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ABSTRACT 

Wood inspection and durability testing of wood against microorganisms, as fungi, play an 

important role in forestry and wood-related material industries. An efficient testing 

method is required in order to facilitate inspections and to provide the accurate and 

precise assessment process. Monitoring volatile organic compounds (VOCs) released from 

wood substrates and from fungal metabolisms are marker compounds of the wood 

condition, i.e., indicating the type and stage of fungal infection. Insect antennae, which are 

recognised for their high sensitivity and selectivity in odour perception, are an alternative 

method for wood testing. On the basis of intact insect antenna biosensor it is possible to 

monitor wood released VOCs with high selectivity. This technique can be a complement 

to the traditional wood testing methods, providing a high throughput and non-destructive 

method.  

This work was begun with the investigation of VOCs released from four different types 

of samples with gas chromatography-mass spectrometry. Firstly, VOCs from beech wood 

(Fagus sylvatica) infected with three wood rotting fungi; Trametes versicolor, Poria placenta, and 

Gloeophyllum trabeum were analysed. These fungi are commonly used in the durability 

testing of wood against microorganisms. The VOCs released from the fungal-infected 

beech showed species specific volatile patterns.  The volatiles were grouped to five- and to 

eight- carbon (C5-C8) containing compounds and terpenoids. 1-Octen-3-ol, 3-octanone, 

and 3-octanol (C8-compounds) were commonly present in all samples, while terpenoids 

were species specific. α- and β-Barbatene were characteristic of T. versicolor-infected 

beech, protuillud-6-ene was characteristic of G. trabeum-infected beech, and daucene was 

characteristic of P. placenta-infected beech. Secondly, VOCs released from the minimally 

insect-colonised fruiting body (<10%) and fully insect-colonised fruiting body (~100%) of 

Trametes gibbosa were identified. The minimally insect-colonised fruiting body released 1-

octen-3-ol, the typical fungal odour, at almost 20 times higher than in fully insect-

colonised fruiting body. Thirdly, VOCs released during the fruiting body development of 

the ink-cap Coprinopsis cinerea, from the stage of mycelium to fruiting body autolysis, were 

studied. VOCs patterns of C. cinerea were specifically altered by the developmental stages. 
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1-Octen-3-ol and 3-octanone were largely released during primodia formation and were 

gradually reduced in amount in later developmental stages. The terpenoids β-

himachalene and cuparene drastically increased when the C. cinerea stipe elongated and 

became mature. Finally, the volatiles released during fruiting bodies autolysis of C. cinerea 

and other two ink-cap decomposing fungi (Coprinus comatus, Coprinopsis atramentaria), 

were investigated. In all three cases, N-containing and S-containing compounds were 

additionally released during the autolytic stage. 

The fungivorous beetle Cis boleti (Coloptera: Ciidae) and the fungal associated fly Suillia 

mikii (Diptera: Heleomizydae) were chosen for examining their olfactory perception since 

their life cycles are strongly related to fungi. For instance, C. boleti preferentially colonises 

fungi from the genus Trametes and S. mikii purposely land on the ink-cap fungi at a specific 

developmental stage. Gas chromatography-mass spectrometry with parallel 

electroantennographic detection was employed to demonstrate that both insect species are 

able to perceive the typical fungal odour 1-octen-3-ol with high selectivity and sensitivity. 

In addition, behavioural tests of  C. boleti showed that this insect is able to discriminate the 

enantiomers of 1-octen-3-ol, where the female beetles were significantly more attracted to 

the (S)-(+) enantiomer at lower doses than male beetles. The fly S. mikii reproducibly 

responded to the VOCs 1-undecene, 2-butanone, and dimethyl trisulfide, released from 

the autolysis fruiting bodies of the ink-cap fungi.  

The C. boleti antenna perceived the typical fungal odour, 1-octen-3-ol, with high 

selectivity and sensitivity of down to 5 ng ml-1 in air. The antenna life time lasted up to 

one day. Consequently, as a proof of principle C. boleti antenna was used as a 

biocomponent in a biosensor system for testing beech wood samples infected by T. 

versicolor. The biosensor system using the superposition method in combination with a 

recalibration system was adopted. In this configuration C. boleti antenna yielded 

reproducible responses to the fungal marker volatile compound released from fungal-

infected beech wood.  

Altogether these results lead to a promising possibility to set up a biosensor based on 

intact antenna as a highly sensitive and selective testing method for wood durability 

against decay fungi. 
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KURZFASSUNG 

Die Prüfung von Holz und ein Test seiner Beständigkeit gegen Mikroorganismen wie Pilze 

spielen eine wichtige Rolle in der Forstwirtschaft und der holzverarbeitenden Industrie. 

Um solche Prüfungen zu erleichtern und präzise Bewertungen zu ermöglichen, ist eine 

effiziente Testmethode erforderlich. Flüchtige organische Verbindungen (volatile organic 

compounds VOCs), die vom Holzsubstrat und vom pilzlichen Metabolismus erzeugt 

werden, sind Marker für den Zustand des Holzes, d.h. sie zeigen Art und Stadium einer 

Pilzinfektion an. Insektenantennen, die für ihre hohe Sensitivität und Selektivität in der 

Duftwahrnehmung bekannt sind, stellen eine alternative Methode zur Holzprüfung dar. Ein 

Biosensor auf der Basis intakter Insektenantennen ermöglicht es, vom Holz freigesetzte 

VOCs mit hoher Selektivität nachzuweisen. Diese Methode kann eine Ergänzung zu den 

traditionellen Prüfverfahren darstellen und bietet einen hohen Probendurchsatz sowie ein 

zerstörungsfreies Verfahren. 

Als Beginn dieser Arbeit wurden die VOCs verschiedener Proben mit 

Gaschromatographie-Massenspektroskopie untersucht. Zuerst wurden die VOCs von 

Buchenholz (Fagus sylvatica) analysiert, das mit drei holzzersetzenden Pilzen (Trametes versicolor, 

Poria placenta und Gloeophyllum trabeum) infiziert war. Diese Pilze werden häufig verwendet, um 

die Beständigkeit von Holz gegen Mikroorganismen zu testen. Die vom pilzinfizierten 

Buchenholz freigesetzten VOCs zeigten artspezifische Muster. Die Volatile lassen sich 

gruppieren in Stoffe mit fünf bis acht Kohlenstoffen (C5-C8) sowie Terpenoide. 1-Octen-3-

ol, 3-Octanon und 3-Octanol (C8-Verbindungen) waren allgemein in allen Proben enthalten, 

während Terpenoide artspezifisch auftraten. α- und β-Barbaten waren charakteristisch für 

eine Infektion mit T. versicolor, Protuillud-6-en war charakteristisch für G. trabeum und 

Daucen war charakteristisch für P. placenta. 

Als Zweites wurden VOCs identifiziert, die von verschiedenen Stadien von Trametes 

gibbosa mit schwacher bis vollständiger Kolonisierung durch den Käfer Cis boleti freigesetzt 

wurden. Die schwach besiedelten Fruchtkörper setzten den typischen Pilzduftstoff 1-Octen-

3-ol in fast zwanzigfach höherer Menge frei als vollständig besiedelte Fruchtkörper. 
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Als Drittes wurden die VOCs untersucht, die während der Fruchtkörperentwicklung vom 

Stadium des Myceliums bis zur Autolyse von Coprinopsis cinerea freigesetzt werden. Die VOC-

Muster von C. cinerea änderten sich spezifisch mit den Entwicklungsstadien. 1-Octen-3-ol 

und 3-Octanon zeigten während der Bildung der Primodia eine starke Freisetzung, die in 

späteren Stadien abnahm. Die Terpenoide β-Himachalen und Cuparen wurden während 

Wachstum und Reifung des Stängels von C. cinerea drastisch erhöht. 

Zum Abschluss wurden die autolytischen Fruchtkörper der Tintlinge Coprinus comatus, 

Coprinopsis atramentaria und C. cinerea untersucht. Als zusätzliche Stoffe wurden hier stickstoff- 

und schwefelhaltige Verbindungen freigesetzt. 

Der fungivore Käfer Cis boleti (Coloptera: Ciidae) und die pilzassoziierte Fliege Suillia mikii 

(Diptera: Heleomizydae) wurden ausgewählt, um ihre geruchliche Wahrnehmung zu 

untersuchen, da ihre Lebenszyklen einen starken Bezug zu Pilzen haben. Zum Beispiel 

kolonisiert C. boleti vorzugsweise Pilze der Gattung Trametes und S. mikii landen gezielt auf 

Tintlingen in spezifischen Entwicklungsstadien. Gaschromatographie-Massenspektrometrie 

mit paralleler elektroantennographischer Detektion (EAD) wurde eingesetzt, um zu 

demonstrieren, dass beide Insektenarten in der Lage sind, den typischen Pilzgeruchsstoff 1-

Octen-3-ol mit hoher Selektivität und Sensitivität nachzuweisen. Zusätzlich zeigten 

Verhaltenstests, dass C. boleti in der Lage ist, die Enantiomere von 1-Octen-3-ol zu 

unterscheiden, wobei weibliche Käfer signifikant stärker vom (S)-(+)-Enantiomer angelockt 

wurden und dies schon bei geringeren Konzentrationen als die männlichen Käfer. Die 

Fliege S. mikii reagierte in EAD-Tests reproduzierbar auf die VOCs 1-Undecene, 2-Butanon 

und Dimethyl-Trisulfid, die bei der Autolyse der Fruchtkörper von Tintlingen freigesetzt 

werden. 

Die Antennen von C. boleti detektierten den typischen Pilzgeruch 1-Octen-3-ol mit 

hoher Selektivität und Sensitivität bis zu einer Konzentration von 5 ng ml-1 in Luft. Die 

Lebensdauer der Antennen betrug bis zu ein Tag. Als grundlegender Test wurden 

Antennen von C. boleti als Biokomponenten eines Biosensorsystems benutzt, um 

Buchenholzproben mit Infektion durch T. versicolor zu untersuchen. Dazu diente ein 

Biosensorsystem, das auf der Überlagerungsmethode in Verbindung mit einem 

Rekalibrierungssystem basiert. In dieser Konfiguration lieferten die Antennen von C. boleti 
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reproduzierbare Reaktionen auf die pilzlichen Markerstoffe, die von pilzinfiziertem 

Buchenholz freigesetzt werden.  

Zusammengefasst führen diese Ergebnisse zu einer aussichtsreichen Möglichkeit, einen 

Biosensor auf Basis von intakten Antennen als hoch empfindliche und selektive 

Testmethode für die Holzbeständigkeit gegen zersetzende Pilze zu entwickeln. 
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RIASSUNTO 

Il controllo delle qualità del legno e della sua durevolezza contro diverse specie di 

microrganismi e funghi cariogeni riveste un ruolo importante nelle scienze forestali e nelle 

industrie che trattano materiale legnoso. Vi è perciò la necessità di sviluppare un metodo 

efficiente che faciliti i controlli e fornisca un processo accurato e preciso di valutazione della 

qualità del legno. I composti organici volatili (VOCs) che si originano dai substrati legnosi e 

dal metabolismo dei fungi può rilevare il processo di degradazione in corso, indicando la 

specie di fungo e la fase di infezione. Le antenne degli insetti possono rappresentare un 

metodo alternativo per il monitoraggio della qualità del legno, avendo un’alta sensibilità e 

selettività nella percezione di composti volatili. Attraverso l’utilizzo di biosensori che 

impieghino le antenne degli insetti come biocomponenti è possibile identificare i VOCs 

rilasciati da materiale legnoso con alta selettività. Questa nuova tecnica potrebbe essere di 

complemento ai metodi di controllo tradizionali, fornendo uno strumento efficacie e un non 

distruttivo.  

Questo lavoro di tesi è stato avviato con un’indagine sui VOCs rilasciati da tre differenti 

campioni di legno utilizzando la gascromatografia –spettrometria di massa. In primo luogo, 

sono stati analizzati i VOCs rilasciati dal legno di faggio (Fagus sylvatica) precedentemente 

infettato con i funghi cariogeni: Trametes versicolor, Poria placenta e Gloeophyllum trabeum. Questi 

funghi sono comunemente usati in laboratorio per le prove di durevolezza del legno contro i 

microorganismi. I VOCs rilasciati dal legno di faggio infettato hanno mostrato la presenza di 

pattern specie-specifici. I volatili ritrovati sono stati raggruppati in: composti con cinque o 

otto atomi di carbonio (C5-C8) e composti terpenici. L’1-otten-3-olo, il 3-ottanone e il 3-

ottanolo (composti C8) sono stati ritrovati in tutti i campioni testati, mentre i composti 

terpenici sono risultati specifici della specie infettante. Nel legno di faggio infettato con T. 

versicolor erano presenti specificatamente l’α- e il β-barbatene, mentre il protuillud-6-ene è 

caratteristico di campioni infettati con G. trabeum e il daucene in campioni infettati con P. 

placenta.  

Secondariamente sono stati analizzati i VOCs liberati dai carpofori del fungo Trametes 

gibbosa distinguendo fra carpofori colonizzati in minima parte (<10%) o completamente 
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(~100%) da insetti fungivori.  I carpofori con un basso tasso di colonizzazione rilasciavano 

l’1-otten-3-olo –il tipico odore di fungo- ad un tasso quasi 20 volte superiore rispetto ai 

carpofori colonizzati completamente.  

In terzo luogo, è stata studiata l’emissione dei VOCs durante le diverse fasi di sviluppo 

del fungo dell’inchiostro Coprinopsis cinerea, iniziando dalla fase di micelio fino alla fase di 

autolisi dei carpofori. I pattern di VOCs nelle diverse fasi di sviluppo hanno mostrato 

specifiche variazioni.L’1-otten-3-olo e il 3-ottanone sono rilasciati in grande quantità durante 

la formazione dei primordi e gradualmente diminuiscono nelle fasi successive. I terpenoidi β-

himachalene e cuparene aumentano drasticamente nella fase di allungo dei gambi di  C. 

cinerea e nella fase di maturazione dei carpofori. Infine, i composti volatili dei carpofori di C. 

cinerea, Coprinus comatus e Coprinopsis atramentaria, sono stati analizzati durante la fase 

terminale di autolisi. Caratteristici di questa fase sono composti contenenti azoto e 

composti contenenti zolfo che vengono rilasciati in aggiunta ai composti già descritti .  

L’insetto fungivoro Cis boleti (Coloptera: Ciidae) e il dittero Suillia mikii (Diptera: 

Heleomizydae) sono stati scelti per esaminare la loro percezione olfattiva in quanto i loro 

cicli di vita sono fortemente collegati con diverse specie di funghi. Per esempio, C. boleti 

colonizza preferenziale i funghi del genere Trametes e S. mikii è attratta  dai funghi 

dell’inchiostro (per esempio Coprinus) in una fase specifica dello sviluppo del carpoforo. 

Combinando la gascromatografia - spettrometria di massa con la rilevazione parallela 

dell’elettoantennografia è stato dimostrato che entrambe le specie percepiscono l'odore 1-

otten-3-olo con alta selettività e sensibilità. Le prove comportamentali successive utilizzando 

C. boleti hanno dimostrato che gli adulti di questa specie riescono a discriminare i due 

enantiomeri dell’1-otten-3-olo, dove le femmine sono sensibilmente più attratte verso 

l’enantiomero (S)-(+) a dosi più basse rispetto ai maschi. Il dittero S. mikii ha fornito risposte 

elettroantennografice riproducibili ai VOCs: 1-undecene, 2-butanone e dimetiltrisolfuro. 

Questi composti sono rilasciati dai carpofori del fungo dell’inchiostro in fase autolitica. Le 

antenna di C. boleti riescono a percepire l’1-otten-3-olo con alta selettività e una bassissima 

soglia fino a una concentrazione di 5 ng/ml d’aria. Inoltre le antenne di C. boleti rimangono 

vitali per la durata di un giorno dopo essere state recise dal corpo dell’insetto. 

Conseguentemente, le antenne di C. boleti sono state utilizzate come parte di un biosensore 
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allo scopo di verificare il grado d’infezione fungina in campioni di faggio infettati con T. 

versicolor. Per questo esperimento è stato utilizzato un biosensore che addotta il metodo della 

superposizione congiuntamente ad un sistema di ricalibratura. In questa configurazione le 

antenne di C. boleti hanno generato risposte riproducibili all’1-otten-3-olo rilasciato dal legno 

di faggio infetto.  

In conclusione, questi risultati dimostrano la promettente possibilità di utilizzo di 

biosensori basati sulle antenne degli insetti come metodi di analisi altamente sensibili  e 

selettivi per controllare la durevolezza del legno contro funghi cariogeni. 
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บทคัดยอ 
การตรวจสอบและการทดสอบความคงทนของไมที่มีตอจุลินทรีย เชน เชือ้รา เปนสวนที่สําคัญสําหรับ

อุตสาหกรรมปาไมและอุตสาหกรรมที่ใชไม ดวยเหตุนี้ จึงมีความจําเปนอยางยิ่งที่ตองมีวิธีการทดสอบที่มี

ประสิทธิภาพที่สามารถทําใหการตรวจสอบทําไดงาย มีความถูกตองและแมนยํา การเฝาติดตามสารระเหย

อินทรีย (volatile organic compounds; VOCs) ที่ปลดปลอยออกมาจากไมและจากกระบวนการเมตา

บอลิซึมของเชือ้ราสามารถบงชี้สภาวะของไมได ยกตัวอยางเชน แสดงถึงสภาวะของการยอยสลายของไม

โดยเชื้อราและชนดิของเชือ้รา การติดตาม VOCs ทีป่ลดปลอยออกมาจากไมโดยใชไบโอเซนเซอร 

สามารถใชเปนวิธทีางเลือกอกีทางหนึ่งสําหรับการทดสอบไม โดยมหีนวดของแมลงในสภาพที่สมบูรณเปน

สวนสําคัญของไบโอเซนเซอร เนือ่งจากหนวดของแมลงมีความไวและความเฉพาะเจาะจงสูงตอการรับกลิ่น 

วิธีการทดสอบนี้จะเปนวิธีการทดสอบที่รวดเร็วและเปนวิธีการทดสอบที่ไมเกิดการทําลาย ซึ่งสามารถเติม

เต็มวิธีการทดสอบไมที่ใชในปจจุบนั 
งานวิจัยนี้ ไดเร่ิมจากการสํารวจ VOCs ที่ปลดปลอยออกมาจากเชื้อรา 3 ชนิด โดยใชเทคนิคแกสโคร

มาโตรกราฟแมสสเปคโตรเมทรี ในขั้นตอนแรกไดทําการวิเคราะห VOCs ที่ปลดปลอยจากไมบชี (Fagus 
sylvatica) ที่ถูกทําลายโดยเชือ้ราทําลายไม 3 ชนิด ไดแก ทราเมเทส เวอรสิคัลเลอร (Trametes 
versicolor) พอเรีย พลาเซนทา (Poria placenta) และ กลอเอโอฟลลุม ทราเบอุม (Gloeophyllum 
trabeum) ซึ่งเชื้อราเหลานี้เปนเชื้อรามาตรฐานที่ใชทดสอบความคงทนของไม จากการทดสอบพบวา 

VOCs ที่ปลดปลอยออกมาจากไมบีชที่ถูกทําลายดวยเชื้อราทั้ง 3 ชนิด มีรูปแบบของ VOCs ที่

เฉพาะเจาะจง  ซึง่ VOCs เหลานั้นสามารถจัดกลุมไดเปน สารประกอบทีป่ระกอบดวยคารบอน 5 ถงึ 8 

อะตอม และสารประกอบเทอรพีนอยด สารประกอบที่มีคารบอน 8 อะตอม ไดแก สาร 1-ออกเทน-3-ออล 
3-ออกทาโนน และ 3-ออกทานอล ปรากฏในทุกตัวอยางที่ทดสอบ ในขณะที่สารประกอบเทอรพีนอยด

ขึ้นอยูกับชนิดของเชื้อรา โดยที่ อัลฟา- และ เบทา-บารบาทีนเปนสารที่ปลดปลอยจากไมบีชที่ถูกทําลาย
โดยเชื้อ T. versicolor  สารโปรทูอิลลูด-6-อีนเปนสารที่ปลดปลอยจากไมบชีที่ถูกทําลายโดยเชือ้ G. 
trabeum และเดาซีนเปนสารที่ปลดปลอยจากไมบีชที่ถูกทําลายโดยเชื้อ P. placenta ในขั้นตอนที่สอง ได

ทําการวิเคราะหและแยกแยะ VOCs  ที่ปลดปลอยจากดอกเหด็ ทราเมเทส จิบโบซา (Trametes 
gibbosa) ที่ถูกอาศัยโดยแมลงแบบบางสวน (นอยกวารอยละ 10) และแบบทั้งหมด (ประมาณรอยละ 
100) พบวาดอกเห็ดที่ถูกอาศัยแบบบางสวนจะปลดปลอยสาร 1-ออกเทน-3-ออล ซึ่งเปนสารเฉพาะ

สําหรับเชื้อรา ในปริมาณสูงเกอืบ 20 เทาสูงกวาดอกเห็ดที่ถูกอาศัยแบบทั้งหมด ในขั้นตอนที่สาม ไดศึกษา 

VOCs ที่ปลดปลอยระหวางการเจริญเติบโตของเชื้อราโคพรินอพซสี ซินเนเรีย (Coprinopsis cinerea) 
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ต้ังแตไมเซเลียมไปจนถึงขั้นตอนการพัฒนาเปนดอกเห็ด พบวารูปแบบของ VOCs มีความเฉพาะเจาะจง

กับชวงระยะเวลาของการเจริญเติบโตโดยในชวงการเกิดไพรมอรเดียมีการปลดปลอย 1-ออกเทน-3-ออล 
และ 3-ออกทาโนน ในปริมาณมาก แตปริมาณของสารทั้งสองจะลดลงในชวงเวลาการเจริญตอๆ ไป ใน

ขณะเดียวกันพบวา สารประกอบเทอรพีนอยด ฮมิาชาลีนและคูพารีน มีการเพิ่มขึ้นอยางมาก เมือ่ C. 
cinerea ในชวงยืดกานดอกเห็ดและชวงที่มีการเจริญเติบโตอยางเต็มที่ ในขั้นตอนสุดทาย ไดทําการ

ตรวจสอบเห็ดน้ําหมึกในชวงที่เกิดการยอยสลายตัวเอง เห็ดเหลานั้นไดแก โคพรินุส โคมาทุส (Coprinus 
comatus) โคพรินอพซิส อาทราเมนทาเรีย (Coprinopsis atramentaria)  และ C. cinerea พบวาในชวง
ที่เกิดการยอยสลายตัวเองมีการปลดปลอยสารประกอบที่มีไนโตรเจนและซลัเฟอรเปนองคประกอบ 

ทําการศึกษาการไดรับกลิ่นของแมลง โดยไดทําการเลือกแมลงที่วงจรชีวิตขึ้นอยูกบัเชือ้รา ซิส โบเลทิ 

(Cis boleti) และ แมลงที่มีวงจรชีวิตเกี่ยวเนื่องกับเชื้อรา ซูอลิเลีย มิคิอิ (Suillia mikii) เนือ่งจากแมลง
เหลานี้มีวงจรชีวิตที่มีความเกี่ยวพันกับเชือ้ราอยางชัดเจน จะเห็นไดจาก C. boleti จะเลอืกใชวงจรชีวิต
อยูในเห็ดชนิดทราเมเทส และ S. mikii เลอืกที่จะไปเกาะเห็ดน้ําหมึกในชวงการเจริญที่เฉพาะเจาะจง 
สําหรับการศึกษาการไดรับกลิ่นของแมลง ไดใชเทคนิคแกสโครมาโตรกราฟแมสสเปคโตรเมทรี ควบคูกับ

อีเลคโทรแอนเทนโนกราฟคดีเทคชัน เพ่ือแสดงใหเห็นวาแมลงทั้ง 2 สปชีส สามารถรับกลิ่นเฉพาะของเชื้อ
รา (1-ออกเทน-3-ออล) ไดอยางมีประสิทธิภาพและมีความเฉพาะเจาะจงสูง  นอกเหนือจากนี้ การทดสอบ

เชิงพฤติกรรมของ C. boleti แสดงใหเห็นวา แมลงชนิดนี้สามารถแยกแยะอีแนนทีโอเมอรของ 1-ออกเทน-
3-ออล ได โดยที่แมลงตัวเมียแสดงความสนใจอยางมีนัยสําคัญ ตอ (S)-(+) enantiomer ที่ความ
เขมขนตํ่า มากกวาแมลงตัวผู สวนแมลง S. mikii มีการตอบสนองตอ 1-อุนเดซีน 1-บิวทาโนนและได
เมทิลไตรซัลไฟด ที่ปลดปลอยจากเห็ดน้ําหมกึในสภาวะที่เกิดการยอยตัวของมันเอง 

หนวดของ C. boleti สามารถรับกลิ่นเฉพาะของเชื้อรา (1-ออกเทน-3-ออล) ดวยความไวและ

เฉพาะเจาะจงในปริมาณที่ตํ่าถึง 5 นาโนกรัมตอมิลลิลิตร ในอากาศ และอายุการใชงานของหนวดนานถึง 

1 วัน เพ่ือเปนการพิสูจนถึงความสามารถที่จะใชหนวดของ C. boleti เปนสวนหนึ่งของระบบไบโอเซนเซอร
โดยการติดตามจาก VOCs ในการทดสอบไมทีถู่กยอยสลายดวยเชื้อรา T. versicolor โดยที่ระบบ

ไบโอเซนเซอรนี้ใชวิธีการซุปเปอรโพสิชัน (superposition method) และระบบรแีคลิเบรชัน 

(recalibration system) เพ่ือแสดงการตอบสนองของหนวดแมลงตอ VOCs จากการทดลอง หนวด

ของ C. boleti มีการตอบสนองอยางสม่ําเสมอตอสารระเหยที่เปนตัวบงชี้ของไมบีชที่ถกูยอยสลายดวยเชื้อรา  
จากผลการทดลองขางตนนําไปสูความเปนไปไดที่จะสรางไบโอเซนเซอรโดยใชหนวดที่สมบูรณของแมลง

เปนตัวตรวจจับ วิธีการทดสอบนี้มีความไวและความเฉพาะเจาะจงสงูสําหรับการทดสอบความคงทนของไม

ที่มีตอเชื้อรา
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1.1. Introduction 

Wood is a versatile material, being useful since standing in the forest till in service. The 

Alpine folks say that wood gives them three heats, first when cutting, second when moving 

them down the mountain and the third when being burnt in fireplaces. Wood does not only 

provide warmness, but it also gives a good construction because of its toughness. The 

strength of wood is the result of the complex structures forming several layers in wood 

microfibrils of cellulose, hemicelluloses, and lignin (Eaton and Hale 1993). Even though 

wood components provide the mechanic stability, they are also susceptible to degradation 

because of their compositions. The physical and biological factors can cause degradation as 

for example light, moisture, microorganisms, insects and marine borers (Eaton and Hale 

1993), consequently wood properties are altered. Therefore, in order to maintain wood for 

longer use or to reduce deterioration, many researches have been carried out about wood-

modification. For example, wood has been subjected to chemical modification e.g. with 

acetic anhydride, to impregnation with resins, to thermal modification and to plasma 

treatments (Hill 2006).  

Except for damage by insects, practically almost all deterioration of wood is caused by 

decay fungi, which are therefore an important issue for wood industry. Although decay fungi 

cause considerable economic losses, they are also key factors as the major organisms 

decomposing forest biomasses. Therefore, they have very important ecological roles (Zabel 

and Morrell 1992; Boddy 1991; Boddy and Watkinson 1995). 

 

1.2. Wood Testing 

There are several approaches to prevent the progress of wood degradation leading to loss in 

wood properties such as mechanical properties and appearance. One first action could be 

already taken in the forest, immediately after tree cutting, where a biocontrol agent is applied 

to wood to prevent the establishment of blue stain fungi, which are commonly infecting only 

the sapwood of trees (Benjamin et al. 2003). Once the wood logs arrived in the wood-
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processing industries, the incoming wood is chemically or thermally treated before storage. 

For example, a dilute aqueous solution of sodium bisulfite and a phenolic compound can be 

applied in order to prevent microbial growth (US Patent 4045554). When applying those 

treatments, large quantity of chemicals may be used in order to ensure that the full wood 

material was treated and all microorganisms were affected. This handling may require more 

chemicals than indeed needed, resulting in high processing cost and environmental impacts. 

For these reasons there is a strong request of innovative solutions, and research on new 

wood modification and wood preservation is conducted in several experimental stations and 

Universities. Testing the durability of the modification against microorganisms is a central 

process of this type of research. It may take about 3-4 weeks by traditional testing methods 

where incubation with target microorganisms is preformed (Eaton and Hale 1993). 

There are therefore two main research objectives in wood decaying processes, the first 

involving preservation of wood by preventing microbial infections and the second to detect 

and to identify which microorganisms are responsible for wood degradation. To this second 

aspect there have been several researches aiming to investigate the fungal infestations on 

wood. Those are, for example, using Fourier-transformed infrared spectrometry (FTIR) in 

discriminating of beech wood infested with Trametes versicolor and Schizophyllum commune 

(Naumann et al. 2005), using MALDI-TOF-MS to differentiate closely related indoor wood 

decay fungi (Schmidt and Kallow 2005). Molecular methods have been also proposed for 

fungal decayed wood investigation, i.e. identification of fungal decaying oak using 

polymerase chain reaction (PCR) (Parfitt et al. 2003) and detection of wood decay fungi 

Postia placenta (Poria placenta) and Coniophora puteana by using terminal restriction fragment 

length polymorphism (T-RFLP) (Råberg et al. 2005). 

 

1.3. Volatile Organic Compounds  

Volatile organic compounds (VOCs) are chemical substances that have high enough 

vapour pressures under normal conditions to significantly vaporize and enter the 

atmosphere (Grossmannova et al. 2007). The volatility of a chemical depends on the size 

(molecular weight), polarity, and structure of the molecule and can be expressed as the 
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vapour pressure. Thus molecules with a high molecular weight and a high polarity have a 

low vapour pressure. As an example, the highly volatile ethyl acetate has a vapour pressure 

of 76 Torr at room temperature, while on the other end of the vapour pressure scale a low 

volatile compound is nonacosane (nC29) with a vapour pressure of 5.0 x 10-10 Torr at 

room temperature (Schulz 2001). However, international agencies define VOCs as organic 

chemicals containing carbon atoms and having a vapour pressure larger than 10 or 13.3 Pa 

at 25°C, equal to 7.5 x 10-2 or 9.9 x 10-2 Torr, according to the EU Solvents Directive 

(1999/13/EC) and the American Society for Testing and Materials (method D3960), 

respectively. A wide range of carbon-based molecules, such as aldehydes, acids, alcohols, 

ketones, esters, hydrocarbons and terpenoids are VOCs. Moreover, various oxygen-, 

nitrogen-, sulfur-, and halogen-containing molecules are also VOCs (Hunter et al. 2000). 

They are released from several sources as shown in some examples in Table 1-1. 

VOCs can contribute to pleasant or nasty odours, e.g. odours from flowers and foods 

are favoured, while smells of paints or moulds are not favoured. Moreover, VOCs could 

cause sickness. Recently it was revealed that microorganism-infested buildings released 

compounds affecting human health, generally known as “sick building syndrome” 

(Jaakkola et al. 2007). On the other hand, VOCs can be used in promoting human health, 

as the use of natural volatile compounds in aromatherapy. 

An increasing interest of studying VOCs is coming from chemoeclogical sciences, 

since several VOCs have been found to play important roles in nature as chemical signals 

among different organisms and ecosystems. As an example, the so-called “cry for help” 

phenomenon is perhaps the most remarkable one.  In this case plants released specific 

volatile compounds (e.g. methyl salicylate) as an external signal for the recruitment of 

beneficial insects (Forouhar et al. 2005). Therefore, VOCs are an issue of major concern 

for many scientists worldwide, being active in different disciplines such as wood 

technology, food, flavour and fragrances, medical, pharmaceutical, forensic sciences, and 

particularly environmental sciences (Demeestere et al. 2007). 
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Table 1-1 Examples of VOCs from different sources 

 

Source 

 

Compound 

 

Odour 

 

Chemical structure 

 

Reference 

mushroom 1-octen-3-ol mushroom odour 
OH

 

Tressl et al. 

1982  

green leaves cis-3-hexen-1-ol green-leaf odour 
OH

 

Visser 1979 

popcorn 

jasmine rice  

smoked meat 

2-acetyl-1-pyrroline popcorn-like odour N
O  

Buttery et al. 

1982; 

Schieberle 

1991 

vanilla orchid vanillin vanilla 

OH

CHO

OMe

 

Pomerantz  

et al. 1957 

banana isopentyl acetate banana-like odour 
O

O

 

Mayra et al. 

2003 

garlic 
dially thiosulfinate 

(allicin) 
garlic odour 

S
S

O

 

Bocchini et al. 

2001 

coniferous 

tree 
α-pinene pine-like arome 

 

Koukos et al. 

2000 

 

To increase the knowledge on the occurrence of VOCs in all fields of interest, precise and 

accurate analytical techniques are necessary. There are two main steps for volatile 

characterisation: volatile sampling and volatile analysis.  
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1.3.1. Volatile Sampling 

Appropriate volatile sampling and pre-concentration techniques are required particularly in 

environmental conditions where VOCs concentrations are often very low, varying mostly 

from levels of pg/l to µg/l in air. Sample preparation and sampling methods are often the 

bottleneck and most time consuming task in VOCs analytical scheme. They can be 

roughly categorised in: passive and active samplings as shown in Figure 1-1.  

Passive sampling is performed without air circulation, i.e., static headspace sampling. 

The VOCs are sampled in static condition where they diffuse to specific absorbent 

materials. For example, solid phase microextraction (SPME) is a passive sampling 

technique where volatiles are adsorbed on polymer matrixes coated on silicon fibres 

(Zhang et al. 1994). In the last years, SPME has become an attractive and widely used 

sampling technique, despite its relative recent character (Belardi and Pawliszyn 1989; 

Arthur and Pawliszyn 1990). Another passive sampling technique is the direct headspace 

sampling, where the headspace volatiles are taken using a syringe and are accumulated in a 

cold trap, before being analysed. Passive sampling techniques are often adopted for indoor 

air measurements and when air samples are taken from a confined area. They are often 

chosen being less elaborated than active sampling techniques.  

Active sampling is carried out by promoting an air circulation. The air is forced to 

pass through adsorbents where VOCs are trapped. Widely used absorbents are activated 

charcoal and polymer matrixex (i.e. TENAX®, Gerstel, Mülheim an der Ruhr, Germany). 

The entrapped volatiles are later eluted with solvent for further analysis in case of 

chemical desorption (activated charcoal) or are eluted by hot gas and directly analysed in 

case of thermodesorption (TENAX). Active sampling requires power supply and may 

necessitate expensive equipments and skilled staff. Moreover, in this case there is a higher 

risk of contamination since pumps, loops and bags are often necessary. The advantages of 

active sampling are linked with a general higher sensitivity of the techniques and the 

possibility to quantify the volatile concentration and releasing rate with higher accuracy. 

Moreover, in case of solvent elution methods there is a possibility to store for long time 

the VOCs samples allowing further analyses. 
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Figure 1-1 Schematic drawing of three volatile sampling methods. (A) passive 
sampling of static air with headspace-SPME device and (B) active sampling of 
circulating air with TENAX-TA tube (left) and activated charcoal tube (right). 

 

 
1.3.2. Volatile Analysis 

The analysis of volatile compounds is traditionally performed using gas chromatography 

(GC). There are many detectors which can be used in gas chromatography, each one 

giving different types of selectivity. Gas chromatography- flame ionisation detection (GC-

FID) uses ionised combustion products and is the most common detector. Gas 

chromatography-mass spectrometry (GC-MS) uses chemical masses of ionised fragments 

for interpretation. Gas chromatography- electroantennographic detection (GC-EAD) uses 

insect antennae as detectors as depicted in Figure 1-2. Volatiles dissolved in solvents are 
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injected into the GC injection port and run through the GC column for separation. 

Volatiles absorbed in a polymer matrix have to be first desorbed, trapped and later heated 

up and run thought the GC column.  

After the volatile samples are detected by the GC-MS, their chemical identification is 

done by interpreting and matching their mass spectra and retention times to the ones of 

authentic compounds. The Mass Spectral Search Library of the National Institute of 

Standards and Technology (NIST) and the Wiley GC-MS database are two mass spectra 

libraries widely adopted for this comparison. 

 

 

 

Figure 1-2 Schematic drawing of a gas chromatograph-mass spectrometer/electroantennographic 
detector setup (GC-MS/EAD). MS: mass spectrometer, GC: gas chromatograph, ODP: 
olfactory detection port and EAD: electroantennogram (modified from Weissbecker et al. 
2004). 
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1.4. Insects and olfaction 

Insects belong to arguably the most successful and most diverse group of animals (Stork 

2003). Out of 1.75 million species that have been formally described, 850,000 to 1,000,000 

are insect species. However, the number of undescribed species is undoubtedly much 

higher.  Insects comprise over half of the described species, and circa 3/4 of known animal 

species (Stork 2007). Whatever the global estimate, insects are highly diverse as illustrated 

in Figure 1-3. Not only insects are so abundant, but they have evolved to live on Earth for 

the last 400 million of years, with an extreme diversification and filling all available 

environmental niches (Grimaldi and Engel 2005). An outstanding feature is their sensory 

system. For instance, insect olfaction is highly evolved so that insects can search for food  
 

 

Figure 1-3 This “speciescape” illustrates the relative diversity of insects in relation to other
species groups. The relative diversity is proportional to the size of the organism and therefore in
the illustration above the fly is much larger than all the other organisms (after Wheeler 1990 
and Gullan and Cranston 1999).  
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sources, shelters and mates. In highly social species, like the honey bee and ants, olfaction 

is used to recognize a huge variety of airborne molecules, providing the members of the 

colonies with a high sensory network (Forêt and Maleszka 2006). In some cases the 

perception of VOCs is so highly sensitive to reach values far below modern analytical 

equipments. One interesting example is the black jewel beetle, Melanophila acuminata 

(Coleoptera: Buprestidae) which can detect smoke odour as far as 50 kilometers to locate 

forest fires. Their larvae can develop only in burned wood (Schütz et al. 1999a). The most 

sensitive perception is evolved in the sex pheromone perception of male Lepidoptera. 

Minute quantities of the so-called sex pheromones can attract males from huge distances 

to the female insects for mating (Kassiling 1979). 

 

 

 
 
Figure 1-4 Scanning electron micrographs of the adult head of the rust red flour beetle 
Tribolium castaneum (Coleoptera: Tenebrionidae). General overview of the insect ventral 
part showing the antennae, the mouth parts and the compound eyes. Bar: 100 µm. (with 
courtesy of Dr. Sergio Angeli). 
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Insect sensory organs are housed in hair-like structures, known as sensilla, which are 

protruding from the cuticle of specific organs as antennae, mouth parts, and tarsal 

segments, but also on other parts of the insect body as wings and external genitalia as 

shown in Figure 1-4 and in Figure 1-5. The insect sensilla (singular = sensillum) protrude 

from the cuticle, or sometime lie within or beneath it. They can be divided in chemo-, 

mechano-, thermo-, visual and hygrosensory sensilla (Keil 1999). The structures of all 

sensilla types are rather uniform regardless of the specific receptor modality. 

 

 

 
Figure 1-5 Schematic representation of the sensory organs and peripheral nerves of an 
adult fly. The main structural and functional subclasses of sensilla are represented in 
different colours. abn: abdominal nerves; bas: basiconic sensilla; cam: large campaniform 
sensilla of the wing blade; cns: central nervous system; iom: interommatidial bristles; mac: 
macrochaetae; mic: microchaetae; wcs: chemoreceptors of wing margin; wms: 
mechanoreceptors of wing margin (after Hartenstein 1993). 
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Each sensillum consists of one or more bipolar receptor cells which send their axons to 

the brain and their dendrites to the peripheral cuticle region of stimulus uptake. A specific 

cuticular apparatus is present in the outside part of the sensillum and it exhibits features 

characteristic of the specific stimulus modality of the sensillum. Three types of auxiliary cells, 

thecogen, trichogen, and tormogen cells, surround the sensory neurones and border the 

sensillar lymph cavity (Figure 1-6). The sensillar cuticle plays an important role in stimulus 

transport to the receptor membrane of the sensory neurones. These neurones are 

surrounded by an extracellular fluid, the sensillar lymph, which composition is regulated by 

the auxiliary cells.  

The chemosensory sensilla are divided in olfactory and gustatory sensilla. In insects 

the distinction between olfaction and taste is not as clear as in vertebrate, since olfactory 

sensilla can respond to substances in solution and gustatory sensilla can detect molecule in 

the vapour phase. However, the signal processing is however quite different for the two 

types of stimuli. The axons from all the olfactory neurones terminate in the antennal 

lobes, whereas the axons from gustatory sensilla terminate in the ganglion of the body 

segment to which the sensillum belongs, as for instance the suboesophageal ganglion for 

the sensilla of the maxillary palps. Insect olfaction is therefore defined as the neuronal 

transduction of all chemical compounds, which leads to the activation of antennal lobes, 

in analogy with the vertebrate where olfactory neurones terminate in the olfactory bulb 

(Schmuker and Schneider 2007).   

Olfactory sensilla are more concentrated on the antenna and maxillary palps. Their 

cuticle structure shows the presence of numerous small wall pores, for this reason they are 

also called wall pore sensilla or multiporous sensilla.  

The external morphology of these sensilla can be further distinct in sensilla trichodea, 

sensilla basiconica, and sensilla coeloconica. Sensilla trichodea have usually the external shape of 

hairs with a sharply pointed tip. They are usually the most abundant on the antennae. 

Sensilla basiconica have generally a smooth surface and are covered with irregular dense wall 

pores detected in large number over the external cuticle. In some species of Lepidoptera it 

was found that long sensilla trichoidea respond to the female pheromone, while sensilla 
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basiconica are tuned to the perception of plant odour also called green volatiles or general 

odours or (Steinbrecht et al. 1996; Tegoni et al. 2004) (Figure 1-6, sensillar type d). 

Gustatory sensilla are also called contact chemoreceptors. Most of them are found on 

the month parts as labrum, maxillae and labium, but they also occur on the antenna, tarsi 

and even on the female ovipositor. In contrast to the olfactory sensilla, they lack wall 

pores but have a single, terminal pore, therefore they are also called uniporus or terminal 

pore sensilla. (Figure 1-6, sensillar type c).  

The olfactory transduction of odorant stimuli is performed on the cell membrane of 

the sensory neurones. Odorants are first absorbed on the cuticular surface of the sensillum 

and are thought to reach the interior part via the wall pores. The cavity of the pore is in 

some cases connected with pore tubules which some times directly contact the sensory 

neurone membrane. The conversion of extracellular chemical signal to a neurone electrical 

stimulus is known as signal transduction. In insects before odorants are coded into 

electrical signals they interact with the sensillar lymph, while in vertebrate they interact 

with the nasal mucosa. The group of biochemical processes which take place between the 

sensillar wall pores and the dendritic membrane of the sensory neurones are known as 

“perireceptor events” (Getchell et al. 1984). As a consequence, perireceptor events occur 

in the sensillar lymph which is an aqueous barrier, whereas odorants are often 

hydrophobic.  

In the sensillar lymph odorants interact with different classes of soluble proteins: 

odorant binding proteins (OBPs) (Vogt and Riddiford 1981), chemosensory proteins 

(CSPs) (Angeli et al. 1999) and odorant degrading enzymes (ODE) (Vogt and Riddiford, 

1981). OBPs are present in very high concentration in the sensillar lymph and, similar to 

the CSPs, they reversibly bind chemical stimuli. Binding capacity was demonstrated with 

sex pheromones and general odorants for some members of insect OBP (Pelosi 1994, 

1998; Steinbrecht 1998) and for one member of CSPs (Ban et al. 2003). OBPs and CSPs 

are soluble proteins with a low pI (4-5) and low molecular weight (10-14 kDa). Whether 

these proteins participate in odour coding or function as carrier to transport the odorants 
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to the olfactory receptors of the sensory neurones it is still not clear although several 

hypotheses have been proposed (Pelosi 2005; Forêt and Maleszka 2006). 

 

 

 

 
Figure 1-6 Schematic 
representation of insect 
sensilla (above). A: the 
cellular organisation; B 
and H: mechanosensory 
campaniform sensillum; C 
and G: gustatory or 
terminal pore sensillum; D, 
E and F: olfactory 
sensillum with single- (E) 
or double wall (F). ax: 
axon of the receptor cell; 
cu: cuticle: de: dendrite ep: 
epidermal cell (yellow); 
ne: receptor neurone (red); 
th: thecogen cell (green); 
to: tormogen cell (light 
brown); tr: trichogen cell 
(dark brown); sl: sensillar 
lymph (blue). Schematic 
representation of the insect 
olfactory transduction 
(under). (after Steinbrecht 
1992). 
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Odorant receptors are a group of transmembrane proteins, belonging to the class of 

G-protein coupled receptors. Once the odorant receptors are activated they drive two 

alternative intracellular signalling pathways, one utilising cAMP and the other inositol 

triphosphate (IP3) as second messengers (Raming et al. 1993). These second messengers 

travel across the cell cytoplasm and activate gated ion channels, allowing Ca++ (or other 

cations) to flow inside the cell. The increase in intracellular Ca++ concentration appears to 

activate chloride a chloride current that helps to depolarise the olfactory cell leading to the 

generation of an electrical signal or action potential (Krieger et al. 1997). 

 

1.5. Electroantennography (EAG)  

Electroantennography is a technique to measure the electrical activity generated by an 

antenna for a given odorant. It is commonly used to study the function of the olfactory 

system in insects. The technique was developed after the discovery by the German 

biologist Dietrich Schneider (1957), who measured voltage changed between the tip and 

base of a freshly excised antenna from a male of the silkmoth, Bombyx mori, while the 

antenna was stimulated with an air puff containing the silkmoth sex pheromone 

bombykol. Schneider named this odour-prompted electrical response of an insect antenna 

an “electroantennogram” (EAG). It is interesting to note that his idea started thanks to a 

meeting with Schneider’s neighbour (P. Karlson), who provided Schneider bombykol, the 

first discovered pheromone of animals (Butenandt et al. 1959) as nicely described later by 

Schneider (1999).  

The EAG response is a bulk measure of the responses of the electrical depolarisations 

of many olfactory receptor neurones cells when the insect antenna is exposed to adequate 

stimulus (Figure 1-7). EAG responses are therefore related to the total number of 

stimulated sensilla (Mayer et al. 1984), although only in the recent years an explicit 

relationship to the neuronal activities has been demonstrated. The numbers of spikes 

elicited from receptor cells and the change in the EAG potential are interdependent 

measures of the stimulus strength (Mayer 2001). 
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Figure 1-7 Electroantennography. (A) The antenna is exposed to stimulus molecules and 
the voltage changed between recording and reference electrodes is registered, after the 
signal is amplified and processed. (B) A typical antennal responses of the female beetle Cis 
boleti to different compounds at 10-3 paraffin dilution, and (C) dose response curve of C. 
boleti to different dilutions (form 10-6 to 10-3) of 1-octen-3-ol. 

 

C 
1-octen-3-ol 

A 

B 



 
- 18 - 
 

 

EAG registrations can be done in two ways: by exciting the antenna from the insect 

and make it in contact with two electrodes or by inserting a ground wire in an immobilised 

insect and another wire to the tip of its antenna (Figure 1-7). The latter method has the 

advantage that the insect antenna remains alive for longer time, therefore EAG signals can 

last very long.  On the other hand, in this case the measurement is often disturbed by 

higher signal noise, due to the mechanical movement of the antenna and/or of the full 

animal.  

 
The amplitude of the EAG responses is influenced many factors:  

• nature and strength (concentration) of the stimulus; 

• condition of the antenna e.g. sex, physiological status and previous 

stimulations;  

• operating conditions e.g. temperature and humidity;  

• quality of the amplifier input. 

 

The insect circadian rhythm may also influence olfactory response, as it has 

demonstrated in the fruitfly, Drosophila melanogaster (Krishnan et al. 1999), and in the 

evolutionarily distant cockroach, Leucophaea maderae (Page and Koelling 2003).  In the first 

case, EAG responses of flies tested near the middle of the night were significantly higher 

than those of flies tested at other times of the day. In the second case, a ten fold variation of 

the EAG amplitude was observed by testing odorants as specific time of the circadian 

rhythm. These experiments suggested that olfactory responses and circadian rhythm are 

linked with the photoreception and with the neuronal signalling of the insect optic lobes. 

EAG technique has been further integrated with gas chromatography, by attaching an 

EAG detector to a gas chromatograph. This powerful analytical technique is known as a 

GC-EAD (gas chromatography-electroantennographic detection). With his apparatus it is 

possible to explore how insect antennae respond to different chemical compounds released 

by a given source as host plants or food substrates. To identify the volatile compounds 

detected by insects it is in this case necessary to run the samples separate in GC-EAD and 

GC-MS. This problem has been recently solved by the integration of the two systems. In this 
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case the volatiles samples are injected in a gas chromatograph - mass 

spectrometer/electroantennographic detection (GC-MS/EAD), where the volatile 

substances are spitted between a mass spectrometer and a  EAD detector at the end of the 

GC column (Figure 1-2) (Weissbecker et al. 2004). This system proved to be highly sensitive 

to compounds of importance to insects (able to detect them in the sub-picogram range) and 

profitably assists in chemical ecology research. 

 

1.6. Biosensors 

A biosensor is defined by the International Union of Pure and Applied Chemistry 

(IUPAC) as a “device that uses specific biochemical reactions mediated by isolated 

enzymes, immunosystems, tissues, organelles or whole cells to detect chemical compounds 

usually by electrical, thermal or optical signals” (Rasooly 2005). A biosensor consists of 

two main parts: a biological component also called biocomponent and a signal- 

transducing component. The biocomponent is a living organism or a biological product. 

The schematic of biosensor with some accessories is depicted in Figure 1-8.  

 

 

 

 
Figure 1-8 Schematic representation of a biosensor. A biosensor consists of two main 
parts: a biological component also called biocomponent (leftmost), which is sensitive to a 
target chemical compound (A) and a signal-transducing component. The latter is here 
represented by a transducer, an amplifier, a processor and a display. The biosensor may be 
equipped with a calibration part, here represented by a reference. 
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Biosensor devices have great prospects in commercial applications in such fields as 

biomedicine, environmental monitoring, pharmacology, agriculture, quality control of 

food and water, and military applications. Biosensors are now being developed for 

detection of microbial pathogens and their toxins, monitoring and analysing blood 

metabolites, cancer monitoring and detection, allergen detection, food and biomaterial 

quality testing, and basic research on molecular interactions.  

The most widespread example of a commercial biosensor is perhaps the blood 

glucose biosensor, which measure the concentration of blood glucose by using an enzyme 

to break down glucose. In doing so there is a transfer of electrons to an electrode, 

allowing a measurement of blood glucose concentration (Fogh-Andersen and D'Orazio 

1998). Other examples are the use of yeast and filamentous fungi as sensing elements for 

detecting cell activities (Boranian 2004), the use of anaerobic bacteria as biosensors for 

analysing degradable organic matter in waste water (Kumlanghan et al. 2007), and the use 

of specific enzymes in amperometric biosensors for food analysis (Prodromidis and 

Karayannis 2002). Moreover, biosensors are developed in military applications as to detect 

buried explosives by using bacteria as sensing organisms (US Patent 5972638).  

An ideal biosensor offer several advantages over other analytical methods including 

rapid and even real-time measurements, high sensitivity, selectivity, and stability (a rule 

known as “the three-S-rule”) even when a complex or turbid sample matrix is used. 

Olfactory-based biosensors have been fabricated by combining olfactory 

biocomponents with various signal-transducing devices. Olfactory biocomponents are for 

instance: intact insects, insect antennae, olfactory receptor neurons, and olfactory receptor 

proteins. These biocomponents are combined with detecting devices such as quartz crystal 

microbalance (QCM), field effect transistor (FET), microelectrode, surface plasmon 

resonance (SPR) and light addressable potentiometric sensor (LAPS) (Wu et al. 2007).  

In this thesis we refer to the term “antennosensor” as an olfactory-based biosensor 

where the biocomponent part is an insect antenna, as the name hints. Insect antennae are 

highly sensitive to selective volatile compounds, wherefore they are ideal biocomponents 

of an olfactory-based biosensor. The study of insect olfaction started since the discovery 
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of the first sex pheromone of the silkmoth, Bombyx mori (Lepidoptera: Bombycidae) as 

previously described (Schneider and Hecker 1956).  A review about these aspects has been 

written by Keil (1999). Male moth antennae are extremely sensitive to their female sex 

pheromones. For example, amounts of less than 10 pg of bombykol offered in a piece of 

filter paper elicit a typical behavioural response in the males (Kassiling 1979). Another 

extreme case was found in a jewel beetle Melanophila acuminata (Coleoptera: Buprestidae) 

which could detect guaiacol derivatives produced from forest fire in a range of part per 

billion (ppb) and in a distance as far as 50 kilometres (Schütz et al. 1999a).  

The advantage of high volatile recognition allow insect antenna to be exploited as a 

biocomponent in a biosensor, providing fast and non-destructive detections. There are 

several applications by using insect antennae as detectors, especially in agriculture. For 

example, the antennae of Colorado potato beetle Leptinotarsa decemlineata (Coleoptera: 

Chrysomelidae) were used for identifying fungal-infested potatoes (Schütz et al. 1999b). 

By detecting the odorant 2-ethyl-hexane-1-ol, one single infested potato could be found 

up to 100 kg of healthy potatoes (Schütz et al. 1999b).  

In other cases the antennae of Pectinophora gossypiella (Lepidoptera: Gelechiidae) and 

Cydia pomonella (Lepidoptera: Tortricidae) were used as biocomponents of portable 

biosensors to detect the ambient distribution of species specific pheromones in cotton 

fields (Färbert et al. 1997; Koch et al. 2002) and apple orchards (Koch et al. 1997), 

respectively. These applications are of high values in biocontrol of pest insects, where 

pheromone dispensers are adopted of mating disruption approach (Angeli et al. 2007). 
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Figure 1-9 Schematic drawing of the biosensor-system. (A) Sampling and calibration 
system. (B) Antenna holder. 1: antenna, 2: reservoir of electrolyte, 3: Ag/AgCl-electrode. 
(C) Recording of 1 measurement cycle using superposition technique in a lepidopteran
species. Upper trace: EAG recording. Lower trace: recording of syringe and filter activity.
Vertical bars indicate syringe concentration of the puffs. K1, K2, K3: EAG amplitude
generated by increasing odorant concentration when filter air was in the background. Z1, Z2,
Z3: EAG amplitude generated by increasing odorant concentration when ambient air was the
background. (D) Recording of 1 measurement cycle using superposition technique in a
coleopteran species. First 4 EAG amplitudes (from left) generated when filter air was in the 
background. Second 4 EAG amplitudes (right) generated when ambient air was in the
background. Draw A, B and D after Schütz et al. 1999b; draw C after Färbert et al. 1997. 
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Olfactory-based biosensors can be grouped in two categories: qualitative biosensors, 

which provide information only in respect to the presence or not of the target 

compounds, and quantitative biosensors, which allow quantifying the concentration of the 

target compounds. A biosensor of the first type has been developed by van der Pers and 

co-workers (van der Pers and Minks 1998).  

In case of quantitative biosensors have to hold a calibration part. In other words, the 

electrical signal, detected from the biocomponent and recorded in the transducing 

component, has to provide information about the concentration of the chemical 

stimulant. To achieve this goal it is important to isolate the background detection, which 

affects the target compound detection, and to calibrate the system.  

In the antenna-based biosensor utilised in the present thesis, these parameters were 

controlled as described fully by Färbert et al. (1997). Since this is a critical part of the 

antenna-base biosensor a briefly description is here provided. The background effect was 

controlled by exposing the antenna first to a filtered and clean air and subsequently to the 

ambient air, where a target compound had to be measured.  Antennal responses were 

measured by air puffs from three syringes previously equipped with defined 

concentrations of the target compound.  

The concentration of the target compound in the ambient air was achieved by 

measuring first the antennal responses to define concentrations of the target compound 

when the antenna was exposed to filtered air, and then similar measurements were 

repeated when the antenna was exposed to the ambient air. The first three antennal 

responses were therefore not influenced by the ambient air, while the last three antennal 

responses are measured as extra signals, meanwhile the antenna was affected by the 

odorants of the ambient air. Generally, in the last three antennal responses there is a 

decrease of the peak amplitude as shown in the Figure 1-9. The comparison between the 

antennal responses registered without and with ambient air allowed the calculation of the 

concentration of the target compound by adopting defined algorithms. Basically, this 

operating way is called “superposition technique” and the biosensor is reported to operate 

in a “superposition mode” (Schütz et al. 1999b). More details about the adopted 
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algorithms and the exact operating conditions are provided in the original publication 

(Färbert et al. 1997), in the pioneer works (Koch 1990; Milli et al. 1996) and in the 

following applications (Schütz et al. 1999b; Schütz et al. 2001; Koch et al. 2002). 

Recently, olfactory-based biosensors are also proposed as new way to monitor and 

quantify volatile organic compounds that arise from food and beverages. In this content, 

an on going project aims to develop a so-called “Cybernose” as a robust, sensitive and 

portable biosensor to detect odorants of interest to the food and beverage industries 

(Trowell 2008). The biocomponent of this biosensor will be based on cluster of odorant 

receptors from a variety of species, including the fruitfly, Drosophila melanogaster, the 

nematode worm Caenorhabditis elegans and the silkmoth Bombyx mori. By 2013, the authors 

aim to develop a biosensor that will enable the wine industry to precisely measure aroma 

and flavour compounds. 

Moreover, olfactory biosensors are an additional system for further studying the basic 

processes occurring in olfactory transduction.  

In conclusion, “biosensors now play a vital and essential role in medicine, industry 

and the environment, providing routine analysis, crucial monitoring, and early detection of 

problems and crisis points. Biosensors are increasingly finding applications in homeland 

security, as well as in bio/pharmaceutical research. The market for biosensors is forecast 

to swell to £5.7 billion in 2007, with an annual growth rate of around 10 %”, as reported 

by Adikan et al. (2006).  

 

1. 7. Purposes of this research 

The experimental work of this PhD thesis was focused on pioneer studies for the 

development of “a biosensor system for wood degradation using volatile organic 

compounds”. To achieve this result the following investigations were carried out: 

1. Characterisation of VOCs released from fungal-infested wood (Chapter 3) 

2. Characterisation of VOCs released during fruiting body development by using 

the  fungus Coprinopsis cinerea as a model organism (Chapter 4) 
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3. Olfactory detection of fungal VOCs by the fungivorous beetle Cis boleti (Chapter 

5 and 6)  

4. Olfactory detection of VOCs released from C. cinerea by the associated fly Suillia 

mikii (Chapter 7) 

5. Assessment of the Cis boleti antennae as the biocomponent in a biosensor system 

for the detection of wood decay (Chapter 8). 
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2.1. Introduction 

Utilisation of volatile organic compounds (VOCs) for the quality assessment of wood 

is basically a bionic concept which is inspired by the impressive achievements of insects in 

performing this task just by olfaction in order to exploit wood as a resource. The word 

“bionics” is made up of the two words “biology” and “electronics”. In German, 

however, the second part comes from “Technik”, which means engineering in this 

context. In English, this approach of combining biology and engineering is often also 

called “biomimetics”. The two expressions are used more or less synonymously. The 

interdisciplinary field of bionics is about scrutinising and transferring “natural inventions” 

into technical applications. In the course of evolution, nature has developed, improved 

and tested these inventions over millions of years. For technical exploitation, the opti-

mised solutions to a specific set of problems have firstly to be thoroughly analysed. 

Subsequently, the newly described solutions can be implemented in technical applications 

with corresponding boundary conditions.  

In order to highlight possibilities and limits of an assessment of wood by detecting 

VOCs released by wood, the first part of this contribution deals with the genesis of VOCs 

in wood, in fungi and in wood infested by fungi. In the second part, the interaction with 

insects is used as example how nature exploits the content of information encoded in 

patterns of VOCs released by wood. By examination of the recognition processes of 

insects and a parallel trace analysis of related VOC patterns released by fungus infested 

wood, we might learn how to assess wood quality as well as the kind and state of fungal 

infestation by detecting wood-released VOCs in a quick and non-destructive manner. In 

view of that, current techniques are displayed enabling the detection of specific VOCs or 

of patterns of VOCs released by wood, in order to suggest possible lines of development 

for devices assessing wood quality. 
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2.2. Volatiles released by living trees 

In the discussion of greenhouse gases and their impact on global climate changes 

(Hüttermann and Metzger 2007; Majcherczyk and Hüttermann 2007), there is an 

increasing interest in the complex chemistry of the troposphere. The dynamics of the 

global atmospheric chemistry through climate forcing is triggered by VOCs (Holopainen 

2004; Dindorf et al. 2005). Beside VOCs of anthropogenic origin, especially VOCs emis-

sions from forests which are covering ca. 30% of landmass (FAO 2006) are sources 

affecting the system. The quantities of volatiles of natural origin (NVOC) released 

above the main landmasses as arable land and forests exceed by far the quantities from an-

thropogenic sources. Due to their dominance, reactivity and physical properties, they are 

classified as VVOCs (very volatile organic compounds like methane), reactive VOCs 

(isoprene and terpenes) and non-reactive VOCs (Guenther et al. 1995).  

VOC-emissions by plants are unavoidable due to their metabolic activities (Peñuelas 

and Llusià 2004). A dominant reactive VOC released by forests for example is isoprene, 

which is widespread but not generally present throughout the plant kingdom (Harley et al. 

1999, Owen and Peñuelas 2005). Isoprene is discussed to play an important role in 

tropospheric chemistry (Fehsenfeld et al. 1992; Lerdau et al. 1997). Similar to terpenes, its 

reactivity influences the atmospheric dynamics of ozone, formation and deposition of or-

ganic nitrates and organic acids (Harley et al. 1999). Due to this importance in atmosphe-

ric processes, algorithms were developed describing the dependence of isoprene and 

terpene emissions of plants on light and temperature (Dindorf et al. 2005). Further factors 

as drought, diurnal and seasonal variation or growth conditions were discussed as para-

meters influencing the VOC emissions of plants (Dudt and Shure 1994; Staudt et al. 2001, 

2003). However, there are undisputable many additional internal (e.g. genetic, biochemical) 

and external (e.g. interaction with fungi and insects) factors that affect the presence (Lit-

vak and Monson 1998) and emission of different VOCs by trees and other plants (Apel et 

al. 1999; Peñuelas and Llusià 2001; Schütz et al. 2004) which are not yet covered by known 

algorithms.  
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Most trees are grouped, due to their affinity, in coniferous and broadleaved species. 

This is also reflected in their VOCs composition: VOCs differ highly from coniferous to 

broadleaved woodlands. Regarding coniferous trees, VOC-research is almost exclusively 

done in the family of Pinaceae, e.g. Pinus, Picea, Larix, Abies, Tsuga, and Cedrus (Hayward et 

al. 2004; Lee et al. 2005). Broadleaved species were examined on a somewhat broader scale 

comprising Fagales (Betula, Fagus, Quercus), Sapindales (Acer, Castanea) and e.g. Salicaceae 

(Salix, Populus) (Pasteels and Rowellrahier 1992; Tollsten and Müller 1996; Hakola et al. 

2001; Paczkovska et al. 2006). Further genera such as Eucalyptus (Guenther et al. 1993; Zini 

et al. 2002) are characterised and several comparative studies screened plant species for 

single VOCs only (Owen et al. 1997). Plant VOCs are mostly alkanes/alkenes, aromatic 

hydrocarbons, alcohols, phenolics, terpenes, esters, aldehydes and ketones (Kesselmeier 

and Staudt 1999). However, due to technical restrictions, the analytical window covers 

currently only compounds with boiling points between 60°C to 250°C at atmospheric 

pressure, and of intermediate to high thermal stability (Schütz 2001). 

General processes in plant cells, as the lipoxygenase (LOX)-pathway (Feussner and 

Wasternack 2002) are responsible for the release of generalistic VOCs as the so called 

“green leave volatiles” (GLV). Mainly alcohols, aldehydes of linear six carbon chains 

and their derivatives such as (Z)-3-hexen-1-ol, (Z)-3-hexen-1-yl-acetate, hexan-1-ol, and 

(E)-2-hexenal belong to this group (Visser 1979). Whereas the name GLV implies the 

paradigm that only leaves (not needles) are releasing these compounds, it was proven that 

coniferous trees release these compounds, too, but only in minute amounts (Schütz et al. 

2004). GLV are released in low rates from nearly every plant species (Hatanaka 1993) and 

show a typical increase on mechanical wounding (de Bruxelles and Roberts 2001; Mithöfer 

et al. 2005) of any type of plant tissue, be it leaves, needles, stems or roots (Matsui 2006). 

Especially young developing leaves and damaged leaves - and leaves are damaged by wind 

or insects in a forest all the time - release increased rates of GLV. With regard to the func-

tion of trace compounds with low emission rates as carrier of information (“info-

chemicals”), these minor components must however not be neglected (Schütz 

2001; Schütz et al. 2004). GLV are known to play an important role in insect attraction 

and aggregation (Visser 1979; Schütz et al. 1997, 2004; Ruther 2000) or insect repellence 
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(Huber and Borden 2001; Zhang and Schlyter 2004) and even in signalling between plant 

individuals, known as the phenomenon of “talking trees” (Tscharntke et al. 2001; Arimura 

et al. 2002, Engelberth et al. 2004; Farag et al. 2005). All this points out a complex 

interactive defence system in plants in which the VOCs play the role of a language. VOCs 

carry information about the constitutive or induced defence status of the plant, whether it 

is mechanically wounded, attacked by insects or micro-organisms (Schütz et al. 

1997; Schütz 2001; Holopainen 2004: Weissbecker et al. 2004; Holighaus and Schütz 2006; 

Johne et al. 2006a, b; Paczkovska et al. 2006). 

Isoprenoids are characteristic defence chemicals of conifers and are produced through 

the mevalonate (MEV) or methyl-erythritol-diphosphate (MEP) pathways (Keeling and 

Bohlmann 2006). They are highly variable in structure (>30,000 terpenes are known) and 

occur in trees as isoprene (C5), monoterpenes (C10), sesquiterpenes (C15) and diterpenes 

(C20) (Sharkey and Singsaas 1995; Phillips and Croteau 1999; Trapp and Croteau 2001). 

Following just the name of a compound, for instance, α-pinene should not be mistaken in 

that it is exclusively released by coniferous trees like Pinus spp. For example, European 

beech (Fagus sylvatica, Fagaceae) seems to be a much stronger monoterpene emitter than 

expected. The monoterpenes of this species, studied by Dindorf et al. (2005) and 

Moukhtar et al. (2005), are dominated by sabinene with more than 90% of the daily 

terpene emission, but the typical coniferous volatiles α-pinene and β-pinene were also 

found in the VOC pattern of beech trees. This holds also true for Quercus suber, the cork 

oak (Pio et al. 2005). α-Pinene, sabinene, β-pinene and limonene were the main com-

pounds (80%) among the released terpene fraction from the oak. 

Within taxonomic groups of lower plants, the VOC patterns are more alike, based on 

a more similar biochemistry of secondary plant compounds (Asakawa 2004). This relation-

ship is treated in the scientific field of chemotaxonomy (Harborne and Turner 1984). 

However, variability of VOC patterns can be high, notwithstanding the degree of relation-

ship. The Southern beech Nothofagus dombeyi releases α-pinene in considerable amounts, 

whereas five other species of Nothofagus do not at all (Quiroz et al. 1999). A similar 

variability was shown by Harley et al. (1999) for isoprene emission of several woody and 

herbaceous plant species of Northern America. 
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2.3. Volatiles released by trunks and deadwood 

Trees provide a huge variety of plant tissues and plant surfaces. Compared to herbaceous 

plants, their surface is much bigger and more sculptured resulting in a higher variety of 

local VOC pattern and subsequent niches for interacting organisms. For example, 80% of 

VOCs stored in and released by needles of Pinus sp. and Picea sp. are identical with those 

released by the trunk of the trees, but they display significantly different quantitative 

patterns of VOCs (Sjödin et al. 2000; Schütz et al. 2004). In contrast to leaves and needles, 

there are only few systematic examinations about the influence of internal or external 

parameters on VOC patterns or released VOC quantities of wood or bark of trees (Schütz 

et al. 2004; Holighaus and Schütz 2006). However, various commercial interests lead to 

the analysis of chemical bark contents. Bark (root or trunk) as well as wood (root or trunk) 

are outstanding sources for commercial products since rich in essential oils (Wang et al. 

2005) which are often VOCs. These defence chemicals against attacking organisms often 

display antibiotic activity and are used for various aspects in human life, e.g. in medicine 

(Kalemba and Kunicka 2003), food (Burt 2004) and personal care products (Priest 2002). 

Besides, VOCs are examined for applications in biotechnical plant protection and 

biotechnical stored product protection (Manker 2005).  

At the beginning of the dieing process of a tree, a remarkable differentiation of the 

ecological system “tree” takes place resulting in a tremendous diversity of species of 

insects and micro-organisms (Harmon 1986; Moore et al. 2004). The exact point of 

initiation of the dieing process, whether caused by storm, insects, fungi or other 

circumstances, is often hard to define. Although felling or breaking down is often stated as 

the borderline between living tree and deadwood, when looking closely to physiological 

and chemical processes, a clear separation is hardly possible. Continuously during life, cells 

of healthy trees die and are rebuilt. Programmed cell death (PCD) is an integral part of 

plant development and also of defence. It occurs at all stages of the life cycle, from 

fertilisation of the ovule up to death of the whole plant. Indeed, without it, tall trees would 

probably not exist (van Doorn and Woltering 2005). Permanent stress of the environment 

like oxidative stress, heat or draught, infestation by micro-organisms, etc. causes the loss 
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of protective compounds which have to be renewed (Sharkey and Singsaas 1995; Blokhina 

et al. 2003; Loreto et al. 2006 and citations therein). The oxidation of unsaturated fatty 

acids as constituents of lipid membranes or storage compounds of cells leads to the 

production of aliphatic aldehydes, alcohols, alkanes and other VOCs (Feussner and 

Wasternack 2002). These kinds of compounds can all the time be found produced in bark 

and wood (Weissbecker et al. 2004; Holighaus and Schütz 2006). Attacks of fungi and 

insects increase oxidative stress on the plant tissue and, in the course, the emission rates of 

these VOCs (de Bruxelles and Roberts 2001; Schütz 2001). Such biotic stress occurs very 

often in living plants and in many instances it can be overcome or healed. If the plant is 

however not able to cope with the related damage, the dieing process is initiated. 

Regardless of whether biologically initiated or caused by felling, the end of a tree does not 

result in “chemical silence” since not all the cells of a tree are at the time dead. The 

defence system and other cell functions are still working, until the storage pools are empty 

and dieing is completed. In case of such deadwood, the decay process of a tree and 

wooden substrate results in an extensive release of VOCs, changing considerably due to 

abiotic environmental factors (humidity, temperature etc.) and biotic interactions (fungi, 

micro-organisms and insects) (Paiva 2000). The complexity of decay is demonstrated by 

the VOCs released from bark of a F. sylvatica trunk subsequently to felling (Figure 2-1). 

Felled beech trunks release more than 140 volatile compounds in detectable amounts 

during the first phase of decay (0-2 years after felling), up to 70 of them simultaneously. 

Differences between small bark samples hint at a high spatial variability of chemical 

processes of decay and related volatiles within one trunk (Figure 2-1; Holighaus and 

Schütz 2006). 

 

Figure 2-1 Distribution of physiological decay states on beech trunk; grey to black patches: 
fresh to seriously decayed (modified from Holighaus and Schütz 2006).  
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Figure 2-2 VOC patterns released by differently decayed bark patches on a trunk of 
European beech (data from Holighaus and Schütz 2006). 
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Starting with felling, the number of volatiles and the emission rates of aldehydes in-

crease (Holighaus and Schütz 2006). Following the decay progress, exemplary chro-

matograms yielding from a gas-chromatographic separation and subsequent mass-

spectrometric detection of VOCs released by the bark of a beech trunk are displayed in 

Figure 2-2 with the main compounds named. Several simple and branched alcohols occur 

at the beginning of the fermentation process in the headspace of bark tissue (Figure 2-2B). 

Beside terpenes, phenolic compounds as 2-methoxy-phenole, 4-methoxy-phenole and 1,2-

dimethoxy-benzene emanate during the phase of oxidising bark tissue. They vanish fast 

and the branched alcohols change to longer straight-chained alcohols (Figure 2-2B, C). At 

initial infestation with white rot fungi, up to 30 sesquiterpenes are additionally detected in 

the bark samples (Figure 2-2C). After predominant degradation of lignin and cell 

structures of the bark by fungi, only sesquiterpenes are left to release (Figure 2-2D). 

 

2.4. VOCs emitted by wood and wood products 

Wood is one of the most widespread building materials. For usage in constructions, the 

fading of natural metabolic processes in wood is ennced by drying. The dried “deadwood” 

does not any more release VOCs on the basis of metabolic processes of the wood cells 

and, also, a part of the constitutive defence VOCs evaporated during the drying processes. 

VOC release rates differ between different drying and modification processes (Otwell et 

al. 2000). Air dried wood releases 8 times more VOCs than thermally modified wood 

(Manninen et al. 2002). The thermal modification has a high impact on wood chemistry 

and constructive properties. Thermally modified wood is dominated by aldehydes 

(hexanal), carboxylic acids and esters, air dried coniferous wood by terpenes (Tjeerdsma et 

al. 1998).  

Analytical research on VOCs released by wood and wood products is performed by 

two reasons. Firstly, several VOCs released from wood are suspected to be toxic or 

cancerogenic to human beings. The main focus of examinations is therefore on toxic 

VOCs as well as on unpleasant odours (Bleich et al. 1998). Compared to solid wood, the 
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release rate of VOCs of several derived timber products is significantly reduced (e.g. 

OSB=0.25x, MDF=0.05x), whereas the rate of aldehyde emission is much higher (Barry 

and Corneau 1999; Risholm-Sundman et al. 1998; Risholm-Sundman 2002). Of high 

concern are toxic formaldehyde emissions of processed wooden products (Sundin and 

Roffael 1992; Bleich et al. 1998; Schäfer and Roffael 2000; Kloeser et al. 2007; Müller et al. 

2007). Glues and binding agents are releasers of this compound (Kloeser et al. 2007; 

Müller et al. 2007). According to Marutzky and Roffael (1977) and own examinations, 

freshly cut wood itself releases considerable amounts of formaldehyde surpassing 

sometimes even legal thresholds. However, the quantity of formaldehyde emissions of cut 

wood decreases quickly. Usually, after 6 month of storage, formaldehyde emissions of 

wood are below detection limits. Other natural compounds from wood discussed in the 

context of toxicity belong to the group of monoterpenes (Johansson 1999; Jentoft and 

Stray 2002). However, the positive affection to wooden products is strongly influenced by 

the perception of a typical wood-odour and needs also to be considered. 

The second focus on VOCs of wood material involves several indoor molds and fungi 

using the wooden substrate for growth, thereby generating additional VOCs being of 

considerable concern regarding the “sick-building-syndrome” (Mølhave et al. 1997; 

Johansson 1999; Fischer and Dott 2003; Wilkins et al. 2003; Portnoy et al. 2005; see below 

and Pemmasani et al. 2007).  

 

2.5. Volatiles released by fungi 

Fungi are organisms that obtain nutrition by out-of-body digestion, releasing a range of 

extracellular enzymes to digest their substrates. For degrading wood, they produce 

cellulases (endo- and exo-cellulases), hemicellulases, α-glucosidase and oxidase, 

phenoloxidases and laccases (Eaton and Hale 1993; Hoegger et al. 2007; Rühl et al. 2007). 

They further utilise the generated decomposition products for processing metabolism, 

extending mycelium, and in some cases, developing their fruiting bodies (Kües 2000; Kües 

et al. 2007). Besides obtaining energy and nutrients, metabolic activity yields also volatile 
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by-products including VOCs. This attributes to the typical odour of each fungus. For 

example, the edible champignon, oyster mushroom, shiitake, puffball, truffle and straw 

mushroom all have their own individual aromas (Mau et al. 1997; Venkateshwarlu et al. 

1999; Mauriello et al. 2004; Zawirska-Wojtasiak 2004; Chiron and Michelot 2005), 

motivating our appetite. What contributes to these emblematic odours or VOCs? What is 

their purpose and function? There is still much about the fungal metabolism, especially the 

secondary metabolism, to uncover. 

 

2.5.1. Classes of VOCs released by fungi 

VOCs released from wood and wood-decaying fungi range from low to high molecular 

weight and can be further sub-divided by their chemical structure (Korpi et al. 1998; Gao 

and Martin 2002; Schleibinger et al. 2005; Chiron  and Michelot 2005; Gao et al. 2005; 

Thakeow et al. 2006) into the eight broad categories of alcohols, aldehydes, ketones, acids, 

esters, S- and N-containing compounds and isoprenoids (monoterpenes, oxidised-

monoterpenes, sesquiterpenes and oxidised-sesquiterpenes) as listed in Table 2-1. 

The un-branched C8 compounds, 1-octen-3-ol, octan-3-one and octan-3-ol, are con-

sidered to be typical fungal constituents found in such diverse species as Aspergillus, 

Fusarium and Penicillium strains (Schnürer et al. 2002), Tuber borchii, Tuber mesentericum, Tuber 

excavatum (Mauriello et al. 2004; Menotta et al. 2004), Lentinus sp., Agaricus bisporus, Agaricus 

campestris, Lactarius sp., and Calvatia sp. (Overton 1994), and wild Polyporus sulfureus and 

Fistulina hepatica (Wu et al. 2005a,b). However, not only filamentous fungi emit these C8 

compounds, but, to a lesser extent, yeasts and bacteria, too (Bruce et al. 2004; Nilsson et 

al. 2004; Schleibinger et al. 2005). On beech wood, the wood rotting fungi Trametes 

versicolor, Poria placenta and Gloeophyllum trabeum all released the isoprenoides α-pinene, 3-

carene, longifolene, and cedrene in addition to the alcohols 1-octen-3-ol and octan-3-ol, 

and the ketone octan-3-one. In addition, each fungus had its own characteristic com-

pounds in the sesquiterpene-class, T. versicolor for example α- and β-barbartene, G. trabeum 

high amounts of protoillud-6-ene, and P. placenta fair amounts of daucene (Thakeow et al. 

2006). 
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2.5.2. Impact of fungal development on VOCs released by fungi 

VOCs released by fungi can change considerably during their life cycles. For instance, the 

VOCs produced by live and dead mycelium of Serpula lacrymans grown on Pinus sylvestris 

shavings were found to be different. Living mycelium released 1- octen-3-ol as a major 

volatile component, and dead mycelium 3-methylbutanal and 2-methylbutanal, but only 

trace amounts of 1-octen-3-ol (Ewen et al. 2004).  

 

Table 2-1 VOC classes as released by wood, infested wood, and micro-organisms 
(data taken from Korpi et al. 1998; Gao and Martin 2002; Schleibinger et al. 2005; 
Chiron and Michelot 2005; Gao et al. 2005; Thakeow et al. 2006) 

Chemical categories Examples 
Alcohols ethanol, isopropyl alcohol, octan-1-ol, octan-3-ol,  

1-octen-3-ol 
Adehydes acetaldehyde, bezaldehyde, furfural, nonanal  
Acids acetic acid, methyl butanoic acids, 2-methyl propanoic acid 
Ketones acetone, pyranones, hexanones, heptanones, octan-3-one 
Esters ethyl acetate, methyl propanoate 
S-containing compounds dimethy disulfide, dimethyl trisulfide 
N-containing compounds methyl pyrimidine, pyrazine, cyclobutyl amine 
Isoprenoids:  
Monoterpenes α-pinene, β-myrcene, 3-carene, limonene  
Oxidised monoterpenes borneol 
Sesquiterpenes farnesenes, barbatenes, protoilludenes 
Oxidised sesquiterpenes longiverbenone 

 

The change of VOCs in sexual development was followed in fruiting bodies of the 

ascomycete T. borchii over four different stages of spore maturation which were defined by 

the percentage of asci containing mature spores (Zeppa et al. 2004; Table 2-2). The stages 

differed in number and type of VOCs. Immature asci and asci at the end of sporulation 

released sesquiterpenes, whereas S-containing compounds are released only at the later 

stages of ascus development. Interestingly, the sesquiterpene aromadendrene released by 

the immature ascus was also found produced by T. borchii mycelium grown in the presence 
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of its host plant Tilia platyphyllos but not by free-living mycelium (Zeppa et al. 2004). In 

conclusion, vegetative and reproductive stages of fungal development produce different 

sets and also quantities of VOCs, likely as a result of the activation of different metabolic 

pathways. Therefore, VOC patterns can be used as a destruction-free probe system in 

order to explore biochemical processes underlying developmental processes of the fungi. 

 

Table 2-2 VOCs released from T. borchii fruiting bodies during ascus maturation 
[ascus stage 0: 0-5%, 1: 6-30%, 2: 31-70%, and 3: 71-90% of the sets of spores in the 
asci are mature, respectively (after Zeppa et al. 2004)] 

Ascus stage VOC-Class 
0 1 2 3 

Isoprenes • 2-methyl-5-
(1,2,2-trimethyl-
cyclopentyl)-, 
(S)-phenol 
• valencene 
• α-patchoulene 
• longiverbenon
e 
• cedrene 
• aromadendren
e 

• longifolen 
• β-cedrene 
• borneol 

• isopino-
camphone 
• 3-thujene 

• D-limonene 
• trans-ocimene 
• (R)-α-pinene 
• α-farnesene 
4-isopropyl-
tropolene 

N-containing 
compounds 

• 3-(1-
piperazinyl) 
propanamide 

   

S-containing 
compounds 

  • 5-methyl-3H-
pyran-1,2-
dithiol-3-one 
• 2-(1,1-dime-
thylethoxy)-5-
methylthiophene 

• 3-methyl-thio-
phene 
• 2,3-dihydro-5-
methyl-thiophene 
• 1-(methylthio)-
1,3-butadiene 
• 2-methyl 4,5-
dihydro-thiophene 
• 5-methyl-3H-
pyran-1,2-dithiol-
3-one 
• 5,6-dihydro-
2H-thiopyran 
• ethyl tert-butyl 
sulphoxide 
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2.5.3. Impact of substrate on VOCs released by fungi 

Growth and development of fungi are strongly dependent on nutrients and the physical 

environment (Kües 2000; Chang and Miles 2004), although they can adapt to a broad scale 

of conditions. Changes in growth conditions influence their metabolisms, resulting in 

altering VOC patterns (Wheatley et al. 1997; Gao and Martin 2002). For example during 

spirits production with carbohydrate-rich substrates such as potato or wheat, the yeast 

Saccharomyces cerevisiae produces ethanol as main product, but the individual substrate 

provides different and characteristic aroma, caused by the minor components of the yeast 

and also the substrate (Conner et al. 1998; Pinheiro et al. 2001; Kafkas et al. 2006; Porto et 

al. 2006). 

Some investigations have been carried out on the impact of different media on VOC 

patterns released by micro-organisms (Wheatley et al. 1997; Bruce et al. 2000, Fiedler et al. 

2001; Gao and Martin 2002; Gao et al. 2002; Scotter et al. 2005). Using two main groups 

of amino acid-rich and carbohydrate-rich media for microbial growth, it was put forward 

that there are VOCs unique to bacteria and fungi which are called unique microbial vo-

latile organic compounds (UMVOCs) (Gao and Martin 2002). VOCs released from 

fungi on carbohydrate-rich media are mainly alcohols, acids, aldehydes and ketones. In 

case of amino acid-rich media, higher quantities of nitrogen (N)- and sulphur (S)-

containing VOCs are encountered, for instance, cyclobutylamine and dimethyl trisulphide, 

respectively (Bruce et al. 2004). Zygomycetes, ascomycetes, and deuteromycetes are likely 

to release the S-containing compound methanethiol when propagating on protein-rich me-

dia, in contrast to basidiomycetes (Scotter et al. 2005; Table 2-3). In comparison, bacteria 

on protein-rich media release also broad ranges of VOCs, most markedly S-containing 

VOCs like dimethyl trisulfide and heptan-2-one, the latter one independently of the media 

(Gao and Martin 2002). 

Looking closer at molds, substrates have a strong effect on VOC production by 

different species. When Aspergillus spp. grow on media rich in nutrients, they proceed the 

normal primary metabolism and release in course alcohols like 3-methyl-1-butanol, 2-

methyl-1-propanol, 1-octen-3-ol and ketones like octan-3-one. Once the nutrients are ex-
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hausted, the fungi shift to special secondary metabolisms which yields changed VOC 

patterns. More and other VOCs are released, including terpineol from the terpene group. 

In case media are amino acid-rich, this leads to production of S-containing VOCs (Fiedler 

et al. 2001; Gao and Martin 2002). Moreover, some aspergilli can accept sulphur from 

inorganic substrate and release it in form of dimethyl-disulfide (Gao and Martin 2002). 

The situation is contrasting in Stachybotrys chartarum, which releases about five times higher 

quantities of VOCs, when exploiting rich media. VOCs released by S. chartarum belong to 

the group of alcohols, ketones and terpenes. Also Trichoderma spp. (Trichoderma pseudoko-

ningii, Trichoderma viride, Trichoderma harzianum) release different VOCs when grown on rich 

malt extract and poor minimal media, respectively (Wheatley et al. 1997; Fiedler et al. 

2001; Humphris et al. 2001). However, no N-containing VOCs are observed, very low 

amounts of S-containing VOCs (benzothiazole) are released in T. viride, and ethanol is 

produced in large amounts, independently of the substrate types. 

Most wood-rotting fungi belonging to the basidiomycetes on artificial nutrient-rich 

medium as well as on the natural substrate wood typically release linear aliphatic C8 

compounds such as 1-octene, octan-1-ol, 1-octen-3-ol, 2-octenal, 2-octen-1-ol, octan-3-

one, and octan-3-ol (Rösecke et al. 2000; Ewen et al. 2004).  

 

Table 2-3 Low molecular weight VOCs released from different types of fungi grown 
on C- and N-rich media, respectively (data from Scotter et al. 2005)  

Phylum Zygomycete Ascomycete Deuteromycete Basidiomycete 
Species Mucor 

racemosus 
Apergillus spp. Fusarium 

solani 
Cryptococcus 
neoformans 

Media C-
rich 

N-
rich 

C-
rich 

N-
rich 

C-
rich 

N-
rich 

C-
rich 

N-
rich 

VOCs         
Ethanol + + + + + + + + 
Acetaldehyde - + - + + - + + 
Acetone - + - + - - + - 
Methanethiol - + - + - - - - 

+ found, - not found 
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These examples from the literature document that VOCs released by micro-organisms 

are certainly useful to distinguish different groups and even species, but environmental 

and physiological conditions have to be considered. In order to gain a more consistent 

picture about growth conditions (temperature, humidity and light), kind of media and 

developmental stages have to be clearly and in depth addressed in research, since these 

factors strongly affect the metabolism, leading consequently to changes in VOC patterns 

(Table 2-4). 

 

2.6. Volatiles released by fungus-infested wood 

As discussed already above, VOCs released from fungi are strongly dependent on sub-

strates and the stage of the life cycle and development. Wood as a substrate for wood-

decaying fungi can be expected to influence the fungal metabolism. Fungi attack and 

colonise wood in different ways, depending on the properties of the wood. Wood as a 

substrate can be living or dead - namely in form of a standing tree, a felled tree, storage 

wood and wood in service, respectively -, engaging more or fewer living cells in the wood 

with the ability to render the substrate. When standing in the forest, the tree is a suitable 

nutrition source for fungi since it contains nutrients like sugars, amino acids and minerals. 

Anyway, when fungi infect a living tree, they have to adapt to or protect themselves 

against the tree defense system. In dead wood in contrast, most defence systems of the 

tree are not anymore active. However, dead wood provides less free sugar and amino 

acids, and more polymerised substrate which is more difficult to digest. Therefore, when 

fungi are growing on living or dead wood, the fungal metabolism and, thus, the fungal 

VOC patterns will be differentially affected. Besides nutrient contents, the water content 

of the wood is also severely affecting fungal growth and development, why in European 

standard EN 335-1 (1992) the hazard class for fungal decay is related to the water content 

in wood. 
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Table 2-4 VOCs released by micro-organisms (data taken from Wheatley et al. 1997; 
Bruce et al. 2000, 2004; Fiedler et al. 2001; Gao and Martin 2002; Gao et al. 2002; 
Scotter et al. 2005)  

Micro-organisms Bacteria Zygo-
mycetes 

Asco- 
mycetes 

Deutero-
mycetes 

Basidio-
mycetes 

Nutrients (C/N rich) C N C N C N C N C N 
VOC categories           
Alcohols           
• C1-C5 
• C6-C10 

+ 
 

+ + + + 
+ 

+ 
+ 

+ + + 
+ 

+ 

Aldehydes           
• C1-C5 
• C6-C10 

  
+ 

 +  + 
+ 

 + + 
+ 

+ 

Ketones           
• C1-C5 
• C6-C10 
• C10+ 

+ 
+ 
+ 

+ 
+ 
+ 

  + + 
+ 

 + + 
+ 

 

Acids           
• C1-C5 +          

Esters           
• C1-C5 +          

Alkanes/Alkenes           
• C1-C5 
• C6-C10 

+    + + 
+ 

 
+ 

   

S-containing           
• C1-C5 +   +  +     

N-containing           
• C1-C5 
• C6-C10 

 
+ 

+         

Terpenes           
• monoterpenes 
• sesquiterpenes 

+    + 
+ 

 +  + 
+ 

 

 
 

Most fungi that infest and decay wood belong to the phylum of basidiomycetes, more 

precisely to the class of homobasidiomycetes. These wood-decaying fungi are divided into 

two main types, brown- and white-rot fungi, respectively, according to the colour of the 

wood in an advanced stage of decay. This difference results from their ability to degrade 

lignin. Brown rot fungi can degrade all components in wood but lignin. The left-over 

phenolic substrate lignin turns brown in colour. In contrast, white rot fungi can degrade all 
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types of wood components, even lignin. Their decay mechanism resembles the action of a 

bleaching agent resulting in whitish-stained cellulose as left-over from the wood (Hoegger 

et al. 2007). Another type of fungi softens the cell walls of wood by decay reactions. Such 

species are therefore called soft-rot fungi and they belong mostly to the phylum of 

ascomycetes. So far however, little is known between the effect of different rotting 

abilities of fungi and the release of respective VOC patterns (Thakeow et al. 2006). 

 

2.7. Sick building syndrome (SBS) as a consequence of VOCs 

When micro-organisms infest buildings, they may produce a potentially hazardous en-

vironment. Individuals exposed to environments that contain high concentrations of 

airborne contaminants from microbial organisms report health symptoms including eye 

and sinus irritation, headache, nausea, fatigue, congestion, sore throat, and even toxic 

poisoning. The term “sick-building syndrome” (SBS) was first coined in the mid-1980s 

referring to ill-health symptoms arising from poor indoor air quality, that further on have 

been frequently correlated with the presence of fungi (Ahearn 1996). Current methods for 

detecting microbial contamination include air and material sampling with fungal culture 

analysis, air sampling coupled with gas chromatography-mass spectrometry, and visual 

inspection (Pasanen 1992; Schiffman et al. 2001). Several micro-organisms infest buildings 

and release microbial volatile organic compounds (MVOCs). Typical fungi are of the 

genera Aspergillus/Eurotium, Penicillium, Cladosporium, Trichoderma and Stachybotris. MVOCs 

released are mainly alcohols (pentanoles, hexanoles, octanoles), ketones (hexanones, 

heptanones, octanones), and a few N- and S-containing compounds (pyrazine and 

dimethylsulfide, respectively) (Wilkins et al. 2003; Nilsson et al. 2004; Schleibinger et al. 

2005).  

Besides contaminants released by micro-organisms, wooden buildings themselves also 

release VOCs which contribute to SBS. VOCs released from several wood species were 

examined (Risholm-Sundman et al. 1998), i.e., ash, beech, maple, birch, oak, cherry, rubber 

wood, pine and spruce. Acetic acid, a compound of corrosive nature, was emitted from 



 
- 50 - 
 

 

every wood species, except pine and spruce. In contrast, terpenes are generally released 

from pine and spruce wood. Especially 3-carene may irritate skin and mucous membranes. 

Allergy and chronic lung function impairment might be elicited after prolonged exposure 

(Falk et al. 1991).  

 

2.8. What is the role of VOCs for insects? 

Wood is the basis of existence for adapted fungi and insects, influencing each other’s 

living conditions. In the context of the trophic interaction between wood, insects, and 

fungi, we have seen the functions of the participants and the variation within. Wood can 

be living or dead, actively or passively defensive. It can be infested by specific insects 

and/or fungi-under indoor and outdoor environments. Insects can follow just wood 

VOCs (Weissbecker et al. 2004), fungal VOCs (Fäldt et al. 1999; Holighaus and Schütz 

2006) or defense signals (Schütz and Weißbecker 2003). On the one hand, this broad and 

diverse information is a basis for diverse evolutionary development, marking ecological 

partitioned niches and suitable environments for hosting species such as insects. On the 

other hand, this requires a high plasticity of appendant organisms as receivers of the 

available chemical information (Johne et al. 2003, 2006a). Hence, relying on common 

VOCs keeps flexibility in a changing and dynamic environment whereas relying on a 

specific VOC as a kind of marker compound for suitable host plants represents the advan-

tage of highly specific adaptation. Thus, research on a multitrophic system using VOCs as 

information needs advanced techniques in trace analysis and interpretation (Weissbecker 

et al. 2004). Sometimes, the crucial information is small and silent, maybe hidden behind 

abundant noises. 
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2.9. VOCs mediating insect interaction with trees, wood and fungi 

2.9.1. Insects on living trees 

Insects attacking living trees use the typical host VOCs released by the tissue sought after. 

In stems of conifers, for example, several monoterpenes such as α-pinene, β-myrcene, 

terpinolenes and β-pinene are attractive to a large number of conifer inhabiting beetles: an 

overview of the chemical ecology of bark beetles (Scolytidae) in this complex olfactory 

landscape is given by Byers (2004), of weevils (Curculionidae) by Schlyter (2004), of long-

horn beetles (Cerambycidae) by Allison et al. (2004), and of jewel beetles (Buprestidae) by 

Schütz et al. (1999a, 2004). The influence of VOCs on insect behaviour is well studied in 

the case of Picea abies in the context of infestation with the bark beetle Ips typographus. A 

cascade of VOCs is released during the process of infestation and colonisation by the 

beetle: primary attractive VOCs from the bark draw beetles to a weakened tree, followed 

by production and release of aggregation pheromones by the insects. Subsequently, the 

release of VOCs from the tree indicating exhaustive overuse of the plant resource leads to 

repulsion and dispersal of the beetles (Byers 2004). The prospect of successful infestation 

led obviously during evolution to a high sensitivity of tree invading insects to VOC signals 

related to different stress factors. Defence reactions of the tree become transparent 

through shifts in VOC abundance and composition (Petterson and Boland 2003; Schütz et 

al. 2004). Franceschi et al. (2005) reviewed defence aspects by the wood anatomy influenc-

ing chemical defences against insects and blue-staining fungi. Both, anatomical and chemi-

cal defense turn out to be strongly interlinked (Hudgins et al. 2004; Erbilgin et al. 2006; 

Zeneli et al. 2006).  

 

2.9.2. Fungus-insect interaction on trees, trunks and deadwood 

Fungi often participate in tree-insect-interactions. These interactions with trees and wood 

are reviewed by various authors in the past (e.g. Buchner 1953; Wilding et al. 1989; Vega 

and Blackwell 2005). Insects can be a vector of fungi (Paine et al. 1997), feed on the fungi 

degrading wood (Mueller et al. 2005), or even host endosymbiotic fungi for wood 
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digestion (Buchner 1953). Especially many xylophageous insects feeding on deadwood co-

evolved with fungi to complex symbiotic coenosis (Douglas 1989; Klepzig et al. 1996; 

Dillon and Dillon 2004). Enzymatic detoxification abilities of these endosymbiotic fungi 

make otherwise protected lignocellulosic resources accessible - not at least hence, these 

fungi and their enzymes are of commercial interest (Dowd 1992). Conversely, because of 

competition for the same resource volatiles from wood decaying fungi can be repellent for 

insects (Johne et al. 2006a) or toxic fungal metabolites (VOCs and non-VOCs) may keep 

insects away from the wood (Seybold et al. 2006). Overall, even healthy trees are not 

aseptic. Fungal interactions with living trees are known in forms of latent infections of the 

xylem or endophytic colonisations of leaves (Hendry et al. 2002), not to mention the 

symbiotic mycorrhiza (van der Heijden and Sanders 2002). In the xylem of European 

beech, for example, Hypoxylon fragiforme was identified as a latent invader besides other 

casual inhabitants (Hendry et al. 2002). Chemotaxonomic studies of this species give hints 

to metabolites released by the fungus (Stadler et al. 2004). However, up to now there are 

no data about chemical reactions, resultant VOCs, or insect preferences emerging from 

this type of fungus-tree interaction. 

The insects related to tree trunks can be grouped roughly into phloem- and xylem-

feeders. Phloem is rich in nutrients but strongly shielded by the active plant defense 

system and xylem is hard to digest but less protected (Lieutier 2004). Fungi can play a 

fundamental role for both groups of insects to overcome the respecttive defensive systems 

(Dowd 1992). Moreover, insects may feed on fungi utilising the ability of fungi to 

catabolise cellulose (Watanabe and Tokuda 2001). Some xylophagous or deadwood insects 

are therefore grouped as mycetophagous insects, too (Bouget et al. 2005). For example, 

the family of bark beetles (Scolytidae) with worldwide about 6000 species presents a huge 

variability of associations with trees and fungi (Jacobs and Wingfield 2001; Kolařík et al. 

2005). These beetles differ widely in their ecology and biochemical adaptations to their 

host trees. Within this taxonomic group are phloem- and xylem feeders, ambrosia beetles 

with a compulsive association to symbiotic fungi and there are also several facultative con-

nections between bark inhabiting insects and fungi (Farrell et al. 2001; Aukema et al. 2005; 

Mueller et al. 2005). The majority of Scolytidae are phloem-feeders with obviously 
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mutualistic relationships to their fungal associates but the strength of interaction is still 

subject of considerable debate. Several cases are known where insects act as vectors of 

serious fungal pests, most noticeable when non-indigenous, newly introduced, and thus 

not adapted to a given environment (Harrington et al. 2001; Allen and Humble 2002). 

Many fundamental aspects of the degree of dependence in such insect-fungus relation-

ships are however still poorly known (Kirisits 2004). A strong relationship to fungi is 

known in the scolytid xylophagous ambrosia beetle Trypodendron domesticum and the 

lymexylid Hylecoetus dermestoides which both infest the xylem of F. sylvatica trees. They follow 

the first chemical hints of weakness in living and especially freshly cut trees and initiate 

ongoing decay processes by introducing several associated “ambrosia” fungi (Farrell et al. 

2001; Holighaus and Schütz 2006). VOCs are the main signals for these beetles obtaining 

information about precise decay and defence status of trunk patches (Holighaus and 

Schütz 2006). Electrophysiological techniques (EAG = electroantennography) use insect 

antennae, which are often much more sensitive to VOCs than trace analytical methods, to 

locate within the hundreds of VOCs those, carrying the information of suitability. General 

and omnipresent VOCs are little informative. Others correlate with general plant 

physiological processes and are therefore useful for an assessment of suitability of a trunk 

as breeding substrate. Further VOCs give highly specific information of e.g. certain fungal 

species colonising the wooden substrate which can be indispensable for insect 

development and hence lead to attraction (Belmain et al. 2002), or which are even fatal 

and have to be avoided. Evolution eventually led to highly specific adaptations which 

turned VOCs into triggers of these complex interactions. By observing these sensitive sig-

nals with analytical techniques, we can obtain the state of wood in aging, decaying and the 

status of interaction or infestation with fungi and insects (Weissbecker et al. 2004; Holig-

haus and Schütz 2006; Thakeow et al. 2006). 
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2.9.3. Insects on wood and wooden products 

Not all insects feeding on wooden substrate necessarily need fungal associates. There are 

species without as Ergates faber (Cerambycidae), producing own endogenous cellulases. 

This ability for cellulose degradation is found sometimes in other insect families, too, for 

example in cockroaches (Blattaria) and termites (Isoptera) (Douglas 1989; Watanabe and 

Tokuda 2001). Beside “wood worms” which are larvae from the family of Anobiidae, the 

old house borer Hylotrupes bajulus (Cerambycidae) is a widespread insect pest of coniferous 

timbers in buildings. Without any fungal support it can cause substantial damage to roof 

timbering or framework houses even in temperate climate. An understanding of the 

volatiles relevant for the orientation of H. bajulus could help to find new methods for 

protection of wood and a control of the beetle (Reddy et al. 2005a). H. bajulus is very 

delicate in the choice of sites for mating and oviposition and obviously, it is guided by 

olfactory cues. Recent behavioural studies assigned importance to monoterpenoid hydro-

carbons as attractants (Fettköther et al. 2000; Reddy et al. 2005b). A direct investigation of 

the olfactory response of H. bajulus to original odour samples of its host trees by GC-

EAD/MS yielded a more complex mixture of terpenes, aldehydes, alcohols and other 

hydrocarbons as VOCs being important to H. bajulus (Weissbecker et al. 2004). This 

knowledge will be crucial for the assessment of thermal wood treatments or chemical 

wood modification techniques for protecting constructional wood without any poisonous 

chemicals, just by reducing olfactory traceability and attraction for the old house borer. 

Siricid woodwasps (Siricidae) (Thomsen and Koch 1999) and Anobiidae, like the death 

watch beetle Xestobium rufovillosum (Belmain et al. 2002), are xylophagous insects which 

have acquired fungal associates and cause substantial damage on wood and wooden 

products prior and during service. Both are examples for endosysmbiotic relationships to 

fungi. Ambrosia beetles (Holighaus and Schütz 2006), as described above, are known for 

ectosymbiotic relationships. In termite-species (Isoptera), (Brune and Friedrich 2000) both 

types of symbiosis can be found.  

 

 



 
2. VOCs for Wood Assessment - 55 - 
 

 

2.9.4. Insects on fungi 

Other beetles, for instance of the family of Cisidae, do not bother to prepare the wood for 

symbiotic fungi but just feed in more or less specialised manner on fruiting bodies of 

bracket fungi (Jonsell and Nordlander 2004). Fomitopsis pinicola and Fomes fomentarius, 

bracket fungi growing on tree trunks of Pinus and Fagus species, respectively, were shown 

to release C8 compounds, such as 1-octene, octan-1-ol, octan-3-ol, 2-octene-1-ol, and 1-

octen-3-ol, and sesquiterpenes such as β-barbatene. The cisid beetles Cis glabratus and Cis 

quadridens can discriminate the host odour of fruiting bodies of F. pinicola and F. fomentarius, 

respectively (Fäldt et al. 1999). Moreover, predatory Anaspidae feeding on cisid beetles, 

namely Anaspis marginicollis, Anaspis rufilabris and Epinotia tedella, were significantly attracted 

to 1-octen-3-ol released predominantly by damaged fruiting bodies of the bracket fungi 

(Fäldt et al. 1999). These different degrees of specialisation in insects for fungus infested 

wood might be used in biomimetic sensor systems for the assessment of wood with re-

spect to fungal infestation. 

 

2.10. Techniques for assessing wood quality on the basis of VOCs 

It is a bionic concept to utilise VOCs as a parameter for wood quality assessment: This 

concept is inspired by the impressive achievements of insects in performing this task just 

by olfaction and taste. However, the approaches to copy these “inventions of nature” are 

so far sparse. 

 

2.10.1. Biosensors 

The selectivity and sensitivity of biological recognition processes motivated the develop-

ment of biosensors. Biosensors are miniature measuring devices consisting of a biological 

recognition component in close spacial and functional contact with a physical transducer 

unit. The biocomponent utilised can be of different levels of organisation: whole (micro-) 

organisms in organismic biosensors, whole sensory systems in biosensors on the basis of 



 
- 56 - 
 

 

sensory organs, and enzymes, antibodies, or receptor-proteins as well as nucleic acids in 

bio-molecular biosensors. The physical transduction unit is needed to transduce analyte 

caused changes of the biocomponent (heat, mass, light, resistance, capacity, current, 

potential, ...) into output signals that can be processed by electronic data processing units 

(Wollenberger et al. 2000; Pemmasani et al. 2007). 

Biosensors for detecting volatile compounds principally fight the problem that 

biocomponents tend to deteriorate when exposed to air. Especially biomolecules have to 

be protected by membranes which are hindering diffusion of VOCs and thus, 

compromising sensitivity. Hence, most biosensors utilising biomolecules as a bio-

component are relying on extraction of VOCs by aqueous solvents, as it is done for the 

amperometric enzyme biosensor for detecting phenolic compounds from wood pulp 

(Rosatto et al. 2001), and the amperometric enzyme biosensor for the assessment of wood 

ageing (Campanella et al. 2005). 

In contrast, biosensors on the basis of immobilised micro-organisms show 

considerable working stability in air. One major field for these biosensors is the mea-

surement of complex parameters like toxicity. Biosensors for the toxicity of VOCs using 

recombinant bioluminiscent Escherichia coli bacteria (Gil et al. 2000; Mwinyihija et al. 2005) 

or different strains of algae (Podola et al. 2004) were designed, which might be applicable 

for wood quality assessments with regard to potential health implications of wood 

materials. Moreover, biosensors on the basis of immobilised micro-organisms were 

proposed for the analysis of fermentation characteristics of spoilage micro-organisms 

(Wang and Wang 2002). This proposal was picked up utilising a potentiometric biosensor 

based on immobilised yeast cells (Rotariu et al. 2004), and for the analysis of microbial 

communities utilising an array of electrochemical microsensors and microscale biosensors 

selectively responding to volatile fatty acids based on immobilised bacteria (Meyer et al. 

2002; Revsbech 2005). These biosensors might be applicable for wood quality assessments 

with regard to microbial infestation and degradation. 
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Biosensors on the basis of insect olfaction provide unrivalled measuring rates, 

selectivity and sensitivity in the analysis of VOCs in air (Schroth et al. 1999). Integrating 

ecological and behavioural observations with electrophysiological measurements of 

antennal responses to VOC mixtures corresponding to specific situations (for instance: 

forest fires) yielded sets of insect antennae and marker compounds for the detection of 

these situations. The black jewel beetle (Melanophila acuminata) was found to be attracted by 

forest fires, because burnt wood is the only suitable substrate for bringing up its offspring. 

The antennae of the black jewel beetle were proved to be highly sensitive and selective to 

guaiacol derivatives, compounds which are generated by the pyrolysis of wood (Schütz et 

al. 1999a). The antennae and with them the set of detected compounds can thus be 

appointted by the biosensor-designer to assess wood species and fire parameters (tempera-

ture, oxygen access) involved in the forest fire in distances of kilometres (Schütz 2004). A 

few of the compounds recorded by the beetle’s antennae are recognised to be of special 

interest to coopers´ thermally modified oak wood used to produce barrels for wine storage 

(Chatonnet et al. 1999; Campbell et al. 2005), identifying a promising field of application 

for such a biosensor in process and quality control of thermally modified wood. Thermal 

and chemical wood modification is recently discussed to replace treatments of 

construction wood with poisonous biocides (Mai and Militz 2007). The house borer H. 

bajulus is one of the major reasons for this problematic biocide treatment (see above). Be-

sides terpenes, there are aldehydes involved in detection and classification of wood by the 

beetle (Weissbecker et al. 2004). A biosensor on the basis of the antennae of H. bajulus can 

be useful to assess the VOC patterns generated by different wood modification techniques 

with regard to the detectability and acceptability of treated wood by this dangerous beetle.  

The detection and characterisation of fungal infestation and decay in construction 

wood prior to and during service is another important task by the fact that fungal infesta-

tion can have deleterious impacts on the mechanical stability of construction wood. 

According to their ecology and behaviour, different insect antennae respond differentially 

to microbial VOCs. However, virtually every insect examined responds to branched and 

linear C-8 compounds as markers for microbial activity (Fäldt et al. 1999; Schütz and 

Weißbecker 2003; Holighaus and Schütz 2006). With this knowledge, biosensors on the 
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basis of insect antennae for the infestation by micro-organisms were established (Schütz et 

al. 1999b). Despite the high performance of this kind of biosensors, their field of 

application is limited to on-site-measurements because of the limited life-time of the 

biocomponent antennae, ranging from hours to days. Further development of biomimetic 

sensors employing key principles of stablisation, pre-filtering and recognition of insect 

olfaction will be necessary in order to extend life time and availability of sensor devices on 

the basis of insect olfaction (Schütz et al. 2001). 

 

2.10.2. Electronic noses 

The biological olfactory system inspired furthermore the development of electronic nose 

technology. An electronic nose is a machine that is designed to detect and discriminate 

complex mixtures of VOCs (odours) using a sensor array (Eberheim et al. 2004). The 

sensor array consists of broadly tuned (non-specific) sensors that are treated with a variety 

of odour-sensitive biological or chemical materials. An odour stimulus generates a 

characteristic fingerprint from the sensor array. Patterns or fingerprints from known 

odours are used to construct a database and train a pattern recognition system so that 

odours within the trained range can subsequently be classified and identified. Thus, 

electronic nose instruments are comprised of hardware components to collect and 

transport odours to the sensor array as well as electronic devices to digitise and store the 

sensor responses for signal processing (Pearce et al. 2003). 

The pulp and paper industries in eastern Canada need to differentiate black spruce, 

balsam fir, and jack pine because their proportions in wood chips affect the quality of the 

pulp and paper produced. A prerequisite to determine their proportions is to be able to 

rapidly identify the wood of the three conifers. Using a combination of marker 

compounds and GC profiles of hexane extracts made a distinction even of the sapwood of 

these tree species possible (Pichette et al. 1998). However, this initial method is too slow 

and expensive to be used by paper mills. A more advanced electronic nose consisting of 

32 conducting polymer sensors (CyranoseTM 320) was able to rapidly discriminate and 

identify black spruce, balsam fir and jack pine wood chips, utilising principal component 
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analysis as a data analysis tool (Hobbs et al. 2000; Garneau et al., 2004). In another 

application, thermally modified oak wood for wine barrels was assessed regarding its 

toasting level by an electronic nose consisting of 6 metal oxide semiconductor sensors uti-

lising principal component analysis, discriminant function analysis and neuronal network 

techniques for data analysis (Chatonnet 1999). 

The growth of bacteria and fungi on organic matter generates a broad range of VOCs 

(see above). Most studies with electronic noses deal with the detection and classification of 

bacteria (Holmberg 1997; Gardner et al. 1998), using sensor-arrays consisting of six to nine 

metal oxide semiconductor gas sensors. Few reports are available for fungal detection: with 

an accuracy of 93% six spoilage fungi of meat (four Eurotium spp., each one Penicillium and 

Wallemia species) were classified on blood agar 24 hours after infestation and prior to visible 

growth, using an electronic nose consisting of 14 polymer sensors (Keshri et al. 1998). With 

the same electronic nose, seven homobasidiomycetes (Agaricus arvensis, A. bisporus, A. cam-

pestris, Agaricus maleolens, Agaricus nivescens, Pleurotus sajor-caju, and Volvariella bombycina) were 

differentiated (Keshri et al. 2003). Twenty-four hours after their inoculation on rich potato-

dextrose-agar (PDA) and a minimal medium (Czapek-Dox agar), 5 fungi suspected to be in-

volved in SBS (Aspergillus flavus, Aspergillus niger, Cladosporium cladosporioides, Penicillium 

chrysogenum, and S. chartarum) were detected and classified by an electronic nose designed at 

North Carolina State University (NC State E-Nose) consisting of 15 metal oxide sensors. 

The classification was independent on type of the growth medium. The raw data of this 

analysis were transferred to an electronic data processing system. They were first compressed 

using windowing functions which provided a set of four features for each sensor. Linear-

discriminant analysis was then applied to the compressed data to maximise class separability. 

Sixty percent of the compressed data were randomly selected to form a training set for the 

classification algorithms. K-nearest-neighbours (KNN) and least-squares (LS) techniques 

were both employed to classify the remaining 40% of the compressed data. The KNN 

technique resulted in 90% accuracy of species identification after the first day of inoculation 

(Schiffman et al. 2000). 

 



 
- 60 - 
 

 

2.11. Outlook 

Bionic noses integrate two different approaches by copying algorithms used by nature in 

odour perception on different level of organisation. Biosensors selectively tuned to marker 

compounds are amended by algorithms of electronic noses operating with an array of 

broadly tuned chemical sensors in order to discriminate complex situations based on a set 

of marker compounds.  

As a complex sensing device, an insect antenna can serve as a blueprint for technical 

sensor optimisation in a “constructive bionics” approach, using for instance the principles 

of the porous cuticle for sample enrichment, as shelter against air and dust, and as a 

chemical pre-filter. Algorithms used by insects for contrast enhancement in odour mixture 

recognition can be exploited as a source of inspiration in an “informational bionics” 

approach. The identification of marker compounds or pattern recognition algorithms 

from sensory ecology of insects interacting with wood and degrading micro-organisms 

might serve as a guideline in a “process bionics” approach in the development of new 

bionic sensors for wood assessment. Thus, in the near future the possibilities in wood as-

sessment can be considerably extended by thorough application of a bionics/biomimetic 

approach. 
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3.1. Abstract 

Three types of wood-rotting fungi, Trametes versicolor, Poria placenta and Gloeophyllum trabeum 

were inoculated on beech wood (Fagus sylvatica). These fungi were chosen because they are 

employed in standard procedures testing wood durability. Volatile organic compounds 

(VOCs) were sampled for twelve weeks after inoculation using solid phase 

microextraction (SPME) and were analysed by gas chromatography- mass spectrometry 

(GC-MS). Beech wood inoculated with those three different fungi released specific 

patterns of VOCs. The VOCs were identified and categorised into two groups: C5-C8 

compounds and terpenoids. Compounds in the first group like 1-octen-3-ol, 3-octanone, 

and 3-octanol were common in all fungal infested samples. Additionally, some 

sesquiterpenes were species specific. α- and β-Barbatene were characteristic for T. versicolor-

infected beech, protuillud-6-ene was characteristic for G. trabeum-infected beech, and 

daucene was characteristic for P. placenta-infected beech. Monitoring the VOCs released 

from fungal-infected wood could be a promising method for a fast and non-destructive 

screening of wood quality. 

 

Keywords: wood decay, fungi, GC-MS, SPME, VOCs, Trametes versicolor, Poria placenta, 

Gloeophyllum trabeum 
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3.2. Introduction 

The major agents contributing to wood degradation are bacteria, fungi, insects, and marine 

borers (Robert and Morrell 1992; Eaton and Hale 1993). Wood degradation compromises 

important properties of wood. Therefore, wood quality has to be examined prior to use. 

Wood degrading fungi release enzymes reacting with the wood substrate, i.e., celluloses, 

hemicelluloses, and lignin. The degradation of wood substrate and the metabolism of the 

fungi yield different degradation products and metabolites. Some of these compounds can 

vaporise at room temperature as ‘volatile organic compounds’ (VOCs) and can indicate 

wood degrading activity of fungi. There have been approaches in different fields to 

perform quality assessment by monitoring VOCs. In food and beverage industry, VOCs 

are used for evaluation of wine (Begala et al. 2002) and cheese quality (Trihaas et al. 2005). 

In medicine, VOCs of human breath are used for diagnosis of diabetics (Deng et al. 2004) 

and halitosis (van den Velde et al. 2007). In addition, volatile metabolites were used as 

indicators for potential health effects because of indoor climate, commonly known as 

“sick-building syndrome” (Sunesson et al. 1995; Griffith et al. 2007). This study assesses if 

monitoring VOCs might become a promising method for non-destructive and fast 

evaluation of microbial activity on wood. For this purpose we investigated the VOCs 

released from beech wood samples (Fagus sylvatica) infected by different types of wood-

rotting fungi (Basidiomycetes), Trametes versicolor, Poria placenta, and Gloeophyllum trabeum 

during time course of infection using solid phase microextraction (SPME) technique.  

 

3.3. Materials and methods 

3.3.1. Fungal culture preparations 

The cultures of three wood-rotting Basidiomycete fungi, T. versicolor (white rot, WR), G. 

trabeum (brown rot, BR) and P. placenta (BR) were kindly provided by Dr. Ulrich Junga, 

Department of Wood Biology and Wood Product, University of Göttingen. The untreated 

beech wood (Fagus sylvatica), approximately 100-year old from Ebergoetzen, North-East 
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from Goettingen, Germany, was used in this experiment as a substrate. The sapwood was 

cut into approximately 1 x 1 x 1 cm3 cubelets, and 12 grams of those pieces were filled in 

an 60-ml septum-capped vial, soaked with 6-ml tap water and were consequently 

autoclaved for 20 min (121°C, 100 kPa). Each of these samples was inoculated with 1 cm2 

mycelium patch of T. versicolor, P. placenta or G. trabeum. The wetted and un-inoculated 

samples were kept as control samples throughout the whole experiment. The cultures 

were incubated in the darkness at 22°C and 70% relative humidity for 12 weeks.  

 

3.3.2. VOC sampling  

The sampling was carried out 1, 2, 3, 4, 8, and 12 weeks after inoculation at room 

temperature. VOCs released to headspace were sampled by solid phase microextraction 

(SPME), 85 μm Carboxen™/Polydimethylsiloxane (PDMS) StableFlex™ fibre type 

(Supelco, USA). Before sampling, the fibre was cleaned and sterilised by inserting to a 

250°C injection port for 5 min.  For sampling the fibre housed inside the needle was 

pierced through a septum into the headspace of the vial and was exposed to adsorb the 

VOCs for 30 min. After sampling the fibre was retracted into the needle and was 

afterwards directly inserted into the GC injection port and exposed for desorption and 

further analysis. The control samples were taken in parallel throughout the whole 

experiment.  

In order to mimic the dynamically natural system and to monitor the fungal VOCs 

possibly released, the vials were manually shaken for inflicting small damages to the 

mycelium. The vials were sampled three hours after damage. Under natural conditions 

mycelium is frequently damaged by wind movement or insects. 
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3.3.3. VOC analysis using gas chromatography and mass spectrometry 

(GC-MS) 

A gas chromatograph (Agilent Technologies, model 6890N) connected with a mass 

spectrometer (Agilent Technologies, MS model 5973N) was used for VOCs analysis. The 

column was HP-5MS (30 m x 0.25 mm, i.d., 0.25 μm film thickness), and helium was used 

as a carrier gas at 1.0 ml min-1. The GC run was started with the initial temperature of 

40°C and held for 1.5 min, then heated up to 200°C with a heating rate of 6°C min-1 and 

held at this temperature for 5 min. MS was carried out with the mass scan range of 15-300 

amu, 230°C source temperature and EI mode at 70 eV. Enhance chemstation version 

D00.00.38 (Agilent Technologies), the Mass Spectral Search library of the National 

Institute of Standards and Technology (NIST, Gaithersburg, USA), and the database of 

Massfinder version 3.0 software together with the library “Terpenoids and Related 

Constituents of Essential Oils” (Hochmuth, König, Joulain, Hamburg, Germany) were 

used for preliminary chromatogram interpretation. The analysis was confirmed by 

matching of mass spectra and retention times with those of authentic standards. 3-methyl-

1-butanol (98%, Aldrich), 1-octen-3-ol (>98%, Merck), 3-octanol (97%, Merck), 3-

octanone (>96%, VWR), 1-octene (98%, Aldrich), α-pinene (98%, Sigma), 3-carene 

(>98.5%, Fluka), α-cubebene (97%, Aldrich), (+)-longifolene (98%, Aldrich), copaene 

(>90%, Fluka), chamigrene (~90%, Fluka). 

 

3.4. Results 

3.4.1. Fungal cultures 

After one week of inoculation, the mycelium of T. versicolor, G. trabeum and P. placenta grew 

cover the upper part of wood stacks in vial. T. versicolor and P. placenta mycelium were white 

in colour, but G. trabeum was brownish yellow. On the third week after inoculation, all of 
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them did not grow well. The mycelium started to grow well again in the eighth and twelfth 

weeks of inoculation.  

 

3.4.2. VOC analysis 

In this experiment we investigated the VOCs released from fungal-infected wood by 

inoculating beech either with T. versicolor, P. placenta or G. trabeum. The results are shown in 

Table 3-1 and Figures 3-1, for beech inoculated with T. versicolor, P. placenta and G. trabeum, 

respectively. During the whole course of experiments, these samples of rotted beech wood 

released individual patterns of VOCs. These volatiles included chemicals as alcohols (1-

methyl-3-butanol, 1-octen-3-ol and 3-octanol), ketones (3-octanone), aromatics (2,5-dimethyl 

furan), and sesquiterpenes (barbartenes and 6-protoilludene). Consequently, they were 

grouped into two categories, C5-C8 compounds and terpenoids. The monoterpenes α-

pinene and 3-carene were detected in beech wood control samples. Fungal infected 

samples without any mechanical damage to the mycelium released less volatiles than the 

damaged samples, especially in samples infected by the fungi T. versicolor and P. placenta, 

respectively. The compounds identified in these two beech sample sets infected with these 

two wood-rot fungi were 1-octen-3-ol, 3-octanone and 3-octanol, contributing a 

mushroom-like aroma to these two fungal- infected samples. In contrast, G. trabeum-

infected beech, released many sesquiterpenes even without any damage on mycelium. The 

mixture of those volatiles resulted in pleasant and fruity odour. When the mycelium was 

ruptured, different compounds were released and the quantities increased, especially eight-

carbon containing compounds (C8 compounds). Those, for example, were 1-octene, 3-

octanone, 3-octanol, and 1-octen-3-ol which are considered as typical compounds in 

mushrooms (Combet et al. 2006). In addition, many sesquiterpenes were released and 

some were typically released from each fungal species. For instance, α- and β-barbatene 

were individually found in beech infested with T. versicolor, 6-protoilludene was detected 

only from beech infested with G. trabeum, and daucene was specific to beech infested with 

P. placenta.  
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Table 3-1 VOCs released from fungal-infected beech (Fagus sylvatica)  

VOCs Retention

  
Trametes 
versicolor 

  
Poria placenta 

  
Gloeophyllum 

trabeum 

  index 1 2 3 4 8 12 1 2 3 4 8 12 1 2 3 4 8 12 

Alcohols                    

3-methyl-1-butanolS 735 + + + + +        +      

1-octen-3-olS 980 +     +   +  + + +  +   + 

3-octanolS 995 + +    + + + +  +        

Ketones                    

3-octanoneS 987 + +  +  + + + + + + + + + + +  + 

Ethers                    

2,5-dimethyl furanL 706     +              

Esters                    

propyl propanoateL  +                  

Hydrocarbons                    
1-butyl methyl 
cyclopropane/1-octeneL 789 +     +      + +     + 

Terpenoids                    

α-pineneS 935 + + + + + + + + + +   + + + + +  

3-careneS 1011     + + + +     + + +    

α-cubebeneS 1359 +   +  +  + +          

α-longipineneL 1365 +                  

dauceneL 1391       + + + +         

6-protoilludeneL 1391             + + + + + + 

β-cubebeneL 1402 +     +   +          

sativeneL 1411 +   +  +  +  +   +      

β-longipineneL 1417 +     +             
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Table 3-1 continued 

VOCs Retention

  
Trametes 
versicolor 

  
Poria placenta 

  
Gloeophyllum 

trabeum 

  index 1 2 3 4 8 12 1 2 3 4 8 12 1 2 3 4 8 12 

longifoleneS 1424 + +                 

α-barbateneL 1429 + + +  + +             

β-cedreneL 1439 + +  +  +       +      

copaeneS 1441        +     + + + + + + 

muuloreneL 1443      +  + +   + + + + + + + 

thujopseneL 1449 +     +             

β-barbateneL 1466 + + + + + +             

α-chamigreneS 1481 +     + +            

α-cedreneL 1482 +            +      

β-chamigreneS 1496 +                  

δ-cadineneL 1536 +    +   + + + + + +      

calameneneL 1538 +     + +            
trans-dauca-4(11),8-
dieneL 1546             + + + + + + 

cadina-1,4-dieneL 1547 +                  
*L: by matching with library and S: authentic compounds. 

 

For the four consecutive weeks of experiment, the mycelium became weaken because 

of shaking and fewer VOCs were detected comparing to the VOCs released after the first 

week of inoculation. After they were let to develop (8- and 12-week of inoculations), they 

started to become fresh and more VOCs were released. During this time courses, the 

species specific sesquiterpenes were detected.  
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Figure 3-1 Examples of the chromatograms of fungal-infected beech wood (Fagus 
sylvatica) after 1-week inoculation. (A) T. versicolor, (B) G. trabeum, and (C) P. 
placenta. 

A 

B 

C 
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Table 3-1 showed VOCs released from beech infested with T. versicolor after the first 

week of infection. Those included typical fungal odours; 1-octene, 1-octen-3-ol, 3-

octanone and 3-octanol and other VOCs in aliphatic C5-C8 range, 3-methyl-1-butanol. 

The sesquiterpenes were mostly produced, which the distinguished ones released from this 

sample were α- and β-barbatene. It was observed that β-barbatene was released about 

four times in abundance higher than α-barbatene, and it was detected over the whole 

course of experiment. 

VOCs released from beech infested with P. placenta were less abundant and less 

numerous compounds, resulting in less complicated chromatograms than of T. versicolor 

and G. trabeum. The typical C8 compounds were dominant in the chromatograms and few 

sesquiterpenes were detected. The aliphatic of eight-carbon containing compounds were 

identified; those were 1-octen-3-ol, 1-octene, 3-octanone and 3-octanol. Two compounds 

from fungal odours of 3-octanone and 1-octanol were drastically released, therefore, this 

sample smelled like mushroom. The sesquiterpene daucene was not detected in the other 

tested fungi (Table 3-1). 

Unlike to beech infested with the other brown rot fungus, beech inoculated with G. 

trabeum released (Table 3-1) sesquiterpenes being the main products. Three compounds in 

the aliphatic C5-C8 group were detected. Those were 1-octen-3-ol, 1-octene and 3-

octanone. In contrast to T. versicolor and P. placenta, sesquiterpenes were the most diverse 

group emitted from beech infected by this BR fungus. Some of the sesquiterpenes still 

need to be identified. Brasila-1,10-diene, italicene and 6-protoilludene were exclusively 

released from this sample. Amongst those chemicals, 6-protuilludene showed a remarkable 

high abundance. In contrast to the other two samples, the typical fungal odour of 1-octen-

3-ol and 3-octanone was detected only in minute quantities.  
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3.5. Discussion 

Fungal deterioration causes changes of wood fibre and consequently a decline in physical 

properties of the mechanical wood properties. During wood degradation, volatile 

metabolites were released. Our experiments revealed that beech wood infected with three 

different fungi species released specific patterns of VOCs. Furthermore, course of 

infection and damage status of the mycelium alter the VOC patterns enhancing the 

amounts of C8 compounds and sesquiterpenes. The VOCs released by the fungi were 

products of their metabolisms which could be influenced by several factors, for example, 

different stages of life cycle (Zeppa et al. 2004; Schmidt and Kallow 2005; Thakeow et al. 

manuscript in preparation) and growth substrate (Bruce et al. 2004; Thakeow et al. 2007). 

C8 compounds, which are considered as typical fungal odours, were also present in these 

fungal-infected samples. Among those C8 volatiles, 1-octen-3-ol is mainly attributed to 

mushroom odour and it is proposed to be derived from linoleic acid (Tressl et al. 1982; 

Wurzenber and Grosch 1982; Combet et al. 2006). It was generally found in fungi. 

However, it is not yet clarified what the role of C8 compounds is. Plant volatiles derived 

from linoleic acid, like methyl jasmonate and 1-hexen-3-ol (green leave volatile) have been 

shown to play a crucial role in intra- and interspecific communication (Far 2001; León, et 

al. 2001; Matsui 2006). Lately it was found that in Penicillium paneum, 1-octen-3-ol plays an 

important role in conidia germination as a volatile self-inhibitor (Chitarra et al. 2004). In 

addition to the typical fungal odours, some sesquiterepenes contribute to the characteristic 

odour of each mushroom. Some were specifically released from each fungal-infected 

beech i.e., α- and β-barbatene, 6-protoilludene and daucene. These terpenes are specific 

products of secondary fungus metabolism (Abraham 2001; Keller et al. 2005). In general, 

sesquiterpenes are known to provide a wide range of useful antibiotic and pharmaceutical 

activities such as antifungal and antibacterial activities (Yu and Keller 2005). The volatiles 

released by microorganisms can have an antagonistic effect to other microorganisms for 

instance the growth of sapstain fungi can be inhibited by VOCs released from bacteria and 

yeast (Bruce et al. 2003, 2004). 
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C8 compounds and species-specific sesquiterpenes can be used as marker compounds 

for fungal-infected wood. Additionally to these marker volatiles, 3-methyl-1-butan-1-ol 

was an optionally noticeable compound since it was consistently detected in T. versicolor-

infected beech samples. It was found that in pine rotted with Serpula lacrymans mycelium, 3-

methylbutanal was profoundly released from the dead mycelium (Ewen et al. 2004). This 

3-methylbutanal could be the product of 3-methyl-1-butan-1-ol according to oxidation 

process of alcohol to aldehyde. These fungal compounds are well perceived by insects, for 

instance, 1-octen-3-ol is sensitively and selectively detected by the fungivorous insect Cis 

boleti (Thakeow et al. 2008) and β–barbatene from bracket fungi was proposed to be a 

marker compound used by beetles for host location (Fäldt et al. 1999). 

There are several alternative approaches to identify wood degrading microorganisms. 

Fourier transform infrared spectrometry (FT-IR) can be used to identify T. versicolor and 

Schizophyllum commune degrading beech wood (Naumann et al. 2005). Polymerase chain 

reaction (PCR) (SooKyung et al. 2003; Horisawa et al. 2004; Råberg et al. 2005; Luchi et al. 

2006) and matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry 

(MALDI-TOF MS) (Schmidt and Kallow 2005) can be used to identify wood decaying 

fungi in wood samples. Here we showed that volatiles released by fungal-infected beech 

showed different patterns, including C8 compounds as common volatiles and 

sesquiterpenes as specific volatiles. These VOCs can be sensitively and selectively 

perceived by insects. For that reason, sampling the VOCs as metabolites from fungal 

action in combination with utilisation of insect olfaction is a promising method for wood 

quality assessment.  

According to the traditional tests to fungal resistance of wood physical property, e. g., 

tensile strength and modulus of elasticity, they are usually performed after more than two 

to three weeks after incubation with fungi (Eaton and Hale 2003). This would make 

possible to create a detecting method for fungal-infested wood by mean of insect-antenna-

base biosensor as has been achieved as demonstrated by the detection of infested potatoes 

(Schütz et al. 1999), using a biosensor as a fast and non-destructive test method and is 

complement to the traditional testing methods.  
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4.1. Abstract 

Volatile organic compounds (VOCs) released during the fruiting body development of the 

basidiomycete Coprinopsis cinerea were monitored. The fruiting body development begins 

after the formation of hyphal aggregates (hyphal knots). During, primordia development 

cap and stipe tissue differentiate triggered by light. In the following three days then the 

primordia become mature and karyogamy occurs in the basidia. This process activates 

onset of fruiting body maturation. Over a night, mushrooms are shaped and basidiospores 

are released in the day after by cap autolysis. The headspace (HS)-VOCs released in these 

stages was collected using a passive sampling with solid phase microextraction. 

Afterwards, the adsorbed HS-VOCs were analysed using gas chromatography-mass 

spectrometry. Seventeen volatiles were identified, and four of them, 1-octen-3-ol, 3-

octanone, β-himachalene and cuparene were quantitatively observed during the 

development. 1-octen-3-ol and 3-octanone were substantially released during primodia 

formation and were gradually reduced in later stages. In the same time, the two 

sesquiterpenes β-himachalene and cuparene were steadily released during the primordia 

formation, and drastically increased in amount when the stipe of C. cinerea elongated and 

C. cinerea fruiting body became mature. Possible roles during fungal development and in 

interspecies interaction are discussed. 

 

Keywords: Basidiomycetes, VOCs, GC-MS, SPME, 1-octen-ol, 3-octanone, cuparene, β-

himachalene 
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4.2. Introduction 

In developmental process study of homobasidiomycetous fungi, Coprinopsis cinerea 

(formerly known as Coprinus cinereus) is one of the model organisms used since it shows a 

within-two-week life cycle development (Kües 2000). The growth of C. cinerea starts from 

the mycelium as the vegetative stage in the dark. Triggered by light condition, the hyphal 

aggregates (hyphal knots) are formed. Then, cap and stipe tissues differentiate (primordia 

development) in the following three days. When the primordia become mature, karyogamy 

occurs in the basidia, inducing the beginning of fruiting body formation. The fruiting body 

is developed overnight and in the next day basidiospores are released by cap autolysis. C. 

cinerea has been well studied in several research areas, for example, identification and 

characterization of fungal multi-copper oxidase gene families (Kilaru et al. 2006), 

developmental process and genetic studies in the basidiomycetes (Moore 1981; Kües 2000; 

Walser et al. 2003; Terashima et al. 2005; Lui et al. 2006; Srivilai et al. 2006), 

morphological investigation (Moore 1998; Moore et al 1979; Chaisaena et al. 2007; 

Navarro-González et al. 2005) and biomechanics of stipe elongation (Money and 

Ravishankar 2005). Nevertheless, none of them was focused on volatile organic 

compounds (VOCs) of C. cinerea and their possible link to fungal metabolisms.  

VOCs have been recently and increasingly used as a qualification-evaluation method, 

for instance, investigation of VOCs for studying in biological process in basidiomycetes 

(Sugihara and Humfeld 1954; Sánchez 2004), wood quality assessment (Ewen et al. 2004; 

Thakeow et al. 2007), sick-building syndrome appraisal (Korpi et al. 1998; Nilsson et al. 

2004), diabetic detection in medicine (Deng et al. 2004) and meat spoilage detection in 

food industry (Mayr et al. 2003). Therefore, together with analytical technology, using 

volatiles or volatile patterns are a promising indication method for monitoring C. cinerea 

fruiting body development. 

In this study, we investigated VOCs released during the fruiting body development of 

C. cinerea. The correlation of the VOCs with fungal growth might provide a promising tool 

for non-invasive observation of biochemical process during fungus development. 
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Moreover, VOCs specific for discrete developmental stages of the fungus might yield a 

definition of ecological niches for mycelial feeding and fruiting body feeding fungivorous 

insects. 

4.3. Materials and methods 

4.3.1. C. cinerea Strain  

C. cinerea strain AmutBmut (A43mut, B43mut, pab1), a self-compatible homokaryon that 

forms fruiting body and oidia in a light-regulated manner (Swamy et al. 1984; May et al. 

1991; Kertesz-Chaloupková et al. 1998; Kües 2000), was used for investigating VOCs 

released during life cycle development. 

 

4.3.2. Culture preparation 

The YMG/T medium was prepared by mixing 0.4% yeast extract (Oxoid Ltd., Hamshire, 

England), 1% malt extract (Oxoid Ltd., Hamshire, England), 0.4% D-(+)-glucose 

monohydrate (Applichem GmbH, Darmstadt, Germany) and 0.01% L-tryptophan (Carl 

Roth GmbH, Karlsruhe, Germany) in distilled water. Then it was autoclaved at 121°C for 

20 min. After that, 10 ml of this medium were poured into a 60-ml vial and the vial was 

loosely closed with a septum cap and left on a slope holder to form an agar slant.   

C. cinerea was inoculated in the middle of the prepared agar slant and the vial was loosely 

closed in order to allow the aeration. The cultures were incubated for four days at 37°C in 

the darkness for the vegetative growth before they were transferred to an incubator room 

with the conditions of 12 h dark/12 h light cycle at 28°C and 80-90% humidity.  
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4.3.3. Volatile sampling 

The passive sampling technique of solid phase microextraction (SPME) was employed 

to collect volatiles released to the headspace of the vial. The sketch of this tool is shown in 

Figure 4-1. SPME, 85 μm Carboxen™/Polydimethylsiloxane (PDMS) StableFlex™ fibre 

type (Supelco, USA) was used for sampling volatiles which released to the vial headspace. 

Before sampling the fibre was cleaned and sterile by exposing it into the GC injection port 

at 250°C for 5 min. For volatile collection, the SPME needle was inserted through the 

septum. The fibre, housed inside the needle, was exposed to the headspace of vial. The 

exposure time was 0.5 and 24 hrs. 

 

 

 
 
 

 

 

 

 

 

 

 
 

 
 

 

 

 

Figure 4-1 SPME-Volatile sampling method.
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4.3.4. Volatile Analysis with Gas Chromatography-Mass Spectrometry 

(GC-MS) 

To analyse the chemical components of the VOC mixture, a gas chromatograph (GC, HP 

6890N, Agilent Technologies, Paolo Alto, USA) was coupled to a mass spectrometer (MS, 

5973, Agilent Technologies, Paolo Alto, USA). The column used was non polar type, HP-

5MS (Agilent Technologies, Paolo Alto, USA), 30 m x 0.25 mm i.d., 0.25 μm film thickness. 

For analzing VOCs, the volatile-loaded fibre was inserted into the injection port (250°C) 

and then the desorbed volatiles were run through the column with helium as a carrier gas 

at a flow rate of 1.0 ml min-1. The temperature program started at 40°C, held for 1.5 min, 

heated with a rate of 6.0°C min-1 to 200°C and held at this temperature for 5 min.  

The mass spectrometer was operated in the scan mode in a range of 20-300 amu, a 

source temperature of 230°C, and EI mode at 70 eV. The preliminary interpretation of the 

chromatograms were carried out by matching mass spectra with Enhanced chemstation 

version D00.00.38 (Agilent Technologies, Paolo Alto, USA), the Mass Spectral Search 

library of the National Institute of Standards and Technology (NIST, Gaithersburg, USA), 

and the database of Massfinder version 3.0 software together with the library ‘‘Terpenoids 

and Related Constituents of Essential Oils’’ (Hochmuth, König, Joulain, Hamburg, 

Germany). The interpretation was confirmed by evaluating mass spectra and retention 

times with those of authentic standards. The quantification of major constituents was 

done by five-point calibration of standard compounds and evaluation of peak areas in the 

selected ion monitoring mode.  

4.3.5. Principle component analysis (PCA) 

In order to preliminarily differentiate the C. cinerea volatiles from the experimental 

chromatograms, Pirouette program version 3.11 (Infometrix Inc., Washington, USA) was 

used. This program was designed for direct analysis of chromatogram data by mean of 

mass per ion (m/z). 
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4.4. Results 

4.4.1. C. cinerea culture 

Fruiting body development and morphology of C. cinerea are shown in Figure 4-2. After 

four days at 37°C in darkness, mycelium grew cover the whole surface of the YMG/T 

slant. At this stage of development, the hyphal knots had been developed. It took about 

eleven days from inoculation of C. cinerea plug on YMG/T slant till autolysis stage of the 

fruiting body, where black spores were released. The development of C. cinerea was well 

described by Chaisaena et al. 2007 and Navarro-González et al. 2005. 

 

 

Figure 4-2 Fruiting body development of Coprinopsis cinerea. A: primodia (day 0-4), B: 
mature primodia (day 5), C: immature fruiting body (day 5), D: mature fruiting body (day 
5) and E: fruiting body autolysis (day 6). Bar: 1cm. Photograph D by courtesy of W. 
Chaisaena. 
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4.4.2. Principle component analysis (PCA) of C. cinerea volatiles 

Volatiles released during the growth of C. cinerea were preliminarily examined using 

Pirouette program version 3.11 (Infometrix Inc., Washington, USA). It was found that 

volatiles from the whole stage of development were approximately grouped into four 

developmental stages, mycelium, primodia, fruiting body and autolysis (Figure 4-3A). The 

mass ions which obviously separated the volatiles were 43, 57, 119 and 132 m/z (Figure 4-

3B). 

 

 

 

Figure 4-3 Principal component analysis (PCA) of Coprinopsis cinerea volatiles. A: 
During the life cycle development. B: Differentiation by mass per ion (m/z). 

A

B

M: mycelium 
P: primodia 
FB: fruiting body 
A: Autolysis 
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4.4.3. Volatiles of wild type C. cinerea (AmutBmut) 

After four days at 37°C in the darkness for the vegetative growth, the C. cinerea mycelium 

developed and covered the whole surface of YMG/T slant. Then, it was moved to the 

incubator room, 28ºC and 80-90%RH, where the fruiting body developed and the volatiles 

were sampled. As shown in Table 4-1 and Figure 4-4, 17 compounds were detected and 14 

compounds were identified of the volatiles released during the C. cinerea fruiting body 

development. Those volatiles were detected through the whole fungal development, but 

some of them varied in quantities. The peaks without numbers were found also in the 

YMG/T control, therefore they were not assigned. Two compounds of typical fungal 

odours (Combet et al. 2006), 1-octen-3-ol and 3-octanone, were found throughout the 

whole period of the experiment. However, the quantities of these eight-carbon containing 

 

 

 
Figure 4-4 A gas chromatogram of volatiles released in day 6 (mature fruiting body of 
Coprinopsis cinerea). Sampling by SPME for 24 hrs. Identified compounds (numbered 
peaks) are shown in Table 4-1. The peaks which are not numbered are also found in the 
YMG/T. 
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compounds (C8 compounds) changed during the fruiting body development process 

(Figure 4-5). After two days exposing to light, the primodia developed, where 1-octen-3-ol 

was released at the highest quantities, and they were gradually reduced in the later stages. 

In addition to those compounds, there were 13 sesquiterpenes detected. β-himachalene 

(tentatively identified) and cuparene were increasingly released during the stipe elongation 

and through autolysis as shown in Figure 4-5.  

 

 

Figure 4-5 Alteration of 1-octen-3-ol, 3-octanone, β-himachalene and cuparene during 
Coprinopsis cinerea fruiting body development. Sampling by using SPME for 24 hours. 
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Table 4-1 Volatiles released during fruiting body development of Coprinopsis cinerea 

Peak No.  Compounds  Chemical structure  Identification* 

1  1‐butyl‐2‐

methylcyclopropane/octene
 

 

2  dihydro‐3‐methyl‐2(3H)‐

furanone 

O

O

 

70% a 

3  4‐ethyl‐1,3‐

cyclopentanedione  O

O  

74% a 

4  1‐octen‐3‐ol 

O  

standard 

5  3‐octanone  O

 
standard 

6  α‐cedrene 

 

83% a 

7  1,2,3,4,6,8a‐hexahydro‐1‐

isopropyl‐4,7‐dimethyl‐

naphthalene   

93% a 

8  (+)‐epi‐

bicyclosesquiphellandrene 

H

 

95% a 

9  unidentified sesquiterpene  ‐  ‐ 
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Table 4-1 – continued 

Peak No.  Compounds  Chemical structure  Identification* 

10  α‐cubebene 

 

92% a 

11  unidentified sesquiterpene  ‐  ‐ 

12  β‐cubebene 

 

86% a 

13  unidentified sesquiterpene  ‐  ‐ 

14  β‐ chamigrene 

 

94% a 

15  β‐himachalene  

 

98% a 

16  (+)‐cuparene 

 

standard ** 

17  calamenene 

 

94% a 

* Identification was carried out by comparing the verified compounds with mass spectra and retention 

indices with internal database and co-elution with authentic standards: Merck, Darmstadt, 

Germany 
a preliminary identification by two different sampling methods (percent of similarity to databases) 
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4.5. Discussion 

To our knowledge, this paper reports the first description of volatiles released during life 

cycle development of C. cinerea from the different developmental stages of hyphal-knot 

mycelium, stipe tissues differentiation (primordia development), fruiting body and 

autolysis. Principle component analysis using Pirouette program can be used for 

preliminary identification of VOCs released from C. cinerea life cycle development. The 

mycelial and fruiting body stages are completely separated by different abundance of C8 

compounds (m/z 57 and 43) and sesquiterpenes (m/z 119 and 132). Those compounds 

were, later on identified by comparing of mass spectra and retention indices with our 

internal database and co-elution with authentic standards, 1-octen-3-ol, 3-octanone, 

cuparene and β-himachalene. 

In this experiment, the two compounds of 1-octen-3-ol and 3-octanone, well-known as 

the typical fungal odours (FOs), were found during the whole fungal development. 1-

octen-3-ol, recognised as a mushroom-like aroma (Tressl et al. 1982; Mau et al. 1997; 

Nidiry 2001), was found to be abundantly released in the mycelium stage and was 

gradually reduced during fruiting body formation. A similar phenomenon was observed 

regarding the abundance of 3-octanone. There have been reports on the 1-octen-3-ol 

formation, i.e., in Agaricus campestris (Tressl et al. 1982), in Pleurotus pulmonarius (Assaf et al. 

1997), in Lentinus decadetes (Matsui et al. 2003) and in Lentinula edodes and Tricholoma 

matsutake (Akakabe et al. 2005). In addition, different pathways from linoleic acid to 1-

octen-3-ol have been proposed, those are, for example, via hydroperoxide lyase enzymatic 

reaction of (10E,12Z)-9-hydroperoxyoctadeca-10,12-dienoic acid (9-HPOD) (Tressl et al. 

1982), of (8E,12Z)-9-hydroperoxyoctadeca-8,12-dienoic acid (10-HPOD) (Wurzenber and 

Grosch 1982) and homolytic cleavage of 10-HPOD (Combet et al. 2006). In plants, the 

analogous 6-carbon (C6) containing compounds known as green leave volatiles (GLVs) 

(Visser 1979) are believed to function as intra- and interplant volatile signals (Matsui 

2006). However, it is not clear whether the C8 compounds have similar functions. 

Recently it was found that 1-octen-3-ol in Penicillium paneum plays an important role in 

conidia germination as a volatile self-inhibitor (Chitarra et al. 2004). 
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Cuparene and β-himachalene were detected from beginning in minute quantities and 

sharply increased during the fruiting body formation. It was found that cuparene-type 

sesquiterpenes from a mycelial culture of Flammulina velutipes proved an antimicrobial 

activity against the fungus Clodosporium herbarum, and the bacteria Bacillus subtilis and 

Staphylococcus aureus (Ishikawa et al. 2001). Additionally, β-himachalene, as a component in 

essential oils of Vigna mungo and Chamaecyparis obtusa showed antimicrobial activity as well 

(Singh and Tripathi 1999; Yang et al. 2007). These two sesquiterpenes might serve as anti-

biotic compounds to protect the spores of C. cinerea. Consequently, altogether cuparene 

and β-himachalene released during the formation of C. cinerea fruiting body could prevent 

the infestation by other microorganisms and ensure that the germination of the spores will 

be successful. C8 compounds and sesquiterpenes are prime candidates for mediating 

species specific interaction between fungi and insects (Fäldt et al. 1999; Thakeow et al. 

2007, 2008). Moreover, they might become an important tool to investigate developmental 

process involving fungal liopoxygenase-like signalling pathways with high time resolution 

on individual fungi. 
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5.1. Abstract 

Cis boleti is a specialist fungivorous insect, spending most of its life cycle in the fruiting 

body of Trametes spp. (Basidiomycete: Polyporaceae). The adults of this species are able to 

discriminate fungal volatile compounds, where 1-octen-3-ol was the key compound 

perceived. In this study, we carried out a morphological study on antennae of male and 

female adults by light microscopy and scanning electron microscopy, in order characterise 

the structure and the distribution of various types of sensilla of this species. C. boleti has a 

classical clubbed antenna formed by ten antennomers, where the distal part comprised a 

distinctly 3-segmented club.  No sexual dimorphism was observed between the male and 

female antennae. The major types of sensilla were observed on the distal three 

antennomers and were categorised in four morphological types: long and short sensilla 

trichodea, sensilla basiconica and sensilla coeloconica. Long s. trichodea occurred on the distal part 

of each of the last 3 antennomers, while short s. trichodea were distributed over the entire 

surface of the antennal segments, with a higher density on the apex of the 10th segment. 

Basiconic sensilla were restricted to 4 clusters on the lateral apical corners of each of the 

last three antennomers. Each cluster strongly reassembled an “octopus-like” structure, 

being formed of 9-14 single sensilla protruding from a common cuticular structure. 

Coeloconic sensilla were found in a very low number nearby each octopus-like cluster. At 

high magnification, s. basiconica and short s. trichodea showed a porous sensory cuticle, 

indicating an olfactory function. 

 

Keywords: Cis boleti, antennal sensilla, morphology, Ciid beetle, scanning electron 

microscopy, insect olfaction, host discrimination, Trametes gibbosa, 1-octen-3-ol 
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5.2. Introduction 

Cis boleti (Scopoli 1763) (Coleoptera: Ciidae) is a fungivorous beetle, living in polyporous 

fungi and mining in fungal tissues for most of its life cycle (Lawrence 1973 and Hanski 

1989). This Ciid beetle has a strong host preference to the genus Trametes (Fossli and 

Anderson 1998; Guevara et al. 2000; Thakeow et al. 2008), although other Ciid species are 

able to colonise several groups of bracket-fungi. The ecology of these beetles was 

investigated in regard to host preference and it was hypothesised that the chemical 

composition of fungal odours plays an important role (Jonsell and Nordlander 2004; 

Komonen and Kouki 2005). To address this question we previously investigated the 

volatile composition of the C. boleti host Trametes gibbosa (Basidiomycetes: Polyporaceae). 

Moreover, electrophysiological experiments performed with electroantennography (EAG) 

showed that the typical mushroom-like odour, 1-octen-3-ol, elicited strong antennal 

signals of C. boleti (Thakeow et al. 2008). When testing the pure volatiles in behavioural 

tests it was found that C. boleti is able to discriminate between the (R) and (S)  enantiomers 

of 1-octen-3-ol, suggesting that these similar compounds may activate different pathways 

of the odour transduction. Up to now this enantiomeric discrimination was found in some 

insect species, either to specific configuration of pheromone components (Kozlov et al. 

1996), or to key compounds of host volatiles (Ulland et al. 2006). Our results 

demonstrated that olfactory perception play an important role in host finding of C. boleti 

and most likely in the full family of Ciid beetles. However, no detailed examination of the 

chemosensory system of the antennae of the C. boleti was found in literature. In the 

attempt to find comparable data regarding the antennal morphology of other Ciid species, 

we did not find any description of the fine structure of the antennal morphology in species 

belonging to this family. Therefore, we decided to investigate for the first time the 

antennal morphology of C. boleti and the distribution of the different sensillar types. 
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5.3. Materials and methods 

5.3.1. Insects 

Cis boleti beetles, colonising the wood rotting fungus Trametes gibbosa (Basidiomycete: 

Polyporaceae), were collected from Königsbuche, a natural forest protection area nearby 

Göttingen, Germany. The adults were collected from the fruiting bodies of Trametes 

gibbosa, classified taxonomically and sexed by looking at the characteristic setiferous 

patches, called setiferous fovea, which are present on the 1st visible abdominal sternite of the 

males (Faustini and Halstead 1982). 

 

5.3.2. Scanning electron microscopy 

Ten intact male and female beetles were selected for scanning electron microscopy (SEM) 

examination. The specimens were first fixed in 50% ethanol (Merck, Darmstadt, 

Germany) for 1 day. The animals were then cleaned in an ultrasonic bath for 2 min and 

subjected to dehydration in a graded ethanol series (70, 80, 90, and 96%), by changing the 

alcohol concentration every day. The insects were then soaked in 98% ethanol and liquid 

carbon dioxide was utilised for drying in a critical point dryer (Balzers CPD 030, Bal Tec 

AG, Fürstentum, Liechtenstein). Subsequently, the specimens were mounted on 

aluminium stubs with the ventral or the dorsal surface upwards and coated with gold in a 

sputter coater (Blazers SCD 050, Bal Tec AG, Fürstentum, Liechtenstein). Specimens 

were examined in a LEO SRV-32 scanning electron microscope (Electron Microscopy 

Ltd., Germany) at the Institut für Materialphysik, Georg-August University of Göttingen, 

Germany.  

 

5.3.3. Distribution of sensilla on the antennae 

The identification of the morphological sensillar structures was done according to 

Schneider (1964) and Keil (1999), adopting the nomenclature proposed for the insect 
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sensilla by Altner (1977).  The sensillar types were identified and counted on the 

microscope screen. Ventral surface sensilla as well as dorsal surface sensilla were mapped 

on all the antennal segments of both male and female adults. Because sensillar 

distributions were found to be identical in both sexes, data were pooled. 

 

5.4. Results 

5.4.1. Gross morphology of the antenna 

The antenna of C. boleti is a classical clubbed or clavate antenna, formed by 10 

antennomers where the last three are expanded and enlarged resembling a club.  In Figure 

5-1A, an SEM picture of the ventral view on the entire C. boleti antenna is displayed. 

Under a light microscope, the distal parts of all three antennomers look like a dense cover 

of sensilla. The antenna was measured under light microscopy and SEM and showed to be 

about 0.84±0.22 mm long. In several specimens, the antenna was protectively placed 

under the insect head and thorax as it is shown in Figure 5-1A. A representation of the 

original proportion of antennal shape is proposed in Figure 5-5, based on SEM images. 

The first antennal segment, or scape, is an expanded segment with an oblong form of circa 

0.2 mm on its longitudinal diameter. The second antennal segment, or pedicel, has a 

spherical form of circa 70 µm, followed by an elongate third and fourth segment of circa 

80 and 70 µm of length, respectively. Segments five, six, and seven have a subspherical 

shape and are the smallest antennal segments of circa 40, 35 and 35 µm of length, 

respectively. The last three segments are enlarged antennomers and contribute almost to 

the half of the length of the whole antenna. The eighth, the ninth and the tenth segments 

are circa 95 x 85 µm,  95 x 90 µm and 120 x 90 µm (length x width), respectively (Figure 5-

1B and Figure 5-5). No significant differences were found between males and females, 

although female antennae showed the tendency to be bigger than the male ones. 

 

 



 
5. Antennal morphology of C. boleti  - 113 -  
 

 

5.4.2. Morphological sensillar types 

Four morphological types of sensilla can be distinguished in the SEM pictures of the 

antennae of both male and female C. boleti beetles: two types of sensilla trichodea, sensilla 

basiconica and sensilla coeloconica. 

Sensilla trichodea  

The most abundant sensilla found along the antennomers of C. boleti in both male and 

female beetles are the sensilla trichodea (grooved peg surface) (Figure 5-2). There are two 

types of s. trichodea identified according to its length, long s. trichodea (LT) and short s. 

trichodea (ST). The long s. trichodea is a sharply pointed sensillum, which is inclined and 

slightly curving toward the apex of the segment, and therefore they are also referred as 

sensilla trichodea curvata according to Renthal et al. (2003). The length of this sensillar type is 

54.7±5.5 µm and the basal width is 2.82±0.55 μm. They are the longest sensillar type 

among the identified antennal sensilla of C. boleti. The short s. trichodea are 33.0±2.4 μm in 

length and 1.84±0.20 μm in basal width (Figure 2A). Their structure is similar to that of 

the long s. trichodea possessing a sharp point, but with a lower inclination toward their 

apex. At high magnification, the surface of both long and short trichoid sensilla showed 

small longitudinal ridges, and wall pores were seen as small rounded openings between the 

cuticular ridges (Figure 5-2B). 

Sensilla basiconica  

Rounded-tip s. basiconica on the antenna of C. boleti were found only arranged in clusters 

(Figure 5-3.) on each of the distal three antennomers. Each antennomer bears 4 clusters of 

basiconic sensilla on the lateral apical corners of each antennomer, nearby the junction 

with the other antennomer for the eighth and ninth antennomer and on the apex of the 

last antennomer. Each cluster strongly reassembled an “octopus-like” structure, being 

formed of 9-14 single sensilla protruding from a common cuticular structure.  Therefore, 

these sensillar clusters were called octopus-like clusters.  As shown in the dorsal and 

ventral view of the antenna representation there were totally 12 octopus-like clusters on 

each antenna (Figure 5-5). The s. basiconica present on each octopus-like cluster have an 
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average length of 22.5 µm, with a relatively high variability in their length from 18 to 35 

µm. The calculated basal width was 3.04±0.32 μm. At high magnification, the surface of 

the s. basiconica was smooth and covered with irregular dense wall-pores detected in a large 

number all over the sensillar cuticle, with the exception of the basal part. By SEM the 

diameter of the pores was estimated as approximately 30 nm and the pore density as ≤ 20 

pores/μm2. 
 

 

 
Figure 5-1 Scanning electron micrographs of the antenna of a Cis boleti (Ciidae) dult. A: 
general overview of the ventral anterior part of the insect showing the entire left antenna. 
Com: Compound eye; Flag: flagellum; Mp: maxillary palp; S: scape; P: pedicel. B and C: 
Parts of segments of the flagellum. IV: 4th antennomer, V: 5th antennomer, VI: 6th 
antennomer, VII: 7th antennomer, VIII: 8th antennomer, IX: 9th antennomer, IX: 10th 
antennomer. Bar in A = 30 µm. Bar in B and C = 10 µm. 
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Sensilla coeloconica  

This sensillum type showed a low abundance on all antennomers. They were found only 

nearby octopus-like clusters, in number of one to three, generally in a lateral or proximal 

position (Figure 5-4A). The length of this sensillar type is 7.4±0.20 μm and 1.82±0.52 μm 

in basal width. The sensilla look similar to a morel mushroom (Figure 5-4B), which 

contain two structures: the upper part similar to a grooved peg with longitudinal ridges 

and the lower part with a smooth surface. Whether this type of sensilla had pores on its 

wall was not demonstrated in our study,  

 

5.4.3. Distribution of the sensillar types  

Sensilla distribution was measure all over the antennal surface, although more 

examinations were done over the last three antennal segments, since they bear a diversity 

of dense sensilla, their surface is larger then any other segments and strongly contribute to 

the odour coding of the species. No significant difference between males and females was 

observed in the density of any type of sensilla. 

Short s. trichodea were regularly distributed on all the antennomers with increasing 

frequency on the last three antennomers. By counting on the microscope screen the 

numbers of sensilla on the ventral and dorsal surface of the antenna was determined to be 

approximately 60, 80, and 100 of the short s. trichodea for antennomer 8, 9, and 10, 

respectively.  

Long s. trichodea were present only on the last three antennomers, occurring on the 

upper part of each antennomer, surrounding each octopus-like cluster. Often some of 

these long curved pegs were found to cover the octopus-like clusters as it visible in Figure 

5-2C.  

S. basiconica were arranged in clusters in the position described above as illustrated in 

Figure 5-5. No other basiconic sensilla were found on the entire surface of the antenna. 
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Figure 5-2 Sensilla trichodea. Scanning electron micrographs displaying A: the sensillar 
distribution on the last segments of Cis boleti antenna. ST: short s. trichodea; LT: long s. 
trichodea. B: basal part of a short sensillum trichodeum. WP: wall pores on the sensillar 
surface. C: sensilla on the apical part of the 9th segment showing a octopus cluster (OC) 
surrounded by the long sensilla trichodea (LT). D: high magnification of the terminal part 
of a long sensillum trichodeum (LT) showing the small longitudinal ridges on the surface. 
BA: basiconic sensillum. Bar in A = 20 µm, in B = 1 µm, in C = 3 µm, and D = 1 µm. 
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Figure 5-3 Sensilla basiconica. Scanning electron micrographs displaying the octopus-like 
clusters. Each cluster is formed by 9-14 basiconic sensilla. A: antennal apex showing the 4 
octopus-like clusters (OC) on the distal part. B: distal part of the 9th antennomer showing 
one octopus-like cluster. C: distal part of the 8th antennomer showing one octopus-like 
cluster. D and E: high magnification of basiconic sensilla showing dense pores on the 
external wall surface. Bar in A and in B = 10 µm, in C and D = 1 µm, and in E = 300 nm. 
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S. coeloconica were the less abundant sensilla, being present in few units on the upper 

part of the last three antennomers above or nearby each octopus-like cluster. However, it 

was difficult to number all the coeloconic sensilla, since they are relatively short and often 

hidden behind other sensillar types. 

 

 

Figure 5-4 Sensilla coeloconica. Scanning electron micrographs displaying (A) the distal 
part of the 9th antennomer, (B) the high magnification of the 2 coeloconic sensilla located 
nearby octopus-like cluster. BS: basiconic sensilla; CS: coeloconic sensilla; LT: long 
trichodea sensilla; OC: octopus-like cluster. Bar in A and in B = 1 µm. 
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Figure 5-5 Map representation of the distribution of four sensillar morphological categories 
found on the antennal surface of the adult of Cis boleti (Coleoptera: Ciidae): short trichoid 
sensilla, long trichoid sensilla, coeloconic sensilla and octopus clusters formed by 9-14 
basiconic sensilla. . The distribution of the different sensilla was intended to reflect the real 
distribution on the antenna, e.g. the high concentration of figures reflects the high 
concentration on the antenna. Antennal form represents the direct proportion and shape 
among the different segments, where the entire antenna is approximately 840 µm long. 
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5.5. Discussion 

Here we report the first morphological investigation of C. boleti antenna. Prior to this 

study, no report on morphological structure of the adults of C. boleti antennal sensory 

organ has been done, to our knowledge. An investigation was performed on the sensory 

organs of the antennae and mouthparts of the larvae of C. boleti, in a comparative study of 

larval sensory organs of several beetle species (Alekseev et al. 2006). However, the larval 

sensilla are morphologically and functionally very different from the adult sensilla, 

therefore, no comparison is possible between our study and this previous one. According 

to a recent phylogenetic study among Coleoptera, the Ciidae belong to the Tenebrionoidea 

superfamily (Hunt et al. 2007). Therefore, we decided to compare C. boleti antennal 

structure with the one on Tribolium castaneum (Coleoptera: Tenebrionidae), which has a 

similar gross antennal morphology and a comparable body size. In the antenna of adult T. 

castaneum only two types of sensilla were described: s. trichodea and s. basiconica, both 

supposed to mediate olfactory signals (Roth and Willis 1951). The distribution of the s. 

trichodea of T. castaneum was comparable with the one found for the short s. trichodea of C. 

boleti.  Interestingly, the basiconic sensilla of T. castaneum were also found to be restricted 

to the apical ends of the club segments, although in this case they were arranged in a ring 

around a dense patch of slender trichoid sensilla. Coeloconic sensilla of the antenna of C. 

boleti were very rare and no wall-pores were visible. In other insect species it is believed 

they have olfactory function (Steinbrecht 1999; Keil 1999), or they are considered as 

hygro- and thermoreceptors (Roux et al. 2005).  

The most peculiar sensillar structures of C. boleti antenna are the octopus-like clusters. 

These multi-sensillar plaques of basiconic sensilla have never been discovered before, to 

the best of our knowledge. The basiconic sensilla of C. boleti are likely comparable with the 

basiconic sensilla of T. castaneum, since they share similar topographic distribution (but the 

latter ones are not organised in clusters) and have a similar external morphology. The 

number and the position of these sensilla were found to vary among different species of 

Tribolium. In some cases two or three basiconic sensilla were found to diverge or to branch 

from the same cuticle structure, in analogy of our finding in C. boleti (Roth and Willis 
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1951). There is a high diversification in coleopteran species, but we suggested that 

basiconic sensilla of T. castaneum and C. boleti may have a similar specialise function in 

odour coding. In other groups of insects, as for example in Lepidoptera, it has been 

reported that long trichoid sensilla respond to the insect’s pheromone rather to plant 

odour, while basiconic sensilla respond to the so-called general odours or green volatiles 

(Steinbrecht et al. 1996). C. boleti is not know to produce pheromones, but the presence 

only in the males of a gland setiferous organ on the 1st visible abdominal sternite may 

indicate that sex pheromones are secreted (Faustini and Halstead 1982). On the other 

hand, the lack of differences between the sense organs of males and female negate the 

possibility that the trichoid sensilla may act as sex-pheromone receptors. Determining 

which sensillar types are used by C. boleti to code host fungivorous volatiles, like the highly 

attractive 1-octen-3-ol, and pheromone components will require further 

electrophysiological research.  
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6.1. Abstract 

Cis boleti (Coleoptera: Ciidae), preferentially colonises fungi from the genus Trametes that 

are known as important wood decomposers. The aim of our research was to investigate if 

C. boleti uses the chemical volatile composition of its fungal host, Trametes gibbosa, as a key 

attraction factor. Therefore, the T. gibbosa fruiting body volatiles were analysed by using 

gas chromatography-mass spectrometry (GC-MS), with parallel electroantennographic 

detection (GC-EAD) using adults of C. boleti. Furthermore, we examined the behavioural 

responses of C. boleti to the T. gibbosa volatile compounds. The dominant component of 

the T. gibbosa fruiting body bouquet was 1-octen-3-ol. Other volatiles, like the aldehydes 

hexanal, nonanal and (E,E)-2,4-decadienal and the terpene α-bisabolol were present in 

minor quantities. 1-Octen-3-ol was released with a ratio of the (R) and (S) enantiomers of 

93:7, respectively. Electroantennography employing C. boleti antennae yielded consistently 

dominant responses to 1-octen-3-ol. GC-EAD and EAG responses to pure standard 

compounds showed that C. boleti also perceived other host-fungal volatiles. A highly 

significant attraction to 1-octen-3-ol was observed in behavioural tests. Female beetles 

were significantly attracted to the (S)-(+) enantiomer at ten times lower doses than male 

beetles. Our finding is the first direct proof that Ciid beetles use 1-octen-3-ol as a key cue 

for host finding.  

 

Keywords: fungivorous insect, VOCs, host selection, GC-MS/EAD, (S)-(+)-1-octen-3-ol, 

EAG 
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6.2. Introduction 

Wood-rotting fungi, like bracket fungi, are known to release a wide range of volatile 

organic compounds (VOCs) such as alcohols, aldehydes, esters, ketones, acids and 

terpenoids (Gross et al. 1989; Fäldt et al. 1999; Rösecke et al. 2000; Rösecke and König 

2000; Ewen et al. 2004; Thakeow et al. 2006; Ziegenbein et al. 2006). Two important 

features of these fungal volatile patterns are the group of 8-carbon aliphatic compounds 

(C8-compounds) and the group of terpenoids (Fäldt et al. 1999; Thakeow et al. 2007). The 

C8-compounds as octanols, octenols and octanones are common and contribute to the 

typical fungal odour (Tressl et al. 1982; Wurzenberger and Grosch 1982; Gross et al. 

1989). Especially 1-octen-3-ol, known also as mushroom alcohol, is the most characteristic 

fungal volatile, being used as aroma in several food industries (Hadar and Dosoretz 1991). 

The pattern of VOCs released by fungi is often species-specific (Wheatley 2002). 

However, recent analyses showed that VOC pattern may be affected considerably by the 

developmental stage and/or the type of fungal substrate (Wheatley et al. 1997, Zeppa et al. 

2004, Thakeow et al. 2007). Fungi of the genus Trametes (Basidiomycetes) are growing on 

different substrates as the trunks of dead trees, stored wood logs and construction wood 

causing considerable economic losses (Zabel and Morrell 1992). On the other side these 

fungi are ecologically important as major organisms decomposing biomass in forests 

(Boddy 1991; Boddy and Watkinson 1995).  

Ciid beetles belong to the family Ciidae (Coleoptera) and are a group of fungivorous 

insects which colonise bracket fungi (Basidiomycetes: Polyporaceae) (Hanski 1989). Most 

Ciid beetles are smaller than 3 mm and host specificity ranges from monophagous to 

polyphagous. For example, Cis bilamellatus has no host preference among bracket fungi, 

while Cis nitidus is specialised to Ganoderma adspersum (Guevara et al. 2000a). Cis boleti is 

oligophagous, its host range is restricted to the genus Trametes (Fossli and Andersen 1998; 

Guevara et al. 2000a), and it is often found associated to Trametes gibbosa and Trametes 

versicolor in the German beech forests. To the best of our knowledge there are no direct 

evidences of which chemicals are perceived for host selection of Ciid beetles, although it 

has been hypothesised that the chemical composition of fungal volatiles plays an 
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important role (Jonsell and Nordlander 1995, 2004; Guevara et al. 2000a, 2000b, 2000c; 

Komonen and Kouki 2005).  

To find out whether fungal volatiles play a role in host selection of Ciid beetles, we 

characterised the fungal volatiles of Trametes gibbosa using gas chromatography-mass 

spectrometry (GC-MS), verified the antennal responses by gas chromatography-

electroantennographic detection (GC-EAD) and performed behavioural tests for host 

selection of Cis boleti.  

 

6.3. Materials and methods 

6.3.1. Collection of fungi and insects 

Fruiting bodies of Trametes gibbosa (Pers.) Fr., growing on decayed beech (Fagus sylvatica) 

were collected from a natural forest protection area close to Göttingen (Germany), called 

Königsbuche. The fruiting bodies were stored in a cool, dark room at 10°C throughout 

the experiments. In order to prevent desiccation, the fruiting bodies were sprayed with tap 

water every week. Adults of Cis boleti were taken directly from the T. gibbosa fruiting 

bodies, sexed and used for all experiments.  

 

6.3.2. Extraction of T. gibbosa volatiles 

In order to obtain a sufficient sample of volatile compounds from the T. gibbosa fruiting 

bodies we performed a Soxhlet extraction. Twelve grams of T. gibbosa fruiting bodies were 

cut into small pieces and were put in an extraction thimble. Soxhlet extraction was carried 

out using a conventional system consisting of 250 ml round bottom flask. The extraction 

was done with 150 ml dichloromethane (GC-grade, Merck, Darmstadt, Germany) for 6 h 

at the solvent reflux temperature. The original extract was reduced to 2.0 ml on a rotary 

evaporator at 40°C and standard atmosphere. The final extract was stored at -80°C, and 
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used for T. gibbosa volatile identification as well as for the physiological and behavioural 

tests of C. boleti.  

 

6.3.3. T. gibbosa headspace analysis and emission rate of 1-octen-3-ol 

In order to investigate the headspace constitution of the T. gibbosa bouquet we decided to 

collect the fungal headspace volatiles using prepacked Tenax®-TA type adsorbent tubes 

(Gerstel, Mülheim an der Ruhr, Germany, art. 012260-005-00). The adsorbents (60/80 

mesh) have a surface area of 35 m2 g-1, and a density of 0.25 g ml-1.  The dimension of 

adsorbent bed is 60 mm in length and 4 mm in diameter. The sampling was carried out for 

30 min using close loop stripping technique with a flow rate of 160 ml min-1. Each sample, 

approximately 1 cm3 of fruiting body, was placed in a 250-ml PTFE bottle. We tested 2 

samples of minimally (<10%) and 3 samples of fully (~100%) colonised T. gibbosa fruiting 

bodies. The sampling was started after each sample was placed in the PTFE bottle for 10 

min. The headspace volatiles were then analyzed by means of gas chromatography and 

mass spectrometry (GC-MS). After the headspace sampling was done, we dried the 

fruiting bodies in an oven at 105°C till a constant weight was obtained. The emission rate 

of 1-octen-3-ol was calculated by considering the quantity of released compound and 

expressed per mass of dried fruiting body and time (ng g-1h-1).  

 

6.3.4. Chemicals 

1-pentanol (99%, Aldrich, Steinheim, Germany), 1-hexanol (99%, Aldrich, Steinheim, 

Germany), 3-octanol (>97%, VWR, Darmstadt, Germany), (E)-2-octen-1-ol (97%, Merck, 

Darmstadt, Germany), 1-octanol (98%, Aldrich, Steinheim, Germany), 1-octen-3-ol 

(>98%, Merck, Darmstadt, Germany), (S)-(+)-1-octen-3-ol (99.8%, ACROS, Geel, 

Belgium), (R)-(─)-1-octen-3-ol (99%, ACROS, Geel, Belgium), 3-octanone (>96%, VWR, 

Darmstadt, Germany), hexanal (98%, Aldrich, Steinheim, Germany), heptanal (95%, 

ACROS, Geel, Belgium), (E)-2-heptenal (97%, Aldrich, Steinheim, Germany), nonanal 

(>98%, Merck, Darmstadt, Germany), (E,E)-2,4-heptadienal (90%, Aldrich, Steinheim, 
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Germany), (E,E)-2,4-decadienal (90%, APCR, Karlsruhe. Germany), acetic acid (>99.8%, 

Fluka, Buchs, Switzerland), propanoic acid (>99.5%, Aldrich, Steinheim, Germany), 

butanoic acid (99%, ABCR, Karlsruhe. Germany), hexanoic acid (98%, Merck, Darmstadt, 

Germany), octanoic acid (>99%, Merck, Darmstadt, Germany), α-bisabolol (>85%, Fluka, 

Buchs, Switzerland), 2-pentyl furan (98%, ABCR, Karlsruhe. Germany) and 2-methyl 

phenol (>99%, Aldrich, Steinheim, Germany) 

 

6.3.5. GC-MS analysis 

A gas chromatograph (6890N, Agilent Technologies, Paolo Alto, USA) coupled to a mass 

spectrometer (5973, Agilent Technologies, Paolo Alto, USA) was used for analysing the 

constituents in the extract and the headspace VOCs of T. gibbosa. Two column types, HP-

5MS (Non-polar column, Agilent Technologies, Paolo Alto, USA), 30 m x 0.25 mm i.d., 

0.25 μm film thickness and INNOWAX (Polar column, Agilent Technologies, Paolo Alto, 

USA), 30 m x 0.25 mm i.d., 0.25 μm film thickness were used in order to validate the 

composition of the samples. The extract was injected in a quantity of 1 µl into the injector 

in the pulsed splitless mode at a temperature of 250°C. Helium was used as a carrier gas at 

a flow rate of 1.0 ml min-1. The oven temperature for the extract sample was programmed 

for an initial temperature of 50°C, held for 1.5 min, heated at a rate of 6.5°C min-1 to 

250°C and held for 10.0 min at 250°C. The operating conditions of GC-MS for analysing 

the Tenax®-headspace samples were as follows. A thermodesorption system with a cold 

injection system (TDS-CIS, Gerstel, Mülheim an der Ruhr, Germany) was used. The tubes 

were heated up to 280°C in order to desorb the VOCs. The temperature program started 

at 40°C, held for 3 min, heated at a rate of 7.5°C min-1 to 200°C, and held for 5 min at 

200°C. Helium was used as a carrier gas at a flow rate of 1.0 ml min-1. The mass 

spectrometer was operated in the scan mode in a range of 20-400 amu, a source 

temperature of 230°C and EI mode at 70 eV. 
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6.3.6. Identification and quantification of T. gibbosa volatiles 

The chromatograms were preliminary interpreted with Enhanced chemstation version 

D00.00.38 (Agilent Technologies, Paolo Alto, USA), the Mass Spectral Search library of 

the National Institute of Standards and Technology (NIST, Gaithersburg, USA), and the 

Massfinder version 3.0 software together with the library ‘Terpenoids and Related 

Constituents of Essential Oils’ (Hochmuth, König, Joulain, Hamburg, Germany). The 

interpretation was confirmed by matching the mass spectra and retention times with those 

of authentic standards on the two different columns used. Linear retention indices were 

calculated for each identified volatile using the retention times of n-alkane series (from C10 

till C23) as reference compounds, applying the linear equation developed by Van den Dool 

and Kratz (1963). The quantification of 1-octen-3-ol was done by five-point calibration of 

the standard compound and evaluation of peak areas in the selected ion monitoring mode. 

Moreover, quantification of the volatile compounds was performed by passing the T. 

gibbosa extract on a gas chromatograph and a flame ionisation detector (GC-FID; Agilent 

Technologies, Paolo Alto, USA) using 1-octen-3-ol as an internal standard.    

The enantiomer identification of 1-octen-3-ol of the T. gibbosa extract was done in co-

operation with Dr. Holm Frauendorf (Institute of Organic and Molecular Chemistry, 

Faculty of Organic Chemistry, Göttingen University) by performing enantioselective gas 

chromatography on a Carlo Erba Instrument, HRGC 5300 Mega Series (Milan, Italy). The 

instrument was equipped with a 25 m x 0.25 mm i.d. column coated with Heptakis (2,3-di-

O-acetyl-6-O-TBDMS)-β-cyclodextrin (50% in OV1701) (Prof. König, Hamburg, 

Germany). The injector (split/splitless) and FID were operated at 220 and 240°C, 

respectively. The experiment was run isothermally at 80°C. Two standards of rac-1-octen-

3-ol and (S)-(+)-1-octen-3-ol were used.  
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6.3.7. Electrophysiological measurements 

The electrophysiological analyses were carried out with gas chromatograph-mass 

spectrometer/electroantennographic detector (GC-MS/EAD), as described in 

Weissbecker et al. (2004). The insect antenna was dissected and placed in an antenna 

holder (Prof. Koch, Kaiserslautern, Germany) (Färbert et al. 1997), where both ends of 

the antenna were immersed in an adapted-insect-hemolymph electrolyte solution 

(Kaissling and Thorson 1980). The antennal activity of 10 males and 10 females of C. boleti 

adults was recorded. As the antennae of C. boleti adults are quite small (0.7-1 mm long), 

each excised antenna was mounted on antenna holder using a piece of filter paper to make 

sure the contact with the electrolyte solutions was effective. This experiment was done by 

injecting 1 µl of T. gibbosa extract on an HP 6890N GC equipped with INNOWAX 

column, with the same parameters as for GC-MS analyses. The EAD was carried out 

under humidified air at room temperature with a flow rate at 20 l h-1.  

Electroantennography (EAG) was employed to confirm the responsiveness of the 

antennae to 10-3 dilution in paraffin oil (Uvasol®, Merck, Darmstadt, Germany) of the 

following chemicals:1-pentanol, 1-hexanol, 3-octanol, (E)-2-octen-1-ol, 1-octanol, 1-

octen-3-ol, 3-octanone, hexanal, heptanal, (E)-2-heptenal, octanal, (E)-2-octenal, nonanal, 

(E,E)-2,4-heptadienal,  (E,E)-2,4-decadienal, acetic acid, propanoic acid, butanoic acid, 

hexanoic acid, octanoic acid, α-bisabolol, 2-pentyl furan and 2-methyl phenol. For the two 

enantiomers of 1-octen-3-ol, we performed a dilution series from 10-6 to 10-3 in order to 

obtain a dose-response curve. Small pieces of filter paper (2 cm²; Schleicher & Schuell, 

Dassel, Germany) were soaked with 100 µl of the standard dilution or paraffin oil only 

(control). The filter paper was inserted into a 10 ml glass syringe (Poulten & Graf GmbH, 

Wertheim, Germany). A reproducible stimulus was supplied by puffing 5 ml of air over 

the antenna (Schütz et al. 1999). The EAG response of the antennae was recorded for 

each standard dilution from at least five male and five female beetles. The response to 

paraffin oil was considered as negative control and was subtracted from all the reported 

EAG measurements.   
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6.3.8. Behavioural tests 

Behavioural investigations were done by using a dual choice bioassay. The setup consisted 

of a closed Petri dish (13 cm diameter) used as an arena. A filter paper (1.5 cm2) treated 

with the tested sample (as T. gibbosa fruiting body extract or 1-octen-3-ol) was placed in a 

side part of the Petri dish (1 cm from the border)  and a control filter paper treated with 

paraffin oil  as control was placed  in the opposite side. In a typical experiment, ten 

animals of the same sex were placed in the middle of the Petri dish and were allowed to 

walk for 15 min in the darkness. The number of beetles was then counted, regarding to 

the test compound area, the neutral area (a central segment of 2 cm) and in the control 

area. Two indices were calculated: the activity index (AcI) as the number of active animals 

(= total number of beetles placed in the arena minus the beetles in the neutral area) 

divided by the total number of beetles placed in the arena and the attraction index (AtI) as 

the number of beetles found in the test compound area divided by the number of active 

animals. The significance of the results was statistically evaluated by an analysis of variance 

(ANOVA) using Statistica 7 (2004) (Statsoft Inc., Tulsa, USA).  

We performed different bioassays with this setup. Experiment 1: This experiment was 

done in order to ensure the similarity of the T. gibbosa extract to the fruiting body volatiles. 

T. gibbosa extract was diluted with GC-grade dichloromethane (Merck, Darmstadt, 

Germany) to obtain a concentration of 1-octen-3-ol, which showed to have a similar 

release rate of 1-octen-3-ol as the fresh T. gibbosa fruiting body by performing headspace 

analysis of both samples. In one site of the Petri dish 50 μl of the diluted T. gibbosa extract 

was dropped on the filter paper and on the opposite side a cube (1 x 1 x 0.5 cm3) of fresh 

fruiting body was placed. Experiment 2: This experiment was done in order to measure 

the attraction of C. boleti to different doses of (R)-(─)- and (S)-(+)-1-octen-3-ol. Dilution 

series of 10-5-10-3 were prepared by mixing the pure enantiomers with paraffin oil. In one 

site of the Petri dish 20 μl of paraffin oil solution was dropped on filter paper, whereas on 

the opposite side, only paraffin oil (20 μl) was dropped on filter paper as a control.  
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6.4. Results 

6.4.1. Volatile compounds of T. gibbosa extract  

A total of 23 volatile chemical compounds were characterised with GC-MS and GC-FID 

analyses of T. gibbosa extract. The identified compounds are listed in Table 6-1, where they 

are shown in an elution order according to the non-polar column and they are classified 

with regard to their chemical functions. The volatile compounds were categorised into six 

broad groups: alcohols, ketones, acids, aldehydes, terpenoids and aromatics. The most 

abundant compounds were five alcohols (49%) comprising 1-octen-3-ol, 1-hexanol, 1-

octanol, 3-octanol and (E)-2-octen-1-ol; eight aldehydes (45%) comprising hexanal, 

heptanal, octanal, nonanal, (E)-2-heptenal, (E)-2-octenal, (E,E)-2,4-heptadienal and (E,E)-

2,4-decadienal; one ketone (5%) 3-octanone; one terpene α-bisabolol. Two aromatics 

comprising of 2-pentyl furan and 2-methyl phenol and two acids comprising hexanoic and 

octanoic acids were present in trace quantities. The most dominant compound was 1-

octen-3-ol (37%), followed by hexanal (25%), nonanal (6%), (E)-2-octenal (5 %) and 3-

octanone (5%). More detailed information is given in Table 6-1.  

In the headspace analysis there were totally 15 volatiles identified. The volatile pattern 

was different from the extract, but both displayed similar volatile profile with 1-octen-3-ol 

being the dominant volatile and followed by hexanal.  In addition to 1-octen-3-ol, and the 

other four alcohols previously identified, here we detected 1-pentanol. However, this 

compound was also present in the fruiting body extract but it was coeluted with the 

solvents. Among the other chemicals we detected four aldehydes comprising of heptanal, 

(E)-2-heptenal, octanal and nonanal; one ketone 3-octanone; two aromatic compounds 2-

pentyl furan and 2-methyl phenol and one terpene β-bisabolene.  

The emission rate of 1-octen-3-ol in the headspace was calculated by comparing 

minimally and fully colonised fruiting bodies. 1-Octen-3-ol was found to be released at 

almost 20 times higher dose in minimally colonised fruiting bodies (960±250 ng g-1h-1) 

than in fully colonised fruiting bodies (50±10 ng g-1h-1).  This result was highly significant 

[F(1,7) = 277.97, p < 0.001]. 
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Table 6-1 Volatile compounds of Trametes gibbosa identified by GC-MS in fruiting 
body headspace and extract 

Linear retention indices No. 

  

Compounds 1 

   HP‐MS5  INNOWAX 

Quantity in 

extract 2 (ppm) 

Proportion 

in extract 3 
Proportion in 

headspace 3 

Chemical 

classes 

1 acetic acid  n.d. 1460 tr. tr. - acid 

2 propanoic acid  n.d. 1540 tr. tr. - acid 

3 butanoic acid  n.d. 1629 tr. tr. - acid 

4 1-pentanol  779 1237 tr. tr. 0.01 alcohol 

5 hexanal  803 1082 55 0.25 0.15 aldehyde 

6 1-hexanol  879 1341 10 0.04 0.02 alcohol 

7 heptanal  907 1183 3 0.01 tr. aldehyde 

8 (E)-2-heptenal  962 1324 7 0.03 0.01 aldehyde 

9 1-octen-3-ol  980 1438 80 0.37 0.69 alcohol 

10 3-octanone  990 1251 10 0.05 0.03 ketone 

11 2-pentyl furan  993 1228 tr. tr. tr. aromatic 

12 3-octanol  995 1380 5 0.02 0.03 alcohol 

13 hexanoic acid  998 1843 tr. tr. - acid 

14 octanal  1001 1287 1 0.01 0.01 aldehyde 

15 

(E,E)-2,4-

heptadienal  1020 1494 tr. tr. - aldehyde 

16 2-methyl phenol  1060 1993 tr. tr. 0.01 aromatic 

17 (E)-2-octenal  1062 1428 11 0.05 - aldehyde 

18 (E)-2-octen-1-ol  1067 1603 7 0.03 0.01 alcohol 

19 1-octanol  1074 1542 5 0.02 0.03 alcohol 

20 nonanal  1106 1390 12 0.06 0.01 aldehyde  

21 octanoic acid 1182 2050 tr. tr. - acid 

22 

(E,E)-2,4-

decadienal 1320 1806 8 0.04 - aldehyde 

23 β-bisabolene 1516 - - - tr. terpene 

24 α-bisabolol 1693 2228 4 0.02 - terpene 
1 The compounds were verified by comparing the mass spectra and retention indices of 
authentic standards, except β-bisabolene which was identified by matching the mass spectra 
with library and internal databases. 
2 tr.: trace, less than 1 ppm 
3 tr.: trace, less than 0.01 
n.d.: non detected 
 
 



 
6. Antennal responses of C. boleti to fungal odour  - 135 - 
 

 

The enantioselective gas chromatography of 1-octen-3-ol showed an average α-value 

of 1.04 ± 0.02 for the two enantiomers (R)-(─)- and (S)-(+)-1-octen-3-ol.  In the fruiting 

body extract the enantiomer ratio of (R)-(─)- and (S)-(+)-1-octen-3-ol was 92.9% and 

7.1%, respectively.  

 

6.4.2. Electrophysiological response of C. boleti antennae to T. gibbosa 

volatiles  

Two types of experiments, GC-EAD and EAG were carried out to study the 

electrophysiological response of C. boleti to its host volatiles as shown in Table 6-2. The 

GC-EAD analysis of T. gibbosa extract yielded consistent responses to 1-octen-3-ol. The 

antennal activity of 10 males and 10 females of C. boleti adults was recorded and only 1 

male and 2 female antennae did not show antennal response in correspondence with the 

elution of 1-octen-3-ol at the retention time of 12.93 min (Figure 6-1). We also recorded 

few responses to 3-octanone, in both male and female antennae (2 males and 1 female). 

Afterwards all the volatiles (23) present in the fruiting volatile body extract were tested in a 

10 ng quantity by performing GC-EAD to C. boleti antennae. It was found that 6 out of 

the 23 compounds were able to elicit antennal activity at different intensity. Those 

compounds were (E)-2-heptenal, 1-octen-3-ol, 3-octanone, octanal, (E,E)-heptadienal and 

nonanal. Among them, 1-octen-3-ol induced the strongest response (0.46 mV), while the 

other compounds elicited weaker responses in a range of 0.1-0.2 mV.  

The EAG experiments of the same 23 standard compounds (10-3 dilution in paraffin 

oil) showed that acetic acid elicited similar responses as the paraffin oil, therefore it was 

not considered as a stimulating compound. Propanoic and butanoic acids as well as (E,E)-

2,4-decadienal and α-bisabolol elicited very weak responses. 1-hexanol as well as the four 

C8 alcohols (1-octanol, 3-octanol, 1-octen-3-ol, (E)-2-octen-1-ol) elicited strong EAG 

responses.  

A lower response was observed for 1-pentanol. In addition, there were four aldehydes 

(heptanal, (E)-2-heptenal, (E,E)-2,4-heptadienal and nonanal) which excited the antennae 

in the same range as the alcohol compounds. Dose-response curves of both enantiomers 
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of the most sensitively detected compound, (R)-(─) and (S)-(+)-1-octen-3-ol (10-6-10-3 in 

paraffin oil) for C. boleti males and females were recorded (Figure 6-2). No significant 

differences were observed in the EAG response to either enantiomer between the 

sexes[(R)-form, F(1,36) = 3.72, p = 0.06 and (S)-form, F(1,36) = 2.55, p = 0.12]. There 

were, however, differences with respect to the sexes and doses [(R)-form, F(3,36) = 10.41, 

p < 0.001 and (S)-form, F(3,36) = 8.32, p < 0.001]. Among the ranges of the tested doses, 

the female beetles showed a small amount of scatter in their responses yielding three 

stages of dose discrimination, at 10-6, overlap of 10-5-10-4, and 10-3. In comparison, the 

male beetles showed a higher degree of scatter in their responses yielding only two stages 

of discrimination at 10-6-10-4 and 10-3. 

 
 
 

 
Figure 6-1 Gas chromatography (GC) – electroantennographic detection (EAD) and mass 
spectrometer (MS) chromatograms of C. boleti response to 1-octen-3-ol in T. gibbosa fruiting 
body extract. TIC: total ion current.  
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Table 6-2 Electroantennographic responses of C. boleti antennae to T. gibbosa 

volatiles and standard compounds 
EAG a GC-EAD b 

No. Compounds 

Quantity 

in extract 

(ppm) 

10-3 dilution in 

paraffin oil 

10 ng standard 

compound 

T. gibbosa 

extract 

1 acetic acid tr.    

2 propanoic acid tr. +   

3 butanoic acid tr. +   

4 1-pentanol tr. ++   

5 hexanal 55 ++   

6 1-hexanol 10 ++++   

7 heptanal 3 ++++   

8 (E)-2-heptenal 7 ++++ *  

9 1-octen-3-ol 80 +++++ ***** ** 

10 3-octanone 10 +++ ** * 

11 2-pentyl furan tr. ++   

12 3-octanol 5 ++++   

13 hexanoic acid tr. +   

14 octanal 1 +++ **  

15 (E,E)-2,4-heptadienal tr. +++++ **  

16 2-methyl phenol tr. +++   

17 (E)-2-octenal 11 +++   

18 (E)-2-octen-1-ol 7 +++   

19 1-octanol 5 ++++   

20 nonanal 12 +++ **  

21 octanoic acid tr. ++   

22 (E,E)-2,4-decadienal 8 +   

23 α-bisabolol 4 +   
a +: 0.0 – 0.3 mV, ++: 0.3 – 0.6 mV, +++: 0.6-0.9, ++++: 0.9-1.2 and +++++: 1.2 – 1.5 mV 
b *: 0.0 – 0.1 mV, **: 0.1 – 0.2 mV, ***: 0.2 – 0.3 mV, ****: 0.3 – 0.4 mV, *****: 0.4 – 0.5 

mV 
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6.4.3. Behavioural test 

To ensure the similarity between the fruiting body and the extract, a behavioural test was 

carried out. The attraction index of the fruiting body against the extract was 0.53. The 

activity index, which measures the induction of insect movement and searching behaviour, 

was equal to 0.65. The attraction index revealed no statistical difference, showing that the 

extract has a similar attraction as the fruiting body.  
 

 

 

Figure 6-2 EAG responses (mean±SE) of C. boleti males (●) and females (○) to 1-octen-3-
ol. A: (R)-(─)-1-octen-3-ol, B: (S)-(+)-1-octen-3-ol. Different letters indicate significant 
differences between samples.  
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Figure 6-3 Behavioural responses to 1-octen-3-ol enantiomers. A: attraction index, B: activity 
index; white bar: female, dark bar: male, bar without dots: (R)-form and bar with dots: (S)-
form. Values = (mean±SE). Different letters indicate significant differences between samples. 
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A second experiment was carried out to test the preference of C. boleti males and 

females to the two enantiomers of 1-octen-3-ol. The results are illustrated in Figures 6-3A 

and 6-3B, showing the attraction index and the activity index, respectively. No statistical 

difference was found between the sexes in the attraction to the two enantiomers [F(1,52) 

= 0.49, p = 0.48]. In each sex significant differences were observed in the attraction to 

each of the enantiomers [F(1,52) = 6.50, p < 0.059] and among the different dilutions 

[F(2,52) = 34.67, p < 0.001]. The male beetles were significantly more attracted to both 

enantiomers at a dilution of 10-3 compared to a dilution of 10-4 and 10-5. The female 

beetles were significantly more attracted to (R)-(─)-1-octen-3-ol at a dilution of 10-3, but 

for the (S)-(+)-1-octen-3-ol they were already significantly more attracted to a dilution of 

10-4. In Figures 6-3B, the activity index induced by (R)-(─)-1-octen-3-ol was high for both 

male and female beetles throughout the range of dilutions examined.  The activity index of 

the male beetles induced by (S)-(+)-1-octen-3-ol was increased to the level of the (R)-(─)- 

enantiomer at a dilution of 10-3, whereas the female activity reached this level already at 

dilutions of 10-4. 

 

6.5. Discussion 

In Ciid beetles, fungal VOCs have been proposed as a mechanism in host finding (Jonsell 

and Nordlander 1995, 2004; Fäldt et al. 1999; Guevara et al. 2000). It has been 

hypothesised that two main VOCs fractions may play an important role in host finding by 

Ciid beetles: C8-compounds and terpenoids (Fäldt et al. 1999; Guevara et al. 2000). In T. 

gibbosa fruiting body we found a range of volatile compounds, including alcohols, 

terpenoids, aldehydes and aromatic compounds. Dichloromethane extract of T. gibbosa 

fruiting body showed a composition dominated by 1-octen-3-ol (37%), and other seven 

C8 compounds. The terpenoid fraction was characterised only by one sesquiterpenic 

alcohol, α-bisabolol. This compound was found in high proportion also in other wood-

rotting fungi as Schizophyllum commune (Ziegenbein et al. 2006) and Phlebia radiate (Gross et 

al. 1989). Interestingly in the headspace analysis we did not find this compound but β-

bisabolene in trace quantity. Bisabolene and bisabolol share the same precursor, farnesyl 
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diphosphate (Jones et al. 2006). Bisabolene is released by enzymatic reaction from fungal 

tissues and bisabolol is proposed to be a product of hydrolysis (Benedict et al. 2001; 

Köllner et al. 2004). Fruiting body extract and headspace share a similar volatile profile, 

although acidic compounds were not detected in the headspace, being possibly by-

prFoducts of acid hydrolysis of Soxhlet extraction. Extraction method allowed the 

identification of three aldehydes, which were not identified by headspace analysis, 

comprising (E,E)-2,4-heptadienal, (E)-2-octenal, (E,E)-2,4-decadienal.  

We analysed the release rate of 1-octen-3-ol in two different colonisation stages and we 

found that T. gibbosa releases from 50 to 1000 ng g-1h-1of 1-octen-3-ol, with a higher 

release rate in case of minimally colonised fruiting body. The higher release rate of 1-

octen-3-ol in the minimally colonised fruiting body was most probably due to the fact that 

it was in a growing stage and had been additionally damaged by the insects. Whereas, the 

likely reason why there was a lower release rate in the fully colonised fruiting body was 

that tissues had been already consumed. Comparable release rates of 1-octen-3-ol have 

been found in other species of bracket fungi, also with a variation depending on the fungal 

age (factor of 100) and on the season (factor of 10) (Fäldt et al. 1999; Wu et al. 2005).  

The enantiomeric composition of 1-octen-3-ol released by T. gibbosa displayed a ratio of 

93:7 of the (R) and (S) enantiomers, respectively. The R:S of other bracket fungi species 

range in a species-specific manner, from a minimum of 89% to a maximum 98% of the 

(R)-enantiomer (Ziegenbein et al. 2006). For example, these authors found ratios of the 

(R)- and (S)-1-octen-3-ol of 90:10 in the wood-rotting fungi Schizophyllum commune and 98:2 

in Datronia mollis hydrodistilates.  

By coupling gas chromatography with mass-spectrometry and electroantennographic 

detection (GC–MS/EAD) of fruiting body extract, we proved for the first time that 1-

octen-3-ol elicits consistent responses to C. boleti antennae. Furthermore, 3-octanone was 

found to elicit occasionally antennal responses in this concentration range. To prove if 

other T. gibbosa volatiles are perceived by C. boleti beetles we performed GC-EAD analyses 

of all identified compounds in the extract, by running 10-ng of each authentic standard 

though the GC–EAD. In these experiments we found that the highest antennal response 

was elicited by 1-octen-3-ol, followed by 3-octanone, octanal, (E,E)-2,4-heptadienal, 
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nonanal and (E)-2-heptenal (Table 6-2). A further investigation was done by performing 

EAG experiments with all volatiles identified in T. gibbosa at higher odour concentration 

(10-3 dilution in paraffin oil). Here we found that the acid compounds elicited very weak 

antennal responses, in agreement with the observation that they are not constituents of 

fruiting body volatiles but present in the extract as by-products. The alcohol fraction 

together with the aldehyde fraction elicited strong EAG responses. (E,E)-2,4-heptadienal 

showed similar response as 1-octen-3-ol, although in GC-EAD experiment we recorded a 

lower response than the one of 1-octen-3-ol. The only terpenoid with more than trace 

contribution to the fungal volatile pattern, α-bisabolol, elicited very weak EAG response. 

Moreover, in behavioural experiments fresh fruiting body compared with fruiting body 

extract showed similar attraction to the beetles. We may therefore suppose that terpenoids 

do not play a major role in host finding.  Therefore, we focus our attention on 1-octen-3-

ol, which is the major component of the fungal volatile bouquet and elicits the strongest 

antennal response. In behavioural test, the female beetles showed a statistically higher 

attraction to a dose of the (S)-enantiomer equal to 10-4, while a dose equal to 10-3 was 

necessary to show a statistically higher attraction for the (R)-enantiomer. The males were 

strongly attracted only to the high dose (10-3) and did not show a discriminated behaviour 

between the two enantiomers. Moreover, the searching activity of female beetles was 

increased selectively by even the lower release rates of (S)-(+)-1-octen-3-ol. Such an 

enantiomeric discrimination has been observed in several other insect species, both at the 

electrophysiological and at the behavioural level (Ulland et al. 2006), and convincing 

examples have been found in pheromone perception (Kozlov et al. 1996). For instance, 

the cabbage moth, Mamestra brassicae, detected enantiomers of linalool with different 

intensity, showing ten times higher sensitivity to (R)-(─)-linalool than to (S)-(+)-linalool 

(Ulland et al. 2006). However, in this study, it is the first time that an enantiomeric 

discrimination for Ciid beetles has been demonstrated. The results of the behavioural 

assays suggested that female beetles play a major role in the fruiting body colonisation of 

bracket fungi. This assumption is in agreement with the results reported by Fäldt et al. 

(1999), where a higher number of wood-decomposing female beetles were found in 1-

octen-3-ol baited traps. Moreover, also in the deathwatch beetle, Xestobium rufovillosum 
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(Coleoptera, Anobiidae) females perform the first colonisation of fungal decayed wood 

(Fisher 1940; Belmain et al. 1998). The task of colonising pioneers is not only to locate 

and to identify a suitable fungus species but also to assess the developmental stage and age 

of the fruiting body. C. boleti is reported to be frequently a second coloniser following a 

first colonisation made by the Ciid beetle Octotemnus glabriculus (Guevara et al. 2000). The 

activity of the first insects colonising a fungal host causes damage to the fruiting body and 

consequently alters the pattern of VOCs. This variation in the volatile profile may be an 

important hint for host suitability to second-coloniser Ciid beetles and allows a successive 

colonisation of the fungal fruiting bodies.  

In this study, it was shown that minimally colonised fruiting bodies release 1-octen-3-ol 

at high emission rates. Moreover, it was demonstrated in the electrophysiological and 

behavioural tests that C. boleti beetles are able to perceive and to behaviourally respond to 

1-octen-3-ol. The two enantiomers of 1-octen-3-ol affect the behaviour of female and 

male beetles in a different manner. Thus, 1-octen-3-ol emission rate and enantiomeric 

ratio are important information for host fungus suitability. These results do not exclude 

that other volatiles detected at higher concentrations may contribute to host 

discrimination, while 1-octen-3-ol is important in host finding. Whether the differences in 

the enantiomeric ratios of 1-octen-3-ol in various fungal species are sufficient to allow Ciid 

beetles to differentiate between fungal species needs further confirmation. In order to 

understand better the mechanisms of host selection in Ciid beetles more investigations of 

the volatile composition during fungal development are needed. Moreover, the 

distribution of the antennal sensilla as well as analysis with single sensillum recording 

could allow characterising the olfactory structures responsible for enantiomeric 

discrimination and fungal volatile perception in these insects. 
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7.1. Abstract 

The headspace-volatile organic compounds (HS-VOCs) of Coprinus comatus, Coprinopsis 

cinerea, and Coprinopsis atramentaria, were examined by using two sampling techniques, close 

loop stripping analysis and solid phase microextraction. The VOCs were analysed using 

gas chromatography-mass spectrometry (GC-MS). Twenty seven volatile compounds were 

identified in the headspace of fruiting bodies in their autolytic stages, covering seven 

chemical classes, alcohols, ketones, aldehydes, esters, hydrocarbons, N-containing and S-

containing compounds. Among the detected VOCs, 11 were alcoholic compounds, 

including 3-methyl-1-butanol as a frequent main constituent. Besides alcohols, there were 

N,N-dimethyl formamide, benzoxazol, indole as N-containing compounds and dimethyl 

trisulphide as S-containing compound. These compounds might contribute to the pungent 

odour of these fungi in their autolytic stage. The HS volatile extracts were used for an 

electrophysiological examination of the olfactory perception by the associated fly Suillia 

mikii (Diptera; Heleomyzidae). Electroantennographic detection coupled with GC-MS 

showed that the adults of S. mikii reproducibly responded to five volatiles released by the 

autolytic fruiting bodies. Those were ethyl acetate, 1-undecene, 2-nonanone, dimethyl 

trisulphide and one unidentified compound. These compounds are specifically formed 

during the autolytic stage of fruiting body development when the fungal sporulation takes 

place. Therefore, the examined Coprinus and Coprinopsis species might benefit from the 

attraction of the flies by providing additional dispersal of their spores.  

 

Keywords: fungal feeding insect, VOCs, host selection, GC-MS/EAD 
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7.2. Introduction 

Fruiting body development of fungi is a complex process as exemplified in the 

Basidiomycete Coprinus cinereus (Kües 2000). During the development, many biochemical 

processes take place, necessarily resulting in a release of volatile organic compounds 

(VOCs). Basidiomycetes in different developmental stages, as mycelium, immature and 

mature fruiting bodies, release different VOC patterns as shown for several Agaricus 

species (Keshri et al. 2003) and for Coprinopsis cinerea (Thakeow et al. manuscript in 

preparation). In a similar way, fruiting bodies of the Ascomycete Tuber borchii with 

different mature spore contents release specific patterns of VOC (Zeppa et al. 2004). 

Similar to plant volatiles, these fungal VOCs might be unavoidable by-products of 

developmental processes or compounds released for communication purposes. 

Interspecific communication might have developed by co-evolution, as some indication 

was found in fungus-plant interaction (Akiyama et al. 2005) and fungus-insect interaction 

(Thakeow et al. 2007). Many fungivorous insects feeding on different fungal parts like 

mycelium, fruiting bodies or spores (Lawrence 1989) rely on chemical cues for host fungal 

finding and identification (Fäldt et al. 1999; Thakeow et al. 2008).  

The aim of this study is to chemically characterise the volatiles specific to the autolytic 

stage of three Coprinopsis species and to electrophysiologically identify the volatiles 

perceived by the associated fly Suillia mikii.  

 

7.3. Materials and methods 

7.3.1. Fungi and insects  

The fruiting bodies of C. comatus and C. atramentaria were collected from the surroundings 

of Göttingen, Germany. The fruiting bodies of C. cinerea were kindly provided by Prof. 

Ursula Kües and Wassana Chaisaena, Section of Molecular Wood Biotechnology, George-

August-University Göttingen. The Suillia mikii (Diptera; Helomyzidae) flies were caught 

after their targeted flight and landing on the autolytic fruiting bodies of the Coprinopsis 
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species. Fungal samples and insects were stored at 8°C in the dark prior to the 

experiments. 

 

7.3.2. Analysis of C. comatus, C. atramentaria, and C. cinerea volatile 

organic compounds 

Sampling of volatiles from five grams samples of autolytic fruiting bodies in 60-ml septum 

cap vials was carried out by using two sampling techniques, close loop stripping analysis 

(CLSA) and solid phase microextraction (SPME). CLSA-tubes (CLSA-Filter, Gränicher + 

Quartero, Daumazan, France) containing activated charcoal were used for active sampling 

the volatiles released into the septum cap vials for 30 min at a sampling rate of 160 ml 

min-1. After that, the trapped volatiles were eluted by a solvent mixture of methanol (GC-

grade, Merck, Germany) and methylene chloride (Suprasolv-grade, Merck, Germany) 

(ratio 2:1). The obtained solution was kept at -80°C for further analysis. A SPME fibre, 

Carboxen™/Polydimethylsiloxane (PDMS) StableFlex™ (polymer thickness 85 μm) 

(Supelco, USA) was used for passive sampling. Prior to sampling, the fibre was cleaned by 

exposing it in the GC injection port for 5 min at 250°C and helium flow of 1.0 ml min-1. 

After that, the sampling was carried out by exposing the fibre in the headspace of the 

septum cap vial for 30 min. Later the fibre was retracted to its housing, and for analysis, it 

was directly injected to GC injection port. 

The gas chromatograph (GC, HP-6890N, Agilent Technologies, Paolo Alto, USA) 

was equipped with a polar column of INNOWAX (30 m x 0.25 mm i.d., 0.25 μm film 

thickness). Helium was used as a carrier gas with flow rate 1.0 ml min-1. The GC operating 

programs for those two sampling methods are shown in Table 7-1. 
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Table 7-1 GC operating programs for volatiles sampled with CLSA and SPME methods 

Method Initial 

temperature 

(°C) 

Time at initial 

temperature 

(min) 

Heating 

rate 

(°C min-1) 

Final 

temperature 

(°C) 

Hold time at final 

temperature 

(min) 

CLSA 50 1.5 6.5 250 10 

SPME 40 1.5 7.0 200 10 

 
The mass spectrometric analysis was performed by an MS-5973N (Agilent 

Technologies, Paolo Alto, USA) with the mass scan range of 20-400 amu, source 

temperature of 230°C and EI mode at 70 eV. The chromatograms were analysed with the 

database of Massfinder version 3.0 software together with the library “Terpenoids and 

Related Constituents of Essential Oils” (Hochmuth, König, Joulain, Hamburg, Germany), 

Enhance chemstation version D00.00.38 (Agilent Technologies, Paolo Alto, USA) and 

National Institute of Standards and Technology (NIST, Gaithersburg, USA) Mass Spectral 

Search program. The identification of compounds was confirmed by matching of mass 

spectra and retention times of authentic standards with the original samples. 

 

7.3.3. Electrophysiological response of S. mikii to C. comatus, C. 

atramentaria, and C. cinerea volatiles 

The electrophysiological response of S. mikii to C. comatus, C. cinerea, and C. atramentaria 

volatiles was accomplished on HP 6890N GC equipped with INNOWAX column 

(Agilent Technologies, Paolo Alto, USA) with a dimension of 30 m x 0.25 mm i.d., 0.25 

μm film thickness. The end of the column was separated into two paths, (i) mass 

spectrometer (MS) and (ii) electroantennographic detection (EAD). Two pieces of 

deactivated capillary were connected to a Graphpack 3D/2 flow splitter (Gerstel, 

Mülheim, Germany), in which one capillary (1 m x 0.1 mm, i.d.) led to the MS and the 

other (1 m x 0.15 mm, i.d.) joined to an olfactory detector port (ODP-2, Gerstel, Mülheim 

an der Ruhr, Germany). The detailed description of the setup is given in Weissbecker et al. 

(2004).  
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In order to adapt the GC effluent to optimum conditions to the insect antenna 

humidified air at room temperature with a flow rate of 20 l h-1 was added as a make-up 

gas. The insect antenna was cut and placed in an antenna holder (Prof. Dr. Uwe Koch, 

Kaiserslautern, Germany) (Färbert et al. 1997). Both ends of the antennae were immersed 

in an adapted-insect-hemolymph electrolyte solution (Kaissling and Thorson 1980). This 

solution brought contact to a pair of Ag/AgCl electrodes. The signal was later amplified 

and conversed by an A/D converter type 35900E (Agilent Technologies, Paolo Alto, 

USA), the signal was recorded by the Agilent GC Chem-Station software (Agilent 

Technologies, Paolo Alto, USA). 

 

7.4. Results 

7.4.1. Volatiles of C. comatus, C. atramentaria, and C. cinerea 

The volatiles of autolysis C. comatus, C. atramentaria, and C. cinerea fruiting body were 

collected by two sampling methods, CLSA (active sampling) and SPME (passive 

sampling). These two methods complement each other since not all compounds can be 

sampled by one of these two methods. There were totally 27 compounds identified and 

categorised in seven groups, alcohols, ketones, aldehydes, esters, hydrocarbons, N-

containing and S-containing compounds (Table 7-1). Alcohols contributed the major 

fraction (11 alcoholic compounds). The samples had a pungent odour, likely resulting 

from the N-containing compounds of N,N-dimethyl formamide, benzoxazol and indole, 

and from the S-containing compounds of dimethyl disulphide and dimethyl trisulphide. 
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7.4.2. Electrophysiological response of S. mikii fly to C. comatus, C. 

atramentaria, and C. cinerea volatiles 

The results of GC-MS/EAD are illustrated in Figure 7-1. It was clearly revealed that the 

fly reproducibly responded to five compounds of the autolytic C. comatus and C. 

atramentaria fruiting bodies with different intensities. Those compounds were ethyl acetate, 

1-undecene, 2-nonanone, dimethyl trisulphide, and an unidentified compound.  
 

 

Figure 7-1 Gas chromatogram (GC) – electroantennographic detection (EAD) and mass 
spectrogram (MS) of Suillia mikii fly to the volatiles of autolytic fruiting bodies. (A) VOCs 
of Coprinus comatus sampled by close loop stripping analysis and (B) VOCs of 
Coprinopsis atramentaria by solid phase microextraction. 
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Table 7-2 Volatiles of autolysis Coprinus comatus, Coprinopsis atrametaria and 

Coprinopsis cinerea 

SPME Compound Chemical 
structure 

Retention 
index 

CLSA 

FG1* 
FG1* FG2* FG3* 

Alcohols       

ethanolb OH
 

<1100  +   

1-propanole OH
 <1100 +    

2-methyl-1-

propanolg 
OH

 

<1100 + +   

3-methyl-1-butanola 

OH  

1206 + +  + 

1-hexanolc OH  
1350   +  

2-ethyl-1-hexanolb 

OH  

1475 +   + 

1-octen-3-olb 

OH
 

1438  +  + 

phenyl ethyl alcoholc OH

 

1899 + + +  

phenola OH

 

1989 +  +  

4-methyl phenolf 

OH  

2059 +    

3-methyl phenola OH

 

2067 +  +  
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Table 7-2 continued 

SPME Compound Chemical 
structure 

Retention 
index 

CLSA 

FG1* 
FG1* FG2* FG3* 

Ketones       

2-heptanonea O

 

1203  +   

3-octanoned 

O
 

1250  + + + 

3-hydroxy-2-

butanonee 
O

OH

 

1289 +    

2-nonanonee O

 

1386 + + +  

Aldehydes       

3-furaldehydeg 

O

O

 

1460 +    

benzaldehydec O

 

1525 + +  + 

Ester       

Ethyl acetateg 

O

O

 

865  +   

Hydrocarbons       

1-undeceneg 
 

1141 + + +  

5-undeceneg 
 

1167  +   
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Table 7-2 continued  

SPME Compound Chemical 
structure 

Retention 
index 

CLSA 

FG1* 
FG1* FG2* FG3* 

Sesquiterpenes       

β-himachalene 

 

    + 

cuparene 

 

1505    + 

N-containing 

compounds 

      

N,N-dimethyl 

formamideg NO
 

1329 +    

benzoxazolg N

O  

1652  + +  

indolee N

 
>2200 + + + + 

S-containing 

compound 

      

dimethyl disulphideg S
S  

1103    + 

dimethyl trisulphideg S
S

S
 

1387 + + +  

*FG1: Coprinus comatus, FG2: Coprinopsis atramentaria, and FG3: Coprinopsis cinerea 
The compounds were verified by comparing them with mass spectra and RIs from the institute’s 
internal database and co-elution with authentic standards: 
a Aldrich, Steinheim, Germany 
b Merck, Darmstadt, Germany 
c Acros, Geel, Belgium 
d VWR, Darmstadt, Germany 
e Fluka, Buchs, Switzerland 
f ABCR, Karlsruhe, Germany 
g by matching the mass spectra with library databases 
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7.5. Discussion 

To effectively identify volatile organic compounds (VOCs), it is worth to perform 

experiments by using two sampling techniques. In this manner, more complete volatile 

profile can be accomplished, since each sampling method, i.e., SPME and CLSA, 

possesses its own advantage and disadvantage. SPME is a powerful sampling technique, 

which has been developed since the 1990s, and is widely used in many research areas 

(Pawliszyn 1997). There are advantages to do experiments using SPME that are solvent-

free, straightforward, inexpensive, and covering wide ranges of chemicals (Zhang et al. 

1994). However, a disadvantage by using SPME as a sampling method is that it is a one-

shot experiment. This means when the SPME fibre is injected to the GC injection, all the 

volatiles are released and there is no more volatile left for further experiments. This 

drawback can be overcome by using CLSA sampling method since the collected volatiles 

on the activated charcoal are eluted with solvent, which could be kept for several 

experiments. Nevertheless, using solvents hinders the identification of small compounds, 

like ethanol with retention times in the range of the solvent retention time. As shown in 

Figure 7-1 and Table 7-2 there were compounds which were sampled by SPME but not by 

CLSA. Those were ethanol, 1-hexanol, 1-octen-3-ol, 2-heptanone, 3-octanone and 

benzoxazol. At the same time, there were compounds which were collected by CLSA but 

not by SPME. Those were 1-propanol, 3-methyl phenol, 4-methyl phenol, 3-furaldehyde 

and N,N-dimethyl formamide. This difference might rise from volatility of the 

compounds and the different selectivity of the adsorbents.  

3-Methyl-1-butanol was a dominant compound and is found to be released also from 

many other types of fungi such as Trametes versicolor (Thakeow and Schütz manuscript in 

preparation). This 3-methyl-1-butanal (dehydrogenated form of 3-methyl-1-butanol) was 

marked to be released from the dead mycelium of Serpula lacrymans (Ewen et al. 2004). The 

typical fungal odour of 1-octen-3-ol and 3-octanone were detected only in minute 

amounts, which normally dominate in fungal volatile pattern. This is probably due to the 

fact that the growth phase of the fungus was stopped, which might relate to release of 

these typical fungal odours (Thakeow et al. 2007). In C. cinerea, it was found that the 
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quantity of 1-octen-3-ol was decreased during whole life cycle development, from primary 

primordia to the autolytic fruiting body (Thakeow et al. manuscript in preparation). Many 

heteroatom-containing compounds were detected, probably contributing to the stink 

odour of the autolytic fungi, like 3-furaldehyde, benzaldehyde, N,N-dimethyl formamide, 

benzoxazol, indole, dimethyl disulphide, and dimethyl trisulphide. The last two 

compounds were found as a volatile from spoiled meat (Brown 1982) and arum plant 

(Kite and Hetterschieid 1997).  

During growth development of fungi, they differently released volatiles as revealed in 

C. cinerea (Thakeow et al. manuscript in preparation) and Tuber borchii (Zeppa et al. 2004). 

The volatiles could be by-products of metabolism that the fungivorous insects use for 

their host identification. Besides that the volatiles could be released in order to attract the 

insects for involving their reproduction like when they are autolysis, dimethyl disulphide 

and dimethyl trisulphide, which smells similar to spoiled meat (Gill 1982), is released to 

catch the attention of flies. In this study, it was demonstrated that the fly can 

electrophysiologically and reproducibly perceive the volatiles released from autolysis 

Coprinus and Coprinopsis species fruiting bodies. This remarkable selectivity could lead to 

the development of VOC-based early warning system for fungal-decayed meat as it has 

been done in fungal infested potatoes (Schütz et al 1999). 
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8.1. Abstract 

Quality assessment evaluating the feedstock for wood material production requires a quick 

and selective detection of fungal infection. A biosensor based on intact insect antenna was 

tested with beech wood samples infected by Trametes versicolor as a proof of principle. The 

fungivorous insect, Cis boleti, is evolutionarily optimised for detecting fungi growing on 

wood. The antenna of C. boleti was shown to perceive the typical fungal odour, 1-octen-3-

ol with high selectivity and a sensitivity of down to 5 ng ml-1 in air. In order to increase the 

reliability of the antennal response, a biosensor system using the superposition method 

was employed. The short response time of the antenna enabled the design of a standard 

protocol to measure fungal volatiles including continuous recalibration of the biosensor 

system.  Using this internal recalibration yielded reproducible responses to the fungal 

marker volatile compound. An online assessment of wood samples was possible with a 

throughput of one sample per minute. The life time of C. boleti antenna was up to one day.  

 

Keywords: Insect antenna, Cis boleti, GC-EAD, biosensor, VOCs, beech wood, Trametes 

versicolor 
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8.2. Introduction 

Traditional methods to assess fungal-infected wood are based on visual inspection and 

physical property testing. Visual inspection is often costly and not reliable enough to meet 

the high quality requirements for feedstock of certain wood materials. Physical property 

testing is destructive and can be performed only on selected samples. A complementary 

method for quality control could be the examination of volatile organic compounds 

(VOCs) resulting from the metabolism of growing fungi on wood substrate. Techniques 

based on fungal VOC detection are a promising alternative for specific, sensitive, and 

rapid routine diagnosis directly from wood samples. The advantage of these methods is 

that they are working even if there are no visible symptoms of fungal infection because of 

early developmental stage or obstruction of visible inspection by bark and wood structure. 

Sampling the air over wood logs allows a high throughput testing without inflicting 

damage to the wood logs. VOCs of fungal rotted wood are frequently containing 1-octen-

3-ol as a characteristic marker compound of fungal activity (Combet et al. 2006; Thakeow 

et al. 2006, 2007). Moreover, additional VOCs of fungal-rotted wood are affected by the 

infecting species, the wood substrate, and the developmental stage of the fungi (Thakeow 

et al. 2006, 2007).  

Fungivorous insects need to locate and identify suitable wood degrading fungi as 

nutrients for their offspring. Thus, fungivorous beetles like Cis boleti are evolutionarily 

optimised for detecting wood degrading fungi. Despite the fact that these beetles are able 

to distinguish even different species of wood degrading fungi, their antennae respond to 

the general marker compound of fungal infection, 1-octen-3-ol with high sensitivity and 

selectivity (Thakeow et al. 2008). Insect antennae of C. boleti are therefore utilised as 

biocomponents of a biosensor on the basis of intact insect antenna. Detection of VOCs 

by means of a biosensor is a promising technology providing a fast, non-destructive, and 

selective screening tool. Several biosensors have been developed and applied on this basis 

as, for example a field measurement system of pheromone concentration (Koch et al. 

1997, 2002; Sauer et al. 1992), a smoke detector (Schütz et al. 1999a), and a biosensor for 
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the detection of potatoes infected by Phytophtora infestans in potato storage (Schütz et al. 

1999b). 

This study is designed to examine the feasibility of using C. boleti antenna as a 

biocomponent in a biosensor for the detection of fungal infection in wood.  

 

8.3. Materials and methods 

8.3.1 Cis boleti 

The fruiting bodies of the wood rotting fungus Trametes gibbosa (Basidiomycete; 

Polyporaceae) colonised with C. boleti were collected from Königsbuche, a natural forest 

protection area near Göttingen, Germany. In this area T. gibbosa is abundant and is 

colonised by Ciid beetles with high rates. The colonised fruiting bodies were stored in a 

dark room at 10°C and were sprayed with tap water in order to maintain humidity.  

 

8.3.2. Electrophysiological response of C. boleti to 1-octen-3-ol 

8.3.2.1. Response of C. boleti to 1-octen-3-ol 

In this experiment, gas chromatography-mass spectrometry/electroantennographic 

detection (GC-MS/EAD) was used for examining the perception of C. boleti to 1-octen-3-

ol in different concentration. 1-octen-3-ol (Merck, Darmstadt, Germany) was dissolved in 

pentane (Merck, Darmstadt, Germany) with different concentration (0.01, 0.1 and 1 g l-1). 

One μl of each solution was injected to the injection port (250°C) of a gas chromatograph 

(HP 6890N, Agilent Technologies, Paolo Alto, USA) equipped with an INNOWAX 

column (Agilent Technologies, Paolo Alto, USA) with a dimension of 30 m x 0.25 mm 

i.d., 0.25 μm film thickness. The temperature program started at 50°C, held for 1.5 min, 

and heated up to 250°C with a heating rate of 6.5°C min-1. The carrier gas was helium, at a 

flow rate of 1.0 ml min-1. The gas chromatographic column was split into to two paths (i) 

to the mass spectrometer (MS) and (ii) to the electroantennographic detector (EAD). Two 
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pieces of deactivated capillary were connected to a Graphpack 3D/2 flow splitter (Gerstel, 

Mülheim, Germany), one capillary (1 m x 0.1 mm, i.d.) directing to the MS and the other 

(1 m x 0.15 mm, i.d.) directing to an olfactory detector port modified to interface to the 

EAD (ODP-2, Gerstel, Mülheim an der Ruhr, Germany), mass spectrometric analysis by 

MS 5793 (Agilent Technologies, Paolo Alto, USA) was carried out with the mass scan 

range of 20-400 amu, source temperature 230°C and EI mode at 70 eV. For preparation, 

one antenna of male C. boleti was cut and placed in an antenna holder both ends 

immersing in Ringer solution (Kaissling and Thorson, 1980), leaving the middle part of 

antenna exposed to volatile compounds eluted from the GC column. More detail of GC-

MS/EAD had been fully described by Weißbecker (Weissbecker et al. 2004).  

For dose-response measurement, a dilution series of 1-octen-3-ol (Merck, Darmstadt, 

Germany) from 10-6 to 10-3 was prepared in paraffin oil (Uvasol®, Merck, Darmstadt, 

Germany). Small pieces of 18-cm² filter paper (Schleicher & Schuell, Dassel, Germany) 

were put into 10 ml glass syringes (Poulten & Graf GmbH, Wertheim, Germany). Then, 

200 µl of the standard dilution or paraffin oil (control) was spread on the filter paper. The 

test compound evaporated and accumulated inside the syringe at a concentration 

proportional to the concentration of the substance in the solution and its vapour pressure 

according to Henry’s law.  A reproducible 5-ml volume was puffed over the antenna for 

stimulation (Schütz et al. 1999b). 

 

8.3.2.3. Evaluation of Antennal Performance 

The antennal longevity of C. boleti both male and female was assessed. The insect antenna 

was prepared in the same procedure as mentioned in 2.2. Afterwards, it was periodically 

tested with the standard 1-octen-3-ol at dilution of 10-4 at 10, 20, 30 and 60 min after the 

antenna excision. The antennal responses to the standard were recorded. 
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8.3.3. Biosensor System  

The experiment was performed with the portable biosensor system, previously jointly 

developed with Prof. Dr. Uwe T. Koch and his co-workers, University Kaiserslautern, 

Germany (Koch 1990). It is a robust and portable EAG system for pheromone 

measurement. The machine was described in Färbert et al. 1997. In our experiment, this 

instrument was modified from the original setting by adding the test chamber part after 

the filter as shown in Figure 8-1. The original instrument was constructed without the part 

indicated as number (2). The test specimen, e.g. fungal infested wood could be placed 

inside. When the experiment was carried out, a pump (8) sucked down the air which is 

filtered through the activated carbon (1). In the mean time, the VOCs of the test chamber 

move through the mixing chamber to the biosensor-head.  The biosensor- head contains 

the antenna holder chamber (7) and the antenna holder (8). The electropotential response 

of the detecting antenna to VOCs is transferred from the EAG output (10) to the 

amplification and recording unit. 

The response of C. boleti antenna to a (0.5 x 0.5 x 1.0 cm3) sample of fungal infested 

wood in the portable EAG system was preliminary investigated. The dilution series of 1-

octen-3-ol (Merck, Darmstadt, Germany) in paraffin oil (Uvasol®, Merck, Darmstadt, 

Germany)  were prepared from 10-4 to 10-2, and 200 μl of each solution was spread on a 

filter paper housed inside the Teflon-barrel which was placed in the syringes, parts 

numbers 3, 4 and 5 in Figure 8-1, respectively.  
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Figure 8-1 Schematic of EAG system. (1) Filter filled with activated charcoal, (2) 
Specimen chamber, (3, 4 and 5) Syringes containing Teflon barrel filled with filter paper 
soaked with compound-paraffin oil, (6)  Mixing chamber, (7) Antenna holder chamber, (8) 
Antenna holder, (9) Pump, and (10) EAG Signal output. 
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8.4. Results 

Our previous study showed that C. boleti consistently responded to 1-octen-3-ol extracted 

from it host fungus Trametes gibbosa (Thakeow et al. 2008). This compound is commonly 

present in fungi and generally known as a mushroom odour (Tressl et al. 1982; Combet et 

al. 2006). Therefore, this fungivorous insect was investigated for the feasibility to be a 

biocomponent in biosensor used for monitoring fungal infested wood.  

 

8.4.1. Electrophysiological response of C. boleti to 1-octen-3-ol 

8.4.1.1 Response of C. boleti to 1-octen-3-ol 

By using GC coupled with MS/EAD for testing the response of C. boleti to 1-octen-3-ol, it 

was shown that the insect responded well and consistently to this compound. The GC-

MS/EAD chromatograms (Figure 8-2) depicted a response of C. boleti antenna responded 

to 1-octen-3-ol (5 ng) at the retention time of 12.38 and 12.50 min, for MS and EAD, 

respectively. The dose-response curves in Figure 8-3 demonstrated the sensitivity of the 

antennae to 1-octen-3-ol as a marker compound for a fungal-infested wood. The female 

and male beetles showed similar response to different doses, namely, the higher the dose, 

the higher the response. However, the females tended to responded to 1-octen-3-ol 

stronger than males. 

 

8.4.1.2. Evaluation of Antennal Performance 

In order to assess the suitability for a practical application, the reproducibility and 

longevity of the response of the antenna to 1-octen-3-ol was tested. As depicted in Figure 

8-4, the female insects showed higher EAG potential than the male insects throughout the 

60 min after the antennae were cut. After 10 min of excision, the response of females was 

0.30±0.06 mV and of males was 0.27±0.03 mV. After two injections at 20 and 30 min, the 

antennae were left without any injection of 1-octen-3-ol. At 60 min, the response was 

examined again, it revealed that the female response maintained (0.28±0.06 mV), while the 
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male response was decreased (0.18±0.03 mV). The female antenna yielded consistent 

responses up to 24 hours of permanent measurement use. 

 

 

 

 
 
Figure 8-2 An example of gas chromatography (CG) – mass spectrometry (MS)/ 
electroantennographic detection (EAD) chromatograms of C. boleti (male) response to 5 ng 
of 1-octen-3-ol. a: EAD, b: MS and TIC: total ion current.  
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Figure 8-3 Dose-response curves of male (●) and female (○) C. boleti to 1-octen-3-ol. Value 
= mean±SE. Different letters indicate significant differences between samples.  
 

 
Figure 8-4 EAG responses (mean±SE) of male (■) and female (□) C. boleti to 1-octen-3-ol at a 
dilution of 10-4 (n = 5 for each sex). Different letters indicate significant differences between 
samples. 
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8.4.2. C. boleti antennal response using the portable biosensor system 

A proof of principle experiment employing C. boleti antenna as a biocomponent in the 

portable biosensor system for detecting fungal infestation on wood specimen was carried 

out. C. boleti antenna was excised and placed in an antenna holder, which was enclosed 

antennal holder chamber. This part was later connected to the portable biosensor system 

(Figure 8-1). The antennal response to a standard compound 1-octen-3-ol at different 

dilutions, 10-4, 10-3 and 10-2, was measured. The 10-4 dilution of 1-octen-3-ol did not elicit 

clear responses comparing to the other two dilutions. The 10-3 and 10-2 dilutions of 1-

octen-3-ol repeatedly elicited C. boleti antennal responses of 1.31±0.10 and 3.08±0.14 mV, 

respectively. After that a wood specimen (beech rotted with Trametes versicolor), was put in 

the specimen chamber and the pump (flow rate 20 l h-1) was started passing the air inside 

the chamber over the mounted antenna. In the meantime, the calibrating standard puffs of 

1-octen-3-ol were injected in the order to measure the 1-octen-3-ol concentration released 

by the wood sample and also passed over the antenna. This superposition technique was 

shown for the first time with a fungivorous insect. Under the atmosphere of fungal-

infested wood volatiles, containing 1-octen-3-ol, the antennal response of C. boleti to the 

standard dilutions of 1-octen-3-ol became lower than before. The responses were reduced 

to be 1.12±0.15 and 2.78±0.31 mV for 10-3 and 10-2 dilutions of 1-octen-3-ol, respectively. 

The antennal responses between with and without infected-beech wood were significantly 

different [F(1,10) = 6.74, p < 0.1 and F(1,10) = 17.66, p < 0.01 for dilutions of 10-3 and 

10-2, respectively], demonstrating a reliable detection of fungal infected wood. 

 

8.5. Discussion 

There have been several approaches aiming to investigate the infestation of fungi on 

wood, for example, Fourier-transformed infrared spectrometry (FTIR) (Naumann et al. 

2005), Matrix Assisted Laser Desorption Ionization Time-of-flight Mass Spectrometry 

(MALDI-TOF-MS) (Schmidt and Kallow 2005), polymerase chain reaction (PCR) (Parfitt 

et al. 2003; Guglielmo et al. 2007), and terminal restriction fragment length polymorphism 
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(T-RFLP) (Råberg et al. 2005). These techniques are efficient in identification of fungal 

species infecting wood samples, but not appropriate for quick and non-destructive 

screening.  Therefore, techniques based on fungal VOC detection on the basis of intact 

insect antennae are a promising alternative for specific, sensitive, and rapid routine 

diagnosis directly from wood samples. Testing by antenna-based biosensor has been 

achieved in several fields, especially in agriculture (Milli et al. 1997; Schöning et al. 1998; 

Schroth et al. 1999; Schütz et al. 1997, 1999; Sevonkaev and Katz 2008). 

This work demonstrated that C. boleti antenna can be used as a biocomponent in the 

portable biosensor system for sensing 1-octen-3-ol as a general indicator of fungal activity 

in wood samples. This biosensor approach might complement visual inspection of 

feedstock for wood material production. Moreover, an identification of fungal species or 

groups of fungal species might become feasible by this biosensor technique employing 

insects responding selectively to species specific fungal volatiles like sesquiterpene 

(Thakeow et al. 2006). Thus, this quick and damage free screening tool might complement 

the aforementioned more sophisticated methods of fungal identification in wood samples. 

Despite the fact that the biosensor system demonstrated a high selectively and high 

sensitivity to important fungal compounds it is not ready yet for industrial routine 

application. First of all, the limited life time of the biocomponent is an obstacle to 

feedstock monitoring. Transferring important principles of stabilisation, prefiltering and 

recognition from insect olfaction to other technologies will be essential for bringing bio-

inspired sensor technology into industrial application (Eberheim et al. 2004; Thakeow et 

al. 2007).  
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9.1. General discussion 

Wood-decaying fungi are the most important microorganisms that can colonize and degrade 

wood and wood products (Carroll and Wicklow 1992; Hoff et al., 2004) causing economic 

losses in wood industry (Zabel and Morrell 1992). For that reason, several efforts have 

been undertaken to prevent wood degradation by fungi in several processes (Hill 2006). 

Moreover, several efforts were done to develop standard testing methods to evaluate and 

to predict the degradability of natural wood as well as of wood (Eaton and Hale 1993). The 

traditional testing methods are generally 

based on physical properties, for 

example, visual inspection, strength, 

weight loss, and more precisely by the 

so-called modulus of elasticity (MOE) 

and modulus of rupture (MOR) (Green 

et al. 1999; Curling et al. 2002; Goodell 

et al. 2003). The changes of those 

properties are the consequence of 

fungal degradation (Figure 9-1.).  

The evaluation of wood decay by 

visual inspection is a subjective 

technique that does not detect early 

decay.  For instance, it has been 

described that early stages of brown rot 

decay, not detectable with visual 

inspections, already caused losses in 

strength in the order of 70% of MOE 

(Wilcox 1978). However, the alteration 

of the wood physical properties occurs 

after a period of time from infection, 

which may last for several weeks. 

 

 
Figure 9-1 The cycle wood-decaying fungi (top 
to bottom). Thousands of spores produced in a 
fruiting body are distributed by wind or insects. 
On contacting moist, susceptible wood, they 
germinate to create new infections in the wood 
cells. In time, serious decay develops that may 
be accompanied by formation of new fruiting 
bodies (after Highley 1999). 
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Therefore, there is a need of new approaches to test wood decay during the first, critical 

stages of fungal infections. One promising methodology regards the possibility to detect 

volatile organic compounds released by the fungal metabolisms or resulting from the 

interaction of the fungal compounds with wood metabolites. These methods would 

provide a fast and non-destructive measurement and could be a complement to the 

traditional testing techniques. With the aim to achieve this objective, we performed several 

experiments to define and develop such methodology. Several investigations were carried 

out measuring the volatile compounds released from different decay fungi and fungal-

wood specimens.  To study the feasibility of using VOCs as marker compounds for 

fungus-infested wood we developed a new olfactory-based biosensor where the 

biocomponent is the antenna of fungivorous insects which are highly sensitive and 

specialised in detecting the volatile compounds of fungal-infested wood. 

 

9.2. Volatile sampling techniques 

Volatile identification is strongly dependent on sampling techniques. For our investigation 

we adopted two sampling methods in order to detect and characterise the headspace-

VOCs (HS-VOCs) of our samples. The active sampling was carried out by circulating the 

HS VOCs through activated charcoal and the porous polymer, poly(oxy-2,6-diphenyl-1,4-

phenylene),  known as Tenax-TA™  (Gerstel, Germany). The passive sampling was carried 

out by suspending SPME fibres in the headspace, where the volatiles adsorb to the fibre 

according to their physical and chemical properties. It is well known that SPME has a 

markedly different performance than the porous polymers, resulting in different ratios of 

adsorbed compounds (Agelopoulos and Pickett 1998). Nevertheless, SPME is widely used 

in many research fields, and it has become very popular due to its simplicity in manual 

operation, the variety of polymer-matrixes with different affinity to volatile compounds, 

and the adequate performance in specified conditions (Zhang and Pawliszyn 1993; Buzzini 

et al. 2003; Jeleń 2003; Zeppa et al. 2004; Thakeow et al. 2006). In Chapter 7 we described 
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and provided the results of two types of VOCs sampling methods, which allowed us to 

obtain optimised information about the released volatiles. 

Sampling conditions are also important to volatile identification. For example, in case 

of SPME, the sampling depends on equilibrium between a volatile compound (i.e. its 

vapour pressure) and the fibre. Therefore, many factors like sampling temperature, 

humidity, sampling time, sample concentration, polymer types, and headspace volume 

influence the VOC patterns (Current et al. 2001; Yang et al. 2001). Therefore, all relevant 

parameters were monitored during SPME sampling experiments. Comparisons of results 

obtained under different conditions were handled with care. 

 

9.3. Identification of VOCs in fungi 

There are several chemical categories of VOCs released from wood, infected wood, and 

microorganisms (Chapter 2). Those compounds cover broad ranges of chemical classes, 

i.e., alcohols, aldehydes, acids, ketones, esters, sulphur (S)-containing compounds, nitrogen 

(N)-containing compounds and terpenoids. VOCs released are influenced by many 

factors, for example, stage of fungal development and substrates. Subsequently, VOCs 

provide information about the condition of a sample. For example, Serpula lacrymans grown 

on Pinus sylvestris sawdust released 1-octen-3-ol as a major compound when it was alive, 

while 3-methylbutanal and 2-methylbutanal were released when it was dead (Ewen et al. 

2004).  

In a similar way, the young fruiting body of Polyporus sulfureus released 1-octen-3-ol as a 

dominant compound, when it became aged, this fungal alcohol was not anymore 

abundantly released and 3-methylbutanoic acid was additionally detected (Wu et al. 2005).  

In our experiments we found that 1-octen-3-ol was highly present in fresh fungal-infected 

beech wood, while its relative concentration decreased in the later stages of mycelium 

growth, as reported in Chapter 3. In contrast to that, 3-methyl-1-butan-1-ol was released 

continuously during the growth stages of the T. versicolor mycelium in infected beech wood. 

We may notice that 3-methyl-1-butan-1-ol can be consequently oxidised to from 3-
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methylbutanal which be further oxidised to 3-methylbutanoic acid, as schematically shown 

in Figure 9-2. Therefore, we propose that these compounds could be involved in fungal 

aging processes.  

We discovered that at specific developmental stages the ink cap fungus Coprinopsis 

cinerea released different volatile compounds. The two sesquiterpenes β-himachalene and 

cuparene were released during the stipe elongation and cap expansion stages, while 

dimethyl disulfide was released during autolytic stage, as described in Chapter 4.  

 

 

 

 

Figure 9-2 (A) Chemical oxidation of 3-methylbutan-1-ol and (B) Proposed biosynthetic 
relation of 3-methylbutan-1-ol, 3-methylbutanal, and 3-methylbutanoic acid at different 
stages of fungal development.  

 

 

A 
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These fungal-stage-related VOCs are not characteristic only of basidiomycetes but 

they are also present in ascomycetes. A remarkable example was given by the ascomycete 

Tuber borchii. Several S-containing compounds, e.g. 5-methyl-3H-1,2-dithiol-3-one, were 

found only in later stages of ascus spore maturation, while 1-octen-3-ol was detected  only 

the last stage of spore maturation (Zeppa et al. 2004). In another ascomycete, Penicillium 

paneum, it was found that 1-octen-3-ol regulates the germination process at different 

developmental stages of conidia (Chitarra et al. 2004).  

Nutrients and the physical environments strongly influence growth and development 

of fungi (Kües 2000; Chang and Miles 2004) and alter VOC patterns released (Wheatley et 

al. 1997; Bruce et al. 2000; Fiedler et al. 2001; Gao and Martin 2002: Gao et al. 2002, 

Scotter et al. 2005; Thakeow et al. 2007). Production of volatile organic compounds by 

Trichoderma was influenced by the type of growth media, where an aminoacid-rich media 

promoted the releasing of N- and S-containing compounds, whereas a carbohydrate-rich 

media promoted the releasing of alcohols, acids, aldehydes, and ketones (Bruce et al. 

2004).  

All these results support the hypothesis that fungal VOCs play an essential role in the 

regulation of fungal development and may strongly influence important ecological 

processes such as fungus-plant, fungus-insect and fungus-fungus interactions. Moreover, 

some specific volatile compounds released by fungi have antibacterial and 

antimicrobiological activity. An example which led to commercial applications is the 

endophytic fungus Muscodor albus, which released mixture of volatiles effectively inhibiting 

and killing certain other fungi and bacteria. The majority of these compounds were 

identified and an artificial mixture mimicked the antibiotic effects of the genuine fungal 

volatile compounds (Strobel et al. 2001; Strobel and Daisy 2003). The fact that alteration 

in fungal VOCs is strongly related to the developmental stage and substrate may lead to 

practical application.  For instance, the harvesting period and the substrates used for 

fungal cultivation could be selectively adopted in order to obtain high-nutrient quality 

fungi and pharmaceutical active compounds. 
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9.4. Insect antennae as biocomponents in biosensors 

Insect olfaction is a complex system (Kanaujia and Kaissling 1985; Steinbrecht and 

Kasang 1972) which shows a high sensitivity and selectivity in odour perception. Insects 

have been able to fill a variety of ecological niches, for examples fruit flies are associated 

with fruits, blowflies are associated with rotten meat, fungivorous insects are associated 

with fungi, and bark beetles are associated with trees. This ecological diversity potentially 

allows making use of their antennae as biocomponents of biosensors for a large number 

of purposes.  

 

 

Figure 9-3 General idea of using the diversity of insect antennae as biocomponents in 
biosensors. 
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Some insect species have been deeply studied in relation with their host selectivity. 

The Colorado potato beetle Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) perceived 

VOCs released from potato plants and also infected potatoes with high sensitivity (Schütz 

et al. 1999a). The jewel beetle Melanophila acuminata (Coleoptera: Buprestidae) efficiently 

sensed smoke form forest fire at concentration as low as a few part per billion (Schütz et 

al. 1999b). The bark beetles (Scolytus, Dendroctonus, Hylurgops, Trypodendron, and Tomicus) 

detected the suitability of their host trees for oviposition (Byer 1995).  

These examples are just a few among several ones where insect olfaction was 

investigated in great detail. However, there have been only few cases of using insect 

antennae as biocomponents in biosensor devices. A review where the researches of 

olfactory-based biosensors were summarised in a concise and comparable way has been 

recently written by Sevonkaev and Katz (2007).  

In our investigations we aimed to develop a fast and non destructive biosensor testing 

method of wood durability against decay fungi. For this reason, we chose to examine the 

antennal responses of two different insect species. The fungivorous beetle, Cis boleti and 

the fungal-associated fly, Suillia mikii, were selected as promising candidates for detecting 

fungal VOCs. C. boleti was able to perceive several volatile compounds of Trametes gibbosa, 

and remarkably the insect discriminated between the two enantiomers of 1-octen-3-ol 

(Thakeow et al. 2008 and Chapter 6). Therefore, a portable biosensor using the 

superposition method and equipped with the C. boleti antenna was constructed. The 

biosensor yielded reproducible responses to the fungal marker volatile compound as 

described in Chapter 8. The fly S. mikii responded to some volatiles specifically released by 

the autolytic fruiting bodies of Coprinus and Coprinopsis, such as 1-undecene, 2-nonanone, 

dimethyl disulphide, and dimethyl trisulphide (Chapter 4).  The antennal preparation of 

the two insects, C. boleti and S. mikii is shown in Figure 9-4. 
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Figure 9-4 Excised insect antennae placed in EAG antennal holder. (A) Cis boleti antenna, 
bar: 1 mm and (B) Suillia mikii antenna, bar: 1 mm. 

 

 

These pioneer studies on decay wood testing with olfactory-based biosensors are very 

promising, since we demonstrated a high sensitivity and selectivity of the biocomponents. 

However, still there are some problems in detection, caused by the receptor degradation due 

to natural aging processes in the biocomponents, although we were able to record antennal 

signals up to one day after the antenna was cut from the insect. The fluctuation of the signals 

during measurements and the individual variability of the antenna are critical aspects of these 

types of biosensors. Therefore, there is a need of a frequent re-calibration system which was 

accomplished in our experiment by the superposition technique. However, more 

experiments have to be carried out before our biosensors will perform robust and consistent 

measurements to reach the requirements of industrial applications.  Nevertheless, our work 

demonstrated that C. boleti antenna can be used as a biocomponent in the portable 

biosensor system for sensing 1-octen-3-ol as a general indicator of fungal activity in wood 

samples.  
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9.6. Conclusion and future prospectives 

In this research it was demonstrated that fungal-infected beech wood released specific 

volatile patterns for each tested fungal species. C8 compounds were commonly released, 

while sesquiterpenes were species-specifically released. Those compounds can be used as 

markers for fungal-infected wood, either as general or species-specific indicators of 

infected wood. The fungivorous beetle C. boleti and the fugal associated fly S. mikii 

perceived the volatiles released from fungal fruiting bodies with high sensitivity. 

Especially, C. boleti showed consistent responses to 1-octen-3-ol as an important cue for 

host finding. Furthermore, excised antennae of C. boleti were employed as biocomponents 

in a biosensor. This new and promising testing method of wood durability against decay 

fungi provides fast and non-destructive measurements.  

The characterisation of the physiological mechanisms utilised by C. boleti to detect 

host fungal volatiles may be part of further studies.  To investigate in detail the olfactory 

system of C. boleti experiments with single sensillum recording (SSR) should be performed. 

Moreover, transmission electron microscopy (TEM) of the different chemosensory 

sensilla will provide important information about the ultrastructure of these organs and 

therefore to their physiological functions. Moreover, SSR recording may discover if the 

two enantiomers of 1-octen-3-ol are perceived by different sensilla, leading to a possible 

application of enantiomer discrimination.  

A further task could be also the development of a protein-based biosensor for 

detecting wood decay. It can be presumed that fungivorous insects express odorant 

receptors and odorant binding proteins with high sensitivity to the fungal odours. Such 

proteins could be immobilised on a conductive substrate and implemented in a biosensor, 

as recently proposed by Prof. Trowell (Trowell 2008) in an ongoing project where the 

olfactory receptors of Drosophila melanogaster are included in a biosensor for detecting food 

aroma compounds.  



 
- 190 - 
 

 

9.7. References 

Agelopoulos NG, Pickett JA. 1998. Headspace analysis in chemical ecology: Effects of 
different sampling methods on ratios of volatile compounds present in headspace 
samples. Journal of Chemical Ecology 24: 1161-1172. 

Bruce A, Wheatley ER, Humphris NS, Hackett CC, Florence EJM. 2000. Production of 
volatile organic compounds by Trichoderma in media containing different amino acids and 
their effect on selected wood decay fungi. Holzforschung 54: 481-486. 

Bruce A, Verrall S, Hackett AC, Wheatley ER. 2004. Identification of volatile organic 
compounds (VOCs) from bacterial and yeast causing growth inhibition of sapstain fungi. 
Holzforschung 58: 193-198. 

Buzzini P, Martini A, Cappelli F, Pagnoni UM, Davoli P. 2003. A study on volatile organic 
compounds (VOCs) produced by tropical ascomycete yeast. Antonie von Leeuwenhoek 
84: 301-311. 

Byers JA. 1995. Host tree chemistry affecting colonization in bark beetles.  In: Carde RT, Bell 
WJ (Eds). Chemical Ecology of Insects 2. Chapman and Hall, New York. pp. 154-213. 

Chang ST, Miles GP. 2004. Mushrooms: Cultivation, nutritional value, medicinal effect and 
environmental impact, 2nd edition. Chapter 4: Overview of the biology of fungi. CRC 
Press, New York. pp. 53-144. 

Chitarra GS, Abee T, Rombouts FM, Posthumus MA, Diijksterhuis J. 2004. Germination of 
Penicillium paneum conidia is regulated by 1-octen-3-ol, a volatile self-inhibitor. Applied and 
Environmental Microbiology 70: 2823-2829. 

Carroll GC, Wicklow DT. (Eds). 1992. The fungal community, its organization and role in the 
ecosystem vol. 9, Marcel Dekker, New York. 

Curling SF, Clausen CA, Winandy JE. 2002. Relationships between mechanical properties, weight 
loss, and chemical composition of wood during incipient brown-rot decay. Forest Products 
Journal 52: 34-39.  

Current RW, Meyer MJ, Borgerding AJ. 2001. Rapid aqueous sample extraction of VOCs: 
effect of physical parameters. Talanta 55: 519-529.  

Eaton RA, Hale MDC. 1993. Wood: decay, pests and protection. Chapman and Hall, London.  
Ewen RJ, Jones PRH, Ratcliffe NM, Spencer-Phillips PTN. 2004. Identification by gas 

chromatography-mass spectrometry of the volatile organic compounds emitted from the 
wood-rotting fungi Serpula lacrymans and Coniophora puteana, and from Pinus sylvestris timber. 
Mycological Research 108: 806-814. 

Fiedler K, Schütz E, Geh S. 2001. Detection of microbial volatile organic compounds (MVOCs) 
produced by moulds on various materials. International Journal of Hygiene and 
Environmental Health 204: 111-121. 

Gao P, Korley F, Martin J. 2002. Determination of unique volatile metabolites produced by 
five Aspergillus species commonly found in problem buildings. American Industrial 
Hygiene Association Journal 63: 135-140. 

Gao P, Martin J. 2002. Volatile metabolites produced by three strains of Stachybotrys chartarum 
cultivated on rice and gypsum board. Applied Occupational and Environment Hygiene 17: 
430-436. 

Goodell B, Nicholas DD, Schultz TP. (Eds). 2003. Wood deterioration and preservation: 
advances in our changing world.  American Chemical Society, Washington DC. 



 
9. General Discussion  - 191 - 
 

 

Green DW, Winandy JE, Kretschmann DE. 1999. Mechanical properties of wood. In: Wood 
Handbook: Wood as an Engineering Material. Gen. Tech. Rept. FPL-GTR-113. USDA 
Forest Serv., Forest Prod. Lab., Madison, Wisconsis.  

Highley TL. 1999. Biodeterioration of wood. In: Wood Handbook: Wood as an Engineering 
Material. Gen. Tech. Rept. FPL-GTR-113. USDA Forest Serv., Forest Prod. Lab., 
Madison, Wisconsin.  

Hill C. 2006. Wood Modification: Chemical, thermal and other processes. John Wiley & Sons 
Ltd., West Sussex.  

Hoff JA, Klopfenstein NB, McDonald GI, Tonn JR, Kim MS, Zambino PJ, Hessburg PF, 
Rogers JD, Peever TL, Carris LM. 2004. Fungal endophytes in woody roots of Douglas-fir 
(Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa). Forest Pathology 34: 255-271. 

Jeleń HH. 2003. Use of solid phase microextraction (SPME) for profiling fungal volatile 
metabolites. Letters in Applied Microbiology 36: 263-267. 

Kanaujia L, Kaissling E-E. 1985. Interaction of pheromone with moth antennae: adsorption, 
desorption and transport. Journal of Insect Physiology 31: 71-81. 

Kües U. 2000. Life history and development processes in the basidiomycete Coprinus cinereus. 
Microbiology and Molecular Biology Reviews 64: 316-353. 

Schütz S, Weißbecker B, Hummel HE, Apel K-H, Schmitz H, Bleckmann H. 1999a. Insect an-
tennae as a smoke detector. Nature 398: 298-299. 

Schütz S, Weißbecker B, Koch UT, Hummel HE. 1999b. Detection of volatiles released by 
diseased potato tubers using a biosensor on the basis of intact insect antennae. Biosensors 
& Bioelectronics 14: 221-228. 

Scotter MJ, Langford SV, Wilson FP, McEwan JM, Chambers TS. 2005. Real-time detection of 
common microbial volatile organic compounds from medically important fungi by 
Selected Ion Flow Tube-Mass Spectrometry (SIFT-MS). Journal of Microbiological 
Methods 63: 127-134. 

Sevonkaev I, Katz E. 2007. Biosensors based on immobilized insect fragments. Journal of 
Solid State Electrochemistry 12: 7-14. 

Steinbrecht RA, Kasang G. 1972. Capture and conveyance of odour molecules in an insect 
olfactory receptor. In: Olfaction and taste IV. Schneider D (Ed). Wissenschaftliche 
Verlagsgesellschaft, Stuttgart. pp. 193-199. 

Strobel GA, Dirkse E, Sears J, Markworth C. 2001. Volatile antimicrobials from Muscodor albus, 
a novel endophytic fungus. Microbiology 147: 2943-50. 

Strobel G, Daisy B. 2003. Bioprospecting for microbial endophytes and their natural products. 
Microbiology and Molecular Biology Reviews 67: 491-502. 

Thakeow P, Weißbecker B, Schütz S. 2006. Volatile organic compounds emitted from fungal-
rotting beech (Fagus sylvatica). Mitteilungen der Deutschen Gesellschaft für allgemeine und 
angewandte Entomologie 15: 157-160. 

Thakeow P, Holighaus G, Schütz S. 2007. Volatile compounds for wood assessment. In: Kües 
U. (Ed). Wood production, wood technology and biotechnological impacts. 
Universitätsverlag Göttingen, Göttingen. pp. 197-228. 

Thakeow P, Angeli, S, Weißbecker B, Schütz S. 2008. Antennal and behavioural responses of 
Cis boleti to fungal odour of Trametes gibbosa. Chemical Senses 33: 379-387. 

Trowell S. “The Flagship Cybernose project” for quality biosensors for the Food Futures 
National Research Flagship of the Australian National University. 
http://www.csiro.au/partnerships/ps241.html (verified 20/01/08). 



 
- 192 - 
 

 

Wheatley R, Hackett C, Bruce A, Kundzewicz A. 1997. Effect of substrate composition on 
production of volatile organic compounds from Trichoderma spp. inhibitory to wood decay 
fungi. International Biodeterioration and Biodegradation 39: 199-205. 

Wilcox WW. 1978. Review of literature on the effects of early stages of decay on wood 
strength. Wood and Fiber Science Journal 9: 252-257.  

Wu S, Zorn H, Krings U, Berger RG. 2005. Characteristic volatiles from young and aged 
fruiting bodies of wild Polyporus sulfureus (Bull.: Fr.) Fr. Journal of Agriculture and Food 
Chemistry 53: 4524-4528. 

Yang X, Chen Q, Zhen J, Zhang JS, Shaw CY. 2001. Effects of environmental and test 
conditions on VOC emission from “wet” coating materials. Indoor air 11: 270-278.  

Zabel RA, Morrel JJ. 1992. Wood Microbiology: Decay and its prevention. Academic press, 
Inc., New York. 

Zeppa S, Gioacchini MA, Guidi C, Cuescini M, Pierleni R, Zambonelli A, Stocchi V. 2004. 
Determination of specific volatile organic compounds synthesised during Tuber borchii fruit 
body development by solid-phase microextraction and gas chromatography/mass 
spectrometry. Rapid Communications in Mass Spectrometry 18: 199-205. 

Zhang Z, Pawliszyn J. 1993. Headspace solid phase microextraction. Analytical Chemistry 65: 
1843-1852. 

 



 

Curriculum Vitae



 

 

CURRICULUM VITAE  

Personal Data 

Name: Ms. Prodpran Thakeow 

Place & date of birth: Chiangkham, Phayao, Thailand, 20th August 1973 

Working place:  Department of Product Development Technology,  

 Faculty of Agro-Industry, ChiangMai University, 50100 Thailand  

Telephone: +66-53-948230-3 

Home Address: 99 Mu 7, Yuan, Chiangkham, Phayao 56110 Thailand 

e-mail: pthakeo@gwdg.de, prodpran@chiangmai.ac.th 
 

Educational qualifications 

PhD degree  Wood biology and technology PhD program  

(Oct 03- Mar 08)  Institute of Forest Zoology and Forest Conservation 

  George-August-University Göttingen, Germany 

  Dissertation: Development of a basic sensor system for wood 

degradation using volatile organic compounds 

  Supervisor: Prof. Dr. Stefan Schütz 

Master degree  Petrochemistry and polymer science, Faculty of Science 

(Jun 97-Oct 00)  Chulalongkorn University, Thailand 

  Thesis: Chemical modification of cassava starch for tensile 

properties of degradable polyethylene sheets  

  Supervisor: Prof. Dr. Suda Kiatkamjornwong 

Bachelor degree  Chemistry, ChiangMai University, Thailand 

(Jun 92- Apr 96) 

High school  Chiangkham wittayakhom, Phayao, Thailand 

(May 86- Mar 92) 

Primary school  Piyamitr-wittaya, Phayao, Thailand 

(May 80- Mar 86) 



 

 

Working experience 

2002-Present Lecturer, Department of Product Development, Faculty of Agro-

Industry, ChiangMai University, Thailand 

2003-2008 PhD student, Institute of Forest Zoology and Forest Conservation, 

Georg-August-University Göttingen, Göttingen, Germany 

2000-2002 Research and development engineer, Pacific Insulating Material 

(Thailand) Ltd. 

1996-1997 Factory logistic staff, Lever Brothers (Thailand) Pub. Ltd.  

  (Present: Unilever) 

 

Publications 

International papers 

Thakeow P, Angeli, S, Weißbecker B, Schütz S. 2008. Antennal and behavioural 

responses of Cis boleti to fungal odour of Trametes gibbosa. Chemical Senses 33: 379-

387. 

Thakeow P, Weißbecker B, Schütz S. 2006. Volatile organic compounds emitted from 

fungal-rotting beech (Fagus sylvatica). Mitteilungen der Deutschen Gesellschaft für 

allgemeine und angewandte Entomologie 15: 157-160. 

Kiatkamjornwong S, Thakeow P, Sonsuk M. 2001. Chemical modification of cassava 

starch for degradable polyethylene sheets. Polymer Degradation and Stability 73: 363-

375. 

 

Textbook  

Thakeow P, Holighaus G, Schütz S. 2007. Volatile compounds for wood assessment. In: 

Kües U. (Ed). Wood production, wood technology and biotechnological impacts. 

Universitätsverlag Göttingen, Göttingen. pp. 197-228. 

 



 

 

Oral presentations  

Thakeow P, Schütz S. Insect Antennae as Promising Biosensors for Wood-rotting Fungi. 

Cost Action E37 (sustainability through new technologies for enhanced wood 

durability) Workshop in Braşov, Romania. 17-19 June 2007. 

Thakeow P, Angeli S, Weißbecker B, Schütz S. Assessment of Fungivorous Insect 

Antennae as Biosensors for Detecting Wood Rotting Fungi. 17th Congress of 

European Chemoreception Organization, Granada, Spain. 4-8 September 2006. 

Thakeow P, Chaisaena W, Kües U, Schütz S. Investigation of volatile organic 

compounds emitted by Coprinopsis cinerea. VAAM conference, Jena, Germany. 19-22 

March 2006. 

Thakeow P, Weißbecker B, Schütz S. Volatile organic compounds emitted from fungal-

rotting beech (Fagus sylvatica). Entomologentagung Dresden (DGaaE), Dresden, 

Germany. 21-24 March 2005. 

Thakeow P, Schütz S. Volatile organic compounds (VOCs) as indicators in testing 

resistance against Basidomycetes. Cost Action E37 (sustainability through new 

technologies for enhanced wood durability) Workshop in Reinbeck, Germany. 8-9 

November 2004. 

 

Posters 

Thakeow P, Angeli S, Weißbecker B, Schütz S. 1-Octen-3-ol as an important cue in 

fungal host finding of Cis boleti. 23rd International Congress of Entomology (ICE), 

Durban, South Africa. 6-12 July 2008. 

Thakeow P, Angeli S, Ripon S, Simapaisan P, Thanapornpoonpong S, Schütz S. Volatile 

Organic Compounds of Thai Aroma Rice. 17th Congress of European 

Chemoreception Organization, Granada, Spain. 4-8 September 2006. 

Thakeow P, Schütz S. Volatile organic compounds of wood-rot fungi metabolites. 

VAAM-Workshop; Stoffwechsel der Pilze. Fachhochschule Lausitz, Germany. 16-

18 September 2004. 

 



 

 

Abstract 

Thakeow P, Angeli S, Wießbecker B, Schütz S. 2006. Assessment of fungivorous insect 

antennae as biosensors for detecting wood rotting fungi. Chemical Senses 31 (8), E67.  

Thakeow P, Angeli S, Ripon S, Simapaisan P, Thanapornpoonpong S, Schütz S. 2006. 

Volatile organic compounds of Thai aroma rice. Chemical Senses 31 (8), E63. 

Thakeow P, Chaisaena W, Kües U, Schütz S. 2006. Investigation of volatile organic 

compounds emitted by Coprinopsis cinerea. Biospekturm-Tagungsband p. 66.  

Thakeow P, Weißbecker B, Schütz, S. Volatile organic compounds emitted from fungal-

rotting beech (Fagus sylvatica). Entomologentagung Dresden (DGaaE), 21-24 March 

2005. 

 

Awards 

• The Royal Thai Government 

• Grants from the European Chemoreception Research Organization (ECRO) 

• Grants from COST Action E37 

 

Training course 

16 April – 11 May 2007 Workshop on pheromone measurement by field EAG 

    by Prof. Dr. Uwe T. Koch 

Technical University Kaiserslautern 

 
 


	DEVELOPMENT OF A BASIC BIOSENSOR SYSTEM FOR WOOD DEGRADATION USING VOLATILE ORGANIC COMPOUNDS
	ABSTRACT
	KURZFASSUNG
	RIASSUNTO
	บทคัดย่อ
	ACKNOWLEDGEMENTS
	CONTENTS
	ABBREVIATIONS
	LISTS OF FIGURES
	LISTS OF TABLES
	CHAPTER 1 General Introduction
	1.1. Introduction
	1.2. Wood Testing
	1.3. Volatile Organic Compounds
	1.3.1. Volatile Sampling
	1.3.2. Volatile Analysis

	1.4. Insects and olfaction
	1.5. Electroantennography (EAG)
	1.6. Biosensors
	1. 7. Purposes of this research
	1.8. References

	CHAPTER 2 Volatile Compounds for Wood Assessment
	2.1. Introduction
	2.2. Volatiles released by living trees
	2.3. Volatiles released by trunks and deadwood
	2.4. VOCs emitted by wood and wood products
	2.5. Volatiles released by fungi
	2.5.1. Classes of VOCs released by fungi
	2.5.2. Impact of fungal development on VOCs released by fungi
	2.5.3. Impact of substrate on VOCs released by fungi

	2.6. Volatiles released by fungus-infested wood
	2.7. Sick building syndrome (SBS) as a consequence of VOCs
	2.8. What is the role of VOCs for insects?
	2.9. VOCs mediating insect interaction with trees, wood and fungi
	2.9.1. Insects on living trees
	2.9.2. Fungus-insect interaction on trees, trunks and deadwood
	2.9.3. Insects on wood and wooden products
	2.9.4. Insects on fungi

	2.10. Techniques for assessing wood quality on the basis of VOCs
	2.10.1. Biosensors
	2.10.2. Electronic noses

	2.11. Outlook
	2.12. References

	CHAPTER 3 Monitoring of Volatile Organic Compounds Released from Fungal‐Infected Beech (Fagus sylvatica)
	3.1. Abstract
	3.2. Introduction
	3.3. Materials and methods
	3.3.1. Fungal culture preparations
	3.3.2. VOC sampling
	3.3.3. VOC analysis using gas chromatography and mass spectrometry (GC-MS)

	3.4. Results
	3.4.1. Fungal cultures
	3.4.2. VOC analysis

	3.5. Discussion
	3.6. References

	CHAPTER 4 Volatile Organic Compounds Released during Coprinopsis cinerea Fruiting Body Development
	4.1. Abstract
	4.2. Introduction
	4.3. Materials and methods
	4.3.1. C. cinerea Strain
	4.3.2. Culture preparation
	4.3.3. Volatile sampling
	4.3.4. Volatile Analysis with Gas Chromatography-Mass Spectrometry (GC-MS)
	4.3.5. Principle component analysis (PCA)

	4.4. Results
	4.4.1. C. cinerea culture
	4.4.2. Principle component analysis (PCA) of C. cinerea volatiles
	4.4.3. Volatiles of wild type C. cinerea (AmutBmut)

	4.5. Discussion
	4.6. References

	CHAPTER 5 External Antennal Morphology and Sensillar Type Distribution of Cis boleti (Coleoptera: Ciidae)
	5.1. Abstract
	5.2. Introduction
	5.3. Materials and methods
	5.3.1. Insects
	5.3.2. Scanning electron microscopy
	5.3.3. Distribution of sensilla on the antennae

	5.4. Results
	5.4.1. Gross morphology of the antenna
	5.4.2. Morphological sensillar types
	5.4.3. Distribution of the sensillar types

	5.5. Discussion
	5.6. References

	CHAPTER 6 Antennal and Behavioural Responses of Cis boleti to Fungal Odour of Trametes gibbosa
	6.1. Abstract
	6.2. Introduction
	6.3. Materials and methods
	6.3.1. Collection of fungi and insects
	6.3.2. Extraction of T. gibbosa volatiles
	6.3.3. T. gibbosa headspace analysis and emission rate of 1-octen-3-ol
	6.3.4. Chemicals
	6.3.5. GC-MS analysis
	6.3.6. Identification and quantification of T. gibbosa volatiles
	6.3.7. Electrophysiological measurements
	6.3.8. Behavioural tests

	6.4. Results
	6.4.1. Volatile compounds of T. gibbosa extract
	6.4.2. Electrophysiological response of C. boleti antennae to T. gibbosavolatiles
	6.4.3. Behavioural test

	6.5. Discussion
	6.6. References

	CHAPTER 7 Electroantennographic response of Suillia mikii to volatiles released by autolytic Coprinus comatus,Coprinopsis cinerea, and Coprinopsis atramentaria fruiting bodies
	7.1. Abstract
	7.2. Introduction
	7.3. Materials and methods
	7.3.1. Fungi and insects
	7.3.2. Analysis of C. comatus, C. atramentaria, and C. cinerea volatile organic compounds
	7.3.3. Electrophysiological response of S. mikii to C. comatus, C.atramentaria, and C. cinerea volatiles

	7.4. Results
	7.4.1. Volatiles of C. comatus, C. atramentaria, and C. cinerea
	7.4.2. Electrophysiological response of S. mikii fly to C. comatus, C.atramentaria, and C. cinerea volatiles

	7.5. Discussion
	7.6. References

	CHAPTER 8 Fungivorous Insect Antennae as Biosensors for Wood‐rotting Fungi
	8.1. Abstract
	8.2. Introduction
	8.3. Materials and methods
	8.3.1 Cis boleti
	8.3.2. Electrophysiological response of C. boleti to 1-octen-3-ol
	8.3.2.1. Response of C. boleti to 1-octen-3-ol
	8.3.2.3. Evaluation of Antennal Performance

	8.3.3. Biosensor System

	8.4. Results
	8.4.1. Electrophysiological response of C. boleti to 1-octen-3-ol
	8.4.1.1 Response of C. boleti to 1-octen-3-ol
	8.4.1.2. Evaluation of Antennal Performance

	8.4.2. C. boleti antennal response using the portable biosensor system

	8.5. Discussion
	8.6. References

	CHAPTER 9 General Discussion
	9.1. General discussion
	9.2. Volatile sampling techniques
	9.3. Identification of VOCs in fungi
	9.4. Insect antennae as biocomponents in biosensors
	9.6. Conclusion and future prospectives
	9.7. References

	Curriculum Vitae

