sensory afferents to project to spatially 

stereotyped and conserved domains in the spinal cord and hindbrain (Sürmeli et al., 

2011). In these confined zones presynaptic sensory axons and postsynaptic 

interneuron/motor neuron dendrites overlap and form synaptic contacts presumably 

through the selective interaction of cell-surface signaling cues (Arber, 2012). Axon 

target finding results therefore from interplay between long-range signaling for 

modality-specific innervation and attractive and repulsive short-range forces for 

lamina-specific synaptic connectivity (Chen et al., 2003; Marmigère and Ernfors, 

2007). Target-derived neurotrophic factors like NT-3 in muscles and NGF signaling in 

the dermis are important participants in establishing somatosensory circuits (Patel 

et al., 2000; Ernfors, 2001; Patel et al., 2003). Another factor is the short-range 

diffusible chemorepellent Sema3a, which mediates a dorsal discrimination of 

nociceptive and mechanoreceptive afferents versus ventrally projecting proprioceptive 

afferents (Messersmith et al., 1995; Pond et al., 2002; Marmigère and Ernfors, 2007). 

However, the complex and unique wiring of sensory circuits is far from being 

understood (Arber, 2012). The identification of additional factors and downstream 

substrates that execute the effects of specification and connectivity would shine a light 

on the regulatory mechanisms of sensory neurons and bridge the gap between their 

molecular identity and their precise peripheral and central circuit formation (Liu and 

Ma, 2011; Lallemend and Ernfors, 2012).  
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1.5. NetrinG-NGL interactions in neuronal circuit formation 

Cell adhesion molecules at neuronal synapses regulate diverse aspects of neuronal 

circuit formation, including axo-dendritic contact establishment, synapse formation and 

maturation (Woo et al., 2009). The synaptic adhesion molecules NetrinG1 and 

NetrinG2 appear to be expressed by a subset of large-diameter sensory neurons in 

postnatal mouse DRGs and are therefore candidate factors in sensory circuit formation 

(Yin et al., 2002; www.brain-map.org). These receptors share a similar domain 

structure with the well-characterized secreted Netrin axon guidance molecule. In 

contrast to Netrins, NetrinGs are plasma membrane-linked via a Glycosyl-

phosphatidyl-inositol (GPI) anchor and display isoform-specific interaction with the 

NetrinG ligands (NGL) 1 and NGL2, respectively, which are also known as LRRC4C 

and LRRC4 (Nakashiba et al., 2002; Yin et al., 2002; Niimi et al., 2007; Nishimura-

Akiyoshi et al., 2007). NetrinG and NGL homologs are only found in vertebrates and 

are supposed to be involved in aspects of the nervous system of higher organisms 

with greater diversity of synapses (Woo et al., 2009). Their multiple splice variants are 

differentially expressed in mainly non-overlapping neuronal populations in distinct 

regions of the brain during embryonic and postnatal developmental stages (Nakashiba 

et al., 2002; Yin et al., 2002; Meerabux et al., 2005; Niimi et al., 2007; Nishimura-

Akiyoshi et al., 2007).  

 

NetrinG-NGL interactions have been implicated in the regulation of axonal outgrowth 

and synaptic differentiation (Nakashiba et al., 2002, Lin et al., 2003; Woo et al., 2009). 

Transsynaptic NetrinG-NGL adhesion promotes the formation of excitatory, but not 

inhibitory synapses through recruitment of pre- and postsynaptic proteins like PSD95 

and NMDA (Kim et al., 2006; Biederer, 2006; Brose, 2009; Linhoff et al., 2009). A 

study by Nishimura-Akiyoshi and colleagues associated NetrinG-NGL interactions with 

lamina-specific segmentation of dendrites (Nishimura-Akiyoshi et al., 2007). Entorhinal 

cortex axon fibers selectively expressing NetrinG1 terminate on distal dendrites of CA1 

pyramidal neurons of the hippocampus, whereas NetrinG2 expressing Schaffer 

collaterals from CA3 neurons mainly terminate on proximal regions of the CA1 

dendrites. Accordingly, NGL1 and NGL2 localize in the distal and proximal dendritic 
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segments of CA1 pyramidal neurons, respectively (Figure 1.10) (Nishimura-Akiyoshi 

et al., 2007).  

 

 

Knockout mice of NetrinG1 and NetrinG2 show a selective dispersal of their ligands. 

Therefore, it is believed that presynaptic NetrinGs localize and stabilize postsynaptic 

NGLs in specific segments of contacting dendrites through isoform-specific 

transneuronal adhesion for further synaptic protein recruitment and input-specific 

synapse formation (Nishimura-Akiyoshi et al., 2007; Woo et al., 2009; Seiradake et al., 

2011). Furthermore, knockout mice revealed the importance of NetrinG-NGL 

interactions for auditory synaptic responses (Zhang et al., 2008). Whirlin, a direct 

interaction partner of NGL1, has been detected in stereocilia on the outer surface of 

hair cells in the cochlear system and has been linked to congenital hearing impairment 

(Mburu et al., 2003; Delprat et al., 2005). In humans, single nucleotide polymorphism 

studies associated NetrinGs with schizophrenia, bipolar disorder and a rare cause of 

 
Figure 1.10: NetrinG-NGL interactions in lamina-specific connectivity 

(a) NetrinG1 expressing axons arise from layer III of the entorhinal cortex, project along the 

temporoammonic (TA) pathway to terminate on distal dendrites of CA1 pyramidal neurons of the 

hippocampus. Schaffer collaterals (SC) from CA3 neurons express NetrinG2 and terminate on proximal 

regions of the CA1 dendrites. NetrinG interactions induce a subdendritic segmentation of their ligands 

NGL1 and NGL2. Dendritic NGL clustering in dentate gyrus (DG) neurons is induced by NetrinG1 and 

NetrinG2 expressing axons in the lateral and medial perforant paths (LPP and MPP) arising from 

entorhinal cortex layer II neurons.  

(b) NetrinG-NGL binding selectivity drives subcellular NGL localization in hippocampal CA1 pyramidal 

cells.  

(Modified from Woo et al., 2009 and Seiradake et al., 2011) 
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atypical Rett syndrome (Aoki-Suzuki et al., 2005; Borg et al., 2005; Archer et al., 2006; 

Nectoux et al., 2007; Eastwood and Harrison, 2008; Ohtsuki et al., 2008). 

 

 

In summary, NetrinG-NGL interactions are short-range cues for axonal and dendritic 

behavior through bidirectional signaling and have a high impact on axonal outgrowth, 

lamina-specific dendritic segmentation and synapse formation, whereas deregulation 

of NetrinGs/NGLs has been implicated in diverse brain dysfunctions (Nakashiba et al., 

2002; Woo et al., 2009). Based on literature and gene expression data bases, Ntng1 

mRNA expression is detected in a scattered subset of large soma size sensory 

neurons in mouse P4 and P20 DRGs (Yin et al., 2002; www.brain-map.org). 

Interestingly, the Ntng1 ligand NGL1 is highly expressed in the mouse P4 spinal cord 

and appears restricted to deeper laminae of the dorsal horn, which could correspond 

to laminae IV-V, while being excluded from superficial laminae. Consequently, Ntng1-

NGL1 interactions might be involved in the establishment of the specific and well-

defined sensory connectivity during development (Figure 1.11). 

 

  

 
Figure 1.11: Expression analysis of NetrinG1 and NGL1 in vertebrates 

(a) Mouse P4 in situ hybridization images from Allen Brain Atlas. NGL1 mRNA expression in transverse 

spinal cord sections appears restricted to deeper laminae of the dorsal horn and intermediate and 

ventral spinal cord, while being excluded from superficial laminae. NetrinG1 mRNA expression is 

detected in a scattered subset of large soma size sensory neurons in mouse P4 transverse DRG 

sections. Numbers indicate presumptive laminae. Scale bar: 100 µm. 

(b) Hypothesis of selective laminar targeting of NetrinG1+ mechanoreceptive central afferent projections 

in laminae IV-V presumably expressing NGL1 in mammals and avians. 

(Modified from www.brain-map.org)
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1.6. Identification of cis-regulatory elements 

Precise control of embryonic development and maintenance of the organism is 

mediated by a complex interaction network between a limited amount of around 

20,000 genes and their products (Alberts et al., 2008; Uchikawa, 2008). The 

identification of gene regulatory elements (GREs) is thus a first step to decipher the 

gene control machinery (Maher, 2012). Additionally, lineage-specific GREs can be 

used as genetic tools for tagging and manipulation of discrete cell types, like sensory 

neuron subtypes, to study their development and function (Echelard et al., 1994; 

Marquardt et al., 2001; Lee SK et al., 2004). 

 

In vertebrates, GREs comprise densely clustered TF binding sites which collectively 

form genomic instructions for the modulation of gene expression and act as switches 

to turn gene expression on or off (Woolfe et al., 2005; Doh et al., 2007). TFs 

accumulate to these GREs that can act as enhancers and silencers via specific 

binding motifs to attract and position the RNA polymerase and additional general TFs 

to the promoter region for gene activation. This process includes the recruitment of 

transcriptional co-regulators, mediator complexes, DNA looping and chromatin 

remodeling for greater DNA access (Blackwood and Kadonaga, 1998; Alberts et al., 

2008; Visel et al., 2009). The majority of genes is regulated by complex arrays of 

enhancers for temporal and spatial expression, so that only when all required TFs are 

present in a tissue the enhancer becomes active (Alberts et al., 2008; Visel et al., 

2009). Furthermore, insulator elements restrict enhancer-promoter interactions to 

defined chromatin domains (Alberts et al., 2008; Visel et al., 2009). GREs with varying 

lengths of 50 up to 1500 nucleotides can be located internal to the target gene, as well 

as up to 1 million base pairs upstream or downstream to the transcription start site, 

while being able to modulate gene expression independently of their orientation 

(Khoury and Gruss, 1983; Blackwood and Kadonaga, 1998; Pennacchio et al., 2006; 

Doh et al., 2007). 

 

Gene coding regions make up a little more than 1% of the human genome, but recent 

studies revealed that at least 80% of non-coding regions, which were for a long time 

believed to be evolutionary accumulated ‘junk DNA’, constitute functional sequences 
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(Maher, 2012; Pennisi, 2012). However, in the 1970’s, it has already been predicted 

that evolutionary changes in anatomy and way of life are more often based on 

changes in the mechanisms controlling the expression of genes than on changes in 

protein-coding sequences (King and Wilson, 1975). Biological trait-differences 

between humans and chimpanzees, for instance, appear to be primarily due to 

mutations in GREs (Wray and Babbitt, 2008). This hypothesis has been further 

corroborated, for instance, by the identification of evolutionary rapid changes of only 

13 nucleotide substitutions in a limb-specific enhancer that are thought to have been 

driven by positive selection and that led to drastic gene expression changes with likely 

consequences for limb evolution (Prabhakar et al., 2008; Wray and Babbitt, 2008). 

Additionally, changes in GREs are frequently involved in many disease-relevant 

processes (Visel et al., 2009; Pennisi, 2012). The identification of enhancers is 

therefore crucial for the understanding of the immense complexity of organisms, yet 

the responsible information lays somewhere in the ‘infinite deserts’ between the genes 

proper, which complicates their localization (Nobrega et al., 2003; Maher, 2012). 

 

The ENCODE project, including 30 institutes, 440 scientists and the substantial 

investment of 185 million USD, aims to catalogue functional DNA sequences and their 

regulation and function in different cell types for a complex understanding of gene 

control. After almost 10 years of research with state-of-the-art techniques the 

participating groups uncovered 70,000 promoter and 400,000 distant enhancer regions 

(Maher, 2012; Pennisi, 2012). In contrast, hypothesis-driven traditional approaches 

analyze genomic fragments flanking a gene locus of interest for enhancer activity and 

narrow down the sequence to the functional enhancer (Uchikawa et al., 2003; Lee SK 

et al., 2004). In this way, Uchikawa and colleagues identified various specific 

enhancers driving Sox2 expression in different cell types at different developmental 

stages, respectively (Uchikawa et al., 2003). Interestingly, the enhancers correspond 

to conserved non-coding regions between different species (Figure 1.12). 

 

GREs important for accurate expression of vital genes experience selective pressure 

against change and therefore tend to have a high level of sequence conservation 

across a wide range of different species (Doh et al., 2007). Accordingly, similarities in 

sequence between highly divergent organisms imply functional constraint (Woolfe 
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et al., 2005). Comparison of genomic non-coding sequences reveals a full battery of 

potential regulatory elements and is a powerful filter to prioritize the search for 

functional activity sequences in vertebrates (Boffelli et al., 2004; Uchikawa et al., 2004; 

Uchikawa, 2008; Visel et al., 2008). The server-based genomic alignment tool ‘ECR 

Browser’ permits fast and automated genome comparison between multiple species 

which allows pinpointing defined conserved regions as potential GREs within a given 

genomic locus of interest (Ovcharenko et al., 2004; ecrbrowser.dcode.org). 

 

 

The identification of enhancers that are capable of driving transcription in specific cells 

or tissues by combining bioinformatics and experimental tests provides extremely 

powerful tools for a variety of studies (Timmer et al., 2001; Wray and Babbitt, 2008). 

Sensory neuron subtype-specific enhancers would facilitate the analysis of the 

development, function and connectivity of distinct sensory lineages for a better 

understanding of how the complex somatosensory circuitries develop and function, 

and how they detect and transduce sensory information (Lallemend and Ernfors, 

2012). 

  

 
Figure 1.12: Enhancer identification via genomic comparison 

Genomic comparison between chicken, mouse and human reveals a full battery of evolutionary 

conserved non-coding regions (1 to 25) in the gene locus of Sox2. The enhancers N-1 to N-5 driving 

gene expression in different cell types at different developmental stages correspond to conserved 

regions. In consequence, these regions can be identified by the genomic alignment tool ‘ECR Browser’. 

(Modified from Uchikawa et al., 2003 and ecrbrowser.dcode.org)
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1.7. Aim of the study 

Despite its decisive importance in somatosensory perception, the relationship between 

sensory modality, neuronal identity and the stereotypic connectivity of primary sensory 

neurons remains unclear (Arber, 2012). The available information regarding the 

mechanisms of molecular specification, precise connectivity and transduction of the 

many physiologically and morphologically defined sensory neuron subclasses that 

collectively relay mechanosensory input, is limited due to the lack of available 

molecular markers (Lumpkin and Caterina, 2007; Marmigère and Ernfors, 2007; 

Bourane et al., 2009; Luo et al., 2009; Ma, 2009; Lallemend and Ernfors, 2012). 

 

The development of genetic tools for tagging and manipulation of discrete neuronal 

populations initiated a methodological revolution in virtually all areas of neurobiology 

(Zhang et al., 2007; Lichtman and Sanes, 2008; Goulding, 2009; O’Conner et al., 

2009). In mouse, for instance, gene targeting and bacterial artificial chromosome 

transgenesis have led to the molecular identification of discrete sensory neuron 

subtypes and circuitries by mapping of their developmental lineage (Mombaerts, 1996; 

Zylka et al., 2005; Kim et al., 2008; Bourane et al., 2009; Luo et al., 2009; 

Chandrashekar et al., 2010). An alternative approach is the selective screen of 

candidate gene activities putatively linked to given neuronal identities based on data 

mapped by individual researchers or public gene expression catalogues (Yin et al., 

2002; Alvarez-Bolado and Eichele, 2006; Jones et al., 2009). This information can be 

used to isolate individual gene regulatory elements (GREs) of the candidate genes, to 

generate transgenic animals in which, hopefully, the desired neuronal population is 

labeled (Uchikawa et al., 2003; Boffelli et al., 2004; Ovcharenko et al., 2004; Visel 

et al., 2008). Therefore, the combination of gene expression database screening with 

GRE identification via genomic comparison between multiple species can potentially 

reveal sensory subtype-specific enhancers that, in turn, facilitate the analysis of the 

development, function and connectivity of distinct sensory lineages.  

 

Rodent transgenic studies, however, implicate high costs, resource-intensiveness and 

time-consuming generations that can be prohibitive to individual researchers for 

performing neuron subtype-specific GRE screens on a larger basis (Timmer et al., 
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2001). As a complementary model system, the straightforward and rapid in vivo 

transfection procedures developed in the chick (Gallus gallus domesticus) permit 

accelerated development of neuron subtype-specific genetic tools and have been 

proven extremely powerful for uncovering regulatory principles involved in early neural 

development of both avians and mammals (Novitch et al., 2001; Thaler et al., 2002; 

Dasen et al., 2005). The chicken is expected to share many features of developmental 

regulation and shows extensive homology in nervous system organization with 

mammals, indicating universal conserved gene regulatory mechanisms among 

vertebrates (Muramatsu et al., 1997; Lee SK et al., 2004; Uchikawa, 2008). Especially 

circuits involved in somatosensory perception, including morphologically and 

physiologically identified sensory neurons and their connectivity patterns, are highly 

conserved between birds and mammals (Necker, 1985; Necker, 1990; Woodbury and 

Scott, 1991; Duc et al., 1993; Eide and Glover, 1997; Koltzenburg and Lewin; 1997; 

Guo et al., 2011). Therefore, the in ovo electroporation approach greatly facilitates the 

study of sensory neuron specification and connectivity in vertebrates.  

 

The initial aim of this work was the identification of genetic markers for distinct sensory 

subtypes by candidate gene screening and GRE identification via genomic 

comparison, combined with the establishment of an enhancer activity analysis assay in 

late-gestation chick embryos. Ultimately, the aim of this work was to evaluate and 

characterize the potential role of candidate genes in the function and circuit formation 

of distinct sensory lineages in the chick. The discovery of more restricted genetic 

markers provides more profound knowledge regarding the sensory system 

organization and function by linking molecularly identified neuronal subtypes with their 

preferred sensory modality and their peripheral and central connectivity, which 

together will allow uncovering of the neural substrates of somatosensation, including 

touch perception. 
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2. Materials and methods 

2.1. Laboratory consumables and plastic ware 

Consumables and plastic ware were purchased from Eppendorf AG, Starlab GmbH 

and Sarstedt AG. Dissection instruments were obtained from Fine Science Tools 

GmbH. 

 

 

2.1.1. Antibodies 

Primary antibodies 

Antigen Host  Dilution Code Supplier 

TrkA Rabbit 1:2000  Gift from F. Lefcort 

TrkB Rabbit 1:2000  Gift from F. Lefcort 

TrkC Rabbit 1:2000  Gift from F. Lefcort 

Sox10 Guinea Pig 1:1000  Gift from M. Wegner 

NGL1 Mouse 1:50 Q9HCJ2 UC Davis/NIH NeuroMab Facility 

Ntng1 Rabbit 1:200 H-55 Santa Cruz Biotechnology GmbH 

Ret Goat 1:200 C-19 Santa Cruz Biotechnology GmbH 

NeuN Mouse 1:1000 MAB377 Merck Millipore GmbH 

TH Rabbit 1:1000 657012 Merck Millipore GmbH 

Tuj1 /  

βIII-tubulin 

Mouse 1:2000 MMS-

435P 

Covance GmbH 

NF200 Mouse 1:2000 N0142 Sigma-Aldrich Chemie GmbH 

NF (160 kDa) Mouse 1:200 4H6 Developmental Studies  

Hybridoma Bank 

Isl1/2 Mouse 1:200 39.4D5 Developmental Studies  

Hybridoma Bank 

Lmx1b Mouse 1:50 50.5A5 Developmental Studies  

Hybridoma Bank 

MF20 Mouse 1:200 MF 20 Developmental Studies  

Hybridoma Bank 

FLAG epitope Mouse 1:1000 F3165 Sigma-Aldrich Chemie GmbH 
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GFP Rabbit 1:2000 A-11122 Life Technologies GmbH 

GFP Sheep 1:2000 4745-

1051 

AbD Serotec MorphoSys AbD 

GmbH 

α-Bungarotoxin 

Alexa Fluor 647 

conjugate 

Bungarus 

multicinctus 

toxin 

1:5000 B-35450 Life Technologies GmbH 

Alexa Fluor 555 

Phalloidin 

Amanita 

phalloides 

toxin 

1:100 A34055 Life Technologies GmbH 

 

Secondary antibodies 

Target  Conjugate Host  Dilution Supplier 

Mouse Alexa fluorescent dye Donkey 1:2000 Life Technologies GmbH 

Rabbit Alexa fluorescent dye Donkey 1:2000 Life Technologies GmbH 

Goat Alexa fluorescent dye Donkey 1:2000 Life Technologies GmbH 

Sheep Alexa fluorescent dye Donkey 1:2000 Life Technologies GmbH 

Guinea Pig Alexa fluorescent dye Donkey 1:500 Jackson ImmunoResearch 

Laboratories 

 

 

 

2.1.2. Enzymes 

Enzyme Supplier 

DNA Ligation Kit Takara Bio Inc 

Dream Taq DNA Polymerase Thermo Fisher Scientific GmbH 

Phusion High Fidelity DNA Polymerase New England Biolabs GmbH 

Platinum Taq DNA Polymerase High Fidelity Life Technologies GmbH 

Restriction enzymes Thermo Fisher Scientific GmbH 

Shrimp Alkaline Phosphatase Thermo Fisher Scientific GmbH 

SP6 RNA Polymerase Roche Diagnostics GmbH 

T4 DNA Ligase Thermo Fisher Scientific GmbH 

T4 Polynucleotide Kinase Thermo Fisher Scientific GmbH 

T7 RNA Polymerase Roche Diagnostics GmbH 
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2.1.3. Kits 

Kit Supplier 

iScript cDNA synthesis Kit Bio-Rad Laboratories GmbH 

PrimeScript First Strand cDNA Synthesis Kit  Takara Bio Inc 

QIAGEN Plasmid Maxi Kit Qiagen GmbH 

QIAprep Spin Miniprep Kit Qiagen GmbH 

QIAquick Gel Extraction Kit Qiagen GmbH 

TOPO TA Cloning Kit Life Technologies GmbH 

 

 

 

2.1.4. Chemicals and reagents 

Chemical Supplier 

Agar-Agar  Carl Roth GmbH 

Agarose NEEO Carl Roth GmbH 

Ampicillin Carl Roth GmbH 

B-27 supplement Life Technologies GmbH 

BDNF R&D Systems Inc 

Benzyl alcohol Carl Roth GmbH 

Benzyl benzoate Sigma-Aldrich Chemie GmbH 

Blocking reagent Roche Diagnostics GmbH 

Bovine serum albumin fraction V (BSA) Carl Roth GmbH 

Calcium chloride Carl Roth GmbH 

D-PBS pH 7.2 Life Technologies GmbH 

Diethylpyrocarbonate (DEPC)  Carl Roth GmbH 

DIG RNA labeling mix Roche Diagnostics GmbH 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich Chemie GmbH 

DMEM-F12 Life Technologies GmbH 

DNA Ladder GeneRuler 1kb Thermo Fisher Scientific GmbH 

DNA loading dye 6x Thermo Fisher Scientific GmbH 

dNTP Mix Thermo Fisher Scientific GmbH 

Ethanol 99.9% Carl Roth GmbH 
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Ethidium bromide solution 1% Carl Roth GmbH 

Ethylenediaminetetraacetatic acid (EDTA) Carl Roth GmbH 

Ethyleneglycoltetraacetic acid (EGTA) Carl Roth GmbH 

Formamide AppliChem GmbH 

GDNF R&D Systems Inc 

Glucose Sigma-Aldrich Chemie GmbH 

Glycerol Carl Roth GmbH 

HEPES Carl Roth GmbH 

Isopropanol Carl Roth GmbH 

Horse serum Life Technologies GmbH 

Hydrochloric acid Carl Roth GmbH 

Hydrogen peroxide AppliChem GmbH 

L-15 medium Leibowitz Sigma-Aldrich Chemie GmbH 

L-Glutamic acid Sigma-Aldrich Chemie GmbH 

L-Glutamine Life Technologies GmbH 

Laminin Life Technologies GmbH 

Magnesium chloride Carl Roth GmbH 

Maleic acid  Carl Roth GmbH 

Methanol  Carl Roth GmbH 

NBT/BCIP tablets Roche Diagnostics GmbH 

Neurobasal medium Life Technologies GmbH 

NGF R&D Systems Inc 

NT-3 R&D Systems Inc 

OCT embedding medium  Sakura Finetek GmbH 

Paraformaldehyde (PFA) Carl Roth GmbH 

PBS pH 7.2  Life Technologies GmbH 

Penicillin-Streptomycin Life Technologies GmbH 

Poly-D-Lysine Merck Millipore GmbH 

Poly-L-Lysine Sigma-Aldrich Chemie GmbH 

Polyacrylamide Carl Roth GmbH 

Potassium chloride Carl Roth GmbH 

Potassium hydroxide Carl Roth GmbH 
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Proteinase K AppliChem GmbH 

Salmon sperm DNA AppliChem GmbH 

Sodium chloride Carl Roth GmbH 

Sodium citrate Carl Roth GmbH 

Sodium dodecyl sulfate (SDS) Carl Roth GmbH 

Sodium hydroxide Carl Roth GmbH 

Sucrose Carl Roth GmbH 

Tris Carl Roth GmbH 

Triton X-100 Carl Roth GmbH 

TRIzol reagent Life Technologies GmbH 

Trypsin Life Technologies GmbH 

Tryptone Carl Roth GmbH 

Tween-20 Carl Roth GmbH 

Yeast extract AppliChem GmbH 

 

 

 

2.1.5. Solutions 

Solution Contents 

Antibody staining solution PBS pH 7.2; 1% BSA; 1% Triton X-100 

BABB clearing solution 66% Benzyl benzoate; 34% Benzyl alcohol 

Culture medium Neurobasal medium; 1x B-27, 0.5 mM L-Glutamic acid;  

25 mM L-Glutamine; 1x Penicillin-Streptomycin 

Dent’s solution 80% Methanol; 20% DMSO 

Growth factor solution PBS pH 7.2; 100 µg/ml growth factor 

Growth medium DMEM-F12; 2 µM L-Glutamine; 8 mg/ml Glucose, 2x 

Penicillin-Streptomycin; 5% horse serum 

In situ blocking buffer MBST pH 7.5; 2% [w/v] Blocking reagent 

In situ hybridization buffer 50% Formamide; SSC 5x pH 4.5; 1% SDS;  

10 mg/ml Heparin; 10 mg/ml salmon sperm DNA 

In situ wash buffer I 50% Formamide; SSC 5x pH 4.5 

In situ wash buffer II 50% Formamide; SSC 2x pH 4.5 

In situ wash buffer III 50% Formamide; SSC 1x pH 4.5 
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Laminin solution D-PBS pH7.2; 1 mg/ml Laminin 

LB agar LB medium; 1% [w/v] Agar-Agar 

LB medium  5 g/l Sodium chloride; 5 g/l Yeast extract; 10 g/l Tryptone 

Lysis buffer 0.1 M Tris pH 8; 30 nM Sodium chloride; 0.2 mM EDTA; 

0.05% SDS; 0.5 mg/ml Proteinase K 

MBST 0.1 M Maleic acid; 0.15 M Sodium chloride; pH 7.5 

Mounting solution PBS pH 7.2; 50% Glycerol 

NTMT 100 mM Sodium chloride; 10 mM Tris-Hydrochloric acid;  

50 mM Magnesium chloride; pH 9.5 

PBST PBS pH 7.2; 0.1% Tween-20 

PFA solution PBS pH 7.2; 4% [w/v] Paraformaldehyde 

PFA culture solution PBS pH 7.2; 2% [w/v] Paraformaldehyde; 15% [w/v] Sucrose 

SSC 20x solution 3 M Sodium chloride; 300 mM Sodium citrate; pH 4.5 

Sucrose solution PBS pH 7.2; 30% [w/v] Sucrose 

TAE buffer 40 mM Tris; 1 mM EDTA adjust pH 7.5 with glacial acetic acid

 

 

 

2.1.6. Vectors 

Plasmid Supplier 

pCAG-loxP-ssFlag-IRES-mGFP-Tol2 Workgroup Marquardt 

pCAG-loxP-ssFlag-IRES-tdTomato-Tol2 Workgroup Marquardt 

pCAG-mGFP Addgene Inc 

pCAGGS-T2TP Gift from K. Kawakami (Sato et al., 2007) 

pCRII-TOPO Life Technologies GmbH 

pGATA2V2X2 Gift from S. K. Lee (Zhou et al., 2000) 

pPGK-Cre-bpA Addgene Inc 

pT2KXIG∆in Gift from K. Kawakami (Sato et al., 2007) 

pUC18 Thermo Fisher Scientific GmbH 
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2.1.7. Software 

Software Supplier 

Adobe Creative Suite CS5 Adobe Systems Inc 

Chromas Technelysium Pty Ltd 

ECR Browser ecrbrowser.dcode.org/

ImageJ rsbweb.nih.gov/ij/ 

Microsoft Office 2010 Microsoft Corp 

pDraw Acaclone Inc 

 

 

 

2.2. Molecular biology 

The methods described were performed according to ‘Molecular cloning: a laboratory 

manual’ (Sambrook and Russell, 2001) unless otherwise stated. 

 

 

2.2.1. Polymerase chain reaction 

The amplification of DNA fragments was performed with the Platinum Taq DNA 

Polymerase High Fidelity, the Phusion High Fidelity DNA Polymerase or the Dream 

Taq DNA Polymerase using the Mastercycler epGradient S (Eppendorf AG). The 

reaction mixture and the PCR program were used according to the manufacturer's 

protocols. Amplified DNA fragments were analyzed via agarose gel electrophoresis. 

 

 

2.2.2. DNA restriction digest 

The digestion of DNA was performed by the use of appropriate restriction enzymes 

(Thermo Fisher Scientific GmbH). The DNA was incubated with the enzymes and the 

reaction buffers at optimal reaction temperatures recommended by the manufacturer’s 

reference for at least 3 h. Double digestions were carried out with reaction buffers 

enabling maximal enzyme activity for both endonucleases. Alternatively the digested 

DNA was purified with the QIAquick Gel Extraction Kit (Qiagen GmbH) before the 

second restriction digest. 
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2.2.3. Alkaline phosphatase treatment 

In order to prevent religation, the vector DNA was dephosphorylated by adding Shrimp 

Alkaline Phosphatase (Thermo Fisher Scientific GmbH) to the completed restriction 

digest of the vector DNA and incubation for 30 min at 37°C. 

 

 

2.2.4. Agarose gel electrophoresis 

The separation of DNA fragments was performed by agarose gel electrophoresis. 

Therefore 1% [w/v] agarose was dissolved in TAE buffer by heating, followed by 

adding 0.05 µl/ml of ethidium bromide solution and transferring in a gel tray. After 

solidification, the gel was inserted into a gel chamber covered with TAE buffer, the 

DNA samples were mixed with DNA loading dye and loaded into the gel pockets. The 

electrical current was applied until a conclusive segregation of the DNA fragments was 

achieved.  

 

 

2.2.5. DNA purification from agarose gels 

After the agarose gel electrophoresis, DNA bands were visualized under UV light 

illumination and the appropriate DNA fragments were extracted from the agarose gel. 

They were purified by using the QIAquick Gel Extraction Kit (Qiagen GmbH) according 

to the manufacturer's instructions. 

 

 

2.2.6. DNA ligation 

The ligation mixture of digested vector and insert DNA fragments was prepared with a 

molar concentration ratio of 1:4. Therefore, the DNA concentrations were determined 

and incubated with T4 DNA Ligase and the appertaining buffer (Thermo Fisher 

Scientific GmbH) at 22°C for at least 6 h or with the DNA Ligation Kit (Takara Bio Inc) 

at 16°C for at least 4 h. For PCR products with low concentrations, the TOPO TA 

Cloning Kit (Life Technologies GmbH) was used according to the manufacturer’s 

instructions. 
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2.2.7. Plasmid preparation 

Single bacteria colonies were picked from agar plates and incubated in 5 ml LB 

medium containing ampicillin overnight at 37°C. A plasmid minipreparation was 

performed using the QIAprep Spin Miniprep Kit (Qiagen GmbH) due to the 

manufacturer’s instructions. Positive clones were verified via restriction digest and 

sequencing. For a plasmid maxipreparation, the E.coli culture was grown from 100 µl 

of a glycerol stock in 200 ml LB medium with ampicillin overnight at 37°C and the 

plasmid DNA was extracted with the QIAGEN Plasmid Maxi Kit according to the 

manufacturer’s manual. 

 

 

2.2.8. DNA concentration measurements 

The DNA and RNA concentration was determined using the Nanodrop 1000 UV-Vis 

Spectrophotometer (Thermo Fisher Scientific GmbH) based on UV light absorption of 

the nucleic acids at definitive wave lengths. 

 

 

2.2.9. Sequencing 

DNA sequencing was carried out by the Qiagen genomic services (Qiagen GmbH). 

DNA samples were submitted in a concentration of 500 ng per reaction. Only plasmids 

with strictly accurate sequences were used for further experiments.  

 

 

2.2.10. Preparation of chemically competent E.coli 

Chemically competent E.coli cells of the One Shot TOP10 strain (Life Technologies 

GmbH) were used for all molecular cloning experiments. The preparation was 

performed according to Inoue et al. (Inoue et al., 1990) and stored at -80°C until use. 

 

 

2.2.11. Transformation 

Chemically competent E.coli were transformed by adding of 100 µl of the soluble cell 

suspension to the ligation mixture. After 30 min of incubation on ice, the cells were 

heat shocked at 42°C for 1 min and chilled on ice afterwards. E.coli were grown in 1 ml 
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of antibiotic-free LB medium at 37°C for one hour on a shaker and plated on an agar 

plate containing ampicillin. The plates were incubated overnight at 37°C. 

 

 

2.2.12. Preservation and recovery of E.coli  

The preservation of the E.coli clones was performed by mixing 500 µl of soluble E.coli 

culture with 500 µl glycerol in a reaction tube and storing of the mixture at -80°C. For 

regrowing, 100 µl of the frozen E.coli stocks were incubated in 5 ml LB medium with 

ampicillin for a plasmid minipreparation or in 150 ml LB medium with ampicillin for a 

plasmid maxipreparation overnight at 37°C. 

 

 

2.2.13. DNA extraction 

Genomic DNA of mouse and chicken for enhancer amplification was extracted from 

mouse tail tip biopsies and whole chicken embryo of embryonic day 4 (E4) by 

incubation in lysis buffer overnight at 56°C. The lysate was cleared by centrifugation 

and the supernatant was mixed with 500 µl isopropanol. After centrifugation, the DNA 

pellet was washed with 500 µl 70% ethanol, air dried and eluted in water. 

 

 

2.2.14. RNA extraction 

Total RNA from mouse spinal cords and dorsal root ganglia (DRGs) from embryonic 

day 18.5 (E18.5) and chicken DRGs from embryonic day 12 (E12) was obtained via 

TRIzol isolation. The tissue was homogenized in 1 ml TRIzol reagent per 100 mg of 

tissue and incubated for 5 min. The samples were incubated with 0.2 ml chloroform 

per 1 ml TRIzol for 3 min and centrifuged for 15 min at 4°C. The aqueous phase 

containing the RNA was removed, transferred into a new reaction tube and incubated 

with 0.5 ml isopropanol per 1 ml of TRIzol and 3 µl of polyacrylamide for 10 min. After 

centrifugation for 15 min at 4°C, the supernatant was removed and the RNA pellet was 

washed with 1 ml 75% DEPC-ethanol. The samples were centrifuged, air dried and 

eluted in DEPC-H2O. 
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2.2.15. cDNA synthesis 

The cDNA for the gene amplification and the in situ probe generation was synthesized 

using the iScript cDNA synthesis Kit (Bio-Rad Laboratories GmbH) or the PrimeScript 

First Strand cDNA Synthesis Kit (Takara Bio Inc) according to the manufacturer’s 

instructions. 

 

 

 

2.3. Plasmid construction 

The plasmid pSTEVE was designed for reporter gene-based screening of cis-

regulatory activities, combined with Tol2 transposon-based transgenesis facilitating 

genomic integration upon in ovo electroporation (Kawakami and Shima, 1999; Sato 

et al., 2007; Takahashi et al., 2008). The plasmid pSTEVE-eGFP was constructed by 

insertion of the Tol2 sites from pT2KXIG∆in vector in the pUC18 vector, followed by 

insertion of a minimal TATA box promoter and eGFP from pGATA2V2X2 between the 

Tol2 sites. The eGFP reporter gene was replaced by the mGFP gene from 

pCAG-mGFP to generate pSTEVE-mGFP. The putative enhancers were subcloned 

upstream of the minimal promoter which do not drive a reporter gene expression 

without an additional enhancer. Isl1Crest3 was amplified from mouse genomic DNA with 

following primers: 5’-TAAAAGAGCAAACTACAGC-3’ and 

5’-AATAGTGTTCTTGGCATC-3’. AvilLucy1 was amplified from mouse genomic DNA 

with following primers: 5’-GGGAATTGGAGGCTCCTG-3’ and 

5’-ACCCTCTGTCCTCCGAAGT-3‘. Ntng1Mech1 was amplified from chick genomic DNA 

with following primers: 5’-GATCCTTAATGTGCTTTGGT-3’ and 

5’-AGTCATAATGATGGTCGT-3’. TrkAECR1 was amplified from mouse genomic DNA 

with following primers: 5’-GCTCGCCTTCCTAATGTC-3’ and 

5’-CTCAGGATGCTTAGTGGGT-3’. Runx3ECR1 was amplified from mouse genomic 

DNA with following primers: 5’-TAATAAATGGCCCGAGAA-3’ and 

5’-CACTCCCTCATTCAGACG-3’. Runx3ECR2 was amplified from mouse genomic DNA 

with following primers: 5’-TTGTGTACCAGACAGGAGCA-3’ and 

5’-CCACTCTCTGCTGCCTCTAA-3’. Runx3ECR3 was amplified from mouse genomic 

DNA with following primers: 5’-CAGTCGGCTGGACCTGAA-3’ and 
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5’-TTGCTGCCCTTGACCTTT-3’. The CMV early enhancer / chicken β-actin (CAG) 

promoter was cut out from pCAG-mGFP via the XbaI and SpeI restriction sites. The 

created plasmids were verified via sequencing. pSTEVE-eGFP was used to visualize 

the cell somata of electroporated (dorsal root ganglion) DRG neurons, and pSTEVE-

mGFP to trace sensory axons. The transposase in the pCAGGS-T2TP was co-

electroporated for a stable genetic integration in the transfected cells (Figure 2.1). 

 

 

For overexpression of Ntng1 selectively in sensory neurons and the ligand NGL1 in 

the entire spinal cord, the Cre/loxP system was used to combine a high expression 

level of the gene with maintaining the specificity in sensory neurons or the spinal cord 

(Livet et al., 2007). Therefore the pCAG-loxP-ssFlag-IRES-mGFP/tdTomato-Tol2 

vector was designed consisting of six essential parts: the strong ubiquitous CAG 

promoter (1), the loxP-STOP-loxP cassette (2) for Cre recombination, followed by a 

signal sequence (3), which is necessary for the secretion pathway and a cellular 

membrane insertion, an Flag epitope tag (4) upsteam of the gene insertion sites for 

protein detection and reporter genes IRES-mGFP or IRES-tdTomato (5). The 

expression cassette was flanked by Tol2 sites (6) for transposase-mediated stable 

genomic integration. 

 

The Ntng1 coding sequence without its signal sequence was amplified from cDNA of 

mouse embryonic day 18.5 (E18.5) DRGs and inserted downstream of the Flag tag 

peptide sequence into the pCAG-loxP-ssFlag-IRES-mGFP-Tol2 construct. The 

following primers were used: 5’-GTGATGCAGCCCTACCTTTTCG-3’ and 

5’-CTAGAACACCAGGGGACCGGCA-3’. The NGL1 coding sequence without its 

signal sequence was amplified from cDNA of mouse embryonic day 18.5 (E18.5) 

 
Figure 2.1: Plasmid construction for enhancer activity analysis 

For the enhancer activity analysis, the ECRs were subcloned upstream of the minimal promoter driving 

the reporter gene eGFP or mGFP. Co-electroporation with the transposase (pCAGGS-T2TP vector) 

enables stable integration of the fragment between the Tol2 sites (t2) into the genome of transfected 

cells. 
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spinal cord and inserted downstream of the Flag tag peptide sequence into the pCAG-

loxP-ssFlag-IRES-tdTomato-Tol2 construct. The following primers were used: 

5’-CAAACCTGCCCTTCAGTGTGCT-3’ and 5’-TTATATCTGAGTCTCTTGTACA-3’. 

The sensory-specific pIsl1Crest3-Cre driver plasmid was created by insertion of a 

minimal TATA box promoter and eGFP from pGATA2V2X2 in the pUC18 vector, 

following the replacement of the eGFP gene by the Cre gene from the pPGK-Cre-bpA 

vector and insertion of the Isl1Crest3 enhancer upstream of the minimal promoter. For 

the expression of NGL1 in the spinal cord, the constitutive pPGK-Cre-bpA vector was 

used. The final plasmids were verified via sequencing. The transposase in the 

pCAGGS-T2TP was co-electroporated for a stable genetic integration in the 

transfected cells (Figure 2.2). 

 

 

 

 

2.4. In ovo electroporation 

Fertilized chick eggs (Horstmann Geflügelzucht GmbH) were incubated at 38°C and 

80% humidity. The in ovo electroporation of DNA constructs was performed between 

Hamburger-Hamilton (HH) stages 11 and 13 (embryonic day 2 - 2.2) using the ECM 

830 electroporation system (BTX Instrument Division, Harvard Apparatus Inc) with 

Figure 2.2: Plasmid construction for transgene expression analysis 

For overexpression of NGL1 in the spinal cord, the gene was cloned into the expression vector and co-

electroporated with the general Cre driver (pPGK-Cre) and the transposase for stable genomic 

integration. Overexpression of Ntng1 was achieved by subcloning of the gene coding sequence into the 

expression vector and co-electroporation with the sensory-specific pIsl1Crest3-Cre driver and the 

transposase for stable genomic integration. 
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following settings: 5 pulses of 25 mV for 50 ms in the LV 99 ms/500 V modus. All 

plasmids were injected into the central canal of the neural tube at final concentrations 

of 1.5 µg/µl in TE in a 4:1 mixture with the pCAGGS-T2TP plasmid. For 

overexpression the molar ratio for expression vector, Cre driver vector and 

transposase vector was 2:1:1. in the chick (embryonic day 2 - 2.2). Electroporated 

embryos were incubated until appropriate embryonic stages. All animal work has been 

conducted according to national and international guidelines. 

 

 

 

2.5. Immunohistochemistry 

Chicken spinal cords with attached dorsal root ganglia (DRGs), as well as hindlimbs 

and digits were dissected at appropriate developmental stages, fixed at 4°C in PFA 

solution, washed in PBS, immersed in sucrose solution and embedded into OCT 

embedding medium according to the incubation timeline (Table 2.1). 60 µm 

transversal cryosections were cut in a CM1900 cryostat (Leica Microsystems GmbH) 

at −20°C, placed on a super frost glass slide and stored at -20°C. For primary antibody 

detection the slides were washed three times for 30 min with PBS and incubated 

overnight at 4°C in staining solution. Slides were washed three times for 30 min with 

PBS and stained with secondary antibody solution for 1 h at room temperature. The 

slides were washed with PBS, mounted with mounting solution and cover slipped. 

 

 

Whole mounts of embryonic day 5 (E5), whole hindlimbs of embryonic day 9 (E9) and 

whole digits of embryonic day 15 (E15) were fixed in PFA solution for 5 h, washed in 

PBS overnight, bleached with Dent’s solution for 5 h, rehydrated in PBST overnight 

 
Table 2.1: Incubation timeline for chicken embryos 

For immunohistochemistry, chicken embryos at different developmental stages were successively 

treated with PFA, PBS and Sucrose according to the incubation timeline. 



2.  Materials and methods 

54 
 

and incubated in primary antibody solution for 4 days. The limbs were washed in 

PBST overnight, incubated in secondary antibody solution for 4 days, washed in PBST 

overnight, immersed in a graded series of methanol solution up to 100% and cleared 

with BABB solution. All steps were carried out at 4°C. 

 

 

 

2.6. In situ hybridization 

The in situ hybridization probe for the chicken Ntng1 coding sequence was generated 

by PCR amplification of a 654 bp fragment from cDNA of chicken embryonic day 9 

(E9) dorsal root ganglia (DRGs) by the use of following primers: 

5‘-ATGATGTATTTGTCGAGATTTCT-3‘ and 5’-ACTGTTTGTCATATATCCAG-3’. The 

probe was T/A subcloned into the pCRII-TOPO vector and verified via sequencing. 

The antisense RNA probe was synthesized by the T7 or Sp6 RNA polymerase using 

the DIG RNA labeling Kit according to the manufacturer’s specifications. The quality 

and quantity was verified. 

 

Chicken spinal cords with attached DRGs at different developmental stages were 

dissected, collected in D-PBS, fixed in PFA solution for 48 h, washed in D-PBS for 

24 h and dehydrated in 30% sucrose solution. All steps were carried out at 4°C. The 

samples were embedded into OCT embedding medium, cryosectioned at 12 µm in a 

CM1900 cryostat (Leica Microsystems GmbH) at −20°C and placed on a super frost 

glass slide. 

 

For the in situ hybridization, the slides were washed with D-PBS for 3 min, dehydrated 

in a graded series of methanol in D-PBS and stored in 100% methanol at -20°C 

overnight. The samples were rehydrated through methanol in D-PBS series for 5 min, 

bleached in 6% hydrogen peroxide in D-PBS and washed three times in D-PBS for 5 

min. The sections were treated with 10 µg/ml Proteinase K in D-PBS for 10 min, 

washed with D-PBS and postfixed with PFA solution for 5 min. They were washed with 

D-PBS for 5 min and 0.85% NaCl in D-PBS, followed by dehydration through graded 

series of ethanol solutions for 10 min and air drying. The samples were transferred in a 
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humidified chamber containing in situ wash buffer I and prehybridized with in situ 

hybridization buffer for one hour at 68°C. The slides were treated with in situ 

hybridization buffer containing 500 ng/ml of the DIG-labeled antisense RNA probe, 

covered with parafilm and incubated overnight at 68°C. After hybridization, the parafilm 

was removed and the samples were immersed in in situ wash buffer I-III at 65°C for 

30 min. The slides were washed two times with MBST at 70°C for 30 min and three 

times with MBST at room temperature for 5 min, before they were treated with in situ 

blocking buffer at room temperature for one hour. The samples were transferred in a 

humidified chamber containing water and incubated with 1:2500 diluted anti-

digoxigenin alkaline phosphatase conjugated antibody in in situ blocking buffer 

overnight at 4°C. The slides were washed three times with MBST for 5 min and treated 

with NTMT for 10 min. The in situ signal was developed by incubation in NBT/BCIP 

dissolved in water at room temperature, followed by washing with D-PBS and 

mounting with mounting solution. 

 

 

 

2.7. Cell culture 

For the DRG explant culture assay, transfected embryonic day 6 (E6) chicken dorsal 

root ganglia (DRGs) from lumbar spinal segments were dissected, collected in culture 

medium on ice and transferred in a four-well plate on a glass coverslip precoated with 

1 mg/ml Poly-D-Lysine and 100 µg/ml Laminin (Wang and Marquardt, 2012). BDNF, 

GDNF, NGF or NT-3 growth factor medium was added to the culture medium and the 

plate was transferred into the incubator overnight. 

 

For immunohistochemistry, the explant samples were fixed by adding the equal 

amount of PFA culture solution to the culture medium for 30 min. After removing the 

top phase of the solution, another volume of the fixative was added for 1 h. The 

samples were washed three times for 10 min with PBST and incubated in primary 

antibody staining solution overnight at room temperature. After three washing steps 

with PBST, the secondary antibody solution was applied for 1 h at room temperature. 
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The samples were washed with PBST and mounted by inverting the coverslip with the 

explants on the mounting solution coated microscope slide. 

 

For electrophysiological measurements, transfected embryonic day 9 (E9) chicken 

DRGs from all spinal segments were dissected, collected in Ca2+ and Mg2+-free PBS 

and treated with 0.05% trypsin for 12 min at 37°C. Digested DRGs were washed twice 

with growth medium, triturated and plated in a droplet of growth medium on a glass 

coverslip precoated with 20 µg/cm2 Poly-L-Lysine and 4 µg/cm2 Laminin. Neurons were 

allowed to adhere to the coverslips for 3-4 hours at 37°C in a humidified 5% incubator 

before being used for patch-clamp experiments. 

 

The DRG culture for electrophysiological measurements was performed in 

collaboration with Stefan G. Lechner and Gary R. Lewin at the ‘Max-Delbrück-Center 

for Molecular Medicine’ in Berlin. 

 

 

 

2.8. Electrophysiology 

Whole cell patch clamp recordings were made at room temperature from cultures 

prepared as described above. Patch pipettes were pulled from borosilicate glass 

capillaries, filled with a solution consisting of 110 mM KCl, 10 mM NaCl, 1 mM MgCl 

1 mM EGTA and 10 mM HEPES, adjusted to pH 7.3 with KOH and had tip resistances 

of 2-4 MΩ. The bathing solution contained 140 mM NaCl, 4 mM KCl, 2 mM CaCl2, 

1 mM MgCl2, 4 mM Glucose, 10 mM HEPES, adjusted to pH 7.4 with NaOH. All 

recordings were made using an EPC 10 amplifier (HEKA Elektronik Dr. Schulze 

GmbH) in combination with the Patchmaster and Fitmaster software (HEKA Elektronik 

Dr. Schulze GmbH). Pipette and membrane capacitance were compensated using the 

auto function of Patchmaster and series resistance was compensated by 70% to 

minimize voltage errors.  

 

Action potentials were evoked by repetitive 80 ms current injections increasing from 

40 pA to 800 pA in increments of 40 pA. The first action potential evoked with this 
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pulse protocol was used for analysis. Mechanically activated currents were recorded 

as previously described (Hu and Lewin, 2006; Lechner et al., 2009). Briefly, neurons 

were clamped to -60 mV, stimulated mechanically with a fire-polished glass pipette (tip 

diameter 2-3 µm) that was driven by a piezo based micromanipulator called 

nanomotor (Kleindiek Nanotechnik GmbH) and the evoked whole cell currents were 

recorded with a sampling frequency of 200 kHz. The stimulation probe was positioned 

at an angle of 45° to the surface of the dish and moved with a velocity of 3.5 µm/ms. 

Currents were fitted with single exponential functions and classified as RA-, IA- and 

SA-type currents according to their inactivation time constant (Hu and Lewin, 2006). 

All electrophysiological experiments were carried out on acutely dissociated dorsal 

root ganglion (DRG) neurons between 3 and 8 hours after plating. 

 

The electrophysiological measurements were performed in collaboration with Stefan 

G. Lechner and Gary R. Lewin at the ‘Max-Delbrück-Center for Molecular Medicine’ in 

Berlin. 

 

 

 

2.9. Imaging 

All images, including those of transverse sections and whole mounts, were collected 

using a Leica TCS/MP confocal/two-photon microscope (Leica Microsystems GmbH) 

with 488 nm, 543 nm and 633 nm laser lines, in situ hybridization images were taken 

in the bright field. All images of a stack of ≥ 18 z-sections subsequently collapsed to a 

2D rendering. The pictures were processed using Adobe Photoshop CS5. 

 

 

 

2.10. Quantifications and measurements 

For the quantification of ipsilaterally and contralaterally migrating Isl1Crest3+, AvilLucy1+ 

and CAG+ sensory neurons, transverse sections of lumbar dorsal root ganglia (DRGs) 

of at least 8 embryos were selected. GFP+ / Isl1+ DRG neurons were counted on two 
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or more non-adjacent sections per embryo and presented as the mean ± standard 

error of the mean (SEM). Statistical comparisons of cell counts were established using 

a two-tailed Student's t test with two samples and unequal variance. 

 

For the comparison of Ntng1Mech1+ and Isl1Crest3+ DRG neurons, GFP+ cells on 

transverse lumbar sections of at least 8 embryos were scored for colocalization with 

TrkA, TrkB, TrkC, Ret or NF200 and analyzed as the mean ± standard error of the 

mean (SEM). Statistical comparisons of colocalization counts were established using a 

two-tailed Student's t test with two samples and unequal variance. Additionally the cell 

size area was measured of GFP+, TrkA+, TrkB+ or TrkC+ neurons by cell border 

determination of neurons with clear morphology and visible nucleus.  

 

Projection density maps were generated from 18 sections from the lumbar dorsal horn 

segments out of ≥ 8 embryos. A stack with average intensity was performed that was 

rendered as a numerical grid based on pixel intensity values and converted into a 

normalized heat map. The statistical analysis of the laminae I-II versus laminae III-V 

axon density was performed by signal intensity comparison of the laminae based on 

mean pixel intensity values from 18 sections according to the projection density screen 

and presented as the mean ± SEM by using a two-tailed Student's t test with two 

samples and unequal variance. 
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3. Results 

3.1. Stable genetic tagging of somatosensory neurons in chick 

The assembly of circuitries for somatosensory perception relies on a complex interplay 

of neuronal diversification, specification, phenotypic modulation and precise 

connectivity. However, little is known about the molecular mechanisms controlling the 

establishment of well-defined somatosensory circuitries, which is to a large part due to 

the limitation of sensory neuron subtype-specific molecular markers (Arber, 2012; 

Lallemend and Ernfors, 2012). In order to identify novel markers for distinct sensory 

subtypes, published literature and public gene expression catalogues were selectively 

screened for candidate genes expressed by subsets of dorsal root ganglion (DRG) 

neurons. Through this information, potential gene regulatory elements of the 

corresponding candidate genes, capable of driving transcription in specific cell types, 

were defined by an in silico screen for evolutionary conserved non-coding regions 

(ECRs) via browser-based genome alignment between multiple species (Ovcharenko 

et al., 2004; ecrbrowser.dcode.org). The chicken model system shares developmental 

and structural similarities with mammals, including highly conserved somatosensory 

system organization and overall connectivity, and allows a more rapid genetic 

manipulation and analysis than rodent transgenic studies (Necker, 1990; Eide and 

Glover, 1997; Koltzenburg and Lewin; 1997; Timmer et al., 2001; Guo et al., 2011). 

The in ovo electroporation technique has been widely used for enhancer activity 

analysis in vivo and has proven to be a powerful tool for uncovering regulatory 

principles involved in early neural development of both avians and mammals (Novitch 

et al., 2001; Thaler et al., 2002; Dasen et al., 2005; Uchikawa, 2008). Therefore, a 

straightforward strategy was explored allowing effective, selective and stable genetic 

tagging of somatosensory neurons and their connectivity patterns in chick embryos 

(Figure 3.1 a).  

 

For a precise analysis of enhancer activity, especially in late-gestation mature or 

nearly mature sensory neurons, a stable somatic transfection vector, termed STEVE 

(STEVE: stable expression vector), was designed. STEVE consists of three essential 

parts: a basal promoter, a reporter gene and flanking transposable elements. The 
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identified ECRs corresponding to putative enhancers were amplified from genomic 

DNA and subcloned upstream of the minimal promoter. The minimal promoter itself 

should not drive significant own activity in detectable expression levels, but was 

expected to faithfully reflect the activity of the enhancers contained within inserted 

ECRs. In addition, the sensitivity of the reporter gene should allow readily accessible 

detection of low-level expression driven by putative enhancers. By testing different 

basal promoters and reporter genes for their suitability for in ovo enhancer studies, a 

minimal TATA box basal promoter cassette, coupled to reporter genes encoding green 

fluorescent protein (GFP), proved to be the most appropriate choice to perform a 

systematic in ovo screen for enhancer activities. For different experimental purposes, 

either cytoplasm-localized enhanced GFP (eGFP) or membrane-tethered and axon-

localized myristoylated GFP (mGFP) were inserted as reporter genes. The technique 

of in ovo transfection of the neural tube, including neural crest cells (NCCs), which 

give rise to DRG neurons, provides an accessible route for introducing transgenes into 

the sensory neuron lineage (Muramatsu et al., 1997; Krispin et al., 2010). However, 

the transient nature of these ‘pseudogenetic’ manipulations so far precluded their 

application to more mature aspects of sensory nervous system connectivity and 

function. Since the expression cassettes are not integrated into the host’s genome, 

their copies become diluted and ultimately disappear as NCCs undergo massive 

proliferation (Yokota et al., 2011). To overcome these limitations, an effective, stable 

genetic tagging of transfected cells was achieved by transposon-based transgenesis 

based on the medaka fish hAT family Tol2 transposon (Kawakami and Shima, 1999; 

Sato et al., 2007; Takahashi et al., 2008). The Tol2 transposase (T2TP) recognizes a 

pair of core transposon sites (t2) flanking the ‘enhancer-promoter-reporter gene’ 

expression cassette, resulting in the recombination of the transgene sequence from 

the vector and its subsequent random integration in the genome. To achieve this, the 

transposase driven by the strong and ubiquitously active CMV early enhancer / 

chicken β-actin (CAG) promoter (pCAGGS-T2TP) was therefore co-electroporated 

with STEVE. 

 

The efficiency of the designed strategy and the optimal electroporation conditions were 

first determined by examining the expression of a reporter gene driven by the CAG 

promoter (pCAG-STEVE-eGFP). The vast majority of cells on the transfected 
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(ipsilateral) side of the spinal cord expressed high levels of eGFP at E12 

(Figure 3.1 b-c), while no activity was detected in embryos transfected with enhancer-

less constructs (Figure 3.1 d-e). The electroporation showed no influence on 

embryonic development based on overall morphology, as well as neural marker gene 

expression, including Isl1 protein expression, between the ipsilateral and contralateral 

side. The in ovo electroporation was performed between Hamburger-Hamilton (HH) 

stages 11 and 13 in the chick (embryonic day 2 - 2.2) before NCC emigration for a 

high transfection efficiency of somatosensory neuron progenitors (Hamburger and 

Hamilton, 1951; Krispin et al., 2010).  

 

 
Figure 3.1: Selective and stable genetic tagging of spinal and somatosensory neurons in chick 

(a) Strategy: Subcloning of in silico identified evolutionary conserved non-coding regions (ECRs) into 

transposon-based pSTEVE-eGFP or mGFP. Co-electroporation with transposase (T2TP) into the 

neural tube of a chick embryo HH stage 11-13 (E2 - 2.2) for stable transfection of neural crest cells 

(NCCs) before their emigration and formation of the dorsal root ganglia (DRGs). Analysis of putative 

enhancer activities in late-gestation embryos. 

(b-c) The constitutive CAG promoter (pCAG-STEVE-eGFP) drives eGFP expression in virtually all cells 

on the transfected (ipsilateral) side of the chick spinal cord in E12 transverse sections. Isl1 protein 

expression is restricted to motor neurons and dI3 interneurons. Dotted lines outline spinal cord gray 

matter. Scale bar: 100 µm. 

(d-e) No expression is detected in embryos transfected with enhancer-less constructs (pSTEVE-eGFP) 

in transverse sections at E12. Scale bar: 100 µm. 
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Based on literature search and gene expression databases, a set of candidate genes 

with general and subtype-restricted expression in somatosensory neurons were 

selected for the in silico-to-in vivo screen and the identified ECRs were analyzed for 

their spatial and temporal expression pattern in the sensory lineage at both early and 

late stages of gestation (Table 3.1). The neuron type composition of NCC progeny 

tagged by stable reporter protein expression was investigated at different 

developmental stages spanning embryonic day (E) 5 to E15 for all examined ECRs. 

 

 

As a general somatosensory marker and a proof of principle experiment, the Islet1 

(Isl1) gene was chosen, which at spinal levels is expressed at earliest stage of neural 

differentiation by all subtypes of somatosensory neurons, somatic and preganglionic 

motor neurons, as well as by dorsal (dl3) interneurons (Ericson et al., 1992). The 

transcription factor Isl1 is highly conserved during evolution and plays a central role in 

the transition from sensory neurogenesis to subtype specification, whereby gene 

expression is mediated by different subtype-specific enhancers (Tsuchida et al., 1994; 

 
Table 3.1: In silico-to-in vivo ECR screen of sensory neuron-specific candidate genes 

Candidate genes with general and subtype-restricted expression in somatosensory neurons were 

screened for evolutionary conserved non-coding regions (ECRs). The identified ECRs were analyzed 

via in ovo electroporation for their spatial and temporal expression activity in late-gestation sensory 

neurons and for their specificity for the endogenous gene expression of the corresponding genes. 
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Thaler et al., 2004; Uemura et al., 2005; Sun et al., 2011). Herein, an ECR at around 

323 kb upstream of the mouse Isl1 gene transcription start site coincides with a 

genomic fragment previously been shown to drive expression in sensory neurons in 

zebrafish (Uemura et al., 2005). This mouse genomic ECR, Isl1Crest3, was found to 

drive specific and robust reporter gene expression in sensory DRG neurons of 

transfected chick embryos (see chapter 3.2).  

 

In order to establish a late-gestation and adult pan-sensory marker, the Advillin (Avil) 

gene locus was screened for a putative enhancer. The actin binding protein Avil, which 

is highly conserved between mammals but not yet identified in the chick genome, is 

specifically expressed in sensory neurons and implicated in regenerative neurite 

outgrowth (Hasegawa et al., 2007; Lau et al., 2011; Zurborg et al., 2011). The 

identified ECR AvilLucy1 locates just upstream to the gene coding sequence. Upon 

isolation, subcloning into STEVE and in ovo electroporation, AvilLucy1 was able to drive 

a robust expression highly restricted to sensory DRG neurons, which was retained at 

least until hatching (see chapter 3.3). 

 

The growth factor receptor Tropomyosin receptor kinase A (TrkA) is confined to be 

expressed in most pain-transmitting neurons and plays an important role in shaping 

the nociceptive phenotype (Martin-Zanca et al., 1990; Smeyne et al., 1994; Ma et al., 

2003). A core enhancer located upstream adjacent to the gene transcription start site 

was shown to drive somatosensory-specific expression in mouse (Ma et al., 2000). 

This TrkAECR1, which was not conserved in the chick genome, was tested for enhancer 

activity in the chick embryo. However, no reporter gene expression could be observed 

in DRG neurons at different developmental stages (data not shown; see chapter 4.2 

for discussion). 

 

Proprioceptive neurons highly express the Runt-related transcription factor 3 (Runx3) 

as a key factor in their specification and functional circuit formation (Inoue et al., 2002; 

Levanon et al., 2002; Chen AI et al., 2006). Three ECR sequences with a conservation 

of around 80% between mouse and chicken were selected for enhancer analysis 

spanning a region from 95 kb to 31 kb upstream of the gene transcription start site. 

Both Runx3ECR1 and Runx3ECR2 were driving expression in sensory neurons which 
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appeared more wide-spread and not restricted to the proprioceptive subtype, whereas 

Runx3ECR3 did not show a detectable expression in transfected cells at different 

developmental stages (data not shown). Therefore, the identified ECRs did not reflect 

the endogenous Runx3 gene expression and were not characterized further (see 

chapter 4.2 for discussion). 

 

NetrinG1 (Ntng1) appears to be expressed by a subset of large-diameter sensory 

neurons in postnatal mouse DRGs and encodes a Glycosyl-phosphatidyl-inositol 

(GPI)-linked interaction partner of the transmembrane NetrinG1 ligand (NGL1), which 

is implicated in laminar neurite targeting and synaptogenesis (Yin et al., 2002; 

www.brain-map.org). Although the role of Ntng1 in somatosensory neurons remains 

unknown, it might be involved in sensory connectivity (Nakashiba et al., 2002; 

Nishimura-Akiyoshi et al., 2007; Woo et al., 2009). An identified ECR located 2.6 kb 

upstream of the gene coding sequence showed a specific expression in a subclass of 

large-diameter mechanoreceptive neurons (see chapter 3.5). 

 

Alltogether, the designed strategy, including the in silico-to-in vivo ECR screen and the 

stable expression system STEVE, thus facilitates the detection of cis-regulatory 

activities and their subsequent use for the stable genetic tagging of somatosensory 

neurons in chick.  
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3.2. Analysis of the sensory neuron-specific enhancer Isl1Crest3 

During early vertebrate embryogenesis, the transcription factor Islet1 is expressed in a 

defined population of somatosensory neurons, somatic and preganglionic motor 

neurons, as well as dorsal (dl3) interneurons (Ericson et al., 1992). Thereby, the 

evolutionary highly conserved factor has been shown to be critical in neuronal 

specification of both motor and sensory neurons (Tsuchida et al., 1994; Thaler et al., 

2004; Sun et al., 2011). The endogenous gene expression is mediated by distinct 

neuron type-specific enhancers (Uemura et al., 2005). A through in silico screen 

identified ECR, Isl1Crest3, at around 323 kb upstream of the mouse Isl1 coding 

sequence coincided with a genomic fragment previously been shown to predominantly 

drive expression in sensory neurons in zebrafish (Figure 3.2 a) (Uemura et al., 2005). 

This mouse ECR with a length of 995 bps revealed 91% and 85% homologies with the 

human and chicken sequences, respectively, and included 94 putative conserved 

transcription factor binding sites (TFBS) (Figure 3.2 b). 

 

Based on this information, Isl1Crest3 was chosen as a putative early stage pan-sensory 

marker and analyzed for the spatial and temporal enhancer activity in the chick 

somatosensory lineage. When coupled to STEVE Isl1Crest3 was specifically driving 

high-level GFP expression in transfected somatosensory neurons at all axial levels 

immediately after NCC emigration and coalescence into DRGs between E2.5 and E4 

(Figure 3.3 a-b), in addition to labeling further NCC progeny at early developmental 

stages (Figure 3.3 c-f). The Isl1Crest3-driven GFP expression reflected the endogenous 

Isl1 protein expression pattern in the sensory lineage, whereas none was found in Isl1 

expressing motor neurons or other locations of the neural tube. Fluorescence was also 

detected in sparse DRG neurons on the non-transfected (contralateral) side, 

consistent with the findings that NCCs can migrate to either side of the embryo 

(Figure 3.3 e-f) (Frank and Sanes, 1991). The analysis also verified that the 

endogenous gene expression pattern can be recapitulated by the use of mouse 

enhancers in the chick embryo. Additionally, it could have been shown that both 

orientations of the ECR sequence were capable of modulating gene expression with 

similar efficiency (data not shown). 
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Figure 3.2: In silico ECR screen of the Islet1 gene locus  

(a) Genomic comparison of the mouse Islet1 (Isl1) gene locus between different species reveals 

evolutionary conserved non-coding regions (ECRs) upstream of the gene transcription start site 

including the somatosensory-specific enhancer Isl1Crest3.  

(b) Isl1Crest3 sequence alignment shows high conservation between human, mouse and chicken, 

indicated by asterisks. 
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Due to the stable genomic integration of the ‘enhancer-promoter-reporter gene’ 

expression cassette, it became possible to overcome the limitations of plasmid-based 

transient transfection procedures in massively proliferating NCCs and to study the late 

development of NCC-derived lineages in chick embryos. In accordance with the early 

 
Figure 3.3: Genetic tagging of somatosensory neurons by Isl1Crest3 in early stage chick embryos 

(a-d) Whole mount of a chick embryo at E5 (dorsal view) shows specific dorsal root ganglion (DRG) 

labeling driven by Isl1Crest3 at all axial levels of the ipsilateral side of the neural tube (a-b). Motor and 

sensory axons are labeled by βIII-tubulin (Tuj1). Detailed view of the whole mount (c-d). Scale bar: 

200 µm. 

(e-f) Transverse sections at E5 reveal that Isl1Crest3-driven GFP expression reflects the endogenous Isl1 

protein expression pattern in the sensory lineage, in addition to sparsely labeling contralaterally 

migrating DRG neurons (arrowheads) and further neural crest cell progeny (asterisks). Isl1 protein 

expression is restricted to somatosensory neurons, motor neurons in the ventral horn and dI3 

interneurons. Scale bar: 200 µm. 



3.  Results 

68 
 

pan-sensory expression pattern, Isl1Crest3 was driving reporter gene expression in both 

small and large-diameter somatosensory neurons in late-gestation DRGs and 

visualized the central afferent collateral projections in the spinal cord (Figure 3.4 a-d). 

Based on the central afferent termination zones in the dorsal and ventral horn of the 

spinal cord, Isl1Crest3 revealed an unbiased tagging of all three sensory subtypes: 

nociceptive, mechanoreceptive and proprioceptive neurons.  

 

 

Consistently, Isl1Crest3 robustly labeled peripheral sensory projections terminating in 

glabrous skin, feathery skin and musculature (Figure 3.5 a-b). The central connectivity 

pattern was mirrored by the corresponding sensory end organ structures targeted by 

their Isl1Crest3+ peripheral collaterals, including nociceptive and mechanoreceptive 

endings in the dermis (Figure 3.5 c-d) and muscle spindle receptors on intrafusal 

muscle fibers (Figure 3.5 e-h). 

 

 
Figure 3.4: Tagging of somatosensory neurons by Isl1Crest3 in late-gestation chick embryos  

(a-d) Isl1Crest3-driven GFP expression shows specific enhancer activity in somatosensory neurons and 

visualizes central afferents projecting into the spinal cord in transverse sections at E9 (a-b). Isl1 protein 

expression is restricted to somatosensory neurons, motor neurons in the ventral horn and dI3 

interneurons. Detailed view of the DRG reveals overlap of Isl1Crest3+ cells with Isl1+ somatosensory 

neurons (c-d). Scale bar: 200 µm. 
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Using this approach, Isl1Crest3-tagged central afferent projections of somatosensory 

neurons were mapped throughout gestation in chick. The Isl1Crest3 enhancer showed 

robust activity in the somatosensory lineage at least until E15. The labeled developing 

central afferents entered the spinal cord via the dorsal root entry zone and bifurcated 

into axon collaterals that extended rostrally and caudally within the dorsal funiculus, 

prior to penetrating the spinal cord gray matter (Figure 3.6 a-b). 

 
Figure 3.5: Analysis of Isl1Crest3+ peripheral collaterals in late-gestation chick embryos 

(a-b) Isl1Crest3 labels peripheral sensory projections. Whole hindlimb at E9 shows Isl1Crest3+ peripheral 

collaterals projecting in glabrous skin, feathery skin and musculature (labeled by MF20). Scale bar: 

200 µm. 

(c-d) Tagging of the skin innervation in E12 transverse sections illustrates complete overlap of Isl1Crest3+ 

axons with neurofilament (NF). Arrowheads indicate feather follicle shafts. Dotted lines demarcate outer 

side. Scale bar: 100 µm. 

(e-h) Isl1Crest3-labeled peripheral projections terminate as muscle spindle receptors on intrafusal muscle 

fibers (closed arrowheads) in E12 longitudinal sections (e-f). No overlap between Isl1Crest3+ axons and 

motor end plates (open arrowheads), detected by Bungarotoxin (Btx), can be observed. NF labels both 

sensory and motor axons. Detailed view of an innervated muscle spindle (g-h). Scale bar: 100 µm. 
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The first Isl1Crest3+ somatosensory axons entered the spinal cord gray matter at around 

E7 (Figure 3.7 a-c). These axons were invariably negative for the nociceptive marker 

TrkA, while the first TrkA+ axons began advancing into the dorsal horn gray matter 

between E8 and E9 (Figure 3.7 d-f). These observations were in consistence with 

previous transganglionic axon tracing experiments in chick (Davis et al., 1989; Eide 

and Glover, 1997). At around the same developmental stage, the proprioceptive 

projections began reaching their targets in the intermediate and ventral spinal cord 

(Figure 3.6 c-d). In late-gestation embryos, Isl1Crest3-tagged central afferents 

converged at their termination zones (Figure 3.6 e-h). Thus, the overall developmental 

sequence of proprioceptive/mechanoreceptive (TrkA-) and nociceptive (TrkA+) 

collateral extension into the gray matter in chick mirrored that observed in the 

mammalian spinal cord. However, the delay in the establishment of nociceptive 

 
Figure 3.6: Development of central afferent projections in chick I 

(a-h) Genetic tagging of developing ipsilateral central afferent projections by Isl1Crest3 throughout 

gestation in transverse sections from E7 to E15, in addition to labeling some spinal Isl1+ interneurons 

(dl3 IN) (asterisks). Proprioceptive afferents are indicated by arrowheads, nociceptive sensory axons 

are labeled by TrkA, motor neurons (MN) and dl3 IN by Isl1. Scale bar: 100 µm. 
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compared to proprioceptive afferent connectivity observed in mammals appeared 

temporally compressed in avians, likely reflecting an ontogenic adaptation in precocial 

birds (Fitzgerald, 1987; Mirnics and Koerber, 1995; Ozaki and Snider, 1997; 

Marmigère and Ernfors, 2007). 

 

 

These results therefore establish Isl1Crest3 as an early pan-sensory neuron gene 

regulatory element that can be used for driving a specific and robust reporter gene 

expression in somatosensory neurons. Furthermore, the analysis confirmed the 

suitability of the chosen strategy based on stable genetic tagging of DRG neurons in 

chick by the stable expression system STEVE. 

  

 
Figure 3.7: Development of central afferent projections in chick II 

(a-f) Genetic tagging of ipsilateral central afferent projections by Isl1Crest3 in transverse sections. At E7 

the first Isl1Crest3+ TrkA- axons (closed arrowheads) enter the gray matter of the medial dorsal horn (a-c). 

First nociceptive projections, labeled by Isl1Crest3 and TrkA (open arrowheads), penetrate the gray 

matter of the lateral dorsal horn at E8 (d-f). Scale bar: 50 µm. 
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3.3. Analysis of the sensory neuron-specific enhancer AvilLucy1 

Advillin (Avil), a member of the Gelsolin superfamily of actin binding proteins, has been 

shown to be exclusively expressed in peripheral sensory neurons and has been 

implicated in regenerative neurite outgrowth (Ravenall et al., 2002; Hasegawa et al., 

2007; Lau et al., 2011; Zurborg et al., 2011). Transgenic mice expressing reporter 

genes under the control of the Avil promoter displayed robust and specific expression 

in postmitotic somatosensory neurons, from embryonic stages into adulthood, thus 

enabling the study of central and peripheral somatosensory target innervation 

(Hasegawa et al., 2007; Zurborg et al., 2011). The gene coding sequence of Avil 

showed high homology between mammals, but has not yet been identified in the chick 

genome. In order to establish a late-gestation and adult pan-sensory marker, the Avil 

gene locus was screened for putative enhancers via in silico ECR screen 

(Figure 3.8 a). An identified ECR, AvilLucy1, which was located upstream adjacent to the 

gene coding sequence, was also included in the Avil promoter sequences chosen for 

transgenic mice. This ECR, with a length of 600 bps, showed 80% homology with the 

human sequence and included 26 putative conserved TFBS (Figure 3.8 b). 

 

The identified ECR AvilLucy1 was inserted into the stable expression vector STEVE and 

analyzed for the spatial and temporal enhancer activity in the chick sensory lineage. 

AvilLucy1 was driving a robust reporter gene expression with high specificity in 

transfected sensory neurons, which retained at least until hatching (Figure 3.9 a-d). 

Therefore, the AvilLucy1-mediated expression recapitulated the transgene-driven Avil 

expression pattern observed by other groups (Hasegawa et al., 2007; Zurborg et al., 

2011). Compared to Isl1Crest3, AvilLucy1 displayed a later onset of enhancer activity at 

around E5. By the analysis of peripheral collaterals, AvilLucy1-tagged projections 

innervated the dermis (Figure 3.9 e-f) and intrafusal, but not extrafusal muscle fibers 

(Figure 3.9 g-j). As for Isl1Crest3, AvilLucy1+ central afferent collateral projections were 

mapped throughout gestation in chick, which closely resembled the observations 

made by the pan-sensory marker Isl1Crest3 (Figure 3.10). Herein, AvilLucy1-labeled 

central afferents occupied all termination zones in the spinal cord of nociceptive, 

mechanoreceptive and proprioceptive axons, indicating that AvilLucy1-driven expression 

was not biased towards a certain sensory subtype. 
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Figure 3.8: In silico ECR screen of the Advillin gene locus  

(a) Genomic comparison of the mouse Advillin (Avil) gene locus between different mammalian species 

reveals an evolutionary conserved non-coding region (ECR), AvilLucy1, upstream adjacent to the gene 

coding sequence.  

(b) AvilLucy1 sequence alignment partially shows high conservation between human, mouse and 

opossum, indicated by asterisks. 



3.  Results 

74 
 

 

 

 
Figure 3.9: Tagging of somatosensory neurons by AvilLucy1 in late-gestation chick embryos  

(a-d) AvilLucy1-driven reporter gene expression displays specific enhancer activity in somatosensory 

neurons, in addition to labeling their central afferents in transversal sections of the E9 spinal cord (a-b). 

Isl1 protein expression is restricted to somatosensory neurons, motor neurons located in the ventral 

horn and dI3 interneurons. AvilLucy1+ cells overlap with Isl1+ somatosensory neurons (c-d). Scale bar: 

200 µm. 

(e-f) AvilLucy1 labels peripheral somatosensory projections innervating the feathery skin in E12 

transverse sections. Nociceptive and mechanoreceptive axons are labeled by βIII-tubulin (Tuj1). 

Arrowheads indicate feather follicle shafts. Dotted lines demarcate outer side. Scale bar: 100 µm. 

(g-j) AvilLucy1+ muscle spindle receptors terminating on intrafusal muscle fibers (closed arrowheads) 

show no overlap with motor end plates (open arrowheads), detected by Bungarotoxin (Btx), in E12 

longitudinal sections (g-h). Tuj1 labels both sensory and motor axons. Detailed view of an innervated 

muscle spindle (h-j). Scale bar: 100 µm. 
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These results demonstrate that the newly identified enhancer AvilLucy1 can be used as 

a pan-sensory neuron marker from mid-embryonic stages at least into late-gestation, 

by driving specific and strong reporter gene expression in the somatosensory neuron 

lineage in chick. 

 

 

  

 
Figure 3.10: Mapping of central afferent projections by AvilLucy1 throughout gestation in chick 

(a-h) Genetic tagging of developing ipsilateral central afferent projections by AvilLucy1 throughout 

gestation in transverse sections from E7 to E15. At early stages, AvilLucy1 displays ectopic expression in 

premitotic interneurons (asterisks). Proprioceptive afferents are indicated by arrowheads, nociceptive 

sensory axons are labeled by TrkA, motor neurons (MN) and dorsal interneurons (dl3 IN) by Isl1. Scale 

bar: 100 µm. 
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3.4. Analysis of ipsilaterally and contralaterally migrating neural crest cells 

During early vertebrate development, a vast range of peripheral cell types, including 

autonomic and somatosensory ganglion neurons and further non-neuronal cells, are 

generated from NCCs, which arise from the roof plate of the dorsal neural tube and 

emigrate towards their respective peripheral targets (Bronner-Fraser and Fraser, 1988; 

Frank and Sanes, 1991; Le Douarin and Kalcheim, 1999; Kim et al., 2003; Squire 

et al., 2008). The adoption of specific cell fates by NCCs is a multistep process 

involving extensive interaction with the peripheral locales they colonize and is further 

influenced by the time window of emigration (Harris and Erickson, 2007; Marmigère 

and Ernfors, 2007). The extent to which the fate of premigratory or early migratory 

NCCs is predetermined remains less clear, however (Hari et al., 2012). The initial 

pattern of NCC emigration appears to be determined by homotypic interactions, during 

which some NCCs enter trajectories that cause them to cross the neural tube midline 

and to contribute to the contralateral NCC migratory stream (Figure 3.11 a) (Frank and 

Sanes, 1991; Carmona-Fontaine et al., 2008).  

 

 

 
Figure 3.11: Scenarios of ipsilaterally and contralaterally migrating NCC progeny in chick 

(a-c) Schematic of a unilaterally transfected neural tube (green label) depicts ipsilateral and 

contralateral neural crest cell (NCC) streams colonizing dorsal root ganglia (DRGs) (a). Two scenarios 

of contralaterally migrating NCCs contributing to peripheral neurons and circuits: unbiased, giving rise 

to all neuron classes (b), or biased to a certain neuron class (c). Numbers: preferential spinal cord 

laminar targets of nociceptive (TrkA), mechanoreceptive (TrkB) and proprioceptive (TrkC) DRG neuron 

axon collaterals. S, sympathetic neuron; SCG, sympathetic chain ganglion.  
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George and colleagues raised the possibility that NCCs diverge into discrete lineage-

restricted pools of NCCs choosing diametrically opposed (ipsilateral and contralateral) 

migratory streams, such that contralateral NCCs are biased to generate pain-sensing 

nociceptive somatosensory neurons within DRGs (Figure 3.11  c) (George et al., 2007; 

Lefcort and George, 2007; George et al., 2010). The author’s conclusions were 

inferred from three principle observations: first, the correlated timing of contralateral 

NCC and nociceptive DRG neuron differentiation, second, an indirectly estimated bias 

in the contribution of contralateral NCCs to nociceptive DRG neurons and third, a 

 
Figure 3.12: Direct fate-tracking of ipsilaterally and contralaterally migrating NCCs in chick 

(a) Based on unilateral transfection of the neural tube, the constitutive CAG promoter (pCAG-STEVE-

eGFP) stably tracks ipsilateral and contralateral NCCs in transverse sections at E5. DRGs, SCGs and 

peripheral nerves (PNs) reveal bilateral labeling of NCC streams, colabeled for NCC marker Sox10 and 

SCG neuron marker tyrosine hydroxylase (TH). eGFP+ ipsilateral commissural projections extend into 

contralateral neural tube (asterisk). Scale bar: 100 μm. 

(b-c) Stably transfected Isl1Crest3-tagged ipsilateral and contralateral NCC-derived neurons and central 

collateral projections (arrowheads) in E9 transverse sections. TrkA labels nociceptive neurons. 

Asterisks, dorsal root entry zone and Lissauer's tract. Scale bar: 100 μm. 

(d-f) Transverse section of unilaterally CAG-labeled E4 dorsal neural tube with ipsilaterally and 

contralaterally (arrowheads) emigrating NCCs expressing Sox10. Scale bar: 100 μm. 
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reduction of nociceptive or total DRG neuron numbers upon surgically cutting off the 

contralateral NCC stream at the neural tube midline (George et al., 2007).  

 

This hypothesis was investigated by STEVE-based direct lineage-tracking upon 

unilateral in ovo transfection, followed by neuron type composition analysis in the 

tagged NCC progeny. Therefore, any lineage-restriction of contralaterally migrating 

NCCs would consequently be reflected in a bias in the proportion of neuronal classes 

transfected in contralateral DRGs, compared to those in the ipsilateral DRGs 

(Figure 3.11 b-c). Upon unilateral neural tube transfection of constitutive (CAG) and 

somatosensory-specific (Isl1Crest3) constructs, both ipsilateral and contralateral 

migrating NCC derivatives were indeed labeled at early and late stages of gestation 

(Figure 3.12 a-c). Furthermore, the method allowed detailed observation of NCC 

delamination and migration along distinct pathways (Figure 3.12 d-f). The three major 

DRG neuron classes form stereotypic laminar connections in the spinal cord via 

central axon collaterals, reflecting their incorporation into discrete somatosensory 

circuits (Brown, 1982; Lallemend and Ernfors, 2012). However, in neither the 

ipsilateral nor the contralateral spinal cord the Isl1Crest3+ central collaterals displayed an 

obvious bias towards specific termination zones in the dorsal or ventral horn of the 

spinal cord (Figure 3.12 b-c).  

 

 

 
Figure 3.13: Genetic tagging of ipsilateral and contralateral somatosensory neurons in chick 

(a-l) Genetic tagging of ipsilateral and contralateral NCC-derived DRG neurons by somatosensory-

specific Isl1Crest3 (a-d) and AvilLucy1 (e-h) and by ubiquitous CAG (i-l) in transverse sections at E9. Isl1, 

pan-DRG neuron marker. Scale bar: 100 µm. 



3.  Results 

79 
 

 

 
Figure 3.14: DRG neuron type composition of ipsilateral and contralateral NCC progeny in chick 

(a-r) E9 transverse sections of Neurotrophin receptor (Trk) class expression in ipsilaterally-derived (a-i) 

and contralaterally-derived (j-r) DRG neurons tagged by Isl1Crest3. Major DRG neuron classes: 

nociceptive (TrkA), mechanoreceptive (TrkB) and proprioceptive (TrkC) neurons. Closed arrowheads: 

co-expression. Open arrowheads: no co-expression. Isl1, pan-DRG neuron marker. Scale bar: 25 µm. 

(s-u) Quantitative analysis: proportion of ipsilateral and contralateral NCC-derived E9 DRG neurons 

expressing TrkA, TrkB or TrkC separately traced by three independent transgenes: Isl1Crest3, AvilLucy1 or 

CAG, compared to Isl1+ total DRG neurons. No significant differences in the proportion of TrkA+ (s), 

TrkB+ (t) or TrkC+ (u) eGFP-tagged neurons were observed between ipsilateral, contralateral or Isl1+ 

total DRG neurons. Note: a substantial portion of DRG neurons express more than one Trk receptor 

class at E9. Data are presented as mean ± SEM (two-tailed Student's t test with two samples and 

unequal variance). ns, not significant, p>0.05; see Table 3.2 for statistical analysis. 
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For a more detailed analysis, the relative proportions of the three major classes of 

DRG neurons, respectively expressing the Neurotrophin receptors TrkA 

(corresponding to nociceptive neurons), TrkB (low-threshold mechanoreceptive 

neurons) or TrkC (proprioceptive neurons), derived from ipsilaterally versus 

contralaterally migrating NCCs were compared (Lewin and Moshourab, 2004; 

Marmigère and Ernfors, 2007). Thereby, NCC progeny were labeled upon selectively 

tracking neuronal or both neuronal and non-neuronal cells with three distinct transgene 

vectors facilitating DRG neuron-restricted (Isl1Crest3, AvilLucy1) or generalized (CAG) 

reporter expression (Figure 3.13). Throughout this analysis, the relative proportions of 

TrkA+, TrkB+ or TrkC+ DRG neurons derived from contralateral NCCs (Figure 3.14 j-r) 

were indistinguishable from those derived from ipsilateral NCCs (Figure 3.14 a-i). The 

same principal results were consistently obtained by all three constructs 

(Figure 3.14 s-u). Furthermore, the neuron class composition of both ipsilaterally- and 

contralaterally-derived NCC progeny matched that characteristically found for Isl1+ 

DRG neurons (Figure 3.14 s-u), together suggesting that contralaterally migrating 

NCCs lack a measurable bias towards generating particular DRG neuron classes. 

 

In late-gestation embryos, DRG neurons of both ipsilateral and contralateral migratory 

streams would establish stereotypic laminar connectivity patterns according to their 

phenotypic profiles. In accordance to the Neurotrophin receptor quantification, the 

overall connectivity patterns established by contralaterally-derived Isl1Crest3+ DRG 

neurons invariably matched those formed by ipsilaterally-derived Isl1Crest3+ DRG 

neurons, with collaterals projecting to the dorsal horn, intermediate gray matter and 

the ventral horn of the spinal cord (Figure 3.15 a-b). Contralaterally-derived central 

afferents were terminating in laminae I-II predominantly targeted by the collaterals of 

nociceptive DRG neurons, laminae III-V preferentially targeted by low-threshold 

mechanoreceptive neurons, and laminae VI and IX targeted by proprioceptive neurons 

(Figure 3.15 c-e) (Brown, 1982; Lallemend and Ernfors, 2012).  
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In order to detect a small, but significant laminar bias of the overall connectivity 

patterns, projection density maps were performed (Figure 3.15 f). Herein, the amount 

of projections converging onto laminae I-II versus laminae III-V that extended from 

Figure 3.15: Central connectivity pattern of ipsilateral and contralateral NCC progeny in chick 

(a-e) Central collateral projections established by ipsilaterally- and contralaterally-derived Isl1Crest3-

tagged DRG neurons in transverse spinal cord sections at E12. Overlay of Isl1Crest3-driven mGFP in 

contralateral collaterals with pan-neuronal marker NeuN+ neurons (b), TrkA+ nociceptive collaterals and 

Isl1+ motor neurons in lamina IX and dl3 interneurons (c) and with Lmx1b+ laminae I-III neurons (d). 

TrkA+ (e), but not mGFP+ contralateral collaterals are biased to laminae I-II. Numbers indicate respective 

laminae. Note: compared to mammals, dorsal horn lamination in chick exhibits a mediolaterally rotated 

appearance. Dotted lines demarcate white (w) and gray (g) matter. DH, dorsal horn; VH, ventral horn; 

CC, central canal; asterisks, dorsal root entry zone and Lissauer's tract. Scale bar: 100 µm.  

(f-i) Comparative projection density maps of Isl1Crest3-tagged ipsilaterally-derived (g), contralaterally-

derived (h) or TrkA+ nociceptive (i) axon collateral projections in the E12 dorsal horn. Average axon 

densities were established in serial transverse sections (n=18/8 sections/embryos), normalized and 

plotted as heat maps (red-blue: high-low axon density) (f). Ipsilateral and contralateral projections (g-h) 

are distributed among all laminae, whereas TrkA+ projections (i) converge on laminae I-II. See 

Figure 3.18-3.20 for details on projection density map compositions. 

(j) Comparative quantitative analysis of axon densities in laminae I-II versus laminae III-V. Slight bias of 

ipsilateral and contralateral mGFP+ axons towards laminae III-V; marked bias of TrkA+ projections 

towards laminae I-II. Data are presented as mean ± SEM (two-tailed Student's t test with two samples 

and unequal variance). ***, p<0.001; ns, not significant, p>0.05; see Table 3.2 for statistical analysis. 
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ipsilaterally-derived Isl1Crest3+ DRG neurons (Figure 3.15 g and Figure 3.18), compared 

to those extending from contralaterally-derived Isl1Crest3+ neurons (Figure 3.15 h and 

Figure 3.19) or TrkA+ nociceptive neurons (Figure 3.15 i and Figure 3.20) was 

measured. Whereas the vast majority of TrkA+ collaterals exclusively targeted laminae 

I-II, both contralateral and ipsilaterally-derived Isl1Crest3-tagged DRG neurons exhibited 

a slight bias towards laminae III-V (Figure 3.15 j).  

 

 

In addition, the central connectivity patterns established by ipsilaterally- and 

contralaterally-derived DRG neurons were mirrored by the corresponding sensory end 

organ structures targeted by their AvilLucy1+ peripheral collaterals, including 

presumptive nociceptive and mechanoreceptive endings in the skin (Figure 3.16 a-d) 

and muscle spindle receptors on intrafusal muscle fibers (Figure 3.16 e-h). Moreover, 

ipsilaterally and contralaterally migrating CAG-tagged NCCs contributed to several 

 
Figure 3.16: Peripheral collaterals of ipsilateral and contralateral NCC progeny in chick 

(a-d) Peripheral projections established by ipsilaterally- and contralaterally-derived AvilLucy1-tagged 

DRG neurons form nociceptive and mechanoreceptive Tuj1+ (βIII-tubulin) endings in transverse E12 

skin sections. Dotted lines demarcate outer side. Scale bar: 100 µm. 

(e-h) Ipsilateral and contralateral AvilLucy1-tagged proprioceptive axons terminate in spindle receptor 

organs in longitudinal muscle sections at E12. Motor end plates are detected by Bungarotoxin (Btx). 

Tuj1 labels both sensory and motor axons. Scale bar: 50 µm. 
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other neuronal and non-neuronal NCC derivatives, including Schwann cells 

(Figure 3.17 a-d), skin melanocytes (Figure 3.17 e-h) and sympathetic ganglion 

neurons (Figure 3.17 i-l). Ipsilaterally and contralaterally migrating NCCs thus appear 

to give rise to an equivalent range of neuronal and non-neuronal derivatives. 

 

 

Using STEVE-based direct lineage-tracking and systematic analysis of NCC progeny 

and their connections in chick, the results provide conclusive evidence that primary 

somatosensory neurons derive from neurogenically equivalent ipsilaterally and 

contralaterally migrating NCCs. 

 

  

 
Figure 3.17: Ipsilateral and contralateral NCC derivatives in the periphery of chick embryos 

(a-l) Ipsilateral and contralateral CAG-tagged NCC progeny include Sox10+ Schwann cells (a-d), 

Sox10+ skin melanocytes (e-h) and Sox10+ TH+ (tyrosine hydroxylase) sympathetic ganglion neurons 

(i-l) in transverse sections at E5. Dotted lines demarcate outer side. Scale bar: 25 µm. 
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Figure 3.18: Projection density map of ipsilaterally-derived Isl1Crest3+ central collaterals in chick 

(a) Average axon densities were established in serial transverse sections (n=18/8 sections/embryos), 

normalized and plotted as heat maps (red-blue: high-low axon density). 

(b) Heat map of mGFP+ central collaterals labeled by Isl1Crest3 transgene in ipsilateral E12 dorsal horn. 

Inner and outer dotted lines respectively delineate white (w) and gray (g) matter. Numbers indicate 

respective laminae. Asterisk, dorsal root entry zone and Lissauer's tract. 

(c) Normalized raw image files of Isl1Crest3-tagged central collaterals in ipsilateral E12 dorsal horn 

sections (1-18). 



3.  Results 

85 
 

 

 

 

 
Figure 3.19: Projection density map of contralaterally-derived Isl1Crest3+ central collaterals in 

chick 

(a) Average axon densities were established in serial transverse sections (n=18/8 sections/embryos), 

normalized and plotted as heat maps (red-blue: high-low axon density). 

(b) Heat map of mGFP+ central collaterals labeled by Isl1Crest3 transgene in contralateral E12 dorsal 

horn. Inner and outer dotted lines respectively delineate white (w) and gray (g) matter. Numbers 

indicate respective laminae. Asterisk, dorsal root entry zone and Lissauer's tract. 

(c) Normalized raw image files of Isl1Crest3-tagged central collaterals in contralateral E12 dorsal horn 

sections (1-18). 
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Figure 3.20: Projection density map of TrkA+ central collaterals in chick 

(a) Average axon densities were established in serial transverse sections (n=18/8 sections/embryos), 

normalized and plotted as heat maps (red-blue: high-low axon density). 

(b) Heat map of TrkA+ central collaterals in E12 dorsal horn. Inner and outer dotted lines respectively 

delineate white (w) and gray (g) matter. Numbers indicate respective laminae. Asterisk, dorsal root 

entry zone and Lissauer's tract. 

(c) Normalized raw image files of TrkA+ central collaterals in E12 dorsal horn sections (1-18). 
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Table 3.2: Statistical analysis of ipsilateral and contralateral NCC progeny experiments 

Data of colocalization and projection density analysis are presented as the mean ± standard error of the 

mean (SEM). Statistical comparisons were established using a two-tailed Student's t test with two 

samples and unequal variance. 
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3.5. Analysis of the mechanoreceptor-specific enhancer Ntng1Mech1 

By exploring recent literature and public gene expression data bases for mRNAs, one 

of the identified candidates, NetrinG1 (Ntng1), appeared to be expressed by a subset 

of large-diameter somatosensory neurons in posnatal mouse DRGs (Yin et al., 2002; 

www.brain-map.org). Ntng1 encodes a GPI-linked synaptic adhesion molecule and its 

selective interaction with the transmembrane NetrinG1 ligand (NGL1) is implicated in 

axonal outgrowth, lamina/pathway-specific differentiation of dendrites and synapse 

formation, whereas its deregulation is associated with diverse brain dysfunctions 

(Nakashiba et al., 2002; Nishimura-Akiyoshi et al., 2007; Woo et al., 2009).  

 

 

 
Figure 3.21: In silico ECR screen of the NetrinG1 gene locus  

(a) Genomic comparison of the chicken NetrinG1 (Ntng1) gene locus between different species reveals 

an evolutionary conserved non-coding region (ECR), Ntng1Mech1, 2.6 kb upstream of the gene 

transcription start site.  

(b) Ntng1Mech1 sequence alignment shows high conservation between human, mouse and chicken, 

indicated by asterisks. 
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Although the role of Ntng1 in sensory neurons remains unknown, one might speculate, 

based on previous observations in the brain, that Ntng1-NGL1 interactions could also 

have an impact on the establishment of somatosensory circuits (Woo et al., 2009). The 

Ntng1 gene locus was screened via in silico ECR analysis for a putative enhancer 

driving the sensory subtype-specific gene expression (Figure 3.21 a). One of the 

ECRs identified, Ntng1Mech1, located 2.6 kb upstream of the gene coding sequence in 

the chick, showed 86% and 83% homologies with the human and mouse sequences, 

respectively, and included 26 putative TFBS (Figure 3.21 b). In the human and the 

mouse genome the evolutionary conserved Ntng1Mech1 was detected in the first intron 

region. 

 

In order to analyze the potential enhancer activity of Ntng1Mech1, the ECR was coupled 

to STEVE and tested for the spatial and temporal expression pattern in both early and 

late stages of the somatosensory lineage. Ntng1Mech1 consistently labeled a population 

of large-diameter sensory neurons confined to the ventrolateral portion of the DRGs 

(Figure 3.22 a-b), in contrast to the pan-sensory reporter gene expression driven by 

Isl1Crest3 (Figure 3.22 c-d). Thereby, Ntng1Mech1 appeared to reflect the endogenous 

Ntng1 expression pattern in somatosensory neurons observed by other groups (Yin 

et al., 2002; www.brain-map.org). The earliest activity of Ntng1Mech1 in somatosensory 

neurons could be detected after E6, while high-level expression persisted from E9 to 

at least until hatching. An additional activity was observed in a small subset of ventral 

interneurons in the spinal cord after E5. The central afferents of Ntng1Mech1-labeled 

sensory neurons displayed a highly restricted projection pattern confined to the medial 

dorsal horn of the spinal cord (Figure 3.22 e-f), in contrast to Isl1Crest3+ central 

collaterals occupying all laminae of the dorsal horn, as well as the intermediate and 

ventral spinal cord (Figure 3.22 g-h). At E7, the first detectable Ntng1Mech1+ centrally 

projecting axons assumed a medial position within the dorsal funiculus and segregated 

from laterally positioned TrkA+ nociceptive projections prior to entering the spinal cord 

gray matter (compare Figure 3.23 a-b and i-j). By E9, Ntng1Mech1+ axons penetrated the 

dorsal gray matter, but remained confined within the medioventral quadrant of the 

dorsal horn, while TrkA+ nociceptive afferents began occupying most of the lateral 

portion of the dorsal horn gray matter (Figure 3.23 c-d). At the same time, Isl1Crest3+ 

nociceptive and mechanoreceptive afferents projected throughout the dorsal horn, 
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whereas Isl1Crest3-labeled proprioceptive collaterals occupied the intermediate and 

ventral spinal cord (Figure 3.23 k-l and Figure 3.6 c-d).  

 

 

Between E12 and E15, Ntng1Mech1+ axons converged onto an increasingly condensed 

zone within the medioventral quadrant of the dorsal horn, which remained largely 

unoccupied by TrkA+ nociceptive projections (compare Figure 3.23 e-h and m-p). The 

identified Ntng1Mech1 thus has been shown to drive specific expression in a subset of 

somatosensory neurons, whose central collaterals occupied a central termination zone 

distinct from that occupied by nociceptive or proprioceptive afferents. Based on their 

large soma size, their defined ventrolateral position in the DRG, and their discrete 

 
Figure 3.22: Selective tagging of a somatosensory neuron subtype by Ntng1Mech1 in chick  

(a-d) Ntng1Mech1 enhancer activity selectively drives reporter gene expression in large-diameter 

ventrolateral dorsal root ganglion (DRG) neurons (a-b), compared to Isl1Crest3-driven GFP expression in 

all somatosensory neuron types (c-d) in transverse sections at E9. Isl1, pan-DRG neuron marker. Scale 

bar: 100 µm. 

(e-g) Ntng1Mech1+ central collaterals project to the medioventral dorsal horn in transverse sections at 

E12 (e-f). Additional low Ntng1Mech1 activity is detected in ventral interneurons (asterisks). In contrast, 

Isl1Crest3+ central collaterals occupy all laminae of the dorsal horn, as well as the intermediate and 

ventral spinal cord (g-h). NeuN+ neurons outline spinal cord gray matter. Numbers indicate respective 

laminae. DH, dorsal horn; VH, ventral horn. Scale bar: 100 µm. 
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central afferent termination pattern in the dorsal horn, Ntng1Mech1+ neurons showed 

initial characteristics of low-threshold mechanoreceptors (LTMRs). 

 

 

For a more detailed analysis, the relative proportions of Neurotrophin receptors 

expressing neurons tagged by Ntng1Mech1 compared to Isl1Crest3-tagged neurons were 

scored. Herein, the three major classes of DRG neurons expressing TrkA, TrkB and 

TrkC mainly correspond to nociceptive neurons, subtypes of LTMR neurons and 

proprioceptive neurons, respectively (Figure 3.24 a-i) (Lewin and Moshourab, 2004; 

Marmigère and Ernfors, 2007).  

 
Figure 3.23: Development of Ntng1Mech1+ central afferent projections in chick  

(a-h) Development of Ntng1Mech1+ central collaterals throughout gestation in transverse dorsal horn 

sections from E7 to E15. Ntng1Mech1+ projections (arrowheads) segregate from TrkA+ nociceptive 

afferents and remain confined in the medioventral quadrant of the dorsal horn. Scale bar: 100 µm. 

(i-p) Development of Isl1Crest3+ central collaterals throughout gestation in transverse dorsal horn 

sections from E7 to E15. Isl1Crest3+ collaterals project throughout the dorsal horn including nociceptive, 

mechanoreceptive and proprioceptive trajectories. TrkA+ nociceptive sensory axons overlap with 

Isl1Crest3+ axons. Scale bar: 100 µm. 
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Around 78.05 ± 2.68 % of Isl1Crest3-tagged DRG neurons were TrkA+ (Figure 3.24 p), 

which matches the proportion of TrkA+ neurons in total Isl1+ DRG neurons 

(Figure 3.14 s), and that typically found in the DRGs of adult mammals (Fariñas et al., 

1998; Marmigère and Ernfors, 2007). In contrast, only 9.44 ± 2.67 % of Ntng1Mech1+ 

 
Figure 3.24: Molecular analysis of Ntng1Mech1+ somatosensory neurons in chick 

(a-h) E9 transverse sections of Neurotrophin receptor (Trk) class expression in Ntng1Mech1+ DRG 

neurons. Closed arrowheads: co-expression. Open arrowheads: no co-expression. Isl1, pan-DRG 

neuron marker. Scale bar: 25 µm. 

(j-o) Co-expression analysis of Ntng1Mech1+ DRG neurons with myelination marker NF200 and Ret in E9 

transverse sections. Scale bar: 25 µm. 

(p) Quantitative analysis: proportions of Ntng1Mech1+ and Isl1Crest3+ E9 DRG neurons expressing TrkA, 

TrkB or TrkC display significant differences. Data are presented as mean ± SEM (two-tailed Student's t 

test with two samples and unequal variance). ***, p<0.001; ns, not significant, p>0.05; see Table 3.3 for 

statistical analysis. 

(q) Quantitative analysis: proportions of Ntng1Mech1+ E9 DRG neurons expressing NF200 and Ret. Data 

are presented as mean ± SEM. See Table 3.3 for statistical analysis. 
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DRG neurons expressed the nociceptive marker TrkA (Figure 3.24 p). At the same 

time, Ntng1Mech1+ neurons contained markedly higher proportions of TrkB+ and TrkC+ 

neurons with 33.24 ± 3.45 % and 27.98 ± 5.22 %, respectively, compared to Isl1Crest3-

tagged sensory neurons with 19.80 ± 1.21 % and 19.07 ± 1.78 %, respectively 

(Figure 3.24 p). In agreement with previous data, the cumulative proportion of TrkA+, 

TrkB+ and TrkC+ neurons scored in total or Isl1Crest3+ DRG neurons amounted to more 

than 100%, reflecting the presence of sensory neurons co-expressing more than one 

class of Trk receptors (Fariñas et al., 1998). Taking this into account, a considerable 

portion of Ntng1Mech1+ neurons appeared to express neither Trk receptor class, which 

would be in congruence with the molecularly identified earlyRet+ population of LTMR 

neurons in mouse (Bourane et al., 2009; Luo et al., 2009). Therefore, the Ntng1Mech1-

tagged DRG neurons were analyzed for co-expression with the myelination marker 

NF200, as well as with Ret, a newly identified marker predominantly labeling rapidly 

adapting LTMRs and subtypes of nociceptive neurons (Figure 3.24 j-o) (Bourane et al., 

2009; Luo et al., 2009). The vast majority of Ntng1Mech1+ sensory neurons were NF200+ 

(96.42 ± 1.35 %), whereas only 31.04 ± 3.95 % co-expressed Ret (Figure 3.24 q). 

According to the obtained molecular marker profile, Ntng1Mech1+ neurons thus partially 

separate from Ret+ and Trk+ mechanoreceptive populations, and appear to selectively 

tag a molecularly not-yet-identified subtype of Aβ-LTMRs. 

 

Since the specification of sensory neuron classes is associated with characteristic 

differences in their cell soma sizes, the distribution of soma sizes of Ntng1Mech1+ 

neurons, compared to Isl1Crest3+ neurons, as well as those of TrkA+, TrkB+ and TrkC+ 

neurons were measured (Figure 3.25). Ntng1Mech1+ neurons showed a marked bias 

towards the largest DRG neuron sizes with an average soma size area of 

309.09 ± 2.72 µm² (Figure 3.25 a, f). Furthermore, the distribution of Ntng1Mech1+ cell 

sizes clearly segregated from the overall distribution of Isl1Crest3+ soma sizes with an 

average of 188.27 ± 1.98 µm² (Figure 3.25 b, f), and from that of the small-diameter 

TrkA+ neurons with an average of 138.43 ± 1.65 µm² (Figure 3.25 c, f). In contrast, 

Ntng1Mech1+ neuron soma sizes partially overlapped with those of TrkB+ and TrkC+ 

neurons with 264.54 ± 3.24 µm² and 251.54 ± 3.36 µm², respectively (Figure 3.25 d-f). 

The large soma size of DRG neurons tagged by Ntng1Mech1 was thus in congruence 

with their Aβ-LTMR-specific molecular marker profile. 
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Both adult and embryonic nociceptive and mechanoreceptive sensory neurons can be 

distinguished by their electrophysiological properties, including characteristic action 

potential waveforms (Koerber et al., 1988; Djouhri et al., 1998; Fang et al., 2005). 

Mechanoreceptors typically fire narrow uninflected spikes with short half peak 

durations (HPDs) and short afterhyperpolarization (AHP) durations (Figure 3.26 a), 

whereas nociceptors fire action potentials that exhibit a ‘hump’ on the falling phase 

 
Figure 3.25: Morphological analysis of Ntng1Mech1+ somatosensory neurons in chick 

(a-e) Cell size distribution of Ntng1Mech1+ DRG neurons displays a bias towards the largest cell soma 

sizes (n=710) (a), compared to Isl1Crest3+ (n=1111) (b), TrkA+ (n=451) (c), and partial similarity with 

large-size TrkB+ (n=500) (d), and TrkC+ neurons (n=300) (e). Cell size area was obtained by cell border 

determination of neurons with clear morphology and visible nucleus in transverse section of E9 DRGs. 

(f) Corresponding average cell sizes of GFP- and Trk-labeled E9 DRG neuron populations. Data are 

presented as mean ± SEM. See Table 3.3 for statistical analysis. 
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and have very long HPDs and AHP durations (Figure 3.26 b) (Lechner et al., 2009). 

Via whole cell patch clamp recordings in dissociated E9 DRG neurons, which were 

performed in collaboration with Stefan G. Lechner and Gary R. Lewin at the ‘Max-

Delbrück-Center for Molecular Medicine’ in Berlin, the firing properties of Ntng1Mech1+ 

compared to Isl1Crest3+ sensory neurons were monitored. Action potentials evoked by 

current injection of patched Ntng1Mech1+ neurons displayed short HPDs 

(1.55 ± 0.11 ms) and AHPs (3.92 ± 0.25 ms) (Figure 3.26 e-f, h), which were 

characteristic for mechanoreceptors. Isl1Crest3+ neurons, marking all sensory neuron 

subtypes, displayed a considerably wider range of HPD and AHP values, including 

both nociceptor- and mechanoreceptor-specific types of action potentials 

(Figure 3.26 e-f). Herein, the average HPD of 2.50 ± 0.18 ms and average AHP 

duration of 6.74 ± 0.84 ms evoked from Isl1Crest3+ neurons was significantly higher than 

from Ntng1Mech1-tagged neurons (Figure 3.26 h). Ntng1Mech1+ neurons therefore 

represent a discrete population of sensory neurons with spike characteristics typical of 

embryonic mechanoreceptors.  

 

LTMRs can be further distinguished by the feature of a rapid and highly sensitive 

mechanosensitive current, which appears as soon as they innervate their peripheral 

targets (Lechner et al., 2009). Adult and embryonic LTMRs possess a so-called RA-

mechanosensitive current, which is a mechanically activated inward current that 

activates and inactivates within a few milliseconds (Figure 3.26 c) (Drew et al., 2002; 

Hu and Lewin, 2006; Lechner et al., 2009). RA-mechanosensitive currents are also 

found in nociceptors, but the majority of nociceptors exhibit much slower inactivating 

IA and SA-currents (Figure 3.26 d). By investigating mechanosensitive currents 

Ntng1Mech1+ neurons exclusively displayed RA-currents with an average inactivation 

time of 1.28 ± 0.32 ms, whereas Isl1Crest3+ neurons exhibited both RA- and IA-currents 

with an average inactivation time of 7.36 ± 1.46 ms (Figure 3.26 g-h). Consistent with 

previous observations showing that SA-currents appear very late in mouse DRG, SA-

currents were absent from chick E9 nociceptors (Lechner et al., 2009).  
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For electrophysiological measurements, Ntng1Mech1+ and Isl1Crest3+ neurons spanning 

the whole range of their cell size distribution were selected (compare Figure 3.27 and 

 
Figure 3.26: Electrophysiological analysis of Ntng1Mech1+ somatosensory neurons in chick I 

(a-d) Examples of mechanoreceptive (a) and nociceptive (b) action potentials show characteristic 

differences in action potential shape, half peak duration, and afterhyperpolarization. Examples of 

mechanotransduction currents typically elicited in mechanoreceptors (RA current) (c) and nociceptors 

(IA current) (d) display differences in the inactivation time after mechanical stimulation. Examples are 

obtained from whole cell patch clamp recordings in dissociated E9 DRG neurons in chick. 

(e-g) Whole cell patch clamp recordings in Ntng1Mech1- and Isl1Crest3-labeled dissociated E9 DRG 

neurons. Ntng1Mech1+ E9 sensory neurons display a narrow range of short half peak duration (e), short 

afterhyperpolarization time (f) and fast inactivation time (g), compared to the wide range of Isl1Crest3-

tagged sensory neurons. 

(h) Average of half peak duration, afterhyperpolarization time and inactivation time display significant 

differences between Ntng1Mech1+ and Isl1Crest3+ sensory neurons. Data are presented as mean ± SEM 

(two-tailed Student's t test with two samples and unequal variance). ***, p<0.001; **, p<0.005; see 

Table 3.4 for statistical analysis. 

Electrophysiological measurements were performed in collaboration with Stefan G. Lechner and Gary 

R. Lewin at the ‘Max-Delbrück-Center for Molecular Medicine’ in Berlin. 
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Figure 3.25 a-b). Ntng1Mech1+ neurons thus represent a discrete population of 

somatosensory neurons with functional properties characteristic for LTMRs, including 

narrow uninflected action potentials with short HPDs, short AHPs and RA-

mechanosensitive currents. 

 

 

In mammals, the majority of nociceptive afferents connect to relay neurons within the 

most superficial laminae I and II of the dorsal horn, while LTMRs mainly terminate 

throughout the successively deeper laminae II (inner) and V, and proprioceptive 

afferents extend their axons in laminae VI and XI of the intermediate and ventrolateral 

gray matter (Brown, 1982; Lallemend and Ernfors, 2012). Unlike in mammals, the 

dorsal horn in chick displays a mediolaterally rotated appearance, with neurons 

expressing the laminae I-III marker Lmx1b respectively clustering into a lateral 

(laminae I-II) and a smaller mediodorsal crescent-shaped domain (lamina III) in the 

dorsal horn (Figure 3.28 a-b) (Rebelo et al., 2010; Wild et al., 2010). In order to obtain 

more precise information, the stereotypic laminar connectivity pattern established by 

Ntng1Mech1+ DRG neurons was compared with Isl1Crest3+ and TrkA+ central afferent 

projections. The vast majority of TrkA+ nociceptive projections into the dorsal horn gray 

matter concentrated within the lateral Lmx1b+ domain, while excluding the mediodorsal 

Lmx1b+ crescent (Figure 3.28 g-h), suggesting that the latter corresponds to lamina III, 

while the former corresponds to laminae I-II (Eide and Glover, 1997; Wild et al., 2010).  

 
Figure 3.27: Electrophysiological analysis of Ntng1Mech1+ somatosensory neurons in chick II 

Selected Ntng1Mech1+ neurons (n=15) and Isl1Crest3+ neurons (n=23) for electrophysiological 

measurements span the whole range of their cell size distribution (compare with Figure 3.25 a-b). 

Electrophysiological measurements were performed in collaboration with Stefan G. Lechner and Gary 

R. Lewin at the ‘Max-Delbrück-Center for Molecular Medicine’ in Berlin. 
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Figure 3.28: Central connectivity pattern of Ntng1Mech1+ somatosensory neurons in chick 

(a-h) Central collateral projections established by Ntng1Mech1+, Isl1Crest3+ and TrkA+ DRG neurons in 

transverse dorsal horn sections at E12. The discrete laminae in the chick dorsal horn can be 

distinguished by Lmx1b which labels laminae I-II on the lateral site and lamina III on the mediodorsal 

site (a-b). Ntng1Mech1+ afferents terminate in a definite domain ventrally of lamina III, presumably in 

laminae IV-V (c-d), compared to Isl1Crest3+ projections occupying all termination zones in the dorsal horn 

(e-f). Nociceptive TrkA+ projections converge in laminae I-II (g-h). NeuN labels all neurons of the dorsal 

horn gray matter. Note: compared to mammals, dorsal horn lamination in chick exhibits a mediolaterally 

rotated appearance. Numbers indicate respective laminae. Dotted lines demarcate white (w) and gray 

(g) matter. Asterisks, dorsal root entry zone and Lissauer's tract. Scale bar: 100 µm. 

(i-l) Comparative projection density maps of Ntng1Mech1+ (g), Isl1Crest3+ (k) or TrkA+ nociceptive (l) axon 

collateral projections in the E12 dorsal horn. Average axon densities were established in serial 

transverse sections (n=18/8 sections/embryos), normalized and plotted as heat maps (red-blue: high-

low axon density) (i). Ntng1Mech1+ projections (j) converge within a medioventral quadrant of the dorsal 

horn (laminae IV-V), whereas Isl1Crest3+ projections (k) are distributed among all laminae and TrkA+ 

projections (l) on laminae I-II. See Figure 3.18, 3.20 and 3.29 for details on projection density map 

compositions. 

(m) Comparative quantitative analysis of axon densities in laminae I-II versus laminae III-V. Marked bias 

of Ntng1Mech1+ axons towards laminae III-V, in contrast to slight bias of Isl1Crest3+ axons towards laminae 

III-V and marked bias of TrkA+ projections towards laminae I-II. Data are presented as mean ± SEM 

(two-tailed Student's t test with two samples and unequal variance). ***, p<0.001; see Table 3.4 for 

statistical analysis. 
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In accordance to previous obtained observations, Isl1Crest3+ axons projected throughout 

the dorsal horn (Figure 3.28 e-f), while Ntng1Mech1+ afferents converged within an oval 

shaped domain in the medioventral quadrant of the dorsal horn that excluded the 

mediodorsal Lmx1b+ crescent (Figure 3.28 c-d). Therefore, Ntng1Mech1+ afferents are 

suggested to terminate mainly in laminae IV-V, as there are currently no markers 

available in chick to discriminate these laminae further. The significant laminar bias 

towards laminae IV-V of Ntng1Mech1-tagged central collaterals was further confirmed by 

projection density maps of the overall connectivity pattern (Figure 3.28 j, m and 

Figure 3.29). In contrast, only a slight bias of Isl1Crest3+ axons towards laminae III-V 

(Figure 3.28 k, m and Figure 3.18), and a marked bias of TrkA+ nociceptive projections 

towards laminae I-II was detected (Figure 3.28 l-m and Figure 3.20). Thus, Ntng1Mech1 

defines a novel subtype of LTMRs whose central collaterals exclude laminae III and 

selectively terminate within a medioventral domain of the dorsal horn presumably 

corresponding to laminae IV-V. 

 

The in silico-to-in vivo ECR screen in combination with the stable expression system 

STEVE facilitates identification and comprehensive analysis of late-onset 

somatosensory-specific genetic markers inaccessible to previous methods. Thereby, a 

novel molecularly defined subset of somatosensory neurons labeled by Ntng1Mech1 was 

uncovered, whose molecular (Trk, Ret, NF200 expression), morphological (soma 

size), electrophysiological (action potential wave form), functional 

(mechanotransduction current) and anatomical (central connectivity) characteristics 

correspond to a discrete subclass of Aβ-LTMRs. 
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Figure 3.29: Projection density map of Ntng1Mech1+ central collaterals in chick 

(a) Average axon densities were established in serial transverse sections (n=18/8 sections/embryos), 

normalized and plotted as heat maps (red-blue: high-low axon density). 

(b) Heat map of mGFP+ central collaterals labeled by Ntng1Mech1 transgene in E12 dorsal horn. Inner 

and outer dotted lines respectively delineate white (w) and gray (g) matter. Numbers indicate respective 

laminae. Asterisk, dorsal root entry zone and Lissauer's tract. 

(c) Normalized raw image files of Ntng1Mech1-tagged central collaterals in E12 dorsal horn sections 

(1-18). 
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Table 3.3: Statistical analysis of Ntng1Mech1 colocalization and cell size experiments 

Data of colocalization and cell size analysis are presented as the mean ± standard error of the mean 

(SEM). Statistical comparisons were established using a two-tailed Student's t test with two samples 

and unequal variance. 
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Table 3.4: Statistical analysis of Ntng1Mech1 electrophysiology and projection density 

experiments 

Data of electrophysiology and projection density analysis are presented as the mean ± standard error of 

the mean (SEM). Statistical comparisons were established using a two-tailed Student's t test with two 

samples and unequal variance. 
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3.6. Overall organization of somatosensory central collaterals in chick  

The combination of STEVE-mediated somatosensory-specific genetic markers with 

unbiased tagging of contralateral somatosensory neurons affords selective tracing of 

central afferent projections throughout the whole embryonic development, 

unobstructed by additional sites of labeling in the spinal cord. A further benefit is the 

comparatively sparse axonal labeling originating from small numbers of contralaterally 

transfected sensory neurons, which can be tuned to allow visualization of individual 

axon collaterals – a highly useful feature for the development of single neuron 

connectivity (Chen AI et al., 2006; Jefferis and Livet, 2012). In order to establish the 

overall central connectivity pattern in chick, trajectories of individual afferent collaterals 

originating from sparsely labeled Isl1Crest3+, AvilLucy1+ and Ntng1Mech1+ contralateral 

somatosensory neurons were traced and analyzed in detail.  

 

Central afferents were categorized as following: nociceptive (Isl1Crest3+ TrkA+ 

collaterals), mechanoreceptive (Isl1Crest3+ TrkA- collaterals terminating in the dorsal 

horn), ‘laminae IV-V’ mechanoreceptive (Ntng1Mech1+ collaterals) and proprioceptive 

(Isl1Crest3+ TrkA- collaterals terminating in the intermediate and ventrolateral gray 

matter) (Figure 3.30 a-f). In agreement with previous observations, the dorsal horn in 

chick displays a mediolateral rotation, compared to the mammalian dorsal horn 

organization (Figure 3.30 g-h) (Brown, 1982; Rebelo et al., 2010; Wild et al., 2010). 

The majority of nociceptive collaterals appeared to directly terminate within laminae I-II 

upon entering the gray matter via the lateral funiculus/Lissauer’s tract (Figure 3.30 a 

and Figure 3.31 e-g). In addition, subsets of TrkA+ afferents projected medially along 

the ventral border of the dorsal horn before veering dorsally along the medial border of 

laminae I-II, or further medially towards the dorsal funiculus (Figure 3.30 b and 

Figure 3.31 h-j). This consistent observation apparently revealed a part of a yet 

uncharted ‘nociceptive tract’ (Figure 3.31 a-d) (Davis et al., 1989; Guo et al., 2011). 

Both mechanoreceptive and proprioceptive projections entered the medial dorsal horn 

through the dorsal funiculus, while avoiding laminae I-II (Figure 3.30 c-f). Thereby, 

most of mechanoreceptor collaterals directly terminated in laminae III-V proximal to 

their funicular point of entry (Figure 3.30 c and Figure 3.32 a-c).  
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Consistently, the majority of ‘laminae IV-V’ mechanoreceptor afferents directly 

projected to their termination zone ventral to lamina III in the dorsal horn, while 

collaterals branching to both laminae III and IV-V was rarely observed (Figure 3.30 d 

and Figure 3.32 d-f). 

 
Figure 3.30: Trajectories of individual molecularly defined central collaterals in chick 

(a-f) Reconstructed collaterals of individually traced contralateral somatosensory neurons by 

combinatorial labeling with Isl1Crest3, Ntng1Mech1 and TrkA are superimposed on relative positions of 

laminae I-V in E12 dorsal horn. The majority of nociceptive (Isl1Crest3+ TrkA+ to laminae I-II) (a), 

mechanoreceptive (Isl1Crest3+ TrkA- to laminae III-V) (c), ‘laminae IV-V’ mechanoreceptive (Ntng1Mech1+ 

to laminae IV-V) (d) and proprioceptive (Isl1Crest3+ TrkA- to laminae VI and IX) (e-f) collaterals chose 

direct trajectories to target laminae. Dotted lines demarcate white and gray matter. Numbers indicate 

respective laminae. DF, dorsal funiculus; LF, lateral funiculus. 

(g-l) Compared to dorsal horn laminar organization in mammals (g), the dorsal horn in avians displays a 

mediolaterally rotated appearance of distinct laminae (h), confirmed by laminae I-III marker Lmx1b. 

Summary of sensory trajectories displays direct laminae targeting in the chick dorsal horn of individual 

molecularly defined central collaterals in subtype-specific termination zones (i). Numbers indicate 

respective laminae. LT, Lissauer's tract; interrogation mark, unknown termination. 
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Figure 3.31: Trajectory tracings of nociceptive central afferents in chick 

(a-d) TrkA+ nociceptive axons enter the gray matter of the dorsal horn via the lateral funiculus (LF) and 

target directly within laminae I-II in transverse dorsal horn sections at E12 and E15. A subset of these 

collaterals project medially along the ventral border of the dorsal horn (arrowheads) (a), or further 

towards the dorsal funiculus (DF), as part of a ‘nociceptive tract’ (arrowheads) (b-c). A summarized 

model of nociceptive afferents is shown in (d). Inner and outer dotted lines respectively delineate white 

and gray matter. Numbers indicate respective laminae. LT, Lissauer’s tract, GB, glycogen body; CC, 

central canal; interrogation mark, unknown termination. Scale bar: 100 µm. 

(e-g) Example of an individual nociceptive afferent by contralaterally-derived Isl1Crest3+ sensory neurons 

in transverse E12 dorsal horn sections (e), a trajectory reconstruction of different sections (f) and a 

summarized model of nociceptive afferents entering the dorsal horn via the LF and terminating in 

laminae I-II (g). Dotted lines differentiate white and gray matter. Scale bar: 100 µm. 

(h-j) Example of an individual nociceptive afferent by contralaterally-derived Isl1Crest3+ sensory neurons 

in transverse E12 dorsal horn sections (h), a trajectory reconstruction of different sections (i) and a 

summarized model of nociceptive afferents projecting from the LF along the ‘nociceptive tract’ (j). Scale 

bar: 100 µm. 
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Finally, proprioceptive collaterals transited the gray matter by projecting throughout the 

medial half of the dorsal horn, while neither type Ia nor type Ib/II afferents show 

differences regarding the position of their funicular entry points, or the angle of their 

initial trajectories (Figure 3.30 e-f and Figure 3.33 a-f). Furthermore, in analogy to 

previous observations, proprioceptive afferents showed an extensive axon branching 

along their trajectories before establishing their final connectivity in laminae VI and IX 

(Figure 3.33 g-n) (Chen AI et al., 2006). Additionally, Isl1Crest3- and AvilLucy1-tagged 

contralaterally-derived central afferent projections were mapped throughout gestation 

and reflected the established developmental sequence of somatosensory collateral 

extension into the spinal cord gray matter (Figure 3.34). 

 

These observations thus support the long-standing idea that afferent connectivity in 

the spinal cord is established by a majority of central afferent collaterals that directly 

home in on their respective target zones (Figure 3.30 i) (Fitzgerald, 1987; Davis et al., 

1989; Ozaki and Snider, 1997; Redmond et al., 1997; Fitzgerald, 2005). 

 
Figure 3.32: Trajectory tracings of mechanoreceptive central afferents in chick 

 (a-c) Example of two individual mechanoreceptive afferents by contralaterally-derived Isl1Crest3+ 

sensory neurons in transverse E12 dorsal horn sections (a), a trajectory reconstruction of different 

sections (b) and a summarized model of mechanoreceptive afferents projecting from the dorsal 

funiculus (DF) to laminae III-V (c). Dotted lines differentiate white and gray matter. Numbers indicate 

respective laminae. LF, lateral funiculus. Scale bar: 100 µm. 

(d-f) Example of an individual mechanoreceptive afferent by contralaterally-derived Ntng1Mech1+ sensory 

neurons in transverse E12 dorsal horn sections (d), a trajectory reconstruction of different sections (e) 

and a summarized model of mechanoreceptive afferents entering the dorsal horn via the DF and 

terminating exclusively in laminae IV-V (f). Scale bar: 100 µm. 
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Figure 3.33: Trajectory tracings of proprioceptive central afferents in chick 

(a-c) Example of an individual proprioceptive afferent by contralaterally-derived Isl1Crest3+ sensory 

neurons in transverse E12 dorsal horn sections (a), a trajectory reconstruction of different sections (b) 

and a summarized model of proprioceptive afferents projecting throughout the dorsal funiculus (DF) 

only to lamina VI (c). Dotted lines differentiate white and gray matter. Numbers indicate respective 

laminae. LF, lateral funiculus. Scale bar: 100 µm. 

(d-f) Example of an individual proprioceptive afferent by contralaterally-derived Isl1Crest3+ sensory 

neurons in transverse E12 dorsal horn sections (d), a trajectory reconstruction of different sections (e) 

and a summarized model of proprioceptive afferents projecting throughout the DF to lamina VI and 

lamina IX (f). Scale bar: 100 µm. 

(g-n) Sparse central afferent axon labeling by contralaterally-derived Isl1Crest3-labeled sensory neurons 

in transverse E12 spinal cord sections facilitates delineation of single axon projections (g-j). Detailed 

view of proprioceptive afferents (outlined in green) shows an extensive axon branching along their 

trajectories (arrowheads) (k-n). Scale bar: 100 µm. 
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Figure 3.34: Tagging of contralateral central collaterals throughout gestation in chick 

(a-p) Genetic tagging of contralateral central afferent projections by Isl1Crest3 (a-h) and AvilLucy1 (i-p) 

throughout gestation in transverse sections from E7 to E15. Proprioceptive afferents are indicated by 

arrowheads, nociceptive sensory axons are labeled by TrkA, motor neurons (MN) and dorsal 

interneurons (dl3 IN) by Isl1. Asterisks, mGFP+ ipsilateral commissural projections. Scale bar: 100 µm. 
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3.7. Peripheral connectivity of Ntng1Mech1+ somatosensory neurons 

The topographic arrangement of sensory subtype-specific central connectivity in the 

dorsal horn of the spinal cord is expected to be reflected by the innervation of 

corresponding sensory end organs in defined regions in the periphery (Arber, 2012). 

Different types of functionally specialized LTMRs along with their corresponding 

receptor end organs in the skin encode the different qualities of touch (Li et al., 2011). 

In mammals, rapidly adapting (RA) Aβ-LTMRs innervate hair follicles, Meissner 

corpuscles and Pacinian corpuscles, that selectively respond to hair deflection and to 

low and high-frequency vibration, respectively (Lewin and Moshourab, 2004; Lumpkin 

et al., 2010). Slowly adapting (SA) Aβ-LTMRs terminate in Merkel discs and Ruffini 

corpuscles, which relay static responses to dermal stretch and indentation (Lewin and 

Moshourab, 2004; Lumpkin et al., 2010). Pacinian corpuscles and Merkel cells are 

present in both glabrous and hairy skin. In contrast, Meissner corpuscles and Ruffini 

corpuscles are exclusively found in glabrous skin, whereas hair follicles are restricted 

to hairy skin. It is therefore possible to differentiate LTMRs due to their peripheral 

innervation of distinct morphologically unique end organs and their characteristic 

physiological properties. Although sensory end organs are well documented in 

mammals, there is only limited information on avian mechanoperception. In birds, two 

main types of mechanoreceptors transduce information: Herbst and Merkel corpuscles 

(Gottschaldt 1985; Necker 2000). The most common and widely distributed Herbst 

corpuscle, which is considered to resemble the Pacinian corpuscle of mammals, is 

sensitive to vibration and acceleration (Gottschaldt, 1985; Necker, 2000). Herbst 

corpuscles are thought to form terminal arborizations in the collar region of most 

feather follicles and to terminate in the dermis of glabrous skin in digits (Duc et al., 

1993). In contrast, Merkel cell receptors, which respond to pressure, are primarily 

found in featherless skin of avians and differ from Merkel cell-neurite complexes in 

mammals by accumulating and forming rudimentary Meissner-like corpuscles 

(Winkelmann and Myers, 1961; Duc et al., 1993; Necker, 2000; Halata et al., 2003). 

Unlike in mammals, Merkel corpuscles in chick are exclusively found in the superficial 

layer of the dermis, while the epidermis does not contain any nerve endings (Halata 

et al., 2003). On the basis of electrophysiological studies, the literature is so far not 
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conclusive in ranking Herbst and Merkel corpuscles among defined RA or SA 

modalities (Necker, 1985; Gentle, 1989; Necker, 1990; Duc et al., 1993). 

 

 

Ntng1Mech1 appears to define a subset of LTMRs, whose central connectivity is 

restricted to laminae IV-V of the dorsal horn. In order to determine whether Ntng1Mech1+ 

and Ntng1Mech1- neurons are tuned to specific mechanosensory submodalities and 

terminate in different sensory end organs in the dermis, the peripheral innervation of 

Ntng1Mech1+ DRG neurons was analyzed. In consistence with labeling central 

collaterals, Ntng1Mech1-tagged peripheral projections were observed at different 

developmental stages at least until hatching. At E15, Ntng1Mech1+ peripheral sensory 

afferents displayed a subtype-specific innervation of the glabrous skin in digits 

(Figure 3.35 a-b), in contrast to the widely distributed and highly complex innervation 

of robustly labeled sensory projections by the pan-somatosensory marker AvilLucy1 

 
Figure 3.35: Analysis of Ntng1Mech1+ peripheral collaterals in chick glabrous skin 

(a-d) Genetic tagging of peripheral afferent projections by Ntng1Mech1 and AvilLucy1 in digits at E15. 

Ntng1Mech1+ peripheral somatosensory afferents display a subtype-specific innervation of glabrous skin 

in the digit (a-b), in contrast to highly complex innervation of AvilLucy1+ somatosensory neurons including 

all mechanoreceptive and nociceptive subtypes (c-d). Neurofilament (NF) labels total sensory 

projections. Scale bar: 200 µm. 
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(Figure 3.35 c-d). No specific innervation of Ntng1Mech1+ LTMRs was detected in 

feathery skin of the hindlimb or the dorsal trunk (Figure 3.36 a-b), whereas Isl1Crest3-

tagged peripheral afferents were highly accumulated in collar regions of feather 

follicles and displayed a typical sensory innervation of feathery skin (Figure 3.36 c-d). 

Since Ntng1Mech1 did not drive expression in proprioceptive neurons, no musculature 

innervation of Ntng1Mech1+ peripheral collaterals could be observed. 

 

 

Both of the main mechanoreceptor end organs, Herbst and Merkel corpuscles, are 

present in chick glabrous skin. In order to obtain more precise information, whether 

Ntng1Mech1+ DRG neurons terminate in a discrete sensory end organ, the peripheral 

innervation was analyzed morphologically in more detail. At E12, Ntng1Mech1+ 

peripheral endings were visualized in the plantar and scaly glabrous skin of the digits, 

 
Figure 3.36: Analysis of Ntng1Mech1+ peripheral collaterals in chick feathery skin 

(a-d) Genetic tagging of peripheral afferent projections by Ntng1Mech1 and Isl1Crest3 in the dorsal trunk at 

E15. No specific innervation of Ntng1Mech1+ peripheral afferents is detected in feathery skin (a-b). 

Sparse non-specific mGFP expression is detected in limited regions (asterisks). Peripheral projections 

labeled by pan-somatosensory marker Isl1Crest3 highly accumulate in collar regions of feather follicles 

(dotted lines) (c-d). Isl1Crest3+ axons show complete overlap with neurofilament (NF) illustrating a typical 

sensory skin innervation. Scale bar: 200 µm. 
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but no obvious end organ structures could be identified (Figure 3.37). At the latest 

analyzed embryonic stage, E19, Ntng1Mech1-tagged peripheral afferents were observed 

to project in dermal papillae in the plantar skin of the digits (Figure 3.38 a). Herein, 

Ntng1Mech1+ peripheral endings appeared to terminate in rudimentary Meissner-form 

structures (Figure 3.38 b-c), which are suggested to correspond to a subset of chick 

Merkel corpuscles (Winkelmann and Myers, 1961; Duc et al., 1993). Ntng1Mech1-

labeled peripheral afferents were also detected in scaly skin of the digits, but the 

sensory innervation could not be determined morphologically (data not shown). At the 

same time, AvilLucy1-driven reporter gene expression in mechanoreceptive and 

nociceptive peripheral projections was detected in dermal papillae and other dermal 

regions of the glabrous skin in digits (Figure 3.38 d-f). In analogy with previous 

observations, no intraepidermal termination of sensory axons was observed in chick 

(Figure 3.38) (Halata et al., 2003). 

 

 

Altogether, STEVE-mediated stable genetic tagging of individual sensory subtypes 

and their circuits enables visualization and precise analysis of both central and 

peripheral connectivity in the chick primary somatosensory system. The peripheral 

innervation of Ntng1Mech1+ Aβ-LTMRs was exclusively found in glabrous skin, possibly 

 
Figure 3.37: Analysis of Ntng1Mech1+ peripheral terminations in chick glabrous skin at E12 

(a-c) Visualization of Ntng1Mech1+ peripheral endings in plantar and scaly glabrous skin of digits in 

transverse E12 sections (a). Dotted line differentiates plantar and scaly glabrous skin of the digit. Scale 

bar: 100 µm. Detailed view does not reveal obvious receptor end organ structures at E12 (b-c). 

Neurofilament (NF) labels total sensory projections. Dotted lines demarcate epidermis and dermis. 

Scale bar: 25 µm. 
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terminating in rudimentary Meissner-like corpuscles, which are primarily found in 

featherless skin of avians. Whether Ntng1Mech1-tagged peripheral termination is indeed 

restricted to Meissner-like corpuscles or whether Ntng1Mech1+ projections alternatively 

or additionally display a topographic (‘distal-versus-proximal-limb’) innervation pattern 

not strictly adhering to one specific LTMR type, could not be conclusively determined. 

Since Herbst corpuscles are also present in glabrous skin this needs to be further 

addressed. 

 

  

 
Figure 3.38: Analysis of Ntng1Mech1+ peripheral terminations in chick glabrous skin at E19 

(a-c) Ntng1Mech1-tagged peripheral afferents terminate in dermal papillae in the plantar skin of digits in 

transverse E19 sections (a). Detailed view: Ntng1Mech1+ peripheral endings innervate rudimentary 

Meissner-form structures (b-c). Nociceptive and mechanoreceptive axons are labeled by βIII-tubulin 

(Tuj1). Dotted lines demarcate epidermis and dermis. Scale bar: 25 µm. 

(d-f) AvilLucy1+ mechanoreceptive and nociceptive peripheral afferents project in dermal papillae of 

glabrous skin in digits in transverse E19 sections (d). Detailed view: AvilLucy1+ axon endings overlap with 

Tuj1 (e-f). No intraepidermal termination of sensory axons is observed. Scale bar: 25 µm. 
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3.8. Ntng1-NGL1 interactions in laminar targeting of sensory afferents 

Precise central connectivity is a key step in the formation of well-defined neuronal 

circuits that relay and process sensory information. However, the transcriptional and 

signaling mechanisms that direct the distinct laminar target zone innervation remain 

poorly understood (Chen AI et al., 2006). The comprehensive analysis comprising 

many sensory neuron characteristics identified Ntng1Mech1 as a novel genetic marker, 

which has been shown to correspond to a discrete subclass of large-diameter Aβ-

LTMRs, possibly correlating with Meissner-like LTMRs. Based on five principle 

observations it may be suggested that Ntng1-NGL1 interactions have a function in 

specific laminar targeting within the developing spinal cord of vertebrates (see Figure 

1.11 b). First, Ntng1 is expressed in a subset of large-soma size somatosensory 

neurons in mouse DRGs (see Figure 1.11 a). Second, the selective interaction partner 

NGL1 appears to be expressed in the deeper laminae IV-V in mouse dorsal horn (see 

Figure 1.11 a). Third, the Ntng1Mech1 enhancer derived from the Ntng1 locus drives 

specific expression in a subset of Aβ-LTMRs which project to a restricted target zone 

within laminae IV-V in the chick dorsal horn (see Figure 3.28). Fourth, Ntng1 and 

NGL1 proteins have been described to be highly enriched in developing pre- and 

postsynaptic terminals of neurons in vertebrates (Kim et al., 2006; Brose, 2009; Woo 

et al., 2009). And fifth, NetrinG-NGL interactions have been implicated in excitatory 

synapse formation and lamina-specific segmentation of dendrites in the hippocampus 

(Nishimura-Akiyoshi et al., 2007; Woo et al., 2009; Seiradake et al., 2011). 

Consequently, the contribution of Ntng1-NGL1 interactions in laminar targeting of 

mechanoreceptive axons was addressed.  

 

The impact of Ntng1-NGL1 interactions in somatosensory neuron subtypes concerning 

their axon projections to defined target zones in the spinal cord was examined by gain-

of-function studies in late-gestation chick embryos (Chen AI et al., 2006; Guo et al., 

2011). Through the combination of STEVE with the Cre/loxP system, a strategy was 

developed allowing specific and long-term expression of introduced transgenes at high 

expression levels (Figure 3.39) (Livet et al., 2007). The transgene expression cassette 

of the pCAG-loxP-ssFlag-IRES-mGFP/tdTomato-Tol2 is composed of the strong 

constitutive CAG promoter (1), a loxP-STOP-loxP cassette (2) for specific Cre 
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recombinase-mediated site-specific recombination as a driver for transgene activation, 

a signal sequence (3) for targeting proteins to the secretion pathway, a farnesylation 

plasma membrane insertion signal (4), and IRES coupled reporter genes (mGFP or 

tdTomato) (5) ensuring bicistronic expression of an epitope-tagged transgene and the 

fluorescent tracer. Additionally, the transgene expression cassette is flanked by Tol2 

sites (6) for transposase-mediated stable genomic integration (Kawakami and Shima, 

1999; Sato et al., 2007; Takahashi et al., 2008). The mouse coding sequences of the 

transmembrane proteins Ntng1 and NGL1, which displayed extensive homology to the 

corresponding human and chick protein sequences, were introduced into the 

expression vector. In order to stably express NGL1 in the entire chick spinal cord, the 

ubiquitous Cre driver (pPGK-Cre-bpA) was used (Figure 3.39 a). Specific 

overexpression of Ntng1 in chick somatosensory neurons was achieved by Isl1Crest3-

mediated Cre expression for selective Cre recombination in DRG neurons 

(Figure 3.39 b). Both transgene vectors directed intense membrane-localized 

transgene and reporter gene expression in all transfected neurons which was verified 

by detection with specific antibodies against mouse NGL1 and Ntng1 (Figure 3.40). 

 

 

 
Figure 3.39: Selective and stable transgene overexpression in late-gestation chick embryos 

(a-b) Strategy: Subcloning of transgenes NGL1 and Ntng1 into transposon-based expression construct 

pCAG-loxP-ssFlag-IRES-mGFP/tdTomato-Tol2. Co-electroporation with constitutive Cre driver (PGK) 

and transposase (T2TP) for stable ectopic NGL1 expression in entire spinal cord (a). Co-electroporation 

with somatosensory-specific Cre driver (Isl1Crest3) and transposase (T2TP) for selective and stable 

ectopic Ntng1 expression in DRGs (b).  
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NGL1 is expressed in in deeper laminae of the dorsal horn presumably corresponding 

to laminae IV-V (Figure 3.41 e). Hypothesizing that restricted expression of NGL1 is 

involved in mediating the targeting of Ntng1+ sensory collaterals in defined termination 

zones, ectopic expression of NGL1 in all laminae of the dorsal horn would be expected 

to alter the central connectivity pattern of Ntng1+ axons (Figure 3.41 f). Therefore, 

NGL1 was ectopically expressed throughout all laminae of the dorsal horn and 

Ntng1Mech1-labeled central afferent collaterals were analyzed for their laminar targeting. 

Robust expression of NGL1 and fluorescent reporter protein in all laminae of the 

dorsal horn was achieved (Figure 3.41 d), whereas dorsal horn laminar organization 

appeared unaffected (Figure 3.41 c). Like in control experiments, Ntng1Mech1+ 

projections penetrated the superficial dorsal horn at the expected medial position and 

terminated in the ventromedial quadrant presumably corresponding to laminae IV-V 

 
Figure 3.40: Verification of transgene overexpression in early stage chick embryos 

(a-f) Verification of transgene expression constructs by general transgene overexpression via 

constitutive Cre driver (pPGK-Cre) in unilaterally transfected chick neural tube. The NGL1 expression 

construct shows high level expression of fluorescent protein tdTomato (a) and membrane-localized 

mouse NGL1 (b) in transverse neural tube sections at E6. Similarly, the Ntng1 expression construct 

induces robust mGFP (d) and membrane-bound mouse Ntng1 expression (e) in transfected cells of the 

neural tube at E6. Scale bar: 100 µm. 
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(compare Figure 3.41 a-c and Figure 3.28 c-d). No obvious shift in the distribution of 

Ntng1Mech1+ central collaterals to other NGL1 expressing laminae was detected.  

 

 

Alternatively, if Ntng1-NGL1 interaction indeed was a determinant for the specific 

termination pattern in LTMR circuits, the status of Ntng1 expression in sensory 

neurons should influence the positioning of their collaterals within the spinal cord 

(Figure 3.42 f). Ectopic expression of Ntng1 in prospective nociceptive and 

proprioceptive sensory neurons could therefore alter their axonal projections to adopt 

Ntng1+ LTMR-like features and to prompt axons to assume a medioventral position 

within the dorsal horn (laminae IV-V), which defines a region where interaction partner 

NGL1 is expected to be accumulated (Figure 3.42 g). Therefore, Ntng1 was 

overexpressed in all somatosensory neuron subtypes and the central innervation of 

 
Figure 3.41: NGL1 overexpression analysis of chick somatosensory central connectivity 

(a-d) General NGL1 overexpression in chick E12 spinal cord. Ntng1Mech1+ afferents terminate in 

confined domain ventrally of lamina III, presumably corresponding to laminae IV-V in transverse dorsal 

horn sections (a-c). High level co-expression of ectopic NGL1 and tdTomato in all laminae of the dorsal 

horn (b, d). Unaffected laminar organization based on laminae I-III marker Lmx1b (c). Dotted lines 

demarcate white and gray matter. Numbers indicate respective laminae. Scale bar: 100 µm. 

(e-h) Model: Putative restricted expression of NGL1 to laminae IV-V could mediate Ntng1Mech1+ sensory 

collaterals in defined termination zone (e). Ectopic expression of NGL1 in all laminae might alter 

Ntng1Mech1+ central connectivity pattern to all NGL1 expressing regions (f). No redirection of Ntng1Mech1+ 

central collaterals into different NGL1 expressing laminae was observed (g). 
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transfected neurons was observed. In congruence with the NGL1 overexpression 

analysis, no drastic influence of forced Ntng1 expression in the axonal trajectories of 

nociceptive, mechanoreceptive or proprioceptive neurons was observed (compare 

Figure 3.42 a-e and Figure 3.15 a-e). 

 

 

In summary, Ntng1Mech1+ central collaterals were not redirected into different NGL1 

expressing laminae by ectopic NGL1 expression throughout the dorsal horn 

 
Figure 3.42: Ntng1 overexpression analysis of chick somatosensory central connectivity 

(a-e) Selective Ntng1 overexpression in chick E12 DRGs. Ntng1+ mGFP+ central afferents terminate 

throughout the dorsal horn and intermediate and ventral spinal cord in transverse sections and are not 

biased to particular laminae (a-d). Nociceptive Ntng1+ TrkA+ projections converge in laminae I-II (b, e). 

Isl1 labels motor neurons in lamina IX and dl3 interneurons (c), Lmx1b labels laminae I-III neurons 

(d-e). Numbers indicate respective laminae. DH, dorsal horn; VH, ventral horn. Scale bar: 100 µm. 

(f-h) Model: Putative restricted expression of NGL1 in laminae IV-V could mediate Ntng1+ 

mechanoreceptive collaterals into defined termination zone (f). Ectopic expression of Ntng1 in all 

somatosensory subtypes might alter the central connectivity pattern mainly to laminae IV-V (g). No 

obvious change in subtype-specific laminar targeting of nociceptive, mechanoreceptive and 

proprioceptive neurons was observed (h). 
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(Figure 3.41 g). In addition, ectopic expression of Ntng1 in all subtypes of 

somatosensory neurons did not change the subtype-specific laminar targeting pattern 

of nociceptive, mechanoreceptive and proprioceptive neurons (Figure 3.42 h). Hence, 

it can be concluded that, at least under conditions of forced expression in chick, 

neither Ntng1 nor its interaction partner NGL1 is sufficient to alter the overall central 

connectivity of axonal projections in the spinal cord. However, it cannot be excluded 

that Ntng1-NGL1 interactions play a role in fine-grained changes in laminar and 

sublaminar targeting, like in the lamina-specific differentiation of dendrites. Through a 

novel in silico-to-in vivo screen for neuron subtype-specific gene regulatory elements, 

a unique LTMR circuit defined by Ntng1 activity was uncovered. This circuit appears to 

relay touch responses from Meissner-like glabrous skin Aβ-LTMRs to laminae IV-V in 

the dorsal horn. However, deciphering the precise roles of endogenous Ntng1 activity 

in LTMRs, and that of its putative interaction partner NGL1 in the dorsal horn, during 

somatosensory circuit assembly or function remains to be addressed. 
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4. Discussion 

4.1. STEVE-mediated stable genetic tagging of somatosensory neurons 

The sense of touch is essential for a variety of behaviors in virtually all higher animal 

species (Lumpkin et al., 2010). Formation and specification of precise sensory 

neuronal circuits during embryogenesis represents a crucial step in the development 

of a functional nervous system (Kandel et al., 2000). However, little is known about 

molecular mechanisms underlying sensory neuron specification, the unique function of 

specialized sensory neurons, and the logic of sensory circuit organization, which is 

mainly due to the limited availability of sensory neuron subtype-specific markers 

facilitating their comprehensive analysis (Marmigère and Ernfors, 2007; Ma, 2009; 

Lumpkin et al., 2010; Nilius, 2010; Li et al., 2011; Lallemend and Ernfors, 2012). This 

study aimed at the identification of novel genetic markers for distinct sensory subtypes 

to provide more detailed insights into sensory neuron circuit organization and 

developmental assembly. These overall aims were addressed by screening for 

sensory neuron subtype-specific enhancer activities in a novel chick model system.  

 

An extensive enhancer analysis in rodent transgenic animals, including screening of 

multiple genomic sequences for enhancer activities in vivo, implicates high costs, 

resource-intensiveness and lengthy generation times (Timmer et al., 2001). The 

chicken as a complementary model system shares developmental and structural 

similarities to mammals, including universal conserved gene regulatory mechanisms, 

and provides a straightforward and rapid in vivo transfection with minimal time effort 

and low costs (Novitch et al., 2001; Thaler et al., 2002; Lee SK et al., 2004; Dasen 

et al., 2005; Uchikawa, 2008). Therefore, in ovo electroporation greatly facilitated an 

enhancer activity screen along with the study of sensory neuron specification and 

connectivity in vertebrates. A straightforward strategy was explored based on 

vertebrate transposon-based transgenesis, allowing for the first time effective, 

selective and stable genetic tagging of somatosensory neurons and their connectivity 

patterns in late-gestation chick embryos. The designed stable expression vector 

STEVE, including the minimal TATA box promoter and fluorescent reporter genes, 

provided the basis for a sensitive enhancer analysis by facilitating ready detection of 
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putative enhancer activities in vivo. Persistent expression in transfected cells at later 

developmental stages along with a long-term observation of enhancer activities was 

ensured by Tol2 transposon-based random genomic integration. This was particularly 

necessitated by the high mitotic rates of neural crest cells (NCCs), causing non-

integrated transgenes to disappear rapidly by dilution and progressive degradation 

(Kawakami and Shima, 1999; Sato et al., 2007; Takahashi et al., 2008; Yokota et al., 

2011). For high transfection efficiency in the sensory lineage, in ovo electroporation of 

the chick neural tube was consequently performed between Hamburger-Hamilton (HH) 

stages 11 and 13 before NCC emigration (Hamburger and Hamilton, 1951; Serbedzija 

et al., 1990; Kasemeier-Kulesa et al., 2005; Krispin et al., 2010). Previous studies 

reported of biased transfection efficiency within the somatosensory lineage towards a 

particular somatosensory subtype (Chen AI et al., 2006; George et al., 2007). In 

contrast, STEVE provided unbiased stable transfection and expression in the entire 

spinal cord and dorsal root ganglia (DRGs), as verified with the constitutive CAG 

promoter, whereas the enhancer-less construct did not display activity in neural tissue. 

The effective method of in ovo electroporation for introducing exogenous DNA in 

combination with STEVE therefore created the prerequisites for the detection of cis-

regulatory activities and their subsequent use for the stable genetic tagging of 

somatosensory neurons in late-gestation chick embryos that were inaccessible to 

previous methods. 

 

 

 

4.2. Establishment of Isl1Crest3 and AvilLucy1 as pan-sensory neuron markers 

In order to identify novel pan-sensory and sensory subtype-specific markers literature 

and gene expression data bases were screened for putative candidates expressed by 

DRG neurons (Yin et al., 2002; Uemura et al., 2005; Alvarez-Bolado and Eichele, 

2006). Genomic comparison of chosen candidate gene loci between multiple species 

revealed a wide range of evolutionary conserved non-coding regions (ECRs) 

(Ovcharenko et al., 2004). Based on homology and conservation of putative 

transcription factor binding sites the most promising ECRs were analyzed. It was found 

that five out of seven tested ECRs were driving reporter gene expression in neuronal 
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tissue of the chick, with both specific and non-specific activities (see Table 3.1). The 

general sensory neuron-specific enhancers Isl1Crest3 and AvilLucy1, as well as the 

mechanoreceptive neuron-specific enhancer Ntng1Mech1 were discovered via this 

method by recapitulating the endogenous expression pattern of the corresponding 

genes in DRG neurons. These results confirmed the efficacy of the designed 

screening strategy for the rapid in silico-to-in vivo enhancer identification (Boffelli et al., 

2004; Uchikawa, 2008; Visel et al., 2008). Additionally, the method enabled a 

significantly easier access to sensory neuron manipulation studies in both early and 

late-gestation embryos, compared to previous manipulation approaches (Chen AI 

et al., 2006; George et al., 2007). The analysis of identified ECRs supported previous 

observations that enhancers can modulate gene expression independently of their 

orientation or their distance to the gene transcription start (Khoury and Gruss, 1983; 

Blackwood and Kadonaga, 1998; Pennacchio et al., 2006; Doh et al., 2007). Isl1Crest3, 

for example, originally located more than 323 kb upstream of the gene transcription 

start, was subcloned just upstream to the reporter gene coding sequence in STEVE 

with any functional impairment, thereby demonstrating the relative independence 

between enhancer distance and its function in gene regulation. In accordance with 

previous studies, a high ECR sequence conservation is reflected by a high probability 

of enhancer activity of mouse genome-derived ECRs in the chick embryo, thus 

emphasizing the idea that mammals and avians share many basic gene regulatory 

mechanisms in the primary somatosensory system (Timmer et al., 2001; Uchikawa 

et al., 2004; Dasen et al., 2005).  

 

In this study, Isl1Crest3 and AvilLucy1 were established as new pan-sensory neuron 

markers by driving a specific and strong reporter gene expression in somatosensory 

neurons from embryonic stages into adulthood in chick. Along with this, the pan-

sensory markers provided both central and peripheral tagging of sensory axon 

collaterals and provided the feasibility to directly analyze the connectivity of 

somatosensory neurons throughout late gestation in chick embryos. The overall 

developmental sequence of nociceptive, mechanoreceptive and proprioceptive 

collateral extension into the gray matter in chick mirrored that observed in the 

mammalian spinal cord. However, the delay in the establishment of nociceptive 

compared to proprioceptive afferent connectivity observed in mammals appeared 
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temporally compressed in avians, likely reflecting an ontogenic adaptation in precocial 

birds (Fitzgerald, 1987; Mirnics and Koerber, 1995; Ozaki and Snider, 1997; 

Marmigère and Ernfors, 2007). Furthermore, these observations provided evidence 

that central connectivity in the spinal cord is established by a majority of central 

afferent collaterals that directly home in on their respective target laminae (Eide and 

Glover, 1997; Fitzgerald, 1987; Davis et al., 1989; Ozaki and Snider, 1997; Redmond 

et al., 1997; Fitzgerald, 2005). 

 

As an exception to the above mentioned trend, the examined ECRs derived from the 

well-established nociceptive marker TrkA and the proprioceptive marker Runx3 did not 

reflect the endogenous gene expression in sensory DRG neurons, and showed no or 

unspecific enhancer activity in the central and peripheral nervous system. Since many 

genes are regulated by complex arrays of enhancers for temporal and spatial gene 

expression, the discovery of the particular enhancers being responsible for sensory 

neuron-specific gene expression may not always be straightforward, often requiring 

more extensive experimental trials (Pennacchio et al., 2006; Alberts et al., 2008). 

Although highly conserved, no enhancer activity of TrkAECR1 and Runx3ECR3 could be 

observed in neuronal tissue of the embryonic chick. One might speculate that these 

sequences might still include functional regulatory elements which could mediate 

enhancer activity in different tissue not accessible via chick neural tube electroporation 

or become active at stages that were not analyzed (Uchikawa et al., 2003; Uchikawa, 

2008; Visel et al., 2009). Silencer and insulator elements in a gene locus 

indispensable for mediating a specific gene expression are, like enhancer elements, 

thought to be evolutionary highly conserved. Since it is impossible to distinguish 

between enhancer, silencer and insulator elements in a screen for ECRs, it could be 

possible that the chosen ECRs are silencers or insulators, which are not sufficient to 

drive a gene transcription (Blackwood and Kadonaga, 1998; Woolfe et al., 2005; Visel 

et al., 2009). The Runx3ECR1- and Runx3ECR2-driven non-specific expression in different 

subtypes of sensory DRG neurons in the late-gestation chick was not reflecting the 

endogenous gene expression normally restricted to the proprioceptive subtype. It is 

possible that the ECR-mediated expression becomes confined to the proprioceptive 

neuron subtype with additional enhancer and silencer elements which are necessary 

in the genomic locus to specify Runx3 expression (Lee SK et al., 2004; Doh et al., 
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2007; Visel et al., 2009). By analysis of further candidates, additional enhancers 

mediating expression in different somatosensory subtypes could be discovered. A 

comprehensive analysis with a variety of diverse sensory subtype-specific markers 

could provide a better understanding how specification, as well as precise circuitries of 

the different sensory neuron classes are established (Lallemend and Ernfors, 2012). 

 

The ability to directly relate sensory identities in chick to specific sensory modalities in 

other vertebrate species is currently limited by the comparatively poorly resolved 

structure-function relationships in the avian somatosensory system. The improvement 

of this situation is, however, expected to go hand-in-hand with the ongoing 

identification and characterization of molecularly defined sensory neuron subclasses. 

By allowing systematic exploration of molecularly defined neuronal identities, the 

STEVE-based screening for cis-regulatory activities in chick offers a potentially 

powerful pre-screening platform for targeting discrete sensory neuronal populations in 

other vertebrate systems by uncovering principles of their specification and 

connectivity. While in many cases the mouse will likely remain the gold standard for 

the genetic dissection of neuronal circuits, the strategic use of auxiliary models 

facilitating rapid molecular identification and interrogation of neuronal identities could 

thereby accelerate the drive to map mammalian connectomes. 

 

 

 

4.3. Neurogenic equivalence of ipsilaterally and contralaterally migrating 

neural crest cells 

During early embryonic development, NCCs emigrate from the neural tube towards 

their respective peripheral targets, whereby some NCCs cross the neural tube midline 

and contribute to the contralateral NCC migratory stream (Serbedzija et al., 1990; 

Frank and Sanes, 1991; Carmona-Fontaine et al., 2008; Squire et al., 2008). George 

and colleagues reported of lineage-restricted premigratory NCCs in diametrically 

opposed (ipsilateral and contralateral) migratory streams, such that contralaterally 

migrating NCCs are biased to generate nociceptive somatosensory neurons (George 

et al., 2007; Lefcort and George, 2007; George et al., 2010). The potential presence of 
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lineage-restricted NCC populations with unique migratory trajectories has far-reaching 

implications for understanding NCC biology, including the origin of pain-sensing 

circuits, and could have profound consequences for experimental strategies targeting 

ipsilateral or contralateral NCC derivatives. 

 

Through STEVE-mediated direct cell lineage-tracking and systematic analysis of 

neuronal NCC progeny and their circuitries in chick conclusive evidence could be 

provided that ipsilateral and contralateral NCC streams are neurogenically equivalent 

and give rise to the same principal set of NCC derivatives, including peripheral neuron 

types and their circuitries. It is likely that the use of stable somatic transgenesis for 

tracking NCC lineages effectively sidestepped past limitations inherent to conventional 

plasmid-based transfection, thus, contributing to the different outcomes between this 

study and preceding experiments (George et al., 2007). The limited intracellular half-

life of non-integrating plasmid DNA confines lineage-tracking experiments to largely 

immature NCC progeny in DRGs (Yokota et al., 2011). Moreover, in analogy to 

classical dye-tracing procedures, this might collude with fluctuating tracing efficacies to 

skew outcomes towards certain cell classes. This could be caused by disparate 

dilution rates in sub-lineages progressing through few or several cell divisions, 

especially in the highly proliferative NCC lineages (Stern and Fraser, 2001; Lacar 

et al., 2010). These effects would have previously eluded detection by the omission of 

a direct comparative analysis of ipsilaterally- or contralaterally-derived DRG neuron 

classes, which is a prerequisite for conclusively assessing any neurogenic bias (or 

lack thereof) of ipsilateral or contralateral NCCs. 

 

Based on obtained observations of STEVE-mediated unbiased bilateral targeting of 

DRG neurons, it is proposed that the entry of a contralateral migratory trajectory by 

some NCCs is most parsimoniously explained by stochastic events, likely resulting 

from homotypic interactions driving the initial pattern of NCC emigration (Carmona-

Fontaine et al., 2008). Both, ipsilateral and contralateral migratory streams would 

thereby derive from a common pool of precursors subjected to the same 

spatiotemporal factors influencing NCC potential (Le Douarin and Kalcheim, 1999; 

Anderson, 2000; Harris and Erickson, 2007; Krispin et al., 2010). A practical 

consequence of this is the emerging possibility of using unbiased targeting of 
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contralateral NCC progeny, such as for the sparse labeling of peripheral neurons for 

in-depth circuit mapping (Jefferis and Livet, 2012; Chen AI et al., 2006). This feature 

was utilized for the analysis of somatosensory subtype-specific central trajectories in 

the developing chick embryo (see Figure 3.23-3.26). 

 

 

 

4.4. A novel subclass of touch receptor neurons defined by Ntng1Mech1 

Dependent on the specific functional characteristics associated with the detection of 

different touch stimuli, low-threshold mechanoreceptors (LTMRs) can be broadly 

subdivided in heavily myelinated rapidly adapting (RA) Aβ-LTMRs, slowly adapting 

(SA) Aβ-LTMRs, lightly myelinated Aδ-LTMRs and unmyelinated C-LTMRs. The 

medium-diameter Aδ-LTMRs and the small-diameter C-LTMRs differ morphologically 

and physiologically from the large-diameter Aβ-LTMRs of both RA and SA types 

(Lewin and Moshourab, 2004; Lumpkin and Caterina, 2007; Ma, 2009). By 

demonstrating the feasibility of the STEVE system for the rapid identification and 

interrogation of neuronal subtype identities, Ntng1Mech1 was shown to label a novel 

molecularly defined subset of sensory neurons whose anatomical, morphological, 

electrophysiological, functional and molecular characteristics correspond to a discrete 

subclass of Aβ-LTMRs. Based on the similar Ntng1Mech1-mediated expression pattern 

in large-size sensory neurons and its close genomic localization to the gene 

transcription start, Ntng1Mech1 is expected to correspond to an enhancer associated 

with the Ntng1 gene and consistently to reflect the endogenous gene expression in 

sensory DRG neurons (Yin et al., 2002; www.brain-map.org). Nevertheless, a final 

validation for a direct association should be ultimately conducted via two-color 

fluorescence in situ hybridization analysis against the Ntng1Mech1-driven reporter gene 

and endogenous Ntng1 or via co-expression analysis with specific antibodies against 

the reporter gene and chick Ntng1 (Levsky and Singer, 2003).  

 

In order to classify Ntng1Mech1+ DRG neurons according to defined sensory neuron 

subtypes a comprehensive analysis addressing typical characteristics of sensory 

neuron subclasses was performed. Ntng1Mech1 consistently labeled a population of 
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large-diameter sensory neurons clustered in the ventrolateral position of the DRGs, 

which is mainly occupied by mechanoreceptive and proprioceptive neurons in chick 

(Frank and Sanes, 1991; Harris and Erickson, 2007). More strikingly, Ntng1Mech1+ 

central axon collaterals projected into a highly confined region in the medial dorsal 

horn of the spinal cord which is the target zone of LTMRs in chick (Eide and Glover, 

1997; Wild et al., 2010). Furthermore, Ntng1Mech1-labeled sensory collaterals separated 

from nociceptive central afferents targeting laminae I-II in the lateral dorsal horn and 

from proprioceptive afferents projecting to the intermediate and ventral spinal cord 

(Scott, 1992; Chen AI et al., 2006; Lallemend and Ernfors, 2012). By labeling the 

largest DRG neurons which are highly myelinated based on the co-expression with 

NF200, the properties of Ntng1Mech1+ neurons highly correlated with Aβ-LTMR 

characteristics (Harper and Lawson, 1985; Lechner et al., 2009). Based on these 

criteria, Ntng1Mech1-tagged sensory neurons strongly differed from small-size lightly 

myelinated or unmyelinated nociceptive neurons, as well as from medium-diameter 

myelinated Aδ-LTMRs and small-diameter unmyelinated C-LTMRs (Harper and 

Lawson, 1985; Marmigère and Ernfors, 2007). The electrophysiological analysis 

revealed that Ntng1Mech1+ DRG neurons represent a discrete population of sensory 

neurons with spike characteristics and mechanosensitive currents typical of embryonic 

LTMRs, concomitant with the exclusion of functional properties characteristic for 

nociceptive neurons (Koerber et al., 1988; Djouhri et al., 1998; Fang et al., 2005; 

Lechner et al., 2009). The stereotypic laminar connectivity pattern established by 

Ntng1Mech1+ DRG neurons displayed a selective termination within a medioventral 

domain presumably corresponding to laminae IV-V by excluding lamina III of the 

dorsal horn. Recent studies showed that the central collaterals of molecularly identified 

Aβ-LTMRs, including both RA and SA types, broadly target laminae III to V, which is 

consistent with the connectivity patterns of morphologically or physiologically identified 

LTMRs in both, mammals and birds (Necker, 1990; Eide and Glover, 1997; Bourane 

et al., 2009; Luo et al., 2009; Honma et al., 2010; Li et al., 2011; Lallemend and 

Ernfors, 2012). Moreover, transganglionic tracing of morphologically identified skin 

mechanoreceptors in rat have previously revealed that Aδ-LTMR afferents tend to be 

concentrated in laminae II (inner) and III (Light and Perl, 1979; Li et al., 2011). It may 

therefore be tempting to speculate that Aδ-LTMRs are Ntng1Mech1-. The exclusion of 
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laminae I-III and restriction to laminae IV-V by Ntng1Mech1+ collaterals thus appears to 

uncover a novel molecularly defined subclass of Aβ-LTMRs (Figure 4.1).  

 

 

In analogy to the fine-grained laminar and sublaminar segregation patterns of 

molecularly defined nociceptor identities, the functional specialization of LTMRs could 

thus in general be expressed as unique labeled lines relaying submodalities to discrete 

laminar targets (Zylka et al., 2005; Li et al., 2011). Currently, it is generally believed 

that LTMRs arise from two early populations of mechanoreceptive progenitors 

expressing either Ret (earlyRet+ population) or TrkB (TrkB+ population) (Lallemend 

and Ernfors, 2012). The earlyRet+ lineage further subdivides which finally results in 

five molecularly unique lineages: Ret+/MafA+ (1), Ret+/MafA+/TrkB+ (2), 

Ret+/MafA+/TrkC+ (3), Ret+/TH+ (4) and TrkB+ (5) (Bourane et al., 2009; Luo et al., 

2009; Honma et al., 2010; Abdo et al., 2011; Heidenreich et al., 2011; Li et al., 2011; 

Wende et al., 2012). In mammals, it has been speculated that the Ret+/MafA+ subsets 

(lineages 1-3) of LTMR neurons could predominantly represent RA Aβ-LTMRs, the 

Ret+/TH+ subset (lineage 4) is predicted to label C-LTMRs, whereas the TrkB+ 

population (lineage 5) was associated with Aδ-LTMRs (Bourane et al., 2009; Luo 

et al., 2009; Heidenreich et al., 2011; Li et al., 2011; Wende et al., 2012). Based on 

 
Figure 4.1: Connectivity of Ntng1Mech1+ Aβ-LTMR neurons in chick 

(a) Ntng1Mech1+ sensory neurons define a subclass of Aβ low-threshold mechanoreceptors (LTMRs), 

whose central collaterals selectively terminate within a medioventral domain of the dorsal horn 

presumably corresponding to laminae IV-V. In contrast, all subtypes of Aβ-LTMRs, including RA and SA 

types, project throughout laminae III-V. 

(b) Ntng1Mech1+ peripheral collaterals innervate dermal papillae of glabrous skin, which are suggested to 

be associated with a subset of Merkel corpuscles in avians. Whether Ntng1Mech1+ axons also associate 

with Herbst corpuscles in glabrous skin needs to be determined. No Ntng1Mech1-labeled projections 

terminate in feathery skin. Feather follicles are associated with Herbst corpuscles and nociceptive nerve 

endings. 
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current literature no specific markers for SA Aβ-LTMRs have been identified yet. 

However, in most cases the correlation between the molecularly unique LTMR 

subtypes with distinct mechanoreceptive end organs needs to be determined in more 

detail. Additionally, the regulatory mechanisms regarding specification and connectivity 

of the different LTMR subtypes still remain unknown (Lallemend and Ernfors, 2012). 

Since the early development of sensory differentiation displays homology in 

vertebrates, it might be suggested that also later specification and maturation of 

LTMRs is highly conserved between mammals and avians (Koltzenburg and Lewin; 

1997; Marmigère and Ernfors, 2007; Guo et al., 2011).  

 

In the present study, it was found that the Ntng1Mech1-tagged DRG neuron population 

partially overlaps with earlyRet+ (lineages 1-4) and TrkB+ (lineages 2+5) 

mechanoreceptive neurons, with 31% of Ntng1Mech1+ neurons co-expressing Ret and 

33% co-expressing TrkB. By assumption of no co-expression between Ret and TrkB in 

any of the LTMR lineages, which is actually present in lineage 2, at least 36% of 

Ntng1Mech1+ neurons express neither Ret nor TrkB. This indication therefore points 

towards a molecularly novel Ret- TrkB- LTMR subtype defined by Ntng1Mech1 

(additionally to lineages 1-5), which has not yet been described. Based on this, it 

would be predicted that Ntng1Mech1+ Aβ-LTMRs are partially independent of the 

Neurotrophin Ret/Trk receptor signaling during development, which may be further 

clarified with a DRG explant culture assay (Bilsland et al., 1999; Bourane et al., 2009; 

Lechner et al., 2009; Wang and Marquardt, 2012). Accordingly, by incubation of 

Ntng1Mech1-transfected sensory neurons with single growth factors (GDNF, NGF, 

BDNF, NT-3) the influence on differentiation, neurite outgrowth and survival of 

Ntng1Mech1+ neurons could be analyzed in order to classify the Ntng1Mech1 population 

more precisely (Figure 4.2). Analogous to the division of earlyRet+ mechanoreceptors 

into diverse subclasses, Ntng1Mech1+ neurons may thus be tentatively divided into 

Ntng1Mech1+ (1’), Ntng1Mech1+/Ret+ (2’), Ntng1Mech1+/TrkB+ (3’) and Ntng1Mech1+/TrkC+ (4’) 

Aβ-LTMRs, whereas a potential overlap is considered to be possible between the Ret+ 

and TrkB+ subsets (2’+3’), as well as between the Ret+ and TrkC+ populations (2’+4’). 

However, given the apparent molecular heterogeneity of the larger class of Aβ-

LTMRs, and the smaller class of Ntng1Mech1+ ‘laminae IV-V’ Aβ-LTMRs, it is also 
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possible that the relationship between mechanosensory neuron subclass and Ret/Trk 

receptor expression is even more complex. 

 

 

In mammals, the peripheral collaterals of RA Aβ-LTMRs terminate in hair follicles, as 

well as Pacinian and Meissner corpuscles that dynamically respond to light touch, 

vibration, flutter and skin movements, while SA Aβ-LTMRs innervate Merkel discs and 

Ruffini corpuscles that relay static responses to dermal stretch and indentation (Lewin 

and Moshourab, 2004; Lumpkin and Caterina, 2007; Ma, 2009). The Aδ-fiber D-hair 

receptors and C-fiber LTMRs are associated with hair follicles (Lumpkin et al., 2010; Li 

et al., 2011). In contrast to the well characterized sensory end organs in mammals 

there is only limited information on avian mechanoperception and its adaptations in 

feathery versus hairy skin. In birds, detection of different touch stimuli appears to be 

mainly mediated by Herbst and Merkel corpuscles (Gottschaldt 1985; Necker 2000). 

Herbst corpuscles are considered as the avian equivalent of the mammalian Pacinian 

corpuscles, which respond to vibration and acceleration (Gottschaldt, 1985; Necker, 

2000). The corpuscles are widely distributed throughout the feathery skin by forming 

terminals in the collar region of most feather follicles, but also innervate the dermis of 

glabrous skin (Duc et al., 1993). Merkel cell receptors are primarily found in 

featherless skin of avians, where they respond to sustained pressure (Necker, 2000; 

Halata et al., 2003). In contrast to mammals, Merkel cells here differ from mammalian 

 
Figure 4.2: DRG explant culture of Isl1Crest3+ somatosensory neurons in chick 

(a-d) Dorsal root ganglion (DRG) explant culture of Isl1Crest3-tagged somatosensory neurons treated 

with NGF, BDNF and NT-3 shows neurite outgrowth (a-b). Somatosensory neurites are labeled by βIII-

tubulin (Tuj1), growth cones are labeled by F-actin marker Phalloidin (Phal). Scale bar: 200 µm. 

Detailed view reveals Phal+ growth cones (c-d). Scale bar: 25 µm. 
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Merkel cell-neurite complexes by accumulating and forming rudimentary Meissner-like 

corpuscles exclusively present in the superficial layer of the dermis and being highly 

enriched in dermal papillae (Winkelmann and Myers, 1961; Duc et al., 1993). The 

electrophysiological classification of Herbst and Merkel corpuscles among defined RA 

or SA modalities is complicated by conflicting findings, with some groups reporting that 

both receptor types are RA, whereas others identified both RA and SA responses 

(Necker, 1985; Gentle, 1989; Necker, 1990; Duc et al., 1993). The peripheral 

innervation of Ntng1Mech1+ Aβ-LTMRs was exclusively found in plantar and scaly 

regions of the glabrous skin. The innervation of dermal papillae to rudimentary 

Meissner-like structures indicates that Ntng1Mech1+ axons terminate in this subset of 

avian Merkel corpuscles. Whether the Ntng1Mech1+ and Ntng1Mech1- neurons are indeed 

tuned to specific mechanosensory submodalities awaits further study, however. 

 

A co-labeling with sensory end organ specific markers could provide more precise 

conclusions of the Ntng1Mech1-mediated target specificity (Duc et al., 1993). Since 

Herbst corpuscles are also present in glabrous skin it need to be determined whether 

the peripheral termination of Ntng1Mech1-tagged LTMRs is restricted to Merkel 

corpuscles or whether these projections alternatively or additionally display a 

topographic ‘distal-versus-proximal-limb’ innervation pattern. However, such a ‘distal-

versus-proximal-limb’ regional specificity of the Ntng1Mech1 peripheral projections 

appears unlikely, as a topographic skin innervation pattern is generally thought to be 

reflected by central afferents that organize in column-like structures from medial to 

lateral throughout different laminae of the dorsal horn (Wild et al., 2010; Li et al., 

2011). Since Ntng1Mech1+ central afferent collaterals occupy the entire medioventral 

domain of the dorsal horn presumably corresponding to laminae IV-V by excluding 

laminae I-III, Ntng1Mech1 is rather more likely restricted to a specific LTMR subtype. 

Due to the so far limited morphological and electrophysiological characterization of 

LTMR subtypes in avians and due to the difficulty of pinpointing the homologous 

mammalian sensory end organs, conclusive statements regarding the stereotypic 

sensory end organ innervation of Ntng1Mech1+ LTMRs remain challenging. In order to 

address the issue of a precise electrophysiological characterization of the avian LTMR 

subtypes, including Ntng1Mech1-tagged neurons, particularly with regard to their 

response properties to different stimuli, in vitro skin nerve preparations will have to be 
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performed (Lewin and Moshourab, 2004; Heidenreich et al., 2011; Wende et al., 

2012). Therefore, a novel not-yet-described strategy was designed to selectively tag 

and record single axons of a defined population in the chick. Since the avian transient 

receptor potential cation channel V1 (TrpV1), in contrast to the mammalian form, is 

insensitive to capsaicin, mammalian TrpV1 will be selectively expressed in Ntng1Mech1+ 

peripheral axons, which then can be recognized after capsaicin exposure of the skin 

(Wood et al., 1988; Jordt and Julius, 2002). Subsequently, the responses of 

Ntng1Mech1+ axons can be recorded after variable mechanical stimulation of the skin 

(vibration, sustained pressure, etc.) in order to classify the LTMR population among 

defined RA or SA modalities. Isl1Crest3- or AvilLucy1-driven TrpV1 in all somatosensory 

subtypes might serve as a reference for the different response properties present in 

the chick somatosensory circuitry.  

 

Finally, the overall aim for the near future is to recapitulate, verify and to in depth 

characterize the Ntng1Mech1-mediated LTMR subtype-specific expression in the mouse 

via specific antibodies against Ntng1, as well as by stable transgenesis, as the mouse 

serves as a well-established model system in regard to study the development and the 

function of somatosensory circuitries (Luo et al., 2009; Heidenreich et al., 2011). While 

there is a lack of information regarding the specific mechanosensory modality they 

relay, Ntng1Mech1+ neurons constitute a novel molecularly unique subclass of Aβ-

LTMRs. Moreover, the accelerated identification of molecularly defined somatosensory 

neuron subclasses by STEVE-based transgenesis in chick may accelerate the 

comprehensive mapping of neuronal identities associated with mechanosensory 

(sub)modalities. 

 

 

 

4.5. NetrinG-NGL interactions in mechanoreceptive circuit formation 

Ntng1Mech1 defines a novel subclass of large-diameter Aβ-LTMRs whose central 

collaterals selectively terminate within a defined domain of the dorsal horn presumably 

corresponding to laminae IV-V. Since NetrinG-NGL interactions have been implicated 

in excitatory synapse formation and lamina-specific segmentation of dendrites in the 



4.  Discussion 

133 
 

hippocampus, these new results could indicate a function of Ntng1 for the 

development of precise mechanoreceptive connectivity (Brose, 2009; Woo et al., 

2009). In order to analyze the impact of the cell adhesion molecules Ntng1 and its 

ligand NGL1 in somatosensory connectivity, a strategy for gain-of-function studies in 

late-gestation chick embryos, which is based on STEVE and the Cre/loxP system, was 

developed enabling specific and long-term expression of introduced transgenes.  

 

NGL1 expression is expected to be restricted to the deeper laminae of the dorsal horn 

presumably corresponding to laminae IV-V. If Ntng1-NGL1 interactions would be the 

determinants for laminar targeting of Ntng1+ sensory collaterals in their defined 

termination zone of the dorsal horn, ectopic expression of NGL1 in all laminae should 

be able to alter the central connectivity pattern of Ntng1+ axons. Alternatively, ectopic 

expression of Ntng1 in prospective nociceptive and proprioceptive sensory neurons 

should be able to alter their axonal projections to adopt Ntng1+ LTMR-like features and 

to redirect their axons towards regions in the dorsal horn where interaction partner 

NGL1 is expected to be accumulated. Primary experiments showed that Ntng1Mech1+ 

central collaterals were not redirected into different NGL1 expressing laminae by 

ectopic NGL1 expression throughout the dorsal horn. Furthermore, no change in the 

phenotypic laminar targeting of Ntng1 expressing nociceptive, mechanoreceptive and 

proprioceptive neurons was observed. These primary observations lead to the 

conclusion that Ntng1-NGL1 interactions are not sufficient to alter the stereotypic 

laminar targeting of somatosensory projections in the spinal cord. However, it cannot 

be excluded that Ntng1-NGL1 interactions might be involved in fine-grained changes 

in laminar and sublaminar connectivity, in analogy to the lamina-specific dendrite 

segmentation in hippocampal neurons observed by previous studies (Nishimura-

Akiyoshi et al., 2007; Seiradake et al., 2011). The design of a more precise and more 

sensitive analysis, which facilitates the detection of changes at sublaminar levels, is 

essential to reach the final conclusion regarding the Ntng1-NGL1 function in central 

targeting of LTMR afferents. In vitro studies might address the individual influence of 

Ntng1-NGL1 interactions in axon guidance of Aβ-LTMR neurons with less interference 

factors, compared to in vivo studies. The stripe assay, for example, has been proven 

to be powerful in uncovering guidance cues and mechanisms in many principal 

neuronal projections (Knöll et al., 2007; Kao and Kania, 2011). Consequently, 
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Ntng1Mech1-tagged somatosensory neurons in DRG explant cultures could be analyzed 

for their extending neurites along ligands printed in a striped pattern in order to study 

the responses of growing axons to Ntng1-NGL1 signaling. Furthermore, coculture of 

Ntng1Mech1-transfected DRG explants with NGL1 expressing cell aggregates could 

address the attractive or repulsive Ntng1-NGL1 interaction present in LTMR afferents 

(He and Tessier-Lavigne, 1997; Anderson et al., 2003). Ntng1-NGL1 adhesion might 

also be involved in peripheral targeting of Aβ-LTMR collaterals. Since the analysis of 

peripheral skin innervation in avians is difficult, due to limited information about the 

mechanoreceptive end organ organization, transgenic mice, carrying the Ntng1Mech1 

expression cassette, could bridge the gap between the molecular identity of the Aβ-

LTMR subpopulation and their precise peripheral and central circuit formation. 

 

The assembly of neuronal circuits relies on a complex interplay of diverse 

combinations of different adhesion systems that work in parallel and trigger the precise 

cell-type specific connectivity (Brose, 2009; Lallemend and Ernfors, 2012). Dysfunction 

of one component, for example Ntng1-NGL1 interactions in LTMR circuitries, may 

therefore not necessarily result in a drastically altered connectivity, because of 

remaining and partially redundant factors. Interestingly, the NetrinG family member 

Ntng2 and its ligand NGL2 display a comparable expression pattern like Ntng1 in 

large-diameter DRG neurons and NGL1 in the deeper laminae of the dorsal horn, 

respectively (Yin et al., 2002; www.brain-map.org). If both Ntng1 and Ntng2 are co-

expressed in the same LTMR population, these highly homologous factors would be 

likely to act in a redundant manner to achieve laminar targeting specificity. Another 

possibility might be, in analogy to their roles in the organization of lamina/pathway-

specific dendrite differentiation in the hippocampal neurons, that Ntng1 and Ntng2 are 

expressed in different somatosensory subpopulations mediating specific central 

innervation in discrete domains of the spinal cord. The study of Ntng1/Ntng2 double 

knockout mice could reveal new insights regarding these issues (Nishimura-Akiyoshi 

et al., 2007). In the future, it will be interesting to decipher more precisely, which 

additional factors provoke the differentiation towards the Ntng1Mech1-specific subclass 

of large-diameter Aβ-LTMRs, how regulatory mechanisms mediate the unique 

organization of this circuit and what kind of touch responses are relayed by the 

Ntng1Mech1+ Meissner-like glabrous skin LTMRs to laminae IV-V in the dorsal horn. 
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5. Summary 

The assembly of circuitries for somatosensory perception relies on a complex interplay 

of neuronal diversification, specification, phenotypic modulation and establishment of 

precise connectivity patterns during embryogenesis. However, little is known about the 

molecular mechanisms controlling the establishment of well-defined somatosensory 

connectivity, which is to a large part due to the limitation of sensory neuron subtype-

specific molecular markers. This study aimed at the identification of novel genetic 

markers for distinct somatosensory neuron subtypes to provide more detailed insights 

into primary somatosensory circuit formation, organization and function. These aims 

were addressed by a newly established in silico-to-in vivo screen for neuron subtype-

specific enhancer activities in the chick.  

 

The designed strategy, based on the stable expression system STEVE, facilitated the 

detection of cis-regulatory activities and their subsequent use for the rapid, efficient 

and stable genetic tagging of somatosensory neurons in chick embryos at late-

gestation stages that were inaccessible to previous methods. The feasibility of the 

system for the rapid identification and interrogation of sensory neuronal identities was 

demonstrated by the establishment of Isl1Crest3 and AvilLucy1 as pan-somatosensory 

neuron markers. These newly identified enhancers mediated a specific and robust 

reporter gene expression in somatosensory neurons from embryonic stages at least 

until hatching and facilitated both central and peripheral visualization of sensory axon 

collaterals. A detailed reconstruction of the sensory trajectories regarding their 

phenotypic laminar targeting revealed new insights in the complex central connectivity 

of the different somatosensory lineages. Furthermore, STEVE-based direct lineage-

tracking and systematic analysis of neural crest cell progeny in chick provided 

conclusive evidence that ipsilateral and contralateral neural crest streams are 

neurogenically equivalent, giving rise to the same principal set of derivatives, including 

peripheral neuron types and their circuitries. 

 

Through the selective screen for sensory neuron subtype-specific gene regulatory 

elements and the subsequent comprehensive analysis comprising many sensory 

neuron characteristics, Ntng1Mech1 was identified as a novel genetic marker for a 
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discrete subclass of large-diameter Aβ low-threshold mechanoreceptors. Ntng1 

activity thereby uncovered a novel circuit that appears to relay touch responses from 

Meissner-like glabrous skin mechanoreceptive neurons exclusively to laminae IV-V in 

the dorsal horn. Ongoing work is directed at deciphering the precise roles of 

endogenous Ntng1 activity in this subclass of Aβ low-threshold mechanoreceptors, 

and that of its putative interaction partner NGL1 in the dorsal horn, during 

somatosensory circuit assembly. 

 

Taken together, this study designed a simple screening strategy that permits rapid, 

efficient and stable genetic tagging of neuronal subtypes in vivo, which thus provides 

the basis for the systematic discovery of late-onset sensory neuron subtype-specific 

gene regulatory activities. Thereby, a novel molecularly defined subclass of touch 

receptor neurons was uncovered, thus providing the utility of the system for 

uncovering the neural basis of discrete sensory modalities relayed by the primary 

somatosensory system. In addition, the system facilitated stable cell fate-tracking, 

which unraveled outstanding features of the primary somatosensory neuron lineage. 

Besides facilitating the genetic dissection of the somatosensory system, the strategy 

also offers an effective pre-screening platform for targeting genetically identified 

neuronal subtypes in other vertebrate species. 
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