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1

INTRODUCTION

Non-adiabatic transitions1, 2 play an important role in the reaction dynamics of many phys-

ical, chemical, and biological systems. Very often the regions, where the adiabatic Born-

Oppenheimer approximation3, 4 (BO) breaks down, provide favorable conditions for the transi-

tions between the corresponding quantum states, and the non-adiabatic reaction pathway may

become the dominant one.

Theoretical description of non-adiabatic transitions has been the subject of extensive inves-

tigations, ranging from one-dimensional models to realistic polyatomic systems. The analytic

solution5, 6 obtained by Landau and Zener (LZ) for the transition probability between linear

crossing terms for single passage of the intersection point with constant velocity, has provided

deep insight into the physics of the process, the dependence on characteristic parameters of the

model, and introduced a classification of the adiabatic and the non-adiabatic regimes. The LZ

model was subsequently extended to overcome its limitations1, 2 by taking into account tun-

neling effects, multiple passages through the non-adiabaticity region, influence of dissipative

environments,7 etc.

However, results obtained for non-adiabatic transitions in model systems can hardly be ap-

plied directly to realistic polyatomic molecules where reaction coordinates are often multidi-
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mensional, and the reaction dynamics often exhibits quantum coherence and memory effects,8

so that the description of non-adiabatic dynamics in terms of transition probabilities may be

inadequate. Besides, calculations of the transition probabilities are insufficient for theoretical

modeling of light absorption/emission spectra, which are directly related to the time evolution

of the quantum phase of the transitions.9–12

These problems have stimulated the development of alternative treatments of non-adiabatic

dynamics, based on the ideas of the Quantum-Classical Approximation (QCA), where only

important degrees of freedom are treated quantum-mechanically, and the remaining ones by

means of classical mechanics. The QCA combines linear scaling, an increase in the number of

degrees of freedom, which is of primary importance when considering polyatomic molecules,

and a proper treatment of non-adiabatic transitions, which are inherently quantum-mechanical

processes.

Nonetheless, the interface between the deterministic equations of motion of classical me-

chanics and the intrinsically probabilistic description of quantum mechanics is a challenging

problem which is not completely solved yet. In the most straightforward attempts one adds

quantum transitions directly to the classical trajectories,13–15 employing methods called Molec-

ular Dynamics with Quantum Transitions, briefly MDQT. However the intuitive construction of

MDQT approaches has encountered severe intrinsic problems,16–18 which cannot be systemati-

cally resolved because of a lack of consistent derivation.

Recently, an alternative Non-Markovian Quantum-Classical Approximation19–22 (NQCA)

has been suggested, which has a wide and well established applicability range. It is free of

drawbacks inherent in MDQT methods, and is capable of dynamical treatment of quantum

transitions with a full account of detailed balance, quantum coherence and memory effects.

NQCA can easily be combined with ab initio Molecular Dynamics (MD) and quantum chemical

methods to describe the evolution of the classical degrees of freedom and the quantum part of

the problem, respectively, and often has a computational effectiveness at least comparable with



1. INTRODUCTION 9

those of MDQT. In this thesis we consider a wide class of reacting systems where the time

scale required for equilibration in the phase space of the potential energy surfaces (PES) is

short compared to the time scale of the transitions between them. Such a situation seems to

be rather typical for non-adiabatic transitions between different electronic states in polyatomic

molecules, where a high density of vibronic states facilitates Intramolecular Vibrational Energy

Redistribution (IVR), thus providing an efficient relaxation of the phase space distribution.

The structure of the thesis is as follows. In Chapter (2) we outline the scope of the thesis.

The existing quantum-classical approaches and their applications are reviewed in Chapter (3).

The kinetic equations of the quantum-classical approach used for the ab initio simulations of the

non-adiabatic dynamics are presented in Chapter (4). The application of the approach to the ab

initio modeling of hot absorption spectra of polyatomic molecules is described in Chapters (5).

Then, in the Chapters (6) we apply the approach to estimate the efficiency of the non-adiabatic

pathway of the trans-cis photoisomerization of stilbene and p-coumaric acid. In the Appen-

dices (A, B,C, D, E) a more detailed description of the computational details of the energy and

structure parameters calculations of the ground and excited states are presented, as well as the

results of the transition dipole moment and non-adiabatic coupling vectors calculations.
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2

SCOPE OF THE THESIS

The basic subject of this thesis is the investigation of non-adiabatic dynamics in polyatomic

molecules by using the recently proposed method - (the Non-Markovian Quantum Classical

Approximation (NQCA)).19–22

The non-adiabatic dynamics of small systems with a few degrees of freedom is well inves-

tigated by now using both fully quantum mechanical treatments and approximate approaches

ranging from rigorous semiclassical ones to various hybrid schemes like Surface Hopping (SH),

Mean-Field Approximation (MFA). However, realistic reactions involve polyatomic molecules,

where the reaction coordinates are often multidimensional, which restricts the range of applica-

ble methods to the quantum-classical approaches.

The majority of the existing quantum-classical methods can hardly be applied to the ab ini-

tio modeling of the non-adiabatic reactions. They either have severe intrinsic problems (SH,

MFA, Quantum-Classical Liouville Equation), or too narrow applicability range (Redfield The-

ory), see Chapter (3) for more detailed discussion. In contrast, the recently developed NQCA

approach is free from the drawbacks inherent in MDQT, and is capable of dynamic treatment of

quantum transitions with full account of the detailed balance, quantum coherence and memory

effects.19–22 It is based on a classical mechanics description of the dynamics on the PES with

11
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a quantum mechanical treatment of transitions between different PESs, and assumes fast IVR

and equilibration in the phase space of the PESs to the temperature of the surrounding media.

The key difference of the NQCA from the other quantum-classical methods is the consistent

and accurate treatment of the quantum transition phase, which is of fundamental importance

for any ab initio approach to the quantum transitions.

In the present thesis the NQCA method is applied to the investigation of the Ultravio-

let/Visible (UV/vis) absorption spectra and of the photoisomerization processes of polyatomic

molecules. For both cases the corresponding computer programs have been developed. The

programs combine the quantum-chemical calculations of the PESs and the MD simulations

of the dynamics in their phase spaces. All the input parameters were estimated either from

the high-level quantum-chemical calculations (equilibrium geometries, normal modes and their

frequencies, non-adiabatic coupling vectors), or from the spectroscopical data.

First, we will adopt and use the NQCA method for the simulation of the UV/vis absorp-

tion spectra of polyatomic molecules, e.g. benzene and trans-stilbene. The corresponding

spectra look different, the spectra of benzene exhibit vibronic structure, whereas those of trans-

stilbene is broad and nearly structureless. The absorption spectra are directly related to the

evolution of the quantum phase of transitions between the electron PESs, which allows to esti-

mate the applicability and accuracy of the NQCA for the modeling of non-adiabatic reactions

in polyatomic systems. Ab initio simulations of the hot absorption spectra in the gas phase

were carried out and directly compared to the available experimental data. A good agreement

between the theoretically modeled and the experimentally measured spectra demonstrates the

consistency of NQCA, and opens broad perspectives to the application of the recently devel-

oped quantum-classical approximation to the ab initio modeling of non-adiabatic reactions in

complex systems.

Subsequently, the NQCA method will be used for the simulation of the non-adiabatic path-

way of the trans-cis photoisomerization of stilbene and p-coumaric acid. These two molecules
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look similar, but photoisomerization of p-coumaric acid is much faster and the proper theoreti-

cal description have to reproduce such a difference in the time scales of the reaction.

Actually, there are exist two alternative models of the trans-cis photoisomerization of stil-

bene and similar molecules. In an adiabatic model one assumes the existence of a small barrier

on the first excited state (S1) and a fast IVR, so that the RRKM model can be used to calculate

the reaction rate. The adiabatic model was successfully applied to the description of molecular

beam experiments and an effective barrier height was estimated to be about 1200cm−1. The ac-

tivated barrier crossing is assumed to be the rate limiting step, and a radiationless transition into

the ground state takes place from the twisted conformation, which belongs to distinct electron

PES.23–25

Alternatively, a non-adiabatic model, which accounts for the transitions to the other excited

state prior to the isomerization, was suggested to explain the photoisomerization mechanism. It

is supported by the fact that the twisted conformation of stilbene, where the radiationless tran-

sition to the ground state takes place, belongs to the distinct electronic state (S2) characterized

as the double excited or zwitterionic state.26–29

We employ the non-adiabatic model of the photoisomerization, and assume that the tran-

sition S1 to S2 state takes place near the planar geometry of trans-stilbene, which is the rate

limiting step. The subsequent twist around the central bond proceeds along S2 PES, where it is

nearly barrierless. The time scales of the photoisomerization kinetics were well reproduced. For

gas-phase stilbene at room temperature the non-adiabatic pathway gives a characteristic time of

approximately 630ps, whereas p-coumaric acid photoisomerization under the same conditions

is predicted to be faster than 1ps. A deep insight into the mechanism of the reaction reveals, that

in the case of stilbene the non-adiabatic conversion between the single and the double excited

states proceeds without surface crossing events, via a relaxation-like mechanism, when the in-

trinsic modes of the molecule play the role of a heat reservoir. On the other hand, the relative

energetics of the single and the double excited states in p-coumaric acid is the opposite, which
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leads to the frequent surface crossing events on the time scale of the reaction and, as the result,

to a much faster photoisomerization.



3

QUANTUM-CLASSICAL APPROACHES

TO THE NON-ADIABATIC DYNAMICS

This chapter will give an overview of state of the art methods one can use in order to study the

non-adiabatic dynamics of the polyatomic molecules. The breakdown of the adiabatic Born-

Oppenheimer approximation usually takes place when the energy splitting between the adia-

batic potential energy surfaces, obtained at the fixed positions of the atomic nuclei, becomes

comparable to the non-adiabatic coupling terms, so that it can no longer be taken into consid-

eration by means of perturbation theory. These regions of the non-adiabaticity are typically

characterized by a high efficiency of the transitions between the quantum states involved.

The non-adiabatic dynamics of small systems (i.e. with a few degrees of freedom) is well

investigated by now using both fully quantum mechanical treatments30 and approximate ap-

proaches ranging from the rigorous semiclassical13–15, 30 ones to the various hybrid schemes

adding quantum transitions to classical trajectories, e.g. Surface Hopping,13, 14 and Mean-Field

Approximation.13, 14 However, realistic reaction complexes involve polyatomic molecules, and,

therefore, the reaction coordinates are often multi-dimensional, which restricts the range of ap-

plicable methods to quantum-classical approaches.13, 14, 19, 20, 22, 31 These methods use classical

15
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mechanics to describe the dynamics of nucleus on the given PES, while keeping a quantum-

mechanical treatment of the transitions between them. These methods have linear scaling when

increasing the number of the degrees of freedom and can be applied to study non-adiabatic

dynamics of polyatomic reacting systems.

A detailed description of all the existing quantum-classical methods goes beyond the scope

of this work, therefore we give a short summary with a main focus on the advantages and

disadvantages of each approach.

3.1 Transition State Theory

Transition State Theory, developed in the 1930s by Wigner32 and others,33 plays a central role

in the theory of chemical reaction rates in condensed and gas phase. It assumes the existence

of a hypersurface in phase space (transition state), dividing the phase space of reactants and

products. The rate constant of the adiabatic reaction (proceeding along the same potential

energy surface) in the framework of TST is defined as the equilibrium flux through the transition

state, and can be written as

ka
TST =

kBT
h

Q‡

QR
exp

(
− E0

kBT

)
(3.1)

where Q‡ is the partition function of the transition state (it involves all degrees of freedom

except the reaction coordinate), QR is the partition function of the reactants, the energy E0

is the difference in zero point energy between the transition state and the reactants, T is the

temperature, whereas h and kb are the Planck and the Boltzmann constant, respectively.

Similar ideas were used subsequently to extend the TST to the non-adiabatic reactions,

when the reactants and the products belong to distinct PESs. In this case the transition state is

associated with the surface crossing region, and the reaction rate becomes34, 35

kna
TST =

Q‡
R

QR
exp

(
− E0

kBT

)
θ(T ) (3.2)
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where Q‡
R is the partition function of the reactants at the surface crossing, and θ(T ) accounts

for the (usually small) transition probability P(v) for a single passage through the intersection

point. The latter depends on the velocity v along the reaction coordinate and has to be averaged

over the Maxwellian velocity distribution, which yields

θ(T ) =
1
h

∫ ∞

0
P(v)v exp

( −v2

2kBT

)
dv . (3.3)

Note, that P(v) is an external parameter in non-adiabatic TST. Several theoretical approaches

can be used to estimate this quantity under various conditions, see Ref.1 and references therein

for more details.

However, the separation of adiabatic dynamics and non-adiabatic transitions is not well

justified for reactions in condensed phase. First, the concept of a single-passage transition

probability assumes that the velocity autocorrelation decays slowly in the region of the non-

adiabaticity, otherwise the overall transition probability cannot be represented as the sum of the

single-passage event contributions. It is well known, that the surrounding media may strongly

affect the motion of the internal degrees of freedom, especially of the low-frequency ones,

and change it from a dynamical to a diffusion-like process. It also influences the velocity

autocorrelation, which becomes zero in the limiting case of continuous diffusion. Second, the

non-adiabaticity region can be broad itself, and involve multiple surface crossings. Third, the

reaction coordinate can be multidimensional. Last but not least, quantum interference effects

can directly manifest themselves in the reaction dynamics, such that the description of non-

adiabatic processes in terms of transition probabilities may not be adequate.

A joint consideration of reactant mobility and non-adiabatic transitions requires ab initio

methods with a dynamical treatment of the quantum phase. Fully quantum-mechanical and

semiclassical approaches to realistic multidimensional systems are not feasible in view of the

unfavorable exponential scaling with increasing the number of degrees of freedom. On the other

hand, quantum-classical approaches, when only a few important degrees of freedom are treated

quantum-mechanically, whereas the other degrees of freedom are treated by means of classi-



18 3.2. MOLECULAR DYNAMICS WITH QUANTUM TRANSITIONS

cal mechanics, are able to provide a method with a favorable scaling and accurate quantum-

mechanical consideration of the subsystem of interest. Nevertheless, despite the fact that the

basic idea of the quantum-classical approach is rather simple, the existing approaches are very

different and not equivalent to each other. We briefly review and discuss them below.

3.2 Molecular Dynamics with Quantum Transitions

In the most straightforward attempts to construct a quantum-classical approach one adds quan-

tum transitions directly to the classical trajectories. Different methods are used to describe the

dynamics of the system, including non-adiabatic transitions, for example the Mean Field Ap-

proximation36–39(MFA), and the Surface Hopping38, 40–42 (SH). Both approaches describe the

state of the quantum subsystem by the wavefunction |Ψ(r; t)〉, which obeys the time-dependent

Schrödinger equation

ih̄
d
dt

∣∣Ψ(r; t)
〉

= Ĥ
(
r,R(t)

)∣∣Ψ(r; t)
〉
, (3.4)

where r and R are the quantum and the classical coordinates, correspondingly, Ĥ
(
r,R(t)

)
is

the Hamiltonian of the quantum subsystem, which parametrically depends on the coordinates

of the classical subsystem. The explicit time–dependence of the Hamiltonian in Eq. (3.4) in

accordance with the given trajectory R(t) induces transitions between its adiabatic states

Ĥ(r;R)
∣∣φ j

〉
= ε j(R)

∣∣φ j
〉
, (3.5)

obtained at fixed positions of the classical coordinates R. The wavefunction of the quantum

subsystem at any instant of time can be written as a superposition of the adiabatic states (3.5)

as

|Ψ(r; t)〉= ∑
j

c j(t) |φ j〉 (3.6)

where the c j(t) are the time–dependent expansion coefficients, with ∑ j |c j(t)|2 = 1.
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The difference between MFA and SH is the way of propagating the classical trajectories, or

how the feedback from the quantum to the classical subsystem is taken into account.

3.2.1 Mean Field (Ehrenfest) Approximation (MFA)

The MFA method can be derived as a classical limit of the time-dependent Hartree or time-

dependent self-consistent field method (TDSCF). Here the total wave function is separated into

a part belonging to the fast (quantum) particles and a slow (classical) particle wave function.

The motion of the particles will interact by their average fields, so the fast particles will move

in the mean field of the slow particles and vice versa. The slow particles move via classical

mechanics on a potential energy surface given by the expectation value of the fast particle

Hamiltonian.

The additional force on the classical particles arises from the weighted average of the quan-

tum states, and the equation of motion for the momenta of the classical particles takes the form

ṗ(t) =−∇∇∇U +(c∗i c j + ci c∗j)(εi− ε j)di j−|ci|2∇∇∇εi−|c j|2∇∇∇ε j , (3.7)

where the asterisk denotes the complex conjugate, U(R) is the potential energy of the interac-

tions between classical particles, di j(R) is the non-adiabatic coupling vector between the states

i and j, εi, j(R) are the adiabatic energies, see Eq. (3.5), ci, j(t) are the expansion coefficients,

see Eq. (3.6), and ∇∇∇ is the gradient operator over the classical coordinates R. For the ease of

presentation we omit the explicit coordinate and time dependencies on the right hand side of

Eq. (3.7).

Thus, as with any mean-field approach, electron correlations are neglected. This deficiency

may be particularly severe when one is interested in a low probability channel. In such cases,

the MFA path will be quite similar to the major channel trajectory, and will likely be a poor

representation of the desired low-probability path, proper description of the correlation between

quantum and classical motion requires a distinct classical path for each quantum state. A second
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deficiency of MFA is that it violates microscopic reversibility. This method will be appropriate

for systems including only small couplings between the different degrees of freedom, while

stronger couplings will lead to decoherence and thus the mean-field is not valid anymore.

3.2.2 Surface Hopping (SH)

The SH method invented by Tully in 1971 can be used to implement non-adiabatic transitions in

the dynamic simulations of a system. The basic concept can be described as follows: classical

trajectories are simulated, usually on an adiabatic state. In regions with two or more potential

energy surfaces, the probability of hops from one surface to another is calculated, by this intro-

ducing non-adiabatic transitions. After the hopping event, either the trajectory of the new state

is traced or a set of new trajectories, following the now occupied different adiabatic surfaces,

weighted with a factor complementary to the hopping probability.

In the SH approach, the forces derived from a single quantum state, are subject to the sudden

stochastic hops to the different quantum states. The equation of motion for the classical particles

is then

ṗ(t) =−∇∇∇U−∇∇∇εk , (3.8)

where k labels the current quantum state to which the system is assigned, and the other notations

are the same as in Eq. (3.7). Accordingly to the "fewest switches algorithm"43 a state switch

from i to j occurs if

Pi j(t)∆t > ζ , (3.9)

where ∆t is the time step of the propagation, ζ is the uniform random number between 0 and 1,

and

Pi j(t) =− d
dt

ln |ci|2 =−Ṙ ·d ji
(c∗i c j + cic∗j)

|ci|2 (3.10)

is the probability of hop per unit time. Here Ṙ(t) is the classical velocity, d ji(t) is non-adiabatic

coupling vector, and the centered dot denotes the scalar product of vectors. A stochastic surface
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hop from state i to j should be accompanied by the rescaling of the velocity Ṙ in the direction

of the non-adiabatic coupling vector to conserve the total energy of the system.

The MFA is a self consistent field method, and for the given initial conditions requires prop-

agation of the single classical trajectory, while in the SH approach the feedback of the quantum

subsystem on the classical one has an element of uncertainty, see Eq. (3.9), and requires aver-

aging over a swarm of the classical trajectories. However, neither MFA nor SH do accurately

describe the non-adiabatic dynamics in a wide range of systems. The former fails in the sit-

uation when the energy splitting between the quantum states considerably exceeds the mean

heat energy of kB T , whereas the SH has problems with quantum coherence,17 and classically

forbidden transitions.16

3.3 Reduced Density Matrix Methods

In general, the state of the open quantum system is described by the Reduced Density Matrix

(RDM) rather than by the wave function. There exists two general schemes for the deriva-

tion of kinetic equations for the RDM of quantum system. One scheme relies upon partial

Wigner transform over classical degrees of freedom and yields the Quantum-Classical Liou-

ville Equation (QCLE), while the other approach, the Redfield theory, starts with an equivalent

integro-differential representation of the quantum Liouville-von Neumann equation. The two

quantum-classical approaches based on the RDM are discussed below.

3.3.1 Quantum-Classical Liouville Equation

The Quantum-Classical Liouville Equation44 (QCLE) approach describes the state of the quan-

tum subsystem by the partial density matrix σ(Q; t), parametrically dependent on the phase

space coordinates Q = (p,r) of the classical subsystem, which obeys

∂σ(Q; t)
∂ t

=− i
h̄

[
Ĥ(Q),σ(Q; t)

]
+

1
2

{
Ĥ(Q),σ(Q; t)

}
− 1

2

{
σ(Q; t), Ĥ(Q)

}
, (3.11)
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where Ĥ(Q) is the quantum-classical Hamiltonian, [, ] is the commutator and

{
A(Q),B(Q)

}
= ∇∇∇r A(Q) ·∇∇∇p B(Q)−∇∇∇p A(Q) ·∇∇∇r B(Q) (3.12)

is the Poisson brackets, with ∇∇∇r,p denoting the gradient over the coordinates and momenta,

respectively. An appealing feature of the QCLE is its simplicity and the correct limits of both

pure quantum and pure classical dynamics. In the former case (absence of the classical degrees

of freedom), the QCLE reduces to the quantum Liouville-von Neumann equation, whereas

in the latter case it becomes the classical Liouville equation for the phase space distribution

function.

To discuss this approach in more details, we consider a simple system of two one-dimensional

PESs without interaction between them, with the Hamiltonian

Ĥ(Q) =




p2

2m
+U1(x) 0

0
p2

2m
+U2(x) ,


 (3.13)

where m is the mass of the particle, and U1,2(x) are the corresponding potential energies of the

PESs. Then, we obtain from Eq. (3.11), (3.13) the following set of equations for the density

matrix elements

∂σ11(p,x; t)
∂ t

= − p
m

∂σ11(p,x; t)
∂x

+
∂σ11(p,x; t)

∂ p
∂U1(x)

∂x
, (3.14)

∂σ22(p,x; t)
∂ t

= − p
m

∂σ22(p,x; t)
∂x

+
∂σ22(p,x; t)

∂ p
∂U2(x)

∂x
, (3.15)

∂σ12(p,x; t)
∂ t

= − i
h̄

(
U1(x)−U2(x)

)
σ12(p,x; t)

− p
m

∂σ12(p,x; t)
∂x

+
∂σ12(p,x; t)

∂ p
∂
∂x

U1(x)+U2(x)
2

. (3.16)

It is readily seen, that the diagonal elements of the partial density matrix describe evolution

of the phase space distribution of the corresponding PES, while the equation (3.16) for the off-

diagonal element contains the two contributions, evolution of the quantum phase, see the first

term on the right hand side of the Eq. (3.16), and the classical motion in a mean-field potential
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(U1(x) +U2(x))/2. This mean-field feature inherent in the QCLE is known to be a severe

problem of the approach, and, among other items, may even lead to the positivity violation45 of

the partial RDM.

Figure 3.1: Energy levels of a four–level system in the basis of direct product states of QDS

(|ϕ1,2〉) and bath states (|ψ1,2〉). Dotted arrows show transitions between states of the QDS,

dashed arrows – between bath states, while solid arrows show cross transitions between QDS

and bath states. This figure was taken from J. Chem. Phys. 119, 2502 (2003).

The origin of the mean-field feature and the associated problems of the QCLE can be under-

stood using a vivid example from Ref.,20 when both the quantum-dynamical subsystem (QDS)

and the classical one (bath) consist of just two states. Fig. 3.1 shows schematically energy levels

of the resulting four-level system in the basis of the direct product of the states. Different types

of transitions are shown by the different lines, see figure caption. The transitions between the

quantum subsystem and the bath (QDS-bath) are very different from the direct transitions inside

the quantum subsystem, for example the energy gaps for the transitions 1↔ 4 and 2↔ 3 may

be not the same.

The creation of the corresponding off-diagonal element is prerequisite for the quantum tran-
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sition, and they are shown below in the total density matrix ρ using the same line types as in

Fig. 3.1

ρ =




ρ11 ρ12 ρ13 ρ14

ρ21 ρ22 ρ23 ρ24

ρ31 ρ32 ρ33 ρ34

ρ41 ρ42 ρ43 ρ44




. (3.17)

On the other hand, the reduced density matrix of the quantum subsystem, obtained by taking

partial trace over bath states is of the form

σ =




ρ11 +ρ33 ρ12 +ρ34

ρ21 +ρ43 ρ22 +ρ44


 . (3.18)

This means, that off–diagonal elements involving transitions due to QDS–bath and bath-bath

interactions do not appear in the reduced density matrix.

Introducing a partial RDM σ(Q; t) in QCLE, we immediately replace the true cross-

coherence by the direct coherence inside the quantum subsystem, since in the QCLE there

are no other off-diagonal elements. This unphysical replacement of the coherence is a source of

the mean-potential feature of the QCLE, and the associated problems.

3.3.2 Redfield Theory

Redfield theory46, 47 is a common name for the group of approaches, where the RDM of the

quantum subsystem obeys a kinetic equation of the form

dσik(t)
dt

=−iωikσik(t)+∑
l,m

Rik;lm σlm(t) , (3.19)

where ωik = (Ei−Ek)/h̄ is the energy difference between the corresponding states of the quan-

tum subsystem in frequency units, whereas ˆ̂RRR is the relaxation tensor describing the effects of

the interaction with a heat bath. For the separable system-bath coupling of the form

Ŵ = ∑
a

ĜaF̂a , (3.20)



3. QUANTUM-CLASSICAL APPROACHES TO THE NON-ADIABATIC DYNAMICS 25

with the operators Ĝa and F̂a acting only on the quantum subsystem and the bath, respectively,

the relaxation tensor may be represented as46

Rik;lm = Γ+
mk;il +Γ−mk;il−δm,k ∑

n
Γ+

in;nl−δi,k ∑
n

Γ−mn;nk , (3.21)

where

Γ+
mk;il =

1
h̄2 ∑

a,b
(Ga)mk(Gb)il(Θ+

a,b)il (3.22)

Γ−mk;il =
1
h̄2 ∑

a,b
(Ga)mk(Gb)il(Θ−

a,b)mk , (3.23)

and

(Θ+
a,b)ik =

1
1+ eh̄ωik/(kBT )

∞∫

−∞

e−iωikt〈Fa(t)Fb(0)
〉

cl dt (3.24)

(Θ−
a,b)ik =

1
1+ e−h̄ωik/(kBT )

∞∫

−∞

e−iωikt〈Fa(t)Fb(0)
〉

cl dt . (3.25)

Here
〈
Fa(t)Fb(0)

〉
cl is the classical correlation function of the bath operators.

The Redfield theory is valid on the time scale exceeding the characteristic correlation time

τc of the bath, and requires small off-diagonal elements responsible for the quantum transitions.

This is the case in the weak coupling limit

(
Wik/(h̄ωik)

)2 ¿ 1 , (3.26)

or if the following condition holds

(
Wikτc/h̄

)2 ¿ 1 . (3.27)

In the latter case the splitting between the energy levels can be arbitrary, including a resonant

case of ωik = 0.

To illustrate the underlying principles of the Redfield theory, and following Ref.,20 we con-

sider the dynamics of the population difference n(t) = σ11(t)−σ22(t) in a two-level system
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with the splitting between energy levels Ω, constant off-diagonal coupling W , and in presence

of the phase relaxation with a characteristic time τc. The kinetic equations for such a model

system are of the form20

ṅ(t) = −2W Im
[
σ12(t)

]
(3.28)

σ̇12(t) =
(
iΩ−1/τc

)
σ12(t)+ iW n(t)/2 , (3.29)

where for the sake of convenience we set h̄ = 1, thus working in frequency units. The formal

solution of Eq. (3.29) takes the form

σ12(t) =
iW
2

∫ t

0
e(iΩ−1/τc)τn(t− τ)dτ , (3.30)

which, upon substitution into eq. (3.28), yields a closed non–Markovian equation for the popu-

lation difference

ṅ(t) =−W 2
∫ t

0
e−τ/τc cos(Ωτ)n(t− τ)dτ . (3.31)

Both conditions (3.26), (3.27) allow for long times t & τc to reduce Eq. (3.30) into the differen-

tial form, which yields

ṅ(t) =−K n(t) , K =
W 2τc

1+Ω2τ2
c

, Kτc ¿ 1 , (3.32)

where the last condition ensures small contribution of the neglected time scale of τc into the

kinetics. If the condition (3.26) is fulfilled, then

Kτc ¿





(W/Ω)2 ¿ 1 if (Ωτc)2 À 1

(Wτc)2 ¿ (Ωτc)2 ¿ 1 if (Ωτc)2 ¿ 1
, (3.33)

whereas if the condition (3.27) holds, one has Kτc ≤ (Wτc)2 ¿ 1 regardless of the value of Ω.

Redfield theory is a consistent approach with well known applicability limits. Unfortunately,

the conditions t À τc, and (3.26), (3.27) are rather restrictive. Indeed, usually the correlation

time for the rotational motion of molecules and their fragments in solutions lies in the picosec-

ond time range, for the translational motion (cage effect) it may fall into the nanosecond time
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range. On the other hand, the time scale of the non-adiabatic transitions may be considerably

shorter, and their dynamics may exhibit memory effects, which are completely ignored by this

approach. Besides, the dynamics of the bath in the framework of the Redfield approach does not

depend on the state of the quantum subsystem, and the reaction coordinates have to be treated

quantum-mechanically, which restrict practical applications of the approach to the systems with

a few reaction degrees of freedom.

3.4 Non-Markovian Quantum-Classical Approximation

Recently a novel Non–Markovian Quantum–Classical Approximation19–22 (NQCA) has been

developed by Neufeld. The applicability criterion of the NQCA requires

(
Wτb/h̄

)2 ¿ 1, t & τb, τb =
h̄

πkBT
, (3.34)

where W is the coupling strength between the quantum subsystem and the bath, τb is the lifetime

of the quantum correlations, T is the temperature of the heat bath, whereas h̄ and kB are the

Planck and the Boltzmann constants, correspondingly. At room temperature τb is just 8 fs,

which allows for the system-bath coupling strength up to W/h̄ = 5 · 1013 rad/ps and the time

resolution up to tens of femtoseconds. These applicability limits are considerably wider than

that of the Redfield theory, which can directly be obtained from the NQCA in the limit of short

correlation time.19

The kinetic equations of the NQCA are rather cumbersome, and can be found in Refs.19, 20

for the case when the bath dynamics does not depend on the state of the quantum subsystem,

whereas in Ref.21, 22 the NQCA was generalized to incorporate the state-specific bath dynamics.

The latter has allowed to introduce the classical mechanical treatment of the multidimensional

reaction coordinates,22 which is of primary importance for realistic systems with many degrees

of freedom. The approach can easily be combined with ab initio molecular dynamics and

quantum-chemical methods to describe the dynamics of the classical degrees of freedom and
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the topology of the electronic states, respectively. It treats the quantum transitions dynamically

with a full account of the detailed balance, quantum coherence and memory effects, which

makes the NQCA to be well suited for the ab initio modeling of the non-adiabatic transitions in

polyatomic systems.

In the next chapters the approach and its practical applications are described in more details.
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STATISTICAL APPROACH TO

NON-ADIABATIC TRANSITIONS

Basically, the applicability limits of NQCA are given by Eq. (3.34). However, in the following

we confine ourselves to the case of fast equilibration in the phase space of electron PESs of

polyatomic molecules compared to the time scale of the non-adiabatic reaction. The applica-

bility range is similar to the case of non-adiabatic extension34, 35 to Transition State Theory.

Note, however, that we do not assume a one-dimensional reaction coordinate, and the transition

probability at surface crossing events as an external parameter.

Under the assumptions made above, the electron PESs can be considered as belonging to the

canonical bath, and the state of the system is then described by the set of probabilities σn(t) to

be on the given PES, indicated by the subscript. In the following, in order to present equations

in a more compact form, we set h̄ = kB = 1, and, therefore, measure the energies, the couplings

and the temperatures in frequency units, where 1eV and 1K correspond to 1.52 ·103 rad/ps and

0.131rad/ps, respectively.

Using the MD approach to describe the dynamics of the classical degrees of freedom (phase

29
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space of the PESs), the time evolution of the probabilities σn(t) obey22

dσn(t)
dt

=−
N

∑
k=1
k 6=n

(
〈Im[

χ(n)
nk (q, t)Wkn(q)

]〉MD + 〈Im[
χ(k)

nk (q, t)Wkn(q)
]〉MD

)
(4.1)

where the subscripts indicate the PESs, between which the non-adiabatic transitions take place,

Wkn is the coupling between them, and 〈.....〉MD denotes the average over an ensemble of the

MD trajectories of the form

〈Im[
χ(α)

nk (q, t)Wkn(q)
]〉MD =

1
L

L

∑
l=1

Im
[
χ(α)

nk

(
q(α)

l (t)
)
Wkn

(
q(α)

l (t)
)]

, α = (n,k) . (4.2)

Here q(α)
l (t) represents a set of the phase space coordinates along l-th trajectory, evolving either

on n-th or k-th PESs, indicated by the superscript and sampled from the corresponding canonical

distribution, L is in practice a large number of the MD trajectories sufficient to explore the phase

space, and χ(α)
nk

(
q(α)

l (t)
)

is the set of auxiliary functions (one per trajectory) containing the

complete information about quantum coherence and memory effects. In turn, the time evolution

of the auxiliary functions is described by the following equation

dχ(α)
nk

(
q(α)

l (t), t
)

dt
= −iΩnk

(
q(α)

l (t)
)
χ(α)

nk

(
q(α)

l (t), t
)
+ iWnk

(
q(α)

l (t)
)(

σn(t)−σk(t)
)

+iWnk
(
q(α)

l (t)
)
[

tanh
(εnk

2T

)
− i

2T
1

cosh2
(εnk

2T

) d
dt

]
(
σn(t)+σk(t)

)
(4.3)

with

Ωnk
(
q(α)

l (t)
)

= Hn
(
q(α)

l (t)
)−Hk

(
q(α)

l (t)
)

(4.4)

to be the difference of the PESs Hamiltonians (vertical energy splitting), εnk is the change of the

free energy due to transitions from the n-th to the k-th state expressed in terms of the partition

functions of the PES Zn,k as

εnk =−T ln
(
Zn/Zk

)
, (4.5)

and initial conditions of the form

χ(α)
nk

(
q(α)

l (0),0
)

=
1

2T
Wnk

(
q(α)

l (0)
)

cosh2
(εnk

2T

) . (4.6)
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The auxiliary functions Eq.(4.3) have the property

χ(α)
kn

(
q(α)

l (t), t
)

=
[
χ(α)

nk

(
q(α)

l (t), t
)]∗

, (4.7)

where the asterisk denotes the complex conjugate, which allows to avoid unnecessary calcula-

tions.

Equations (4.1)-(4.7) constitute the framework of NQCA for systems where the time scale of

equilibration in the phase spaces of the PESs is short compared to the time scale of non-adiabatic

transitions between them, called the Statistical Approach to the Non-adiabatic Transitions22

(SANT). These equations treat the transition dynamically and fully account for detailed balance.

Indeed, the stationary solution to Eqs.(4.1)-(4.3) requires that

dσn(t)
dt

= 0 ⇒ χ(α)
nk

(
q(α)

l (t), t
)

= 0 ,
dχ(α)

nk

(
q(α)

l (t), t
)

dt
= 0 , (4.8)

which is true if

σn = σk e−εnk/T . (4.9)

Thus, the canonical equilibrium is indeed the stationary solution to Eqs. (4.1)-(4.7).

To perform the simulation, for any pair of PESs in equation Eq.(4.1) we need the two aver-

ages over an ensemble of the MD trajectories, evolving either on one or on another PES. These

PESs are physical, unlike the MFA or the QCLE, there are no trajectory propagation along state

averaged PESs. To propagate the auxiliary functions (4.3) along the given trajectory, one re-

quires the vertical energy splittings and the PESs couplings. The first term on the right hand

side of Eq.(4.3) describes oscillations of the quantum phase of the transitions, whereas the other

terms give rise to the quantum phase if the distribution of the σn is a non-equilibrium one. Note,

that the term containing the time derivative on the right hand side of Eq.(4.3), together with the

initial conditions, Eq.(4.6), preserves positivity of the populations σn(t) at any instant of time,

as was demonstrated in Ref.22

Thus, the difference between the NQCA and the SH method is that instead of a single hop-

ping trajectory, we need a set of MD trajectories along the PESs involved, without any hops
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between them. The problem cannot be reduced to the evolution of the system along single tra-

jectories, instead the phase spaces (the nuclei coordinates of the corresponding PES) are always

represented by a large set of equilibrium trajectories. As compared to the non-adiabatic exten-

sion of TST, NQCA does not have the restriction of one-dimensional reaction coordinates, in-

corporates ab initio treatment of the quantum transitions, and is valid beyond the rate regime,22

when quantum coherence effects directly manifest themselves in the reaction dynamics.

In the next chapters the NQCA method will be applied to the simulation of ultraviolet/visible

absorption spectra of polyatomic molecules and also to the simulation of photoisomerization

processes of polyatomic molecules.
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QUANTUM-CLASSICAL MODELING

OF HOT ABSORPTION SPECTRA OF

POLYATOMIC MOLECULES

5.1 Introduction

Ultraviolet and visible (UV-vis) absorption spectra provide direct information about the energet-

ics of the electron transitions, which is of primary importance for the modeling and understand-

ing of the reaction dynamics. Usually the experiments on absorption/fluorescence emission are

performed at low temperatures (crystals, supersonic jet expansion, for instance) to resolve the

vibronic band progressions, thus obtaining extensive information about internal structure of the

molecules. The calculation of the electronic spectra for this case may be achieved by the Fermi

golden rule approach, where the intensity of the transition is given by the Franck-Condon (FC)

overlaps of the initial nuclear wavefunctions with the corresponding vibrational wavefunction

of the final electronic state, which requires the evolution of multidimensional integrals. Differ-

ent methods have been proposed for the evaluation of the Franck-Condon integrals,48, 49 based

33
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on the expansion of the final-state coordinate in terms of the initial-state coordinates (or vice

versa) and subsequent evaluation of the resulting one dimensional integrals.

However, the approximation of the Franck-Condon integrals as a product of one-dimensional

ones requires that the normal modes of the initial and the final PESs are nearly parallel, which

is not always the case. In general they are related by the Duschinsky transformation of the form

ζζζ (1) = D̂ζζζ (2) + γγγ (5.1)

where ζζζ (1) and ζζζ (2) are the vector of the normal modes of the corresponding PESs, D̂ is the

rotational Duschinsky matrix and γγγ is the displacement vector. A large amount of Duschin-

sky rotation is typical for normal modes belonging to distinct electron states of polyatomic

molecules, which does not allow for the efficient calculation of the Franck-Condon integrals.

Moreover, the vast majority of chemical and biological reactions take place at moderate to

high temperatures T & 300K. Hot UV-vis absorption spectra are not only temperature broad-

ened compared to the corresponding low-temperature ones, but may also contain hot bands

originating from the FC forbidden transitions.50 It has been shown previously50 that even for

the forbidden transitions - because the molecule does not remain strictly in its equilibrium ge-

ometry - there are certain vibrational modes which can introduce intensity to the spectrum.

From the molecular geometries and vibrational modes, Franck-Condon factors can be obtained.

The number of Franck-Condon integrals, necessary to describe hot absorption spectra,

sharply increases with increasing temperature, due to excitation of low-frequency modes.

Therefore, due to the large numbers of Franck-Condon integrals which would have to be calcu-

lated, the quantum Fermi’s Golden Rule approach becomes hardly applicable.

In this chapter a new method for the ab initio simulation of electronic absorption spectra

of polyatomic molecules in the gas phase and in solutions is suggested. The approach utilizes

the classical mechanics description and normal modes approximation for the nuclear degree of

freedom for each electronic PES, and allows arbitrary Duschinsky rotations.
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5.2 NQCA and the lineshape of the absorption spectrum

In the case of two PESs the Hamiltonian of the system interacting with the laser field can be

written as

Ĥ = Ĥ0 +V̂ (t) , (5.2)

with

Ĥ0 = Ĥ(1)
N

∣∣1〉〈
1
∣∣+ Ĥ(2)

N

∣∣2〉〈
2
∣∣ , (5.3)

where Ĥ(1,2)
N are the PESs Hamiltonians depending on the coordinates of the nuclei, |n〉〈n| are

the projectors on the n-th electronic state, and

V̂ (t) = 2 µ̂µµ ···Ef(t) (5.4)

is the Hamiltonian of the light-induced coupling between them. Here µ̂µµ is the transition dipole

moment operator and Ef(t) is the electric field vector

Ef(t) = E0 cos(ωt) , (5.5)

with E0 and ω to be its amplitude and frequency, respectively.

The time evolution of the density matrix of the system may, in general, be described by the

following kinetic equation

dσ(t)
dt

= i ˆ̂Lσ(t)− i
[
V̂ (t),σ(t)

]
, (5.6)

where the first term on the right hand side accounts for the time evolution of the system in the

absence of laser field, including dissipative processes, with ˆ̂L being the corresponding Liouville

operator. Assuming a vanishing coefficient of the laser field
(
E0 → 0

)
, the energy of the system

is

E(t) = Tr
(
Ĥ0 σ(t)

)
, (5.7)

with Tr denoting the trace operation, and, therefore, its time derivative

dE(t)
dt

= Tr

(
Ĥ0

dσ(t)
dt

)
(5.8)
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consists of the two contributions, in accordance to Eq.(5.6). The first term on the right hand

side of Eq.(5.6) gives rise to the energy flow at the expense of various processes, independent

on the light absorption (relaxation, fluorescence emission, etc.), whereas the second term yields

the absorption coefficient of the applied laser field

Pabs(t) = Tr
(
P̂(t)σ(t)

)
(5.9)

where

P̂(t) = i
[
V̂ (t), Ĥ0

]
. (5.10)

The transition dipole moment operator in Eq.(5.4) couples the distinct electron PESs and can

be written as

µ̂µµ = µ̂µµNNN
∣∣1〉〈

2
∣∣+ µ̂µµ†

NNN

∣∣2〉〈
1
∣∣ , (5.11)

where the dagger superscript denotes the Hermitian conjugate, µ̂µµ does not depend on the elec-

tron coordinates, but may depend on the coordinates of the nuclei. Then, substituting Eq.(5.5)

and Eq.(5.11) in Eq.(5.4), and evaluating the commutator in the Eq.(5.10) we obtain

P̂(t) =−2i
((

Ĥ(1)
N µ̂µµNNN − µ̂µµNNNĤ(2)

N
)∣∣1〉〈

2
∣∣−h.c.

)
···E0 cos(ωt) (5.12)

with h.c. denoting the hermitian conjugate. The explicit dependence of the light-induced cou-

pling, see Eq.(5.4), can be eliminated when passing into the rotating coordinate frame by the

following unitary transformation

σ̃(t) = Û(t)σ(t)Û†(t) (5.13)

with

Û(t) = eiωt/2∣∣1〉〈
1
∣∣+ e−iωt/2∣∣2〉〈

2
∣∣ , (5.14)

where ω is the frequency of the laser field, see Eq.(5.5). In the rotating frame the Hamiltonian

takes the form

Ĥr =
(

Ĥ(1)
N +

ω
2

)∣∣1〉〈
1
∣∣+

(
Ĥ(2)

N − ω
2

)∣∣2〉〈
2
∣∣ , (5.15)
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and, neglecting the counter-rotating component of the linearly polarized laser field, Eq.(5.5),

the Hamiltonian of the coupling, Eq.(5.4), is transformed to

V̂r = µ̂µµ ···E0 =
(
µ̂µµNNN

∣∣1〉〈
2
∣∣+ µ̂µµ†

NNN

∣∣2〉〈
1
∣∣) ···E0 . (5.16)

Thus, the calculation of the absorption spectra reduces in the rotating frame to the standard

problem of the non-adiabatic transitions. The coupling operator, Eq.(5.16), now does not de-

pend on time explicitly, but the splitting between the PESs in the rotating frame varies with the

frequency of laser field in accordance with Eq.(5.15).

To express the absorption coefficient, Eq.(5.9), through the density matrix in the rotating

frame we substitute the inverse relation

σ(t) = Û†(t)σ̃(t)Û(t) (5.17)

into the right hand side of Eq.(5.9), use the cyclic permutation under the trace, and, neglecting

the fast oscillation component of the absorption coefficient we obtain

Pabs(t) = Tr
(
P̂r σ̃(t)) (5.18)

where

P̂r =−i
((

Ĥ(1)
N µ̂µµNNN − µ̂µµNNNĤ(2)

N
)∣∣1〉〈

2
∣∣−h.c.

)
···E0 . (5.19)

Assuming that the absorption is counterbalanced by spontaneous emission or radiationless

relaxation into the ground state, the stationary absorption

P∞(ω) = lim
δ→0

∫ ∞

0
Pabs(t)e−δ tdt . (5.20)

In the case of a vanishing power of the absorbed light (linear response regime), the stationary

absorption coefficient can be written as

Pabs(t) =
(
〈Im[

Ω(q)W (q)χ(1)(q, t)
]〉MD + 〈Im[

Ω(q)W (q)χ(2)(q, t)
]〉MD

)
γ(ω) (5.21)
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where

γ(ω) = 1+ tanh

(
ω + ε

2T

)
(5.22)

is the frequency dependent factor with

ε =−T ln
(
Z1/Z2

)
(5.23)

being the change of free energy due to the transition between S0 and S1, expressed via the

statistical sums of the PESs indicated by the subscript. Similar to Eq.(4.1) and Eq. (4.2) the

MD averages over the ensembles of the equilibrium trajectories are

〈Im[
Ω(q)W (q)χ(α)(q, t)

]〉MD =
1
L

L

∑
l=1

Im
[
Ω

(
q(α)

l (t)
)
W

(
q(α)

l (t)
)
χ(α)(q(α)

l (t)
)
] , α =(1,2) ,

(5.24)

where L is a large number of MD trajectories,

W
(
q(α)

l (t)
)

= µµµNNN
(
q(α)

l (t)
) ···E0 (5.25)

is the light-induced coupling in the rotating coordinate frame, whereas

Ω
(
q(α)

l (t)
)

= H(2)
N

(
q(α)

l (t)
)−H(1)

N
(
q(α)

l (t)
)

(5.26)

is the vertical energy splitting between the PESs along the given trajectory, respectively.

The structure of Eq. (5.21) needs additional discussion. Two terms in brackets on the right

hand side are closely related to the evolution of the quantum phase of the transition, W (q) is

the coupling term and represents itself scalar product between the vectors of the electric field

amplitude, E0, and of the transition dipole moment of the molecule, µµµN
(
q(α)

l (t)
)
, whereas

the auxiliary functions χ(1,2)(q, t) contain complete information about quantum coherence and

memory effects, and obey

dχ(α)(q(α)
l (t), t

)

dt
= i

(
Ω

(
q(α)

l (t)
)−ω

)
χ
(
q(α)

l (t), t
)
+ iW

(
q(α)

l (t)
)

(5.27)

where ω is the frequency of the absorbed light, see also text after Eq. (4.2) for more details.
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Here also the contributions from the single trajectories may be accumulated one-by-one,

which is possible as usual in the linear response regime. Eq. (5.21) has a transparent physical

meaning. The contribution to the rate of the non-adiabatic transitions between the PESs at a

given point of the phase space is proportional to the imaginary part of the product between the

coupling and the auxiliary function. Similarly, the contribution to the rate of the energy of

absorption at the same point of the phase space is equal to the rate of the transition multiplied

by the vertical energy splitting between the PESs, see Eq. (5.21).

5.3 Model and simulation procedure

In the present model the harmonic normal mode approximation for the PESs of both the ground

and excited states is employed. Although the anharmonicity and the mode couplings play an im-

portant role, they can hardly be obtained from the quantum chemical calculations of polyatomic

molecules.

In the harmonic normal mode approximation, the phase space of the PESs can be described

in terms of the corresponding equilibrium configuration, the normal modes displacements

ζζζ (α) = {ζ (α)
1 ,ζ (α)

2 , . . .} , (5.28)

where the superscript α labels the PES, and their momenta. The transformation matrix be-

tween the normal modes displacements and the mass-weighted Cartesian displacements from

the equilibrium positions of atomic centra is directly available from the Hessian calculation by

quantum-chemical software packages. Simulation of the multi-dimensional classical trajecto-

ries on the PESs and of the vertical energy splitting, necessary for the ab initio modeling of both

the UV/vis absorption spectra and the non-adiabatic photoisomerization reaction, is outlined in

the next Section 5.4.

The dependence of the transition dipole moment on nuclear coordinates was assumed to be
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linear with respect to the normal mode displacements, i.e.

µµµNNN(t) = µµµ(0)
NNN +∑

k

∂ µµµNNN(ζζζ )
∂ζk

∣∣∣∣∣
ζk=0

ζk(t) . (5.29)

Here µµµN
(0) is the transition dipole moment (TDM) calculated at the optimized PES geometry,

while the derivatives with respect to the normal mode coordinates in the second term on the right

hand side of Eq. (5.29) can be obtained numerically generating a small displacement along each

normal mode followed by the single point TDM calculation. Often the first term on the right

hand side plays a dominant role, so that the absorption spectra can be simulated within the

Condon approximation, when TDM is assumed to be independent on the nuclear coordinates.

Exceptions are highly symmetric molecules, for instance benzene with µµµN
(0) = 0. The light-

induced coupling between the PESs among other factors depends on the relative orientation of

the molecule to the direction of the electric field E0, see Eq. (5.25). This orientation is not fixed,

and the average angular velocity can be estimated from the average energy per rotational degree

of freedom of kBT and the moments of inertia of the molecule. The larger the molecule, the

slower it rotates. In our simulations we neglect the effect of the rotational broadening of the

UV-vis absorption spectra, and set up random but fixed orientation of the molecule with respect

to the laser field in the beginning of every trajectory run.

5.4 Calculation of multi-dimensional trajectories and verti-

cal energy splittings

In the harmonic normal mode approximation the multi-dimensional trajectory on the PES may

be described in terms of the equilibrium configuration, normal modes displacements and mo-

menta. The former is obtained by the geometry optimization procedure, whereas the frequencies

of the normal modes, and the transformation matrix from the mass-weighted cartesian coordi-

nates to the normal modes are directly available from the hessian calculation, both calculations
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were performed using CASSCF method and the GAMESS US software. The initial conditions

for the normal modes oscillators were specified as follows. First, for every normal mode we

sample its energy from the canonical distribution by setting51

Ek =−kB T lnξ , (5.30)

where ξ is the uniform random variate on (0,1). Then, one has the following equations for the

time evolution of the mass-weighted displacements

ζk(t) =
√

2Ek

ωk
cos(ωkt +ϕk) , (5.31)

and of the corresponding momenta

ζ̇k =
√

2Ek sin(ωkt +ϕk) , (5.32)

where ωk and ϕk being the frequency, and the initial phase of the k-th normal mode oscillator,

respectively. The initial phase for the oscillators was taken random from the interval [0,2π).

Thus at any instant of time we are able to calculate the set of normal modes displacement and

momenta for the given trajectory, using Eqs.(5.31-5.32).

Calculation of the vertical energy splitting between the PESs along the given trajectory re-

quires 3 quantities, the potential energy for the first PES, counted from its energy minimum, the

same quantity for the second PES, and the vertical energy splitting (h̄Ω0) between the minima

of the PESs. The latter can be obtained from the ab initio quantum chemistry calculations and

spectroscopic data, see Section 5.5 for more details. The vertical energy splitting (in frequency

units) can be written as

Ω(t) =
1
2 ∑

n

(
ω(2)

n ζ (2)
n

)2− 1
2 ∑

k

(
ω(1)

k ζ (1)
k

)2 +Ω0 , (5.33)

where Ω0 is counted from the minimum of the second PES, and is positive, if the energy mini-

mum of the second PES lies above the minimum of the first one.
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In the following, for the definiteness, we assume that the trajectories evolve on the first PES.

The equilibrium geometry, the set of the normal modes, and their frequencies of the second PES

are different from those of the first PES, therefore, we have to find how the current molecular

configuration is represented by the set of the normal modes displacements on the second PES.

This is done in 3 steps. First, we restore the cartesian coordinates of the molecules from the

known set of the normal modes displacements, the transformation matrix between the normal

modes and the mass-weighted cartesian displacements, and the equilibrium configuration. Sec-

ond, we rotate the obtained cartesian configuration to the Eckart frame of the equilibrium con-

figuration of the second PES, since their orientations obtained by the geometry optimization are

slightly different. Third, we transform the obtained cartesian coordinates to the normal modes

displacements of the second PES, using its equilibrium configuration and the transformation

matrix. Then, Eq. (5.33) is used to obtain the required vertical energy splitting. Note, that the

above procedure works for arbitrary Dushinsky rotation in the molecule.

5.5 Estimation of the relative energetics of the PESs for trans-

stilbene and p-coumaric acid

Accurate estimation of the energy splittings between the PESs is of fundamental importance for

the modeling and understanding of nonadiabatic reactions. This quantity is also frequently used

to examine the quality of quantum chemical methods, whereas an account for PES-dependent

electron correlation energy represents considerable difficulties for the perturbation theories em-

ployed there. In particular, the vertical excitation energy for trans-stilbene was calculated in

Ref.52 using CASSCF/CASPT2 approach to be 4.07eV, which is indeed close to the 0− 0

transition energy of 4.00eV.53 On the other hand, the molecule upon photoexcitation under-

goes geometric changes which reduces its energy and may lead to considerably lower 0− 0

transition energy than the vertical one.
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To estimate the difference between the 0− 0 and the vertical transition energies for trans-

stilbene calculations done in Ref.52 have been repeated and the vertical excitation energy to the

single 1Bu(HL) and double 1Ag(Z) excited states have been obtained using CASPT2 approach.

The latter excited state is recognized to play a fundamental role in the process of photoisomer-

ization of trans-stilbene, as the radiationless transition into the ground state takes place in the

twisted conformation characterized as the double excited one.26–29 Then the geometries for the

excited states of interest have been optimized and the calculations have been repeated. The

results are summarized in Table 5.1.

electron optimal geometries

state 1Ag(G) 1Bu(HL) 1Ag(Z)

1Ag(G) 0.00 0.12 0.72

1Bu(HL) 4.05 3.71 4.39

1Ag(Z) 4.78 4.18 4.06

Table 5.1: Vertical excitation energies,54 corrected by LS(0.3 a.u.)–CASPT2. The energies
are in electron-volts and counted from the energy of the ground (1Ag(G)) state at its optimal
geometry.

It is well understood that the vertical excitation energies predicted by quantum chemical

calculations are usually not very accurate, but the energy profiles along the given PES are well

reproduced. Therefore, we estimate from the data shown in Table 5.1 the difference between

the 0− 0 and the vertical excitation energy for 1Bu(HL) state to be 0.34eV, which means that

the vertical excitation energy is about 4.00 + 0.34 = 4.34eV, where 4.00eV is the experimen-

tally measured 0−0 transition in the molecular beam.53, 55, 56 The above analysis confirms the

intrinsic error of CASPT2 of about 0.3eV in predicting the vertical excitation energies, and the

fact that it usually overestimates the corrections to the CASSCF energies.57–59

The 1 1Ag → 3 1Ag transition was assumed60 to be responsible for the absorption band with a

maximum at 234nm or 5.3eV in the two-photon spectrum of trans-stilbene dissolved in hexane,
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which should be close to the vertical excitation energy to 1Ag(Z) state. On the other hand,

Table 5.1 shows that the difference between the 0−0 and the vertical excitation energies is about

0.72eV, which yields an estimate of 5.30− 0.72 = 4.58eV for the 0− 0 transition 1Ag(G)→
1Ag(Z). The results are summarized in the Table 5.2, where the energies are corrected to be in

agreement with the spectroscopical data.

electron optimal geometries

state 1Ag(G) 1Bu(HL) 1Ag(Z)

1Ag(G) 0.00 0.12 0.72

1Bu(HL) 4.34 4.00 4.74

1Ag(Z) 5.30 4.70 4.58

Table 5.2: The corrected energies of the selected electronic states of trans-stilbene. The energy
profiles along the given state were taken from the Table 5.1. The relative shifts between the
profiles were adjusted to fit the spectroscopical data. For 1Bu(HL) state we used the known
value of 4.00eV for the 0−0 transition, whereas for 1Ag(Z) state we estimated the correspond-
ing vertical excitation energy of 5.30eV. As in the Table 5.1 the energies are counted from the
energy of the ground state at its optimal geometry.

Figure 5.1 shows the relative energetics of the PESs of trans-stilbene, where both the ver-

tical excitation energies and the energies of the PESs minima, counted from the minimum of

the ground state PES, are shown. The (local) energy minimum of S2 PES lies above those of S1

state.
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Figure 5.1: The relative energies of the PESs of trans-stilbene, in electron-volts. Both the
PESs energy minima and the vertical excitation energies are shown, the data are taken from the
Table 5.2.

Similar approach was employed to estimate the relative energetics of the PESs of p-coumaric

acid. The energy difference between the minima of the ground and the S1 PES is taken

to be 33200cm−1 or 4.11eV (0− 0 transition), which is available from the spectroscopical

data.61 The two-photon absorption spectrum is broad with a maximum located at approxi-

mately 38400cm−1 (4.76eV), and is assumed to be the vertical energy splitting between the

ground and the S2 PESs, taken at the optimal geometry of the ground state. Thus, in order to

obtain the relative energy difference between the S2 and the S1 PESs, we have to estimate the

energy difference along the S2 state at the optimal geometry of the ground state and at its op-

timal geometry. This quantity was found from our ab initio calculations on CASSCF(10e/8o)

level to be 1.34eV, and, therefore, the resulting energy difference between the minima of S2
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and S1 states is −0.69eV, which also means that the minimum of S2 state lies below that of S1

state, contrary to the findings for trans-stilbene. Note, that we have avoided the direct quantum-

chemical calculation of the energy difference between the distinct electronic PESs, which is

known to be a considerable problem even for the most sophisticated approaches, only the en-

ergy difference along the same PES was used. The obtained results are summarized on Fig. 5.2.

Figure 5.2: The relative energies of the PESs of p-coumaric acid, in electron-volts. Both the
PESs energy minima and the vertical excitation energy S0 → S2 are shown.
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5.6 Results - Solvent influence on the transition energy gap

The fundamental difference between the NQCA and the other quantum-classical approaches to

the non-adiabatic transitions is that the dynamics both along the ground and the excited PESs

contribute to the evolution of the quantum phase of the non-adiabatic transitions, and, therefore,

to the absorption spectra, see Eq.(5.21). These two components have distinct maxima, corre-

sponding to the absorption and emission ones, whereas a proper absorption spectrum part is

separated out by the frequency dependent factor γ(ω), see Eqs. (5.21)-(5.23). At low tempera-

tures these two contributions to the spectral line shape are usually well separated, however, at

high temperatures their overlap may become important and visible on the spectra.

A vivid example of this kind is the absorption spectrum of trans-stilbene, dissolved in

hexane at room temperature (T = 293K), taken from the freely available PhotochemCAD

database.62 For the matter of convenience the fluorescence emission spectrum (excitation wave-

length 290 nm) is also plotted ibidem. The spectra were scaled to have similar amplitudes, see

Fig. 5.3.

The absorption spectrum has a visible shoulder on its left side at the excitation energy of

about 3.9eV, a similar one exists on the emission spectrum, see Fig. 5.3. They appear because

the two broad overlapping contributions in the Eq. (5.21), discussed above, form a saddle be-

tween them. Besides, the width of this saddle at a given temperature proves to be larger than the

width of the stepwise-like factor γ(ω), see Eq. (5.22), which leads to the appearance of the well

visible shoulders in the spectra shown on Fig. 5.3. But it also means, that the initial rise of the

absorption spectrum has to be well described just by the functional dependence of γ(ω), and it

is indeed perfectly fitted by Eq.(5.22) with ε =−3.81eV and T = 293K, see Fig. 5.3. Among

other things, it gives an accurate estimate of the free energy change upon photo-excitation in-

cluding both 0−0 transition energy gap and the corresponding entropic part.

It is well known that the surrounding media may considerably affect the energy splitting
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Figure 5.3: Fluorescence emission and absorption spectra of trans-stilbene dissolved in hexane
at room temperature. The spectra were scaled to have similar amplitudes. The fit of the initial
rise of the absorption spectrum by the stepwise-like function gamma, see Eq.(5.22), with the pa-
rameters ε =−3.81eV and T = 293K is shown by the dotted line. The experimental absorption
and emission spectra of stilbene molecule was taken from the freely available PhotochemCAD
database.62

between the distinct electronic states, the PES-specific dipole-dipole interaction with solvent

molecules is one source of the influence. On the other hand, a direct measurement of the

energy gap of the 0− 0 transition requires high resolution experiments usually performed at

low temperatures, which can hardly be applied to investigate solvent effects on the energies

of the electronic transitions. In the case of trans-stilbene, where we understand the origin of

the shoulders, the accurate value of the transition free energy gap can be directly extracted

from the hot absorption spectra as well. Indeed, applying the above procedure to the gas phase

spectra shown on Fig. 5.4, where we expect no or little influence of the surrounding media,

we obtain ε = 3.99eV, which is in excellent agreement with the experimental value of 4.00eV

(310.23nm), obtained for the jet-cooled molecule,53 and for non-polar benzene as the solvent,63

where it is found to be 3.98eV. Thus, one may conclude that hexane as the solvent reduces the

splitting between the ground and the first excited state by 0.18eV compared to the isolated or
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gas-phase trans-stilbene.
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Figure 5.4: Hot absorption spectra of trans-stilbene in gas phase taken at 374K (solid line) and
722K (dashed line). The corresponding fits of the initial rise by the frequency dependent factor
γ(ω) with ε = 3.99eV are shown by the dotted lines. The experimental hot absorption spectra
of stilbene molecule was taken from the freely available PhotochemCAD database.62

Tyrosine, one of the 20 amino acids used by cells in protein synthesis, offers another ex-

ample. A close look on the absorption spectrum62 of tyrosine dissolved in water, shown on

Fig. 5.5, reveals a characteristic shoulder, which is supposed to be of the same nature as for

the trans-stilbene. Fitting of the initial rise of the spectrum with γ(ω) yields the transition

free energy gap of 4.34eV, and it is in a good agreement with the experimental values64, 65 of

286−288.5nm (4.34−4.30eV) obtained for tyrosine in RNase-S and RNase-A dissolved in a

water-glycerol mixture.

The accurate treatment of quantum phase is of fundamental importance for any ab initio

quantum-classical approach to non-adiabatic transitions, and the spectral shape is very sensitive

to the quantum phase. Note, that neither mean-field nor surface hopping quantum-classical

schemes can give satisfactory results when applied to the simulation of the line shape of UV-

vis absorption spectra. In particular, quantum phase in mean-field approaches evolves on the
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Figure 5.5: The absorption spectrum of tyrosine dissolved in water at room temperature (solid
line). The fit of the initial rise by γ(ω) with ε = 4.34eV and T = 293K is shown by the
dotted line. The experimental absorption spectra of tyrosine molecule was taken from the freely
available PhotochemCAD database.62

averaged PES, which would give instead of spectrally shifted emission and absorption parts

just an unphysical line in between. Similarly, surface hopping schemes estimate the dynamics

of the populations but not the quantum phase, and, therefore, ab initio simulation of UV-vis

absorption spectra can hardly be done. On the other hand, the suggested quantum-classical

approach is capable of ab initio modeling of both the population dynamics, and the line shape

of the absorption spectra. Its intrinsic feature, that in the quantum-classical approximation

the classical dynamics both along the initial and the final PES contribute to the evolution of

the quantum phase of transition, seems to be supported by experimental data. The method

for direct extraction of the 0− 0 transition energy gap from hot absorption spectra of some

polyatomic molecules gives an opportunity to study directly the solvent effects on the energetics

of electronic transitions.31
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5.7 Results - Hot absorption spectra simulations by NQCA

Ab initio simulation of the absorption spectra was done for trans-stilbene and benzene in the gas

phase, employing harmonic normal mode approximation as described in Sec. 5.3. The estab-

lishing of the canonical equilibrium in the phase spaces of PESs is controlled by the molecular

collisions and by the IVR processes. In view of much larger splitting between the ground and

the excited electron states compared to the mean heat energy of kBT , initially the molecules are

in the ground state, and the corresponding canonical distribution is not affected much by the

applied laser field, in the assumed case of its vanishing power (linear response regime). The

energy distribution of the excited state, involved in the transition, depends on the transferred

energy excess. At small energy excess the transferred from the ground state canonical energy

distribution is not affected much, however, at larger energy excess the energy distribution of the

excited state PES tends to be the micro-canonical one due to the fast IVR, and the light-induced

transitions between the PESs take place simultaneously with the energy excess dissipation to

the environment. These effects are not accounted for in the frameworks of the employed statis-

tical approach to the non-adiabatic transitions, which assumes the canonical energy distribution

in the phase spaces of both PESs. On the other hand, the above problem mainly concerns the

fluorescence emission contribution to the spectral shape, see Eq. (5.21), which only gives some

contribution to the initial rise of the absorption spectra (shoulder part), and we believe that the

quality of the modeling is still sufficient to describe this part of the spectra.

In the case of trans-stilbene the spectrum was modeled in the Frank-Condon approximation

assuming a constant transition dipole moment (TDM). On the contrary, benzene is a highly

symmetric molecule and has no TDM in its equilibrium configuration, it may appear only in the

configurations distorted from the equilibrium one. The spectra look different, the absorption

line of trans-stilbene is broad and nearly structureless, whereas the benzene spectrum exhibits

a vibronic structure.
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Figure 5.6: The comparison between the experimentally measured hot absorption spectra of
trans-stilbene in gas phase at two different temperatures, T = 374K (dashed line), and T =
722K (dotted line). The corresponding simulated spectra are shown by solid lines. The value
of the free energy change upon photoexcitation of ε = 3.99eV was used, the simulated spectra
were scaled to fit the experiment at T = 374K. The experimental hot absorption spectra of
stilbene molecule was taken from the freely available PhotochemCAD database.62

Fig. 5.6 shows a comparison of the simulated and the experimentally measured spectra of

trans-stilbene for the two temperatures indicated in the figure. The free energy change ε =

3.99eV and the amplitude were taken to fit the experimental spectrum at T = 374K, the same

set of parameters were used to simulate the spectrum at T = 722K. The configuration space of

trans-stilbene consists of 72 degrees of freedom, and the complete sampling of its phase space

requires averaging over a large number of trajectories N, whereas the remaining fluctuations are

suppressed only as ∼ 1/
√

N. In our simulations we used N = 2000, and ε = 3.99eV estimated

as discussed above, the simulated spectrum for T = 374K was scaled to fit the experimentally

observed one, the same set of parameters except the temperature was used for T = 722K. It can

be seen that both the width of the spectra and their relative amplitudes are well reproduced.

Fig. 5.7 shows a comparison between the experimentally measured and the simulated hot

spectra of benzene. The vibronic structure of the spectrum at 335K is well reproduced, though
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Figure 5.7: The comparison between the experimentally measured hot absorption spectra of
benzene, T = 335K (dashed line), and T = 476K (dotted line). The corresponding simulated
spectra are shown by solid lines. The simulated spectra were scaled to fit the experiment at
T = 335K. The experimental hot absorption spectra of benzene molecule was taken from the
freely available PhotochemCAD database.62

the agreement between the simulation and the experiment at 476K degrades, which may be

the result of the simplified treatment of multidimensional PESs as the harmonic normal modes

approximation. The distinct temperature effect on the intensities of the hot absorption spec-

tra of trans-stilbene and benzene can be explained as follows. Increasing the temperature the

amplitude of the distortions from the equilibrium configuration increases, which increases both

the induced TDM and the dephasing. In the case of trans-stilbene, the induced TDM is small

compared to the equilibrium configuration, whereas the faster dephasing destroys the transition

phase, thus broadening the spectrum and reducing its amplitude, see Fig. 5.6. On the other

hand, benzene has only an induced TDM and its increase has more effect on the amplitude of

the spectrum than the competing more faster dephasing, see Fig. 5.7.
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5.8 Conclusion

We proposed a new quantum-classical approach for the ab initio simulation of the hot absorp-

tion spectra of polyatomic molecules. It is based on the classical mechanics description of the

dynamics along the potential energy surfaces with the quantum mechanical treatment of the

transitions between them, and assumes fast equilibration phase space of PESs to the temper-

ature of the surrounding media. The approach differs from the existing ones in the treatment

of the quantum transition phase, which is directly related to the shape of the spectra, and of

fundamental importance for the modeling of non-adiabatic processes. Unlike the mean-field

approximation, where the coherence evolve on a mean-field potential energy surface, the quan-

tum transition phase is given by the sum of the two equally weighted contributions, being prop-

agated along the corresponding PES. Among other things, it may lead to the appearance of the

specific shoulders in the absorption spectra, which were indeed found and identified for the case

of trans-stilbene and tyrosine. It gives an opportunity for the accurate determination of the 0−0

transition energy gap for those molecules and for the direct investigation of the solvent influence

on the transition free energy, which is of principal importance for the reaction dynamics.

Ab initio simulations of the hot absorption spectra in the gas phase were carried out and

directly compared to the available experimental data for trans-stilbene and benzene. The har-

monic normal modes approximation of both the ground and excited states, obtained by ab initio

quantum chemistry methods, was employed to represent multi-dimensional PESs. In the case

of trans-stilbene the transition dipole moment was assumed to be constant, whereas in the case

of benzene it was calculated by ab initio quantum chemical method generating small displace-

ments along each normal mode. A good agreement between the theoretically modeled and the

experimentally measured spectra demonstrates the consistency in the treatment of the transition

quantum phase by our quantum-classical approach, and opens broad perspectives to the appli-

cation of the recently developed NQCA to the ab initio modeling of non-adiabatic reactions in
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complex systems.
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6

QUANTUM-CLASSICAL MODELING

OF NONADIABATIC

PHOTOISOMERIZATION OF

POLYATOMIC MOLECULES

6.1 Introduction

Two models were suggested to explain the mechanism of photoinduced isomerization of trans-

stilbene and similar systems, and to simulate the corresponding experimental data.23–29 In an

adiabatic model,23–25 see Fig. 6.1, one assumes the existence of a small barrier on the first

excited state (S1) and fast Intramolecular Vibrational Energy Redistribution (IVR), so that the

RRKM model can be used to calculate the reaction rate.66, 67 The adiabatic model was suc-

cessfully applied to the description of molecular beam experiments,28, 68 and an effective bar-

rier height was estimated to be about 1200cm−1. Nevertheless, the pressure dependence of

the reaction rate is not well reproduced and requires the introduction/assumption of "pressure

57
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dependent barrier", however without physically clear picture. In particular, at low pressures

theoretical model fits reasonably well to the experimental data,69, 70 but at pressures above 5

bar the experimental rate constant levels off at 20−30ns−1, while the theoretical high-pressure

limit70 is at 76ns−1. Alternatively, a non-adiabatic model involving the transition to another

excited state was suggested26–29 to explain the photoisomerization mechanism. It is supported

by the fact that the twisted conformation of stilbene, where the radiationless transition to the

ground state takes place, belongs to the distinct electronic state (S2) characterized as the doubly

excited or zwitterionic state.26–29

Figure 6.1: Schematic representation of the adiabatic model for the trans-cis photoisomeriza-
tion of stilbene and stilbene-like molecules. It assumes the existence of a small barrier on the
first excited state PES and fast IVR. Activated barrier crossing is assumed to be the rate limiting
step, a radiationless transition into the ground state takes place from the twisted conformation,
which, nevertheless, belongs to the distinct electron PES.
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6.2 Basic assumptions of the model

The origin of a small barrier in the adiabatic model for the twist around the central ethylenic

bond, which is also assumed to be the reaction coordinate, is not clear. A bond length is a good

qualitative measure of the electron density located on it, and the associated barrier height for

the torsional motion around it. The longer the bond length - the lower the barrier, and vice

versa. A series of accurate quantum chemical calculations show, that in the ground state of

trans-stilbene the central ethylenic bond (C7−C8 in Fig. 6.2) has the double bond character

with the length of about (dependent on the method used) 1.36/1.354/1.33Å,71–74 whereas the

neighboring ones (C2−C7, C8−C9 ) have more a single bond character with the lengths of about

1.47/1.483/1.45Å.71–74 As a result, the direct twist around the central bond in the ground state

has a large activation barrier, while the potential energy surface for the twist of the phenyl rings

is flat in the range of about 30 degrees.75, 76

Figure 6.2: Schematic representation of trans-stilbene and their bond lengths for the ground
(S0) state. Carbon atoms are represented by grey balls, whereas the hydrogen atoms by white
balls, respectively.

On the other hand, in the first exited state the corresponding lengths were estimated71–74 to

be 1.40/1.432Å for the central ethylenic bond (C7−C8 in Fig. 6.3) and 1.41/1.419Å for the

neighboring ones (C2−C7, C8−C9 ), which is in between the single (∼ 1.5Å) and the double



60 6.2. BASIC ASSUMPTIONS OF THE MODEL

bond character (∼ 1.35Å). As a result, in the first excited state the trans-stilbene is planar,71, 77

and the twist around the central bond is still expected to have a considerable barrier.

Figure 6.3: Schematic representation of trans-stilbene and their bond lengths for the single (S1)
excited state.

Finally, our quantum-chemical calculations have shown that in the doubly excited state the

central bond has the length of 1.45Å, which is close to the single bond character, and, therefore,

the twist around it is expected to be nearly the barrierless.

Figure 6.4: Schematic representation of trans-stilbene and their bond lengths for the double
(S2) excited state.

Thus, the non-adiabatic pathway of the photoisomerization, involving the preliminary tran-

sition from S1 to S2 state within the planar geometry of trans-stilbene, may indeed be favored
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over the direct twist around the central bond in the S1 state. In this case the twist around the cen-

tral bond is not considered as the rate limiting step, and the reaction coordinate for the S1 → S2

conversion can be any, including in-plane vibrations. For example, it was found in Ref.,28 that

the non-adiabatic RRKM fits well the experimental data if one uses a normal mode with the

frequency of 400cm−1 as the reaction coordinate, which is obviously not the frequency of the

twist around the central bond.

In the present chapter we estimate an efficiency of the non-adiabatic pathway of the pho-

toisomerization based on the following model, consisting of the two multi-dimensional PESs

schematically shown on Fig. 6.5. We assume that the molecule in first excited state S1 is pre-

pared with a small energy excess (the frequency of the laser pulse is about the 0−0 transition

frequency), so that the energy distribution on S1 PES may be considered as the canonical one

with the temperature T of the surrounding media, possibly corrected to account for the vibra-

tional cooling effect.

Figure 6.5: Schematic model for the trans-cis non-adiabatic photoisomerization of stilbene
and stilbene-like molecules. It assumes fast IVR and the non-adiabatic conversion from the
first excited state (S1) into the double excited one (S2) near the planar geometry to be the rate
limiting step. The subsequent twist around the central bond proceeds along S2 PES, where it is
considered to be nearly barrierless.

The PESs for the S1 and S2 states near their planar geometry were obtained in the normal

mode approximation by ab initio quantum chemistry methods. This should be a reasonably
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good approximation for all modes except for the twist around the central ethylenic bond in

S2 state, which is nearly barrierless as it was mentioned above. The IVR in trans-stilbene is

fast, compared to the time scale of the photoisomerization, and was estimated to take about

20ps.78–85 This makes the transition S1 → S2 irreversible, since the molecule very fast twists to

the transition state with the energy, considerably lower than the minimum of the S1 PES. Such a

situation is similar to the non-adiabatic transitions in the "inverted region" of the Free-Energy-

Gap Law, where the transitions are thermally activated but irreversible. However, the normal

modes approximation at the local energy minimum of S2 PES near the planar geometry was

used to restore the energy profile in the transition zone.

The energy splitting between the PESs plays a key role in the non-adiabatic dynamics. In

Section 5.5 we estimated the energy gap between the minima of S2 and S1 states in trans-

stilbene from the spectroscopical data and the quantum-chemical calculations to be about ∆E =

E2−E1 = 0.6eV (the local minimum of S2 PES lies above the minimum of S1). This value is

rather large and seems to prevent any surface crossing events, since it requires too large (and

rare) fluctuations of the energy per (reaction) degree of freedom. Nevertheless, in the canonical

ensemble the S1 → S2 transition are not forbidden energetically, although the mechanism of the

nonadiabatic transitions in polyatomic molecules may fundamentally be different from those

in small molecules. Within the classical mechanics picture, in the one-dimensional case the

energetically allowed nonadiabatic transitions always proceed via the surface crossing events,

whereas in the multi-dimensional case the fast IVR redistributes the energy among other degrees

of freedom, and may effectively prevent the surface crossing events.

The structure of p-coumaric acid, schematically shown on Figs. 6.6-6.8, is similar to those

of trans-stilbene.
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Figure 6.6: Schematic representation of p-coumaric acid and their bond lengths for the ground
(S0) state. Carbon atoms are represented by grey balls, whereas the hydrogen and oxygen atoms
by white and red balls, respectively.

Similarly to the trans-stilbene case we have found that the central bond (C7−C8 in Fig. 6.6)

in the ground state of p-coumaric acid has a double bond character of 1.35Å, which means that

it has a large barrier preventing the rotation around it. The neighboring bonds (C1−C7, C8−C9)

both have the length of about 1.48Å which is close to the single-bond character, thus making

the corresponding potentials for the twist around them to be flat.

Figure 6.7: Schematic representation of p-coumaric acid and their bond lengths for the single
(S1) excited state.

In the first excited state the length of the central bond and one of the neighboring bonds

(C1−C7,C7−C8) becomes 1.39Å, whereas the bond length C8−C9 is just slightly affected and

becomes 1.47Å, but the rotation around it does not lead to the isomerization, see Fig. 6.7.
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Figure 6.8: Schematic representation of p-coumaric acid and their bond lengths for the double
(S2) excited state.

Finally, in the doubly excited state the central bond has the length of 1.49Å, which is of

single bond character, and the twist around it may again become nearly barriereless, see Fig. 6.8.

Thus, the quantum chemistry of p-coumaric acid and its photoisomerization mechanism looks

quite similar to the trans-stilbene. However, the p-coumaric acid chromophore exhibits much

faster isomerization rate of about several picoseconds.86–88 We attempt to clarify the origin of

this difference below.

6.3 NQCA and the photoisomerization processes of poly-

atomic molecules

For the case of the two PESs the Hamiltonian of the polyatomic molecule can be written as

Ĥ = Ĥ(1)
N

∣∣1〉〈
1
∣∣+ Ĥ(2)

N

∣∣2〉〈
2
∣∣+V̂ , (6.1)

where Ĥ(1,2)
N are the PESs Hamiltonians depending on the coordinates of the nuclei, V̂ is the

Hamiltonian of the coupling between them, and |n〉〈n| are the projectors on the n-th electronic

state.
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In the case of the non-adiabatic photoisomerization the Hamiltonian of the coupling

Ŵ =−
n

∑
α=1

ih̄
mα

p̂α · d̂α , (6.2)

is defined by scalar products of the momenta of the atomic centra pα and the corresponding

non-adiabatic coupling vector dα . Here also h̄ is the Planck constant, and mα is the mass of the

α-th atom in the molecule.

The kinetic equations of quantum-classical approach in the absence of the backward reaction

can readily be obtained from those presented in Section (4) by formally taking the limit of

infinite negative free energy change in the course of the reaction, and have the following form

dσ(t)
dt

=− 1
N

N

∑
k=1

Im
(

χk(qk(t))Wk(qk(t))
)

, (6.3)

where σ(t) is the probability of being on S1 PES, N is in practice a large number of the MD

trajectories sufficient to sample the phase space of S1, and

dχk(qk(t))
dt

= iΩk(qk(t))χk(qk(t))+2iWk(qk(t))σ(t) (6.4)

is the auxiliary function for the given trajectory, which accounts for the quantum phase of

transition and for the memory effects. The non-adiabatic coupling and the PESs Hamiltonian

functions difference Ωk(qk(t)) (the vertical energy gap) depending on the corresponding phase

space trajectory qk(t) are

Wk(t) =−
n

∑
α=1

ih̄
mα

pα(qk(t)) ·dα(qk(t)) , (6.5)

and

Ωk(qk(t)) = H(2)
N (qk(t))−H(1)

N (qk(t))+Ω0 , (6.6)

where Ω0 is the energy shift between the minima of the first PESs counted for the minima of

the second PESs.

The numerical approach to solve Eqs.(6.3), (6.4) parallels those described in Section 4. The

normal modes approximation was employed to represent the multidimensional PESs, whereas
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the components of the nonadiabatic coupling vectors dα were assumed to be constant in the

vicinity of the equilibrium geometry of S1 PES. Both normal modes and the nonadiabatic cou-

pling vectors were obtained by ab initio quantum-chemical methods, calculation of the vertical

energy gap along the trajectories is outlined in Section 5.4.

6.4 Results - Photoisomerization kinetics of trans-stilbene

molecule

For the simulation of the photoisomerization kinetics of trans-stilbene we used the value of the

vertical energy splitting between the minima of the S2 and S1 states of 0.69eV (the minimum of

S2 state lies considerably higher than the minimum of S1), which is consistent with both spec-

troscopical data for one- and two- photon absorption spectra of trans-stilbene, see Section 5.5.

The potential energy surfaces in the normal mode approximation were obtained using GAMESS

US software for ab initio quantum chemical calculations and the CASSCF(10e/10o) approach.

The non-adiabatic coupling vector was calculated by freely available COLUMBUS quantum

chemistry programs suit on the MR-CI level. We are mainly concentrate on the investigation

of the mechanisms of the photoisomerization rather than on an accurate fitting of the available

experimental data. Fig. 6.9 shows the simulated kinetics of (irreversible) non-adiabatic transi-

tion from S1 to S2 state, which is also the photoisomerization kinetics in the framework of the

considered model assuming non-adiabatic S1 → S2 conversion as the rate limiting step.
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Figure 6.9: The kinetics of the non-adiabatic transition from S1 to S2 state for the trans-
stilbene, solid line. Dashed line shows the kinetic of the non-adiabatic transition from S1 to S2
in the absence of the high-frequency normal modes. Dashed-dotted line shows the kinetic of the
non-adiabatic transition from S1 to S2 in the absence of the low and middle frequency normal
modes.

The corresponding kinetics is shown on Fig. 6.9. It has a single-exponential character and

is well fitted by the formula

σ(t) = e−t/τ , τ = 630ps . (6.7)

Note, however, that in our simulation we have neglected by the cooling effect of the reaction.

Indeed, the molecules with higher total energies, present in the canonical distribution, should

react faster, whereas the molecules with the total energy below some energy threshold may not

react at all. Under realistic experimental conditions this leads to the two-exponential decay,

with the faster exponent corresponding to the so-called first-order photoisomerization reaction

followed by a slower stage when the remaining cold molecules are heated up by the collisions

with the bath molecules. Although this cooling effect can be incorporated in our simulation

procedure assuming the IVR to be faster than the reaction, which is certainly true for the case

of trans-stilbene, we analyze the underlying mechanism of the first-order photoisomerization

kinetics without influence of the cooling effect.

The obtained results are quite surprising from the standpoint of the standard models of the
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non-adiabatic transitions, which usually assume the surface crossing events along one or few

reaction degrees of freedom. In our simulation the minimum of S2 state lies 0.69eV above the

minimum of S1 state, and, therefore, the vertical energy splitting between the PESs at the mini-

mum of S1 state cannot be smaller than 0.69eV. Therefore, the (thermal) energy fluctuations on

a single reaction degree of freedom, which may potentially lead to the surface crossing events,

have to be about of this value. For stilbene, being in thermal equilibrium at room temperature

with its 72 internal degrees of freedom, these are too rare events to contribute to the reaction.

Indeed, Figure 6.10 shows the vertical energy splitting between the S1 and S2 PESs as the func-

tion of time taken along one representative trajectory. The vertical energy splitting fluctuates

between −0.5eV and −1.5eV but does not exhibit surface crossing events, when the vertical

energy splitting passes through the zero mark.

0 0.5 1.5 2.0

-1.5

-1.0

-0.5

0.0

Figure 6.10: Time dependence of the vertical energy splitting, for trans-stilbene, along a single
representative trajectory on S1 PES. It is seen that the surface crossing events are absent ( they
correspond to the crossing ∆E = 0 level).

To determine normal modes being most active in the non-adiabatic coupling between the

PESs, we have plotted an absolute value of the Fourier transform of Wk(t) defined in Eq. (6.5),

averaged over many trajectories. This gives us the information about the frequency of the cor-
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responding normal mode and the strength of its contribution into the coupling, see Figure 6.11.

The distinct frequency domains are clearly seen in Figure 6.11. In the low-frequency domain

with mainly torsional, and bending motion of the molecule, up to ∼ 500cm−1, one has only

one line with a relatively small amplitude. The mid-frequency domain from ∼ 500cm−1 to

∼ 2000cm−1, contains a number of lines with different amplitudes. Finally, the high-frequency

domain involves normal modes with the dominant contribution of C−H stretch vibrations lo-

cated around 3300cm−1. The lines in this region are the most intense. In particular this is due

to larger velocities of the high frequency modes, see also Eq. (6.5).

0 1000 2000 3000 4000

Figure 6.11: Absolute value of the Fourier transform of the non-adiabatic couplings W for
trans-stilbene, averaged over many MD trajectories. Three frequency domains can roughly be
defined as the low frequency (0−500cm−1), the middle frequency (500−2000cm−1), the high
frequency (3300−4000cm−1) domains.

The dynamics of high frequency modes is often neglected in ab initio simulations of the

structural changes of polyatomic molecules, by constraining some bond lengths/angles to their

equilibrium values. In the systems with slow reaction modes the above procedure allows to

increase the simulation time step considerably, and, as the result, to achieve a longer time scale

of the simulation and/or to reduce the computational cost. In order to study the importance

of the high-frequency modes for the model under consideration, we have also simulated the
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dynamics of the non-adiabatic transitions in the absence of the high-frequency vibrations of the

stilbene molecule, and have set the initial energy of the corresponding normal mode oscillators

to zero when sampling from the thermal distribution. The corresponding kinetics is shown on

Figure 6.9 by the dashed line. It is readily seen that, when removing the high-frequency modes

the reaction rate is reduced by a factor of 30, giving the characteristic decay time of about 20ns.

On the other hand, when freezing the low and the middle frequency normal modes and keeping

only the high-frequency vibrations of the stilbene molecule, we obtain even a slower reaction

with the decay time > 200ns.

6.5 Results - Photoisomerization kinetics of p-coumaric acid

molecule

To perform ab initio simulations for the case of p-coumaric acid within the frameworks of the

suggested model, we have to estimate the energy difference between the minima of S2 and S1

PESs, and we use the same approach as for trans-stilbene, see Section 5.5. It gives, however, a

qualitatively different situation, the minimum of S2 PES lies below the minimum of the S1 PES

by 0.69eV, which results in the frequent surface crossing events, and, as the result, in the much

faster photoisomerization, see below.

The simulated kinetics of S1 → S2 transition is shown on Fig. 6.12, and is indeed very fast

compared to the stilbene kinetics, see Eq. (6.7). The decay has one-exponential character and

is well fitted by the formula

σ(t) = e−t/τ , τ = 0.44ps . (6.8)
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Figure 6.12: The kinetics of the non-adiabatic transition from S1 to S2 state for p-coumaric
acid. The following set of parameters was used for the simulation : N = 1000, T = 270, where
N is the number of MD trajectories and T is the temperature corespondly
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Figure 6.13: Time dependence of the vertical energy splitting for p-coumaric acid, along a
single representative trajectory on S1 PES and it can be observed that exhibit surface crossing
events (they correspond to the crossing of ∆E = 0 level).
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The reason for the drastic acceleration of the photoisomerization kinetics becomes clear

from Fig. 6.13, where the energy difference between the PESs along some representative tra-

jectory is plotted. Change of the sign of ∆E indicates the surface crossing event, and there are

many of them on the time scale of the reaction. Thus one may conclude, that the dominant

mechanism of the non-adiabatic transitions in p-coumaric acid is via surface crossing events,

which explains its much faster isomerization than for stilbene.

0 1000 2000 3000 4000

Figure 6.14: Absolute value of the Fourier transform of the non-adiabatic couplings W, for p-
coumaric acid, averaged over many MD trajectories. Three frequency domains can be roughly
defied : the low frequency (0−1000cm−1), the middle frequency (1000−2000cm−1), the high
frequency (3300−4200cm−1) domains.

The high-frequency domain in the non-adiabatic coupling is not well pronounced, see

Fig. 6.14, and removing frequencies higher than 3000cm−1 from the calculations does not

considerably affect the kinetics.
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6.6 Conclusion

We have carried out ab initio simulations of the trans-cis photoisomerization kinetics of the

two polyatomic molecules, stilbene and p-coumaric acid chromophore. The isomerization after

photo-excitation into the first excited state was modeled as a two-stage process, with the rate-

limiting step to be the non-adiabatic conversion from a single into a double excited state near

the planar geometry of the corresponding trans-isomers. The actual isomerization was assumed

to take place in the double excited state, where it is nearly barrierless and fast. All parameters

of the model were estimated either from high-level quantum-chemical methods (equilibrium

geometries, normal modes and their frequencies, non-adiabatic coupling vectors) or from spec-

troscopical data. The latter were used to obtain the accurate relative energies of the electron

states involved in the simulations. The time scale of the photoisomerization kinetics was well

reproduced. For gas-phase stilbene at room temperature the non-adiabatic pathway gives a

characteristic time of approximately 630ps, whereas p-coumaric acid photoisomerization un-

der same conditions is predicted to be faster than 1ps. A deep insight into the mechanism of

the reaction reveals, that in the case of stilbene the non-adiabatic conversion between the sin-

gle and the double excited states proceeds without surface crossing events, via relaxation-like

mechanism, when the internal degrees of freedom play the role of the bath. On the other hand,

the relative energetics of the single and the double excited states in p-coumaric acid is opposite,

which leads to a frequent surface crossing events on the time scale of the reaction and, as the

result, to a much faster photoisomerization.
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APPENDIX: Input description GAMESS

US software

This section describes the input data of GAMESS US programs used in our simulations.

CONTRL group = this group specifies the type of wavefunction, the type of calculation,

use of core potentials and similar fundamental job control options.

SCFTYP = specifies self-consistent field wavefunction.

MCSCF = Multiconfigurational self-consistent field wavefunction.

RUNTYP = specifies the type of computation, for example at a single geometry point :

= OPTIMIZE optimize the molecular geometry using analytic energy gradients.

= HESSIAN molecular energy plus gradient plus second derivatives, including harmonic

vibrational analysis.

= ENERGY molecular energy.

= TRANSITN compute transition dipole moment.

EXETYP = RUN actually do the run.

MAXIT = maximum number of SCF iteration cycles.

COORD = CART cartesian coordinates will be input.
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CISTEP = GUGA this group is the control box for Graphical Unitary Group Approach

(GUGA) CI calculations or determinant based CI.

DH = double zeta basis set

NDFUNC = number of heavy atom polarization function to be used.

POLAR = DUNNING exponent of polarization function.

GUESS = MOREAD read in formatted vectors punched by an earlier run. This requires a

VEC group and you must to pay attention to NORB below.

NORB = the number of orbitals to be read in the VEC group.

VEC group = this group consists of formatted vectors, as written onto an output file in a

previous run.

C1 = the group is set to C1 (no symmetry used).

FORS = .T. flag specifying the Full Optimized Reaction Space set of configuration should

be generated. This is usually set true for MCSCF runs.

NMCC = number of MCSCF core molecular orbitals (MOs).

NDOC = number of doubly occupied MOs in the reference.

NVAL = number of empty MOs in the reference.

GUGDIA group = this group provides control over the Davidson method diagonalization

step.

NSTATE = number of CI states to be found.

ITERMX = maximum number of iterations.

GUGDM group = this group provides further control over formation of the one electron

density.

NFLGDM = controls each state’s density formation, 0→ do not form density for this state,

1→ form density and naturals orbitals for this state.

IROOT = the root whose density matrix is saved on desk for later computation of proper-

ties. You may save only one state’s density per run, by default this is the ground state (default
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= 1).

GUGDM2 group = this group provides control over formation of the 2-particle density

matrix.

WSTATE = the default is to optimize a pure ground state.

STATPT group = this group controls the search for stationary points.

NSTEP = maximum number of steps to take.

DXMAX = initial trust radius of the step, in Bohr.

LAGRAN group = this group provides further control over formation of CI Lagrangian, a

quantity which is necessary for the computation of CI gradients.

NDAR = number of direct access logical record to be used for the integral sort.

FORCE group = this group controls the computation of the hessian matrix and an optimal

harmonic vibrational analysis.

PURIFY = the hessian and dipole derivative tensor can be purified by transformation from

Cartesian to internal coordinates and back to Cartesian coordinates. This effectively zeros the

frequencies of the translation and rotation modes, along with their IR intensities. The purified

quantities are written on an output file.
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APPENDIX: Energy and structure

parameters calculations of ground state

for p-coumaric acid molecule

In this chapter the energy and the structure parameters calculations of the ground state of p-

coumaric acid will be given. These calculations have been done using the GAMESS US soft-

ware. Subsequently the program structure for optimizing the system, for calculating the normal

modes (via calculating the Hessian matrix) and for the calculation of the energy values of the

ground state are given . For calculating all this parameters we have used the Multi Configuration

Self Consistent Field method (MCSCF).
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B.1 Optimize the ground state for p-coumaric acid
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B.2 Hessian calculations for the ground state
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B.3 Energy calculations for ground state
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APPENDIX: Energy and structure

parameters calculations of excited state for

p-coumaric acid molecule

In this chapter the energy and the structure calculations of the excited state are given using

the GAMESS US software, the Multi Configuration Self Consistent Field method. As before

we are given here the program structure for optimizing the system, for calculating the normal

modes (via calculating the Hessian matrix) and also the calculations of the energies for excited

states.
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C.1 Optimize the second excited state for p-coumaric acid
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C.2 Hessian calculations for the excited state
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C.3 Energy calculation for excited state
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D

APPENDIX: Transition dipole moment

calculations

In this chapter are explained the way in which we have calculated the transition dipole moment

for benzene and stilbene molecules.

First, stilbene has a large non-zero TDM in its equilibrium geometry, thermal distortions

from the equilibrium structure induce additional TDM, but this effect was neglected, therefore

TDM in stilbene was treated in Condo approximation. So it means that we have constant cou-

pling term between the PES, and its amplitude plays no role in linear response regime (spectrum

is proportional to the square of transition dipole moment, but we do not calculate its amplitude,

just spectral shape).

Second, benzene has no transition dipole moment in its equilibrium geometry due to high

symmetry, therefore it only has induced TDM. To calculate its components the following steps

were done. For some small (but fixed) displacement along every normal mode of the ground and

the first excited state the corresponding cartesian coordinates of such a distorted configuration

were calculated (normal mode vectors are known, it was written a small FORTRAN program

to do it). Then the transition dipole moment for every distorted configuration was calculated.
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96 D.1. EQUILIBRIUM GROUND STATE FOR BENZENE MOLECULE

In GAMESS this is a two-step calculation. First, for every electron state of interest (the ground

and the first excited one) we need single-point energy calculation. Second, the orbitals and the

gradients have to be provided for the transition dipole moment calculation.

D.1 Equilibrium ground state for benzene molecule
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98 D.2. ENERGY CALCULATIONS FOR GROUND STATE - BENZENE MOLECULE

D.2 Energy calculations for ground state - benzene molecule
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100 D.3. TRANSITIONS DIPOLE MOMENT CALCULATIONS FOR GROUND STATE

D.3 Transitions dipole moment calculations for ground state

- benzene molecule
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102 D.3. TRANSITIONS DIPOLE MOMENT CALCULATIONS FOR GROUND STATE



E

APPENDIX: Non-adiabatic coupling

vector calculations

In this thesis we have used the Columbus program for non-adiabatic coupling vector calcula-

tions of trans-stilbene and p-coumaric acid molecules.

The Columbus program is a set of Fortran programs for performing ab initio molecular elec-

tronic structure calculations. The programs can be used for calculations of electronic ground

and excited states of atoms and molecules and is organized as a collection of separate pro-

grams which communicates between them via files. All of these programs required individual

input files. In general, Columbus program can be used for geometry optimization and saddle

point searches, automatic searches for minima on the crossing seam (canonical intersection),

non-adiabatic coupling vector calculations, analytic gradient calculations etc. All of these cal-

culations are done using the following methods

- Multiconfiguration Self-Consistent Field (MCSCF);

- Multireference Configuration Interaction with all single and double excitations (MR-

CISD);

- Multireference averaged coupled pair functional (MR-ACPF);
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- Multireference average quadratic coupled cluster (MR-AQCC);

In our case for calculating the non-adiabatic coupling vector we have considered the follow-

ing steps, see for more details Ref,89, 90

- geometry calculation via using SCF and MCSCF methods;

- molecular orbital file generated in MCSCF calculation;

- compute the CI wavefunctions;

- compute the corresponding symmetric one and two particle transition densities matrices

and the antisymmetric one-particle density matrix and put all of these matrices on files;

- compute the Fock matrix;

- back transformation to the AO basis gives the final result for the total non-adiabatic cou-

pling vectors. The non-adiabatic coupling vectors are given in cartesian components, and if it

is necessary the coupling vector can be transformed to internal coordinates.

Forward are given the final results obtained using Columbus program for non-adiabatic

coupling vectors for trans-stilbene and p-coumaric acid molecules.
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E.1 Non-adiabatic couplings vectors for coumaric acid molecule



106 E.2. NON-ADIABATIC COUPLINGS VECTORS FOR STILBENE MOLECULE

E.2 Non-adiabatic couplings vectors for stilbene molecule
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