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I Abbreviation list 

ACh – acetylcholine 

nAChR – nicotinic acetylcholine receptor 
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ADAM – a disintegrin and metalloprotease 

AP – adaptor protein 

ARF – ADP-ribosylation factor 
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GABA – gamma-amino butyric acid 

GAP – GTPase activating protein 

GARP complex– Golgi associated retrograde protein complex 

GEF – guanine nucleotide exchange factor 

GGA – Golgi-associated, Gamma-adaptin homology, ARF binding proteins 

HPF EM – high pressure freeze electron microscopy 
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IPTG – isopropyl β-D-thiogalactopyranoside 

KIF – kinesin superfamily 

MP domain – metalloprotease domain 

MPR – mannose 6-phosphate receptor 

MuSK – muscle-specific tyrosine kinase 

MVB – multivesicular body 

NDPase – nucleoside diphosphatase 

NGM – nematode growth medium 

NMJ – neuromuscular junction 

PLAC domain – protease and lacunin domain 

PVC – prevacuolar compartment 

PX domain – phox domain 

PtdIns(3,5)P2   – phosphatidylinositol 3,5-biphosphate 

RTK – receptor tyrosine kinase 

SNARE – soluble NSF attachment protein receptor 

SNX – sorting nexin 

TGN – trans-Golgi network 

TM domain – transmembrane domain 
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II Summary 
 

Fast synaptic transmission at the neuromuscular junctions (NMJs) in C. elegans 

is mediated by the neurotransmitter acetylcholine which activates ligand-gated 

ion channels of the nicotinic acetylcholine receptor (nAChR) family at the 

postsynaptic membrane. UNC-50 is a conserved integral Golgi membrane 

protein that has been shown to be critical for the plasma membrane transport of 

a specific AChR. However, the function of UNC-50 during AChR transport is not 

known yet. In this study, we use synthetic lethality analysis to genetically map the 

function of UNC-50. We show that mutations in unc-50 are lethal specifically in 

combination with mutations in factors that are involved in retrograde transport 

from endosomes to Golgi, like the Golgi associated retrograde protein (GARP) 

complex. This indicates that UNC-50 is also involved in retrograde transport from 

endosomes to Golgi. Furthermore, in unc-50 mutants we found defective gonad 

morphology which is caused by the aberrant migration of the gonadal distal tip 

cell (DTC). This defect is caused by the mistrafficking of the metalloprotease 

MIG-17. MIG-17 is normally secreted from the body wall muscles and anchored 

at the gonadal basement membrane to direct the migration of DTCs. This 

suggests that MIG-17, like the AChR, is mistrafficked in unc-50 mutants at the 

Golgi-endosomal interface.  

 

In order to understand the process of retrograde trafficking from endosomes to 

the Golgi, we functionally characterized the GARP complex in C. elegans. We 

show that the GARP complex has four subunits: VPS-52, VPS-53, VPS-54 and a 

novel metazoan subunit VPS-51. GARP mutants are viable but show lysosomal 

defects. We demonstrate that GARP subunits bind a specific set of Golgi 

SNAREs, suggesting that the GARP complex supports tethering to multiple Golgi 

domains. 
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III Introduction 

2.1 Neurotransmission at the C. elegans neuromuscular junction  

Fast excitatory synaptic transmission at the neuromuscular junction (NMJ) in 

nematode C. elegans is mediated by the neurotransmitter acetylcholine (ACh), 

while inhibitory neurotransmission at the NMJ is mediated by the 

neurotransmitter gamma-amino butyric acid (GABA). C. elegans is a nice model 

system for studying protein functions on regulating synaptic transmission, 

because it has a relatively simple and well-described cell organization of motor 

system (Figure 1). A typical NMJ in C. elegans is shown in Figure 2. The body 

wall muscle sends muscle arms to contact both cholinergic and GABAergic motor 

neuron axons, forming functional synapses, NMJs. There are both excitatory and 

inhibitory innervations for the NMJs. The excitatory transmission is mediated by 

nicotinic acetylcholine receptors (nAChRs) and the inhibitory transmission is 

mediated by GABAA receptors (Figure 3). C. elegans move forward and 

backward by propagating sine waves along their bodies. This is achieved by 

constantly alternating contraction and relaxation of the body wall muscles. For 

example, cholinergic motor neurons activate the ventral body wall muscles by 

releasing acetylcholine, while they simultaneously activate inhibitory GABAergic 

motor neurons that project axons to the dorsal body wall muscles, leading to their 

relaxation (Figure 4) (Walrond and Stretton, 1985a; Walrond and Stretton, 

1985b). Thus, by contracting body wall muscles on one side and relaxing body 

wall muscles on the other side, the worms can achieve the sine wave locomotion. 
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Figure 1. Cell organization of the motor system in C. elegans 

(A) The ventral nerve cord contains cell bodies of the motor neurons. The motor neurons send 

processes to the dorsal side of the body, forming the dorsal nerve cord, which stretches along the 

body and forms synapses with the dorsal body wall muscles. 

(B) The body wall muscles line as quadrants along the dorsal and ventral side of the worm. The 

body wall muscles send muscle arms to the nerve cords to form functional synapses-the 

neuromuscular junctions (NMJs). 
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Figure 2. NMJ in C. elegans 

Body wall muscles send muscle arms to contact nerve cords. Both cholinergic (red lines) and 

GABAergic (blue lines) innervations on body wall muscles are shown. (Modified from Scott J. 

Dixon and Peter J. Roy’s picture) 
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Figure 3. Molecular architecture of C. elegans NMJ 

At the NMJ, inhibitory GABAergic transmission is mediated by GABAA receptor. Excitatory 

cholinergic innervations are mediated by two types of nicotinic acetylcholine receptors (nAChRs): 

levamisole-sensitive nAChRs and nicotine-sensitive nAChRs.    
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Figure 4. Neuronal control of locomotion in C. elegans 

C. elegans move in a sine wave manner. This is achieved by cycles of two-step actions: A) 

Cholinergic motor neurons activate the ventral body wall muscles by releasing acetylcholine, 

while they simultaneously activate inhibitory GABAergic motor neurons that relax the dorsal body 

wall muscles. B) Cholinergic motor neurons activate the dorsal body wall muscles by releasing 

acetylcholine, while they simultaneously activate inhibitory GABAergic motor neurons that relax 

the ventral body wall muscles.  

 

2.2 Two types of nAChRs at the C. elegans NMJ 

Cholinergic transmission at the C. elegans NMJ is mediated by two types of 

nAChRs at the postsynaptic membrane: one type of nAChR can be selectively 

activated by the anthelmintic drug levamisole, while the other type of receptor 

can be selectively activated by the nAChR agonist nicotine. The levamisole-

sensitive nAChRs are heteropentamers composed of α-subunits UNC-38, UNC-

63 and non-α subunits UNC-29, LEV-1 (Figure 5A) (Culetto et al., 2004; Fleming 

et al., 1997; Richmond and Jorgensen, 1999). In contrast, the nicotine-sensitive 
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nAChRs are homopentamers that consist of five α7-like subunits encoded by acr-

16 (Francis et al., 2005; Touroutine et al., 2005) (Figure 5A). Levamisole receptor 

subunits UNC-29, UNC-38, UNC-63 and LEV-1 were initially found in a genetic 

screen for mutants that are resistant to cholinergic agonist levamisole (Culetto et 

al., 2004; Fleming et al., 1997; Lewis et al., 1980b). “unc” stands for 

uncoordinated locomotion phenotype, since deletion of nAChRs impairs 

neurotransmission from the motor neurons to the body wall muscles, thus 

causing under-excitation of the muscles (Lewis et al., 1980b). The two types of 

receptors are pharmacologically different. The levamisole-sensitive nAChR 

contains two ACh binding sites, while the nicotine-sensitive nAChR contains five 

ACh binding sites (Figure 5A). Both receptor types can also be distinguished by 

their electrophysiological properties. When evoked with ACh, nicotine-sensitive 

receptor currents exhibit much larger amplitude and faster desensitization than 

levamisole-sensitive receptor currents (Figure 5B) (Touroutine et al., 2005). 
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Figure 5. Different characteristics of the two types of nAChRs at the C. elegans NMJ 

(A) Levamisole-sensitive nAChRs are heteropentamers consisting of UNC-38, UNC-63, UNC-29 

and LEV-1. Nicotine-sensitive nAChRs are homopentamers composed of five ACR-16 subunits. α 

subunit indicates subunit that bind ACh molecules. Levamisole-sensitive nAChR has two ACh 

binding sites, while ACR-16 receptor has five ACh binding sites. 

(B) Upper panel: ACR-16 receptor mediated currents count for 80% of the total ACh current 

amplitude, while the levamisole receptors conduct the rest 20%. The muscle ACh current in unc-

63(x37);acr-16(ok789) double mutants was completely eliminated. Lower panel: Levamisole-

sensitive nAChR mediated currents exhibited desensitization at a much slower rate than the 

nicotine-sensitive nAChR mediated currents. (Touroutine et al., 2005) 
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2.3 nAChRs are involved in various cell functions 

Although G-protein coupled muscarinic-type acetylcholine receptors and 

acetylcholine-gated chloride channels were also reported (Culotti and Klein, 1983; 

Putrenko et al., 2005), the majority of acetylcholine receptors are pentameric 

ligand-gated cation channels. nAChRs belong to a large superfamily of Cys-loop 

ion channel receptors, which also include GABA, glycine and serotonin (5-HT) 

receptors (Corringer et al., 2000). The structure of nAChR has been determined. 

nAChR is assembled from a ring of five homologous subunits and divided into 

three distinct domains: a large N-terminal extracellular ligand binding domain, a 

membrane spanning pore, and a smaller intracellular domain (Figure 6) (Unwin, 

2005). nAChR subunits that contain two cysteine residues at positions analogous 

to Cys192 and Cys193 in the Torpedo α-subunit, have been classified as α-type 

subunits (Millar and Gotti, 2009). Although α-subunits are supposed to be agonist 

binding subunits, recent studies showed that nicotinic agonists bind at the 

interfaces between an α and non-α subunit. Therefore, both α and non-α 

subunits contribute to agonist binding sites (Sine, 2002). A total of 17 distinct 

nAChRs subunits were identified in vertebrates and they are predominantly 

expressed in neurons and muscles. The α1, β1, γ, δ, and ε subunits were found 

in vertebrate muscle, while α2-α10, β2-β4 are normally found in neurons 

(Albuquerque et al., 2009). Although some nAChR subunits, like the α7 subunit, 

can form homopentameric receptors, most nAChRs are heteropentamers 

composed of both α and non-α subunits (Millar and Gotti, 2009).  
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Figure 6. Structure of nAChR 

A typical muscle nAChR contains five subunits: two α-subunits and β,γ,δ-subunits. There are two 

acetylcholine binding sites in the nAChR. One lays between α-subunit and γ-subunit, the other 

lays between α-subunit and δ-subunit. Each subunit can be divided into three functional domains: 

a large N-terminal extracellular ligand binding domain, a membrane spanning pore, and a smaller 

intracellular domain. (Unwin, 2005) 

 

In the peripheral nervous system, nAChRs are mainly distributed on the NMJs, 

where they activate muscles. nAChRs are also ubiquitously expressed in the 

central nervous system (Albuquerque et al., 1997; Tribollet et al., 2004). In 

hippocampus, α7 subunit containing nAChRs are highly expressed (Seguela et 

al., 1993; Zarei et al., 1999). Hippocampal nAChRs are present at presynaptic 

sites, as well as somatic and dendritic sites (Zarei et al., 1999). In hippocampus, 

activation of nAChRs has been shown to facilitate the release  of several 

neurotransmitters such as glutamate, GABA, and norepinephrine (Gray et al., 
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1996). The facilitation involves nAChR mediated increases in presynaptic 

calcium concentration, which is achieved by high calcium permeability of  α7 

nAChRs or through depolarization and activation of voltage gated calcium 

channels (Wonnacott, 1997). Synaptic plasticity underlining learning and memory 

is also regulated by nAChRs, which facilitate excitatory neurotransmitter release 

with a coincident postsynaptic stimulus (Ji et al., 2001). 

 

In mammals, nAChRs have also been found to be expressed in non-neuronal 

cells, where they control multiple cell functions such as apoptosis, adhesion, 

migration, proliferation, secretion, and survival (Gotti and Clementi, 2004; 

Wessler et al., 2003).  

 

Many diseases are associated with impaired functions of nAChRs. In myasthenia 

gravis, nAChRs at the postsynaptic NMJs are blocked by autoimmune antibodies, 

leading to muscle degeneration and fatiguability (Conti-Fine et al., 2006). The 

first sign of the Alzheimer’s disease (AD) is a decrease of α7 nAChRs in the brain 

(Nordberg, 1994). Degeneration of the cholinergic neurons of the basal forebrain 

accompanied by cognitive deficits is one of the hallmarks in AD (Auld et al., 

2002). Cognitive impairment caused by loss of cholinergic neurotransmission is 

also observed in schizophrenia (Geula and Mesulam, 1995). Cholinesterase is a 

family of enzymes that catalyze the hydrolysis of acetylcholine into choline and 

acetic acid (Leuzinger and Baker, 1967). Inhibition of cholinesterase increases 

both the level and duration of action of acetylcholine. Thus, cholinesterase 
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inhibitors are often used to treat myasthenia gravis, AD and schizophrenia 

(Albuquerque et al., 2009; Conti-Fine et al., 2006). The Alzheimer’s disease 

pathogenic peptide amyloid β1– 42 (Aβ1– 42) binds to the α7 nicotinic nAChRs with 

high affinity (Wang et al., 2000a; Wang et al., 2000b). In hippocampal neurons, 

the α7 nAChR activation mediates Aβ induced phosphorylation of tau protein, 

which is another pathogen of AD (Wang et al., 2003). Deletion of α7 nAChR 

leads to a protection from the dysfunction in synaptic integrity and learning and 

memory behavior in a mouse AD model (Dziewczapolski et al., 2009). In primate 

and rodent model of Parkinson’s disease, uptake of nicotine shows enhanced 

striatal dopamine release and prevention of toxin induced degeneration of 

dopaminergic neurons (Albuquerque et al., 2009).  

 

In C. elegans, nAChRs are required for many other cell functions and behaviors 

besides locomotion: egg laying (Bany et al., 2003; Kim et al., 2001), pharyngeal 

pumping (McKay et al., 2004; Steger and Avery, 2004), defecation cycling 

(Thomas, 1990), and male mating (Garcia et al., 2001; Liu and Sternberg, 1995). 

A nAChR homologue CUP-4 is required for efficient fluid phase endocytosis in 

the macrophage like cell-coelomocytes in C. elegans (Patton et al., 2005).  

2.4 Assembly, transport and clustering of nAChRs 

nAChRs are required for muscle function and cognition, and they are pentamers 

consisting of five different subunits. Subunit composition and assembly of 

nAChRs have to be tightly monitored. Tight control systems have to be in place 
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to prevent incorrectly assembled nAChRs from reaching the cell surface. Thus, it 

is important to understand how nAChRs are the assembled and transported to 

their sites of action.  

 

nAChR subunits are synthesized, folded and assembled within the endoplasmic 

reticulum (ER) in a sequential and ordered manner (Green and Millar, 1995; 

Smith et al., 1987). Several ER-resident chaperones are facilitating this process: 

nonspecific chaperones like BIP and calnexin, and nAChR specific chaperone 

RIC-3 (Forsayeth et al., 1992; Gelman et al., 1995; Halevi et al., 2002). The ER 

chaperones mostly dissociate from the subunits once the receptors were 

assembled and matured. However, in mouse muscle cells, only about 30% of the 

synthesized subunits reach the cell surface, suggesting that the assembly 

process and quality control are tightly regulated (Merlie and Lindstrom, 1983). 

Once nAChR subunits are not folded or assembled correctly, they are either 

given the second chance to refold with the assistance of ER chaperones or 

rapidly degraded by the ER-associated degradation (ERAD) mechanism 

(Christianson and Green, 2004; Wanamaker et al., 2003). Unassembled nAChR 

subunits can not be transported to the cell surface due to the exposure of an 

evolutionarily conserved ER retention motif PL(Y/F)(F/Y)xxN in the first 

transmembrane (TM) domain, which is buried in the nAChR pentamers (Wang et 

al., 2002). A conserved motif Arg313-Lys314 in the large cytoplasmic loop between 

the third and the fourth transmembrane domain is also exposed in unassembled 
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α-subunits, in which the motif mediates its Golgi-ER retrograde transport by 

association with COPI coats (Keller et al., 2001).  

 

After reaching the cell surface, nAChRs need to be clustered at the synaptic 

regions. Density of nAChRs in the synaptic region is 1000 times higher than that 

in the extrasynaptic membrane (Fertuck and Salpeter, 1976). The muscle-

specific tyrosine kinase (MuSK) and a cytoplasmic peripheral membrane protein 

rapsyn are required for clustering nAChRs at the NMJs (DeChiara et al., 1996; 

Gautam et al., 1995). The motor neurons secret a proteoglycan named agrin, 

which activates the MuSK to promote nAChR clustering and stabilization (Glass 

et al., 1996; McMahan, 1990). In C. elegans, nAChRs are also clustered by 

extracellular interaction with a postsynaptic transmembrane protein LEV-10 

(Gally et al., 2004; Gendrel et al., 2009). A muscle secreted complement-control-

related protein LEV-9 also contributes to nAChRs clustering by stabilizing LEV-

10 localization (Gendrel et al., 2009). 

 

Recently, an interesting study has showed that by co-expressing five levamisole 

receptor subunits: LEV-1, UNC-29, UNC-38, UNC-63, and LEV-8, and three 

genes encoding ancillary proteins involved in assembly or trafficking of the 

receptors: RIC-3, UNC-50, and UNC-74, functional levamisole receptors can be 

heterologously reconstituted in the plasma membrane of Xenopus laevis oocytes. 

Absence of any of these eight genes would dramatically impair levamisole 

receptor expression and function (Boulin et al., 2008). This indicates that an 
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nAChR subtype specific mechanism may exist for assembly, transport and 

clustering of nAChRs.  

2.5 UNC-50 is critical for levamisole receptor sorting 

Although we have some knowledge about the early events during nAChR 

assembly and ER retention, not much is understood about nAChR cell surface 

transport. Recently, a protein UNC-50 was identified to be specifically required 

for nAChR cell surface transport in C. elegans (Eimer et al., 2007). unc-50 

mutants were initially isolated from the genetic screen for mutants that are 

resistant to the cholinergic agonist levamisole (Lewis et al., 1980a). 

Phenotypically, unc-50 mutants show uncoordinated locomotion due to impaired 

cholinergic transmission. It was later shown that unc-50 does not encode a 

nAChR subunit. Body wall muscles of unc-50 mutants show no contraction in 

response to the application of levamisole (Figure 8A). However, the nicotine 

induced response and the GABA induced response were unaffected (Figure 

8B,C) (Eimer et al., 2007). This suggests that functional levamisole-sensitive 

nAChRs are not present on the muscle cell surface in unc-50 mutants. Indeed, 

the levamisole receptor subunit UNC-29 is not detectable in unc-50 mutants 

(Figure 8D, E). Moreover, unassembled UNC-29 is retained within the cell, 

probably in the ER, and detectable in unc-50 mutants by western blot (Figure 8F) 

(Eimer et al., 2007). This indicates that UNC-50 is required for transport of 

levamisole receptors to the synapse at a post-assembly step. It was shown that 

UNC-29 is specifically missorted to the lysosomal system and degraded in unc-
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50 mutants (Figure 8E) (Eimer et al., 2007). This suggests that a nAChR 

subtype-specific transport route to the synapses may exist. UNC-50 is cell-

autonomously required in body wall muscles for transporting levamisole 

receptors to the cell surface, indicating that UNC-50 is a muscle cell specific 

factor for levamisole receptor cell surface expression (Eimer et al., 2007). UNC-

50 is a highly conserved transmembrane protein (Figure 7). Its yeast homologue 

Gmh1p and human homologue GMH1 interact with the yeast Sec7 domain 

containing ARF (ADP-ribosylation factor)-GEFs (guanine nucleotide exchange 

factors) Gea1p and Gea2p (Chantalat et al., 2003; Eimer et al., 2007). Since 

UNC-50 is localized to the Golgi and ARF-GEFs are highly conserved regulators 

of membrane dynamics and protein sorting at the TGN, UNC-50 may have 

essential functions in protein trafficking at the Golgi-endosomal interface.  
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Figure 7. UNC-50 is an evolutionary conserved integral membrane protein  

Depicted is the clustalX alignment of UNC-50 with its orthologs from yeast to humans. The 

locations of the five predicted transmembrane (TM) regions are indicated. N-terminal of UNC-50 

lays at the cytosolic side and C-terminal lays in the luminal side. Residues conserved between all 

species are highlighted in black and conserved residues between most species in gray. (Eimer et 

al., 2007)                               
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Figure 8. UNC-50 is specifically required for levamisole receptor function in C. elegans 

(Modified from Eimer et al. 2007) 

(A) Levamisole evoked muscle current is totally abolished in unc-50 mutants.  

(B) Nicotine induced current is unaffected in unc-50 mutants.  

(C) GABA induced current is not affected in unc-50 mutants. 

(D) In unc-50(x47) mutant, levamisole receptor subunit UNC-29 can not be detected in the nerve 

ring by immunostaining.  

(E) UNC-29 can not be detected by western blot in unc-50(e306) single mutant. But UNC-29 re-

appears in unc-50(e306);cup-5(ar465), indicating that UNC-29 is degraded by the lysosomal 

system in unc-50(e306) mutant. CUP-5 is required for the formation of lysosomes from 

endosomal–lysosomal hybrid organelles (Treusch et al., 2004).  

(F) UNC-29 re-appears in unc-50(e306);unc-63(kr13) double mutant, indicating that UNC-50 

functions after levamisole receptor assembly. 
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2.6 An overview of the secretory pathways in eukaryotic cells 

Eukaryotic cells are highly specialized and compartmentalized systems, 

generating different intracellular micro-environments. Each compartment has 

specific functions, based on different protein and lipid compositions. These 

compartments have to exchange proteins and lipids continuously to maintain 

their integrity. Thus, protein and lipid transport between cellular compartments is 

essential. In eukaryotic cells, the majority of the proteins are synthesized in the 

endoplasmic reticulum (ER) and transported to their respective destinations via 

the secretory pathway. These proteins include secreted proteins, membrane 

proteins and lysosomal/vacuolar proteins.  

 

The entry point of the secretory pathway is the ER. In the ER, there are two 

independent quality control systems that target unfolded and misfolded proteins: 

the unfolded-protein-response (UPR) system and the ER-associated-degradation 

(ERAD) system (Friedlander et al., 2000; Jarosch et al., 2003). Misfolded or 

unfolded proteins are translocated into the cytoplasm , polyubiquitinated , and 

subjected to proteasome-mediated proteolysis (Jarosch et al., 2003).  

 

Proteins that have passed ER quality control are exported from the ER by COPII 

vesicles (Barlowe et al., 1994). On their route to the Golgi, proteins exiting the 

ER pass through the ER-Golgi intermediate compartment (ERGIC), the marker of 

which is the lectin ERGIC-53 (Appenzeller-Herzog and Hauri, 2006). The ERGIC 

is supposed to be an interface between COPII and COPI mediated transport, 
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since it has markers specific for both COPII and COPI vesicles (Scales et al., 

1997). The ERGIC is also thought to be the location where the first sorting steps 

take place, based on the fact that COPII and COPI markers are localized to 

distinct regions, and that ERGIC-53 and anterograde cargo show different 

behavior (Ben-Tekaya et al., 2005; Martinez-Menarguez et al., 1999). Exit from 

ERGIC to the cis-Golgi is COPI independent, as structures with anterograde 

cargo leaving the ERGIC are COPI negative and significantly larger than the 

typical COPI vesicles (Martinez-Menarguez et al., 1999; Presley et al., 1997; 

Scales et al., 1997). 

 

The next step in the secretory pathway is the transport through the Golgi 

apparatus, which is mediated by COPI vesicles (Ladinsky et al., 1999). A Golgi 

stack consists of four to six cisternae, which differ in protein and lipid composition, 

and form a gradient from the cis-side to the trans-side. However, how secretory 

cargo traverses the Golgi and how Golgi resident proteins localize to different 

compartments of the organelle are not completely understood. One of the 

explanations is the cisternal maturation model: cisternae assemble at the cis-

Golgi, progress through the stack while carrying the secretory cargo forward, and 

then ultimately disintegrate at the TGN stage by forming transport carriers. 

Resident Golgi proteins are recycled from late cisternae to early cisternae, 

driving maturation of younger cisternae (Glick and Malhotra, 1998; Pelham, 

1998). The next station is the TGN, which is a primary cargo-sorting site. At the 

TGN, transport is mainly mediated by clathrin-coated vesicles (CCVs), which 
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contain three core components: small GTPases, adaptor proteins and the 

scaffold protein clathrin. CCVs sort cargo by adaptor proteins and carry them to 

different destinations such as plasma membrane, endosomes and lysosomes 

(Figure 9). 

 

Figure 9. Model of eukaryotic secretory pathway 

COPII-coated vesicles form a VTC (vesicular-tubular cluster) close to the ER. COPI and COPII 

vesicles fuse to form transport complex (TC) or ER-Golgi intermediate compartment (ERGIC). 

The TC moves towards the cis-face of the Golgi complex where it builds up the cis-Golgi network 

(CGN). COPI can bud vesicles from membranes of the TCs and Golgi complex that move in 

either the anterograde (COPI-a) or retrograde (COPI-r) direction. (Lowe and Kreis, 1998) 
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Meanwhile, there is also retrograde transport, in which proteins and lipids are 

transported back from the endosomes to the Golgi (Figure 10). Retrograde 

transport is crucial for a diverse range of cellular functions. Retrograde transport 

and anterograde transport are inter-dependent. Yeast vacuolar hydrolase 

receptor Vps10p and mammalian mannose 6-phosphate receptors (MPRs) are 

constantly recycled from endosomes to the trans-Golgi network (TGN). Newly 

synthesized acid hydrolase precursor proteins are captured by Vps10p or MPRs 

at the TGN and transported to endosomes. Once they reach endosomes, the 

acidic environment of the endosomal lumens dissociates the cargo from the 

receptors (Munier-Lehmann et al., 1996). After that, the hydrolase precursors are 

transported to the late endosomes and lysosomes, while the receptors are 

recycled back to the TGN. Another example of retrograde cargo is the Wnt 

transporter, Wntless. Proper secretion of the morphogen Wnt requires recycling 

Wntless from endosome to Golgi (Belenkaya et al., 2008; Coudreuse et al., 2006; 

Franch-Marro et al., 2008; Pan et al., 2008; Port et al., 2008; Prasad and Clark, 

2006; Yang et al., 2008). The retrograde endosome to Golgi transport system is 

also important for cellular entry of some pathogens and viruses. After binding to 

cell surface receptors, Shiga toxin is endocytosed to early endosomes and 

transported to the ER via the TGN/Golgi apparatus (Johannes and Popoff, 2008; 

Sandvig and van Deurs, 2005).  

 

Retrograde trafficking is also mediated by transport vesicles. Formation of 

retrograde transport vesicles is tightly regulated. First, the cargo have to be 
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Figure 10. Components of the molecular machinery that mediates retrograde transport 

from endosomes to the trans-Golgi network  

Retrograde transport starts from a coated endosome, which is an intermediate in the maturation 

between early and late endosomes. The coated endosome is connected to a vast tubular 

endosomal network, and from there some proteins are transported to the TGN. Other cargo 

remain in the vacuolar part as the coated endosome matures to the late endosome, and then they 

are transported to the TGN by vesicles. Parallel pathways seem to exist from both the coated 

endosome and the late endosome to the TGN. All of the machinery components are color coded 

according to their function in membrane recruitment, budding and sorting, tethering or fusion. 

Components are grouped on the basis of their functional or physical interactions. (Bonifacino and 

Rojas, 2006) 
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recruited to a specialized microdomain on the endosomal membrane. The 

retromer Vps26-Vps29-Vps35 core complex is required for recognizing 

retrograde cargo like Vps10p and cation-independent mannose-6-phosphate 

receptor (CI-MPR). Then, this microdomain has to be curved to form a tubular 

structure. The retromer SNX (sorting nexin) subunit induces membrane curvature 

change by its BAR (Bin/Amphiphysin/Rvs) domain, and that leads to retrograde 

tubule formation. Finally, scission of the coated vesicles happened with the 

assistance of dynamin (Nicoziani et al., 2000). The transport vesicles leave the 

original compartment and move towards the target compartment. 

 

The fusion of transport vesicles with the destination compartment is executed by 

the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein 

receptor) proteins, which exist at both the vesicles and target membranes (Jahn 

and Scheller, 2006). Although SNARE proteins are sufficient to execute 

membrane fusion in purified membrane fusion assays in vitro, cells require 

additional factors for efficient vesicular membrane trafficking in vivo (Lang and 

Jahn, 2008). In particular, it is still not clear how specificity is achieved during the 

membrane transport. A set of additional factors helps to make the match by 

tethering transport vesicles to the acceptor membrane. These factors also confer 

specificity for the fusion process by bringing the SNARE proteins in close 

proximity to allow efficient SNARE pairing. Tethering factors can be divided into 

two groups: i) long coiled-coil proteins and ii) multi-subunit tethering complexes. 

Long coiled-coil proteins are recruited to acceptor membrane mostly by small 
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GTPases and mark the identity of domains on subcellular compartments (Short 

et al., 2005). Multimeric tethering complexes are also bound by small GTPases in 

their active, GTP bound form, and cooperate with the long coiled-coil proteins to 

tether vesicles to the acceptor membrane (Whyte and Munro, 2002). Three of 

these multisubunit tethering complexes share similarities in their domain 

architecture and are composed of multimers of fourfold-symmetric components: 

the exocyst, the conserved oligomeric Golgi (COG) complex and the Golgi 

associated retrograde protein (GARP) complex (Whyte and Munro, 2002). The 

exocyst, which contains eight subunits, is required for tethering of vesicles to the 

plasma membrane and localizes mainly to sites of polarized growth (Hsu et al., 

2004). In contrast, the COG and the GARP complexes are thought to function 

mainly in retrograde transport from endosome to Golgi (Conboy and Cyert, 2000; 

Conibear et al., 2003; Conibear and Stevens, 2000; Reggiori et al., 2003; 

Siniossoglou and Pelham, 2002).  
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2.7 Goal of the study 

In unc-50 mutants, levamisole receptor subunit UNC-29 is selectively missorted 

to the lysosomes and degraded. Levamisole evoked postsynaptic response is 

totally abolished in unc-50 mutants. Thus, failure of forming functional levamisole 

receptors leads to an uncoordinated movement phenotype and resistance to 

levamisole. UNC-50 is highly conserved through species. UNC-50 and its yeast 

homologue Gmh1p and human homologue GMH1 all interact with the yeast Sec7 

domain containing ARF-GEFs Gea1p, which is a highly conserved regulator of 

membrane dynamics and protein trafficking (Chantalat et al., 2003; Eimer et al., 

2007). Thus, UNC-50 seems to be a general trafficking factor. However, the role 

of UNC-50 for regulating levamisole receptor trafficking and its general functions 

in the intracellular transport system are not understood yet. The goal of this study 

was to identify the functions of UNC-50 in intracellular transport in the nematode 

C. elegans. We found that UNC-50 has parallel or redundant role with several 

protein complexes. One of these complexes is a quatrefoil tethering complex, the 

GARP complex, which is involved in retrograde transport from endosome to 

Golgi. In order to characterize retrograde membrane transport from endosome to 

Golgi as well as the functions of UNC-50, we made the first functional 

characterization of the GARP complex in C. elegans. Besides levamisole 

receptors, we also looked for additional factors whose trafficking is affected in the 

absence of UNC-50 and investigated how their functions are regulated by UNC-

50.  
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III Material and Methods 

3.1 Strains 

Strains were maintained at 20oC with standard NGM unless stated (Brenner, 

1974). Strains used in this study:  

Wild type Bristol N2 strain  

Linkage group I (LG I): 

vps-51(tm4275), NF299 cogc-1(k179), NF1684 cogc-3(k181), DH1206 rme-

8(b1023), syn-13(tm2037), RB662 apb-3(ok429), PS529 unc-101(sy108),  

LG II:  

KN555 vps-35(hu68), arl-3(tm1703), VC616 dab-1(gk291) 

LG III:  

VC2202 vps-53(ok2864), syn-16(tm1560), unc-50(x47), unc-50(x35), unc-

50(ok1847) 

LG IV:  

NF773 fbl-1(k201), NF774 fbl-1(k206) 

LG V:  

VC985 vps-54(ok1463), DH1201 rme-1(b1045), NF198 mig-17(k174) 

LG X:  

VC625 vps-52(ok853), VC2117 rab-6.2(ok2254), NL2013 rsd-3(pk2013), NL2037 

rsd-3(pk2013), klp-4(tm2114), apt-9(tm3776), CB840 dpy-23(e840), snx-1(tm847) 

 

CB5600 ccIs4251 I; him-8(e1489) IV 
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RT258 unc-119(ed3) III; pwIs50 [lmp-1::GFP + unc-119(+)] 

DH1033 sqt-1(sc103) II; bIs1 [vit-2::GFP + rol-6(su1006)] X 

DH1336 bIs34 [rme-8::GFP + rol-6(su1006)] 

NP745 unc-119(ed3) III; cdIs40 [pcc1::GFP::CUP-5 + unc-119(+) + myo-2::GFP] 

NP822 unc-119(ed3) III; cdIs54 [pcc1::MANS::GFP + unc-119(+) + myo-2::GFP] 

NP705 unc-119(ed3) III; cdIs29 [pcc1::GFP::TRAM + unc-119(+) + ttx-3::GFP]  

NP941 unc-119(ed3) III; cdIs85 [pcc1::2xFYVE::GFP + unc-119(+) + myo-2::GFP] 

GS1912 arIs37 [pmyo-3::ssGFP] I; dpy-20(e1282) IV  

All the strains used in this study were from CGC and Dr. Shohei Mitani. All strains 

have been outcrossed at least three times before analysis. 

3.2 Molecular biology 

vps-51/B0414.8, vps-52/F08C6.3, vps-53/T05G5.8, and vps-54/T21C9.2 cDNAs 

were PCR amplified from a C. elegans mixed stage cDNA library (Proquest, 

Invitrogen) and subcloned. To express the different GARP complex subunits in C. 

elegans body wall muscle (BWM) cells under the control of the myo-3 promoter, 

the respective cDNA along with a fluorescent protein tag were cloned into 

pPD115.62(pmyo-3::gfp) replacing GFP. As fluorescent protein tags either mYFP 

citrine, mCherry or tagRFP (Evrogen) were used. vps-51 and vps-53 were N-

terminally tagged while vps-52 and vps-54 were tagged at the C-terminus. 

 

To analyze the expression pattern of vps-51, vps-52, and vps-53, a 3.6kb, 470bp, 

and 4,5 kb promoter fragment upstream of the start ATG, respectively, was 
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amplified from genomic DNA and subcloned as a HindIII and BamHI fragment 

into pPD115.62 (pmyo-3::gfp) by replacing the myo-3 promoter. All clones were 

verified by sequencing. 

3.3 Production of transgenic animals 

To generate transgenic animals young adult hermaphrodites were used for 

microinjection of DNA mixes into the distal part of the gonads (Mello et al., 1991). 

Expression constructs were injected at 20 ng/μl and protein fusions at 5 ng/μl. 

pttx-3::gfp and rol-6 (su1006) were used as co-injection markers each at 30ng/μl. 

The total DNA concentration of injection mixtures was adjusted to 120ng/μl by 

adding pBlueScript SKII (Stratagene). 

3.4 Co-immunoprecipitation and western blotting 

C. elegans mixed staged worms from one 9 cm plate were rinsed off, washed 

and snap frozen in liquid nitrogen and kept at -80� until subsequent use. The 

frozen worm pellet was ground with a mortar and pestle and frozen in liquid 

nitrogen. While thawing, 4-5 volumes of homogenization buffer (50mM HEPES, 

7.5% glycerol, 10mM NaCl, 1mM EDTA, 0.1% NP-40) and complete EDTA-free 

protease inhibitor (Roche) were added. The suspension was kept at 4� and 

centrifuged at 500G for 10 minutes. 1.5 ml of supernatant was incubated with 

4μg monoclonal mouse anti-GFP (Invitrogen) for 3 hours at 4�. 10μl of protein A 

coated paramagnetic beads slurry (New England BioLabs) were added and 

incubated for 2 hours at 4�. Beads were washed 3 times with 1ml 
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homogenization buffer and eluted by adding 2xLaemmli buffer at 96�. Western 

blotting was done according to the standard method. To detect mCherry fusion 

proteins a polyclonal rabbit anti-DsRed (Clontech) was used at 1:1000 dilution. 

Secondary HRP labeled anti-mouse and anti-rabbit antibodies were purchased 

from Jackson/Dianova and used at 1/10000. 

3.5 Antibody production 

Antibody against VPS-51 was produced by immunizing rabbit with 1ug of purified 

6xHis-tag fused fragment of VPS-51(amino acid 1-374).  Antibody against VPS-

54 was produced by immunizing mouse with 1ug of purified 6xHis-tag fused 

fragment of VPS-54(amino acid 1-293).   

3.6 Phylogenetic analysis 

Phylogenetic trees were generated based on the PFAM Vps51 (PF08700) full 

alignment and subsets thereof, respectively of full-length sequences selected 

based on phylogeny and aligned using MAFFT (Katoh et al., 2005). Trees were 

constructed using neighbourjoining (Frickenhaus and Beszteri, 2008; Howe et al., 

2002) and Bayesian inference (Ronquist and Huelsenbeck, 2003). Motif 

discovery was carried out using MEME (Bailey et al., 2009). 

3.7 TR-BSA pulse chase assay 

1mg/mL TR-BSA was injected into the body cavity of the pharyngeal region of 

young adult worms. After recovering on the NGM plates at 20°C for 10 min, 15 
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min, 30 min, 45 min and 60 minutes, injected worms were mounted in 50mM 

sodium azide on 2% agarose pads for confocal microscopy. More than five 

coelomocytes of different worms show similar results with the same time spot.  

3.8 Confocal microscopy and data analysis 

Confocal microscopy images were taken on a Leica DM IRE2 inverted confocal 

microscope equipped with a 488nm laser and a 561nm laser. Intensity of GFP in 

coelomocytes was measured by ImageJ. Sizes of RME-8::GFP, CUP-5::GFP, 

LMP-1::GFP positive vesicles in coelomocytes were measured by XtraCOunt 

(developed by Christian Olendrowitz). Statistics were done with Microsoft Excel.  

3.9 Yeast two hybrid 

The Matchmaker yeast two-hybrid assay was performed according to the 

manufacturer’s protocol (Clontech). vps-51, -52, -53, and -54 were cloned into 

the bait and prey vectors, pGBKT7 and pGADT7 (Clontech), respectively. All C. 

elegans SNARE proteins were identified and annotated by sequence comparison 

(Kloepper et al., 2008), PCR amplified and subcloned into the prey vector 

pGADT7. The appropriate plasmid combinations were transformation into the 

yeast strain AH109 (Clontech) and tested for interaction on selective plates 

lacking histidine. 
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3.10 High pressure freezing Electron microscopy  

A 100 µm deep aluminium platelet (Microscopy Services, Flintbek) was filled with 

E. coli OP 50 suspension. About 20 young adult worms were transferred into the 

chamber and immediately frozen using a BalTec HPM 10. Freeze substitution 

was carried out in a Leica EM AFS at -90 °C for 100 h in 0,1% tannic acid and 

another 7 h in 2 % OsO4 (each w/v in dry acetone), according to Rostaing et al. 

2006. 

 

40 nm sections were cut using a Leica UC6 ultramicrotome. Ribbons of sections 

were transferred on Formvar-coated copper slot-grids. The grids were placed for 

10 min on drops of 4 % (w/v) uranyl acetate in 75% methanol and then washed in 

distilled water. After air drying the grids were placed on lead citrate (Reynolds, 

1963) for 2 min in a CO2-free chamber, and rinsed in distilled water. Micrographs 

were taken with a 1024 × 1024 CCD detector (Proscan CCD HSS 512/1024; 

Proscan Electronic Systems, Scheuring, Germany) in a Zeiss EM 902A, operated 

in the bright field mode. 

3.11 3D Reconstructions of EM images 

Serial sections of neuronal cell bodies were imaged at a magnification of 12,000x 

Images were imported into “reconstruct” (Fiala, 2005) and aligned linearly. 

Vesicles were reconstructed as “sphere”, all other components (nucleus, 

mitochondria, Golgi stacks, and further cell-inclusions) as “Boissonnat surface”.  
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3.12 Analysis of DTC migration phenotypes 

Samples were prepared by immobilizing young adult hermaphrodites with 50mM 

sodium azide and placing them on 2% agarose pads. A Zeiss Axiovert 200 

microscope equipped with a 40x objective and Nomarski differential interference 

contrast (DIC) optics was used to exam the morphology of gonad. Both anterior 

and posterior arms were examined. Each strain was scored three times 

independently. 

3.13 Cryo-section and immunostaining 

Worms of mix stage were collected with M9 buffer and concentrated into 400uL 

icy blocks by freezing with liquid nitrogen. Slicing the blocks into 15-20uM thick 

sections with cryotome, and collect the sections on glass slices coated with poly-

glycine. The samples were kept at -80 oC until use. Thaw the slices at room 

temperature, and wash with PBS three times, each time 10 minutes. Block with 

2% BSA in PBS for about one hour. Incubate with rabbit anti-GFP (1:1000, 

molecular probes) in PBS containing 1% BSA for 2 hours. Then wash once with 

PBS for 5 minutes. Incubate with Alexa 568 goat anti-rabbit-IgG (1:100), 

phalloidin (5U/mL) in PBS containing 1% BSA for 2 hours. Then incubate with 

DAPI (1:1000) for 10 minutes. Wash 3 times with PBS, each time for 5 minutes. 

Cover the sections with cover slips and the samples are ready for imaging. 
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                             Table 1.  Primers used in this study 
 

Primer 
number 

Description Primer sequence from 5’ to 3’ 

oGQ 299 
forward primer outside arl-3(tm1703) 

deletion 
cgt ctc tat ggt aac ata cgg gag 

cta gag agt 

oGQ 300 
reverse primer outside arl-3(tm1703) 

deletion 
caa ctt cct tct tat agg ttt cca ctg 

aaa ttg 

oGQ301 
forward primer inside arl-3(tm1703) 

deletion 
ata ctg aag cag ctg tcc tct gaa 

gat gtt caa 

oGQ302 
reverse primer inside arl-3(tm1703) 

deletion 
tga gag act gcc aca gag ata ttg 

taa atg gat 

oGQ303 
forward primer outside syn-16(tm1560) 

deletion 
cgc aca cct ttt cgc att taa taa 

ata tta tcg 

oGQ304 
reverse primer outside syn-16(tm1560) 

deletion 
  ttg gct ttg gcg tta atc agt tga 

ttt taa acg 

oGQ305 
forward primer inside syn-16(tm1560) 

deletion 
aga aga cta gat gaa ctt gga 

gag gca cag aga 

oGQ306 
reverse primer inside syn-16(tm1560) 

deletion 
tta caa ttt agt aac aat aat aag 

aat cag tac 

oGQ 311 
forward primer outside syn-13(tm2037) 

deletion 
ttg atc gaa cgt cag att agc 

gat gca gta gat 

oGQ 312 
reverse primer outside syn-13(tm2037) 

deletion 
ata cta ctt gaa tag gcc act tat 

tat caa aat 

oGQ 313 
forward primer inside syn-13(tm2037) 

deletion 
aat caa tca aaa ctt cac tag 

aag cct gca ttt 

oGQ 314 
reverse primer inside syn-13(tm2037) 

deletion 
aag cca ctt tac aca tgc cag ttt 

ata tat ttt 

oGQ 315 
forward primer outside vps-54(ok1463) 

deletion 
gga tgt gtt cac agt tcc tgc caa 

tga tga ttt 

oGQ 316 
reverse primer outside vps-54(ok1463)  

deletion 
cta ttc aaa cat aat gtc att aag 

cga ctc gag 

oGQ 317 
forward primer inside vps-54(ok1463) 

deletion 
aga act ttc tgc tgt cct act tgg 

att gat gag 

oGQ 318 
reverse primer inside vps-54(ok1463) 

deletion 
gag tgg aat acc atc ctt cct tgt 

cac act tgg 

oGQ858 
forward primer outside apb-3(ok429) 

deletion 
ttc aca aaa tga taa att tgt gat 

agc agt ggt tag cgt ctc 

oGQ859 
reverse primer outside apb-3(ok429) 

deletion 
taa tcg agt ttc cct tca cat cga 

gac ctt ctt cag ttt tta 

oGQ860 
forward primer for matching inside       

apb-3(ok429) deletion 
ctg gac ttg tcc aat tga ttt ctt ctt 

ccg atg aga aag tcg 

oGQ861 
reverse primer inside apb-3(ok429) 

deletion 
aga tgg ttt tgg gtt agg ctt ctc 

ctc tgg ctc act atc atc 

 42



 

oGQ862 
forward primer outside dab-1(gk291) 

deletion 
aat ccg aca ttt ttt ctt att tcc att 

tcg aaa gta ata aca 

oGQ863 
reverse primer outside dab-1(gk291) 

deletion 
agt gct ggc gtg atg caa tga 

tga ctg ctg ttg ttg gat att 

oGQ864 
forward primer inside dab-1(gk291) 

deletion 
atg tta tct ttt tgt tat cta taa cat 

ttt cag gaa aga gtt 

oGQ865 
reverse primer inside dab-1(gk291) 

deletion 
ttc ctt ctt gct ctg gaa ctt tta taa 

agt cat aac aat gga 

oGQ977 
forward primer outside rab-6.2(ok2254) 

deletion 
caa aat tcc gaa acg tta agt 
tga cct cta ttc aaa aaa caa 

oGQ978 
reverse primer outside rab-6.2(ok2254) 

deletion 
agc gca agg taa gtt tag ctt 
gaa cta att ctg ttt aga atg 

oGQ979 
forward primer inside rab-6.2(ok2254) 

deletion 
ctt gat tta att tta gaa aaa tta 

cag aaa aat gtc gga ctt 

oGQ980 
reverse primer inside rab-6.2(ok2254) 

deletion 
gtt gga gtc tgc aaa aaa gtt 
ggg gtt aaa tga agc ttt ttt 

oGQ981 
forward primer for detecting             
rsd-3(pk2010) Tc1 insertion 

tct ctg cgc ttt ccg ttc tat ttc ccc 
gag gca cac 

oGQ982 
reverse primer for detecting            
rsd-3(pk2010) Tc1 insertion 

tca cat tca agc tat gtt gaa aat 
cgc agc caa 

oGQ991 
forward primer outside snx-1(tm847) 

deletion 
cgc tcc gct gca cac ctc ccc ctt 

cca cat 

oGQ992 
reverse primer outside snx-1(tm847) 

deletion 
ctt gcg atc ggc atc aaa acg 

cgc aac ctc ctc acg 

oGQ993 
forward primer inside snx-1(tm847) 

deletion 
ccg gcg gtt atc aat tct att gag 

gat cac gat cag 

oGQ994 
reverse primer inside snx-1(tm847) 

deletion 
gca gtt tac aag caa tac tgt gta 

ctt ttt cac ttc tac g 

oGQ1105 
forward primer outside rme-1(b1045) 

deletion 
gtt tac aaa aac gaa tgc ttg ttg 

gat cga 

oGQ1106 
reverse primer outside rme-1(b1045) 

deletion 
tcg acc ata ttt ttt tgc gaa att 

aga ggc 

oGQ1107 
forward primer for matching fragment 

inside rme-1(b1045) deletion 
cac gca tac att att gct gag ctt 

cgt aag 

oGQ1108 
reverse primer inside rme-1(b1045) 

deletion 
tca gca tcc aac tgt cca tcc ttg 

tca ata 

oGQ1109 
forward primer outside apt-9(tm3776) 

deletion 
gtg aga atc aag gaa aac aat 

aca act gga caa 

oGQ1110 
reverse primer outside apt-9(tm3776) 

deletion 
cat tgt ttt ctg cta gtt cat tga cat 

atc cat 

oGQ1111 
forward primer inside apt-9(tm3776) 

deletion 
cag gct ctt gat tat tta gta cgc 

aat gga 

oGQ1112 
reverse primer inside apt-9(tm3776) 

deletion 
aat aaa gct ttc aaa aga acg 

gct tgc tct 

oGQ1542 reverse primer inside vps-51(tm4275) gaa ctg ttg gaa cgt ctt tat act 
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deletion gcg at 

oGQ1543 
forward primer outside vps-51(tm4275) 

deletion 
gaa atg aaa tct ctc agc cga 

agt atg tcg 

oGQ1544 
reverse primer outside vps-51(tm4275) 

deletion 
ctt caa aac cgt aat aag atc ttc 

tcg ttt 

oGQ1654 
forward primer inside vps-53(ok2864) 

deletion 
cca aga aag tat caa aaa cac 

tcc aaa tag 

oGQ1655 
reverse primer inside vps-53(ok2864) 

deletion 
gct gat aat gaa gaa ggc gca 

tgg ttg gat 

oGQ1656 
forward primer outside vps-53(ok2864) 

deletion 
atc aat gca tca ggt tca ctg ctc 

aac ttg 

oGQ1657 
reverse primer outside vps-53(ok2864) 

deletion 
cgt atc gta gat acc ttc ata ata 

gag tta 

oSE270 
forward primer for vps-52 F08C6.3 that 

introduces a AgeI and NcoI site in front of 
the start ATG 

c cca ccg gta tcc atg gga atg 
cct cga aca cgt gtc aac 

oSE227 
reverse primer for F08C6.3/vps-52 that 

matches after the deletion of ok853 
cag ctt ttg agc aca act gac 

oSE228 
reverse primer for F08C6.3/vps-52 that 
matches within the deletion of ok853 

tgg ctc agc tcg act cta act 

 
 
 

Table 2.  List of constructs made and used in this study 
 

construct description 

Pmyo3::vps-52::mCherry 
For expression of VPS-52::mCherry in the body 

wall muscle 

Pmyo3::vps-52:myfp 
For expression of VPS-52::mYFP in the body 

wall muscle 

Pmyo3::mCherry::vps-53 
For expression of mCherry::VPS-53 in the body 

wall muscle 

Pmyo3::vps-54::myfp 
For expression of VPS-54::mYFP in the body 

wall muscle 

Pmyo3::myfp::vps-51 
For expression of mYFP::VPS-51 in the body 

wall muscle 

Pmyo3::mCherry::vps-51 
For expression of mCherry::VPS-51 in the body 

wall muscle 

Prab3::mCherry::vps-53 
For expression of mCherry::VPS-53 in the 

neurons 
Pvps-52::gfp For vps-52 promoter driven expression of GFP 

pHis-parallel2::vps-54 N term 
For recombinant expression of VPS-54 N-
terminal (aa1-293) with a 6XHis tag in front 

pHis-parallel2::vps-51 N term 
For recombinant expression of VPS-51N-

terminal (aa1-374) with a 6XHis tag in front 
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Pmyo3::gfp::rab-6.1 
For expression of GFP::RAB-6.1 in the body wall 

muscle 

Pmyo3::gfp::rab-6.2 
For expression of GFP::RAB-6.2 in the body wall 

muscle 

Pmyo3::rab-5 QL 
For expression of RAB-5 dominant active form in 

the body wall muscle 

Pmyo3::rab-5 SN 
For expression of RAB-5 dominant negative 

form in the body wall muscle 
Plag2::unc-50 For expression of UNC-50 in the distal tip cell 

 
 

Table 3. Worm strains used in this study 
 

Strain name Genotype 
 vps-51(tm4275) 

VC625 vps-52(ok853) X 
VC2202 vps-53(ok2864) III 
VC985 vps-54(ok1463) V 
KN555 vps-35(hu68) II 

CB5600 ccIs4251 I; him-8(e1489) IV 
RT258 unc-119(ed3) III; pwIs50 [lmp-1::GFP + unc-119(+)] 

DH1033 sqt-1(sc103) II; bIs1 [vit-2::GFP + rol-6(su1006)] X 
DH1336 bIs34 [rme-8::GFP + rol-6(su1006)] 

NP745 
unc-119(ed3) III; cdIs40 [pcc1::GFP::CUP-5 + unc-119(+) + myo-

2::GFP] 

NP822 
unc-119(ed3) III; cdIs54 [pcc1::MANS::GFP + unc-119(+) + myo-

2::GFP] 
NP705 unc-119(ed3) III; cdIs29 [pcc1::GFP::TRAM + unc-119(+) + ttx-3::GFP]

NP941 
unc-119(ed3) III; cdIs85 [pcc1::2xFYVE::GFP + unc-119(+) + myo-

2::GFP] 
VC2117 rab-6.2(ok2254) X 
NF299 cogc-1(k179) I 
NF1684 cogc-3(k181) I 
GS1912 arIs37 [pmyo-3::ssGFP] I; dpy-20(e1282) IV 

 unc-50(x47) III 
 unc-50(x35) III 

 unc-50(ok1847) III 
 syn-13(tm2037) I 
 syn-16(tm1560) III 

PS529 unc-101(sy108) I 
CB840 dpy-23(e840) X 
RB662 apb-3(ok429) I 
VC616 dab-1(gk291) II 

 rsd-3(pk2010) X 
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 rsd-3(pk2013) X 
 snx-1(tm847) X 
 arl-3(tm1703) II 

DH1201 rme-1(b1045) V 
DH1206 rme-8(b1023) I 

 apt-9(tm3776) X 
 klp-4(tm2114) X 

NF198 mig-17(k174) V 
NF773 fbl-1(k201) IV 
NF774 fbl-1(k206) IV 

 
 
Table 4.  Transgenic worms generated and used in this study 

 
Transgene 

number 
Plasmids Marker 

InLing10 
Pmyo3::vps-52::mCherry                   10ng/uL 
Pmyo3::gfp::GRIP domain                 10ng/uL

ttx3::gfp          60ng/uL  
rol-6                60ng/uL

InLing11 
Pmyo3::vps-52::mCherry                   10ng/uL 
Pmyo3::gfp::2xFYVE                         10ng/uL

ttx3::gfp          60ng/uL
rol-6                60ng/uL

InLing6 
Pmyo3::vps-52::mCherry                     5ng/uL 
Pmyo3::Mans::gfp                                5ng/uL

ttx3::gfp          60ng/uL
rol-6                60ng/uL

InLing14 
Pmyo3::vps-52::mCherry                   10ng/uL 
Pmyo3::gfp::rab-6.1                           10ng/uL

ttx3::gfp          60ng/uL
rol-6                60ng/uL

InLing15 
Pmyo3::vps-52::mCherry                   10ng/uL 
Pmyo3::gfp::rab-6.2                           10ng/uL

ttx3::gfp          60ng/uL
rol-6                60ng/uL

InLing24 mig-17::venus                                  100ng/uL ttx3::gfp          20ng/uL
InLing26 Plag2::unc50                                        5ng/uL ttx3::gfp          20ng/uL
InLing30 Pvps52::gfp                                        20ng/uL rol-6                40ng/uL

InLing38 
Pmyo3::vps54::myfp                          10ng/uL 
Pmyo3::vps52::mCherry                    10ng/uL

ttx3::gfp          20ng/uL
rol-6                30ng/uL

InLing46 
Pmyo3::mCherry::vps53                    10ng/uL 
Pmyo3::vps52::myfp                          10ng/uL

myo2::gfp       10ng/uL
rol-6                30ng/uL

InLing52 
Pmyo3::vps54::myfp                          10ng/uL 
Pmyo3::mCherry::vps53                    10ng/uL

ttx3::gfp          20ng/uL
rol-6                30ng/uL

InLing58 
Pmyo3::mCherry::rab-2                     10ng/uL 
Pmyo3::vps-52::myfp                         10ng/uL

ttx-3::gfp         20ng/uL
rol-6                30ng/uL

InLing72 Pmyo3::rab-5 SN (inactive)                10ng/uL ttx3::gfp          20ng/uL
InLing73 Pmyo3::rab-5 QL (active)                   10ng/uL ttx3::gfp          20ng/uL

InLing78 
Prab3::mCherry::vps-53                     10ng/uL 
Prab3::Mans::myfp                             10ng/uL

rol-6                30ng/uL

InLing79 
Prab3::mCherry::vps-53                     10ng/uL 
Prab3::gfp::GRIP domain                   10ng/uL

rol-6                30ng/uL

InLing80 
Prab3::mCherry::vps-53                    10ng/uL 
Prab3::gfp::2xFYVE                           10ng/uL

rol-6                30ng/uL
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InLing92 
Pmyo3::mCherry::vps-51                   10ng/uL 
Pmyo3::vps-52::myfp                         10ng/uL

ttx3::gfp          30ng/uL
rol-6                30ng/uL

InLing93 
Pmyo3::myfp::vps-51                         10ng/uL 
Pmyo3::vps-52::mtfp                          10ng/uL 
Pmyo3::mCherry::vps-53                   10ng/uL

ttx3::gfp          30ng/uL
rol-6               30ng/uL 

InLing96 mig-17::venus                                      2ng/uL ttx3::gfp          30ng/uL
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IV Results and discussion 

 

 
 
 

 

Part I                                                         

UNC-50 is involved in retrograde transport from 

endosome to Golgi 
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In C. elegans, levamisole sensitive nAChRs mediate fast synaptic transmission 

at the neuromuscular junctions. A conserved integral membrane protein UNC-50 

has been shown to be required for membrane trafficking of  levamisole sensitive 

nAChRs in the body wall muscles (Eimer et al., 2007). However, the molecular 

pathway UNC-50 is operating in and the precise mechanism how UNC-50 affects 

levamisole receptor trafficking are not known yet. 

4.1.1 UNC-50 is localized to the Golgi-endosomal interface 

It was reported that UNC-50 is localized to the Golgi system but not to the ER 

system (Eimer et al., 2007). To determine the exact site of UNC-50 action, we 

refined the Golgi localization of UNC-50 by using different Golgi and endosomal 

markers as references. We co-expressed fluorescent protein tagged UNC-50 and 

several organelle specific markers in body wall muscles (BWMs). As shown in 

Figure 11, maximum projection confocal images of mRFP::UNC-50 and the 

trans-Golgi marker GFP::GRIP domain show nearly complete colocalization. The 

early endosomal marker GFP::2xFYVE domain also shows high degree of 

colocalization with mRFP::UNC-50 (Figure 11). The colocalization of UNC-50 

with late Golgi and endosomal markers suggests that UNC-50 may function at 

the Golgi endosomal interface. Interestingly, although the COP-I vesicle and 

ERGIC marker GFP::εCOP weakly overlaps with mRFP::UNC-50, they are 

mostly adjacent to each other (Figure 11). This is consistent with the fact that 

UNC-50 localizes to the medial and late Golgi, and it also indicates that UNC-50 

is probably not directly associated with the COP-I vesicle mediated trafficking, as 
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suggested previously by the interaction and colocalization of Gmh1 with Gea1/2p 

in yeast and human cells (Chantalat et al., 2003; Eimer et al., 2007). 

GFP::2xFYVE

mRFP::UNC‐50mRFP::UNC‐50 

GFP::COP 

mRFP::UNC‐50

Merged Merged Merged

 
 

GFP::GRIP domain 

 

Figure 11. UNC-50 is localized to the TGN and endosomal systems 

In body wall muscles, mRFP::UNC-50 is overlapping with the TGN marker GFP::GRIP domain 

and the endosomal marker GFP::2xFYVE. Interestingly, mRFP::UNC-50 and the COPI vesicle 

marker GFP::εCOP are not colocalized but adjacent to each other. Inserted are magnified parts of 

the pictures. Scale bar, 5μm. 

 

4.1.2 Screen for genetic interactors by synthetic lethality 

analysis 

Although UNC-50 has been implicated to be specifically essential for levamisole 

receptor sorting in C. elegans, more general and evolutionarily conserved 

function of UNC-50 within the secretory pathway might exist, since UNC-50 

shows high conservation between species (Eimer et al., 2007), and some of the 

organisms like yeast and Arabidopsis do not contain nAChRs. In C. elegans, 
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unc-50 mutants show strong resistance to levamisole, and moderate 

uncoordinated locomotion (Eimer et al., 2007). Apart from these, unc-50 mutants 

appear superficially healthy. The lack of a strong phenotype may be caused by 

redundancy. As a back-up mechanism, redundancy of protein functions has been 

reported in many cellular processes (Baugh and Hunter, 2006; Lode et al., 2002; 

Naor et al., 2005). Since intracellular trafficking is a highly complex system 

involving many factors, proteins that exert redundant functions with UNC-50 may 

exist. This could explain why unc-50 mutants do not have strong phenotypes 

besides the levamisole receptor trafficking defects. Identification of these 

functional redundant proteins will help us understand the functions of UNC-50.  

 

An effective way of analyzing redundant protein pathways in C. elegans is to look 

for genetic interactions by performing synthetic lethality analysis. This is based 

on the assumption that if two proteins have redundant functions, loss of any one 

will not cause severe phenotypes because the system can bypass it, while 

simultaneous inactivation of both will lead to lethality (Figure 12). We constructed 

strains carrying a homozygous unc-50(x47) mutation and a heterozygous 

mutation of genes that are to be tested.  25% of the progenies of these stains will 

be homozygous double mutants of unc-50 and the tested gene. If the double 

mutants show lethality, unc-50 and the tested gene should have redundant 

functions (Figure 13). 
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A B C 

 

Figure 12. Schematic diagram of synthetic lethality principle 

(A) Suppose there are two parallel linear molecular pathways: pathway A in which unc-50 is 

involved, and pathway B in which synthetic mutant (sym) is involved. When unc-50 is deleted, 

pathway A is blocked. But the system can still survive by taking pathway B. 

(B) When sym is deleted, pathway B is blocked. The system can still survive by taking pathway A. 

(C) When both pathways are inactivated, the system is not  able to survive. 

 

Figure 13. Synthetic lethality analysis in C. elegans 

A strain with a homozygous deletion mutation at the endogenous unc-50(x47) loci and a 

heterozygous deletion mutation at synthetic mutant (sym) loci was constructed. This strain 

segregates three types of progenies: mutants with only homozygous unc-50(x47) mutation (25% 

of the progeny), mutants with homozygous unc-50(x47) mutation and heterozygous sym mutation 

(50%), mutants with homozygous unc-50(x47) and sym mutations (25%). The first two types do 

not show additional phenotype compared to unc-50(x47) single mutant, while unc-50(x47);sym 

double mutant show lethality. 
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4.1.3 unc-50 does not genetically interact with factors involved 

in anterograde trafficking at the Golgi-endosomal interface 

UNC-50 has been localized to the Golgi-endosomal interface. Therefore, we 

chose candidate genes that encode trafficking factors involved in transport 

between Golgi and endosomes. Firstly, we tested trafficking factors that have 

been shown to be mainly involved in anterograde transport and endocytosis. 

However, none of them showed synthetic lethality with unc-50 mutation (table 5), 

suggesting that UNC-50 and these proteins have little functional overlap or the 

overlapping functions are not essential for survival or embryonic development. 

Functions of the anterograde transport factors and endocytic factors tested in this 

study are briefly summarized in the following pages.  

 

The best characterized families of transport vesicles are the clathrin coated 

vesicles, which are important for both endocytosis and intracellular trafficking. A 

typical clathrin coated transport vesicle contains three layers: an inner membrane 

and cargo layer, an outer layer of clathrin scaffold, and an intermediary layer 

containing adaptor proteins that link the clathrin scaffold to the cargo proteins 

and inner membrane. Thus, the adaptor proteins are required for maintaining the 

basic structures of coated vesicles. 
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Table 5. Genetic interactions between unc-50 and factors involved in anterograde 

trafficking and endocytosis  

Mutation                       Gene identity                                                           synthetic phenotype  

                                               Adaptor proteins 

unc-101(sy108)             μ1 subunit of adaptor protein complex 1 (AP-1)        normal growth 

dpy-23(e840)                 μ2 subunit of adaptor protein complex 2 (AP-2)        normal growth 

apb-3(ok429)                 β3 subunit of adaptor protein complex 3 (AP-3)        normal growth 

apt-9(tm3776)               GGA protein                                                                normal growth 

dab-1(gk291)                 DISABLED                                                                  normal growth 

                                               SNARE protein 

syn-13(tm2037)             Syntaxin-13                                                                normal growth 

                                               Small GTPases 

arl-3(tm1703)                 ADP-ribosylation factor(ARF)-like protein                  normal growth 

                                               Novel domain containing trafficking factors 

rme-1(b1045)                EHD  protein required for endocytosis                       normal growth 

rme-8(b1023)                 J-domain protein required for endocytosis                normal growth 

                                               Motor protein 

klp-4(tm2114)                kinesin-like motor protein                                           normal growth 

 

UNC-101, DPY-23, and APB-3 are subunits of heterotetrameric adaptor protein 

complexes (APs). unc-101 encodes the μ1 subunit of AP-1. In C. elegans, UNC-

101 has been shown to be critical for transporting odorant receptors to the 

sensory cilia and for postsynaptic localization of glutamate receptor GLR-1, α7-

type nicotinic nAChR ACR-16, and the receptor tyrosine kinase CAM-1/ROR in 

the interneuron RIA (Dwyer et al., 2001; Margeta et al., 2009). DPY-23 is the μ2 

subunit of AP-2. AP-2 is the principal non-clathrin component of purified 
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endocytic clathrin coated vesicles. AP-2 is the only adaptor complex involved in 

endocytosis at the plasma membrane. AP-2 binds to different cargo recognizing 

motifs in cargo proteins, achieving a differential sorting function (Traub, 2009). 

dpy-23 mutant displays a mislocalization of clathrin at the synapses, reduced 

synaptic vesicle numbers and impaired evoked responses (Gu et al., 2008). apb-

3 encodes the β3 subunit of AP-3, which is required for sorting transmembrane 

cargo to the late endosomal or lysosomal compartments (Owen et al., 2004). 

 

APT-9 is a C. elegans ortholog of GGA (Golgi-localized, gamma ear-containing, 

ADP ribosylation factor-binding proteins) proteins. The GGAs localize at the TGN 

and facilitate recruitment of clathrin in an ARF-GTP dependent manner 

(Robinson, 2004). GGAs are required for sorting of mannose 6-phosphate 

receptors and sortilin from the TGN to the endosomes (Nielsen et al., 2001; 

Puertollano et al., 2001a; Puertollano et al., 2001b; Takatsu et al., 2001; 

Zhdankina et al., 2001). 

 

DAB-1 is the only C. elegans homologue of Disabled proteins, which belong to a 

conserved family of monomeric adaptor proteins involved in endocytosis of 

lipoprotein receptors. DAB-1 localization in oocytes depends on clathrin and AP-

2, while dab-1 mutant is synthetic lethal with mutants in genes of the other two 

adaptors: unc-101 and apb-3 (Holmes et al., 2007). 
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Syntaxin-13 is an endosome localized SNARE protein, which is involved in 

homotypic fusion of early endosomes by interacting with calmodulin (Antonin et 

al., 2002; McBride et al., 1999; Mills et al., 2001). Syntaxin-13 is also required for 

interaction of endosomes and/or lysosomes with the phagosome (Collins et al., 

2002).  

 

arl-3 encodes an ARF (ADP-ribosylation factor)-like small GTPase that has been 

shown to be expressed in ciliated neurons in C. elegans (Blacque et al., 2005; Li 

et al., 2004). Yeast and human ARL-3 is required for the TGN localization of 

another ARF-like small GTPase, ARL-1, which recruits several GRIP domain 

containing long coiled-coil tethering factors like the yeast Imh1p,  human Golgin-

245 and Golgin-97 (Lu and Hong, 2003; Panic et al., 2003; Setty et al., 2003). 

 

RME-1 is a conserved Eps-15 homology domain (EHD) containing protein. It was 

shown that RME-1 is involved in endocytic recycling to the plasma membrane 

(Grant et al., 2001). In C. elegans, mutation in rme-1 impairs recycling of yolk 

protein receptors, thus causing a severe defect of yolk protein uptake by oocytes 

(Grant et al., 2001). 

 

rme-8 encodes an endosome localized DnaJ domain protein (Zhang et al., 2001). 

RME-8 interacts with clathrin uncoating ATPase Hsc70 and the retromer subunit 

SNX-1 (Chang et al., 2004; Popoff et al., 2009; Shi et al., 2009). RME-8 is 

suggested to play a role in retrograde transport through endosomes. rme-8 
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mutant displays multiple defects, including strong endocytic defects in oocytes 

and coelomocytes, missorting of MIG-14/Wntless to the lysosomes and clathrin 

accumulation on endosomes (Shi et al., 2009; Zhang et al., 2001). 

 

KLP-4 encodes a kinesin-like motor protein that belongs to the kinesin 

superfamily (KIFs). Its mammalian homologue KIF13A transports mannose-6-

phosphate receptor (M6PR) containing vesicles and targets the M6PR from TGN 

to the plasma membrane via direct interaction with the AP-1 adaptor complex 

(Nakagawa et al., 2000). Interaction between AP-1 and KIF13A is also essential 

for delivering melanogenic enzymes from recycling endosomes to nascent 

melanosomes and for organelle biogenesis (Delevoye et al., 2009). 

 

4.1.4 unc-50 specifically interacts with genes involved in 

retrograde trafficking at the Golgi-endosomal interface 

We reasoned that UNC-50 is probably not involved in anterograde transport or 

endocytosis, because mutations in genes required for anterograde transport or 

endocytosis are not lethal in combination with unc-50 mutation. In contrast, when 

we tested genes encoding proteins involved in retrograde transport from 

endosome to Golgi, six candidates showed synthetic lethality with unc-50 

mutation (table 6) (Figure 15).  
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I constructed a strain containing a homozygous unc-50(x47) mutation and a 

heterozygous vps-52(ok853) mutation. Around 26% of its eggs showed 

embryonic lethality or arrest as young larvae and finally died after a few days. 

These eggs were identified as the homozygous unc-50(x47);vps-52(ok853) 

double mutants, which was confirmed by PCR. Although individual escapers 

could be observed, they produce no or few progeny and the whole population die 

in the end. 

Table 6. Genetic interactions between unc-50 and retrograde trafficking factors 

Mutation                              Gene identity                                      synthetic phenotype 

                                                                 Tethering complex 

vps-52(ok853)                        Subunit of GARP complex                  lethal 

vps-54(ok1463)                      Subunit of GARP complex                  lethal 

vps-51(tm4275)                      Subunit of GARP complex                  normal growth 

cogc-1(k179)                          Subunit of COG complex                    lethal 

cogc-3(k181)                          Subunit of COG complex                    lethal  

                                                                 Vesicle coat protein 

vps-35(hu68)                          Subunit of retromer complex              lethal 

snx-1(tm847)                          Subunit of retromer complex              slow growth 

Small GTPase 

rab-6.2(ok2254)                     Rab GTPase                                       lethal 

                                               SNARE protein 

syn-16(tm1560)                     Syntaxin-16                                         normal growth 

Adaptor proteins 

rsd-3(pk2010)                        EpsinR                                                normal growth 

rsd-3(pk2013)                        EpsinR                                                normal growth 
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Synthetic lethality is also observed in unc-50(x47);vps-54(ok1463) double mutant. 

This indicates that survival of animals requires the functions of both proteins. 

Single mutants of unc-50, vps-52 or vps-54 are superficially wild type, although 

they produce less progeny than wild type (wild type: 290±7; unc-50(x47): 244±7; 

vps-52(ok853): 108±7; vps-54(ok1463): 57±5; data represent average ± s.e.m). 

By co-expressing mRFP fused UNC-50 and mYFP fused VPS-52 in the body 

wall muscles, we can observe overlapping localization of these two proteins 

(Figure 14). Based on these facts, we conclude that UNC-50 and VPS-52 or 

VPS-54 may have redundant cellular functions. VPS-52 and VPS-54 are subunits 

of the GARP (Golgi associated retrograde protein) complex. In yeast, the GARP 

complex consists of four subunits, Vps51p, Vps52, Vps53, and Vps54p. The 

GARP complex belongs to a conserved family of quatrefoil tethering complexes 

including the exocyst and the conserved oligomeric Golgi (COG) complex, which 

are composed of multimers of fourfold-symmetric components. Tethering 

complexes help to make the match by tethering transport vesicles to the acceptor 

membrane, and also confer specificity for the fusion process by bringing the 

SNARE proteins in close proximity, thus allowing efficient SNARE pairing. The 

GARP complex is an effector of the Rab GTPase Ypt6p and the Arf like GTPase 

Arl1, and thought to function mainly in retrograde transport from endosome to 

Golgi (Conibear et al., 2003; Liewen et al., 2005; Panic et al., 2003; Siniossoglou 

and Pelham, 2001; Siniossoglou and Pelham, 2002). A double mutant of unc-

50(x47); vps-51(tm4275) is viable, suggesting that VPS-51 might be an auxiliary 

subunit of the C. elegans GARP complex. This is consistent with the fact that 
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yeast vps51 mutants show weaker growth defects than the other complex 

components, and the core complex is still correctly assembled and localized in 

the absence of Vps51p (Conibear et al., 2003; Siniossoglou and Pelham, 2002).  

 

 

 

mRFP::UNC‐50 

 

 

 

VPS‐52::mYFP 

 

 

Merged 

Figure 14. UNC-50 and VPS-52 show partial colocalization in body wall muscles 

Confocal images showing a partial overlap of mRFP tagged UNC-50 and mYFP tagged VPS-52 

in the body wall muscle. Scale bar, 5μm. 

 

Mutations in subunits of COG complex COGC-1 and COGC-3 are also lethal if 

combined with unc-50 mutation. COG complex shares structural and functional 

similarity with the GARP complex. It contains two subcomplexes, with 4 subunits 

in each (Loh and Hong, 2004; Ungar et al., 2002). Although it also tethers 

vesicles from the endosomes to the TGN, COG complex is proposed to act at 

multiple retrograde transport steps within the Golgi as well as from post-Golgi 

compartments to the Golgi and possibly for ER to Golgi transport (Bruinsma et al., 

2004; Oka et al., 2004; Shestakova et al., 2007; Zolov and Lupashin, 2005). In C. 

elegans, cogc-1(k179) and cogc-3(k181) mutants show gonad migration defects, 
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which are caused by mislocalization of a Golgi nucleoside diphosphatase 

(NDPase) MIG-23, leading to underglycosylation of a secreted guiding cue, MIG-

17 (Kubota et al., 2006). 

 

Another mutation that is synthetically lethal with unc-50 is vps-35. VPS-35 is the 

core subunit of the retromer complex, which plays essential roles in recycling 

cargo protein receptors from endosome back to TGN (Arighi et al., 2004; 

Coudreuse et al., 2006; Seaman, 2004; Seaman et al., 1997; Seaman et al., 

1998; Verges et al., 2004). VPS-35 is required for recruiting cargo proteins into a 

specialized retrograde transport domain on the endosomal membrane. VPS-35 

directly binds to vacuolar hydrolase receptor Vps10p and mannose-6-phosphate 

receptor to mediate their recycling from endosome to TGN, which is essential for 

anterograde transport of acidic hydrolase or its precursors to the late endosomes 

and lysosomes. SNX-1 is an associated subunit of retromer complex. SNX-1 

contains a membrane curvature sensing BAR domain and a phox (PX) domain, 

which is important for the recruitment of retromer complex to the transport 

vesicles (Carlton et al., 2004). unc-50(x47); snx-1(tm847) double mutant is viable 

but displays mild growth impairment as compared to the single mutants. This is 

probably due to the redundancy of the SNX family, in which several SNXs seems 

to be inter-exchangeable (Rojas et al., 2007; Schwarz et al., 2002). 

 

The last gene that shows synthetic lethality with unc-50 is rab-6.2, encoding a 

TGN-localized small GTPase. Small GTPases are molecular switches that 
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shuttle between a GTP bound active form and a GDP bound inactive form. RAB-

6.1 and RAB-6.2 are two isoforms of RAB-6 in C. elegans. Only the rab-6.2 

mutant was used here because the rab-6.1 mutant is lethal. RAB-6 has essential 

roles in multiple Golgi trafficking pathways, particularly intra-Golgi and endosome 

to Golgi retrograde transport. In yeast, the RAB-6 homologue Ypt6p recruits the 

GARP complex to the TGN and regulates the COG complex function 

(Siniossoglou and Pelham, 2001; Sun et al., 2007). RAB-6 also shows strong 

interactions with long coiled-coil tethering factors like Imh1p in yeast and 

GCC185 in mammals (Barr, 1999; Li and Warner, 1996; Tsukada and Gallwitz, 

1996). 

 

Figure 15. unc-50 mutation is synthetic lethal with mutations in trafficking factors involved 

in retrograde transport from endosome to Golgi 

 

Syntaxin-16 is a TGN localized SNARE. It is required for efficient retrograde 

transport of MPRs from endosome to TGN (Amessou et al., 2007; Ganley et al., 

2008; Medigeshi and Schu, 2003). unc-50(x47);syn-16(tm1506) show normal 
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growth like the single mutants. Even a triple mutant unc-50(x47);syn-

13(tm2037);syn-16(tm1506) is also viable. This may result from the large 

redundancy of SNAREs in the TGN-endosome interface. 

 

rsd-3 encodes the epsin-related protein (epsinR). epsinR is a monomeric adaptor 

protein that directly associates with clathrin and AP-1 at the TGN (Kalthoff et al., 

2002). Although hosting anterograde transport at the TGN, epsinR also mediates 

recycling of mannose 6-phosphate receptor and SNARE Vti1b from late 

endosomes and lysosomes to TGN or early endosomes (Chidambaram et al., 

2004; Hirst et al., 2004; Miller et al., 2007). However, unc-50(x47);rsd-3(pk2010) 

and unc-50(x47);rsd-3(pk2010) double mutants are viable like the single mutants. 

 

In summary, we found that unc-50 mutation shows specific synthetic lethality with 

mutations in genes encoding trafficking factors involved in retrograde transport 

from endosome to Golgi (Figure 15). Simultaneously interrupting the functions of 

UNC-50 and factors involved in anterograde transport or endocytosis did not 

result in a lethality phenotype. This suggests that UNC-50 might also be 

specifically required for retrograde transport from endosome to the Golgi. 

4.1.5 Discussion 

Based on the data from yeast, C. elegans and humans, we propose our model 

for UNC-50 function (Figure 16). There are two parallel or functionally redundant 

pathways at the TGN. One pathway is obligated for tethering vesicles from the 
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endosomes to the TGN. ARL3 binds to the integral membrane protein SYS1 on 

the surface of the TGN (Behnia et al., 2004; Setty et al., 2004). ARL3 recruits 

ARL1 to the TGN. Binding of the IMH1 GRIP domain to ARL1 brings this long 

coiled-coil tethering protein to the TGN (Panic et al., 2003). ARL1 also binds to 

the multiple subunit tethering complex GARP (Panic et al., 2003), which interacts 

with the TLG1 SNARE (Siniossoglou and Pelham, 2001). GARP localization to 

the TGN is primarily dependent on active GTP bound RAB-6 (Siniossoglou and 

Pelham, 2001). In the other pathway, UNC-50 is interacting with ARF-GEFs 

Gea1p and Gea2p (Chantalat et al., 2003), thus regulating membrane trafficking 

mediated by COPI vesicles and clathrin coated vesicles. UNC-50 might be 

involved in multiple transport events including protein sorting at the TGN and 

retrograde transport from endosome to the Golgi. It has been shown that UNC-50 

is critical for levamisole receptor sorting after the receptor assembly (Eimer et al., 

2007). Thus, the missorting of levamisole receptors in unc-50 mutants occurs 

most likely at the TGN. 
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Figure 16. Model of UNC-50 action 

Two parallel or functional redundant pathways exist at the TGN. UNC-50 is interacting with ARF-

GEFs Gea1p and Gea2p, and regulating membrane trafficking mediated by COPI vesicles and 

clathrin coated vesicles. The other pathway is responsible for tethering endosomal vesicles to the 

TGN. ARL3 binds to the integral membrane protein SYS1 on the surface of the TGN. ARL3 

recruits ARL1 to the TGN. Binding of the IMH1 GRIP domain to ARL1 brings this long coiled-coil 

tethering protein to the TGN. ARL1 also binds to a second vesicle tethering complex GARP, 

which interacts with the TLG1 SNARE. GARP primarily requires RAB-6(GTP) for localization to 

the TGN.  

 

So far it is unclear how UNC-50 contributes to the correct sorting of levamisole 

receptors. It is possible that UNC-50 may stabilize levamisole receptor subunits 

by direct physical association with them. However, it appears that this is not likely 

to be true. A recent tandem affinity purification of the levamisole-sensitive nAChR 

from C. elegans was performed and a large-scale mass spectrometry of co-

purified components revealed several novel regulators of levamisole receptors. 
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These include the calcineurin A subunit TAX-6, the copine NRA-1 and SOC-1, 

which acts in receptor tyrosine kinase (RTK) signaling (Gottschalk et al., 2005). 

However, UNC-50 was not found in this assay, indicating that UNC-50 may not 

interact with levamisole receptor subunits or if so then through a third player.  

 

Recently, it has been shown that UNC-50 is also required for cell surface 

transport of ACR-2 containing nAChR, which is expressed in C. elegans 

cholinergic motor neurons. A gain of function mutant of acr-2 displays 

hyperactivity of ACR-2 nAChR, thus causing muscle convulsions. This defect is 

suppressed by unc-50 mutations as well as mutations in other subunits 

comprising ACR-2 receptor, like UNC-38 and UNC-63 (Jospin et al., 2009). 

Interestingly, UNC-38 and UNC-63 are also subunits of levamisole receptors 

(Culetto et al., 2004). Thus, levamisole receptor and ACR-2 receptor share 

subunits and both require UNC-50 for cell surface trafficking. It is possible that 

UNC-50 mediates levamisole receptor and ACR-2 receptor trafficking by 

interacting with the two common subunits UNC-38 and UNC-63. 

 

Assembly and oligomerization of nAChRs occur within the ER in a sequential and 

ordered manner (Green and Millar, 1995; Smith et al., 1987). Several ER-

resident chaperones are facilitating this process: non-specific chaperones like 

BIP and calnexin, as well as the nAChR specific chaperone RIC-3 (Forsayeth et 

al., 1992; Gelman et al., 1995; Halevi et al., 2002). The C. elegans Bip/Hsp70 

homologues HSP-1, HSP-3, and HSP-4 were also found associated with 
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unassembled UNC-29 or LEV-1 subunits in a tandem affinity purification of these 

tagged subunits. The ER chaperones mostly dissociate from the subunits once 

the receptors are assembled (Gottschalk et al., 2005). 

 

After pentameric assembly in the ER, the levamisole receptors are normally 

transported to the Golgi for modification and sorting, although it is possible that 

the receptors are directly delivered to the plasma membrane. In the Golgi, 

levamisole receptors may undergo posttranslational modification, like 

glycosylation and phosphorylation (Baker and Peng, 1993; Dellisanti et al., 2007; 

Hopfield et al., 1988; Huganir et al., 1986; Huganir et al., 1984; Kreienkamp et al., 

1994; Peng et al., 1993; Poulter et al., 1989; Ramanathan and Hall, 1999; 

Wallace, 1994), which needs the action of different enzymes. If UNC-50 is 

required for maintaining the localization of these enzymes in the Golgi, then 

depletion of UNC-50 will cause defective modification and mislocalization of 

levamisole receptors.  

 

Afterwards, levamisole receptors are transported to the TGN, where they are 

recruited by certain cargo carriers and concentrated in specialized vesicles that 

target the plasma membrane. In yeast, the UNC-50 homologue Gmh1p interacts 

with two ARF GEFs Gea1p and Gea2p. Gmh1p is localized to the early Golgi 

and functions at the ER-Golgi interface (Chantalat et al., 2003). However, in C. 

elegans, UNC-50 localizes to the Golgi, TGN and endosomes (Figure 11), thus it 

is more likely to act at the medial Golgi and Golgi-endosomal interface. It is 
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possible that UNC-50 is required for recruiting ARF-GEFs to a specialized 

microdomain of the Golgi or TGN, which separates some factors away. 

Otherwise, the levamisole receptors would be transported to the lysosomal 

pathways, as default setting. If UNC-50 is indispensable for sorting these 

degradative factors away, then the loss of UNC-50 will lead to missorting of 

levamisole receptors to the lysosomal systems.  

 

In our study, we found that UNC-50 plays redundant roles with GARP complex, 

retromer complex and COG complex in retrograde transport from endosome to 

Golgi. Based on studies about how these trafficking factors recycle cargo protein 

receptors from endosome back to Golgi, a similar mechanism for UNC-50 can be 

proposed. The default degradative factors may not be inhibited directly by UNC-

50. Signaling molecules from the synapses may also be involved. If more 

levamisole receptors are required at the postsynaptic membrane, the signaling 

molecules are released from the synapses by endocytosis, enter the early 

endosomes and are transported back to the TGN or Golgi with the assistance of 

UNC-50. Once they reach TGN or Golgi, they inhibit the degradative factors of 

levamisole receptors. Thus more levamisole receptors can be incorporated into 

the synapses. One reasonable way to find out UNC-50 downstream effectors that 

regulate levamisole receptor sorting is to perform a genetic screen for mutations 

that suppress the levamisole resistance phenotype in unc-50 mutants.
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Part II                              

UNC-50 controls distal tip cell migration by     

regulating secretion of MIG-17 
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The synthetic lethality analysis suggests that UNC-50 is involved in an 

evolutionarily conserved membrane transport pathway regulating Golgi retrieval 

at the Golgi-endosomal interface. We reasoned that if UNC-50 would be involved 

in a general transport pathway, there should be additional substrates that might 

be affected by loss of UNC-50 activity. Therefore, we re-examined unc-50 mutant 

animals to detect additional phenotypes. 

4.2.1 unc-50 mutants display gonad morphology defects 

By careful examination under a dissecting microscope and differential 

interference contrast (DIC) microscope, we found that unc-50 mutants show an 

abnormal morphology of the posterior gonad (Figure 18). C. elegans adult 

hermaphrodites have two symmetrical U-shaped gonad arms, whose morphology 

is determined by the migration path of the leading cells located at the distal end 

of the elongating gonad. These cells are referred as distal tip cells (DTCs) 

(Figure 17) (Hedgecock et al., 1987; Kimble, 1981). The elongation of the gonads 

initiate at the vulva region on the ventral side of the body. Three phases can be 

defined over the whole gonad elongation process: phase 1, initial migration along 

the ventral body wall muscle; phase 2, migration from ventral to dorsal side of the 

body by crossing the midline; phase 3, migration along the dorsal body wall 

muscle in an opposite direction to phase 1 (Hedgecock et al., 1987; Su et al., 

2000). We observed that in a population of unc-50(x47) mutant worms, 63.9% of 

animals do not show a U-like shape posterior gonad. Instead, the gonad arm 

which is supposed to be positioned on the dorsal side shows large overlap with 
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the gonad arm on the ventral side (Figure 18). Thus, in unc-50 mutants the DTCs 

do not cross the midline to the dorsal side but instead migrate back on the ventral 

side.  

 

A 

 

B 

 

Figure 17. Schematic diagrams of gonad morphology in the wild type hermaphrodite and 

phases of DTC migration (adapted from Kubota et al., 2006) 

(A) Ventral and dorsal body wall muscles are shown in blue. Gonad arms (yellow) are surrounded 

by basement membranes (green). The uncolored part corresponds to the lateral hypodermis. Two 

DTCs (red) are generated at the anterior and posterior ends of the gonad arms, located at the 

ventral mid-body, and migrate in a U-shaped pattern during gonad development. A: anterior, P: 

posterior, D: dorsal, V: ventral. 

(B) DTC migration comprises three phases: the initial migration on the ventral body wall muscle 

(phase 1), the ventral-to-dorsal migration along the lateral hypodermis (phase 2) and the 

migration along the dorsal body wall muscle (phase 3) (Hedgecock et al., 1987; Su et al., 2000). 

 

Interestingly, we found that the DTC migration defect in unc-50 mutants highly 

resembles the phenotype in mig-17(k174) mutant, in which 39.8% of the worms 
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show this defect (Figure 18, 19). mig-17 encodes an ADAM (A Disintegrin And 

Metalloprotease) family protein. MIG-17 is secreted from the body wall muscles 

and controls the DTC migration by localizing to the gonadal basement membrane. 
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Figure 18. unc-50(x47) mutant phenocopies mig-17(k174) mutant in DTC migration defect 

Normal gonad in wild type animals shows a U-like shape, with two arms attached to ventral and 

dorsal side of the body wall muscles. In unc-50(x47) mutant, one gonad arm is attached to the 

ventral body wall muscle and the other arm places at the middle line of the body or also attaches 

to the ventral body wall muscle. This phenotype is similar in mig-17(k174) mutant and caused by 

a mis-migration of the DTCs. Pictures were taken under a DIC microscope. 
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4.2.2 UNC-50 is required in body wall muscle for normal DTC migration 

 

Since UNC-50 has been shown to be ubiquitously expressed (Eimer et al., 2007), 

we wanted to determine the tissue in which UNC-50 activity is required for proper 

DTC migration. It is possible that losing UNC-50 in the DTC will cause an 

abnormal migration path. In order to verify this idea, we tried to rescue the DTC 

migration defects in unc-50(x47) mutant by expressing UNC-50 under a DTC 

specific promoter Plag2. However, we did not see a significant reduction in the 

percentage of defects (60.5%, Figure 19). Considering the fact that UNC-50 has 

an important function in body wall muscles to regulate levamisole receptor 

trafficking (Eimer et al., 2007), we expressed UNC-50 under the control of a body 

wall muscle specific promoter Pmyo3 in unc-50(x47) mutant. As shown in Figure 

19, expression of UNC-50 exclusively in body wall muscles is sufficient to rescue 

DTC migration defects in unc-50(x47) mutant. These results suggest that UNC-

50 dependent signals from the body wall muscles have important roles in 

regulating DTC migration. Since UNC-50 is involved in Golgi transport, this might 

be a membrane protein or secreted factor from body wall muscles. 
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Figure 19. Muscle expression of UNC-50 rescues DTC migration defect in unc-50(x47) 

mutant 

41.3% of the mig-17(k174) mutant worms show DTC migration defect. 63.4% of unc-50(x35), 

61.6% of unc-50 (ok1847), and 64.2% of the unc-50(x47) mutant worms show DTC migration 

defect. Expression of UNC-50 in the body wall muscles reduces the DTC defect in unc-50(x47) 

mutant to 11.9%. However, expression of UNC-50 in DTCs of unc-50(x47) mutant does not 

rescue this phenotype, since they show DTC defect in 61.4% of the transgenic worms. (Three 

independent experiments were performed on each strain. Total number of animals analyzed is 

indicated in the graph bars. Error bars represent standard deviation. ***=p<0.005, ns=not 

significant, by student’s T-test.) 

 

4.2.3 UNC-50 and MIG-17 act in the same pathway to control DTC 

migration 

It was shown that expression of MIG-17 in the body wall muscles or ectopically in 

DTCs rescues the DTC migration phenotype in mig-17(k174) mutant (Nishiwaki 

et al., 2000). In unc-50 mutants and mig-17(k174) mutant, phenotypes are similar, 
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and both result from an impaired signaling from the body wall muscle. Since 

MIG-17 is a secreted factor, we reasoned that UNC-50 may regulate the 

secretion of MIG-17 from body wall muscles. 

 

To analyze this further, we looked at genes that have been shown to interact with 

mig-17. It was shown that dominant mutations in the fbl-1 gene bypass the 

requirement for MIG-17 activity in directing DTC migration. fbl-1 encodes a 

protein which is highly homologous to the human fibulin-1 spliced isoforms 

(Kubota et al., 2004). Fibulins belong to a family of extracellular matrix proteins. 

Fibulins are able to bind to calcium and associate with basement membranes, 

blood plasma and elastic extracellular matrix fibers (Timpl et al., 2003). In C. 

elegans, FBL-1 is synthesized in the gut cells and localized to the gonadal 

basement membrane in a MIG-17 dependent way. Two single amino acid 

substitution mutants k201 (glycine-249-glutamate), and k206 (histidine-251-

tyrosine) were isolated and mapped to the third calcium binding EGF-like motif 

region of the FBL-1C isoform. Both fbl-1(k201);mig-17(k174) and fbl-1(k206); 

mig-17(k174) show normal gonad morphology (Kubota et al., 2004). 

 

If UNC-50 is required for MIG-17 secretion, then the fbl-1 suppressor mutations 

should suppress the DTC migration defects in unc-50 mutants. So we 

constructed double mutants unc-50(x47); fbl-1(k201) and unc-50(x47); fbl-

1(k206). Strikingly, the two fbl-1 point mutations show significant rescue of DTC 

migration defects in unc-50(x47) mutant. Other alleles of unc-50 mutant are also 
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suppressed by the fbl-1 point mutants (Figure 20). Further more, we made a 

double mutant of unc-50(x47); mig-17(k174) and found that the percentage of 

worms showing DTC migration defect in the double mutant is not different from 

that in the unc-50(x47) single mutant (Figure 21). These data suggest that UNC-

50 and MIG-17 are acting in the same genetic pathway to regulate DTC 

migration. Thus, it is likely that UNC-50 directly regulate MIG-17 secretion or 

processing.  
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Figure 20. Point mutations in fbl-1 suppress DTC migration defect in mig-17 and unc-50 

mutants 

When combined with point mutation fbl-1(k201) or fbl-1(k206), mig-17(k174) and unc-50 mutants 

show much less DTC migration defect than the single mutants. (Three independent experiments 

were performed on each strain. Total number of animals analyzed is indicated in the graph bars. 

Error bars represent standard deviation. ***=p<0.005 , by student’s T-test.) 
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Figure 21. mig-17 and unc-50  act in the same genetic pathway to control DTC migration 

Double mutant of unc-50(x47);mig-17(k174) shows similar percentage of DTC defect 

(59.1%±6.4%) as unc-50(x47) single mutant (64.2%±0.3%). (Three independent experiments 

were performed on each strain. Total number of animals analyzed is indicated in the graph bars. 

Error bars represent standard deviation. ns=not significant, by student’s T-test.) 

4.2.4 Overexpressed and secreted MIG-17::Venus can be 

localized and processed normally in unc-50 mutants 

Recently, it was shown that MIG-17 contains several functional domains. MIG-17 

is secreted from the muscle cells as a proform with a glycosylated N-terminal 

prodomain. The prodomain plays an essential role in localizing MIG-17 to the 

gonadal basement membrane. Then upon some unknown signals, MIG-17 

 77



 

autocatalytically cleaves off its prodomain to form the mature and active matrix 

metalloprotease. The mature form is anchored to gonadal basement membranes 

and contains a metalloprotease (MP) domain, a disintegrin (DI) domain, and a 

protease and lacunin (PLAC) domain (Figure 22) (Ihara and Nishiwaki, 2007).  

A 
 

 

B 

Mature form 

Proform 

Figure 22. Model of MIG-17 action in gonad development (Adapted from Ihara and 

Nishiwaki, 2007) 

(A) Full length MIG-17 contains a prodomain at the N-terminal, followed by a metalloprotease 

(MP) domain, a disintegrin (DI) domain, and a protease and lacunin (PLAC) domain at the C-

terminal. 

(B) MIG-17 is secreted from the body wall muscle as a proform, which contains a glycosylated 

prodomain. MIG-17 localizes at the gonadal basement membrane by its prodomain. Then the 

prodomain is cleaved by auto-catalyzed activation. The rest part of MIG-17 becomes the mature 

form and controls the DTC migration. 
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In order to determine the localization and processing of MIG-17 in unc-50 

mutants, we overexpressed MIG-17::Venus under its own promoter in wild type 

and unc-50(x47) mutant worms. As shown in Figure 24A, MIG-17::Venus 

concentrates on the basement membrane of the U-shaper gonad in wild type. 

This localization appears unchanged in unc-50(x47) mutant (Figure 24A). We 

further examined the MIG-17::Venus localization by immunostaining worm cross 

sections with an anti-GFP antibody which also detects Venus-YFP. In both wild 

type and unc-50(x47) mutant, clustered MIG-17::Venus can be detected on the 

gonadal surface (Figure 24B). Then we made crude extracts from these 

transgenic worms, and performed western blotting with anti-GFP antibody. Two 

bands can be observed on the membrane: a 100kD band representing the 

proform of MIG-17::Venus and a 70kD band representing the mature form. The 

two bands were seen for both wild type and unc-50(x47) mutants. This indicates 

that overexpressed MIG-17 can be secreted and processed to its mature form in 

unc-50 mutants. Thus, UNC-50 is not required for MIG-17 processing nor for the 

correct localization of the active metalloprotease to the basement membrane. 

Since MIG-17::Venus is overexpressed, this may mask the possible MIG-17 

sorting defects by oversaturating the secretory system, thus forcing the secretion 

of MIG-17 in unc-50 mutants. 
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Figure 23. MIG-17-Venus expression 

is normal in unc-50(x47) mutants 

 

Transgenic worms that express MIG-

17-Venus were constructed on the 

background of wild type and unc-

50(x47) mutant. Western blot was 

performed on crude extracts of these 

two strains, with detection by anti-GFP 

antibody. For both strains, we can 

detect a band of about 100kD, which 

represents the proform, and a band of 

around 70kD, representing the mature 

form of MIG-17-Venus.     
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Figure 24. MIG-17::Venus localization is not impaired in unc-50(x47) mutants 

(A) Confocal images of wild type and unc-50(x47) worms expressing MIG-17::Venus. MIG-

17::Venus can be detected on gonadal basement membrane in both wild type and unc-50(x47). 

(B) Immunostaining of cross sections of wild type and unc-50(x47) worms expressing MIG-

17::Venus. Nuclei in the gonad are labeled with DAPI. Body wall muscles are marked with 

phalloidin bound actin. MIG-17::Venus is detected with anti-GFP antibody. MIG-17::Venus 

punctuate structures are concentrated on the surface of gonad in both wild type and unc-50(x47).  
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4.2.5 Overexpression of MIG-17::Venus rescues DTC migration defect  in 

unc-50 mutants in a dose dependent manner 

 

An interesting phenomenon we found was that in unc-50(x47) mutant worms that 

overexpress MIG-17::Venus, the DTC migration defect was largely rescued 

(Figure 25). To test whether just the overexpression of a secreted protein within 

the secretory system of unc-50 mutant may unspecifically allow MIG-17 secretion, 

we overexpressed an unrelated protein, secreted GFP, in body wall muscles of 

unc-50 mutants. However, we did not observe significant reduction in DTC 

migration defects as compared to unc-50 mutants (Figure 25). It was shown that 

very low level expression of MIG-17::GFP is sufficient to rescue the DTC 

migration defect in mig-17(k174) mutant (Ihara and Nishiwaki, 2007). We were 

therefore wondering whether expression of MIG-17::Venus at lower levels would 

be still able to rescue the DTC defects in unc-50 mutants. We generated 

transgenic lines expressing low amount of MIG-17::Venus in mig-17(k174) and 

unc-50(x47);mig-17(k174) mutants. As shown in Figure 26, these low-copy 

arrays rescued the DTC migration defect in mig-17(k174) mutant very well. 

However, in unc-50(x47);mig-17(k174) mutant, no significant rescue could be 

detected. This suggests that in unc-50 mutants, MIG-17 is not efficiently secreted, 

leading to the DTC migration defects. However, UNC-50 is not strictly required 

for MIG-17 secretion, since oversaturating the secretory system with MIG-17 

allows MIG-17 to be secreted. Thus, UNC-50 activity might be necessary for 

efficient secretion of MIG-17. 
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Figure 25. High expression of MIG-17-Venus in the body wall muscles of unc-50(x47) 

mutant rescues the DTC migration defect in unc-50(x47) mutant 

In unc-50(x47) mutant, 64.2%±0.3% of the worms show DTC migration defect. When MIG-17-

Venus is expressed in a high level in unc-50(x47), only 19.8%±8.4% of the worms show DTC 

defect. This rescuing effect is MIG-17::Venus specific, since overexpression of ssGFP in the body 

wall muscles did not rescue the DTC defect in unc-50(x47) mutant (55.7%±5.2%). (Three 

independent experiments were performed on each strain. Total number of animals analyzed is 

indicated in the graph bars. Error bars represent standard deviation. *=p<0.05, ns=not significant, 

by student’s T-test.) 
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Figure 26. Rescue of DTC migration defect in unc-50(x47) mutant by expressing MIG-17-

Venus is a dose-dependent effect 

Plasmids mixture containing low concentration of MIG-17-venus was injected into the gonads of 

mig-17(k174) and unc-50(x47);mig-17(k174) mutant worms to make transgenic lines. Three 

transgenic lines were created for both mig-17(k174) and unc-50(x47);mig-17(k174). This low level 

expression of MIG-17-Venus is sufficient for rescuing the DTC defect in mig-17(k174) mutant: 

from to 41.3%±2.6% to 4.9%±1.4%, 7.4%±0.6%, or 11.1%±1.4%, concerning the rates of defect. 

However, this is not able to rescue the DTC defect in unc-50(x47);mig-17(k174) mutant, since the 

three transgenic lines show defect in 61.1%±2.2%, 55.3%±3.2%, 54.5%±9% of the worms, which 

is not significantly different from 59.1%±6.4% for unc-50(x47);mig-17(k174) itself. (Three 

independent experiments were performed on each strain. Total number of animals analyzed is 

indicated in the graph bars. Error bars represent standard deviation. *=p<0.05, ns= not significant, 

by student’s T-test.) 

 

 84



 

4.2.6 RAB-5 dominant negative form rescues the DTC migration 

defect in unc-50 mutants 

From the synthetic lethality analysis, we got evidence that UNC-50 might be a 

general trafficking factor involved in retrograde transport from endosome to Golgi. 

MIG-17 is a soluble protein that needs to be secreted from the body wall muscles. 

So it is possible that UNC-50 is required to regulate MIG-17 secretion. In unc-

50(x47) mutants, the levamisole receptor subunit UNC-29 is missorted to 

lysosomes and degraded. Genetic blocking of lysosomal pathway makes UNC-

29 reappear in total crude extracts of unc-50(x47) mutant worms, shown by 

western blot (Eimer et al., 2007). In order to test the fate of endogenous MIG-17 

in the secretory pathway of unc-50(x47) mutants, we introduced a dominant 

negative (DN) form of RAB-5 into unc-50 mutant background. This dominant 

negative RAB-5 contains a single amino acid substitution (S34N), rendering it in 

a GDP bound inactive state. Conversion of early endosomes to late endosomes 

involves recruitment of Rab7 GEF VPS39 mediated by active Rab5 (Rink et al., 

2005). Thus, expression of RAB-5 (DN) would interrupt the normal endosomal 

functions and result in a re-routing of MIG-17::Venus in the secretory pathway. 

As shown in Figure 27, transgenic unc-50(x47) mutant worms expressing RAB-5 

(DN) have a much lower percentage of DTC migration defect than the non-

transgenic unc-50(x47) mutant. Dominant active RAB-5, which is predominantly 

GTP bound, failed to rescue the DTC phenotype in unc-50(x47) mutant. These 

data indicate that MIG-17 is probably mis-routed to lysosomes and degraded in 
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unc-50(x47) mutant and by interfering with lysosomal pathway, part of MIG-17 is 

re-routed to be secreted, thus rescuing the DTC migration defect in unc-50 

mutant.  
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Figure 27. Expression of dominant negative form of RAB-5 in body wall muscles rescuing 

the DTC migration defect in unc-50 mutants 

When dominant negative form of RAB-5 is expressed in the body wall muscles of unc-50(x47) 

mutants, percentage of DTC defect decreases from 64.2%±0.3% to 22.4%±5.2%. Expression of 

dominant active form of RAB-5 failed to rescue the DTC phenotype, as the defect rate remains at 

60.4%±4.3%. (Three independent experiments were performed on each strain. Total number of 

animals analyzed is indicated in the graph bars. Error bars represent standard deviation. 

***=p<0.005, ns= not significant, by student’s T-test.) 
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4.2.7 Discussion 

We observed DTC migration defects in unc-50 mutants, which is similar to that 

seen in mig-17 mutants. Defects in both mutants result from impaired signaling 

from the body wall muscles. unc-50 and mig-17 share the same genetic pathway 

to control DTC migration. Overexpression of MIG-17::Venus rescues the DTC 

migration defects in unc-50 mutants. Once overexpressed in unc-50 mutants, 

part of MIG-17::Venus can be secreted from the muscle cells and properly 

localized to the gonadal basement membrane to direct DTC migration like they 

do in wild type worms. However, when expressed at very low level, MIG-

17::Venus failed to rescue the defects in unc-50 mutants although they are 

enough to rescue the phenotype in mig-17(k174) mutant. Since this low level 

expression of MIG-17::Venus is not detectable by microscope, we were not able 

to determine whether they are secreted  and whether they are localized correctly.  

 

MIG-17::Venus is secreted as a proform containing the prodomain, which is 

critical for MIG-17::Venus localization on the membrane. After targeted on the 

gonadal membrane, MIG-17:::Venus became a mature form by autocatalytic 

cleavage of the prodomain (Ihara and Nishiwaki, 2007). Thus on western blotting 

membrane, anti-GFP antibodies can recognize two bands: proform at 100kD and 

mature form at 70kD (Figure 23). We noticed that in wild type worms 

overexpressing MIG-17::Venus, the proform to mature form ratio is much lower 

than that in unc-50 mutant expressing similar level of MIG-17::Venus (1:3 as 

measured in Figure 23). This suggests that higher fraction of MIG-17::Venus stay 
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as proform in unc-50 mutants than in wild type. It is possible that this higher ratio 

of proform represents that more MIG-17::Venus are trapped in the body wall 

muscles in unc-50 mutant.  

 

We also found that interfering with the endosomal pathway by expressing a 

dominant negative form of RAB-5 rescues the DTC phenotype in unc-50 mutants. 

RAB-5 is the key regulator of early endocytic events. Overexpression of RAB-5 

dominant negative form inhibits receptor-mediated and fluid-phase endocytosis 

(Barbieri et al., 2000; Galperin and Sorkin, 2003; Mukhopadhyay et al., 1997; 

Schmidlin et al., 2001; Seachrist et al., 2000; Volpicelli et al., 2001), and 

delocalizes a RAB-5 effector EEA1 (Early Endosome Antigen1) from the early 

endosomes (Christoforidis et al., 1999; Haas et al., 2005; Simonsen et al., 1998). 

There are two possibilities for the rescuing effect of RAB-5 (DN): 1) Secreted 

MIG-17::Venus is constantly endocytosed and recycled by the body wall muscle 

cells, which might be mediated by RAB-5. Suppressing this process by 

expressing RAB-5 DN reduces the amount of recycled MIG-17::Venus.  More 

MIG-17::Venus remains outside the muscle cells and bound to the gonadal 

membrane, thus decreasing the rate of DTC migration defect. 2) EEA1 is an 

important regulator of endosomal functions like endosome docking and fusion 

(Christoforidis et al., 1999; McBride et al., 1999) and it is recruited to the early 

endosomes by GTP bound RAB-5 (Simonsen et al., 1998). Keeping RAB-5 at the 

GDP bound form makes it detach from the early endosomes (Haas et al., 2005) 

and might cause impaired endosomal functions including cargo sorting. Thus 
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MIG-17::Venus that would have been sorted to the lysosomes might be re-routed 

from the degradative pathway under such conditions and get partial recovery. 

 

Through the synthetic lethality analysis, we show that mutants in the COG 

complex subunits cogc-1(k179) and cogc-3(k181) are lethal in combination with 

unc-50(x47). This indicates that UNC-50 and the COG complex have redundant 

or parallel cell functions, which are critical for animal viability. Interestingly, in 

COG complex subunit mutants cogc-1(k179) and cogc-3(k181), the similar DTC 

migration defects observed in mig-17 mutants are also reported. Knockdown of 

any of the other six COG subunits also produces similar defects, suggesting that 

an integrate COG complex is required. However, COG complex seems not 

directly required for secretion of MIG-17 from the body wall muscles, but is 

necessary for the glycosylation and gonadal localization of MIG-17. A membrane 

bound Golgi nucleoside diphosphatase (NDPase) required for proper 

glycosylation and localization of MIG-17, MIG-23, is mislocalized and 

destabilized in cogc-1(k179) and cogc-3(k181) mutants (Kubota et al., 2006; 

Nishiwaki et al., 2004). This raises the possibility that the COG complex is 

required for maintaining the proper localizations of a subset of glycosylation 

enzymes in the Golgi.  

 

COG activity is required for correct MIG-17 glycosylation and thus for its activity. 

However, it appears that UNC-50 regulates MIG-17 function in a different way. In 

cogc-1(k179) and cogc-3(k181) mutants overexpressing MIG-17::Venus, DTC 
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migration defect is not rescued. And secreted MIG-17::Venus can not be 

localized to the gonadal basement membrane properly in the COG mutants. In 

contrast, expression of MIG-17::Venus rescues the DTC migration defect in unc-

50 mutants in a dose dependent manner. Once secreted, MIG-17::Venus is 

correctly localized to the surface of gonadal membrane, independent of UNC-50. 

Thus, the glycosylation of MIG-17::Venus in unc-50 mutant seems to be normal. 

UNC-50 might specifically regulate the secretion of MIG-17. Although UNC-50 

and the COG complex have overlapping functions, they may regulate MIG-17 

dependent DTC migration in different manners. 

 

In summary, our data support the model that UNC-50 is required for the proper 

secretion of MIG-17. It is possible that MIG-17 needs a cargo carrier, which 

recruits MIG-17 into secretory vesicles at the TGN and dissociates from MIG-17 

after the vesicles fuse with the plasma membrane. UNC-50 might be required for 

retrograde transport of MIG-17 secretion carriers from endosomes to TGN. In 

unc-50 mutants, MIG-17 carrier might be missorted to the lysosomes degraded, 

thus causing secretion defect of MIG-17 (Figure 28). 
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Figure 28. Model of UNC-50 regulated MIG-17 secretion 

MIG-17 is transported through Golgi and TGN. At TGN, MIG-17 is recruited into secretory 

vesicles by MIG-17 carriers. Secretory vesicles fuse with the plasma membrane and MIG-17 

carriers release MIG-17 to the extracellular space. Afterwards, MIG-17 carriers are endocytosed 

to early endosomes. They are either sorted to the lysosomes via the late endosome or recycled 

back to the TGN with the assistance of UNC-50. Without UNC-50, most MIG-17 carriers are 

sorted to the lysosomal pathway and degraded. 
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Part III                                 

Characterization of the GARP complex in C. elegans 
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We discovered that UNC-50 and the GARP complex have redundant functions, 

based on the fact that a combination of mutations in unc-50 and one of the 

GARP complex subunit is lethal. GARP complex belongs to a conserved family 

of quatrefoil tethering complexes including the exocyst and the conserved 

oligomeric Golgi (COG) complex, which are composed of multimers of fourfold-

symmetric components. Tethering complexes help to make the match by 

tethering transport vesicles to the acceptor membrane, and also confer specificity 

for the fusion process by bringing the SNARE proteins in close proximity to allow 

efficient SNARE pairing. The GARP complex is an effector of the Rab GTPase 

Ypt6p and the Arf like GTPase Arl1, and thought to function mainly in retrograde 

transport from endosome to Golgi (Conibear et al., 2003; Liewen et al., 2005; 

Panic et al., 2003; Siniossoglou and Pelham, 2001; Siniossoglou and Pelham, 

2002). However, the GARP complex has not been described in C. elegans yet. In 

order to characterize retrograde membrane transport from endosome to Golgi, 

we made the first functional analysis of the GARP complex in C. elegans. 

4.3.1 Identification of the GARP complex in C. elegans and 

cloning of the VPS-51 subunit 

GARP complex function has been previously described in yeast and mammalian 

cell culture. To study the function of the GARP complex in a multicellular 

organism, we identified orthologs of the different subunits in the nematode C. 

elegans (Figure 29). Previously it has been suggested that the mammalian 

GARP complex contains just three subunits (Koumandou et al., 2007; Liewen et 
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al., 2005; Perez-Victoria et al., 2008), unlike yeast. By using the minimal 

conserved protein domain described for the yeast Vps51p we searched the C. 

elegans protein databases by iterated BLAST searches. This search revealed a 

match for the uncharacterized ORF B0414.8, in addition to the C. elegans COG 

and exocyst complexes. This domain had independently been identified as Dor1 

like domain and shown to be closely related to the COG and exocyst subunits 

Cog8 and Sec5, respectively (Whyte and Munro, 2001). However, this newly 

identified class of proteins was not linked to the GARP complex. Since the COG 

and exocyst subunits have been identified, we reasoned that ORF B0414.8 might 

encode the missing VPS-51 subunit of the GARP complex (Figure 29). To see 

whether B0414.8 colocalizes with the rest of the GARP complex we expressed a 

translational mCherry-B0414.8 fusion protein and determined its localization 

relative to the other GARP subunits. As shown in Figure 30, the localization of 

mCherry-B0414.8 completely overlapped with that of VPS-52-YFP as well as 

with the other subunits (data not shown). All GARP subunits showed perfect 

colocalization with each other (Figure 30). To further demonstrate that B0414.8 is 

indeed an integral part of the C. elegans GARP complex we co-

immunoprecipitated the other subunits with B0414.8 and vice versa (Figure 31). 

This strongly suggests that the metazoan GARP complex has four subunits like 

yeast, and that B0414.8 is the missing VPS-51 subunit. 
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Figure 29. Gene structures and domain organizations of C. elegans GARP complex 

subunits 

C. elegans GARP complex contains four subunits: vps-52, vps-53, vps-54 and a novel subunit 

vps-51. The names of ORF are annotated after corresponding genes. Available deletions inside 

genes are also annotated. CC represents coiled-coil domain. ZnF represents zinc finger domain. 

Antibody raised against N-terminal fragment of VPS-51 recognizes a band of 80kD, which is 

absent in vps-51(tm4275) mutant. 
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Figure 30. GARP complex subunits colocalize with each other in body wall muscles 

Confocal microscopy images were taken from body wall muscles of wild type background 

transgenic worms expressing different combinations of fluorescent protein tagged GARP complex 

subunits as indicated. Scale bar, 5μm 
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Figure 31. Subunits of GARP complex physically interact with each other 

(A) Co-immunoprecipitations were performed from mixed stage extracts of wild type background 

transgenic worms expressing combinations of fluorescent protein tagged GARP complex subunits 

as indicated. mCherry::RAB-2 was used as a negative control. 

(B) Interaction between GARP subunits as determined by yeast two hybrid assays (by Mandy 

Hannemann). The growth medium without histidine selects for interactions. pGADT7 and 

pGBKT7 are the empty vectors.  
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4.3.2 Vps51 is evolutionarily conserved and present in all 

eukaryotic organisms 

In contrast to the 164 amino acids (aa) yeast Vps51p, C. elegans VPS-51 

consists of 700 amino acids. Except for the Vps51 homology domain (Figure 32) 

and a coiled coil motif, there are no clearly recognizable domains present in 

VPS-51 (Figure 29). By using the newly identified Vps51 domain (see 

supplementary materials) we were able to identify clear VPS-51 orthologs in all 

eukaryotic organisms. The Vps51 ortholog group is phylogenetically separated 

from the COG and exocyst subunits (supplementary materials). In contrast to the 

yeast family, plant and animal Vps51 proteins are around 700-900 amino acids, 

and 700-1700 amino acids for the different protists lineages of heterologous 

single-celled eukaryotes ranging from Monosiga and Dictyostelium to 

Plasmodium and Trypanosoma. Almost all Vps51 proteins comprise the same 

domain architecture with the Vps51 domain at the N-terminus and no 

recognizable domains except some coiled coil regions C-terminally. Among 

metazoan Vps51 proteins motif detection revealed several conserved regions 

beside the Vps51 domain that are present in almost all Vps51 proteins 

(supplementary materials). This suggests that a common ancestor possessed a 

GARP complex containing a large Vps51 subunit, and that all subsequent 

alterations, e.g. the truncation of Vps51 in the yeast family, were caused by 

secondary sequence loss during evolution. The low similarity between the yeast 

and metazoan Vps51 proteins (Figure 32) might explain why Vps51 had not been 

identified outside yeast before (Koumandou et al., 2007). 
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Figure 32. VPS-51 domain is conserved through species 

Alignment of VPS-51 domains from different species. Conserved amino acids are boxed in black 

and similar in grey. 

4.3.3 The C. elegans GARP complex stably associates with Golgi 

and endosomal domains 

Transcriptional fusions of the vps-51, -52, and -53 promoters to GFP revealed 

that the GARP complex subunits are ubiquitously expressed, with particularly 

strong expression in neuronal cells (Figure 33). This suggests that GARP 

complex activity is required in many cell types as in mammals (Liewen et al., 

2005). Localization studies using fluorescently tagged GARP subunits showed 

that the C. elegans GARP complex extensively co-localizes with the GFP-tagged 

GRIP domain from the trans-Golgi golgin T05G5.9 (Figure 34A) in body wall 

muscle cells. It showed a more partial overlap with endosomal domains labeled 

by the phospho-inositol-3-phosphate (PI3P) binding GFP-2xFYVE domain fusion 

(Figure 34A). This is consistent with the findings in yeast and mammals that the 

GARP complex localizes to the late Golgi (Conboy and Cyert, 2000; Conibear 

and Stevens, 2000; Perez-Victoria et al., 2008) and endosomal compartments, 

as well as vesicular structures distributed throughout the cell body (Liewen et al., 
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2005). However, we found that the GARP complex in C. elegans also shows 

extensive co-localization with more early-medial Golgi markers like α–

mannosidaseII (Figure 34A) in body wall muscles. In C. elegans body wall 

muscles the Golgi mini stacks are quite small (only about 200 nm diameter). 

Since they form an integral unit with an ER exit site and endosomal compartment 

(Figure 34B) colocalization might reflect the diffraction-limited localization of two 

fluorescence signals to the same secretion unit. Therefore, we reanalyzed the 

localization of the GARP complex in macrophage-like coelomocytes in C. 

elegans, which contain mostly a series of parallel Golgi stacks of about 500-800 

nm in size (Figure 34D). In coelomocytes the fluorescently tagged GARP subunit 

VPS-52::mCherry showed perfect overlap with the medial Golgi marker Mans-

GFP while there was no co-localization detectable between VPS-52::mCherry 

and the endosomal marker GFP::2xFYVE (Figure 34C). This suggests that the 

GARP complex localizes quite broadly to Golgi complex. The good overlap 

between the GARP complex and the medial Golgi markers may suggest that the 

GARP complex also contribute to vesicle tethering to earlier Golgi compartments 

than the TGN.  

 

In all cases, the C. elegans GARP complex subunits largely overlapped with the 

staining seen for the two Rab6 orthologs, RAB-6.1 and RAB-6.2. Consistent with 

previous reports, we were able to co-immunoprecipitate the GARP complex with 

either Rab6 GTPase (Figure 35). This demonstrates that the C. elegans GARP 

complex also binds Rab6, like in yeast and mammals (Liewen et al., 2005; 
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Siniossoglou and Pelham, 2001). 

 

 

 

 

Figure 33. GARP complex is ubiquitously expressed 

(a-b) Expression of GFP driven by vps-51 promoter is mostly seen in neurons and intestine cells. 

(c-f) GFP expression driven by vps-52 promoter is visible in all cell types: pharyngeal, 

intestine, distal tip cells, coelomocytes, body wall muscles, and neurons. 

(g-h) Expression of GFP driven by vps-53 promoter is mainly present in neurons, pharyngeal and 

intestine cells. 
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Figure 34. GARP complex localizes to the Golgi endosomal interface 

(A) GARP complex localization overlaps with the medial Golgi (Mans::GFP), late Golgi 

(GFP::GRIP domain) and partially with endosomal domains (GFP::2xFYVE) in body wall muscles; 

scale bar represents 5 μm. 

(B) Thin plastic section EM pictures of a Golgi mini stack present in C. elegans body wall muscles; 

scale bar represents 200 nm. (Picture by Jan Hegermann) 

(C) GARP complex localization overlaps with the medial Golgi (Mans::GFP) but not with 

endosomal domains (GFP::2xFYVE) in coelomocytes; scale bar represents 5 μm. 

(D) Thin plastic section EM pictures of Golgi stacks present in C. elegans coelomocytes; scale 

bar represents 500 nm. (Picture by Jan Hegermann) 

 

The yeast GARP complex is recruited to Golgi membranes by the Rab6 GTPase 

Ypt6p. This localization is lost in ypt-6 null mutants, rendering the GARP complex 

diffusely distributed throughout the cytoplasm (Conibear and Stevens, 2000). To 
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test whether the localization of the C. elegans GARP complex is also affected by 

loss of Rab6 activity, we analyzed rab-6.2 mutant animals and found that the 

GARP complex is localized normally (Figure 36). The lethality of rab-6.1 as well 

as rab-6.1; rab-6.2 double mutants prevented us from testing GARP complex 

localization in these strains. Therefore, it is likely that despite the loss of RAB-6.2 

the GARP complex is still localized through its interaction with RAB-6.1. 

 

 IP: anti-GFP

 

Figure 35. GARP complex interacts with RAB-6 in C. elegans 

Confocal images show that VPS-52::mCherry co-localizes with GFP::RAB-6.1 and GFP::RAB-6.2. 

Scale bar, 5μm. Co-immnoprecipitation was performed on mixed stage extracts of wild type 

background transgenic worms expressing VPS-52::mCherry together with either GFP::RAB-6.1 or 

GFP::RAB-6.2.  
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In yeast it has been demonstrated that if one of the core subunits Vps52p, 53p, 

or 54p is missing, the remaining subunits are rendered unstable and are 

degraded (Conibear and Stevens, 2000). To test whether the C. elegans 

complex behaves similarly, we determined the stability and localization of the 

remaining core GARP subunits when one is deleted. As shown in Figure 29, 

there are deletion mutants available for all GARP subunits in C. elegans. All 

deletions lead to frame shifts truncating the proteins before the coiled coil regions 

that are required for complex incorporation (Perez-Victoria et al., 2008; 

Siniossoglou and Pelham, 2002). Therefore, these deletions should be molecular 

null alleles. To our surprise, deletion of any of the four GARP complex subunits in 

C. elegans did not lead to a mislocalization of the remaining subunits nor to their 

instability (Figure 36). So far it has only been reported that the yeast Vps51p 

subunit is dispensable for core complex localization and stability (Conibear et al., 

2003; Siniossoglou and Pelham, 2002). 

 

To understand the reason for this difference we analyzed possible interactions 

between the different GARP subunits in C. elegans by yeast two-hybrid assays. 

Based on our finding, it might be expected that each subunit would display 

multiple interactions within the complex as has been suggested previously for the 

mammalian GARP complex (Liewen et al., 2005; Perez-Victoria et al., 2008). 

However, in our hands only VPS-51 interacts with VPS-52 and VPS-53 in the 

yeast two-hybrid system (Figure 31). 
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Figure 36. GARP complex keeps stable when individual subunit or RAB-6 is missing 

Confocal images show that combination of fluorescent protein tagged residual GARP complex 

subunits still show colocalization in body wall muscles of mutant worms, in which one GARP 

subunit or RAB-6 is deleted. Scale bar, 5μm. Western blot was performed on mixed stage 

extracts of single GARP subunit deletion mutant worms expressing combination of fluorescent 

protein tagged residual GARP complex subunits as indicated. 

 

Additionally, we could detect an interaction between VPS-53 and VPS-54. This 

creates a linear 52-51-53-54 interaction network within the C. elegans GARP 

complex. The reported interactions reconfirm that VPS-51 is indeed a subunit of 

the C. elegans GARP complex. Since only binary interactions were tested in the 

two-hybrid system we may have missed interactions that depend on the 

presence of more than two partners. In addition, it is also possible that isolated 

subunits or subcomplexes have independent means to localize to the Golgi-
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endosomal interface. Therefore, it is important to test the functional activity of the 

remaining GARP subunits when one subunit is missing. 

4.3.4 Loss of GARP activity leads to alterations in lysosomal 

morphology 

To functionally characterize the GARP complex in a multicellular organism we 

analyzed deletion mutant strains of each subunit in C. elegans (Figure 29). 

Surprisingly, homozygous deletion mutants of each single GARP subunit were 

viable. However, mutants in the core subunits vps-52, vps-53 and vps-54 had 

reduced brood sizes (vps-52(ok853) 108±7, N=39; vps-53(ok2864) 102±12, 

N=24; vps-54(ok1463) 57±5, N=32) as compared to wild type (290±7, N=25). 

Since the brood size defects could be rescued by mating homozygous vps-52 or 

vps-54 mutant hermaphrodites with wild type males, it is likely that mutations in 

the C. elegans GARP complex lead to sperm defects as reported for mouse 

Vps54 mutants (Schmitt-John et al., 2005). The brood size defects (198±7, N=25) 

are less severe in vps-51(tm4275) animals, suggesting that VPS-51 might be an 

auxiliary subunit of the GARP core complex as has been proposed in yeast 

(Conibear et al., 2003; Siniossoglou and Pelham, 2002). In addition to their brood 

size defects, GARP mutant animals appeared slightly pale, grew more slowly 

than wild type and displayed reduced locomotion (data not shown), although their 

morphological appearance was largely normal. This suggests that in C. elegans 

GARP complex function is not strictly required for viability. Thus it is likely that a 

redundant pathway is able to compensate for the loss of GARP complex function. 
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Figure 37. GARP complex mutants show normal ER, Golgi and early endosomes in 

coelomocytes 

Distribution and morphology of ER marker GFP::TRAM, Golgi marker Mans::GFP, and early 

endosome marker 2xFYVE::GFP are not changed in vps-52(ok853) and vps-54(ok1463) mutants, 

compared with wild type. Scale bar, 5μm. 

 

To study how the loss of GARP complex function affects intracellular transport, 

we analyzed the effects of GARP mutations on the morphology of intracellular 

compartments. We analyzed coelomocytes in C. elegans, which are macrophage 

like scavenger cells which reside in the body cavity and constantly filter the 

pseudocoelomic body fluid by bulk endocytosis. They are highly active in 

membrane transport and are therefore widely used to study endocytic membrane 

transport (Fares and Greenwald, 2001). Using transgenic marker strains we did 

not observe any differences in structures of the secretory pathway such as the 

endoplasmatic reticulum (ER) and Golgi complex, nor did we detect alterations in 
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the early endocytic pathway (early and late endosomes) (Figure 37). In contrast, 

we observed strongly enlarged lysosomal structures labeled by the 

transmembrane proteins CUP-5/mucolipin and LMP-1 (Treusch et al., 2004). In 

mutants of the GARP core complex, large vesicular structures with a diameter of 

more than 4 μm were detected (Figure 38) which were already detectable by DIC 

microscopy (Figure 38). 

 

An electron microscopic analysis revealed that these large structures are protein-

rich as they are stained by osmium like lysosomes (Figure 39). These large 

lysosomal structures were never detected in wild type coelomocytes (Figure 39). 

Mutations in the GARP core complex vps52/vps53/vps54 also led to alterations 

in lysosomal morphology in yeast (Conboy and Cyert, 2000; Conibear and 

Stevens, 2000; Siniossoglou and Pelham, 2001; Siniossoglou and Pelham, 2002).  
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Wild type          vps-52(ok853 )   vps-54(ok1463)

 

vps-53(ok2864) vps-51(tm4275) 

                

Figure 38. GARP complex mutants show enlarged lysosomes in coelomocytes 

(A) Confocal images taken from coelomocytes show that late endosomes marked by RME-

8::GFP appear to be normal in vps-52(ok853) and vps-54(ok1463) mutants. However, lysosomes 

marked by LMP-1::GFP and late ensosome-lysosome intermediates marked by CUP-5::GFP are 

significantly enlarged in vps-52, vps-53 and vps-54 mutants, while these structures are slightly 

enlarged in vps-51(tm4275) mutant.  

(B) RME-8::GFP, CUP-5::GFP, and LMP-1::GFP positive vesicles are grouped into three 

categories by sizes: smaller than 2μm , between 2μm and 4μm, bigger than 4μm. Percentages of 

each category are shown. Error bars represent s.e.m. 
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Figure 39. GARP complex mutants show enlarged lysosomes in coelomocytes 

DIC microscopy (upper panels) and electron microscopy (lower panels) pictures (by Jan 

Hegermann) of coelomocytes in wild type and GARP mutants are shown. Scale bar, 5μm in 

upper panels. 
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However, the uptake and transport kinetics of endocytosed material, such as 

Texas Red labeled BSA injected into the body cavity and uptake of yolk protein 

by oocytes, were not affected in GARP mutant coelomocytes (Figure 40, 42). 

Furthermore, the fluorescence level of GFP that has been secreted into the body 

cavity and taken up by coelomocytes (Fares and Greenwald, 2001) was similar 

between GARP mutants and wild type (Figure 41). This indicates that lysosomal 

turnover of GFP is similar to wild type. Therefore, lysosomes are likely functional 

in GARP mutants despite the morphological alterations. 

 

Taken together, we showed that in vps-52(ok853), vps-53(ok2864), and vps-

54(ok1463) mutants, significantly enlarged lysosomal structures can be 

frequently observed in macrophage like cells-coelomocytes. vps-51(tm4275) 

mutant also showed this defect, although in a much milder degree.  

 

 

Figure 40. GARP complex mutants show normal receptor mediated endocytosis 

Yolk protein VIT-2::GFP is expressed and secreted from intestine cells, and taken up by oocytes 

in a receptor mediated manner. No significant change in VIT-2:GFP endocytosis can be observed 

in vps-52(ok853) and vps-54(ok1463) mutants. Scale bar, 50μm. 
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A 

 

B 

C 

 

Relative GFP fluorescence 
intensity in coelomocytes   

(normalized against wild type) 

Figure 41. GARP complex mutants show normal fluid phase endocytosis 

(A) An integrated transgenic worm strain expresses secreted GFP from the body wall muscles. 

GFP secreted into the body cavity is subsequently endocytosed by the six macrophage like cells-

coelomocytes (Adapted from Fares and Greenwald, 2001). 

(B) Confocal pictures show that ssGFP endocytosis by coelomocytes appears normal in vps-

52(ok853) and vps-54(ok1463) mutants. Scale bar, 5μm. 

(C) Quantification of ssGFP fluorescence intensity in coelomocytes shows no significant 

difference between wild type and vps-52(ok853) and vps-54(ok1463) mutants. 
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Wild type 

 

vps-52(ok853) 

 

vps-54(ok1463) 

Figure 42. GARP complex mutants show normal dynamics of endocytosis 

Texas-Red BSA was injected into the body cavities of worms expressing late endosomal marker 

RME-8::GFP in coelomocytes. Confocal images were taken at the indicated time spot after 

injection. 10 minutes after injection, TR-BSA already entered the RME-8::GFP positive structures. 

After 30 minutes, part of TR-BSA exited from RME-8::GFP vesicles and entered later structures. 

At 45 minutes, most TR-BSA entered later structures. This dynamic process seems not changed 

in vps-52(ok853) and vps-54(ok1463) mutants. Scale bar, 5μm. 
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4.3.5 VPS-51 is required for GARP complex function 

Despite being an integral part of the GARP complex, vps51 mutants in yeast 

display weaker growth defects than the other complex components. This is 

consistent with the fact that the core complex is still correctly assembled and 

localized in the absence of Vps51p (Conibear et al., 2003; Siniossoglou and 

Pelham, 2002). This led to the idea that Vps51 might be an auxiliary GARP 

subunit. However, vps51 mutants do show phenotypes similar to the rest of the 

GARP subunits. In yeast, Vps51p has been shown to affect the sorting of soluble 

vacuolar proteins and the recycling of the plasma membrane SNARE Snc1p. In 

addition, inactivation of Vps51p leads to fragmented vacuoles and defects in 

autophagosome formation similar to mutants in the other subunits (Conibear et 

al., 2003; Reggiori et al., 2003; Siniossoglou and Pelham, 2002). In C. elegans, 

vps-51 mutants also show enlarged lysosomal structures although these 

structures never reached the size seen in the core complex mutants (Figure 38, 

39). Thus, the VPS-51 subunit in C. elegans also contributes to basic GARP 

complex function. Vps51 subunits may be essential for more specialized 

functions of the GARP complex in particular cellular pathways in multicellular 

organisms. This would explain its evolutionary conservation (supplementary 

materials).  

4.3.6 The GARP complex supports multiple retrograde routes to 

the early and late Golgi through differential SNARE interactions 

Yeast Vps51p was shown to bind to the late Golgi t-SNARE Tlg1p (Conibear et 
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al., 2003; Siniossoglou and Pelham, 2002). This led to the attractive model that 

the Vps51 subunit might be responsible for SNARE recruitment at the target 

membrane. The Tlg1 interaction motif was mapped to the very N-terminus of 

Vps51p (aa 18-30) and shown to form a short helix that interacts with a three-

helix bundle formed by Tlg1p (Fridmann-Sirkis et al., 2006; Siniossoglou and 

Pelham, 2002). Surprisingly, a deletion of the N-terminal domain of Vps51p or 

mutations that eliminate Tlg1p binding do not affect the ability of Vps51p to 

recycle proteins back to the Golgi. This led to the idea that the Vps51p/Tlg1p 

interaction may just increase the efficiency of the fusion reaction with the target 

membrane by ensuring the presence of all components required. 

 

Recently, similar SNARE interactions have been demonstrated for the other 

GARP complex subunits. The mammalian GARP complex has been shown to 

directly bind late Golgi SNAREs Syntaxin-6, -10 and -16 as well as VAMP4 

(Liewen et al., 2005; Perez-Victoria and Bonifacino, 2009). Our identification of 

metazoan Vps51 made it possible that these reported SNARE interactions could 

have been mediated by endogenous Vps51 co-purified with the other tagged 

GARP subunits. 

 

We therefore systematically tested the interactions of each complex subunit with 

all C. elegans SNARE proteins by yeast two-hybrid analysis (Figure 43). VPS-54 

interacted with the Syntaxin-5 ortholog, SYX-5, and Membrin/GS27 ortholog, 

MEMB-2. VPS-52 showed an additional binding to Synatxin-16 (SYX-16) and 
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weak binding to the second worm membrin ortholog, MEMB-1. VPS-51 

interacted specifically with Syntaxin-5 as well as with both MEMB-1 and MEMB-2. 

Furthermore, VPS-51 also binds the late Golgi SNAREs Syntaxin-16 and the Vti1 

ortholog, VTI-1 (Figure 43). The SNARE interactions with VPS-53 could not be 

tested since it is auto-activating when fused to the DNA binding domain within 

the yeast two-hybrid system. These results demonstrate that there are direct 

interactions of each GARP subunit with a specific set of Golgi SNAREs. 

 

 

Figure 43. GARP complex subunits interact with early and late Golgi SNAREs (by Mandy 

Hannemann) 

Direct protein interactions of GARP subunits with Golgi and endosomal SNAREs were assayed 

by yeast two-hybrid analysis. The growth medium without histidine was used to select for 

interactions. pGADT7 and pGBKT7 are the empty vectors. Among the SNAREs showing 

interactions with GARP complex, SYX-16 and VTI-1 are late Golgi SNAREs, while SYX-5, 

MEMB-1 and MEMB-2 are early Golgi SNAREs. 
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The COG tethering complex has also been shown to bind to the early Golgi 

SNARE Sed5/Syntaxin-5 (Bruinsma et al., 2004; Shestakova et al., 2007). 

Therefore, the COG and GARP complexes may be redundantly required for 

retrograde Golgi transport. C. elegans mutants in the COG subunits COGC-1 

and -3 are viable (Kubota et al., 2006), but display synthetic lethality when 

combined with mutations in the GARP complex (Figure 44). This suggests that 

COG and GARP complexes share overlapping functions for Golgi retrieval. 

Furthermore, GARP complex mutant is also synthetic lethal with mutant in 

retromer complex (Figure 44). This supports the conclusion that the GARP 

complex is required for retrograde transport from endosomes to Golgi in C. 

elegans. 

 

In summary, these results support a model in which the GARP tethering complex 

orchestrates retrograde transport to the Golgi through several trafficking routes 

by differentially binding to specific early and late Golgi SNARE pairs.  

 

Figure 44. GARP complex genetically interacts with the COG complex and the retromer 

complex 

vps-52(ok853) mutation is lethal if combined with cogc-1(k179) or cogc-3((k181) mutation. vps-

54(ok1463); vps-35(hu68) double mutant also shows lethality.  
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4.3.7 Discussion 

We show that in GARP mutants, significantly enlarged lysosomal structures can 

be frequently observed in coelomocytes. A similar lysosomal phenotype has 

been reported in mutants of the C. elegans Pikfyve/Fab1p phosphoinositide 

kinase PPK-3, which phosphorylates phosphatidylinositol-3-monophosphate 

[PtdIns(3)P] into phosphatidylinositol-3,5-bisphosphate [PtdIns(3,5)P2] (Nicot et 

al., 2006). PtdIns(3)P binds to the FYVE domains of early endosomal antigen 

EEA1, which are implicated respectively in early endosome fusion and in 

receptor sorting in multivesicular bodies (MVBs) (Gruenberg and Stenmark, 

2004). Fab1p mediated production of PtdIns(3,5)P2 is essential for sorting 

membrane proteins into the lumen of vacuole in yeast or MVBs (Odorizzi et al., 

1998). PtdIns(3)P is mostly found on early endosomes and internal membranes 

of MVBs, whereas PtdIns(3,5)P2 is distributed on the external membrane of 

MVBs. We have preliminary data showing that in vps-52(ok853), vps-53(ok2864), 

and vps-54(ok1463) mutants, PtdIns(3,5)P2 levels are decreased as much as in 

ppk-3 mutants. Thus, the localization or function of PI3-5 kinase PPK-3 may 

depend on GARP complex mediated retrograde trafficking.  

 

We show that VPS-51 is evolutionarily conserved in metazoans. VPS-51 is 

required for maintaining normal lysosomal morphology, although to a lesser 

extent than other GARP subunits. This suggests that VPS-51 may contribute to 

more specific functions of the GARP complex. In agreement with this, the 

zebrafish Vps51 ortholog fat free (ffr) has been shown to regulate fat metabolism 
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(Farber et al., 2001; Ho et al., 2006), although no link to the GARP complex has 

been made. fat-free mutant fish embryos display lipid processing defects in the 

pancreas and vesicular recycling defects in the intestine, as well as degeneration 

of biliary epithelial cells and dilated Golgi structures within the digestive tract. 

However, the growth and morphology of ffr mutant fish were normal (Ho et al., 

2006). These results indeed suggest that Vps51 may serve as an adaptor for the 

GARP complex that has adopted specific functions in multicellular systems. 

These functions were dispensable in yeast and thus yeast Vps51 was shortened 

to a minimal unit. 

 
We report that GARP complex subunits interact with a specific set of Golgi 

SNAREs, as shown by yeast two-hybrid assays. Interestingly, Syntaxin-5 and 

Membrin as well as Syntaxin-16 and Vti1 are each Qa and Qb SNARE 

combinations of two Golgi SNARE complexes, respectively. SNARE complex 

assembly requires four parallel α-helixes to form an extended coiled coil. Each 

SNARE donates an α–helix and based on its positions within the SNARE 

complex are called Qa, Qb, Qc and R SNARE (Jahn and Scheller, 2006). 

Whereas the Qabc SNARE triplex Syntaxin-16/Vti1/Syntaxin-6 is localized to the 

late Golgi /TGN and forms a SNARE complex with the R SNARE VAMP4, the 

Syntaxin-5/Membrin/BET1 triplex localizes to the early and medial Golgi and has 

been reported to associate with the R SNARE SEC22 (Jahn and Scheller, 2006). 

The corresponding yeast SNARE complexes are Sed5/Bos1/Bet1/Sec22 and 

Tlg2/Vti1/Tlg1/Snc1/2, respectively (Burri and Lithgow, 2004). In addition, a 

separate SNARE complex consisting of Sed5/Vti1/Sft1/Ykt6 has also been 
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reported to mediate vesicular transport from the prevacuolar compartment (PVC) 

to the early Golgi (Fischer von Mollard and Stevens, 1999), which was reported 

to be Ypt6/Rab6 dependent (Bensen et al., 2001). The fact that the C. elegans 

GARP complex interacts with specific SNARE pairs at the cis and trans sides of 

the Golgi suggests that the GARP complex supports tethering of transport 

vesicles to the early and late Golgi. Furthermore, the concomitant binding to a Qa 

and Qb SNARE of the same complex may mechanistically explain how the 

GARP complex supports SNARE assembly by holding two of the four partners in 

place. This strongly supports the previous finding that the mammalian GARP 

complex, in addition to its tethering function, also promotes SNARE assembly 

(Perez-Victoria and Bonifacino, 2009). Based on the fact that yeast Vps51p binds 

to the Qc SNARE Tlg1 and the mammalian GARP complex to the Qc SNARE 

Syntaxin-6 as well as to the R SNARE VAMP4, it is likely that these interactions 

have been changed during evolution. 
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Supplementary materials (by Dr. Stefan Rensing) 

 

Initial tree  

The full alignment of the members of the PFAM Vps51 (PF08700, 

http://pfam.sanger.ac.uk/family?entry=PF08700 ) family was retrieved and a 

neighbour-joining (NJ) phylogenetic tree reconstructed. The Caenorhabditis 

elegans Vps51 (FFR_CAEEL), together with the functional orthologs from yeast 

(COG1_YEAST) and human (FFR_HUMAN) were found to be present in a 

monophyletic clade, albeit without botstrap support (Fig. 1). All other sequences 

annotated as FFR (fat-free homolog) were also present in that clade. To reduce 

the dataset to the functional Vps51 ortholog group, all member sequences from 

the monophyletic Vps51 clade were selected, except if they presented redundant 

versions of the same sequence (identical sequences from different organisms 

were kept). To provide a suitable outgroup, all sequences annotated as EXO 

(exocyst complex component) were also selected (Fig. 1).   

  

Detailed phylogenetic analyses  

Based on this refined dataset, in-depth phylogenetic inference was carried out. 

Using ProtTest (Abascal et al., 2005), the most suitable model was found to be 

JTT+G+F. Phylogenetic trees were inferred by NJ using quicktree_sd (Howe et 

al., 2002; Frickenhaus and Beszteri, 2008) with 1000 bootstrap resamplings, 

maximum likelihood (ML, Phyml as implemented in ProtTest) and Bayesian 

inference using MrBayes (Ronquist and Huelsenbeck, 2003) with eight gamma 

distributed rate categories, the JTT+G+F model and five million generations (not 

dropping below at a standard deviation of 0.07). Trees were displayed using 

Figtree v1.2.2 (http://tree.bio.ed.ac.uk/software/figtree/ ).  

In both the NJ (Fig. 2) and BI tree, the majority of EXO sequences is present in a 

long-branched clade that was used to root the tree. In both cases, The C. 

elegans and Dictyostelium discoideum sequences are not part of that clade, but 

branch of basal within the Vps51 clade. The majority of nodes is not well 
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supported. The metazoan FFR clade has low bootstrap support in the NJ tree 

(Fig. 2) and contains some sequences from protists. In the BI analysis, the 

metazoan clade is well supported and does not contain protist sequences. 

However, it lacks the C. elegans and C. briggsae sequences. The high 

divergence of the domain makes confident phylogenetic inference impossible. 

The lack of support for the majority of branches is most probably due to long 

branch effects.  

In order to overcome these problems and to analyse the metazoan FFR clade in 

mode detail, a full length alignment of these sequences was constructed using 

M.A.F.F.T. (Katoh et al., 2005), using the D. discoideum FFR sequence as an 

outgroup. Visual inspection of the alignment using Jalview (Clamp et al., 2004) 

demonstrated a high quality alignment with no need for manual refinement. The 

BI tree fulfilled the convergence criterion (average standard deviation of split 

frequencies < 0.01) after only 101,000 generations; the support for the majority of 

nodes is good (Fig. 3). In general, the tree resolves the taxonomy; the flies 

(Diptera) are very well supported, as are the bony vertebrates (Euteleostomi, 

including the mammals, frogs, birds and fishes). The clade that is monophyletic 

with these both groups contains Coelomata, Cnidaria and Placozoa; the Ixodes 

scapularis (Black-legged tick) sequence is apparently difficult to place, probably 

due to its long branch. The two basal branches contain the Pseudocoelomata 

(the two Caenorhabditis sequences) and the Acoelomata. The somewhat lesser 

amount of support for the lower branches is probably due to the fact that most 

taxonomic groups are represented by a single sequence only.   

  

Sequence length and domain structure  

The average length of the metazoan FFR/Vsp51 proteins is 729 residues 

(shortest sequence 261, longest sequence 917). It should be noted that a large 

proportion of the sequences are predicted (Fig. 3), lacking transcript or protein 

evidence, so that parts might be missing; in addition, there are two sequences 

annotated as being fragmentary. Prime candidates for incomplete sequences are 

those from Branchiostoma floridae (261), Trichoplax adhaerens (495) and Ixodes 
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scapularis (545), especially as the sequences from the Acoelomata and 

Pseudocoelomata are longer. The longest sequence is from the outgroup, the 

Mycetozoan D. discoideum.   

Motif discovery on the dataset was carried out using MEME v4.3.0 (Bailey et al., 

2009). Settings (distribution of motif occurrences: zero or one per sequence, 

number of different motifs: ten, minimum motif width: six, maximum motif width: 

thirty) were chosen based on visual inspection of the alignment. The detected 

motif 1 (Fig. 4) covers positions 38-67 of the PFAM Vps51 HMM, representing 

the most highly conserved core of the domain. The presence of the motifs 1, 7 

and 8 in the N-terminal part of all proteins is the unifying factor, this region 

represents the Vps51 core domain. Motif 9, N-terminal of this arrangement, is 

present in all but two sequences (Nematostella vectensis and T. adhaerens). 

Motif 4, C-terminal of the core block, is present in all sequences but the C. 

elegans Vps51. It is apparent from the motif arrangement that the exceptional 

length of the D. discoideum sequence is due to an N-terminal extension.   

The middle region of the proteins contains some occurences of motifs out of their 

canonic place. Specifically, motif 7 in (two Drosophila sequences and in D. 

discoideum) has a shifted location and motifs 1 (Caenorhabditis), 2 (chicken), 6 

(mouse) and 9 (Aedes aegypti) appear as duplicates within the same sequence. 

The obviously secondarily derived arrangements make a certain plasticity of the 

genes evident.   

Located C-terminal of the middle region are motifs 10 (present in all but four 

sequences) and 3 (present in all but three sequences). The pattern of presence 

and absence suggests that these motifs were secondarily lost from the different 

lineages, including a common ancestor of the genus Caenorhabditis. Motif 7, 

immediately behind 3, is present in this place in mammals and amphibians only. 

Given the dissipate pattern described for this motif above, it appears plausible 

that it was transferred to this location in the last common ancestor of tetrapods 

and secondarily lost in birds.   

The immediate C-terminus consists of the motifs 5, 2 and 6. These motifs are 

present in all sequences but three (T. adhaerens, Ixodes scapularis and B. 
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floridae), resp. motif 6 lacking from Schistosoma mansonii. Again, the 

presence/absence pattern in light of the taxonomy suggests secondary losses of 

these motifs from the respective lineages. However, given that the three 

sequences lacking all these motifs are the shortest ones present, it might also be 

possible that the gene prediction is incomplete.  

Taken together, the presence of the conserved core domain located in the N-

terminal part of the protein is expected to be crucial for ist function. The additonal 

motifs might be necessary for interactions or functions that are not obligatory. 

The C-terminal set of motifs might also be important, pending closer study of the 

genomic loci within those organisms that seem to lack them.  

  

  
  

  
Fig. 1: NJ tree based on the PFAM Vps51 full alignment.  
Blue: monophyletic clade containing C. elegens Vps51 and the functional orthologs from yeast 
and human (shown in red). Magenta: sequences annotated as EXO. The tree was midpoint 
rooted. Numbers at nodes represent results from 1000x bootstrap resampling.  
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Fig. 2: NJ tree based on the Vps51 functional ortholog group  
Red and magenta (EXO) coloring as in Fig. 1. The tree was rooted at the branch leading to the 
majority of EXO equences.   s
LHR5_YEAS1/2-74COG1_YEAST/2-74FZTW_EFR_CAYW6_  

   
Fig. 3: BI tree of the metazoan FFR clade  
Red coloring as in Fig. 1. The tree was rooted at the branch leading to the D. dicoideum FFR 
sequence (outgroup). Numbers at the branches are posterior probabilities. The length of each 
sequence is shown, separated from the accession number by an underscore. Sequences 
annotated as fragmentary are marked with a tailing „F“, sequences annotated as predicted with a 

 141



 

„P“.  
  

   
Fig. 4: Motif covering the most conserved part of the Vps51 domain  
Sequence logo of MEME-detected motif one, overlapping with the most conserved part of the 
PFAM Vps51 HMM.  

  

   
Fig. 5: Motifs detected in the metazoan Vps51 sequences  
MEME-detected motifs are shown as a block diagram. Sequences are ordered by phylogeny, 
from top to down: flies, mammals, frogs, birds, fishes, (Coelomata, Cnidaria, Placozoa), 
Pseudocoelomata, Acoelomata, Mycetozoa (outgroup).  
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