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1. Introduction to the scientific project 
 

The present cumulative thesis includes three original publications investigating 

new treatment strategies for neuropsychiatric diseases. The first paper focuses 

on erythropoietin (EPO) and its mechanisms of action on improving cognition 

under healthy and disease conditions i.e. schizophrenia. The second paper is a 

case study of a rapid cycling patient and explores molecular aspects of the 

disease leading to an alternative treatment approach for stabilization of the 

cycling behavior. The third paper is based on a traumatic brain injury model that 

leads to atrophy and cognitive impairment at an older age in mice. It explores the 

morphological consequences of atrophy induced by lesion and offers EPO as a 

neuroprotective agent to prevent lesion induced atrophy, cognitive impairment 

and late morphological changes in the brain. 

 

Two major psychiatric disorders, schizophrenia and bipolar disorder, were first 

characterized as dementia praecox and manic-depressive insanity respectively 

by Emil Kraepelin about a hundred years ago (Kendell, 1987). Schizophrenia is a 

disease in which higher brain functions and as a result, social behavior 

deteriorate and the patient suffers from auditory hallucinations, delusions, 

disorganized thinking and cognitive decline. It affects 0.4-0.6% of the population 

with an age of onset at around mid twenties (Bhugra, 2005). Cognitive deficits 

and behavioral abnormalities are already present from early childhood but the 

general characteristics of the disease appear in late teens. Twin studies have 

shown that heritability as well as environmental factors are important for the 

outcome of the disease (Prescott and Gottesman, 1993). Thus, it is a 

multifactorial disorder that has a combination of environmental and genetic 

causes.   

 

Another common psychiatric disease, bipolar disorder, is characterized by an 

abnormally elevated mood, referred to as mania, followed by periods of 

depression. It has a prevalence of 1.3-1.6% and the first major mood episode is 
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usually experienced during adolescence (Muller-Oerlinghausen et al., 2002). 

Manic and depressive episodes are mostly separated by periods of normal 

mood. However, in 10-30% of bipolar disease patients, mania and depression 

rapidly alternate. This condition is known as rapid cycling (Papadimitriou et al., 

2005). In bipolar disorder, symptoms of mania include mood elevation, 

grandiosity, overconfidence, decreased sleep, rapid speech, increased appetite, 

and libido and manic episodes are characterized by hospitalization, psychosis 

and functional impairment. Depressive episodes are usually longer and take over 

the lives of majority of bipolar patients (Thase, 2005). As in schizophrenia, 

neurocognitive impairments including disturbances in attention, memory and 

executive function, are core features of bipolar disorder (Thompson et al., 2005). 

Recent research has shown that bipolar disorder, like schizophrenia, might be a 

polygenic disease with more than one gene involved in its etiology (Barrett et al., 

2003; Baum et al., 2008).  

 

There are treatments available for reducing the symptoms of both schizophrenia 

and bipolar disorder but the diseases cannot be cured. Moreover, there is no 

drug available for preventing the cognitive impairment and thus increasing the 

quality of life for the patients of both diseases. The first-generation antipsychotic 

drugs, or typical antipsychotics, function as D2 dopamine receptor antagonists. 

They are used to treat positive symptoms of schizophrenia, such as 

hallucinations and delusions. However, they are not effective in treating negative 

symptoms, such as lack of motivation, anhedonia and cognitive dysfunction and 

patients suffer from adverse extrapyramidal side effects (Murphy et al., 2006). In 

1989, with the introduction of clozapine, typical antipsychotic drugs are replaced 

by atypical antipsychotics having less side effects and offering more effective 

treatment (Kane et al., 1988). They act by inhibiting D2 dopamine as well as 

serotonin (5HT2A) receptors (Snyder and Murphy, 2008). After clozapine, the next 

15-20 years in schizophrenia research was devoted to developing clozapine-like 

atypical antipsychotics that are safer and better tolerated. Development of 

additional atypical drugs like risperidone, olanzapine, quetiapine, and ziprasidone 
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did not fulfill the expectations since these drugs as well as clozapine are unable 

to treat negative symptoms of the disease (Keefe et al., 1999). Moreover, though 

they do not lead to extrapyramidal side effects, atypical antipsychotics still have 

their own side effect burden such as weight gain (Allison et al., 1999) and 

metabolic syndrome (Newcomer et al., 2002).  

 

For bipolar disorder, the most commonly used mood-stabilizing drug is lithium. It 

has been effective in reducing the symptoms of the disease and preventing 

suicide (Fountoulakis et al., 2007).  A group of anticonvulsants and anti-epileptic 

drugs, such as valproic acid and carbamazepine, are among the most commonly 

used mood-stabilizers in bipolar disease (Sachs and Thase, 2000). Second-

generation atypical antipsychotic drugs have increasingly begun to be used for 

stabilization of manic phases (Surja et al., 2006). Once again, limitations of the 

medication are inadequate effectiveness, inability to treat target symptoms and 

adverse side effects (Perlis et al., 2006). Moreover, presence of different 

subtypes of the disease, such as rapid cycling disorder, provides more challenge 

for development of an effective treatment. Rapid cycling patients are poor 

responders to treatment with either lithium or anticonvulsants (Calabrese et al., 

2005; Tondo et al., 2003). Interestingly, there are even increasing yet 

inconclusive evidence that antidepressants may trigger or worsen rapid-cycling 

disorder (Ghaemi et al., 2003; Wehr et al., 1988).  

 

Understanding mechanisms and molecular determinants underlying 

pathophysiology of neuropsychiatric disorders is important for development of 

novel therapies for these diseases with high prevalence and increased risk of 

mortality. In order to study the pathophysiology, it is inevitable to combine genetic 

and environmental approaches for these multifactorial disorders for developing 

animal models. Traumatic brain injury (TBI) is one of the epigenetic risk factors 

contributing to the outcome of personality changes (Gualtieri and Cox, 1991; 

Lannoo et al., 1997), depression (Fedoroff et al., 1992; Rosenthal et al., 1998), 

schizophrenia (Malaspina et al., 2001; Silver et al., 2001), mania (Shukla et al., 
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1987; Starkstein et al., 1987) and neurodegenerative disorders like Alzheimer’s 

and Parkinson’s diseases (Bower et al., 2003; Nemetz et al., 1999; Stern, 1991). 

About 15% of those afflicted with TBI in their lives appear to be symptomatic for 

other neurological disorders (Alexander, 1995). The outcome of TBI would 

depend on previous vulnerabilities, the extent of the injury and the reaction of the 

brain to the injury. Studies show that the young and the old are at higher risk for 

suffering the consequences of TBI (Kraus and Nourjah, 1988).  
 

Mechanisms leading to cognitive impairment and cognitive related disorders after 

TBI remain to be elucidated. Depending on the extent of concussion, damage 

might include swelling of the brain, hypoxia or diffuse axonal injury. Primary brain 

injury mechanisms might involve damage on axons and microvasculature leading 

to formation of microhemorrhages that disrupt blood supply in certain regions of 

the brain. Damage on axons might lead to Wallerian degeneration or neuronal 

degeneration, and subsequent depolarization of neurons in affected areas or 

even at remote sites (Hall et al., 2008; Hurley et al., 2004; Povlishock, 1993). 

This might lead to an increase in the activity of N-methyl-D-aspartate (NMDA) 

receptors and result in an excess release of glutamate, excitotoxicity, free radical 

formation and oxidative stress (Faden et al., 1989; Giza et al., 2006). Neuronal 

death at the site of injury might mediate release of cytokines initiating pro-

inflammatory reactions with the induction in expression of interleukins and other 

pro-inflammatory mediators leading to an inflammatory reaction. Inflammation 

initiates the beginning of the second stage of brain injury or secondary brain 

injury. Increased permeability of the blood-brain barrier followed by invasion of 

macrophages are additional events in the secondary injury cascade of TBI (Potts 

et al., 2006).  

 

Neuroimaging studies in posttraumatic patients have reported cortical and 

subcortical atrophy, ventricular enlargement and white matter injury (Anderson et 

al., 1996; Arciniegas and Silver, 2001; Bigler, 2003). These findings supported 

the notion that TBI is associated with reductions in the volumes of cerebral 
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structures important for maintenance of cognitive functions. Events occurring in 

response to acute injury are extensively studied however, at present, efficient 

pharmacotherapy for TBI is lacking and most importantly, mechanisms leading to 

the late consequences of TBI and/or cognitive impairment and neurological 

disorders are unkown.  

 

Despite having different disease characteristics, TBI and cognitive disorders 

share common pathophysiological features such as neuronal or axonal injury, 

oxidative stress and inflammation. Because of these common but diverse 

functional disturbances, cognitive disorders remain untreated by the application 

of a single drug treatment. Therefore, it is essential to develop therapeutic 

strategies that aim at treating more than one aspect of the disease and 

supporting the regenerative potential of the brain. Such a natural protein 

hormone, which has been used to treat anemia since more than a decade, is the 

glycoprotein erythropoietin (EPO). EPO is a 30.4 kDa glycoprotein that regulates 

red blood cell differentiation by inhibiting apoptosis of erythroid progenitors in 

bone marrow (Koury and Bondurant, 1992). It is a member of the class I cytokine 

superfamily which also includes interleukins (IL-2, -3, -4, -5, -6), granulocyte 

colony stimulating factor and granulocyte-macrophage colony stimulating factor 

(GM-CSF), leukemia inhibitory factor and ciliary neurotrophic factor. EPO is 

predominantly produced in the fetal liver and adult kidney (Dame et al., 1998; 

Zanjani et al., 1977). The finding that EPO and its receptor (EPOR) are 

expressed in the brain (Sasaki et al., 2001) led to the notion that EPO exerts 

direct, hematopoiesis-independent effects on the nervous system.  

 

EPO functions by binding to an erythropoietin receptor (EPOR), which is a 

glycosylated and phosphorylated transmembrane polypeptide with the molecular 

weight of 72-78 kDa. Like other cytokine receptors, EPOR contains 2 β sandwich 

domains, D1 (N-terminal) and D2 (carboxy-terminal) (Syed et al., 1998). Due to 

the unique structural features of the N-terminal and C-terminal domains, EPOR 

belongs to a novel class of receptors called the hematopoietin receptor 
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superfamily, which includes human growth hormone and prolactin receptors 

(Krantz, 1991). After EPO binding, EPO receptors homodimerize triggering the 

activation of several signal transduction pathways. The first step of EPO-induced 

intracellular signaling is the activation of the Jak2 tyrosine kinase, which is 

constitutively associated with the EPOR. Jak2 activation leads to the 

phosphorylation of 8 tyrosines located within the intracellular domain of EPOR. 

These serve as docking sites for other various intracellular proteins, which then 

can also become phosphorylated and activated. This phosphorylation cascade 

activates several intracellular pathways, including signal transducer and activator 

of transcription (STAT), Ras–mitogen-activated protein kinase (MAPK) and 

phosphatidylinositol 3-kinase (PI3K) pathways (Brines and Cerami, 2005).  

 

Discovery of EPO to increase neuromuscular strength (Sobh et al., 1992), 

cognitive functions (Nissenson, 1989) and quality of life (Wolcott et al., 1989) in 

anemic patients has led to the notion that EPO might be involved in neuronal 

protection. One of the first studies to show EPO-induced neuroprotection was 

increased neuronal survival after hypoxia by EPO addition in culture (Konishi et 

al., 1993). Different neuroprotective properties of EPO has rendered this growth 

hormone to be used as an ideal pharmacotherapeutic agent to offer 

neuroprotection in neurological disorders with a variety of pathophysiological 

features resulting in a common characteristic i.e. cognitive impairment. EPO has 

been shown to have anti-apoptotic (Siren et al., 2001), anti-oxidative 

(Chattopadhyay et al., 2000; Genc et al., 2002), anti-inflammatory (Agnello et al., 

2002; Villa et al., 2003), neurotrophic (Campana and Myers, 2001) and 

angiogenetic (Sasaki et al., 2001) properties . Moreover, it is known to induce 

stem cell differentiation (Chen et al., 2007; Gonzalez et al., 2007; Jelkmann, 

2000; Shingo et al., 2001). Development of animal models of neurological 

diseases in order to directly evaluate neuroprotective functions of EPO in vivo 

and deciphering mechanisms of action of this multifactorial compound will open a 

new era in treatment and understanding of neuropsychiatric disorders.  
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2. Focus of the present work 
 

The thesis includes 3 original publications that investigate mechanisms leading to 

neuropsychiatric disorders and present novel treatments for these diseases. 

 

2.1 Aims of project I 
 

The first original publication focuses on mechanisms of EPO action and how it 

improves cognition in neuropsychiatric disorders like schizophrenia. For the 

experiments, young (28 days old) C57BL6 mice, primary hippocampal neuronal 

cultures from mice at embryonic day 17 (E17) and autaptic hippocampal cultures 

from postnatal day 0 (P0) mice were used.  

 

The first aim of the study was to develop a model to show that EPO improves 

cognition under healthy conditions. This would allow us to search for the 

mechanisms of EPO action in the healthy brain where interference from disease 

associated conditions could be excluded. Young healthy mice at the age of 28 

days old were subjected to EPO injections for 3 weeks every other day. Mice 

were then run through an extensive behavioral test battery at different time points 

to assess EPO action on hippocampus dependent memory and to rule out EPO 

effect on other parameters.  

 

The second aim was to find out how EPO improves cognitive function. Effect of 

EPO on synaptic transmission and synapse numbers was investigated using 

hippocampal slices and sections from EPO-treated mice. Synaptic function was 

investigated at the network level with primary hippocampal cultures and at the 

single cell level with autaptic hippocampal neurons.  

 

 7



2.2 Aims of project II 
 
The second original publication focuses on a rare form of bipolar disorder, rapid 

cycling syndrome. Peripheral blood mononuclear cells (PBMC) were isolated 

from the blood of a rapid cycling patient at different disease stages and episodes. 

RNA isolated from PBMC was used for expression analysis.  

 

The first aim of the study was to identify genes that were differentially regulated 

at manic and depressed phases. RNA isolated from PBMC of the patient at 

different episodes throughout years was subjected to microarray analysis. Genes 

identified in this way were further confirmed by quantitative real-time polymerase 

chain reaction (qRT-PCR).  

 

The second aim was to develop a treatment approach based on differential gene 

expression in manic and depressed phases. The treatment was designed to keep 

the patient at the most stable condition by improving depressed as well as manic 

symptoms. The patient was controlled through psychopathological ratings before 

and during the treatment period.  

2.3 Aims of project III 
 

The third original publication investigates the morphological consequences of a 

unilateral parietal lesion in mice which develop chronic neurodegeneration devoid 

of gliosis over time. Pathophysiological findings in this mouse model mimics 

those observed in schizophrenia and serves as a model to understand the 

mechanisms leading to the outcome of this disease. C57BL6 mice at the age of 

28 days were used for lesion experiments. Mice were analyzed at time points 24 

hours and 11 months after lesion. 
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The first aim of the study was to analyze the histological aspects of global 

atrophy induced by a unilateral cortical lesion at a young age in mice. Chronic 

neurodegenerative changes appear many months after lesion and mimic those in 

schizophrenia. A detailed histological analysis based on stereology would serve 

to understand the mechanisms leading to the observed atrophy. 

 

EPO treatment right after lesion provided beneficial effects in preventing the 

outcome of cortical atrophy and the cognitive impairment observed in lesioned 

mice. The second aim of the study was based on understanding how EPO 

prevented atrophy and which pathophysiological aspects on the way to atrophy 

and cognitive impairment could be overcome by early EPO treatment.  This study 

has once more shown the beneficial effects of EPO on cognitive disorders like 

schizophrenia.  
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3. Effect of EPO on hippocampus dependent memory 

Understanding mechanisms of EPO-induced cognitive 
improvement under healthy and disease conditions 
 

3.1 Overview of project I 
EPO is a hematopoietic growth factor that was initially used for treating anemic 

patients. Observation of improved cognition in EPO-treated patients and that 

EPO and its receptor are expressed in the brain opened up a new era in EPO 

research. Since then, many studies showed that EPO acts in an anti-apoptotic, 

anti-inflammatory, anti-oxidative and stem-cell modulatory fashion under 

pathological conditions. EPO has also been shown to promote neurite outgrowth 

and axonal repair (Campana and Myers, 2001; Celik et al., 2002; Konishi et al., 

1993; Shingo et al., 2001; Siren et al., 2001). These studies further supported the 

notion that EPO exerts neuroprotective effects independent of its hematopoietic 

function.  

 

Effects of EPO on cognition has been shown in different animal models of 

disease including ischemia/hypoxia and traumatic brain injury (Catania et al., 

2002; Kumral et al., 2004; Siren et al., 2006). A double-blind, placebo-controlled, 

proof-of-principle (phase II) study has shown for the first time beneficial effects of 

EPO in improving cognitive functions in chronic schizophrenic patients 

(Ehrenreich et al., 2007b). Moreover, an exploratory open label study (phase 

I/IIa) in chronic progressive multiple sclerosis (MS) patients has shown 

improvement in motor and cognitive function upon EPO treatment. In these 

studies, there was hardly any detectable hematopoietic response to EPO 

(Ehrenreich et al., 2007a).  

 

Despite EPO’s proven beneficial role in neurological diseases, its mechanisms of 

action to improve cognitive function and its effect on cognition under healthy 

conditions are still unknown. In order to investigate EPO’s action on cognitive 
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functions under healthy as well as disease state, we have developed an 

experimental condition where systemic EPO treatment for 3 weeks in mice has 

led to a  significant improvement in hippocampus dependent memory task, fear 

conditioning. For all the experiments, young (28 days old) and healthy C57BL6 

mice were used. EPO was applied intraperitoneally every other day (11 injections 

in total). EPO-treated mice showed a significant improvement in hippocampus 

dependent contextual memory task assessed by fear conditioning test 1 week 

after the last injection. EPO-treated animals were still significantly better in this 

task compared to the placebo-treated controls 3 weeks after cessation of the 

treatment. Interestingly, during this time, hematocrit levels were comparable 

between the groups. Moreover, EPO’s action on cognition was rather selective 

since EPO-treated mice did not differ from controls in terms of motor 

performance, anxiety and exploratory behavior.  

 

In order to understand the mechanism of EPO action on cognitive function, we 

performed electrophysiological, histological as well as biochemical analysis to 

assess EPO-induced changes in synaptic function. Hippocampal slices from 

mice treated with EPO for 3 weeks and killed 1 week after cessation of treatment 

were used for electrophysiological analysis. Field excitatory postsynaptic 

potentials (fEPSPs) were evoked by placing the stimulation electrode in stratum 

radiatum  of the CA3/CA1  region and the recording electrode in the stratum 

radiatum of the CA1 region. Electrophysiological analysis revealed a significant 

enhancement of long term potentiation (LTP), short term potentiation (STP) and 

short term depression (STD) in slices obtained from EPO-treated mice compared 

to controls. Whole-cell patch-clamp recordings on pyramidal cells of CA1 

hippocampal region showed that, upon EPO treatment, the frequency of 

spontaneous inhibitory postsynaptic currents (sIPSCs) increased whereas the 

frequency of spontaneous excitatory postsynaptic currents (sEPSCs) decreased.  

 

The results obtained in hippocampal slices were further supported by multi-

electrode array (MEA) measurements in vitro using primary hippocampal 
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cultures. Hippocampal neurons obtained from mice at E17 were treated with 

EPO for 3 weeks starting from day 5 in culture. Upon maturation of the culture, 

the number of silent channels decreased in the placebo-treated cultures whereas 

EPO treatment prevented this decrease. Moreover, 2-3 weeks after cessation of 

EPO treatment, the number of bursting channels were higher in EPO-treated 

cultures compared to controls. Whole-cell patch-clamp recordings in autaptic 

hippocampal neurons treated with EPO at day 7 in culture and analyzed at day 9-

14 showed a significant reduction in EPSC amplitude and readily-releasable pool 

size upon EPO treatment.  

 

To assess whether EPO has any effects on synapse numbers, we counted 

synapses on hippocampal sections and in autaptic cultures at the same time 

points used for electrophysiological analysis. Analysis of synapsin1 positive 

presynaptic density in different regions of hippocampus and in autaptic cultures 

revealed no difference upon EPO and placebo treatments. Thus, EPO exerted its 

effects on hippocampal synaptic function not by affecting the synapse number 

but rather by shifting the balance between excitatory and inhibitory transmission. 

EPO might selectively enhance the efficiency of selected neuronal networks 

whereas keeping the others silent.  

 

In summary, with this publication, we have shown, for the first time, action of 

EPO on modulating synaptic plasticity by increasing inhibitory and decreasing 

excitatory transmission. EPO exerts its effects on synaptic transmission in 

parallel to increasing LTP and improving cognition. By enhancing the activity of 

selected synapses while keeping the others silent and in this way, affecting the 

synaptic function but not the number, EPO works in rather an unexpected way to 

improve cognition. Further experiments that would help us to understand EPO 

action on synapse in more detail will also help to decipher the mechanisms 

leading to cognitive disruption in neuropsychiatric disorders and to develop new 

treatment approaches.  
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Abstract  

BACKGROUND: Erythropoietin (EPO) improves cognition of human subjects in the 

clinical setting by as yet unknown mechanisms. We developed a mouse model of 

robust cognitive improvement by EPO to obtain the first clues of how EPO influences 

cognition, and how it may act on hippocampal neurons to modulate plasticity. 

RESULTS: We show here that a 3-week treatment of young mice with EPO 

enhances long-term potentiation (LTP), a cellular correlate of learning processes in 

the CA1 region of the hippocampus. This treatment concomitantly alters short-term 

synaptic plasticity and synaptic transmission, shifting the balance of excitatory and 

inhibitory activity. These effects are accompanied by an improvement of 

hippocampus dependent memory, persisting for 3 weeks after termination of EPO 

injections, and are independent of changes in hematocrit. Networks of EPO-treated 

primary hippocampal neurons develop lower overall spiking activity but enhanced 

bursting in discrete neuronal assemblies. At the level of developing single neurons, 

EPO treatment reduces the typical increase in excitatory synaptic transmission 
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without changing the number of synaptic boutons, consistent with prolonged 

functional silencing of synapses.  

CONCLUSIONS: We conclude that EPO improves hippocampus dependent memory 

by modulating plasticity, synaptic connectivity and activity of memory-related 

neuronal networks. These mechanisms of action of EPO have to be further exploited 

for treating neuropsychiatric diseases. 

 

 

 

 

 

Background 

The hematopoietic growth factor erythropoietin (EPO) has long been observed to 

exert beneficial effects on cognition. Upon introduction of recombinant human EPO 

into the clinic, cognitive improvement of patients with chronic renal failure was noted 

during EPO treatment, but attributed to its hematopoietic effects (for review see [1-

4]). Indeed, anemia after isovolemic hemodilution, induced in healthy volunteers, 

impairs cognitive performance, which is completely restored by subsequent 

autotransfusion [5]. 

 

However, the finding that EPO and its receptor (EPOR) are expressed in the brain [6, 

7] (for review see also [1, 3, 8-11]) led to the notion that EPO exerts direct, 

hematopoiesis-independent effects on the nervous system. The manufacturing of 

EPO analogues with no hematopoietic but potent neuroprotective properties, e.g. 

CEPO (carbamoylated EPO) [12], delivered proof-of-principle that brain effects of 

EPO are not necessarily mediated by its hematopoietic actions. 
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Beneficial effects of EPO on cognitive functioning have been shown in different 

animal models of neuropsychiatric diseases, e.g. on place navigation after global 

ischemia or neurotrauma [13-17]. In a recent double-blind, placebo-controlled, proof-

of-concept study in chronic schizophrenic patients, we showed that EPO improved 

schizophrenia-relevant cognitive performance independently of its hematopoietic 

effects. In fact, EPO turned out to be the first compound to exert a selective and 

lasting beneficial effect on cognition in schizophrenia [18]. Similarly, an increase in 

cognitive performance upon EPO in patients with chronic progressive multiple 

sclerosis occurred independently of changes in hemoglobin levels, and persisted for 

months after termination of EPO treatment [4, 19]. 

 

Recently, the application of a single high intravenous dose of EPO in healthy human 

volunteers was reported to enhance the functional MRI-detectable hippocampus 

response during memory retrieval 1 week later, before any effect on hemoglobin was 

measured [20]. However, data on hippocampus dependent memory in healthy human 

subjects upon EPO are still missing. Altogether, little is known about potential 

cognitive effects of EPO in healthy individuals. Hengemihle et al. [21] reported that 19 

weeks of low-dose EPO treatment increased spatial memory performance, and a 

conditioned learning task, taste aversion, was enhanced by a single high-dose 

injection of EPO in healthy mice [22]. 

 

In summary, the currently available data clearly indicate that EPO can improve 

cognitive function of both rodents and man by directly acting on the nervous system. 

To be able to fully exploit this beneficial cognitive effect of EPO for treatment of 

neuropsychiatric diseases, it is essential to understand the cellular mechanisms of 
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EPO action in healthy brain, where interference of disease-related effects can be 

excluded. Here, we systematically addressed this problem. We developed a reliable, 

robust model for improvement of cognition by EPO in healthy mice and examined 

correlated effects of EPO on hippocampal synaptic transmission and 

learning/memory-relevant synaptic plasticity. Further, we analyzed effects of EPO on 

cultured hippocampal neurons at network and single cell levels. Our data indicate 

that EPO improves memory by modulating synaptic connectivity of memory-related 

neuronal networks within the hippocampus.  

 

Results  

EPO improves hippocampus dependent memory in healthy young mice 

First goal of this study was to define an experimental condition to test potential 

abilities of EPO to improve cognitive functions. We used young (28 day old) male 

mice. In our experimental set-up with 11 intra-peritoneal EPO versus placebo 

injections (5000 IU/kg) every other day for 3 weeks (Figure 1), EPO-treated mice 

showed significant improvement of contextual memory in fear conditioning 1 week 

after the last injection, when tested 72 h after training in the same context (Figure 1, 

Exp. 1, Figure 2a). This effect was still measurable 3 weeks after cessation of EPO 

treatment but had disappeared after 4 weeks (Figure 1, Exp. 2 and Exp. 3; Figure 

2b,c). In contrast, EPO had no effect on cued memory (Figure 2a-c; all P>0.05). 

Whereas at 1 week after termination of treatment, hematocrit was still increased in 

EPO-treated mice (control mice: 36.5±0.84%, N=8; EPO mice: 53.3±1.34%, N=10; 

P<0.0001), there was no difference anymore between groups at 3 weeks (control 

mice: 39.4±1.19%, N=14; EPO mice: 40.8±0.92%, N=13; P=0.338), indicating that 

cognitive improvement and hematopoietic effects of EPO are not directly related. 
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In two additional experiments, EPO was given only three times either at the 

beginning or at the end of the 3-week treatment period while the respective other 

eight injections consisted of placebo. In this setting, no improvement in cognitive 

performance was obtained (data not shown), suggesting that a certain amount of 

EPO treatment is required for improving cognition.  

 

The effect of EPO on hippocampus dependent (contextual) memory was selective. 

There was no EPO effect on anxiety, spontaneous activity, exploratory behavior, and 

motor performance (Figure 2d-g; all P>0.05). Time spent in open arms of elevated 

plus maze (Figure 2d) and time spent in the three different zones of open field was 

similar in both groups (Figure 2e). Total distance traveled in open field did not differ 

between groups nor did exploratory activity in hole board test (Figure 2e,f). Over two 

days of rota-rod testing, both groups did not differ in falling latency (Figure 2g), 

indicating that motor performance and motor learning were comparable. Taken 

together, EPO treatment over 3 weeks leads to selective and long-lasting 

improvement of hippocampus dependent (but not of global) memory in healthy mice, 

independent of hematopoietic effects. 

 

Synaptic plasticity is significantly increased at Schaffer collateral CA1 

synapses in EPO-treated mice 

One likely explanation for the selective improvement of contextual memory would be 

a direct influence of EPO on synaptic plasticity in the hippocampus. We therefore 

investigated the effect of EPO in acute hippocampal slices from mice at 1 week after 

the last injection (Figure 1, Exp. 4). We first performed extra-cellular recordings of 

field excitatory postsynaptic potentials (fEPSPs). Input-output curves were obtained 

by evoking responses from stratum radiatum of the CA1 region after stimulation of 
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Schaffer collaterals with increasing stimulation strengths (Figure 3a,b). Average of 

fEPSP slopes (Figure 3b) between stimulus intensities of 110-150 µA from all slices 

yielded no difference between control and EPO groups. Half-maximal stimulation 

strength was also comparable (Figure 3b, inset). Thus, EPO treatment for 3 weeks, 

followed by a treatment-free week, does not alter basal excitability.  

 

We then measured paired-pulse facilitation (PPF), the shortest form of plasticity at 

many synapses [31], at different inter-stimulus intervals (25-200 ms) in the Schaffer 

collateral CA1 pathway as ratio of the second fEPSP slope to the first fEPSP slope. 

Slices from EPO mice showed significantly enhanced paired-pulse facilitation at inter-

stimulus intervals 25-150 ms (Figure 3c,d). Next, the effect of EPO on short-term 

potentiation (STP) and long-term potentiation (LTP) at the Schaffer collateral CA1 

pathway was examined (Figure 3e-h). The magnitude of STP was defined as the 

maximal responses within the first minutes after induction by a train of 100 Hz stimuli. 

STP was significantly enhanced in slices of EPO mice compared to control (Figure 

3f,g). Furthermore, the magnitude of LTP, determined as the average of responses 

between 50 and 60 min after induction by a train of 100 Hz stimuli, was also 

enhanced in slices of EPO mice compared to control (Figure 3f,h).  

 

Another form of synaptic plasticity is long-term depression (LTD). We determined the 

effect of EPO treatment on short-term depression (STD) and LTD at Schaffer 

collateral CA1 pathway (Figure 3i-l). Magnitude of STD was defined as maximal 

responses within the first minutes after induction by a train of 900 stimuli (1 Hz). We 

found that STD was significantly enhanced in slices of EPO mice compared to control 

(Figure 3j,k). On the other hand, the magnitude of LTD, determined as average of 

responses between 50 and 60 min after induction by a train of 900 stimuli (1 Hz), was 
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not significantly different in slices of EPO mice compared to control (Figure 3j,l). 

Collectively, these data show that EPO modulates synaptic plasticity and LTP in the 

hippocampus, but has no significant effect on LTD. 

 

EPO differentially influences inhibitory and excitatory synaptic transmission in 

the Schaffer collateral CA1 pathway 

To study cellular mechanisms of EPO action, we performed whole-cell patch-clamp 

recordings on CA1 pyramidal neurons in acute hippocampal slices from mice at 1 

week after the last injection (Figure 1, Exp. 4; Figure 4a-f). Compared to control mice, 

the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in CA1 

pyramidal neurons of EPO mice was increased, while the amplitude of sIPSCs was 

unchanged (Figure 4b,c). In contrast, EPO led to a significant decrease of both 

amplitude and frequency of spontaneous excitatory postsynaptic currents (sEPSCs) 

in CA1 pyramidal neurons (Figure 4e,f). Importantly, there were no significant 

differences in input resistance or basic noise level between neurons of control and 

EPO mice (data not shown). Thus, EPO modulates inhibitory and excitatory synaptic 

transmission inversely.  

We wondered whether the neurophysiological changes found in hippocampal slices 

upon EPO treatment would be due to alterations in total volume or synapse counts in 

the involved areas, CA1 and CA3. Neither volume of CA1 (control: 3.97±0.11 mm3, 

N=9; EPO: 4.02±0.16 mm3, N=10; P=0.81) nor CA3 (control: 3.29±0.21 mm3, N=8; 

EPO: 3.56±0.25 mm3, N=10; P=0.42), nor total hippocampal volume (control: 

9.54±0.34 mm3, N=8, versus EPO: 9.74±0.39 mm3, N=10; P=0.71) were significantly 

different. Moreover, density of synaptic boutons in CA1 (control: 1.28±0.08 

boutons/µm2, N=7; EPO: 1.32±0.11 boutons/µm2, N=9; P=0.75) and CA3 (control: 
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0.71±0.13 boutons/µm2, N=7; EPO: 0.78±0.08 boutons/µm2, N=9; P=0.61) was not 

changed. Quantitative RT PCR and/or Western blotting using extracts of whole 

hippocampus did not reveal differences in expression of synaptic proteins 

(synapsin1, synaptophysin), postsynaptic receptor proteins (GABAA1,2,3,4; 

NMDAR1, R2A, R2B) or BDNF, as potential mediating neurotrophic factor [20, 32] 

(data not shown).  

 

EPO modulates spontaneous electrical network activity in primary 

hippocampal neurons as determined by multi-electrode measurements 

Above data demonstrated distinct and long-lasting effects of temporary high-dose 

EPO treatment on hippocampus dependent memory and synaptic plasticity in 

hippocampal slice preparations. As the peritoneal applications of EPO might have 

caused indirect effects on nerve cells, we next studied primary hippocampal cultures. 

We tested whether chronic EPO treatment, extending from an advanced 

developmental stage (day 5 in culture) to over 3 weeks leads to alterations in 

spontaneous neuronal network activity, and whether such changes would persist 

upon cessation of EPO treatment.  

 

First, our long-term cultures were characterized regarding morphological appearance 

(Figure 5a), total cell numbers (day 10: control: 202.4±11.03, N=6; EPO: 

191.0±8.834, N=6; P=0.436; day 30: control: 147.9±26.26, N=6; EPO: 152.8±27.87, 

N=6; P=0.902), and relative contribution of different cell types (Figure 5b). In none of 

these parameters were differences upon EPO found at days 10 or 30 in culture. Also, 

quantitative RT PCR and protein expression, determined by Western blotting, failed 

to uncover differences in synapsin1 or synaptophysin gene expression at any of the 
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time points tested (days 8, 14, and 30). Thus, EPO treatment did not cause changes 

in morphology under our culture conditions.  

 

Figure 5c illustrates primary hippocampal neurons grown on multi-electrode array 

(MEA) dishes. Group statistics for spontaneous electrical activity in the MEAs are 

presented in Figures 5d and e, contrasting silencing (number of channels with <5 

spikes per 2 min) and bursting behavior (percentage of strongly bursting channels of 

all active channels, with strongly bursting channels defined as channels with a 

coefficient of variation >2.6). With increasing age and maturation of culture, the 

number of silent channels decreased in control MEAs, as expected (Figure 5d). This 

was not the case in EPO cultures. Whereas during the treatment phase itself, 

cultures behaved largely similarly (weeks 3 and 4 with P=0.41 and P=0.18, 

respectively), differences became obvious at later time points (weeks 5 through 7 

with P=0.047, P=0.0043 and P=0.0043, respectively). This indicates that temporary 

EPO treatment causes a significant number of channels to remain silent for an 

extended period after cessation of EPO addition to cultures. 

 

The bursting channel analysis, presented in Figure 5e, showed that EPO provoked a 

consistently higher number of bursts in hippocampal cultures, obvious only at late 

time points, i.e. 2-3 weeks after termination of EPO treatment. This effect (expressed 

as percentage of all active channels in order to exclude the influence of silencing) 

was less pronounced as compared to the silencing effect of EPO. Whereas medians 

at week 6 were not yet significantly different (P=0.10), difference reached significance 

at week 7 (P=0.019). Together, the trend of weeks 6 and 7, when compared with the 

almost equal-bursting situation at week 5 (P=0.70), confirms that bursting tends to 
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increase as a late consequence of transient EPO treatment, in parallel with the 

persistently high percentage of silent channels. 

 

Reduction of synaptic vesicle priming and transmitter release in the EPO pre-

treated neurons  

The finding of long-lasting EPO-induced dampening of spontaneous electrical activity 

in our primary hippocampal cultures together with a selective increase in bursting 

activity following EPO treatment prompted us to test individual neurons. We 

examined the effect of EPO in hippocampal autaptic cultures [30], to directly assess 

the EPO effect on presynaptic transmitter vesicle exocytosis and postsynaptic 

receptor responses. Autaptic neurons are neurons forming synapses on themselves, 

making electrophysiological stimulation and respective effect determination 

(recording) simple. Cultures were treated with EPO (0.3 IU/ml = 10-10 M) or the 

respective buffer solution only once at day 7 and then measured from days 9 to 14. 

There were no morphological differences detectable upon treatment, and sizes of 

somata as estimated by measurement of whole cell capacitance were comparable 

between EPO-treated and control neurons (control neurons: 49.61±2.75pF, N=54; 

EPO neurons: 46.0±2.73pF, N=49; P=0.355).  

 

Evoked excitatory postsynaptic current (EPSC) amplitudes in EPO-treated neurons 

were reduced to about 60% of control (Figure 6a), confirming the data obtained in 

acute slices (Figure 4e). This EPSC reduction was due to a parallel reduction in pool 

size of fusion-competent and primed (readily releasable) vesicles, whose release can 

be triggered by hypertonic solution containing 0.5 M sucrose [33]. EPO neurons 

showed a drastic reduction in readily releasable pool size to 60% of control (Figure 

6b). Vesicular release probability, calculated by dividing the charge transfer during a 
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single EPSC by the charge transfer measured during readily releasable pool release, 

was not different between control and EPO neurons (P=0.4116; Figure 6c). To test 

whether the reduction of neurotransmitter release in EPO neurons can be attributed 

to a reduction in quantal size, we analyzed miniature EPSCs (mEPSC). mEPSC 

frequency in EPO neurons was reduced to about 50% of control, without changes in 

mEPSC amplitudes (P=0.5817; Figure 6d,e). The lack of a difference in 

NMDA/AMPA ratio indicates a comparable maturation state of cultures (Figure 6f). 

Using trains of action potentials we estimated the efficiency of Ca2+ triggered release. 

In general, vesicular release probability closely correlates with depression and 

steady-state level of EPSC amplitude sizes during high frequency stimulation. We 

therefore monitored EPSC amplitudes during 50 consecutive action potentials 

applied at a frequency of 10 Hz. EPO and control neurons showed regular moderate 

depression of EPSC amplitudes (control: about 38%, N=60; EPO: depression at the 

end of train about 35%, N=60, Figure 6g). Stability of EPSC amplitudes during short-

term plasticity, which is due to the quantitative balance between priming of synaptic 

vesicles and number of vesicles released, was identical in presynaptic terminals of 

each group.  

 

Thus, EPO treatment of autaptic neurons leads to a reduction in the amount of 

primed vesicles or number of synapses without altering efficiency of vesicle fusion 

and vesicle dynamics. Counting of synaptic boutons per neuron revealed a 

considerable increase from day 9 to day 14 in culture, which, however, was not 

changed by EPO (Figure 6h). Therefore, EPO is likely to reduce the number of active 

synapses without altering total synapse number. 

 

Discussion 
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We show that young mice, systemically treated with EPO for 3 weeks, exhibit 

improved hippocampus-associated memory. This selective improvement was 

maintained for an EPO treatment-free period of another 3 weeks, and was unrelated 

to increases in hematocrit, indicating a hematopoiesis-independent effect of EPO on 

neuroplasticity. The long-lasting effect of EPO on neuroplasticity was confirmed by 

analyses of paired-pulse facilitation, STP, LTP and STD, as well as of spontaneous 

synaptic activity in acute hippocampal slices, obtained from EPO-treated mice at the 

time point of EPO-induced enhancement of memory. MEA recordings of neuronal 

assemblies in vitro and the analysis of individual autaptic hippocampal neurons did 

not only confirm direct effects of EPO on neural cells, but also reveal potential 

mechanisms of action: EPO leads to a reduction in the amount of primed vesicles 

without altering number of synapses or efficiency of vesicle fusion and vesicle 

dynamics. Thus, most likely via increasing the proportion of silent synapses, EPO 

reduces overall spiking activity of neurons and enhances bursting efficiency of 

selected neuronal networks. Most of these data are consistent with EPO shifting the 

balance between excitatory and inhibitory transmission (i.e. functionally silencing a 

subset of excitatory presynaptic sites and increasing activity of inhibitory neurons), 

although other mechanisms cannot be entirely excluded at this point. 

 

In humans, improvement of cognitive function upon treatment with EPO has only 

been demonstrated in disease states [18, 19, 34], i.e. in conditions of 

reduced/disturbed baseline performance. Exploring healthy individuals has therefore 

been a risky endeavour, although, if successful, promised to deliver a cleaner picture 

of mechanisms of EPO action, lacking interference with potential disease variables. 

Similar to what is observed with endurance and muscular performance during doping 

[35], where healthy individuals show dramatic improvement, we found significant 
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memory effects in healthy mice. EPO-treated compared to placebo-treated mice had 

a significantly longer duration of freezing, as readout of memory function, during a 

contextual memory test that is known to be critically dependent on the hippocampus 

[36, 37]. This finding implies that in healthy individuals the potential cognitive capacity 

is not fully exhausted. Although results were obtained in mice, the work of Miskowiak 

and colleagues [20] may indicate that respective effects can be expected in healthy 

humans.  

 

Similar to the findings of Miskowiak et al. [20], the effect of EPO on hippocampal 

functions was measurable at 1 week after injection. In our setting, treatment for 3 

weeks (11 injections) was necessary to obtain positive results on cognitive 

performance. Reduced to only three injections, no measurable effect on the 

behavioral readout of hippocampal functions was obtained. Healthy humans showed 

increased hippocampal response (perfusion equivalent) in functional magnetic 

resonance imaging upon memory retrieval already 1 week after a single EPO dose. 

However, effects on memory function were also not detectable after this single dose 

[20]. In other words, for cognitive improvement (and not only for increase in 

perfusion), more than a single injection is needed also in humans. In both studies, the 

hematocrit seems irrelevant. In the human study, a single dose of EPO had not 

changed the hematocrit after 1 week [20]. In our study, the hematocrit was already 

back to control levels when we still observed a significant effect on cognition, and 

direct effects of EPO on synaptic plasticity were found in hippocampal cultures. 

 

The persistent effect of EPO on cognition, lasting for over 3 weeks after cessation of 

treatment, indicates alterations in neuroplasticity induced by EPO that do not require 

its continuous presence. Interestingly, our studies in MS patients showed beneficial 
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effects of EPO on motor function, which lasted for up to 6 months after termination of 

a 6-months treatment [19]. In search for a mechanism explaining the lasting influence 

of EPO on hippocampus-associated memory, we detected pronounced EPO effects 

on short-term and long-term plasticity, as well as on excitatory and inhibitory synaptic 

transmission in the Schaffer collateral CA1 pathway. These electrophysiological 

parameters of plasticity have been associated with learning and memory [38-40].  

 

Further exploring mechanisms of action of EPO, we employed multi-electrode arrays 

to study network activity in primary hippocampal cultures. We found that chronic 

application of EPO in a fashion similar to our in vivo approach resulted in persistence 

of a large population of silent channels but enhanced bursting efficiency of discrete 

neuronal circuits. In acute hippocampal slices as well as autaptic hippocampal 

cultures, excitatory synaptic transmission was decreased upon EPO treatment, 

whereas inhibitory synaptic transmission was increased. In line with these data, EPO-

mediated inhibition of glutamate release has been reported for cerebellar granule 

cells [41]. 

 

Together, these findings may point to an enhanced lateral inhibition within the 

hippocampal neuronal network by EPO, leading to amplification of active synaptic 

connections. A concurrent suppression of surrounding synapses by EPO, consistent 

with lasting functional silencing, may ultimately achieve segregation/refinement of 

neuronal networks (for review see [42]). Interestingly, signal transduction pathways 

known to be activated in hippocampal neurons by EPO, include PI3K-PKB/Akt1 and 

RAS-MAPK [43, 44]. Both, the MAPK-mediated pathway [45-47] and PI3K have been 

linked to LTP [48, 49]. 
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Conclusions 

Although not providing complete mechanistic insight at this point, our data indicate 

that the selective enhancing effect of EPO on hippocampus dependent memory is 

mediated via profound changes in neuroplasticity. These plastic changes, in turn, 

may be based on a more efficient bursting activity of selected synapses together with 

persistent silencing of other synapses.  

 

Methods 

Animals. All experiments were approved by and conducted in accordance with the 

regulations of the local Animal Care and Use Committee. For all experiments, young 

(28 days old) C57/Bl6 male mice were used. They were housed in groups of five in 

standard plastic cages and maintained in a temperature-controlled environment 

(21±2°C) on a 12 h light/dark cycle with food and water available ad libitum.  

 

Drug treatment. For experiments 1-5, mice were injected intra-peritoneal with EPO 

(Epoetin-alpha, Janssen-Cilag, Neuss, Germany, 5 IU/g in 0.01 ml) or placebo 

(diluent for EPO, 0.01 ml/g) every other day for 3 weeks (11 injections in total). Two 

additional groups of mice received only three injections of EPO or placebo either at 

the beginning or at the end of the 3-week treatment period. The remaining eight 

injections were all placebo. Before each injection, the body weight was measured. 

The experimenter, who administered the injections and performed the tests, was 

blinded concerning group assignment.  

 

Experimental design of mouse studies. The experimental design including 

behavioral tests, neurophysiology, and brain tissue analyses is presented in Figure 1.  
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Experiment 1: EPO effects on basic behavior and cognition of young healthy mice 

after termination of EPO treatment were assessed. Mice were tested, starting on the 

day after the last injection, for anxiety (EPM, elevated plus maze), spontaneous loco-

motor activity (OF, open field), exploratory activity (HB, hole board), motor functioning 

(RR, rota-rod) and memory (FC, fear conditioning).  

Experiments 2 and 3: In these experiments, mice were tested in FC either 3 or 4 

weeks after the last EPO injection to explore the duration of EPO effects on 

cognition. Hematocrit was determined immediately after FC.  

Experiments 4 and 5: These experiments were set up to obtain brain tissue of mice 

for neurophysiology and histology at the time point with the most prominent effect of 

EPO on hippocampus dependent memory. 

 

Behavioral testing. Group size in all behavioral experiments amounted to N=15-28. 

Exact numbers of individual experiments are given in the legend of Figure 2.  

Elevated plus maze: The mouse was placed in the central platform, facing an open 

arm of the plus-maze. Behavior was recorded by an overhead video camera and a 

PC equipped with ‘Viewer’ software (Biobserve, Bonn, Germany) to calculate the time 

each animal spends in open or closed arms. The time spent in open arms was used for 

estimation of open arm aversion (fear equivalent).  

Open field: Spontaneous activity in open field was tested in a grey Perspex arena 

(120 cm in diameter, 25 cm high). The mouse was placed in the center and allowed 

to explore the open field for 7 min. The behavior was recorded by a PC-linked 

overhead video camera. ‘Viewer’ software was used to calculate velocity, distance 

traveled and time spent in central, intermediate or peripheral zones of the open field.  

Hole board: The hole board test measures exploratory activity. The apparatus 

consisted of a 21 cm × 21 cm × 36 cm transparent Perspex chamber with a non-
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transparent floor raised 5 cm above the bottom of the chamber with 12 equally 

spaced holes, 2 cm in diameter. Mice were allowed to explore the chamber for 3 min 

and the number of explored holes (head dips) was scored by a trained experimenter.  

Rota-rod: Rota-rod is a test for motor function, balance and coordination and 

comprises a rotating drum (Ugo Basile, Comerio, Varese, Italy), which is accelerated 

from 4 to 40 revolutions per minute over the course of 5 min. Each mouse was 

placed individually on a drum and the latency of falling from the drum was recorded 

using a stop-watch. To assess motor learning, the rota-rod test was repeated 24 h 

later.  

Cued and contextual fear conditioning: The fear conditioning test was performed 

as described in detail earlier [23]. Briefly, mice were trained within the same session 

for both contextual and cued fear conditioning. Training consisted of exposing mice 

for 120 s to the context to assess the baseline level of activity. This period was 

followed by a 10 s, 5 kHz, 85 dB tone (conditioned stimulus, CS). Immediately after 

the tone, a 2 s, 0.4 mA foot shock (unconditioned stimulus, US) was applied. This 

CS-US pairing was repeated 13 s later. All mice remained in the conditioning 

chambers for an additional 23 s following the second CS–US pairing. The contextual 

memory test was performed 72 h after this training. Mice were monitored over 2 min 

for freezing in the same context as used for training. The cued memory test was 

performed 76 h after training in a new chamber. First, mice were monitored for 

freezing over a 2 min pre-cue period with no tone to assess freezing in the new 

context. Next, a 2 min cue period followed during which the tone was presented. 

Duration of freezing behavior, defined as the absolute lack of movement (excluding 

respiratory movements), was recorded by a video camera and a PC equipped with 

‘Video Freeze’ software (MED Associates, St. Albans, Vermont, USA). 
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Brain dissection and sections preparation. For RNA and protein analysis, mice 

were deeply anaesthetized and decapitated. Hippocampi were taken out, 

immediately frozen on dry ice and stored at -80˚C. For histology, mice were perfused 

under deep anesthesia with 4% paraformaldehyde. Brains were dissected, postfixed 

overnight at 4˚C and transferred into 30% sucrose/PBS solution. After having sunk, 

they were frozen in liquid nitrogen and stored at -80˚C. Whole mouse brains were cut 

into 30 µm thick coronal sections on a cryostat (Leica, Wetzlar, Germany) and kept in 

a storage solution (25% ethyleneglycol and 25% glycerol in PBS). Every 10th section 

throughout the dorsal part of the hippocampal formation was selected for staining, 

yielding five to six sections per brain, used for either volumetrical analysis or confocal 

microscopy. 

 

Volumetric measurements using histological sections. The sections were 

mounted on Super Frost microscopic slides, washed in phosphate buffer, then 

immersed for 25 min in a dilute cresyl violet stain (0.01%) in acetate buffer (pH 4.5), 

dehydrated in serial dilutions of ethyl alcohol and finally coverslipped using DePeX 

(Serva, Heidelberg, Germany). Calculation of the volume of CA1, CA3 subregions 

and the total hippocampus was based on thickness of the sections and areas 

obtained by tracing contours around the regions of interest, using a light microscope 

(Olympus BX50) modified for stereology with a 10x objective, a computer-driven 

motorized stage, Z-axis position encoder (microcator), and a microfire video camera 

interfaced to a PC with the software Stereo Investigator 6.55 (MicroBrightfield, Inc., 

Williston, VT, USA). Volumetric determinations were performed on both sides of the 

hippocampus. 

 



 

 

20 

Confocal analysis. For counting of synaptic boutons, sections were washed in PBS, 

permeabilized and blocked in 5% blocking serum for 1 h at 4˚C, and incubated at 4ºC 

overnight with rabbit polyclonal synapsin1 antibody (1:4000; Synaptic Systems, 

Goettingen, Germany). After PBS washes, the sections were incubated with anti-

rabbit AlexaFluor555-labeled secondary antibody (1:2000; Invitrogen, Karlsruhe, 

Germany). Following PBS washes, sections were mounted on Super Frost 

microscopic slides, air dried and coverslipped with fluorescence mounting medium 

(Vector, Burlingame, CA, USA) containing DAPI. Synapsin1 immunoreactive 

presynaptic boutons were analyzed within stratum radiatum of area CA1 and stratum 

lucidum of area CA3 of hippocampus. Images were obtained at a zoom factor 4 using 

an inverted confocal laser scanning microscope (LSM 510; Zeiss, Goettingen, 

Germany) with a 63x oil-immersion objective. For intensity comparisons, gain and 

offset were held constant across images. Synapsin1 immunoreactive punctae were 

quantified using ImageJ software (Rasband, W.S., ImageJ, U. S. National Institutes 

of Health, Bethesda, Maryland, USA). Images were manually thresholded and 

particle analysis plugin was used to calculate the number of immunoreactive punctae. 

 

Hippocampal slice preparation and solution. Acute hippocampal slices were 

prepared from 56 days old mice (Figure 1, Exp. 4). As in all experiments performed 

here, the experimenter was blinded regarding group assignment. Mice were deeply 

anesthetized with diethyl ether before decapitation. The brain was quickly removed 

and immersed for 2-3 min in ice-cold artificial cerebrospinal fluid (ACSF). The ACSF 

had the following composition (in mM): 130 NaCl, 3.5 KCl, 1 CaCl2, 1.2 MgSO4, 24 

NaHCO3, 1.25 NaH2PO4, 10 Glucose, with the pH adjusted to 7.4. Transverse slices 

of 400 µm thickness were cut with a vibroslicer (752 M, Campden Instruments, 

Loughborough, UK). The slices were then transferred to an interface recording 
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chamber of the Oslo type and allowed to recover for at least 90 min. The recording 

chamber was continuously perfused with ACSF, aerated with 95% O2 and 5% CO2 

(3-4 ml/min). The temperature was kept at 34ºC. 

 

Extracellular recordings of hippocampal slices. The recording electrodes were 

pulled from thin-walled borosilicate glass capillaries (GC150TF-10, Harvard 

Apparatus, Holliston, MA, USA) using a horizontal Flaming-Brown micropipette puller 

(P-80/PC, Sutter Instrument Co., Novato, CA, USA). They were filled with ACSF. 

Monopolar stimulation electrodes made from bare stainless steel microwire (50 µm 

diameter, AM-Systems) were used for stimulation. The stimuli were generated by 

photoelectric stimulus isolation units (Grass PSIU6) triggered by a stimulator (Grass 

S88). Extracellular field potential recordings were done using a custom-built DC 

amplifier. Data were digitized by a DigiData 1322A (Molecular Devices, Sunnyvale, 

CA, USA). Initial analysis of the data was done in Clampfit 9.0 (Molecular Devices, 

Sunnyvale, CA, USA). To evoke field excitatory postsynaptic potentials (fEPSPs), the 

stimulation electrode was placed in stratum radiatum at CA3/CA1 junction for the 

activation of Schaffer collaterals. The recording electrode was placed in the stratum 

radiatum of the CA1 region. The magnitude of fEPSPs was measured as amplitude 

(baseline to peak) and slope (20-80% level of the falling phase). For input-output 

relationship, fEPSPs were evoked with 0.1 ms stimuli at 0.25 Hz and an average of 

four consecutive responses was taken. fEPSP amplitudes and slopes were plotted 

against the stimulus intensity (10 to 150 µA). Paired-pulse facilitation (PPF) was 

measured at different interstimulus intervals (25, 50, 75, 100, 125, 150, 175 and 200 

ms) as the ratio of the second fEPSP to the first fEPSP. Here also the paired stimuli 

were given at 0.25 Hz and an average of four consecutive responses was taken. To 

study long-term potentiation (LTP), baseline responses were evoked every 20 s for 5 
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min and LTP was induced by three trains separated by 20 s, each train consisting of 

100 Hz stimulation for 1s. The post-train responses were then measured every 20 s 

for 60 min. The magnitude of LTP was measured as the average of responses 

between 50 and 60 min after induction. To study long-term depression (LTD), 

baseline responses were evoked every 15 s for 5 min and LTD was induced by 900 

stimuli delivered at 1Hz. The post-train responses were then measured every 15 s for 

60 min. The magnitude of LTD was measured as the average of responses between 

50 and 60 min after induction. 

Whole-cell patch clamp-recordings. Acute transverse 300 µm hippocampal slices 

were prepared as described above. After preparation, slices were incubated for 30 

min at 34°C, followed by room temperature incubation for more than 1h. All 

recordings were performed in CA1 hippocampal pyramidal neurons. The extracellular 

solution in all experiments was the same as the one used in LTP experiments. The 

pipette solution for all experiments contained (in mM): 140 KCl, 1 CaCl2, 10 EGTA, 2 

MgCl2, 4 Na3ATP, 0.5 Na3GTP, 10 HEPES at pH 7.3. Spontaneous inhibitory PSCs 

were recorded at a Cl-reversal potential of about 0 mV in 10 µM CNQX and 40 µM 

AP5. Spontaneous excitatory PSCs were recorded in the presence of 1 µM 

strychnine and 1 µM bicuculline. Signals with amplitudes of at least two times above 

the background noise were selected. Patches with a serial resistance of >10 MΩ, a 

membrane resistance of <0.2 GΩ, or leak currents of >200 pA were excluded. The 

membrane currents were filtered by a four-pole Bessel filter at a corner frequency of 

2 kHz, and digitized at a sampling rate of 5 kHz using the DigiData 1322A interface 

(Molecular Devices, Sunnyvale, CA). Data acquisition and analysis were done using 

commercially available software: pClamp 9.0 (Molecular Devices, Sunnyvale, CA), 

MiniAnalysis (SynaptoSoft, Decatur, GA) and Prism 4 (GraphPad Software, San 

Diego, CA). 
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Primary hippocampal neuronal culture. Mice at embryonic day 17 (E17) were used 

for preparation of hippocampal primary neuronal cell cultures [24, 25] Briefly, after 

complete removal of meninges, hippocampi were dissected in warm HBSS solution 

(Invitrogen, Karlsruhe, Germany), supplemented with penicillin and streptomycin, and 

trypsinized. After mechanical trituration with fire polished Pasteur pipettes, cells were 

plated on poly-D-lysine- and laminin-coated 6-well plates (for Western blotting and 

quantitative RT PCR) or on poly-D-lysine- and laminin-coated MEA dishes (for multi-

electrode array, MEA) or on poly-D-lysine- and laminin-coated glass cover slips in 6-

well plates (for immunocytochemistry) at a density of 200000 cells per well. Neurons 

were cultured in MEM/B27 medium (Invitrogen, Karlsruhe, Germany) supplemented 

with sodium bicarbonate, sodium pyruvate, L-glutamine, penicillin, streptomycin and 

0.6% glucose. Cultures were incubated at 37°C under 7.5% CO2 / 92.5% air and 90% 

humidity. One-third of medium volume was exchanged every 5th day. Contamination 

with glial fibrillary acidic protein positive astrocytes on day 5 in culture was 

consistently less than 7%. For all MEA experiments, EPO or control treatment (0.3 

IU/ml = 10-10 M) was started on day 5 and continued by addition of EPO every other 

day until day 25. Cell cultures were maintained until day 50 for MEA, until day 8, 14, 

or 30 for Western blotting and quantitative RT PCR, until day 10 and 30 for 

immunocytochemistry. 

 

Immunostaining of cultured cells. After 10 or 30 days in culture, cells were washed 

in PBS, fixed with 4% paraformaldehyde in PBS, permeabilized and blocked in 0.2% 

Triton X-100/PBS with 10% blocking serum, and incubated at 4ºC overnight with 

mouse monoclonal MAP-2 (1:500; Chemicon, Hampshire, UK) or mouse monoclonal 

GFAP (1:500; Novocastra, Newcastle Upon Tyne, UK) antibodies diluted in 1% 
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blocking serum/PBS. After PBS washes, the cells were incubated with Cy2-labeled 

secondary antibody (1:250; Jackson ImmunoResearch, Newmarket, UK), washed in 

PBS, air dried and coverslipped with fluorescence mounting medium (Vector, 

Burlingame, CA, USA) containing propidium iodide. 

 

Multi-electrode array recordings and analysis. For determination of spontaneous 

electrical network activity in primary mouse hippocampal neuronal cultures, we used 

multi-electrode arrays (MEA) of 60 titanium nitride electrodes with 30 µm diameter 

each and 200 µm inter-electrode distance (Multi Channel Systems, Germany). Raw 

data from the MEA electrodes were amplified by MEA 1060 filter amplifiers 

(bandwidth 3 Hz-10 kHz; gain x 1100). Sampling frequency amounted to 25 kHz. The 

experiments were performed at 37˚C, using a TC01 temperature controller. 

Recording of spontaneous network activity was carried out daily in the morning for 2 

min, starting on day 14 and ending on day 50. This gave us five weeks of daily 

recordings, from week 3 until week 7 (total of 37 days). The choice of morning hours 

for measurements did not affect the statistics, as confirmed by an additional evening 

experiment showing little daily differences. Seven independent “sister” cultures (i.e. 

cultures derived from the same brain preparation), treated with EPO or control were 

analysed. Spike extraction from the continuous data is commonly achieved by spike 

sorting [26, 27]. Having to process 481 2 min recordings, manual interaction, often 

used to improve sorting behavior, was not feasible. Thus, automated spike extraction 

using MEATools, a MATLAB-based toolbox for comprehensive analysis of multi-

neuronal data (http://www.brainworks.uni-freiburg.de/projects/mea/meatools/ 

overview.htm) was employed. For each channel, principal components were 

calculated, and spikes were identified via thresholds in the principal component 

contributions. In order to identify multivariate features explaining potential 
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modifications by EPO in the cell cultures, single sample analyses were performed 

first (see Additional file 1). Due to a relatively high background noise and a low 

overall number of spikes in the channels, standard statistics, such as spike rates and 

spike time interval distributions, did not capture significant differences in EPO versus 

control cultures (see Additional files 2 and 3). A direct quantification of the variations 

in bursting and silent channels was therefore necessary. Similar clustering effects 

have been previously studied in oscillator networks on a theoretical level [28, 29]. 

Here, two indices were calculated: (1) In order to measure silencing in the groups, we 

determined the number of channels c
i
(t)  of dish i at time t with basically no spikes 

(less than five spikes per 2 min). We then took the mean of c
i
(t)  over each week and 

compared the time evolution of this mean channel activity using a Wilcoxon rank sum 

test in each week. The test was performed on the samples after outlier removal, 

where an outlier was defined as a sample not lying within 1.5 times the interquartile 

range from the median. (2) In addition to silencing effects, we analysed bursting 

behavior. For this, we calculated the coefficient of variation (CV) of the spike-time 

interval distribution in each channel, i.e. the ratio of standard deviation and mean. 

This measure of dispersion is larger than 1 for hyper-exponential distributions and 

lower than 1 for lower-variance distributions. In the case of bursting channels, over-

proportionally many small spike-time intervals were observed, so the spike-time 

intervals obeyed a hyper-exponential distribution, which could be identified by high 

CV-values of the corresponding channels. We defined bursting behavior if the CV-

value was above 1, and strongly bursting behavior if it was above a threshold of 2.6 

(see also Additional file 1). In order to quantify bursting over all channels, we counted 

the percentage b
i
(t)  of strongly bursting channels of all active channels of dish i at 

time t. By calculating relative bursting with respect to active channels, we were able 

to study bursting independent of the number of silent channels. Again, we took the 
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mean over each week, and tested for differing medians of the EPO and the control 

group using a rank sum test.  

 

Autaptic neuron experiments.  

Cell culture: Microislands of astrocyte feeder cells were prepared two days before 

plating hippocampal neurons [30]. Islands of substrate (10 mM acetic acid, 0.1 mg/ml 

poly-D-lysine, and 0.2 mg/ml collagen) were applied to agarose-coated glass 

coverslips using a stamp containing regularly spaced squares (200 µm x 200 µm). To 

obtain astrocytes and hippocampal neurons, P0 mice were decapitated, and brains 

were removed and cleaned of meninges and vascular tissue. To obtain hippocampal 

neurons, hippocampi were removed in HBSS, digested in papain (25 IU/ml, 

Worthington Biomedical) in DMEM (supplemented with 1 mM CaCl2, 0.5 mM EDTA, 

and 1.65 mM L-cysteine) for 45 min at 37°C, incubated for 15 min at 37°C in serum-

free medium (Neurobasal medium A supplemented with 2.5 mg/ml Albumin and 2.5 

mg/ml Trypsin inhibitor) and dissociated. To obtain astrocytes, the cortices of 

separate animals were removed in HBSS, similarly dissociated (digested for 15 min 

at 37°C in Trypsin/EDTA) and plated at a density of 2500 per cm2 in DMEM 

containing 10% fetal calf serum, penicillin/streptomycin, and MITO (Becton 

Dickinson). Before plating the dissociated hippocampal neurons at a density of 300 

per cm2, the medium of the astrocyte feeder cells was replaced with Neurobasal 

medium A (supplemented with B27, Glutamax-I and penicillin/streptomycin). Neurons 

were allowed to mature until days 9, 11, or 14 to be used for electrophysiology or 

immunocytochemistry. Only islands containing single neurons were examined. EPO 

versus control (diluent solution) treatment was performed on day 7. If not otherwise 

indicated, cell culture reagents were obtained from GIBCO/Invitrogen.  
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Immunostaining: For estimating the number of synaptic boutons in autaptic 

neurons, cells were washed in PBS, fixed with 4% paraformaldehyde in PBS, 

permeabilized and blocked in 0.2% Triton X-100/PBS with 10% blocking serum, and 

incubated at 4ºC overnight with mouse monoclonal synapsin1 antibody (1:1000 

SynapticSystems, Goettingen, Germany) diluted in 1% blocking serum/PBS. After 

PBS washes, cells were incubated with Cy3-labeled secondary antibody (1:1000; 

Jackson ImmunoResearch, Newmarket, UK), washed in PBS and incubated at 4ºC 

overnight with mouse monoclonal MAP-2 (1:500; Chemicon, Hampshire, USA) 

antibody. Following PBS washes, the cells were incubated with Cy2-labeled 

secondary antibody (1:250; Jackson ImmunoResearch, Newmarket, UK), washed in 

PBS, air dried and coverslipped with fluorescence mounting medium (Vector, 

Burlingame, CA, USA) containing DAPI. Images of individual neurons were captured 

using an upright epifluorescence Olympus BX61 microscope (Hamburg, Germany) 

with a 40x oil-immersion objective. Images were photomerged to reconstruct 

individual neurons using Adobe Photoshop CS3 software. The number of synapsin1 

immunoreactive punctae of 18-20 neurons per coverslip (six coverslips per condition) 

were quantified using ImageJ software with manual thresholding and particle analysis 

plugin. Estimation of the percentage of excitatory and inhibitory neurons was 

performed by visual distinction between the degree of arborization, thickness of 

processes and shape of soma. Amount of inhibitory neurons among the total 

neuronal population was found to be 10-20% per culture.  

Electrophysiology: Cells were whole-cell voltage clamped at –70 mV with 

pClamp10 amplifier. All analyses were performed using Axograph 4.9 (Molecular 

Devices, Sunnyvale, CA, USA). The size of the readily releasable pool (RRP) of 

synaptic vesicles was determined by a 6 s application of the external saline solution 

made hypertonic by the addition of 0.5 M sucrose. Recordings of mEPSCs were 
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performed in the presence of 300nM tetrodotoxin (TTX). EPSCs were evoked by 

depolarizing the cell from -70 to 0 mV for 2 ms. The effect of high-frequency 

stimulation on the amplitude of EPSCs was measured by applying depolarisations at 

a frequency of 10 Hz for 50 stimuli. To measure NMDA/AMPA ratio, EPSCs were 

stimulated in the presence of 10 mM glycine, 2.5 mM Ca2+ (no Mg2+) to activate the 

synaptic NMDA receptors in hippocampal autaptic culture. The evoked EPSCs had a 

fast AMPA component followed by a slow NMDA component. To examine the 

changes in synaptic NMDA/AMPA ratios in presence and absence of EPO, the 

NMDA components relative to the AMPA component were measured. 

 

Patch-pipette solutions contained (mM): 146 potassium gluconate, 18 HEPES, 1 

EGTA, 4.6 MgCl2, 4 NaATP, 0.3 Na2GTP, 15 creatine phosphate and 5 U/ml 

phosphocreatine kinase (315-320 mOsmol/l, pH 7.3). The extracellular saline solution 

contained (mM): 140 NaCl, 2.4 KCl, 10 HEPES, 10 glucose, 4 CaCl2 and 4 MgCl2 

(320 mOsmol/l, pH 7.3). All chemicals, except for TTX (Tocris Cookson) and 

calcimycin (Calbiochem) were purchased from Sigma. All solutions were applied 

using a fast-flow system (Warner Instruments, Hamden, CT, USA) with custom made 

flow pipes.  

 

Protein extraction and immunoblot analysis. Tissue samples or cells were lysed 

with lysis buffer [50 mM Tris HCL (pH 8.3), 150 mM NaCl, 40 mM NaF, 5 mM EDTA, 

5 mM EGTA, 1 mM Na3VO4, 1% Igepal, 0.1% Natriumdesoxycholat, 0.1% SDS] 

containing 1 mM Phenylmethysulfonylfluoride, 10 µg/ml Aprotinin and 1 mg/ml 

Leupeptin. The lysates were freeze-thawed four times and homogenized by pulling 

through a 1 ml syringe 10 times, transferred into microcentrifuge tubes and 

centrifuged (1200 rpm) at 4˚C for 45 min. The supernatant was mixed with three 
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volumes of Laemmli buffer [250 mM Tris HCL (pH 8.3), 8% SDS, 40% glycerol, 20% 

2-mercaptoethanol, 0.04% pyronin Y], boiled for 5 min at 95˚C and frozen at -20˚C 

until blotting. The protein samples were run on NuPAGE 4-12% Bis-Tris Gel 

(Invitrogen, Karlsruhe, Germany) for three 5 min periods at 200 V and transferred to 

a nitrocellulose membrane. The blots were blocked with 2% ECL Advance blocking 

agent (Amersham, Freiburg, Germany) in Tween 20-Tris-buffered saline (TTBS) at 

room temperature for 1 h and incubated at 4ºC overnight with primary antibody for 

synapsin1 (1:10000; Synaptic Systems, Goettingen, Germany) or synaptophysin 

(1:500; Sigma, Germany) or α-tubulin as an internal control (1:5000; Sigma, 

Germany). Immunoreactive bands were visualized by using secondary antibodies 

coupled to horseradish peroxidase by enhanced chemoluminescence (Amersham, 

Freiburg, Germany). Densitometric analysis of the protein bands was performed by 

using ImageJ software.  

 

RNA isolation and expression analysis by quantitative real-time RT-PCR. RNA 

was isolated from tissue samples or cells by using the RNeasyPlus kit (Qiagen, 

Hilden, Germany). First strand cDNA was generated from total RNA using N9 random 

and Oligo(dT)18 primers. The relative concentrations of mRNAs of interest in different 

cDNA samples were measured out of four replicates using the threshold cycle 

method (Ct) for each dilution and were normalized to levels of murine 18S RNA. 

Reactions were performed using SYBR green PCR master mix (ABgene, Foster City, 

CA, USA) according to the protocol of the manufacturer. Cycling was done for 2 min 

at 50°C, followed by denaturation at 95°C for 10 min. The amplification was carried 

out by 45 cycles of 95°C for 15 s and 60°C for 60 s. The specificity of each primer 

pair was controlled with a melting curve analysis. Quantitative RT-PCR was 

performed with primers listed below: 
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NM_007540.3 Mus musculus brain derived neurotrophic factor (BDNF), mRNA 

mouse BDNF fwd: GCA TCT GTT GGG GAG ACA AG 

mouse BDNF rev: TGG TCA TCA CTC TTC TCA CCT G 

NM_010149.2 Mus musculus erythropoietin receptor (EPOR), mRNA 

mouse EPOR fwd: CCT CAT CTC GTT GTT GCT GA 

mouse EPOR rev: CAG GCC AGA TCT TCT GCT G 

NM_009305.1 Mus musculus synaptophysin (Syp), mRNA 

mouse synaptophysin fwd: CAA GGC TAC GGC CAA CAG 

mouse synaptophysin rev: GGT CTT CGT GGG CTT CAC T 

NM_013680.3 Mus musculus synapsin1 (Syn1), mRNA 

mouse synapsin1 fwd: GGA AGG GAT CAC ATT ATT GAG G 

mouse synapsin1 rev: TGC TTG TCT TCA TCC TGG TG 

 

Statistical analysis. Statistical significance was evaluated using two-tailed unpaired 

Student´s t-test, with or without Welch’s correction, depending on the distribution of 

the data (tested with a Kolmogorov-Smirnov test). Significance level was set to 

P<0.05. Numerical values are represented as mean±S.E.M. in Figures and text. 

Plotting of the data as well as statistical analyses were done in Prism 4 (GraphPad 

Software, San Diego, CA, USA) and MATLAB 7 (The MathWorks, Natick, MA, USA).  
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Figure legends 

 

Figure 1  

Experimental design of the in vivo studies. The time line of behavioral testing and 

brain dissection is presented. EPO or placebo was injected every other day for 3 

weeks (11 injections in total). Tests performed were elevated plus maze (EPM), open 

field (OF), hole board (HB), rota-rod (RR), and fear conditioning (FC), including 

training and testing 72 h later.  

 

Figure 2 

Effects of EPO on hippocampus dependent memory. Percentage of freezing as a 

readout of memory function in fear conditioning shows significant effects upon EPO 

treatment in the contextual memory (context) task at 1 week (a) and 3 weeks (b), but 

no longer at 4 weeks (c) after the last EPO injection. Percentage of freezing 

measured during training (baseline), exposition to the new context (pre-cue), and 

testing for cued memory (cue) is not different between the groups. No differences are 

seen in EPM (d), OF (e), HB (f), and RR (g). Mean±S.E.M. N=28 for experiment in 

(a) and N=14 for all other experiments (b-g).  

 

Figure 3 

Neurophysiology of acute hippocampal slices: Extracellular recordings. (a-b) 

Input-output relation is not altered at Schaffer collateral-CA1 synapses in EPO-

treated mice. (a) Sample recordings at 50% of maximal response (average of four 

traces) are shown for control and EPO-treated mice. (b) Input-output curve as a 

measure of baseline excitatory synaptic transmission: fEPSP slope, plotted against 

the stimulation strength, is not altered in EPO-treated mice compared to control 
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(P=0.3094). Inset: Half maximal stimulation strengths are not significantly different. 

(c-d) Paired-pulse facilitation is enhanced in EPO-treated mice. (c) Sample traces 

are presented. (d) Paired-pulse ratio (fEPSP slope for the second stimulus/fEPSP 

slope for the first stimulus) at inter-stimulus intervals of 25-150 ms is significantly 

greater in EPO-treated mice. (e-h) Increased LTP at Schaffer collateral CA1 

synapses in EPO-treated mice. (e) Sample traces of responses are shown before 

and after high frequency stimulation (HFS; 3 x 100 Hz for 1 s each, 20 s interval). (f) 

Long-term potentiation elicited by HFS: Slopes of fEPSP are normalized to baseline 

and plotted against time. Time-point 0 represents application of HFS. (g) Magnitude 

of STP, determined as maximal responses within 1 min after HFS, is significantly 

greater in EPO-treated mice. (h) Magnitude of LTP, determined as responses 

between 50 and 60 min after HFS, is significantly greater in EPO-treated mice. (i-l) 

Increased STD at Schaffer collateral-CA1 synapses in EPO-treated mice. (i) Sample 

traces of responses are shown before and after low frequency stimulation (LFS; 1 Hz 

for 900 stimulations). (j) Long-term depression elicited by LFS: Slopes of fEPSP are 

normalized to baseline and plotted against time. Time 0 represents application of 

LFS. (k) Magnitude of STD, determined as maximal responses within 1 min after 

LFS, is significantly greater in EPO-treated mice. (l) Magnitude of LTD, determined 

as responses between 50 and 60 min after LFS, is not significantly changed in EPO-

treated mice (P=0.0869).  

 

Figure 4 

Neurophysiology of acute hippocampal slices: Intracellular recordings.  (a-c) 

EPO enhances inhibitory transmission. (a) Representative recordings of 

spontaneous, pharmacologically isolated inhibitory postsynaptic currents 

(sIPSCs) from CA1 neurons. (b) Averaged amplitude of sIPSCs is not significantly 
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altered in EPO-treated mice (N=6 neurons / 5 mice) compared to control (N=4 

neurons / 4 mice; P=0.0869). (c) Averaged frequency of sIPSCs is significantly 

enhanced in EPO-treated mice (N=6 neurons / 5 mice) compared to control (N=4 

neurons / 4 mice). (d-f) EPO decreases excitatory transmission. (d) Representative 

recordings of spontaneous, pharmacologically isolated excitatory postsynaptic 

currents (sEPSCs) from CA1 neurons. (e) Averaged amplitude of sEPSCs is 

significantly decreased in EPO-treated mice (N=4 neurons / 4 mice) compared to 

control (N=4 neurons / 3 mice). (f) averaged frequency of sEPSCs is significantly 

decreased in EPO-treated mice (N=4 neurons / 4 mice) compared to control (N=4 

neurons / 3 mice).   

 

Figure 5 

Multi-electrode array studies of primary hippocampal neurons. (a-b) 

Characterization of the cultures. (a) Immunocytochemical staining demonstrates 

maturation of cellular networks from day 10 to day 30. Propidium iodide staining of all 

nuclei (red), visualization of cell types by MAP-2 (mature neurons) or GFAP 

(astrocytes) staining (green), as well as merged pictures are presented (scale 

bar=100 µm). (b) Cellular composition of networks remains stable over time and is 

not altered by EPO treatment (0.3 IU/ml every other day) from day 5 through 25 in 

culture (Mean±S.E.M. of N=3 independent cultures per time point). (c) Demonstration 

of primary hippocampal neurons grown on multi-electrode array dishes, containing 60 

electrodes/dish. (d-e) Spontaneous electrical activity of primary hippocampal 

neuronal networks in culture is measured daily from week 3 through week 7. Group 

statistics of the multi-electrode array recordings over each week show significant 

dissociation over time of EPO versus control cultures. (d) Silencing group statistics 

reveal a global decrease of channels with low activity in control cultures that cannot 
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be observed in EPO-treated cultures. (e) Bursting group statistics show that the 

percentage of strongly bursting channels increases in the EPO group after 

termination of treatment. Medians±S.E.M. presented of N=7 independent cultures. P 

values are given in the text. 

 

Figure 6  

Autaptic hippocampal neuronal cultures. (a-g) Whole-cell electrophysiological 

recordings from single hippocampal neurons treated with either EPO (0.3 IU/ml) or 

control (diluent only) on day 7 and measured from day 9-14. Results indicate a 

reduction in the amount of primed vesicles without altering efficiency of vesicle fusion 

and vesicle dynamics. Mean±S.E.M. presented. N=40-60. (h) Analysing the number 

of synaptic boutons upon immunocytochemical staining for synapsin1 revealed an 

almost identical increase of boutons over time in EPO-treated and control neurons. 

Performed at 40x. Cumulative distribution over days 9-14. N=100-120. 
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Additional files 

 

Additional file 1: 

File name:   Adamcio et al – Additional file 1  

File format:   pdf 

Title of data:  Additional file 1 

Description of data: Analysis of single-sample MEA recordings  

 

 

Additional file 2: 

File name:   Adamcio et al – Additional file 2 

File format:   pdf 

Title of data:  Additional file 2 

Description of data: Mean conditional firing rates for EPO and control samples 

 

 

Additional file 3: 

File name:   Adamcio et al – Additional file 3 

File format:   pdf 

Title of data:  Additional file 3 

Description of data: Spike-rate (1/s) for EPO-treated and control dishes 
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4. Molecular determinants underlying rapid cycling 
disorder and new treatment approaches 
 

4.1 Overview of project II 
Rapid cycling syndrome is a rare disease affecting 10-30 % of patients with 

bipolar disorder. According to the DSM-IV (Diagnostic and Statistical Manual of 

Mental Disorders) criteria, a patient can be diagnosed with the rapid cycling 

syndrome if he/she experiences at least four episodes of major depression, 

mania, mixed mania, or hypomania in the past year, occurring in any combination 

or order. The patient should experience a complete manic or a complete 

depressive episode occurring after one another for at least 1 week. These 

patients are poor responders to mood stabilizers and currently, no other 

treatments are available. Moreover, mechanisms underlying bipolar affective 

disorders and their subgroup rapid cycling syndrome are still unkown. 

 

In this original publication, we studied a rapid cycling patient with a 16 year-old 

disease history. In order to find out the genes that are differentially expressed in 

manic and depressed episodes that would help us to get closer to understand  

the genetic mechanisms leading to the switch between different disease 

episodes, we exploited RNA isolated at different disease stages from peripheral 

blood mononuclear cells (PBMC) of the patient. Two recent publications have 

reported changes in gene expression profiles using microarray analysis on post 

mortem brain tissue of bipolar patients (Nakatani et al., 2006; Ryan et al., 2006). 

However, these studies failed to report a single overlapping gene. Keeping in 

mind the difficulties and challenges arising from postmortem studies, we 

performed the microarray analysis in a living patient. Since bipolar disorder is a 

systemic disease, we believe that changes obtained from periphery would as well 

give us a hint about the cycling changes occurring in the brain. Moreover, global 

gene expression analysis using PBMC to identify molecular signatures of the 
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disease pathology has proven to be useful in different brain diseases (Achiron 

and Gurevich, 2006; Buttarelli et al., 2006; Grond-Ginsbach et al., 2008). 

 

In order to identify genes regulated differentially in manic and depressed phases, 

we used a three-tiered strategy. First, blood was collected from the patient on 

two consecutive days at a specific time in the morning (8:00 a.m.). Blood 

samples were collected when the patient was in the middle of her two 

consecutive manic or depressed episodes. We performed microarray analysis on 

RNA isolated from PBMC of the patient which was followed by a two-step 

bioinformatic processing. In this way, we excluded genes that showed different 

expression levels between two consecutive days of a certain episode as well as 

genes that were differentially expressed between two manic or two depressed 

episodes. Therefore, we could exclude genes that showed daily and monthly 

variations using this three-tiered experimental strategy. Next, we validated the 

results of the microchip screening by performing qRT-PCRs and selected the 

genes that showed the same expression pattern in microarray analysis. We 

further confirmed the results of qRT-PCRs with additional blood samples 

collected more than one year later.  

 

After comparing the expression pattern of the remaining genes between the 

different episodes, we grouped these genes according to the biological 

categories. After this careful screening approach, we were left with eight different 

genes that were involved in prostaglandin metabolism, PTGDS (lipocalin-type 

prostaglandin D synthetase) and AKR1C3 (prostaglandin D2 11-ketoreductase), 

neurodevelopment, NRG1 (neuregulin 1) and SPON2 (spondin 2), regulation of 

the immune system, GZMA (granzyme A) and KLRD1 (killer cell lectin-like 

receptor subfamily D, member1/CD94), as well as hemoglobins A and B (HBA 

and HBB).  

 

The most striking finding was the association of two prostaglandin genes, 

PTGDS and AKR1C3, with rapid cycling disorder. Both genes showed higher 
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expression in depressed episodes compared to manic episodes. PTGDS 

catalyzes conversion of PGD2 from PGH2 (the product of oxygenation of 

arachidonic acid by cyclooxygenases) and is preferentially expressed in CNS 

where it is involved in various functions including sleep, pain and odor 

responses, may serve an anti-apoptotic role for oligodendrocytes (Taniike et al., 

2002) and was shown to be induced upon pathological conditions (Kagitani-

Shimono et al., 2006; Kawashima et al., 2001; Mohri et al., 2006; Taniguchi et 

al., 2007). AKR1C3 is also involved in prostaglandin synthesis by catalyzing 

conversion of PGF2α from PGD2. Prostaglandin synthesis has been shown to be 

involved in homeostasis, regulation of sleep, allergic responses and inflammation 

(O'Hara et al., 1999; Qu et al., 2006). Interestingly, altered prostaglandin 

metabolism has been reported in major affective disorders (Calabrese and 

Gulledge, 1984; Lowinger, 1989) and altered levels of prostaglandins have been 

implicated to cause mood disorders (Bishop et al., 1987; Lloyd, 1992). Moreover, 

prostaglandins, especially PTGDS, have important roles in hibernation cycle of 

mammals. Hibernation cycle is accompanied with dramatic physiological 

changes including periodic eating, sleeping and high psychomotor activity. Based 

on association of prostaglandins with hibernation and keeping in mind that the 

hibernation involves periodic and alternating behavior, we have developed the 

hibernation hypothesis of rapid cycling which might reflect an evolutionary 

ancient behavioral program in humans and become reactivated under 

pathological conditions.  

 

In order to investigate the relevance of our findings in differential prostaglandin 

gene expression, we started a clinical experiment in which we offered the patient 

a treatment approach using cyclooxygenase-2 (COX2) inhibitor, celecoxib. 

Interestingly, celecoxib has previously been used in clinical trials on patients with 

major monopolar depression (Muller et al., 2006) and bipolar depression (Nery et 

al., 2008) both of which showed promising results. Moreover, increased 

prostaglandin E2 (PGE2) and COX2 production in schizophrenic and depressive 

patients has been discussed in a recent review which suggests inhibitors of this 
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enzyme to be used in clinical studies involving patients of the respective 

diseases (Muller and Schwarz, 2008). COX2 treatment on our patient, with a 

daily dose of 400mg, was continued for about 5 months and was well tolerated. 

Before and during treatment period, we performed psychopathology ratings on 

the patient to follow the disease course. Celecoxib treatment led to a significant 

reduction in overall manic and depressed rating scores over five months. The 

positive effect of celecoxib on our patient, who previously had been treated with 

many other drugs and had never benefited from any, made us emphasize the 

role of the prostaglandin metabolism in rapid cycling disorder and offer this new 

treatment approach to be used in more patients suffering from the same disease.  
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4.2 Original publication 
Begemann M*, Sargin D*, Rossner MJ, Bartels C, Theis F, Wichert SP, Stender 

N, Fischer B, Sperling S, Stawicki S, Wiedl A, Falkai P, Nave KA, Ehrenreich H. 

(2008). Episode-specific differential gene expression of peripheral blood 

mononuclear cells in rapid cycling supports novel treatment approaches. 

Molecular Medicine 14 (9-10): 546-552 
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INTRODUCTION
Rapid cycling syndrome is a bipolar af-

fective disorder, amounting to 10% to 30%
of the bipolar population. It is character-
ized by at least four episodes per year and
rapid shifts between cycles. Patients with
bipolar affective disorder, as well as pa-
tients with rapid cycling syndrome, typi-
cally experience their first major mood
episode during adolescence (1–5).

Recently, gene expression data from post
mortem brains of bipolar patients were
compared with those of healthy controls in
two independent studies (6,7). While post

mortem approaches certainly cannot reveal
cyclic changes of gene expression, these
studies also failed to yield a single overlap-
ping candidate gene for bipolar disease.
Moreover, the lack of an adequate animal
model for bipolar disorder demands novel
experimental approaches.

We hypothesized that cycling alter-
ations of brain functions in bipolar dis-
ease are reflected by systemic physiologi-
cal changes that have a molecular genetic
basis. If true, it should be possible to ob-
tain molecular signatures of manic and
depressed states even outside the brain,

such as in peripheral blood mononuclear
cells (PBMC). While not disease causing,
such gene expression changes in PBMC
may shed light on similar cyclic alter-
ations in brain.

To study quantitative peripheral gene
expression, we specifically refrained
from comparing larger groups of bipolar
patients (who are genetically heteroge-
neous and differ in baseline gene expres-
sion profiles), and aimed instead at
monitoring the gene expression in one
individual, serving always as her own
control, at recurrent stages of the disease.

CASE REPORT
The female patient, born in 1945, had

no prior medical illness and no evidence
of neuropsychiatric illnesses in her family.
In 1991, she became ill with rapid cycling
syndrome and kept a diary over her ill-
ness, used to reconstruct 108 cycles over a
16-year period. The time series suggests
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complex rhythms in periodicity with
mean total cycle lengths of 53 ± 21 d,
switching within hours between manic
(mean 28 ± 14 d) and depressed (mean 
26 ± 14 d) episodes without normal inter-
vals (Supplementary Figure 1). Results of
affective rating scales obtained repeatedly
during depressed and manic episodes,
together with psychopathology, neu-
ropsychological test results, appearance,

autonomic, and physical signs are sum-
marized in Table 1.

In addition to typical affective symp-
toms, the patient has physical and
cognitive signs recurring in an episode-
specific manner. In the first 2 to 3 d of a
manic episode, she is sleepless and
restless; in the following d, she sleeps 3
to 4 h per night. The 2 to 3 d before the
end of manic episodes, she notes a 

‘normalization of sleep’ with non-
interrupted sleep of regular 8 h duration.
The patient eats and drinks excessively
during manic episodes, leading to alter-
nating weight changes (up to 5 kg) be-
tween episodes and hyperhydration,
resulting in significant shifts of hemato-
crit and hemoglobin concentrations.
Three d after the onset of manic epi-
sodes, the patient regularly develops

Table 1. Psychopathology, physical signs and neuropsychological test results (before celecoxib).

Category Depressed episode Manic episode

Psychopathology
Mood dysphoric, despair, anxiety expansive, exuberant, irritable
Drive impaired: increased:

- most of the time in bed - seeking contacts
- social withdrawal - loss of inhibition
- neglected personal hygiene - unnecessary purchases
- reduced self-care - booking of travels

Thought process brooding, difficulty making decisions, slowed logorrhea, distractibility, poor concentration,
thinking racing thoughts

Suicidality passive death wishes joie de vivre (“Lebensfreude”)
Gestures and mimic mask-like face and slow limb movements rich in gestures and facial expression

oculomotoric decreased oculomotoric increased
sad appearing searching for eye contact and attention
withdrawn

Voice low pitched, monotonous high pitched, melodious
Handwriting jittery and slow orthographic mistakes and corrections
Dotting moderately impaired normal
Tapping moderately impaired moderately impaired
HAM-Da range between 31 and 38 range between 3 and 4
BDIb range between 44 and 52 range between 3 and 5
YMRSc range between 1 and 3 range between 21 and 24
PANSSd range between 84 and 92 range between 40 and 41

Autonomic and physical signs
Sleep increased requirement for sleep and daytime reduced requirement for sleep and disrupted 

in bed sleep
Appetite decreased increased
Weight decreased increased
Libido absent increased
Allergy no allergies susceptibility to allergies
Edema no edema edema on lower extremities

Neuropsychology
Short-term memory mildly impaired mildly impaired
Long-term memory normal normal
Working memory moderately impaired severely impaired
Semantic fluency moderately impaired normal
Executive functions moderately impaired severely impaired
Psychomotor speed moderately impaired moderately impaired

aHamilton Depression Rating Scale.
bBeck Depression Inventory.
cYoung Mania Rating Scale.
dPositive and Negative Syndrome Scale.
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edema in her lower extremities that re-
cover immediately after onset of depres-
sion. Only during manic episodes does
she become susceptible to seasonal aller-
gies (hay fever). This allergic response
is rarely observed during depressed epi-
sodes. Witnesses describe a change of
her voice in the last 2 to 3 d of manic
episodes to raspy and less melodious.
At the end of depressed episodes, her
voice becomes more cheerful and richer
in tonal inflections. The patient is not
aware of these changes. Because there
was an episode-specific susceptibility
to allergens, lymphocyte subpopula-
tions were studied by fluorescence-
activated cell sorting in different epi-
sodes. Subtle shifts between CD4-helper
and CD8-suppressor cells were noted
(Supplementary Figure 2).

The cyclic pattern of the patient’s af-
fective disorder has had a poor response
to pharmacologic treatment over the past
16 years, such as lithium, venlafaxine,
chlorprothixene, citalopram, paroxetine,
carbamazepine, valproic acid, trim-
ipramine, lamotrigine, olanzapine, or
flupentixol, and no response to psy-
chotherapy and hypnosis. Antipsychotic
medication, such as flupentixol, some-
what reduced the severity of symptoms
but not the cyclic behavior of the disor-
der. During the time of all analyses pre-
sented here, the patient was on continu-
ous lamotrigine medication (400 mg),
resulting in comparable serum levels of
4.1–8.9 μg/mL upon repeated controls
(therapeutic range: 2-10 μg/mL). No
other medication was allowed 2 wks be-
fore or during the time of each testing, or
before and during the treatment ap-
proach, reported here, using the cy-
clooxygenase inhibitor celecoxib (Cele-
brex, Pfizer, Karlsruhe, Germany, 2 × 200
mg daily per os).

MATERIALS AND METHODS

Strategy of Episode-Dependent Gene
Shift Detection

A three-tiered approach was used to
identify candidate genes that are ex-
pressed in an episode-specific fashion.

In the first step, eight blood samples for
PBMC isolation (see below) were col-
lected (always at 8:00 a.m. after
overnight fasting conditions) in the ap-
proximate middle of two different con-
secutive depressed and manic episodes
on two consecutive days each. All sam-
ple collection was done well outside the
hay fever season and in complete ab-
sence of allergic symptoms. The screen-
ing identified genes that showed at least
two-fold differences in expression in
manic compared with depressed epi-
sodes, and vice versa. After screening by
microarrays, the data set was submitted
to two bioinformatic processing steps
(see below). The data were normalized
and analyzed to identify and exclude
genes that differed between the two
consecutive days within a particular
episode (arbitrary daily variation). Fur-
ther genes were excluded that were dif-
ferentially expressed within the two de-
pressed or within the two manic
episodes (arbitrary monthly variation).
The expression pattern of the remaining
depressed and manic episode genes was
subsequently compared. Using this ap-
proach, several genes were identified
that showed high expression in de-
pressed and low in manic episodes, and
vice versa. Because the patient never had
periods where she was free of symp-
toms, samples could not be obtained
within an euthymic episode.

Isolation of Peripheral Blood
Mononuclear Cells (PBMC)

PBMC were collected applying the
standard Ficoll-Paque Plus isolation pro-
cedure (Amersham Biosciences, Freiburg,
Germany). RNA was prepared using
Trizol and Qiagen RNAeasy columns
(Qiagen, Hilden, Germany). The RNA
samples were used to synthesize cDNAs
(SuperScriptIII, Invitrogen, Karlsruhe,
Germany).

DNA Microarray Analysis
Transcriptome analysis was per-

formed using the GeneChip Human Ge-
nome U133 Plus 2.0 (Affymetrix, Santa
Clara, CA, USA) (8) according to the

published protocols (9). All cDNAs
used for microarrays were one-round
amplified. GeneChip data were ana-
lyzed using the software GCOS version
1.2 (Affymetrix). Detailed data analysis
was performed with R open-source
software, and the open-source Biocon-
ductor platform.

Quantitative Real-Time Reverse
Transcriptase Polymerase Chain
Reaction (qRT-PCR)

Genes found to be differentially regu-
lated by DNA microarray analysis were
subsequently validated independently
using qRT-PCR. Cyclic changes in the ex-
pression of these genes were confirmed
further on PBMC of additional blood
samples obtained up to two years after
the initial screen. qRT-PCR was per-
formed with the aid of SYBR Green de-
tection on Applied Biosystems 7500 Fast
System. CT (cycle threshold) values were
standardized to CT values of GAPDH.
Primers are listed in Supplementary
Table 1.

Statistical Analyses
All numerical results are presented as

mean ± SD in the text and mean ± SEM in
the Figures. Statistical analyses (10,11) and
Fast Fourier Transformations (12) were
performed as published using MATLAB
R2007a software. Nonparametric indepen-
dent Mann-Whitney U test (two-tailed)
and Student t test (two-tailed) were calcu-
lated using SPSS 16.0 for Windows.

All supplementary materials are available
online at molmed.org.

RESULTS
A three-tiered approach was employed

to identify genes that were regulated in an
episode-specific fashion (Figure 1A). We
grouped the genes in biological categories
and present their mean expression pattern
over six to ten separate time points during
either depression or mania (Figure 1B–1E).

Notably, the genes involved in
prostaglandin metabolism, PTGDS
(lipocalin-type prostaglandin D syn-
thetase), and AKR1C3 (prostaglandin D2
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11-ketoreductase), showed higher expres-
sion in depressed episodes (Figure 1B).
We also identified two neurodevelop-
mental genes that revealed opposing
gene expression: NRG1 (neuregulin-1)
was expressed higher in manic, SPON2
(spondin-2) in depressed episodes (Fig-
ure 1C). Several other genes, involved in
regulation of the immune system, were
episode-specifically expressed. These in-
clude GZMA (granzyme A) and KLRD1
(killer cell lectin-like receptor subfamily D,
member 1/CD94) with higher expression
in depressed as compared with manic
episodes (Figure 1D). Hemoglobin genes
A and B (HBB and HBA) were higher in
manic, compared with depressed epi-
sodes. This contrasts the hemoglobin
(protein) concentration in whole blood
(insert) showing opposite regulation
(Figure 1E).

As discussed below, the most intriguing
finding was the association of prostaglandin-
synthesizing genes PTGDS (lipocalin-type
prostaglandin D synthetase) and AKR1C3
(prostaglandin D2 11-ketoreductase) with
rapid cycling. We undertook a clinical ex-
periment to explore the relevance of this
observation and to distinguish between a
disease marker and mediator. We offered
to the patient a treatment approach ap-
plying (off-label) the cyclooxygenase in-
hibitor celecoxib (Celebrex, Pfizer, 2 ×
200 mg daily oral).

Treatment with celecoxib was started
with 100 mg and increased by 100 mg
daily to reach the final dose of 400 mg
(2 × 200 mg daily) at d 4. This dose has
been continued for more than 5 months
and is well tolerated. Figure 2 illustrates
the clinical course before and during
celecoxib, including psychopathology
ratings that revealed a significant im-
provement of depressed as well as of
manic symptoms.

DISCUSSION
In our first molecular-genetic ap-

proach to alternating gene expression in
bipolar disorders, we used PBMC of a
woman with 16-year history of an ex-
treme form of rapid cycling, and obtained
an episode-specific gene expression pro-

Figure 1. (A) Strategy of episode-dependent gene shift detection using microchip analy-
sis. A three-step strategy was used to identify candidate genes that are expressed in an
episode-specific fashion: Eight blood samples were collected (always at 8:00 a.m.) in two
consecutive depressed and manic episodes on two consecutive days each. After screen-
ing by microarrays, the data set was submitted to two bioinformatic processing steps.
Genes were subtracted that differed between the two consecutive days within a particu-
lar episode (arbitrary daily variation). Further genes were excluded that were differentially
expressed within the two depressed or within the two manic episodes (arbitrary monthly
variation). The expression pattern of the remaining depressed and manic episode genes
was subsequently compared. (B–E) Episode-specific PBMC gene expression involves differ-
ent groups of genes. Genes found to be differentially expressed by microchip screening
were confirmed by qRT-PCR in all samples. Moreover, blood sampling was extended be-
yond the initial screening period, and regulated genes were again validated more than
one year later. Genes were grouped (B–E) according to biological categories. Each bar
represents mean ± SEM of 6 to 12 determinations from cDNAs obtained from PBMC on
different days in independent manic (n = 6; open bars) and depressed 
(n = 5; filled bars) episodes. The chart for hemoglobins contains an insert with hemoglobin
(protein) concentrations in whole blood (n = 7 samples of independent manic and de-
pressed episodes, respectively). Mean values were compared using independent Student
t test (two-tailed).
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file on an identical genetic background.
Our strategy was set up to minimize the
risk of identifying false positive genes,
due to daily or monthly variations in
gene expression that are disorder-unre-
lated. The gene expression differences
among episodes are small but signifi-
cant, and would not have been recog-
nized in a pool of patients or in compari-
son with healthy controls, due to
different genetic background and modi-
fiers of gene expression. In principle,
such an approach could be employed as
a screening strategy for genes in any
condition with temporal periodic behav-
ior, such as sleep or seasonal phenom-
ena/disorders.

Follow-up studies on larger numbers
of bipolar patients will have to follow,
to confirm the general disease-relevance
of the identified gene expression shifts.
Specifically, patients with a more typical
age of onset and course of bipolar dis-
ease will have to be screened. An age of

onset of 46 years and cycling over dec-
ades without euthymic episodes, as in
our patient, clearly is an exception (3–5).

The patient’s impairments comprise
psychopathological symptoms in combi-
nation with physical signs and symp-
toms, including the immune system, and
a variety of cognitive domains evident
upon neuropsychological testing. Ac-
cordingly, episode-specific gene expres-
sion involved different biological sys-
tems, such as blood, metabolism,
immune functions, as well as neuronal
genes, confirming rapid cycling as a sys-
temic disorder. Like all association stud-
ies, we can make no claim whether or
not a particular gene expression shift is
a cause or consequence of rapid cycling,
and whether similar gene expression
changes occur in the brain. Moreover, it
is currently unknown whether some of
the observed alterations in gene expres-
sion partly reflect the shifts in immune
cell subsets observed here.

Lamotrigine has been shown to alter
expression of certain genes, such as
GABA-A receptor β3 subunit in rat hip-
pocampal cells (13). During the entire
observation period (analysis and experi-
mental treatment) reported in this
paper, however, the patient was al-
ways on the same dose of lamotrigine
(episode-independent), making an in-
fluence of this pharmacological treat-
ment on the alternating gene expression
shown here very unlikely. No other
medication was used.

Some regulated genes identified in
PBMC are known to be expressed in the
nervous system. For example, NRG1 is a
neuronal growth factor regulating dif-
ferentiation, synaptogenesis, and myeli-
nation of the nervous system (14).
NRG1 also is expressed in activated
monocytes (15). Similarly, SPON2
(spondin, mindin) originally was char-
acterized in zebrafish as a protein in-
volved in outgrowth of hippocampal

Figure 2. Clinical course of psychopathology ratings before and during treatment with the cyclooxygenase inhibitor celecoxib. The
course of the Hamilton Depression Rating Scale (HAM-D) scores, the Young Mania Rating Scale (YMRS) scores, and the Positive and Neg-
ative Syndrome Scale (PANSS) scores, presented in line graphs, show a pronounced cycling pattern. Day 0 denotes start of celecoxib
intake. The magnitude of cyclic changes appears to gradually decrease during treatment. Bar graphs give scores (mean ± SEM) of n = 6
depressed and n = 6 manic episodes (two before and four after onset of treatment each). HAM-D score in depressed and YMRS score
in manic episodes decrease significantly upon treatment. Mean values are compared using independent Student t test (two-tailed).
M = manic episode, D = depressed episode.
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neurons (16). It is expressed abundantly
in lymphoid tissue and involved in in-
flammation (17).

Granzymes A and B (GZMA and
GZMB) and several natural killer cell re-
ceptors were higher in depressed epi-
sodes. We speculate that the observed
episode-specific gene expression con-
tributes to the pathogenesis seen in our
patient, including her allergic diathesis.
In contrast, the elevated globin gene
expression in manic episodes found here
may reflect a physiological counter-
regulation to the relative increase in ex-
tracellular fluid (and decrease in hemo-
globin level) due to massive drinking.

Interestingly, two genes were identi-
fied that are essential for prostaglandin
synthesis, PTGDS and AKR1C3. PTGDS
is preferentially expressed in the central
nervous system and mediates synthesis
of PGD2 from PGH2 (the cyclooxygenase-
mediated product of arachidonic acid),
and AKR1C3 mediates synthesis of
PGF2α from PGD2. PGF2α is a PPARγ an-
tagonist, in contrast to two other PGD2

metabolites that are spontaneously con-
verted from PGJ2: Δ

12-PGJ2 and 15-deoxy-
Δ12,14-PGJ2 that are PPARγ agonists.
Prostaglandin synthesis plays a pivotal
role in metabolic homeostasis, sleep
regulation, adipogenesis, allergic re-
sponse, and inflammation (18–22). Al-
tered levels of prostaglandins have
been detected in different body fluids
in patients with major affective disor-
ders (23–28). Also pharmacological evi-
dence (29–31) suggests that altered
prostaglandin metabolism may lead to
mood disorders. All this is consistent
with episode-specific differential gene
expression of PTGDS and AKR1C3 as
revealed in the present case.

Alterations in inflammatory markers
in serum of bipolar patients, such as cy-
tokines, c-reactive protein and compo-
nents of the complement system, have
been reported previously (32–38). There
might well be an interaction between
the prostaglandin system found to be
episodically regulated here, in the 
described case, and these inflammatory
molecules, also in the CNS (35,39,40).

Intriguingly, altered expression of
PTGDS marks the hibernation cycle, and
accumulation of prostaglandins during
hibernation season has been described in
hibernating animals (18,22). Based on our
molecular data, we speculate that the
rapid cycling syndrome in humans may
reflect an evolutionary ancient behav-
ioral program resembling the hibernation
cycle (with periodic eating, high psy-
chomotor activity and nesting behavior,
alternating with episodes of rest and
sleep) (41,42) that becomes pathologi-
cally re-activated by unknown triggers,
thereby creating rapid cycling.

The gene products involved in
prostaglandin metabolism might give
clues to potential treatment targets, but
to confirm their general relevance in
bipolar disease, more patients will have
to be examined for cycling-associated al-
terations in prostaglandin gene expres-
sion. Nevertheless, the positive result of
the clinical experiment with celecoxib in
our patient, showing considerable atten-
uation of both depressed and manic rat-
ing scores, supports a mediator role of
prostaglandins in rapid cycling. We are
fully aware of the limitation of a case re-
port in comparison to a clinical trial.
However, we note that the 16-year clini-
cal history of our patient has never
shown benefits from any of the many
pharmacological treatments, suggesting
that a potential placebo effect in our ex-
periment would be minor.

Supporting our findings, a recent
proof-of-concept trial in Germany in-
cluding patients with major monopolar
depression found beneficial effects on
mood upon 6-wk add-on treatment with
the cyclooxygenase-2 inhibitor celecoxib.
In contrast to our gene expression-based
“hibernation hypothesis of bipolar dis-
ease,” this trial was based on the hypoth-
esis that inflammatory processes might
be involved in the pathogenesis of de-
pression (43). Following the same inflam-
mation hypothesis of depression, another
small 6-wk study was performed in the
United States of America, exploring the
effect of celecoxib as adjunctive agent in
bipolar depression, also with promising

results (44). Bringing hibernation and
inflammation together, it is intriguing
to speculate that rapid cycling bipolar
disorders are characterized by episodic
self-limiting inflammatory processes
that, unlike other inflammatory condi-
tions in the brain, do not lead to overt
neurodegeneration.
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5. Morphological and cellular consequences of chronic 
neurodegeneration induced by an early unilateral 
parietal cryo-lesion and treatment by EPO 
 

5.1 Overview of project III 
In this project, we analyzed cellular consequences of chronic neurodegeneration 

using a mouse model of unilateral parietal cryo-lesion. We have previously 

shown that upon an early unilateral parietal lesion, mice developed a global 

progressive brain atrophy and cognitive impairment that could be prevented by 

early EPO treatment (Siren et al., 2006). Mice lesioned at 28 days showed gray 

matter loss and cognitive deficits in a hippocampus-dependent learning and 

memory task, Morris water maze, at a late time point i.e. 9 months after lesion. 

These neurodegenerative changes were completely prevented when the mice 

were treated with EPO (5000 IU/kg, i.p.) for 2 weeks every other day starting 

right after lesion.      

 

The cryo-lesion model in mice represents a mild traumatic insult at an early 

period in the life of a patient which might seem to be devoid of importance but 

might lead to the outcome of cognitive disorders like schizophrenia, Alzheimer’s 

Disease and Parkinson’s Disease (AbdelMalik et al., 2003; Bower et al., 2003; 

Koponen et al., 2002; Nemetz et al., 1999) when left untreated. Progressive 

cortical decline is a common phenomenon observed in these diseases. 

Therefore, it is important to understand what leads to the observed progressive 

pathology and how to mediate neuroprotection.  

 

In order to find out the mechanisms that might contribute to the outcome of global 

brain atrophy induced by this early lesion, we performed a detailed stereological 

analysis on anterior cingulate cortex and hippocampal subregions of 1 year old 

mice. This was the time point lesioned mice had already developed atrophy and 

cognitive deficits. The regions analyzed in this study were chosen according to 

 74



their importance for cognitive functions in rodents. The findings of the histological 

analysis were further supported by immunoblotting experiments. 

 

Unexpectedly, lesioned mice did not have differences with respect to their neuron 

and astrocyte numbers from sham-operated and EPO-treated mice i.e. they did 

not show any signs of neuronal loss or gliosis despite the fact that they had 

global brain matter loss and cognitive decline. This finding was consistent with 

the pathology seen in cognitive disorders like schizophrenia which is 

characterized by neurodegenerative changes accompanied by gray matter loss, 

ventricular enlargement, cognitive impairment in the absence of neuronal loss or 

gliosis. The relevance of our model for schizophrenia led us to explore the 

cellular consequences of global atrophy in more detail by focusing on subtypes of 

neurons and glia, which were consistently reported to be disturbed in 

schizophrenic post mortem brain tissue. 

 

The early lesion induced a bilateral increase in the number of IBA1 (ionized 

calcium-binding adapter molecule 1) positive microglia in anterior cingulate 

cortex and hippocampal subregions 24 hours after lesion. One dose of EPO 

treatment had already reduced the microglial number in respective areas in 

lesioned mice. Interestingly, when the mice were analyzed 11 months after 

lesion, they still had increased microglial numbers in hippocampus. This showed 

a lesion-induced persistent inflammatory response ongoing in the brains of 

lesioned mice. Similarly, EPO treated mice showed comparable microglia 

numbers to the sham operated mice.  

 

In 1 year old lesioned mice, we detected a subtle decrease in the number of 

Olig1 positive oligodendrocytes and decreased expression of myelin-related 

proteins, CNPase (cyclic nucleotide phosphodiesterase) and MBP (myelin basic 

protein) in hippocampus. Early EPO treatment led to an increase in the number 

of oligodendrocytes and prevented the decrease in myelin protein expression.  
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A detailed analysis of a subtype of neurons, the Parvalbumin positive GABAergic 

interneurons, revealed a bilateral increase in the relative number of these 

neurons in the dentate gyrus of lesioned mice at the age of 1 year. This increase 

in the relative number of GABAergic interneurons was further supported by the 

increase in the expression of 67 kDa isoform of GABA synthesizing enzyme, 

GAD67, in the contralateral hippocampus of lesioned mice detected by Western 

blot analysis. Once again, EPO-treated mice had comparable numbers of 

Parvalbumin positive GABAergic interneurons and similar levels of GAD67 

protein expression to the sham-operated mice.  

 

The role of synaptic loss in the outcome of brain atrophy and cognitive decline 

led us to count the number of synapsin1 positive presynaptic boutons in cingulate 

cortex and hippocampus of different groups of mice. Confocal analysis of 

presynaptic bouton number revealed no change between sham, lesioned and 

lesion+EPO groups. However, Western blot analysis of synapsin1 protein in 

contralateral hippocampus showed a decrease in the expression of this protein in 

lesioned mice compared to sham-operated and EPO-treated mice. The failure to 

document this finding histologically might be due to subtle changes between the 

groups which might be difficult to reveal with the methods used in this study.  

 

In summary, besides global cortical atrophy and cognitive impairment, lesion at 

an early age led to an increased inflammatory process assessed by an early and 

late increase in microglial numbers, decrease in the expression of myelin-

associated proteins, increased expression in determinants of GABAergic 

neurotransmission and decreased expression of a presynaptic protein, synapsin 

1. Interestingly, the late morphological and cellular consequences of this early 

lesion are similar to those observed in schizophrenic patients. In schizophrenia, 

increased microglial activation (van Berckel et al., 2008), decreased 

oligodendrocyte number and myelin-related gene expression (Davis and 

Haroutunian, 2003; Dracheva et al., 2006; Hakak et al., 2001; Hof et al., 2003), 

disturbances in Parvalbumin positive GABAergic interneurons as well as GAD67 
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protein expression (Akbarian et al., 1995; Bernstein et al., 2007; Volk et al., 

2000) and decreased expression of synapsin 1 protein (Vawter et al., 2002) have 

been reported in frontal and temporal regions of the patients. Moreover, parietal 

cortex, involved in sensorimotor and cognitive functions, has been reported to be 

the starting point of gray matter loss in early-onset schizophrenic patients 

(Thompson et al., 2001). 

  

The most striking finding in our study was that the morphological and 

pathological consequences of lesion could fully be prevented by early EPO 

treatment. With these findings we conclude that EPO treatment, besides its 

effects on improving cognition, could be effective in preventing the 

pathophysiology underlying cognitive disorders like schizophrenia and could be 

used as an add-on treatment approach in neuropsychiatric diseases. 
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5.2 Original publication 
Sargin D*, Hassouna I*, Sperling S, Sirén AL, Ehrenreich H. Uncoupling of 

neurodegeneration and gliosis in a murine model of juvenile cortical lesion. Glia 

(In press) 
 
* Indicates equal contribution for the publications 

 
 
Personal contribution: 

I wrote the manuscript, performed alone most of the work and was supported 

regarding stereological analyses by Imam Hassouna (working often in 2 shifts 

per day on the device). 
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Sargin et al 
 
 
Table 1 
 
 
Quantification of neurons and non-neuronal cells in cingulate cortex and hippocampal subregions of sham, lesion and 
lesion+EPO groups at 12 months of age did not reveal any significant differences. 
 
 cingulate cortex CA1 CA3 dentate gyrus 
Cresyl violet staining 
total number of neurons (x103) 
sham 
lesion 
lesion+EPO 

317±8 
 314±27  
 339±22 

 
122±7 
119±7 

119±12 

117±6 
127±9 
149±10 

547±29 
500±40 
474±41 

Cresyl violet staining 
total number of non-neuronal cells (x103) 
sham 
lesion 
lesion+EPO 

198±21 
253±11  
223±13 

230±18 
240±20  
233±10 

175±7 
190±16  
232±27 

116±10 
117±13  
119±10 

GFAP staining 
number of GFAP positive cells (x103) 
sham 
lesion 
lesion+EPO 

n.d. 
n.d.  
n.d. 

78±24 
63±7 
74±14 

68±20 
66±5  
71±3 

51±11 
40±2  
47±6 

 
n.d.=not done; numbers refer to n=4-6; mean±S.E.M. presented. 
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6. Summary 
 
In the first original publication, we investigated effects of EPO on cognition and 

mechanisms of how EPO improves cognitive functions and affects synaptic 

plasticity.  

 

We have shown that upon systemic EPO treatment for 3 weeks every other day, 

young healthy mice performed better in hippocampus-dependent memory tasks 

compared to the placebo treated group. This effect was observable 1 week after 

cessation of the treatment and interestingly, it was still maintained for another 3 

weeks of EPO treatment-free period. 3 weeks after cessation of EPO treatment, 

the hematocrit levels were comparable between the 2 mouse groups. This has 

once more shown that EPO’s effect on cognition is independent of its 

hematopoietic effect.  

 

We performed a detailed analysis to reveal the mechanisms of EPO-induced 

cognitive improvement by focusing on synaptic function. Slices obtained from 

mice treated with EPO for 3 weeks and killed 1 week after cessation of the 

treatment, were subjected to electrophysiological analysis. The most intriguing 

finding was EPO’s effect on increasing LTP. In parallel, magnitudes of STP and 

STD were significantly greater in EPO-treated mice. Moreover, whole-cell patch-

clamp recordings on CA1 pyramidal neurons showed that EPO increased the 

frequency of sIPSCs and decreased the frequency of sEPSCs. Thus, EPO 

modulated inhibitory and excitatory transmission inversely. Interestingly, number 

of synapses in hippocampal subregions did not differ between EPO- and 

placebo-treated animals. 

 

MEA recordings performed on primary hippocampal neurons in culture confirmed 

the direct EPO effect on neural cells. Primary hippocampal neurons isolated from 

mice at E17 were grown on MEA dishes and were treated with EPO every other 

day starting from day 5 in culture until day 25. Chronic application of EPO similar 
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to our in vivo approach resulted in prevention of a decrease in the number of 

silent channels upon maturation of the culture. Moreover, EPO treatment led to 

an increase in the number of bursting-channels. These results were in line with 

the in vivo data which also showed EPO’s favourable action on inhibitory 

transmission.  

 

To reveal EPO’s action on single cell level, we used autaptic hippocampal 

neurons treated with EPO at day 7 and subjected to electrophysiological and 

immunocytochemical analyses on days 9-14. Single EPO addition led to a 

decrease in EPSC amplitude and readily-releasable pool size without affecting 

the total number of synapses.   

 

Based on these findings, we conclude that, in addition to its effect on improving 

cognition under pathological conditions, EPO leads to an increase in 

hippocampus-dependent memory in the healthy brain. EPO’s mechanism of 

action on synaptic plasticity seems to be in favor of inhibitory transmission 

without affecting the total number of synapses. We hypothesize that EPO 

modulates synaptic plasticity by increasing the activity of selected networks while 

keeping the others silent.   

 

In the second original publication, we focused on a rare form of bipolar disorder, 

rapid cycling syndrome, and analyzed gene expression changes in different 

disease episodes in a rapid cycling patient. Depending on the gene expression 

results, we performed a clinical experiment offering a new treatment approach for 

our patient. 

 

RNA isolated from PBMC collected at different manic and depressed episodes 

from the patient was subjected to a detailed microarray analysis. Genes selected 

based on microarray analysis, after excluding the ones that showed daily and 

monthly variations, were confirmed by qRT-PCR. With this approach, we 

identified a group of genes that showed alterations in different episodes of the 
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disease. These included genes that were involved in prostaglandin metabolism, 

neurodevelopment, immune and hematopoietic systems.  

 

Based on our hypothesis that cyclic alterations in rapid cycling syndrome might 

reflect an ancient evolutionary program similar to hibernation cycle of mammals 

which is characterized by periodic eating, drinking, sleep and altered metabolism 

and that this program might be reactivated under certain pathological conditions, 

we focused on genes involved in prostaglandin synthesis which has been shown 

to have important roles in hibernation cycle of mammals (O'Hara et al., 1999). 

We performed a clinical experiment by offering the patient a treatment approach 

using a cyclooxygenase inhibitor celecoxib. Treatment with celecoxib over 5 

months led to stabilization of manic and depressed episodes by reducing manic 

and depressed rating scores. Keeping in mind that celecoxib has been the only 

effective drug for our patient who has a 16 year disease history, we believe that 

more patients should be tested for the efficacy of this treatment in rapid cycling 

syndrome and to reveal the role of prostaglandin metabolism in this disorder. 

 

In the third study, we investigated the mechanisms of atrophy and EPO-induced 

recovery upon a discrete cryo-lesion performed on the right parietal cortex of 

juvenile mice.  

 

Mice lesioned at an early age (28 days old) developed a progressive 

neurodegenerative process characterized by gray matter loss, ventricular 

enlargement and cognitive decline which was highly significant 9 months after 

injury. EPO treatment right after the lesion for 2 weeks every other day prevented 

lesion-induced brain atrophy and cognitive decline (Siren et al., 2006). In order to 

investigate the mechanisms of lesion-induced atrophy, we performed a detailed 

histological analysis based on stereology on 1 year old mice. At this age, brain 

atrophy and cognitive decline induced by lesion were already evident.  
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Histological analysis was performed on anterior cingulate cortex and subregions 

of hippocampus. Interestingly, despite progressive global brain atrophy, lesioned 

mice had comparable number of neurons and astrocytes to the sham-operated 

and EPO-treated mice. This indicated a degenerative process going on without 

neuronal loss and gliosis similar to the characterization of brain atrophy in 

schizophrenic patients. We next focused on differences in neuronal and glial 

subpopulations between different groups of mice. 24 hours after a discrete 

unilateral lesion, a bilateral increase in the number of microglia was observed in 

all brain areas investigated. Interestingly, 11 months after lesion, increase in the 

microglial number was still observable in hippocampus. This showed a chronic 

persistent inflammatory response going on in the brains of lesioned mice. Early 

EPO treatment prevented the increase in microglial number at both time points. 

Lesioned mice at the age of 1 year had a slight reduction in the number of 

oligodendrocytes accompanied by reduced expression in myelin proteins. EPO 

treatment increased the number of oligodendrocytes and prevented the reduction 

in myelin protein expression. Moreover, EPO prevented lesion-induced increase 

in the ratio of Parvalbumin positive interneurons and GAD67 protein expression. 

Decrease in the expression of synapsin 1 protein upon lesion was also prevented 

by early EPO treatment. 

 

Morphological and pathological consequences of an early brain injury are similar 

to those observed in schizophrenic brain. Thus, our parietal injury model serves a 

good basis to study the mechanisms of progressive atrophy and EPO treatment 

in cognitive disorders such as schizophrenia. Based on our findings, we conclude 

that EPO treatment in cognitive disorders might be beneficial in preventing the 

pathological changes leading to the outcome of these diseases.    
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