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Summary 

Missense mutations that predict the misfolding of membrane proteins have been associated 

with a number of neurogenetic diseases. However, it is not known how apparently minor 

changes in the amino acid sequence of an extracellular loop or a transmembrane domain 

lead to complete ER retention with complex loss- and gain-of-function effects. I have 

chosen PLP/DM20, a highly conserved and abundant tetraspan myelin protein, associated 

with Pelizaeus-Merzbacher disease (PMD), as a model system. By expressing wildtype and 

mutant PLP isoforms in glial cells, surprising molecular properties became apparent, 

including the ability to self-assemble from two truncated PLP polypeptides, and to form 

conformation sensitive epitope that become masked as the protein matures in the ER. With 

respect to human disease, it was possible to identify a novel molecular mechanism by 

which missense mutations cause ER retention of misfolded PLP. Unexpectedly, pairs of 

cysteines within an extracellular loop of PLP/DM20 play a critical role. Multiple disease-

causing mutations require the presence of cysteines such that misfolded PLP/DM20 is 

efficiently retained in the ER. Replacing cysteines by serine completely prevents ER 

retention and restores normal trafficking of mutant PLP/DM20. This demonstrates a novel 

pathological mechanism by which missense mutations greatly reduce the efficiency of 

intramolecular disulfide bridging. When exposed by misfolding to the ER lumen, unpaired 

cysteines engage in alternative oxidations that lead to abnormal intermolecular crosslinks. 

Since extracellular cysteines are a feature of many membrane proteins, this novel 

pathomechanism is likely to contribute to a diverse group of genetic diseases. To monitor 

the expression and subcellular trafficking of PLP in vivo, a transgenic “knock-in” mouse in 

being generated that will express a PLP-EGFP fusion protein under control of the 

endogenous promoter. 

In an attempt to develop a cure for Pelizaeus-Merzbacher disease (PMD), we treated a 

genuine animal model (rumpshaker mice) with Turmeric. The active constituent of this 

herbal drug (Curcumin) is a non-toxic Ca2+–adenosine triphosphatase pump inhibitor, and 

known to release membrane proteins from ER retention. In a pilot experiment, we 

extended the lifespan of rumpshaker mice from 20 to 60 days. These promising data 

suggest that a therapeutic strategy should be developed for PMD, using turmeric and our in 

vitro and in vivo models. 
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Introduction 

2.1 General Introduction 

Neuron to glia communication is essential for axonal impulse conduction, synaptic 

transmission and information processing. Glial cells support and nourish neurons 

throughout life. They also facilitate neurons in communication and information processing, 

hence are required for normal functioning of the nervous system. There are three types of 

glial cells in the central nervous system (CNS) - oligodendrocytes, astrocytes and 

microglia (Figure 1).  

 

Figure 1: Cells of the central nervous system 

Cultured cells of the central nervous system (CNS) stained for cell type specific markers.   
A) Neurons stained for dendritic microtubule-associated protein MAP2.  
B) Astrocytes stained for glial fibrilary acidic protein (GFAP).  
C) Oligodendrocytes stained for 2´3´-cyclic nucleotide 3´-phosphodiesterase (CNP).  
D) Microglia stained for cell surface glycoprotein (MAC1). 
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Introduction 

Oligodendrocytes wrap layers of myelin membrane around axons to insulate them for 

impulse conduction. Characteristics of myelin and polarized morphology of 

oligodendrocytes is discussed in more detail in latter sections of introduction. 

Astrocytes, which are closely associated with neurons and ensheath synaptic junctions, 

associate with the nodes of Ranvier, and respond to disease and injury by clearing cellular 

debris, secreting trophic factors and forming scars. Some astrocytes stretch from blood 

capillaries to neurons, transporting ions and other substances to sustain neurons and to 

regulate the extracellular environment (Girault and Peles, 2002; Nedergaard et al., 2003; 

Pfrieger, 2002; Ransom et al., 2003). A subtype of astrocytes namely “radial glia” span the 

entire width of the brain from the ventricles to the pial surface during fetal development, 

providing scaffolding along which neurons migrate (Ever and Gaiano, 2005). 

Microglia, the only cells of the CNS  that are not derived from ectodermal precursors, are 

derived from bone marrow monocyte precursors (Kaur et al., 2001). Like their counterparts 

in the hematopoietic system, microglia in the CNS, respond to an injury or disease by 

engulfing cellular debris and triggering inflammatory responses. The microglial cells are 

highly active in their presumed resting state, and continually survey their 

microenvironment with extremely motile processes and protrusions (Nimmerjahn et al., 

2005). 

2.2 Myelin 

Functional integration of the vertebrate nervous system's complex cytoarchitecture requires 

rapid nerve impulse conduction. During evolution, this has been achieved through the 

development of myelin-forming glia. In the CNS, oligodendroglial extend multiple 

processes to myelinate a short segment (known as internode) of several axons (Figure 2). 

In the peripheral nervous system (PNS), a single highly versatile cell, Schwann cell, 

performs all the functions of the CNS oligodendrocytes (forming myelin) and astrocytes 

(ensheathing synaptic junctions, and bundling small-diameter axons together). The 

majority of the cytoplasm is extruded, leaving highly compact multi-lamellar myelin 

(Figure 2), which is composed of approximately 80 % lipids (by dry weight) and rest 20 % 

proteins (Figure 2). This structure efficiently isolates the axon to enable fast, saltatory 

conduction, by concentration of voltage-gated sodium (Na+) channels at the nodes of 
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Ranvier (Figure 3) (Pedraza et al., 2001). Membrane compaction leads to a defined 

periodicity of myelin [which differs in the PNS (190 ± 7 Å) and in the CNS (170 ± 7 Å) 

myelin]. As a result of membrane compaction a major dense line (MDL) inter-separated by 

two intra period lines (IPL) is formed. The IPL is a resultant of compaction of two 

opposing outer membranes (Figure 2). 

 

Figure 2: Myelin ultrastructure and major myelin proteins 

A) In CNS, a single Oligodendrocyte (OL) myelinate a short stretch of multiple axons whereas in PNS a 
single Schwann cell (SC) myelinates a short stretch of a single axon. Axons are drawn in red and OL/SC 
processes and cell body in grey.   
B) Ultrastructure of CNS and PNS myelin. Oligodendrocyte (nucleus, OLN) myelinate many axons (Ax), all 
these axons might (or might not) share their myelin from a single oligodendrocytes. Transverse section of a 
Schwann cell (nucleus, SCN) spirally wrapping whorls of myelin membranes around an axon. The myelin 
spiral is bounded by inner (periaxonal, P) and outer (abaxonal, Ab) mesaxons. In PNS, basal lamina (bl) 
surrounds the entire abaxonal surface, and extracellular collagen fibrils (cl) separate adjacent fibers. Unlike 
PNS, no visible extracellular matrix separates myelinated fibres in the CNS.  
C) Schematics of myelin periodicity. Processes from oligodendrocytes or Schwann cells wrap around axons 
and cytoplasmic membrane leaflets fuse to form major dense line (MDL), while extracellular leaflets of 
adjacent lamellae become closely apposed to form the intraperiod lines (IPL). Orientation of major myelin 
proteins within a membrane bilayer are shown here; proteins found in CNS as well as in PNS myelin (black), 
proteins exclusive to PNS (magenta) and CNS (blue). 
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Figure 3: Nodal, paranodal, juxtaparanodal and internodal organization in CNS and PNS 

A) The axoglial apparatus consists of the node of Ranvier (N), recognized as the bare axonal segment, 
flanked by paranodal (Pn) loops, formed by the terminal expansions of myelinating (My) cells, and the 
juxtaparanode (Jpn), which is located distal to the paranodal domain. The inset demonstrates the electron-
dense “septa” (arrows) of the axoglial junction, whose functions may include intercellular adhesion, as well 
as molecular sieving.   
B) Schematic depicting CNS and PNS myelin sheaths (meeting at a node) surrounding a single myelinated 
axon. The relative intensity of the red and green indicates the relative abundance of the indicated proteins. 
The node comprises mainly of clustered sodium channel subunits and their interacting partners. The glial 
paranodal loops engage in two types of epithelial-like junctions: tight and adherens junctions (for details see 
Figure 6). OSP/claudin-11 is a constituent of the tight junctions in the CNS, and E-cadherin mediates 
adhesion at the adherens junctions between the paranodal loops in the PNS. The proteins of the axoglial 
junction include caspr/paranodin, F3/contactin in the axon, and neurofascin 155 in myelinating glia. The 
juxtaparanode zone contains the potassium channel subunits Kv1.1, Kv1.2, and Kvβ2, and putative 
interacting proteins, such as caspr2.  
C) The alignment of proteins subdomains in relation to morphological features of the axoglial apparatus in 
the PNS demonstrates that sodium channels (red) are restricted to the node of Ranvier and are flanked by the 
caspr paranodal domain (red in D). Potassium channels (green in D) are localized distal to the caspr “collar” 
in the juxtaparanodal region. Schmidt-Lanterman incisures contain the myelin associated glycoprotein (green 
in the second panel). Adapted and modified from (Lazzarini RA, 2003; Pedraza et al., 2001). 
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The compact structure of CNS myelin is maintained by two major proteins, the 

cytoplasmic myelin basic protein (MBP) and the transmembrane proteolipid protein (PLP), 

which together comprise approximately 80 % of the total myelin proteins (Lees and 

Brostoff, 1984). In mammalian PNS, instead of PLP, protein zero (P0) a type I integral 

membrane glycoprotein of immunoglobulin gene super family, represents >70 % of the 

total myelin protein (Lemke and Axel, 1985). In contrast, Myelin associated glycoprotein 

(MAG) is selectively enriched in periaxonal myelin membrane of CNS internode and to a 

small stretch of inner tongue process membrane (Sternberger et al., 1979; Trapp, 1988).   

In addition, isolated myelin contains a number of minor protein components whose 

functions are obscure. These include 2´3´-cyclic nucleotide 3´-phosphodiesterase (CNP) 

(Tsukada and Suda, 1980), oligodendrocyte myelin glycoprotein (OMG), myelin 

oligodendrocyte basic protein (MOBP), myelin oligodendrocyte glycoprotein (MOG), 

oligodendrocyte specific protein (OSP/claudin-11) (Gow et al., 1999), sirtuin 2 and 

members of the tetraspan-protein family tetraspanins (Birling et al., 1999; Ishibashi et al., 

2004; Tiwari-Woodruff et al., 2004). 

The CNS myelin is known to inhibit neurite outgrowth after a CNS insult. The underlying 

mechanisms that account for this regeneration failure in the adult CNS as compared to PNS 

are poorly understood. The role of CNS myelin specific proteins OMG and NogoA apart 

from MAG underwent an extensive investigation (Domeniconi et al., 2002; Hwang et al., 

1992; Liu et al., 1996). 

2.3 Human PLP 1 and mouse Plp1 gene transcripts 

The X-linked 15.97 kb Plp1 gene is encoded by 7 exons. The alternative splicing of PLP 

precursor RNA yields a minor isoform known as DM20 (Nave et al., 1987). DM20 is 

identical to PLP, except for a 35 amino acid segment, encoded by the 5 prime end of exon 

3, that is absent in DM20 (Figure 4) (Nave et al., 1987). It has not been clearly established 

whether the two isoforms have separate functions in vivo. Plp1 knockout mice, which lack 

both isoforms, have defects in the intraperiod line (IPL) of myelin (Boison and Stoffel, 

1994; Klugmann et al., 1997; Rosenbluth et al., 1996) and also develop an axonopathy 

(Griffiths et al., 1998). Plp1 knockout mice complemented with transgenes expressing only 

one isoform remain abnormal, whereas when both isoforms are present, the abnormal 
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phenotype is prevented (Griffiths et al., 1998). Recently, a new exon of the Plp1 gene in 

mice has been identified between exons 1 and 2, which is spliced into PLP and DM20 

mRNAs, creating a new translation initiation site (Bongarzone et al., 1999). This generates 

PLP and DM20 proteins with a 12 amino acid leader sequence that apparently targets them 

to oligodendrocyte cell bodies rather than to myelin membranes (Bongarzone et al., 2001). 

However, as no homologous exon has been detected in the human genomic sequence, the 

functional significance of this murine exon is unclear. Small amounts of both Plp1 gene 

products are synthesized by Schwann cells in the PNS, with DM20 being an abundant 

isoform. It is still unclear whether these proteins are incorporated into the compact PNS 

myelin. Message for soma restricted and classical DM20 and PLP, is also present in 

thymus (Pribyl et al., 1996), heart (Campagnoni et al., 1992), motor neurons and muscles 

(Feng et al., 2003; Jacobs et al., 2004) and in lymphoid tissues (Feng et al., 2003; Voskuhl, 

1998). 

 

Figure 4: Topology of PLP/DM20 in myelin membranes 

PLP and DM20 share the same primary structure except a short 35 amino acid stretch (116-150 in filled grey 
circle), that is absent in DM20. Blue filled circles are amino acids substitutions associated PMD or SPG2 
patients, whereas filled red circle highlight naturally occurring animal models of the PMD. Disulfide bonds 
in extracellular loop 2 (EC2) are joined by red lines and are critical for PLP folding (for details see section 
4.1.3 and Figure 12). 
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2.4 PLP conservation during evolution and topology in myelin 

membranes 

The amino acid sequence of PLP is highly conserved among mammals: human and murine 

PLP are identical, and show greater than 99 % homology with PLP from avian, bovine and 

canine (Figure 5). PLP from amphibians also shows a high degree of homology (>85 %) 

with mammalian PLP. PLP and DM20 are part of the “DM” family of molecules, which 

includes the neuronal M6 glycoproteins in mammals, and DM20-like molecules in sharks 

and rays. Members of this family not only share a high degree of sequence homology, 

particularly in their transmembrane regions and positions of cysteines, but also contain 

other conserved domain sequences.  

During myelination, DM20 is selectively excluded from the compacted myelin and 

enriched on the surface of oligodendrocytes, whereas PLP is associated predominantly 

with the myelin sheath (Trapp et al., 1997). Western blotting of myelin from adult animals 

identifies both isoforms in the myelin fractions. However, the lack of a specific antibody 

against DM20 has prevented the unequivocal localization of each isoform by immuno-

cytochemistry. Transfection in heterologous cells infers that PLP and DM20 can be 

incorporated into the cell membrane independently (Gow et al., 1994; Gow and Lazzarini, 

1996; Thomson et al., 1997). Transfection in the cells of oligodendroglial lineage; oli-neu 

(Jung et al., 1995) and OLN93 (Richter-Landsberg and Heinrich, 1996) reveals that, apart 

expression at the cell surface, PLP and DM20 accumulate in lamp1-positive 

endosomal/lysosomal(E/L) compartment. 
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Figure 5: Conservation of PLP among different species 

Clustal W alignment (DNA-star MegAlign 6.0), shaded residues are identical. Amino acid sequence of 
H.sapiens PLP shows high homology with M. musculus, S. scrofa, G. gallus, C. familiaris and B. taurus PLP. 
Unlike amino acid sequence from mouse, amphibian PLP shows less homology with human PLP (homology 
not shown). 

 

Several topological models of PLP orientation in membrane bilayer has been proposed 

based on mathematical modeling, chemical labeling, limited protease digestion, and 

immuno-labeling (Inouye and Kirschner, 1994; Konola et al., 1992; Popot et al., 1991; 

Stoffel et al., 1989; Weimbs and Stoffel, 1994). It is established now, that PLP has four 

transmembrane (TM) domains and two extracellular loop regions (EC1 and EC2) that 

interact with the opposing membrane in compact myelin (Popot et al., 1991; Stoffel et al., 

1989). Both N- and C-termini of PLP protrude into the cytosol (Figure 4). Since, myelin 

can be purified by sucrose gradient centrifugation and PLP is one of the most abundant 

membrane proteins, even post-translational modifications of PLP have been studied in 

detail. By mapping tryptic peptides at reducing and non-reducing conditions, the location 

of two extracellular disulfide bridges (C183-C227 and C200-C219) within EC2 have been 

determined (Shaw et al., 1989; Weimbs and Stoffel, 1992). 
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2.5 Mutations associated with Plp gene 

Numerous point mutations of the X-linked PLP1 gene cause Pelizaeus-Merzbacher 

Disease (PMD; OMIM # 312080) or Spastic Paraplegia type 2 (SPG2; OMIM #312920) in 

humans, and dysmyelination in corresponding mouse models (Nave and Boespflug-

Tanguy, 1996). A large range of mutations involving the PLP1 gene in humans lead to 

varying phenotypic severity. A comparison of mutations suggests that SPG2 is a 

degenerative disease and primarily the PLP "loss-of-function" phenotype. In contrast, 

PMD is an early developmental disorder and severe leukodystrophy, caused by 

oligodendrocyte death (Gow et al., 1998; Seitelberger, 1995; Werner et al., 1998).  A large 

number of PMD mutations are substitutions in EC2 (for a comprehensive list of PLP1 

mutations see - http://www.med.wayne.edu/neurology/ClinicalPrograms/Pelizaeus-

Merzbacher/plp.html. 

Mutation in human PLP1 gene result in variable phenotypic consequences ranging from a 

life expectancy of an early infancy to those that live bedridden for several decades. The 

most common abnormalities associated with PLP1 gene are duplication and triplication, 

which results in severe early-onset form of PMD. Complete loss of the PLP1 gene, or 

mutations leading to almost complete truncation of the protein, result in a milder clinical 

phenotype than most other mutations. Similarly, in mice there is a variable degree of 

phenotype from those that die between P20–P34 to those that can live almost indefinitely. 

The most severely affected mutants include the jimpy mouse (PLPjp4j) and its allele 

PLPjpmsd, and the myelin-deficient (md) rat. Moderately affected mutants include the 

shaking pup (PLPshp) and the paralytic tremor (PLPpt) rabbit, and mildly affected the 

rumpshaker (PLPjprsh) mouse (Griffiths et al., 1990; Schneider et al., 1992). In addition to 

these naturally occurring models, imitation of human PLP1 gene duplication, by transgenic 

autosomal overexpression of Plp1 gene result in dose dependent dysmyelinating phenotype 

in mouse (Readhead et al., 1994). These animals provide ideal tools in which to examine 

the effects of abnormal or missing PLP on myelin formation and maintenance. 
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2.6 Sorting of membrane proteins and mechanisms of ER retention 

Membrane proteins are targeted to the ER by their signal sequence and are co-

translationally inserted into the membrane. In the oxidative environment of the ER, 

numerous chaperones catalyze the proper folding of the growing polypeptide (Mothes et 

al., 1997). Before exiting the ER, they are screened by a quality control system that retains 

unfolded or misfolded proteins and marks them for degradation (Ellgaard and Helenius, 

2003; Ellgaard et al., 1999). Some membrane proteins, including ion channels and 

connexins, are also assembled into homo- and hetero-oligomers in the ER (Hurtley and 

Helenius, 1989) and can exit only when properly assembled. Monomeric or incompletely 

assembled subunits are retained by stable interactions with ER resident chaperones 

(Kleizen and Braakman, 2004). 

Mutant proteins that are retained in the ER can induce the unfolded protein response (UPR) 

that includes ER growth and transcriptional activation of genes encoding chaperones (Patil 

and Walter, 2001; Rutkowski and Kaufman, 2004). In mammalian cells, the UPR can also 

trigger apoptosis (Federovitch et al., 2005; Harding et al., 2002). Not surprisingly, in many 

diseases cell death has been associated with mutant membrane proteins that are thought to 

be "misfolded" based on sequence analysis. However, the essential features of protein 

misfolding are often unknown. Whereas mutations that alter a transmembrane (TM) 

domain cause stable interactions with the ER-resident chaperon calnexin (Swanton et al., 

2003), ER retention remains unexplained for the majority of disease-causing substitutions 

that map into EC loop regions of polytopic membrane proteins. 

Many of the structural changes in PLP appear modest, and the underlying cause of 

oligodendrocyte death is not obvious. Overexpression of mutant PLP in transfected COS-7 

cells has suggested misfolding and ER retention as a likely cause (Gow et al., 1994; Jung et 

al., 1996). However, what defines "misfolding" for an oligodendrocyte (prior to ER 

retention) remains unclear. Moreover, because of oligodendrocyte death, PLP retention 

cannot be adequately studied in in vivo systems. Here, we have partially solved this 

problem by using immortalized oligodendrocytes to study PLP trafficking and retention. 

The biggest puzzle in PLP biology has been the observation that several substitutions in 

EC2 cause the retention of PLP, but not the corresponding DM20 mutant (Gow and 
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Lazzarini, 1996), although PLP and DM20 differ by the length of the cytoplasmic loop. 

We have hypothesized that the differential behavior of PLP and DM20 may hold a clue as 

to the underlying retention mechanism. Here, we show that cysteine residues in EC2 are 

not only essential for protein folding, but also for ER retention of PLP with PMD-

associated substitutions. We suggest a disease mechanism for membrane proteins, by 

which missense mutations alter the EC domain structure such that the formation of intra-

molecular disulfide bridges becomes inefficient. In the oxidative environment of the ER, 

unpaired cysteines form instead abnormal protein dimers and unspecific protein crosslinks, 

that cause ER retention and possibly cell death. 

2.7 Oligodendrocytes are polarized cells 

Polarized membrane assembly is an intricate process, requiring a coordinated synthesis, 

transport and sorting of proteins and lipids (Figure 6). During last decade, significant 

advances were made in defining sorting motifs for apical and basal-lateral protein sorting, 

describing the sorting machinery in the trans-golgi network (TGN) and plasma membrane 

(PM) of simple polarized cells. MDCK cells have extensively been used for polarized 

trafficking studies. Another system that underwent an intensive investigation for polarized 

trafficking, to dendrites and axons, is Neuronal. Trafficking studies of CNS myelin 

proteins in MDCK cells (Kroepfl and Gardinier, 2001) have yielded valuable insight into 

how myelin biogenesis might take place. Myelin forming Schwann cells also share some 

feature of MDCK cells (Figure 6). Oligodendrocytes, compared to both cell types are much 

more complicated and must possess a unique trafficking and signaling pathway to sort 

myelin proteins to various myelin growth cones. 
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Figure 6: Protein sorting and domain organization in polarized cells 

A) Postulated mechanisms of post-golgi circuits in MDCK cells (left) and fibroblasts (right). Sorting in the 
raft circuit (in red) is based on sphingolipid–cholesterol microdomains. Proteins like vesicular integral 
membrane protein (VIP) and annexins associate and act as stabilizers for other proteins (Fiedler et al., 1994). 
Alternatively (in blue), cells employ sorting signals in the cytoplasmic tails and binding at proteins. In the 
blue circuit NSF–SNAP–SNARE–Rab system is used for vesicular docking and fusion (Fiedler et al., 1995). 
B) Schematic organization of the nodal region of myelinating glia (in PNS) is compared to simplified 
organization of chordate (upper right) and invertebrate epithelial (lower right) cells. The nodal region (red) is 
masked by Schwann cell microvilli in PNS (astrocytes processes in CNS). The paranodal region is a site of 
extensive junction formation. It serves as a barrier between the extracellular space at the node and the 
periaxonal space in the internode. This also separates nodal membrane proteins from the juxtaparanodal 
proteins. Paranodal loops form extensive autotypic junctions that are radially and circumferentially arrayed: 
These include tight junctions (TJ) that provide a presumptive paracellular seal between the periaxonal space 
and the loops, gap junctions (GJ) that permit direct communication between loops, and adherens junctions 
(AJ) that promote loop to loop attachment. The apical membrane of epithelia is rendered in red, and the 
lateral domain, a site of homotypic cell interactions, is rendered in purple. A diffusion barrier between 
membrane domains is provided by tight junctions in chordates; septate junctions in invertebrates (green), 
which are orthologous to the paranodal junctions, are interposed between domains. [A and B are adapted 
from (Simons and Ikonen, 1997) (Salzer, 2003)] 
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How do the CNS myelin internodes and myelin processes expand? Although, there has 

been substantial progress in our understanding of the factors that determine glial cell fate, 

much less is known about the cellular mechanisms that determine how the myelin sheath is 

extended and stabilized around axons. As Oligodendrocytes enter terminal differentiation 

and contact neurons, they begin to produce myelin membranes at a remarkable rate (>104 

μm2 myelin membrane surface area/cell/day; (Pfeiffer et al., 1993)). During myelination, 

oligodendrocytes must decide how many times each growing process needs to be wrapped 

around a segment of an axon. By following biochemical clue displayed by each axon, 

oligodendrocytes must integrate each signal and respond by delivering proteins and lipids 

to each growing process, accordingly. These biochemical clues or signals also help 

oligodendrocytes to discriminate between: glial and neuronal processes, dendrites and 

axons. Do glial cells rely on biochemical clue, once the myelination is completed, is still a 

major questions of the field. Understanding how myelinating glia and neurons co-operate 

to achieve this feat is a challenging and important problem. Current concepts of lipid rafts, 

which propose the existence of microdomains in membranes, might help to explain how 

proteins and lipids are delivered to the growing membrane (Figure 6 A). However, such 

concepts might be less useful for understanding how the myelin macrodomain, with its 

distinct protein and lipid content, is stably segregated from the plasma membrane of the 

myelin-forming glial cell. Cholesterol is a major constituent and a rate limiting step in 

myelination. Transgenic mice with oligodendrocytes that lack an ability to synthesize 

cholesterol show a delay in myelination that seems to be at least partially compensated by 

cholesterol uptake (Saher et al., 2005). Lipids are probably targeted to the growing process 

as a consequence of their interactions with particular proteins (Horvath et al., 1990; 

Sankaram et al., 1991). Solving the puzzle about lipid, leads to another puzzle i.e, how 

proteins are segregated into growing myelin tongue. Most likely this occurs as a result of a 

combination of factors, such as the specific targeting of proteins during their biosynthesis, 

cis-association with other proteins and finally by trans-adhesive associations during 

compaction and axon–glia interaction.  

Studies have therefore focused on how oligodendrocytes (OLs) synthesize MBP and PLP 

and incorporate them into the growing myelin sheath. The discovery that myelin basic 

protein (MBP) is synthesized in the growing myelin process (Colman et al., 1982; Trapp et 

al., 1988) on free ribosomes was a major step forwards in understanding of how proteins 
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might be delivered to the myelin membrane. This was one of the first demonstrations of 

localized mRNA translation in a eukaryotic cell, and indicated that MBP is incorporated 

into the growing myelinating process at sites that are quite distant from the 

oligodendrocyte cell body.  

In our study, we have investigated vesicular trafficking to myelin compartment by 

generating stable oligodendrocyte cell line expressing PLPwt-EGFP. We also transfected 

primary oligodendrocytes (OLs) to compare trafficking polarization between precursor and 

mature cells When expressed in cultured OLs, PLP resides in a compartment with 

characteristics of a late endosome/lysosome (LE/L) compartment. Co-culture with neurons 

(or cAMP treatment) lead to an increase of PLP on the PM and a disappearance from the 

LE/L (Trajkovic et al., 2006).  

Do neurons give instructions to glial cells? Oligodendrocyte precursor cells (OPCs) in the 

CNS migrate into developing white matter where they differentiate into postmitotic OLs 

and produce the myelin sheath. The differentiation of OPCs in terms of changes in gene 

expression and in morphology has been studied extensively in vitro and in vivo (Pfeiffer et 

al., 1993). Because OPCs differentiate normally in axon-free culture and express myelin 

components, a role for neurons was not immediately apparent. OPCs and newly born OLs 

require astrocyte-derived factors such as PDGF, but OLs become dependent on axonal 

signals later. Axonal signaling to OLs occurs on at least two levels (Barres and Raff, 1999; 

Coman et al., 2005). Electrical activity mediated by extrasynaptic release of adenosine 

(Stevens et al., 2002) is required for proliferation of OPCs. Additionally, contact-mediated 

neuronal signals play important roles in OPC and Schwann cell differentiation and 

myelination (Corfas et al., 2004). Michailov and colleagues have shown that the levels of 

neuregulin 1 type III overexpression by axons results in hypermyelination in PNS 

(Michailov et al., 2004). In a follow up study Salzer and colleagues have shown neuregulin 

1 type III also determine the ensheathment fate of axons in the PNS (Taveggia et al., 

2005). 

17 



Introduction 

2.8 A therapeutic approach toward a mouse model of PMD 

Recently, curcumin has been shown to resolve amyloid plaques (in vivo) (Lim et al., 2001; 

Yang et al., 2005) and the drug is capable of crossing  the blood brain barrier (Giri et al., 

2004; Natarajan and Bright, 2002; Scapagnini et al., 2006; Tomita et al., 2005). Curcumin 

has been shown to modulate a number of cellular messenger pathways, including NF-kB 

and intracellular calcium (Egan et al., 2004; Sarkar and Li, 2004). Curcumin has also been 

shown to modulate and abrogate protein aggregates/retention of myelin protein zero (in 

vitro) (Khajavi et al., 2005) and other channel proteins CFTR (in vivo and in vitro) (Egan 

et al., 2004).At molecular level, curcumin acts as a non toxic and potent Ca2+-ATPase 

pump inhibitor (Logan-Smith et al., 2001). As many luminal chaperons are Ca2+ binding 

proteins (Nigam et al., 1994; Szperl and Opas, 2005; Trombetta and Parodi, 1992) here we 

directly tested with an in vivo approach whether misfolded PLP is released from the ER or 

not.  

The treatment of rumpshaker mice (a model for Palizaeus-Merzbacher disease) with 

turmeric (the rhizome powder) resulted in a prolonged lifespan of the mutant mice. These 

promising data suggest that a therapeutic strategy should be developed for PMD, using 

turmeric and our in vitro and in vivo models. 
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3.1 Material Used 

3.1.1 Kits, chemicals and protocol source 

All chemicals used were purchased from the Sigma-Aldrich unless stated otherwise. DNA 

purification kits and other molecular biology kits were purchased from Qiagen, Promega 

Stratagene and Sigma-Aldrich. Cell culture and general laboratory material from Falcon, 

Nunc and Eppendorf was used.  

Wiley interscience online protocol source for cell biology (http://www.mrw.interscience. 

wiley.com/cp/cpcb/cpcb_contents_fs.html) and molecular biology 

(http://www.mrw.interscience.wiley.com/cp/cpmb/cpmb_contents_fs. html) was referred 

before any new experiments. 

3.1.2 Solutions and buffers  

3.1.2.1 Molecular biology buffers 

DNA-sample buffer (6x) 

20 % (w/v)   Glycerol in TAE buffer 

0.025 % (w/v)  Orange G or bromophenol blue 

 

dNTP-stock solutions (100 mM) 

25 mM each dATP, dCTP, dGTP, dTTP (Boehringer, Mannheim) 

Ethidiumbromide 

1 μg/ml for agarose gels in 1xTAE 

 

TAE (50x, 1000ml) 

2 M    Tris-Acetate, pH 8.0 

50 mM   EDTA 

57.1 ml  Glacial acetic acid 

Make 1000ml with dH2O 
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TE (1x) 

10 mM   Tris-HCl, pH 8.0 

1 mM    EDTA  

3.1.2.2 Protein biochemistry buffers 

Biotinylation and protein labeling 

Biotin-maleimide 

N-Biotinoyl-N′-(6-maleimidohexanoyl) hydrazide 

(membrane permeable) 

Stock-200 mM in DMSO 

 

Sulfo-NHS-LC-Biotin (membrane impermeable) 

1 mM in DPBS (prepare fresh) 

Sulfo-NHS-LC-Biotin (quenching buffer) 

1 M Glycine or Lysine in DPBS 

 

DSP 

Dithiobis(succinimidyl) propionate 

200 mM in DMSO (Cross-linker) 

 

DPBS 1x, cell culture 

0.7 mM   CaCl2 

2.6 mM   KCl 

136 mM   NaCl 

0.5 mM   MgCl2 

8.1 mM   Na2HPO4 

1.5 mM   KH2PO4

 

Iodoacetamide 

200 mM stock in PBS 
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Promix S35 L-methionine and L-cysteine (Amersham) 

7.15 mC 

Lysis buffer I   

20 mM   Tris-HCl, pH 7.5  

150 mM   NaCl  

1 mM    EDTA  

0.1 to 0.3 %  SDS 

1 mM    PMSF (add before use) 

 

Lysis buffer II  

20 mM   Tris-HCl, pH 7.5  

150 mM   NaCl 

1 mM    EDTA  

1 %    Triton X 100 

1 mM    PMSF (add before use) 

 

Western Blotting 

Blocking Buffer 

5 %   non fat dry milk powder in TBS 

 

Blotting buffer, 1x (pH unadjusted, Western Blotting) 

39 mM   Tris-HCl 

48 mM   Glycine 

10-20 %   Methanol 

 

SDS running buffer (1x) 

25 mM   Tris-HCl 

192 mM  Glycine 

1 % (w/v)   SDS 
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SDS sample buffer (1x) 

25 mM   Tris-HCl, pH 6.8 

5 % (v/v)   Glycerol 

0.01 % (v/v)   Bromophenol blue 

0.2 to 2 % (v/v)  β-ME (add fresh) 

 

SDS sample buffer (5X) 

62.5 mM   Tris-HCl, pH 6.8 

2 % (w/v)   SDS 

20 % (v/v)   Glycerol 

0.01 % (v/v)   Bromphenol blue 

0.2 to 2% (v/v)  β-ME (add fresh) 

 

SDS separating gel 12.0 % (4 gels of 1.5mm thickness)  

13 ml   dH2O 

15 ml   30 % Acrylamide BioRad (29.1) 

9.4 ml   1.5M Tris-HCl,  pH8.8 

370 μl   10 % SDS 

125 μl   10 % APS 

30 μl   TEMED (Biorad) 

 

SDS stacking gel (4 gels) 

6.1 ml   dH2O 

1.3 ml   30 % Acrylamide BioRad (29.1) 

2.5 ml   0.5 M Tris-HCl,  pH 6.8 

100 μl   10 % SDS 

50 μl   10 % APS 

10 μl   TEMED 
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Stripping buffer 

50 mM   Tris-HCl, pH 6.8 

1 %   SDS 

300 mM   βME 

 

TBS 

50 mM   Tris-HCl, pH 7.5 

140 mM  NaCl 

3.1.2.3 Immunocytochemistry buffers 

PBS 1x, cell culture 

136 mM  NaCl 

2.6 mM  KCl 

10 mM   Na2HPO4 x2H2O  

1.4 mM  KH2PO4  

Set pH to 7.2 with 10 N NaOH; make 1000 ml with H2O 

 

TBS 

25 mM   Tris-HCL, pH 7.5  

136 mM   NaCl 

2.6 mM   KCl  

 

Fixative 

2 %   Paraformaldehyde in PBS/TBS  

 

Permeabilization buffers 

0.1 %    Saponin in TBS/PBS 

0.001 %  Triton X 100 in TBS/PBS 

0.1 %   Digitonin in TBS/PBS 

 

Blocking Buffer 

2 %   BSA (Fraction V)  
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0.1 %   Porcine skin gelatine 

2 %   Goat serum  

0.02 %   Biotin  

0.1 %   Saponin 

Dissolved in TBS/PBS 

 

Blocking Buffer (live staining) 

3 %   Goat Serum in DPBS 

 

Dilution Buffer 

2 %   BSA (Fraction V) 

0.1 %   Porcine skin gelatine 

2 %   Goat serum  

0.02 %   Biotin  

Dissolved in TBS/PBS 

 

Mounting Agent 

Aqua poly-mount (Polysciences) 

3.1.3 Bacterial and cell culture media  

Bacterial media were autoclaved and supplemented with antibiotics prior to the use. 

DMEM for mammalian cell culture was purchased from GIBCO or BioWhittaker. 

3.1.3.1 LB-Medium 

1 %   Bacto Tryptone 

0.5 %   Bacto Yeast extract 

1 %   NaCl 

Make 1000 ml with H2O, set pH 7,5 with 10 N NaOH and autoclave. 

Before use add antibiotics to the following concentrations; 

150 mg/l   Ampicillin (Amp)  

50 mg/l  Chloramphenicol (Cm)  

25 mg/l  Kanamycin (Kan) 
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3.1.3.2 Buffers and media for Cell Culture 

Curcumin 

1μM in DMSO 

 

Trypsin-EDTA Solution 

Dilute1:10 in PBS or DMEM 

 

COS-7 medium  

DMEM, 1000 ml/l glucose 

10 %   FBS 

1 %   Penicillin/Streptomycin 

0.1 %   Ampotericin (0.1 %) 

2 mM   L-Glutamine 

 

Live cell Imaging medium 

DMEM, High glucose (4500mg/l) 

25 mM   Hepes 

1 %   Horse Serum 

Without phenol red 

 

Labeling S35medium 

Methionine and cysteine free DMEM 

All other regular constituents added 

 

Oli-neu medium (SATO) 

DMEM, 4500 mg/l glucose 

1 μg/ml  Transferrin  

10 μg/ml  Insulin 

25 μg/ml  Gentamycin 

220 nM  Sodium-Selanite 

520 nM  L-Thyroxine 

500 pM  Tri-iodo-threonine 
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100 μM  Putrescine 

200 nM  Progestrone 

Sterile filter and add between 1 to 5 % Horse Serum 

 

OLN93 medium 

DMEM, 4500 ml/l glucose 

10 %   FBS 

1 %   Penicillin/streptomycin 

2 mM   L-Glutamine 

 

Hybridoma medium 

RPMI 1640 medium 

1 to 10 %  FBS 

1 %   Penicillin/streptomycin 

2 mM   L-Glutamine 

1 %   Non essential amino acids (100x; Gibco #11140-076) 

 

Electroporation buffer 

50 mM   K2HPO4 

20 mM   CH3COOK 

20 mM   KOH 

Adjust pH to 7.4 

 

Freezing Medium for oli-neu and COS-7 cells 

70 %    DMEM 

20 %   FCS 

10 %   DMSO 

3.1.4 Bacterial strains and cell lines used 

Escherichia coli   DH5α and XL1-Blue 
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Mammalian cell lines 

COS-7    Green monkey kidney 

Oli-neu    Rat O2A 

OLN93   Rat O2A 

Hybridoma clones   010 and 3F4.4C2 

3.1.5 Plasmids  

pRK5     Amp-r (Modified and described Jung et al, 96) 

pGEMT-EASY   Amp-r (Promega ) 

pEGFPN1    Kan-r (BD Biosciences)  

pMSVChygro     Amp-r (BD Biosciences) 

pComTRUE    Amp-r  (Mod. by Schwab MH from pBluescript KS) 

3.1.6 Antibodies and Enzymes  

3.1.6.1 Antibodies 

Primary antibodies directed against 

The source of all anti-PLP antibodies, except the 3F4 (Greer et al., 1996), is described in 

(Jung et al., 1996) 

Myc        Sigma 

Calnexin       Stressgen 

Calreticulin       Stressgen 

PDI        Stressgen 

Lamp1        Pharmagen 

 

Secondary antibodies 

Cy™5-coupled anti IgG anti-rabbit/mouse   Dianova 

Cy™3-coupled anti IgG/M anti-mouse   Dianova 

Cy™3-coupled anti IgG anti-rabbit    Dianova 

Cy™2-coupled anti IgG anti-rabbit/mouse   Dianova  

HRP-conjugated anti-IgG-anti-mouse/rabbit   Dianova 
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3.1.6.2 Enzyme 

Restriction enzymes supplemented with 10x buffer were obtained from New England 

Biolabs and Fermentas. If specified in datasheet BSA was added to the restriction mixture. 

Other common molecular biology enzymes were obtained from under mentioned vendors. 

 

CIP (alkaline Phosphatase) (1 U/µl)     Roche 

Pfu high fidelity DNA polymerase    Stratagene 

RedTaq DNA polymerase     Sigma 

3.1.7 DNA and Protein Markers 

DNA-marker Lambda/HindIII     Promega 

DNA-marker PhiX174/HaeIII    Promega 

Precision Plus prestained protein standard   BioRad 

3.1.8 Oligonucleotides  

Oligonucleotides were ordered from the service facility of the Max-Planck-Institute for 

Experimental Medicine. All oligonucleotides used for site-directed mutagenesis are listed 

in next section. 
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3.2 Methods  

3.2.1 Molecular biological techniques  

3.2.1.1 Maintenance of bacterial glycerol stocks  

Genetically modified E.coli were stored as glycerol stocks (20 to 30 % glycerol (v/v) in LB 

medium) at –80 °C. For expansion of glycerol stock, LB medium was inoculated using an 

inoculation loop or autoclaved toothpicks and incubated overnight at 37 °C on 50 rpm 

(rotations per minute) on a tilted platform.  

3.2.1.2 Transformation of bacteria  

To 50 to 100 μl chemical competent E.coli, pretreated for 5 minutes with 1.7 μl β-ME 

either 1 to 50 ng of plasmid DNA or 5 to 10 μl of ligation mixture was added and 

incubated for 15 minutes on ice. After a heat shock (30 sec, 42 °C) and successive 

incubation on ice (1 minute) E. coli were directly plated onto LB plates containing an 

appropriate resistance. For some ligation bacteria were incubated on 37 °C with 500 μl LB 

medium prior to plating. Plates were incubated at 37 °C overnight.  

3.2.1.3 Plasmid isolation of E. coli  

Plasmid isolation from 3 ml cultures (Minipreps) 

(Qiagen (8 strip vacuum manifold) Mini preparation kit) 

3 ml LB media (supplemented with matched antibiotics) were inoculated with a single 

colony and incubated over night at 37 °C at 50 rpm on a tilted platform. Cultures were 

transferred into 2 ml Eppendorf tubes and cells were pelleted by centrifugation (3000 rpm, 

3 minutes, room temperature). Plasmids were isolated from the bacteria according to the 

manufactures protocol. The DNA was eluted from the columns by addition of prewarmed 

(50 °C) 200 μl H20 Tris-HCl (10 mM, pH 8.0). 

 

 

  

30 



Material and Methods 

Plasmid isolation from 200 ml-cultures (Maxipreps)  

(Qiagen Maxiprep kit)  

For preparation of large quantities of DNA, the Qiagen Midi/Maxiprep kit was used. The 

glycerol stock (from analytically tested and sequenced clone) was used to inoculate 3 ml of 

LB medium (with antibiotic) and incubated at 37 °C on 50 rpm for 4 to 6 hours. The starter 

culture was then used to inoculate 200 ml of LB medium, incubated overnight at 37 °C, on 

constant agitation. Cells were pelleted in a SARVOL centrifuge (SLA-1500 rotor at 

6,000 x g, 15 minutes, 4 °C) and DNA was isolated as described in the manufactures 

protocol. Finally, the DNA pellet was resuspended in 500 μl of prewarmed (50 °C) Tris-

HCl (10 mM, pH 8.0) and the DNA concentration was determined. 

3.2.1.4 Enzymatic modification and manipulation of DNA  

Digestion of DNA 

For restriction digestion with type II endonucleases, 1 μg DNA was incubated with 5 to 10 

units of enzymes for twice as long as recommended time (generally 2 to 3 hours at 37 °C) 

at required temperatures. For double digests involving enzymes requiring incompatible 

buffers, the DNA was digested sequentially. The DNA was purified between the two 

digestions using the Qiagen gel extraction kit. Restriction was terminated either by 

addition of sample buffer or by heat inactivation. 

Dephosphorylation of Plasmid-DNA  

After heat inactivation of restriction enzymes, 1 units of Calf Intestine Phosphatase (CIP, 

Roche) per 100 ng plasmid DNA was added. The reaction was incubated at 37 °C for 30 

minutes and terminated by addition of sample buffer. After extraction from the agarose gel, 

the plasmid DNA was used for ligation. 

Ligation of DNA-fragments  

Ligation of DNA fragments was performed by mixing 25 to 50 ng vector DNA with a 

threefold molar excess of insert DNA. 0.5 μl of T4-ligase and 1 μl of 10x ligation buffer 

(both Promega) were added and the reaction mix was brought to a final volume of 10 μl. 

The reaction was incubated either for 2 hours at room temperature or overnight at 4 °C. 

The reaction mixture was used directly for transformation without any further purification. 
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DNA Gel-electrophoresis  

For the separation of DNA fragments ranging from 100 bp to 15 kb agarose gels ranging 

from 0.7 % to 2.0 % were used. Desired amount of agarose was dissolved in 1xTAE buffer 

by heating in a microwave. After the agarose had cooled to approximately 60 ºC, 

ethidiumbromide was added (1 μg/ml) and the agarose was poured into horizontal custom 

made gel tray, combs were placed in the setup and the agarose was allowed to solidify. The 

gel was immersed in 1xTAE buffer in gel loading chamber, prior to the loading or stored at 

4 °C for a maximum of 2 weeks. After loading the samples (containing 10x sample buffer), 

the gels were run at 120 V constant (or 8 to 10 V/cm length) until the desired separation 

was achieved. For documentation, snapshots of UV-transilluminated gels were taken. 

Extraction of DNA fragments from agarose gels 

(Modified from Qiagen Gel Extraction kit protocol) 

For isolation and purification of DNA fragments from agarose gels, the excised fragments 

were heated at for 10 minutes at 55 °C in three volumes of QG buffer.  The mix was 

directly applied to the spin column (from Qiagen kit) centrifuged, washed once with PE 

buffer, air dried (or centrifuged for 1 minute) and eluted by addition of 30 μl prewarmed 

(50 °C) H20. The DNA-concentration was determined by running 1 to 3 μl of gel purified 

DNA next to a molecular weight standard, on an agarose gel. 

Determination of DNA concentrations  

DNA concentrations were estimated spectrophotometerically and by quantitative agarose 

gels. For determining the concentration of DNA preparations, the eluate or plasmid DNA 

was diluted 1:100 with water and the solution was pipetted into a 50 μl cuvette. 

Concentration was determined by measuring the absorbance at 260 nm, 280 nm and 320 

nm. A ratio of A260/A280 between 1.8 and 2 monitored a sufficient purity of the DNA 

preparation. Running gel purified DNA samples next to a molecular weight standard gave 

an estimation of the DNA concentration, and was used to check the integrity of DNA prior 

to a ligation or transformation. 
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DNA Sequencing  

DNA (f.c 100 ng/μl) diluted in H2O was submitted to the sequence facility at the Max 

Planck Institute for Experimental Medicine. The obtained sequencing data was analyzed 

using DNAStar (Lasergene 5, upgraded to 7) software package as well as applications 

available at the “National Center for Biotechnology Information” (NCBI, 

http://www.ncbi.nlm.nih.gov) and ENSEMBL (http://www.ensembl.org).  

3.2.1.5 Generation of PLP-myc, PLP-EGFP , truncated and myc replacement 

chimeras  

All PLP modifications were done with PLP-ORF either amplified or excised from pR4 

vector (Jung et al., 1996). 

PLP-myc 

The myc epitope was introduced by PCR. PLP cDNA was amplified using a sense primer 

with MCS and an antisense primer encoding the myc-epitope. The antisense primer 

replaces the stop codon TGA with codons encoding a flexible linker (SGP) followed by a 

myc epitope encoding sequence, a stop codon TGA and a PstI site. The amplified product 

was subcloned into the same vector (pRK5) using EcoR1/PstI sites. 

Primers used 

SENSE ACATACGATTTAGGTGACACT 
PLP-myc 

ANTISENSE AAACTGCAGCTATCACAGGTCTTCTTCGCTTATCAGCTTC
TGTTCCGGACCGCTGAACTTGGTGCCTCG 

 

PLP-EGFP 

Enhanced green florescence protein (EGFP) tag was fused to the 3´ end of PLP-ORF by 

gene sewing/fusion PCR. The 3´ overhang of the antisense primer for PLP (without the 

stop TGA, otherwise same as above) shared a homology with 3´ overhang with the sense 

primer from EGFP (without an initiation codon ATG). Individually amplified PLP and 

EGFP cDNA were purified and the sense primer from the PLP and the antisense from 

EGFP were used for sewing both products. The 3´ homologous overhang of PLP with 5´ 
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overhang of EGFP served as a bridge to sew the two genes. The final product was cloned 

into the vector pEGFP-N1 utilizing EcoRI/NotI sites. 

Primers used 

SENSE ACATACGATTTAGGTGACACT 
PLP 

ANTISENSE CGGACCGCTCTGCAGCAGGTCTTCTTCGCTTATCAGCTTC
TGTTCCGGACCGCTGAACTTGGTGCCTCG 

SENSE CAGAGCGGTCCGGTGAGCAAGGGCGAG 
EGFP 

ANTISENSE AGGGGGAGGTGTGGGAGGTT 

 

Truncated and myc replacement chimeras 

Truncated PLPs encoding the first half of PLP/DM20 were generated by using an antisense 

primer encoding a stop codon. For truncated PLPs encoding the second half of the protein, 

sense primer encoding methionine/or specific signal peptide for translation initiation was 

used. Myc replacement was introduced by gene sewing PCR as described above.  

3.2.1.6 Site-directed mutagenesis of DNA  

To generate site directed mutagenesis of PLPcDNA, we used a high-fidelity cloned or 

native Pfu DNA polymerase for amplification and subsequent digestion with DpnI, 

followed by transformation into chemical competent bacteria. 

Primer designing 

Sense and antisense primers (24-32 oligonucleotides) were manually designed with a 

required change in the exact middle of the primer. To achieve a melting point between 50 

to 65 °C the length of the primers was varied accordingly. Designed primers were 

proofread using Lasergene’s “EditSeq and Seqman” software packages. All primers were 

synthesized in the (facility) provided by the Max-Planck-Institute. The oligonucleotide 

stocks (50 pM) received were immediately diluted to 10 pM in PCR grade H20. 

Primers used for site directed mutagenesis 

SENSE ACCTGGACCACCTCTCAGTCTATTGCC 
PLPC183S

ANTISENSE ACCTGGACCACCTCTCAGTCTATTGCC 
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SENSE ATAGGCAGTCTCTCCGCTGATGCCAGA 
PLPC200S

ANTISENSE TCTGGCATCAGCGGAGAGACTGC 

PLPC219S SENSE CCTGGCAAGGTTTCTGGCTCCAACCTT 

 ANTISENSE AAGGTTGGAGCCAGAAACCTTGCCAGG 

PLPC227S SENSE CTTCTGTCCATCTCCAAAACAGCCGAG 

 ANTISENSE CTCGGCTGTTTTGGAGATGGACAGAAG 

PLPC219Y SENSE CCTGGCAAGGTTTATGGCTCCAACCTT 

 ANTISENSE AAGGTTGGAGCCATAAACCTTGCCAGG 

PLPD202N SENSE AGTCTCTGCGCTAATGCCAGAATGT 

 ANTISENSE ACATTCTGGCATTAGCGCAGAGACT 

PLPV208D SENSE AGAATGTATGGTGATCTCCCATGGAATG 

 ANTISENSE CATTCCATGGGAGATCACCATACATTCT 

SENSE ATGTATGGTGTTCACCCATGGAATGCTT 
PLPL209H

ANTISENSE AAGCATTCCATGGGTGAACACCATACAT 

SENSE GGTGTTCTCCCACGGAATGCTTTCCCTG 
PLPW211R

ANTISENSE CAGGGAAAGCATTCCGTGGGAGAACACC 

SENSE GGAATGCTTTCTCTGGCAAGGTT 
PLPP215S

ANTISENSE AACCTTGCCAGAGAAAGCATTCC 

SENSE TGGCTCCAACCCTCTGTCCATCT 
PLPL223P

ANTISENSE AGATGGACAGAGGGTTGGAGCCA 

SENSE AAGGGCCTGAGCGCAAAGTTTGTGGGCATCACC 
DM20T115K

ANTISENSE GGTGATGCCCACAAACTTTGCGCTCAGGCCCTT 

SENSE GGACATCCCGACAAGTTTGTGGGCATC 
DM20LSAT-HPDK

ANTISENSE CTTGTCGGGATGTCCCTTGCCGCAGATGGTGGT 

 

PCR (using Pfu DNA polymerase)  

All site-directed mutagenesis were performed in a 50 μl reaction mixture, in duplicates. 

0.1 to 5 ng  Template (pGEMT/pRK5/pEGFP-NI all, containing PLP cDNA) 

10 pM   Sense primer  

35 



Material and Methods 

10 pM   Antisense primer 

100 pM  dNTPs (25 mM each)  

10 x   Pfu-polymerase 

2 Units   Pfu-polymerase (cloned or native) 

 

For both pRK5 and pEGFPNI (containing PLPcDNA) the amplification of 7 minutes and 

for pGEM-T amplification of 3 minutes were performed. 

PCR steps used for the whole plasmid amplification: 

1. 95 °C  Denaturation (5 minutes) 

2. 55 °C  Annealing (1 minutes) 

3. 72 °C Amplification (5 to 7 minutes) 

4. 95 °C  Denaturation (45 seconds) 

5. 72 °C Amplification (10 minutes) 

6. 4 °C Pause 

 

A loop was inserted between cycle 5 and 3. The amplification was carried for 18 cycles. 

PCR purification and DpnI digestion of amplified DNA 

DpnI recognizes the methylated target sequence: 5-GmATC-3 (where the A residue is 

methylated) to selectively digest template DNA (all common strains of E. coli exhibit 

Dam-methylation at the sequence 5-GATC-3). 

As all site directed mutagenesis were done in duplicates, one amplified set was separated 

on agarose gel, extracted and then treated with DpnI. The other PCR amplified DNA was 

treated directly with DpnI after amplification. After 1 hour of digestion with DpnI, 10 to 

25 μl of DNA was used for transformation. After selection of matched antibiotics, 4 clones 

were picked, verified by restriction analysis and sequenced. 
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3.2.1.7 Generation of the PLP-EGFP transgenic “Knock-in” mice  

DNA construct for homologous recombination and screening recombination via PCR  

Short arm for homologous recombination and EGFP fusion. 

For the modification of the Plp gene, the cos901 cosmid was used. EGFP-ORF was fused 

to Plp exon7 replacing the termination codon by gene sewing PCR as described above. 

Transcription of this recomibined locus would yield normal transcripts from exon 1 to 7, in 

addition exon 7 now also encoded from 5´ to 3´ SGP-myc-Pst1-SGP-EGFP-Stop. 

The PCR amplified short arm, for homologous recombination was cloned into pComTrue 

vector after fusion with EGFP-ORF (fusion PCR, see above) using XhoI/AgeI sites. 

XhoI/AgeI sites were introduced by sense/antisense primers annealing at 5´ end of 

homologous region and 3´ end of EGFP-ORF respectively. The short arm read as follow 

from 5´ to 3´ end: XhoI - intron 5 (523 bases onwards) - exon 6 – Intron 6 - exon 7 (69 

bases) –spacers – EGFP – AgeI site. Note that the spacers correspond to SGP-myc-SGP-

PstI as shown above. 

EGFP-ORF and Plp homologous regions were amplified by PCR using Pfu DNA 

polymerase. The purified produced were fused by another round of PCR, with overhangs 

serving as a bridge to sew both products. The final PCR product was cloned into the 

pGEMT-EASY vector, excised after sequencing and subcloned into pCom-True vector 

using the XhoI/AgeI site. 

Long Arm for homologous recombination 

The 4.6 kb downstream of the exon 7, including the entire 3´ UTR region of Plp gene 

served as a long arm for homologous recombination in embryonic stem (ES) cells. The 

long arm, flanked by SacII sites, was also PCR amplified and cloned directly into pCom-

True vector. 

Control PCR for screening homologously recombined ES cells 

To screen homologously recombined ES cells using control PCR. A set of primers was 

tested on a control plasmid mixed with genomic ES DNA from non-transfected cells. The 

control plasmid bears an upstream sequence of the short arm and to distinguish the PCR 

product from the recombination product, 400 bps of irrelevant DNA were cloned into the 
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short arm. The control plasmid yielded a product of about 1900 bps whereas the 

homologously recombined ES yielded a product of 1492 bps with the same primers. 

 

The PCR reaction was made as described above with following modifications: 

Outer PCR (primers used 8210 and 8223) 

ES cells DNA (template)  5 μl 

MgCl2     1.0 μl  

 

Inner PCR (primers used 8210 and 8224) 

Outer PCR product (template) 1 μl 

MgCl2     1.0 μl 

 

PCR for detection of the homologous recombination (Nested PCR) 

1. 95 °C   5 minutes 

2. 95 °C  45 seconds 

3. 57 °C  45 seconds 

4. 72 °C   2 minutes (to step 2, 19) 

5. 4 °C  Pause  

6. 95 °C   5 minutes 

7. 95 °C  45 seconds 

8. 57.3 °C 45 seconds 

9. 72 °C   1.49 minutes (to step 2, 31) 

10. 4 °C  Pause 

 

In the outer PCR the loop was inserted between step 4 and 2. After 19 cycles of 

amplification, 1 μl of PCR product was added to a fresh premix containing the inner 

primers. 
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3.2.2 Protein-biochemical methods  

3.2.2.1 SDS-poly-acrylamide gel electrophoresis  

The Separation of proteins was performed by means of the discontinuous SDS 

polyacrylamide gel electrophoresis (SDS-PAGE) using the Mini-Protean 3 system 

(BioRad). A separating gel of desired thickness and percentage of acrylamide was layered 

with H2O saturated iso-butyl alcohol. Before casting a stacking gel, the residual alcohol 

was removed and the future interface between the two gels was rinsed twice with dH2O. 

The polymerized gels were stored in humid filter paper for a maximum of 7 days. The 

chamber and gels were assembled as described by the manufactures protocol. 5 μl of 

prestained Precision-plus (BioRad) was loaded on each gel as a molecular weight standard 

and to monitor electroblotting. A maximum of 40 μl sample was loaded in a single pocket 

and the gels were run on a constant current of 30 mA per gel, with a maximum voltage of 

150 V. Gels were subjected to Western blotting, once the bromophenol blue reached the 

lower end of the gel. 

3.2.2.2 Western Blot-analysis  

Electrophoretic transfer  

Proteins were transferred from the SDS-gel onto a PVDF membrane 

(Amersham/Millipore, pore size 0.45 μm) using the Invitrogen blotting apparatus. PVDF 

membranes were incubated in transfer buffer for 5-15 minutes, after activation in methanol 

for 30 seconds. Blotting paper and blotting pads presoaked in transfer buffer were 

assembled according to the manufacturer’s protocol. Note that the blotting buffer used 

differs from the manufacturers recommended. Proteins were transferred at a constant 

voltage of 38 V and a maximum current of 275 mA, for 1 hour at RT for a 1.5 mm gel (and 

45 minutes at RT for 0.75 mm gels). 

Immunological detection of proteins on PVDF membranes  

After electrophoretic transfer, the membranes were rinsed briefly in TBS and blocked for 

at least 1 hour at RT in blocking buffer (5 % non-fat dry milk in TBS). Primary antibody 

diluted in blocking buffer was applied for at least 1 hour at RT (or overnight at 4 °C). After 

four washes in TBS-T (0.05 % Tween 20 in TBS), HRP-conjugated secondary antibodies 
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were applied for at least 1 hour, followed by four washes with TBS-T. Membranes were 

exposed using the Enhanced Chemiluminescence Detection kit (PerkinElmer).  

Densitometry evaluation of band intensity  

For the quantification of the western blots only non-saturated developed western blots were 

used and scanned as 8 bit, 256 gray scale images (at 1200 dpi’s on an EPSON F-3200 

scanner). Scanned images were first transformed to 512 by 512 pixels, using Photoshop 

7.0.1, and exported as TIF-files. Intensities of individual bands were quantified with the 

BioRad freeware ‘Quantity-one’ software, after registration. 

3.2.2.3 Lysis of COS-7 and oli-neu cells  

Cells were harvested in Lysis Buffer I (Cell Surface Biotinylation), Lysis Buffer II (co-

immunoprecipitation) or 1x SDS sample buffer (for monitoring the oxidation-reduction 

state of PLPs), 24 to 36 hours after transfection. Before addition of lysis buffer, the free SH 

groups were blocked by incubation membrane with permeable Iodoacetamide (10 to 

20 mM) at 4 °C for 10 minutes, in dark. 

3.2.2.4 Protein biotinylation  

Surface biotinylation was carried out between 24 to 36 hours after transfection and cells 

were washed twice with ice-cold DPBS. Surface proteins were biotinylated by incubating 

cells with 0.3 mg/ml Sulfo-NHS-LC-biotin (Pierce) in DPBS for 30 seconds at 4 °C. the 

Biotinylation was terminated by two washes with 20 mM glycine in DPBS at 4 °C for 30 

seconds, each. The Biotinylated cells were then lysed directly in Lysis buffer I, and the 

biotinylated proteins were precipitated with streptavidin-coupled agarose beads (Pierce) at 

RT for 3 hours. Agarose beads were pelleted by centrifugation and washed five times with 

lysis buffer II at RT. Precipitated proteins were solubilized by addition of 4x LDS-sample 

buffer to the agarose beads. Proteins were separated by SDS-PAGE and immunoblotted 

against the C terminus of the myc epitope. 

3.2.2.5 Oxidation and reduction assay 

Cells were washed twice with DPBS were incubated with a free cysteine blocking moiety 

of a low (Iodoacetamide) or a high (biotin malemide) molecular weight.  Cells were either 

harvested in lysis buffer-I or 1x SDS loading dye. For reducing conditions 300 mM β-ME 
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(between 0.2 to 2 % v/v) were used in 5x loading dye, and for non reducing gels the 

sample was run without addition of β-ME. Proteins were electroblotted with the above 

described protocol. 

3.2.2.6 Co-immunoprecipitation 

Cells grown in 6 well plates were harvested 24 to 36 hours after transfection or induction. 

Cells were rinsed twice with DPBS, incubated with 10 to 20 mM iodoacetamide in DPBS 

for 15 minutes at 4 °C, rinsed twice with PBS and solubilized with lysis buffer II. Samples 

were incubated on ice for 30 minutes with intermittent vortexing and then centrifuged at 

13000 g for 10 minutes to remove the insoluble material. The supernatant was pre-cleared 

by incubation with Protein-A/G-agarose beads in lysis buffer-II containing 1 % BSA. The 

antibodies were added to the supernatant for at least 4 hours to overnight at 4 °C. At least 3 

to 4 hours before the pull-down, 35 μl of Protein-A/G agarose were added to each Co-IP.  

After 4 to 5 washes with lysis buffer-II, followed by a centrifugation at 6000 g after each, 

the agarose beads were finally rinsed in PBS before analysis on SDS-PAGE. 

3.2.2.7 S35 labeling of proteins and radioimmunoassay 

For S35 labeling of proteins, the normal media of growing cells was replaced with a 

methionine/cysteine free media supplemented with 250 μC of Promix (Amersham). After 

24 to 72 hours of labeling, cells were washed twice with DPBS and proceeded as above 

(Co-IP), note here utmost care was taken for the disposal of the radioactive waste. After 

SDS-PAGE, gels were dried on a vacuum dryer and document on Kodak X-MAT (OMAR) 

radiographic films and with phosphoimager. 

3.2.3 Cell culture  

3.2.3.1 COS-7 and OLN93 cell culture 

COS-7 and OLN93 cells were maintained on untreated tissue-culture dishes (Falcon) in 

Dulbecco's modified Eagle's medium (DMEM) and 10 % fetal bovine serum (FBS). Cells 

were grown at 37 °C in a 5 % CO2 atmosphere, and the medium was changed every third 

day. For passaging cells, confluent plates were washed once with PBS, followed by a short 

trypsinization with 0.05 % trypsin-EDTA (Sigma). 
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3.2.3.2 Oli-neu cell culture 

Oli-neu cells (kindly provided by J. Trotter) were maintained in SATO medium containing 

1 to 5 % horse serum (HS) on PLL coated tissue culture dishes (Falcon). Cells were grown 

at 37 °C in a 5 % CO2 atmosphere. For passaging, confluent plates were washed once with 

medium, followed by a short trypsinization with 0.005 % trypsin-EDTA. 

3.2.3.3 Hybridoma cell culture 

Hybridoma cells were culture on untreated tissue culture dishes (Falcon).Before harvesting 

hybridoma supernatant, the cells were spilt at very high dilutions and allowed to grow for 

about one to two weeks. The supernatant was cleared from cellular debris by centrifugation 

at 3500 rpm for 20 minutes. The hybridoma supernatant was aliquoted and stored untreated 

at -20° C.  

3.2.3.4 Transient transfection of COS-7 and oli-neu cells 

COS-7 cells were washed with PBS, trypsinized (or scraped mechanically), pelleted and 

resuspended in electroporation buffer (supplemented freshly with 25 mM Mg2SO4). 

Plasmids were used at 10 µg/300 µl cell suspension (4 × 106 cells/ml) for electroporation in 

a Biorad Gene Pulser (350 V and 450 μF). The average efficiency achieved using above 

parameters varied between 80 to 95 %. 

Oli-neu cells were either transfected with Fugene 6 (Roche) for immunocytochemical or by 

electroporation for biochemical analysis. Fugene (1 μl) and DNA (1 μg) both diluted in 

DMEM without serum were mixed and allowed to stand at RT for 10 minutes, before 

addition to the cells. The average efficiency of transfection in oli-neu cells varied between 

5 to 10 %. For biochemical analysis the suspension of oli-neu cells (5 × 106 cells/ml) 

suspended in DMEM without serum, after scrapping from culture dishes and 

centrifugation, was electroporated at 250 V/950 μF (BioRad Gene Pulser). Plasmids were 

used at 15 to 30 μg/400 μl cell suspension. The average efficiency of transfection using 

electroporation was about 15 to 25 %. 
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3.2.3.5 Stable transfection of oli-neu cells  

To establish stable cell lines expressing PLPwt-GFP and PLPmsd-EGFP, first a killing curve 

for oli-neu cells in response to increasing concentrations of Hygromycin B (Roche, Cat no 

843555) was established. Absolute killing was achieved at a concentration of 500 μg/ml of 

Hygromycin B. Oli-neu cells were co-transfected with StuI linearized PLP-EGFPNI and 

AflIII linearized pMSCV-hygro (clonetech) in a ration of 10:1 of linearized plasmids. Cells 

were allowed to express hygromycin phosphotransferase and 24 hours post transfection, 

SATO media was supplemented with 500 μg/ml Hygromycin B. Media was changed once 

after 10 days to wash off the dying cells. Approximately 3 to 4 weeks after transfection, 

PLP-EGFP expressing clones were picked on an inverted Leica-DMIRBE fluorescence 

microscope. Clones were diluted and seeded in PLL coated 96 well-plates (Falcon) at a 

dilution of one single cell per two wells. Cells from a well with single colony were 

expanded and maintained as a PLPwt-GFP or PLPmsd-EGFP expressing monoclonal cell 

lines. 

3.2.4 Immunocytochemistry  

3.2.4.1 Immunocytochemistry of living cells  

Live staining of cells with antibody 3F4 was performed at 4 °C on water/ice slurry (unless 

stated otherwise). Cells grown on PLL-coated coverslips (24 well plates) were washed 

once with ice-cold DMEM and primary antibodies diluted in ice-cold DMEM were applied 

directly onto the cells for 10 minutes. Cells were washed twice with DPBS and fixed with 

2 % PFA for 10 minutes. Cells were shifted to RT during fixation. After two additional 

washes in DPBS, Cy3-conjugated secondary antibodies diluted in DMEM were applied for 

at least 30 minutes. Cells were washed twice in DPBS, rinsed in ddH2O, and mounted. 

Live staining of cells with antibody O10 was performed as previously described (Jung et 

al., 1996). 

3.2.4.2 Immunocytochemistry of fixed cells  

Immunostainings were carried out 18 to 24 hours after transfection. All steps were 

performed at RT, unless stated otherwise. Cells grown on PLL-coated coverslips were 

washed once with TBS and fixed for 5 minutes in 2 % PFA. Cell were then washed twice 
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for 10 minutes in TBS, permeabilized with 0.01 % saponin in TBS (for 1-10 minutes) and 

blocked in blocking buffer for at least 30 minutes. Primary antibodies diluted in blocking 

buffer were applied for at least 1 hour at room temperature or overnight at 4 °C. After three 

washes in TBS (10 minutes each), fluorochrome-conjugated secondary antibodies were 

applied for at least 45 minutes. After three washes with TBS (10 minutes each), cells were 

rinsed in distilled water, and mounted in Aqua-Poly/Mount (Polysciences, Warrington, 

PA) on glass slides. 

3.2.5 Confocal analysis.  

Fluorescent images were captured on a confocal microscope (LSM 510; Carl Zeiss 

MicroImaging, Inc.) with a 63x oil plan-Apochromat objective (NA 1.4; Carl Zeiss 

MicroImaging, Inc.). For time-lapse live cell imaging, coverslips with cells were mounted 

into a live cell imaging chamber and observed in a low auto-fluorescence imaging medium 

at 37 °C. The temperature was controlled by means of a digital system (Tempcontrol 37-2; 

PeCon) or a custom-built perfusion system. For final analysis, captured LSM images were 

exported as TIF images. Documentation and processing of TIF images were done with 

Photoshop 7.0.1. 
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4.1 Cysteine mediated cross links cause Pelizaeus-Merzbacher Disease 
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4.1.1 Video microscopy of EGFP-tagged PLP in oligodendrocytes 

Studying PLP in transfected COS-7 cells suffers from possible artifacts of overexpression 

in a non-glial cell type. We have therefore used primary oligodendrocytes and an 

oligodendroglial cell line [oli-neu (Jung et al., 1995)], in addition to COS-7, to compare 

mutant and wildtype PLP. For visualization, we tagged PLP with either the myc epitope or 

the enhanced green fluorescent protein, separated from the C-terminus by a flexible linker 

(Figure 7). In all these experiments, wildtype PLP (PLPwt, including the tagged isoforms) 

exhibited surface expression (Figure 8). In oli-neu cells, PLPwt reached the cell surface 

within 8 hours after transfection (movie 1 in attached compact disc). Within 24hours, 

PLPwt accumulated in LAMP1-positive late endosomes (movie 2 in attached compact 

disc). In contrast, a mutant PLP isoform derived from myelin synthesis-deficient mice 

(PLPmsd, A242V substitution; a natural model for the connatal form of PMD) is retained in 

the ER of oligodendrocytes (movies 3 and 4 in attached compact disc), in agreement with 

previous data (Gow et al., 1998). In the following, we will refer to the reticular pattern of 

intracellular PLP expression as ER retained (Figure 8). 
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Figure 7: Structure of PLP/DM20 and mutations associated with Pelizaeus-Merzbacher disease 

A) Two-dimensional model of PLP (276 residues as black beads) and its splice isoform DM20, lacking 35 
residues (marked in grey) from an intracellular loop. The orientation of four transmembrane domains (TM1-
4) positions both N- and C-terminus into the cytoplasm. Within the second extracellular domain (EC2), the 
position of 4 cysteine residues (in green) for two disulfide-bridges (in red) is indicated. Also indicated are C-
terminal epitope tags used in this study (EGFP or myc) and the approximate positions of extracellular (3F4) 
and intracellular (A431) antibody binding sites common to PLP and DM20. Positions of amino acids in EC2 
that are substituted in patients with Pelizaeus-Merzbacher disease are marked in yellow. Those that have been 
studied in detail here carry the single letter code of the wildtype sequence, labeled in red.  
B) Schematic view of the intracellular loop of PLP/DM20, flanked by TM2 and TM3, and including a PLP-
specific sequence (open grey circles). The positions of 4 segments (S1-S4) are indicated, each of which has 
been replaced individually with the myc-epitope tag (in C), giving rise to different PLP "chimeras" (S1-S4). 
These constructs were used to test for the presence of an ER retention signal in PLP (for details see text).  
C) Amino acid sequence of the myc-tag peptide used to replace intracellular PLP segments S1-S4 (in B). 
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Figure 8: Subcellular distribution of PLPwt and PLPP

msd fused to EGFP, in oli-neu cells 

A) When expressed, PLPwt exits the ER and reaches the cell surface.  Glial cells protrude numerous filopodial 
processes and PLPwt accumulates in endosomal/lysosomal compartment. Magnifications (a, b) of boxed area 
in A, are magnified glial processes showing endosomes accumulation (arrow head) and filopodial protrusions 
(arrow). Scale bar: 10 μm.  
B) PLPmsd (A242V substitution) is retained in the ER of oli-neu cells. Glial cells lack any visible processes. 
There is a reticular distribution of EGFP fluorescence, with no accumulation in endosomal compartment. 
Magnifications (c, d) of boxed area in B, are magnification in a close proximity to the cell surface. Note that 
there is complete absence of fine microspikes. Scale bar: 10 μm. 
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4.1.2 Trafficking differences between mutant PLP and DM20 isoforms 

PLP and DM20 with substitutions in transmembrane domains (such as PLPmsd) are both 

retained in the ER (Gow et al., 1994; Jung et al., 1996). In contrast, there is an unexplained 

difference in trafficking of some PLP and DM20 isoforms if they carry the same 

substitution in EC2 (Gow et al., 1997; Gow and Lazzarini, 1996). Also in oli-neu cells, 

some EC2 mutants of PLP (PLPD202N, PLPL209H, PLPP215S) were ER retained (Figure 9 and 

data not shown) whereas the corresponding mutations in DM20 were cell surface expressed 

and accumulated in late endosomes (Figure 9 A). In these experiments, surface expression 

was confirmed by live staining with the monoclonal antibody 3F4 (Greer et al., 1996) 

directed against an extracellular PLP epitope (Figure 7). 

 50



Results 

 

Figure 9: ER retention in oli-neu cells distinguishes PMD-associated isoforms of PLP, DM20, and 

chimeras 

A) Wildtype PLP and DM20, here fused to a C-terminal EGFP, exit the ER and reach the cell membrane (a, 
d), as shown by confocal imaging revealing distal transport vesicles in glial processes and membrane-
associated fluorescent microspikes (arrow in magnified inset). Specific PMD substitutions that map into EC2 
(D202N, P215S; amino acid positions refer to the sequence of PLP) cause ER retention of mutant PLP (b, c) 
but not of mutant DM20 (e, f). This could be confirmed by DM20 live-staining (in red) with monoclonal 
antibody 3F4 (e, f). The intracellular EGFP signal marks either a late endosomal compartment (a, d, e, f) or 
the reticular ER when PLP is retained (b, c).  Scale bar: 10 μm (A to C)  
B) In search for a PLP-specific ER retention signal, PLP-myc chimeras S1-S4 were expressed that lacked 
different segments (S1-S4 in Figure 7) of the PLP-specific intracellular loop (schematically indicated on the 
right). In the absence of any further modification, chimeras S1-S3 were able to exit the ER of oli-neu cells, 
reaching a late endosomal compartment (a-c). Chimera S4 was by itself ER-retained, suggesting that no 
retention signal had been removed.   
C) Importantly, in combination with PMD mutations mapping into EC2 (D202N and P215S), also chimeras 
S2 (a, b) and chimera S3 (c, d) were ER-retained. This suggests the absence of any retention signal in the 
PLP-specific cytoplasmic loop that could explain the differential ER retention of mutant PLP and DM20 (A). 
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PLP and DM20 differ in their cytoplasmic loop, whereas the tested PMD mutations map 

into EC2 (Figure 7), which appears contradictory. Theoretically, PLP could harbor a 

retention signal in the PLP-specific loop that is missing in DM20. To test this, we 

generated 4 chimeric constructs in which the myc epitope replaced equally short segments 

(S1 to S4) in the intracellular loop of PLP (Figure 7). In the absence of any PMD mutation, 

3 out of the 4 chimeras tested trafficked to the oligodendrocyte surface, similar to PLPwt 

(Figure 9B panel a-c).  Chimera S1, replaced for a segment common to both PLP and 

DM20, was unlikely to include a PLP-specific retention signal. On the other hand, 

replacement of S4 resulted by itself in ER retention. We therefore tested PLP chimeras S2 

and S3 in combination with PMD-causing mutations in EC2 (PLPD202N and PLPP215S). 

Remarkably, none of these mutant PLP chimeras trafficked like mutant DM20. All were 

retained in the ER (Figure 9 C). Thus, the intracellular loop of PLP does not harbor 

essential ER retention signals that could explain the trafficking differences between EC2 

mutations of PLP and DM20. 

 

By Kyte-Doolittle analysis of DM20, the N-terminus of TM3 exhibits an extended 

hydrophobicity of 5 residues compared to the TM3 region of PLP (Figure 7 and Figure 10), 

owing to the absence of charged amino acids in DM20 (Nave et al., 1987). We therefore 

hypothesized that TM3 of DM20 (but not of PLP) can shift its position within the lipid 

bilayer by more than one helical turn when required for protein folding. For DM20, this 

flexibility might compensate minor mutation-induced constraints that impair normal 

folding of EC2. Such a compensatory shift of TM3 could potentially explain why specific 

mutant forms of DM20 (but not of PLP) can pass the quality control of the ER. When the 

polar amino acid (T) that flanks TM3 in DM20 was replaced with a basic residue (K), this 

modified TM3 was "shorter" and cell surface expressed (Figure 11 A). Importantly, when 

mutations in EC2 were added, the DM20T115K variants showed substantial ER retention 

(Figure 11 B, C), in strong support of our model. Similarly, when we replaced all 4 

residues (LSAT115) that precede TM3 in DM20 by the corresponding 4 residues of PLP 

(HPDK150), the DM20HPDK protein behaved like DM20wt (Figure 10 and Figure 11). 

However, introducing additional mutations (i.e. D202N, L209H and P215S) also here 

caused this DM20 to be strictly retained in the ER (Figure 11 E and F).  Thus, the motif 

‘HPDK’ in the PLP-specific loop serves as a stop-transfer-signal for TM3 (Figure 10), 
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limiting its ability to move in the lipid bilayer and to compensate for (mutation-induced) 

minor misfoldings of EC2. 

 

Figure 10: Kyte and Doolitle hydropathy plot of PLP, DM20 and DM20LSAT-HPDK 

Kyte and Doolitle hydropathy plot of PLP, DM20 and DM20LSAT-HPDK chimera, scale bar: same for all as in 
PLP. Hydrophilicites plotted with a widow of 11 amino acid residues, negative hydrophilicity reveals a 
highly hydrophobic stretch. Both PLP and DM20 share four highly hydrophobic transmembrane stretches. 
PLP specific region imparts a highly hydrophilic nature to intracellular loop (IC). In contrast, DM20 bears an 
extended hydrophobic stretch, which allows TM3 to glide a single alpha helical turn up or down to reorient 
EC2 during local misfolding. This gliding phenomenon can be completely reversed by simply reversing the 
positive hydrophobicity of DM20 specific region to a positive hydophilicity by replacing amino acid residues 
LSAT to HPDK. This DM20 not only display hydrophilic characters like PLP but also traffics like PLPwt in 
transfected cells 
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Figure 11: Length and position of TM3 determine ER retention or release of mutant DM20 

The third TM domain of DM20 is potentially longer than in PLP, due to a stretch of 4 uncharged residues in 
DM20 (pos. 112-115) immediately preceding TM3. Replacing the juxta-membrane threonine by a lysine in 
DM20 (T115K) did not prevent cell surface expression (A), but is likely to reduce transmembrane domain 
sliding of TM3. Importantly, T115K partially impaired transport of two PMD mutant isoforms (B, C). An 
even greater effect on DM20 retention had the substitution of 4 consecutive residues (HPDK150: the predicted 
TM3 "stop transfer" signal in PLP at the equivalent position in DM20 (LSAT115) (Figure 10). Also this 
modification (depicted on the right) allowed DM20 to traffic normally (D) but caused complete ER-retention 
when combined with mutations D202N (E) or P215 (F). Together, this strongly suggests that a subtle 
transmembrane domain sliding of TM3 allows DM20 (but not PLP) to properly fold the globular EC2 
domain in the ER lumen, despite its PMD-causing substitution. Scale bar: 10 μm. 

4.1.3 The role of disulfide bridges in PLP folding 

How can minor misfoldings within EC2 have so dramatically different consequences in 

PLP and DM20? As depicted in (Figure 7 A), four cysteine residues form bridges C183-C227 

and C200-C219 (Shaw et al., 1989; Weimbs and Stoffel, 1992). To analyze a possible role of 

these bridges in EC2 folding, we analyzed various cysteine-to-serine and cysteine-to-

alanine mutants in transfected oli-neu and COS-7 cells. PLP lacking bridge C183-C227 was 

strictly retained in the ER, similar to PLPmsd, as indicated by the reticular immuno-staining 

of cells that also lacked visible processes (Figure 12 B, right panel). Thus, the membrane-

proximal bridge is essential to pass the quality control system of the ER. Unexpectedly, 

PLP lacking the outer bridge C200-C219 was readily detectable on the cell surface (Figure 

12, left panel), very similar to wildtype PLP (Figure 12 A, left panel). These oli-neu cells 

also exhibited a multipolar morphology with numerous filopodial processes (magnified in 

inset). 
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Figure 12: The function of extracellular disulfide-bridges in PLP folding and cell surface expression 

A) In transfected, fixed and permeabilized oli-neu cells, mutant PLP-myc (in green) co-localizes with the 
endogenous chaperone and thiol-disulfide oxidoreductase PDI (in red). Only merged images are shown. Left: 
Wildtype protein (PLPP

wt) reaches the cell surface, as demonstrated by green fluorescent microspikes at the tip 
of processes (magnified in inset), Right: In contrast, PLPmsd

P  (derived from jimpy-msd mice) fails to reach the 
cell surface. There are no labeled microspikes (magnified in inset), but there is substantial overlap between 
PLPmsd and PDI (yellow). Note also the paucity of cellular processes. Scale bar: 20μm  
B) From two disulfide bridges in EC2, the “outer” one (Cys200-Cys219) is dispensable for folding and cell-
surface expression. To test the function of each cysteine bridge (see Fig 1A) for PLP folding and 
colocalization with PDI (in red), single and double cysteine-to-serine substitutions were engineered for each 
disulfide bridge. Replacing one or both cysteines of the outer bridge did not interfere with cell surface 
labeling of PLP (in green), as indicated by fluorescent microspikes (left panels and magnified in insets). In 
contrast, replacing one or both cysteines of the membrane-proximal bridge (Cys183-Cys227) led to severe 
misfolding, as visualized by ER retention and colocalization of PLP with PDI (yellow overlay in inset), 
similar to PLPmsd (in A). Only merged images are shown. Thus only the membrane-proximal disulfide bridge 
is essential to reach normal folding of PLP.  
C) To obtain independent biochemical evidence that PLPC200S and PLPC219S (lacking the outer bridge) are cell 
surface expressed in COS-7 cells, all membrane proteins were biotinylated with membrane impermeable 
NHS-sulfo-biotin prior to cell lysis, and proteins were pulled down with streptavidin-agarose beads. Only 
myc-epitope labeled PLPP

wt, PLPC200S, and PLPC219S
P  could be detected on Western blots (lanes 1, 3, 4). The 

absence of actin in the first six lanes confirms that only live cells were biotinylated.  Total lysates served as 
positive controls for transfection and loading (mock: transfected with plasmids lacking a cDNA insert).  
D) Summary of subcellular distribution of PLP, interpreted from immuno-cytochemistry of oli-neu (A, B) 
and biochemistry of COS-7 cells (C). 
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To biochemically confirm the presence of PLP cysteine mutants at the cell surface, we 

biotinylated all surface proteins of transfected COS-7 cells prior to harvesting, and 

precipitated the marked proteins with streptavidin-conjugated agarose beads. Subsequent 

western blot analysis demonstrated that PLPwt, PLPP

C200S, and PLPC219S were indeed in the 

pool of biotinylated cell membrane proteins. In contrast, PLPC183S and PLPC227S single 

mutant isoforms were almost undetectable, confirming their intracellular retention (

 C and D). 

Figure 

12

4.1.4 Genetic uncoupling of protein misfolding and ER retention 

Overexpression of PLPwt in either COS-7 or in oli-neu cells led to accumulation in late 

endosomes, as demonstrated by Lamp-1 costaining about 24 hours later (Figure 13 A). 

Since PLPwt accumulation in late endosomes has been documented for primary 

oligodendrocytes and in vivo (Trajkovic et al., 2006), we consider this the normal pathway 

of PLP trafficking.  Endosomal cycling of PLP forms a membrane secretory compartment 

that is important for regulated exocytosis and myelin growth (Trajkovic et al., 2006). Also 

the single mutants PLPC200S, PLPC219S, and the double mutant PLPC200,219S accumulated in 

this Lamp1-positive endosomal compartment (Figure 13 C,D and E). In contrast, PLPC183S 

never reached the surface or colocalized with Lamp1, even 40 hours after transfection 

(Figure 13 B). 
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Figure 13: PLP cysteine mutants that reach the cell surface also accumulate in endo/lysosomes  

A) 24 hours after transfection of oli-neu cells, wildtype PLP (in green) can be co-localized with Lamp1 (in 
red) in a late endosomal/lysosomal compartment. Boxed area is magnified on the right.  
B) PLPP

C183S, lacking the essential disulfide bridge in EC2 (C183-C227), fails to reach the Lamp1-positive 
compartment, strongly suggesting that it requires endosomal reuptake from the cell surface.  Boxed area is 
magnified on the right (arrowhead, lack of PLP-Lamp1 colocalization).  Same results were obtained for 
PLPC227S and PLPC183, 227S

P  (not shown).  
C-E) By the same criteria, all PLP mutants lacking the distal disulfide bridge, by replacement of one or two 
cysteines (as indicated), showed normal trafficking and colocalization with Lamp1 (white arrow), similar to 
wildtype PLP (in A). Scale bar: 20 μm. 
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Next, we tested the monoclonal antibody 010, recognizing a conformation-sensitive PLP 

epitope present in wildtype but not in mutant PLP/DM20 isoforms (Jung et al., 1996). 

Interestingly, while PLP lacking disulfide bridge C200-C219 reached the surface of 

transfected cells similar to the wildtype protein, it remained an 010-negative "misfolded" 

mutant (Figure 14). This demonstrates that PLP misfolding and ER-retention can in 

principal be uncoupled.  

 

Figure 14: Uncoupling of protein folding, ER exit, and the wild-type conformation of PLP 

We used COS-7 (A, B, C and D) and oli-neu (E, F) to monitor the emergence of the conformation-sensitive 
O10 epitope in PLP cysteine mutants that pass or fail the quality control check in the ER. Following the live-
staining of transfected cells with the monoclonal antibody O10 (in red), cells were permeabilized and stained 
with the C-terminus specific PLP polyclonal antibody A431 (see Figure 7). Unexpectedly, only wildtype PLP 
exhibited the O10 epitope (A, E). PLPC200S (lacking the distal disulfide bridge) was surface-expressed but 
O10-negative (C, F), similar to PLPC183S (lacking the essential proximal bridge) and to PLPP

msd (B, D) These 
data are in agreement with (but do not prove) that the distal disulfide bridge C200-C219 is required to form PLP 
homo-oligomers that specifically exhibit the O10 epitope. Scale bar: 10 µm. 

4.1.5 ER retention of mutant PLP/DM20 and its rescue by removal of 

cysteines 

PMD point mutations that alter EC2 have a particular severe phenotype in vivo (Nave and 

Boespflug-Tanguy, 1996), yet their effect on PLP folding and function is not understood. 

Although the disulfide bridge C200-C219 in EC2 was dispensable (Figure 12 B), we found a 
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natural PMD mutation that involved one of these cysteines (PLPC219Y) (Osaka et al., 1999) 

and clearly led to ER retention A, B. Since the highly related mutation PLPP

C219S does not 

cause ER retention ( ), we hypothesized that the unpaired CFigure 12 200 is sterically 

exposed when a larger residue (Y219) causes local misfolding, and that unpaired C200 is the 

real cause of ER retention. Indeed, substituting this cysteine in a double-mutant protein 

(PLPC200S,C219Y) completely rescued the phenotype of oli-neu cells (  C and D). 

Western blot analysis revealed that PLP

Figure 15
C219Y (but not PLPwt or the rescued double mutant) 

formed dimers that were sensitive to reducing agents (  E). This strongly suggests 

that the retention of PLP

Figure 15
C219Y is caused by cysteine (C200) oxidation and abnormal 

crosslinks that prevent normal oligomerization. 

 

Figure 15: Unpaired Cys200 causes ER retention and dimerization of a PMD mutant PLPC219Y

Oli-neu cells were transfected to express a myc-epitope labeled natural PMD mutant PLPC219Y (A, B) or a 
"double mutant"  PLPC219Y,C200S  (C, D). Only merged images are shown. The PMD mutant was retained as 
visualized 24 hours post transfection by lack of processes and colocalization of PLP (in green) with the ER 
marker PDI (red in A), but segregation of PLP from the late endosomal/lysosomal marker Lamp1 (red in B 
and magnified in inset). In contrast, the double mutant PLP behaved like a "wildtype" protein, with reduced 
colocalization with PDI and the branched morphology of oli-neu cells (in C), and the emergence of green 
fluorescent microspikes  on processes (D and magnified in inset). PLPP

C219Y,C200S  also overlapped with the 
endosomal marker (yellow area in D). Thus, it is not Y219 but an unpaired C200 that emerges as the cause of 
PMD.   
When oli-neu cell extracts were analyzed by semi-quantitative Western blots (E), mutant PLPC219Y revealed 
predominantly a dimer band, whereas PLPwt

P  and the "rescued "PLPC219Y,C200S  were monomeric. In the 
presence of mercaptoethanol (ME), all forms were monomeric, demonstrating that dimerization of PLPC219Y 

can be attributed to cysteine oxidation. Scale bar: 10 µm. 
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Next we hypothesized that many other PMD point mutations mapping into EC2 could 

likewise induce minor misfoldings that, while leaving C200 and C219 in place, are sufficient 

to impair the formation of a disulfide bridge. We analyzed several of the PMD-associated 

mutations, including PLPP

D202N, PLPR204G, PLPV208D, PLPL209H and PLPP215S (for review see 

(Nave and Boespflug-Tanguy, 1996)). All mutant PLP isoforms were strictly retained in 

the ER of oli-neu cells [  left column (or COS-7 cells , left column)]. 

However, when combined with a C200S and C219S substitution, the triple-mutant PLP 

isoforms showed robust surface expression, as shown by live-staining, right column.  

Taken together, PMD point mutations induce small structural changes in EC2, thereby 

exposing unpaired cysteines that become responsible for ER retention. Some DM20 

mutants are protected from this pathomechanism, because higher flexibility of TM3 

facilitates normal folding of EC2, despite the disease-causing substitution. 

Figure 16 Figure 17
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Figure 16: PMD-causing PLP mutations can be rescued by the replacement of cysteines 

To distinguish PLP at the cell surface from PLP in intracellular compartments, oli-neu cells that express 
various EGFP-tagged mutant PLP isoforms (in green) were additionally live-stained for PLP, using the 
monoclonal 3F4 antibody (in red; see Fig 1A). Only merged images are shown. The same results were 
obtained with COS-7 cells (Figure 17 and data not shown). We analyzed various natural PMD-causing 
mutations that map into EC2 (PLPD202N, PLPR204G, PLPV208D, PLPL209H, PLPP215S, PLPL223P) for cell surface 
expression of PLP in the absence (left column) or the presence (right column) of additional point mutations 
that substituted C200 and C219 for serine. Remarkably, in absence of C200 and C219, the PMD-causing mutants 
were fully "rescued" from ER retention, and PLP was localized at the cell surface (red label) and in the late 
endosomal/lysosomal compartment (in green). In the presence of EC2 cysteines, all PMD mutants were 3F4-
negative and confined to the ER. Note also the lack of glial processes. This reveals that ER retention of 
natural disease-causing mutants (not involving cysteine residues themselves) are mediated by the cysteines in 
EC2. Only one mutant tested (PLPL223P) could not be "rescued", most likely because misfolding induced by a 
proline perturbes even the second "essential" disulfide bridge (see Figure 12). Scale bar: 10 μm. 
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Figure 17: PMD-causing PLP mutations rescued by the replacement of cysteines 

A) To distinguish PLP at the cell surface from intracellular compartments, COS-7 cells that express EGFP-
tagged mutant PLP isoforms (in green) were additionally live-stained with the monoclonal 3F4 antibody (in 
red; see (Figure 7). Only merged images are shown.  Left: normal trafficking of PLP lacking the disulfide 
bridge C200-C219. Right: ER retention of PLPmsd. Note the absence of surface staining.  
B) We analyzed various natural PMD-causing mutations that map into EC2 (PLPP

V208D, PLPL209H, PLPP215S) 
for cell surface expression of PLP in the absence (left column) or the presence (right column) of additional 
point mutations that substituted C200 and C219 for serine. In absence of C200 and C219, the PMD-causing 
mutants were "rescued" from ER retention, and PLP (in green) was also localized at the cell surface (red 
label) and in a vesicular late endosomal/lysosomal compartment. In the presence of EC2 cysteines, all PMD 
mutants were 3F4-negative and confined to the reticular ER. 

4.1.6 Misfolded PLP forms abnormal dimers and unspecific aggregates 

What are the molecular consequences when intramolecular disulfide bridges fail to form? 

Most likely, the oxidative environment of the ER causes alternative crosslinks that 

interfere with PLP oligomerization, maturation, and surface expression, as defined by the 

O10 epitope. To analyze the fate of misfolded PLP, we determined its mobility by 
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polyacrylamide gel electrophoresis (PAGE) in the presence or absence of reducing agents.  

When derived from primary oligodendrocytes or transfected oli-neu cells, the majority of 

PLPwt migrated as a monomer with an apparent MW of 26 kDa, under both reducing and 

non-reducing conditions (Figure 18 A). In contrast, PMD-causing forms, such as PLPP

D202N 

or PLPC219Y, migrated in addition as 52 kDa dimers (  B). Importantly, upon 

addition of mercaptoethanol (ME), these dimers were reduced to monomers, suggesting 

that they represent cysteine-mediated cross-links. Indeed the "rescued" mutants 

PLP

Figure 18

D202N+C200,219S and PLPC219Y+C200S, that lacked free cysteines in EC2, migrated as 

monomers also under non-reducing conditions (  B). Figure 18

 

Figure 18: Cysteine-mediated PLP crosslinks 
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A) SDS-PAGE of cellular extracts from primary oligodendrocytes (OL) and oli-neu cells with immuno-
detection of PLP/DM20. When analyzed under non-reducing conditions, endogenous PLP/DM20 expression 
in cultured OL (lane 1) leads to a small percentage of dimerized PLP and DM20, detected by antibody 3F4. 
Absence of dimers in the presence of mercaptoethanol (ME) suggests they are cysteine-mediated crosslinks. 
Transfected oli-neu cells, expressing the slightly larger epitope-tagged PLP-myc (lane 2), also exhibit a small 
percentage of ME-sensitive PLP dimers, detected with an anti-myc antibody.  
B) Semiquantitative analysis of PLP dimers in oli-neu cells expressing a natural PMD mutant (PLPD202N). By 
Western blot analysis of non-reducing gels using antibody 3F4, more than 50 % of the PMD-associated PLP 
was detectable in a 52 kDa dimeric form (lane 1). When PLP was "rescued" by the additional substitution of 
C200 and C219 for serine (see Figure 15), dimer formation could be largely prevented (lane 2). All the dimers 
were completely lost in the presence of 150mM mercaptoethanol (lanes 4 and 5). A 54 kDa protein in 
reducing gels was unspecifically detected by antibody 3F4 and also present in mock-transfected cells (lane 
6). Note that this antibody also detected endogenous PLP/DM20 expression. When PLP reaches the cell 
surface, some PLP cleavage (P.C.) occurs that gives rise to a novel 16 kDa band (lane 5) 

 

When derived from transfected COS-7 cells, even PLPwt formed some dimers, trimers, and 

possibly higher oligomers or cross-links with other proteins (Figure 19). 
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Figure 19: Cysteine-mediated PLP crosslinks in COS-7 cells  

Same membranes exposed for different periods. Semiquantitative analysis of PLP dimers in COS-7 cells 
expressing a natural PMD mutants and PLPwt. SDS-PAGE of cellular extracts from COS-7 with 
immunodetection of PLP, with 3F4 antibody. When analyzed under non-reducing conditions, mutant PLP 
forms dimers to a much higher extent as comapred to PLPwt. Reduction of dimers in the presence of ME 
suggests they are cysteine-mediated crosslinks. PMD-associated PLPs (PLPD202N and PLPC219Y) are more 
abundant in 52 kDa dimeric form, comapred to PLPwt.The rescue of PMD PLPs by additional substitution of 
C200 and C219 to serine, dimer formation could be prevented but to a lesser extent as compared to oli-neu cell 
(Figure 18). In COS-7 cells apart from dimerization/trimerization (75kDa) mutant and wt PLPs crosslink to 
other proteins. These crosslinks are reducible to large extent to monomers.  
Note that in over-exposure shows the cross links can be reduced largely to monomer with addition of 150 
mM ME. Also note that PLP is cleaved and a PC product is even released in COS-7 cells giving rise to a 
novel 16 kDa band. 
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Wildtype PLP associated with calnexin to same extent as mutants (Figure 20). Under 

reducing conditions these PLPwt dimers and oligomers could be reduced to monomers, 

suggesting significant misfolding upon overexpression in COS-7 cells (Figure 19). As 

expected, the PMD-causing mutants (PLPD202N, PLPC219Y) formed these ME-sensitive 

aggregates to a much higher degree and the removal of Cys200 and Cys219 protected mutant 

PLP isoforms from aggregation, but to a mild extent (Note that wildtype PLP is also 

misfolded upon overexpression in COS-7 cells and associates with calnexin and 

calreticulin). 

 

 

Figure 20: ER lectins associate with mutant and wt PLP with a same affinity 

Transiently transfected COS-7 cells were, solubilized and immunoprecipitated with anti-myc antibody. Note 
that only PLPC183S is a ER retained variant. Coimmunoprecipitated material (lanes 1 to 6) was western blotted 
with anti-calnexin and anti calreticulin antibodies. Lysates serves as a control and neither calnexin nor 
calreticulin is up-regulated upon misfolded protein expression in COS-7 cells. Association of PLP appears 
much stronger to membrane spanning lectin calnexin compared to its soluble homologous calreticulin. 

4.1.7 ER retention of PLP/DM20 chimeras can be rescued by removal of 

cysteines. 

Above results (Figure 9 and Figure 11) demonstrate that introduction of PMD causing 

mutations into PLP or its chimeras cause the retention of PLP  because free cysteines have 

been exposed (by changes in the loop) to the oxidative environment of the ER. 

Furthermore, even DM20 could also be retained in ER by limiting the hydrophobic stretch 

of DM20 by replacing LSAT115 with HPDK115 (Figure 10 reverses the positive 

hydrophobicity to a positive hydrophilicity). 
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To confirm our hypotheses of TM sliding as well as EC2 local misfolding, we removed the 

critical disulfide bond (C200-C219) also in the PLP chimeras involving S2, S3 (see Figure 9 

and Figure 21) and in DM20T115K and DM20LSAT-HPDK each harboring in addition the PMD-

causing substitution P215S. To our surprise, all these "quadruple" mutant proteins reached 

the surface of transfected glial cells, similar to wildtype PLPwt (Figure 21). 

 

Figure 21: Outer disulfide bond governs the local and global folding of PLP/DM20 chimera 

Oli-neu cells transfected with EGFP fusion constructs. Scale bar 10 μm. PMD mutation bearing chimeras S2, 
S3, DM20T115K and DM20LSAT-HPDK with removal of outer cysteine pair are not retained in the ER. 
Interestingly only the PLP quadruple chimera (D2 and S3) show an immunoreactivity to live staining with 
3F4. DM20 quadruple chimeras selectively accumulate in endo/lysosomal compartment and show no 
reactivity to 3F4 antibody. 
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Taken together our data support the following disease model. PMD-causing mutations of a 

large extracellular loop region in PLP/DM20 induce minor structural changes that 

compromise efficient formation of normal disulfide bridges, thereby exposing unpaired 

cysteines to the oxidative environment of the ER. Here competing oxidations generate 

aberrant dimers of PLP/DM20 that fail to mature (O10+, possibly oligomeric forms) and 

are retained in the ER (inducing UPR and cell death in vivo). Only some DM20 mutants 

are protected from this pathomechanism, because the flexibilty of TM3 allows normal 

folding in EC2 with the generation of intramolecular disulfide bridges. 

 69



Results 

 

 

 

 

 

 

 

 

 

 

4.2 Quality control of transmembrane domain assembly in PLP 
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4.2.1 Spastic Paraplegia 2 (SPG2) a mild form of PMD  

Spastic Paraplegia 2 (SPG2) is a milder form of PMD resulting form mutations affecting 

the soluble domains or from mutations leading to an abnormal termination of growing 

polypeptide (Bond et al., 1997; Cailloux et al., 2000; Kobayashi et al., 1996; Saugier-

Veber et al., 1994). To study the fate of these truncated PLPs, we engineered PLP cDNA, 

and constructed truncated PLPs, which encode the first two (TM1,2), first three (TM1,2,3), 

second two (TM3,4) or only the last (TM4) hydrophobic transmembrane  domains, 

respectively, and use the natural methionine/or specific signal peptide (Kleijnen et al., 

1997) for translation initiation. Further to study, how perturbations in soluble domains 

influence PLP trafficking, we expressed PLPs with myc replacements in intracellular loop 

(IC), the region between TM2-3. In order to identify any putative retention signal in PLP, 

we also deleted N and C termini of PLP. 

4.2.2 Truncated PLP transmembranes are retained in the ER 

PLP cDNAs encoding truncated PLPs were transfected individually into COS-7 (and oli-

neu-data not shown) cells. The intracellular distribution of the each truncated molecule was 

mapped using appropriate antibodies (or EGFP fluorescence). TM1,2 (PLP 1-99-myc tag), 

TM1,2,3 (N terminus myc tagged, PLPjimpy), TM1,2,3 (1-236-myc, and 1-183-myc; data 

not shown), TM3,4 (Met-Gly-135-276 untagged or EGFP) and TM4 (signal peptide 

MHCI+228-276) all display a reticular pattern of labeling (Figure 22), highly concentrated 

in the perinuclear region. The reticular pattern strongly resembles the pattern displayed by 

PLPmsd (which served as a control for ER retained PLPs throughout our study, last panel). 

To ensure proper insertion of TM4, with N luminal and C cytosolic, we added a MHCI 

signal peptide to N terminus (Kleijnen et al., 1997) and stained methanol fixed and 

digitonin permeabilized cells (Figure 22 E-inset in greyscale) 
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Figure 22: All truncated PLPs are retained in the ER, when expressed individually 

Truncated PLPs are retained in the ER of transfected COS-7 cells. Fixed cells permeabilized and stained for 
C or N terminus myc epitope in left panel and EGFP fluorescence in right panel. Scale bar 10 μm. Truncated 
PLPs, with a first half of protein regardless of whether exhibiting two or three TMs are strongly retained in 
the ER, left panel. Interestingly, the second half of the protein whether TM3,4 or TM4 alone were also 
retained in the ER, exactly like PLPmsd. To confirm the proper orientation of TM4, the untagged TM4 was 
stained using A431 antibody, in fixed cells permeabilized with digitonin (inset in greyscale). 

 72



Results 

4.2.3 N or C termini deletions did not alter PLP localization. 

PLPs lacking N(∆N) or C(∆C) termini did not show any change in subcellular distribution 

of  PLPwt or PLPmsd in transfected cells. ∆N/or ∆CPLPwt traffics to cell surface and 

protrude numerous filopodial processes whereas PLPmsd was completely retained in the ER, 

irrespective of N or C termini deletion [Figure 23 and ∆NPLPs studied and discussed in 

previous work (Dhaunchak, 2003)]. This data infers that N or C termini of PLP do not 

harbor any retention signal. 

 

Figure 23: Neither N and C termini nor IC2 but TM assembly monitors surface expression of PLP 

PLP topological models on the left highlight the site of deletion (blue) or myc replacement (red). Scale bar 
annotates 10 μm from A to C. Oli-neu (A, grayscale) and COS-7 (B) cells expressing ∆CPLPwt-EGFP show 
a PLPwt like distribution of EGFP fluorescence. Transfected cells protrude numerous filopodial processes and 
accumulate PLP in endosomes, shown in Aa (blowup of a oli-neu arbor). ∆NPLPP

wt-EGFP also displayed a 
similar distribution, data not shown (Dhaunchak, 2003).Chimeric PLPs with a myc replacement proximal to 
TM3 expression are strongly retained in the ER (C). Chimer S4 (C and blow up in Ca) shows a reticular 
distribution extended out to periphery, with no vesicluated structure or filopodial processes. 

 73



Results 

4.2.4 Perturbations proximal to TM3 retain both PLP and DM20 in the ER 

Incorporation of myc tag distal to TM3, replacing a short stretch of 9-10 amino acids,  in 

IC of PLP did not alter the trafficking of PLP to the cell surface or to the endosomal 

compartment (chimera S1, S2, S3 section 4.1.2). Juxtamembrane incorporation of myc tag, 

replacing a stretch of amino acids (139-150) proximal to TM3 or complete PLP-specific 

region (116-150), strongly retained PLP/DM20 in the ER (Figure 23). 

We have shown that disulfide bond 183-227 is critical for overall folding of PLP and 

DM20, whereas disulfide bond 200-219 monitors the local folding and trafficking of 

PLP/DM20.  These cysteine bridges impart a proper topology and are required for 

assembly of transmembrane domains to generate a trafficking competent PLP molecule. To 

test whether, an artificially assembling TM3 and TM4 (by complete removal of EC2 and 

insertion of autonomously folding domains) we generated a PLP cDNA construct replacing 

entire EC2 by two HA tags flanked by flexile linkers (from N to C termini- TM3-SGP-HA-

SGP-HA-SGP-TM4). The resulting, PLP∆EC2-HA was completely retained in the ER (data 

not shown). This observation suggests that either TMs donot assemble properly or an 

artificial assembly of TMs is inefficent in determining the surface expression and folding 

of PLP, and this assembly can only be achieved by proper disulfide bonding.  

4.2.5 Self assembly of transmembrane domains  

Co-transfected COS-7 and oli-neu cells in whom, both TM1,2 and TM3,4 are derived from 

PLPwt results in surface expression of both halves of the protein. Both truncated proteins 

assemble to escape the ER quality control and TMs can also be seen in E/L compartment 

(Figure 24 A and oli-neu data not shown). When TM1,2 and TM3,4 are derived from 

PLPmsd, they fail to exit the ER (Figure 24 A) which strongly infers that the single Ala242 to 

Val substitution impairs the TM assembly of both halves. An attempt to rescue PLPjimpy, by 

co-transfection of construct encoding TM4 resulted in complete ER retention of both 

proteins (not shown). The frameshift mutation introduces 9 cysteines (instead of 4 in 

PLPwt) in the EC2 of PLPjimpy polypeptide. The exposure of these cysteines to the oxidative 

environment of ER might also add to the cause of ER retention and impaired trafficking of 

other proteins. Co-transfection of PLP constructs encoding TM1,2,3 (1-236-myc) and TM4 

(with signal peptide) also resulted in a complete retention of both isoforms (Figure 24 C). 
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This data are in a complete agreement with our above observation (Figure 12 and section 

4.1.3) that disulfide bond 183-227 is critical for proper alignment of TM3 and TM4. 

4.2.6 Truncated transmembranes associate with calnexin 

All PLPs including truncated TMs strongly associate with ER lectin calnexin in transfected 

COS-7 cells (Figure 25). TM1,2 and TM3,4 formed a SDS resistant dimer and migrate to 

an added molecular weight, of a full length PLP molecule (Figure 25). Immuno-

precipitations of TM1,2 (anti-myc antibody), from cells co-transfected with TM1,2 and 

TM3,4 encoding constructs, also shows a strong association of TMs. 
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Figure 24: Prerequisite for an exit from the ER is proper alignment and masking of TMs in the bilayer 

Topological models next to each representative cell show orientation of truncated PLPs in the bilayer. Scale 
bar annotate 10 μm. TM1,2 when co-expressed with EGFP tagged TM3,4 derived from PLPwt (A) but not 
from PLPmsd (B) results in surface expression of both halves of protein, only TM3,4 is shown. In A, the 
endosomal accumulation is also recapitulated. C) TM1,2,3 in red when co-expressed with TM4 in green 
(bearing MHC I signal peptide) results in ER retention of both halves of the protein. 
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Figure 25: Truncated PLPs associate with calnexin with an equal affinity 

Lysates from transfected COS-7 cells were immunoprecipitated with anti-myc antibody. Note that myc as 
prefix or suffix annotates the N or C terminal fusion respectively. TM3,4 (A) and PLP (B) are untagged.  The 
immunoprecipitated material was western blotted with anti-calnexin (A) and anti-PLP antibody (B). H.C is 
heavy chain of myc antibody and serves as input control.  
A) TM1,2-myc individually or in combination with TM3,4 (untagged) shows a strong interaction with 
calnexin, lane 1 and 2 . Myc∆CPLPwt, myc∆CPLPmsd or mycPLPwt also show no difference in association to 
calnexin.    
B) TM 3,4 associates strongly with TM1,2 and can be detected in lysate precipitated TM1,2. TM1,2 and 
TM3,4 form a SDS-resistant heterodimer. Note that truncated TM1,2-myc lacks last two TMs and cannot be 
detected anti-PLP antibody. PLP loaded in middle lane is an untagged and cannot be precipitated with myc 
antibody. 
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4.3 Conformation sensitive and compartment specific epitope: evidence 

that PLP matures within the ER 
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4.3.1 Wildtype PLP masks 3F4 epitope during its exit from ER 

Lysates derived from oli-neu cells separated on SDS gels and immuno-blotted with 3F4 

antibody display low levels of DM20 (Figure 18 section 4.1.6). When stained live for 

surface DM20, oli-neu cells show a complete lack of 3F4 reactivity (data not shown). 

Surprisingly, 010+ oli-neu cells and COS-7 transiently transfected with PLP/DM20 

constructs, also show a complete absence to 3F4 avidity (Figure 26). Even more 

interestingly, the same antibody shows a tremendously high avidity to misfolded DM20 

that traffic to the cell surface in both oli-neu (chapter 3.1) and COS-7 cells (Figure 26 E). 

PLPC200, 219S and all rescued PMD mutants also show a high immuno-reactivity towards 

3F4 antibody (Figure 26 and also Figure 16, Figure 17 section 4.1.5). 
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Figure 26: Oligomeric PLP masks 3F4 epitope at the cell surface 

Live 3F4 staining (red) of oli-neu (A, B) and COS-7 (C to F) cells transfected with constructs encoding PLP-
EGFPs (green). Only overlays are shown, scale bar annotates 10 μm. A) PLPwt masks the 3F4 epitope and 
shows no reactivity at the cell surface. PLP lacking outer disulfide bond PLPP

C200S,219S traffics to the cell 
surface and shows high immuno-reactivity under same conditions in both oli-neu (B) and COS-7 cells (C). 
PMD mutant PLPV208D is strongly retained in the ER and cannot be stained live, with 3F4 antibody (D). 
DM20 bearing the same mutation DM20 is not ER retained and 3F4 antibody binds with a high avidity (E).  
PLPV208D traffics exactly like DM20V208D with removal of a cysteine pair, the avidity to 3F4 antibody is also 
restore in PLPV208D+C200,219S(F). 
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To solve this puzzle, we stained permeabilized and fixed oli-neu cells transfected with 

constructs encoding PLPwt-EGFP and PLPC200,219S-EGFP. To our surprise, the antibody 

specifically labeled PLPwt-EGFP residing only in the endo/lysosomes (E/L) (Figure 27 B) 

and PLPC200,219S-EGFP shows an extensive labeling at the cell surface (Figure 27 E). 

Mutant PLP, if enriches, in E/L compartment consistently showed a low reactivity to the 

same antibody (Figure 27 E and Fa). In previously published report, it has been shown that 

3F4 epitope emerges from oligodendrocytes cultured for 20DIV (days in vitro) (Greer et 

al., 1996). 

 

Figure 27: Maturation of PLP completes in pre-myelin E/Ls whereas PLPC00,219S matures at the cell 

surface 

oli-neu cells transfected with constructs encoding PLPP

wt-EGFP and PLPC200,219S–EGFP fixed permeabilized 
and stained with 3F4 antibody (red)   
A) EGFP fluorescence dictates the subcellular localization PLPwt and in B) only the E/L pool of PLPwt shows 
immunoreactivity towards 3F4 antibody. Ca) show a higher magnification of boxed area in C) of the overlay. 
D) EGFP fluorescence dictates the sub-cellular localization of PLPC200,219S and E) high avidity of 3F4 
antibody towards surface PLP. Note that Fa) higher magnification of boxed area of overlay F) shows a 
complete lack of colocalization of 3F4 immunoreactivity in E/Ls. 
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4.3.2 Adult CNS myelin presents a complete overlapping avidity to 3F4 and 

A431 

Monoclonal mouse (3F4) and polyclonal rabbit (A431) antibodies, respectively directed 

against EC1 and C terminus hexa-peptide of PLP, were used to detect PLP in the CNS of 

adult mice. Figure 28 shows an absolute overlap of PLP distribution detected with A431 

(green) and 3F4 (red) antibody in the spinal cord of adult mice. Complete overlay infers 

that 3F4 antibody can even recognize a PLP epitope that is embedded within intraperiod 

lines (extracellular). 
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Figure 28: Identical avidity of 3F4 and A431 antibody towards MDL and IPL embedded PLP epitopes 

Spinal cord from P180 mouse transversally cut and stained with A431 (green) and 3F4 (red) antibody. Nuclei 
are stained with DAPI (blue). The C terminus PLP epitope (A431) is embedded in the major dense layer 
(MDL) and the epitope displayed by extracellular loop1 (EC1) of PLP (3F4) is embedded in intra-period 
lines (for myelin periodicity, see Figure 2). Only overlays are shown, strikingly both antibodies show 
identical avidity towards PLP. Scale bar 20 μm (A , B) and 10 μm (C). B) and C) are magnifications of 
boxed area in A) Overlay C) is split into Ca) A431 Cb) 3F4 and Cc) dapi. 
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4.3.3 A novel 16 kDa PLP proteolytic cleavage product 

Western blot analysis from purified CNS myelin and cultured oligodendrocytes revealed 

that 3F4 antibody recognizes both PLP and DM20. In addition to dominant PLP/DM20 

bands (24/20 kDa), we identified a novel PLP product P16 (16 kDa). Proteolytic cleavage 

(PC) of PLP in EC2 gives rise two products P16 and P10. The second half of this P.C has 

previously been reported and speculated to exhibit neuron-protective function 

(McLaughlin et al., 2002; Yamada et al., 1999). McLaughlin et al (02) have shown that 

P10 is an abundant (comparable to full length PLP) constituent of the CNS myelin in 

higher mammals, equine, and have shown that this product undetectable in mouse and rat 

myelin. By using 3F4 antibody we have shown that the P16 protein is an abundant 

constituent of the adult CNS myelin of mice (Figure 29).  

 

Figure 29: A novel 16 kDa myelin PLP proteolytic cleavage product 

A) Purified CNS myelin (500 ng protein in each lane) from wildtype mice separated under reducing and non-
reducing conditions on a 12 % SDS gel, immuno-blotted with anti-PLP (3F4) antibody. Note that a 
prominent 16 kDa product (PLP proteolytic product) appears under reducing conditions. Most likely, under 
non-reducing conditions P16 is involved in oligomer formation with PLP/DM20. Also, PLP and DM20 form 
homo and hetro-dimers that are largely reducible to monomers by addition of ME.  
B) Lysates derived from COS-7 cells, transiently transfected with PLP-myc constructs, separated and blotted 
under identical conditions show that 3F4 antibody recognizes only a subpopulation of PLP. Note an 
emergence of P16 and P10 products only after ME addition. This finding infers that both proteins form 
disulfide bonds with either full-length PLP or with each other. 
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When used for immunoblotting on lysates derived from COS-7 or oli-neu, 3F4 seems to 

recognize a sub-population of PLPs in reducing and denaturing gels. The aggregated, high 

molecular dimers, trimers and oligomers, were specifically less intensely detected by 3F4 

antibody, compared to myc antibody (Figure 29). 
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4.4 From transfected oligodendrocytes to PLP-EGFP expressing 

transgenic “knock-in” mice 
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4.4.1 PLP accumulates in endosomes/lysosomes (E/L) 

As a first step to understand polarized morphology of oligodendrocytes, we started with a 

simpler system and studied trafficking of PLP in cells of oligodendrocyte lineage (oli-neu 

and OLN93). Wildtype PLP when transiently over-expressed in oli-neu and OLN93 readily 

traffics to cell surface and accumulate in endosomes within 24 hours [(section 4.1.4, Figure 

13 and (Trajkovic et al., 2006)]. Stable cell line expressing PLPP

wt-EGFP under steady state 

exhibited a very little PLP at the cell surface. Whether PLP exploits polarized trafficking 

pathways, like transcytosis or exocytosis from endo/lysosomes, hence biasing its own 

enrichment and trafficking to myelin compartment can only be answered by in-vivo tool, in 

which PLP/DM20 trafficking and expression are developmentally regulated.  

To study trafficking of mutant PLP with a perturbed transmembrane assembly we also 

generated a stable cell line expressing PLPmsd-EGFP (Ala 242 Val in TM4). Mutant PLP is 

maintained at higher level compared to the wildtype PLP in stable cell line, which infers 

that mutant PLP is degraded poorly [Figure 31, in agreement to the previous report using 

COS-7 cells (Swanton et al., 2003)]. Mutant PLP is strongly retained in the ER and does 

not accumulate in lamp1 positive endo/lysosomal compartment (Figure 30). PLPmsd-EGFP 

is maintained at higher level compared to PLPwt-EGFP in stable cell line. 

4.4.2 Association of PLP with cholesterol  

CNS myelin displays an unusual composition of lipids and proteins with cholesterol 

constituting around 40 % of all lipids. Transgenic mice lacking an ability to produce 

cholesterol in oligodendrocytes shows delayed myelination. The myelin still exhibits a 

same ratio of lipids and proteins, with PLP/DM20 still the major constituents (Saher et al., 

2005). To test whether, association of PLP with cholesterol acts as a prerequisite for 

process outgrowth and for final delivery and ensheathment around axons, we studied 

cholesterol-PLP association in precursor cell-line stably expressing wt and mutant PLP. 

oli-neu cells expressing PLPwt-EGFP and PLPmsd-EGFP were induced to protrude myelin 

like processes. Strikingly the early process outgrowth was not compromised in mutant cell 

line. Both cell lines protrude cholesterol rich processes (Figure 30 A and B). PLPwt-EGFP 

expressing cells show an association with cholesterol at the cell surface and in E/L 

 87



Results 

compartment. In contrast cells expressing PLPmsd-EGFP, fully retain the protein in the ER 

and show no association at cell surface or in E/Ls (Figure 30 B). Lack of co-localization of 

lamp1 and PLPmsd-EGFP infers that mutant protein is stably retained in the ER and is not 

degraded via lysosomal degradation pathway (Figure 30 C and Figure 31).  

 

Figure 30: Association of PLP with cholesterol 

PLPwt-EGFP and PLPmsd-EGFP expressing stable cell line induced with 1 mM cAMP for 24 hours, fixed and 
incubated with filipin (Cholesterol) in red.A) PLPwt-EGFP associates with cholesterol in E/Ls and at cell 
surface. PLPP

msd-EGFP expressing cells do not show impairment in process outgrowth and cholesterol 
distribution (B). ER from majority of cells is virtually free from cholesterol, similar to PLPwt-EGFP 
expressing cells. Overlay of lamp1 and EGFP fluorescence in C) and magnification Ca) shows that PLPmsd-
EGFP is not degraded in lysosomes. Both cell lines express PLP without any observable change in growth 
rate or cell death compared to the wild-type oli-neu cells. 
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Due to the oligodendrocyte death the effect of this point mutation (PLPmsd) cannot be 

studied in vivo. By using proteomics and transcriptomics approach the expression profiles 

of genes differentially regulated during myelination (artificial induction with cAMP) are 

being investigated in both wildtype and mutant cell lines. 

 

 

Figure 31: Co-immunopreipitation from oli-neu stably expressing PLPwt-EGFP and PLPmsd-EGFP  

PLPwt-EGFP and PLPP

msd-EGFP expressing stable cell line were labeled for 72 hours with 35S methionine-
cysteine promix, harvested and incubated with c-myc and 3F4 antibodies. Immuno-precipitated lysates were 
separated on 10 % reducing SDS gels and exposed to radiographic films. A prominent 40 kDa band (P) 
shows that these cells maintain PLPwt-EGFP and PLPmsd

P -EGFP are relatively low levels. Note that mutant 
protein is more resistant to degradation than wt. White arrow highlights a co-immunoprecipitated protein that 
interacts with both PLPwt and PLPmsd. Red arrow heads highlight two more interacting proteins that are 
specifically precipitated with c-myc antibody from cells expressing both mutant and wild-type protein. 
Identity of these proteins still remains to be identified. 

4.4.3 Directed trafficking of rapidly moving PLP-EGFP+ endo/lysosomes in 

primary oligodendrocytes 

Primary oligodendrocytes, compared to oli-neu cell, do not show a developmental arrest at 

a premyelinating stage. Neither do they rely on cAMP or neuronal signal for redistribution 

of PLP from E/Ls storage site to the cell surface. Interestingly, PLPwt-EGFP containing 

E/Ls structures display a directed and much faster mobility in oligodendrocytes (see 

attached compact disc movie 5 and 6 for comparison) compared to oli-neu cell induced 
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with cAMP. The E/Ls structures show a tendency to move directionally into a growing 

myelin process. The exact mechanism how this directional trafficking is achieved and how 

oligodendrocytes follow the clues to enwrap axons, in vivo, can be appropriately answered 

by generation of a tool expressing PLPP

wt-EGFP from endogenous locus. 

 

Figure 32: cAMP treatment induces process outgrowth and redistributes PLP to the cell surface 

A) PLPwt-EGFP expressing oli-neu cells treated with cAMP (10 nM) for 24 hours and imaged live by 
confocal microscopy in a low fluorescence media. Scale bar annotates 5 μm. B) Shows an entire mobile pool 
of endo/lysosomes. The net mobility was calculated by subtraction of two consecutive images interspaced by 
an interval of 8.9 second. Figure 32 Aa and Ab shows the mobility of endo/lysosomes an interval of 45 
seconds. 
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Figure 32 continued: Aa) Perinuclear and Ab) peripheral image sequences of boxed area in Figure 32 A. 
Scale bar is 1 μm and the radius (500 nm) of immobile endo/lysosomes(E/Ls) is marked in red. Time lapse 
(8.9 seconds) between consecutive scans is same from Aa and Ab. Red circles mark relatively immobile pool 
of large E/Ls (radius > 500 nm) with local diffusion. White circles define the path of a subset of highly 
mobile and small E/Ls (radius < 200 nm). Perinuclear pool of E/Ls shows relatively less mobility over long 
range as compared to the peripheral pool of E/Ls [approximately same size (radius 150 to 200 nm). Whereas 
E/Ls of a radius >500 nm are relatively immobile in both periphery and perinuclearlly (highlighted in red 
circles). 
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Figure 33: Highly mobile and directed endo/lysosomes in primary oligodendrocytes 

Primary oligodendrocytes (OLs) transfected with PLPwt-EGFP construct and imaged live. Scale bar annotates 
5 μm. Note that in A) a single 200nm thick focal slice and B) an image obtained by subtraction from 
preceding slice, E/Ls are highly mobile in oligodendrocytes and cannot be resolved into vesicular structures. 
Reducing the time lapse between two scans from 8.9 to 7.9 seconds (fastest at this resolution), still gave a 
tubular pattern of E/Ls morphology. The endo/lysosomes (E/Ls) in OLs are highly mobile both in the 
periphery and perinuclearlly. Either the E/Ls move much faster than their own diameter and can not be 
resolved or they exhibit a somewhat tubular morphology in these cells.  
Aa) Peripheral pool of E/Ls is highly mobile and appears tubular. Scale bar is 1 μm. Bounded area shows a 
rough trajectory of highly mobile E/Ls and red marks relatively immobile E/Ls. Note time lapse between 
consecutive snapshots is 7.99 seconds.  

 92



Results 

 

Figure 33 continued: Ab) and Ac) are time lapsed images of boxed in Figure 33 A of periphery and 
perinuclear areas respectively. Red circles mark relatively immobile pool with local diffusion. While the 
circles and the boundaries in white define the path of highly mobile E/Ls. Note that even the perinuclear E/Ls 
of primary oligodendrocytes show high mobility over a long range with a rod shaped morphology (see the 
area bounded in white boundaries Ac). In a growing process these E/Ls show a high mobility (Ab). Blue 
circles mark an event of appearance and disappearance of E/Ls. Relatively immobile or locally diffusing 
radius > 500 nm E/Ls are labeled with red boundaries. Scale bar in the image gallery annotates a length of 1 
μm 
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4.4.4 Generation of an in vivo tool to study myelination, demyelination and 

remyelination 

Several methodologies have been developed to study function of a gene in vivo: 

Generation of transgenic animals through pronuclear injection (Brinster et al., 1982; 

Gordon et al., 1980; McKnight et al., 1983) and targeted gene ablation in embryonic stem 

(ES) cells either by a loss-of-function mutation (‘knock-out’) or by the insertion of a 

reporter gene into the genetic locus of interest (‘knock-in’) or by conditional ablation of 

gene function in a specific cell type (Doetschman et al., 1987; Thomas and Capecchi, 

1987) (Gu et al., 1994). In contrast to knock-in approaches, the promoters used in 

transgene constructs often do not provide the same pattern of expression seen for the 

endogenous promoter, but instead give rise to varying expression profiles. This variation in 

expression may be attributed to cis-acting regulatory elements that surround the site of 

transgene integration into the genome (Caroni, 1997). Thus, this technique requires a 

multiple founder analysis to identify an animal with a desired transgene expression profile. 

All seven founders screened for transgenic expression of PLP-EGFP showed no EGFP 

fluorescence in primary oligodendrocytes (data not shown). 

As an alternative approach to label myelin in vivo we designed a homologous 

recombination (knock-in) strategy. We designed a targeting construct in which the 

translational termination codon of mouse Plp gene was replaced by in frame fusion of Egfp 

gene (Figure 34). Screening of about 500 clones ES cell clones yielded a single 

homologously recombined ES clone, which corresponds to a recombination efficiency of 

about 0.2 %. Currently, the chimeric animals obtained after the blastocysts injection are 

under investigation. 

 94



Results 

 

Figure 34: Strategy for targeted homologous recombination of Plp gene in mouse ES cells 

A) Structure of the M. musculus Plp gene (a), the targeting construct (b) and the targeted gene (c). The 
introns and exons are not drawn to the scale. The PLP/DM20 locus comprises seven exons indicated in grey 
boxes. Note that after homologous recombination, only the translational termination codon (TGA) is replaced 
by Egfp and Neo genes.   
B) R1 mouse ES cells were transfected with 50 μg of the linearized (SalI) targeting construct. Transfected 
cells were selected with G418 for 8–10 days after electroporation. A fraction of a resistant colony, altogether 
eight, was pooled along with fractions from seven independent resistant colonies. Homologous recombinants 
were identified using a the pool DNA as a template for PCR (pool 19 identified as positive). HE is PCR 
water control with ES DNA from non-transfected ES cells. The PCR amplifies a 1.4 kb genomic fragment 
from homologously recombined allele (clone 19.5) and 1.9 kb from the control plasmid (CE, used to monitor 
the PCR efficiency). The sense primers (8223 and 8224) corresponded to a PLP genomic sequence localized 
immediately upstream of the 5′ homology region. A reverse primer (8210) was derived from the EGFP gene. 
Microinjection of selected ES cells into C57BL/6J blastocysts was performed by standard procedures. 
Currently the chimeric animals are under observation. 
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4.5 A therapeutic approach towards a mouse model of Pelizaeus-

Merzbacher disease; treatment of rumpshaker mice with Turmeric 
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4.5.1 Curcumin is an active constituent of Turmeric 

Curcumin, an active component of turmeric, constitutes about 0.01 to 0.1 % of its dry 

weight. Curcumin has been shown to resolve amyloid plaques (in vivo) (Lim et al., 2001; 

Yang et al., 2005), and to modulate and abrogate protein aggregates/retention of myelin 

protein zero (in vitro) (Khajavi et al., 2005) and other channel proteins CFTR (in vivo and 

in vitro) (Egan et al., 2004). Curcumin is non toxic and potent Ca2+-ATPase pump inhibitor 

(Logan-Smith et al., 2001). Many ER luminal chaperons are Ca2+ binding proteins (Nigam 

et al., 1994; Szperl and Opas, 2005; Trombetta and Parodi, 1992). To test whether 

misfolded PLP is also released from ER, in agreement with above reports, we treated 

rumpshaker mice with turmeric rich diet. Mice under turmeric rich diet live up to three 

times longer than mice feed with unsupplemented jelly food. We hypothesized that the 

protective effect of curcumin could result from misfolded PLP to be released from the ER, 

potentially relieving the toxic effect associated with these mutations in cells. 

4.5.2 Curcumin treatment of stable cell line expressing PLPmsd-EGFP  

Survival of wildtype oli-neu cell was drastically compromised at a concentration >1 µM 

Curcumin, whereas in above studies and other reports show a tolerance of up to 20 μM 

levels in various cell types. Hence, we treated wildtype and PLPmsd-EGFP expressing cells 

with Curcumin dilutions of up to 1 μM. Application of 0.1 μM and 1 μM of Curcumin to 

cells stably expressing PLPmsd-EGFP resulted in a less compacted ER. The mutant PLP 

reaching the cell surface was not quantified, as both 3F4 and 010 antibody do not 

recognize PLPP

msd-EGFP: Curcumin treated cells, displayed an elevated and homogenous 

distribution of PLPmsd-EGFP within ER as compared to the cells treated with DMSO only 

( ). The non compact or smoothened ER, resulting from Curcumin treatment, 

might also lead to a reduced toxicity in these cells. The quantification of mutant 

PLP

Figure 35

msdEGFP released from ER will be quantified in future experiments using biotinylation 

of all surface proteins and subsequent pull-down using streptavidin-agarose. Presently we 

are also generating a stable cell line expressing PLPrsh-EGFP. PLPrsh is an Ile 186 to a Thr 

substitution, in EC2, and is recognized by both conformation specific monoclonal 

antibodies; 010 and 3F4, hence is easily quantifiable by immunocytochemistry. 
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Figure 35: Treatment of PLPmsd-EGFP expressing cells with curcumin 

Cells supplemented with 0.1 μM (B) and 1 μM curcumin (C) exhibit less compacted ER, compared to the 
cells treated with DMSO only (A). Due to absence of 010 and 3F4 epitopes the proportion of PLPmsd-EGFP 
at the cell surface, was not quantified (data not shown). Scale bar 10 μm. 

4.5.3 Treatment of rumpshaker mice with Turmeric 

Rumpshaker is a X-linked mutation in mice and associated with hypomyelination of the 

central nervous system. It has been shown that the phenotype of rumpshaker mouse 

depends critically on the genetic background (Al-Saktawi et al., 2003). Rumpshaker mice 

on a C3H background exhibit a normal longevity despite the impairment. After 

backcrossing to the inbred strain C57BL/6, the rumpshaker mice develop frequent seizures 

and die around postnatal day 30 (P30). The dichotomy of the phenotype probably reflects 

the influence of modifying loci, rather than a differential trafficking between 

oligodendrocytes from two different backgrounds.  In our study, we maintained the 

mutation on C57BL/6 background. Rumpshaker mice feed on turmeric rich diet (1:10 in 

jelly food) from P11 onwards on an average lived about 3 times longer than the littermates 

kept on regular jelly food (Figure 36). This striking difference concerning the longevity, in 

our preliminary experiment, demonstrates that the active constituent of turmeric, most 

likely curcumin, can cross the blood brain barrier and modify the phenotype of rumpshaker 

mice. Moreover the exact molecular mechanism of turmeric action needs to be deliberated 

in future in-vitro approaches. 
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Figure 36: Survival of rumpshaker mice treated with turmeric 

Kaplan-Meier and Scatter plot of rumpshaker mice fed with jelly food with (blue triangle,) or without (red 
square) turmeric supplement (minced roots) from P11 onwards. A) Kaplan-Meier plot shows a remarkably 
better survival of mutant mice fed on diet rich in turmeric compared to controls. All rumpshaker mice on 
normal diet die around P29 (median), whereas more than 60 % of rumpshaker mice live longer than P64 
(median) when fed on turmeric diet from P11 onwards. B) Scatter plot of individual mutant animals shows a 
clear drift towards a prolonged longevity of mutant animals fed on turmeric rich diet. 
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5.1 Quality Control of Polytopic Membrane Proteins 

5.1.1 Luminal quality control in PLP/DM20 trafficking: an implication to 

various membrane/secretory protein related diseases 

Numerous missense mutations of the human Plp1 gene have been identified that cause a 

severe neurological disorder and premature death, but the effect of these mutations is 

puzzling in this and other disease associated with polytopic membrane proteins. Here, we 

have shown that various PMD-associated point mutations, previously only predicted to 

alter the primary structure of the protein in an extracellular loop region, converge 

mechanistically by perturbing the formation of an intra-molecular disulfide bridge in the 

lumen of the ER.  Surprisingly, this disulfide bridge itself appears dispensable for normal 

PLP folding and trafficking (Figure 12 and Figure 13). Moreover, in several mutant PLP 

isoforms derived from PMD patients, it is not the substituted amino acid itself that causes 

misfolding. Instead, it is an unpaired and sterically exposed cysteine that becomes critical 

for protein retention, as demonstrated by the rescuing effect of cysteine removal. Given 

that many membrane proteins harbor intramolecular disulfide bridges in their extracellular 

loop regions and are sensitive to point mutations in these domains, we suggest that our 

model is likely relevant to a broader spectrum of genetic disorders (Figure 37).  
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Figure 37: Proposed mechanism of ER retention 

Subcellular localization of PLP: wildtype (WT), lacking the “outer” disulfide bond 200-219, msd (A242V), 
bearing a PMD causing mutation and the same PMD mutation in absence of “outer” disulfide bond. 
Endoplasmic reticulum membranes are drawn in red and the plasma membrane in green.  
Note that mutations affecting both EC2 and the TM domain assembly retain PLP in the ER membranes (red 
membranes, lower panel). Mutations that destabilize globular EC domain (yellow filled circled in the last 
model) expose free cysteines to the oxidative environment of the ER. Under these conditions PLP forms 
abnormal dimers and cross links to other proteins. This ER retention of these mutants can be rescued by 
replacing both cysteines involved in dimerization to serines. PLP lacking outer disulfide bond and bearing a 
PMD causing mutation is enrouted to the cell surface (Green membranes, third model on top).   
Mutations affecting TM assembly (A242V i.e, PLPmsd) has been shown to interact stably with ER lectins 
(calnexin and calreticulin) in the ER of COS-7 cells. The authenticity of such an interaction, of non 
glycosylated proteins, is being investigated in cells of oligodendroglial lineage. 

Disulfide bridges are thought to stabilize globular domains once properly folded. It appears 

that for PLP not all disulfide bridges in EC2 are a prerequisite to reach the transport-

competent conformation, because cell surface expression is possible in the absence of one 

cysteine pair (Figure 37). By introducing natural PMD mutations into PLP using site-

directed mutagenesis we could show that substitutions within the extracellular loop act by 

preventing the intra-molecular disulfide bridge and exposing unpaired cysteines to the 

oxidative environment of the ER. We could also show by SDS-PAGE under non-reducing 
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conditions, that stable PLP dimers were generated when glial cells express PMD-causing 

mutants that map into EC2. These cysteine-dependent PLP dimers are novel oxidation 

products and fail to become O10-positive PLP (oligomers) that can exit the ER (Jung et al., 

1996). Thus, abnormal cross-links are a plausible explanation for ER retention, the 

unfolded protein response, and apoptotic death of susceptible oligodendrocytes in vivo. We 

cannot rule out that prolonged cycles of binding and release of mutant PLP to specific 

chaperones, such as protein disulfide isomerase (PDI), also contributes to retention. 

However, attempts to chemically cross-link and immunoprecipitate PDI specifically with 

mutant PLP were unsuccessful. Also overexpression of mutant PDI lacking its own ER 

retention signal did not release PLP (data not shown). Finally, PLP interactions with still 

unidentified proteins in the ER cannot be excluded and could be relevant to 

oligodendrocyte dysfunction. However, the principle disease mechanism, i.e. the cysteine-

dependent cross-linking of PLP secondary to various other mutations, has been proven by 

restoring normal trafficking in PLP harboring a PMD-causing substitution but lacking the 

responsible cysteine residues. 

The present model was derived from observations with cultured glial cells, but can almost 

certainly be applied to mutant oligodendrocytes in vivo. We and others have extensively 

characterized the effect of mutations in the Plp1 gene using in vivo systems (Edgar et al., 

2004; Gow et al., 1998; Griffiths et al., 1998; Klugmann et al., 1997; Schneider et al., 

1992; Schneider et al., 1995). These studies have revealed that oligodendrocytes die with 

typical features of apoptosis when expressing misfolded PLP/DM20 (Cerghet et al., 2001; 

Gow et al., 1998; Knapp et al., 1986). Thus, analysis of ER retention and trafficking 

requires a cellular system that is resistant to mutant PLP expression and cell death, but 

maintains essential features of oligodendrocytes. The cell line oli-neu, that can be fully 

differentiated in vitro (Jung et al., 1995), is thus optimally suited to study intracellular 

PLP/DM20 transport. 

Recent studies have described the interaction of mutant PLP with calnexin, an ER-resident 

chaperones in COS-7 cells (Swanton et al., 2003). Whether this binding is the cause or 

consequence of ER retention remains to be defined. The chosen PMD mutations included 

substitutions within a TM domain, quite different from loop mutants. We also detected 

interactions between our PLP mutants in EC2 and calnexin using COS-7 cells, but 

observed no difference between mutant and wild-type PLP by co-immuno precipitation 
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(Figure 20 and section 4.1.6). Swanton et al (Swanton et al., 2005) also observed higher 

than normal dimerization rates of PLP, but the resulting dimers appeared stable in reducing 

gels, and the possible involvement of cysteines was not investigated. 

Disulfide bridges play a key role in protein conformation and stabilization. A classical 

model system to analyze the impact of amino acid substitutions on membrane protein 

function is provided by rhodopsin (Khorana, 1992; Stojanovic and Hwa, 2002). Mutations 

of this multispan membrane protein underlies autosomal-dominant retinitis pigmentosa 

(ADRP)(Liu et al., 1996), and there are intriguing parallels between PLP and rhodopsin in 

genetic disease. It is possible that substitutions in the intradiscal/extracellular loop region 

of rhodopsin and local protein misfolding can prevent intramolecular disulfide bridges 

similar to the model that we present here.  

Many human genetic diseases have been defined by missense mutations that affect 

polytopic membrane proteins near extracellular cysteine bridges, but exactly why even 

apparently minor structural changes can cause protein retention and dysfunction has not 

been investigated. This includes a wide spectrum of human diseases, ranging from specific 

forms of sensoneurial deafness (connexin-26: Ref. (Thomas et al., 2004)) and diabetes 

insipidus (vasopressin-V2 receptor (Schulein et al., 2001)) to autoimmune disorders (TNF 

receptor (Galon et al., 2000; McDermott et al., 1999); HDL-deficiency 

(ABCA1;Ref.(Albrecht et al., 2004)), X-linked Charcot-Marie-Tooth neuropathy 

(connexin-32: Ref.(Yum et al., 2002), and others. To what extent these missense mutation 

can be explained by cysteine-mediated cross-links, causing ER retention and/or protein 

dysfunction, can now be experimentally tested. 
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5.1.2 Self assembly of PLP/DM20 tetraspans 

Spastic Paraplegia 2 (SPG2) is a mild form of PMD. SPG2 associated mutations of human 

PLP1 gene either affect the soluble intracellular loop (IC) of PLP/DM20 or result in 

abnormal truncation/termination of growing polypeptide. Surprisingly, PLP/DM20 can 

tolerate perturbations of IC without an observable change in sub-cellular distribution of 

mutant PLP/DM20. Replacing a short stretch of 9 to 11 amino acids specifically in PLP or 

in a region common to both PLP and DM20, did not alter the trafficking of chimeric 

proteins. These observations explain why, the consequence of mutations affecting IC leads 

to a relatively mild phenotype.  

We have identified a remarkable and novel property of PLP to self assemble when 

expressed as two independent truncated polypeptides, each exhibiting two transmembrane 

domains (TM). Hereby, we propose that this property is not unique to PLP but a property 

inspected by a bonafide quality control operated in the ER. A quality control checking 

proper assembly of transmembranes, and is also documented for CD82 (Cannon and 

Cresswell, 2001).  

A surprising role of ER lectin calnexin came into limelight when the glycan independent 

association of calnexin but not the soluble homolog calreticulin was shown by two 

independent groups (Cannon and Cresswell, 2001; Swanton et al., 2003). Both groups have 

shown that truncated tetraspanin proteins (TM4-PLP and TM1-CD82) are retained in the 

ER of COS-7 cells. Interestingly TM4 (PLP) and TM1 (CD82) are both efficient in 

recruiting calnexin but not calreticulin to stably bind misfolded protein and inhibit the 

degradation in the ER (at least shown for PLP). We tested this observation further and 

could show that not only TM4 from PLP, but also TM1,2 (ER retained) and TM1,2 + 

TM3,4 (at cell surface when co-expressed) are efficient in recruiting calnexin. In addition 

to calnexin, we also found a strong association of PLP with calreticulin using a same 

system used by above groups (Figure 20 and section 4.1.6), which challenges the 

biological relevance of calnexin association. It is important to raise a question about 

authenticity of these interactions and to test whether these interactions are direct or 

mediated through an intermediate protein forming a multimeric complex in the ER 

(Ellgaard and Frickel, 2003; High et al., 2000; Kang and Cresswell, 2002) 
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PLP has been shown to interact with calreticulin in primary oligodendrocytes (Gudz et al., 

2002). Upon stimulation of muscarinic acetylcholine receptors on oligodendrocytes 

induced formation of a tripartite complex containing PLP, calreticulin, and alpha(v)-

integrin. Complex formation was mediated by phospholipase C and Ca2+ binding to the 

high affinity binding site on calreticulin (Gudz et al., 2002). 

TM1,2 and TM3,4 derived from PLPwt, when co-expressed in COS-7 and oli-neu cells, 

result in reconstitution of PLPwt like distribution. Whereas, the same combination of TMs 

with an Ala242 to Val substitution in TM4 (imitating PLPmsd like situation), completely 

retains both halves of the protein in the ER. This finding strongly supports our hypothesis 

that all four TMs from PLP must assemble in a proper orientation to bypass the stringent 

quality control governing the assembly of TMs.  

TM1,2,3 and TM4 derived from PLPwt, when co-expressed can not evade this quality 

control and completely agrees with our finding that disulfide bridge 183-227 is critical for 

the assembly of TMs. Future studies are intended to test the authenticity of PLP interaction 

with various chaperons in the oli-neu cell line stably expressing PLPwt and PLPmsd. 
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5.2 Conformation sensitive epitope of PLP and polarized 

oligodendrocytes 

5.2.1 3F4 and 010 label mutually exclusive compartments of premyelinating 

oligodendrocytes 

In the present study I have identified a conformation sensitive epitope that provides 

indirect evidence that myelin PLP is derived from endo/lysosomal (E/L) compartment. 

PLP masks the 3F4 epitope within ER during its synthesis. Strikingly, PLP remains 3F4 

negative even at the cell surface, the epitope is only exposed in E/Ls compartment of 

transfected precursor cells. Non transfected oli-neu cells (with endogenous levels of 

DM20) also show a similar subcellular distribution of the protein. 

In a previous study, our laboratory has identified an 010 epitope exhibited by PLP that is 

also conformation sensitive (Jung et al., 1996). However in distinction to 3F4, 010 stains 

PLP as it exits from the ER of primary oligodendrocytes and transfected COS-7 cells. It 

was shown that the 010 epitope emerges post-translationally. In contrast, 3F4 epitope is 

completely masked in the ER and at the cell surface (only in premyelinating glia). The only 

known co- and post-translational modification of PLP/DM20 (in addition to the formation 

of two disulfide bridges) is the intracellular acylation of cysteine residues (Bizzozero and 

Good, 1990; Shaw et al., 1989; Weimbs and Stoffel, 1992). Jung et al. (96) further 

speculated that the 010 epitope emerges after proper folding, i.e., when the correct 

disulfide bridges have formed or an oligomeric structure has formed. 

The presented data strongly support Jung et al’s (96) hypothesis, providing direct evidence 

that in these properly assembled 010+ PLP oligomers the 3F4 epitope is completely 

masked. Cell surface expressed variants of PLP and DM20, PMD causing or rescued by 

cysteine removal, exhibit an exposed 3F4 epitope. Strikingly, the endo/lysosomal (E/Ls) 

enriched mutant PLP remain negative for 3F4 to a high extent, unlike PLPwt which offers a 

high avidity to 3F4 solely in endo/lysosomal (E/L) compartment. 
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5.2.2 Oligodendrocytes are polarized cells 

Oli-neu cells that display a developmental arrest in pre-myelinating state are invaluable 

tool to study PLP trafficking and process outgrowth during myelination, as the cells are 

inducible with addition of cAMP to produce artificial myelin like membrane. PLP is 010+ 

throughout its subcellular trafficking pathway whereas, 3F4 epitope emerges only in 

endo/lysosomal (E/L) compartment of stably transfected oli-neu cells. We have shown that 

PLP containing E/Ls are highly mobile and fuse with the plasma membrane (Trajkovic et 

al., 2006). However, unlike the classical secretory lysososmes that are specialized to 

release luminal content in dendritic cells (Kleijmeer et al., 2001; Trombetta et al., 2003), 

oligodendrocytes might mainly transport membranes. For oligodendrocytes, 

PLP/cholesterol rich E/Ls compartments may be particularly useful as storage 

compartments, as they are able to harbor a large amounts membrane in a multilameller and 

multivesicular fashion for myelin biogenesis. The E/Ls in oligodendrocytes are specialized 

and possess a low proteolytic capacity (Trajkovic et al., 2006). The interesting finding that 

both epitopes 010 and 3F4 co-exist at the surface of primary oligodendrocytes cultured for 

20 days in vitro  [(Greer et al., 1996) and data not shown] substantiate the findings that 

specialized lysosomes are docked for regulated exocytosis that may or may not rely on 

neuron signals.  

The PLP-EGFP transgenic “knock in” mice in which, the Plp-egfp gene is regulated 

developmentally from endogenous locus is being generated. This transgene would serve as 

a useful tool in understanding the mechanisms underlying PMD and other dys-myelinating 

and de-myelinating diseases in vivo. 

To test the biological significance of oligomerization state of PLP and compartment 

specific 3F4+ epitope exhibited by PLP. The adult murine spinal cord sections were stained 

for two different PLP epitopes. Interestingly, a complete overlay of PLP distribution in 

adult CNS myelin was observed with 3F4 and A431 antibodies, one epitope embedded in 

IPL and the other in MDL respectively (for myelin periodicity see section 2.2 Figure 2). 

Both antibodies show an extremely high avidity to PLP/DM20 in adult CNS myelin. We 

also identified a novel P16 proteolytic cleavage (P.C) product of PLP (P16) in purified 

myelin (section 4.3.3), using immuno-blot detection with 3F4 antibody. The presence of 

PLP P.C product (P10) was only documented in equine myelin (McLaughlin et al., 2002). 
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These PLP derived secretory P.C products are speculated to have an early developmental 

function in a premyelination state (Yamada et al., 1999). 

We here propose a model in which PLP during its exit from the ER oligomerizes in cis by 

virtue of its TMs (similar to connexins, not necessarily hexamers) predominantly bearing 

intra-molecular disulfides. After and during endocytotic, PLP mature in E/Ls compartment 

where the TM assembly is stabilized by association with cholesterol and neighboring 

PLP/DM20 may or may not be further required for cis-stabilization. Now PLP docks itself 

for myelin compaction and it does so by forming inter-molecular disulfides in trans, which 

might also involve some cleavage and intercalation of proteolipid cleavage products (P.C: 

P10 and P16) for efficient packaging.  

We have also used 3F4 as a tool to address the question of a mutation-induced misfolding 

of PLP and DM20 and have shown that the antibody 3F4 distinguishes between wild-type 

PLP/DM20 and mutant isoforms. All mutant isoforms tested in oli-neu and COS-7 cells 

exhibit a tremendous avidity to 3F4. Staining both live and fixed cells with 3F4 anitbody 

we have demonstrated that in wild-type PLP the 3F4 epitope is masked after its exit from 

the ER and at the cell surface. The epitope is exposed only in E/Ls prior to myelination and 

in compact CNS myelin. Whereas mutant PLP exposes the 3F4 epitope within ER and at 

the cell surface, which might trigger recruitment of receptors/factors responsible for 

myelination prematurely and hence destabilizing ER and plasma membrane of cells 

expressing mutant PLP. 

Taken together, in conjunction with 010 epitope, we suggest that 3F4 and 010 epitopes 

label PLP in mutually exclusive compartments in a premyelination state of 

oligodendrocytes. On receiving appropriate signals and to cope with membrane extension 

and surface area expansion during myelination, oligodendrocytes mature and might display 

exocytosis via two independently regulated pathways i.e, classical from post-golgi derived 

vesicles (regulated at translational level, otherwise constitutive) and the endo/lysosomal 

fusion for massive outbursts (Trajkovic et al., 2006). These myelinating oligodendrocytes 

from this stage onwards co-exhibit both 3F4 and 010.  
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5.3 Treatment of Rumpshaker mice with Turmeric 

Turmeric has long been used in both Indian (Ayurvedic) and Chinese medicine as an anti-

inflammatory, to treat digestive disorders and liver problems, and for the treatment of skin 

diseases and wound healing. The active ingredient in turmeric is curcumin, and it has been 

the subject of numerous animal studies. Recently, curcumin has been shown to resolve 

amyloid plaques (in vivo) (Lim et al., 2001; Yang et al., 2005) hence the drug is capable to 

cross the blood brain barrier. It also has been shown to modulate and abrogate protein 

aggregates/retention of myelin protein zero (in vitro) (Khajavi et al., 2005) and other 

channel proteins CFTR (in vivo and in vitro) (Egan et al., 2004). At molecular level, 

curcumin acts as a non toxic and potent Ca2+-ATPase pump inhibitor (Logan-Smith et al., 

2001). As many luminal chaperons are Ca2+ binding proteins (Nigam et al., 1994; Szperl 

and Opas, 2005; Trombetta and Parodi, 1992) here we directly tested with an in vivo 

approach whether misfolded PLP is released from the ER or not.  

In our pilot experiment, rumpshaker mice (a model of PMD) were directly fed with a diet 

supplemented with the dried rhizome powder (turmeric) as a source of curcumin, from 

postnatal day 11 (P11) onwards. Turmeric supplemented food was simply kept in the cages 

housing mutant mice. The dosage each animal received was dictated by an urge/desire of 

animal to eat supplemented food (the only option in the cage). Interestingly this simple 

treatment course caused a remarkable increase in the life expectancy of the mutant mice. 

The treated mice, on an average showed longevity of 2 to 3 times (between 60 to 140 days, 

except few who died at same age as normal diet) as compared to control mice with an 

average life expectancy of between 26 to 30 days. As human studies indicate that curcumin 

is tolerated in extremely large oral doses without apparent toxicity (Cheng et al., 2001), our 

exciting data might potentially lead to a cure for Pelizaeus-Merzbacher disease. 

In future studies we intend to administer curcumin (purified) doses orally, on an 

approximated weight per weight basis. The molecular mechanism of curcumin action in 

mutant oligodendrocytes is under investigation, currently. 
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Appendix A: Abbreviations 

Amino acid    Either three or single letter codes used 

DM20    Splice variant of PLP 

EC    Extracellular loop 

E/Ls    Endosomes/lysosomes 

EGFP    Enhanced green fluorescent protein 

IC    Intracellular loop 

Myc    EQKISEEDL (epitope with sequence, single letter code) 

PLP    Proteolipid protein 

PLP1 gene   Human Proteolipid protein gene 

Plp1 or Plp gene   Mouse Proteolipid protein gene 

PMD    Pelizaeus-Merzbacher disease 

∆    Deletion 

PLPwt or wt   wildtype proteolipid protein 

PLPmsd or msd   Ala 242 to Val substitution 

PLPC200S    cys 200 replaced to ser 

TM    Transmembrane domain  

 

In general, PLP with a superscript annotates that the superscripted amino acid residue is replaced. For 

numbering amino acid residue in PLP or DM20, numbering according to PLP primary structure was 

annotated to both PLP and DM20. 

 

 

Other Abbreviation 

3F4, 010, A431   anti-PLP antibodies 

βME    Beta-mercaptoethanol 

bp     Base pairs 

BSA     Bovine serum albumin 

°C    Degrees Celsius (centigrades) 

CNS    Central nervous system 

DMEM     Dulbecco´s Modified Eagles Medium 

DMSO    Dimethylsulfoxide 

Kb    Kilobases  

kDa    Kilodalton  

M    Molar  

mM    Millimolar 

mA    milliAmpere 
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min    Minutes 

ml    Milliliter 

μg    Microgram  

μl    Microliter 

ng    Nanogram  

μm    Micrometer 

nm    nanometer  

PAGE    Polyacrylamidgelelektrophorese  

PBS    Phosphate buffered saline 

PFA    Paraformaldehyde  

PNS    Peripheral nervous system  

Rpm    Rotations per minute  

RT    Room temperature  

s    Seconds  

SDS    Sodium dodecyl sulfate  

TBS    Tris buffered saline  

TBE    Tris-Borat/EDTA  

TEMED    Tetramethylendiamin  

Tris/Cl    Tris-(hydroxymethyl)-aminomethan titred with HCl  

U    Unit, (for enzyme activities)  

V    Volt 
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Appendix B: Publications 

Ajit Singh Dhaunchak and Klaus-Armin Nave “Rescue of mutant membrane protein 

from ER retention identifies a common disease mechanism” PLOS Biology, under review 

2006 May 29. (Results section 4.1) 

 

Katarina Trajkovic*, Ajit Singh Dhaunchak*, José T Goncalves, Dirk Wenzel, Anja 

Schneider, Gertrude Bunt, Klaus-Armin Nave, Mikael Simons. “Neuron to glia signaling 

triggers myelin membrane exocytosis from endosomal storage sites”. Journal of Cell 
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Introduction
The myelin sheath is a multilamellar, spirally wrapping exten-
sion of the plasma membrane of oligodendrocytes that is essen-
tial for rapid impulse conduction in the central nervous system. 
This specialized membrane exhibits a unique composition with 
>70% of the dry weight consisting of lipids and the remainder 
being comprised of a restricted set of proteins, of which most are 
exclusively found in myelin (Baumann and Pham-Dinh, 2001; 
Kramer et al., 2001). The major central nervous system myelin 
proteins, the myelin basic protein, and the proteolipid proteins 
(PLPs/DM20) are low molecular weight proteins found in com-
pact myelin that constitute 80% of the total myelin proteins. 
PLP is a highly hydrophobic protein with four transmembrane 
domains that interact with cholesterol and galactosylceramide-
enriched membranes during its biosynthetic transport in oligo-
dendrocytes (Weimbs and Stoffel, 1992; Simons et al., 2000; 
Schneider et al., 2005).

To form the myelin sheath, oligodendrocytes must deliver 
large amounts of myelin membrane to the axons at the appro-
priate developmental stage of the oligodendroglial and neuronal 

cell lineage (Baumann and Pham-Dinh, 2001; Kramer et al., 
2001). On the other hand, axons produce signals that regulate 
the differentiation of oligodendrocytes (Barres and Raff, 1999; 
Fields and Stevens-Graham, 2002). This led us to postulate that 
neuronal signals could be involved in the coordination of the 
traffi cking of myelin membrane in oligodendrocytes. In this 
study, we show that the transport of PLP in oligodendrocytes 
is under neuronal control. PLP is initially targeted to late endo-
somes/lysosomes (LEs/Ls) by using a cholesterol-dependent 
and clathrin-independent endocytosis pathway. PLP is then 
 redistributed from LEs/Ls to the plasma membrane upon act ivation 
by neuronal cells. We provide evidence that this development-
 dependent regulation of PLP localization occurs by the down-
regulation of endocytosis and by the stimulation of exocytosis 
from LE/L storage sites.

Results

PLP localizes to LEs/Ls 
of immature oligodendrocytes
To analyze the localization of PLP in immature oligodendro-
cytes, oligodendroglial precursor cells growing on top of a layer 
of astrocytes were shaken off and cultured for 3 d to induce the 
expression of PLP. By confocal immunofl uorescence micros-
copy, extensive colocalization of PLP and Lamp-1, a marker for 
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During vertebrate brain development, axons are 
enwrapped by myelin, an insulating membrane 
produced by oligodendrocytes. Neuron-derived 

signaling molecules are temporally and spatially required 
to coordinate oligodendrocyte differentiation. In this 
study, we show that neurons regulate myelin membrane 
traffi cking in oligodendrocytes. In the absence of neurons, 
the major myelin membrane protein, the proteolipid protein 
(PLP), is internalized and stored in late endosomes/lyso-
somes (LEs/Ls) by a cholesterol-dependent and clathrin-

independent endocytosis pathway that requires actin 
and the RhoA guanosine triphosphatase. Upon matura-
tion, the rate of endocytosis is reduced, and a cAMP-
dependent neuronal signal triggers the transport of PLP 
from LEs/Ls to the plasma membrane. These fi ndings re-
veal a fundamental and novel role of LEs/Ls in oligoden-
drocytes: to store and release PLP in a regulated fashion. 
The release of  myelin membrane from LEs/Ls by neuronal 
signals may represent a mechanism to control myelin 
membrane growth.
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LEs/Ls, was observed (Fig. 1 a) as reported previously (Kramer 
et al., 2001; Simons et al., 2002). The same striking colocaliza-
tion of PLP and Lamp-1 was observed in an immortalized oligo-
dendroglial precursor cell line, Oli-neu. Fusion of either a myc 
tag or EGFP to PLP did not affect the LE/L targeting of PLP 
(Fig. 1 b). To obtain further support for the localization of PLP 
to LEs/Ls in immature cells, we used a spontaneously trans-
formed oligodendroglial precursor cell line, OLN-93. When 
these cells were incubated for 5 h with rhodamine–dextran 
followed by a 2-h chase or were treated with LysoTracker red 
DND-99 to stain for LEs/Ls, colocalization with PLP was ob-
served (Fig. 1 b and not depicted). Staining with fi lipin revealed 
a partial colocalization of PLP with cholesterol in LEs/Ls (Fig. 1 c). 

To resolve the ultrastructure of the PLP-containing organelles, 
we performed immunoelectron microscopy (Fig. 1 d). Both endo-
genous PLP and PLP-EGFP colocalized with Lamp-1 in vacuo-
lar structures that contained abundant lumenal multilamellar 
and/or multivesicular membrane arrays.

PLP disappears from LEs/Ls when 
oligodendrocytes are cocultured 
with neurons
To determine whether the subcellular localization of PLP is 
infl uenced by the presence of neuronal cells, oligodendroglial 
progenitor cells were added to a neuronal cell culture. Simi-
lar to the cultures without neurons, oligodendrocytes started to 

Figure 1. PLP localizes to LEs/Ls of immature oligodendrocytes. (a) Confocal immunofl uorescence microscopy demonstrates the colocalization of endoge-
nous PLP (red) with Lamp-1 (green) in primary oligodendrocytes grown for 3 d in vitro. The region in the boxed area is shown at higher magnifi cation and 
lower exposure. (b) Top panels show the colocalization of PLP-myc (green) with Lamp-1 (red) in Oli-neu cells, and the bottom panels show the colocalization 
of PLP-EGFP (green) with LysoTracker red in living OLN-93 cells. (c) Filipin staining reveals colocalization of cholesterol (blue) and PLP (red) in OLN-93 cells. 
(a–c) Bars, 5 μm. (d) Immuno-EM double labeling of primary oligodendrocytes (left) and Oli-neu cells (right) with antibodies directed against Lamp-1 (5 nm 
gold) and against PLP, polyclonal P6 (left), or GFP (right; both 10 nm gold) shows the localization of PLP in Lamp-1–containing multivesicular and multi-
lamellar compartments. Bars, 200 nm. 

Figure 2. PLP disappears from LEs/Ls when oligodendrocytes are cocultured with neurons. (a) Primary oligodendrocytes were grown for 3 or 5 d with or 
without neurons. Confocal microscopy analysis of PLP (red) and Lamp-1 (green) demonstrates a depletion of PLP from LEs/Ls in oligodendrocytes when cul-
tured in the presence of neurons for 5 d. Axons are visualized by βIII-tubulin staining (blue). (b) Oli-neu cells were grown for 2 d with (bottom) or without 
(top) neurons. PLP-EGFP (green) disappears from Lamp-1–containing compartments (red) by 2 d of coculture with neurons. (a and b) The regions in the 
boxed areas are shown at a higher magnifi cation and lower exposure. (c) Surface staining of living cells with O10 mAb at 4°C shows that the majority of 
PLP-EGFP is found at the surface of the cell in a coculturing with neurons. Quantitative analysis of the colocalization of PLP-EGFP with Lamp-1 (b) and O10 
(c) are shown. Error bars represent SD (n > 30 cells). (a–c) Bars, 5 μm. (d) Immunohistochemistry of brain sections of P7 and P60 adult mice for PLP (red) 
and Lamp-1 (green). Colocalization was observed in sections from P7 but not adult mice. Bars, 10 μm. (e) Oligodendrocytes (for 2 d in culture) grown with 
or without neurons were metabolically labeled with [35S]methionine/cysteine for 18 h and chased for 2 d (day 5) or not chased (day 3) before performing 
the PLP immunoprecipitations. Quantitative analysis of three independent experiments did not reveal any signifi cant differences in the amount of labeled 
PLP and its alternatively spliced isoform DM20 (mean ± SD). **, P < 0.001; t test.
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 express PLP during the fi rst 2 d in culture, and an accumulation 
of PLP in LEs/Ls was observed in �90% of the cells after 3 d in 
culture (Fig. 2 a). However, in marked contrast to cultures with-
out neurons, we observed that PLP disappeared from LEs/Ls 2 d 
later (only �20% of the cells showed an accumulation of PLP 
in LEs/Ls) in the presence of neurons (Fig. 2 a). Also, the stain-
ing of Lamp-1–containing structures decreased in intensity after 
PLP removal. To follow the developmental regulation of PLP 
traffi cking in Oli-neu cells, we produced PLP-EGFP–stably ex-
pressing cell lines. Fusion of EGFP to PLP did not interfere 
with transport to the cell surface, as indicated by the positive 
staining of transfected Oli-neu cells with O10 mAb. This anti-
body recognizes a conformation-dependent epitope of PLP on 
the surface of living cells (Jung et al., 1996). In addition, trans-
fection of primary myelinating oligodendrocytes confi rmed 
that PLP-EGFP is transported to myelin (Fig. S1, available at 
http://www.jcb.org/cgi/content/full/jcb.200509022/DC1). When 
PLP-EGFP–expressing Oli-neu cells were added on top of 
a neuronal culture, a dramatic change in the localization of 
PLP was observed (Fig. 2 b). Quantitative analysis showed 
that 71.5% of PLP colocalized with Lamp-1 in Oli-neu cells 
alone, whereas only 11.5% of PLP colocalized with Lamp-1 in 

cells that had been in coculture with neurons for 2 d (Fig. 2 b).
Moreover, surface staining of living cells at 4°C with O10 mAb 
showed that the majority of PLP-EGFP was located at the 
plasma membrane in cells cultured with but not without neu-
rons (Fig. 2 c). To test whether the localization of PLP shows the
same developmental regulation in vivo, we performed immuno-
histochemistry on brain sections of young (postnatal day [P] 7) 
and adult mice (P60). Signifi cant colocalization of PLP and 
Lamp-1 was only observed in cells of P7 mice but not in sec-
tions prepared from adult mice (Fig. 2 d). Analysis of the sec-
tions indicated that the colocalization of PLP and Lamp-1 was 
increased >20-fold in P7 mice as compared with adult mice. 
Together, our data demonstrate that PLP disappears from LEs/Ls 
upon oligodendroglial maturation and emerges at the surface of 
the oligodendrocyte in a process that is dependent on the pres-
ence of neuronal cells.

There are several possibilities to explain our results. One 
possibility is that less PLP is transported into and/or more PLP 
is transported out of LEs/Ls in the presence of neurons. An al-
ternative explanation is that the degradation of PLP in lysosomes 
 increases during development. To test the latter hypothesis, we 
performed pulse-chase experiments. Primary oligodendrocytes 

Figure 3. PLP is routed to LEs/Ls by endocytosis. Oli-neu cells were cotransfected with PLP-myc and wild-type or dominant-negative dynamin-II (K44A, 
 dynamin dn), both containing an HA tag, and were stained for Lamp-1 (a) or for surface PLP (b) with O10 mAb (at 4°C on living cells). (a) Quantitative 
analysis of the colocalization of PLP-EGFP with Lamp-1 is shown. (b) Quantitative analysis of the fl uorescence intensity of O10 signal is shown in arbitrary 
units (a.u.) per cell. (a and b) Values are given as the means ± SD (error bars) of a mean of three independent experiments with >40 (a) or >30 (b) cells. 
**, P < 0.001; t test. Bars, 5 μm.
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Figure 4. The cholesterol-dependent and clathrin-independent internalization of PLP is reduced after coculturing with neurons. Antibody uptake 
 experiments were performed with the PLP antibody O10 followed by an acidic wash to remove surface-bound antibody. The internalized antibody is 
shown in red. (a) OLN-93 cells were cotransfected with PLP (blue) and with Eps15III∆2 (Eps15 ctrl) or Eps15 E∆95/295 (Eps15 mut; green). Potas-
sium depletion was used as an alternative approach to interfere with clathrin function. Clathrin-mediated transferrin–rhodamine uptake served as a 
control. The amount of inhibition was evaluated by determining the fl uorescence intensities in comparison with the control conditions. Values are given 
as the mean ± SD (error bars) of a mean of three independent experiments with >50 cells. (b) PLP stained with O10 (red) on the surface of OLN-93 
cells does not show a signifi cant colocalization with clathrin heavy chain (green). Insets are shown at higher magnifi cation in the right corner of the 
images. (c) OLN-93 cells were transfected with PLP (blue) followed by a 30-min treatment with 1 μM latrunculin to inhibit the polymerization of the ac-
tin cytoskeleton or by a 15-min incubation with 5 mM mβCD to deplete cholesterol before performing the O10 internalization assay. Transferrin–
 rhodamine was used as a control for the cholesterol depletion experiments. Inhibition of the O10 uptake is shown as the mean ± SD of three 
independent experiments with >50 cells. (d) Cells were cotransfected with PLP and with wild type or the respective dominant-negative variants of 
 dynamin-II, RhoA, and cdc42. The inhibition of O10 antibody uptake by the dominant-negative protein is shown in comparison with the respective wild-
type construct as the mean ± SD of three independent experiments with >40 cells. The inhibition of fl uid phase endocytosis (measured by dextran 
 uptake) served as a positive control for dominant-negative cdc42 (not depicted). (e) OLN-93 cells were transfected with PLP-myc and added on top of 
a neuronal culture or left alone. O10 antibody uptake experiments were performed followed by an acidic wash to remove surface-bound antibody. 
The amount of inhibition is shown for OLN-93 cells cultured with neurons compared with cells cultured without neurons as the mean ± SD of three ex-
periments with >40 cells. (f) The reduction of cell surface PLP was determined after various times in culture with or without neurons. Cell surface PLP 
was labeled with O10 mAb at 4°C, and incubation was continued at 37°C for 0, 45, and 90 min. The amount of cell surface remaining O10 mAb 
was analyzed by incubating cells with [125I]-labeled secondary antibody at 4°C and subsequent determination of the radioactivity by γ counting. 
Quantifi cation is shown as the mean ± SD of three experiments. *, P < 0.01; t test. Bars, 5 μm.

 on M
ay 9, 2006 

w
w

w
.jcb.org

D
ow

nloaded from
 

http://www.jcb.org


JCB • VOLUME 172 • NUMBER 6 • 2006 942

(for 2 d in culture) grown with or without neurons were metaboli-
cally labeled with [35S]methionine/cysteine for 18 h and chased for 
2 d. Hence, the metabolic labeling was performed at the stage of 
development (day 2–3) when PLP accumulates in LEs/Ls. The 
cells were chased up to the developmental stage (day 5) when PLP 
is almost completely removed from LEs/Ls in cells cultured 
with neurons but not in cells cultured without. Nevertheless, we 
did not observe any signifi cant differences in the amount of la-
beled PLP and its alternatively spliced isoform DM20 (Fig. 2 e).
Thus, differential proteolysis of PLP does not seem to be the un-
derlying reason for the removal of PLP from LEs/Ls. Therefore, 
it is more likely that neuronal signals infl uence the transport of 
PLP into and/or out of LEs/Ls in oligodendrocytes.

The cholesterol-dependent and 
clathrin-independent internalization of PLP 
is reduced after coculturing with neurons
Next, we determined whether endocytosis accounts for the trans-
port of PLP to LEs/Ls and, if so, how its endocytic traffi cking 
is regulated. To block endocytosis, we transiently transfected 
Oli-neu cells with a mutant form of dynamin-II that is defec-
tive in GTP binding (K44A; Damke et al., 1994) and PLP-myc. 
We found that dynamin-II (K44A) reduced the colocalization of 
PLP with Lamp-1 and, at the same time, increased the fraction 
of PLP at the cell surface (Fig. 3), suggesting that endocytosis 
is required for the transport of PLP to LEs/Ls. A reduction of 
the intracellular accumulation of PLP was also observed when 
dynamin K44A was expressed in OLN-93 cells (not depicted).

To gain more insight into the endocytosis process of PLP, 
the endocytic uptake of PLP was determined by additional an-
tibody uptake experiments using the O10 mAb. To determine 
whether clathrin function is involved, we either depleted cells 
of potassium to disrupt the formation of clathrin-coated pits 
or used the dominant-negative mutant of Eps15 (E∆95/295; 
 Benmerah et al., 1999). Despite that E∆95/295 and K+ deple-
tion had no signifi cant effect on the uptake of O10, it led to the 
reduction of clathrin-mediated transferrin–rhodamine internal-
ization (Fig. 4 a). In addition, intracellular accumulation of PLP 
was not reduced when E∆95/295 was coexpressed in OLN-93 
(not depicted). Furthermore, we did not detect a signifi cant 
 colocalization of PLP and clathrin on the surface of OLN-93 
(colocalization was �5%; Fig. 4 b) or primary oligodendroglial 
cells (Fig. S2; available at http://www.jcb.org/cgi/content/full/
jcb.200509022/DC1). These results strongly suggest that the 
internalization of PLP occurs by a clathrin-independent endo-
cytosis pathway.

Most clathrin-independent endocytosis pathways are sen-
sitive to cholesterol depletion or actin depolymerization (Parton 
and Richards, 2003). Therefore, we used methyl-β- cyclodextrin 
(mβCD) to selectively extract cholesterol from the cell surface 
and latrunculin A to prevent actin polymerization. Treatments 
with either mβCD or latrunculin A led to an almost complete 
inhibition of O10 uptake (Fig. 4 c). The conditions of the cho-
lesterol depletion experiments were established so that clathrin-
dependent endocytosis was not affected as evaluated by the 
uptake of transferrin–rhodamine. Some clathrin-independent 
endocytosis pathways require dynamin, whereas others are 

 independent of dynamin function (Lamaze et al., 2001; 
Pelkmans et al., 2001; Sabharanjak et al., 2002; Damm et al., 
2005; Kirkham et al., 2005). The uptake of O10 was clearly re-
duced by interfering with dynamin function (Fig. 4 d), which is 
consistent with the redistribution of PLP to the cell surface by 
 dynamin-II (K44A; Fig. 3). Because both cholesterol and dynamin
are essential for caveolar-dependent uptake, we compared the 
localization of PLP to caveolin-1 and GFP-caveolin. Caveolin-1 
and GFP-caveolin were detected in punctate arrays on the 
plasma membrane and on intracellular compartments, but no 
colocalization with PLP was seen (Fig. S2 and not depicted), 
suggesting that caveolae are not involved in the endocytosis of 
PLP. The Rho family of small GTPases differentially regulate 
nonclathrin and noncaveolar endocytosis pathways. Although 
cdc42 is involved in the endocytosis of glycosyl-phosphatidyl-
inositol–anchored proteins by a pinocytic pathway to recycling 
endosomes (Sabharanjak et al., 2002), rhoA has been impli-
cated in the dynamin-dependent uptake of interleukin 2 recep-
tor to LEs/Ls (Lamaze et al., 2001). When O10 uptake 
experiments were performed with dominant-negative mutants 
of either cdc42 or rhoA, we observed a signifi cant reduction of 
internalization when the function of rhoA but not cdc42 was 
 inhibited (Fig. 4 d). In summary, our results show that OLN-93 
cells use a clathrin-independent but cholesterol-dependent 
 endocytosis pathway that requires a functional actin cytoskeleton 
and the rhoA GTPase.

To test whether the capacity for endocytosis of PLP 
changes after contact with neurons, we added OLN-93 cells to 
neuronal cultures and compared the uptake of O10 into cells 
that were cultured without neurons. We observed a signifi cant 
reduction in the internalization of PLP in cells in coculture as 
compared with cells cultured without neurons (Fig. 4 e). We 
also analyzed the reduction of cell surface PLP upon various 
times in culture with or without neurons using the O10 mAb 
internalization assay. The amount of O10 mAb remaining at 
the cell surface was analyzed by incubating cells with 
[125I]-labeled secondary antibody at 4°C. We found that PLP 
was cleared more effi ciently over time from the surface of 
OLN-93 cells that were cultured without neurons as compared 
with cells in coculture. Together, these results indicate that neu-
rons reduce the endocytosis of PLP (Fig. 4 f).

Neurons trigger the retrograde 
transport of PLP from LEs/Ls 
to the surface of oligodendrocytes
Reduction of endocytosis appears to be one reason why PLP 
disappears from LEs/Ls after contact with neurons. Another 
event that could simultaneously contribute is the increased 
 resorting of PLP to the plasma membrane by retrograde trans-
port from LEs/Ls. There are many examples (e.g., wound heal-
ing, cytotoxic lymphocyte killing, major histocompatibility 
complex [MHC]–II processing, and melanin secretion) that 
show that lysosomes are not merely degradative dead ends but 
are able to store and release proteins in a regulated fashion 
(Blott and Griffi ths, 2002).

To analyze the putative exocytic traffi cking of PLP from 
LEs/Ls, we performed live cell imaging experiments with  
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Figure 5. Neurons trigger the retrograde transport of PLP from LEs/Ls to the surface of oligodendrocytes. (a) Living PLP-EGFP–expressing Oli-neu cells were 
labeled with LysoTracker red and observed by confocal microscopy. Images were collected every �15 s. The image sequences of the boxed areas (a, b, 
and d) are shown. Representative examples of a time stack are shown in the top panels. The images in the bottom panels were obtained by subtracting 
from each image in the top panels. The absence of signal in the subtractions demonstrates the immobility of vesicles. (b) Cells were added onto a neuronal 
culture and imaged �8 h later. The subtractions (bottom) of consecutive frames (top) demonstrate the mobility of PLP and LysoTracker-containing vesicles. 
(c) The mean fraction of mobile vesicles calculated by the subtraction of consecutive frames (mean ± SD [error bars] of 15 cells; 26 consecutive time frames 
were analyzed for each cell). **, P < 0.001; t test. (d) Individual frames from a video of a cell prepared as in b. Images were taken every �15 s. The 
frame sequence illustrates the exit (indicated by arrows) of PLP and LysoTracker-containing vesicles from perinuclear LEs/Ls. (e) The TIRFM image demon-
strates the colocalization of PLP-EGFP and LysoTracker within 100 nm of the plasma membrane in Oli-neu cells in coculture with neurons. (f and g) Exocytic 
fusion of vesicles was visualized by time-lapse TIRFM of Oli-neu cells in coculture with neurons. (f) The vesicles that lost their fl uorescence during the time of 
observation fell into two groups. An example of vesicles moving in and out of the evanescent fi eld without fusing is shown in the top panels. Vesicles fusing 
with the plasma membrane are shown in the bottom panels (indicated by arrows) and in g. Increase in brightness, lateral spread, and disappearance of 
 vesicular fl uorescence indicates fusions. (g) The fl uorescence intensity changes (in arbitrary units) were determined in a small circle enclosing the vesicle 
(closed symbol) and in a concentric ring around the circle (open symbol). Other examples of fusions are shown as a fl ash of fl uorescence (LysoTracker 
channel; Video 3, available at http://www.jcb.org/cgi/content/full/jcb.200509022/DC1). Bars, 5 μm.
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 LysoTracker in PLP-EGFP–expressing Oli-neu cells. There 
was an almost complete colocalization of PLP-EGFP and 
 LysoTracker (Fig. 5 a) similar to the observation in OLN-93 cells. 
Analysis of the dynamics of PLP-EGFP/LysoTracker vesicles 
in Oli-neu cells revealed that most vesicles were clustered peri-
nuclearly and did not show any signifi cant movement (Fig. 5 a 
and Video 1, available at http://www.jcb.org/cgi/content/full/
jcb.200509022/DC1). Next, we investigated whether the move-
ment of the vesicles changes as a result of the presence of neu-
rons. When live cell imaging experiments were performed shortly 
(6–12 h) after the addition of Oli-neu cells to neuronal cultures, 
an extensive colocalization of PLP-EGFP and LysoTracker 
(Fig. 5 b) was still observed. However, the movement of these 
vesicles was markedly increased. Two pools of vesicles could 
be distinguished: a perinuclear, immobile pool and a periph-
eral pool of highly mobile vesicles (Fig. 5 b and Video 2). 
Both pools of vesicles colocalized with Lamp-1. Quantitative 
analysis revealed that �29% of the vesicles were mobile and 
exhibited a mean speed of �0.56 μm/s (Fig. 5 c). The pool of 
perinuclear vesicles not only decreased in size (Fig. 2), but the 
individual vesicles also became smaller with increasing time in 
coculture (�33% decrease after 16 h of coculture; reduction 
from 0.96 ± 0.2 μm to 0.63 ± 0.19 μm; n = 96). In several 
cases, PLP-EGFP and LysoTracker-fi lled vesicles emanated 
from larger perinuclear vesicles and moved radially toward the 
plasma membrane at the cell periphery (Fig. 5 d).

To analyze the behavior of the peripheral vesicle pool, we 
used total internal refl ection fl uorescence microscopy (TIRFM). 
TIRFM allows the selective illumination of a region within 
a 70–120-nm distance of the plasma membrane as the excitatory 
evanescent fi eld decays exponentially from the interface of the 
cell membrane with the coverslip. We observed PLP-EGFP and 

LysoTracker-containing vesicles within the 100-nm vicinity of 
the plasma membrane in living Oli-neu cells that were cocultured 
with neurons (Fig. 5 e). In contrast, no PLP-EGFP and  LysoTracker-
containing vesicles were observed in the proximity of the plasma 
membrane when cells were cultured without neurons.

To determine whether the acidic vesicles fuse with the 
plasma membrane, we used time-lapse TIRFM imaging. The 
cells we studied contained 6 ± 2.4 vesicles per 100-μm2 area of 
the plasma membrane. The vesicles that lost their fl uorescence 
during the time of observation fell into two groups. We found 
vesicles moving in and out of the evanescent fi eld without fus-
ing and vesicles fusing with the plasma membrane (Fig. 5 f, 
top). Fusion was defi ned by the loss of vesicular fl uorescence 
and the concurrent lateral spread of the released dye into the 
medium (Fig. 5 g). We detected one to two fusion events/minute 
per cell at the plasma membrane. When Oli-neu cells were cul-
tured without neurons, we did not observe any fusions in agree-
ment with the absence of PLP-EGFP and LysoTracker-containing 
vesicles at the plasma membrane.

A cAMP-dependent neuronal signal 
regulates the traffi cking of PLP
Because the redistribution of PLP from LEs/Ls to the surface of 
the plasma membrane was only observed in Oli-neu cells grown 
in the presence of neurons, neuronal signals are likely to acti-
vate this pathway. We wanted to determine whether this neuro-
nal signaling is transferred as a soluble factor or is a consequence 
of direct cell-to-cell contact. Oli-neu cells were either directly 
added on top of a neuronal culture or placed on a separate cov-
erslip to prevent cell contact, allowing diffusible factors to reach 
the cells. We found that diffusible factors were suffi cient to re-
distribute PLP from LEs/Ls to the surface of the cell (Fig. 6). 

Figure 6. A soluble factor is suffi cient for redistributing PLP from LEs/Ls to the cell surface. Oli-neu cells expressing PLP-EGFP were added to a neuronal cul-
ture on a separate coverslip to prevent cell contact allowing diffusible factors to reach the cells. After 1 d, cells were stained for Lamp-1 (a) or for surface 
PLP with O10 mAb (b) on living cells at 4°C. Quantitative analysis of the colocalization of PLP-EGFP with Lamp-1 and O10 are shown. Error bars represent 
SD (n > 60 cells). **, P < 0.001; t test. Bars, 5 μm.
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To analyze the signals involved, we treated Oli-neu cells 
cultured in the presence of neurons with various pharma-
cological kinase inhibitors. Colocalization of PLP-EGFP and 
Lamp-1 increased markedly when cocultures were treated for 
1 d with Rp-cAMPs to inhibit protein kinase A (Fig. 7 A). In 
contrast, treatment of cocultures with db-cAMP, a protein 

 kinase A agonist, promoted the localization of PLP to the 
plasma membrane (Fig. 7 A). Quantitative analysis of time-
course experiments showed that db-cAMP accelerated the 
 redistribution of PLP to the surface of the cell (Fig. 7 B). To test 
whether similar effects were observed in Oli-neu cells cultured 
without neurons, we treated Oli-neu cells for 1 d with db-cAMP 

Figure 7. A cAMP-dependent neuronal signal regulates the release of PLP from LEs/Ls in Oli-neu cells. (a) Oli-neu cells were cocultured with neurons 
for 1 d in the presence or absence of 100 μM Rp-cAMPs or 1 mM db-cAMP. Quantitative analysis of the colocalization of PLP-EGFP with Lamp-1 is 
shown as the mean ± SD of >30 cells. (b) Time-course experiments demonstrate that treatment of Oli-neu cells in the presence of neurons with 1 mM 
db-cAMP accelerates the removal of PLP-EGFP from Lamp-1–positive compartments. The quantitative analysis of one representative experiment (out of 
three independent experiments) is shown. Analysis was performed by classifying cells into two categories according to the extent of the colocalization of 
PLP-EGFP with Lamp-1. (c and d) Oli-neu cells were grown without neurons and treated with 1 mM db-cAMP for 1 d and stained for Lamp-1 (c) or for 
 surface-PLP with O10 mAb (d) on living cells at 4°C. Quantitative analysis of the colocalization of PLP-EGFP with Lamp-1 and O10 are shown. Error 
bars represent SD (n = 30 cells). (e) Oli-neu cells grown without neurons were treated for 1 d with 1 mM db-cAMP and imaged as in Fig. 5 a. An image 
sequence of the boxed area is shown. The images in the bottom panels represent subtractions of the consecutive frames in the top panels. The analysis 
demonstrates a signifi cant increase in the mobility of PLP and LysoTracker-containing vesicles by treatment with db-cAMP as compared with the control 
condition. **, P < 0.001; t test. Bars, 5 μm.
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and quantifi ed the amount of PLP-EGFP in LEs/Ls and on the 
surface of the cell. In cells treated with db-cAMP, more PLP 
was found on the surface of the cell, whereas, at the same 
time, the fraction within LEs/Ls decreased (Fig. 7, C and D). 
 Furthermore, a peripheral pool of highly mobile PLP-EGFP/ 
LysoTracker-containing vesicles was observed by live cell 
imaging (Fig. 7 E). These data suggest that cAMP-dependent 
signaling is part of the developmental switch that is triggered 
by neurons, leading to the redistribution of PLP from LEs/Ls to 
the surface of the plasma membrane.

Discussion
Our data demonstrate that the traffi cking of PLP in oligodendro-
cytes is under neuronal control. PLP is initially targeted to LEs/Ls 
by using a cholesterol-dependent and clathrin-independent 
 endocytosis pathway. The situation changes dramatically upon 
receiving maturation signals from neurons. PLP is then redis-
tributed from LEs/Ls to the plasma membrane. We provide evi-
dence that the developmental regulation of PLP localization 
occurs by the down-regulation of endocytosis and by the trans-
port from LEs/Ls to the cell surface.

The regulation of the transport of PLP is strikingly similar 
to the traffi cking of MHC-II in dendritic cells (Mellman and 
Steinman, 2001). Immature dendritic cells have a high rate of 
endocytosis and target MHC-II to lysosomes (Pierre et al., 1997). 
After exposure to infl ammatory mediators, the endocytosis of 
MHC-II is reduced, and the transport of MHC-II from lyso-
somes to the cell surface is triggered (Kleijmeer et al., 2001; 
Boes et al., 2002; Chow et al., 2002). The transport pathway of 
PLP from LEs/Ls can also be related to the release of secretory 
lysosomes from hematopoietic cells. However, unlike the 
classic secretory lysosomes that are specialized to release lumi-
nal content, oligodendrocytes mainly transport membrane, 
and this may occur without signifi cant extracellular release of 
lysosomal content, as is the case for dendritic cells (Kleijmeer 
et al., 2001; Trombetta et al., 2003). For oligodendrocytes, LE/L 
compartments may be particularly useful as storage compart-
ments, as they are able to harbor large amounts of membrane in 
a multilamellar and multivesicular fashion for myelin biogenesis. 
In most cells, however, the majority of molecules that localizes 
to internal vesicles of the endosomal system are destined for ly-
sosomal degradation. This raises the question of how PLP sur-
vives in an environment where protein degradation usually 
occurs. One possibility is that immature oligodendrocytes have 
specialized LEs/Ls with low proteolytic capacity. Our unpub-
lished observation that the vesicular stomatitis virus glycopro-
tein accumulates undegraded in LEs/Ls of Oli-neu cells supports 
this notion. In dendritic cells, for example, lysosomal proteoly-
sis is regulated in a developmentally linked fashion (Trombetta 
et al., 2003; Delamarre et al., 2005). Another possibility is that 
PLP is poorly degradable and, therefore, accumulates within 
LEs/Ls. A second issue is how PLP escapes from a com partment 
associated with the limited capacity for membrane  recycling. 
Previous work has provided evidence that not all intralumenal 
membranes of LEs/Ls are destined for lysosomal degradation. 
It has been suggested that some vesicles may undergo back 

 fusion with the limiting membrane, and, in some instances, this 
membrane is sorted via tubulovesicles to the plasma membrane 
(Kleijmeer et al., 2001; Boes et al., 2002; Chow et al., 2002; 
Abrami et al., 2004; Le Blanc et al., 2005). Whether PLP is 
sorted by back fusion and tubules to the surface of oligodendro-
cytes are issues that have to be addressed in future studies. It is 
important to note that the accumulation of PLP at the surface of 
the plasma membrane after the receipt of maturation signals 
most likely refl ects the contribution of multiple factors. Our 
fi nding that the endocytosis of PLP is reduced after receiving 
signals from neuronal cells suggests that the regulation of 
 endocytosis may play an essential role in this process. It will 
be  interesting to elucidate the molecular mechanisms of how 
 neurons control the rate of endocytosis in oligodendrocytes. 
One attractive possibility is that the endocytic activity is 
 controlled by the RhoA GTPase.

Importantly, not all myelin components were found to be 
internalized into LEs/Ls. Although PLP and cholesterol re-
sided in LEs/Ls, myelin basic protein and galactosylceramide 
were mainly found in or at the plasma membrane (unpublished 
data). The differential compartmentalization of myelin com-
ponents before the onset of myelination might be a mecha-
nism to prevent premature and inappropriate assembly. Our 
results suggest that an external soluble factor regulates myelin 
membrane assembly by controlling the traffi cking of PLP to 
and from the surface of the cell. Among the many potential 
candidates are soluble mediators such as neurotrophins, neu-
regulin, or adenosine that can now be tested with the described 
experimental system (Barres and Raff, 1999; Fields and Stevens-
Graham, 2002).

Together, our fi ndings reveal an unexpected and novel role 
of LEs/Ls in oligodendrocytes. It provides a striking example of 
how cell-to-cell communication regulates traffi cking to and from 
a cellular compartment to guide the development of a multicel-
lular tissue. The proposed role of LEs/Ls in myelin biogenesis 
may help to explain the cellular mechanisms of dysmyelination 
that is observed in many lysosomal storage diseases.

Materials and methods
Antibodies, plasmids, and other reagents
The mutant and wild-type cDNAs of GFP-Eps15 and GFP–dynamin-II were 
provided by A. Benmerah (Institut Pasteur, Paris, France) and S. Schmid 
(Scripps Research Institute, La Jolla, CA), respectively. The following pri-
mary antibodies were used: myelin basic protein (monoclonal IgG; 
 Sternberger, Inc.), PLP (polyclonal, P6; Linington and Waehneldt, 1990), 
O10 (monoclonal mouse IgM), βIII-tubulin (Promega), neurofi lament 
(monoclonal IgM; Qbiogene), τ (polyclonal; DakoCytomation), myc tag 
(monoclonal IgG; Cell Signaling), clathrin heavy chain (monoclonal IgG; 
BD Transduction Laboratories), GFP (Synaptic Systems GmbH), caveolin-1 
(monoclonal IgM; BD Biosciences), and Lamp-1 (CD107a, rat monoclonal; 
BD Biosciences). Secondary antibodies were obtained from Dianova and 
GE Healthcare.

Cell culture, cloning, and transfections
Primary cultures of mouse oligodendrocytes were prepared as described 
previously (Simons et al., 2000). After shaking, cells were plated in 
MEM containing B27 supplement, 1% horse serum, L-thyroxine, tri-iodo-
 thyronine, glucose, glutamine, gentamycine, pyruvate, and bicarbonate on 
poly-L-lysine–coated dishes or glass coverslips. Cocultures of neurons and 
oligodendrocytes were produced by preparing mixed brain cultures from 
16-d-old fetal mice that were cultivated for 2 wk, to which the primary oligo-
dendrocytes or Oli-neu cells were added. The mixed brain cultures were 
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prepared at a density of �50,000 cells/cm2. Cocultures without direct 
neuron–glia contact were prepared by growing neuronal cultures on glass 
coverslips, which were placed upside down on a metal ring positioned in 
a culture dish. Oligodendrocytes were added on an additional coverslip 
facing upwards. The oligodendroglial precursor cell line, Oli-neu (provided 
by J. Trotter, University of Mainz, Mainz, Germany), and OLN-93 cells 
(provided by C. Richter-Landsberg, University of Oldenburg, Oldenburg, 
Germany) were cultured as described previously (Jung et al., 1995; Richter-
Landsberg and Heinrich, 1996). Transient transfections were performed 
 using FuGENE transfection reagent (Roche) according to the manufacturer’s 
protocol. PLP-EGFP was generated by fusing EGFP to the COOH terminus 
of PLP by gene fusion PCR. The fusion product was cloned into pEGFPN1 
vector using the EcoRI–NotI site. Stable cell lines were obtained by the 
 cotransfection of PLP-EGFPNI and pMSCV-hygro (CLONTECH Laboratories, 
Inc.) followed by the selection of clones by incubation with hygromycin.

Immunofl uorescence and endocytosis assays
Immunofl uorescence and immunohistochemistry were performed as de-
scribed previously (Simons et al., 2002). For assaying endocytosis, living 
cells were incubated with O10 antibody in medium for 30 min at 4°C, 
washed, and incubated in medium at 37°C for 60 min. The antibody re-
maining on the surface was removed under low pH conditions in 0.2 M 
glycine and 0.5 M NaCl, pH 4.5, for 30 min at 4°C. Cells were washed 
three times in PBS, fi xed, and stained by immunofl uorescence. Addition-
ally, OLN-93 cells were transiently transfected with PLP and added on a 
neuronal culture or left alone. Cells were incubated at 4°C for 30 min with 
O10 antibody in binding medium consisting of HBSS and 10 mM Hepes 
supplemented with 0.2% BSA 16 h after transfection. After washing, O10 
internalization was allowed to continue for 0, 45, and 90 min. O10 anti-
body remaining at the cell surface was detected with 5–20 μCi/μg 
[125I]-labeled mouse secondary antibody in binding medium for 30 min at 
4°C. Next, the cells were washed fi ve times, lysed in 0.2 M NaOH, and 
the amount of radioactivity was determined by γ counting.

Microscopy and analysis
Fluorescence images were acquired on a microscope (DMRXA; Leica) or 
a confocal microscope (LSM 510; Carl Zeiss MicroImaging, Inc.) with 
a 63× oil plan-Apochromat objective (NA 1.4; Carl Zeiss MicroImaging, 
Inc.). For live cell imaging, coverslips containing the cells were mounted in 
a live cell imaging chamber and observed in low fl uorescence imaging 
medium (HBSS, 10 mM Hepes, and 1% horse serum, pH 7.4) at 37°C. 
Temperature was controlled by means of a digital system (Tempcontrol 
37-2; PeCon) or a custom-built perfusion system. Time-lapse imaging was 
performed on a confocal laser scanning microscope (LSM 510; Carl 
Zeiss MicroImaging, Inc.). Images were acquired at �15-s intervals for the 
indicated time periods using sequential line excitation at 488 and 543 nm 
and appropriate band pass emission fi lters.

Image processing and analysis were performed using Meta Imaging 
Series 6.1 software (Universal Imaging Corp.). Quantifi cation of colocaliza-
tion was performed with the colocalization module of the software. Vesicle 
movement was analyzed by subtracting from each image in a time stack 
preceding its image. The different image stack thus generated was used to 
identify vesicle motility events. The velocity of individual vesicles was deter-
mined using the Manual Tracking plug-in for ImageJ software (National 
Institutes of Health). Statistical differences were determined with a t test. 
TIRFM was performed on a custom-built prism-based evanescent fi eld mi-
croscope using an HCX Apo L 63× water immersion objective (NA 0.90; 
Leica; Oheim et al., 1998). Evanescent fi eld excitation was obtained by 
focusing 488- and 568-nm laser light onto a hemicylindrical prism at 
68 and 71° incidence angles, respectively, leading to a fi eld depth of 
�80–100 nm. Images were acquired with a back-illuminated 16-bit CCD 
camera (Cascade 512B; Roper Scientifi c) with on-chip charge multiplica-
tion. Each pixel corresponded to 0.25 μm in the specimen plane. For anal-
ysis of individual fusion events, a small circle was positioned on the 
vesicular fl uorescence, a concentric ring was placed around the circle, and 
fl uorescence intensity was plotted against time. Fusion events were identi-
fi ed by the increase of fl uorescence in the central region that spread into the 
surrounding annulus followed by a sudden decline (Schmoranzer et al., 
2000; Zenisek et al., 2000; Becherer et al., 2003; Bezzi et al., 2004). 
Immuno-EM was performed as described previously (Wenzel et al., 2005).

Metabolic labeling and immunoprecipitations
For metabolic labeling, cells were pulsed with 265 μCi [35S]methionine 
(1 Ci = 37 GBq; GE Healthcare) in methionine and cysteine-free DME for 
18 h, and chase was performed for 0 or 48 h. Immunoprecipitation was 

performed as described previously (Simons et al., 2000). Autoradiographs 
were scanned and quantifi ed with ScionImage software (Scion Corp.). 
Values are shown as means ± SD. Statistical differences were determined 
with a t test.

Online supplemental material
Fig. S1 shows that EGFP-tagged PLP is sorted to myelin. Fig. S2 shows the 
absence of PLP colocalization with clathrin heavy chain or caveolin-1. Video 1 
shows the movement of LEs/Ls in Oli-neu cells, whereas Video 2 shows this 
in Oli-neu cells cultured with neurons. Video 3 shows the fusion of vesicles 
with the plasma membrane. Online supplemental material is available at 
http://www.jcb.org/cgi/content/full/jcb.200509022/DC1.
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