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Chapter 1

Introduction

...man solle ein Verfahren angeben, nach welchem sich mittelst
einer endlichen Anzahl von Operationen entscheiden lässt,

ob die Gleichung in ganzen rationalen Zahlen lösbar ist.

David Hilbert, Paris, 1900.

Outline of this introduction. This thesis deals with a structure called read–once parity
branching programs. This introduction tries to motivate why one should be interested in
this structure and why lower bounds for it are interesting. Since branching programs are
an important model of computation and restricted variants form important and widely
used data structures, we begin by briefly outlining these areas. In Section 1.1 we give
some basics on complexity theory. This section is written rather informally to make
it comprehensible. In Section 1.2 we argue what a good data structure for Boolean
functions should provide. After that we define branching programs in Section 1.3 and point
out relations to the areas described in the foregoing sections. In Section 1.4 restricted
branching programs are considered, namely read-once branching programs and the famous
OBDDs. By introducing the notions of nondeterminism and parity acceptance mode in
Section 1.5 we approach the model mentioned in the title of this thesis, read-once parity
branching programs. We argue why it is difficult to prove lower bounds for this structure
in Section 1.6. Section 1.7 summarizes this introduction and describes the progress made
by this thesis.

Since the Sections 1.1 to 1.5 are written for those who are not familiar with computa-
tional complexity, a reader working in the field of branching programs could start reading
at Section 1.7.
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1.1 Computational complexity

Algorithms are at the heart of complexity theory. That is the dark secret of complexity
theory. These are the first sentences of the Complexity Theory Companion by Hemaspaan-
dra and Ogihara ([HO98]), and so first we should answer the question what an algorithm
is. Quite a good definition is that given by Hilbert in the opening citation of this intro-
duction. Associated with his tenth problem, addressed at the International Congress of
Mathematicians in Paris, 1900, he asked for a process according to which it can be deter-
mined by a finite number of operations, whether, in that special case, a certain equation is
solvable in a specified way. But that definition is still too intuitive to be of much help for
funding something like an algorithm science. In 1936, Church and Turing proposed two
different definitions of an algorithm and it turned out that both of these were equivalent.
In a simplified manner we describe Turing’s proposal, the Turing machine.

A Turing machine is equipped with an infinite tape of cells as its memory. It has a head
that can read and write symbols and move around on the tape. When the computation
starts the tape contains only the input string and is blank elsewhere. The machine can
store information by writing it on the tape. It can move its head all over the tape and
so has access to everything stored there. The machine continues computing until it stops
and produces an output. Possibly, this sounds rather like the description of a computing
device than that of an algorithm. But we still have to introduce the finite state control
that determines the next action of the Turing machine dependent on the current state
(described among other things by the content of the cell under consideration) the next
action of the Turing machine. We restrict ourselves to problems whose solution is either
0 or 1, where we consider 1 as true or more commonly accept and 0 as false or reject.

Now one calls the set of inputs that are accepted as the language accepted by this
Turing machine. For instance, a Turing machine that accepts each input, being a prime
number, and rejects each input, being a composite number or no number at all, decides the
language consisting of all prime numbers. So the term language serves as a formalization
of computation problems with possible output 0 or 1.

A Turing machine can do anything that a real computer can do, where the term real
computer refers to entities like PCs or mathematicians using pencil and paper. This has
come to be called the Church–Turing thesis. It states that defining algorithms by Turing
machines corresponds with our intuitive notion.

The objective of computational complexity theory is the investigation of the time,
memory, or other resources required for solving computational problems. The running
time of a Turing machine is the number of steps depending on the size of the input.
Analogously, we define the space complexity to be the maximal number of tape cells
(besides those cells containing the input) that are scanned by the Turing machine, again
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depending on the input size. It is not possible in general and not even desirable for
practical reasons to describe, for instance, the minimal time within which a given problem
can be solved on a Turing machine as an exact function of the input size. Such a function
necessarily depends too much on the low level details of the model of computation. In
complexity theory we only try to sort problems roughly into large classes according to
the resources required to solve them in the worst–case. The following complexity classes
belong to the most basic ones of classical complexity theory.

The class P contains all languages decidable in polynomial time by Turing machines.
Intuitively, polynomial time means that for inputs of size n the running time does not grow
stronger than nk for some k. Complexity theorists consider P as containing all problems
that are realistically solvable on a computer. From a practical point of view this might be
false, in particular when the exponent k is large. But problems requiring superpolynomial
or even exponential time are a good deal less solvable and if at all, for tiny inputs. So
there is a real gap between problems in P and those outsides. And having proved that a
problem is in P, this result most often reveals information about the intrinsic structure
of that problem, possibly inspiring further research with much practical impact. Besides
this motivation the class P provides strong closure properties and normally is not affected
by the chosen model of computation.

Other very elementary classes are NP and NL which are usually defined with the help
of nondeterministic Turing machines. A nondeterministic Turing machine is a Turing
machine that at any point of a computation may proceed according to several possibilities.
One may think of a nondeterministic computation as a tree of possibilities. The root of
the tree corresponds to the start of the computation. Every branching point in the tree
corresponds to a point in the computation at which the machine has multiple choice. The
machine accepts if at least one of the computation branches or paths ends in an accepting
state. Now we define as the nondeterministic running time the length of the shortest
accepting path. Intuitively, each accepting computation path (or the choice of it) refers
to some proof for the membership of x in A. Thus, the class NP, defined to contain all
languages decidable in polynomial time by nondeterministic Turing machines, is the set
of languages that can be verified in polynomial time given some additional information,
the proof. We consider an example. Let COMPOSITES be the set of numbers greater
than 1, that are not prime numbers, i.e., x ∈ COMPOSITES, if there are integers p, q > 1
with p · q = x. Now given some x ∈ COMPOSITES, and in addition as proof two integers
p, q, we can multiply p and q, and check that p · q = x, verifying x’s membership in
COMPOSITES.

L is the class of all languages decidable by deterministic Turing machines using not
more than logarithmic space. Intuitionally, this means that for inputs of size n the running
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time does not grow stronger than k · log n for some k. Analogously to NP, we define NL as
the class of all languages accepted by nondeterministic Turing machines using not more
than logarithmic space. It is quite easy to see the following relation between the classes
mentioned.

L ⊆ NL ⊆ P ⊆ NP.

But to prove that one of these inclusions is proper belongs to the fundamental open
problems of complexity theory. Most famous is the P vs. NP problem.

Why is deciding whether P=NP or P6=NP of such importance? If it is proved that
these classes are equal, each polynomially verifiable problem will turn out to be decid-
able by polynomial time algorithms and consequently, many problems for which only
superpolynomial algorithms are known will get within the range of solvability. But most
researchers believe that this is not true. Proving that these classes are unequal means
to show that for some problem verifiable in polynomial time, each algorithm deciding it
needs superpolynomial time, i.e. to prove a superpolynomial lower bound for the running
time of all deterministic algorithms solving this problem. And this would surely give much
insight into the inherent reasons why some problems are easy and others are difficult to
solve. The practical impact of such a result should not be underestimated. The following
says something about the attention that the P vs. NP problem has attracted. The Clay
Mathematics Institute of Cambridge, Massachusetts has named seven so-called Millen-
nium Prize Problems. For the solution of each of these problems a $1 million prize was
designated. Deciding whether P=NP is, besides for instance the Riemann Hypothesis,
one of these very important open problems of mathematics (see [CMI00]).

1.2 Data structures for Boolean functions

Let us consider the following fundamental task called circuit verification. One is given
a newly designed circuit and has to prove that this circuit is correct. Correct means
that the function computed by this circuit agrees with the function described by some
specification. This is called equivalence of circuit and specification. For instance, such a
specification can be another circuit. Normally, a circuit computes a Boolean function. A
Boolean function in n variables is a function f : {0, 1}n → {0, 1}. Boolean functions are
very important since every finite function can be considered as a sequence (f1, . . . , fm) of
Boolean functions. A function f : A→ B is called finite if A and B are arbitrary sets of
finite size.

The idea is to transform the circuit as well as the specification into different instances of
a data structure that supports the equivalence test efficiently. For circuits the equivalence
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test is co-NP-complete. Most researchers believe that NP-complete problems and co-
NP-complete problems are intractable. A problem is called intractable if it is solvable in
principle, but the solutions require so much time that they can not be used in practice.
Maybe, the infamous Pentium Division Bug could have been avoided if circuit verification
was not so difficult.

There are many areas besides circuit verification in which it is important to store
Boolean functions succinctly and manipulate them efficiently. One has to mention sym-
bolic model checking, computer aided design, artificial intelligence, optimization, count-
ing, genetic programming (see [Weg00], pages 313-378) and cryptography (see [Kra02]).

In the following we present some very important operations that every useful data
structure for Boolean functions has to provide efficiently. A list of this type has been
published in the fundamental paper of Bryant, [Bry86].

• Evaluation.

Input: A representation A for a Boolean function f : {0, 1}n → {0, 1}, an assignment
a ∈ {0, 1}n.

Output: f(a).

• Boolean synthesis.

Input: Representations A1, A2 for Boolean functions f1, f2, resp., and a Boolean
operation ⊗ : {0, 1}2 → {0, 1}.

Output: A representation A⊗ for f1 ⊗ f2.

• Minimization.

Input: A representation A for a Boolean function f .

Output: A representation A′ for f, that is size–minimal in the set of all representa-
tions (of a given type) for f .

• Equivalence test.

Input: Representations A1, A2 for Boolean functions f1, f2, resp.

Output: Yes, if f1 = f2; no, otherwise.

• Satisfiability test.

Input: A representation A for a Boolean function f .

Output: Yes, if there is an assignment a ∈ {0, 1}n such that f(a) = 1; no, otherwise.
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How are these operations applied for verifying Boolean circuits? First note that the
input bits represent the functions f1 = x1, . . . , fn = xn. We traverse the circuit in
topological order. If we reach a gate computing an operation ⊗ we perform Boolean
synthesis. To avoid a blow–up of the size we frequently use the minimization. If we have
transformed both the circuit and the specification into instances of the data structure we
complete our task with the help of the equivalence test. Alternatively, one can proceed
by first performing Boolean synthesis of the instances with respect to the exclusive–or
operation and applying the satisfiability test on the result.

1.3 Branching programs

We begin this section with the most fundamental definition of this work. It is illustrated
by Figure 1.1.

Definition 1.1 A branching program (BP, for short) on the variables {x1, x2, xn} is a
directed acyclic graph with one unlabeled source s and two sinks labeled by the Boolean
constants 0 or 1. Each node that is neither the source nor a sink is called a branching
node and is labeled by a variable xi. Each branching node has exactly two outgoing edges,
one labeled by 0 and the other labeled by 1.

Such BPs are called deterministic to distinguish them from nondeterministic ones
that we introduce in Section 1.5. Note, that the requirement of an unlabeled source is
non–standard. It is convenient for studying those nondeterministic BPs just mentioned.
The size of a BP B is the number of its nodes and is denoted by SIZE (B).

Instead of branching program the synonymous term binary decision diagram, or BDD,
for short, is in use. This has historical reasons and those mostly interested in data
structures use the term BDD whenever a complexity theorist uses the term BP. Since
this thesis is mainly about lower bounds, we prefer speaking about branching programs.
Only in the case of OBDDs (see Section 1.4) this would be quite unusual. In Appendix
B the reader can find a list of all variants of BPs mentioned in this thesis. This may help
to avoid confusion.

By Definition 1.1 we have already described the syntax of a BP. To complete the
definition we still have to describe the way a Boolean function is determined.

Definition 1.2 A branching program computes a Boolean function as described by the
following algorithm. For any assignment to the variables on that the BP is defined start
at the successor of the source, follow the path determined by taking the outgoing edge from
each branching node according to the value assigned to the indicated variable until a sink
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Figure 1.1: A branching program in the variables {x1, x2, x3}.

is reached. This path is called the computation path corresponding to this input. The
output is the label of that sink.

It is very helpful to see that each node of a BP for itself represents a Boolean function.
Throughout this work, for a node v, Resv denotes the function represented by the node
v and is called resulting function. Res(B) denotes the function represented by the whole
diagram B. If v is the 1−sink (0−sink, resp.), then Resv is the all-one (all-zero) function.
If v is a branching node labeled by xi with 1−successor v1 and 0−successor v0, then
Resv = xi ∧Resv1 ∨(xi⊕ 1)∧Resv0 , where ⊕ denotes the exclusive–or operation. Clearly,
Res(B) is the function represented by the successor of the source. Using this inductive
approach, one easily gets that the BP of Figure 1.1 represents the function f(x1, x2, x3) =
(x1 ∨ x2) ∧ x3.

Definition 1.2 in fact describes a linear time algorithm for evaluation. Furthermore,
Boolean synthesis of two BPs B1,B2 is tractable in linear time, and for the size of the
result B⊗ it holds that SIZE (B⊗) ≤ SIZE (B1) + SIZE (B2). Let us consider the following
example. To handle ⊗ = ∧ just identify the 1−sink of B1 with the source of B2 and merge
the 0−sinks of B1 and B2. But for unrestricted branching programs all other operations
mentioned in Section 1.2 are not tractable. Similarly as in the case of circuits, the sat-
isfiability test is NP-complete and the equivalence test is co-NP-complete. Furthermore,
minimization is NP-hard. Thus, after common believe these operations are intractable
(see Section 1.2). To get an applicable data structure one has to restrict the definition
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which we do in Section 1.4.

Now we turn to the complexity theoretical use of BPs. A branching program describes
an algorithm computing a Boolean function. The complexity of this algorithm is described
in terms of its size. Since the interest of complexity theory lies in studying the growth
of the amount (here the size of the BP) for increasing input sizes, normally sequences of
functions (fn)n≥1, fn : {0, 1}n → {0, 1} are under consideration. If, for instance, ANDn

denotes the function x1 ∧ . . .∧ xn that equals 1 if and only if all n bits of the input are 1,
then by speaking about the function AND we refer in effect to the sequence (ANDn)n≥1.
Consequently, one is interested in sequences of branching programs, too. In this context
we introduce the following notation that is used throughout this work. If X is a model
of computation, then we denote by P(X) the functions representable by polynomial size
instances of X.

We make this explicit by an example. Let X be the computation model BP. Then
P(BP) contains all sequences (fn)n≥1, fn : {0, 1}n → {0, 1} such that there is a polynomial
p(n) and a sequence of BPs (Bn)n≥1 such that the following holds. For all n ≥ 1 the BP
Bn represents fn and has size SIZE (Bn) ≤ p(n).

Since for each input length n we have a separate branching program , BPs are a nonuni-
form model of computation, as, for instance, circuits. The next definition serves to de-
scribe the connection between nonuniform computational models to Turing machines.

Definition 1.3 A nonuniform Turing machine is a Turing machine that is equipped with
an additional read–only tape, the advice tape. On input x of length |x| = n this tape is
automatically loaded with the advice string A(n), where A : IN → {0, 1}∗ is an arbitrary
function.

A nonuniform Turing machine is said to have polynomial advice if there is a polyno-
mial p(n) such that |A(n)| ≤ p(n) for all n.

P/Poly, (L/Poly) is the class of all languages accepted in polynomial time (logarithmic
space, resp.) by nonuniform Turing machines with polynomial advice.

The following result is due to Cobham, [Cob66], and characterizes the connection
between BPs and Turing machines.

Theorem 1.4 The set of functions accepted by polynomial–sized branching programs is
equal to the set of functions accepted by nonuniform Turing machines using not more than
logarithmic space,

P(BP) = L/Poly .
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Since nonuniform Turing machines generalize uniform ones, Theorem 1.4 implies the
following. If for a function f each BP representing f is of super–polynomial size, then
f 6∈ L.

But the best known explicit lower bound on the size of unrestricted deterministic BPs

is of order Ω
(

n2

(logn)2

)

. It was proved by Nechiporuk in 1966 (see [Nec66]). Besides the

fact that unrestricted BPs are not usable as a data structure as we argued above, this is
one reason more why restricted models have been studied intensively. The hope is that
lower bound methods for restricted BPs may inspire lower bounds for generalized BPs
and maybe even for computational models not being logarithmically space restricted.

1.4 Restricted branching programs

One of the most popular and well–examined restricted variants of BPs is the following
one.

Definition 1.5 A read–once branching program (BP1, for short) is a BP with the re-
striction that on each path from the source to a sink each variable is allowed to appear
not more than once.

This restriction seems to be very natural. In fact, it is possible to prove an analogue
of Theorem 1.4. BP1s correspond to nonuniform Turing machines with the following
restriction. After reading an input bit, this bit is never touched again. The result on the
correspondence between BP1s and Turing machines can be found in [ABH+86].

The first lower bounds for this model were proved by Žák, [Žák84], and Wegener,
[Weg88], for certain functions testing the existence of cliques in graphs. Later lower
bounds for many other functions were proved. Here we mention Ponzio’s lower bound for
the middle bit of integer multiplication, [Pon95], and the generalization of the different
approaches by Simon and Szegedy, [SS93].

Now the question arises whether BP1s can be used as a data structure. Clearly,
evaluation can be performed in time O(n) where n is the number of variables. Using
a depth first search approach it is possible to perform the satisfiability test in linear
time where the input size is the size of the branching program. But synthesizing two
polynomial sized BP1s can cause an exponential blow–up in size. This is due to results
in [BW97]. Consider the function ROWn + COLn defined as follows. The input is some
n× n matrix X over {0, 1}. We define ROWn(X) = 1, if X possesses one row consisting
entirely of ones and, analogously, COLn(X) = 1, if X possesses one column constisting
entirely of ones. Now ROWn(X) + COLn(X) = 1 if ROWn(X) = 1 or COLn(X) = 1.
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It is easy to construct a linear sized branching program representing the function ROWn

testing the variables in the same rowwise manner on all paths (in Definition 1.7 such
a branching program will be called an OBDD). In the same way we get a linear sized
branching program representing COLn that on all paths tests the variables in the same
columnwise manner. But in [BW97] it is proved that each BP1 for ROWn + COLn has
size bounded below by Ω

(

n−7/2 · 2n
)

. In Section 2.7 we generalize this result to lower
bounds for restricted parity branching programs that are defined in the next section.

So BP1s cannot be used as a data structure. One possibility to cope with this problem
is to introduce a graph–ordering. Observe that for some BP1 on {x1, x2, . . . , xn}, there
is for each input a ∈ {0, 1}n a variable ordering σ(a) according to which the bits of a
are queried. But not every combination of variable orderings can be implemented by
deterministic BP1s. Only those resulting from graph orderings, independently introduced
by Gergov and Meinel, [GM93], and Sieling and Wegener, [SW95], are possible.

Definition 1.6 A graph ordering is a deterministic branching program with a single sink
and the property that, on each path from the source to the sink, each variable is tested
exactly once.

A BP1 B is called graph-driven if it is guided by such a graph-ordering G in the follow-
ing sense. For each input a ∈ {0, 1}n and on every computation path in B corresponding
to a the variables are tested in the same order as in the graph-ordering G where it is
allowed to leave out some variables.

For every deterministic BP1 B, it is easy to construct a graph ordering G that guides
B. It turns out that according to some fixed graph–ordering BP1s form a data structure.
In Section 2.1 we consider graph–driven BP1s more closely and consider examples. By
further strengthening the restriction to very special graph–orderings we obtain the most
common used data structure, the so called OBDDs introduced by Bryant in [Bry86].

Definition 1.7 A BP1 is called oblivious or ordered binary decision diagram (OBDD) if
for each input a ∈ {0, 1}n the variables are tested in the same ordering where it is allowed
to leave out some variables.

This data structure is used very widely and is considered as the state of the art data
structure. The reason is that all important operations (see Section 1.2) can be performed
very efficiently. For instance, the minimization according to a fixed variable ordering
can be achieved in linear time. Furthermore, several implementations - so–called OBDD
packages - have been developed and refined. There is an enormous amount of literature
concerning different aspects of OBDDs. We refer to the overview article by Bryant,
[Bry92]. The drawback of OBDDs is that the computational power is quite restricted and
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many rather simple functions have only exponential size representations. For that reason
several generalizations of OBDDs have been examined as candidates for data structures.
Some of them make use of nondeterminism.

Before defining nondeterministic BPs in the next section, we would like to comple-
ment the lower bound on unrestricted BPs proved by Nechiporuk, see Section 1.3, with
some important results on restricted deterministic BPs. For convenience we neglect the
difference between semantic and syntactic variants.

A BP is called read-k-times if on every path each variable is tested at most k times.
Based on results by Okol’nishnikova ([Oko97a] and [Oko97b]), in 1998 Thathachar proved
that the computational power of read-(k + 1)-times BPs is strictly stronger than that
of read-k-times BPs (see [Tha98]), being the most general hierarchy result in this area.
Furthermore, depth-restricted BPs have been considered, where the depth is the length
of the longest path. Beame, Saks and Thathachar were the first to obtain exponential
lower bounds for BPs of depth (1+ ε) ·n, with ε = 0.0178, [BST98]. 1999 Ajtai proved an
exponential lower bound for BPs of depth kn, k any constant, [Ajt99]. These results have
been refined in some papers by Beame, Saks, Sun, and Vee (see, for instance, [BSSV00] and
[BV02]). All these results are inspired by a lower bound technique of Borodin, Razborov
and Smolensky ([BRS93], see also the next section).

1.5 Nondeterministic branching programs

The class NP mentioned in Section 1.1 deals with nondeterministic Turing machines.
Given a potential solution it is possible to verify in polynomial time whether it is cor-
rect. The next definition generalizes branching programs to nondeterministic branching
programs.

Definition 1.8 A nondeterministic branching program is defined like a deterministic BP
except that the source may have an unrestricted number of successors and each branching
node may have an unrestricted number of 0− and 1−successors. An input a ∈ {0, 1}n is
accepted if at least one computation path corresponding to a reaches the 1−sink.

Nondeterminism strengthens the computational power of many restricted variants of
BPs. For instance, polynomial size nondeterministic OBDDs that are obtained by com-
bining Definitions 1.8 and 1.7 can represent the negations of characteristic functions of
linear codes (observed by Jukna in [Juk95b], see Section 3.4 for the notion of linear codes),
PERMn, the function accepting all Boolean matrices that are not permutation matrices,
(see [Kra88] and Section 2.6) and ROWn + COLn considered in the preceding section.
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For convenience, we call a computation path reaching the 1−sink an accepting path
(corresponding to a). Note, that in the setting of Definition 1.8 no 0−sink is required. For
a node u we denote by Succe (u) the set of e-successors of u, e ∈ {0, 1} and by Succ (s) the
successors of the unlabeled source. Another mode of nondeterminism has been studied
intensively. Informally, the idea is to count the number of accepting paths instead of just
checking the existence of at least one such path.

Definition 1.9 A parity branching program (⊕–BP, for short) is syntactically defined
exactly as a nondeterministic BP. Its semantics is the following. An input a ∈ {0, 1}n is
accepted if the number of accepting paths is odd, and rejected in the other case.

We say that a ⊕–BP is equipped with the parity acceptance mode. To characterize
the function represented by a ⊕–BP it is convenient to introduce the following notations.
We regard

�
n, the set of all Boolean functions in n variables, as an � 2–algebra, where � 2

is the prime field of characteristic 2. For f, g ∈
�
n the product f ∧ g is defined as the

componentwise conjunction and the sum f ⊕ g as the componentwise exclusive–or. For a
partial assignment α to a variables, the subfunction f |α results by setting these variables
to the constants according to α.

Which function is represented by a node u of a ⊕–BP? In Section 1.3 we introduced
the resulting function Resu. It is possible to generalize this to ⊕–BPs in the following
way. The resulting function of the target (the 1−sink) equals the all–one function. For a
branching node u labeled by a variable x we get

Resu := (x⊕ 1) ∧
⊕

v∈Succ0(u)
Resv ⊕ x ∧

⊕

v∈Succ1(u)
Resv .

If s is the source, then Ress :=
⊕

v∈Succ(s)Resv. The function Res(B) : {0, 1}n → {0, 1}
represented by the whole diagram is defined to be Ress.

⊕–BPs provide very good computational properties and restricted ⊕–BPs also good
algorithmic properties. Nondeterministic BPs and ⊕–BPs correspond to the classes
NL/Poly and ⊕L/Poly, the classes of functions computable by logarithmic space restricted
Turing machines with polynomial advice and the particular acceptance mode. In [Wig94],
Wigderson proved that NL/Poly ⊆ ⊕L/Poly. This result illustrates the strength of the
parity acceptance mode in respect of logarithmic space bounded computations and can
be reformulated as follows. If some function f is representable by polynomial size nonde-
terministic BPs, then f is also representable by polynomial size ⊕–BPs.

Next we examine the algorithmic properties of the parity acceptance mode by com-
pairing nondeterministic OBDDs and ⊕OBDDs. ⊕OBDDs are (nondeterministic) OB-
DDs equipped with the parity acceptance mode and are introduced by Gergov and Meinel
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in [GM96]. To test whether a nondeterministic OBDD represents the all–one function is
co-NP-complete. But in [Waa01] Waack has proved that for ⊕OBDDs all operations
listed in Section 1.2 are tractable in polynomial time. He algebraically characterized size–
minimal ⊕OBDDs and presented cubic algorithms for Minimization and consequently,
the Equivalence test based on this characterization. In addition, in [GM96] Gergov and
Meinel have already proved that Boolean synthesis is tractable. In [BW98] an algorithm
is presented that transforms a ⊕OBDD with respect to one variable ordering into an
equivalent ⊕OBDD with respect to another preassigned variable ordering. So one may
conclude that ⊕OBDDs have properties very similar to deterministic OBDDs. Indeed, on
the one hand the computational power of ⊕OBDDs is strictly stronger, on the other hand
the minimization algorithm is less efficient (cubic time versus linear time). Heuristics for
a successful practical implementation are due to Meinel and Sack, see [MS01a], [MS01b]
and [Sac01].

For ⊕OBDDs several lower bounds are known. In [Ger94], Gergov observed that
the OBDD lower bound argument used by Bryant, [Bry91], for the middle bit of integer
multiplication is also applicable for ⊕OBDDs. Applying the algebraic characterization of
size–minimal instances proving lower bounds for ⊕OBDDs becomes a rather easy task as
we outline in the next section.

But proving a superpolynomial lower bound for ⊕BP1s is still an open problem,
whereas exponential lower bounds for nondeterministic BP1s have been known for a long
time. In 1989 Jukna, [Juk89], and, independently Krause, Meinel and Waack, [KMW91],
proved exponential lower bounds for nondeterministic BP1s and permutation matrices.
In 1993, Borodin, Razborov and Smolensky, [BRS93], proved lower bounds even for non-
deterministic read-k-times BPs, that are nondeterministic BPs where on every path each
variable may be tested not more than k times.

1.6 Why proving lower bounds for ⊕BP1s is difficult

In the last section we have already mentioned the following result. Wigderson proved in
[Wig94] that NL/Poly ⊆ ⊕L/Poly. This illustrates the strength of the parity acceptance
mode in respect of logarithmic space bounded computations and gives a first hint of the
difficulties in proving lower bounds for ⊕BP1s. In addition, we wish to outline informally
the common proof methods for ⊕OBDDs and nondeterministic BP1s, arguing why these
methods fail when being applied to ⊕BP1s.

For nondeterministic BP1s one can prove lower bounds arguing in the following way.
Let a1 and a2 be two assignments accepted by a nondeterministic BP1 B. If one accepting
path according to a1 and one accepting path according to a2 pass the same node v we are
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able to construct a third accepting input b in the following way. Let αi be the part of ai,
i = 1, 2 that is tested before reaching node v, excluding the variable tested in v and let
βi be the part of ai, i = 1, 2 tested strictly below v. Then we can compose assignments
(α1, β2) and (α2, β1) that are also accepted by B.

Now we choose a set {a1, . . . , aµ} of accepting assignments according to B. If for each
1 ≤ i < j ≤ µ it holds that (αi, βj) or (αj, βi) must not be accepted by B we can conclude
that SIZE (B) ≥ µ. This method, called the cut and paste method, for instance is used in
[Žák84], [Weg88] and [Pon95].

But it is not possible to prove lower bounds for ⊕BP1s in this way, not even for any
restricted variant equipped with full parity–nondeterminism. The reason is that in the
situation described above we can not conclude that some assignment (αi, βj) is accepted
by a ⊕BP1. We have to mind the number of all paths for (αi, βj) that reach the sink.

In the case of ⊕OBDDs we can cope with this problem in the following way. Let us as-
sume that the variables are tested according to the ordering (x1, . . . , xn). Let {α1, . . . , αµ}
be the set of partial assignments to x1, . . . , xk. Using results from [Waa01] we get that
the nodes of the ⊕OBDD have to represent a basis of the linear space spanned by
{f |α1 , . . . , f |αµ}, where for a partial assignment α, the subfunction f |α results by set-
ting these variables to the constants according to α (see Section 1.5). So the dimension
of this space entails a lower bound for ⊕OBDDs with this certain variable ordering.

In the case of ⊕BP1s not only for each input a the variables may obey another or-
dering. For each single input a the variables may be tested in arbitary many different
orderings. Therefore, some experts believe that methods using subfunction arguments
are of no use for proving lower bounds for ⊕BP1s. In this work we see that in the case
of graph–driven ⊕BP1s generalized subfunction arguments work (see Chapters 2 and 3).
Admittedly, one has to deal with subfunctions depending on quite different sets of vari-
ables. To get lower bounds for the sum of graph–driven ⊕BP1s, see Definition 4.1, we do
not make use of subfunctions anymore.

1.7 Summary and contributions of this thesis

A central problem of the theory of computation is to understand the inherent complexity of
computational tasks with respect to different models of computation. Branching programs
or BPs, see Definitions 1.1 and 1.2, form a well-established model of computation and
various restricted variants are used as data structures for Boolean functions, then most
often refered to as Binary Decision Diagrams, or BDDs for short. One reason for the
interest in BPs as a computational model is that tight connection to sequential space
bounded computations stated in Theorem 1.4. Unfortunately, the best known lower bound
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on the size of unrestricted deterministic BPs proved by Nechiporuk ([Nec66]) in 1966 is

of order Ω
(

n2

(log n)2

)

. So restricted variants are under consideration. A restricted model

studied very intensively are read–once branching programs, BP1s for short, where on each
path from the source to some sink each variable may be tested at most once, see Definition
1.5.

In addition, one is interested in nondeterministic branching programs and parity
branching programs, see Definitions 1.8 and 1.9. Due to Wigderson we know that the
computational power of ⊕BPs is at least so high as that of nondeterministic BPs, [Wig94].
Additionally, in 1997 Waack proved that ⊕OBDDs (see Section 1.5) provide good algo-
rithmical properties. This is not the case for nondeterministic OBDDs.

So special interest arises in the study of ⊕BP1s. But whereas for deterministic BP1s
exponential lower bounds have already been proved in 1984 (see [Žák84] and [Weg88]),
for nondeterministic BP1s in 1989 (see [Juk89] and [KMW91]) and in 1993 even for
nondeterministic read–k–times BPs (on each path each variables may occur not more
than k times, [BRS93]) proving lower bounds for parity read–once BPs, or ⊕BP1s, is still
an open problem, maybe one of the most challenging open problems of this field. The
following two models have already been studied. In [SS00], Savický and Sieling proved
lower bounds for pointer functions on the size of (⊕, k)–BPs are proved. A (⊕, k)–BP is
a read–once BP with the source being the only nondeterministic node, where k denotes
the fan–out of the source.

In [Bol00] the first exponential lower bound on the size of restricted ⊕BP1s with
an unbounded number of nondeterministic branching nodes that generalize ⊕OBDDs
is proven. More precisely, graph–driven ⊕BP1s guided by a tree ordering are under
consideration. Lower bounds for this highly restricted model are proved by applying
methods similar to those used for ⊕OBDDs (see Section 2.2).

In this thesis lower bounds for several restricted variants of ⊕BP1s are proven, in fact,
the most general lower bounds for parity branching programs.

In Chapter 2 we consider well–structured graph–driven ⊕BP1s. We have already de-
fined graph–driven BP1s by Definition 1.6. Such a graph–driven BP1 is called well–
structured if it fulfills an additional property that divides the set of nodes into different
levels, determined by the graph–ordering. We show that well–structured graph–driven
⊕BP1s strictly generalize deterministic BP1s as well as ⊕OBDDs and tree–driven ⊕BP1s
mentioned above. Well–structured graph–driven ⊕BP1s deserve particular interest, since
size–minimal instances can be described algebraically and as a consequence this model is
applicable as a data structure. We present lower bounds for permutation matrices and
show that the computational power of general ⊕BP1s is strictly stronger than that of
well–structured graph–driven ⊕BP1s. Both results are generalized in Chapter 3, but the
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comparison of the proofs give some insight into the structure of the two different models.
In addition, we derive a lower bound for the function ROWn +COLn already mentioned
in Section 1.4 of this introduction

In Chapter 3 we consider graph–driven ⊕BP1s without the restriction being well–
structured. For each deterministic BP1 there is a graph–ordering - the notion of a graph–
driven BP1 is motivated in that case. This is not true for ⊕BP1s. But we show that
a graph–ordering can be constructed if and only if for each input a there is a variable
ordering σ(a) of {x1, x2, . . . , xn} such that on each computation path for a the bits of
a are queried according to σ(a). This shows that the condition of being guided by a
graph ordering is in fact a very natural combinatorial one. Thus, being graph–driven
is also for ⊕BP1s a natural concept. Moreover, we characterize the connection between
graph–driven ⊕BP1s and well–structured ones. We prove lower bounds for several func-
tions, namely for linear codes, permutation matrices, the determinant, for Hamiltonian
cycles and for integer multiplication. We show that in terms of computational power
unrestricted ⊕BP1s are strictly stronger than graph–driven ones.

In Chapter 4 we prove the first lower bound for restricted read–once parity branching
programs with unlimited parity nondeterminism where for each input the variables may
be tested according to several orderings. Under consideration are sums of graph–driven
⊕BP1s where the graph–orderings are of polynomial size. In terms of computational
power the sum of two graph–driven ⊕BP1s strictly generalizes graph–driven ⊕BP1s. In
particular, the sum of two graph–driven ⊕BP1s driven by polynomial size graph–orderings
strictly generalizes well–structured graph–driven ⊕BP1s. Furthermore, we show that
sums of k ⊕BP1s driven by polynomial size graph–orderings strictly generalize (⊕, k)-BPs
mentioned above (examined by Savický and Sieling in [SS00]). We prove a lower bound
criterion for sums of graph–driven ⊕BP1s and derive lower bounds for linear codes for
sums of graph–driven ⊕BP1s guided by polynomial size graph–orderings.

The presented lower bounds for graph–driven ⊕BP1s and sums of graph–driven⊕BP1s
are the most general lower bounds for restricted⊕-BPs. In particular, the methods applied
in Chapter 4 for proving lower bounds for sums of graph–driven ⊕BP1s should be a step
towards lower bounds for ⊕BP1s.
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Chapter 2

Well-Structured Graph–Driven

⊕BP1s

Outline of this chapter. We introduce the subject of this chapter, well–structured graph–
driven ⊕BP1s, in Section 2.1 and present upper bounds and previous results in Section
2.2. There it is shown that well–structured graph–driven ⊕BP1s generalize ⊕OBDDs as
well as read–once BPs. In Section 2.3 we cite the important algebraic characterization
of size–minimal instances taken from [BHW01] and mention the most important algo-
rithms provided by this structure in Section 2.4. There it is shown that well–structured
graph–driven ⊕BP1s generalize ⊕OBDDs as well as deterministic BP1s. In Section 2.5
we prove a lower bound criterion that is applied to permutation matrices in Section 2.6
and in Section 2.8 to prove that the computational power of general ⊕BP1s is strictly
larger than that of well–structured graph–driven ⊕BP1s. In addition, in Section 2.7 we
prove lower bounds for the function ROWn + COLn already mentioned in Section 1.4 of
the introduction.

The main results of this chapter are already published in [BHW01] and [Hom03b].
[BHW02] is a revised version of [BHW01]. Except from the upper bound in Section 2.2
the results of [BHW01] are stated without proof. Sections 2.5 to 2.8 describe results
contained in [Hom03b].

2.1 Definitions

Deterministic BP1s are not usable as a data structure. In [GM93] and in [SW95] indepen-
dently BP1s equipped with a graph ordering are introduced and their good algorithmical
behaviour is described. The graph ordering plays the same role as the variable ordering
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in the OBDD–case. We have introduced the notion of being graph–driven in Definition
1.6. For the sake of self–containment we restate it here.

A graph ordering is a deterministic branching program with a single sink and the
property that, on each path from the source to the sink, each variable is tested exactly
once. A BP1 B is called graph-driven if it is guided by such a graph-ordering G in the
following sense. For each input b ∈ {0, 1}n and on every computation path in B according
to b the variables are tested in the same order as in the graph-ordering G where it is
allowed to leave out some variables.

Figure 2.1 shows an example of this definition. Recently, Krause applied deterministic
graph–driven BP1s for cryptanalysing keystream generators, [Kra02]. So, interest arises
in graph–driven parity BP1s whose computational power is assuredly. Another moti-
vation is that lower bound methods for graph–driven ⊕BP1s may inspire corresponding
techniques for general ⊕BP1s. In Chapter 3 graph–driven ⊕BP1s are considered in detail.
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Figure 2.1: A graph ordering and a graph–driven ⊕BP1 guided by this ordering.

In this chapter we consider a restricted variant called well-structured. It turns out that
for well-structured graph–driven ⊕BP1s all operations listed in Section 1.2 are feasible by
polynomial–time algorithms. So well-structured graph–driven ⊕BP1s can be used as a
data structure for Boolean functions. Moreover, size–minimal instances can be described



2.2 Upper bounds and previous results 27

in quite an elegant way.

Definition 2.1 A graph–driven ⊕BP1B with graph–ordering G is called well-structured
if there is a function level mapping from the nodes of B to the nodes of the ordering G in
the following way. For any node v that corresponding to an input is traversed on a path
in B, in G the node level(v) is traversed corresponding to this input and is labeled with
the same variable.
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Figure 2.2: A well–structured graph–driven ⊕BP1 guided by a graph ordering.

Figure 2.2 shows an example of a well–structured graph–driven ⊕BP1. Note that the
nodes v4 and v5 cannot be merged, since for each level function level(v4) and level(v5)
have to differ. This is the reason why making a graph–driven ⊕BP1 well–structured can
increase the number of nodes.

2.2 Upper bounds and previous results

We show that well-structured graph–driven ⊕BP1s strictly generalize parity-OBDDs as
well as BP1s using results of [Sie99]. There, lower bounds for the functions MSAn and
INDEX-EQ are proved that we define in the following.
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The function MSAn ∈
�
n, n = 2k, is defined on x = (x0, . . . , xn−1). The variables

are partitioned into k s × s matrices M0, . . ., Mk−1, where s =
√

n/k, and the set of
remaining variables. The matrix Mi consists of the entries xis2 , . . . , x(i+1)s2−1. Let ai = 1
iffMi contains a row consisting of ones only, and let |a| be the natural number canonically
represented by a. Then

MSAn(x) =

{

x0 if |a| = 0;

x|a| ⊕ x0 if |a| > 0.

The function INDEX-EQ is defined on n = 3N/2 variables, where N = 2k and k is
a power of 2. The variables x0, . . . , xN−1 are interpreted as a memory and the variables
xN , . . . , xn−1 are interpreted asN/(2 logN) pointers each consisting of logN bits. Letm =
N/(4 logN), and let a(1), . . . , a(m), b(1), . . . , b(m) denote the values of these pointers.
Then INDEX-EQ

(

x0, . . . , xn−1
)

takes value 1 if and only if the following conditions are
satisfied.

∀i ∈ {1, . . . ,m} : xa(i) = xb(i);

a(1) < · · · < a(m) and b(1) < · · · < b(m);

a(m) < b(1) or b(m) < a(1).

The following result is proved by Sieling in [Sie99].

Theorem 2.2 The function MSA has polynomial size ⊕OBDDs but only exponential size
BP1s, whereas the function INDEX-EQ has polynomial size BP1s but only exponential size
⊕OBDDs.

A ⊕OBDD is guided by an ordering for which the variables are tested in the same
order for every input and a deterministic BP1 can be considered as guided by itself. In
both cases the restriction being well–structured does not influence the sizes. So Theo-
rem 2.2 immediately implies that well–structured graph–driven ⊕BP1s strictly generalize
⊕OBDDs as well as BP1s.

In [SS00] exponential lower bounds for pointer functions on the size of (⊕, k)–BPs are
proved. A (⊕, k)–BP is a read–once BP with the source being the only nondeterministic
node, where k denotes the fan–out of the source.

In [Bol00] the first exponential lower bound on the size of restricted ⊕BP1s with an
unbounded number of nondeterministic branching nodes is proven. More precisely, graph–
driven ⊕BP1s guided by a tree ordering are under consideration. A graph ordering G on
{x1, . . . , xn} is said to be a tree ordering, if G becomes a tree of size nO(1) by eliminating
the sink and replacing multi–edges between nodes by simple edges. (The graph ordering
shown in Figure 2.1 is in fact such a tree ordering.)



2.3 Minimal well–structured graph–driven ⊕BP1s 29

Theorem 2.3 Let G be a tree ordering, and let B be a graph–driven ⊕BP1 guided by G
that represents the middle bit of the integer multiplication. Then B has size 2Ω(n/ logn).

The property being tree–driven is a very strong restriction and Theorem 2.3 is proved
by methods that are very similar to the ⊕OBDD case. In fact, it is argued as follows. In a
polynomial tree–ordering exists a path from the source to the sink, where for Ω (n− log n)
nodes the 0−successor is equal to the 1−successor. One has to set the variables of the
O(log n) disturbing nodes to appropriately chosen constants and then gets a ⊕OBDD
representing a subfunction of the function represented by the whole diagram.

Applying this technique, one can prove that any tree–driven ⊕BP1 representing
INDEX-EQ∨n2

(

x1, . . . , xn
)

:=
∨n

i=1 INDEX-EQ
(

xi
)

, where the xi are Boolean vectors of
length n, has superpolynomial size. But there are BP1s of polynomial size representing
INDEX-EQ∨n2 . Let us define the function iten1+n2+1

(

z, INDEX-EQ∨n1 ,MSAn2

)

as follows.
If z = 1, then the function value equals INDEX-EQ∨n1

(

x1, . . . , xn1
)

, else MSAn2

(

y1, . . . , yn2
)

.
It is plain that iten1+n2+1

(

z, INDEX-EQ∨n1 ,MSAn2

)

has neither a polynomially bounded
BP1 nor a polynomially bounded tree–driven ⊕BP1 representation. But it can be repre-
sented by well–structured graph–driven ⊕BP1 of polynomial size.

So it is easy to show that well–structured graph–driven ⊕BP1s strictly generalize tree–
driven ⊕BP1s, but it is still an open problem, whether tree–driven ⊕BP1s are stronger
than ⊕OBDDs.

2.3 Minimal well–structured graph–driven ⊕BP1s

In [BHW01] the size of well-structured graph-driven ⊕BP1s is exactly described as an
algebraic invariant of the represented function f and the ordering graph. Our lower
bound criterion in Section 2.5 makes use of these results. To present them, we need the
following notation.

Let u be any node of the graph ordering. We call a node v a descendant of u (short:
v ∈ Desc(u)), if any path from u to the target node passes through v. For a set of Boolean
functions A ⊂

�
n we denote by span � 2 A the linear space spanned by these functions. We

define
�
u(f) = span � 2

⋃

v∈Desc(u){f |α(π) ; π is a path in G from s to v}, where α(π) is the
partial assignment associated with the path π. A node v is u’s immediate descendant, if
v ∈ Desc(u) and w ∈ Desc(u) implies w ∈ Desc(v) or w = v. By Nv := level−1(v) we
denote the nodes in B obtained from a node v of G by the level mapping.

Theorem 2.4 Let B be a size–minimal well–structured graph–driven ⊕BP1 on the vari-
ables {x1, . . . , xn} guided by G representing f ∈

�
n. Let u be any branching node of G,
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and let v be its immediate descendant. Then

#Nu = dim � 2
�
u(f) − dim � 2

�
v(f).
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Figure 2.3: The level–structure of the well–structured graph–driven ⊕BP1 presented in
Figure 2.2.

2.4 Well–structured graph–driven ⊕BP1s as a data
structure

Based on the algebraic characterization presented in Theorem 2.4, in [BHW01] a min-
imization algorithm is described. This algorithm consists of two phases. One achieves
that the subfunctions represented by nodes of Nv are linearly independent. The other
one transforms the input in such a way that all these subfunctions associated with Nv are
contained in Bv.

Let us define a feasible exponent ω of matrix multiplication over a field k to be a real
number such that multiplication of two square matrices of order h may be algorithmically
achieved with O (hω) arithmetical operations. Up to now, the best known ω is 2.376 (see
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[CW90]). For practical reasons it might be best to use Gaussian elimination. Then we
work with the feasible matrix exponent 3.

Theorem 2.5 Let ω be any feasible exponent of matrix multiplication. Let B be a well–
structured graph–driven ⊕BP1 guided by a fixed graph ordering G. Then there is an
algorithm that computes a size–minimal one guided by the same ordering G representing
the same Boolean function as B in time O(SIZE (G) ·SIZE (B)ω) and space O(SIZE (G)+
SIZE (B)2).

It is possible to test two well–structured graph–driven ⊕BP1s for equivalence with the
help of the algorithm described in the preceding Theorem. Let B′ and B′′ be two well–
structured graph–driven ⊕BP1s on {x1, . . . , xn} guided by G. Using standard techniques,
for example the well–known product construction, one can easily perform the Boolean
synthesis operations in time O(SIZE (G) · (SIZE (B′) · SIZE (B′′))ω). So we can state the
following.

Corollary 2.6 It can be decided in time O(SIZE (G) · (SIZE (B′) · SIZE (B′′))ω) whether
or not B′ and B′′ represent the same function.

2.5 A lower bound criterion

Using the algebraic characterization stated in Theorem 2.4, in [BHW01] an exponential
lower bound for certain linear code functions is proved. In Section 3.4 we generalize
this result for general graph–driven ⊕BP1s. In this section we apply Theorem 2.4 to
derive a lower bound criterion that reduces the technical effort of lower bound proofs for
well–structured graph–driven ⊕BP1s.

A function f is called essentially dependent on the variable xi, if different settings
to this variable result in different subfunctions, i.e. fxi=0 6= fxi=1. We call a set S of
functions linearly independent with respect to xi if each nontrivial linear combination of
elements in S essentially depends on xi.

Lemma 2.7 Let B be a well-structured graph–driven ⊕BP1 guided by a graph ordering
G representing the boolean function f . For all nodes v ∈ G let Av be a set of partial
assignments that lead in G to v. If for all v the subfunctions {f |α ; α ∈ Av} are linearly
independent with respect to the variable tested in v, then the size of B is bounded below
by
∑

v∈G |Av|.

Proof. Let the conditions of the lemma be fulfilled. We define B(Av) to be the set
{f |α ; α ∈ Av}. By the definitions in Section 2.3 we get that B(Av) ⊆

�
v(f). Now
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we get dim � 2
�
v(f) ≥ |Av|, since B(Av) is a linearly independent set. For linear spaces

B1, B2 we denote by B1/B2 the factor space generated by {f ⊕ B2 ; f ∈ B1}. We get
dim � 2(

�
v(f)/

�
w(f)) = dim � 2

�
v(f) − dim � 2

�
w(f) ≥ |Av|, since B(Av) is linearly in-

dependent with respect to the variable tested in v. By Theorem 2.4 we conclude that
#Nv ≥ |Av| for all v of G and the claim follows, since by definition, the different sets Nv

are mutually disjoint. 2

2.6 A lower bound on permutation matrices

A n × n matrix over {0, 1} is called a permutation matrix, if each row and each column
contains exactly one 1. The well-known function PERMn depending on n2 Boolean vari-
ables accepts exactly those inputs corresponding to permutation matrices. In this section
we adopt ideas from [Kra88] and [KMW91].

Theorem 2.8 Each well-structured graph–driven ⊕BP1 representing PERMn has size
bounded below by Ω

(

n−1/22n
)

.

Proof. Let B be a graph–driven ⊕BP1 guided by the graph ordering G that represents
f = PERMn. According to the lemma we examine sets Av of partial assignments that
lead in G to a node v.

We consider the n! inputs that correspond to permutation matrices and the corre-
sponding paths in the graph ordering and truncate these paths after exactly n/2 variables
have been tested 1. If such a truncated path leads from the source to a node v, we define
the corresponding partial assignment α to be a member of A∗v. Note, that for two different
nodes v and w the sets A∗v and A∗w are disjoint. For α ∈ A∗v let R(α) be the set of row
indices for which by α a variable is tested 1. Analogously, let C(α) be the indices of
columns that according to α already contain a 1. By construction |C(α)| = |R(α)| = n/2
for each α ∈ A∗v.

Now for each node v of G we choose Av ⊆ A∗v such that for α 6= β in Av it holds
that R(α) 6= R(β) or C(α) 6= C(β). We can estimate the possible size of these sets Av,
using ideas from [Kra88]. For a fixed α there are (n/2)! bijections from R(α) to C(α)
and furthermore n

2
! bijections from {1, . . . , n} \R(α) to {1, . . . , n} \ C(α). Consequently

only n
2
! · n

2
! permutations have the same sets C and R and it follows that it is possible to

choose the sets Av such that
∑

|Av| ≥
n!

(n/2)!·(n/2)! .

Now we prove that for each v in the ordering the set {f |α ; α ∈ Av} is linear inde-
pendent with respect to the variable tested in v. Then by Lemma 2.7 we get that the
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number of nodes of B is bounded below by
∑

|Av| and the claim follows with Stirling’s
formula. Let a set Av consist of the elements α1, . . . , αk. Then there are assignments
α′1, . . . , α

′
k such that (αi, α

′
i) is a permutation matrix for i = 1, . . . , k. But on the other

hand for i 6= j the assignment (αi, α
′
j) gets rejected, since by definition R(αi) 6= R(αj) or

C(αi) 6= C(αj). Let moreover, α∗i be obtained from α′i by switching the variable tested in
v. Then in α∗i either n/2− 1 or n/2+1 variables are tested 1 and so for i, j ≤ k the input
(αi, α

∗
j ) is not a permutation matrix. Let I ⊆ Av and α ∈ I. Then the linear combination

∑

β∈I f |β takes value 1 for α′ and 0 for α∗ and the claim follows. 2

2.7 The function ROWn +COLn

The next lower bound we present concerns the function ROWn + COLn that we have
already mentioned in Section 1.4 of the introduction. We consider this function because
it is well–examined (see [BW97]) and closely related to PERMn.

The input is a n× n matrix X over {0, 1}. We define ROWn(X) = 1, if X possesses
one row constisting entirely of ones and, analogously, COLn(X) = 1, if X possesses one
column constisting entirely of ones. Now ROWn(X) + COLn(X) = 1 if ROWn(X) = 1
or COLn(X) = 1.

We like to derive a lower bound using an observation due to Sauerhoff, stated in
[Weg00], page 140. We denote by En,n2 the function outputting 1 if and only if the
number of 1s of X equals n and by X the matrix resulting from switching each entry of
X. Then it is easy to see that

PERMn(X) =
(

1⊕ ( ROWn(X) + COLn(X) )
)

∧ En,n2 .

But first we have to examine how to complete a well–structured graph–driven ⊕BP1.
Recall that a BP1 is called complete if on each path each variable is tested exactly once.

Lemma 2.9 Let B be a well–structured graph–driven ⊕BP1 guided by a graph–ordering
G. Then there exists a complete well–structured graph–driven ⊕BP1 B ′ guided by G
representing the same function such that SIZE (B′) ≤ SIZE (B) · SIZE (G).

Proof. The claim follows with the well–known product construction that is also used
for Boolean synthesis (see [Weg00], for instance). 2

Now we can prove the following corollary.
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Corollary 2.10 Each graph–driven ⊕BP1 representing ROWn+COLn has size bounded
below by Ω

(

2n/2
)

.

Proof. Let B be a well–structured graph–driven ⊕BP1 guided by G representing the
function ROWn(X) + COLn(X) with size s. Then one can transform B into a G–guided
graph–driven ⊕BP1 of the same size representing g = 1 ⊕ (ROWn(X) + COLn(X)).
Applying Lemma 2.9 we get a complete G–guided graph–driven ⊕BP1 B′ for g of size
bounded above by s · SIZE (G). ¿From B′ we can construct a well–structured G–driven
⊕BP1 B′′ representing g ∧ En,n2 with size SIZE (B′′) ≤ SIZE (B′) · (n + 1). To this end,
we observe that it is sufficient to store for each node v of B′ the information, whether
up to v, 0, 1, . . . , n − 1 or n variables have been tested 1. Moreover, paths on that more
than n variables are tested 1 are not permitted to lead into the sink. This is possible by
multiplying each node v not more than n times. We can achieve that for B′′ the following
holds. For an input a with |a| = n, in B′′ the same number of paths reach the sink as in
B′ and for an input a′ with |a′| 6= n, in B′′ no path reaches the sink.

Thus, we get that PERMn = g ∧ En,n2 is representable by a well–structured graph–
driven ⊕BP1 of size s · SIZE (G) · (n + 1). In [BWW02] the following is shown. Given
a polynomial–sized well–structured graph–driven ⊕BP1 guided by an ordering. Then
there is an ordering G such that B is guided by G with SIZE (G) ≤ 2 · n · SIZE (B)
and the condition being well–structured is fulfilled. Since by Theorem 2.8 we know that
each well–structured graph–driven ⊕BP1 representing PERMn has size bounded below
by Ω (2n), we get for s, the size of a well–structured graph–driven ⊕BP1 representing
ROWn(X) + COLn(X),

s2 · 2n(n+ 1) = Ω (2n)

and the claim follows. 2

2.8 General ⊕BP1s are stronger than well–structured
ones

In this section we prove that the computational power of general ⊕BP1s is strictly larger
than that of well–structured graph–driven⊕BP1s. This result is generalized in Section 3.6.
Furthermore, the separating function used there is very similar to the function considered
in this section. Nevertheless, there are important differences that are examined at the
beginning of Section 3.6. graph–driven ⊕BP1s.
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We consider the following functions on matrices of n2 Boolean variables.
� n
C takes

value 1 if each column contains exactly one entry 1.
� n−2
R takes value 1 if n − 2 rows

contain exactly one entry 1 and the remaining two rows consist entirely of 0s.

� n
C =

{

1 if each column of X contains exactly one 1;

0 otherwise.

� n−2
R =











1 if n− 2 rows of X contain exactly one 1

and two rows are all–0’ones;

0 otherwise.

In the following we consider the disjunction of these two functions, f =
� n
C∨

� n−2
R . First

we construct a ⊕BP1 that represents f =
� n
C ∨

� n−2
R succinctly. It is easy to construct

an OBDD with size bounded by O (n2) testing the variables in a columnwise manner and
representing

� n
C. In the same way we get a linear sized OBDD that tests the variables in

a rowwise manner and represents
� n−2
R . Joining the sources of these two OBDDs we get

a ⊕BP1 of linear size that represents
� n
C ∨

� n−2
R . Next we prove a superpolynomial lower

bound for f =
� n
C ∨

� n−2
R . With the same method we can achieve a lower bound for the

more natural function
� n
C ∨

� n
R with

� n
R =

{

1 if each row of X contains exactly one 1;

0 otherwise.

We consider
� n
C ∨

� n−2
R , since for this function it is easy to derive the upper bound for

⊕BP1s presented above.

Theorem 2.11 Each well-structured graph–driven ⊕BP1 representing
� n

C∨
� n−2

R has size
bounded below by Ω

(

n−9/42n/2
)

.

Proof. Let B be a well-structured graph–driven ⊕BP1 with graph ordering G that
represents f =

� n
C ∨

� n−2
R . The definition of the sets of indices C and R is exactly

the same as in the proof of Theorem 2.8. Let the variable xi,j correspond to the entry
(i, j). Throughout this proof we denote by z the variable tested in the node v under
consideration. For each node v of G we let the set Av consist of partial assignments that
lead in the graph ordering to v such that the following holds. In each element α of Av

• exactly n/2 variables are tested 1,
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• for α 6= β in Av it holds that C(α) 6= C(β) or |R(α) ∩R(β)| ≤ (n/2)− 3 and

• there is an assignment α′ to the variables not set by α, such that z is set to 1 and
(α, α′) is a permutation matrix.

We prove that we can choose these sets such that

∑

|Av| ≥
n!

(n2 · n
2
!)2
.

We consider the n! assignments according to permutation matrices and the corresponding
paths in the ordering. We truncate these paths after n/2 variables have been tested 1 and
the next variable to test would be tested 1, too (in other words, we truncate the paths just
before the (n/2 + 1)th variable is tested 1). For R,C ⊆ {1, . . . , n} with |R| = n/2 there
are less than n4 possiblities to choose a set R′ ⊆ {1, . . . , n} with |R ∩ R′| ≥ (n/2) − 2.
Combining for these sets R′ the (n/2)! bijections from R′ to C and the (n/2)! bijections
from {1, . . . , n} \R′ to {1, . . . , n} \C we get all inputs a with C(a) = C and |R(a)∩R| ≤
(n/2) − 2 and see that its number is less than (n2 · n

2
!)2. So the lower bound on

∑

|Av|
follows.

Without loss of generality we suppose that n is even and not less than 8. We now
prove that for each v in the ordering the set {f |α ; α ∈ Av} consists of at least d|Av|

1/2e
elements that are linearly independent with respect to z. Then by Lemma 2.7 it follows

that the number of nodes of B is bounded below by
∑

d|Av|
1/2e ≥ (n!)1/2

n2·(n/2)! and the claim
follows with Stirling’s formula.

Let v be a node of the ordering. We partition Av into disjoint sets S1, . . . , Sν consisting
of all α ∈ Av that are mapped to the same column set C(α). It follows that either
(1) ν ≥ d|Av|

1/2e or (2) there is a set Si such that |Si| ≥ d|Av|
1/2e.

In case (1) we choose one element from every set and show that the associated subfunc-
tions are linearly independent with respect to z. For a linear combination f |α1+ . . .+f |αm
we get by choice of Av that there is an assignment α′1 such that (α1, α

′
1) is a permuta-

tion matrix and thus f |α1(α
′
1) = 1. We get that f |αi(α

′
1) = 0 for i > 1, since by choice

C(α1) 6= C(αi). In addition, f |αi(α
∗
j ) = 0 for all i, j ≤ m if α∗j results from α′j by switching

z, since the number of ones in (αi, α
∗
j ) equals n − 1 and neither

� n
C nor

� n−2
R can take

value 1.

In case (2) we choose the elements of the set Si with size greater than or equal to
d|Av|

1/2e. From the assignment α′j used in case (1) we construct an assignment α′′j such

that
� n−2
R (αj, α

′′
j ) = 1. To do so we take two variables that are tested 1 and are not equal

to z and switch them to 0. Now f(αj, α
′′
j ) = 1, but for i 6= j the matrix (αi, α

′′
j ) contains
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three rows without a single entry 1, since by choice R(αi) differs from R(αj) in at least
three indices. As in the first case we get that each linear combination essentially depends
on z, since switching z reduces the number of 1s of an arbitrary assignment (αi, α

′′
j ) to

n− 3. 2

2.9 Summary and further results

Figure 2.4 illustrates the impact of the lower bounds presented in this chapter. For the
notation P(X) we refer to Section 1.3. An arrow denotes containment, a crossed one
proper containment. ψ denotes the function iten1+n2+1

(

z, INDEX-EQ∨n1 ,MSAn2

)

defined
in Section 2.2. The relations (1) and (2) are well–known. Consider, for instance, the
hidden weighted bit function HWBn(x1, . . . , xn) = xsum for sum = x1 + . . . + xn, where
+ denotes integer addition, and x0 = 0. In [Bry91], Bryant has observed that the OBDD
size of HWBn is Ω

(

2n/5
)

. It is not difficult to find succinct representations of HWBn by
BP1s and ⊕OBDDs.

To see that PERMn is contained in P(⊕BP) we observe that Wigdersons result
NL/Poly ⊆ ⊕L/Poly (see Section 1.6 and [Wig94]) implies that each function repre-
sentable by polynomial size nondeterministic BP1s is in P(⊕BP). Since PERMn can be
represented by polynomial size nondeterministic OBDDs, see Section 1.5, and P(⊕BP)
is closed under complement, we conclude that PERMn ∈ P(⊕BP).

The results presented in [BHW01] inspired further research on well–structured graph–
driven ⊕BP1s. In [BWW02] the first strong exponential lower bound for integer multi-
plication is proved, using a criterion that follows from the algebraic characterization in
[BHW01]. Moreover, in [BW02] it is proved that the computational power of general
parity BPs is strictly stronger than that of well–structured graph–driven ⊕BP1s. Our
approach to prove the same result in Section 2.8 is a little less technically involved. Some
authors consider well–structured graph–driven nondeterministic BP1s. But lower bounds
for nondeterministic BP1s without the restriction being well–structured graph–driven are
known for a long time, see Section 1.5.
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� n
C
∨

� n−2

R

P(OBDD)

P(⊕BP1)

?

(2)(1)

MSA

PERMn

INDEX-EQ

P(wsGraph–⊕BP1)

ψ

P(tree–⊕BP1)

?

P(⊕BP) = ⊕L/Poly

P(BP1) P(⊕OBDD)

Figure 2.4: The results of this chapter.



Chapter 3

General Graph–Driven ⊕BP1s

Outline of this chapter. In this chapter we consider graph–driven ⊕BP1s without the
well–structuredness restriction (see Definition 2.1). In Section 3.1 we characterize all
⊕BP1s for that we can construct a graph–ordering guiding them. In Section 3.2 we briefly
consider the algorithmic properties of graph–driven ⊕BP1s and compare them to well–
structured ones. In Section 3.3 we prove a lower bound criterion for graph–driven ⊕BP1s
that we apply to linear codes in Section 3.4, in Section 3.10 on permutation matrices and
in Section 3.6 for proving that the computational power of unrestricted ⊕BP1s is strictly
higher than that of graph–driven ⊕BP1s. In Section 3.7 we derive further lower bounds,
namely for the determinant, for the Directed Hamiltonian cycle problem and for integer
multiplication.

The main results of this chapter are published in [BHW03].

3.1 Characterizing general graph–driven ⊕–BP1s

At the first glance it seems that the property being graph–driven is quite restricting. The
next Proposition shows that this is not true. Informally spoken, graph–driven ⊕BP1s
represent the same class of functions succinctly as ⊕BP1s where for each input a the
variable are tested in the same order on all computation paths associated with a.

Proposition 3.1 Let B be a ⊕–BP1 on the set of variables {x1, x2, . . . , xn}. Then B is
graph–driven (i.e. there exists a graph–ordering G such that B is guided by G) if and
only if the following condition is satisfied. For each input a there is an ordering σ(a)
of {x1, x2, . . . , xn} such that on each computation path for a the bits of a are queried
according to σ(a).
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Proof. It is clear that the condition is necessary.

Assume now that the condition is fulfilled for a ⊕–BP1 B. We show that we can
choose a variable xi such that for each input a the variables can be tested according to an
ordering that starts with xi. Then the graph–ordering G can be constructed as follows.
At the very beginning we create the unlabeled source s. The unique successor u of s is
labeled with xi. Then we calculate the subdiagrams Bxi=0 (Bxi=1, resp.) by setting in B
the variable xi to 0 (to 1, resp.). Now for Bxi=b (b = 0, 1) there is another variable xjb
that can be tested first in Bxi=b for all inputs a with ai = b. So we label the b−successor
of u by xjb and then the procedure iterates.

We assume that for each variable xi there is an input ai such that all orderings compat-
ible with ai cannot start with xi. Then for each xi there is an input ai and a computation
path pi for ai such that a variable xj (j 6= i) is tested on pi before xi.

After having renamed the indices we get inputs a1, a2, . . . , aν and computation paths
p1, p2, . . . , pν such that

• the variable xν is tested before x1 on p1;

• for i = 2, . . . , ν the variable xi−1 is the first variable tested on pi, and xi occurs on
pi, too.

Clearly, the number ν is always greater than or equal to 2 and less than or equal to n.
We call the sequence xν , x1, . . . , xν−1, xν a cycle with respect to the inputs a1, a2, . . . , aν
and the corresponding computation paths p1, p2, . . . , pν .

For i = 1, . . . , ν, let Si be the set of variables tested on pi before xi with xi being
excluded. The number

∑ν
i=1 |Si| is called the weight of the cycle.

Let us consider from now on a cycle xν , x1, . . . , xν−1, xν with respect to the inputs
a1, a2, . . . , aν and the corresponding computation paths p1, p2, . . . , pν of minimal weight.

We observe that the minimality entails that the sets Si (i = 1, . . . , ν) are pairwise
disjoint.

Since the sets S1, S2, . . . , Sν are pairwise disjoint, there is an input a such that for all
i = 1, . . . , ν, a |Si = ai |Si . Contradiction. 2

3.2 Comparing general graph–driven ⊕BP1s to well–
structured ones

Well–structured graph–driven ⊕BP1s differ from general ones by the additional level func-
tion, introduced in Definition 2.1. This restriction may look quite artificial at the first



3.2 Comparing general graph–driven ⊕BP1s to well–structured ones 41

glance. But without this further restriction it is not clear how to characterize size–minimal
instances. Therewith, we do not know how to minimize a given instance.

Nevertheless, using the well–known product construction we can easily perform the
Boolean synthesis operations. Note that the following proposition only holds for graph–
driven ⊕BP1s guided by a common ordering, since from the lower bound presented in
Section 3.6 we get Corollary 3.12 stating that synthesizing graph–driven ⊕BP1s guided
by different orderings may cause an exponential blow–up of the result’s size.

Proposition 3.2 Let B′ and B′′ be two graph–driven ⊕BP1s on {x1, . . . , xn} guided by
G. One can perform the Boolean synthesis operations such that the results size is less or
equal to SIZE (G) · (SIZE (B′) · SIZE (B′′)).

Let B′ and B′′ be two graph–driven ⊕BP1s that are guided by a common ordering G.
It is unknown if there is an efficient deterministic algorithm testing whether B ′ and B′′

represent the same function. But even for general ⊕BP1s it is possible to adopt a well–
known coRP algorithm due to [BCW80]. This fact, stated in the following proposition,
implies that the equivalence test for general ⊕BP1s is not coNP-complete unless RP 6=NP.

Proposition 3.3 Let B′ and B′′ be two ⊕BP1s. There is a randomized polynomial–time
algorithm that outputs ”equivalent” if B′ and B′′ represent the same function and that that
outputs ”not equivalent” with probability at least 1/2 else.

But how is the computational power of well–structured graph–driven ⊕BP1s compared
to the computational power of general graph–driven ⊕BP1s? Deciding whether general
graph–driven ⊕BP1s are stronger than well–structured ones is still an open problem. The
following proposition characterizes the connection between the two models.

Proposition 3.4 Let f be a Boolean function. Then f is representable by a polynomial
size well–structured graph–driven ⊕BP1 B if and only if f is representable by a polynomial
size graph–driven ⊕BP1 B′ guided by a polynomial–sized ordering G.

Proof. First we have to show that the condition is necessary. Let B′ be guided by G
given. To transform B′ into a well–structured graph–driven ⊕BP1 one has to rebuild B′

such that a level function as claimed in Definition 2.1 can be chosen. This is tractable
by multiplying some nodes and so assigning them to different levels. Since the number of
levels is less or equal to SIZE (G) there is a well–structured graph–driven ⊕BP1 guided
by G with SIZE (B) ≤ SIZE (B′) · SIZE (G).

Now assume that the condition is fulfilled. In [BWW02] the following is shown. Given
a polynomial–sized well–structured graph–driven ⊕BP1 guided by an ordering. Then
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there is a ordering G such that B is guided by G with SIZE (G) ≤ 2 ·n · SIZE (B) and the
condition being well–structured is fulfilled. The claim follows. 2

Now we can restate the open problem deciding whether general graph–driven ⊕BP1s
are stronger than well–structured ones.

Is there a function f such that

• f is representable by a polynomial–sized graph–driven ⊕BP1 B with an ordering G
of unrestricted size and

• all graph–driven ⊕BP1s B′ representing f that are guided by a polynomial–sized
ordering G′ have super–polynomial size?

3.3 A lower bound criterion for graph–driven ⊕BP1s

Let B be a graph–driven ⊕BP1 on the set of variables {x1, x2, . . . , xn} guided by a graph
ordering G representing the Boolean function f . We define two vector spaces over � 2.
The space

�
(B) is spanned by the functions Resv, where v is a node of B and Resv denotes

the function represented by the subdiagram of B rooted at v. The second space, denoted
by

�
G(f), is the span of all subfunctions f |π , where π is a path from the source to a

node w in G and f |π results from f by setting the variable according to the labels of the
nodes and edges on π.

We are now in the position to state a lower bound criterion, whose proof is very easy.
It estimates the size of a graph–driven ⊕BP1 by an invariant of the graph ordering and
the function represented.

Theorem 3.5 Let B be a graph–driven ⊕BP1 guided by a graph ordering G representing
the Boolean function f .

Then

SIZE (B) ≥ dim � 2
�
G(f).

Proof. First we observe that SIZE (B) ≥ dim � 2
�
(B).

Let f |π be any generating element of the vector space
�
G(f), and let α be the partial

assignment to the set of variables {x1, x2, . . . , xn} associated with the path π. Since the
branching program B is guided by the graph ordering G, we are led to nodes v1, v2, . . .,
vν when traversing B starting at the source according to the partial assignment α. Con-
sequently, f |π =

∑ν
j=1Resvj . This entails that

�
(B) contains

�
G(f) as a subspace. The
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claim follows. 2

How to apply Theorem 3.5? As already defined, for a partial assignment α to the set
of variables {x1, x2, . . . , xn}, the subfunction f |α results from f by setting the variables
to constants according to α.

Corollary 3.6 Let π1, π2, . . . , πν be paths in G starting at the source. Let α1, . . . , αν be
the partial assignments associated with these paths.

If the subfunctions f |α1 , . . . , f |αν are linearly independent, then

SIZE (B) ≥ ν.

Proof. The subspace of
�
G(f) spanned by {f |α1 , . . . , f |αν} is of dimension ν. 2

3.4 A lower bound for linear codes

A linear code C is a linear subspace of � n
2 . Our first explicit lower bound is for the

characteristic function of such a linear code C, that is fC : � n
2 → {0, 1} defined by

fC(a) = 1 ⇐⇒ a ∈ C. To this end we will give some basic definitions and facts on linear
codes.

The Hamming distance of two code words a, b ∈ C is defined to be the number of 1’s of
a⊕ b. The minimal distance of a code C is the minimal Hamming distance of two distinct
elements of C. The dual C⊥ is the set of all vectors b such that a1b1 ⊕ . . . ⊕ anbn = 0,
for all elements a ∈ C. A set D ⊆ � n

2 is defined to be k-universal, if for any subset of k
indices I ⊆ {1, . . . , n} the projection onto these coordinates restricted to the set D gives
the whole space � k

2.

The next lemma is well–known. See [Juk99b] for a proof.

Lemma 3.7 If C is a code of minimal distance k + 1, then its dual C⊥ is k–universal.

For the proof of the next theorem we apply results of Jukna ([Juk99b]).

Theorem 3.8 Let C ⊆ � n
2 be a linear code of minimal distance d whose dual C

⊥ has
minimal distance d⊥.

Then each graph–driven ⊕BP1 representing its characteristic function fC has size
bounded below by 2(min{d,d⊥}−1).
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Proof. Let B be a graph–driven ⊕BP1 guided by G representing f = fC . Consider
the set of all nodes of the graph ordering G at depth k from the source, where k :=
min{d, d⊥} − 1. Thus for each such node v and each path π leading from the source to v
exactly k variables are tested on π. For m := 2k, let α1, . . . , αm be the partial assignments
of the variables x1, x2, . . . , xn resulting from these paths.

Observe, that the code C is both of distance k + 1 and k–universal.

We consider the subfunctions f |α1 , f |α2 , . . . , f |αm and take notice of the fact that these
functions formally depend on all variables x1, x2, . . . , xn. According to Corollary 3.6 it
suffices to prove that f |α1 , f |α2 , . . . , f |αm are linearly independent.

Let {f |αi1 , f |αi2 , . . . , f |αiµ} be any nonempty subset of {f |α1 , f |α2 , . . . , f |αm}. Having
assumed without loss of generality that (αi1 , αi2 , . . . , αiµ) is equal to (α1, α2, . . . , αµ), we
have to show that

⊕µ
i=1 f |αi 6= 0.

For each partial assignment α′1 to the variables {x1, x2, . . . , xn} whose domain is com-
plementary to the domain of α1, we can define a vector (α1, α

′
1) := (a1, a2, . . . , an) ∈

{0, 1}n as follows.

aj :=

{

α1(xj) if α1(xj) is defined;

α′1(xj) if α′1(xj) is defined (j = 1, 2, . . . n).

Since C is k–universal, there is an α′1 such that a := (α1, α
′
1) is a member of C. Conse-

quently f |α1(a) = 1. For each 1 < i ≤ µ, we show that f |αi(a) = 0.

Obviously, f |αi(a) = f(a(i)), where

a
(i)
j :=

{

αi(xj) if αi(xj) is defined;

aj otherwise.

Since the distance between a and a(i) is less than or equal to k, the claim follows. 2

Now we are able to formulate the following corollary, that states our first super–
polynomial lower bound for unrestricted graph–driven ⊕BP1s. Recall that the r–th order
binary Reed–Muller code R(r, l) of length n = 2l is the set of graphs of all polynomials
in l variables over � 2 of degree not more than r.

Corollary 3.9 Let n = 2l and r = bl/2c.
Then every graph–driven ⊕BP1 representing the characteristic function of R(r, l) has

size bounded below by 2Ω(
√
n).

Proof. We apply that the code R(r, l) is linear and has minimal distance 2l−r. It is
known that the dual of R(r, l) is R(l − r − 1, l) (see [MS77]). 2
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3.5 A lower bound for permutation matrices

The function PERMn depending on n2 Boolean variables and accepting exactly those
inputs corresponding to permutation matrices has already been considered in section 2.6.

We adapt ideas used there in order to apply them to Corollary 3.6.

Theorem 3.10 Each graph–driven ⊕BP1 representing PERMn has size bounded below
by Ω

(

n−1/22n
)

.

Proof. Let B be a graph–driven ⊕BP1 guided by G representing the function f :=
PERMn depending on the variables xij (i, j = 1, 2, . . . , n).

We consider the n! inputs a = (aij)1≤i,j≤n that correspond to permutation matrices
and the corresponding paths in the graph ordering G. Having tested exactly n/2 variables
1, we truncate these paths. Let

A1 := {α1, α2, . . . , αν}

be the partial assignments to the set of variables {xij ; i, j = 1, 2, . . . , n} associated with
these truncated paths.

For such a partial assignment α let R(α) be the set of row indices i such that α(xij) = 1,
for a column index j. Analogously, let C(α) be the set of column indices j such that
α(xij) = 1, for a row index i. Then |C(α)| = |R(α)| = n/2 by construction.

We consider sets A of the above defined partial assignments such that for distinct
α, β ∈ A it holds that R(α) 6= R(β) or C(α) 6= C(β). We recapitulate the proof given in
[Kra88] for the fact, that there is one of these subsets A such that

|A| ≥
n!
(

n
2
!
)2 .

Indeed, if we fix two subsets C,R ⊆ {1, 2, . . . , n} of columns and rows, where |C| =

|R|, then there are exactly
(

n
2
!
)2

inputs a that lead to partial assignments α such that
C(α) = C and R(α) = R. They result from combining the (n/2)! bijections from R to
C with the (n/2)! bijections from {1, 2, . . . , n} \ R to {1, 2, . . . , n} \ C. Since there are
exactly n! accepted inputs, the claim follows.

Let A = {α1, α2, . . . , αm},m ≥ n!/
(

n
2
!
)2
, be a set of partial assignments the existence

of which we have just proved. To prove that A fulfils the prerequisites of Corollary 3.6,
we choose an arbitrary subset A′ of A. We may assume without loss of generality that
A′ = {α1, α2, . . . , αµ}. We show that

⊕µ
i=1 f |αi 6= 0.
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By the choice of A there is an partial assignment α′1 such that (α1, α
′
1) is a permutation

matrix. Thus f |α1(0, . . . , 0, α
′
1) = 1, where (0, . . . , 0, α′1) is the following matrix.

(0, . . . , 0, α′1)k,` :=

{

α′1(xk,`) if α′1(xk,`) is defined;

0 otherwise.

We show now that f |αi(0, . . . , 0, α
′
1) = 0 for i > 1.

For the sake of deriving a contradiction, let us assume that there is an index i > 1
such that f |αi(0, . . . , 0, α

′
1) = 1. Then there is a permutation matrix consisting of only

those ones set by αi and α
′
1. But this implies R(αi) = R(α1) and C(αi) = C(α1), because

otherwise there is a row or a column of the permutation matrix a defined by

ak,` :=

{

αi(xk,`) if αi(xk,`) is defined;

(0, . . . , 0, α′1)k,` if αi(xk,`) is not defined.

without any one. Contradiction.

Now the claim follows from Stirling’s formula. 2

3.6 Unrestricted ⊕BP1s are stronger than graph–
driven ones

To get a function that has small unrestricted but requires exponential sized graph–driven
⊕BP1s we consider the following function that as PERMn depends on a matrix of n2

Boolean variables. It is defined by
� n
C ∨

� n−1,1
R where

� n
C =

{

1 if each column of X contains exactly one 1;

0 otherwise.

� n−1,1
R =











1 if n− 1 rows of X contain exactly one 1

and one row contains exactly two 1’s;

0 otherwise.

The function
� n
C ∨

� n−1,1
R looks very similar to the function

� n
C ∨

� n−2
R considered in

Section 2.8. Nevertheless, if one compares the proofs of Theorems 2.11 and 3.11 very
carefully, the following turns out.
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• For well–structured graph–driven ⊕BP1s a lower bound for
� n
C ∨

� n−2
R is easier to

derive, than one for
� n
C∨

� n−1,1
R , since the existence of certain accepting assignments

is clear.

• It is not clear how to apply Corollary 3.6 to
� n
C ∨

� n−2
R and get a lower bound for

general graph–driven ⊕BP1s for this function. This is why in this case we consider
� n
C ∨

� n−1,1
R .

We start with an upper bound for this function. It is easy to construct an OBDD of
size bounded above by O (n2) testing the variables in a columnwise manner and taking
the value one if each column contains a single 1. In the same way we get a linear sized
OBDD that tests the variables in a rowwise manner and accepts if n − 1 rows contain
a single 1 and one row contains exactly two. Joining the sources of these two OBDDs
together, we get a ⊕BP1 of linear size that represents

� n
C ∨

� n−1,1
R .

Before proving a superpolynomial lower bound for this function we like to mention
that by the same method a lower bound for the function

� n
C ∨

� n
R follows, see Section 2.8.

But it is not clear how to prove an upper bound for this function.

Theorem 3.11 Each graph–driven ⊕BP1 representing
� n

C∨
� n−1,1

R has size bounded below
by Ω

(

n−1/4 · 2n/2
)

.

Proof. Let B be a graph–driven ⊕BP1 guided by a graph ordering G that represents
f :=

� n
C ∨

� n−1,1
R on the variables xij (i, j = 1, 2, . . . , n). Without loss of generality we

suppose that n is even.

As in the case of Theorem 3.10, we consider the n! inputs a = (aij)1≤i,j≤n that cor-
respond to permutation matrices and the corresponding paths in the graph ordering G.
Having tested exactly n/2 variables 1, we truncate these paths. We consider the par-
tial assignments A1 := {α1, α2, . . . , αν} to the set of variables {xij ; i, j = 1, 2, . . . , n}
associated with these truncated paths.

We observe that

|A1| = ν ≤ n2 ·

(

n2 − n/2

n/2

)

≤ n2 · (2en)n/2. (3.1)

Indeed, there are
(

i+n/2
n/2

)

paths in G starting from the source along which i variables are

tested 0, and n/2 variables are tested 1. Permutation matrices can only follow those
paths, where the number of variables tested 0 is less than or equal to n2 − n. Equation
3.1 follows.
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Second, without loss of generality let A2 := {α1, α2, . . . , αµ} be those elements of A1
that can be extended to at least two permutation matrices. By the pigeon hole principle,
we get

ν − µ+ µ ·
(n

2

)

! ≥ n!

Consequently,

|A2| = µ ≥
n!− ν

(n/2)!− 1
.

Without loss of generality, let A = {α1, α2, . . . , ακ} for κ ≤ ν be those elements of A2
such that C(α) 6= C(β) or R(α) 6= R(β) (see the proof of Theorem 3.10 for the definitions
of R and C). Since not more than (n/2)! elements α ∈ A2 may have the same pair (R,C),
we obtain

|A| = κ ≥
n!− ν

(n/2)! · (n/2)!
.

Since

lim
n→∞

ν

(n/2)! · (n/2)!
= 0,

we get

|A| = κ ≥
n!

(n/2)! · (n/2)!
− o(1).

Now let AC (AR) be a subset of A of maximal size satisfying the following property.
If α, β ∈ AC (α, β ∈ AR) are two distinct elements, then C(α) 6= C(β) (R(α) 6= R(β)). It
follows from an easy counting argument, that |AC | <

√

|A| implies |AR| ≥
√

|A|. Thus
we have the following two cases to distinguish.

Case |AC | ≥
√

|A|.

Let A′C = {β1, β2, . . . , βν} be any subset of the set AC . We have to show, that

ν
⊕

i=1

f |βi 6= 0. (3.2)

By the choice of A there is a partial assignment β ′1 such that (β1, β
′
1) is a permutation

matrix. Thus f |β1(0, . . . , 0, β
′
1) = 1, where the matrix (0, . . . , 0, β ′1) is defined as in the

proof of theorem 3.10. Moreover, we get that f |βi(0, . . . , 0, β
′
1) = 0 for i > 0. By the
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definition of AC we have that C(βi) 6= C(β1) for i > 0. Thus there is a column of the
matrix a defined by

ak,` :=

{

βi(xk,`) if βi(xk,`) is defined;

(0, . . . , 0, β ′1)k,` if βi(xk,`) is not defined,
(3.3)

without any one. So we get that f |βi(0, . . . , 0, β
′
1) = 0 for i > 0 and (3.2) follows.

Case |AR| ≥
√

|A|.

Let A′R = {β1, β2, . . . , βν} be any subset of the set AR. Again we have to show, that
⊕ν

i=1 f |βi 6= 0. Each element βi of AR can be extended to at least two permutation
matrices (βi, β

′
i) and (βi, β

′′). So we can construct an assignment β∗i such that (βi, β
∗
i ) is

a matrix that contains n − 1 rows with exactly one entry 1 and one row that contains
exactly two ones. Thus f |β1(0, . . . , 0, β

∗
1) = 1. For i > 0 we get that f |β1(0, . . . , 0, β

∗
i ) = 0

since similar to the first case there is a row of the matrix a as defined in (3.3) without
any one. So the claim follows. 2

In Proposition 3.2 we have already observed that one can efficiently synthesize two
graph–driven ⊕BP1s, provided they are guided by the same ordering. Now we get an
corollary that this has not to be the case if there is no common ordering.

Corollary 3.12 Given two graph–driven ⊕BP1s B and B′, applying Boolean synthesis
may cause an exponential blow–up of the result’s size.

Proof. It is plain how to represent
� n
C and

� n−1,1
R by two linear size graph–driven ⊕BP1s

testing the variables in a columnwise and a rowwise manner. Theorem 3.11 states that
each graph–driven ⊕BP1 representing the disjunction is of exponential size. 2

Corollary 3.13 Given a graph–driven ⊕BP1 B guided by a fixed ordering G, setting a
variable to Boolean constants may cause an exponential blow–up of the result’s size.

Proof. We can argue in the same way as Sieling and Wegener in [SW95]. Consider a
graph–driven ⊕BP1B representing f = s ∧

� n
C ∨ (s⊕ 1) ∧

� n−1,1
R (see Section 3.6) guided

by the following ordering G. The successor of G’s source is labeled by the variable s. For
s = 1, a columnwise ordering is used and for s = 0, a rowwise. It is plain that B can
be constructed with linear size. After replacing s by 1, B represents

� n
C, both for inputs

with s = 1 and s = 0. Furthermore, for inputs with s = 0, according to the unchanged
ordering G, the variables have to be tested in a rowwise manner. It is easy to see that the
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result’s size is not polynomial bounded, since in the other case there would be polynomial
size ⊕OBDDs representing

� n
C and

� n−1,1
R , both of them testing the variables in a rowwise

manner. By the Boolean synthesis operation we would get a polynomial size ⊕OBDD
representing

� n
C ∨

� n−1,1
R . Contradiction to Theorem 3.11. 2

3.7 Further lower bounds

The lower bounds proved so far, entail lower bounds for several other very interesting
functions. We present these lower bounds in the following, all of them straight–forward
consequences of Corollary 3.9 or Theorem 3.10.

3.7.1 The determinant and the Hamiltonian cycles

Testing whether a matrix represents a permutation is linked to some other important
functions. If we consider a matrix of n2 constants one may be interested in the permanent
and the determinant of this matrix. In the case of Boolean constants the permanent equals
the determinant that is defined as

DETn(X) =
⊕

σ∈Σn

n
∏

i=1

xi,σ(i),

where Σn denotes the group of permutations on a set with cardinality n. Using this
notation we can define the characteristic function of permutation matrices as

PERMn(X) =
∨

σ∈Σn

(
n
∏

i=1

xi,σ(i) ∧
n
∏

j=1,j 6=σ(i)
xi,j).

Another related computational problem is deciding whether an directed graph contains
a directed Hamiltonian cycle. If we take an adjacency matrix as input, the function DHCn

outputs 1 if and only if the corresponding graph contains a Hamiltonian cycle, i.e.

DHCn(X) =
∨

σ∈Σn,

σ has 1 cycle

n
∏

i=1

xi,σ(i).

First we show how to obtain lower bounds for DETn from our lower bounds for
PERMn. This function deserves interest, since amongst other reasons it is complete
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for the logarithmic space counting class #L. This was observed by several authors, for
instance by Damm in [Dam91],

Corollary 3.14 Each graph–driven ⊕BP1 representing DETn has size bounded below by
Ω
(

n−1/22n
)

.

Proof. We describe how to transform the proof of Theorem 3.10 to get our claim. In
that proof we proceeded as follows. For each graph–ordering G we can choose a set

A = {α1, . . . , αν}

of partial assignments such that

• each αi is associated with a path in G starting at the source, and so we get sub-
functions f |α1 , . . . , f |αν of f = PERMn in line with Corollary 3.6,

• for each αi there is an assignment α′i such that (αi, α
′
i) forms a permutation matrix,

• for i 6= j, the assignment a(i,j) = (a
(i,j)
k,` )1≤k,`≤n defined by

a
(i,j)
k,` :=

{

αi(xk,`) if αi(xk,`) is defined;

(0, . . . , 0, α′j)k,` if αi(xk,`) is not defined,

is no permutation matrix (note that a(i,i) = (αi, α
′
i)), and

• ν = Ω
(

n−1/22n
)

.

This entails that f |α1(0, . . . , 0, α
′
1) = 1 and f |αi(0, . . . , 0, α

′
1) = 0 for i > 0. Thus, the

subfunctions f |α1 , . . . , f |αν are linearly independent and the claim of that theorem follows
with Corollary 3.6.

Now we consider g = DETn. Since each permutation matrix is accepted by g, in the no-
tation introduced above we get that for each i ∈ {1, . . . , µ} the assignment a(i,i) = (αi, α

′
i)

is accepted by DETn. We observe that for i 6= j, a(i,j) is no permutation matrix and
possesses at most n entries 1. So this assignment composed from αi and (0, . . . , 0, α′j) is
not accepted by DETn. With the same argument as above the subfunctions g|α1 , . . . , g|αν
are linearly independent and our claim follows with Corollary 3.6. 2

Next we consider DHCn. A permutation matrix is mapped to 1 by DHCn if it consists
of exactly one cycle.
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Corollary 3.15 Each graph–driven ⊕BP1 representing DHCn has size bounded below by
Ω
(

n−3/22n
)

.

Proof. There are (n − 1)! permuation matrices consisting of exactly one cycle. Using
these matrices rather than all permutation matrices, we can proceed in the same way as
in the proof of Corollary 3.14. 2

3.7.2 Integer multiplication

For some basics on linear codes, see Section 3.4. In [Juk99b], Jukna proved that one
specific property of linear codes - their universality - makes them difficult for ⊕OBDDs.
Moreover, these functions may be quite appropriate for proving lower bounds for ⊕BP1s.

An interesting fact is that linear codes give some information about the hardness of
integer multiplication. For an integer X we denote the i-th bit of its binary representation
by Xi. For a subset of bits S ⊆ {1, . . . , n}, we denote by MultSn the following Boolean
function on 2n variables. For n–bit integers X and Y , MultSn(X,Y ) = 1 if and only if,
(X · Y )i = 1 for all i ∈ S. In [Juk95a], Jukna proved the following.

Theorem 3.16 For every linear code C ⊆ {0, 1}n there is an integer A ∈ {1, . . . , 2ν}, ν =
(n + 1) · n · log n + n + 1, an injection φ : {0, 1}n → {0, 1}ν and a subset of bits S,
|S| ≤ n−dimC, such that for every x ∈ {0, 1}n, x ∈ C if and only if MultSν (A, φ(x)) = 1.
Furthermore, x can be got from φ(x) by setting some variables to constants.

In [Juk99a], Jukna applied this Theorem to get a lower bound for ⊕OBDDs and MultSn.
Adopting his method we are able to prove Corollary 3.18. We only have to examine the
impact of setting variables to constants on the size of a graph–driven ⊕BP1.

Proposition 3.17 Given a graph–driven ⊕BP1B representing f , a variable xi and a
Boolean constant e. Then there is a graph–driven ⊕BP1B′ representing f |xi=e such that
SIZE (B′) ≤ SIZE (B).

Proof. We observe that setting a variable to a constant does not affect the existence of
a variable ordering σ(a) according to that the bits are queried on all computation paths
associated with an input a. Now the claim follows with Proposition 3.1. 2

Note that changing the graph–ordering is crucial as we stated in Corollary 3.13.
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Corollary 3.18 For any sufficiently large n there exists an n-bit integer A and a subset of
its bits such that each graph–driven ⊕BP1 representing MultSn(A,X) has size exponential
in n1/4−ε.

Proof. Let B be a graph–driven ⊕BP1 representing MultSn. Let C ⊆ {0, 1}m denote
the Reed–Muller code R(r, l), m = 2l and r = bl/2c. By Corollary 3.9 we get that each

graph–driven ⊕BP1 representing C has size 2Ω(
√
m). Applying Theorem 3.16 we get an

n–bit integer A, n = O (m2 logm) = O
(

m2+ε′
)

, for each ε′ > 0, and a subset of its bits S

such that the characteristic function of C can be obtained from MultSn(A,X) by setting
a variables to constants.

Thus with Proposition 3.17 we conclude that any graph–driven ⊕BP1 representing
MultSn(A,X) is of size exponential in (n1/(2+ε

′))1/4 and the claim follows. 2

3.8 Summary

Figure 3.1 complements Figure 2.4 by results due to the lower bounds proved in this sec-
tion. In Section 2.9 we argued why PERMn ∈ P(⊕BP). Observing that the negations of
linear codes are computable by polynomial size nondeterministic OBDDs, we analogously
get that LinearCodes ∈ P(⊕BP).
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P(BP1) P(⊕OBDD)

P(OBDD)

P(⊕BP) = ⊕L/Poly

� n
C
∨

� n−1,1
R

P(⊕BP1)LinearCodes,

P(graph–⊕BP1)

?

PERMn

?

P(wsGraph–⊕BP1)

Figure 3.1: The results of this chapter.



Chapter 4

On sums of graph–driven ⊕BP1s

Outline of this chapter. In the last chapter we proved lower bounds for graph–driven
⊕BP1s. It turned out in Section 3.1 that a ⊕BP1 is graph–driven if and only if for
each input there is a variable ordering that is compatible with each computation path
for the input. In Section 4.1 we generalize this model in such a way that for each input
there may be several variable orderings; each computation path must be compatible with
some of these orderings. We introduce this model in Definition 4.1 and later on examine
its connection to graph–driven ⊕BP1s. After that we consider a more restricted variant,
namely sums of graph–driven ⊕BP1s. We show that sums of graph–driven ⊕BP1s guided
by polynomial size graph–orderings have a strictly larger computational power than well–
structured graph–driven ⊕BP1s as well as (⊕, k)-BPs, examined by Savický and Sieling
in [SS00].

In Section 4.2 we prove a lower bound criterion for sums of graph–driven ⊕BP1s. This
criterion is applied in Section 4.3 in order to derive lower bounds for linear codes.

The results of this chapter are published in the Technical Report [Hom03a].

4.1 Motivating sums of graph–driven ⊕BP1s

In this chapter we consider a variant of ⊕BP1s that strictly generalizes graph–driven
⊕BP1s. One can hope that lower bounds for this model mean an important step towards
lower bounds for read–once ⊕BP1s.

Definition 4.1 Let k be any positive integer. A k–⊕BP1 is a ⊕BP1 with the follow-
ing additional restriction. For each input a there are not more than k variable orderings
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σ1(a), . . . , σk(a) such that on each computation path for a the bits of a are queried accord-
ing to σi(a) for an i, 1 ≤ i ≤ k.

This restriction appears to be quite natural. In fact, we have already considered the
case k = 1, since Proposition 3.1 entails that for each 1–⊕BP1 a graph–ordering exists.
So we can identify 1–⊕BP1s with graph–driven ⊕BP1s.

Proposition 4.2 It holds that P(graph–⊕BP1)= P(1–⊕BP1).

Next we observe that in terms of computational power 2–⊕BP1s strictly generalize
graph–driven ⊕BP1s. In Section 3.6 it has been proved that each graph–driven ⊕BP1
representing the function

� n
C ∨

� n−1,1
R has exponential size, where

� n
C =

{

1 if each column of X contains exactly one 1;

0 otherwise.

� n−1,1
R =











1 if n− 1 rows of X contain exactly one 1

and one row contains two 1s;

0 otherwise.

Moreover, a ⊕BP1 is constructed which represents this function succinctly. That
⊕BP1 is in fact a 2–⊕BP1, since it is constructed by joining two OBDDs to a source of
fanout 2. One OBDD tests the variables in a rowwise and the other one in a columnwise
manner. We state this observation as

Corollary 4.3 P(1–⊕BP1) is a proper subset of P(2–⊕BP1).

Is it possible to prove an analogon to Proposition 3.1 - where for each P(1–⊕BP1) a
graph–ordering is constructed - for P(k–⊕BP1) with k ≥ 2? A direct generalization of
that proposition could be formulated as follows. Let B be a k–⊕BP1. Then there are
k (deterministic) graph–orderings G1, . . . , Gk with the following property. Let a ∈ {0, 1}

n

be an input and let π be an arbitrary computation path for a. Then there is an index
i, 1 ≤ i ≤ k, such that on π the variables are tested in the same ordering as in Gi

(corresponding to a).

This statement does not hold. To see this, we consider the example given in Figure
4.1. It is due to Brosenne, [Bro03]. This ⊕BP1, representing the function (x1 + 1) ·
(x2 + 1) + x1 · x2 + (x3 + 1) · (x1 + 1) is a 2–⊕BP1. But it is not possible to choose two
variables y1, y2 such that for each input a on each corresponding computation path the
first variable tested may be y1 or y2, resp. Note that this would be a necessary condition
of the statement above.
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Figure 4.1: A 2–⊕BP1.

Definition 4.4 A ⊕BP1 B is a sum of k graph–driven ⊕BP1s driven by a sequence of
graph–orderings G = (G1, . . . , Gk), if B consists of k disjoint ⊕BP1s B1, . . . ,Bk joined to
a common source such that for each i, Bi is guided by Gi.

We call such a B a G–driven sum of graph–driven ⊕BP1s.

In the next section we present a lower bound method for sums of graph–driven ⊕BP1s
in order to prove lower bounds for this model with the additional restriction that the
orderings have polynomial size, i.e. |G| = |G1| + . . . + |Gk| = nO(1). The following
propositions state the connection between sums of graph–driven ⊕BP1s driven by an
ordering G of polynomial size and well–structured graph–driven ⊕BP1s. Both of them
are direct consequences of Proposition 3.4. By P(k∗–⊕BP1) we denote all functions
representable by polynomial size sums of graph–driven ⊕BP1s guided by a sequence of
graph–orderings G = (G1, . . . , Gk) with |G| = nO(1).

Proposition 4.5 It holds that P(wsGraph–⊕BP1)= P(1∗–⊕BP1).

For the next proposition we have to observe the following. The 2–⊕BP1 for
� n
C∨

� n−1,1
R

constructed in the context of Corollary 4.3, is guided by two graph–orderings of polynomial
size, since it is constructed by joining two OBDDs.

Proposition 4.6 P(wsGraph–⊕BP1) is a proper subset of P(2∗–⊕BP1).
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We conclude that the notion of a (G1, . . . , Gk)–driven sum of graph–driven ⊕BP1s
with polynomial size graph-orderings is a natural restriction.

In [SS00], Savický and Sieling proved exponential lower bounds for pointer functions
on the size of (⊕, k)–BP1s. A (⊕, k)–BP1 is a read–once BP with the source being the
only nondeterministic node, where k denotes the fan–out of the source.

We prove that our model strictly generalizes (⊕, k)–BPs. By P((⊕, k)–BP1) we denote
the set of functions representable by polynomial size (⊕, k)–BPs. First we observe that
each (⊕, k)–BP B can be considered as a sum of k graph–driven ⊕BP1s guided by itself.
So we can construct a sequence of k graph–orderings driving B of the same size as B,
and conclude P((⊕, k)–BP1) ⊆ P(k∗–⊕BP1). To see that this containment is proper
consider the following functions f kn that are examined in [SS00]. These functions are
defined on the variables X = {x0, . . . , xn−1}. The set X is partitioned in k(k + 1) blocks
Bi,j , 1 ≤ i ≤ k+1, 1 ≤ j ≤ k, and if necessary, some remaining variables. Each block Bi,j

consists of log n subblocks of size

s = b
n

k(k + 1) logm
c.

For our purposes we consider only the blocks B1,1, . . . , B1,k. Each B1,j computes a binary
representation of a pointer p(j). Each of the log n bits of p(j) is determined by the
majority of the s bits in one of the log n subblocks of the block Bi,j . f

k
n(x) outputs 1 if

and only if all bits addressed by the pointers equal 1, i.e.

xp(1) = xp(2) = . . . = xp(k) = 1.

In [SS00] it is proved that f kn has no representation by polynomial size (⊕, k)–BPs for
k ≤ (1/2 − γ) log n for any γ > 0. In the following we show that f kn can be represented
by ⊕OBDDs of size O

(

nk+2
)

. The following algorithm computes f kn .

1. Guess the binary representation of the pointers p1, . . . , pk.

2. Verify this choice and check, whether xp(1) = xp(2) = . . . = xp(k) = 1.

We illustrate step 2 for a certain guess. We test the variables according to an ordering,
such that for each subblock of some B1,j all s variables are tested successively. If we read
a bit xi that is adressed by one of the guessed pointers the computation stops, or 0 is the
output. Since each majority vote can be accomplished by O (s2) nodes, step 2 describes
an OBDD of size O (n2). All nk OBDDs of this kind can be constructed with a common
ordering and in fact the algorithm stated as steps 1 and 2 describes a ⊕OBDD for f kn ,
since for each input step 2 accepts it if and only if the pointers are correct and all adressed
bits equal 1.
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Proposition 4.7 For k ≤ (2/3) log1/2 n it holds that P((⊕, k)–BP1) is a proper subset
of P(k∗–⊕BP1).

Proof. For k constant the claim follows immediately by the construction of the ⊕OBDD
of sizeO

(

nk+2
)

presented above. For nonconstant k we are able to apply the same padding
arguments that are used in [SS00] to prove Theorem 15 of that paper. 2

4.2 A lower bound criterion for sums of graph–driven

⊕BP1s

In more restricted models like deterministic BP1s, ⊕OBDDs or graph–driven ⊕BP1s
(1–⊕BP1s, resp.) the nodes or sets of nodes reached by certain partial assignments
represent subfunctions of the function represented by the whole diagram. This is not the
case for sums of graph–driven ⊕BP1s, but certainly there is some connection between the
functions represented by the nodes and the function represented by the whole diagram.
We recall the following definition from Section 3.3.

Let B be a ⊕BP1 driven by a graph–ordering G. By
�
G(f) we denote the span of all

subfunctions f |π , where π is a path from the source to a node w in G and f |π results
from f by setting the variable according to the labels of the nodes and edges on π. Let B
be a sum of k graph–driven ⊕BP1s B1, . . . ,Bk. Then Res(B) = Res(B1) + . . .+Res(Bk).
We consider the direct sum of spaces

�
G1(g

1)+ . . .+
�
Gk
(gk) for functions g1, . . . , gk with

g1 + . . .+ gk = f .

Lemma 4.8 Let B = (B1, . . . ,Bk) be a (G1, . . . , Gk)–driven sum of ⊕BP1s representing
f . Then there are functions g1, . . . , gk with f = g1 + . . .+ gk such that

SIZE (B) ≥ dim � 2

( �
G1(g

1) + . . .+
�
Gk
(gk)

)

.

Proof. We define
�
(B) = span � 2{Resv ; v ∈ B}. Observe that SIZE (B) ≥ dim � 2

�
(B).

For B = (B1, . . . ,Bk) we set g1 = Res(B1), . . . , g
k = Res(Bk) and prove that

�
G1(g

1) +
. . .+

�
Gk
(gk) ⊆

�
(B). Then the claim follows, since g1 + . . .+ gk = Res(B) = f .

Let gi |π be any generating element of the vector space
�
Gi
(gi) for some i = 1, . . . , k,

and let α be the partial assignment to the set of variables {x1, x2, . . . , xn} associated with
the path π in Gi. Since the branching program Bi is guided by the graph ordering Gi, we
are led to nodes v1, v2, . . ., vν when traversing Bi starting at the source according to the
partial assignment α. Consequently, gi |π =

∑ν
j=1Resvj , and so every generating element
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of
�
G1(g

1) + . . .+
�
Gk
(gk) is contained in

�
(B). The claim follows. 2

In order to apply this lemma as a lower bound criterion, we have to examine the spaces�
G1(g

1)+. . .+
�
Gk
(gk) for all decompositions f = g1+. . .+gk of f . For a special case this

is done in Lemma 4.10. To describe the setting of that lemma, we need further notation.

We examine how to combine several partial assignments. For partial assignments
α1, . . . , αν with pairwise disjoint domains V(αi), i = 1, . . . , n, we denote by (α1, . . . , αν)
the assignment α defined on V(α1) ∪ . . . ∪ V(αν) as

α(xj) :=











α1(xj) if α1(xj) is defined;
...

...

αν(xj) if αν(xj) is defined.

If the domains V(αi), i = 1, . . . , n are not pairwise disjoint, we require that for all 1 ≤
i, j ≤ ν and for all xk ∈ V(αi) ∩ V(αj), the assignments to xk are equal for αi and for
αj, i.e. αi(xk) = αj(xk). In this case the notion α = (α1, . . . , αν) as defined above is

well–defined. Clearly, V(α1, . . . , αν) =
⋃ν

i=1V(αi). By V(α) we denote the complement
{x1, . . . , xn} \ V(α).

Let v = (v1, . . . , vk) be in G1 × . . . × Gk. We denote by V (vi) the variables that are
tested in Gi on a path from the source to vi, excluding the variable tested in vi. Let
α1, . . . , αk be partial assignments such that αi corresponds to a path from the source of
Gi to vi.

Definition 4.9 Given a sequence of graph–orderings G1, . . . , Gk and v = (v1, . . . , vk) ∈
G1 × . . .×Gk, we call a tuple (α1, . . . , αk) of partial assignments a v-assignment, if

• for 1 ≤ i ≤ k, αi corresponds to the path from the source of Gi to vi, and

• for 1 ≤ i, j ≤ k, αi coincides with αj on V (vi) ∩ V (vj), i.e., αi(x) = αj(x) for all x
in V (vi) ∩ V (vj).

We consider a v-assignment α = (α1, . . . , αk) as an assignment defined on V(α1) ∪
. . .∪V(αk). An easy way of getting v-assignments is truncating the k paths in G1, . . . , Gk

for an input a ∈ {0, 1}n simultanously.

Lemma 4.10 Let B be a (G1, . . . , Gk)–driven sum of graph–driven ⊕BP1s representing
f and let v be in G1×. . .×Gk. For i = 1, . . . , k let Ai be some set of assignments to V(vi),
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such that each α in A1× . . .×Ak is a v-assignment. Moreover, for all α ∈ A1× . . .×Ak

let there be an assignment δ defined on the variables not set by α with

f(α, δ) = 1, and, f(α′, δ) = 0,

for each α′ ∈ A1 × . . .× Ak \ {α}.

Then SIZE (B) ≥ min{|Ai| ; i = 1, . . . , k}.

Proof. Since the proof for an arbitrary k is a straightforward but technically rather
involved generalization of the case k = 2, we begin with the latter. We wish to apply
Lemma 4.8 and, to this end, we prove that for each pair of functions g1, g2 with g1+g2 = f
the dimension of the space

�
+ =

�
G1(g

1)+
�
G2(g

2) has a dimension greater than or equal
to min{|A1|, |A2|}. To derive a contradiction we assume the opposite. Since {g1|α ; α ∈
A1} ⊆

�
+ and {g2|β ; β ∈ A2} ⊆

�
+, the assumption dim � 2

�
+ < min{|A1|, |A2|} implies

for assignments α ∈ A1, β ∈ A2 linear dependencies that we can state (after renumbering
the indices) as

g1|α = g1|α1 + . . .+ g1|αµ , and

g2|β = g2|β1 + . . .+ g2|βν , (4.1)

with µ, ν ≥ 0, αi ∈ A1 \ {α} for 1 ≤ i ≤ ν and βj ∈ A2 \ {β} for 1 ≤ j ≤ µ. Since the
setting of this lemma postulates some δ such that f(α, β, δ) = 1, we get that

g1|α(α, β, δ) + g2|β(α, β, δ) = f(α, β, δ) = 1. (4.2)

Note that in (4.2) the function g1|α+g
2|β may essentially depend on all variables on those

the function f is defined. Thus, for convenience we consider such a subfunction g1|α as
formally depending on all those variables.

From (4.2) we derive a contradiction in four steps. First we apply the linear depen-
dencies (4.1) and get

1 =

µ
⊕

i=1

g1|αi(αi, β, δ) +
ν
⊕

j=1

g2|βj(α, βj , δ). (4.3)

Since g1|αi(αi, β, δ) + g2|β(αi, β, δ) = f(αi, β, δ) = 0 and g1|α(α, βj , δ) + g2|βj(α, βj, δ) =
f(α, βj, δ) = 0, we conclude that

1 =

µ
⊕

i=1

g2|β(αi, β, δ) +
ν
⊕

j=1

g1|α(α, βj, δ). (4.4)
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Again, we apply the linear dependencies (4.1). Consequently,

1 =

µ
⊕

i=1

ν
⊕

j=1

g2|βj(αi, βj, δ) +

µ
⊕

i=1

ν
⊕

j=1

g1|αi(αi, βj, δ) (4.5)

=

µ
⊕

i=1

ν
⊕

j=1

f(αi, βj, δ) = 0. (4.6)

Contradiction.

Now we consider the case k > 2. For applying Lemma 4.8, we have to prove that for
each choice of k functions g1, . . . , gk with g1 + . . . + gk = f the dimension of the space�
+ =

�
G1(g

1)+ . . .+
�
Gk
(gk) has a dimension greater or equal to min{|Ai| ; i = 1, . . . , k}.

To derive a contradiction we assume the opposite. For all i = 1, . . . , k, {gi|αi ; α
i ∈ Ai} ⊆�

+. So, dim � 2
�
+ < min{|Ai| ; i = 1, . . . , k} implies for some αi0 ∈ Ai, i = 1, . . . , k (after

renumbering) the validity of the following linear equations.

gi|αi0 = gi|αi1 + . . .+ gi|αi
µ(i)
, (4.7)

with αij ∈ Ai \ {α
i
0} for j > 0 and i = 1, . . . , k. Furthermore, by the setting of this lemma

there is an assignment δ = δ(α10, . . . , α
k
0) such that for α ∈ A1 × . . .× Ak

f(α, δ) = 1, if and only if,α = (α10, . . . , α
k
0).

Consequently, for α = (α1j(1), . . . , α
k
j(k))

g1|α1
j(1)

(α, δ) + . . .+ gk|αk
j(k)

(α, δ) = 1, (4.8)

if and only if j(1) = . . . = j(k) = 0.

Since during the proof we have to deal with a huge number of summands, we express
them by sets Σ of elements in {1, . . . , k} × {0, 1}k. The significance of this definition is
described by the following interpretation φ : {1, . . . , k} × {0, 1}k →

�
n.

For convenience we identify (i, b1, . . . , bk) and (i, (b1, . . . , bk)). We consider a σ = (i, b)
with i ∈ {1, . . . , k} and b = (b1, . . . , bk) ∈ {0, 1}

k. From b we derive k sets of indices
I1(b), . . . , Ik(b), Ij(b) ⊆ {0, . . . , µ(j)} according to (4.7), by defining

Ij(b) :=

{

{0} if bj = 0;

{1, . . . , µ(j)} if bj = 1,
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for j = 1 . . . k. Informally, bj = 0 corresponds to the left side of equation (4.7) and bj = 1
to the right side. Now we set

φ(i, b) =
⊕

(j(1),...,j(k))∈I1(b)×...×Ik(b)
gi|αi

j(i)
(α1j(1), . . . , α

k
j(k), δ). (4.9)

So, informally, the i in σ = (i, b) determines the index of the function gi. Making use of
this notation, for some set Σ of such elements, we define

φ(Σ) =
⊕

σ∈Σ
φ(σ).

In the end of this proof, we have restated the case k = 2 in terms of this notation.
The reader may now already refer to that. Now we consider two rules (R1) and (R2),
associated with the identities (4.7) and (4.8).

(R1) While Σ contains an element (i, b) with bi = 0,

– remove (i, b) from Σ,

– add (i, b′) to Σ, where b′ results from b by skipping bit i.

(R2) For each b ∈ {0, 1}k consider S(b) = Σ ∩ {(1, b), . . . , (k, b)}. For b 6= (0, . . . , 0)
and S(b) 6= ∅, remove all elements in S(b) from Σ and add all elements in S(b) =
{(i, b) ; i = 1, . . . , k} \ S(b).

Informally, (R1) expresses an application of the linear dependencies (4.7). (R2) ex-
presses an application of (4.8) with j(ν) 6= 0 for some ν ∈ {1, . . . , k}.

Correctness of (R1). We show that, if Σ′ is derived from Σ by applying rule (R1),
then φ(Σ′) = φ(Σ).We just observe that in the notation of (R1)’s description, some φ(i, b)
with bi = 0 consists of a sum of terms of the form gi|αi0(a, δ), with a ∈ A1 × . . .×Ak and

a(x) = αi0(x) for α
i
0 is defined on x. This is the case, since in the setting of (4.9) we have

Ii(b) = {0}. Applying (4.7) on each of these summands we get φ(i, b) = φ(i, b′).

Correctness of (R2). We observe that

φ(S(b) ∪ S(b))

=
∑

i=1,...,k

φ(i, b)

=
⊕

(j(1),...,j(k))∈I1(b)×...×Ik(b)
f(α1j(1), . . . , α

k
j(k), δ)

= 0,
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for b 6= 0 by (4.8). So φ(S(b)) = φ(S(b)), for b 6= (0, . . . , 0), and the correctness of (R2)
follows.

The contradiction. Next we show that one obtains by alternating applications of (R1)
and (R2) for

Σ0 = {(1, 0, . . . , 0), . . . , (k, 0, . . . , 0)}

via
Σ0

R1
→ Σ1

R2
→ Σ2

R1
→ Σ3

R2
→ Σ4

R1
→ . . .

R1
→ Σ2k−1

R2
→ Σ2k,

the set Σ2k = ∅. Then we get the desired contradiction

1 = f(α10, . . . , α
k
0 , δ) = φ(Σ0) = φ(Σ2k) = φ(∅) = 0.

Let for any Boolean vector b, |b| denote the number of bits bi being 1. We show that Σ2i
consists of all elements (j, b) such that

• b ∈ {0, 1}k with |b| = i and bj = 0.

Note that then Σ2k is indeed empty. For Σ0 the claim holds by definition. Let us assume
that for Σ2i the claim holds. Then we get by rule (R1) that Σ2i+1 consists of all (j, b)
such that

• |b| = i+ 1 and bj = 1.

By applying rule (R2) the stated situation is achieved immediately. Note that in neither of
the two cases an element is produced twice, since otherwise the conclusion φ(Σi) = φ(Σi+1)
would not be true.

Now putting all parts of this proof together the claim of this lemma follows. To
illustrate this proof we finally restate the case k = 2 in its terminology. For Σ0 =
{(1, 0, 0), (2, 0, 0)} we get φ(Σ0) = 1 in line with (4.2). We get Σ1 = {(1, 1, 0), (2, 0, 1)}
corresponding to (4.3) and Σ2 = {(2, 1, 0), (1, 0, 1)} corresponding to (4.4). Applying rule
(R1) we get Σ3 = {(2, 1, 1), (1, 1, 1)} in line with (4.5) and by rule (R2) we get Σ4 = ∅,
corresponding to (4.6) 2

The next lemma deals with the situation that in the setting of Lemma 4.10 for two
nodes vi and vj with i 6= j the same sets of variables are tested, i.e. V(vi) = V(vj). Then
the condition that each α in A1× . . .×Ak is a v-assignment implies that |Ai| = |Aj| = 1.
But in that situation for every α̃ defined on V(vi) = V(vj) we can combine those nodes
reached according to G1 and those reached according to G2 to one set. This is possible,
since the assignments in Ai and Aj can not be combined independently. In each v-
assignment(α1, . . . , αk) we have αi = αj.
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Lemma 4.11 Let B be a (G1, . . . , Gk)–driven sum of ⊕BP1s representing f and let v
be in G1 × . . . × Gk. For i = 1, . . . , k let Ai be a set of assignments to V(vi), such that
Ai = Aj for V(vi) = V(vj), 1 ≤ i ≤ j ≤ k. Let A be a subset of A1 × . . . × Ak such that
for α ∈ A it holds that αi = αj if V(vi) = V(vj), 1 ≤ i ≤ j ≤ k.

We assume that each α ∈ A is a v-assignment and that for all α ∈ A there is an
assignment δ, defined on the variables not set by α with

f(α, δ) = 1, and, f(α′, δ) = 0,

for each α′ ∈ A\{α}.

Then SIZE (B) ≥ min{|Ai| ; i = 1, . . . , k}.

Proof. First we recapitulate the preceding arguments in a slightly modified way. Let B
be a (G1, . . . , Gk)–driven sum of ⊕BP1s representing f and let v be in G1× . . .×Gk. For
i = 1, . . . , k let Ai be a set of assignments to V(vi), such that each α ∈ (α1, . . . , αk) is a
v-assignment. Then we get with the proof of Lemma 4.10 that dim � 2

(

span � 2{g
1|α1 ; α

1 ∈
A1}+ . . .+ span � 2{g

k|αk ; α
k ∈ Ak}

)

≥ min{|Ai| ; i = 1, . . . , k}. Together with the proof
of Lemma 4.8 we get the following. There are functions g1, . . . , gk with g1 + . . .+ gk = f
such that SIZE (B) ≥ dim � 2

(

span � 2{g
1|α1 ; α

1 ∈ A1}+ . . .+ span � 2{g
k|αk ; α

k ∈ Ak}
)

.

Now we turn to the proof of this lemma and assume that A1 = A2 and that for
each α̃ ∈ A1 and each (α3, . . . , αk) ∈ A3 × . . . × Ak the sequence (α̃, α̃, α3, . . . , αk) is a
v-assignment. We show that in this situation the claim of the lemma holds and the claim
on the general setting follows by repeating this argument.

Considering the proof of Lemma 4.8 it is easy to see that there are functions g2, . . . , gk

with g2 + . . .+ gk = f such that

SIZE (B) ≥ dim � 2

(

span � 2{g
2|α2 ; α

2 ∈ A2}+ . . .+ span � 2{g
k|αk ; α

k ∈ Ak}
)

.

Now we can apply Lemma 4.10 and get that dim � 2

(

span � 2{g
2|α2 ; α

2 ∈ A2} + . . . +
span � 2{g

k|αk ; α
k ∈ Ak}

)

≥ min{|Ai| ; i = 2, . . . , k}. The claim follows. 2

In the next proposition we state the observation that we are able to set some of the
variables on that a sum of graph–driven ⊕BP1s is defined to constants without a blow–
up of the size. This may be considered to be plain, but it can be necessary to change the
ordering, since this is the case for graph–driven ⊕BP1s, see Corollary 3.13.

Lemma 4.12 Let B be a (G1, . . . , Gk)–driven sum of ⊕BP1s in the variables {x1, . . . , xn}
representing f . Then for a variable xi and a Boolean constant e there is a sum of
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graph–driven ⊕BP1s B′ in the variables {x1, . . . , xi−1, xi+1, . . . , xn} that is guided by or-
derings (G′1, . . . , G

′
k) representing fxi=e with SIZE (B′) ≤ SIZE (B).

Furthermore, for every v-assignment α with α(xi) = e provided α is defined on xi,
there is a v′ ∈ G′1 × . . .×G′k such that α is a v

′-assignment.

Proof. The standard method to set xi to e is the following. For all xi-nodes v redi-
rect all edges reaching v to the e-successor of v. Observe that applying this method
results in a sum of graph–driven ⊕BP1s representing fxi=e. In the same way we get
from G = (G1, . . . , Gk) a sequence of read–once BPs G′ = (G′1, . . . , G

′
k) on the variables

{x1, . . . , xi−1, xi+1, . . . , xn}. To see that B′ is driven by G′ consider an assignment a to
{x1, . . . , xn} and observe that if in Gλ, λ ∈ {1, . . . , k}, the variable xν is tested before xµ,
ν, µ 6= i, then the same holds in G′λ.

The latter claim follows immediately by the construction of G′. 2

4.3 Lower bounds for linear codes

For basics on linear codes see Section 3.4. By fC we denote the characteristic function of
a code C, i.e. fC(x) = 1 if and only if, x ∈ C.

The following theorem shows how to apply our lower bound criterion to linear codes.

Theorem 4.13 Let C ⊆ � n
2 be a linear code of minimal distance d whose dual C

⊥ has
minimal distance d⊥.

Then each sum of k ⊕BP1s guided by a sequence of graph–orderings G = (G1, . . . , Gk)

representing its characteristic function fC has size bounded below by 2
Ω(min{d,d⊥}/2k)/(|G1|·

. . . · |Gk|).

Proof. Let B be a sum of graph–driven ⊕BP1s guided by G = (G1, . . . , Gk) represent-
ing f = fC . We set l := min{d, d⊥} − 1. Observe, that the code C is both of distance
l+1 and l–universal. We wish to find a tuple v and sets of partial assignments A1, . . . , Ak

such that we can apply Lemma 4.11. We use an inductive approach and in order to make
the proof readable we define the following predicate P .

We define P (i) to hold if and only if

• there is a tuple v = (v1, . . . , vi) ∈ G1 × . . .×Gi,

• there are sets of variables V
(i)
1 , . . . , V

(i)
i with V

(i)
j ⊆ V(vj) and |V (i)j | ≥ l/2i such

that for j, k ≤ i, either V
(i)
j = V

(i)
k or V

(i)
j ∩ V (i)k = ∅,
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• there is a set Ai of assignments with | Ai | ≥ 2n/(|G1| · . . . · |Gi|) such that for
j = 1, . . . , k each a ∈ Ai passes in Gj the node vj, and

• |
⋃

j≤iV(vj)| ≤ l/2 + l/4 + . . .+ l/2i.

Before we inductively show that P (k) holds, we argue how P (k) implies the claim.

Since our aim is to find coherent assignments defined on V
(k)
1 , . . . , V

(k)
k , first according to

Ak we set all variables in
V ′ =

⋃

j<i

(V(vj) \ V
(k)
j ),

to constants. Since there are at most 2|V
′| assignments defined on |V ′|, we can fix an

assignment γ with V(γ) = V ′ such that for

Aγ = {α ∈ Ak ; α(x) = γ(x) for x ∈ V ′},

we have
| Aγ | ≥ 2n−|V(γ)|/(|G1| · . . . · |Gk|).

Now by a similar argument we choose sets A1, . . . , Ak by decomposing Aγ according to

V
(k)
1 , . . . , V

(k)
k .

Let V be a set of variables. For each subset M ⊆ V , there are at most 2|V|−|M |

assignments defined on V \M . For j = 1, . . . , k we apply this to M = V
(k)
j and V =

{x1, . . . , xn}\V(γ) and define Aj as the projection of Aγ onto V
(k)
j . Since the elements of

Aγ differ only on variables contained in V , projecting Aγ to M = V
(k)
i results in at least

| Aγ |/2
|V\M | =

(

2n−|V(γ)|/(|G1| · . . . · |Gk|)
)

/2n−|V(γ)|−|V
(k)
i |

different partial assignments. Thus we can choose sets A1, . . . , Ak such that Ai consists
of partial assignments defined on V

(k)
i with size

|Ai| ≥ 2|V
(k)
i |/(|G1| · . . . · |Gk|) ≥ 2l/2

k

/(|G1| · . . . · |Gk|).

Next we apply Lemma 4.12 for transforming B into a sum of graph–driven ⊕BP1s B ′

representing f |γ, i.e. we set all variables in V(γ) according to γ. Moreover, there is a
sequence of graph–orderings G′ = (G′1, . . . , G

′
k) and a node v′ ∈ G′1 × . . .× G′k such that

each v-assignment a becomes a v′-assignment a′ with

a′(x) =

{

a(x) if x 6∈ V(γ);

undefined if x ∈ V(γ).



68 On sums of graph–driven ⊕BP1s

In line with Lemma 4.11 we let A contain each α in A1 × . . . × Ak with αi = αj for
Ai = Aj. It is plain that each element of A is a v′-assignment. Thus, to apply Lemma 4.11
we only have to find for each α ∈ A some partial assignment δ defined on the variables
not tested up to v with f(α, γ, δ) = 1 and f(α′, γ, δ) = 0 for each α′ ∈ A with α′ 6= α. We
do this with the help of the following standard arguments on linear codes that are due to
Jukna ([Juk99b]) and that we have already used in the proof of Theorem 3.8.

Since |
⋃

j≤iV(vj)| ≤ l/2+l/4+. . .+l/2i < l we get by the l-universality the existence of
an assignment δ as claimed. f(α′, γ, δ) = 0 for α′ 6= α follows since the hamming distance
of two accepting assignments has to be greater or equal to l. Now we get with Lemma
4.11, that SIZE (B′) ≥ min{|Aj| ; j = 1, . . . , k} ≥ 2l/2

k
/(|G1| · . . . · |Gk|) and the claim

follows.

In the setting of this theorem P (1) holds. We consider all nodes of G1 at depth l/2
from the source. Thus for each such node v and each path π leading from the source to
v exactly l/2 variables are tested on π. One of these nodes is passed by 2n/|G1| of these
paths. We denote this node by v1 and define A1 to contain all the assignments associated
with these paths. We set V

(1)
1 = V(v1) and see that P (1) holds.

P (i− 1) implies P (i). For each node w of Gi we denote by

old(w) = V(w) ∩
⋃

j<i

V(vj),

all variables tested on the path from the source of Gi to w that are already tested on the
path from the source to the node vj, j < i. By

new(w) = V(w) \
⋃

j<i

V(vj),

we denote those variables in V(w) not tested on a path to the node vj, j < i. Let C be
the set of all nodes w of Gi such that

• |new(w)| = l/2i and |old(w) ∩ V (i−1)j | < l/2i for all j = 1, . . . , i− 1,

or,

• |new(w)| < l/2i, |old(w) ∩ V (i−1)j | = l/2i for some j ∈ {1, . . . , i− 1}, and |old(w) ∩

V
(i−1)
m | < l/2i, for all m with V

(i−1)
m 6= V

(i−1)
j .
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Since each path in Gi passes exactly one node of C, there is a node vi such that
| Ai−1 |/|Gi| paths associated with elements of A pass it. We determine sets V

(i)
1 , . . . , V

(i)
i

in line with P (i). To this end we have to distinguish two cases, dependent on the choice
of vi.

(1) Case |new(vi)| = l/2i. After definition of C we additionally get |old(vi)∩V
(i−1)
j | <

l/2i for all j = 1, . . . , i− 1.

First we define
V
(i)
i = new(vi),

and
V
(i)
j = V

(i−1)
j \ old(vi),

for j = 1, . . . , i− 1. Then |V (i)
i | = l/2i and |V (i)j | ≥ l/2i−1−l/2i = l/2i for j = 1, . . . , i− 1.

(2) Case |new(vi)| < l/2i. In addition it holds that |old(vi) ∩ V
(i−1)
j | = l/2i for a

j ∈ {1, . . . , i − 1} and for all V
(i−1)
m 6= V

(i−1)
j it holds that |old(vi) ∩ V

(i−1)
m | < l/2i. Let

j(1), . . . , j(λ) be all indices such that

|old(vi) ∩ V
(i−1)
j(1) | = . . . = |old(vi) ∩ V

(i−1)
j(λ) | = l/2i.

Recall that by the choice of the sets V
(i−1)
j , V

(i−1)
j(1) = . . . = V

(i−1)
j(λ) and for j ∈ {j(1), . . . ,

j(λ)} and m 6∈ {j(1), . . . , j(λ)}, V (i−1)
j and V

(i−1)
m are disjoint. We define

V
(i)
j :=

{

old(vi) ∩ V
(i−1)
j for j ∈ {j(1), . . . , j(λ)};

V
(i−1)
j \ old(vi) for j 6∈ {j(1), . . . , j(λ)}.

Note that |V (i)j | ≥ l/2i for j = 1, . . . , i. So P (i) holds and the claim follows. 2

Now we are able to formulate the following corollary, that states our first lower bound
for an explicitly defined function. For the notion of Reed–Muller codes see Section 3.4.

Corollary 4.14 Let n = 2l and r = bl/2c.

Then every sum of graph–driven ⊕BP1s guided by a sequence of graph–orderings G =
(G1, . . . , Gk) representing the characteristic function of R(r, l) has size bounded below by

2Ω(n
1/2/2k)/(|G1| · . . . · |Gk|).

Proof. We apply that the code R(r, l) is linear and has minimal distance 2l−r. It is
known that the dual of R(r, l) is R(l − r − 1, l), see [MS77]. 2
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An easy calculation shows that this bound is superpolynomial for

k = o

(

log n

log log n · log log |G|

)

,

with |G| = |G1|+ |G2|+ . . .+ |Gk|. So we can conclude that for k = o(log n/(log log n)2),
the considered linear code is not contained in P(k∗–⊕BP1). We get the same result even

if we allow G to have quasipolynomial size, |G| = 2log
O(1) n.

4.4 Summary

Figure 4.2 complements Figure 3.1 by results due to the lower bounds proved in this sec-
tion. Additionally, P(wsGraph–⊕BP1)= P(1∗–⊕BP1) and P(graph–⊕BP1)= P(1–⊕BP1).
k must not exceed the borders stated in Proposition 4.7 and subsequently to Theorem
4.13.
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...

P(OBDD)

P(3∗–⊕BP1)

P(BP1)=P((⊕, 1)–BP1)

P((⊕, 2)–BP1)

?

P(⊕BP) = ⊕L/Poly

P(k∗–⊕BP1)

P(⊕BP1)

P((⊕, 3)–BP1)

P(2–⊕BP1)

?

?

?

P(1∗–⊕BP1)

?

P(2∗–⊕BP1)P(1–⊕BP1)

?

?

?

P(⊕OBDD)

...

P((⊕, k)–BP1)

Figure 4.2: The results of this chapter.
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Appendix A

Important notation

In this Section we collect our notation on Boolean functions and assignments to Boolean
variables. Notation is always introduced in those sections where it is used first. Thus the
definitions are spread over the whole work and this list may be of some use.

Let X = {x1, . . . , xn} be a set of Boolean variables, i.e. each variable may be assigned
by a Boolean constant in {0, 1}. A Boolean function in n variables is a function f :
{0, 1}n → {0, 1}. It is convenient to regard

�
n, the set of all Boolean functions in n

variables, as an � 2–algebra, where � 2 is the prime field of characteristic 2. For f, g ∈
�
n

the product f ∧ g is defined as componentwise conjunction and the sum f ⊕ g as the
componentwise exclusive–or. For a set of Boolean functionsA ⊂

�
n we denote by span � 2 A

the linear space spanned by these functions.

A (Boolean) assignment a in X = {x1, . . . , xn} is a function X → {0, 1}. The i-th
component is denoted by a(xi). A partial assignment α is an assignment defined on a
subset of X. By V(α) we denote the domain α−1({0, 1}), i.e. those variables xi for that
α(xi) is defined.

If α is a (partial) assignment and S is a subset of X, we define

α|S(xj) :=

{

α(xj) if xj ∈ S and α(xj) is defined;

undefined else.

as the projection of α to S.

For a partial assignment α to some variables, the subfunction fα, or f |α, results by
setting all variables in V(α) to the constants according to α. Sometimes it is more
convenient to express fα, or f |α, as f(α). A function f is called essentially dependent on
the variable xi, if different settings to this variable result in different subfunctions, i.e.
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fxi=0 6= fxi=1. For a partial assignment α the subfunction f(α) formally depends on all
variables in X, but indeed is not essentially dependent on the variables set by α.

Next we examine how to combine several partial assignments. For partial assignments
α1, . . . , αν with pairwise disjoint domains V(αi), i = 1, . . . , n, we denote by (α1, . . . , αν)
the assignment α defined on V(α1) ∪ . . . ∪ V(αν) as

α(xj) :=











α1(xj) if α1(xj) is defined;
...

...

αν(xj) if αν(xj) is defined.

If the domains V(αi), i = 1, . . . , n are not pairwise disjoint, it is required that for all
1 ≤ i, j ≤ ν and for all xk ∈ V(αi) ∩ V(αj), the assignments to xk are equal for αi
and for αj, i.e. αi(xk) = αj(xk). Then the notion α = (α1, . . . , αν) as defined above is
well–defined.

Now it is clear, that V(α1, . . . , αν) =
⋃ν

i=1V(αi). By V(α) we denote the complement
{x1, . . . , xn} \ V(α).



Appendix B

Mentioned variants of branching

programs

In the literature one can find an enormous number of different variants of branching
programs and even in this thesis there are mentioned enough variants to possibly confuse
the reader. In the introduction it is described how interest in branching programs or binary
decision diagrams arises from two different points of view. Those mostly interested in data
structures use the term Binary Decision Diagram (BDD) whenever a complexity theorist
uses the term branching program (BP). The following table may help keeping track of all
the variants.
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The terms printed in boldface are those used in this thesis.

Computation Model Data Structure Definition

branching program, binary decision diagram, Definition 1.1
BP BDD

read–once BP, free BDD, Definition 1.5
BP1 FBDD

oblivious BP1 ordered BDD, Definition 1.7
OBDD

read–once ⊕–BP, free parity BDD, Section 1.5
⊕BP1 parity–FBDD

oblivious ⊕BP1 ordered parity BDD, Section 1.5
⊕OBDD

graph–driven ⊕BP1 graph–driven parity–FBDD Definition 1.6

well–structured graph– well–structured graph–
driven ⊕BP1 driven parity–FBDD Definition 2.1

(⊕, k)–BP – Section 1.7,
Section 4.1

k–⊕BP1 – Definition 4.1
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