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Chapter 1

Introduction

Over the last decades, the nonlinear optical properties of condensed matter systems
have been an attractive and fruitful field of research. While the linear response func-
tions of solids provide information about the elementary excitations of the systems
such as excitons and plasmons, nonlinear optical experiments give insight into the
dynamics of the fundamental many-body processes which are initiated by the exter-
nal excitations. Stimulated by the experimental results, new theoretical concepts and
methods have been developed in order to relate the observed phenomena to the micro-
scopic properties of the investigated materials. The present work deals with the study
of the nonlinear dynamics of pure semiconductors and n-doped semiconductors which
are excited by laser pulses whose central frequencies are tuned to the energies of the
electronic transitions between the highest valence bands and the lowest conduction
bands.

In Chapter, the relaxation behavior of optically excited semiconductors under the
influence of the interaction between the electrons and longitudinal optical phonons is
studied. These studies are mainly motivated by measurements of the differential trans-
mission spectrum in pump-probe experimed{d pnd the time-integrated four-wave-
mixing signals B9, 53] in Gallium-Arsenide (GaAs). The pump-probe spectroscopy
has especially initiated an intensive theoretical discussion, since it allows the direct ob-
servation of the dynamics of the spatial and spectral distribution of the excited carriers.
In a typical pump-probe experiment, a sample is excited by two pulses, a strong pump
pulse and a weak probe pulse, which propagate in different directions. The interplay
between these pulses is then studied by measuring an optical signal which is related
to the probe pulses (for example the reflection signal or the transmission signal) as a
function of the time delay between both pulses. Depending on the density distributions
of the excited conduction electrons and valence holes, the intensity of these signals is
either reduced or increased in relation to the signals which are measured in the ab-
sence of the pump pulse. In recent years, the development of ultrafast lasers pulses
with durations as short as 10 femtoseconds has made it possible to observe the nonlin-
ear dynamics of photoexcited semiconductors in the coherent regime with the help of
pump-probe experimentsT].
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The time behavior of semiconductors which are excited by external electro-magne-
tic fields is usually described within the framework of the semiclassical Boltzmann
equations. The different interaction processes between the electrons and phonons are
then described by means of collision terms where the energy is conserved in each
collision process. This description, however, can only be valid as long as the dynam-
ics is studied on a time scale which is larger than the characteristic collision times
(~ 100 — 200fs) [57] . Consequently, it is insufficient to describe the behavior of the
semiconductor with the help of the traditional Boltzmann equations if the dynamics is
studied on the femtosecond scale. A better description of the short-time behavior can
be achieved by using nonlinear quantum kinetic equations which take quantum phe-
nomena, as for example the energy-time uncertainty, into account. For their derivation,
two different theoretical approaches have been employed.

In the first approach, non-equilibrium two-time Green'’s functions are used as a
starting point for the numerical and analytical studi&s pP6, 34, 43]. These functions
can be calculated with the help of approximation methods which are similar to the
approximation methods for equilibrium Green’s functions. The time dependence of
the non-equilibrium Green'’s functions is then determined by the corresponding Dyson
equations, which are also denoted as Kadanoff-Baym equations if they are written in
a differential form. Since the Green’s functions depend on two time variables, it is
necessary to introduce an additional approximation method, the so-called Generalized
Kadanoff-Baym Ansatz][g], in order to transform the Kadanoff-Baym equations into
a system of differential equations for one-time functions. The second approach is based
on the Heisenberg equations-of-motion for products of field operatarsp, 36, 42,

41, 52, 56, 58]. As these equations are arranged in an infinite hierarchy, a truncation
scheme has to be applied in order to obtain a finite system of differential equations.
The truncation is achieved by neglecting correlation functions of higher order. The
whole procedure can be viewed as a partial resummation of Feynman diagrams within
the framework of the non-equilibrium Green’s function appro&. [

The use of the Green’s function method has the advantage that it is relatively easy
to include certain collective effects such as the screening of the interaction functions or
the renormalization of the one-particle propagators. On the other hand, the equations-
of-motion method makes it possible to obtain a numerically treatable system of differ-
ential equations directly without introducing a complex formalism.

When the quantum kinetic equations for electrons and phonons in a semiconductor
are derived with the help of one of the two approaches described above, the electron-
electron interaction, which is responsible for the formation of excitons, is often treated
in the time-dependent Hartree-Fock approximation, which leads to a renormalization
of single particle energies and Rabi frequenci&s 43, 36). If, however, the factoriza-
tion method is applied consequently within the framework of the equations-of-motion
method, as it has been done in Referenéés41, 52, 56], additional Coulomb terms
appear in the kinetic equations which can be interpreted as vertex corrections to the
electron-phonon interaction. Since the effect of these terms on the time behavior of
the optically excited semiconductor has not yet been studied in detail, the investiga-
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tions in Chapte2 will concentrate on the differences between the kinetic equations
with and without vertex corrections. For this purpose, the dynamics of the relevant
physical quantities, such as the interband polarization or the electron density, will be
calculated by using both versions of the kinetic equations.

In Chapter3, the attention is shifted to the nonlinear behavior of n-doped semi-
conductors where a non-vanishing density of negative carriers in the conduction band
already exists at zero temperature. If the doping is low, it is still possible to observe
bound systems of valence holes and conduction electrons in the linear and nonlin-
ear spectrum. In the high-doping regime, however, the picture changes qualitatively.
While the bound states vanish because of the presence of the Fermi sea in the conduc-
tion band, it is possible to detect an asymmetric algebraic singularity at the Fermi-edge
in the absorption spectrum.

The same phenomenon can also be observed in the absorption spectrum of met-
als and has initiated a considerable theoretical discussion about the different factors
which influence the behavior of the absorption spectrum near the threshold. Mahan
showed that the occurrence of this singularity can be attributed to the attractive in-
teraction between the conduction electrons and the valence holes which are created
by the external light pulsed.()]. Detailed analytical calculations by Nozieres and his
coworkers |3, 14, 12, 16] led to the realization that the power-law divergence at the
Fermi-edge can be reduced, or even suppressed, if the reaction of the entire Fermi sea
on the appearance of the valence holes is taken into account. It has been shown that
the algebraic singularity can be described by means of an expanghbse value is
determined by the scattering phase shift for the conduction electrons in the presence
of the attractive potential of the valence holes. A comprehensive presentation of the
results can be found in Mahan'’s textbook on many-body phyéids [

The different physical effects which determine the form of the Fermi-edge singu-
larity can already be understood within the framework of an exactly solvable, one-
dimensional model where the electrons in the conduction band are described with the
help of the Tomonaga-Luttinger Hamiltoniah []. The elementary excitations of the
Fermi sea can then be described in terms of density waves with a linear dispersion.
When this auxiliary model was introduced for the first timé][the restriction to one
dimension was justified by the fact that the original three-dimensional problem can be
interpreted as an effective one-dimensional problem because the interaction between
the valence holes and the conduction electrons is dominated by s-wave scattering pro-
cesses, if the interaction potential is short-ranged. The investigation of semiconductor
guantum wire structures, which show pronounced Fermi-edge singularities in the lin-
ear optical absorption spectrur?], has increased the interest in this model during
recent yearsq7, 29, 45, 46], since it can now be used for the description of real one-
dimensional systems.

Concerning the theoretical description of the valence band, it has usually been
assumed that the valence holes have an infinite niggslfl, 12, 16, 15, 19]. Then
the positions of the optically created holes remain fixed and the electrons only feel the
influence of a time-independent potential. In order to take the effect of a finite hole
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mass on the spectrum into account, a number of approximation methods have been
developed since the end of the 19604,[20, 28, 33]. The results indicate that the
recoil of the valence holes can lead to a broadening, or even to a disappearance, of the
Fermi-edge singularityl[1].

During the last decade, the investigation of modulation doped quantum wells using
pump-probe spectroscopy4] has raised interest in the properties of the nonlinear
optical response of systems involving a Fermi sea of conduction electrons whose linear
absorption spectrum exhibits a threshold singularity. The first theoretical descriptions
of these experiments3p, 44, 59] were based on an approximation technique which
was already used successfully for the calculation of the linear response funétipns |
24, 33]. Within the framework of this approximation, the excitations of the Fermi
sea in the presence of the valence holes are described with the help of a noncanonical
transformation.

Motivated by these developments, the Tomonaga-Luttinger electron model is em-
ployed in ChapteB in order to describe the general principles of the nonlinear optical
response of systems with a Fermi-edge singularity in the linear absorption spectrum
using a four-wave-mixing experiment as an example. Within the framework of a stan-
dard four-wave-mixing experiment, the sample is excited by three or two pulses with
different propagation directions. The interaction between these excitation pulses in
the sample leads to the generation of diffracted signals whose intensity can be mea-
sured as a function of the time delay between the ingoing pulses. As long as the delay
times do not exceed the life-time of the optical excitations, it is possible to observe
the coherent time evolution of the excited many-body states under the influence of the
interparticle scattering processes. In order to be able to solve the model exactly, the
calculations are based on the assumption that the valence holes have an infinite mass,
thereby neglecting the influence of the recoil processes.

Chapter4, contains a summary of the content of the two preceding chapters. In
addition to that, the prospects for possible further theoretical studies are given on the
basis of the results of this work.

Finally, two technical details concerning the presentation of the quantitative results
should be mentioned. All units are chosen in such a way that Planck’s constant is equal
to h = 1. Apart from that, all quantities are expressed with the help of characteristic
material constants.



Chapter 2

Phonon-Induced Relaxation in
Optically Excited Semiconductors

In this chapter the influence of the interaction between longitudinal optical phonons
and electrons on the relaxation of optically excited electron-hole pairs in semicon-
ductors is studied both analytically and numerically with the help of quantum kinetic
equations. The investigations are focused on the comparison of the different methods
of approximation which are used in order to take the electron-electron interaction into
account.

The content of the chapter is organized as follows. Se@iartontains the pre-
sentation of the different components of the model Hamiltonian describing the semi-
conductor. In Sectio.2 the quantum kinetic equations for the interacting electron-
phonon system are formulated on the basis of the Heisenberg equations-of-motion
where the interaction between the electrons and phonons is treated within the frame-
work of the second order self-consistent Born approximation. As far as the contribu-
tions which are due to the electron-electron interaction are concerned, it is possible to
distinguish between the mean field corrections to the one-particle Hamiltonian and the
vertex corrections to the electron-phonon interaction which have already been men-
tioned in Chapterl. Section2.3 contains the derivation of correction terms which
approximately take the impact of higher order electron-phonon scattering processes
into account. In SectioB.4 an alternative system of quantum kinetic equations, which
is derived with the help of non-equilibrium Green’s functioa§][ is presented where
the electron-electron interaction is only treated within the framework of the Hartree-
Fock approximation. The following two sections are dedicated to the investigation
of the differences between the results which are obtained with the help of the kinetic
equations from SectioR.2 and Sectior?.4. In Section2.5the linear optical response
of the system to an external laser field is studied by calculating the linear susceptibility
for excitonic and continuum excitations. In Sect@6 the dynamics of the electronic
and phononic densities is calculated for different detunings of the excitation pulse in
the weak nonlinear regime.
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2.1 The Hamiltonian

In the following the electrons of the semiconductor are described by a one-dimensional
tight-binding model with two bands whose Hamiltonian is given by

Hg = Z Zea;kzwl—kd}ak (21)

o=cv k

wherey,;, andwik represent the fermionic destruction and creation operators for the
electrons of the valence bafd = v) and the conduction bar(d = ¢). It is assumed

that the system consists &f elementary cells whose length is chosen to be equal
to unity. If the one-electron eigenfunctions satisfy periodic boundary conditions, the
guasi-momenté are determined by the relation

2 . N N
_ 2 ——< —. :
k i with neZ and 5 <n< 5 (2.2)

If the hopping is restricted to the nearest neighbors, the free electron dispersions for
the two bands satisfy the equations

€k = 2tU(COS(]€) - 1)7 (23)
€l = —2tc(cos(k) — 1)+ A (2.4)

wheret, andt. are the positive matrix elements for the intersite transitions while
represents the energy gap between the bands.

The interaction of the electron system with the external electrical field is described
by the operator

Hl(t)=—E@t) Y > diiel Yo, (2.5)
o102 ki1ks
within the framework of the dipole approximatio]]. If all intraband transitions
are neglected and if the system is excited homogeneously, the dipole matrix elements
satisfy the equations

dip, = i, = dogk, and i, = dpYy, = 0. (2.6)

During the first picoseconds after an external optical excitation the dynamics of
the polarization and the carrier distribution is mainly affected by the scattering of elec-
trons and longitudinal optical phonons whereas the interaction between electrons and
acoustical phonons only influences the time behavior of the system during a later stage
(~ 2 — 100ps). Since the studies in this chapter are focused on the relaxation of
optically excited semiconductors during the non-thermal regivT§ |t is therefore
justified to neglect the acoustical phonons entirely. The contribution of the free longi-
tudinal optical phonons to the total Hamiltonian is taken into account by the operator

HY, =Y wioblb, (2.7)
q
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whereb, andbjl denote the bosonic field operators of the phonon system. The part of
the total Hamiltonian which describes the interaction between the electrons and the
longitudinal optical phonons is given by

eph — Z Z Z gq 77Z)gk+qwcrk {bq + bT—q} (28)

o k q#0

where the scattering processes which lead to electronic interband transitions have been
neglected since the energy balance of these processes is highly unfavorable. In the fol-
lowing it is assumed that the electron-phonon interaction is described by the Holstein
model P, 3]. The matrix elementg; then satisfy the equation

o_ 9

whereg denotes the local interaction strength. The Hamiltonian which represents the
electron-electron interaction satisfies the following equation

66 — 2' ZZVUUJ? ’q| Zwolk1+q 0’2k‘2 qwﬂzkgwo’lkl (210)

o102 ¢q kiko

where the scattering processes which lead to a change of the number of carriers in the
different bands have also been neglected for reasons of energy conservation. In this
chapter it is assumed that the electron-electron scattering matgix|¢|) is given by

U
V01U2(|q,> ~ 27— (211)

The first term is due to the on-site interaction while the second one represents the
contribution of the long-range part of the electron-electron interaction. In order to
avoid an instability of the semiconductor ground state with respect to charge density
waves, the inequality

U>U— _21n2 (2.12)
sin(%7)

has to be satisfie@p]. The total Hamiltonian of the semiconductor can now be written
as follows

H(t) = Ho(t) + Hoh + Hepp + Hee (2.13)

where the different parts of the electronic Hamiltonian have been combined:

Ho(t) = H) + HL () = ) > ook (V] 1ok (2.14)

o102k
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Although the movement of the electrons is restricted to one dimension, the ex-
citation dynamics of this model should exhibit the same characteristic features as
two- or three-dimensional semiconductor models. This has been shown explicitly
for the relaxation dynamics of hot electrons where the time behavior of a simplified
one-dimensional mode#], 48] is in good qualitative agreement with the dynamics
of three-dimensional semiconductor mode?$,[26, 36]. The restriction to a one-
dimensional model, however, is only justified as long as the attention is not focused on
the quantitative aspects of the dynamics. In this context it should be mentioned that
the results for the three-dimensional semiconductor were calculated neglecting the an-
gular dependence of all quantities since it would be impossible to treat the problem
numerically otherwise. Thus the original system was described by an effective one-
dimensional model. As a consequence thereof a number of effects (for example the
influence of the non-equilibrium dynamics of the phonons) was not taken into account
[36].

In the initial state, long before the system is excited by the external field, the elec-
trons completely fill the valence band while the phonons are described by a thermal
distribution with a lattice temperatuf@ The state of the system is then determined by
the statistical operator

1 .
p=0)(0]® —e T with |®@) = !, |0.) (2.15)

where|0.) denotes the electronic vacuum whif¢" is the canonical partition function
for the phonon system.

Unless stated otherwise the electron-hole mass ka&otv is chosen to be equal
to x = 0.15 in the numerical calculations, this ratio is close to the ratio in GaAs. The
total width of both bands is always equal4¢. + ¢,) = 5wro allowing the obser-
vation of real phonon emission and absorption processes. Concerning the electron-
electron interaction it is generally assumed that it only acts on-site where the local
interaction strength is always given By = 1.5wro. The restriction to the on-site
interaction makes it possible to derive exact analytical expressions for the eigenstates
and eigenvectors of the subspace with one conduction electron and one valence hole
(see AppendidB). The numerical calculations in Secti@®6 will show that an ad-
ditional long-range Coulomb interaction does not lead to a qualitative change of the
dynamics. The local interaction strength of the electron-phonon interaction always sat-
isfies the equatiop = 0.25w; . The crystal temperature is chosen from the interval
0 < kT < 1.5wr0, the corresponding Bose factors are then located within the range
0 <np(wro) < 1with ng(w) = (exp(kBLT) — 1)t

2.2 Kinetic Equations

In this section the dynamics of the semiconductor is described with the help of the
Heisenberg equations-of-motions for the different sorts of density functions using an
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approximation scheme which was introduced by Frigkd.[In a first step the density
functions are recursively expressed in terms of correlation functions starting with the
one-particle expectation values. The infinite hierarchy of equations-of-motions which
is formed by these new functions is then truncated by retaining only the correlation
functions up to a certain order. The remaining differential equations can either be
solved numerically or studied analytically in order to determine the time behavior of
the system after an optical excitation.

In the following the interest is focused on the dynamics of the interband polariza-
tion W’iﬂﬂcl% and the distribution functions of the valence electrons and the conduction
electrons<¢ll¢vl>t and<wil¢cl>t whose time behavior is reflected in the linear and the
nonlinear optical properties of the system. Since the Hamiltohi&rn conserves the
total number of electrons these one-particle densities coincide with their correlated
parts. Their dynamics is determined by the equation

d
Z%<w;1ﬂ/})\21>t => {%a;l(f) (W5, 1 Pot)e — 50A1;1<t)<w2z¢>\zl>t}

(e

+ 5<¢I\1[¢>\2l>6p + 5(@&;11%21)@@- (2.16)

The coefficients of the one-particle energy maffix,,;(¢) which appear in Equation
2.16are composed of the corresponding coefficients of the bare energy maisixt)
and the dynamical Hartree-Fock contributions of the electron-electron interaction:

Exinan (1) = Exru(t) + Oxon, Z Vae (0) > (0] tbor)e (2.17)

k

- Z V)\l)\z |k w}\gk‘w)\lk>

The two additional contributions on the right-hand side of Equafid® represent
corrections to the Hartree-Fock approximation. The first contribution describes the in-
fluence of the electron-phonon interaction on the dynamics of the fun@bibmw)t.

It reads

S tbratten = 03 { (WL, tnaabale + (W, hnareabf)e |
q#0

o Zgé\l {<w;r\1l—qw>\21bg>t + <w;11+q¢)\2lbq>t} (218)
q#0

where the new functions which appear on the right-hand side of Equatidare
referred to as first order phonon-assisted densities. Strictly speaking, these phonon-
assisted densities should be expressed with the help of the corresponding correlation
functions, for example

<¢;1l+p¢>\2lbp>t = <¢j\11+p¢)\2lbp>§ + <¢;1l+p¢/\2l>t<bp>t7 (2-19)
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if the kinetic equations are formulated within the framework of the formalism pre-
sented in Referencetf]. However, the expectation valugs,), and (b)), vanish for

p # 0 since the Hamiltoniar# (¢) guarantees the conservation of the total quasi mo-
mentum modulo a reciprocal lattice vector. For this reason the complete first order
phonon-assisted densities are identical with their correlated parts. The second contri-
bution in Equatior2.16is the collision term for the electron-electron scattering pro-
cesses. It satisfies the equation

%11%21 Z Z Z Vaso(lal) whl¢ak¢£ﬂﬁ+q¢)\gl 0t
- Z Z Z Vo, () (0 Uk gContinat)s (2.20)
o k q

The correlation functions with four electronic field operators which appear on the right-
hand side of EquatioB.20are defined by the following relation

<¢I\1[1+p¢;2l2—pw)\3l2w/\4ll>§ = <w1\1l1+p¢j\2l2—p¢>\3l2¢>\4l1>t (2'21)
— S0 (Wl 1 ¥natn ) e (L1 Unata )t + Opita—y (U1, 000, ) e (Unats Unats e

where the conservation of the total quasi momentum has already been taken into ac-
count. If both correction terms are neglected, the dynamics for one-particle densities
with different quasi momenta is decoupled and the time behavior is described by the
well-known semiconductor Bloch equations. If the electron-electron and the electron-
phonon collision terms are taken into account, it is possible to describe the dephasing
and relaxation processes which cause the decay of the initially excited state of the sys-
tem. While the formation of bound pairs of valence holes and conduction electrons
(excitons) in the low density limit can already be described within the framework of
the semiconductor Bloch equations the complete description of bound molecule-like
complexes of two valence holes and two conduction electrons (biexcitons) requires
the consideration of the higher order correlation functions fMWill¢A2l>ee- These
functions are also necessary for the description of the screening of the electron-electron
interaction in the high density limit.

In the following the influence of the electron-phonon scattering processes on the
relaxation of the excited semiconductor is placed at the center of interest. For this
reason the electronic collision term in Equati@®i6is neglected and the attention is
now focused on the time behavior of the first order phonon-assisted densities, which is
determined by the equation

d
Z£<¢I\1l+pw)\zlbp>t = Wp<will+pwz\zlbp>t
+ Z {‘SAzUl w)\ll—&-pwo'lb )t — Eonpitp(t) <¢(T7l+pw)\21bp>t}

+ 5<¢)\1l+p¢>\2lbp>€p + 5<¢j\11+p¢kzlbp>ee' (2.22)
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It is obtained with the help of the same factorization scheme which has already been
applied above. As in Equatidh16the different contributions on the right-hand side of
Equation2.22can be assigned to two different groups. The terms in the first two lines
describe the renormalized one-particle dynamics within the framework of the Hartree-
Fock approximation while the two expressions in the last line contain the higher order
correction terms. The form of the correction term which is related to the electron-
phonon scattering processes is determined by the equation

5<¢;11+p¢kzlbp>ep <1/})\1[+pw/\2l+p ng ¢/\ll+p¢al+p> <7v/}ll77/}>\2l>t

{97 WL rarssle - gplmlmm} {(blb)e + (bpby)e |

+ Z 92\2 {(wi\ll-s-pw)\zl*qbqbp)? + <w;1l+pw/\zl+qb$bp>§}
q7#0

- Z 92\1 {<¢f\ll+p+qwkzlbqbp>§ + <will+p—qwkzlbsz>g}
q#0

* Z Z % <¢I\1l+pwi’kz/}0k+pw>\21 )i (2.23)
ok

while the contribution which is due to the electron-electron interaction satisfies the
relation

S 1 pratbp)ee = — Z(wi\ll—kpwgprp ZVAQU [ — 1)y Urokbp)s
+Z alw/\2l va\l (|k — ¢A1k+p¢akb>
<¢All+p¢Azl+p ZZV/\W p]) ¢ak+p¢akb>
— (W, st ZZV"M DD (W] ok )
+ZZZVAQU (Iq]) @Z)Alup Y Vokrqarnai—qbp)§
s kg

- Z Z Z V‘”\l (|q|)<w1\1l+p+qwlk—qwakw)\glbp>g- (224)
o k q

The new functions which appear on the right-hand side of Equ&ti®dare the cor-
related parts of the so-called second order phonon-assisted densities. They are defined
by the relations

<w1\11—p1 +p2 1/})\2lbL1 bPZ >§ = <’l/};"\1l—p1 +p2 w)\ﬂb;‘)l bpz >t - 5101 P2 <’l/};1lw)\2l>t <bL1 bpl >t (225)
and

<w;1l+p1+p2¢)\2lbplbp2>§ = <¢I\1l+p1+p2w>\2lbp1bp2> p1 —p2 <w>\1ﬂ/})\21> <b*P1 p1>t
(2.26)
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The new sort of correlation function which has been introduced in Equati&his
defined by the identity

<w;r\111-&-101-i-p2wixzb—mw)@l?w’\4llbpl>g - <w1\111+’p1+p2w1\2l2—p2w)‘312w/\4llbp1>t (227)
— G0 (1 Unata) e (U 1y oy Vet o ) F Ot —ts—ps (4,1 Vst (W00, s Vsl B )t
- 5172;—1)1 <¢I\1l11/]>\4l1>t<¢1\2l2+p1¢)\3l2bpl>t + 5102;12—11 <w;211¢)\4l1>t<wi\1l2+p1¢)\3l2 bP1>t'

Apart from the electronic correlation functions the kinetic equations for the first or-
der phonon-assisted density functions contain purely phononic densities, namely the
phonon distribution functiorib}b,), and the two phonon coherenge ,b,);, which is

also called phonon distortio$]. The dynamics of these densities is determined by
the two kinetic equations

bTb Z ng { Jk¢0k+Pb;r>>t - <w2k+pwokbp>t} (228)

and

d

za(b_pbpﬁ = {wp +w_p} (b_pby): (2.29)

+ Zzg;{ ok— p¢Ukb_p>t + <¢ak+p¢akb > }
o k

The number of one-particle density functionﬁillwﬂ)h (biby)e and (b_,by)¢
which have to be taken into account when solving the kinetic equations increases lin-
early with the system siz&. On the other hand, the number of first order phonon-
assisted density functions increases with while the number of the other electronic
density functions which appear in Equatichd6to 2.29increases with an exponent
which is even larger. In order to keep the influence of the finite-size effects small, it
is therefore necessary to truncate the system of kinetic equations at the present level.
Consequently, the correlation functions in the last three lines of Equati®and the
last two lines of Equatior2.24 are not taken into account explicitly in the following
calculations. However, the influence of some of theses functions can be considered
approximately in the form of correction terms. This will be explained in Se&i8m
detail.

2.3 Higher Order Corrections

Several studies have shown that the one-particle densities can exhibit an unphysical
time behavior, if the approximated quantum kinetic equations which have been derived
in Section2.2 are used for the description of the dynami@s,[38]. For example,

the electron distribution functions can become negative or larger than unity. In order

to avoid this, it is necessary to consider correlation functions of higher order. As
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mentioned above, however, the system of differential equations would become too
large for numerical calculations, if they were taken into account explicitly. For this
reason they are only included implicitly in Equati@r22 with the help of correction
terms

d .
i (W Unabpe = -0+ {Bergs — 0,1y} (WU, 1sp¥ratbp)e (2.30)
dt

where the functionse., andde,,; will be defined below.

These correction terms are derived from the correlated parts of the second order
phonon-assisted density functions which appear in the complete kinetic equation for
the first order phonon-assisted densities:

d c c
Z%(will+p¢/\2lbp>t =+ Z 9;,\2 {<¢;1l+p¢>\21—qbqbp>t + <¢I\1l+pw>\zl+qbgbp>t}

q7#0
- Z 92\1 {(willﬂwq@b/\zlbqbp)? + <will+p*qw>\zlb$bp>§} :
q#0
(2.31)

The kinetic equations for the functions which appear on the right-hand side of Equa-
tion 2.31are listed in AppendiA. If they were considered explicitly in the numerical
calculations, the computing time would increase with the third power of the size of
the system and it would become difficult to compute the dynamics of realistic models.
However, the qualitative influence of the correlated parts of the second order phonon-
assisted densities can be estimated, if their time behavior is calculated with the help
of simplified versions of the corresponding kinetic equations. In order to obtain these
simplified equations, the exact kinetic equations are approximated in three steps. First
the contributions which are due to the electron-electron interaction and the interac-
tion between the electrons and the external field are neglected entirely. In a second
step, all incoherent contributions are omitted. That means that only those terms which
are proportional tﬁ(@/&lz +pm21bp)t are taken into account. The approximated kinetic
equations for the functions which appear in the first line of Equé2iBa then read

d
Z%<wi\1l+pw/\21*qbqbp>t ~ {wp + Wyt Exgi—g — Exiitp) <w;1l+pw>\21*qbqbp>t (2.32)
gy { (bl + (b-gbabe 1 = W rarade | Wiy raiby)
and

d
Z%<¢ill+p¢>\zl+qbgbp>t ~ {Wp — Wt Exgilg — €>\1;l+p} <¢I\ll+p¢>\2l+qbgbp>t (2.33)

+ 92\2 {<b:[1bq>t + <bj‘]biq>t + <¢I\2l+q¢)\2l+q>t} <¢I\1l+pw>\21bp>t



2.3. HIGHER ORDER CORRECTIONS 15

whereas the correlation functions in the second line of Equati®hsatisfy the equa-
tions

d
Za(@b;alJrq@bAzlbqbp)t ~ {wp T Wq + €xgy — 6/\1;l-i-p—$-q} <¢I\11+p+qw>\zlbqbp>t (2.34)
92\1 {<b¢§bq>t + <b—qbq>t + <will+p+q¢/\1l+p+q>t} <¢;11+p¢/\2lbp>t

and
d
Z%<¢ill+p7q¢/\zlbgbp>t ~ {wp — Wy T+ €3y — Exyap—gt <¢i\ll+p*q¢/\zlb:§bp>t (2.35)

g2 {(bzbc)t + (bibT e+ 1 — <1/}I\1[+p7q¢)\1l+p—q>t} <¢ill+p¢lebp>t~

In the third step, the two-operator expectation values in Equafio3dto 2.35 are
replaced by their initial value&[&l@m)to = Orw, (bztbp)to = np(wro) and(b_,b,)s, =

0. This approximation is justified, if the excitation of the semiconductor by the external
field does not lead to considerable changes of the electron and phonon distributions.
After the resulting differential equations have been integrated, the two expressions
which appear on the right-hand side of Equatto8l satisfy the following relations

Z 92\2 {<¢;11+p¢>\2l—qbqbp>§ + <77Z)I\1[+p¢>\2l+qb;bp>§} (236)
q#0

t
— / dTX>\2;l(t _ T>6—Z{Wp+5)\2;l—E>\1;l+p}(t—7')<¢I\ll+p¢>\2lbp>7—
to

and

- Z 92\1 {<¢Ll+p+qw>\2lbqbp>§ + <¢j\ll+p*q¢>\2lbgbp>§} (2.37)
970

t
_/ dTXil;l—l-p(t _ T)e_Z{WP+EA2;l—EA1;l+p}(t—7') <77Z):f\1[+p¢>\2lbp>7'

to

where the form of the memory functions is determined by the equation

Xaa(t) = (=)D g)g) {np(wro) + dxe} e~ {oxtramentenlt (2.38)
q#0
+ (—1) Z 92\92\ {np(wro) + daw} e~ Hentra—eni—welt
q7#0

If the thermodynamic limit is performedV — o), the functionX,, reads

2 s
Xolt) = (=0) (r5(e20) + i} 3 [ daermsrsolt - 2.39

—T

2 ™
+ (=i) {nB(wro) + dun} 29_7T/ dge~Hexa=ou—wrolt,

—T
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The integrals can be calculated explicitly and one obtains the following compact ex-
pressions

Xc;l(t) — (_Z')92€—i2tc COS(l)tJO(ZtCt) {{nB(WLO) + 1} e~ wrot + nB(wLO)€+iWLOt}
(2.40)

and

Xpa(t) = (_,l’)g26+i2tv COS(l)tJo(Qtvt) {anLO)ewaot + {np(wro) + 1} e+iwLot}
(2.41)

where.J, denotes the Bessel function of the first kind of ordeFor large values of
the memory functionX,(¢) oscillates harmonicly with an amplitude which decreases
like the inverse square of

Each of the integrals in Equatioi2s36 and2.37 contains a fast oscillating expo-
nential factor which compensates the free oscillations of the first order phonon-assisted
densities. Consequently, the product of both terms is generally slowly variable in com-
parison with the functionX,(¢). Motivated by this fact, the Markov approximation
is applied and the slowly varying parts of the integrals are evaluated=at:. The
resulting expressions can be simplified by replacing the time-dependent integrals with
the time-independent constants

t

6€>\;l = lim dTX/\;l(t — 7') (242)

to——o0 to

since the first order phonon-assisted density functions only differ from zertoXdb
whereag, < 0. For A\ = ¢ the time-independent correction term for the one-patrticle
energies satisfies the equation

9*ng(wro)
V/ (wro — 2t cos(1))? — 42
g*{1+ np(wro)}
V/ (wro + 2t cos(1))? — 4¢2
o) 9*ng(wro)
V42 — (wro — 2t.cos(l))?
g* {1+ np(wro)}
&) VA2 — (wro + 2t.cos(1))?

(566;1 = 9(60;1 +wro — A — 4755) (243)

— Q(WLO —|— A — Ec;l)

— (4t + A —wro — €

— i@(ec;l — Wro —

The corresponding expression f&,,, can be calculated easily sinég,;(¢) has the
same structure as X7, ().
In Figure 2.1 the functionde., has been plotted for the temperatutgsl’ = 0
andkgT = 0.4w; o and different quasi momentain order to obtain an impression of
its form. Since the only scattering processes at zero temperature are phonon emission
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processes the imaginary partd@f.,, which is responsible for the damping of the dy-
namics of the first order phonon-assisted densities, vanishes, if the one-particle energy
€. IS smaller than the threshold enery- w0 where the absolute value of the func-

tion de.;, diverges. If the temperature is nonzero, it is possible to observe an additional
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0 4 w2 314 m

guasi momentum k

Figure 2.1: The correction teri,.;, for kg7 = 0 andkgT = 0.4wr 0o

threshold singularity att. + A — wyo which is due to the phonon absorption pro-
cesses. These processes are also responsible for the appearance of the small negative
imaginary part below the phonon emission threshold. Apart from these features the
form of de..;, is still similar to the corresponding function fég7" = 0 since the Bose
factorng(wro) for kgT = 0.4wro is considerably smaller than unity.

The divergence of the functiafk.; at the threshold energies for the emission and
absorption processes can be explained by the fact that the corresponding contributions
to X..x(t) contain no oscillating factor which could guarantee the convergence of the
integral in Equatior2.42 If the one-particle energy..,. is located in the vicinity of
one of the threshold singularities, the weight of the memory funckipp(t) is shifted
towardst = —oco and the usage of the Markov approximation poses a fundamental
problem since the slowly varying factors which appear in the integrands in Equations
2.36and2.37cannot simply be evaluatedat + anymore.

Numerical simulations, however, have shown that the behavior of the correction
terms near the thresholds has only a minor impact on the dynamics of the system,
as long as the real parts 6é.;, andde, are neglected. For this reason, only the
imaginary parts of the correction terms will be used in the following calculations in
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accordance with the usual procedure in the literatB6e43, 58]. It will turn out that

they suffice to avoid the unphysical results mentioned at the beginning of this section.
A more consistent solution of the whole problem might be obtained, if the complete
Non-Markovian expressions in Equatioag86and2.37were used.

2.4 Green’s Function Approach

Non-equilibrium properties of many-body systems have been described with the help
of real-time Green'’s function techniques since the beginning of the 1960s when Martin
and Schwinger{], Keldysh [8] and Kadanoff and Baynt] developed the underlying
formalism. During the last decade these techniques were employed extensively in or-
der to study the dynamics of the interband polarization and the carrier distribution in
semiconductors which are excited by strong ultrafast laser pulskslf this section
the description of the ultrafast time behavior of semiconductors on the basis of the
non-equilibrium Green’s function theory is outlined. The kinetic equations which are
derived within the framework of this theory can then be compared with the approxi-
mated equations-of-motion from Sectidr.

The unitary time-evolution operator, which determines the dynamics of the system,
satisfies the differential equation

i%U(t, to) = H(t)U(t,to) (2.44)

with the initial condition
Ulto, to) = 1. (2.45)

where the Hamiltonian
H(t)=H(t)+V (2.46)

has already been presented in Secfidn The first operator on the right-hand side of
Equation2.46

H(t) = H.(t) + HY, (2.47)
contains all one-particle contributions while the second operator
V = Hepp + Hee (2.48)

describes the interaction between electrons and phonons. Within the framework of
the time-dependent perturbation theory the time-evolution operator can be written as
follows

Ul(t,to) = Ult, to)T [e*"ftto dTV(”} (2.49)
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wherel (t,t,) is the time-evolution operator for the non-interacting particles wiiile
denotes the operatdf in the interaction picture with respect 16(¢). The expression

T|...] represents the time-ordering operator which arranges the operators so that the
operator with the latest time stands farthest to the lef©2 i§ an arbitrary operator of

the many-body-system, the following equation

O(t) = Ut (t, to)OU (1, ty) = Te [O(z)e*ifc Wﬂ] (2.50)

holds. The integration is now performed along the Keldysh confowhich runs
parallel to the real time axis fromy to t and back (see Figur2.2). The contour-
ordering-operatof; acts likeT', but here the order is based on the position of the time
variables on the Keldysh contour.

L
ty ] N
t, / o

7
—

Figure 2.2: The Keldysh contodr

The distribution functions for the electrons in the two bands and the inter-band
polarization can be calculated with the help of the electron Green’s function

Gty t2) = (=) (Telan(t) ), (t2)]) (2.51)
while the phonon distribution function is related to the Green’s function
Dy(t1,t2) = (—i)(Te b (t2)0] (t2)]). (2.52)

If the field operators which appear in EquatichS1and2.52are expressed with the
help of the perturbative expansion from EquatiiQ the following two relations

G (tr, t2) = (=) (Te[dba (bW, (t2)e~ e TV (2.53)
and
Dy(tr, ta) = (=i)(Telby(t1)B) (t2)e eV O)) (2.54)

are obtained. In general, the expectation values of the products of field operators which
appear on the right-hand sides of Equati@ris3and2.54 cannot be decomposed into
products of the two-time Green’s functions from Equati@risland2.52because the
statistical operator which describes the state of the many-body system at the initial time
to does not allow the application of Wick’s theorem. In that case the initial values of the
higher order correlation functions have to be taken into account when calculating the



20 CHAPTER 2. PHONON-INDUCED RELAXATION ...

different terms of the perturbation seri€&’]. Fortunately, a Wick decomposition of
all expectation values is possible within the framework of the model which is discussed
here. This is due to the fact that the statistical operator for the phonon subsystem from
Equation2.15is quadratic with respect to the operatbg;sandb; while the initial state
of the electron system is the free many-body ground state. Consequently, all techniques
which have been developed for the calculation of equilibrium Green’s functions can
also be applied here.

The Green'’s function for the electrons then satisfies the following Dyson equations

G>\1>\2l(t17t2) G)\1>\21(t1,t2 +Z/dTG)\101l(t1> )Ealagl( )GU2>\2l(T t2)

0102

+Z/dTl/deG/\lall(t1771)201a21(71,72)G02A21(727t2) (2.55)

0102

and

Grnults, ta) = G/\l/\gl(tlatQ +Z/dTG>\1ml(tla )Zalagl( )GozAzl(  t2)

0102

+Z/dTl/dTQG)\loll(t17T1>20'102l(TlaTQ)GUQ)\Ql(T27t2> (2.56)

0102

whereGiy, »,.(t1, t2) denotes the free Green’s function for non-interacting electrons. If
the electron-hole interaction is taken into account within the framework of the Hartree-
Fock approximation, the singular part of the self-energy satisfies the equation

Do) = O D Vaie(0) D> (0htor)s va — k) (WL, nn)e.
o k
(2.57)

The two terms on the right-hand side of Equatibh7are already known from Section
2.2where they were introduced as Coulomb corrections to the one-particle energy ma-
trix in Equation2.17. If the electron-phonon interaction is treated in the self-consistent
second order Born approximation, the non-singular part of the self-energy reads

2/\1/\2l t17t2 qu gq ZG}\l/\%l*Q(tlvt?) {DQ<t17t2) + D*Q(t%tl)} : (258)
q#0

In Figure2.3the diagrammatic representation of Equatib5is depicted where
the thick solid lines and the thick dashed lines denote the complete Green’s functions
for the electrons and phonons respectively whereas the thin lines denote the corre-
sponding free Green’s functions. The second and the third diagram on the right-hand
side of the equation are the Hartree-Fock contributions of the electron-electron inter-
action, which is represented by the dotted lines. The fourth and the fifth diagram are
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tl tl tli tl tli tli
T Tl-\ Tl-\
) \
A = + A + T + A } + A )
T 17 T,
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Figure 2.3: The Dyson equation for the Green'’s function of the electrons

due to the self-energy function from Equati®b8 The corresponding diagrammatic
representation for Equation.56 is obtained by replacing the external free Green’s
functions in the interaction diagrams with complete ones and vice versa.

The dynamics of the Green’s function for the phonons can be determined by means
of the following Dyson equations

D,(t1,ts) :[)p(tl,tz)+/cdﬂ/CdTZDp(tl,Tl)Hp(Tl,TQ)Dp(@,tg) (2.59)
and

Dy(t1, 1) = Dyt 12) + /C i /C A7 D, (ty, )L (r1, 72) Dy (72, t2)  (2.60)
where the polarization functiol, satisfies the relation

tla t2 Z gp gp Z ZGU102 k(Tla 7—2)G0201 k— q(T2> Tl) (261)

o102

within the framework of the self-consistent Born approximation.The diagrams which
correspond to the two terms in Equatidrb9are depicted in Figura.4.

t, t t, t t, TZQI1 ty
- — = — — = —_ — = — + — > -
Figure 2.4: The Dyson equation for the Green'’s function of the phonons

The differential form of the Dyson equations can now be used for the derivation
of a set of equations-of-motions for the density functions which is similar to the one
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which has been presented in Sectb@ In the case of the Green’s function of the
electrons the differential equations read

. d -
P Gt ) = O de(tr, ta) + Y Enoa(t1)Goxzulti t)

+> / ATY5 00 (t1, T) Gorga (T, t2) (2.62)
s JC
and

. d _
Zd_tzG)q)\g;l(tlatQ) = —0x.n0c(t1, t2) — ;50A2;l(t2>GAlo’;l<tlat2)

— Z / dTG)\lg;l(tl, T)ZU,\Q;l(T, tg). (263)
o C

If Equations2.62 and 2.63 are combined, the following equation for the electronic
densities

z'%(wizz%lm => {éxla;l(t)WLl%m — Epngu(t) <¢walz>t} (2.64)

(&

t
+ (1) Z/ dr {Z>>\10;Z<tﬂT)G§>\2;l(T7 t) — Eio;z(taT)G;,\%z(Ta t)}
o to

t
- (_Z) Z/ dT {G)>\10';l<t7 T)ch)\g;l(T7 t) - Gflo';l(u T)Ec?)\g;l (T7 t)}
o to

can be derived43]. The corresponding equation for the density functions of the
phonons is given by

i%@;bpﬁ = (—1) /to dr { D7 (t,7)IL5 (1,t) — Dy (¢, 7)IL (7,t) } (2.65)

t
- (—@')/ dr {02 (¢, 7) D5 (7. 1) — 115 (£,7) D2 (7. 1)}
to
Unfortunately, this system of differential equations for the one-particle densities is not
closed since the integrals on the right-hand sides of Equafidissand2.65 contain
two-time Green’s functions. In order to obtain a closed set of equations-of-motion
for the density functions, it is necessary to eliminate the two-point Green’s functions
by means of an approximation method which is usually called Generalized Kadanoff-
Baym Ansatz 1 §]. If this method is employed, the two-point Green’s functions for the
electrons are approximated with the help of the two relations

G§1>\2;l (th t2) ~ Z {<¢llw>\11>t1Gg)\g;l(tlv t2) - Ggla;l(th t2)<¢;2l¢0l>t2} (266)

g
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and

Gyt t2) = Z {Gilg;z(tht2)<¢az¢;21>tz — (a0 Gt t2)} (2.67)

(e

while the corresponding Green'’s functions for the phonons are replaced by the expres-
sions

D5 (t1,t2) ~ Di(ty, t2)<b;;bp>t2 — <b;bp>t1D;(t1, ty) (2.68)
and
qu@)ng@mx%gm—w%@Mngmy (2.69)

The retarded and advanced Green’s functions which appear in Equatiéasnd2.67
satisfy the equations

Gty ) = (=00t = ) { (Wra(t) el () + (L) era(t)) ) (2.70)

and

G gty ta) = (+0)0(t2 — t1) {(1?/\11@1)@\21(152» + <¢T\21(t2>¢)\1l<t1)>} . (2.71)

The corresponding definitions for the phonon propagatrand D“ read

Dy (ty,t2) = (—=i)0(ty — ta) {(bp(t1)b](t2)) — (bf(t2)by(t1)) } (2.72)
and

D3 (ty,ta) = (+0)0(ty — t1) {(bp(t1)b](£2)) — (B (£2)bp(t1)) } - (2.73)

The Generalized Kadanoff-Baym Ansatz gives the exact result, if the particles do not
interact with each other. Otherwise the expressions in Equafi@tto 2.69 can be
interpreted as the first terms in a perturbative expansion of the exact Green’s functions
where the correction terms take additional memory effects into accbgntJ).

The time behavior of the retarded and the advanced Green'’s function for the elec-
trons is determined by the following differential equations

. d r ~ r
Zd_hG,\l,\z;z@la ta) = 00 (tr —t2) + Z Exnoit(t1) Gyt ta) (2.74)

t1
+ Z /t dTERla;l(tl, T)GZ,\Q;Z(ﬂ ta)
o 2

and

N d a =~ a
Zd_tQGAMg;l(tla t) = —Oxpn0(ts — t2) = > Eorpa(t2) G5 u(ta, 12) (2.75)

(e

to
B / 45, (7, 12)GE (11, 7).
o t
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The derivation of these equations proceeds in the same way as the derivation of the
corresponding expressions for the complete Green’s function in Equ&ti6Asnd

2.63 Instead of solving the full equations self-consistently, however, the retarded
and the advanced self-energy, which appear as memory kernels in the integrals on the
right-hand sides of Equatior’s74and2.75 are approximated by the corresponding
free expressions

Mt t2) = 0t — t2)0n,pe 0 X (0 — 1) (2.76)
and
St (trst2) = O(t2 — t1)0x p, e’ 2 X (1 — ). (2.77)

Consequently, the integrals from Equati@ng4and2.75 which describe the influence
of the phonons on the electron relaxation, satisfy the following equations

t1 31 .
Z/ AT} 5 (t1, T)G oy, (T, t2) = / dr Xy (t — T)efml;l{tlfT}GglAg;l(7'7 t2)
o to to

(2.78)
and
to t2 .
Z/ A0, (T, t2)GS, pa (1, 7) %/ dTXL;l(tQ—7)6“*2?1{”_7}(}”}\1/\2#(tl,T).
o t1 t1
(2.79)

They have a similar structure as the integrals in Equato®8and2.37where the fast
oscillating exponential factors in the integrands compensate the free oscillating parts of
the retarded and the advanced Green'’s function. It is now possible to perform the same
approximations as in Sectiégh3which lead to the renormalization of the one-electron
eigenenergies and the appearance of damping terms. As far as the retarded and the
advanced phonon Green’s function are concerned, it is assumed that the influence of
the electrons can be neglected entirely and that the full propagators can be replaced by
the free ones.

After having performed these approximations the kinetic equations for the elec-
tronic density functions have a similar form as the expression in Equatidhif the
electron-electron scattering corrections are neglected. However, the first order phonon-
assisted densities are now defined by the relation

(W ey ratbp)e = ) / AT D5 (t, )G, 0t (t VG n i (To 1) (2.80)

102

< {92 (W} 1 oatip)r — 92 (WL 1) HBID,)-

+Z/ dTDT t,T) AQQQl( )Gglh;lﬂ)(T’t)

Q102

X {952< 1l+p¢g2l+p Z gp 1l+p¢0l+p>7<wil¢@2l>7}-
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By differentiating both sides with respectitthe following kinetic equation

d
Z%<¢I\1l+p¢)\2lbp>t = Wp<¢;1l+pw>\zlbp>t (2.81)

+ 3 Bt by = Eonraa () (L onaby)s

{2 Wlrpratsad — 93 WL ora | (B0
+ 91’3\2 (@D:r\lz+pl/)/\zl+p>t - Z gg <¢I\1[+pwal+p>t<¢i[¢/\2l>t

+ {56)\2;1 - 5631;l+p} <¢I\1l+pw)\21bp>t

can be obtained. The time behavior of the phonon distribution function which appears
on the right-hand side of Equati@81lis determined by the same differential equation
as in Sectior2.2

The system of kinetic equations which has been derived in this section corresponds
to a system of kinetic equations which has been derived by means of the equations-
of-motion method, if the electron-electron interaction is treated within the framework
of the Hartree-Fock approximatio3g]. In comparison with the results from Sec-
tion 2.2 two differences can be observed. First, the products of first order phonon-
assisted densities and ordinary electronic densities which appear in the collision term
(5(1/&1”,)%2161,)66 in Equation2.24 do not appear on the right-hand side of Equation
2.81 Inthe language of Feynman diagrams these terms can be identified as corrections
to the electron-phonon interaction vertex which are due to multiple electron-electron
scattering processes4]. In addition to that the two phonon coheren@e,b,); is
missing. However, the absolute value of this function is usually small in compari-
son with the phonon distribution function. Therefore the omission of the two phonon
coherence should not alter the dynamics of the system significantly. In this context
it should also be mentioned that the time behavior of the phonon functions is often
neglected completely by replacing the time dependent functions with their initial val-
ues B6, 43] without changing the results of the numerical calculations substantially.
The consequences of the neglect of the vertex corrections, however, have not been
the object of a closer investigation, yet. In the following, the dynamics of the system
will therefore be calculated by using the kinetic equations from Se&idwith and
without vertex corrections in order to find out if significant differences exist between
them.

2.5 Linear Response

It turns out to be useful to linearize the kinetic equations from Se&idwith respect
to E(t) in order to achieve a better understanding of the influence of the vertex correc-
tions. Within this approximation only the off-diagonal elements of the density matrix
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are dynamical quantities. The time behavior of the polariza(tjzdmd>t is determined
by the relation

gt = {ea = ot o0Vl + Val0) = VO 0

™ Z {gq vl¢cl—q q>t - gg<wll+q¢dbq>t}

q7#0

+ Z {gq vlwd‘i‘q >t - gq <77Dvl ql/}clb:;)t} . (282)
q7#0

The first order phonon-assisted densities which appear as source terms on the right-
hand side of Equatiof.82satisfy the equations

@%<¢Il_p¢czbl>t = —wro (!, vabl): (2.83)
+ {ect = euimp+ Y {Viul 1K) + Vio (0) = Ve 00} 0t}
k

+ n(wro) gl pba )i — gp (i |
- Z Voo (|1 = K| (0], LUekbl)s

and

@%<¢Il+p¢clbp>t = WwrLo <¢Z[+p¢clbp>t (2.84)
et = cutrn + Y _AVauol D) + Var(0) = Viu 0} 0 0tby):
k

+ {1+ np(wio) | {0l barne — g5 Wit |
- Z Vew |l - k| 7vZ)vk—Holbckbzv>t

where the correction terms have been omitted since they would not affect the results
of the following investigations. The optical states with no center-of-mass momen-
tum <wll¢cz>t are coupled to the two subspaces which are formed by the so-called
dark states{zﬁllﬂwdbpﬁ and <¢Il_p¢clb;>t by phonon emission and absorption pro-
cesses respectively. While the Hartree-Fock contributions lead to a constant shift of
the free one-particle energies the vertex corrections are responsible for the last terms
on the right-hand sides of Equati@83 and Equatior2.84 which are necessary for

the correct description of the excitonic scattering dynamics in the two dark subspaces.
Without them the pairs of conduction electrons and valence holes with a non-vanishing
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center-of-mass momentum would be treated as non-interacting particles unlike the op-
tically excited electron-hole pairs.

The kinetic equations for the first order phonon-assisted densities are equivalent to
the following integral equations

(Wi paby)e = (‘@%{1 + nB(WLo)} (2.85)

X Z/t dT{Glkap(p; t—71)— G;;rk(p; t— 7)}<¢Zk¢ck>T
k 0

and

(Wl abl) = (—i)%nfz(ww) (2.86)

t
X Z/t dT{Gl‘;Hp(p;t —7) = Gulpit - T)}<1/’Zk¢ck>7-
k 0

The Green'’s functions in Equatio@s85and2.86describe the dynamics of the first or-
der phonon-assisted densities in the absence of the electron-phonon interaction. They
obey the following differential equation

.d
G;; L (pit ZQ p)GE, (pit) (2.87)

with the initial condition
szf;b (p;0) = i1, (2.88)

If the long-range part of the electron-electron interaction in Equalidd vanishes,
the matrix elements read

U

0, (p) = 00, {E(l, £p) T wro} — ¥ (2.89)
The functionE(l, p) is defined by the relation
E(l,p) = €l — €yylyp T+ U (290)

= Eg(U) = T(p) cos(l + ¢(p))

and describes the energy of an excited electron-hole pair whose total momentum is
equal to—p where the band gap is shifted because of the electron-electron interaction.
The generalized hopping eleméhifp) and the phase shift functiop(p) satisfy the
equations

T(p) = 24/t2 + 12 + 2t t, cos(p) (2.91)
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and

B t, sin(p)
QO(p) = arctan <m) (292)

while the functionE¢ (U ), which determines the position éf(/, p) in the energy spec-
trum, is given by

Eq(U) = 2t, +2t, + A+ U. (2.93)

In order to solve the differential equation fdrlil;l2 (p;t), it is sufficient to solve the
corresponding eigenvalue problem for a conduction electron and a valence hole in the
presence of an attractive interaction. If the interaction function has only an on-site
component, the eigenenergies and eigenstates can be calculated analytically and the
explicit form of the Green’s functions is known:

Gz;b (p; t) = eiiwLOtGll;lz (p; t) = eiiWLOtulapyeiitH(p)‘l%p% (294)
G, (5 t) = €100 Gy, (—pit) = e ot (ly, —ple ™ Pl —p).  (2.95)

l1;l2
The definitions for the expressions which appear on the right-hand sides of Equations
2.94and2.95can be found in AppendiB together with the complete analytical so-
lution of the eigenvalue problem. If the long-range interaction paraniéteid not
vanish, the differential equation for the Green'’s functions could only be solved numer-
ically.

If the first order phonon-assisted densities in the differential equation for the in-
terband polarization are replaced by the expressions which appear on the right-hand
sides of Equation2.85and 2.86 the following integro-differential equation for the
components of the interband polarization

d U
iz (Wla)e = B(LO)Wla) — 5 > (Vle) —dE(t)  (2.96)
k
+> /OO dr St — 7) (] ben) -
k —00

is obtained in the limit, — —oo where the memory functiofy;, ,, (¢) satisfies the
relation

2
Stz (1) = (—z‘)gN {{1 + ngp(wro)Ye 0" + np(wro)e™ro'} (1) (2.97)
X Z {Gh;lQ (Q7 t) + thq;lQ*q(Q; t) - thq;lz (Qa t) - Gh;lg*q(Q; t)} .
q#0

The first three terms on the right-hand side of Equa8dit describe the undamped
dynamics of an optically excited electron-hole pair with a vanishing center-of-mass
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momentum while the last term is responsible for the decay of the excited state due to
phonon emission and absorption processes.

The expression in Equatich 96 could be used as a starting point for a detailed
numerical calculation of the linear response of the semiconductor. However, since the
interest is mainly focused on the effect of the vertex corrections, the integro-differential
equation for the interband polarization is now solved analytically by neglecting all
contributions to the polarization which come from the continuum states. Then the
dynamics of the components of the interband polarization only depends on the time
behavior of the excitonic state

(W ba)e = O Py (t) (2.98)

where the definition for the vector components of the excitonic eigenstate can be found
in AppendixB. By means of Equatio2.96 the following identity for the excitonic
polarization

Pul) =d 305 [ dria(t—nE() (2.99)
k, —0o

can be derived. The excitonic susceptibility,(¢) satisfies the differential equation

d

1 —Xez () = Wex(0) Xex oodTgex — T)Xeax(T 2.100
() =0+ [ SLt =Dl (2100)

with the initial conditiony.,(0) = —1. The explicit expression for the energy of
the exciton with no center-of-mass momentum(0) can be found in Appendi®.
The functionS,..(¢) is the diagonal element of the matif ., (t) with respect to the
excitonic state. It is given by

5uet) = (=) {1+ mp(wro)}e 5" +nplso)e™ o'} 6(t) (2100

X Z Z {CDZTHJ - (DZT} {q)zgzc—s-q - ‘I’Zf} le;kz (q; t)'

q#0 kiko

The integro-differential equation for the susceptibility.(¢) can be solved easily with
the help of a Fourier transformation:

1
W+ 10 — wer(0) — Sex(w +i0)

Xez(W) = /000 dTe™ Yen(t) = — (2.102)

If the electrons and phonons did not interact with each other, the denominator in Equa-
tion 2.102would simply describe a resonance at the exciton energi0). The in-
fluence of the electron-phonon scattering processes is taken into account by the self-
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energy functiorS,, (w + z’()) which is defined by the relation

Sea(w +10) Z D A%k, - e {on, — o}

q;ﬁO k1ko
x {14 np(wro) k1, q|G(g;w — wio +i0) |k, q)

g exr exr exr
Z Z {q)kﬁ-q - (Dkl} {q)k2+q q)k2}

q;ﬁO kiko
x np(wro)(k1, ¢|G(q;w + wio +i0)|ka, ). (2.103)

This self-energy function can be split up into the contributions of the phonon emission
and the phonon absorption processes. Both contributions have the same form, only
their prefactors and their positions in the spectrum with respegct1®) are different.
As the spectrum of the dark statesll +pz/;dbp>t is located above the exciton energy
their influence on the form of...(w) is negligible in comparison with the influence of
the dark stateg)!, plabl) e

In Figures2.5and2.6the functionS,,(w) has been plotted using the kinetic equa-
tions with and without vertex corrections for a system wiKh= 2000 elementary
cells. The model parameters are those which have already been listed in Settion
and the energy is measured with respect to the renormalized bandgap A + U.
The self-energy is only depicted in the vicinity of the enetgy(0) ~ —0.4wo Since
the form of x..(w) is mainly determined by the behavior of the denominator from
Equation2.102near the exciton energy. If the self-energy is calculated with the vertex
corrections, its imaginary part exhibits a sharp peak at the energy-0.9w.o. This
peak denotes the position of the upper edge of the excitonic band for the dark states
which are coupled to the optically excited exciton by phonon absorption processes.
For energies which are smaller than the energy of the lower edge of this excitonic
band W ~ —1.4wrp) the imaginary part vanishes because there exist no dark states
with a smaller energy. If the vertex corrections are not taken into account, this lower
threshold for the imaginary part is shiftedio= —w; o since the spectrum of the dark
stateswllfpz/;clb;)t is now similar to the spectrum of a free electron-hole pair with no
excitonic resonances. The peakwatc —0.4w; is due to the upper band edge of the
valence band. It is conspicuous that the singularity at the lower edge of the excitonic
band is not visible in Figur@.5. This is due to the fact that the differendg’ | — &;°
which appears as a factor in the two sums of Equatidf®3vanishes continuously in
the limit ¢ — 0. Consequently, the contributions of the excitonic states with eigenen-
ergiesw,(¢q) near the lower band edge & 0) are suppressed. A similar explanation
can be used in order to understand the missing singularity &t —w;o in Figure
2.6 where the lower band edge of the free spectrum of the dark s{hajp_%wdbpt is
located.

The effect of the self-energy corrections on the form of the susceptibility function
Xez(w) can be studied in Figur2. 7 where its imaginary part is plotted with and with-
out vertex corrections for two different temperatures. For comparison, the imaginary
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Figure 2.5: The excitonic self-energ@y, (w) in the vicinity ofw.,.(0) at the tempera-
turekgT = 0.8wro, calculated with vertex corrections
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Figure 2.6: The excitonic self-energy, (w) in the vicinity ofw,,(0) at the tempera-
turekgT = 0.8wro, calculated without vertex corrections
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Figure 2.7: The imaginary part of the excitonic susceptibility(w) at the tempera-
tures afpT = 0.4w; o and b)kpT = 0.8wy o, calculated with (solid line) and without
(dashed line) vertex corrections, the dotted line denotes the imaginary past(of)
in the absence of the electron-phonon interaction

part of the susceptibility for a free exciton is also plotted where a small broadening has
been added. If no vertex corrections are taken into account, the formation of a double
peak structure at the shifted excitonic resonance can be observed with increasing tem-
perature. This is due to the fact that the energy for the exciton with no center-of-mass
momentum nearly coincides with the energy of the upper band edge of the valence
band in the spectrum for the dark sta(&%l_pwdb;}t. If the vertex corrections are in-
cluded, the exciton peak broadens with increasing temperature, but no splitting can be
observed since the real and the imaginary part of the self-energy are only slowly vari-
able in the vicinity ofv..(0). The resonance structure which appears below the exciton
peak is due to the singularity of the self-energy at the upper edge of the excitonic band
of the dark states (confer Figuges).

The explanation for the resonance structure below the excitonic energy is corrob-
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orated, if the imaginary parts of the excitonic susceptibility functions for different
electron-hole mass ratiosare compared (Figur2.8). In agreement with analytical
results the upper band edge is shifted towards —w; o + w..(0) for decreasing

. If the hole mass is infinite, the excitonic band has no dispersion and only a sharp

resonance at = —wro + w,,(0) occurs.

A

-2 -15 -1
W,

Figure 2.8: The imaginary part of the excitonic susceptibility(w) at the temper-
aturekgT = 1.2w; o, calculated with vertex corrections far= 0.15 (dotted line),

x = 0.05 (dashed line) and = 0 (solid line)

In Reference 6] the imaginary part of the excitonic susceptibility function has
been calculated for the same model and the same parameters which have been used
here by solving the complete system of linear differential equations numerically with
the help of the Lanczos algorithm. The resulting curves are in good agreement with
the approximated ones from Figura§ and2.8 apart from small additional resonance
structures below the upper edge of the excitonic band for the dark M}gggbdbpt.

The comparison shows that the qualitative features of the linear excitonic susceptibility
are reproduced well within the framework of the diagonal approximation. In general,
this is not true P1].

The phonon emission process which is responsible for the relaxation of highly
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w

Figure 2.9: The imaginary part of the susceptibiliy(w) at the temperaturesT =
0.4wy,o for different continuum energiesu, = wp, — A

excited electrons can be studied more closely by calculating the susceptibility

1
@) = = T = e = Se(w + 0) (2.104)

for a continuum state with energy. (confer AppendixB). The self-energy function

Sk is defined in the same way as the self-energy for the exciton, only the coefficients
for the excitonic eigenvectoy, are replaced by the corresponding coefficients for
the continuum state with energy,, ®f. In Figure2.9the imaginary part of:(w) has

been plotted for different energies. If w, is smaller than a characteristic threshold
energywy, the spectral function is peaked sharply.at This corresponds to a slow
decay of the initial state. For energieswhich are in the vicinity ofv; one observes a
double peak structure which is due to the strong coupling between electron and phonon
modes. Fotw; > w; the spectrum exhibits a broad Lorentzian peak;aindicating

a fast decay of the initial state. The existence of this threshold energy shows that the
life-time of the continuum states is mainly determined by the influence of the phonon
emission processes. A fast decay of excited continuum states can only be observed, if a
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scattering into continuum states with a lower energy by phonon emission is consistent
with the classical energy conservation. For this reason, one would exgdedie equal
tow = wro + A + U. The observed threshold energy, however, is located above this
energy value. This discrepancy can be explained by the fackifial is the spectral
function for the electron-hole pairs. Consequently, the frequenfers to the pair
energy and not to the energy of the conduction electrons alone.

The phenomenon of the shifted threshold energy can be explained analytically by
calculating the susceptibility, (w) for non-interacting electrong/(= 0 andU = 0)
at zero temperature. Since the external field only excites electron-hole pairs with even
parity the components of the eigenvector which describes the optically excited state
with energyw,, = E(k,0) are defined by

1
OF = — {01h + 01.x} - 2.105
l \/5{ ik + 0Lk} ( )
If the self-energy function is evaluated at the resonance wy, the susceptibility is

approximately given by

1
N — : 2.106
Xk(w) w + 10 — WE — Sk(wk + ZO) ( )

In the thermodynamic limiby (wy, + i0) satisfies the equation

2 s
, g 1
S 0) ==— d
k(w +i0) 2T /_7r qwk +10 —Wro — €chpq T Euik
g (" 1
+ — dq (2.107)

2m —T Wy + 10 — WLo — €ck + €vik+q

and the imaginary part of the self-energy is only different from zero, if one of the two
following conditions

4t + A+ wro =€ > A +wro (2.108)
SA{tc+t, )+ A+wro{l+ Kk} > wp > A+wro{l+k}

and

4t@+wLO
Sa{tc+t,t+A+wo{l1+x7"}

—€pk = WLO (2.109)

>
> w2 Atwo{1+r7}

is met. If the parameters from Secti@nl are used, only the first relation can be
satisfied and the threshold energy is equalite- w;o{1 + «} in agreement with the
experimental results of Referen&d.
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2.6 Nonlinear Response

If the full nonlinear quantum kinetic equations are used to describe the response of
the system to an optical pulse, all electron and phonon densities have to be calculated
explicitly in contrast to the treatment within the framework of the linear response the-
ory where only the off-diagonal elements of the density matrix show a nontrivial time
behavior. After electron-hole pairs with zero center-of-mass momentum have been cre-
ated by the laser pulse the interaction of the electron-hole pairs with the lattice leads to
the creation and absorption of phonons with enesgy and nonzero center-of-mass
momentum electron-hole pairs. These processes are reflected in the time behavior of
the distribution functions for the electrons and the phonons.

0.10 i

0.05

0.00
0.10

0.05

0.00
0.10
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0.00

314 Tl
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Figure 2.10: The electron distributic{wlkwck)t for dwp = —0.4w;,0, calculated with
(solid line) and without (dashed line) vertex corrections

When calculating the dynamics of the semiconductor it is assumed that the electric
field E(t) is given by a pulse with a Gaussian profile centered-ai:

E(t) = £(t) cos(wpt) = 2ﬁA€_% cos(wpt). (2.110)

g
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Figure 2.11: The hole distributio(’kawik)t for dwp = —0.4wro, calculated with
(solid line) and without (dashed line) vertex corrections

As far as the interaction of the external field with the semiconductor is concerned,
only the resonant terms @f(¢) are taken into account (rotating wave approximation).
The Gaussian pulsé(t) has a full width at half maximum of\, = 0.3w.c in the
frequency representation which corresponds to a full width at half maximuiy ef
531wy = 2v/In 20 in the time representation. The strength of the pulse is chosen
such that the time integral fat€(t) gives5% of a 2r pulse which means that the
dynamics is studied in the weak nonlinear excitation regime. In order to study the
effect of the vertex corrections, the nonlinear dynamics of the system is investigated
for different detuningswpr = wp — A with respect to the renormalized band gap
A = A + U whose value is only affected by the on-site component of the electron-
electron interaction while a possible long-range part has no impact of the shift of the
band gap. The quantum kinetic equations are solved using an explicit Runge-Kutta
method of order four. The number of sites is set equdVte- 450. Concerning the
lattice temperature it is assumed thatl’ = 0.4w; 0.

If the excitation is tuned to the excitonic resonante{ = —0.4w;o ~ we,(0) —
A), the formation of the exciton can be recognized in the distribution functions for
the conduction electror@pikwckﬁ in Figure2.10and for the valence hole(sbvkwik)t
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Figure 2.12: The phonon distributiqrb;bp)t for dwp = —0.4wro, calculated with
(solid line) and without (dashed line) vertex corrections, the dotted line represents the
equilibrium distribution before the excitation

in Figure2.11 Due to the presence of phonons in the initial state the occurrence
of an absorption peak near = 17 for (¢Zk¢ck>t and neark = 3r for (ol )y

can be noticed. They result from the transition of optically excited bound electron-
hole pairs with the energy; = w.,(0) to scattering states with the energy =

wro +we:(0) which corresponds approximately to the free energy of an electron (hole)
with a quasi momentum &f = 17 (k = %w). This strongly suggests that the dynamics

is dominated by phonon absorption processes in which electrons and holes with a
guasi momentum near zero are involved. For larger times it is possible to observe
the appearance of additional peaks in the distribution functions for the conduction
electrons. They are located above= iw and can be interpreted as indicators for
multi-phonon absorption processes. All absorption processes are also reflected in the
phonon distribution functior?ibjobp>t. As it can be seen in Figur2.12 the number

of phonons decreases in the vicinity of= iw andk = %w in time. If the vertex
corrections are taken into account, the absorption peak of the exciton in the electron
distribution is more pronounced while the corresponding peak in the hole distribution

is almost entirely suppressed. These observations indicate the strong influence of the
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vertex corrections on the time behavior of bound electron-hole pairs in accordance
with the results for the linear response in Secob
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Figure 2.13: The electron distributiqld;lk¢ck>t for dwp = 4.5wr, calculated with
(solid line) and without (dashed line) vertex corrections

If continuum states are exciteél{r > 0), two different scenarios can be observed.
In Figure2.13the conduction electron distribution is plotted for an excitation far above
the band gapXvpr = 4.5wr0). Itis possible to recognize the successive formation of
three phonon replicas below the excitation peak which is located &be&@w. The
use of the quantum kinetic equations makes it possible to describe the development of
these replicas whose width decreases with increasing time. If the Boltzmann equations
were employed for the description of the dynamics, the width of the replicas would be
identical with the width of the original excitation peak7. In contrast to the elec-
tron distribution, the hole distribution (not plotted here) shows no replica structures.
This indicates that only the scattering of phonons and conduction electrons is respon-
sible for the decay of the excited state. The relaxation of holes by phonon emission
processes is suppressed since the width of the valencedband k4t. ~ 0.7w;o is
smaller than the phonon energy. Therefore the relaxation process for excitations far
above the band gap can be described well by using a one-band Mogd&t]|

If dwp is chosen to be smaller than,, the excited electron-hole pairs cannot scat-
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Figure 2.14: The electron distributiqwikwck>t for dwp = 0.6w; o, calculated with
(solid line) and without (dashed line) vertex corrections

ter into continuum states with lower energy by phonon emission and the dynamics of
the system changes significantly. As an example, the conduction electron distribution
for the detuningwp = 0.6wro ~ wro + Wez(0) — Ais plotted in Figure2.14. After

the pulse has been turned off the electron distributiohv..), changes only slowly.
Although a transition of the unbound electron-hole pairs to excitonic states with a fi-
nite center-of-mass momentum is allowed according to the rules of classical energy
conservation, the formation of an exciton distribution cannot be observed. The only
feature which indicates the presence of phonons is the small gain peakkaBoYe.

The vertex corrections have no significant influence on the dynamics for continuum
excitation. This can be explained by the fact that the continuum states for interacting
electron-hole pairs differ only slightly from free electron-hole states. Therefore the
vertex corrections do not lead to qualitative changes of the time behavior and can
be neglected when calculating the optical response in the weak nonlinear regime. In
this context it should be mentioned that even the Hartree-Fock corrections are often
neglected entirely when describing the relaxation of highly excited electron-hole pairs
since the qualitative features can already be understood well within the framework of
the free-electron picturetf).
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Figure 2.15: The electron distributiqny)lkz/zck>t for owp = —0.4wro andwpt =
207, calculated with the complete vertex corrections (solid line), the approximated
vertex corrections (dotted line) and without vertex corrections (dashed line)

The correction terms in the first four lines of Equat®24 contain sums over the
guasi momenta in the first Brillouin zone which have to be performed separately for
each phonon-assisted denswil,+pw21bp>t. The Hartree-Fock contributions, how-
ever, are only calculated once for each titneConsequently, if the nonlinear kinetic
eguations with the vertex corrections are used for the description of the dynamics, the
required computation time is considerably larger than the computation time which is
needed, if the vertex corrections are neglected. Since the numerical calculations in
this section are restricted to the weak nonlinear regime it seems suggestive to use a
simplified version of the vertex corrections instead of the complete ones in order to
reduce the computation time. In the following, the vertex corrections are therefore
approximated by the expression

5<¢;1l+p¢>\2lbp>ee = Z {5>\2;U - 5>\1;U} V>\1>\2(|k - l|)<wi1k+p¢)\2kbp>t (2.111)
k

where the electronic densities which appear as factors in the vertex corrections have
been replaced by their initial values. If the new simplified kinetic equations were
linearized with respect to the external fidldt), the equations-of-motion for the inter-
band polarization and the off-diagonal elements of the phonon-assisted density matri-
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Figure 2.16: The absolute value of the interband polarizaton kalk@bck)t for

dwp = —0.4wrp, calculated with the complete vertex corrections (solid line), the
approximated vertex corrections (dotted line) and without vertex corrections (dashed
line)

ces would be equal to the corresponding differential equations from Secfon

Figure 2.15 shows an enlarged version of the lowest graphic from Figui®
where the distribution function which is calculated with the approximated vertex cor-
rections from Equatio2.111has been added in order to find out if the discrepancies
between the two different systems of kinetic equations which have been used for the
calculation of the curves in Figurés10to 2.14 are mainly due to the different de-
scription of the dynamics of electron-hole pairs with a non-vanishing center-of-mass
momentum as in Sectiah5. A comparison of the three curves in Figrd 5shows
that the absorption peak at= iw which belongs to the electron distribution which
is calculated with the approximated vertex corrections is in good agreement with the
corresponding absorption peak of the electron distribution which is calculated with the
help of the complete vertex corrections. However, differences between the two distri-
butions can be observed in the region above this absorption peak. If the approximated
vertex corrections are used in the numerical calculations, the occupation numbers for
electrons whose kinetic energy is larger than the energy of the conduction electron with
the quasi momentur = ;7 and smaller than the threshold energy for absorption pro-
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Figure 2.17: The electron distributigwikwck>t for dfwp = —0.6w; o in the presence
of a long-range Coulomb interacti@d = U, calculated with (solid line) and without
(dashed line) vertex corrections

cesses in the continuum band £ w; ) are larger than the corresponding occupation
numbers of the electron distribution which has been calculated by using the complete
vertex corrections. For conduction electrons whose kinetic energy is larger than the
above-mentioned threshold energy this relation is reversed. The different behavior of
the two curves clearly shows the influence of the nonlinear terms in the complete ki-
netic equations. A convincing explanation for the differences is still lacking and would
certainly require a closer analysis of the specific impact of each individual term of the
vertex corrections.

The differences between the three systems of kinetic equations are also reflected
in the dynamics of extensive quantities such as the interband polarization of the probe.
The curves in Figur@.16depict the absolute value of the polarization which has been
calculated with the complete and the approximated vertex corrections and without ver-
tex corrections. It turns out that the polarization signal which has been calculated
without considering the vertex corrections decays much faster than the other polariza-
tion signals. This observation is in accordance with the results of the calculation of the
imaginary part of the excitonic susceptibility from Figt& where the curves which
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are calculated without considering the vertex corrections are considerably wider than
the curves which are calculated using the vertex corrections. If the curves in Figure
2.16 are subjected to a closer examination, it emerges that the absolute value of the
polarization which has been calculated using the quantum kinetic equations without
vertex corrections oscillates weakly with a frequency which is considerably smaller
than the phonon frequency; . This behavior can be related to the small side peak
in the curve in Figur@.7 which depicts the imaginary part of the corresponding exci-
tonic susceptibility. The polarization signals which are calculated using the complete
or the approximated vertex corrections show an almost identical time behavior. This
indicates that the dynamics of the two polarization signals is dominated by the linear
contributions which coincide exactly.

If the electron-electron interaction contains a long-range part, the principal differ-
ences between the descriptions with and without vertex corrections remain the same
although the dynamics of a system with a long-range interaction differs considerably
from the dynamics of the system which has been studied until now. In FigLvehe
distribution of the conduction electrons has been plotted where the parameter of the
long-range part of the electron-electron interactibis half as large as the parameter
for the on-site interactioy while the other model parameters are the same as before.
The detuning with respect to the band edés chosen such that the density of the
excited carriers assumes its maximal valdied{ = —0.6w;p). It turns out that the
differences between the distribution curves are even more pronounced than in Figure
2.10



Chapter 3

Nonlinear Optical Dynamics of
Systems with a Fermi-Edge
Singularity

In this chapter, the properties of the nonlinear optical response of n-doped semicon-
ductors are at the center of interest. The underlying principles are discussed using a
one-dimensional two-band model with linear band dispersions. Within the framework
of this model the response functions can be calculated exactly, even if the particles
interact with each other.

The structure of the chapter will be outlined now. In SecBahthe different parts
of the Hamiltonian which describes the two-band model are presented and discussed.
In Section3.2 it is shown how the Hamiltonian can be diagonalized in the presence
of the electron-hole interaction by introducing a new representation for the elementary
excitations of the many-body system with the help of boson operators. All opera-
tors which are crucial for the description of the system are then expressed within the
framework of the new bosonic representation. In Secid@the optical response of
the many-body system to the excitation by an external electromagnetic field is studied
within the framework of the time-dependent perturbation theory. The first and third or-
der response functions are presented in their most general form. Séctioontains
a detailed investigation of the properties of the linear absorption spectrum. Particular
emphasis is put on studying how the interaction processes influence the exponent of the
algebraic singularity at the Fermi-edge in the absorption spectrum. In S&ckitme
signals of a four-wave-mixing experiment with two excitation pulses are calculated for
varying time delays between the pulses. Itis studied whether the algebraic behavior of
the linear absorption spectrum is reflected in the nonlinear signals. In addition to that,
the influence of the finite life-time of the excitations on both the time-resolved and the
time-integrated four-wave-mixing signals is investigated. In this context, it should be
mentioned that the details of the calculation of the nonlinear response functions will
be presented separately in Appen@ikecause of their complexity.
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3.1 The Hamiltonian

The physical system whose optical properties will be studied in this chapter is de-
scribed by a one-dimensional two-band model with a completely filled valence band
and a conduction band whose states are occupied up to a Fermi énerffyis system

is excited by one or several light pulses creating pairs of valence holes and conduction
electrons.

If the energy of the additionally created conduction electrons is cloge; tand
if the interaction between the particles does not lead to the transition of conduction
electrons into states whose energy is much larger or smallerBhaonly the low-
energy excitations of the Fermi sea in the conduction band have a significant influence
on the physical properties of the system.

In this case, it is justified to employ the Tomonaga-Luttinger modleb] for the
description of the electrons in the conduction band. Within the framework of this
model it is assumed that the electron system consists of two sorts of electrons whose
energy dispersions are obtained from the energy dispersion of the conduction band
electrons by linearizing it with respect to the two Fermi points at —k; andk = k;.
Following Luttinger’s approach in his article from 1963,[both sorts of electrons are
assumed to have an energy spectrum which is not bounded from below. The ground
state of the system is then characterized by two infinite Fermi seas (see Fijuaed
the free Hamiltonian for the electrons is given by

Hf = vy /_ dx ! (2) {%% —kf}wer(x): (3.1)

3 d
+ vf/_ dz - !, (z) {—%ﬁ - kf} Yalz) :

L
2

Slisl

where the field operators for the two sorts of electrons are defined by the two equations

1 .
Verlo) =l 777 > e Hean 32)
k
and
: 1 — ikx
dalr) = lim - D ereleihrey. (3.3)

k

The colons in EquatioB.1 denote that the field operators are ordered normally with
respect to the ground state. It should be pointed out that the energy of the electrons is
measured with respect to the Fermi enefgy= vk;. In the following the electrons
whose energy dispersion has a positive gradient are referred to as right movers or right
moving electrons while the electrons of the other sort are called left movers or left
moving electrons.
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— ks Ky

Figure 3.1: Graphical representation of the two-band model

In order to keep the model as simple as possible it is assumed that the valence holes
have an infinite mass. Then their free Hamiltonian has the following form

H! = B, / dyilw)int) = B0 Y dle (3.4)

N’Ih

The description of the many particle system becomes both more complicated and
more interesting, if the repulsive interaction between the conduction electrons and the
attractive interaction between the conduction electrons and the valence holes is taken
into account. Since only the latter is responsible for the appearance of the Fermi-edge
singularity, the intraband interaction will be neglected in the following calculations.
The Hamiltonian for the electron-hole interaction satisfies the equation

v,
o

where backward scattering processes, which would lead to transitions of conduction
electrons from the left branch to the right branch and vice versa, have been omit-
ted. This approximation can be made plausible by the argument that these processes
are accompanied by large momentum transfers of the ordek 0br —2k, whereas

the linearization of the electronic energy dispersion was based on the assumption that
electron-hole scattering processes with a much smaller momentum transfer are dom-
inant. As the holes do not change their position because of their infinite mass, the

dz / dyolz —yl) : 61 (@)bu (@) GL)nly)  (35)

wIe M\h
LN M\h

dx/ dyv(|lx —y|) : (x)l/)el(x) : %t(y)%z(y)

ol
w\h
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operatorV can be interpreted as a one-particle potential for the conduction electrons
whose form is determined by the hole density.

The interaction between the external electromagnetic field and the many-body sys-
tem is treated within the framework of the dipole approximation using the Hamiltonian

Hp(t) = E(t) {P'+ P} = E@){P! + P} + E(){P] + R}. (3.6)

where the polarization operators are defined by the relation

P, = / do [ g — )i (0 (s) (3.7)

L _L
2 2

with ¢ = r,I. The coupling functiong:, are directly related to the dipole matrix
elements for the interband transitions. These coupling functions only depend on on
the relative distance between the electron positi@amd the hole positiop since it is
assumed that the system is excited homogeneously. Consequently, the electron-hole
pairs which are created or annihilated have a vanishing center-of-mass momentum and
the polarization operators are diagonal in kReepresentation:

P, — Z / " dp ()¢ e = 3 o (Wi (3.8)
2 k

In the literature, thé:-dependence of the dipole matrix elements is often neglected as
the excitation is usually restricted to a small region of the spectrum. This approxima-
tion, however, leads to the divergence of the total polarization signal. In order to avoid
this, the coupling functions are assumed to decrease exponentially for large positive
and negative values @f

fir(k) = e MRl = iy (< k). (3.9)

If the thermodynamic limit is performed, the functionsandy; assume the shape of
Lorentzian curves whose width is given Ry

1 A

o) = e7hn = — () = g (o), (3.10)

3.2 Bosonization

Due to the linear energy dispersion of the conduction electrons it is possible to calcu-
late the exact eigenstates of the many-body system in the presence of the electron-hole
interaction. To this end, the free electronic Hamiltonian

= va(k — ky) {CITWCIW — (1) } va (k + ky) {Cklckl <n21>} (3.11)
k
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is written with the help of the operatofg > 0)

7 2w
ber = 4 /L_q ; ok and by = ’/L_q ;CLH,CM, (3.12)

which obey bosonic commutation rules, and the number operators for the right movers
and the left movers

N, = Z {CLTC;W — <n2T>} and N, = Z {szckl - (n21>} ‘ (3.13)
k k

In the new representation the operakfff is given by the relation

Hy =3 vp {bl, by + b } + o7 {N2+ NP} (3.14)
q>0

As the bosonic operators commute with the number operators the two different terms
of which the free electronic Hamiltonian is composed can be discussed separately. The
first term can be interpreted as an infinite sum of harmonic oscillators and describes
the excitation spectrum for a system with a fixed number of particles. The second
term describes the change of the energy of the ground state, if particles are removed
or added. The advantage of the introduction of the bosonic operators becomes clear, if
the interaction Hamiltonian is written as follows

Z ch+qrck7" / i dye™" ¥ (y)n(y) (3.15)
q#0 3

TS g | "ty )
q7#0 )

where the Fourier coefficients of the potential are defined by the equation

L

0(q) = /EL dzv(|z|)e " (3.16)

2

and it is assumed that the homogeneous @t is compensated by the charge back-
ground. Obviously, the expression on the right-hand side of Equatiditan be sim-
plified considerably, if the electronic densities are written with the help of the bosonic
operators. The new representation of the operdttren reads

:/ L A > ora {25 )], + )by} U] (0)6n(y) (3.17)

T2 q>0

dy > g { Z;(y)qu} U (y)n(y)

q>0

dyV(y) v} () n(y)

+
.

NSNS

I
:\
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where the functior®,(y) is defined by

o(q) 27
o, (y) = 2 2T iy, 1

It has already been mentioned that the dynamics of the valence holes is not influ-
enced by the conduction electrons because of the infinite mass of the former. Therefore
it is justified to treat the position of a valence hole as a constant parameter, which
only determines the center of the potentifl: —y|) which is created by this hole. The
Hamiltonian for the conduction electrons then includes the potential opérator
which consists of linear combinations of the bosonic operaigrandb],,

In order to diagonalize the total electron Hamiltonian in the presence of an external
potential, it is necessary to introduce the following canonical transformation

S(y) = eI} il @ w} (3.19)

with the auxiliary operators
. 6(q) 'qy
= — —— ! D, ( 2
Xr(y) ZZ 27TUf€ 1/ ZZ (3.20)
q>0 q>0
and
xily) = =iy S0, qy\/ b = —i Y @i (y) (3.21)
q>0 q>0
The transformation behavior of the bosonic annihilation operators is given by

ST(y>bqu(y> = bm" - @Z(y), (322)
ST(y)quS(y) = by — q)q(y>‘ (3.23)
If the conduction electrons are exposed to the potential of a hole at the pagition

the electronic Hamiltonia#/§ + V.. (y) can be reduced to the free electron Hamiltonian
H§ by applying the canonical transformation from Equatioh®

S'(y) {H5 + Ve(y)} S(y) = Hg — £(0). (3.24)

The energy spectrum d@f§ + V.(y) has the same structure as the free spectrum. Only
the energy of the ground state is shifted by the valaéd) where the energy function
e(y) is determined by the equation

21 02
—QUfZ 27rvf 5 c0s(qy). (3.25)
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In the presence of two holes at the positignandy’, two canonical transformations
are necessary to diagonalize the total electronic Hamiltonian. The result is then given

by
S'(y)S (y) {HS + Vely) + Ve(y)} S()S(y) = H§ —22(0) — 2¢(y' —y) (3.26)

where the energy shift of the ground state depends on the relative distance between the
two holes. The result can easily be generalized to the case of three or more holes. For
the following calculations, however, only the relations from Equati®2g and3.26

are needed.

If the optical response of the system to an external laser field is calculated, it is
necessary to evaluate spatial correlation functions containing products of two and four
electronic field operators. To this end, these field operators are expressed with the help
of the bosonic operators as follows

1 . o x . )
wer (.T) _ _Lezxkf szxNT Uy-@lfor eupi(gv)eupr(m)7 (327)

1/161(517) _ iLeixkfeiZle Ulefi%:er eiap;(m)eiw(w) (328)

where the auxiliary fieldg,. () andy,(z) are defined by the equations

- 2m
— T i —aq iqgr |
op(x) = il{% i E e e quqT (3.29)

q>0
and
() = lim —i Z e e 2—7rb . (3.30)
a\,0 450 Lq 7

The unitary operator&/,. and U; which appear on the right-hand sides of Equations
3.27and3.280bey the following commutator rules

Uy, Nyt| = 80Uy, (3.31)
Uy, bgor] = [Us,b],,] = 0 (3.32)

with o, ¢’ € {r,(}. In addition to that they satisfy the anti-commutator relations
(U,,U}y=0 and {0, U} =0. (3.33)

Their introduction completes the operator algebra of the bosonic representation. A
more detailed discussion of the different aspects of the bosonization can be found in F.
D. Haldane’s comprehensive articler].
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3.3 Time-Dependent Perturbation Theory

In the following the excitation of the many-body system by an external field will be de-
scribed within the framework of the time-dependent perturbation theory. It is assumed
that the system is in the ground staf®) of the Hamiltoniandl = H¢ + H! + V

at a given initial timet,. That means that the valence band is completely filled while
the electrons in the conduction band occupy all energy eigenstates up to the Fermi
energyE;. The dynamics of the system for> t, is described by the Hamiltonian
H(t) = H + Hp(t). The corresponding time-development operafét, t,) satisfies

the equations

z’d%U(t, to) = {H + HF(t)} Ult, to), (3.34)
Ulto,to) = 1 (3.35)

If the operatoi/ is expanded in a Dyson series with respect to the opefatot), the
following equation

Ut to) = e -0AT [~y 4] (3.36)

can be derived (confer Equati@h49. The operatotH (t) representsd(t) in the
interaction picture with respect to the Hamiltonieh Equation3.36can be used as a
starting point for the calculation of the system’s linear and nonlinear response to the
excitation by the external field. D is an arbitrary operator of the many-body-system,
the following equation

(Q0]|O(t)|Q) = (Q|UT(t, to)OU (L, to)|Q0)
— (Qo|T¢ [(’)(t)e—ifc dﬂ?ﬂﬂ] 1) (3.37)

holds. The definitions for the contour-ordering-oper&toand the Keldysh contout
have already been given in Sectipm.

The optical response of the material is determined by the dynamics of the polar-
ization operatorP which can be calculated with the help of Equati®37. Since
the number operators for valence holes and conduction electrons commute with the
Hamiltonian 4 and since there are no holes in the ground st the perturbation
series forP contains only terms which are proportional to odd powers of the external
field £. The linear part of the polarization is given by

PO = (=) [ a0l PP (3.38)

to

while the part of the polarization which is proportional to the cube of the external field
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satisfies the following equation

PO (t) (3.39)

= (—i>3/ dTlE(Tl)/ﬁ droE(72) /T2 drs E(73)(Q| P(t) PT (1) P(72) P (73)|)

to to to

+(=i)? / dr E(m) / " B () / 75 B (73) (0| P(m2) P () P (1) P (7))

to to to

+ (—i)g/ dTlE(Tl)/n dT?E(H)/TQ dT3E(73)<QO|P( )P (Tl)PT(T2)PT(T3)|Qo>

to to to

— (=i)? / dnE(n) / dryE(72) / " B (1) Q| P(m) P() B () P (73)] ).

to to to

The two kinds of four-point response function which appear on the right-hand side
of Equation3.39 can be split up into connected and disconnected parts where the
connected parts are defined by the equations

(Qo| P(t1) PT(t2) P(t3) PT(t4)|Q0)c = (Q| P(t1)
— (Qo|P(th)

(t2) P(t3) P (t4)|Q0)

(£2)|920) (0| P (t3) PT (t4)|2)
(3.40)

Pt
Pt

and

(Qo| (1) P(t2) PT(t3) P'(t4)|Q0)c = (0| P(t:) P(t )PT(ts)PT(t4)IQo>
— (0| P(t1) PT(t4)[€2) (| P(t2) P (£3)[20)

— (Qo| P(t1) PT(t3)|Q0) (| P(t2) P (t4) ).
(3.41)

By inserting Equation8.40and3.41in Equation3.39it can be shown that only the
connected parts of the four-point response functions contribute to the signal. In anal-
ogy to the two-point response functions they diverge with the length of the system
L in the thermodynamic limit. As a consequence thereof the polarization density
p®(t) = L~ P®) gives a finite value fol. — oo.

The theoretical model for the solid which has been introduced is incomplete since
a number of interaction processes, which are responsible for the finite lifetime of the
electronic excitations, have been neglected (spontaneous photon emission, electron-
phonon-scattering, ...). Their influence is taken into account by inserting phenomeno-
logical decay terms for the one-hole excitatiohs)( the two-hole excitationsI...)
and for the pure electronic excitations,} in Equations3.38and3.39 The resulting
new equations foP") and P are

PW(t) = (—i) /t dre T=CTV B (1) (Qo| P(t) PT(7)|Q) (3.42)

to
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PO (3.43)

t T1
(i) / dre "= B(7) / drye o= B (1) / drye 1) (75)

x (Qo| P(t)P"(11) P(72) P (73)|Q0)c

t 1
+(—Z>3/ dTle_FO(t_TI)E(Tl)/ dTge_Fz(Tl_TQ)E(TQ)/ d7'36_rm(t_7—3)E(7'3)

x (Qo| P(12) PT(m1) P(t) P (73)|Q0)c

T2

t T1
+ (_1)3/ dTle—Fm(t—Tl)E(Tl) / d7_26—1"m(71—7'2)E<7_2) / dTge—Fm(TQ—Tg)E<7—3)

x (Qo| P(t)P(11) P'(12) P1(73)|Q0)c

T2

t t
- (—7/)3/ dTlerz(tTl)E(Tl)/ dTgerzz(tm)E(Tg)/ dTg@in(TQiTB)E(Tg)

to to to

x (Qo|P(11) P(t) Pt (1) P (73)|Q0)e.

3.4 Linear Response

The characteristic properties of the linear optical absorption spectrum of metals and
n-doped semiconductors have been the principal reason for the interest in the model
which has been presented in Secti®d. Within the framework of this model the
absorption spectruml(w) is related to the two-point response function through the
relation

A(w) = lim Im {% /O N dteiwte—“tmom(t)ﬁf(m|QO>}. (3.44)

L—oo

The total two-point response function is given by the sum of the corresponding re-
sponse functions for the left and right moving electrons. Due to the inversion symme-
try of the model these functions satisfy the equation

(Q| P, (t1) P (t2)|Q0) = (Qo| Pi(t1) B/ (t2)|0). (3.45)

Therefore it is sufficient to calculate the two-point response function for the right mov-
ing electrons. It is related to the spatial correlation function of the corresponding field
operators by the following identity

L L
(Q0| P (t1) P (£2)Q0) :/ dxl/ dyl/L dfz/Ldygur(xl — Y1)y (T2 — o)
- - 2 -2

X <?/~Jer($1,tl)&h(yl,t1)7;;(y27t2)1/~1;~($2,t2)>0 (3.46)

L L
2 2

|t~
Nyl
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where the brackets - - ), denote the expectation value with respect to the non-inter-
acting ground staté&),). As the Hamiltonian is diagonal with respect to the hole
states in the position representation the expectation value for the field operators of the
holes can be split off and the following equation

(Cer (1, 1) 00 (Y1, 1) D} (g2, t2) 00, (22, 12) o = (Pno (11, t1)¢£;0(y2’ t2))o
% <€it1H§wer(x1)e—i(t1—t2){H§+Ve(y1)}wZT(332)6_“2H§>0 (3.47)

holds. With the help of the unitary operator which has been introduced in S&Hon
the above expression can be transformed in such a way that only the free bosonic and
fermionic fields are needed to describe the dynamics:

(Wher (1) O (Y1, 1) 05 (Y2, 1) 0L, (w2, £2)) 0
_ ilti—t2)=(0) <¢h0(y1,t1)@/}h o(¥2:t2))o
x (e ’tlHower(m)S(yl)e IS STy, )l ()™ 2116)
= O o, 1) o, 12))o
X (Vero (21, 11)So (Y1, 1) SE (01, 12) )0 (22, £2) . (3.48)

By means of the Baker-Hausdorff formula and the commutator relations listed in Ap-
pendixD the following identity

<¢er(5617tl)iﬂh(yl,tl)?/fh(yz,t2)¢ (z2,t2))0 = 2H"(vs(t1=12).0)
w G (vpti=t2)=(z1=y1),=(21=y1))  G" (v5 (t1 —t2)+(w2—y1),(z2=Y1))

x e )0 (g, o(yl,tl)@/)h o(¥2,t2))o <¢er0($1>t1)¢ero(x27t2)>0 (3.49)

is derived. Consequently, the response function can be written as follows

(Qo| Py (t1) P (t2)|Qg) = e 12 (En(0)) 2H" (vs (11 =£2).0)

/dy/ ,d‘”l / 7dwr — ) (z2 = y)

G (s (ti—t2) = (21— y) (21-9)) (G* (vf (t1—t2)+(22—y),(2-Y))

Wero(ﬂﬁl, tl)wer o(T2,12))0- (3.50)

Since all functions are invariant with respect to the spatial translatidn®ne inte-
gration can be carried out by means of a suitable substitution:

T Q0| (0) PH(1)] ) = e B0 2H s (=)

Sl

X /i di"wr(fh)/ d$2ﬂr($2)<¢ero($1,t1)¢ero($27tz))o

2
> eG* (vs (t1—t2)—5»‘17—51)6G* (vy(t1—t2)+E2,22) . (351)
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As a consequence thereof, the thermodynamic limit can be performed easily and one
obtains

: 1 D D —i(t1— —€ *(vp(t1— Oodk—iv -
m Emo\Pr(tl)Pj(tzﬂQ@ = il —12)(En=e(0)) 2H" (v (1 t2)’0)/0 5 kv (ti—tz)
% /oo ditld(jl>6ik5¢1eG(il—vf(h—tz)ﬁh) /Oo di,Qd(i,z)e—ikfg6G*(£2+yf(t1—t2)@2)'

(3.52)
By using the auxiliary functions
sxir(ti,ta, ) = H*(vp(ty — 12),0) + G*(vy(t1 — t2) — z, —7), (3.53)
SX;l(tla tg, $) = H*(’Uf<t1 - tz), 0) -+ G*<Uf(t1 — tg) -+ Z, SL’) (354)
Equation3.52can be written in a more compact form
1 . . . . ,
Jm Z<90|Pr(t1)P:(t2)|QO> = ((Po(t1) B (t2))) = e~ (172 En=e(0)
*dk . & . . o0 L, ~
% / %elkvf(tQ*tl) / di‘ld(i‘l)elkxl esx;r(t17t27$1) / di,2d<b%2)e*lkxzesx;r(tQ,tl,.%2)
0 —c0 —oo

— o Hti—t2)(En—e(0))

X /Oo Z—keik”f@z’tl) /OO Ay d () )e~ ko1 gsxaltita,dy) /OO dEod(ig)eF2exalt2t1,2)
0 T —00 —00
(3.55)

Generally, the two-point response functions cannot be calculated exactly because it
is usually impossible to give the explicit solutions for the multi-dimensional integrals
which appear in Equatio8.55 Therefore all exact expressions have to be approxi-
mated in order to obtain usable results.

If the auxiliary functions which appear in Equati@55 are slowly varying in
comparison with the function&(z,) andd(z,), it is justified to evaluate them at the
positionsz; = 0 andz, = 0 respectively. The condition is met, if the interaction
potential is almost constant on the length scale which is determinad lbyhe Fourier
transform of the potential satisfies the equatign) = e, this requirement is
equivalent to the relatiol > A. It should be pointed out that the approximated
versions of the response functions are still exact, if the interaction potential vanishes.

The approximated two-point response function for the right-moving electrons sat-
isfies the relation

(P (t) B (t2))) ¢ e Br—eO) o (120 g5 (1212)
X (27Ti)_1(vf<t1 — tg) — 2Al)_1 (356)

where the last two factors result from the integration with respect to the wave vector
All terms which are due to the electron-hole interaction can be combined in a factor in
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front of the non-interacting response function. As long as the difference between the
two external time variables is large compared with the width of the Lorentzian curve
(|t1 = to] > v;lA) the form of the response function is hardly affected by the finite
extension of the dipole coupling function.

It has already been mentioned that the linear absorption spectfumis directly
related to the two-point response function from Equa8dst If the particles do not
interact with each other, the absorption function is given by

1 —2A (w—wyp)

Alw) =O(w —wp)—e ~¥f (3.57)

in the limit ', — 0. The function exhibits an absorption edge at the threshold energy
wr = FEj, and decays exponentially far > wy. In the presence of the electron-hole
interaction the exact time behavior of the two-point response function depends on the
actual form of the interaction potential|z|). However, it is possible to give a general
approximation for the response function with the help of the results from App@&ndix
if t> azﬁvjjl. The approximated response function then satisfies the relation

(PO P10)) = (2mi) 1z 1ROy ) =14, (3.58)

T

For large times the interaction contribution to the response function exhibits a power-
law behavior with an exponent, which satisfies the equation

5(0) ., 7%(0) 2
=2 2 =2Vy + 2V} 3.59
“ 27y * (2mvy)? 0=V (3-59)

The complex constant is given by= e*#t2c¢iz>, Asitis assumed that the electron-
hole interaction is attractive, the interaction amplituge= (2“7521) is negative. Con-
sequently, the exponentsatisfies the relation > —0.5 where the minimal value is
assumed, ifi; = —0.5. If the relations—1 < 1, < 0 are valid, the total response
function decays more slowly than'! and the expression fot(w) exhibits an asym-
metric algebraic singularity at the shifted threshold energy= E;, —<(0) in the limit

I', — 0. Ifitis assumed that the approximated expression for the two-point response

function in EquatiorB.58is exact, the absorption function satisfies the relation

1 e*euat2ee () — wr\“
Alw) = @(“_“T)EP(HQ) ( o T) (3.60)

whereI'(...) denotes the gamma functiofi][ It can be shown that the difference
between the exact absorption function and the expression on the right-hand side of
Equation3.60 remains finite in the vicinity ofu;. Therefore the above expression
offers a good description of the leading behaviordl,) near the threshold.

If the interaction amplitudé; is smaller than-1, the integral in Equatio.44re-
mains finite for all frequencies, if the damping constant, is set equal to zero. Then
the absorption spectrum near the threshold depends on the dynamics of the two-point
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Figure 3.2: The linear absorption spectrutfw) for different interaction amplitudes
Vo > —0.5, the excitonic damping constant is given By = 2 x 10~ %v;A~! and the

width of the interaction potential i5 = 1000A

response function for all values ofand it is impossible to derive a general approxi-
mation for the frequency behavior df(w) near the threshold which only depends on
the interaction amplitudéy;.

The exponeni which determines the behavior of the absorption function near the
renormalized Fermi-edge at = wy is composed of two terms whose influences on
the sign ofa are diametrically opposed to each other.

The first term, which is proportional to the interaction amplitideis responsi-
ble for the singular behavior of(w) for small negative values dfy. It is due to the
interaction of the excited electron, which departs the valence band and becomes a con-
duction electron, and the hole which appears in the valence band as a consequence of
this transition. A closer analysis of the expression for the two-point response function
in Equation3.56shows that the term stems from the auxiliary function

The second term, which is related to the auxiliary funcitbns proportional to the
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square of the interaction amplitudg and leads to the suppression of the singularity

for large negative values df. It is related to the exponent of the so-called orthogo-
nality catastrophe, the disappearance of the overlap between the free ground state of
the many-body system and the ground state in the presence of a hole potential in the
thermodynamic limit9, 50]. Within the framework of the Tomonaga-Luttinger model

the overlap is given by

~2
f — 300X (0]~ L [xr (0),xE(0)] _ B 21 9%(q)
<Q(]|S (0)’@0> — e 22Xl X1 e 22X X = exp { q§>0: Lq (27rvf)2 (361)

where it is assumed that the valence hole is located at 0. The behavior of the
overlap in the thermodynamic limit can be determined, if the expression on the right-
hand side of EquatioB.61is written in the following way

52(0)

T2 — 92%(0)e 2 | G0
(Q|ST(0)|%) = exp {— 3 2—(] <q)(2mf§§> } {1 - e_T} . (3.62)

q>0

In the thermodynamic limit the value of the overlap satisfies the equation

=2

(2/81(0)[92) = exp {— | %@2@(2; f§0>} {2%}<—(; (3.63)

and vanishes liké "5,

In Figures3.2and3.3the absorption spectrum(w) is plotted for different values
of the interaction amplitude and a non-vanishing excitonic damping constant using the
expression on the left-hand side of EquatibhB6 When calculating the curves it is
assumed that the interaction potentifl:|) satisfies the equation

g A
o)) =~ 55 (3.64)

in the thermodynamic limit wheré, < 0 and\ > 0. The Fourier transform of

the potential is then given by(q) = @e M. The special form of the interaction
potential makes it possible to give the exact form of the auxiliary funct@rend

H (see AppendibD for details). The width of the interaction potential is chosen to

be much larger than the width of the dipole coupling functiohsst A). This is
consistent with the assumption which has been made when approximating the exact
two-point response function from Equati@55 The values ofl; which are used

for the calculation of the curves in FiguBe2 are chosen from the interval-0.5, 0]
whereas the functions in Figu®3 have been calculated with values & which

are smaller or equal te-0.5. If the interaction amplitude approachés = —0.5

from above, the absorption edge singularitwat wr becomes steeper. The trend is

reversed for smaller values &f and the singularity is suppressed entirelyjf= —1.
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Figure 3.3: The linear absorption spectrutfw) for different interaction amplitudes
Vo < —0.5, the excitonic damping constant is given By = 2 x 10~%v;A~! and the
width of the interaction potential i5 = 1000A

This behavior can be explained satisfactorily by means of the approximated expression
for A(w) in Equation3.60 since the exponent which determines the grade of the
singularity assumes a minimal valuelgt= —0.5 and is a symmetric function df,
with respect to this point. A comparison of the different absorption functions shows
that the curves in Figur8.2 do not have the same form as their counterparts with
the same exponent in Figure3.3. This is due to the fact that the functieff=+2¢
exhibits no inversion symmetry with respectitp= —0.5.

Finally, it should be pointed out that the general interpretation of the absorption
function A(w) with the help of Equatior3.60is only possible, if the excitonic damp-
ing is weak enough to allow the observation of the algebraic decay of the two-point
response function in Equati@¥44 In order to illustrate this, the functiofi(w) is plot-
ted for different values of , in Figure3.4where the form of the interaction function
is determined by Equatiod.64 and the interaction amplitude is given by = —0.5.
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Figure 3.4: The linear absorption spectrutiw) for different excitonic damping
constantd’,, the interaction amplitude is given By, = —0.5 and the width of the
interaction potential i3. = 1000A

As expected, the absorption edge is suppressed, if the value of the damping constant
is increased. If the model parameters are similar to those which have been used in
this section, the Fermi-edge singularity can be observed, provided that the excitonic

damping constant satisfies the relation< 10~"v; A",

3.5 Nonlinear Response

The general expression for the part of the polarization which is proportional to the cube
of the external field (see Equatid143 can be used for the description of different
kinds of nonlinear optical experiments. In this work it is employed in order to study
coherent transient effects in a four-wave-mixing experiment whose experimental setup
is shown in Figure8.5. It is assumed that the external figl¢) is composed of two
pulsesE (t) and Ey(t) with

Ey(t) = E(t) cos(wt — k1 R) (3.65)
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and
Ey(t) = E(t +T) cos(wt — Ky R). (3.66)

These pulses propagate into different directions which are determined by the wave
vectorsk; andk,. The vector? denotes the macroscopic position of the electronic
system and determines the phase difference between two arbitrary points of the probe.
It should not be confused with the microscopic positions of the electrons or holes.
The central frequency is chosen to be equal to the threshold enevgywhile the
envelope functiorf () is assumed to have a sharp peak at 0. If the rotating wave
approximation is applied, only the resonant term#&/in(t) are taken into account and

the following operator

Hp(t) =~ E*(t)P' 4+ E(t)P (3.67)
with
E(t) = %em {5@)@—“515 FE(t+ T)e—i’?ﬁ} (3.68)

is used for the description of the matter-field interaction.

s
N
AN o

T 2?1' RZ

Figure 3.5: The standard setup for a four-wave-mixing experiment with two excitation
pulses

As long as the delay timé' is of the same order of magnitude as the decay times
of the systemI(;7 ~ 1 with ¢ = 0,x, zz) the coherent superposition of the two
pulses in the nonlinear regime leads to the generation of several additional outgo-
ing signals whose wave vectors and frequencies are determined by the corresponding
phase matching conditions. In the following the investigation is concentrated on the
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signal which propagates in thd, — ko-direction. It is proportional to the following
contribution to the nonlinear polarization

3 (_i)3 —i(wt—(2k1—k2)R
Pyl () = Sy B (3.69)
t T1 )
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In most cases the four-point response functions which appear on the right-hand side
of Equation3.69 are too complicated to allow the exact calculation of the multi-
dimensional integrals. However, if the response functions and the decay terms are
slowly variable in comparison with(¢), the envelope function can be treated as a
function and the integrals can be performed exactly. If the delayTinsepositive, the
four-wave-mixing signal is then determined by the relation

PY (1) = @(t)(_2—?36"'<WT—<2131—’?2>§>6—FIT (3.70)
y {e_{rIJrFo}t<QO|]5(_T)PT(0)]5(7§)PT(O) Q)¢
B e{FI+Fzz}t%<Qo|p<_T)p(t)PT(0)pT<O)‘QO>C}

whereas the signal for negative delay times is given by

J— ) 3 . T n 53
PY (#)=0(+ T)(Z—Q)B—ZwT—(%l—kz)R)eFmT (3.71)
1 - - ~ ~
o {e—rx(t-&-T)§<QO|P(Z§)P(_T)PT(O)PT(O)|Qo>c
1 - ~ ~ ~
B ef{rﬁl“m}(tJrT)i(Qo‘ P(-T) P(t)PT(o)PT(O)!Q())c}.

Generally, the detector which registers the four-wave-mixing signal only measures the
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time-integrated intensity, which is proportional to
.1 2
W(T) = lim ﬁ/ d| le (t)| : (3.72)

The only parameter of the experiment which will be varied in the following is the delay
time between the two pulses.

If the particles do not interact with each other, the exact four-point response func-
tions can be calculated easily since a system of free conduction electrons and valence
holes is only a collection of independent two-level systems with different transition
energies. In the thermodynamic limit the intensity of the polarization is given by

1 1 1

(3) 2 _ _
Jm 7 SIPY (0 = emer) @r)i 16 (ot — o T2+ (aAe o7

and the time-integrated four-wave-mixing signal is proportional to

B 171 (1 1 v T
W(T)=0(T) (7)1 64 0,A {5 + - arctan (E) } , (3.74)

if all decay terms are neglected. It is well known that the time-integrated signal for
free two-level systems vanishes completely, if the delay time is negative.

In the presence of an attractive electron-hole interaction the four-point response
functions which appear in EquatioBs/0and3.71can be calculated in a similar way
as the two-point response functions in Sectiof It emerges that the most important
new feature which has to be taken into account is the influence of the relative distance
between the two valence holes which are created by the external pulses. In contrast to
that, the position of the valence hole which appears as a parameter in the expression
for the two-point response function in Equati8rb0has no impact on the properties
of this response function due to the homogeneity of the external excitation. This fact
can justify the description of the valence hole as an object without a structure when
calculating the linear response of the systéi§ [L4, 12, 15, 16]. However, it should
be kept in mind that the nonlinear response functions for such syst&thsliffer
essentially from the nonlinear response functions which are presented here.

Since the calculation of the four-point response functions is much more extensive
than the calculation of the two-point response functions the details of this calculation
are presented in Append& The intensity of the four-wave-mixing signal is approx-
imately described by the relation

1 ; 1
(3) 2 44 . 4 ) 2 2
Lh_r)go ﬁ|P2E1—E2(t)| ~ (27T)4|z| {sin*(7Vp) + 4sin®*(w (Vo + Vy)) cos® (7o) }
X |va|_2(1+o‘)|Uft]_2ae_2px(t+T)e_2F‘”‘t (3.75)

in the thermodynamic limit, it > |T'| and|T| > x;,v;l. If a is negative, the time
behavior of the signal intensity is determined by the diametrically opposed influences
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of the factort—2*, which increases algebraically, and the faetof?'= 2=z}t which
decreases exponentially. The latter ensures the convergence of the time integrated
signal.

If it is assumed that the intensity of the four-wave-mixing signal is equal to the
expression on the right-hand side of EquatBon5 the time-integrated signal satisfies
the equation

1
W(T) = 2 |2|* {sin*(7Vp) + 4sin’ (7 (Vo + V) cos*(nVp) }
« |UfT‘72(1+a)(2Fx + 2F$m)2a711};2a
x {O(T1)e™*TT(1 - 2a) + O(-=T)e* **"T(1 — 2a, —(2T, + 2T',,)T) }

(3.76)

whereTl(...,...) denotes the incomplete gamma functioh [Although the approxi-
mated intensity of the signal from EquatiBr75only depends on the absolute value
of the delay timel’, the functionlW (7") is not symmetric with respect 6 = 0. This
is due to the fact that the lower boundary for the time integration in Equ&tioh
depends on the delay timeg if T is negative, while it is independent @f for positive
delay times. Aslong ak; ! >> |T'| andl';;! >> |T'| the behavior of#V(T') is dominated
by the algebraic decrease with the exponefl + «) and the differences between
positive and negative delay times can be neglected. For larger delay times, however,
the influence of the exponential facters’ =7 ande? =7 becomes dominant.

Since the approximated expression for the time-resolved four-wave-mixing signal
from Equation3.75should only be used, ffis much larger than the absolute value of
T, the function on the right-hand side of Equatii@6can only be accepted as a good
approximation for the exact time-integrated signal, if the delay time is much smaller
than the excitonic and biexcitonic relaxation times. In order to illustrate this statement,
the complete time-resolved four-wave-mixing signal, which has been calculated with
the help of Equation€.38to C.43 is plotted for different damping constants and
fixed positive and negative delay timésin Figures3.6 and3.7. The form of the
interaction potential is the same as in Secttoh Concerning the decay terms it is
assumed that the biexcitonic damping consiantis twice as large as the excitonic
damping constarit, [51] while the electronic damping constdris set equal to zero.
Both assumptions could be modified without changing the results qualitatively. If the
inequalityl',T" < 1 holds, the time area where the signal shows a power-law increase
gives the dominant contribution to the time-integrated four-wave mixing signal for the
positive and the negative delay time. If the damping is stronger, the weight of the signal
for the positive delay time in Figur@6is shifted towards the strong resonance peak at
t = |T'|, which is already present in the case of non-interacting particles (see Equation
3.73. The weight of the signal for the negative delay time in Figdi&s also shifted
towardst = |T'|, but the shift is less pronounced due to the absence of a resonance
peak. In both cases the description of the time-integrated four-wave-mixing signal with
the help of the approximated expression from Equa8of6 becomes questionable
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Figure 3.6: The intensity of the time-resolved four-wave-mixing signal for the delay
timeT = 16000v;1A and different excitonic damping constarts, the parameters
for the interaction potential ang) = —0.375 and\ = 1000A

since the signal is suppressed far |T'|.

In Figure3.8the complete time-integrated four-wave-mixing signals are plotted for
the interaction amplitud®&, = —0.375 and different damping constants. In the case
of a weak damping the function is symmetric with respecf’'te- 0 and its decrease
for large positive and negative values is described by a power law. If the damping
is stronger, the time-integrated four-wave-mixing signal for positive delay times de-
creases more slowly than the time-integrated signal for negative delay times since the
dominant contribution téV (7") for ' > 0 comes from the resonance peak mentioned
above whose amplitude does not depend on the delayZimnethe same way as the
total signal for large times. If the delay time is negative, the most important contri-
bution to the time-integrated signal still comes from the part of the signal which can
be described by the approximated expression from Equatithbecause of the ab-
sence of a resonance peak. Consequently, the funidtiéh) still shows a power-law
decay. The total intensity, however, is reduced because of the stronger damping. If the
exponential decay has suppressed the algebraic decay entirely, the typical form of the
time-integrated four-wave-mixing signal is similar to the dotted curve in Fi§use
For negative delay times the logarithm1df(7") decreases linearly with the prefactor
2I",... This behavior can be related to the fact that the corresponding polarization signal
in Equation3.71contains a prefactar ==, As the four-wave-mixing signal for posi-
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Figure 3.7: The intensity of the time-resolved four-wave-mixing signal for the delay
timeT = —16000v;1A and different excitonic damping constaiiits the parameters
for the interaction potential ang) = —0.375 and\ = 1000A

tive delay times in EquatioB.70has an exponential prefacter'=7, the logarithm of

the time integrated signal should decrease linearly with the prefa@by. However,

this behavior can only be observed for large positive delay times. For smaller positive
values ofT" the functionW (T') decreases like~2{'==+2=}T This can be put down to

the fact that the dominant contribution to the time-integrated four-wave-mixing signal

for small positive delay times comes from the signal in the vicinity of the resonance

peak at = 7" whose amplitude decreases likgl? = +1==17",

In Figures3.9to 3.12the complete time-integrated four-wave-mixing signals for
different interaction amplitudes and different delay times are plotted together with the
corresponding approximated curves in order to illustrate the limits of validity of the
approximated expression from EquatiBry6in the case of weak damping. Since
the decay of the time-integrated signals for large positive and negative delay times
can be described by a power-law, double logarithmic plots are used for the graphical
representation of the data.

If the delay times are negative, the exact values for the time-integrated signals
agree very well with the approximated ones (see Figargéand3.10 although minor
differences can be observed for small negative delay times. However, these deviations
can be explained by the fact tHatwas assumed to be considerably larger or smaller
than zero when deriving the approximated expression for the four-wave-mixing sig-
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Figure 3.8: The time-integrated four-wave-mixing signals for different delay times
T and different excitonic damping constarts, the parameters for the interaction
potential ardf, = —0.375 and\ = 1000A

nal. The corresponding plots for positive delay times which are depicted in Figures
3.11and3.12also show a good agreement between the complete time-integrated sig-
nals and the approximated ones apart from the curves for the interaction amplitudes
Vo = —0.125 andV, = —0.875. In both cases the damping is still too strong so
that the contributions to the time-integrated signals which are related to the short time
dynamics of the time-resolved four-wave-mixing signals cannot be neglected.
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Chapter 4

Summary and Outlook

In Chapter2, the relaxation behavior of optically excited electron-hole pairs in a one-
dimensional semiconductor, which are coupled to longitudinal optical phonons with
an initial lattice temperaturé > 0, was studied with the help of quantum kinetic
equations. They were derived within the framework of the density matrix formal-
ism in the self-consistent Born approximation of second order (with respect to the
electron-phonon interaction). Apart from Hartree-Fock-like Coulomb contributions,
these equations contain additional Coulomb terms, the so-called vertex corrections, by
which the influence of the electron-electron interaction on the electron-phonon scat-
tering processes is taken into account. An alternative system of kinetic equations was
derived with the help of non-equilibrium Green'’s functions following the presentations
which are found in the literaturé §]. A comparison showed that the kinetic equations
which are formulated within the framework of the non-equilibrium Green’s function
formalism do not include the vertex corrections mentioned above.

The additional Coulomb terms are essential for a correct description of excitons
with finite center-of-mass momenta. This became clear when the imaginary part of the
linear susceptibility for excitonic excitations was calculated neglecting the influence
of the optically excited continuum states. When the vertex corrections were taken into
account, the imaginary part of the susceptibility was dominated by one resonance peak
whose width increased with temperature. When the vertex corrections were neglected
the width of this resonance peak became considerably broader, and it was possible to
observe the formation of a double peak structure with increasing temperature.

The differences between the results can be traced to the fact that the form of the
susceptibility function in the vicinity of the excitonic resonance is predominantly influ-
enced by phonon absorption processes. The two systems of kinetic equations provide
different descriptions of the energy spectra of electron-hole pairs after these absorption
processes in which the pairs, whose initial center-of-mass momenta after the optical
excitation are always zero, assume finite center-of-mass momenta. If the linear dy-
namics is described with the help of the kinetic equations without vertex corrections,
these electron-hole pairs are treated as free particles. In contrast to that, the kinetic
equations, which include the vertex corrections, allow the complete description of the
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interacting electron-hole pairs after the phonon absorption.

For comparison, the linear susceptibility functions for continuum excitations were
calculated using the quantum kinetic equations with vertex corrections. They exhib-
ited no significant differences from the susceptibility functions for non-interacting
electron-hole pairs. This indicates that all Coulomb terms have only a minor impact
on the dynamics of unbound electron-hole pairs in the model considered here.

The results of the investigation of the linear susceptibility were confirmed by cal-
culating the time behavior of electron and phonon densities for different detunings
in the weak nonlinear regime. When the excitation was tuned to the exciton reso-
nance, the additional Coulomb terms led to qualitative changes of the time behavior in
comparison with the results which were obtained within the framework of the ordinary
Hartree-Fock approximation. For continuum excitations, however, the additional terms
had no significant influence on the time behavior in accordance with the correspond-
ing results for the linear response. The nonlinear dynamics for excitonic excitations
was also calculated using a simplified version of the kinetic equations with vertex cor-
rections which had been adapted to the situation in the weak nonlinear regime. As
expected, these equations gave similar results as the kinetic equations with the com-
plete vertex corrections.

The numerical studies of the linear and nonlinear response indicate that the vertex
corrections have to be included in the kinetic equations if the time behavior of the
system is dominated by the excitonic excitations. On the other hand, it seems justified
to neglect their influence when describing continuum excitations, at least in the weak
nonlinear regime. Independent of that kind of optical excitation, however, it is always
necessary to take the vertex corrections into account if one intends to describe the
excitonic effects in a consistent way. It seems justified to assume that the results for the
one-dimensional semiconductor form a good basis for further studies, which could, for
example, deal with the role of the vertex corrections in the quantum kinetic equations
for higher dimensional systems.

The linear and nonlinear optical response of a one-dimensional n-doped semicon-
ductor with two bands was studied in ChapserWhile the energy dispersion of the
valence band was chosen to be constant, the dispersion of the conduction band was
linearized with respect to the two Fermi points. In the calculations, only the attrac-
tive interaction between the conduction electrons and the valence holes was taken into
account, whereas the repulsive interaction between the conduction electrons was ne-
glected in accordance with the approaches found in the literatGre §]. The intro-
duction of the linearized dispersion for the conduction electrons made it possible to
describe the eigenstates and eigenenergies of the free conduction electrons within the
framework of a bosonic representation. Within this bosonic representation, it was also
possible to describe the conduction electrons in the presence of the attractive potential
of one or several valence holes by mapping the Hamiltonian of the interacting system
on the free Hamiltonian with the help of a unitary transformation.

The optical response of the many-body system to the influence of an external elec-
tromagnetic field was then calculated by expanding the total polarization in a power



73

series with respect to the intensity of the external field. The expressions for the lin-
ear contribution and the first nonlinear contribution, which is proportional to the third
power of the external field, were given explicitly. The influence of dissipative pro-
cesses was taken into account by introducing phenomenological damping constants
which ensured the convergence of the signals in the large-time limit.

When studying the linear response, attention was focused on the characteristics of
the absorption spectrum, which could be calculated exactly within the framework of
the bosonic representation. The calculations showed that the absorption spectrum in
the vicinity of the Fermi-edge is dominated by an asymmetric algebraic singularity
providing that the strength of the electron-hole interaction does not exceed a critical
value. These results are in good agreement with the results presented in the literature
[15].

The exact third-order response functions were calculated in a similar way as the lin-
ear response functions. They were used for the description of a degenerate four-wave-
mixing experiment with two excitation pulses. When calculating the time-integrated
four-wave-mixing signal for a specific propagation direction as a function of the delay
time between the pulse§,, it emerged that the decay of the time-integrated signal
is symmetric with respect t&6' = 0 and can approximately be described by a power
law providing that the delay times are small in comparison with the decay times. As
it turned out, the exponent which describes the algebraic decay of the time-integrated
signal is functionally dependent on the exponent of the algebraic singularity in the lin-
ear absorption spectrum reflecting the common origin of the different phenomena. If
the delay times are of the same order of magnitude as the life-times of the optical ex-
citations, the picture changes considerably and the decay of the time-integrated signal
is dominated by an exponential damping.

The investigation of the optical response of the exactly solvable one-dimensional
model showed that the well-known characteristic features of the linear response func-
tions can directly be related to features of the nonlinear response functions. Based
on the results of Chapte; further studies can now deal with various subjects. For
example, one could calculate the response functions with the help of approximation
methods 85, 44, 59 and compare them with the corresponding exact expressions in
order to test the quality of the approximations. One could also study if the nonlinear
time behavior of higher dimensional models shows similar features as the dynamics
of the one-dimensional model presented here. Finally, the dissipative processes could
be incorporated in a way which goes beyond the phenomenological description which
was used in this work.



Appendix A

Kinetic Equations of Higher Order

The calculation of the correction terms in Sect@B requires the knowledge of the
kinetic equations for the correlated parts of the second order phonon-assisted densities
from Equation®.25and2.26 They are given by

d c c
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if the different contributions are arranged in the same way as in the case of the kinetic
equations for first order phonon-assisted densities. The collision terms are defined in
EquationsA.3 to A.6 (see below).

When deriving these equations it has to be taken into account that the expressions
on the right-hand sides of EquatiofAsl andA.2 do not contain all terms which appear
in the corresponding expressions for the complete second order phonon-assisted den-
sities after a factorization of the density functions. This is due to the fact that the latter
also contain terms which coincide with terms which appear in the kinetic equations
for the products of electron and phonon densities on the right-hand sides of Equations
2.25and2.26

This phenomenon is characteristic for the kinetic equations of all correlation func-
tions which are not equal to their counterparts among the complete density functions.

74



75

In Reference42] it was interpreted as a consequence of the so-called linked-cluster
theorem.

The explicit form of the two collision terms which describe the influence of the
electron-phonon scattering processes is determined by the equations
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The sole contributions which are necessary for the calculation of the correction terms
dec, andde,, are those which are proportional to the first order phonon-assisted den-
sities. Therefore only the functions in the first five line of EquatiérandA.4 have
to be considered. The remaining terms would become important, if the influence of
higher order corrections with respect to the phonon-coupling congtaas taken into
account.

The second collision term from Equatiénl, which satisfies the relation
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describes those contributions of the electron-electron scattering processes to the dy-
namics of(wLHerp,wapbp/)C which cannot be written as corrections to the one-
particle energy matrix. When deriving the correction tedag; these contributions

are neglected completely together with the dynamical Hartree-Fock contributions. In
order to describe at least the excitonic effects correctly, it would be necessary to con-
sider the terms in the first four lines which bear resemblance to the terms in the first
four lines of Equatior2.24 This observation also applies to the corresponding colli-
sion term for the second order phonon-assisted density fun@ﬁhpw,_pgbmb;bp/)c,
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Appendix B

The Exciton Problem for a Separable
Interaction

The eigenvalue problem which has to be solved when describing the linear response of
the semiconductor in Chapt2ris equivalent to the eigenvalue problem of an excited
electron-hole pair in the presence of an attractive separable interaction. The corre-
sponding Hamiltonian reads

H=Y H(p)=> {Hp)+V(p)}. (B.1)

The form of the components of the free Hamiltonidg(p) is determined by the rela-
tion
Ho(p) =Y _ |k, p)E(k, p) (k. p| (B.2)
k

where the vectofk, p) denotes the product state which is formed by a conduction
electron with quasi impulsgé and a valence hole with quasi impulsék + p). The
operators which describe the electron-hole interaction are given by

Vip) = —|2(p)U{(p)| (B.3)

where the normalized vector which appears on the right-hand side of EqugaBon
satisfies the equation

1B(p)) = %NZ Ik, p). (B.4)

Due to the translational symmetry of the problem the subspaces for different center-
of-mass momenta decouple and the eigenvalue problem can be treated separately for
each subspace. The resolvent equation for the states with a total momeptueads

G(p; 2) = Go(p; 2) + Go(p; 2)V (p)G(p; 2) (B.5)
= Go(p; 2) — Go(p; 2)|@(p))U(2(p) |G (p; 2)
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where the resolvent operators are defined by the equations

~

Go(p;z) = {z — Ho(p)} ", (B.6)
G(p;z)={z—H(p)} . (B.7)

Since the potential is separable in each subspace Equgabaan be solved explicitly.
The solution satisfies the relation

) ) ) U
G(p; z) = Go(p; 2) — Go(p; 2)|@(p)) 1+ U(®(p)|Go(p; 2)|®(p))

(@(p)|Go(p; 2)
(B.8)
where the expectation value in the denominator of the second term is given by

1

(®(0)|Colp: 2)|B()) = 1 S

) (B.9)

In the thermodynamic limit the sum is replaced by an integral and one obtains

@EICorO0) = 5- [ I (B0

In Section2.5the resolvent has to be evaluated on the real axis withw + 0.
The integral from EquatioB.10 can then be calculated explicitly. Depending on the
position of the energy in the spectrum, the value of the integral is either purely real
or purely imaginary:

. 1
T(p) <w—Eg(U) V (w=Eg(U))2=T2(p)

(@(p)|Go(p;w +i0)|®(p)) = § T(P) > lw — Ea(U)] N Tmmr
T(p) < EG(U) —w : \/(waG(_Ul))Q,TQ(p)
(B.11)

At a certain pointy = w,,(p) below the lower band edge of the continuum states the
resolvent(p; z) shows a resonance which indicates the existence of a bound electron-
hole state (exciton). As the position of this resonance is determined by the equation

U(®(p)|Go(p; wes (p) +10)|®(p)) = —1 (B.12)

the value ofu..(p) can be calculated explicitly with the help of Equatiriland one
obtains the relation (confer Referenéé))

Wez(p) = Eq(U) — \/U2 + 4{t. + t,}% — 16t.t, sin2(§). (B.13)
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The excitonic energies for different center-of-mass momenta are arranged in a cosine
shaped band. If the model parameters from Se@itmre used, the distance between

the bottom of the exciton bandat= w.,(0) and the lower boundary of the continuum
statesaty = A + U iSw,,(0) — A — U = —0.4wro. The total width of the exciton

band is then given by, (7) — we,(0) = 0.5wro.

In order to calculate the susceptibility functions in Sect®§ it is necessary to
know the coefficients of the eigenstates of the Hamiltonfianvhich belong to the
subspace of the electron-hole pairs with a vanishing center-of-mass momentam (

0). If the eigenenergy of one of these eigenstatpg is not identical with one of the
eigenvalues’(k, 0) of the operatoi,(0), the following equations

Elx) = H(0)[x) +V(0)lx) < [x) = Go(0; E)V(0)[x) (B.14)

and
OX = (1,0]y) = u d(0 ! B.15
l—<7|X>——\/—N<()|X>m (B.15)

hold. The eigenenergies can then be determined by calculating the scalar product
(®(0)]x) with the help of Equatiom.15:

@O = UY 5 5—fag 0N © (8.16)

1 1 1
—— = — B.17
U N E — E(k,0) ( )
k
The number of solution& for EquationB.17is equal to the number of different eigen-
values of the operataf/,(0). The smallest solution for the enerdyis identical with
the energy of the excitoR' = w,,(0) < E(0,0) while each of the other solutions

E%ﬁ)<E_wk<E%+%§ﬁ) (k > 0) (B.18)
lies between two neighbouring eigenvaluegfgf0). The coefficients for the eigenvec-
tor which describes the excitonic stade” = ([, 0|w...(0)), and the coefficients for the
eigenvectors which describe the continuum states with the energi®$ = (I, 0|ws),
are all invariant under an inversion of the system. The other eigenvectors of the opera-
tor H(0) have an odd parity, their coefficients satisfy the simple equation

a 1
) = Z5 0=} (k2 0), (B.19)
These antisymmetric states are not excited by the external pulse and can therefore be
neglected.



Appendix C

The Four-Point Response Functions

In this chapter of the appendix the four-point response functions, which determine
the form of the four-wave-mixing signal, are calculated. In order to obtain a better
overview, this chapter has been divided into two sections. In the first section the exact
expressions for the different types of four-point response functions are derived. As
the derivation of these functions is similar to the derivation of the two-point response
functions in Sectior®.4, only the most important interim results are presented here. In
the second section it is shown that the exact expressions can be simplified considerably
by means of approximations, if the dipole coupling functiim) and the interaction
potentialv(|xz|) meet certain requirements.

C.1 Exact Expressions

The four-point response functions which appear in Equai@d can be split off into

32 different terms, if the total polarization operatdfsand P’ are expressed with

the help of the corresponding operators for the right and left movers. Fortunately,
only twelve of these terms give a non-vanishing contribution since the Hamiltéhian
conserves the number of both right and left moving electrons. Because of the inversion
symmetry of the system these twelve functions satisfy the following equations

(Q| P (1) Pl (t2) P, (t3) P (t4) %) = (| Pi(t1) B (t2) Pi(t3) P (t4)1Q%),  (C.1)
(Qo| P (t1) Pl (t2) Po(ts) P (ta) %) = (Qo| Pi(t1) P (t2) P (t3) Pl (t4)|Q%),  (C.2)
(Q| P, (t1) P (t2) Pu(ts) P (t4)|20) = (Q0| Pi(t1) Pl (t2) P (t3) Pl (t4)| %) (C.3)

(Q| Py (t1) Py (t2) P (t3) P (£4)|0) = (Q0| Py(t1) Pi(t2) P (t3) P (t1)| ), (C.4)
: 1(t4)|Q%),  (C.5)
f(t4)| Q). (C.6)
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Therefore, it is sufficient to calculate the response functions on the left-hand sides of
EquationsC.1to C.6.

In the following the response functions which appear in Equatidigdo C.3are
referred to as excitonic four-point response functions since they describe transitions
between the subspaces with no and one valence hole. Correspondingly, the functions
in EquationsC.4to C.6 are called biexcitonic four-point response functions because
they describe processes in which two electron-hole pairs are created and annihilated. In
order to calculate the four-point response functions, it is necessary to know the expec-
tation values of the corresponding products of field operators which can be evaluated
exactly with the help of the auxiliary functions introduced in Apperdix

The excitonic response function on the left-hand side of Equaiidrdescribes
processes in which only pairs of valence holes and right moving electrons are cre-
ated and annihilated. The spatial correlation function which is related to this response
function satisfies the following equation
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The auxiliary functionSy.,,, has been introduced in order to obtain a compact expres-
sion. It is defined by the relation

Sxrr(ti ta, ta, ta; y's 21, T, y) = H (vp(t — ta) — ', vp(th — t2) — ¥/
ts —ta) + 9, vp(ts —ta) +¢)
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(v( ) + X9, vp(ty — ta) — y + x2).
(C.8)

+

¥
=
=

)
)

The excitonic response functions on the left-hand sides of EqualidendC.3rep-
resent processes which involve the creation and annihilation of both left and right
moving electrons. The corresponding spatial correlation functions are given by
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and

Wer (21, 00D (Y1, 1) 0F (Y, ta) D] (2, ta) bt (3, t3)0n (s, t3) 0] (ya, La) L, (24, t4) Yo

:esx;r(tl,tg,{rl yl)esx;l(tmh,wz y1)€sx;z(t3,t4,xs y4)esx;r(t47t37$4 ya)

Sxir1(t1,3,t2,4591 — Y4581 —Y1,23 —Ya,y1 —Ya) , 5%y (ta,t2,83,81391 — Y4524 —Ya,22—Y1,—Y1+Y4)
X e e

x !ttt O (o (g1, 1)k 0 (Y2, £2) )0 (Vo (Y3, t3) k0 (4, )0
W’ero(xht1)@/’ero($47t4)>0<¢11;0($2,t2)¢el;0(373’t3)>0' (C.10)

The new auxiliary functions which have been introduced in Equati®8sandC.10
are defined by the two relations
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and
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Due to the structure of the excitonic response functions there exists only one way
to combine the hole operators. Therefore all spatial correlation functions share the
common factor

<wh;0(y17 tl)w;rL;O (y27 t2)>0<¢h;0 (y?n t3)¢2;o(y47 t4)>0‘

If all four electronic field operators belong to the same sort of electrons, two different
pairings of the operatorg,, and«] _ are possible, as can be seen in Equa@ion On

the other hand, the expressions for the correlation functions in Equ&tidasdC.10
contain only one combination of electronic pair functions since field operators of both
sorts of electrons appear in the corresponding operator products.
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The biexcitonic response function on the left-hand side of Equaiidncan be
calculated with the help of the spatial correlation function

<7756r(x17 tl)d;h(yla tl)@zjer ($27 t?),@z}h(y% tZ)QZ;(y?n t3)¢~) ($37 t3)wh(y47 t4)¢ (ZL’4, t4)>

— i(t2=t3)2e(y1—y2) psx i (B ta,1 —y1) o5 x;r (t2,83,02—Y2) o8 1 (13,02,03—y2) 8%, (tast1, 22 —y1)

. @Sxx;rr (t1582,84,83;91 —Y2;81 —y1,2—Y2,y1—Y2) o % x 1 (F4:83,81, 025y 1 Y250 —Y1,85 —Y2,y1 —Y2)

x ettt O (o (g, )0k (ya, a) )0 (Vnio (Y2, 12) U)o (Y3 £3)) o
< A (Wero(@1, 1)U 0 (T4, 1) Yo (Werso (2, 1)L 0 (3, 83) Do
<¢er0($1>t1)¢ero($3>t3)> <wer 0($2at2)wer 0<x4at4)>0}

+€(t2 t3)2e(y1— y2)€5X,'r(t17t37$1 yl)eSX;r(t21t4vz2 y2)esx;r(taytl,m—yl)65};,,(75477527364—1/2)

5 X xrr (t15t2,83,04391 —y2581 —y1,82—Y2,91=Y2) o5k x;p (T4:03,02,815Y1 —Y252a —Y2,03—Y1,~ Y1 +2)

x eiltta=ta=ta)eO) (o (4 1 )0)f 0(U3:t3))0 <¢h0(y2>t2)w;;o(y4at4)>0
X { (Ve (@1, 1)) 0 (3, 13) )0 (Vero (2, t2)1] 0 (4, 14) o
<¢ero(131,t1)¢ero($47t4)> <1/’er0($2,t2)¢ero($3,t3)>o} (C.13)

where the auxiliary functioS’x x., is given by

Sxxpr(ti,ta, ts, tasy's w1, w0,y) = H (vp(ty — ta) — y', vty — t2) — ¢/)

+ H*(vf(t2 — t3) — y/avf(tl — 1) + )

+ G (vp(ty —ta) —y — w1, 0p(ty — t2) —y — 1)
+ G (vy(t2 — t3) + Y — T,y — T2)

+ G (—y + 22, v5(t1 — ta) —y + x2). (C.14)

Unlike the case of the excitonic correlation function in Equatidi, there are two
different ways to contract the four hole operators of the biexcitonic correlation function
in EquationC.13 Therefore the different terms on the right-hand side of Equ&tidB
contain either the factor

(o (W1, t1) ko (Y, ta)) o (WYnio (Y2, t2)10}0 (U3, £3) o
or the factor

(Vno(yr, th;TL;o (Y3, t3))0(Vn0(y2, t2)w2;0(y47 ta))o-

The same is true for the biexcitonic response functions which describe mixed excita-
tion processes. For example, the spatial correlation functions for the response func-
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tions on the left-hand sides of Equatidd$ andC.6 satisfy the following equations
(Cer (1, £0) 0 (Y1, 1) Vet (T2, t2) 0 (Y2, )0} (5, t3) 0L, (w3, t3) 0 (ya, ta) ]y (@, t4) Yo

_ ei(tz—t3)25(y1—y2)eSX;r(h7t3,1‘1—y1)6SX;l(t2,t4,502—y2)653(;r(t3,t1,Is yl)esx;l(m,tzu y2)

w eSX X1 (t,t2,t3,04391 —y251 —y1,22—Y2,91-2) 5% x 1, (ta,ts t2,t1391 —y2;24—Y2,23—Y1,~Y1+Y2)

x e/ttt =ta)e(0) (Vs o(y1,t1)@/)h (Y3, t3))o <¢h~0(y27t2)¢;;o(y4,t4)>o
<wer O(xlv tl)wer 0(373, t3)> <wel 0(x27 t2)1/fez 0(5647 t4)>

— it2=t3)2e(y1-y2) psxir(tr,ta,@1—y1) s x(t2,ts,02— yz)esx;r(t&tz@:s—yz)65§;l(t47t1,$4—y1)

w edxxiri(titz tastsy1—y2;1 —y1,82—y2,y1-Y2) o Sx x 11 (ta,t3,t1,t2;91 —Y2;T4—Y1,23—Y2,Y1—Y2)

x Tt o (g1, )k (Y, 1) o (Um0 (Y2 t2) U0 (Y3, 3) Do
Wero(%l,tl)wero(%,t?,))owez;o( T2, 2)¢Zl;o(x4,t4)>o (C.15)
and

<77Z)er(x1, tl)izh@l, tl)l/;el(xm t2)15h(y2, 752)1;2(,@3, t3)?z (3, t3)1/)h(y4, t4)¢ (24, t4))0

— ilta—t3)2e(y1—y2) o5 x;r (b1 ta,1—y1) psx(ta,ts,w2—y2) o8 (ta,t2,23—y2) 8%, (B4, t1,2a—Y1)

w edxxri(tte tastsyr—y2;1 —y1,22—y2,y1-Y2) o Sx x (ta,t3,t1,t2;91 —Y2;T4—Y1,23—Y2,Yy1—Y2)

x e!(httz=ts—ta)e <wh0(ylatl)wh 0(Ya;t4))o <¢h-o(y27t2)¢fi;o(y3at3)>0
<wero(x1,t1)wero(a?4,t4)> wezo(ﬁfz,tzwezo(x&t?)»

_€(t2 t3)2e(y1— y2)esx,r(t1,t3,ﬂc1 Y1) gsx;i(t2,ta,za— y2)esx;l(t37t1,963—?11)68};T(t47t27904—y2)

w eoxxr(tt2,t3,ta5y1 —y2521 —y1,82—Y2,91-Y2) o5 x ;0 (ta,ts t2,t1;91 —Y2;04—Y2,23—Y1,~Y1+Y2)

x Ottt O (o (y, 1)1k (U3, 15))0 (Vnio (Y2, 12) )0 (yas £4) o
X (Ve (1, 1) 0 (4, a) Yo (Pero (w2, 2)1h]0 (23, t3))o. (C.16)
Here, the auxiliary functions are defined by the two relations
Sxxi(ti, ta, t3, tas y's 21, 20, y) = H (vp(ts — ta) — ', vp(ts — t2) — o)
+ H*(vp(ta —t3) — ¢, vp(ts — t2) + )
+ G (vp(ty —ta) —y — 2, vp(ty — o) —y — 1)
+ G*(Uf(tz —13) =y + x2, —y + T2)
G*(y — xo,vp(ty — ta) +y — 2) (C.17)
and
Sxxar(tista, ts, tas y's 01, 22,y) = H (vp(t — ta) — ¢, vp(t — ta) — ¢/)
+ H*(vp(ta — t3) — v, vp(ts — t2) + )
+ G (v(ty — ta) +y + @1, v(t1 — t2) +y + 1)
+ G (vp(ta = t3) +y — T2,y — T2)
+ G (—y + z2,vf(t1 — ta) —y + x2). (C.18)
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As the number of the possible contractions of the electronic field operators in biexci-
tonic correlation functions is equal to the number of the possible contractions in the
corresponding excitonic correlation functions the former always consist of twice as
many terms as the latter.

The four-point response functions can be calculated by integrating the correspond-
ing spatial correlation functions with respect to all position variables. The connected
parts are then obtained by applying the definiti@0and3.41 In the case of the
excitonic response function which is related to the spatial correlation function in Equa-
tion C.7the procedure yields the following formula

A %(Qo|15r(751)Pj(b)ﬁ-(t:s)fs:(%)|Qo>c = ((P.(t1) B (t2) P (t3) Pl (t4)))
= ((Po(t2) Pl (t2) Po(t3) PI(ta))) + ((Po(t2) Pl (t2) P (t3) Pl (ta))) ] (C.19)

in the thermodynamic limit where the two contributions on the right-hand side of Equa-
tion C.19are defined by the relations

(P

(1) P () Pr(ts) Pl (14)))7 = o7 (0t ml(Eme(0)
y /oo d Zkvf to—t1) /Oo djleikjld(il)esx;,.(tl,tz,gzl) /Oo di‘geﬂlkbd(fz)es}”(t%tl752)

C

—00

()
%) dk 0 o } 0 . . }
% / zkvf ty—t3) / d:i,3€zkmgd(‘%3)€sx;,.(t3,t4,w3) / d.i‘4€_lkx4d(l‘4)esx?r(t4’t3’x4)

—00 —00

o0
« / dy eSxirr (1583582, ta5y581,83,) o S (Lst2,3, 0139384, 22,—y) 1} (C.20)

—i(t1—ta+tz—ts)(Ep—e(0))

(P (1) Pl (t2) Py (t5) P (ta)
Lgee L
[

% / dye i(k+k) yeSX rr(t1,t3,t2,t45y5%1,83 y)e j)ﬁ(;rr(t‘l’t??t&tl?9;54752’71/)_ (C21)
—oo

>>II

C
[o.¢]

~ ~ N e . N

zie 1)63X;T(t1’t2’x1)/ dz,e ’k“d(m)esx:r(t“’t?”“)

5336

—00

T
o
ikTo ~, Sx-r(tg,tzl,ig) ~, 71;]76533 ~, 8% (tz,tl,fg)
d(z3)e®x diase d(zq)e*xir

—00

The main difference between them consists in the form of the integrals with respect to
the variabley which can be identified as the relative distance between the two valence
holes which are created by the two polarization opera®i(s,) and P (t,).

The integral with respect tg in the first contribution is independent of the wave
vectorsk andk which are related to the free electronic two-point functions appearing
in EquationC.7. In addition to that, the integrand contains a terrh which comes
from the product of two-point response functions which is subtracted from the total
four-point response function when calculating the connected part. This term is crucial
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for the convergence of the integral since the behavior of the first term in the integrand
for large positive or negative values gfs described by the relation

lim esx;rr(tl,t3,t27t4;y;531,953,?,/)653};7«7”(134,132,253,161;y;f4,5f2,—y) =14+ O(%) (C22)
y—+o0 Yy

The integral with respect tg in the second contribution depends on the wave vectors

k andk because of the factef*+*)v which ensures the convergence of the integral. If
the particles do not interact with each other, both integrals vanish and the total response
function only consists of the disconnected part describing the successive creation and
annihilation of two pairs of free right moving electrons and valence holes.

The different character of the two contributions is a consequence of the fact that
the field operators of the particles can be paired in two different ways. The first con-
tribution corresponds to the case in which field operators of electrons and holes which
have the same time in common are always paired with field operators whose times
are also identical. If, for exampley,.,(y1,t1) is paired witthjuo(yz, ts), the operator
Yero(x1,t1) has to be paired Wltldiero(:cg, to). The second contribution corresponds
to the case in which field operators with the same time are paired with field operators
whose times are not identical.

The other connected four-point response functions are composed of contributions
which are similar to the two contributions which have already been discussed. In the
case of the excitonic response functions which are related to the spatial correlation
functions in Equation€.9andC.10the following relations

lim <Qo|P(t1) 1 (t2) Pr(ts) B (1) | Q) = (B (t2) P (t2) Pu(ts) B (ta)))e (C.23)

L—oo L

and

lim —<QO|P(751) F(t2) Pi(ts) P (t4)|Q)e = (P (t1) B (t2) Pi(ts) P (ta)))e (C.24)

L~>oo
with

(P ()P (t2) P(t) P (1) = 71210710 =<0
[i Zk‘fﬂld ) sxyr(ti,t2,@1) /OO d:iQe_ikad<5;2)es§{;r(t2,t1,i2)

—00

X / Zkvf tg—tl /
27T

X /Oo dk ’Lkl}f tg— t3 /
27T

88

o0 7 ~
i, —lkzgd ) SX;l(t3,t4,$3) / df4elk:v4d(j4)esx;l(t4,t3,x4)

o0
(e}

> dy Ssz t1stssta,tasyidn,Es,y) oSk, e (tasto ts t5y:2a,82,~y) 1} (C.25)

—0o0
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and

(B, (00) B () Bi1) PL (1)) = e - tets = (Bame®)
X / dk eikvs(ta—t1) /00 dfleiki’ld(:il)eSX;T(tlthvjl) /OO df4e_iki4d(i4)esﬁf:r(t‘“ti"’j‘l)
0 —00

27T oo

[ _ 00 _ ~
X/ 'lk"Uf t3— t2)/ dj3elk$3d(f3)65)(;z(t37t4,333)/ dee—kaQd(jz)esx;l(t2,t1,I2)
0

—00 —00

% / dye 2]€f+k k)yesX Tl(tl t3,t2,t45Y; 7/'1 Z3 y)e ;{;'rl(t4’t2’t3’t1;y;f4’52’_y) (C.26)
—0oQ

are obtained. The term on the right-hand side of EquatidiB resembles the first
contribution in EquatiorC.19 while the response function in Equati@h24is sim-
ilar to the second contribution of Equati@19 with the factore!ks+k=k)v instead
of ei*+Rv |f the particles are assumed to be free, the connected excitonic response
function in EquatiorC.23equals zero whereas the response function in Equatiaf
yields a non-vanishing contribution. The appearance of the wave v&ctaan then
be explained within the framework of a simple one-particle picture since the free ver-
sion of the connected response function in Equa@o?4 describes the annihilation
and creation of left moving electrons in the Fermi sea whose distance to the Fermi
point of the left movers is larger thax ;.

The connected part of the biexcitonic response function on the left-hand side of
EquationC.4is calculated with the help of the spatial correlation function in Equation
C.13 The result is given by

Pl(ts)PH(ta)))e"" + (Pr(t) P (t2) Pl (ts) Pl (ta))).".  (C.27)

The first two contributions on the right-hand side of Equatib&7, which are defined
by the identities

<<P’/‘(t )PT(tQ)PT(tg) )>> —i(t1+ta—tz—ts)(Er—e(0))

Pi(t
dk zkv t4 tl ~ 'ka1 S (t ty,T ) > ~ _—ikT ~ s% (t4 t1 f4)
X 5.-¢ ! dz, d(zq)esXriitat dz e d(T) e Xt
0 —00

o [o.¢]
% dk Zk"Uf t3— t2
0 27T

d:@ezkmzd ) sx;r(t2,ts,22) / digefmg’ d(fig)esxz’“(tS’tZ’w?’)
oo
% / dy Z(t2*t3)28(y)€sxx;m~(t17t2,t4,t3;y;i”1,a?zyy)es}xw(%tsytl,tQ;y;hﬁfS,y) _ 1}

—0o0
[e.9]

(C.28)
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an

(P (1) P, (t2) P (t) Pt
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27T
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zkvf ty—t2) dlE ezkxgd( e5%; o (t2,t4,%2)
27T e
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—0oQ
(C.29)

exhibit the same structure as the first contribution in Equafidi® whereas the third
and the fourth contribution, which satisfy the relations

(P

t)P, (tQ)PT(tg)P( W = —eilti+ta—ta—ta) (B—e(0))

P (
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0 —00
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o0
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o0
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—0oQ

(C.31)

are structured in the same way as the second contribution in Equ@tiéh If the
particles do not interact with each other, the biexcitonic response function does not
vanish unlike the corresponding excitonic response function.

Finally, the biexcitonic response functions which are associated with the spatial
correlation functions in Equatiors.15andC.16satisfy the relations

A %(Qo|Pr(t1)15l(t2)}5:(t3)15;(t4)|Qo>c = ((Pu(t1) Pi(t2) P (t3) B (1))
= (B (1) P(t2) Pl (ts) B (£))) L + ((Po(t2) Pilta) B (t3) P (ta)) 2 (C.32)
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and

Jim (0l P () At B (1) P (0)[9%). = (P () At B ()P 0).
= (PR () Pt + (Pt Re) Pl () Pl (C33)

The first contributions in both equations, which are defined by the relations
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and
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(C.35)

resemble the excitonic response function in EquaBidtBwhereas the second contri-
butions in Equation€.32andC.33 which satisfy the equations
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and
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(C.37)

are similar to the excitonic response function in Equa@o®4 If the particles do not
interact with each other, all contributions vanish and the biexcitonic response functions
in EquationsC.32andC.33are equal to zero.

C.2 Approximations

The exact calculation of the four-point response functions turns out to be a difficult
task since it requires the evaluation of seven-dimensional integrals. If, however, the
auxiliary functions vary slowly on the length scale which is determined by the width
of the Lorentzian curvé\, the same approximation which has already been used to
simplify the two-point response functions in Secti®d can be applied to eliminate
the integrations with respect to the variahigs

In the case of the excitonic response function of Equatidi®this approximation
leads to the following expression

((P(t1) P (t2) P (t3) B (ta)))e
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X (27T’i>72(vf(t1 — t4) -y — z'2A)*1(vf(t2 — tg) -y — Z2A)71 (C38)

with the number of integrations being reduced to one integration with respect to the
relative hole distancg. Since the electron-hole interaction affects the form of the

integrands the analysis of the result is more complicated than in the case of the two-
point response functions. If the same approximation is applied to the other excitonic
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four-point response functions from SectiGril, one obtains the following identities
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~ e_i(tl_t2+t3_t4)(Eh_5(0))€5X;r(tl7t2:0)€3§(;l(t4’t370)esX;l(t37t4:0)es};r(t%tlao)
x (2m1) "2 (vp(ty — ta) — 2A) " (vp(ts — ts) — i2A) 7!

o
« / dy {esx;rz(t1,t37t27t4;y;0,07y)65};1r(t47t27t3,t1;y;0,07—y) _ 1} (C.39)

o0

and

(P (t2) B (t2) Pu(ts) P (ta)))e

ry o iti—tattz—ta)(En—e(0)) s x;r(t1,62,0) o8 (t4,t3,0) esx:1(t3,14,0) o8k (t2,t1,0)

oo
> / dyei2kfyesx;7-l (t1,t3,t2,t45930,0,9) o Sx 1y (ta,ta,t3,t1;9;0,0,~y)

o0

x (2mi) 2 (vp(ty — ta) —y — i20) " (vp(te — t3) +y — i2A) 7 (C.40)

The approximated version of the biexcitonic four-point function in Equafidty sat-
isfies the relation

(P (t1) P (£2) B (t3) B (t4)))e

~ e—i(tl—i-tz—t3—t4)(Eh—8(0))eSX;T(t17t4,O) es};r(t‘l’tho) esX;r(t2at370)65§(;T(t37t270)
X (27Ti)_2(vf(t1 — t4) — i2A>_1(Uf<t2 - t3> - Z2A)_1

oo
X / dy {61(t27t3)25(y) eSXX;T‘T(tl7t27t47t3;y§0707y) eSXX;rr(t‘lvtS»tl7t2§y;070»y) _ 1}

o
+ e~ ititta—ts—ta)(En—e(0)) psx;r(t1,63,0) 5%, (t3,t1,0) eSXir(t2:14,0) 8% (ta,t2,0)

x (2m1) 2 (vp(ty — t3) — i20) " (vp(te — ty) — i2A) 7!

(0.)
« / dy {ei(tz—t3)28(y)GSXX;M(h7t2,t3,t4;y;0,0,y)€S§X;Tr(t4,t3,t2,t1;y;O,O,—y) . 1}

— 00
. e*l’(tl +to—t3—t4)(Ep—e(0)) eSXsr (t1,t4,0) esﬁ(;r(t‘* ,t1,0) eSXir (t2,t3,0) es};,« (t3,t2,0)

oo
« / dyei(t2 —13)22(y) oS x x;rr (B1,82,84,835930,0,9) o S x o (ta5t3,1,22350,0,y)

x (2m1) 2 (vp(ty — t3) —y — i20) " (vp(ty — ts) +y — i2A) 7
_ efi(tl*HfQ*t3ft4)(E}L*E(O))esx;,«(t17t3,0)68};r(t3,t1,0) 65X;r(t27t470) es§;T(t4,t2,0)

oo
% / dyei(t2 —13)2e(y) o Sx Xirr (t1,t2,t3,t4;9;0,0,9) eSXXirr (ta,t3,t2,t1;9;0,0,—y)

e}

x (2m1) 2 (vp(ty — ta) —y — i20) " (vp(ta — t3) +y — i2A) 7! (C.41)

whereas the biexcitonic four-point functions from Equati@82 and C.33 are ap-
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proximated by the following expressions

(P (1) Pi(t2) P (t) P (t4)))e

—i(t1+t2—t3—ta)(Ep—e(0)) o5x;r(t1,3,0) 08X . (83,81,0) psxa (£2,84,0) 8% (ta,t2,0)

x (2m1) 2 (vp(ty — t3) — 20) M (vp(ta — t4) — i2A) 71

oo
y — 1 o . . * IR —
> / dy {€Z(t2 £3)22(y) S x X1 (B1,82,83,145530,0,) 0% x4 (Pa,t3,82,815550,0,—y) 1}
— 00
_ e ititta—t3—ta)(En—e(0)) g5 xir(t1,64,0) o8 (t3,82,0) o5 x:1(F2,83,0) 8%y (4,41,0)
(e.)
: : enge * gy
X / dyelefyel(tgftg)QE(y) eSXX;rl (t1,t2,t47t3,y70:07y) eSXX;lT(t4,t3,t1,tz,y,O,O,y)
—0Q

x (2m1) 2 (vp(ty — t3) —y — i20) M (vp(ta — ts) —y — i2A) 71 (C.42)
and

(P () Pultz) B (t3) P (ta)))e

—i(t1+t2—tz—ta)(En—e(0)) psxir(t1,t4,0) 8%, (ta,t1,0) esx:1(t2,63,0) o855 (t3,t2,0)

X (2m8) 2 (vp(ty — tg) — i20) " (vp(ty — t3) —i2A) 7!

oo

« / dy {ei(tz—t3)2€(y)esxx;rz(t17t2,t4,t3;y;0,0,y)esﬁgx;rl(t47t37t17t2;y;0,0,y) _ 1}
— 00

_ e—i(tl+t2—t3—t4)(Eh_5(0))esx;r(tl7t370)€5§(;7«(t47t2:0)esX;l(t27t470)65;(;l(t3:t170)

oo
> / dyeiQkfyei(tQ —t3)2e(y) o Sx 71 (t1582,83,84;930,0,9) 5% x4 (ta,ts,t2,t1;9;0,0,—y)
— 0

x (2m1) 2 (vp(ty — ta) —y — i20) M (vp(ta — t3) —y — i2A) 7 (C.43)

Some of these functions can be simplified further since the width of the fun¢i®n
assumed to be large in comparison with the inverse Fermi veAta»(k;l). Itis
then possible to neglect the response function in Equaid®as well as the second
contributions in Equation€.42and C.43because of the fast oscillating facigt*sv
which appears in the respective integrals.

Unfortunately, the integrals in the approximated expressions for the four-point re-
sponse functions are still too complicated to allow a simple description of their dynam-
ics. Nevertheless, it is possible to estimate the leading time behavior for the four-wave
mixing signals from Equation3.70and3.7], if the external time is large compared
with the delay timé. To this end, the parts of the integrands in Equatiorg8to C.43
which are affected by the presence of the interaction potential have to be subjected to
a closer analysis.

The contributions of the excitonic response functions to the four-wave-mixing sig-
nal are obtained, if the time variablesandt, in EquationsC.38andC.39are set equal
to zero while the values for the other two time variables are determined by the equa-
tionst; = —7 andt; = t. In the case of the excitonic response function of Equation
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Figure C.1: The real and the imaginary part of the function from Equatigd for
the parameters;t = 4000\, v;T" = 50\ andmﬁ—gf = —0.375

C.38this procedure yields the following term

5% (=T,t,0,03:0,0,) , %, (0,0,t,~T'y;0,0,~y)

srT

H* (—vpTHyy) 1™ (—vfT=y,=y) JH* (—vptty,—vp (t+T)+y) JH (—vpt—y,—v; (t+T)—y)

w G (=05 T—y,—y) G (v T—y,~y) (G (—vst—y,—vs (L+T)~y) JG* (~vst—y,~v; (t+T)~y)
(C.44)

in the two integrands. The corresponding expression for the response function in Equa-
tion C.39is given by

eSX;Tl(_T7t70a0;y§0707y) esj(;hn(0707t97T§y;0’097y)

— oH (v T+yy) JH* (—vsT—y,—y) JH (—vptty,—vf (+T)+y) H" (—vpt—y,—vs (t+T)~y)
G*(—UfT—l—y,y)eG*(—va—y,—y)eG*(—vft—i—y,—’uf(t+T)+y)6G*(—Uft—y,—vf(t+T)—y)‘

(C.45)

Both functions show a similar structure and are approximately described with the help
of the formulaeD.30andD.31in AppendixD. It turns out that the expressions only

X e
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differ from unity in three regions near = 0, y = —v;t andy = v,t and that the
width of these regions is determined by the delay tifheln order to illustrate this
statement, the function on the right-hand side of Equafiehtis depicted in Figure
C.1where it is assumed that the Fourier transform of the interaction potential is given
by 9(q) = e,

The biexcitonic contributions to the four-wave-mixing signal are calculated with
the help of the response functions in Equati@hé1to C.43where the time variables
t3 andt, are set equal to zero while the valueand —T" are assigned to the first two
time variables.

If t;, = t andt, = —T, the integrands which appear in Equatiortl contain the
functions

5% (6,=T,0,034:0,0,) , S% x,,- (0,0,t, = T'y30,0,y) , —iT2e(y)

e

— 6SXXT‘7‘(t7_T70707y70707y) eS}k(X,Tr(07077T7t7y707077y) _ZTZE(y)

e

— o (v THyy) JH* (0 T—y,—y) JH* (vstty,vp (A+T)+y) JH* (vt —y,0p (t+T)—y)

e e
w G (v THyy) G (= THyy) (G (vpt—y,vp (t4+T)~y) (G (vt —y,v05 (t+T) —y) , —iT2(y)

(C.46)

whereas the corresponding terms in Equatiénd2 and C.43 are determined by the
relations
esXX;'r‘l (tvazovo;ZﬁOvay)eS}X;lT(0707_T7t§y;0707_y)efiTQE(y)
— eSXX:'rl (tsz)()vO;y;O’O:y) eS;(X;T‘l (0707t77T;y;0707y) efiT2€(y)
— oH (v T+yy) JH* (mvfT=y,—y) JH" (vstty,vp (t+T)+y) H* (vt —y,vf ((+T)—y)
G’*(—va—i-y,y)eG*(—va—y,—y)eG*(vft-&-y,vf(t—I—T)-&-y)eG* (vpt—y,vf (t+T)—y)e—iT2€(y) ‘

(C.47)

X e

A comparison shows that the expressions in Equat®d$ and C.47 are similar to
those in Equation€.44andC.45 The sole qualitative difference is the factof”2®)
which only influences the form of the functions nga# 0 sinces(y) decays likey 2
for large absolute values gf

If t, = —T andt, = t, the integrands of the biexcitonic response function in
EquationC.41contain the following terms

eSxx;rr(—T,t70,0;y;070,y)esﬁgx;w(070,—T,t;y;0,0,y) it2e(y)

e

— eSXX;TT(_T7t7070;y;0707y)QS}X;TT(0707t7_T;y;0707_y) ZtQE(y)

e

=e e e e
w G (v T=yy) G (—v;T—yy) G (vytty,—vs (4 T) —y) G (vitty,—vf (L+T) —y) it2e(y)
(C.48)

while the corresponding expressions for the biexcitonic functions in Equaticts
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andC.43are given by
esXX;rl (_Tvtyovo;y;oaovy) QS}X;Z’,- (0’07t7_T;y§0707_y) eit2€(y)

— Sxx:m1(=T1,0,0:4;0,0,y) o 5% x,(0,0,=T't:9:0,0,9) it2e(y)

— (v THyy) JH* (—vfT—y,—y) JH (vytty,—vs (t+T) —y) JH* (vit—y,—v; (t+T)+y)

w 0" (v THyy) G (v T—y,—y) G (vitty,—vs (I+T) —y) G (viti—y,—vf (L+T)+y) ,it2e(y)

(C.49)

It turns out that the structure of these functions differs considerably from the structure
of the functions in EquationS.44to C.47. The absolute values of the expressions on

the right-hand sides of Equatiofis48andC.49are still approximately equal to unity
unlessy is located in the vicinities of the points = 0, y = vt andy = —uvst. In

the regions between these points, however, the phases of the functions approximately
assume constant values which are not necessarily equal to zero. This can be put down
to the fact that several of the exponents of the exponential functions on the right-hand
sides of Equation§€.48andC.49are similar to the functions iD.32andD.33. The
behavior of the total functions can be described by the two equations

5% ;0 (=T,1,0,039:0,0,) % x,,-(0,0,=T'1:30,0,)  it22(y)

e

— eSXX;M‘ (_T7t7070;y§0707y) eS;(X;'rT (0707t77T§y§07077y) eitQE(y)

_orilo2© | 520
~ {0y —vst) +0(—y —vpt)} +e { e (2’”’”2} {0(y +vst) —0(y)}

-2
—omi 9(0)

e e L0(y) — Oy — st} (C.50)

and

eSXX;?"l (_T7t70707y70707y) es;(X;lr(0707t7_T;y;0707_y) Zt25(y)

(&
— €SXX;TZ(7T7t’070§y;070>y)esj(x;”(Ovovavt;ZﬁOvovy)eitQE(y)
—27ri{ o+ ;2(0)2}
~A{0(y —ust) +0(—y —vst)} +e £l {0y + vgt) — 0(y — ort) }
(C.51)

outside of the vicinities of the three points mentioned above, if the time&onsider-
ably larger than the delay tinf. It is justified to neglect the termi*>*¥) since it only
affects a decreasing fraction of the interjrabst, vt], if t increases. This is due to the
quadratic decay of(y) for large values ofy|.

In FiguresC.2 andC.3the real and imaginary part of the expression on the right-
hand side of Equatio@.48have been plotted together with the corresponding approx-
imated curves where the interaction potential and all other parameters are the same as
in FigureC.L A comparison shows that there exists a good agreement between the
exact functions and the approximated ones apart from the three regions where a phase
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Figure C.2: The real part of the function from Equatiom8and the corresponding
approximated curve for the parametefs = 4000, v;T" = 50\ andz,;j—gf = —0.375

shift occurs. Near the origin the exact functions exhibit fast oscillations which are
caused by the facter>®),

If the four-wave mixing signal is calculated with the help of the approximated
response functions, the functions from EquatiGng4to C.49appear in the integrands
of two different types of integrals.

Integrals of the first type can be found in the second contribution to the excitonic
response function in Equatidd.38and in the third and the fourth contribution to the
biexcitonic response function in Equati@n4l All these integrals contain two linear
fractions as factors in their integrands which lead to two sharp peaks-=at;¢ and
y = v/l ory = —vst andy = —v 7. Because of these fractions the decay of
the integrands is proportional to the inverse squarg fofr large positive or negative
values ofy. If ¢ goes to infinity, the integrals converge towards zero tikewhile the
complete contributions are proportionaltd!**) because of the factors in front of the
integrals.

Integrals of the second type appear in the first contribution to the excitonic response
function in EquatiorC.38and in the first two contributions to the biexcitonic response
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Figure C.3: The imaginary part of the function from Equat©8 and the cor-
responding approximated curve for the parametgts= 4000\, v;7" = 50\ and
S — —(.375

2wy

function in EquationC.41 In addition to that, they can be found in the approximated
expressions for the four-point response functions in Equatit8§ C.42andC.43
Their integrands are given by the difference between one of the ten functions from
EquationsC.44to C.49and unity.

If the integrals of the different functions are compared, it emerges that there exists
a significant difference between the dynamics of the integrals which contain one of the
functions from Equation€.44to C.47 and those integrals which contain one of the
functions from Equation€.48 or C.49 The integrands for the integrals of the first
kind only differ from zero in the vicinities of the poinis= vst, y = 0 andy = —uvyt
and the absolute values of these integrals are bounded as functiongnofontrast
to that, the integrals which contain one of the functions from Equaiid@andC.49
show a linear increase for large values of the variable

This behavior can be explained by the fact that the integrands can approximately
be described with the help of the step functions from Equati@s®andC.51 Con-
sequently, it is justified to approximate the exact integrals by using the following for-
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Figure C.4: The absolute value of the four-wave-mixing signal for the delay time
vyT" = 100000A and the corresponding approximated signal with the interaction pa-
rameters;—gf = —0.375 and\ = 1000A

mulae

and

[e.e]
/ dy {ezt2€(y) esXX;'rr(_Tvt:OvO?y;OvO’y) GS}X;T’,«(0707_T7t;y§0707y) _ 1 }

o0

[ee]
— / dy {eit2€(y)eSXX;rr(_Tvtzovo;y;o)ovy)esj(X;rr(Ozovtv_Tﬂ/;OaOy_y) — 1}

—00

~ ~2 52
727ri{2 20, % “”2} —2mi 2 O)
s |vft|{e repGmptf e TG 9 (C.52)

[e.e]
/ dy {ezt2€(y) €SXX;7‘Z (—T,LO,O;ZJ;O,an) esj)k{X;h-(0707t77T§y;0’0:7y) _ 1 }

o0
o0
_ / dy {elt%(y)eSxx;rz(—T,t,O,O;y;O,O,y)QSXX;N(070,*T,t;y;0,0,y) _ 1}

o0

_opil 20 %0
R~ 2|Uft|{6 {2"”f+(2”f)2} — 1} (C.53)
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Figure C.5: The absolute value of the four-wave-mixing signal for the delay time
vyT = —100000A and the corresponding approximated signal with the interaction
parameter% = —0.375 and\ = 1000A

provided that the external timeis considerably larger than the absolute value of the
delay timeT'. All integrals of the second type have the same prefactor which is ap-
proximately given by

o it=T)(Bn—2(0)) p5x:r (£,0,0) o585, (0,1:0) p5x:r (=T,0,0) 5%, (0,=T,0)

— o it=T)(Ep—e(0)) y5x:(6:0,0) 8% 1 (0:£0) 53,0 (~T:0,0) 5, (0,~T.0)

~ e—z‘(t—T)(Eh—s(O))|v T|—(1+o¢)|v t|—(1+a) {@(_T)Z*Z* - @(T)ZZ*} (C 54)
f d (2mi)? ’ '

provided that >> |T'| > v} ' (confer AppendixD).

If all results of the analysis are combined, it turns out that the dominant contribution
to the four-wave-mixing signal for large timeéscomes from the first two terms of
the biexcitonic response function in Equati@ml1 and from the first terms of the
biexcitonic response functions in Equatiofisi2and C.43 if ¢; is set equal to-T
andt, is set equal ta in all functions. Therefore the four-wave mixing signals from
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Equations3.70and3.71are approximately described by the following relation

lim lp(?j) () & o i(wt—(2k1—F2) R) ,—i(t=T)(Ep—e(0)~w) ,~T (t+T) ,~Taat

L—oo [, 2ki1—k2

{0(T)zz" —O(=T)z*2*}
(2mi)?

3 i 2O e )
y ( 4@) {{e 2migg +1} e 2T )2 _4}’ (C.55)

if ¢t > T andT > xf,v;l andl’, =T',, = I'y = 0. In FiguresC.4 andC.5the ab-
solute values of the four-wave-mixing signals for a positive and a negative delay time,
which are calculated with the help of Equatidh88to C.43 are plotted together with

the corresponding approximated curves where the interaction function and all system
parameters are the same as those which have been used for the calculation of the other
figures in this section. As expected, a comparison of the different functions shows
that the expression on the right-hand side of Equa@dsb describes the dominant
behavior of the signals well, if is considerably larger than the absolute value of the
delay time. However, if andT" are of the same order of magnitude, the signals differ
significantly from the approximated curves. One of the most important features of the
four-wave-mixing signals which is not reproduced by the approximated functions is
the sharp peak which appears at 7', if the delay time is positive. This peak is due to

the third contribution and the fourth contribution to the response function in Equation
C.41which have been neglected when deriving EquaGosb

x o)yt




Appendix D

Operator Relations

According to the results of Sectidh4 and AppendixC the time behavior of the re-
sponse functions is determined by the free dynamics of the auxiliary operators which
have been defined in Secti@® when introducing the bosonic representation. In the
case of the bosonic and fermionic operators which are used for the representation of
the field operators.,.(x) andi,;(x) in Equations3.27and3.28the free time behavior

is described by the equations

2
Oro(z,t) = @r(z —vst) = hm —ZZ”—WG_O“] ia(z=vst)y, byr, (D.1)

q>0
|21 ,
SDZ;O(ZE, t) = 901(13 —+ Uft) = ij{n‘o —1 Z L_qe—aqe—ZQ(:E—l-vft)bql (DZ)
q>0

and
Ur'O(t) — e—z’vft%{2Nr+1}UT: e—ivft%NTUTe—ivft%Nr’ (D3)
Ulo(t) — 6—’i’l}ft%{2Nl+1}Ul — e_ivft%NlUle_ivft%Nl. (D4)

The index0 denotes that the operators are calculated in the interaction picture with
respect to the free electron Hamiltoniéi§. The dynamics of the free electronic field
operators is then determined by the relations

¢6T;0(I7 t) = ,lvber(x - Uft)ewfkftv (DS)
wel;O (fE, t) = wel(vx + 'Uft)eivfkft- (D6)

These results can also be obtained without applying the bosonization technique. The
free time behavior of the generators for the unitary transformasias described by
the equations

2 Z v
Xr0(Y, 1) = Xr(y — vft) = _ZZ’/ 27wf aw—rsp, (D.7)

q>0
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and

21
xeo(y t) = xaly +vst) = =iy [+ 2mf ’“fy“’ft)b (D.8)

q>0

which show a similar structure as the corresponding equationgforandy;..

In order to calculate the response functions, it is necessary to evaluate the different
kinds of commutator for the bosonic field operators. If the particles do not interact
with each other, only the commutators

[oro(, 1), olo(a/, 1)) = lim i_ze—?aqeiq{<m—x'>—vf<t—t’>} (D.9)
>0
_ il{:%] In(1 — 6—{2a—i(x—a:’)+ivf(t—t’)}Qf’f)
and
[oro(@, 1), plo(a’ )] = lim i_ze—aaqezq{ux')wf(tt@} (D.10)
q>0

= — lim In(1 — e~ {2oFile—a)ivg (=10} 5.
a\,0

give a non-vanishing contribution. In the presence of the electron-hole interaction,
however, the following two additional types of commutators

[Xro(y: 1), Xi;O(ylv t) — Xi;o(ym )] =H(@y—vy1 —vp(t —t1),y —y2 — vp(t — ta)),
(D.11)

[oro(, 1), Xi;o(ylatl) — X0, ta)] = Gla — y1 — vp(t — t1), 2 — yo — vy(t — 12))
(D.12)

and

[Xt0(y, 1), XzT;o(ylatl) - X;r;o(y2>t2)] =H(y — 1 +vp(t —t1),y — yo +vp(t — 1)),
(D.13)

[oro(z, 1), XzT;o(?h, t) — XZT;O(ZJz, )] =G (x—y1 +vp(t —t1), 2 —yo +vs(t — t2))
(D.14)

have to be taken into account. The auxiliary functieheind H are defined by the
following equations

N = 2_7T QN](q) iqr _ gz’ — > dg 6((]) iqgx _ _igx’
G(z,z") e e e e (D.15)
) 0 Lq 27T’Uf L—o0 0 q 27TUf




104 APPENDIX D. OPERATOR RELATIONS

and

Z 2r v { iqr eiqx’} _ /‘OO @ ﬁQ(Q) {eiqx . eiqx’}
Lq 27va L—oo Jo  q (2mvy)? '
(D.16)

Unfortunately, explicit solutions for the two integrals in Equatiand5andD.16
exist only for a limited number of interaction functiong;). Nevertheless, it is possi-
ble to determine the leading behavior of these functions for large valuesofiz.
This is due to the existence of the two general relations

| aar@™ I S0 L0 - SR @

with
Ri(r) = /OOO dgf" (q) { (q?QSi(q:c) + % cos(qz) + %sin(qa:)} (D.18)

and

[ dat@ = — o) + [ daf (@) (i) + O} - 5

(D.19)

with
R (x) = /0 dgf” (q) {(qg) Ci(qx) — % sin(gx) + %cos(qx) - %} (D.20)

which are valid for positive:. C. = 0.5772. .. is the Euler constant and the functions

si and ci represent the sine and the cosine integral respectijel¥le functionf is
integrable and can at least be differentiated three times where the derivatives up to the
third order are also integrable. These requirements are necessary since the integrals
on the left-hand sides of EquatiobBs17andD.19have to be integrated partially three
times in order to obtain the expressions on the right-hand sides. The absolute values of
the expressions in the curved brackets which appear in Equ&id8sndD.20can be
estimated by means of a common boundary congtgnt- 0 which is independent of

x. Consequently, the integrals in Equatiorl7 and EquatiorD.19 are approximately
described by the relations

[t -

T
q 2

f(0) (D.21)

and

/0 N dqf<q>% ~ —£(0) In(a) + / Tdof (@) (n(@)+ .} (D22)
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provided that

v 2y = max(y/Kn [fdwﬂﬂMAfmm. (D.23)

The application of the above formulae to the auxiliary functions in EquafiohS
andD.16yields the following approximations

0(0). 0(0) m

~ — D.24
G(z,0) 21y In(z) +cg +1 21y 2 ( )
and
2%(0) C0%(0) 7
H(z,0) ~ — 2r0,)? In(x) 4+ cg +i 2r0,)2 2 (D.25)

for x > z; = max(zq, zy) Where the constants; andcy are defined by the equa-
tions

[z 0(q)
cG —/0 dg{In(q) + C. } dg 2m0; (D.26)
and
N d v(q)
e = /0 dg {in(q) + €} o T (D.27)
while the constants; andzy satisfy the relations
> o(g) | | d o(q)
— VK — D.2
g = max ( \// dq3 27TUf ‘dq 27T/Uf q0> ( 8)
and
*(q) | | d ©*(q)
= \/ — ) D.2
= maX( KR\// dq 27w 121 1dg (2mvp)? | (D-29)

The Equationd.17 and D.19 can also be employed to derive the two general
relations
02(0 — 02(0
P0) | ly—wl, . 90

2oy My =)t i Emy)

o 10y —y1) —0(y — o)}
(D.30)

H(y —y1,y —y2) = —

and

G(r — 1,0 — 19) = — o(0) ln(|x — x1|) +1 o(0) m{f0(x —x1) — O(x — x9)}
2mvy | — a4 21y 0.31
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50—

1.00 -

"
Al
IR}

0.50

0.00

-0.50 + real part \ ,” .
~~~~~~~~~~~~~ imaginary part il
---- real part (approx.) :

-1.00 - ——— imaginary part (approx.) i 7

150 b
=50.0 0.0 50.0 100.0

relative hole distance y/A

Figure D.1: The functiond (y — y1,y — y2) With ij)f = —0.375, y; = 0.0 and
Yo = 50

which are valid, ifly — yi1|, |y — yo| > z; and|x — x4|, |x — 25| > z;. It turns out
that these approximations are very useful for the calculation of the four-point response
functions in AppendipC. The same is true for the relations

0°( )21n ly — y1
2mvp)? |y — vl

7*(0)

H(y_y17_y+y2)%_(

+ i<2mf)27f {0y — ) +0(y — v2) — 1} (D.32)
and
Gz —z1,—x + 2 %—6(0) In il
( ) ~27va |z — o]
+ i;(—o)ﬂ {0(x —x1) +0(x — x3) — 1} (D.33)
7TUf

which can also be used, |ij — vi1|, |y — y2| > x5 and|z — x4 |, |x — 23] > 5.

If the Fourier transform of the interaction potential is givenigy) = el
with 9, € R and\ € R™, the integrals can be performed exacflydnd the following
equations

, 1~)0 x? + A2 . 770 x !
SR A r D.34
G(x,z") G Mmoo + Z27rvf {arctan()\) arctan( )\) (D.34)
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1.50 : : : : . : : : - .
1.00
0.50
0.00
-0.50
real part '.‘,’
_ I B imaginary part { |
1.00 ---- real part (approx.) !
——— imaginary part (approx.)
-1.50 : : : : ' : : : : ' : : : :
-50.0 0.0 50.0 100.0
relative hole distance y/A
Figure D.2: The functiorH (y — y1, —y + y2) With zﬁgf = —0.375, y; = 0.0 and
Yo = 50\
and
Hiw, o) og | /x2+4)\2+, op ; <:L‘) . (x’)
T, r) = — n 1 arctan(—) — arctan(—
(2mvy)? T2+ 402 (27vy)? 2\ 2\

(D.35)

hold. With the help of the exact expressionsdband H, it is now possible to estimate
the quality of the approximated expressions on the right-hand sides of Equatins

to D.33. In order to give an example, the real and the imaginary parts of the functions

H(y — w1,y —y2) andH(y — y1, —y + y2) have been plotted together with the corre-
sponding approximated curves for a specific choice afd?, in FiguresD.1andD.2.

As expected, the approximated curves differ from the exact ones only in the vicinities
of the pointsy = y; andy = y,. The extension of the regions where the differences

between the exact and the approximated expressioris &rd H cannot be neglected
is estimated with the help of the constant
2
2mvg ) '

x5 = max(xg, ry) = Amax (‘/KR” 2i )
U f
(D.36)

U Ug

7\/KR

)

Ug
2muy 2muy



Appendix E

Important Functions

The following list shows where the definitions for important auxiliary functions can be

found:

The following list shows where the definitions for important response functions and

G(x,x)

H(z,z")

Sx.(t1,ta, )

sxu(ti, ta, )

Sxir(ti, ta ts, ta;y's 21, 22, y)
Sxi(ty, o, ts, tas y's w1, T2, )
Sxur(ti, ta, ts, tas y's 21, 72,9)
Sxxpr(ty, to, ts, tas y's 21, 2, y)
Sxxpi(ti,ta, ts, tasy's x1, 22, 9)
Sxxur(ty, to, ts, tas y's 21, T2, )

in EquationD.15,
in EquationD.16,
in Equation3.53
in Equation3.54
in EquationC.8,

in EquationC.11
in EquationC.12
in EquationC.14
in EquationC.17,
in EquationC.18

the corresponding approximated expressions can be found:
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(1) P (t5))) in Equations3.55and3.56

P.(t1) Pl (t2) P.(t3) Pl (t4))). in EquationsC.19andC.38
P.(t) Pl (t2) Py(ts) P (t4)))e in EquationsC.23andC.39
P.(t1) B (t2) Py(ts) P (t4)))e in EquationsC.24andC.4Q
P.(t1) P, (t2) Pl (t3) Pl (t4))). in EquationsC.27andC.41,
P.(t) By(t2) P (t3) P (t4)))e in EquationsC.32andC.42,
P.(t1) By(t2) P (t3) P (t4)))e in EquationsC.33andC.43
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