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Abstract

Identifying differentially expressed genes is one of the common goals of microarray ex-
periments. The use of an efficient design in microarray experiments can improve the
power of the inferential procedure. Besides efficiency, robustness considerations should
also be considered in selecting good microarray designs because missing observations
often occur in the microarray experiments. In this dissertation, E–optimality criterion
is used as the efficiency criterion and three robustness criteria are proposed to quantify
the robustness of a microarray design.

For a given number of available arrays and number of treatment conditions, different
microarray designs can be considered. The number of possible designs could be very
large and thus a complete analysis of efficiency and robustness considerations could be
computationally infeasible. A genetic algorithm based method is suggested for selecting
good microarray designs for a set of given research questions. This method can be used
to find good designs for both the one–way and two–factor factorial experiments. The use
of both the efficiency and robustness criteria in the search procedure is also proposed. As
an example, efficient and robust designs for the 3× 2 factorial experiments are reported
for different numbers of arrays.
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Chapter 1

Introduction

Microarray technology is one of the most noteworthy innovations in molecular biology
and genetics during the last decade or so. It can explore the transcriptional activity of
a cell in a rapid and comprehensive way which could bring useful insight for assessing
molecular contributors to biological processes. The applications of the microarrays are
increasing in recent years and it is very likely that this technology will become a stan-
dard tool for clinical diagnostics in near future. Development of statistical methods for
analyzing and interpreting microarray expression data is essential because high dimen-
sional microarray data contain a large amount of variations from many sources and the
performance of an microarray experiment solely depends on the methods that are used
for the analysis.

1.1 Microarray Experiments ∗

Living organisms consist of cells that contain inheritable (genetic) information. The
entire genetic content of a cell is termed as genome. This genetic information is used
via a process which is called gene expression. The two main steps of gene expression
are known as transcription and translation. Transcription is the utilisiation of the genes
encoded by the cell’s genome to produce messenger ribonucleic acids (mRNA). Only
a tiny part of the genome is read by the cells during transcription to produce mRNA

molecules. To a varying extent depending on the organism and the cell type in which
transcription takes place, these mRNA molecules are used as patterns to produce protein
in a process called translation. Proteins are the main carriers of cellular functionality
at the molecular level. Because the type and quantity of gene expression at the mRNA

∗The description of the transcriptome analysis methodology is based on a paragraph from Landgrebe
and Lübke (2005).
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2 Chapter 1. Introduction

and protein level is the main determinant of cellular identity, function and state, it is
interesting to analyze gene expression on both levels. This thesis deals with the analysis
of gene expression data acquired on the mRNA level. The graphical representation of
the gene expression process is given in Figure (1.1).

DNA RNA Protein// //
transcription translation

Figure 1.1: Graphical illustration of the conversion of genetic information into proteins.

Techniques for analyzing gene expression on the transcriptional level have been used
since the 1970s. Among them, hybridization techniques that use the base pairing prop-
erty of complementary nucleic acid molecules evolved rapidly since the development
of the Northern Blot (Alwine et al., 1977). In this technique a soluble, radioactively
labelled cDNA probe is hybridized to a separated, membrane–bound (immobilized)
mRNA–target to detect the size and abundance of one transcript binding to the probe.
First steps to reverse the principle of the Northern Blot were undertaken soon: in-
stead of immobilizing the mRNA–targets on a membrane and one labelled cDNA–probe
is hybridized in solution (Northern Blot), multiple cDNA–probes were immobilized as
spots on a membrane (macroarrays, early 1990s) or on glass (microarrays, late 1990s).
Companies developed microarrays with oligo–nucleotide–probes of differing qualities and
lengths. Affymetrix produces oligo–arrays with short oligos using in–situ photolithog-
raphy, while Agilent manufactures long–oligo–arrays with an ink–jet–nucleotide linking
technique.

The mRNA–targets were labelled with radioactivity (membrane arrays, (Southern
et al., 1992)) or fluorescence (glass arrays, (DeRisi et al., 1996)) and hybridized in
solution. Using labelled targets in solution and immobilized probes spotted as ar-
rays, the expression of thousands of genes can be monitored at a time by measuring
the radioactivity/fluorescence signal at every spot. If radioactive labelling or single–
color–oligonucelotide–microarrays (Affymetrix) are used, only one color is available and
direct comparisons of two different mRNA–targets on a single array can not be per-
formed. With fluorescent labelling, two different fluorescent dyes can be used for different
mRNA–targets enabling direct comparisons of the targets on one microarray. Because
the experimental variance between different arrays is quite high due to varying exper-
imental factors, e.g., labelling efficiency and hybridization quality, direct comparison
approaches using the statistical block principle are to be preferred (Kerr and Churchill,
2001a). This thesis deals with only two–color cDNA microarray experiments.

A typical two–color microarray experiment has several steps, Eisen and Brown (1999)



1.1. Microarray Experiments 3

gave a detailed description of the experimental process of using microarrays. The first
step is known as array fabrication in which a set of previously known cDNA sequences
(probes) are printed onto the arrays using a robotic arrayer. The probes could be of
full–length or partially sequenced cDNAs which are usually chosen from the available
databases (e.g., GeneBank, dbEST, UniGene, etc.). The selection of probes set depends
on the experiment, usually genes that are relevant to the biological questions under
investigation are selected.

In the second step, total RNAs are separately isolated from the pair of competing
biological samples (e.g., experimental and control cell type) under investigation. Total
RNA is usually treated with DNase to remove genomic DNA that can inhibit the la-
belling reaction and lead to increased image background. Total RNA or mRNA is then
subjected to reverse transcription in the presence of a fluorescent labelled deoxycytidine
(or -uridine) triphosphate and a low-C (or -T)-dNTP mixture. The resulting cDNA
contains nucleotides with a fluorescent label. On glass microarrays using fluorescent
dyes, two separate labelling reactions with distinct fluorescent dyes (e.g., Cy3 and Cy5)
are used per array.

The third step is known as hybridization in which first, two labelled target cDNAs
are mixed in equal proportions and then are applied to the array which contains probe
cDNAs in each spot. If the probe and target cDNAs are complementary of each other
then they should be bound by their base pairs and the strength of the binding depends on
the amount of the gene expression in the target samples. For example, if a gene (spotted
on the array) is more expressed in the experimental cell (labelled with Cy3) than in the
control cell then Cy3–molecules should bind more to that array spot compared to the
Cy5–molecules. After sufficient time is allowed for this competitive hybridization, the
array is carefully washed a number of times so that all the unbound target cDNAs are
washed off. The next steps of a microarray experiment are image analysis and data
extraction (Yang et al., 2002a).

In image analysis, a confocal laser microscope is used to scan the array at two
channels or wavelengths, one for the Cy3 flourscent–tagged sample and another for the
Cy5 flourscent–tagged sample. This procedure generates two 16–bit tagged image file
format (tiff) images corresponding to two samples under investigation. These tiff images
are considered as the ‘raw’ data for a microarray experiment. The measurement of the
flourscent intensities for different probes can be obtained from the tiff images by using
an image analysis software (e.g., QuantArray, Spot, etc.). The ratio of the fluorescence
intensities for each spot indicates the relative abundance of the corresponding gene in
the two samples under investigation. A graphical representation of different steps of
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microarray experiments are shown in Figure 1.2.

Figure 1.2: A graphical representation of the different steps of a two–color microarray
experiment (Duggan et al., 1999).

Statistical methods can play vital roles in different stages of microarray experiment
(Smyth et al., 2003). Techniques of design of statistical experiments can be used to
decide which treatments are to be hybridized on the arrays and on how many arrays
the hybridizations will be replicated (e.g., Kerr and Churchill, 2001b; Churchill, 2002).
The raw intensity measurements must be normalized to adjust for any systematic biases
that may arise due to the effects other than the treatment effects under investigation
(e.g., Yang et al., 2002b; Huber et al., 2002; Smyth and Speed, 2003). The common
goals of microarray data analysis include identifying differentially expressed genes (e.g.,
Dudoit et al., 2002b; Wolfinger et al., 2001; Newton et al., 2001), classifying genes into
pre–existing or new meaningful classes (e.g., Eisen et al., 1998; Dudoit et al., 2002a),
etc. Among the statistical methods that are used in different stages of microarray
experiment, design of valid and efficient microarray experiments will be addressed in
this dissertation.
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1.2 Statistical Designs in Microarray Experiments

The objective of the experimental design is to make the analysis of the data and the
interpretation of the results as simple as possible, given the purpose of the experiment
and constraints of the experimental materials (Yang and Speed, 2002). A carefully
designed experiment could efficiently use the available materials and estimate the effects
of interest with high precision. On the other hand, a badly designed experiment could
bring bias to the estimates or the effects may be non–estimable with the data that have
been collected.

Experimental designs that are commonly used in microarray experiments can be
classified into two broad categories on the basis of whether direct comparisons between
the competing RNA samples (treatments hereafter) are made, i.e., whether the treatment
comparisons are made within or between arrays. The common reference (CR) design
(Callow et al., 2000) is the most commonly used microarray design where treatments
are compared indirectly via a common reference sample. In CR design, the labeling
strategy is often fixed for all the arrays, e.g., if the reference sample is labeled with a
Cy5 dye then treatments are labeled with a Cy3 dye for all the arrays. Since all the
treatments are labelled with a single dye, the CR can avoid the bias that usually arise
due to the differences in the ability of the two dyes in binding to the spotted cDNA

probes. There are several drawbacks of the CR design (Kerr and Churchill, 2001b).
First, half of the information is not used to estimate the parameters of interest because
the information from the reference sample is not of interest itself. Second, the indirect
comparisons inflates the variance of the relevant parameter estimates. Third, the use of
different reference samples places a strong constraint on the potential for comparing the
data generated by different researchers (Jin et al., 2001).

Among the microarray designs that consider direct treatment comparisons, in dye–
swap (DS) designs (Yang and Speed, 2002) each hybridization is done twice, with the
dye assignments reversed in the second hybridization. The DS design is useful for re-
ducing the systematic dye bias. This design is also known as saturated design because
all possible pairwise treatment comparisons are made for this design. The main disad-
vantage of DS design is that the number of arrays could be very large if a large number
of treatments is to be compared. To have a reasonable number of arrays per replication
of a design, Kerr and Churchill (2001b) proposed another class of microarray designs
which can also be used to make direct comparisons of the treatments. This class of
designs is known as loop designs where the treatments are balanced in terms of the
dye bias, i.e., each treatment is labeled once with a red and a green dye, respectively.
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Using the same number of arrays as a CR design, the comparable loop design collects
twice as much as data on the treatments under investigation and hence, provides more
degrees of freedom for estimating error. Unlike the DS designs, not all the pairs of
the treatments are hybridized for the loop designs, but each of the pair of treatments
are connected sequentially. Landgrebe et al. (2004) studied some basic and composite
designs for one–way and multi–factor factorial experiments.

The choice of an appropriate microarray design depends on both scientific and logis-
tic issues (Yang and Speed, 2002). Among the scientific issues, the aim of the experiment
needs to be addressed first, i.e., whether it is to identify differentially expressed genes,
to search for a specific gene–expression pattern, or to identify a tumor subclass. The
research questions need to be specified and it must be stated whether some questions
are more important than the others. The amount of the available RNA is also impor-
tant because the maximum number of possible hybridizations with a specific treatment
depends on the corresponding amount of RNA. Moreover, details of sample isolation,
RNA extraction, and labelling also affect the number of times the experiment has to
be repeated. Kerr and Churchill (2001b) recommended to select microarray designs
which are balanced with respect to the dye bias and can be used to estimate the effects
of interest with less variance compared to the other competing designs, i.e., efficient
design. Kerr (2003) discussed different design considerations for efficient and effective
microarray studies.

The methods of analyzing microarray data is another scientific issue that could play
an important role in selecting good microarray designs. We first describe a few statis-
tical models that are used for modeling microarray expression data. One of the main
objectives of a statistical model is to estimate the treatment effects after adjusting for
all known systematic biases. So to assume a statistical model for microarray expression
data, the sources of variations in the fluorescent measurements need to be studied first.
The sources of variations in microarray data are yet to be completely understood which
could be ranging from the hybridization to the ozone level of the laboratory. Schuchhardt
et al. (2000) gave a detailed description of the possible sources of variation in microarray
data. Kerr and Churchill (2001b) assumed the main sources of systematic variations in
microarray expression data are due to the dyes, the arrays, the treatments, and the
genes. They proposed a global ANOVA model for microarray expression data where all
the main effects and interactions are assumed to be fixed. The primary effect of interest
of such a model is the interaction between gene and treatment which indicates the effect
of a treatment in different genes. Lee et al. (2002) described a two–stage approach to
fit the global ANOVA model, where in the first stage, the gene independent parameters
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are estimated and the resulting residuals are then used as response for the second stage.
The analysis in the first stage is similar to the normalization of the microarray data
(Yang et al., 2002b; Huber et al., 2002). The second stage analysis is often done by gene
basis, i.e., one model is assumed for each gene (Landgrebe et al., 2004). Wolfinger et al.
(2001) considered a linear mixed effects model for analyzing microarray expression data
where a main effect of array and interaction between array and treatment, and array
and gene are assumed as random. Their model is similar to the global ANOVA model
but does not include a dye effect.

Kerr and Churchill (2001b) made the connection between microarray experiments
and classical incomplete block designs (Cochran and Cox, 1992). In microarray exper-
iments, two differentially labelled cDNAs are hybridized together on each array. The
arrays can be treated as the experimental blocks with block size two. If more than two
treatments are to be compared not all the treatments can appear in the same array. Ex-
perimental problems of this nature have been studied in agricultural experiments since
early in the last century and the designs that can be used in such cases where block
size is smaller than the number of treatments are known as incomplete block designs. A
microarray experiment can be considered as an incomplete block design if more than two
treatments are to be compared and no gene–specific dye effect is assumed. One of the
objectives of the usual normalization step of the microarray data analysis is to adjust
the dye bias. In some recent studies (Landgrebe et al., 2004; Dobbin et al., 2003b; Kerr,
2003), it has been shown that the usual normalization methods (Yang et al., 2002b)
can only adjust the overall dye effects, but not the gene–specific one. They advocated
to include the dye effect in the gene–specific models, i.e., interaction between gene and
dye should be taken into account. In this experimental situation, blocking factors are
used from two directions (dye and array) and in statistical literature such experimental
designs are known as row–column designs (Shah and Sinha, 1989). The difference be-
tween an incomplete block design and a row–column design is shown in Table 1.1 in the
context of microarray experiments.

Array 1 Array 2 Array 3
A B A
B C C

(a) Incomplete block design

Dye Array 1 Array 2 Array 3
Cy3 A B C
Cy5 B C A

(b) Row–column design

Table 1.1: Hybridization protocols of three arrays for comparing treatments A, B, and
C. In (a), within an array a dye (say, Cy3) can be used to any of the treatments, but in
(b) Cy3 can only be used to the treatments of the first row.

The problem of selecting an efficient incomplete block design for block size two has
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been studied extensively. In practice, efficiency criteria are used to assess the quality
of a design in estimating the effects. Most of the common efficiency criteria (e.g., E–
, A–, D–optimality) are defined as a function of the eigenvalues of the corresponding
information or dispersion matrix (Pukelsheim, 1993). John and Mitchel (1977) defined
regular graph designs and conjectured that efficient block designs can be found among
the regular graph designs if they exist. Bagchi and Cheng (1993) proposed a class of
highly efficient regular graph designs of block size two. The optimal designs that are
suggested in the literature on incomplete block designs have little practical importance
in the context of microarray experiments. This is because the underlying strategy for
these studies is to define families of optimal designs. But in microarray experiments,
experimenters are more interested in the designs by which the effects of interest can be
estimated most efficiently with the available number of arrays. The effects of interest
could be different for different studies and some effects could be more important than
others.

So far there have not been many attempts on selecting good microarray designs, but
inefficiency of the CR designs compared to the loop designs are mentioned in several
studies. Kerr and Churchill (2001b) extensively studied the properties of the common
reference and loop designs for the one–way factorial experiments. They suggested A–
optimal designs for K, K+2, and 2K arrays when the number of treatments K is not too
large. Yang et al. (2002b) used an A–optimality criterion to select efficient designs for
the time–course and multi–factor factorial experiments. Landgrebe et al. (2004) showed
a procedure for selecting good microarray designs from a set of basic designs by using an
E–optimality criterion. Glonek and Solomon (2004) used the concept of admissibility
in selecting good microarray designs. This approach can be used when more than one
effect is of interest.

Microarray expression data often contain missing observations (Troyanskaya et al.,
2001; Nguyen et al., 2004) due to various reasons including insufficient resolution, image
corruption, dust or scratches on the array, excessive background noise, array fabrication
error, etc. As the number of spots on the array increases to accommodate the entire
gnome, the occurrence of such missing observations will tend to increase (Khan et al.,
2003). Analysis of data with missing observations is particularly important in microar-
ray context because repeating the experiments is not possible due to a limited quantity
of materials and for budget constraints. Two main approaches have been used to deal
with missing observations, which are : (i) analyze data after excluding missing obser-
vations, (ii) estimate missing values before the analysis. Approach (ii) is not the focus
of this dissertation. The methods we are dealing with for analyzing microarray data
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can handle missing observations to some extent. We are interested in examining the
loss of information due to missing observations. The designs for which this loss is small
are known as robust (Dey, 1993). More specifically, robustness is a design consideration
which indicates the ability of a design to estimate the effects of interest in the presence of
missing observations. Robustness is a relatively new topic in microarray analysis and is
briefly introduced in some recent papers (e.g., Kerr, 2003; Churchill, 2002; Simon et al.,
2002). So far, no attempts have been made to quantify the robustness of a design in
the microarray context. Besides efficiency, robustness could play an important role in
selecting good designs for a given set of research questions.

1.3 Objectives

The objective of this dissertation is to provide an improved method to find efficient and
robust microarray designs. The main points of the work include the following:

� To quantify the loss of information due to missing observations, three robustness
criteria are proposed in the context of microarray experiments.

� A procedure to find good microarray designs from a set of candidate designs is sug-
gested. The method uses both the efficiency and robustness criteria in evaluating
the designs.

� A computer program is written in R (R Development Core Team, 2004) which
can be used to find good designs for given research questions and a pre–specified
number of available arrays.

This dissertation is organized as follows. In §2, the assumed model for analyzing mi-
croarray expression data is described and also the efficiency and robustness criteria are
specified. The importance of using efficient design in microarray experiments are shown
by using a simulation study. As an example, methods for selecting efficient and robust
designs for a given experimental layout and set of research questions are shown in §3.
In §4, a genetic algorithm based search procedure is developed which can be used for
selecting efficient and robust microarray designs for both one–way and multi–factor fac-
torial experiments. In §5, the efficient and robust designs for the 3 × 2 experimental
layout are reported for different numbers of arrays. The performance of the proposed
method is validated by simulation studies.





Chapter 2

Efficiency and Robustness

Criteria for Microarray Designs

2.1 Introduction

Statistical design of microarray experiments plays a vital role in allocating mRNA sam-
ples under investigation to the arrays. The application of classical experimental designs
to microarrays was first investigated by Kerr et al. (2000). Microarray experiments can
be considered as incomplete block experiments of block size two when more than two
treatments are of interest (Kerr and Churchill, 2001b). Among the experimental de-
signs used in microarrays, the common reference (CR) design (Callow et al., 2000) is
the most commonly used one where the treatments under investigation are compared
indirectly via a common reference sample. Kerr and Churchill (2001b) proposed loop
designs which compare the treatments of interest directly by connecting every pair of
treatments sequentially. In this dissertation, we consider different types of the loop de-
signs and we call the simple loop design as circular loop (CL) design. Another important
design is the dye–swap (DS) design which compares each pair of the treatments twice
with a forward and a reverse dye labelling. Landgrebe et al. (2004) suggested some basic
and composite microarray designs for two–factor factorial experiments.

Several designs can be considered for a specific microarray experiment. The choice of
the design depends, among other things, on its performance in estimating the effects of
interest. It is desirable to use the design which can estimate the effects with maximum
efficiency. Efficiency criteria are used to assess the quality of a design with respect to
the estimates of the effects of interest. So far, different efficiency criteria have been
proposed in the microarray literature to select designs for microarray experiments. Kerr

11
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and Churchill (2001b) were the first to discuss the procedure for comparing microarray
designs for one–way experimental layouts. Yang and Speed (2002) considered 2 × 2
factorial experiments to compare the efficiency of the loop designs with the common
reference designs. They did not assume the gene×dye interaction in their model. Glonek
and Solomon (2004) considered a similar model to Yang and Speed (2002) and suggested
to select efficient designs from the class of admissible designs. Landgrebe et al. (2004)
included the gene×dye interaction in their model and used a minimax approach to select
efficient microarray designs for both one–way and multi–factor factorial experiments.

All of the above investigations used complete observations to estimate the efficiency of
the designs to be compared. However, microarray expression data often contain missing
observations due to various reasons including image resolution, image corruption, dust or
scratches on the array, etc. (Troyanskaya et al., 2001). For a given experimental question,
an efficient design could break down due to missing observations. So, besides efficiency,
considerations of the robustness properties of the candidate designs could be useful in
selecting good microarray designs. By robustness, we mean the property of a design that
shows its ability to estimate the effect of interest in the presence of missing observations.
The importance of the robustness issues has been stressed in recent papers in the context
of microarray experiments (Kerr, 2003; Churchill, 2002; Simon et al., 2002), but till date
no attempts have been made to use the robustness in selecting designs for microarray
experiments.

The main objective of this chapter is to formalize different efficiency and robustness
criteria in the context of microarray experiments. The linear statistical model that we
assume for analyzing microarray data is described in §2.2. Three robustness criteria,
namely, breakdown number, average efficiency, and proportion of the effective designs
are suggested in §2.4. In §2.5, a simulation study is performed to show the consequences
of using an inefficient design instead of efficient ones for finding differentially expressed
genes.

2.2 Linear Models for Microarray Expression Data

Let n denote the number of available arrays, G denote the number of genes that are
spotted on each array, and K be the number of treatments under investigation. Let
yijkg be the log–transformed intensity measurement corresponding to the array i, dye j,
treatment k, and gene g. Kerr and Churchill (2001b) extensively studied the relevant
sources of variations in the microarray expression data and identified the variations due
to the arrays, dyes, treatments, and genes as the major sources. They proposed the
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following global ANOVA model for the log–transformed intensity measurement yijkg:

yijkg = µ+ αi + θj + βk + γg + (αγ)ig + (θγ)jg + (βγ)kg + ε′ijkg, (2.1)

where µ denotes the overall mean, α, θ, β, and γ correspond to the main effects of array,
dye, treatment, and gene, respectively and (αγ), (θγ), and (βγ) represent the two–
factor interaction corresponding to gene with array, dye, and treatment, respectively.
In microarray studies, the effects of interest are the interactions between the gene and
treatment which measure the differentials in the gene expressions across different treat-
ments. All the main effects and interaction are assumed to be fixed and the random
error term ε′ijkg is assumed to be independently distributed with mean 0 and variance
σ′2. Throughout of this thesis, we assume that each gene is spotted only once on each
array.

In principle, the least squares estimates of the parameters of the model (2.1) should
be obtained by using existing common statistical packages. In microarray data, the
number of genes is often very large (typically in thousands). Hence, the number of
parameters of the model (2.1) and the dimension of the corresponding model matrix
could be very large. The space constraints of the common statistical packages may
cause problem for using the usual least square routine to estimate the parameters of
the model like (2.1). To overcome this problem, Lee and Whitmore (2002) suggested a
two–stage approach to fit the model (2.1) which is simple and effective. In the first–stage
model, the gene–specific terms of the model (2.1) are absorbed in the error term ηijkg,
i.e.,

yijkg = µ+ αi + θj + βk + ηijkg. (2.2)

This model is simpler compared to the global ANOVA model (2.1) because it has a
small (= 1 + n + 2 + K) number of parameters and the corresponding least squares
estimates can easily be obtained by using existing statistical packages. Estimation of
the parameters of the first–stage model (2.2) can be viewed as a normalization step of
microarray data analysis where the systematic biases due to other than the treatment
effects are adjusted. The estimated residuals of the first–stage model (2.2) are used
as the response of the second–stage model. Instead of residuals of the model (2.2),
normalized log–intensities corresponding to the two channels (e.g, Huber et al., 2002)
can also be used as the response of the second–stage model. The second–stage model
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can be written as

η̂ijkg = γg + (αγ)ig + (θγ)jg + (βγ)kg + ε′ijkg, (2.3)

which contains all the gene–specific parameters of the global ANOVA model (2.1). Un-
der the assumption that gene expressions are independent of each other, the parameters
of the second–stage model (2.3) can be estimated independently for each gene. In mi-
croarray analysis, the difference of the log–intensities corresponding to two dyes (i.e.,
treatments) is the measurement of interest. Assume the treatments k and k′ are hy-
bridized to the probes on the array i where the former is labelled with a green (Cy3) dye
(j = 1) and the latter with a red (Cy5) dye (j = 2). For a specific gene g, the relative
expression of the array i can be expressed as

zi = η̂i1k − η̂i2k′

= (θγ)1 − (θγ)2 + (βγ)k − (βγ)k′ + ε′i1k − ε′i2k′

= δ1 − δ2 + τk − τk′ + εi, (2.4)

where δj = (θγ)j , τk = (βγ)k, and εi = ε′i1k − ε′i2k′ are defined to simplify the no-
tation. Without loss of generality, the gene–specific subscripts are excluded from the
model (2.4) because genes are separately modeled, i.e., the model of this type can be
assumed for each gene g = 1, 2, . . . , G. The model (2.4) has a smaller number of param-
eters compared to the model (2.3) because array–specific parameters are canceled out
during the computation of the relative expression. The output of the lowess regression
based normalization methods (Yang et al., 2002b) can also be used as the response in
the model (2.4).

Let Z = (z1, z2, . . . , zn)′ be the vector of the relative expressions corresponding to
a specific gene. Each array contributes one measurement to the vector Z. In matrix
notation, the model (2.4) can be written as

Z = Xβ + ε, (2.5)

where X denotes the n × (K + 2) design matrix with rank(X) < min(n,K + 2), β =(
δ1, δ2, τ1, . . . , τK

)′ denotes the (K+2)–dimensional vector of parameters, and ε denotes
the n–dimensional vector of independent random errors with mean 0 and variance σ2

(= 2σ′2). The parameter vector β contains the fixed dye effects δ1, δ2 and the treatment
means τ1, . . . , τK . The model of the type (2.5) is known as a non–full rank model in the
classical linear models literature (Searle, 1971, §5) because the corresponding moment
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matrix X′X is not of full rank.
The dye effects are included in our gene–specific ANOVA model (2.4) because the

standard normalization procedures (e.g., Yang et al., 2002b; Lee et al., 2002) can only
adjust the overall dye–effects, but not the gene–specific dye effects. The gene–specific
dye bias is displayed by the genes that do not fall into the overall pattern of the dye
effect that characterizes the majority of the genes (Dobbin et al., 2003a). In some recent
papers (e.g., Landgrebe et al., 2004; Dobbin et al., 2003a; Kerr, 2003), it was pointed
out that even using the normalized data, the dye effects could be significant for some of
the genes. Thus, we have included dye effects in the gene–specific ANOVA model (2.4).

2.2.1 Contrast Matrix

The types of research questions could be different for different experimental layouts, e.g,
pair wise or many–to–one treatment comparisons could be of interest for the one–way
factorial experiments, whereas in multi–factor factorial experiments, combinations of
the simple effects, main effects, or interaction are often seen as the effects of interest. In
practice, the experimental question of interest can be expressed in terms of a vector of
linear functions of the regression parameters β, e.g., C′β, where C denotes a (K+2)×d
contrast matrix and the value of d(≥ 1) depends on the type of experimental question.
A matrix C is said to be a contrast matrix if and only if C′1d = 0d, where 1d and 0d
are the d–dimensional vectors with all elements equal to 1 and 0, respectively.

As an example, consider a microarray design for a 1× 3 experimental layout where
the treatment of interest is investigated under three different conditions, i.e., K = 3
for this example. Assume the gene–specific ANOVA model (2.5) for the analysis. The
corresponding vector of the parameters can be written as

β =
(
δ1, δ2, τ1, τ2, τ3

)′
,

where δj denotes the jth dye effect and τk denotes the kth treatment effect, j = 1, 2,
k = 1, 2, 3. Different contrast matrices can be considered for defining different treatment
effects, e.g., the function

C′
1β =

(
0, 0, 1,−1, 0

)
β = τ1 − τ2

compares the first treatment with the second treatment where d = 1. Similarly, if one
is interested only in the dye effect then the corresponding linear function would be:

C′β =
(
1,−1, 0, 0, 0

)
β = δ1 − δ2.
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In general, the zeros of a contrast vector are used to exclude the effects of the regression
vector which are not of interest and the non–zero elements of it define the comparison
of interest.

For the multi–factor factorial experiments, general forms of the contrast matrices are
available for the simple effects, main effects, and interaction. As an example, consider
a na × nb experimental layout where na and nb are the number of conditions of the two
factors of interest, say, A and B, respectively. The general form of the contrast matrices
corresponding to the main effects (CA, CB) and interaction (CAB) are:

C′
A =

[
ga

... (Pa ⊗ 1′b)
]
, C′

B =
[
gb

... (1′a ⊗Pb)
]
, and C′

AB =
[
ga·b

... (Pa ⊗Pb)
]
,

respectively, where ga = [0a
...0a], Pa = Ia − (1/a)Ja is the centering matrix, Ia is the

identity matrix, and Ja = 1a1′a is the sum matrix of order a. In this example, d = na

for the main effect of A, d = na · nb for the interaction effect, etc.

2.2.2 Estimability

The inclusion of the dye effects in the gene–specific ANOVA model (2.5) and the fact
that the treatment and dye effects are confounded in a single array (Kerr and Churchill,
2001b), estimability of the effect of interest becomes an issue. The least squares es-
timate of the regression parameter β, which is a solution of the consistent system of
linear equations X′Xβ = X′Z, is not unique for non–full rank models. However, the
estimate of a parametric function C′β, say, is unique if it is an estimable function. A
linear combination of the parameters C′β is said to be estimable if there exist a linear
combination of the response t′Z, say, which can be used as an unbiased estimate of C′β,
i.e., E(t′Z) = C′β. A necessary and sufficient condition for the estimability of the effect
C′β is

C′(X′X)−(X′X) = C′, (2.6)

where (X′X)− is a generalized inverse of the moment matrix X′X (Searle, 1971, §5.4).
The concept of estimability is crucial: if a linear function C′β is not estimable, the
associated experimental question can not be answered unbiasedly. That is, any estimate
of C′β deviates from the true value by a systematic, unknown quantity. Note that,
estimability of an effect does not depend on the response.
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The best linear unbiased estimator (BLUE) of an estimable function C′β is

C′β̂ = C′(X′X)−X′Z,

which is unique, i.e., does not depend on the choice of the generalized inverse of X′X
(Searle, 1971, page 181). The variance of the estimator C′β̂ is

Var(C′β̂) = σ2C′(X′X)−C, (2.7)

where C′(X′X)−C is called a variance factor if d = 1. For d > 1, C′(X′X)−C is a
nonnegative definite square matrix of order d which is known as a dispersion matrix. For
a given contrast matrix C, by considering the variance factor or dispersion matrix as a
function of the design matrix X, the quality of the associated design can be quantified.
The role of the variance factor or the dispersion matrix in the test of the respective
hypothesis is described in the following section.

2.2.3 Methods of Inference

Though the methods of analyzing microarray data are not the main focus of this dis-
sertation, the inference procedure for testing a hypothesis H0 : C′β = 0 is described in
this section for the sake of completeness. Depending on whether C is a vector or matrix,
two test statistics can be considered to test the null hypothesis H0 : C′β = 0.

If C is a vector, the following test statistic can be used:

T0 =
C′β̂

σ̂

√
C′(X′X)−C

.

Under the null hypothesis H0 : C′β = 0, the statistic T0 has a central t–distribution
with f = n− rank(X) degrees of freedom, provided the null hypothesis H0 : C′β = 0 is
testable. In practice, the technical variance σ2 is estimated unbiasedly by

σ̂2 =
1
f

Z′(In −X(X′X)−X′)Z.

On the other hand, if C is a matrix and the null hypothesis H0 : C′β = 0 is testable,
the following test statistic can be used:

F0 =
1

σ̂2 f1
Z′TV−T′Z,
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where V = C′(X′X)−C, T = C′(X′X)−Z′, and f1 = rank(V). Under the null hypoth-
esis H0 : C′β = 0, the statistic F0 has a central F–distribution with f1 and f degrees of
freedom. A large value of the test statistic indicates that the data show evidence against
the null hypothesis.

In microarray experiments, the hypothesis under investigation is tested simultane-
ously for a large number of genes and at the end, a small number of genes is selected
as differentially expressed. For making a decision by using a large number of tests, the
probability of rejecting a test erroneously must be controlled for all the tests. To control
the inferential error which is commonly known as the problem of multiple testing, a
number of approaches have been proposed in the context of microarray experiments,
e.g., false discovery rate (Benjamini and Hochberg, 1995), significance analysis of mi-
croarray (Tusher et al., 2001), etc. Multiple testing procedures can be used to adjust the
raw p–values. The resulting adjusted p–values can control the inferential error rate at
a specific level for all the tests and are used to select differentially expressed genes. The
topic of multiple testing problem is not the focus of this dissertation, see, e.g., Dudoit
et al. (2003) for a review.

The test statistic T0 or F0 is a function of the data Z, contrast matrix C, and design
matrix X. The research question under investigation defines the contrast matrix, but the
design matrix depends on the selections of the pair of the treatments that are hybridized
to the probes on the arrays. In practice, the experimenter decides which pair of the
treatments are hybridized on the arrays, which treatment is labelled with red/green
dye, and on the number of times each of the arrays will be replicated. That means,
the experimenter can decide on the design matrix before conducting the experiment.
Thus, a carefully chosen design matrix (i.e., treatment pairs) could influence more to
the inferential procedure than the commonly used ones. In the following sections, a
procedure of selecting good designs from a set of candidate designs will be described.

2.3 Efficient Microarray Designs

The criterion by which the quality of a design can be assessed with respect to the
estimate of the effect of interest is called an efficiency (optimality) criterion, which we
denote by φ. Efficiency criteria play a useful role in selecting efficient designs from a set
of candidate designs. Efficient designs can provide the estimate of the effect of interest
with a smaller variance. If the effect of interest can be expressed in terms of a vector
C, the variance factor C′(X′X)−C itself can be used as an efficiency criterion. If C is a
matrix, however, the efficiency criterion is a function that maps a square matrix into a
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scalar, i.e., φ : Rd×d → R, where d denotes the number of columns of C. In literature,
there exist several efficiency criteria, see, e.g., Pukelsheim (1993, §6).

2.3.1 Efficiency Criteria

The common efficiency criteria can be defined as a function of the eigenvalues of the
corresponding dispersion or information matrix. Kerr and Churchill (2001b) consid-
ered the A–optimality criterion in the context of microarray experiments which can be
defined as the sum of the eigenvalues of the dispersion matrix, i.e., the trace of the
dispersion matrix. Another common efficiency criterion is the D–optimality which uses
the product of the non–zero eigenvalues of the dispersion matrix, i.e., the determinant of
the dispersion matrix. And the E–optimality criterion uses the largest eigenvalue of the
dispersion matrix. From the estimation point of view, the A–, D–, and E–optimality
criterion deal with the average, generalized, and maximum variances of the estimates,
respectively. In this study, we will use only the E–optimality as the efficiency criterion
because of its straightforward interpretation. Unlike the A– or D–optimality criterion,
the E–optimality criterion does not depend on the dimension of the information or
dispersion matrix. A detailed discussion on efficiency criteria and their properties can
be found in Pukelsheim (1993, §6). In the following, we will describe a procedure to
find efficient microarray designs from a set of candidate designs with respect to the
E–optimality criterion.

Let D = {ξ1, ξ2, . . . , ξT } be the set of candidate designs and Xt be the design matrix
corresponding to the design ξt, t = 1, 2, . . . , T . Let C be the contrast matrix corre-
sponding to the research question of interest and assume that the effect of interest C′β

is estimable for all the candidate designs. Landgrebe et al. (2004) suggested the following
expression of the E–optimality criterion corresponding to the design ξt,

φ(ξt,C′β) =
tr(C′C)

λmax

(
C′(X′

tXt)
−C

) , (2.8)

where λmax(V) and tr(V) denote the largest eigenvalue and trace of the square ma-
trix V, respectively. The numerator of the expression (2.8) is used as a normalizing
constant which ensures invariance of the E–optimality criterion φ(·, ·) under scalar mul-
tiplication of the contrast matrix, i.e., for a scalar r, φ(ξ,C′β) = φ(ξ, rC′β), ∀ ξ ∈ D.
The E–optimality criterion cannot be defined if the effect of interest is non–estimable
corresponding to the design under investigation.

The design which corresponds to the largest E–optimality criterion value is the most
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efficient design (ξ∞) and it can be formally expressed as

ξ∞ = arg maxξ{φ(ξ,C′β),∀ ξ ∈ D}. (2.9)

The E–optimality criterion is a minimax approach with respect to the dispersion matrix
and thus can guard against worst cases. A design ξ1 is said to be more efficient compared
to the design ξ2 if and only if φ(ξ1,C′β) > φ(ξ2,C′β), provided the effect of interest
C′β is estimable with respect to both the designs ξ1 and ξ2.

The ratio of the efficiency criterion of two competing designs is commonly known
as the relative efficiency which is very useful in interpreting results. If more than two
designs are to be compared, the relative efficiency of a design ξt ∈ D can be defined in
terms of the E–optimality criterion as

φrel(ξt,C
′β) =

φ(ξt,C′β)
maxξ∈D {φ(ξ,C′β)}

.

For a given set of candidate designs, the relative efficiency of a design gives an idea
about its efficiency compared to the other designs of the candidate set.

When more than one experimental question is of interest, the average of the efficiency
criterion over different questions is often used as an efficiency criterion (Yang and Speed,
2002; Landgrebe et al., 2004), we call it overall efficiency. However, researchers could be
interested in estimating some of the effects more efficiently than others. To accommodate
such cases, we suggest to use an weighted average of the efficiency criterion for the
computation of an “overall efficiency”. Let Cq be the contrast matrix corresponding to
the qth question, q = 1, 2, . . . , Q. The overall efficiency can then be defined in terms of
the E–optimality criterion as

φ̄(ξt,C′
0β) =

∑Q
q=1wq φ(ξt,C′

qβ)∑Q
q=1wq

,

where wq is the weight corresponding to the qth question, C′
0 =

(
C1

...C2
... · · ·

...Cq

)′ is the
combined contrast matrix, and φ(ξt,C′

qβ) is the E–optimality criterion corresponding
to ξt for the effect C′

qβ. For q > 1, the most efficient design can be obtained by using
the overall efficiency criterion φ̄(·, ·) in (2.9) instead of the E–optimality criterion φ(·, ·).

Note: In microarray experiments, replications of a basic design are often used to con-
struct designs with a larger number of arrays, i.e., composite designs (e.g., Landgrebe
et al., 2004). In this section, we will show the relation between the E–optimality cri-
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terion of a basic design and the corresponding composite design. Let φ(ξ1,C′β) be the
E–optimality criterion corresponding to a basic design ξ1 which has n arrays and X1 be
the corresponding design matrix. Let ξ be the composite design which is composed of
two replications of ξ1, i.e., ξ has 2n number of arrays. The design matrix of ξ can be

written in terms of the design matrix of ξ1 as X = (X′
1

...X′
1)

′
.

By using the relationship

(X′X)− = (X′
1X1 + X′

1X1)
− =

1
2
· (X′

1X1)
−
,

we can show,

φ(ξ,C′β) =
tr(C′C)

λmax

(
C′(X′X)−C

) =
2 · tr(C′C)

λmax

(
C′(X′

1X1)
−C

) = 2φ(ξ1,C′β). (2.10)

That means, the E–optimality criterion of a composite design is the product of the
number of replications and the E–optimality criterion of the related basic design. This
property is also satisfied for the A– and D–optimality criterion.

2.3.2 Non–inferior Designs

Besides the overall efficiency criterion, a filtering procedure can also be used for compar-
ing designs when more than one question is of interest. This filtering procedure classifies
the set of candidate designs into inferior and non–inferior designs in such a way that
none of the inferior designs can be used to estimate any of the effects of interest more
efficiently compared to the non–inferior designs. Formally, a design ξ? is said to be a
non–inferior design if there exist no design ξ ∈ D, such that,

φ(ξ?,C′
qβ) ≤ φ(ξ,C′

qβ), ∀ q = 1, 2, . . . , Q,

with strict inequality for at least one q. Glonek and Solomon (2004) called the class
of non–inferior designs “admissible” and suggested that good microarray designs can be
found from the corresponding set of admissible designs. The concept of admissibility
is commonly used in statistical decision theory to compare decision rules (Casella and
Berger, 1990, §10.4). In the context of microarray experiment, Landgrebe et al. (2004)
showed, with an example, that admissible designs are not always the most efficient ones.
In §3.1, we will show some examples of inferior and non–inferior designs.
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2.4 Robust Microarray Designs

Robustness considerations are necessary in microarray analysis because expression data
often contain missing observations due to unreliable spot measurements. Here, we as-
sume that each gene is spotted only once on an array and the expression values are
missing completely at random, e.g., missing due to technical reasons. This means that
the probability of observing a missing expression measurement is equal across all spots of
an array and are constant over different arrays. In this study, the gene–specific ANOVA

model (2.5) is assumed and for a specific gene, each array contributes only one data
point to the analysis. In the following text, the expression “missing an array” is often
used to indicate that a data point is missing for the gene of interest.

The major problem with missing values is that they may lead to less efficient or
even non–estimable estimates of the effects of interest. As an example, consider two
microarray designs for a 1× 3 experimental layout, namely, 2CR and DS, each of which
has six arrays. Three treatments 1, 2, and 3 are to be compared in this experiment.
The graphical representations of these two designs are shown in Figure 2.1. The 2CR
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Figure 2.1: Graphical representations of the 2CR and DS designs for 1× 3 experimental
layout.

designs denotes a design that is consisted of two replications of the basic CR design
for the 1 × 3 experimental layout. In CR designs, the treatments under investigation
are compared indirectly via a common reference sample which we denote by R. The DS

design compares each pair of the treatments twice by reversing the dye label. Here, we
follow the common practice of microarray literature for graphically representing an array,
i.e., an array is represented by a pair of treatment labels and an arrow. The treatment
labels, which can either be numbers or letters, represent mRNA samples corresponding
to the treatments. The arrow that connects two treatment labels (samples) indicates the
dye labelling protocol, e.g., samples at the arrow head and arrow tail are labeled with
a red and a green dye, respectively. For example, 1 → 3 represents an array associated
with the treatments 1 and 3 that are labeled with a green and a red dye, respectively.

In this example, for a specific gene, the following model is assumed for the normalized
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expression measurement corresponding to the ith array of the DS design

zi = δg − δr + τk − τk′ + εi,

{
i = 1, 2, . . . , 6
k 6= k′ = 1, 2, 3,

and in matrix notation, this model can be written as

Z = Xβ + ε,

where β = (δ1, δ2, τ1, τ2, τ3)′ (see §2.2 for details of these models). In case of the 2CR

design, the reference sample R is labelled with a red dye for all the arrays and β =
(δ1, δ2, τ1, τ2, τ3, τR)′. The design matrices corresponding to the designs 2CR and DS are
shown in Table 2.1. In the context of microarray experiments, each array contributes

X2CR =



1 −1 1 0 0 −1
1 −1 1 0 0 −1
1 −1 0 1 0 −1
1 −1 0 1 0 −1
1 −1 0 0 1 −1
1 −1 0 0 1 −1

 , XDS =



1 −1 1 −1 0
1 −1 −1 1 0
1 −1 0 1 −1
1 −1 0 −1 1
1 −1 −1 0 1
1 −1 1 0 −1


Table 2.1: The design matrices for the 2CR and DS designs.

one row to the design matrix, e.g., the first row of XDS corresponds to the array 1 → 2
where the treatments 1 and 2 are labelled with green and red dye, respectively. The
first two columns of the design matrices correspond to the dye effects and the remaining
columns correspond to the treatment effects. The size of the design matrix of the design
2CR is larger than that of the design DS because the 2CR design includes a reference
sample along with the treatments under investigation.

In this example, let us assume that the biological question of interest is to compare
two treatments 1 and 2, i.e., τ1 − τ2. The contrast vectors corresponding to the effect
τ1 − τ2 are

C2CR = (0, 0, 1,−1, 0, 0)′ and CDS = (0, 0, 1,−1, 0)′ ,

for the designs 2CR and DS, respectively. Similar to the design matrices, the first two
elements of the contrast vectors also correspond to the dye effects and the other columns
correspond to the treatment effects. For a general overview of the contrast vectors or
matrices in the context of microarray experiment, see §2.2.1.
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The effect of interest, τ1 − τ2, is estimable for both the designs 2CR and DS under
investigation. Estimability ensures that there exist at least one linear combination of
the responses by which an unbiased estimate of the effect of interest can be obtained.
Assume, zi and z?i are the responses corresponding to the ith (i = 1, 2, . . . , 6) row of the
design matrices X2CR and XDS, respectively. It is easy to show that

E(z1 − z3 + z2 − z4)/2 = τ1 − τ2 and E(z?1 − z?2 − z?3 + z?4 − z?5 + z?6)/4 = τ1 − τ2

for the designs 2CR and DS, respectively. This shows that there exist at least one linear
combination of the responses by which the effect of interest τ1 − τ2 can be estimated
unbiasedly by both the designs 2CR and DS. Hence, the effect τ1 − τ2 is estimable with
respect to both the designs 2CR and DS. In general, an effect is said to be estimable
with respect to a design if it satisfies the equation (2.6).

The values of the E–optimality criterion can be obtained for these two designs by
using the equation (2.8). The DS design is found to be more efficient compared to the
2CR design for estimating the effect τ1−τ2 and the corresponding E–optimality criterion
values are

φ(DS, τ1 − τ2) = 6.0 and φ(2CR, τ1 − τ2) = 2.0,

respectively. This means that in terms of the relative efficiency one can conclude that
the 2CR design needs to be replicated three times to attain the same efficiency as the
DS design for estimating τ1− τ2. Assume now that for the 2CR design either the 1 → R

or 2 → R array is missing. In the context of computing the E–optimality criterion,
the dimension of the design matrix is reduced in the presence of missing arrays, e.g., if
1 → R array is missing then the resulting design matrix will be X2CR without the 1st

or 2nd row of it. In this case, the E–optimality criterion value reduces to 1.3. Similarly
for the DS design, the E–optimality criterion value reduces to 3.6 if any of the arrays
connecting the treatments 1 and 2 is missing and reduces to 5.1 if the missing array
is associated with the treatment 3. This shows that a missing array may considerably
reduce the efficiency of the estimates and the amount of the reduction depends on the
type of the missing array.

In case of two missing arrays, the effect τ1 − τ2 is not estimable for the 2CR design
if both the arrays of the type 1 → R or 2 → R are missing. If one array of each
type is missing, the E–optimality criterion value reduces to 1.0, i.e., one has only 50
percent of the initial pre-planned efficiency. On the other hand, all the residual designs
corresponding to the DS design with two missing arrays can be used to estimate the
effect τ1 − τ2 unbiasedly (with less efficiency though). The estimate τ̂1 − τ̂2 could be
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more efficient if none of the arrays that connects treatments 1 and 2 is missing than the
cases where one of this type of arrays is missing. If more than three arrays are missing,
the effect τ1 − τ2 is not estimable anymore with respect to the DS design.

This example shows a number of different situations that may occur if the possibilities
of missing arrays are considered in selecting efficient microarray designs for a given
experimental layout.

2.4.1 Robustness Criteria

So far no attempt has been made to systematically investigate the robustness of microar-
ray designs. In the following, we propose three different robustness criteria to measure
the robustness of a design for the given experimental questions. The proposed robust-
ness criteria will be used in §3.1 for analyzing robustness of different designs. All of
the following robustness criteria depend on the possible array constellations with a fixed
number of missing arrays.

Let ξ be the design of which the robustness properties will be investigated and Xn

be the associated design matrix of size n. For m(< n) missing arrays, let

Rm(Xn) = {X(−m)
n,1 ,X(−m)

n,2 , . . . ,X(−m)
n,w } (2.11)

be the set of design matrices corresponding to the possible w =
(
n
m

)
residual designs

which can be constructed from the design ξ by leaving m out of n arrays, i.e., each of
the residual designs has (n−m) arrays, where X(−m)

n,t is the design matrix corresponding
to the tth residual design, t = 1, 2, . . . , w. Further let

R?
m(Xn,C′β) ⊆ Rm(Xn)

denote the set of residual designs for which the effect of interest C′β is estimable. Let
w? ≤ w denote the cardinality of R?

m(Xn,C′β).

Breakdown Number

The simplest of the robustness criteria is the breakdown number which represents the
minimum number of missing arrays that leads to at least one residual design for which
the effect of interest is not estimable. More specifically, the breakdown number, say m0,
of a design states that the effect of interest is estimable with respect to all the residual
designs with (m0 − 1) missing arrays, but there exists at least one residual design with
m0 missing arrays for which the effect is no longer estimable. Formally, the breakdown
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number of the design ξ can be defined with respect to the effect C′β as

BDN(ξ,C′β) = min
m
{C′(X′X)−(X′X) 6= C′ for at least one X ∈ Rm(Xn)}

= min
m
{R?

m(Xn,C′β) ⊂ Rm(Xn)},

where Xn denote the design matrix of the design ξ. For example, to estimate the effect
τ1 − τ2 from the previous example with the 1 × 3 experimental layout, the breakdown
number of the 2CR design is two, i.e., two missing values may lead to non-estimable
comparisons. On the other hand, the breakdown number of the DS design is four, i.e.,
with respect to the breakdown numbers the DS design is more robust than the 2CR

design for the 1 × 3 experimental layout. If more than one question is of interest, the
minimum of the corresponding breakdown numbers can be used as a robustness criterion.

Average Efficiency

For the design of interest, the average of an efficiency criterion over the residual designs
with a specific number of missing arrays can also be used as a robustness criterion. For a
design ξ, the average efficiency for estimating C′β with m missing arrays can be defined
in terms of the E–optimality criterion as

φ̄m(ξ,C′β) =
1
w

∑
X∈R?

m(Xn,C′β)

tr(C′C)
λmax

(
C′(X′X)−C

) ,
where w is the total number of the residual designs that can be obtained from the
design ξ with m missing arrays and Xn is the design matrix corresponding to the design
ξ. If more than one effect is of interest, instead of the E–optimality criterion the overall
efficiency can be used in the definition of the average efficiency. For example, to estimate
the effect τ1 − τ2 from the previous example with the 1 × 3 experimental layout, the
average efficiency value for the 2CR design with one missing array is 1.56. This criterion
could be useful in selecting designs when the corresponding breakdown numbers are
equal. In case of no missing array, the average efficiency criterion deduces to the overall
efficiency.

Proportion of the Effective Designs

For a specific number of missing arrays, the proportion of the residual designs for which
the effect of interest is estimable can be used to assess the robustness of a design. We
call this robustness criterion the proportion of the effective designs which can be defined
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for the design ξ with m missing arrays as,

pEDm(ξ,C′β) =
w?(
n
m

) ,
where w? is the cardinality of R?

m(Xn,C′β). For example, to estimate the effect τ1− τ2
from the previous example with the 1 × 3 experimental layout, the proportion of the
effective designs for the 2CR design with two missing arrays is 13/15. This criterion
is more informative than the breakdown number when the number of missing arrays is
greater than or equal to the breakdown number. If more than one effect is of interest,
the minimum of the corresponding proportion of the effective designs can be used as a
robustness criterion.

2.5 Simulation Study

In this section, a simulation study is considered to demonstrate a few benefits of using an
efficient design over the inefficient ones in the context of microarray experiments. This
is one way to show the amount of losses one could experience due to the selection of an
inefficient design. Assume a 1 × 4 experimental layout where four treatments, namely,
1, 2, 3, and 4 are to be compared. As an example, the comparison of the treatments 1
and 2 (i.e., τ1− τ2) is considered as the effect of interest in this simulation study. Three
designs 3CR, 3CL, and 3XL are used for the comparison and each of these designs has 12
arrays. The selected designs are composed of three replications of the CR, CL, and XL

designs. Figure 2.2 shows the graphical representations of the CR, CL, and XL designs
for the 1× 4 experimental layout.
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Figure 2.2: Graphical representation of the CR, CL, and XL designs for 1 × 4 experi-
mental layout.

Table 2.2 shows the values of the E–optimality criterion corresponding to the effect
τ1 − τ2 for the designs that are considered for this simulation study. Among these
designs, the 3CL design is the most efficient for estimating the effect τ1 − τ2 and the
corresponding E–optimality criterion value is 8.00. For the 3XL and 3CR design, the
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Design Number of arrays, n E–optimality, φ
3CR 12 3.00
3CL 12 8.00
3XL 12 6.00

Table 2.2: The values of the E–optimality criterion corresponding to the designs 3CR,
3CL, and 3XL with respect to the effect τ1 − τ2.

values of the E–optimality criterion are 6.00 and 3.00, respectively.

Assume that 10,000 known genes are spotted on each array and only 50 of these
genes are known to be differentially expressed for comparing the treatments 1 and 2.
Let C1 and C2 denote two mutually exclusive sets of genes where the former contains the
9950 genes which are not differentially expressed with respect to the effect τ1 − τ2 and
the latter contains the remaining 50 genes. To simulate raw expression measurement for
each gene, a measurement error model is used. A brief description of this model is given
in the following section.

2.5.1 Rocke–Durbin’s Measurement Error Model

Rocke and Durbin (2001) proposed the following model for microarray expression mea-
surement Yjg corresponding to the gth gene in the jth channel (dye),

Yjg = aj + bjXjg e
νg+ζjg + ωg + ψjg, (2.12)

where aj is the background signal corresponding to the jth dye, bj is the dye–specific
slope, Xjg is the mRNA concentration of the gth gene in the sample that is labelled
with jth dye, νg and ωg are the gene–specific error term, and ζjg and ψjg are the error
terms corresponding to both gene and dye. The error terms of this model have both
multiplicative (νg + ζjg) and additive (ωg + ψjg) components. The multiplicative errors
are related to labelling, scanning, and spot features, whereas the additive errors are
related to local background. The distributions of the error components νg, ζjg, ωg, and
ψjg are assumed to be N(0, σ2

ν), N(0, σ2
ζj

), N(0, σ2
ω), and N(0, σ2

ψj
), respectively.

Cui et al. (2003) used the model (2.12) for comparing different data transformation
techniques (e.g., logarithm transformation, shift transformations, curve fitting transfor-
mations, variance stabilizing transformations, etc.) that are commonly used in microar-
ray data analysis. They also simulated some common features of microarray data by
varying different parameters of the model (2.12). For example, excess variation at the
low expression end can be simulated by using a large channel–specific additive errors
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ψjg. Large value of the channel–specific multiplicative error ζjg increases the variation
at the high end of the expression measurements (see Cui et al., 2003, for details).

2.5.2 Simulation of Microarray Expression Data

In this section, the Rocke–Durbin’s measurement error model (2.12) is used to simulate
raw expression measurements for the two channels at each spot on an array. Besides
the background measurements, slopes, and variances of different error components, the
distribution of the true mRNA concentration Xjg in the competing samples require to
be specified. It is assumed that Xjg has a lognormal distribution with mean µjg and
variance σ2

jg (Hoyle et al., 2002).
Table 2.3 shows the parameter values of Rocke–Durbin’s measurement error model (2.12)

that are used in this simulation study. Assume that the background signals, slopes, and
error variances are equal for both the channels Cy3 and Cy5. The mean of the true
mRNA concentration of the genes g ∈ C2 in the treatment 1 is higher by the amount
∆ ≥ 0 compared to the mRNA concentration of the other genes. To see the effect of ∆
in microarray data analysis, different values of ∆ ranging from 0.5 to 2.0 are considered.
For each of the designs that are considered in this simulation study, the gene expression
measurements corresponding to two channels Cy3 and Cy5 are independently generated
for each of its arrays according to the assumed model (2.12) with the parameter values
defined in Table 2.3.

Parameters Cy3 Cy5
a 0.00 0.00
b 0.50 0.50
ν 1.10 1.10
ζ 0.10 0.10
ω 0.10 0.10
ψ 1.00 1.00

Parameters Treatments C1 C2

µ 1 8.00 8.00+∆
2–4 8.00 8.00

σ2 1–4 0.80 0.80

Table 2.3: Selected parameter values of the Rocke–Durbin’s measurement error model
that are used to simulate microarray expression data.

2.5.3 Analysis of the Simulated Data

For each design, the raw expression measurements are transformed by logarithms and
then the log–transformed expression measurements are normalized by a lowess regression
model (Yang et al., 2002b). For each gene, the normalized ratio of the expression
measurements corresponding to the ith (i = 1, 2, . . . , 12) array of the 3CL or 3XL design
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can be written as

zi = δ1 − δ2 + τk − τk′ + εi, k 6= k′ = 1, 2, 3, 4,

where δj and τk are the dye and treatment effects, respectively. In matrix notation, this
model can be written as

Z = Xβ + ε,

where Z = (z1, z2, . . . , z12)′ is the vector of responses, X is the design matrix, and
β = (δg, δr, τ1, . . . , τ4)′ is the vector of the parameters. In case of the 3CR design, the
reference sample R is labelled with a red dye for all the arrays and the corresponding
regression parameter β = (δg, δr, τ1, . . . , τ4, τR)′. A detailed discussion of this model is
given in §2.2.

The null hypothesis of interest H0 : τ1− τ2 = 0 can be written in terms of a suitable
contrast matrix as H0 : C′β = 0, where

C =

{
(0, 0, 1,−1, 0, 0, 0)′ for the design 3CR

(0, 0, 1,−1, 0, 0)′ for the designs 3CL of 3XL

Using the test statistic T0 (see §2.2.3), the raw p–values are are calculated for each gene.
The false discovery rate procedure (Benjamini and Hochberg, 1995) is used to compute
the corresponding adjusted p–values. A brief description of the methods of inference is
given in §2.2.3.

In this simulation study, the performances of the designs are compared on the basis
of the corresponding estimates of the true positives and false positives. True positives
are those genes which belong to the class C2 and are detected as differentially expressed.
On the other hand, the false positives are the genes which belong to the class C1 and
are detected as differentially expressed.

True Positives

In this context, the probability of the true positives indicate the power of a design in
correctly detecting differentially expressed genes g ∈ C2. The probabilities of the true
positives are computed from 100 simulations for each value of ∆. The estimate of the
probability of true positives at a specific ∆ (with a fixed level of significance α0) can be
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expressed for our simulated data as

T̂p =
1

100

100∑
s=1

1
50

∑
g∈C2

I(pg < α0),

where pg is the adjusted p–value corresponding to the gth gene, I(·) is the indicator
function. As expected, Figure 2.3 shows that the probability of true positives increases
as ∆ increases for all the competing designs. However, at a fixed value of 0.5 < ∆ < 2.0
the 3CR design is out performed by the other two designs, e.g., at ∆ = 1.5, the 3CR

design can detect only 40 percent of the differentially expressed genes whereas, the other
two designs can detect more than 80 percent of the genes.

True difference
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Figure 2.3: Distributions of the estimates of the probability of the true positives over
the true difference in the gene expression levels for the designs 3CR, 3CL, and 3XL.

False Positives

Figure 2.4 shows the receiver operating characteristic (ROC) curves corresponding to
the competing designs. The ROC curve is widely used in diagnostic tests for evaluating
the performance of a new procedure relative to the gold standard (Zhou et al., 2002).
It plots the probability of the true positives (sensitivity) against the probability of the
false positives (1–specificity). In the context of microarrays, the probability of the false
positives can be considered as an estimate of the false discovery rate which is often used
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microarray data analysis for controlling the significance level of a test. In this case, the
raw expression measurements are simulated with ∆ = 1.50. The probabilities of the
false positive are calculated at different values of the level of significance by using 100
simulations. The estimate of the probability of the false positives at a specific value of
the level of significance α0 can be expressed for our simulation data as

F̂p =
1

100

100∑
s=1

1
9950

∑
g∈C1

I(pg < α0).

This analysis also shows that the 3CL design performs better than the 3CR or 3XL

design. Allowing five percent of false positives, the 3CL design can detect almost all the
differentially expressed genes, but the CR design can detect only 60% of those.

False positive
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Figure 2.4: ROC curve for comparing the designs 3CR, 3CL, and 3XL for 1× 4 experi-
mental layout.

2.6 Conclusion

In this chapter, the global ANOVA model (Kerr and Churchill, 2001b) which is com-
monly used for analyzing microarray expression data is briefly reviewed. The connection
between the global ANOVA model and the gene–specific ANOVA model (Landgrebe
et al., 2004) is shown analytically. The concept of estimability and methods of inference
are also reviewed in the context of microarray experiments.
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For a given experimental question, a procedure of selecting good designs from a set
of candidate designs has been described in this chapter. The procedure is defined by
using the E–optimality as an efficiency criterion, but other efficiency criteria such as, A–
or D–optimality can also be used after suitable adjustment for the dimensions. When
more than one question is of interest, the importance of the individual question can be
specified in the procedure of selecting good designs.

In microarray experiments, missing observations are often observed due to unreliable
spot measurements. To assess the performance of a microarray design in estimating the
effects in the presence of possible missing observations, three robustness criteria, namely,
the breakdown number, average efficiency, and proportion of the effective designs are
proposed in this chapter. Robustness criteria can also be incorporated in the selection
procedures along with the efficiency criteria. For a specific design, robustness criteria
are defined on the basis of its possible residual designs with a specific number of missing
arrays.

At the end, a simulation study is considered to show the benefits of using efficient
designs in microarray experiments. This study showed that for a 1 × 4 experimental
layout, the inefficient common reference design could miss about 40 percent of the dif-
ferentially expressed genes, whereas, an efficient loop design can detect almost all the
differentially expressed genes.





Chapter 3

Examples of Efficient and Robust

Microarray Designs

3.1 Introduction

In this chapter, we analyze the efficiency and robustness of some important microarray
designs for the one–way and two–factor factorial experiments. The basic designs for
each of the experimental layouts are defined first and the replications or combinations
of the basic designs are used to construct the composite designs. We do not consider
the combinations of the common reference designs with other types of the basic designs
because one of our objectives is to compare the common reference design with the other
competing designs in terms of the efficiency and robustness criteria. When more than
one effect is of interest, we restrict our search only to the designs for which all the effects
are estimable.

An R(R Development Core Team, 2004) package robustMAdesigns was written that
can be used to compute the different efficiency and robustness criteria of a design. The
description of the different functions of the package is given in Appendix A. The package
will be available on request or can be downloaded from the web site of the Department
of Medical Statistics, University of Göttingen (www.ams.med.uni-goettingen.de).

We use the notation nDesign for specifying a design where n denotes the number
of replications of the design Design. For example, 2CL denotes the design which is
composed of two replications of the CL design. We further denote a design Design

with reverse dye labelling by Designr, e.g., the CLr design uses the reverse dye labelling
compared to the CL design. If the arrays of the two different basic designs are combined
to construct a composite design then the resulting design is named after the two basic

35
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designs, e.g., the design CL/CLr is obtained by combining the arrays of the designs CL

and CLr. The naming protocol is graphically explained in Figure 3.1.
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Figure 3.1: Examples of the designs for 1 × 3 experimental layout to demonstrate the
naming protocol that is used in this dissertation for microarray designs.

3.2 One–Way Factorial Experiments

The one–way factorial experiment is the simplest experimental design where the levels of
the factor are to be compared. Throughout this dissertation, we use the term treatment
to define a level of the factor under investigation. The one–way factorial experiment
is usually denoted by 1 × K, where K is the total number of the treatments under
investigation.

In the following sections, designs for 1 × 3 and 1 × 4 experimental layouts are con-
sidered as examples to demonstrate the procedure of selecting good microarray designs
from a set of candidate designs.

3.2.1 Microarray Designs for 1× 3 Experimental Layout

The basic microarray designs for a 1 × 3 experimental layout are CR and CL designs;
each of which consists of three arrays. For this layout, the DS design has six arrays and
can be obtained by combining the arrays of the two loop designs CL and CLr, where
CLr denotes the design which uses the reverse dye labelling compared to the design
CL (see Figure 3.2 for graphical representations of these two loop designs), i.e., for the
1 × 3 experimental layout, the DS design can also be denoted by CL/CLr. In this
section, different microarray designs for the 1 × 3 experimental layout with six, nine,
and 12 arrays are considered for comparing their performances in estimating the effect
of interest τ1 − τ2. The effect τ1 − τ2 is chosen without loss of generality because, for
this experimental layout, each of the pairwise comparisons (τ1 − τ2, τ2 − τ3, or τ1 − τ3)
can be estimated with equal efficiency by using the CL and CR designs. The respective
values of the E–optimality criterion and the robustness criteria corresponding to the
effect τ1 − τ2 are shown in Table 3.1. For each of the competing designs, the number of
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Figure 3.2: Graphical representations of the basic microarray designs for 1 × 3 experi-
mental layout. Each of the designs has three arrays. The difference between the designs
CR and CRr, or CL and CLr lies in the dye labelling protocol. For example, if Cy5 is
used to label the reference sample R for the design CR then Cy3 will be used to label
the reference sample for the design CRr.

Number of missing arrays, m
0 1 2 3

Design n BDN φ0 φ1 pED1 φ2 pED2 φ3 pED3

2CR 6 2 2.00 1.56 1.00 1.11 0.87 0.67 0.60
CR/CRr 6 2 2.00 1.43 1.00 0.87 0.87 0.40 0.40

2CL 6 2 6.00 4.63 1.00 2.94 0.80 1.20 0.40
CL/CLr 6 4 6.00 4.63 1.00 3.29 1.00 1.80 1.00

3CR 9 3 3.00 2.60 1.00 2.20 1.00 1.80 0.98
3L 9 3 9.00 7.79 1.00 6.55 1.00 5.24 0.96

2CL/CLr 9 5 9.00 7.79 1.00 6.57 1.00 5.35 1.00
4CR 12 4 4.00 3.62 1.00 3.24 1.00 2.86 1.00
4CL 12 4 12.00 10.85 1.00 9.70 1.00 8.53 1.00

3CL/CLr 12 6 12.00 10.85 1.00 9.70 1.00 8.55 1.00
2CL/2CLr 12 8 12.00 10.85 1.00 9.70 1.00 8.55 1.00

Table 3.1: The values of the efficiency and robustness criteria for the selected designs for
1× 3 experimental layout to estimate the effect τ1− τ2 with different number of missing
arrays.

arrays n, breakdown numbers BDN, average efficiencies with m missing arrays φ̄m, and
proportion of the effective designs with m missing arrays pEDm are shown in Table 3.1.

For constructing designs with six arrays, two replications of the basic designs are
used with/without reverse dye labelling, i.e., the designs, namely, 2CR, CR/CRr, 2CL,
and CL/CLr are considered in this case. These designs are selected in such a way that

(i) the loop and common reference designs can be compared and

(ii) the effect of the reverse dye labelling in the common reference and loop designs
can be assessed.

Table 3.1 shows that the reverse dye labelling does not affect the efficiency of the estimate
of the effect τ1−τ2, provided there is no missing observation in the data (i.e., m = 0). For
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example, the designs 2CL and CL/CLr are found to be equally efficient for estimating
the effect τ1 − τ2. In general, the loop designs are found to be more efficient than the
common reference designs. In terms of the relative efficiency, one can conclude that it
would take two replications of the 2CR or CR/CRr design to attain the same efficiency
of the loop designs (2CL or CL/CLr) for estimating the effect τ1 − τ2.

As it is already mentioned in §2.4.1, the performance of a design for estimating
the effects of interest in the presence of missing observations can be assessed from the
performances of the corresponding residual designs for estimating the same effects. For
a design with six arrays (e.g., 2CL, 2CR, etc.), at most 6

(
=

(
6
1

))
residual designs can

be considered with one missing array. The proportion of the effective designs with one
missing array pED1 show that all the residual designs (corresponding to both the loop
and common reference designs) can be used to estimate the effect τ1 − τ2 unbiasedly.
The average efficiency values with one missing array (φ̄1) show that on an average, the
loop designs would be more efficient than the common reference designs.

In case of two missing arrays, 15
(
=

(
6
2

))
residual designs can be considered for each

of the competing designs with six arrays. The values of the proportion of the effective
designs with two missing arrays pED2 reveal that the 2CL design is less robust compared
to the 2CR or 2CRr design because 87 percent of the residual designs corresponding to
the latter can estimate the effect τ1 − τ2 unbiasedly, where as only 80 percent of the
residual designs corresponding to the 2CL design can do so. However, the CL/CLr

design, a loop design that uses the reverse dye labelling, is found to be the most robust
because the effect τ1 − τ2 can be estimated unbiasedly by using all the corresponding
residual designs, i.e, for the CL/CLr design pED2 = 1.00. This shows that the reverse
dye labelling can improve the robustness of the loop designs, but not of the common
reference designs. On an average, the CL/CLr design is found to be the most efficient
one in the presence of two missing observations.

In §2.4.1, the breakdown number is defined as a robustness criterion which indicates
the minimum number of the missing observations that could lead to at least one of
its corresponding residual designs for which the effect is not estimable. The CL/CLr

design is found to be more robust compared to the competing loop and common ref-
erence designs because the breakdown number of the CL/CLr design is four, whereas
the breakdown number of the other competing designs is two. This means that if the
CL/CLr design is used in a microarray experiment then the effect of interest τ1− τ2 can
be estimated unbiasedly in the presence of at most three missing observations.

Table 3.1 also shows the comparisons of the loop and common reference designs with
nine and 12 arrays in terms of their robustness and efficiency criteria. The microarray
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designs with nine and 12 arrays are constructed by combining three and four replications
of the basic designs, respectively. For the designs with nine arrays, the 2CL/CLr design
is found to be the most robust design (breakdown number is five) and is more efficient
compared to the 3CR design.

For the designs with 12 arrays, the 2CL/2CLr design is found to be the most robust
design and the corresponding breakdown number is eight. As before, the 4CR design
is found to be less efficient compared to the loop designs (4CL, 2CL/2CLr, 3CL/CLr)
irrespective of the number of missing arrays. The 2CL/2CLr design is found to be
more robust (breakdown number is eight) compared to the 3CL/CLr design (breakdown
number is six). This is because the 2CL/2CLr design is more balanced with respect to
the dye bias compared to the 3CL/CLr design.

3.2.2 Microarray Designs for 1× 4 Experimental Layout

The basic CR and CL designs for a 1 × 4 experimental layout consist of four arrays
each. The DS design for this experimental layout has 12 arrays and unlike the 1 × 3
experimental layout, it cannot be obtained by combining the replications of the basic
loop designs. In this section, designs with eight, nine, and 12 arrays for the 1 × 4 ex-
perimental layout are compared in estimating different pairwise treatment comparisons.
The microarray designs for the 1 × 4 experimental layout with eight and 12 arrays are
obtained by combining the replications of the basic CR and CL designs. For the de-
signs with nine arrays, the Bechhofer–Tamhane (B–T ) design (Bechhofer and Tamhane,
1981) is considered. The graphical representations of the designs that are considered in
this section are displayed in Figure 3.3. The values of the E–optimality criterion and

1 2

4 3

R
��?

??
�����

__?????���

CR

1 2

4 3

//

��oo

OO

CL

2 3 4

1
��?

??
??

??
??__????????? ��

OO

����
��

��
��

�
??���������

// //ww

B–T

1 2

4 3

oo //

��

OO

//oo

OO

����?
??

??
??

??
__?????????����
��

��
��

� ??���������

DS

Figure 3.3: Graphical representations of the selected microarray designs for 1×4 exper-
imental layout with four, nine, and 12 arrays.

robustness criteria corresponding to the effect τ1 − τ2 are reported in Table 3.2 for the
competing designs.

First, the designs are compared with respect to the effect τ1−τ2. Among the designs
with eight arrays, the loop designs (2CL and CL/CLr) are found to be more efficient
than the common reference (CR/CRr and 2CR) designs, provided there is no missing
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Number of missing arrays, m
0 1 2 3

Design n BDN φ0 φ1 pED1 φ2 pED2 φ3 pED3

2CR 8 2 2.00 1.67 1.00 1.33 0.93 1.00 0.79
CR/CRr 8 2 2.00 1.60 1.00 1.20 0.93 0.81 0.79

2CL 8 2 5.33 4.45 1.00 3.21 0.86 1.80 0.57
CL/CLr 8 4 5.33 4.45 1.00 3.58 1.00 2.67 1.00
B − T 9 4 6.67 5.69 1.00 4.71 1.00 3.73 1.00
3CR 12 3 3.00 2.70 1.00 2.40 1.00 2.10 0.99
3CL 12 3 8.00 7.22 1.00 6.41 1.00 5.41 0.98

2CL/CLr 12 6 8.00 7.22 1.00 6.42 1.00 5.63 1.00
DS 12 6 8.00 7.18 1.00 6.36 1.00 5.54 1.00

Table 3.2: The values of the efficiency and robustness criteria for the selected designs
for 1×4 experimental layout to estimate τ1−τ2 with different number of missing arrays.

observation in the data. As before, for a given design the corresponding residual designs
are used to estimate the robustness criteria of the design. Table 3.2 shows that the
breakdown number of the CL/CLr design is four, whereas the breakdown number of
the other competing designs is two. This shows that the CL/CLr design is more robust
compared to the other comparable designs that are considered in this section. Similar
to the 1 × 3 experimental layout, it is also observed for the 1 × 4 experimental layout
that the reverse dye labelling can improve the robustness only of the loop designs and on
an average, the loop designs are found to be more efficient than the common reference
designs.

For the designs with 12 arrays, the DS, 3CL, and 2CL/CLr designs are equally
efficient for estimating the effect τ1−τ2 and are more efficient than the 3CR design in the
presence of no missing observation. Table 3.2 shows that the DS and 2CL/CLr designs
are found to be more robust than the 3CL or 3CR design in terms of the breakdown
numbers. The B–T design, which has nine arrays, outperforms all the designs with eight
arrays in terms of both the breakdown numbers and average efficiencies. Moreover, this
design is more robust than the 3CR and 3CL designs and more efficient than the 3CR

design.

For a 1 × 4 experimental layout, at most six pairwise treatment comparisons can
be considered. The CR design can be used to estimate each of the pairwise treatment
comparisons with equal efficiency because for this design, each of the treatments is
connected to the reference sample by only a single array, e.g., 1 → R, 2 → R, etc. On
the other hand, for the loop designs the number of arrays required to connect a pair
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of treatments depends on the choice of the pair, e.g., for the design CL of Figure 3.3,
treatments 1 and 2 are connected by a single array 1 → 2, but at least two arrays (e.g.,
1 → 2 and 2 → 3) are required to connect the treatments 1 and 3. The loop design
losses efficiency if the number of arrays that are needed to connect the pair of treatments
increases. For example, the 3CR design can be used to estimate the effects τ1 − τ2 and
τ1 − τ3 unbiasedly with the same E–optimality value 3.00, but the corresponding E–
optimality values for the 3CL design are 8.00 and 6.00, respectively. This means that
the 3CL design is less efficient for estimating the effect τ1 − τ3 compared to the effect
τ1 − τ2 because it needs two arrays to connect the treatments 1 and 3, but needs only
one array for connecting the treatments 1 and 2. However, Table 3.3 shows that the 3CL

design is more efficient compared to the 3CR design for estimating the effect τ1 − τ3.
For each of the loop designs with 12 arrays, the breakdown numbers are found to be the
same with respect to the effects τ1 − τ2 and τ1 − τ3.

Number of missing arrays, m
0 1 2 3

Design n BDN φ0 φ1 pED1 φ2 pED2 φ3 pED3

3CR 12 3 3.00 2.70 1.00 2.40 1.00 2.10 0.99
3CL 12 3 6.00 5.33 1.00 4.67 1.00 3.96 0.98

2CL/CLr 12 6 6.00 5.33 1.00 4.67 1.00 4.00 1.00
DS 12 6 8.00 7.18 1.00 6.36 1.00 5.54 1.00

Table 3.3: The values of the robustness and efficiency criteria for the selected designs for
1× 4 experimental layout to estimate τ1 − τ3 with different numbers of missing arrays.

In microarray analysis, often the researchers are interested in more than one exper-
imental question in a single experiment. Suppose the interest is in estimating all the
pairwise treatment comparisons. As it is mentioned in §2.3.1, the overall efficiency can
be used as an efficiency criterion when more than one question is of interest. Figure 3.4
displays the distribution of the average efficiencies over the number of missing arrays
with respect to all the pairwise treatment comparisons for the competing designs with
12 arrays. It shows that the loop designs (3CL and 2CL/CLr) are more efficient than
the 3CR design. For a moderate number of missing observations (m < 5), the B–T
design with nine arrays is found to be more efficient than the 3CR design, which has 12
arrays. In this case, the DS design is found to be more efficient than the other competing
designs.
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Figure 3.4: Distributions of the average efficiency over the number of missing arrays for
the selected designs for 1×4 experimental layout. All the pairwise treatment comparisons
are considered as the effects of interest.

3.3 Multi–Factor Factorial Experiments

In the following sections, designs for 2×2 and 3×2 experimental layouts are considered
to demonstrate the use of efficiency and robustness criteria in selecting good microarray
designs from a set of candidate designs. The main effects and the interaction are assumed
to be effects of interest.

3.3.1 Microarray Designs for 2× 2 Experimental Layout

In a 2 × 2 factorial experiment, each of the two factors (say A and B) has two levels.
Landgrebe et al. (2004) discussed some basic types of microarray designs for the 2 × 2
experimental layout, namely, common reference (CR), circular loop (CL), cross loop
(XL), cross-swap (XS), A–swap (AS), and B–swap (BS); each of these designs has four
arrays. Figure 3.5 shows the graphical representations of these basic designs where a pair
of numbers is used to specify a treatment combination. The number at the first position
indicates the treatment level of the factor A and that at the second position corresponds
to the factor B, e.g., 12 represents the treatment combination corresponding to the first
level of the factor A and the second level of the factor B. In this section, the designs with
four and eight arrays are compared in terms of the robustness and efficiency criteria.
The objective of this comparison is to select the best designs from the set of candidate
designs when the effects of interest are main effects A and B, and interaction A×B.

The associated values of the efficiency and robustness criteria for the basic designs
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Figure 3.5: Graphical representations of the basic microarray designs for 2 × 2 experi-
mental layout, each of which has four arrays.

are illustrated in Table 3.4. Among the six basic designs, the CR, CL, and XL designs

E–optimality pED1

Design A B A×B Overall A B A×B

CR 1.00 1.00 1.00 1.00 0.00 0.00 0.00
CL 2.00 2.00 4.00 2.67 0.50 0.50 0.00
XL 2.00 4.00 2.00 2.67 0.50 0.00 0.50
XS 4.00 4.00 NA NA 1.00 1.00 NA
AS 4.00 NA 4.00 NA 1.00 NA 1.00
BS NA 4.00 4.00 NA NA 1.00 1.00

Table 3.4: The values of the E–optimality criterion and proportion of the effective
designs with one missing array for the basic microarray designs for 2 × 2 experimental
layout.

can only be used to estimate all three effects. The CL and XL designs are found to
be more efficient than the CR design for estimating any of the three effects of interest.
The CR design is also less robust compared to the CL or XL design in the sense that
none of its residual designs with one missing array can be used to estimate any of the
effects of interest, i.e., pED1 = 0.00 for all the effects A, B, A × B. However, a half of
the residual designs with one missing array corresponding to the CL or XL design can
be used to estimate two out of the three effects, e.g., for the design CL, pED1 = 0.50
corresponding to the effects A and B.

If all three effects are of equal interest, the designs CL and XL are found to be equally
efficient in terms of the overall efficiency. But, the design CL is preferable to the design
XL because the interaction, which is usually the most important effect in a multi–factor
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factorial experiment, can be estimated more efficiently by the former design than the
latter.

The designs with eight arrays for the 2 × 2 experimental layout are constructed by
using the combinations/replications of the corresponding basic designs. In Table 3.5,
the E–optimality values and breakdown numbers of the designs that can be used to
estimate all three effects of interest are reported.

E–optimality BDN
Design A B A×B Overall A B A×B min
2CR 2.00 2.00 2.00 2.00 2 2 2 2

XL/BS 4.00 8.00 6.00 6.00 2 3 4 2
CL/XLr 4.00 6.00 6.00 5.33 4 4 4 4
CL/XS 6.00 6.00 4.00 5.33 4 4 4 4
CL/BS 2.00 6.00 8.00 5.33 2 4 3 2
XL/XLr 4.00 8.00 4.00 5.33 4 4 4 4
XL/XS 6.00 8.00 2.00 5.33 4 3 2 2
CL/CLr 4.00 4.00 8.00 5.33 4 4 4 4

2CL 4.00 4.00 8.00 5.33 2 2 2 2

Table 3.5: The values of the E–optimality criterion and breakdown number for some
selected composite designs for 2× 2 experimental layout.

� If all three effects are of equal interest, the 2CR design is found to be less efficient
compared to the loop designs that are reported in Table 3.5. In terms of the overall
efficiency, the XL/BS design is found to be the most efficient one. However, the
XL/BS design is less robust compared to the CL/CLr, CL/XLr, CL/XS, and
XL/XLr designs in terms of the minimum of the breakdown numbers.

� Table 3.6 shows a comparison between the CL/CLr, CL/XLr, CL/XS, and XL/XLr

designs on the basis of the average efficiency. It reveals that the CL/CLr or

Number of missing arrays, m
Design 0 1 2 3

XL/XLr 5.333 4.355 3.378 2.389
CL/CLr 5.333 4.355 3.378 2.389
CL/XS 5.333 4.361 3.362 2.345
CL/XLr 5.333 4.361 3.323 2.256

Table 3.6: The values of the average efficiency for some selected designs for 2× 2 exper-
imental layout when the main effects and interaction are of equal interest.

XL/XLr design is preferable to the designs CL/XLr or CL/XS if the number of
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the missing observations is more than two. This shows that when the main effects
and interaction are of equal interest the XL/BS design is preferable if the number
of missing array is less than two, otherwise, CL/CLr or XL/XLr design should be
used for this case.

� If only the interaction is of interest, the CL/BS and CL/CLr designs are found to
be the most efficient designs. The CL/CLr design is preferable to the CL/BS design
because the latter is more robust than the former in terms of the minimum of the
breakdown numbers and the average efficiencies (see Figure 3.6 for the distribution
of the average efficiency over the number of missing arrays when interaction is the
effect of interest).
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Figure 3.6: Distributions of the average efficiency with respect to interaction over the
number of missing arrays for the designs for 2× 2 experimental layout.

� If the effects A × B and B are of interest, the XL/BS and CL/BS designs are
found to be the most efficient designs and both the designs are equally efficient
with respect to the minimum of the corresponding breakdown numbers. In this
case, the XL/BS design is more preferable to the CL/BS design because it can be
used to estimate the third effect A more efficiently compared to the CL/BS design.

Reverse dye labelling plays an important role if more than one replication of a design
is used to construct the composite design of interest. Similar to the one–way experi-
mental layouts, it is observed that using about a half of the replications with reverse
dye labelling improves the robustness of the design. For example, the 2CL and CL/CLr

designs can be used to estimate the effect A × B with the same efficiency if there is
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no missing observation, but the CL/CLr design is more robust than the 2CL design in
terms of the breakdown numbers.

3.3.2 Microarray Designs for 3× 2 Experimental Layout

In a 3 × 2 factorial experiment, one factor, say, A has three levels and the other, say,
B has two levels and we assume the effects of interest are the main effects (A, B) and
interaction (A×B). Landgrebe et al. (2004) discussed some basic types of the microarray
designs for the 3×2 experimental layout and reported the efficient designs for estimating
different combinations of the effects of interest. The basic designs, circular loop (CL),
cross–loop (XL), triangular loop (TL), A–loop (AL), B–swap (BS), and star-swap (RS),
for 3× 2 experimental layout are graphically shown in Figure 3.7.
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Figure 3.7: Graphical representations of the basic microarray designs for 3 × 2 experi-
mental layout, each of which has six arrays. Treatment combinations are specified by a
pair of the treatment labels corresponding to the factors A and B.

Table 3.7 shows the values of the E–optimality criterion and proportion of the effec-
tive designs for the basic designs with respect to the effects of interest. Among the basic
designs with six arrays, the CR, XL, and CL designs can only be used to estimate all
three effects of interest. The XL design is found to be more efficient than the CR design
for estimating the effects A and B, and the CL design is more efficient than the CR

design for estimating the effects A × B and B. If all three effects are of equal interest,
the CL and XL designs are found to be more efficient than the CR design in terms of
the overall efficiency. and the XL design is more efficient than the CL design. The CL

design can be used if only the interaction is of main interest.
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E–optimality pED1

Design A B A×B Overall A B A×B

CR 2.00 1.00 2.00 1.67 0.00 0.00 0.00
XL 6.00 4.00 2.00 4.00 0.00 0.00 0.00
CL 2.00 1.10 6.00 2.70 0.33 0.00 0.00
AL 6.00 NA 6.00 NA 1.00 NA 1.00
BS NA 4.00 8.00 NA NA 1.00 1.00
RS NA 4.00 NA NA NA 1.00 NA

Table 3.7: The values of the E–optimality criterion and proportion of effective designs
with one missing array for the basic designs for 3× 2 experimental layout.

The designs with 12 arrays for the 3×2 experimental layout are constructed from the
combinations/replications of the corresponding basic designs. In this case, the number
of the candidate designs is large and the concept of the non–inferior designs (see §2.3.2
for the definition) is used to reduce the number of candidate designs. Among the 15
possible loop designs with 12 arrays, six designs are found to be non–inferior. The E–
optimality values and breakdown numbers of the 2CR, 2XL, and non–inferior designs
are reported in Table 3.8. Except the CL/AL design, all the non–inferior designs can

E–optimality BDN
Design A B A×B Overall A B A×B min
2CR 4.00 2.00 4.00 3.33 2 2 2 2

AL/XL 12.00 4.00 8.00 8.00 4 4 4 4
AL/BS 6.00 4.00 14.00 8.00 4 4 4 4
XL/BS 6.00 8.00 10.00 8.00 4 4 4 4
XL/XLr 12.00 8.00 4.00 8.00 4 4 4 4
CL/XL 8.00 5.14 8.00 7.05 4 4 4 4
CL/AL 8.00 1.10 12.00 7.03 4 2 4 2

2XL 12.00 8.00 4.00 8.00 2 2 2 2

Table 3.8: The values of the E–optimality criterion and breakdown number for the
designs for 3× 2 experimental layout.

be used to estimate all three effects more efficiently than the 2CR design when there is
no missing observation in the data. However, the CL/AL design is more efficient than
the 2CR design with respect to the effects A and A×B.

� If all three effects are of equal interest, the AL/XL, AL/BS, XL/XLr, and XL/BS

designs are the most efficient in terms of the overall efficiency and the most robust
in terms of the minimum of the breakdown numbers. Table 3.9 displays a com-
parison between these four designs on the basis of the average efficiency. It shows
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Number of missing arrays, m
Design 0 1 2 3
XL/BS 8.000 6.424 5.197 4.082
XL/XLr 8.000 6.286 5.097 3.975
AL/BS 8.000 6.252 5.096 3.974
AL/XL 8.000 6.198 4.990 3.811

Table 3.9: The values of the average efficiency for some selected design for 3× 2 exper-
imental layout when the main effects and interaction are of equal interest.

that the design XL/BS outperforms the other three designs if there is at least one
missing observation in the data.

� If the effects A and A×B are of interest, the CL/AL, AL/XL, and AL/BS designs
are the most efficient ones, however, the CL/AL design is less robust compared to
the other two designs.

� The AL/BS and XL/BS designs are found to be the best designs when the effects
A×B and B are of interest and both of these designs are equally robust.

Figure 3.8 shows the distribution of the average efficiency and proportion of the
effective designs of the estimates of the interaction for different designs over the number
of missing arrays. The AL/BS design is found to be the most efficient design up to six
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Figure 3.8: Distributions of the E–optimality criterion and the proportion of the effective
designs corresponding to interaction over the number of missing observations for the
designs for 3× 2 experimental layout.

missing arrays and most of the designs (except XL/XLr) are found to be more efficient



3.4. Conclusion 49

than the 2CR design up to four missing arrays. It also shows the proportion of the
designs that can estimate the interaction in the presence of the missing arrays. About
10% of the residual designs with two missing arrays corresponding to the 2CR design
cannot be used to estimate the interaction.

3.4 Conclusion

In this chapter, the use of the efficiency and robustness criteria to select good microarray
designs from a set of candidate designs are described. Designs from both the one–
way and multi–factor factorial experiments are considered. The pairwise treatment
comparisons are considered as the effects of interest for the one–way factorial experiments
and the main effects and interaction are considered as the effects of interest for the multi–
factor factorial experiments. For different experimental layouts, the common reference
design is compared with the loop and other basic/composite designs in terms of the
robustness and efficiency criteria.

Designs from two one–way experimental layouts (1 × 3 and 1 × 4) with different
number of arrays are considered. For the pairwise treatment comparisons, the common
reference designs are less efficient compared to the loop designs. However, the common
reference design is more robust than the loop design if only one replication of the design
is considered, i.e., if n = K, where n is the number of available arrays and K is the
number of treatments to be compared. That means, for a 1× 3 experimental layout the
common reference design is preferable to the loop design if the experimenter is interested
to conduct an experiment with three arrays only. But the performance of the common
reference designs does not remain the same if the number of available arrays is large
enough to consider at least two replications of the designs, i.e., if n ≥ 2K. In this case,
the common reference design is found to be less robust compared to the loop designs,
e.g., for the 1×3 experimental layout the CL/CLr design is preferable to the 2CR design.
Reverse dye labelling improves the robustness of the loop designs, but does not do so
for the corresponding common reference design. More specifically, the CL/CLr design
is more robust than the 2CL design, but in terms of the robustness no improvement
can be observed if the CR/CRr design is used instead of the 2CR design. For the 1× 4
experimental layout, even a design with nine arrays (e.g., B–T design) can outperform
the common reference design with 12 arrays in terms of the robustness and efficiency
criteria. The best designs for the 1 × 3 and 1 × 4 experimental layouts are reported in
Table 3.10 for different numbers of arrays.

For the multi–factor factorial experiments, the basic designs for the 2× 2 and 3× 2
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Layout n Effects Best designs
1× 3 6 τ1 − τ2 CL/CLr

9 τ1 − τ2 2CL/CLr
12 τ1 − τ2 2L/2Lr

1× 4 8 τ1 − τ2 CL/CLr
12 τ1 − τ2 2CL/CLr
12 all-pairs DS

Table 3.10: The best designs for the experimental layouts 1× 3 and 1× 4 with different
number of arrays.

layouts are chosen from the literature (Landgrebe et al., 2004) and the main effects and
interaction are assumed to be the effects of interest. For a fixed number of arrays, we
reported a number of designs that are more efficient and robust than the corresponding
common reference design for different combinations of the effects of interest. The com-
mon reference designs are found to be less robust compared to the loop designs. Except
for the common reference designs, the reverse dye labelling can improve the robustness
of the designs when there are at least two replications of a basic design are used. The
best designs for the 2× 2 and 3× 2 experimental layouts are reported in Table 3.11.

Layout n Combinations of the effects
A×B A×B, A A×B, B A×B, A, B

2× 2 4 CL CL, XL CL, XL
8 CL/CLr XL/XLr, CL/CLr CL/XS, CL/XLr

XL/XLr, CL/CLr
3× 2 6 CL CL, XL CL XL

12 AL/BS AL/XL, AL/BS AL/BS, XL/BS AL/BS, XL/XLr
AL/XL, XL/BS

Table 3.11: For different combinations of effects, the best designs for the experimental
layouts 2× 2 and 3× 2 with different number of arrays.

In this chapter, the efficient and robust designs are selected from a small set of candi-
date designs. For a given experimental layout or number of treatment combinations, the
complete set of candidate designs could be very large. One should examine all the possi-
ble candidate designs to select the most efficient design. In the next chapter, a procedure
of selecting good designs is described which considers both the efficient and robustness
criteria in the selection process and examines almost all the possible candidate designs.



Chapter 4

Introduction to Genetic

Algorithms for Microarray

Designs

4.1 Introduction

An efficient design ensures smaller variance of the estimates of the effects under investi-
gation compared to an inefficient design. Efficient estimates are important for statistical
analysis because inefficient estimates may lead to unreliable conclusions. In the context
of microarray experiments, only a few papers have been published so far on the consid-
erations of the efficiency criteria in selecting good designs. However, the inefficiency of
the commonly used common reference designs has been pointed out, both theoretically
and empirically, in several studies (e.g., Kerr and Churchill, 2001b; Landgrebe et al.,
2004; Vinciotti et al., 2005).

Kerr and Churchill (2001b) first investigated the efficiency of microarray designs and
considered A–optimality as the efficiency criterion for evaluating designs for the one–
way factorial experiments. For a 1 × K experimental layout, they reported that the
circular loop design is A–optimal among the designs with K arrays when K ≤ 8. The
A–optimal designs with (K + 2) arrays are also reported for K ≤ 13. For the designs
with 2K arrays, the interwoven loop designs are found to be A–optimal if 5 ≤ K ≤ 10.
Yang et al. (2002b) suggested efficient designs for both the time–course and two–factor
factorial microarray experiments. They considered the overall efficiency as an efficiency
criterion. The overall efficiency criterion is useful when more than one effect is of equal
interest. Glonek and Solomon (2004) suggested to search efficient designs from the class

51



52 Chapter 4. Introduction to Genetic Algorithms for Microarray Designs

of admissible designs. The admissibility concept is not a new concept (Kiefer, 1959)
which is commonly used in the statistical decision theory (Casella and Berger, 1990,
§10.4). It states that no non–admissible design can be used to estimate any of the effects
of interest more efficiently compared to an admissible design. This procedure reduces
the size of the search space, but is not feasible when a large number of treatments
are to be compared. Landgrebe et al. (2004) suggested some basic designs for the
2 × 2 and 3 × 2 experimental layouts and constructed composite designs by using the
combinations/replications of the basic designs. They considered E–optimality (see §2.3.1
for details) as the efficiency criterion and reported the efficient basic and composite
designs for different numbers of arrays. All of these studies suggested alternatives to
the common reference designs without explicit efficiency calculations and none of these
studies provides a general method for selecting efficient microarray designs for a fixed
number of available arrays and a given set of experimental questions.

Microarray experiments can be considered as incomplete two–factor block experi-
ments of block size two when more than two treatments are to be compared (Kerr and
Churchill, 2001b). An incomplete block design is said to be balanced if each pair of
the treatments appears together in the same number of blocks and any treatment does
not appear more than once in any block. John and Mitchel (1977) defined a class of
regular graph designs which contains only those incomplete block designs for which the
number of occurrences of any two treatment pairs does not differ by more than one. The
balanced incomplete block designs, if exists, are optimal with respect to a very general
class of efficiency criteria including the E–optimality criterion (Cheng, 1980). John and
Mitchel (1977) conjectured that an optimal incomplete block design is a regular graph
design if it exists. Methods of constructing optimal block designs by using computer
algorithms are discussed in several studies (e.g., Nguyen, 1994; Whitaker et al., 1990).

The efficient designs that can be obtained from the literature on incomplete block
designs have little practical importance in the context of microarray experiments. This
is because the underlying strategy for these studies is to define families of optimal de-
signs, not to find a good design for a fixed number of blocks and a given set of research
questions. Moreover, the balanced incomplete block or regular graph designs exist only
for suitable combinations of the number of blocks (arrays) and number of treatments.
But in microarray experiments, the number of arrays the experimenter wants to conduct
the experiment with, depends on the available resources and the effects of interest which
could be different for different experiments. All the above mentioned procedures are de-
scribed only for the one–way experimental layout with all possible pairwise comparisons
as the effects of interest.
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Microarray data often contain missing observations due to unreliable spot measure-
ments. The effects of interest could be less efficient or even non–estimable in the presence
of missing observations. In §2.4.1, the robustness criteria are proposed which can be used
to assess the quality of a design in the presence of missing observations. So far, no at-
tempt has been made to incorporate the robustness considerations in the search for good
microarray designs.

The main objective of this chapter is to develop a general procedure for selecting
good microarray designs which can be used for both the one–way and multi–factor
factorial experiments. To select good designs, a naive approach would be to evaluate
all the possible designs that can be constructed for the given experimental layout and
the number of arrays the experimenter wants to conduct the experiment with. The
experimental layout specifies the number of possible arrays, e.g., for a 3×2 experimental
layout, which has six treatment combinations, a total of 30 (= 2 ·

(
6
2

)
) arrays can be

considered. The naive search of all possible candidate designs could be computationally
infeasible if the number of available arrays is large, e.g., for the 3 × 2 experimental
layout, a total of 1,623,160 designs can be constructed with six available arrays and it
takes about 22 hours to compute the E–optimality criterion corresponding only to the
main effects and interaction by using a C program which was written to implement the
naive search. In this chapter, genetic algorithms (GAs) are used to develop a search
procedure which can be used to select good microarray designs for a given number
of treatment combinations and a fixed number of available arrays. This procedure is
flexible enough to incorporate robustness considerations in the search process.

A genetic algorithm is a stochastic search technique that mimics some common fea-
tures of natural evolution to find near–optimal, if not optimal, solutions of the problem
under investigation. It encodes the problem into a chromosome–like data structure where
each chromosome represents a search point in the space of the potential solutions of the
problem. Holland (1975) first introduced the algorithm in the mid 70’s and since then, it
has been widely applied to a broad range of problems including combinatorial optimiza-
tion. GAs are computationally simple, but powerful in their search for improvement
and can provide a robust search in complex spaces (Goldberg, 1989).

GAs deal with a population of chromosomes that evolves over generations for the
improvement of the quality of the population. The quality of a chromosome is assessed
by the value of the corresponding objective function of the problem. The goal of a
search is to find the solutions for which the objective function is optimal or at least
near–optimal. The canonical GAs mimic three most important mechanisms of natural
evolution, namely, selection, inheritance, and variability, to define its own operators.
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The GA operators are used to generate chromosomes for the next generation (offspring
chromosomes) from the current population of chromosomes. The genetic algorithm
works under the assumption that quality of the offspring chromosomes are better com-
pared to their parents and after evolving a reasonable number of generations at least a
near–optimal solution of the problem can be reached. A pseudo code of the canonical
genetic algorithm is given in Table 4.1.

create initial population
evaluate the fitness of each individual of the population
repeat

select parent population (selection)
select pairs at random from parent population for mating
apply crossover operator to each pair of parents (inheritance)
apply mutation operator to each offspring (variability)
evaluate fitness of each individual of the new population

until terminating condition

Table 4.1: Pseudo code for canonical Genetic Algorithm.

The widely used calculus–based search methods, e.g., Newton–Raphson method, are
restrictive to some assumptions like continuity and existence of the derivatives of the
objective function. Moreover, these methods are less efficient to find an optimum when
the objective function is multimodal. On the other hand, such assumptions are not
required for GAs. It works with a large number of solutions simultaneously, so different
paths for searching improved solutions can be considered in parallel. That means, GA

exploits the search space very highly, hence there would be less probability of finding a
false optimum compared to the calculus–based methods which usually consider a single
path for updating intermediate solutions.

Besides the schema theorem (Holland, 1975), the mathematical foundation of the
genetic algorithms is not well developed. A schema is a similarity template which de-
scribes a subset of strings with similarities at some string positions. The quality of a
schema can be characterized by its order (number of the fixed positions in the template)
and defining length (distance between first and last defining positions). The schema
theorem states that the number of low–order and fitted schemata is increased exponen-
tially over generations. Recently, Greenhalgh and Marshall (2000) showed that genetic
algorithms can search a global optimum with any specified level of confidence if it runs
for a sufficiently long time, i.e., a genetic algorithm converges in probability to a global
optimum.

This chapter presents an introduction of the genetic algorithms in the context of
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microarray designs. The problem and fitness function will be described in §4.2, the
proposed encoding method is discussed in §4.2.2, and the important operators of the
genetic algorithm are described in §4.3.

4.2 The Problem and Fitness Function

In the problem of selecting good microarray designs, the number of arrays n, the ex-
perimenter wants to conduct the experiment with, and the number of treatments K or
the experimental layout L under investigation must be known beforehand. For a multi–
factor factorial experiment, the number of the treatments is the product of the treatment
levels associated with the factors under investigation. In microarray experiments, each
array compares a pair of the treatments and by using a reverse dye labelling protocol,
at most two different arrays can be considered for each pair of the treatments. So, the
total number of the arrays that can be constructed from the available K treatments is
N(K) = 2 ·

(
K
2

)
.

Let A = {ai, i = 1, 2, . . . , N(K)} be the set of the possible N(K) arrays, where ai is
the label of the ith array. Let C′β be the effect of interest where C is a contrast matrix
and β is the vector of the regression parameters of the gene–specific ANOVA model

Z = Xβ + ε.

This model is described in §2.2 of this dissertation. It can be shown that there are
T (n,K) =

(
N(K)+n−1

n

)
ways n arrays can be selected from the set A in such a way that

unlimited repetitions are allowed (with replacement) (Jackson and Thoro, 1990, page
67).

Let H(n,K) = {ξt | t = 1, 2, . . . , T (n,K)} be the set of T (n,K) selections of n
arrays and each of the selections is known as an experimental design of size n for the
experimental layout L. Formally, a design ξ ∈ H(n,K) can be defined as

ξ =
{
ai1 , ai2 , . . . , ain | ik ∈ {1, 2, . . . , N(K)},∀ k = 1, 2, . . . , n

}
,

where aik is the ikth element of A. The order of the arrays in a microarray design is
not important. For notational simplicity, we use N = N(K) and T = T (n,K) in the
remaining of this thesis.

To select the best design from a set of candidate designs, we follow the procedure
that is commonly used in statistical inference for finding the best unbiased estimator of
a parameter of interest (e.g., Casella and Berger, 1990, §7.3). The procedure has two
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steps, first, select the designs by which an unbiased estimate of the effect of interest can
be obtained, i.e., examine whether the effects are estimable (see §2.2.2 for the details on
the estimability concept in the context of microarray designs). In the search process,
estimability is a necessary condition because no design is selected as the best design
unless the effect is estimable with respect to the design. If more than one effect is of
interest, only the designs for which all the effects are estimable can be selected. In the
second step, the quality of the designs for which the effect is estimable, is assessed by its
ability to provide an estimate of the effect with a smaller variance. In practice, efficiency
criteria are used to quantify the quality of a design with respect to the effect of interest.

In a GA, the fitness function measures the quality of a chromosome in terms of a
scalar quantity which is known as fitness. For a chromosome of length n, the fitness
function can be defined as f : Rn → R. Actually, fitness is the quantity that connects
the GA to the problem under investigation. In this application of the GA, the efficiency
criterion is used as the fitness function. So, the fitness is an estimate of the efficiency
criterion.

The problem of finding good microarray designs can be formally defined in terms of
the E–optimality criterion as

maximize φ(ξ,C′β), ∀ ξ ∈ H(n,K)
subject to C′(X′

tXt)
−(X′

tXt) = C′, ∀ ξt ∈ H(n,K),

}
(4.1)

where φ(ξ,C′β) is the E–optimality criterion of the design ξ with respect to the effect
of interest C′β and Xt is the design matrix of the design ξt. If more than one effect is of
interest, instead of the E–optimality criterion φ(·, ·), the overall efficiency φ̄(·, ·) can be
used in (4.1). A brief description of the efficiency criteria, especially the E–optimality
criterion, is given in §2.3.1.

This is a constrained optimization problem for which the search space contains both
feasible and infeasible solutions. The feasible solutions, which we are interested in,
correspond to the designs for which the effect of interest C′β is estimable. Since each
design of the set H(n,K) can be considered as a solution of the optimization problem
(4.1), the term “feasible designs” is used in the remaining of this section for the feasible
solutions and the “infeasible designs” is used for the infeasible solutions.

We already mentioned that microarray data often contain missing observations due
to unreliable spot measurements. So, the experimenter may be interested not only
in efficient designs but also in robust designs. To quantify robustness considerations
in the context of microarray designs, three criteria have been proposed in §2.4.1. To
incorporate robustness in the search procedure, the problem of finding good microarray



4.2. The Problem and Fitness Function 57

designs (4.1) can be re–defined for M(< n) missing arrays as

maximize
∑M

m=0 φ̄m(ξ,C′β), ∀ ξ ∈ H(n,K)
subject to C′(X′

tXt)
−(X′

tXt) = C′, ∀Xt ∈ R(Xn), ξt ∈ H(n,K),

}
(4.2)

where φ̄m(ξ,C′β) (m = 1, 2, . . . ,M) is the average efficiency with m missing arrays (see
§2.4.1), R(Xn) is the set of the residual designs with m missing arrays corresponding to
the design matrix Xn (see §2.11), and the design matrix of the design ξt is Xn.

In practice, all the residual designs corresponding to a feasible design may not be
feasible. For infeasible designs the E–optimality criterion cannot be defined, hence the
fitness cannot be defined. Infeasible designs may appear in the intermediate populations
too. To overcome this problem, a real–valued penalty can be assigned to an infeasible
design or the infeasible designs can be excluded from the analysis. In the following
section, the use of the penalty function in genetic algorithm is described in the context
of microarray experiments.

4.2.1 Penalty Function

Though GAs are widely used for unconstrained optimization problems, their applica-
tions can also be found in constrained optimization problems (Michalewicz, 1992). The
constraint optimization problems may contain infeasible solutions because some solu-
tions may not satisfy the given constraints. Two main approaches have been considered
in GAs for handling constraints (Richardson et al., 1989; Goldberg, 1989), which are:

(i) excluding all infeasible solutions from the intermediate populations and

(ii) assigning a penalty to the infeasible solutions.

In the context of microarray design, the intermediate populations may contain infeasible
designs for which the effects of interest are non–estimable. Although infeasible designs
are not of interest at the end, these should not be excluded from the intermediate popu-
lations because a feasible design could be very close to an infeasible design in the search
space. A feasible design can be obtained from an infeasible design by changing some of
the arrays which can be done by the GA operators. The penalty function depends on
the problem under investigation, but it must satisfy the following two conditions:

� the minimum fitness of the feasible solutions must be greater than the maximum
fitness of the infeasible solutions,

� the fitness of an infeasible solution with a smaller number of violations of the
constraints must be greater than the other infeasible solutions.
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One simple penalty function for the problems similar to (4.1) or (4.2) would be consid-
ering zero as the fitness for the infeasible designs. If only an effect is of interest, this
approach guarantees that the fitness of a feasible design must be greater than that of an
infeasible design. In case of more than one effect, fitness of a design can be considered
as the sum of the fitnesses corresponding to the feasible designs. That means, only the
estimable effects contribute to the fitness.

4.2.2 Encoding the Problem

Encoding of a GA specifies the procedure of expressing a solution of the problem under
investigation in terms of a chromosome and genes, which are considered as the data
structure of GAs. In the context of microarray experiments, each design of the candidate
set H(n,K) is considered as a solution of the problem (4.1) and so as a chromosome. In
GAs, genes are assumed to be the components of the chromosomes and in microarray
experiments, arrays are the components of the microarray designs. That means, an
individual array can be considered as a gene of GAs.

Binary coding is the most commonly used encoding procedure but applications with
other approaches such as real–valued or gray coding can also be found in the GA litera-
ture. Davis (1991) reported a better performance of the non–binary coding in different
applications. The choice of the encoding procedure depends on the nature of the prob-
lem under investigation. In the context of microarray designs, two different encoding
procedures can be considered.

� The first possibility is to consider a string of natural numbers of length N , the
number of possible arrays, to represent a design. For a design with n arrays, the
N positions of the string is filled by natural numbers in such a way that the sum
of the numbers equals n. The natural numbers represent the number of times the
corresponding array is replicated in the design.

� Another possibility is to consider a string of array labels of length n to represent
a design of size n.

We call these two encoding procedures as natural and label coding, respectively. These
coding procedures are graphically described in the following example.

Consider a 1×3 experimental layout where three treatments 1, 2, and 3 are compared
with each other. A graphical representation of the possible six arrays for the 1 × 3
experimental layout is shown in Figure 4.1(a) where a pair of treatment labels and
an arrow are used to represent an array. For example, 1−→2 represents the array on
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which the treatments 1 and 2 are hybridized. The treatments at the arrow head and
arrow tail are labelled with a green and a red dye, respectively. A design with four
arrays {a2, a2, a3, a6} is arbitrarily chosen and is graphically shown in Figure 4.1(b).
The corresponding natural and label coding are shown in Figure 4.1(c) where a circle
is used to represent an array and the natural numbers or array labels are printed inside
the circles to specify the arrays of the design. In this example, N and n take the value
six and four, respectively.

a1 : 1 2//

a2 : 2 3//

a3 : 3 1//

a4 : 2 1//

a5 : 3 2//

a6 : 1 3//

1

3 2oooo
����
��
��
� DD�������

a1 a2 a3 a4 a5 a6

A′: /.-,()*+0 /.-,()*+2 /.-,()*+1 /.-,()*+0 /.-,()*+0 /.-,()*+1
A: 76540123a2 76540123a3 76540123a6 76540123a2

(a) (b) (c)

Figure 4.1: (a) possible arrays for 1× 3 experimental layout, (b) a specific design with
four arrays for the 1× 3 experimental layout, (c) representation of the design in (b) in
terms of the natural (A′) and label (A) coding.

In our implementation of the GA, the label coding is used for encoding the problem.
In the context of microarray experiments, the main problem of using natural coding
is that the number of arrays n can vary over generations because of using a crossover
operator to generate offspring population (see §4.3.2 for more explanations).

4.3 Genetic Algorithm Operators

4.3.1 Selection Operator

The selection operator of a GA specifies a scheme by which parent chromosomes are
selected from the current population of chromosomes. The selection scheme follows the
rule survival of the fittest, i.e., chromosomes with high fitness will have more chance to
be selected in the parent population than those with low fitness. The selected parent
chromosomes are then paired up for mating and hence, produce offspring chromosomes
by using GA’s recombination operators: crossover and mutation. A number of selection
schemes are available in GA literature (e.g., Goldberg, 1989). In the following sections,
two selection schemes, namely, sampling proportional to fitness and remainder stochastic
sampling, that are used in our implementation of the GA, are briefly described.
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Sampling Proportional to Fitness

The sampling proportional to fitness (SPF) is a simple selection scheme for which a se-
lection probability is assigned to each chromosome of the current population. The parent
chromosomes are selected from the current population by using a sampling with replace-
ment procedure where selection probabilities are used as the corresponding weights. The
proportions of the individual fitness to the total fitness of the current population are
often used as the selection probabilities. The selection probability corresponding to
the ith chromosome is pi = fi/

∑
fi, where fi is the fitness of the ith chromosome,

i = 1, 2, . . . , P , and P is the population size at each generation.

Remainder Stochastic Sampling

The remainder stochastic sampling (RSS) uses the expected fitness (Whitley, 1994;
Goldberg, 1989) to select parent chromosomes from the current population. For the
ith chromosome of the current population, the corresponding expected fitness can be
obtained by

f∗i = P
fi∑P
j=1 fj

, i = 1, 2, . . . , P.

The RSS works in two steps, at the first step the integer part of the expected fitness is
used as the number by which the corresponding chromosome of the current population
is copied into the parent population. At the second step, remaining chromosomes of the
parent population are selected randomly by using the fractional part of the expected
fitness as the selection probabilities. This step is similar to the SPF procedure except
the sampling is done without replacement instead of with replacement. For example,
a chromosome with the expected fitness 3.46 indicates that the chromosome is copied
three times in the parent population and also has a 46% chance of getting another copy
into the parent population.

4.3.2 Crossover Operator

Crossover is a simple exploratory operator which is considered by some practitioners as
the heart of the genetic algorithm. The crossover operator mimics inheritance of the
natural evolution. It works on chromosome level and combines two parent chromosomes
to produce two offspring chromosomes. The crossover operator is applied to a pair
of parent chromosomes according to a user–specified crossover probability pc which is
usually considered between 0.50 to 0.90. Different forms of the crossover operator are
used in the genetic algorithms. In our implementation, we have used three types of the
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crossover operator, namely,

(i) one–point,

(ii) two–points, and

(iii) uniform crossover.

A brief description of these three crossover operators is given in the following sections.

One–point Crossover

In the one–point crossover, first, an integer l ∈ {1, 2, . . . , n − 1} is randomly selected
and each of the parent chromosomes is cut into two parts by the position l. Then the
head or tail segment of the parent chromosomes are swapped and the resulting pair of
the chromosomes is considered as two offspring chromosomes. As an example consider
two designs Da and Db for the 1 × 3 experimental layout, each of which has seven
arrays. The offspring designs D′

a and D′
b are obtained by the one–point–crossover where

the randomly selected integer is three and the tail segments of the parent designs are
swapped. This example is graphically shown in Figure 4.2.

parent Da:

parent Db:

76540123a1 76540123a2 76540123a3 76540123a4 76540123a5 76540123a6 76540123a2 offspring D′
a: 76540123a1 76540123a2 76540123a3 76540123a4 76540123a1 76540123a5 76540123a2

76540123a3 76540123a3 76540123a2 76540123a4 76540123a1 76540123a5 76540123a2 offspring D′
b: 76540123a3 76540123a3 76540123a2 76540123a4 76540123a5 76540123a6 76540123a2

+3

��

OO

Figure 4.2: Graphical representation of the one–point crossover operator with the label
coding.

Figure 4.3 shows the above example with the natural coding. In this case, the number
inside the circles indicate the number of times the corresponding array is replicated in the
design, e.g., the array a2 is replicated twice in the parent design Da. Though the coding
methods are different, the parent designs Da and Db of Figures 4.2 and 4.3 are composed
of the same set of seven arrays. By using the same cut off integer three, the offspring
designs D′

a and D′
b can be obtained. The main problem of using the natural coding

in the context of microarray designs is that there is no guarantee that the number of
arrays of the offspring designs will have the same number of arrays of its parent designs.
For example, the offspring design D′

a and D′
b have six and eight arrays, respectively,

whereas both the parent designs have seven arrays. Because of this limitation of the
natural coding, the label coding is used in our implementation of the GA.
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parent Da:

parent Db:

/.-,()*+1 /.-,()*+2 /.-,()*+1 /.-,()*+1 /.-,()*+1 /.-,()*+1 offspring D′
a: /.-,()*+1 /.-,()*+2 /.-,()*+1 /.-,()*+1 /.-,()*+1 /.-,()*+0

/.-,()*+1 /.-,()*+2 /.-,()*+2 /.-,()*+1 /.-,()*+1 /.-,()*+0 offspring D′
b: /.-,()*+1 /.-,()*+2 /.-,()*+2 /.-,()*+1 /.-,()*+1 /.-,()*+1

+3

��

OO

array : a1 a2 a3 a4 a5 a6 array : a1 a2 a3 a4 a5 a6

Figure 4.3: Graphical representation of the one–point crossover operator with the natural
coding.

Two–points Crossover

In the two–points crossover, two distinct integers l1, l2 ∈ {1, 2, . . . , n− 1} are randomly
selected and each of the parent chromosomes is cut into three parts by the positions l1
and l2. In this case, two offsprings are obtained by swapping the middle segments of
the parent chromosomes. Figure 4.4 shows an example of the two–points crossover with
the parent designs Da and Db. The integers one and five are randomly selected and
the arrays of the parent designs at the positions 2–4 are swapped to obtain offspring
chromosomes D′

a and D′
b.

parent Da:

parent Db:

76540123a1 76540123a2 76540123a3 76540123a4 76540123a5 76540123a6 76540123a2 offspring D′
a: 76540123a1 76540123a3 76540123a2 76540123a4 76540123a5 76540123a6 76540123a2

76540123a3 76540123a3 76540123a2 76540123a4 76540123a1 76540123a5 76540123a2 offspring D′
b: 76540123a3 76540123a2 76540123a3 76540123a4 76540123a1 76540123a5 76540123a2

+3

��

OO

��

OO

Figure 4.4: Graphical representation of the two–points crossover operator.

Uniform Crossover

Instead of randomly selecting one or two integers, in the uniform crossover a string of
length n, which is known as crossover mask, is randomly chosen first. The elements of
the crossover mask are randomly selected from the set {0, 1}. The genes of the offspring
chromosomes are copied from both the parent chromosomes according to the appearance
of the 0’s and 1’s in the crossover mask. For example, genes of the first parent are copied
into the offspring chromosome at the positions where 1 appears in the crossover mask
and similarly, genes of the second parent are copied at the positions where 0 appears in
the crossover mask. For the second offspring chromosome, this procedure is repeated by
reversing the labels of two crossover masks.

Figure 4.5 shows an example of the uniform crossover with two randomly selected
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crossover masks (c’over 1 and c’over 2). The arrays of the parent design Da (Db) are
copied into the offspring design D′

a at the positions for which 1 (0) appears in the c’over
mask 1 (2). For the offspring design D′

b, the arrays are copied from the parent design
Da (Db) at the positions for which 0 (1) appears in the c’over mask 1 (2).

parent Da:

c’over mask 1:

c’over mask 2:
parent Db:

76540123a1 76540123a2 76540123a3 76540123a4 76540123a5 76540123a6 76540123a2

76540123a3 76540123a3 76540123a2 76540123a4 76540123a1 76540123a5 76540123a2

1 0 0 0 1 0 1

0 0 1 0 1 1 1

offspring D′
a: 76540123a1 76540123a3 76540123a2 76540123a4 76540123a5 76540123a5 76540123a2

offspring D′
b: 76540123a1 76540123a2 76540123a2 76540123a4 76540123a1 76540123a5 76540123a2

+3

+3

Figure 4.5: Graphical representation of the uniform crossover operator.

4.3.3 Mutation Operator

The mutation operator operates on the gene level to bring randomness to the search
process. This operator mimics the variability of the natural evolution. It ensures that
the entire search space is reachable and the process does not converge to a local optimum.
In case of the binary coding of the fitness function, the mutation operator acts as a test
for each of the genes of a chromosome to decide whether the associated bit will be flipped
or not. The test is a Bernualli trial with a pre–specified mutation probability pm which
is usually considered as very small compared to the crossover probability. We slightly
modify the procedure of the mutation operator because in our case, the chromosomes
are represented by the strings of array labels instead of binary numbers. In our method,
if the gene at the position l ∈ {1, 2, . . . , n} is selected for mutation then it is replaced by
a randomly selected gene from the set of possible genes. For example, consider a design
Da which has seven arrays. Assume only the array at the 5th position is selected for
mutation. This array is replaced by a randomly selected array, say, a2 and the resulting
offspring design is denoted by D′

a. This example is graphically shown in Figure 4.6.

Before mutation
76540123a1 76540123a2 76540123a3 76540123a4 76540123a5 76540123a6 76540123a2OO

Da:
After mutation

76540123a1 76540123a2 76540123a3 76540123a4 76540123a2 76540123a6 76540123a2OO
D′
a:

Figure 4.6: Graphical representation of the mutation operator.

The mutation operator plays an important role for increasing variability in the in-
termediate populations by inserting less frequent genes in the chromosomes. The choice
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of the mutation probability depends on the problem and it may affect the convergence
of the process. A small value of the mutation probability may produce degenerate inter-
mediate populations and hence the process may converge to a local optimum. On the
other hand, a large value of the mutation probability may inject too much variability in
the population for which the process may need too many generations to converge. As
a compromise between these two extremes, use of an adaptive procedure for selecting
mutation probability is getting popular in the GA community (Charbonneau, 2002).
This method is based on a simple idea: it increases the mutation probability when the
variability among the individual chromosomes is too small and decreases when it is too
large.

4.4 Other Comments

4.4.1 Elitism

The elitism is a GA operator which ensures that the best chromosome (elite) of the
population are preserved (Davis, 1991). The optimal solutions may appear at a gener-
ation and then disappear in the next generation due to crossover or mutation operator.
Elitism can apply in two ways:

(i) replace the chromosome with minimum fitness of the offspring population by the
elite of the parent population, and

(ii) store the elite of different generations without copying it to the population of the
next generations.

Both the approaches are implemented in our R (R Development Core Team, 2004)
package and our experience is that the first approach speeds up the convergence of the
GA.

4.4.2 Stopping Rule

Because of its non–deterministic nature, the convergence criteria for the GA are not
well defined compared to the other optimization procedures. Among the available con-
vergence criteria, the simplest one is to run the GA for an arbitrarily fixed number of
generations or till a pre–specified maximum evolution time. De Jong (1975) proposed
the on–line and off–line strategies as the convergence criterion for the GA. The on–line
strategy is defined as the average of all the fitness including the current population.
On the other hand, the off–line strategy is a moving average of the best fitnesses to a
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particular time. The process can be stopped after either the on–line or off–line perfor-
mance stabilizes. In our implementation of GA, a slightly modified version of the off–line
strategy is used as the convergence criteria which depends on both the maximum and
average fitness of the current population. The main steps of the convergence criteria
are:

� the algorithm runs at least b generations to avoid premature convergence where b
is termed as a burnout time,

� after running b generations, the GA is stopped if either the difference between the
maximum and average fitness is very small or the best fitness remains the same in
a reasonable number of successive generations.

In practice, the algorithm may stop if the maximum and average fitness become closer.
In such a case the mutation and/or crossover probabilities need to be tuned to get at
least b generations. The choice of the burnout time depends on the problem under
investigation.

4.5 Conclusion

This chapter contains an introduction to the genetic algorithms in the context of mi-
croarray experiments. As far as we know, this is the first attempt of applying genetic
algorithms in the context of microarray experiments. Thus, different operators of the
GA are modified accordingly. For example, the label coding is proposed and used to
encode the solutions of the problem instead of commonly used binary coding. This en-
coding procedure ensures that the crossover operators do not alter the fixed number of
arrays of each design. The E–optimality criterion is used as a fitness function of the
genetic algorithm. To incorporate robustness considerations in the search, the average
efficiency, a robustness criterion, can also be used as a fitness function. Using its com-
mon operators, e.g., selection, crossover, mutation, etc., the GA can be used to optimize
such fitness functions to find near–optimal, if not optimal, microarray designs for both
one–way and multi–factor factorial experiment.





Chapter 5

Applications of Genetic

Algorithms in Selecting Good

Microarray Designs

5.1 Introduction

The problem of selecting efficient microarray designs can be considered as an optimiza-
tion problem with a discrete search space (see equation 4.1). In this dissertation, we use
a genetic algorithm to optimize such a problem. In the previous chapter, different oper-
ators of the genetic algorithm are defined in the context of the microarray experiments.
In this chapter, the genetic algorithm is used to find good designs for a 3 × 2 experi-
mental layout. The performance of the genetic algorithm in this context is assessed by
applying it to one–way experimental layouts for which efficient designs are known for
some specific numbers of arrays (Kerr and Churchill, 2001b).

An R (R Development Core Team, 2004) function is written to apply the genetic
algorithm for selecting good microarray designs. The function is a part of our package
robustMAdesigns which could be available on request or can be downloaded from the
web site of the Department of Medical Statistics, University of Göttingen. The main
inputs of this function are the number of available arrays n, the experimental layout
L, and the contrast matrices corresponding to the questions of interest. Instead of L,
the set of possible arrays A can also be used. The E–optimality criterion is used as
the default fitness function, but other efficiency criteria such as D–, A–optimality can
also be specified. The number of missing arrays can be specified to include robustness
considerations in the search process. Different methods for the selection, crossover, and

67
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mutation operators can be specified. The number of designs for each generation, i.e.,
population size, must be specified and the default value is 50. The function provides a
list of near–optimal, if not optimal, designs and the associated fitness values. A detailed
description of the function can be found in Appendix A.

5.2 Efficient Designs for the 3× 2 Experimental Layout

In a 3 × 2 factorial experiment, one factor, say, A has three levels 1, 2, and 3, and the
other factor, say, B has two levels 1 and 2. Besides the interaction (A×B), researchers
could be interested in different combinations of the simple effects (ABk, BAk′) and main
effects (A, B), k = 1, 2; k′ = 1, 2, 3 where ABk denotes the simple effect of A at the kth

level of B. Landgrebe et al. (2004) suggested some basic designs for the 3×2 experimental
layout (see Figure 3.7 for the graphical representations of the basic designs). Each of
the basic designs has six arrays. The efficiency and robustness of the basic designs are
investigated in §3.3.2 for different combinations of the main effects and interaction. The
E–optimality values for different effects are illustrated in Table 5.1. Among the basic

Simple effects Main effects Int. Overall eff.
Design AB1 AB2 BA1 BA2 BA3 A B A×B φ̄

CR 2.000 2.000 1.000 1.000 1.000 2.000 1.000 2.000 1.500
CL 3.000 3.000 2.400 1.333 2.400 2.000 1.091 6.000 2.653
XL 3.000 3.000 1.333 1.333 1.333 6.000 4.000 2.000 2.760
AL 6.000 6.000 NA NA NA 6.000 NA 6.000 6.000
BS NA NA 4.000 4.000 4.000 NA 4.000 8.000 4.800
RS NA NA NA 4.000 NA NA 4.000 NA 4.000

Table 5.1: The E–optimality and overall efficiency values of the basic designs for 3× 2
experimental layout where NA indicates non–estimable effects and Int. denotes the
interaction.

designs, only the CR, CL, and XL designs can be used to estimate all the simple effects,
main effects, and interaction and the XL design is found to be the most efficient design
if the simple effects, main effects, and interaction are considered as the effects of equal
interest.

In this section, GAs are used to find efficient designs for the four arbitrarily chosen
cases and the definitions of these cases are given in Table 5.2. For each case, efficient
designs are selected for six, eight, 10, 12, 14, 15, 16, and 18 arrays. Throughout this
chapter, the letter D is used to represent a design and the associated number of arrays
and the specific case are defined in the subscript, e.g., Dna denotes a design with n arrays
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Different Simple effects Main effects Int.
cases AB1 AB2 AB3 BA1 BA2 A B A×B

Case a X X X X X X X X
Case b X X X X X
Case c X X X X X X
Case d X X X

Table 5.2: Different combinations of the simple effects, main effects, and interaction for
which good designs for 3× 2 experimental layout are reported.

for the Case a. In the following sections, the efficient designs for the above mentioned
four cases are reported.

5.2.1 Efficient Designs for the Case a

For the Case a, all the simple effects, main effects, and interaction are considered as
the effects of interest. For this case, the selected efficient designs for different number
of arrays are shown in Figure 5.1. The associated E–optimality and overall efficiency
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Figure 5.1: Graphical representations of the selected microarray designs for 3×2 exper-
imental layout with respect to the effects of the Case a.

values are illustrated in Table 5.3. The D6a design is the most efficient design with six
arrays and is found to be more efficient than the most efficient basic design XL. The D8a,
D10a, D12a, and D14a designs can be obtained by adding suitable arrays to the basic
CL design. The basic AL design can be observed in the designs D10a, D12a, D14a, and
D16a. The D16a design can be obtained by adding four suitable arrays to the AL/XL

design. The D12a design is composed of the arrays of the designs AL and BS, i.e., D12a
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Simple effects Main effects Int. φ
Design AB1 AB2 BA1 BA2 BA3 A B A×B Case a

D6a 3.000 3.000 2.400 2.400 2.400 2.400 4.000 4.000 2.950
D8a 6.000 6.000 3.231 1.556 3.231 6.000 1.680 6.000 4.212
D10a 7.500 7.500 5.231 3.119 3.119 6.000 2.194 10.000 5.583
D12a 8.400 8.400 5.600 5.600 5.600 6.000 4.000 14.000 7.200
D14a 8.571 8.571 7.554 5.714 7.554 6.000 5.217 15.000 8.023
D15a 12.000 12.000 5.860 5.860 5.860 12.000 5.600 12.000 8.898
D16a 12.000 12.000 5.872 8.000 5.872 12.000 6.345 12.000 9.261
D18a 13.714 13.714 8.000 8.000 8.000 12.000 8.000 16.000 10.929

Table 5.3: The E–optimality and overall efficiency values corresponding to the effects
of the Case a for the selected microarray designs for 3× 2 experimental layout.

is a AL/BS design.

For the D10a design, the treatments 11 and 12 require more mRNAs than the other
treatments because for this design, two arrays are considered for comparing this pair of
treatments, whereas one array is considered for the other pairs. However, considering an
additional array for the treatment pairs (21, 22) or (31, 32) does not affect the overall
efficiency. So in practice, depending on the amount of the available mRNAs researchers
can choose the treatments on which the additional array should be considered. This
scenario is also observed in the D14a and D16a designs. The D15a design is constructed
by using one array from all the 15 different possible pairs of the treatments.

5.2.2 Efficient Designs for the Case b

For the Case b, the simple effects of A, both the main effects, and the interaction are
considered as the effects of interest. The graphical representations of the selected efficient
designs are shown in Figure 5.2. The corresponding E–optimality and overall efficiency
values are illustrated in Table 5.4. Since the simple effects of B are not of interest, the
selected designs correspond to more efficient estimates of the main effect A than the
main effect of B. The basic design AL is frequently observed in the selected efficient
designs because a highly efficient estimate of the main effect A can be obtained by the
AL design. The D12b design is the AL/XL design. The most efficient design with six
arrays D6b is the XL design.

The last column of the Table 5.4 shows the overall efficiency values for the Case b

if the selected efficient designs of the Case a would have been used. For this case, the
overall efficiency for the Case a are calculated from the E–optimality values that are
shown in Table 5.3, without those that correspond to the simple effects of B. In this



5.2. Efficient Designs for the 3× 2 Experimental Layout 71

11 12

21 22

31 32
D6b

��-
--

--
--

--
-

ccGGGGGGG

;;wwwwwww

����
��
��
��
��

;;wwwwwww

ccGGGGGGG

11 12

21 22

31 32
D8b

����
��
� OO

��

WW.....
//ccGGGGGGG{{ww

ww
ww

w

oo

11 12

21 22

31 32
D10b

HH���������� ��

WW.....
GG�����

����
��
� GG�����

OO

����.
..

.. WW.....

11 12

21 22

31 32
D12b

�� ��-
--

--
--

--
-GG�����

ccGGGGGGG

������
��
��
��
��
;;wwwwwww

WW.....
ccGGGGGGG

WW.....

;;wwwwwww

GG�����

11 12

21 22

31 32
D14b

��

OO

����
��
� GG�����

��.
..

..

;;wwwwwwwoo

HH����������

;;wwwwwww

��.
..

..

��

OO

����
��
� GG�����

11 12

21 22

31 32
D15b

��

OO

����
��
� GG�����

��.
..

.. WW.....

oo

oo

oo ��

OO

����
��
� GG�����

��.
..

..

��.
..

.. 11 12

21 22

31 32
D16b

��

OO

����
��
�
GG�����

��.
..

..WW.....

oo

GG�����

GG���������
��
�

�� ��

OO WW..... ��.
..

..WW.....
11 12

21 22

31 32
D18b

��

OO

����
��
�
GG�����

��.
..

..WW.....

oo

oo

oo

GG�����

GG���������
��
�

�� ��

OO WW..... ��.
..

..WW.....

Figure 5.2: Graphical representations of the selected microarray designs for 3×2 exper-
imental layout with respect to the effects of the Case b.

Simple effects Main effects Int. φ
Design AB1 AB2 A B A×B Case b Case a

D6b 3.000 3.000 6.000 4.000 2.000 3.600 3.280
D8b 6.000 6.000 6.000 1.680 6.000 5.136 5.136
D10b 12.000 6.000 8.000 0.462 8.000 6.892 6.639
D12b 9.600 9.600 12.000 4.000 8.000 8.640 8.160
D14b 12.000 12.000 12.000 2.053 12.000 10.011 8.672
D15b 13.714 13.714 12.000 1.600 16.000 11.406 10.720
D16b 12.000 18.000 14.400 0.533 14.400 11.867 10.869
D18b 13.800 19.714 14.526 1.667 18.400 13.621 12.688

Table 5.4: The E–optimality and overall efficiency values corresponding to the effects
of the Case b for the selected microarray designs for 3× 2 experimental layout.

case, the designs for the Case b are more efficient than that of Case a except for the
designs with eight arrays. Though the designs D8a and D8b are different in terms of
the types of the arrays, but can be used to estimate the individual effects for the Case

b with equal efficiency. The number of times each treatment needs to be hybridized on
the arrays is different for these two designs. For the design D8a (D8b), all treatments
are hybridized three times except for the treatment pairs 21 and 22 (11, 12).

5.2.3 Efficient Designs for the Case c

In this case, the simple effects of B, both the main effects, and the interaction are
considered as the effects of interest. Figure 5.3 shows the graphical representations of
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the selected efficient designs for this case. The corresponding E–optimality and overall
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Figure 5.3: Graphical representations of the selected microarray designs for 3×2 exper-
imental layout with respect to the effects of the Case c.

efficiency values are illustrated in Table 5.5. The basic design BS is frequently observed

Simple effects Main effects Int. φ
Design BA1 BA2 BA3 A B A×B Case c Case a

D6c 2.400 2.400 2.400 2.400 4.000 4.000 2.933 2.933
D8c 4.000 4.000 4.000 0.889 4.000 8.000 4.148 3.616
D10c 5.600 4.828 4.828 2.000 6.462 8.400 5.353 4.944
D12c 6.545 6.545 6.545 2.769 8.000 12.000 7.068 6.800
D14c 8.432 6.568 8.432 2.786 7.118 16.000 8.223 7.840
D15c 8.558 8.558 8.558 2.344 9.946 16.000 8.994 7.860
D16c 10.569 8.471 8.471 2.824 10.378 16.000 9.452 8.348
D18c 10.543 10.543 10.543 2.857 12.000 20.000 11.104 10.000

Table 5.5: The E–optimality and overall efficiency values corresponding to the effects
of the Case c for the selected microarray designs for 3× 2 experimental layout.

in the selected designs because more effects corresponding to the factor B are of interest
than to the factor A. The designs D12c and D18c can also be written as BS/D6a and
2BS/D6a, respectively. The D15c and D16c designs can be obtained by adding suitable
arrays to the D12c design. So, the most important basic design for the Case c are D6a

and BS.

All of these designs are found to be more efficient than the efficient designs for the
Case a if those would have been used for this case.
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5.2.4 Efficient Designs for the Case d

In this case only the main effects of the two factors and the interaction are considered
as the effects of interest. Figure 5.4 shows the selected efficient microarray designs for
this case. The corresponding E–optimality and overall efficiency values are illustrated
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Figure 5.4: Graphical representations of the selected microarray designs for 3×2 exper-
imental layout with respect to the effects of the Case d.

in Table 5.6. In this case, the design D6a is selected as the most efficient design with six

Main effects Int. φ
Design A B A×B Case d Case a Case b Case c

D6a 2.400 4.000 4.000 3.467 3.467 4.000 3.467
D8d 6.667 5.000 2.222 4.630 4.560 4.560 4.296
D10d 6.000 6.383 6.000 6.128 6.064 5.487 5.621
D12d 12.000 4.000 8.000 8.000 8.000 8.000 7.590
D14d 8.727 7.332 10.309 8.790 8.739 8.684 8.635
D15d 12.000 5.600 12.000 9.867 9.867 9.867 9.430
D16d 8.793 7.604 14.167 10.188 10.115 9.778 9.734
D18d 12.000 8.000 16.000 12.000 12.000 11.531 11.424

Table 5.6: The E–optimality and overall efficiency values corresponding to the effects
of the Case d for the selected microarray designs for 3× 2 experimental layout.

arrays. The D8b design can be obtained by using two suitable arrays to the design XL.
The designs D12d, D15d, and D18d contain the basic AL design. The D15d design can
be obtained by adding three suitable arrays to the design AL/D6a. Besides the design
D15d, the D14d designs also contains the D6a design. The basic BS design can be found
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in the designs D16d and D18d.
The last three columns of Table 5.6 show the performance of the designs of the Case

a, b, and c if these would have been used for the Case d. For the designs with six arrays,
the D6b design is found to be more efficient than the D6a design. For 12 arrays, the
D12a, D12b, and D12d designs are found to be equally efficient for estimating the main
effects and interaction if all these effects are of equal interest. However, the design D12a

is preferable to the other designs if the interaction is more important than the main
effects and the designs D12d and D12b are preferable to the design D12a if the main effect
of A is more important than the other two effects.

5.3 Use of the Robustness Criteria in a Search for Good

Designs

In the previous section, the efficient designs for the 3×2 experimental layout are reported
for different numbers of arrays. Depending on the combination of the effects of interest,
four different cases have been considered. In this section, we will examine whether the
robustness criteria can improve a search for the good designs. That means, we are
interested in the designs which are not only efficient but also robust with respect to
missing observations.

First, consider an example with the designs for a 3 × 2 experimental layout, each
of the designs has eight arrays. Assume the situation similar to the Case a where the
simple effects, main effects, and interaction are considered as the effects of equal interest.
By using a search with respect to (4.1) where only the efficiency criterion is used as the
fitness function, two equally efficient designs D8a and D8a′ are found, where the overall
efficiency, φ̄ = 4.212. The graphical representations of the designs D8a and D8a′ are
shown in Figure 5.5. More specifically, these two designs can be used to estimate all the
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Figure 5.5: Graphical representations of two designs with eight arrays which are equally
efficient for the Case a, but the design D8a is more robust than the design D8a′ .

individual effects with equal efficiency. That means, the efficiency criterion cannot be
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used to find a winner from these two designs. Moreover, the number of hybridizations
for each treatment is the same for both the designs, i.e., there is no difference between
the designs in terms of the amount of mRNAs required for the hybridizations. In such a
situation, average efficiency, a robustness criterion, can be used to find the best design.
The problem of finding good designs in terms of both the efficiency and robustness
criteria is defined in (4.2).

Both the designs break down if the there is more than one missing observation in the
data, i.e., BDN=2 for both the designs. Eight residual designs can be constructed from
each of these two designs with one missing array. Table 5.7 shows the overall efficiency
values for each of the residual designs. For example, the overall efficiency for the design

Missing array to pair of treatments
Design (11, 12) (12, 22) (22, 32) (32, 31) (31, 21) (21, 11) (11, 32) (12, 31) φ1

D8a 3.091 3.208 2.408 2.313 2.408 3.208 2.313 2.051 2.625
D8a′ 3.091 2.231 2.408 3.091 2.313 2.408 3.208 1.861 2.589

Table 5.7: The overall and average efficiency values of the residual designs corresponding
to the designs D8a and D8a′ with one missing array.

D8a (D8a′) reduces from 4.212 to 2.313 (3.091) if the array 32 → 31 (31 → 32) is missing.
On the basis of the average efficiency with one missing array φ̄1, the design D8a is found
to be more robust and efficient compared to the design D8a′ . With one missing array,
there is a 70% chance that the D8a design will be at least as efficient as the D8a′ design.

The above example shows that robustness considerations can play a vital role in a
search for good microarray designs. It is already mentioned that the average efficiency,
which is a robustness criterion, can be used to define the fitness function along with the
overall efficiency (see equation (4.2)). In this section, fitness of a design is defined as the
sum of the overall efficiency and average efficiency with one or two missing arrays. One
can consider more than two missing arrays for estimating the average efficiency which
will contribute more to the fitness, but require more computational time. The designs
that are obtained by optimizing this new fitness function are reported in the following
sections only for the Case a and d with eight, 10, and 12 arrays.

5.3.1 Robust and Efficient Designs for the Case a

For this case, the simple effects, the main effects, and the interaction are considered as
the effects of interest. For the designs with eight arrays, the D8a and D8b designs are
found to be equally efficient. Both the designs break down if more than one observation
is missing. The average efficiency values with one missing array are also similar for both
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the designs. For the designs with 10 arrays, the design D10a is found to be the most
robust and efficient design, and the corresponding breakdown number is three. The
design D12a is found to be the best design among the designs with 12 arrays and the
corresponding breakdown number is four.

5.3.2 Robust and Efficient Designs for the Case d

The Case d is defined for the situation where only the main effects and interaction are
considered as the effects of interest. Table 5.8 shows the results of this analysis.

Effects
Design m A B A×B BDN φm

∑
m φm

D8a 0 6.000 1.680 6.000 2 4.560 4.560
1 3.391 1.146 3.158 2.565 7.125

D8d 0 6.667 5.000 2.222 2 4.630 4.630
1 3.222 2.769 1.075 2.355 6.985

D10d′ 0 6.000 6.462 5.747 3 6.070 6.070
1 4.596 5.131 4.051 4.593 10.663

D10d 0 6.000 6.383 6.000 2 6.128 6.128
1 4.127 5.114 4.031 4.424 10.552

D12a 0 6.000 4.000 14.000 4 8.000 8.000
1 4.708 3.541 10.508 6.252 14.252
2 3.657 3.066 8.565 5.096 19.348

D12b 0 12.000 4.000 8.000 4 8.000 8.000
1 9.000 3.500 6.095 6.198 14.198
2 7.323 2.980 4.831 5.045 19.243

D12d 0 12.000 4.000 8.000 4 8.000 8.000
1 9.000 3.500 6.095 6.198 14.198
2 7.194 2.989 4.873 5.001 19.199

Table 5.8: Analysis of robust designs for 3 × 2 experimental layout with eight, 10, and
12 arrays when the main effects and interaction are of interest.

� For the designs with eight arrays, the design D8d is found to be more efficient
than the D8a design when there is no missing observation. The minimum of the
breakdown numbers is two for both the designs. If the designs are compared with
respect to the average efficiency with one missing array along with the overall
efficiency, the design D8a is found to be preferable to the design D8d.

� For the designs with 10 arrays, the design D10d is the most efficient design with
respect to the efficiency criterion. However, the design D10d′ is found to be more
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robust compared to the D10d design with respect to the breakdown numbers. If
we consider both the robustness and efficiency criterion in the search, the design
D10d′ performs slightly better than the design D10d. Figure 5.6 shows the graphical
representation of the designs D10d and D10d′ .
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Figure 5.6: Graphical representations of two designs with 10 arrays. For the Case d,
the design D10d is more efficient than the design D10d′ , but the latter one is found to be
more robust.

� For the designs with 12 arrays, the designs D12a, D12b, and D12d are equally
efficient for estimating the effects of the Case d. Moreover, all these designs are
equally robust in terms of the minimum of the breakdown numbers. But with one
missing array, the design D12a is found to be more efficient than the other two
designs. That means, the design D12a is more robust and efficient compared to
the competing designs. The design D12b performs better than the design D12d if
two missing arrays are considered in the selection process.

5.4 Comparisons of the GA Operators

In this section, performances of different types of the GA operators are compared by
using simulation studies. For each comparison, S = 500 simulations are considered and
the value of the overall efficiency corresponding to the most efficient design is recorded
for each of the simulations s = 1, 2, . . . , S. Let ξs be the most efficient design at the
simulation s and φ(ξs,C′β) be the corresponding value of the overall efficiency, where
C′β is the effect of interest. The performances of the different GA operators can com-
pared by the distributions of φ(ξs,C′β). To compare the performance of the design ξs

with respect to a known design, the average of the relative efficiency can be used. In
general, for the set of designs {ξs, s = 1, 2, . . . , S}, the average of the relative efficiency
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with respect to the design ξ0 can be expressed as

ARelE(ξ0) =
(1/S)

∑S
s=1 φ(ξs,C′β)

φ(ξ0,C′β)
× 100, (5.1)

where φ(ξ0,C′β) is the overall efficiency of the design ξ0 with the effect C′β as the effect
of interest. The ARelE(ξ0) indicates, on an average, how efficient the simulated designs
with respect to the known ξ0 design. The minimum of the relative efficiency with respect
to the design ξ0,

MRelE(ξ0) =
mins{φ(ξs,C′β), s = 1, 2, . . . , S}

φ(ξ0,C′β)
× 100, (5.2)

can be used to compare the efficiency of the worst design of the simulated designs with
respect to the best design ξ0.

For each comparison, the GA is applied to find efficient designs with 12 arrays for
the 3× 2 experimental layout and the effects of the Case d are considered as the effects
of interest. The most efficient design for this setup is the design D12d (see Table 5.6 and
Figure 5.4 for details).

5.4.1 Selection Operator

In the GA, the selection operator is used to select the parent population from the current
population. Two types of selection operators are considered in our implementation of
the GA, which are: sampling proportional to fitness (SPF) and remainder stochastic
sampling (RSS) (see §4.3.1 for details). For each of the selection operators, the GA is
run 500 times for selecting efficient designs and the summary of the results are reported
in Table 5.9. It shows that the average of the overall efficiency is slightly larger if the

Selection Overall efficiency Avg. no. of
operator min mean median max sd ARelE(D12d) generations

SPF 7.004 7.657 7.603 8.000 0.231 95.71 1830
RSS 7.108 7.774 7.798 8.000 0.229 97.18 640

Table 5.9: A comparison of the performance of two selection operators SPF and RSS in
selecting efficient microarray designs with 12 arrays. The one–point crossover operator
is used with pc = 0.75 and pm = 0.03.

RSS is used as the selection operator compared to the SPF. The values of the average
relative efficiency with respect to the best design D12d show that the selection operator
RSS performs better that the selection operator SPF. Another advantage of using the
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RSS over the SPF is that the former can find good designs with a smaller number of
generations.

5.4.2 Crossover Operator

Three types of the crossover operator, namely, one–point, two–points, and uniform
crossover are included in our implementation of the GA. For each operator, the GA

is run 500 times and the summary of the results are reported in Table 5.10. There

Crossover Overall efficiency Avg. no. of
operator min mean median max sd ARelE(D12d) generations
one–point 7.127 7.781 7.798 8.000 0.231 97.26 637
two–points 7.092 7.792 7.798 8.000 0.212 97.40 746
uniform 7.111 7.807 7.798 8.000 0.213 97.59 1109

Table 5.10: A comparison of three crossover operators in selecting efficient microarray
designs with 12 arrays. The RSS as the selection operator and pm = 0.03 are considered.

is no difference among these crossover operators in terms of the average of the overall
efficiency, but the uniform crossover requires more generations to converge compared to
the other two crossover operators.

Selection of Crossover/Mutation Probability

To study the effect of crossover probability pc on the performance of the search procedure,
the GA is applied to find efficient designs with different values of pc ranges from 0.50
to 0.90. For each value of pc, 500 simulations are considered and the results of the
simulation studies are reported in Table 5.11. It shows that the average of the overall

Overall efficiency Avg. no. of
pc min mean Median max sd ARelE(D12d) generations
0.5 6.982 7.491 7.481 8.000 0.267 93.64 140
0.6 6.969 7.592 7.595 8.000 0.272 94.90 194
0.7 7.037 7.746 7.512 8.000 0.257 96.09 340
0.8 7.014 7.842 8.000 8.000 0.198 98.07 884
0.9 7.261 7.923 8.000 8.000 0.137 99.04 >3000

Table 5.11: A comparison of GA’s performance in selecting efficient microarray designs
for different values of the crossover probabilities. The RSS as the selection operator and
pm = 0.03 are considered.

efficiency increases with the crossover probability. For pc = 0.9, the GA can find the
designs that are very close to the best design D12d in terms of the overall efficiency,
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but the algorithm requires longer computing time to converge for large values of the
crossover operator.

The mutation operator brings variation to the GA. In practice, a very small value
of the mutation probability, e.g., 0.001, is used in GAs. Different values of mutation
probability are used in the analysis of the following section where the performance of
the GA are examined in the context of previously known microarray designs.

5.5 Evaluation of the Performance of the GA

In this section, the performance of the GA in selecting efficient microarray designs are
evaluated by a number of simulation studies. The performance of the GA is compared
with respect to the efficient designs (as far we know) for both the one–way and two–
factor factorial experiments. For the two–factor factorial experiment, designs that are
reported in §5.2 are considered as the efficient designs and for the one–way factorial
experiment, the efficient designs are selected from the literature.

For the two–factor factorial experiment, the performances of the GA are compared
with respect to the designs D8d, D12d, and D15d which are reported as the best design for
the Case d with n = 8, 12, 15 (see §5.2). Different values of mutation probability (pm =
0.005, 0.01, 0.03) are used in simulation studies to see its importance in the selection
procedure. Results of the different simulation studies are shown in Table 5.12 which
shows that the average overall efficiency increases as mutation probability increases for
all the cases. As expected, the simulation study shows that the algorithm requires more

Overall efficiency Avg. no. of
n pm min median mean max sd ARelE(D12d) generations
8 0.005 3.766 4.340 4.316 4.630 0.174 93.21 52

0.010 3.845 4.343 4.354 4.630 0.164 94.04 75
0.030 4.124 4.498 4.461 4.630 0.131 96.34 120

12 0.005 6.906 7.366 7.405 8.000 0.280 92.56 81
0.010 6.954 7.481 7.487 8.000 0.273 93.58 125
0.030 7.083 7.798 7.771 8.000 0.226 97.13 918

15 0.005 9.019 9.689 9.573 9.867 0.237 97.01 171
0.010 9.117 9.740 9.646 9.867 0.201 97.76 286
0.030 9.112 9.740 9.682 9.867 0.149 98.12 1330

Table 5.12: Results of a simulation study for assessing the performance of GAs in select-
ing efficient microarray designs for 3×2 experimental layout. The mutation probabilities
are varied over three different values, but only one crossover probability (pc = 0.75) is
considered for all cases.
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generations to converge for large values of the mutation probability. The values of the
average of the relative efficiency (ARelE), which is defined in (5.1), show that the GA can
find highly efficient designs with respect to the efficient designs that are suggested for the
two–factor factorial experiment with n = 8, 12, 15. The average number of generations
required to converge the algorithm is found to be very small, especially for n = 8, 12,
which indicates premature convergence of the algorithm.

5.5.1 Comparison with Known Efficient Designs

It was already mentioned in §4.1 that Kerr and Churchill (2001b) suggested A–optimal
designs with K, K+2, and 2K arrays for 1×K factorial experiments when all pairwise
comparisons are considered as the effects of equal interest. In this section, we consider
simulation studies to compare the designs that are found by GA and the designs that are
reported by Kerr and Churchill (2001b) in terms of the overall efficiency criterion. As an
example, we consider only K = 6, 7, 8. For each case, 500 simulations are considered and
the minimum, mean, median, maximum, and standard deviation of the overall efficiency
values are reported.

The results of the simulation study are shown in Table 5.13. The small values of the

Overall efficiency Avg. no. of
Layout n min median mean max sd ARelE generations
1× 6 6 1.643 1.827 1.810 1.827 0.034 99.06 73

8 2.681 2.725 2.743 2.773 0.024 98.91 114
12 4.549 4.640 4.619 4.640 0.039 99.54 116

1× 7 7 1.530 1.594 1.612 1.633 0.022 98.71 109
9 2.419 2.433 2.435 2.444 0.009 99.65 127

14 4.276 4.377 4.374 4.399 0.024 99.44 202
1× 8 8 1.402 1.464 1.464 1.482 0.013 98.77 133

10 2.139 2.211 2.204 2.213 0.012 99.60 152
16 4.096 4.223 4.211 4.327 0.038 97.31 290

Table 5.13: Results of the simulation studies for selecting efficient designs from different
one–way experimental layouts. All pairwise comparisons are considered as the effects of
interest. For all the simulations pc = 0.75 and pm = 0.04 are considered.

standard deviation indicate that the performance of the GA is consistent over different
simulations. The values of the ARelE show that the GA algorithm can find designs with
high efficiency with respect to the designs that are suggested by Kerr and Churchill
(2001b) with K = 6, 7, 8. For this case, the values of the minimum of the relative
efficiency (MRelE), which is defined in (5.2), are ranging from 90 percent to 99 percent,
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which show that even the worst design of the 500 simulations is highly efficient with
respect to the designs suggested by Kerr and Churchill (2001b). (For a specific n, the
value of the MRelE can easily be obtained by the ratio of the minimum and maximum
of the overall efficiency criterion values, i.e., by the ratio of the values at the columns 3
(min) and 6 (max) of Table 5.13).

5.6 Conclusion

For a fixed number of available arrays and the given treatment combinations or experi-
mental layout, a number of designs can be considered for microarray experiments. The
choice of the design depends, among other things, on its ability to estimate the effects
of interest with high efficiency. There have not been many attempts for selecting good
microarray designs by systematically examining the efficiency of the competing designs.
A naive search to the complete set of possible designs could be infeasible in most of
the cases because of resource constraints. The problem of selecting good microarray
designs can be expressed as an optimization problem with a discrete search space, e.g.,
a combinatorial optimization problem. The usual calculus–based optimization methods
cannot be used to find the optimal solution from a discrete search space because the
corresponding objective function is not differentiable.

In this chapter, an application of genetic algorithms for selecting good microarray
designs have been discussed. A genetic algorithm is a stochastic search technique which
mimics some common features of the natural evolution such as, selection, inheritance,
variability, etc. to find near–optimal, if not optimal, solutions of the problem under
investigation. It has been widely used in a broad range of optimization problems that
includes combinatorial optimization problems. In the context of microarray experiments,
a brief description of the genetic algorithms is given in §4.

As an example, the 3 × 2 experimental layout is chosen for which efficient designs
are reported for different numbers of arrays. Four different combinations of the simple
effects, main effects and interaction are considered as the effects of interest. It has been
shown that all the efficient designs are not necessarily robust. Inclusion of robustness
considerations in the search process requires more computing time, robust designs are
reported only for eight, 10, and 12 arrays. The reported designs are more efficient than
the corresponding basic and composite designs, suggested by Landgrebe et al. (2004).

The analysis shows that the selection of the efficient designs depends on the specific
combinations of the effects under investigation and also on the number of arrays the
experimenter wants to conduct the experiment with. That means, a composite design,
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which is composed of the two replications of an efficient design of size n, may not
necessarily be the most efficient design of size 2n. For example, D6a is the best design
of size six for the Case a, but the 2D6a design is not the best design with 12 arrays. We
also reported that for a fixed number of arrays, different efficient designs can be found
for different sets of research questions, e.g., efficient designs for the Case a may not be
the efficient anymore if the effects of the Case d, i.e., the main effects and interaction,
are considered as the effects of interest.

The performance of the GA depends on the selection of its parameters, e.g., values of
the mutation or crossover probability, types of crossover and selection operators, etc. A
number of simulations have been performed to get an idea about the suitable parameter
values. In the context of microarray experiments, the reminder stochastic sampling
outperforms the other selection operators in terms of finding good designs and faster
convergence. A relatively high value of the mutation probability (0.03 ≤ pm ≤ 0.05)
seems to perform better than the usual smaller values. In terms of the efficiency of
the design, there is no difference between the crossover operators, namely, one–point,
two–points, and uniform crossover, but one–point crossover is faster compared to the
other crossover operators, i.e., it requires less number of generations to converge. The
related simulation study shows that GAs work well if the crossover probability is large,
e.g., pc > 0.70.

Since a genetic algorithm is a stochastic search process, the same near–optimal design
may not be obtained from different runs. To examine the performance of the GA in
selecting efficient microarray designs consistently, a number of simulation studies are
considered. Besides the distribution of the overall efficiency of the designs that are
selected by the GA, the averages of the relative efficiency of the selected designs with
respect to some known efficient designs are also reported for all the simulation studies.
For one–way factorial experiments, Kerr and Churchill (2001b) reported efficient designs
for a small number of treatment combinations. We applied the GA to some of these
cases and found that the algorithm performs fairly well.

An advantage of using GAs in selecting good microarray designs is that it provides a
population of near optimal and robust designs not only a single optimal design. If a set
of good designs is available, researchers can consider other constraints of the experiment,
e.g., amount of the RNA available for different treatments, in selecting good design. A
common practice of a GA is to run the algorithm for a large number of generations.
The current implementation of the GA is not fast enough to run it for a large number
of generations (e.g., ≥ 10, 000) in a reasonable time. Using C codes instead of R (R
Development Core Team, 2004) would make the algorithm faster and more efficient.





Chapter 6

Conclusion

This dissertation deals with the selection of good microarray designs for one–way and
multi–factor factorial experiments. For a given experimental layout, a number of mi-
croarray designs can be considered for the available number of arrays. Efficiency criteria
are used to select efficient designs and the selection depends on the effects of interest.
The benefits of using efficient designs instead of inefficient ones are illustrated by a sim-
ulation study. To assess the quality of a design in estimating the effects of interest in the
presence of missing observations, three robustness criteria, namely, the breakdown num-
ber, average efficiency, and proportions of the effective designs, are proposed. The main
objective of this dissertation is to demonstrate the use of the efficiency and robustness
criteria in the selection for good microarray designs.

One of the objectives of this study is to compare the common reference design with
the loop designs in terms of the efficiency and robustness criteria. For both the one–
way and multi–factor factorial experiment, the carefully designed loop designs are found
to be more efficient compared to the common reference design. The loop designs are
found to be more robust than the corresponding common reference design for the multi–
factor factorial experiment. For one–way factorial experiments, the loop designs are
more robust than the common reference design if the number of arrays is larger than
the number of the treatments to be compared. Reverse dye labelling can improve the
robustness of the loop designs, but not of the common reference designs and it does not
affect the efficiency criterion.

The problem of selecting good microarray designs is defined as an optimization prob-
lem with a discrete search space. The commonly used calculus–based optimization
methods cannot be used for such a case because the corresponding objective function
is not differentiable. In this dissertation, a genetic algorithm based search procedure
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is proposed which can be used to select good designs for different numbers of available
arrays. This algorithm is general enough to find good designs for both the one–way and
multi–factor factorial experiments.

Genetic algorithm is a stochastic search technique that mimics some common fea-
tures, e.g., selection, inheritance, variability, etc., of natural evolution to find near–
optimal, if not optimal, solutions of the problem under investigation. In genetic algo-
rithm, the problem under investigation is encoded into a chromosome–like data structure
where each chromosome represents a search point in the space of the potential solutions
of the problem. The encoding procedure and the different important operators are
defined in the context of microarray experiments. Genetic algorithm deals with a popu-
lation of chromosomes that evolves over generations for the improvement of the quality
of the population.

This algorithm can be used to find not only the efficient microarray designs, but also
the robust ones. The average efficiency, a robustness criterion, with a specific number
of missing arrays can be used to incorporate robustness considerations into the search
process. If more than one question is of interest, the importance of the individual
question can be specified, e.g., researchers may want to find the designs which could be
used to estimate interaction more efficiently than the main effects. Genetic algorithm
can provide a population of the near–optimal, if not optimal, and robust designs, not
only a single design.

As an example, the 3×2 experimental layout is chosen to apply the genetic algorithm
for different numbers of available arrays. The efficient designs are reported for four
different combinations of the simple effects, the main effects, and interaction as the
effects of interest. The efficient designs could be different for different combinations of
the effects. Replications of an efficient design with a small number of arrays may not
be the efficient design, i.e., for a given number of the available arrays, a new run of
the genetic algorithm is required to find good designs. It has been shown empirically
that the efficient designs are not necessarily the robust ones. The procedure of finding
designs which are not only efficient, but also robust is described in §5.

The performance of the genetic algorithm in the context of microarray designs is
assessed by simulation studies. The most efficient designs for one–way experimental
layout are reported by Kerr and Churchill (2001b) for a small number of treatments.
The simulation studies show that the genetic algorithm can find the designs which are
highly efficient with respect to the designs that are reported by Kerr and Churchill
(2001b). The performance of the genetic algorithm depends on its parameter values. To
have a good idea about the parameters of the genetic algorithm, a number of simulation



6.1. Future Research 87

studies are performed. It shows that as a selection operator, the remainder stochastic
sampling approach outperforms the sampling proportion to fitness approach in terms of
the quality and time. Large value of the crossover probability, e.g., between 0.75 to 0.90,
is found to be useful for microarray designs. A relatively large value of the mutation
probability, e.g., between 0.01 to 0.03, instead of commonly suggested 0.001 performs
well for its application to the microarray design problem.

6.1 Future Research

The major points of the future research related to this work are given in the following.

� The sources of variation in a microarray experiment can be partitioned into three
categories, namely, biological variation, technical variation, and measurement er-
ror. The methods that are described in this dissertation are based on the global
ANOVA model (2.5) which considers only the technical variation and measurement
error as the sources of variation. One of the future works would be to incorporate
biological variation in the search of good microarray design.

� The computing language R (R Development Core Team, 2004) is used to imple-
ment the genetic algorithm for our package robustMAdesigns. Implementing the
package in faster computer language, e.g., C, C++, etc. will improve the perfor-
mance of the genetic algorithm in searching good microarray design.





Appendix A

Descriptions of the Functions of

robustMAdesigns Package

contMatrix Generating a Contrast Matrix or Vector

Description

Generates a contrast matrix/vector corresponding to a specific effect.

Usage

contMatrix(layout, effect, commRef=FALSE)

Arguments

layout experimental layout of interest.

effect treatment effect for which the contrast matrix/vector is required.

commRef indicates whether the associated design is common reference.

Details

One–way and two–factor factorial experiments can be specified as layout, e.g., "1x2"
can be used for an one–way experimental layout with a factor that has two levels,
"3x2" is for a two–factor factorial experiment with the factors that have three and
two levels, respectively, etc.
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For effect, pairwise comparisons ("all-pair") and global ("global") effects are
available for one–way layouts and simple effects ("simA", "simB"), main effects
("mainA", "mainB"), and interaction ("AxB") are available for two–factor factorial
experiments.

Value

Contrast matrix (vector) is returned and its first two columns (elements) correspond
to the dye effects.

Author(s)

A. H. M. Mahbub-ul Latif <mlatif@univdhaka.edu>

See Also

desMatrix, eCriteria, rCriteria

Examples

# For a 1x4 layout, contrast matrix corresponds to all pairwise comparisons

contMatrix(layout="1x4", effect="all-pair")

# For a 4x3 layout, contrast matrix corresponding to interaction

contMatrix(layout="4x3", effect="AxB")

contrastEst Estimate and test a contrast matrix/vector

Description

Estimate and test a contrast matrix/vector

Usage

contrastEst(z, dmat, cmat, alternative="two.sided")
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Arguments

z vector of responses.

dmat design matrix of interest.

cmat contrast matrix corresponding to the effect of interest.

alternative specification of alternative hypothesis.

Value

Returns a vector of test statistics, estimate of the contrast matrix/vector, p–value,
mean squared error, etc. Each row of the design matrix corresponds to a response.

Author(s)

A. H. M. Mahbub-ul Latif <mlatif@univdhaka.edu>

References

Searle, S. R. (1971) Linear Models. Wiley.

See Also

desMatrix, contMatrix, estimable

Examples

# design matrix

dmat <- desMatrix("1x3", design="CL")

dmat <- rbind(dmat, dmat)

# contraxt vector for comparing first and second factor level

con <- c(0,0,1,-1,0)

# response

x = rnorm(6)

#

contrastEst(z=x, dmat=dmat, cmat=con)
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desMatrix Generating a Design Matrix

Description

Generates a design matrix corresponding to an experimental layout and a design.

Usage

desMatrix(layout, design="DS")

Arguments

layout experimental layout of interest.

design design from the layout of interest.

Details

For details of layout see contMatrix

Design matrices corresponding to the common reference ("CR"), circular loop ("CL"),
and dye–swap ("DS") designs are available for any experimental layout.

For 2×2 layout, the A–swap ("AS"), B–swap ("BS"), and cross–swap ("XS") designs
can also be used for design.

For 3×2 layout, the A–loop ("AL"), "BS", triangular–loop ("TL"), cross–loop ("XL"),
and star–swap ("RS") designs can be used for design.

Value

A data frame of the design matrix of which first two columns correspond to the dye
effects.

Author(s)

A. H. M. Mahbub-ul Latif <mlatif@univdhaka.edu>

See Also

contMatrix, rCriteria, eCriteria
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Examples

# design matrix for dye-swap design from 1x3 layout

desMatrix(layout="1x3", design="DS")

# design matrix for circular loop design from 2x2 layout

desMatrix(layout="2x2", design="CL")

eCriteria Efficiency Criteria

Description

Computes efficiency criteria for a given design and the contrast matrix/vector.

Usage

eCriteria(dmat, cmat, cinfo=NULL, m=0, type="e", cname=NULL)

Arguments

dmat design matrix of interest.

cmat contrast matrix corresponding to the effect of interest.

cinfo a vector, represents the number of rows corresponding to the con-
trast matrices of interest.

m number of missing values to be considered for computing efficiency
criteria.

type types of efficiency criteria.

cname names of the contrasts.

Details

For a specific effect, this function can compute the efficiency of a design.

Different efficiency criteria, namely, e–, a–, d–, and t–optimality can be specified in
type.

If more than one effect is of interest, cmat is constructed by rbind–ing the corre-
sponding contrast matrices and the vector cinfo specifies the number of rows of
each of the contrast matrices.
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Value

A list of efficiency criteria (eff) and corresponding set of missing arrays (m).

Author(s)

A. H. M. Mahbub-ul Latif <mlatif@univdhaka.edu>

References

Pukelsheim, F. (1993) Optimal designs of experiments. Wiley.

Landgrebe, J., Bretz, F., Brunner, E. (2005) Efficient design and analysis of two–
color factorial microarray design. Computational Statistics & Data Analysis (in
press).

See Also

desMatrix, contMatrix, rCriteria

Examples

# design matrix corresponding to a circular loop design from 3x2 layout

x <- desMatrix(layout = "3x2", design="CL")

# contrast matrices for the main effects of two factors

ccA <- contMatrix(layout="3x2", effect="mainA")

ccB <- contMatrix(layout="3x2", effect="mainB")

# combining the contrast matrices

cc = rbind(ccA, ccB)

# corresponding value of cinfo

cin = c(nrow(ccA), nrow(ccB))

# e-optimality without any missing value

eCriteria(dmat=x, cmat=cc, cinfo=cin, m=0)

# e-efficiency with at most two missing values

eCriteria(dmat=x, cmat=cc, cinfo=cin, m=2)

estimable Estimability of an effect

Description

Check the estimability of an effect.
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Usage

estimable(dmat, cmat)

Arguments

dmat design matrix of interest.

cmat contrast matrix corresponding to the effect of interest.

Value

A logical variable indicating whether the given contrast is estimable.

Author(s)

A. H. M. Mahbub-ul Latif <mlatif@univdhaka.edu>

References

Searle, S. R. (1971) Linear Models. Wiley.

See Also

desMatrix, contMatrix

Examples

# design matrix

dmat <- desMatrix("1x3", design="CR")

# contraxt vector for comparing first and second factor level

con <- c(0,0,1,-1,0,0)

# checking estimability

estimable(dmat, con)



96 GA

GA Genetic Algorithm for Microarray Designs

Description

Genetic Algorithms for selecting near–optimal microarray designs.

Usage

GA(dmat=NULL, layout=NULL, n, cmat, cinfo=NULL, Pcross=.75,

crossType="one.point", Pmut=NULL, selectType="RSS", verbose=FALSE,

wt=NULL, popSize=50, maxGen=2000, burnOut=100, convergeNum=10,

nIter=1, m=0, keep.elite=FALSE, scaling=TRUE, cname=NULL)

Arguments

n number of available arrays.

Pcross crossover probability.

crossType crossover type, currently available options are: "one.point", "two.points",
and "uniform".

Pmut mutation probability.

selectType selection type, currently available options are: sampling propor-
tional to fitness ("SPF") and reminder stochastic sampling ("RSS").

verbose controls the print out during iterations.

wt a vector of weights to indicate individual importance of effects of
interest.

popSize population size of a generation.

maxGen maximum number of generations algorithm will run unless the con-
vergence criteria is met.

burnOut number of generations for burning out.

convergeNum convergence criteria.

nIter number of iterations.

m number of missing values to be considered for computing fitness
function.
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keep.elite preserving the best design of each generation.

scaling linear scaling on fitness.

cname contrast names.

see rCriteria for cmat, dmat, cinfo and contMatrix for layout.

Details

This function can find near–optimal microarray designs for different number of ar-
rays. Instead of specifying experimental layout, the design matrix corresponding to
the list of arrays from which near–optimal designs will be searched can also be used.

Value

GA returns a list of objects including:

design a matrix of order popSize×n where each row represents a design of
the population.

opt a matrix of the estimate of the efficiency criterion corresponding to
the designs in design.

opt.overall estimates of the overall efficiency corresponding to each design.

best list of design, opt, and opt.overall corresponding to the best
designs at each iteration.

history list of design, opt, and opt.overall corresponding to the best de-
signs at each generation. This also contains the estimates of median
and mad of the overall efficiencies at each generation.

input list of inputs, such as, cmat, dmat, cinfo.

converge convergence code, 0 indicates perfect convergence and 1 indicates ei-
ther maximum number of generations reached or population become
degenerate.

Author(s)

A. H. M. Mahbub-ul Latif <mlatif@univdhaka.edu>
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References

Latif, A. H. M. Mahbub–ul (2005). Robustness and efficiency issues in complex
statistical designs for two–color microarray experiments. Unpublished Ph.D. thesis.
Georg–August–Universität Göttingen, Germany.

See Also

desMatrix, contMatrix, rCriteria, eCriteria

Examples

# near-optimal designs with 7 arrays for the layout 3x2 and main effects are of interest

#

# contrast matrix

# A = contMatrix(layout="3x2", effect="mainA")

# B = contMatrix(layout="3x2", effect="mainB")

# cmat = rbind(A, B)

# cinfo = c(nrow(A), nrow(B))

#

# run genetic algorithm

# res = GA(layout="3x2", n=7, cmat=cmat, cinfo=cinfo, verbose=T)

#

# to see the best designs

# print(res$best)

rCriteria Robustness Criteria

Description

Computes robustness criteria for a given design and contrast matrix/vector.

Usage

rCriteria(dmat, cmat, cinfo=NULL, type="e", cname=NULL)
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Arguments

dmat design matrix of interest.

cmat contrast matrix corresponding to the effect of interest.

cinfo a vector represents the number of rows corresponding to the contrast
matrices of interest.

type specifies the type of the efficiency criteria.

cname name of the contrasts.

Details

Three different robustness criteria, namely, breakdown number (bdn), average effi-
ciency (avgEff), and proportion of the effective designs (pED) are returned.

For details of cmat and cinfo, see eCriteria.

Value

A list of bdn, avgEff, and pED.

Author(s)

A. H. M. Mahbub-ul Latif <mlatif@univdhaka.edu>

References

Latif, A. H. M. Mahbub–ul (2005). Robustness and efficiency issues in complex
statistical designs for two–color microarray experiments. Unpublished Ph.D. thesis.
Georg–August–Universität Göttingen, Germany.

See Also

eCriteria, desMatrix, contMatrix

Examples

# robustness of a dye-swap design from 1x3 layout for comparing 1-2 and 1-3

con <- rbind(c(0,0,1,-1,0), c(0,0,1,0,-1))

# corresponding cinfo

cinfo <- c(1,1)

# design matrix
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xx <- desMatrix(layout="1x3", design="DS")

# robustness criteria

rCriteria(dmat=xx, cmat=con, cinfo=cinfo)
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