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Chapter 1

Introduction

The identification of genes responsible for the development and course of diseases
has been a major topic within the field of genetics in the last years. The goal can
be to understand the biological function of the genes in relation to the development
of disease; or also to identify the genes potentially associated with the disease that
alone or together with other risk factors, e.g. environmental or clinical, can help in
the construction of disease risk scores for individuals. The latter is of importance
in clinical practice for early diagnosis and prediction of disease, which also give the
chance to study new therapeutic plans or prevent new cases.

On this matter, statistical genetic models have been a formal way to evaluate asso-
ciation between genes and disease. In most cases, the statistical significance of the
effect size of genes on disease is mainly of interest. However, statistical significance
may not always reflect the biological or clinical impact of the gene on the disease, i.e.
effect size may result in statistical significance while it may not be of high enough
relevance from the biological point of view. Or inversely, the clinical importance of
a variable may not always be detected by looking at the significance of a statistical
result, since it could be affected by many components such as sample size, frequency
of the risk groups, or power of the test used in the analysis.

In this sense, we are interested in measuring the contribution of genes for the de-
velopment of disease, beyond the significance of statistical results. The level of
contribution should reflect the potential of a genetic model to predict the disease.
Our work specifically focuses on the contribution of single nucleotide polymorphisms
(SNPs), which are basic units for the study of association between gene and disease.

A measure that serves in the evaluation of the contribution of variables to a model
is the coefficient of determination (R2). The R2 is used in regression models to
measure the percentage of variation in disease outcome explained by the model. The
R2 also serves to evaluate the capability of a model to predict a future outcome,
the higher the R2 the better the capability of prediction of a model. In medical
investigations in the genetic field, it is of great interest to have available genetic
models for prediction purposes, that is, to predict the risk of disease of an individual
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2 Introduction

based on his/her genetic profile. To accomplish that purpose the validation of a
fitted model needs to be proved. The validation of a statistical model requires
testing it on new independent data, different from the data used for model fitting. A
common limitation, however, is the unavailability of new independent data. On this
matter, there are some techniques dealing with this problem, say, cross-validation
(Stone 1974, Geisse 1975), bootstrap (Efron and Tibshirani 1993), or the 0.632
estimator (Efron 1983, Efron and Tibshirani 1997).

The objective of our work is to provide and study procedures for the estimation of
R2 based on validation of Cox regression models for survival data, particularly of
genetic models with SNPs. The application of our study will help us to evaluate
the contribution of single or multiple candidate SNPs on the overall survival of
patients from the TRANS-NET study of haematopoietic stem cell transplantation
(TRANS-NET 2008).

Investigations on validation procedures and contributions of biallelic genes in Cox
regression models are limited. Müller et al. (2008) discussed various criteria that
derive close versions of R2 to measure contribution from survival models. They rec-
ommended the criterion based on the Schoenfeld residuals as the most advantageous
method for studying the contribution of a SNP in genetic association studies. How-
ever, that study was performed for evaluation of goodness of fit, that is, evaluating
the Cox model on the same data used for fitting that model. This procedure is
known to overestimate the true performance of a model, and it is not advisable to
use in the evaluation of models for prediction purposes.

We think, however, that the Schoenfeld residuals can be adapted and be used in
the context of model validation, so that we can obtain a new form of the Schoenfeld
residuals by testing the model on new independent data and not on the same data
used for model fitting. In that case, we can validate genetic Cox regression models,
by evaluating the gain in prediction due to the genetic variants. We propose this
procedure by combining methodologies for estimation of prediction errors, such as
the 0.632 estimator (Efron 1983, Efron and Tibshirani 1997), with the original crite-
rion of the Schoenfeld residuals. Then, a redefined R2, say R2

Pred , can be estimated
to measure the gain in prediction contributed by the genetic variants, in comparison
to a reference model.

In our study we also included the technique implemented by Gerds and Schumacher
(2007), where they estimate prediction errors with the criterion of the Brier score.
This technique generates prediction error curves that allow the study of the time
course of prediction errors.

Another question that arises during genetic association studies is about the most
appropriate modelling of the pattern for inheritance of the disease: the additive, the
dominant or the recessive pattern. We have chosen these patterns as they are typ-
ically investigated. Currently, among these three patterns we select the one whose
model produces the lowest significance level of the estimated effect size, or also, the
pattern whose model produces the highest contribution to the outcome, i.e. the
highest R2. However, again, the models are evaluated on the same data used for
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model fitting and not on independent data required for validating a model. Thus,
the present work also evaluates, through simulation studies, the capability of the
R̂2

Pred estimator for the identification of the most likely pattern of inheritance of
disease.

The main objective of the thesis is to develop a statistical procedure under the
Cox regression model for judging the contribution of SNPs on disease onset. The
estimator of this contribution should be valid for the population under study, and
not only for a particular sample. It should be obtained, therefore, from procedures
evaluating the validation of genetic models. In addition, we aim to evaluate whether
the estimator for the gain of prediction (R̂2

Pred ) is useful to identify the mode of
inheritance of the disease.

The first part of the thesis introduces background on genetic concepts, association
studies, and the main statistical procedures related to our work. Chapter 2 gives
some definitions on genetics and on association studies, chapter 3 describes survival
analysis, Cox regression models, and reviews some procedures for goodness of fit
of Cox models through R2. Chapter 4 focuses on estimators of prediction errors.
Among other estimators, it describes the derivation of the 0.632 estimator of predic-
tion errors and its adaptation on Cox regression model by Gerds and Schumacher
(2007). It also describes our procedure for estimation of prediction errors in Cox
regression model based on the Schoenfeld residuals, and remarks on some differences
with the work of Gerds and Schumacher (2007). The estimators used include the
bootstrap cross-validation and 0.632 estimator for the study of model validation.
Finally, it formulates the estimator for the gain in prediction in survival models, the
estimator R̂2

Pred .

In chapter 5 we investigate through simulation studies the performance of the differ-
ent techniques to estimate R̂2

Pred . We evaluate our approach which is based on the
Schoenfeld residuals, and in addition, the approach of Gerds and Schumacher (2007),
which is based on the Brier score. Also, the utility of the estimator R̂2

Pred for the
identification of the most appropriate mode of inheritance of disease is investigated.

Chapter 6 shows the application of the procedures in a real data set. The data
are from the EUROBANK database from the TRANS-NET project, which collects
clinical and genetic variables as well as post-transplant outcomes from patients un-
dergoing haematopoietic stem cell transplantation in different European centers.
Finally, we present summary and discussion in chapter 7.



Chapter 2

Human genetics and association

studies

The first part of this chapter gives an overview of some definitions and terminology
on genetics based on Marieb (2004), Hartl and Clark (1997), and Sham (1998), that
will be the basis for the understanding of genetic applications in our work. The
second part provides the features of statistical association studies in genetics, and
points out differences from a classical statistical association study.

2.1 Overview of genetics

2.1.1 DNA, chromosome, and gene

The cell is the basic structural and functional unit of life. One of the main parts of
the cell is the nucleus, that controls cellular activities. In the cell nucleus are the
chromosomes. The chromosomes are organized structures of DNA (deoxyribonucleic
acid), which is the genetic material. A gene is a segment of DNA in a chromosome.

A chromosome consists of a long double strand of DNA, the strands are bound
to each other and wound around each other in the form of a double helix. Each
strand is formed by a sequence of subunits called nucleotides, which are symbolized
as A, T, G, or C according to their nitrogen-rich base adenine, thymine, guanine, or
cytosine, respectively. The pair of strands are bound as a complementary sequence of
nucleotides, where A always binds to T and G to C, i.e. A and T are complementary
bases, as are C and G. Hence, any double strand of DNA contains an equal number
of nucleotides A and T, as well as an equal number of nucleotides G and C.

A gene as a segment of DNA carries information in the sequence of its bases. Each
sequence of three bases, called a triplet, codes for a particular amino acid. Amino
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2.1 Overview of genetics 5

acids serve as building blocks of proteins. In the list of genetic code we find 43 = 64
distinct triples, but only 20 distinct amino acids, because some triplets code for the
same amino acid and there are some stop codons. A long sequence of triplets in
a gene forms a long chain of amino acids, which produces a protein. Given that
each type of amino acid has different properties, the overall structure of a protein
determines its biological function.

2.1.2 Inheritance of chromosomes

The whole structure of DNA is packed in 23 pairs of chromosomes in the cell nucleus,
from which 22 pairs are autosomes and 1 pair of sex chromosomes. That constitutes
the genetic makeup of an individual, which consists of two sets of instructions that
are inherited from the union of two gametes, the ovum (from the mother) and the
sperm (from the father), each of which contributes a set of 23 chromosomes. These
chromosomes guide the expression of the genetic traits. The genetic trait of sex,
besides some other genetic traits, is determined by the pair of sex chromosomes.

A pair of chromosomes is called homologous if they contain the same genes for the
same biological features. Homologous chromosomes contain two copies of every gene
at the same position in the DNA sequence, where each gene comes from each parent.
Then, an individual has 23 homologous chromosomes, with the exception of a male
individual whose pair of sex chromosomes are of different types. So, male individuals
have 22 homologous chromosomes and one pair of sex chromosomes.

Cell division is important for the growth of the body and for development and repair
of tissues. Cell division occurs every time during life through a process calledmitosis.
During mitosis the 23 pairs of chromosomes are duplicated in the nucleus of the cell
(mother cell), and then the cell is divided into two identical cells (daughter cells),
each with its own nucleus with a copy of the 23 pairs of chromosomes. Hence, every
cell nucleus in the body carries the whole genetic information of an individual.

A different process of cell division occurs in the cells for inheritance, called germ
line cells. Germ line cells produce gametes through a process called meiosis. During
meiosis it takes place first an event called crossover, that allows the exchange of
genetic material between maternal and paternal chromosomes, i.e. between homol-
ogous chromosomes. Then, the cell is divided into two daughter cells, where only
one random member of each homologous chromosome is present in the nucleus of
each daughter cell. Thus, daughter cells have a reduced number of 23 chromosomes.
After that, a second division process similar to mitosis occurs in each daughter cell.
At the end the complete process produces a total of 4 daughter cells (gametes) which
contain only a single set of 23 chromosomes. Therefore, meiosis brings two new facts:
it reduces the number of chromosomes and it introduces genetic variability.

The union of two random gametes, an ovum (from a female) and a sperm (from a
male), at the moment of fertilization forms a zygote, which is the first cell of a new
individual. The zygote contains the combined maternal and paternal chromosomes,
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that makes a complete number of 23 pairs of chromosomes. The mitotic division
of the zygote begins right after fertilization and a new individual is developed, the
offspring.

2.1.3 Genotype and Phenotype

A chromosome may contain thousands of genes. The physical location of a gene
or a single variant of a gene along the chromosome is called locus. Given that
chromosomes are paired (homologous), the corresponding variants are also paired.
Each of the two genetic variants, at the same locus, in homologous chromosomes
are called alleles. For a specific variant, an individual receives one allele from the
mother and one allele from the father. If the two alleles have the same nucleotide
sequences, the individual is homozygous for that locus, or heterozygous otherwise.

The pair of alleles at a specific locus is called genotype. The physical expression of
the genotype, with or without environmental influences, is called phenotype.

The term homozygous genotype refers to the genotype with two identical copies of
an allele. Otherwise, the genotype is called heterozygous genotype.

When the alleles of a gene present only two possible different nucleotide sequences,
it is said that the gene is biallelic. A biallelic gene provides three possible genotypes,
two homozygous and one heterozygous genotype. For example, let A and a represent
the two alleles of a biallelic gene, an individual may have a homozygous genotype
AA or aa, or a heterozygous genotype Aa. If the genotype Aa expresses the same
phenotype as does AA, it is said that A is a dominant allele because it masks the
expression of its partner, while a is said to be a recessive allele because it needs
the two copies (the genotype aa) to express its corresponding phenotype. When co-
dominance occurs, the heterozygous genotype Aa expresses a phenotype were the
expressions of both alleles are visible.

For quantitative traits, A is an additive allele if the phenotype measure of Aa is the
average between the phenotype measures of AA and aa, given that the measure of
AA is higher than aa.

2.1.4 Hardy-Weinberg equilibrium (HWE)

Among other assumptions, the Hardy-Weinberg law is supported by the assumption
that individuals in a population mated with each other at random, i.e. the pater-
nal and maternal gametes are combined at random. This assumption is known as
random mating.

The Hardy-Weinberg law defines the mathematical relation between the allele fre-
quencies and the genotype frequencies in the population. We illustrate this with an
example. Let p and q be the relative frequencies of alleles A and a of a biallelic gene
(i.e. p+q = 1). Under random mating, the relative frequencies of the genotypes AA,
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Aa, and aa are p2, 2pq, and q2, respectively. In an infinitely large population, as long
as random mating is accomplished the allele frequencies will remain unchanged after
one generation, and the genotype frequencies in all subsequent generations will also
remain unchanged, showing the existence of an equilibrium. Therefore, the genotype
frequencies p2, 2pq and q2 represent the Hardy-Weinberg equilibrium (HWE). It can
also be generalized to genes with more than two alleles.

The implication of the Hardy-Weinberg law is that, under random mating, the
population maintains constant allele frequencies, and therefore preserves genetic
variation.

However, there are sources that could cause deviations from HWE, apart from non-
random mating in the population. Random changes can occur in the allele fre-
quencies in a population (genetic drift), that may cause alleles to disappear and
reduce genetic variation. These effects are introduced due to finite population size.
The effect of genetic drift is larger in small populations. It can also happen, that
individuals with different genotypes have different rates of early death, causing a
distortion in the genotype frequency of the current population and possibly altering
the chances of random mating. Other sources of deviation from HWE are mutation
and migration (Hartl and Clark 1997).

2.1.5 Single nucleotide polymorphism (SNP)

Different individuals in a population will present variations in their DNA sequences
at a particular locus. These variations can be common or rare in the population.
Variants occurring > 1% frequency in the population are known as genetic polymor-
phism. If that variation occurs because of differences in a single nucleotide (A, T, C,
or G) in the DNA sequence, then it is called single nucleotide polymorphism (SNP).
SNPs are the most common genetic variation. The public SNP database of the Na-
tional Center for Biotechnology Information (NCBI) has released to date more than
16 million of SNPs in human beings (Database of Single Nucleotide Polymorphisms
(dbSNP) 2011, Sherry et al. 2001).

For a given SNP and its alleles, minor allele refers to the allele with the lower fre-
quency in the population, and minor allele frequency (MAF) refers to such lower
frequency, i.e. frequency of the minor allele. The most frequent allele in the pop-
ulation is called wildtype allele. A homozygous genotype containing two wildtype
alleles is called wildtype genotype.

2.2 Association studies

In biomedical studies, researchers investigate the relationship between factors and
disease outcome. Factors are characteristics that distinguish groups of individuals
in the population of study. If the frequency of disease occurring on the individuals
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differ statistically among the groups, then there is an association between the factor
and the disease. In this case, the factor is called risk factor. According to the
context of the study, the risk factors are also known as predictors, covariates, or
exposure factors.

Various types of study designs are used according to particular objectives and other
settings of the study. The present thesis is placed into the context of cohort study
designs, therefore we only deal with this type of study in the next sections.

2.2.1 Cohort studies

A cohort can be defined as a group of individuals from the population who are
followed for a period of time and whose outcome of interest, e.g. disease/no disease,
is regularly evaluated, together with other characteristics.

Cohort studies are carried out to investigate associations of exposure factors with de-
velopment of disease or with any other outcome of interest. The main characteristic
of cohort studies is that the exposure of individuals is known from the beginning of
the study, and the development of disease is investigated as a future outcome during
the follow-up of the individuals. The counterpart of this design is the case-control
study, where the disease status of the individuals is known at the beginning of the
study, and their past exposure to risk factors is investigated.

Thus, in cohort studies, individuals under study differ in their measurement of ex-
posure factor, e.g. for a factor with two categories: exposed/unexposed individuals
or greater/lesser extent of exposure. These individuals are subsequently evaluated
to record their disease status over a period of time. The objective is to measure and
compare the frequency of disease between the exposed and unexposed individuals
at the end of the study, and determine if the exposure factor plays a role in the de-
velopment of disease. Eventually, not only the knowledge of development of disease
is important to the study, but also the time at which it was first observed, or the
course of disease.

The example above refers to a simple cohort study, where only two groups of indi-
viduals are recognized according to the exposure factor. However, more than two
groups could also come up according to the exposure factor on the cohort. For ex-
ample in genetic studies, it could be of interest to study the association of allele A
-from a specific SNP- with the disease, where allele A is the exposure factor for the
disease in the population. Here, individuals with genotypes AA and Aa form one
group, and individuals with genotype aa form another group. However, we could
also be interested in the association of the different genotypes with the disease, i.e.
genotype as the exposure factor. Hence, we get three groups of individuals, each
group with only genotypes AA, Aa, or aa.

There are two main types of cohort studies, that differ on the moment when we
take knowledge of the exposure of the individual. In a prospective cohort study, the
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information about the exposure factor is collected from the beginning of the study,
and therefore we can identify the groups of exposure from the beginning of the study
as well. Also, the time of follow-up for evaluation of disease development falls within
the period of study. On the contrary, a retrospective cohort study uses existing data.
The exposure status of the individuals as well as the identification of groups in the
cohort are taken from recorded or historical data. These data might have been
recorded to carry out a work not necessarily related to the current cohort study, but
they might contain relevant data for the current study. Hence, the usual tasks for a
prospective cohort study, e.g. identification of groups of exposure, follow-up of the
individuals, and regularly evaluation of disease, were done before the beginning of
the study.

An example of a prospective cohort study is the work presented in chapter 6. In
short, a population of patients who underwent hematopoietic stem cell transplan-
tation (HSCT) were recruited from 1983, the beginning of the study. The patients
were followed and evaluated over years to register their survival status (alive/dead)
until 2009, the end of the study. As the patients entered the study, blood samples
were taken, from which the genotype for various genes were recorded. At the end
of the study, these genes were evaluated as potential risk factors associated with
survival of patients after transplantation.

Retrospective cohort studies have the advantage of being less costly, and of obtaining
results faster. That is because the cohort data are already available at the beginning
of the study, and no waiting time for observation of the outcome will be required.
However, given that the data were collected for a different purpose, the disadvantage
of retrospective cohort studies is that the data may not contain important informa-
tion for the current cohort study. A retrospective cohort study depends on what
is recorded in the data, the user will not have the chance to modify it, to access
the individuals to collect additional data, or to verify the original data sources to
improve the quality of the records.

We also mention two other special types of cohort studies, based on the way the
groups of a cohort are obtained in relation to the exposure factor (Rothman 2002).
The special-exposure cohort study focuses on individuals who share a particular ex-
posure factor which is uncommon in the population. For example, an occupational
group that is exposed to chemical substances. These are individuals specifically
identified for the study because they are not spread over the population. The expe-
rience of disease of these exposed individuals could then be compared to individuals
without the exposure. By taking a cohort from the general population it would
be difficult to get enough individuals in the exposed group since the exposure is
uncommon, unless we are performing a very large study.

On the contrary, for common exposure factors it is more appropriate to use a
general-population cohort study. The general-population cohort is determined by
the research question. A subset of individuals from that general-population are
followed, regardless of the exposure factor, and the groups of individuals under the



10 Human genetics and association studies

Table 2.1: Distribution of disease in exposed and unex-
posed cohorts to a risk factora

Risk Factor (X) Disease (Y) Total

Yes (1) No (0)

exposed (1) d1 n1 − d1 n1

unexposed (0) d0 n0 − d0 n0

Total d n− d n

a The letters in the cells represent absolute counts within the
respective subgroups.

exposure factor are identified. The cohort study we presented in chapter 6 is a type
of general-population cohort study, where the general-population is composed by
individuals undergoing HSCT, and the exposure factors are a set of clinical and
genetic factors.

2.2.2 Measures of disease occurrence

The basic measure of disease occurrence is the risk rate, which is also simply called as
risk and it is the term we will use in this thesis. The risk can be generally defined as
the probability that the disease occurs in a group of individuals. The risk measure is
used to get other derivative measures quantifying the association between risk factor
and disease. Here, we will present only two measures related with cohort studies,
that are important for the understanding of concepts and procedures in the next
chapters. For other measures and details we refer to Lachin (2000), Jewell (2004),
and Rothman (2002).

The relative risk or risk ratio (RR) compares the risk of disease in an exposed
group in relation to an unexposed group. The RR assesses how much the risk factor
affects the disease risk in the exposed group with reference to the disease risk in the
unexposed group.

Let Y be the disease under study, where Y = 1 if the disease is present, and Y = 0
otherwise; and let X be a binary risk factor, where X = 1 if the group is exposed,
and X = 0 otherwise. Let Table 2.1 represent the distribution of disease at the
interval time [0, τ ], where τ is the end time of the study. Then,

RR =
P (Y =1|X=1)

P (Y =1|X=0)
=

d1/n1

d0/n0
, (2.1)

where P (Y =1|X =1) denotes the probability of disease in the exposed group, i.e.
the disease risk in the exposed group; likewise, P (Y =1|X=0) indicates the disease
risk in the unexposed group.
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Another important measure of association is the hazard rate, which is also simply
called hazard and it is the term we will use in this thesis. The hazard accounts for
the time feature of cohort studies. The hazard is the risk of getting the disease at
a specific time point t within the time period of follow-up [0, τ ] of the cohort. The
hazard is also defined as the instantaneous rate of disease at time t. A mathematical
definition and expressions for the hazard are given later in section 3.2.

A particular fact to consider is that the computation of the hazard is done with the
population still at risk of disease, i.e. computation of a hazard at time t considers
only non-diseased individuals by that time. Once an individual gets the disease at
any time t, he/she should be removed before computing hazards at subsequent time
points. We can also say that the hazard is computed considering only individuals
at risk at the specific time t. Individuals at risk are individuals in the cohort who
did not present the event by time t, this and other related concepts are described in
section 3.2.

The hazard ratio measures the hazard of an exposed cohort in relation to the hazard
of an unexposed cohort at a time t,

HR(t) =
λ1(t)

λ0(t)
=

d1(t)/n1(t)

d0(t)/n0(t)
, (2.2)

where λ1(t) and λ0(t) are the hazards at time t among individuals at risk in the
exposed and unexposed cohorts, respectively.

The hazard ratio can vary, increase or decrease, at different time points within the
time interval [0, τ ] of study. Under the assumption of no variability of the hazard
ratios over time, it can be expressed as a constant measure. This is also known as
proportional hazards.

HR(t) =
λ1(t)

λ0(t)
= HR, fort ∈ [0, τ ]. (2.3)

Both measures, RR and HR, take on values in the interval (0,∞). A measure value
equal to 1 indicates no difference in disease risk between the exposed and unexposed
group, which implies that the exposure factor plays no role in the development of
disease. A measure value different from 1 indicates that the exposure factor has an
influence on the development of disease. In the latter case, a value greater than 1
indicates that the exposed group is at higher risk than the unexposed group, whereas
a value less than 1 indicates that the unexposed group in the population is at higher
risk than the exposed group.
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2.2.3 Implications of genetics in association studies

Some issues, that are not seen in standard association studies, characterize associ-
ation studies with genetic variables. In the following we mention these issues by
assuming a biallelic SNP as a genetic factor under study, having allele A as the
predisposing allele for the disease, and allele a as the wildtype allele. The predis-
posing allele is also called the risk allele, and it is meant to have an influence on
the development of the disease. In genetic association studies, the minor allele is
usually assumed as the risk allele.

For a more extensive explanation on these and other related considerations we refer
to Cordell and Clayton (2005) and Lunetta (2008).

Risk factor

A biallelic SNP could be studied as potential risk factor for association with disease.
The SNP factor can be defined as a variable at the allelic or at the genotype level.

At the allelic level, the SNP factor can be defined as a binary variable standing for
the presence or absence of the risk allele for the disease.

At the genotype level, the SNP factor is most commonly defined as follows:

i) as a categorical variable with three categories denoting the three genotypes
(AA, Aa, and aa) of the biallelic SNP. It is necessary to create two dummy
variables, each for a different genotype, except for the reference genotype.
Each dummy variable (coded as 1/0) codes for the presence/absence of the
respective genotype. That allows studying the influence of the genotypes as
independent categories of exposure.

ii) as an ordinal variable (coded as 0, 1, 2) denoting the number of copies of the
risk allele carried in the genotypes, so that an additive influence of the alleles
on the disease is assumed.

iii) as a binary variable by assuming a dominant or recessive influence of the risk
allele on the disease. In the latter case, a binary variable for a dominant allele
is coded as 1 for (AA,Aa), and 0 for aa; a binary variable for a recessive allele
is coded as 1 for AA, and 0 for (Aa, aa).

Hardy-Weinberg equilibrium - HWE

It is advised that before starting the association study, each SNP in the data set
should be tested for HWE (see definition in section 2.1.4). Testing for HWE implies
to evaluate whether the condition of random mating holds in the population. Under
random mating, the frequencies of the three genotypes AA, Aa, and aa are expected
to be np2, 2npq, and nq2, respectively, where n is the number of individuals. Devi-
ations from these frequencies can be an indication of non-random mating, but also
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of population stratification, or non-random genotyping error, or missing genotypes,
all of which can lead to spurious associations.

To test for HWE we use the goodness of fit chi-squared test χ2. It compares the
observed genotype frequencies in the data with the expected genotype frequencies
under HWE. The expected frequencies are obtained by estimating the allele propor-
tions (p and q, where p+q = 1) from the data, and computing the frequencies under
HWE, i.e. np2, 2npq, and nq2. Then, we test a SNP for HWE with the chi-square
test with 1 degree of freedom, χ2

(1).

Lunetta (2008) states that the HWE should be tested only in full samples that were
not ascertained on any specific phenotype under study, i.e. not based on the outcome
of interest. For instance, in case-control studies, HWE can be tested in the control
group if the trait is rare, i.e. if the trait has very low frequency in the population.
However, HWE can be tested neither in the case nor in the control group if the trait
is common. The genotypes associated with the disease are expected to be present
in the case group at higher frequencies than under HWE. The latter affects the
frequencies of the genotypes in the control group only if the disease is common.

2.2.4 Test of independence - Pearson’s chi-squared test

The Pearson’s chi-squared test χ2 is used to assess the association between a risk
factor and disease. Given the 2x2 contingency table 2.1, the χ2 test compares
the observed frequencies, from the data, with the expected frequencies under the
null hypothesis of no association between risk factor and disease, i.e. statistical
independence between risk factor and disease.

The χ2 statistic is

χ2 =
4∑

i=1

(Oi − Ei)
2

Ei

, (2.4)

where Oi is the observed frequency in the ith cell of the table and Ei is the expected
frequency under the null hypothesis. The statistic follows a χ2 distribution with 1
degree of freedom.

From Table 2.1, the observed frequencies Oi are d1, d0, n1 − d1, and n0 − d0. The
respective expected frequencies Ei are estimated as n1d/n, n0d/n, n1(n− d)/n, and
n0(n− d)/n.

For risk factors with more than two groups, the test statistics is applied similarly as
above, but now the χ2 statistic follows a χ2 distribution with (R−1)(C−1) degrees
of freedom. R and C are the number of rows and columns in the contingency table,
respectively. In a genetic study of association of the three genotypes of a biallelic
SNP with the disease, we have a 3x2 contingency table, and thus, a 2 degrees of
freedom test of association.
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2.2.5 Logistic Regression models to estimate risk ratio with

multiple risk factors

The effect of multiple risk factors on disease can be estimated with a logistic re-
gression model. The risk factors can be of categorical and quantitative type. The
logistic regression model provides estimates of the odds ratio (OR), that is a mea-
sure used in case-control designs. However, the OR approximates the RR when
the outcome is rare, this makes the logistic model applicable for cohort studies in
those situations. For common outcomes, some alternatives exist such as stratified
analysis and the log-binomial model. Studies about different model alternatives and
their performance for estimating RR have been published (Skov et al. 1998, McNutt
et al. 2003, Cummings 2004, Deddens and Petersen 2004).

The logistic regression model is a popular method of extensive use in medical studies.
It is useful for analysis of cohort data with rare outcomes. To model the association
between risk factors and disease, the logistic regression model uses the logit link
function of the probability of disease πi of an individual i as a linear function of
his/her exposure factors Xi = (Xi1, . . . , XiK)

′, for K exposure factors. Let Yi=1/0
denote the presence/absence of disease for individual i, then πi = P (Yi = 1 | Xi).

The logit link of πi is

logit(πi) = log
( πi

1− πi

)
, (2.5)

and the logistic regression model has the form

logit(πi) = α + β′Xi. (2.6)

In the logistic regression model in (2.6) πi is a function of the vector of exposure
factors Xi, the coefficient of the intercept α, and the vector of regression coefficients
β = (β1, . . . , βK)

′. The coefficients α and β are the parameters to be estimated.
The model provides an approximation to RR of disease of an individual i through
the estimate of exp(β′Xi).

Under the logistic regression model the probability πi can be obtained as

πi =
exp(α + β′Xi)

1 + exp(α + β′Xi)
=

1

1 + exp(−(α + β′Xi))
, (2.7)

and

1− πi = 1−
exp(α + β′Xi)

1 + exp(α + β′Xi)
=

1

1 + exp(α+ β′Xi)
. (2.8)

The estimate of the parameter β can be obtained from the likelihood as a function
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of πi. The likelihood L(π) considers the joint probability of developing disease of all
individuals in the data. Each individual outcome is a Bernoulli variable Yi, where
Yi = 1 for disease and Yi = 0 for no disease. Let π = (π1, . . . , πn) be the vector
of the probabilities of disease of all individuals i = 1, . . . , n. The likelihood is then
expressed as

L(π) =

n∏

i=1

πYi

i (1− πi)
1−Yi

. (2.9)

By taking the natural-log of the likelihood, ℓ = Log(L), we get

ℓ(π) =
n∑

i=1

Yi log πi +
n∑

i=1

(1− Yi) log(1− πi),

and in terms of the model parameters θ = (α, β) it is

ℓ(θ) =

n∑

i=1

Yi(α + β′Xi)−

n∑

i=1

log(1 + exp(α + β′Xi).

The solution for θ is the maximum likelihood estimate which must be obtained by
an iterative procedure such as the Newton-Raphson algorithm because a solution
as for a close-form expression does not exist. The solution gives estimates for each
parameter, i.e. α, βk, for k = 1, . . . , K. The Wald test and likelihood ratio test can
be used to test the null hypothesis of no association between an exposure factor and
disease, H0 : βk = 0, which in turn indicates that RRk = exp(βk) = 1, and therefore
the null hypothesis can also be formulated in terms of the RR, H0 : RRk = 1. For
a global null hypothesis of no association we formulate H0 : β = 0, which implies
that no factor in the model is associated with the disease.



Chapter 3

Survival Analysis

Survival analysis refers to statistical methods to study time to the occurrence of an
event, e.g. disease, death, etc., from a cohort. The existing methodologies allow to
study data as a whole or in subgroups, and furthermore to investigate associations
between risk factors and time to the occurrence of an event.

In this chapter we give a general overview over the features characterizing survival
data and introduce definitions and notations used in survival analysis. Next, two
important methods of extensive use in medical studies are presented: the log-rank
test and the Cox regression model. The latter is the main method involved in our
work, and therefore it is important for the development of the subsequent sections
and chapters of this thesis.

In addition, we provide descriptions of some procedures judging the fit of the data
by the Cox regression model. Finally, we summarize the findings of the paper by
Müller et al. (2008) about the study of these methods in the context of genetic
association studies with survival traits.

3.1 Framework of survival data

Survival data result from cohort studies with a limited period of follow-up. A sam-
ple of individuals from the study population is followed for a period of time until
the outcome of interest occurs. This outcome is called event, the event could be
any specific experience of an individual in the study, for example, diagnosis of any
disease, death, recovery from disease, a physical status (e.g. obesity), etc. The
event is also known as failure, but failure is mostly related to negative events, so
that positive experiences such as recovery from disease would not be well denoted
with the term failure. For our writing we prefer to use the general term event.

One key feature of survival data is that it considers the time to event, and it is the
main variable of study. Hence, survival data are also known as time-to-event data.

16
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Time to event, also called survival time, is the time since the starting follow-up time
of an individual after enrolment to the study until the time of the first observation
of the event of interest. The individuals can have a common starting time of follow-
up. However, in realistic clinical settings individuals enrol in the study at different
times during the study period, and have different starting times of follow-up. For
instance, in the cohort study of haematopoietic stem cell transplantation (HSCT)
described in chapter 6, the day of transplantation is the zero time point, i.e. the
starting time of a patient for the observation of different specific post-transplant
outcomes. Therefore, patients had different starting follow-up times according to
the day of transplantation.

The survival time can be recorded in a specific time scale, for example, in years,
months, or days. It may also refer to the earlier age at which an individual presents
an event.

A second key feature of survival data is censoring. An individual is censored when
his/her survival time is unknown. Censoring occurs i) because of the end of study,
ii) because individuals are lost to follow-up, or iii) due to withdrawals from the study
before the occurrence of the event. Specifically, censoring occurs for individuals i)
who did not yet present the event by the end of the study period, ii) who, after
being followed for some time after enrolment, were not reached anymore from some
time on to the end of the study, iii) who voluntarily withdraw from the study at
some time during the follow-up period.

Even if the event was not observed during the follow-up period, the three cases
of censoring above bring some information about the actual survival time of the
censored individuals. We know that it is longer than the time to the last contact of
the individual, i.e. it is longer than the time to the end of study, longer than the
time to loss to follow-up, or longer than the time to withdrawal. In these situations,
the time to the last contact is recorded instead of the actual survival time. We
say that the data are right-censored because the information on survival time is
incomplete on the right side of the follow-up period. Hence, the actual survival time
is shortened. This is known as censored survival time. If the event was observed
and the actual survival time is recorded, then it is considered an uncensored survival
time. Our work considers survival data with right-censored survival times.

Survival data can also be left-censored. This occurs when the survival time of an
individual is incomplete on the left side of the follow-up period. The time of first
exposure is unknown, and the follow-up period starts at some time after the expo-
sure. Kleinbaum (1996) gives an example of cohort of patients with HIV infection,
whose follow-up time started at the time of the first positive test for the HIV virus.
Here, the time of first exposure to the HIV virus was unknown. Thus, the survival
times of these patients were left-censored.
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3.2 Terminology and notations

In this section we introduce the mathematical terminology and notations used for
the analysis of survival data in this thesis. T is presented as a random variable of
the survival time of an individual, and it is always positive, T ≥ 0. A specific value
of interest for T is denoted by t.

The indicator of censoring, δ, is a random variable with value 1 or 0, depending on
whether the actual or the censored survival time was recorded. Another way to view
this is to assume a random variable C that denotes the time to censoring, then

δ = I(T ≤ C) =

{
1 if T ≤ C, i.e. actual survival time was recorded

0 if T > C, i.e. survival time was censored.
(3.1)

The survival function S(t) is defined as the probability of survival longer than time
t,

S(t) = P (T > t). (3.2)

S(t) is a decreasing function from 1 to 0, S(0) = 1, S(∞) = 0. Survival probability
of S(t) = 1 means nobody in the cohort has yet presented the event. This happens
at the starting time of follow-up (t = 0). Survival probability of S(t) = 0 means
everybody in the cohort presented the event, nobody survived. This happens in
the model at t = ∞, which indicates that for very long periods of follow-up all the
individuals will necessarily present the event at some time. In practice long periods
of follow-up are not common. Usually, there is a limit date for the end of the study,
and S(t) will tend to 0 only if the event to be observed occurs for everyone and if it
occurs within a time length considerably shorter than the duration of the study.

The hazard function λ(t), is defined as the instantaneous rate per unit time for the
occurrence of the event. The hazard function is computed by considering only indi-
viduals at risk at the specific time t, where time may be considered as a continuous
random variable or it may be discretized . An individual is at risk at time t if his/her
survival time is greater than t.

λ(t) = lim
∆t→0

1

∆t
P (t ≤ T < t+∆t|T ≥ t) if T is continuous. (3.3)

λ(t) = P (T = t|T ≥ t) if T is discrete. (3.4)

Then, the cumulative hazard function up to time t is,

Λ(t) =

∫ t

0

λ(u)du. (3.5)
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The cumulative hazard for discrete times is computed by replacing the integral in
equation (3.5) by the sum over the discrete times T .

There is a mathematical relationship between S(t) and λ(t), that we demonstrate
next. Let f(t) be the probability density function for the occurrence of the event,

f(t) = lim
∆t→0

1

∆t
P (t ≤ T < t+∆t) if T is continuous, (3.6)

f(t) = P (T = t) if T is discrete, (3.7)

and F (t) be the cumulative distribution function, F (t) = P (T ≤ t). Then, from
equation (3.2) we have that S(t) = 1−F (t). By taking the derivative of S(t) we get

dS(t)

dt
= −f(t). (3.8)

Then, the hazard function in (3.3) can also be expressed as

λ(t) =
f(t)

S(t)
from equations (3.3) and (3.6)

= −

dS(t)
dt
S(t)

= −
d logS(t)

dt
, (3.9)

and therefore,

S(t) = exp (−

∫ t

0

λ(u) du ) = exp (−Λ(t) ). (3.10)

3.3 The Kaplan-Meier estimator of survival and

the log-rank test

It is useful to compare the survival function S(t) between two or more groups in the
cohort. One practical way to do this is with the Kaplan-Meier estimator (Kaplan and
Meier 1958), that allows estimating survival curves and displaying them graphically.

The Kaplan-Meier (KM) estimator is a non-parametric approach for estimating the
survival distribution Ŝ(t).
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Let i = 1, . . . , n be the index for individuals in the survival data, and D the subset
of individuals with uncensored survival times. Let ti be the survival time of the ith
individual for i∈D. The KM survival curve is constructed by ordering the survival
times ti to yield t(i), and subsequently estimating the survival probability at each of
the times t(i).

The KM survival probability at t = 0 is always Ŝ(0) = 1, and remains so until just
before the first event is observed. The KM survival estimator at t(i) is given by

Ŝ(t(i)) =
∏

i∈D

P (T > t(i)|T ≥ t(i))

= Ŝ(t(i−1))× P (T > t(i)|T ≥ t(i)), (3.11)

and the probability in equation 3.11 is obtained by

P (T > t(i)|T ≥ t(i)) = 1− P (T = t(i)|T ≥ t(i))

= 1− λ̂(t(i))

= 1−
dt(i)
nt(i)

,

where dt(i) and nt(i) are the observed number of events and the number of individuals
at risk, respectively, at time t(i). The individuals at risk at t(i) are individuals who
have not yet presented the event and are still on follow-up by time t(i), i.e. individuals
with T ≥ t(i). Hence, n(i) decreases as the time t(i) increases.

The KM survival curve is a step function with jumps at t(i). It represents the
survival curve over time of the whole set of individuals. We could also compute the
survival curves by groups of individuals. For example, we might estimate separate
curves Ŝ(t|X) for groups of exposed and unexposed individuals for any given risk
factor X .

We can also obtain the so called reverse KM estimator , by reversing the coding of
the indicator of censoring δ, i.e. create a new complement indicator δc, such that
δc = 0 if the event is observed and δc = 1 if censoring occurs; then, compute the
KM survival function as described above with the indicator of censoring δc. This
reverse estimator is used in applications that adjust estimated measures by the loss
of individuals during the follow-up time (Schemper and Henderson 2000, Schumacher
et al. 2007). It can be viewed as the survival probability for censoring. We will also
use this estimator later in this thesis.

Two or more groups of individuals can be formally compared to evaluate whether
there are statistical differences between their KM survival curves. The log-rank test
serves this purpose. It tests the null hypothesis of no association between risk factor
and survival. The null hypothesis also means that there is no difference between



3.3 The Kaplan-Meier estimator and the log-rank test 21

Table 3.1: Distribution of events at time t(i) in exposed and unex-
posed groups to a risk factora

Risk Factor (X) Events at time t(i) Total

Yes No

exposed (1) d1t(i) n1t(i) − d1t(i) n1t(i)

unexposed (0) d0t(i) n0t(i) − d0t(i) n0t(i)

Total dt(i) nt(i) − dt(i) nt(i)

a The letters in the cells represent absolute counts within the respective
groups.

survival curves of the groups. In terms of genetic association studies with SNPs,
the log-rank test tests the null hypothesis of no difference between survival curves
of the different genotype groups, i.e. H0 : SAA(t) = SAa(t) = Saa(t), where Sg(t)
represents the survival curve for the genotype group g.

The log-rank test is a large-sample chi-square test that uses the difference between
observed and expected number of events at times t | δ = 1. It requires proportional
hazards between the different comparison groups. Two groups have proportional
hazards if the ratio of their hazards is constant over time. The latter implies that
the survival curves of the groups do not cross each other over time.

For a comparison of two survival curves, a 2x2 Table similar to Table 2.1 is con-
structed with the distribution of the number of events by risk factor. For survival
data, the distribution of the number of events is obtained at each uncensored survival
time, i.e. t(i) | δi = 1 (see Table 3.1).

The exact log-rank statistic can be viewed as the Cochran-Maentel-Haenzel statistic
(Agresti 2002) stratified by times t(i) | i∈D. Let O1t(i) and E1t(i) be the observed and
expected number of events in the exposed group at time t(i). The statistic assumes
a hypergeometric distribution for O1t(i) . Then, if O1t(i) = d1t(i) , from Table 3.1 we
have:

E1t(i) = E(O1t(i)) = n1t(i)

dt(i)
nt(i)

, (3.12)

and

V ar(O1t(i)) =
n1t(i) n0t(i) dt(i) (nt(i) − dt(i))

n2
t(i)

(nt(i) − 1)
. (3.13)
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The exact log-rank statistic is

Log-rank statisticexact =

(∑

i∈D

(
O1t(i) − E1t(i)

))2

∑

i∈D

V ar(O1t(i))
,

which can also be expressed with the overall sums over time,

Log-rank statisticexact =

(∑

i∈D

O1t(i) −
∑

i∈D

E1t(i)

)2

∑

i∈D

V ar(O1t(i))
. (3.14)

Under the null hypothesis of no association between risk factor and survival, the
statistic in (3.14) follows a chi-square distribution with one degree of freedom. The
exact log-rank statistic can be obtained by using either the exposed or the unexposed
groups, they will give the same result. In our description above we have used the
exposed group.

We can also test the association of survival with a risk factor with G > 2 groups,
although the procedure becomes complex because it involves the covariances of Og t(i)

for g = 1, . . . , (G− 1) (Kleinbaum 1996).

An approximation to the exact log-rank statistic in (3.14) is the formula of the classic
chi-square form that considers independence between the groups (Kleinbaum 1996),

Log-rank statisticχ2 =
G∑

g=1

(∑

i∈D

Og t(i) −
∑

i∈D

Eg t(i)

)2

∑

i∈D

Eg t(i)

, (3.15)

this statistic follows a chi-squared distribution with (G− 1) degrees of freedom.

3.4 The Cox regression model

The Cox regression model is a semi-parametric method that models the association
between risk factors and survival times. The main assumption of the method is that
constant hazard ratios hold for all the factors in the model, this is well known as
proportional hazard (PH) assumption, hence the Cox model is also known as Cox
proportional-hazard model.
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Two main aspects of the Cox regression model are to be noted. First, it models in
terms of the hazards; and second, it provides hazard ratios, which allow comparing
event occurrence between groups of individuals, and furthermore, allow judging the
impact of risk factors on occurrence of events.

The formula of the Cox regression model is,

λ(t,X) = λ0(t) exp(β′X), (3.16)

where

t is a specific survival time,

X=(X1, . . . ,XK)′ is the vector of K risk factors, where Xk=(X1k, . . . , Xnk),

for k = 1, . . . , K, and for n individuals,

λ(t,X) is the hazard as a function of t and X,

λ0(t) is the baseline hazard as a function of t,

β = (β1, . . . , βK)
′ is the vector of regression coefficients.

The Cox model has two types of parameters, the baseline hazard λ0(t) and the vector
of coefficients β. The baseline hazard λ0(t) is the hazard not dependent on the risk
factors X, i.e. the hazard when Xk = 0, ∀k = 1, . . . , K. Given the assumption of
proportional hazards, the baseline hazard function describes the shape of the hazard
functions of all other groups of exposure.

A particular characteristic of the Cox model is that we neither have to assume any
specific functional form nor have to estimate the parameter λ0(t). We only need to
estimate the parameter β. Because not all the parameters require estimation, the
model is called semi-parametric.

From the Cox model (3.16) we get the expression for the hazard ratio (HR) only
in terms of the factors X and the respective parameters β. The HR is constant
over time, this comes from the basic assumption of the Cox regression model, the
proportionality of the hazards regardless of the survival time.

HR =
λ(t,X)

λ0(t)
= exp(β′X). (3.17)

The HR is interpreted as a measure of the effect of risk factors on the survival time
of the individuals. Specifically, the HR gives the risk of event for individuals with
exposure X with respect to the risk of event for individuals with no exposure.

According to expression (3.17), to estimate HR we require to estimate the parameter
β, that can be estimated through maximum likelihood estimation.
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3.4.1 Maximum likelihood estimation of β

The estimation of the parameter β is mathematically derived by maximizing a like-
lihood function, denoted by L. The likelihood describes the joint probability of all
observations in the data as a function of the unknown parameter β.

The likelihood function for the Cox model is a partial likelihood function (PL) be-
cause the computation involves individual likelihoods Li only of individuals with
uncensored survival time, i.e. Li, ∀ δi = 1, or also ∀i∈D.

The computation of a classical likelihood function would involve the likelihood of
all individuals in the data set. Given the special feature of censoring in survival
data this is not possible. However, the information of individuals with censored
survival times (δi = 0) is not left out completely. The hazards of these individuals
are involved in the computation of the likelihood Li, for δi = 1, as long as they are
at risk at time ti.

Given that an event occurred at time ti, and given a set of individuals at risk Rti ,
an individual likelihood Li is the probability that the event was observed on that
individual i,

Li =
λ(ti,Xi)∑

j∈Rti

λ(ti,Xj)

=
λ0(ti) exp(β′Xi)∑

j∈Rti

λ0(ti) exp(β′Xj)

=
exp(β′Xi)∑

j∈Rti

exp(β′Xj)
, (3.18)

The partial likelihood is

PL =
∏

i∈D

Li

=
∏

i∈D

exp(β′Xi)∑

j∈Rti

exp(β′Xj)
. (3.19)

In order to get the estimates of β, the partial likelihood is maximized. For compu-
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tational ease the natural-log is used, ℓ = log(PL). We then maximize

ℓ =
∑

i∈D

(
β′Xi − log

( ∑

j∈Rti

exp(β′Xj)
) )

(3.20)

by solving the score equations

U(β) =
∂ℓ

∂β
= 0. (3.21)

The score in terms of the model is expressed as

U(β) =
∂ℓ

∂β
=

∑

i∈D

(
Xi −

∑

j∈Rti

Xj exp(β
′Xj)

∑

j∈Rti

exp(β′Xj)

)

=
∑

i∈D

(Xi − X̄i), (3.22)

where X̄i is a weighted average of Xi, with weights exp(β′Xj), over the set of

individuals j ∈ Rti . The solution for U(β) = 0 is the ML estimator β̂ .

The variance of β̂ can be obtained by using the second derivative of l (Therneau
and Grambsch 2000),

var(β̂) =
[
−

∂2ℓ

∂β2

]−1

, (3.23)

where

∂2ℓ

∂β2 =
∑

i∈D

(
−

∑

j∈Rti

(Xi − X̄i)
2 exp(β′Xj)

∑

j∈Rti

exp(β′Xj)

)
. (3.24)

3.4.2 Estimation of the hazard ratio and survival function

The ML estimator β̂ allows to estimate HRs directly. It also allows the estimation
of the survival function, but still requires knowing the baseline survival, i.e. the
survival function for a model not dependent on covariates, as we show next.
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With the ML estimator β̂ = (β̂1, . . . , β̂K), the estimator ĤR is deduced from
equation (3.17),

ĤR = exp(β̂
′

X). (3.25)

Specifically, the risk of event of the ith individual can be estimated as

ĤRi = exp(β̂
′

Xi), for i = 1, . . . , n,

and the risk of event due to the kth risk factor can be estimated as

ĤRk = exp(β̂
′

k), for k = 1, . . . , K.

From the Cox model in (3.16) we formulate the estimator of the hazard,

λ̂(t,X) = λ̂0(t) exp(β̂
′

X). (3.26)

Hence, the estimator of the cumulative hazard is

Λ̂(t,X) = Λ̂0(t) exp(β̂
′

X), (3.27)

and the estimator of the general survival function in equation (3.10) is

Ŝ(t) = exp(−Λ̂(t)). (3.28)

Then, the estimator of a survival function given covariates is

Ŝ(t|X) = exp(−Λ̂(t,X))

= exp(−Λ̂0(t) exp(β̂
′

X)) from equation (3.27) (3.29)

= Ŝ0(t)
exp(β̂

′

X) from equation (3.28). (3.30)

There are two approaches to estimate the baseline survival function Ŝ0(t): the Bres-
low estimator and the Kalbfleisch-Prentice estimator. Here we provide only the
respective expressions. For details we refer to Therneau and Grambsch (2000).

The Breslow estimator of S0(t) is:

Ŝ0(t) = exp(−Λ̂0(t)), (3.31)
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where the baseline cumulative hazard Λ̂0(t) is

Λ̂0(t) =
∑

ti<t

( dti∑

j∈Rti

exp(β̂Xj)

)
.

The Kalbfleisch-Prentice estimator of S0(t) is

Ŝ0(t) =
∏

ti<t

α̂i , (3.32)

where α̂i, for i∈D, are the ML estimators that satisfies

S(t|X) =
∏

ti<t

α
exp(β′X)
i .

3.4.3 Hypothesis test for association

To determine the statistical significance of β̂ we can use formal tests such as the
Wald test or the likelihood ratio (LR) test. Both procedures test the null hypothesis
of no association between risk factors and survival, i.e. H0 : β = 0 or H0 : HR = 1,
or for a specific risk factor, H0 : βk = 0.

Under this null hypothesis, the Wald statistic is computed by dividing the esti-
mate β̂k by its standard error se(β̂k). It follows approximately a standard normal
distribution, that corresponds to the Z distribution (N(0, 1)),

Wald statistic =
β̂k

se(β̂k)
∼ Z .

The LR statistic uses the log-likelihood of the restricted and unrestricted models.
Given the Cox model λ(t,X) = λ0(t) exp(β′X), and given the null hypothesis
H0 : β = 0, the restricted model M0 is reduced to the baseline hazard function
M0 : λ(t,X) = λ0(t). The unrestricted model M1 is a Cox model such that βk 6= 0
for any k = 1, . . . , K.

Given a null hypothesis for a specific factor k, H0 : βk = 0, the restricted model is
M0 : λ(t, X) = λ0(t) exp(β′X), with the kth component of β equal to zero, βk = 0.
The unrestricted model M1 is a Cox model such that βk 6= 0.

The LR statistic is computed by −2 (logLM0 − logLM1), it follows a chi-square
distribution with degrees of freedom (df) equal to the difference of df of the two
models.
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3.4.4 Extended Cox regression model

The proportional-hazard (PH) assumption of the Cox model implies that estimated
survival curves of different risk groups do not cross each other over time.

If the PH assumption is not met, alternative procedures such as stratified analysis
or an extended Cox model can be used. Stratified analysis allows fitting the Cox
model with factors satisfying the PH assumption, and stratifying the model by
the factor(s) not meeting the PH assumption. The stratified Cox model allows for
different baseline hazards for each stratum, and produces the same constant hazard
ratios of factors in the model for all the strata.

An extended Cox model allows including time dependent factors. These are factors
which are not fixed over time. For example, let us consider an additional therapy
to follow by some patients who underwent hematopoietic stem cell transplantation.
We may want to evaluate whether the therapy has an influence on the death of
these patients. Then, a factor Xk that stands for receiving therapy enters as a time
dependent risk factor in the Cox model. By assuming that Xk is the only factor in
the Cox model we have λ(t,Xk) = λ0(t) exp(β ′

kXk (t)), where Xk (t) equals 1 or 0
if the patient received or did not receive therapy by time t, respectively.

The extended Cox model allows to include both fixed and time dependent factors
in the model. Then, the PH assumption is not valid anymore, and the hazard ratios
are formulated as time dependent parameters. For a discussion on these alternatives
refer to Kleinbaum (1996) and Therneau and Grambsch (2000).

3.5 Goodness of fit of the Cox model through an

R2 measure

An important step after fitting a model is to verify whether that model fits the data
well. In ordinary linear regression models, the coefficient of determination, R2, is
the most popular measure for judging the good fit of a model. R2 is interpreted as
the fraction of explained variation by the model. In its general form, it is computed
by comparing the sum of squared residuals generated from a model with the factors
under consideration (covariate model) with that from a model without those factors
(null model). The residuals of the data are obtained for each individual by the
difference between the observed and expected value of the outcome, where the latter
value is provided by the model. Thus, the residuals measure the accuracy of the
model to estimate the outcome.

The corresponding residual of an ith outcome is (Yi− Ŷi). Then, the sum of squared
residuals (SSR) of the model is

SSR =
n∑

i=1

(Yi − Ŷi)
2,
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where Yi and Ŷi are the observed outcome and the expected outcome given by the
model, respectively.

The R2 measure is defined as

R2 = 1−
SSRX

SSR0

,

where the SSRX and SSR0 are the SSR from the covariate and null model, respec-
tively.

The evaluation of the goodness of fit of a Cox model to survival data will indicate
how well the factors in the model, and its corresponding estimated effects through
the HR, represent the information from the data. Furthermore, it will also indicate
how well these factors help explaining the variation of developing events at distinct
times from individuals in the data.

For Cox regression models, however, the calculation of residuals, and hence of R2,
is not straightforward because of the censoring. As we have described, survival data
include incomplete data that are accounted by an indicator of censoring δ. On this
matter, some suggestions have been proposed to formulate complementary versions
of R2 for Cox regression models.

We are particularly interested in studying R2 versions for application on genetic
association studies, that is, to evaluate the goodness of fit of Cox regression models
with genetic factors, especially SNPs. An interesting study on this particular topic
was carried out by Müller et al. (2008).

Müller et al. (2008) aimed at identifying the most appropriate criterion for evaluating
the goodness of fit of genetic covariates on survival outcome. They particularly
focused on binary or trichotomous covariates, typical variable types of a genetic
variant such as a SNP. The criteria should allow for interpretation of R2 as explained
variation and approximate the range [0,1] as for classical R2 for linear models. Values
of R2 = 0 indicate no explained variation by the model, i.e. complete absence of
association between the SNP factor in the model and survival. Values of R2 = 1
indicate fully explained variation, i.e. the SNPs in the model are the responsible
factors for occurrence of events, perfect association. Moreover the criteria should
take into account the effect sizes (HR) of the covariates.

Three criteria were chosen for the investigation of the R2 versions: the deviance
residuals (Therneau et al. 1990), the deviation of survival (Schemper and Henderson
2000), and the Schoenfeld residuals (Schoenfeld 1982).

In the next sections of this chapter, we briefly describe the criteria used and the
findings in the study by Müller (2004) and Müller et al. (2008). Although they
considered two different versions for the criterion of deviation of survival, we describe
only the one that performed better and which is relevant to our work.
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3.5.1 Deviance residuals

Before defining the deviance residuals we first introduce the martingale residuals
(Therneau et al. 1990). The martingale residuals are obtained for each individual i
by

M̂i = δi − Λ̂(ti) , (3.33)

it can be viewed as the difference between the observed and the expected number
of events of individual i at time ti.

The sum of squared residuals is,

SSRM̂ =

n∑

i=1

M̂i

2
.

The above applies to a null model. Similarly, by using Λ̂(ti, X) in equation (3.33)
we can obtain M̂i|X and SSRM |X for a covariate model. Then, the R2 is formulated
as

R2
M̂

= 1−
SSRM̂ |X

SSRM̂

.

The martingale residuals tend to have a highly skewed distribution over the range
[−∞, 1]. This results from the fact that Λ̂(ti) increases with longer survival times,
and therefore M̂i increases negatively with longer times ti. Also, SSRM |X will tend
to generate higher extreme values than SSRM . Then, the R2 version from this
criterion will tend to generate negative values as well.

The deviance residual is a normalized transformation of the martingale residual
(Therneau et al. 1990). It is similar to the deviance residual for a Poisson model
(Agresti 2002). Considering the observed (δi) and the estimated (Λ̂(ti)) number of
events, the deviance residual is

d̂ev.resi = sign (δi − Λ̂(ti))
√
di ,

where

di = −2
(
δi log (

Λ̂(ti)

δi
) + (δi − Λ̂(ti))

)

= −2
(
δi log (

δi − M̂i

δi
) + M̂i

)
.
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Thus, the deviance residuals is expressed by

d̂ev.resi = sign(M̂i)

√

−2
(
M̂i + δi log (

δi − M̂i

δi
)
)
,

and the sum of squared residuals is

SSR ̂dev.res
=

n∑

i=1

(d̂ev.resi)
2.

The R2 version from this criterion has not been very satisfactory since it still gen-
erates negative values although less than the martingale residuals. An alternative
proposed by Stark (1997) is to compute the Kd.norm, which is an R2 version that
compares the absolute difference between the deviance residuals from the covariate
and null model with respect to the null model,

Kd.norm =

n∑

i=1

|d̂ev.resi − d̂ev.resi|X |

n∑

i=1

|d̂ev.resi|

,

where dev.resi|X and dev.resi are the deviance residuals for the covariate and null
model, respectively.

This version generates no negative R2 values. However, the difference between the
residuals of the two models could still be very high, so that the R2 exceeds the
limit of 1. That occurs especially for low censoring and high coefficients with high
variance of the covariates.

3.5.2 Deviation of survival

Schemper and Henderson (2000) proposed a criterion based on the mean absolute
deviation of survival at specific times t. Let Si(t) be the true survival status of
individual i at time t such that Si(t) = 1, if ti > t; or Si(t) = 0, if ti ≤ t. Let S(t)
be the survival probability at time t. The mean absolute deviation is defined as

M(t) =
1

n

n∑

i=1

|Si(t)− S(t) |.
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By replacing the survival status Si(t) for all the n individuals we have:

M(t) = S(t) | 1− S(t) |+ (1− S(t)) | 0− S(t) |

= S(t) ( 1− S(t)) + (1− S(t))S(t)

= 2 S(t) ( 1− S(t)).

This criterion is a time dependent measure. Since it is more practical to use an
overall measure for the full follow-up time, a weighted average over t was suggested,

D(τ) =

∫ τ

0

M(t) f(t) dt
∫ τ

0

f(t) dt

=

2

∫ τ

0

(
S(t)

(
1− S(t)

))
f(t) dt

∫ τ

0

f(t) dt

.

Let DX(τ) be the mean absolute deviation for a covariate model, i.e. a model with
survival function given by S(t|X) instead of S(t). Then, the R2 version of the mean
deviation of survival, denoted by V (τ) as a reference to the variance in survival for
the null model (i.e. S(t)

(
1− S(t)

)
), is

V (τ) = 1−
DX(τ)

D(τ)
.

Given the presence of censoring in the data, the estimation of D(τ) is not sim-
ple. Schemper and Henderson (2000) formulated it by considering three possible
situations at each observed and ordered survival time t(j), for j∈D.

Let Si(t(j)) be the survival status at time t(j) for the ith individual, then

Si(t(j)) =





1 if i got no event up to time t(j) (ti > t(j))

0 if i got the event at or before time t(j) (ti ≤ t(j) | δi=1)

NA no assigned, if i is censored at or before time t(j) (ti ≤ t(j) | δi=0).

Then, a different term applies for each of the above possibilities Si(t(j)), and the
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mean absolute deviation is given by the sum over the three possibilities,

M̂(t(j)) =
1

n

n∑

i=1

|Si(t(j))− Ŝ(t(j)) |

=
1

n

n∑

i=1

[
I(ti > t(j))(1− Ŝ(t(j)))

+ δi I(ti ≤ t(j))Ŝ(t(j))

+ (1− δi) I(ti ≤ t(j))
{
(1− Ŝ(t(j)))

Ŝ(t(j))

Ŝ(ti)
+ Ŝ(t(j))(1−

Ŝ(t(j))

Ŝ(ti)
)
}]

.

For individuals with no assigned survival status Si(t(j)), an extrapolation was ap-
plied, assuming that they have identical risks to those from the uncensored individ-
uals at t(j).

The overall measure is formed as a weighted average of M̂(t(i)), where the weights
Wj are estimated as the number of deaths dt(j) corrected by censoring,

D̂(τ) =

∑

j∈D

Wj M̂(t(j))

∑

j∈D

Wj

, Wj =
dt(j)

Ĝ(t(j))
.

The correction of censoring is done through the reverse Kaplan-Meier estimator (see
page 20) denoted here as Ĝ(t(j)). The estimate of Ĝ(t(j)) gives the probability of
not being censored up to time t(j). Then, Wj can be interpreted as the number of
deaths if no censoring had occurred up to time t(j).

The estimate of D̂X(τ) for the covariate model is obtained in a similar way. By
using Ŝ(t(j)|Xi) instead of Ŝ(t(j)) we obtain M̂(t(j)|X), and then D̂X(τ). Then,

V̂ (τ) = 1−
D̂X(τ)

D̂(τ)
.

A similar criterion: the Brier score

Here we introduce a criterion that was not used in the study of Müller et al. (2008),
but it is a similar criterion to the deviation of survival. It is the criterion of the Brier
score (Brier 1950, Graf et al. 1999), and it is one of the main approaches to estimate
prediction errors in survival models, which we discuss in the following chapters of
this thesis.
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The Brier score is based on the concept of the so-called verification score first pro-
posed by Brier (1950), a measure applied for the study of misclassification error of
models with binary or categorical outcomes. This measure was later adopted for
the study of estimation errors from survival models (Graf et al. 1999; Gerds and
Schumacher 2006, 2007).

The measure is formulated as the usual concept of residuals, that is, the squared
deviation between observed and estimated outcomes under the model. In this case
the outcome is survival, S(t). To account for the loss of information due to cen-
soring, Graf et al. (1999) formulated this measure as a weighted average of squared
deviations, where the weights WC( t, Ĝ ) are summing to the total sample size n. Lat-
ter, Gerds and Schumacher (2006) extended these weights to allow for non-random
censoring, WC( t, Ĝ,Xi ). To use a similar notation as above, we denote this measure
as SSR br, where the subscript br denotes the Brier score. We present this measure
as formulated by Gerds and Schumacher (2006),

SSR br(t) =
1

n

n∑

i=1

(
Si(t)− Ŝ(t)

)2
WC( t, Ĝ,Xi ), (3.34)

where

Si(t) =

{
1 if i got no event up to time t (ti > t)

0 otherwise,

and

WC( t, Ĝ,Xi ) =
I(ti ≤ t) δi

Ĝ(ti− |Xi)
+

I(ti > t)

Ĝ(t |Xi)
. (3.35)

WC( t, Ĝ,Xi ) is a weighting scheme determined only by the empirical estimate of
the survival function for censoring (Ĝ), the reverse KM estimator (see page 20).
WC( t, Ĝ,Xi ) does not involve the use of β̂ estimates, or any other estimate based
on the Cox model. Thus, the weights are independent of the fitted Cox model.
Also, the weights allow adjustments for censoring conditional on the covariates Xi

by using the conditional reverse KM estimator Ĝ(t |Xi), i.e. adjustment for non-
random censoring.

The first term of WC( t, Ĝ,Xi ) determines the weights for individuals with observed
events at their respective survival times ti–, where ti– ≤ t. The weights for these
individuals are the inverse of the survival probability to censoring at the time when
their events were observed, and given their covariates Xi. Hence, the weights as-
signed to these individuals remain constant after their respective survival times ti–.
The second term of WC( t, Ĝ,Xi ) determines the weights for individuals at risk at



3.5 Goodness of fit of the Cox model through an R2 measure 35

time t. The weights for these individuals are the inverse of the survival probability
to censoring at time t, given their covariates.

It can be noted that the weights apply for each individual i separately. Also, in-
dividuals censored before the specified time t are not considered, they get weights
WC( t, Ĝ,Xi ) = 0. It means that an individual contributes to the estimate of sur-
vival deviations only until his/her time of censoring, if it occurs.

For a covariate model, SSR br(t|X) can be computed by replacing Ŝ(t) by Ŝ(t|X),

SSR br(t|X) =
1

n

n∑

i=1

(
Si(t)− Ŝ(t|Xi)

)2
WC( t, Ĝ,Xi ). (3.36)

The respective R2 version can be defined as a time dependent measure,

R̂2
br(t) = 1−

SSR br(t|X)

SSR br(t)
. (3.37)

An overall measure of SSR can also be defined over the full follow-up time τ , which
can be obtained by a cumulative SSR br(t|X) (Gerds and Schumacher 2007, Binder
and Schumacher 2008). For the purpose of our work we will compute residuals at
times of observed events, then

SSR br|X(τ) =
∑

t∈tD

SSR br(t|X). (3.38)

SSR br(τ) can be computed similarly. Then, the R2 version is

R̂2
br(τ) = 1−

SSR br|X(τ)

SSR br(τ)
. (3.39)

Two main differences between the criterion based on the Brier score and the de-
viation of survival may be observed. First, the criterion of the Brier score as-
signs weights WC( t, Ĝ,Xi ) = 0 to individuals censored before time t, and there-
fore information of these censored individuals are left out from the computation of
SSR br(t|X). In the criterion of deviation of survival, the weights are independent
of censoring, therefore all individuals are considered; and moreover the deviation of
survival at some time t after censoring of an individual is extrapolated based on the
information of uncensored individuals. Second, the Brier score allows for adjustment
of non-random censoring, while the criterion of deviation of survival does not.
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3.5.3 The Schoenfeld residuals

This measure was proposed by Schoenfeld (1982). It estimates residuals by com-
paring the observed value of a covariate with its expectation under the Cox model.
Given an observed event at time t, the Schoenfeld residuals compare the covariate
value of the failing individual with the expected covariate value of a failing individual
at time t according to the model.

The Schoenfeld residuals can be estimated only for individuals with uncensored
survival times, i.e. only for i∈D.

The Schoenfeld residuals are estimated separately for each covariate in the Cox
model. Let Xik be the value of the kth covariate for an ith individual such that
i∈D, and let Rti be the set of individuals at risk at time ti. Then, the Schoenfeld
residuals corresponding to the kth covariate are formulated as

sch ik(β̂) = Xik − E(Xik|Rti , β̂) for i∈D, and k = 1, . . . , K,

where E(Xik|Rti , β̂) is the expected value of the covariate according to the Cox

model, which is a function of the β̂ estimate from the Cox model.

At this specific step, we can view Xik as a random variable with probability

πj(β̂) =
exp(β̂ ′Xj)∑

j∈Rti

exp(β̂ ′Xj)
for j ∈ Rti and i∈D.

Note that this probability is also the individual likelihood in equation 3.18.

Then, the expected value of the covariate is

E(Xik|Rti , β̂) =
∑

j∈Rti

Xjk πj(β̂)

=
∑

j∈Rti

Xjk

exp(β̂ ′Xj)∑

j∈Rti

exp(β̂ ′Xj)
. (3.40)

The estimation of E(Xik|Rti , β̂) assumes that each individual j ∈ Rti will present

the event at time ti with probability πj(β̂), which is a function of the estimate β̂

from the Cox model.

For a null model, the covariate is assumed to play no role on survival, that means
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β̂ = 0. Then, the residuals schik(0) should be computed with expected value

E(Xik|Rti , 0) =
∑

j∈Rti

Xjk πj(0)

=
∑

j∈Rti

Xjk

1∑

j∈Rti

1

=
∑

j∈Rti

Xjk

1

nti

, (3.41)

where nti is the number of individuals at risk at time ti. In this case, all the
individuals j ∈ Rti will have the same probability πj(0) to present the event at time
ti, and the expected value will simply be the average of covariate values over all
individuals at risk. The weighted average of squared residuals SSRsch|β̂ is

SSRsch|β̂ =
1

nD

∑

i∈D

sch2
ik(β̂)

where nD is the number of individuals in the subset D. In a similar manner we
compute SSRsch|0. Then, the R

2 version of the Schoenfeld residuals (O’Quigley and
Flandre 1994) for a model with only one covariate (K=1) is

R̂2
sch = 1−

SSRsch|β̂

SSRsch|0

= 1−

∑

i∈D

sch2
ik(β̂)

∑

i∈D

sch2
ik(0)

. (3.42)

Schoenfeld residuals for multiple factors

For a model with more than one covariate, the concept of prognostic index is
used instead of the value of the covariate. The prognostic index is the linear
combination between the value of the covariates and their respective coefficients

(β̂
′

X). Therefore, for each individual i∈D there is a vector of residuals schi(β̂) =

(schi1(β̂), . . . , schiK(β̂)), and the residuals based on the prognostic index is β̂
′

schi(β̂),

and the squared residuals is
(
β̂

′

schi(β̂)
)2
.

Moreover, the sum of squared residuals is formulated as a weighted sum, where the
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weights WKM (ti) are the length of the step of the marginal Kaplan-Meier survival
curve at times ti (O’Quigley and Xu 2001).

The weights WKM(ti) represent the event distribution adjusted by the presence of
censoring in the data. Hence, the larger the censoring at time t the larger the step
height of the Kaplan-Meier curve, and thus, the larger the weights assigned to the
residuals at this time. In the absence of censoring WKM(ti) is constant at all times
ti, for i ∈ D.

∑
i∈D WKM(ti) = 1 if no individuals remain by the time of the last

observed event.

Then, the general adjusted SSRsch|β̂ for multiple factors is

SSRsch|β̂ =

∑

i∈D

WKM(ti)
{
β̂

′

schi(β̂)
}2

∑

i∈D

WKM (ti)
.

and

R̂2
sch = 1−

SSRsch|β̂

SSRsch|0

= 1−

∑

i∈D

WKM(ti)
{
β̂

′

schi(β̂)
}2

∑

i∈D

WKM (ti)
{
β̂

′

schi(0)
}2 . (3.43)

3.5.4 R2 measures in Cox models with SNP factors

Müller et al. (2008) evaluated through simulation studies the performance of the R2

versions from the three criteria: the deviance residuals (Kd.norm), the deviation of
survival (V̂ (τ)), and the Schoenfeld residuals (R̂2

sch). The application was done on
genetic association studies, specifically for Cox regression models with SNP factors.
These factors could enter the model either as binary (dominant or recessive effect
of the allele) or trichotomous covariate (additive effect of the allele). The criteria
were evaluated on the performance of the R2 for varying percentage of censoring,
for strength of the association with effect size, and for the limit in the range [0,1].

In general, they found that by the percentage of censoring in the data the Kd.norm

was the most affected and the R̂2
sch the least affected. The former can be explained

because the Kd.norm does not correct for censoring while the others do. On the
other hand, the R2 versions from all the three criteria increased with higher effect
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sizes (HR) of the SNPs. R2 from additive effects of alleles were higher than the
respective dominant or recessive effects. However, R̂2

sch showed stronger dependence
with effect sizes than the others, it increased faster with higher effect sizes, a fact
that also makes R̂2

sch cover best the upper range of 1.

Therefore, Müller et al. (2008) recommended the criterion of the Schoenfeld residuals
as the most appropriate measure for evaluation of goodness of fit in association
studies with genetic models. However, the identification of variables contributing
well to the occurrence of an outcome based on a data set is not a guarantee that
these variables will predict well the outcome. It may occur that the variables fit
very well the particular data used for modelling the outcome, but it may not be
that good if a different set of data, i.e. with a different set of individuals, is fitted.
Then, the model would not be appropriate for prediction.

For prediction purposes, we require a model that fits good the data at hand as well
as any subset of data from the same population of study. Then, further evaluation
is required to validate a prediction model for the outcome.

3.6 Validation of Cox models

One important goal in medical studies is prognostic modelling. Prognostic models
serve to make predictions about a future outcome of an individual based on predictors
in the model. Predictors are variables that should have been identified during the
fitting model procedure to play a role on the outcome of individuals. They should
have been identified by analysing a representative sample from the population, whose
individual’s outcomes are to be predicted. During the fitting of a model these
variables are called ”covariates” or ”risk factors”. In the context of prognostic
models, they are called ”predictors”.

A fitted model may prove to be a good fit for the data sample, this is determined in
the evaluation of goodness of fit of the model. However, to prove if a model is a good
prognostic model, it should be validated. Validation of a model is done through the
estimation of prediction errors. By estimating prediction errors we test the fitted
model to new data, independent from the data sample used in the fitting procedure.

By validating a model we prove that the risk factors predict well not only the
outcomes for the particular individuals in a cohort, but also the outcome for any
other individual from the study population. In genetic association studies, validated
genetic models can be used to predict the risk of disease of an individual patient
based on the genotypes carried at the specific loci in the genetic model. It can also
be useful to predict the risk of a patient undergoing a specific therapy based on a
joint influence of the genotypes with clinical or environmental predictors.
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Validation procedures in Cox regression models has not been widely investigated
yet. One approach was suggested by Gerds and Schumacher (2007), who used the
criterion of the Brier score to estimate prediction errors. In the context of genetic
association studies, we want to focus on the investigation of prognostic Cox models
with SNP factors. On this matter, the results of the study by Müller et al. (2008)
suggest that the criterion of the Schoenfeld residuals could be an acceptable ap-
proach. Hence, we developed an approach to estimate prediction errors with the
criterion of the Schoenfeld residuals.

The methodologies for estimators of prediction errors, as well as our approach for
application on Cox regression models using the criterion of the Schoenfeld residuals,
are described in the next chapter.



Chapter 4

Prediction error estimators

Model fitting is useful for understanding the information from a population based
on some available representative data of that population. By fitting a model we wish
to identify variables associated with an outcome based on the information provided
by individuals in the data. A fitted model can be a good representation of that
information in the data, but that is not a guarantee that the model will represent
well the information of individuals who are not in the data.

Model validation is the step to judge if a model will fit well the data of individuals
in the population. Hence, we evaluate the validity of the model for a population and
not only for the data at hand. A model is valid if it can closely predict the outcome
of the individuals based on independent variables in the model, these variables are
called predictors.

Through prediction errors we can evaluate the performance of a model with respect
to predictions. A good model for prediction is expected to produce low prediction
errors. The prediction errors are computed as the squared difference between a
future response and its prediction from the fitted model. In practice, the future
response can be taken from new data independent from the data used for fitting the
model. However, there are not always new data available. Then, some techniques
have been proposed to remedy the lack of new data.

Among some proposed techniques to replace the unavailability of data to estimate
prediction errors are cross-validation (Stone 1974), bootstrap (Efron and Tibshirani
1993), the 0.632 estimator (Efron 1983), and the 0.632+ estimator (Efron and
Tibshirani 1997). Both the cross-validation and the bootstrap estimator estimate
prediction errors by using, in different ways, the available data to repeatedly sim-
ulate two subsets: the training sample to fit the model and the validation set to
validate the model. The 0.632 estimator and the 0.632+ estimator were introduced
as improvements to the two first aforementioned estimators.

Gerds and Schumacher (2007) extended the applicability of these estimators of pre-
diction errors to survival data. Based on the definition of the Brier score (Brier 1950),

41
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they computed prediction errors as the squared difference between the true survival
status (taken from the validation set) and the estimated survival probabilities under
the model (fitted with the training sample).

We propose the applicability of these estimators of prediction errors to survival data
by using the definition of the Schoenfeld residuals (Schoenfeld 1982). By adapting
the Schoenfeld residuals to prediction errors, we use the squared difference between
the true value of a covariate (taken from the validation set) and the expected value
of the covariate under the model (fitted with the training sample). We propose this
approach to be applied on genetic association studies, because according to the in-
vestigation on genetic association studies by Müller et al. (2008), the criterion of the
Schoenfeld residuals was the best to evaluate the goodness of fit of a genetic survival
model (see section 3.5.4). Hence, we wish to provide the approach of estimation of
prediction errors with the criterion of the Schoenfeld residuals.

Our main interest is to evaluate the improvement in prediction of a genetic model
with respect to a reference model, e.g. model without the genetic factors. We can use
an R2 estimator as the goodness of fit but based on estimators of prediction errors.
It will provide the fraction of contribution of the genetic factors to the prediction of
the survival outcome, i.e. the gain in prediction by considering the genetic variables
as risk factors for the survival outcome, in comparison to a reference model.

In the first section, this chapter introduces the concept of prediction errors, describes
the existing estimators, and presents the adaptation of these estimators to survival
data based on the Brier score as developed by Gerds and Schumacher (2007). The
second section presents our development, the adaptation of the estimators of predic-
tion errors to survival data based on the Schoenfeld residuals. Finally, we formulate
the R2 estimator based on estimators of prediction errors.

4.1 Prediction error

The prediction error is a measure of the capability of a model to predict the future
response of new observations. In linear regression models, prediction error is defined
as the squared difference between the value of a future response and its prediction
under the model.

Brier (1950) introduced the concept of verification score to estimate the error of
misclassification of the model to a set of categories. For a particular set of two cate-
gories, the verification score was defined as the mean squared difference between the
occurrence of an event and the estimated probability of occurrence of that event.
They used as an example the dichotomous outcome for the event of rain, the occur-
rence of rain was coded as rain=1 or no-rain=0, and the probability of raining was
estimated from previous climatological observations. In that context, the verification
score is equivalent to the above definition of prediction error, here the occurrence
of rain (1/0) was the future response and the estimated probability of raining was
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the predicted value. The verification score from Brier (1950) is known as the Brier
score.

In any case, estimating prediction errors requires a prediction rule to predict the
future outcome, and a set of independent new observations, which is called validation
set, to test the performance of the prediction rule. The prediction rule can be either
a model, a function or any other algorithm constructed with a training sample.

Estimating prediction errors is straightforward for models such as the linear regres-
sion models since the predicted outcome is obtained directly from the model, that
is a linear function of the predictors and the estimated parameters of the model, i.e.
the prediction rule is the model itself.

For models such as the logistic regression model, the predicted binary outcome is
estimated by a probability π that is a non-linear function of the predictors and the
parameters θ = (α, β) of the model (see section 2.2.5), i.e. the prediction rule is not
the model itself but a function of its parameters.

The expected prediction error of a prediction rule is formulated as

Err = E { Y0 − r (X0) }
2, (4.1)

where Y0 and X0 = (X01, . . . , X0K), are the values of the outcome and K predic-
tors, respectively, of a random individual 0 drawn from the study population. r is
the prediction rule for the outcome Y0. r(X0) is the predicted outcome given the
predictor X0.

A value of Err = 0 indicates the full validity of the prediction rule, that occurs if
Y0 = r(X0). The larger the distance between Y0 and r(X0) the larger the prediction
errors, and therefore the less valid the prediction rule.

In practice we can estimate Err in terms of a prediction error rate by averaging the
prediction errors for all individuals in a validation set. Let V0 be a validation set,
and nV0 be the size of V0, then

Êrr =
1

nV0

nV0∑

i=1

{ Yi − r (Xi) }
2. (4.2)

Then, estimating Err requires two independent sets of data: the training sample
to estimate the prediction rule r, and the validation set providing the outcomes Yi

and predictors Xi = (Xi1, . . . , XiK), for i = 1, . . . , nV0 , to test the performance of

the prediction rule. The estimate Êrr is the average squared difference between the
observed outcome Yi and the predicted outcome r(Xi) over all individuals in the
validation set. The predicted outcome is obtained from the prediction rule given the
predictor set Xi.

However, a new data set as validation set is not always available, or to collect new
data will be costly or it will require great investment of time. Thus, some tech-
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niques have been suggested to estimate Err without demanding new data. These
techniques estimate Err using the available data in different ways, by considering
the availability of a training sample to estimate the prediction rule, and of a valida-
tion set to evaluate the prediction rule. The techniques that we will consider here
are: the apparent error (err), the bootstrap error (Êrr

B
), the cross-validation error

(Êrr
CV

), the bootstrap cross-validation (Êrr
B0

), the 0.632 estimator (Êrr.632),

and the 0.632+ estimator (Êrr.632+ ), which are described in the following sections.

4.2 General description of prediction error esti-

mators

Before describing the estimators of prediction errors, we introduce some useful no-
tations used in this and subsequent sections:

Q available data of size n
n sample size of Q
V0 validation set independent from Q
nV0 sample size of V0

Q∗ a bootstrap sample of size n drawn at random with replacement from Q
Q0 a validation set. It is obtained as the subset of Q that is not included in

the bootstrap sample Q∗

Q∗
b a bth bootstrap sample Q∗, for b = 1, . . . , B

Q0
b a bth validation set Q0, for b = 1, . . . , B

nb0 sample size of Q0
b

r the prediction rule estimated with Q
r∗b the prediction rule estimated with Q∗

b .

4.2.1 Apparent error estimator

The apparent error estimates Err by using the available data for both estimating
the prediction rule and testing its performance. That means, the available data Q
are used as both training sample and validation set.

err =
1

n

n∑

i=1

{ Yi − r (Xi) }
2,

where (Yi,Xi) are the outcome and predictor values, respectively, of the ith indi-
vidual in Q. r is the estimated prediction rule with the training sample Q. r(Xi)
is the predicted outcome given the predictor Xi.

The drawback of this estimator of prediction errors is that it uses the same data
as both training sample and validation set. The err corresponds to the general
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definition for evaluation of goodness of fit, which is known to underestimate Err, i.e.
to produce negative bias (Efron 1983, Gerds and Schumacher 2007). The prediction
rule will predict the outcomes from the training sample more accurately than the
outcomes from a validation set independent from the training sample. Therefore,
err will produce lower prediction errors than expected under independence of the
training sample and validation set.

4.2.2 Bootstrap cross-validation estimator

In this part we first describe the techniques of bootstrap and cross-validation because
they have the basic ideas of the bootstrap cross-validation. These techniques use the
available data to repeatedly simulate training samples and validation sets, so that
we can estimate prediction errors with the availability of two different data sets.

Bootstrap

Given the available data Q, the simplest bootstrap approach to estimate prediction
errors consists of the following (Efron and Tibshirani 1993):

1. Draw at random and with replacement a sample of size n from Q. We obtain
a bootstrap sample Q∗.

2. Estimate the prediction rule using the bootstrap sample Q∗. Then, test the
rule on the original data Q and estimate the prediction error. Hence, Q∗ is
the training sample and Q is the validation set.

3. Repeat steps 1. and 2. B times to obtain a set of B estimates of prediction
errors.

4. Compute the average over the B estimates to obtain the bootstrap estimate
of prediction errors.

For an extended theory on bootstrap methods we refer to Efron and Tibshirani
(1993).

The bootstrap estimator of Err is

Êrr
B
=

1

B

B∑

b=1

1

n

n∑

i=1

{ Yi − r∗b (Xi) }
2,

where (Yi,Xi) are the outcome and predictor values, respectively, of the ith indi-
vidual in Q, and r∗b (Xi) is the predicted outcome under the estimated prediction
rule r∗b .

Even if Êrr
B

is an improved estimator to the err, Efron (1983) found that it still
underestimates Err, although it has acceptable variance. The underestimated error
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can be explained by the fact that part of the individuals in the validation set are
also in the training sample. Hence, the prediction rule is partially tested on the
same individuals used to estimate that prediction rule.

Cross-validation

Cross-validation (Stone 1974) implies to split the available data Q into a training
sample and a validation set, so that we have two independent sets of data: one to
estimate and one to evaluate the prediction rule.

The cross-validation consists of the following:

1. Split Q into H equal-sized parts. Get Qh, for h = 1, . . . , H .

2. Take a hth subset apart. Estimate the prediction rule with the set Q−h. Then,
test the prediction rule using the Qh subset and estimate the prediction error.
Hence, Q−h is the training sample and Qh is the validation set.

3. Repeat step 2. for each subset Qh to obtain a set of H estimates of prediction
errors.

4. Compute the average over the H estimates to obtain the cross-validation esti-
mate of prediction errors.

This is also called H-fold cross-validation. For an extended theory on cross-validation
estimators we refer to Stone (1974) and Efron and Tibshirani (1993).

The cross-validation estimator of Err is

Êrr
CV

=
1

H

H∑

h=1

1

nh

∑

i∈h

{ Yi − r−h (Xi) }
2,

where (Yi,Xi) are the outcome and predictor values, respectively, of the individual i
in the validation set Qh, and r−h(Xi) is the predicted outcome under the estimated
prediction rule r−h. nh is the sample size of Qh.

In the studies of Efron (1983) and Efron and Tibshirani (1997), the cross-validation
was applied with different H-fold partitions. They found that this approach tends
to produce higher variability when H increases although it approximates Err very
well. For instance, with the leave-one-out cross-validation (H = n), it estimates
quite unbiased Err but with very high variability, whereas for a 5-fold (H = 5) or
10-fold cross-validation (H = 10) it gives lower variability but overestimates Err,
i.e. estimates with positive bias.



4.2 General description of prediction error estimators 47

Bootstrap cross-validation

The bootstrap cross-validation is a combination of the bootstrap and the cross-
validation described above. It consists of the following:

1. Draw at random and with replacement a sample of size n from Q. We obtain
a bootstrap sample Q∗.

2. Estimate the prediction rule using the bootstrap sample Q∗. Then, test the
prediction rule on the set Q0, which is the subset of Q not included in Q∗, and
estimate the prediction error. Hence, Q∗ is the training sample and Q0 is the
validation set.

3. Repeat steps 1. and 2. B times. We obtain a set of B estimates of prediction
errors.

4. Compute the average over the B estimates to obtain the bootstrap cross-
validation estimate of prediction errors.

The bootstrap cross-validation estimator of Err is

Êrr
B0

=
1

B

B∑

b=1

1

nb0

∑

i∈Q0
b

{ Yi − r∗b (Xi) }
2, (4.3)

where (Yi,Xi) are the outcome and predictor values, respectively, of the individual
i in the bth validation set Q0

b , r
∗
b (Xi) is the predicted outcome under the estimated

prediction rule r∗b , and nb0 is the sample size of Q0
b , for b = 1, . . . , B.

Notice that the sets Q0
b , for b = 1, . . . , B, may differ in size from one bootstrap

sample to the other.

In the original papers Êrr
B0

was defined slightly different than in equation (4.3).

Efron (1983) defined Êrr
B0

as a general average over all the individual errors ob-
tained from all the sets Q0

b , for b = 1, . . . , B. Efron and Tibshirani (1997) defined

Êrr
B0

by first averaging the prediction errors for each individual i over the sets
{Q0

b |i ∈ Q0
b}, and then by averaging over all average individual errors i. Efron

and Tibshirani (1997) stated that these two definitions agree as B → ∞, and they
produced nearly the same results in their simulations.

Equation (4.3) follows the definition of Êrr
B0

as presented by Gerds and Schumacher
(2007) in the estimation of prediction errors for survival data. It first takes the
average prediction error over all individuals i ∈ Q0

b , for each b = 1, . . . , B. Then,
it takes the average over the B average prediction errors. As stated above, these
slight differences in the calculation should lead to similar results. We find the latter
definition is a more natural calculation of the mean errors and it is the definition we
use in the next sections.
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As a type of cross-validation approach the bootstrap cross-validation also tends to
estimate Err with positive bias (Efron and Tibshirani 1997, Gerds and Schumacher
2007). If we consider only the original elements of Q in the bootstrap sample Q∗

b , the
sample size of Q∗

b is reduced in comparison to the original sample size n. Considering
the experience with the cross-validation approach, the positive bias is produced when
part of the data was excluded from the training sample. Since Q∗

b in this approach
also excludes part of the data, this approach tends to estimate Err with positive
bias.

4.2.3 The 0.632 estimator

The 0.632 estimator (Êrr.632) was proposed by Efron (1983) as a correction to the
negative bias of the apparent error estimator (err) and the positive bias of the boot-

strap cross-validation estimator (Êrr
B0

). The former occurs because the prediction
rule is estimated and evaluated on the same data, the latter occurs because for
each bootstrap sample the prediction rule is estimated using less information than
contained in the original data (Efron 1983, Efron and Tibshirani 1993, Schumacher
et al. 2007).

According to the study of Efron (1983), Êrr
B0

is computed from bootstrap samples
containing about 0.632 times the total information of the original data. This was
the argument to formulate Êrr.632 as a linear combination of err and Êrr

B0
, with

weight 0.632 for Êrr
B0

.

Êrr.632 = (1− 0.632) err + 0.632 Êrr
B0

. (4.4)

Efron (1983) compared the performance of the bootstrap, the cross-validation, the
0.632, and other related alternatives for estimation of Err. The 0.632 estimator
appeared to have the best performance at approximating Err with less bias and
variance than other alternatives.

Efron and Tibshirani (1997) argued that highly overfitting rules do not benefit from
the 0.632 estimator. Highly overfitting rules tend to exaggeratedly predict individ-
ual outcomes in the data rather than generalize the relation between outcome and
predictors. These rules produce severe negative bias of the apparent error estimate
(err → 0). In that case, the prediction error should be estimated only from the

bootstrap cross-validation estimator, i.e. Êrr = Êrr
B0

. However, the 0.632 esti-

mator yields to Êrr.632 = 0.632 Êrr
B0

, which underestimates the prediction error.
Thus, an alternative estimator that corrects for overfitting of the prediction rule was
proposed, this was the 0.632+ estimator (Êrr.632+ ).
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4.2.4 The 0.632+ estimator

Efron and Tibshirani (1997) proposed the 0.632+ estimator as a correction to the
0.632 estimator. The purpose was to make the estimator valid for highly overfitting
rules, for which the Êrr.632 estimate results in an underestimated Err.

The correction affects the constant 0.632 used as a weight in the 0.632 estimator
(equation (4.4)). The 0.632+ estimator (Êrr.632+ ) makes the weight vary and depend

on the amount of overfitting of the prediction rule, such that Êrr.632+ assigns larger
weights to Êrr

B0
when the amount of overfitting is large. The amount of overfitting

is measured by (Êrr
B0

− err). However, the 0.632+ estimator uses in the calculation
the relative overfitting rate (R), that is a scaled amount of overfitting.

The latter requires first the definition of the no-information error rate (γ). The
no-information error rate is the expected prediction error when the rule is tested on
data where the outcomes are independent of the predictors.

γ = Eind { Yi − r (Xi) }
2, for i = 1, . . . , n,

where Eind indicates expectation under independence of outcomes Y and predictors
X.

Since the rule is estimated with a training sample, γ will tend to be larger as the
rule tends to overfit the training sample.

To estimate γ, data with independent outcomes and predictors can be obtained by
permuting the respective variables Y and X of the available data, so that each
outcome Yi is combined with every Xj for i, j = 1, . . . , n. Then, the estimator γ̂ is

γ̂ =
1

n2

n∑

i=1

n∑

j=1

{ Yi − r (Xj) }
2. (4.5)

Since γ̂ gives an estimated error of the prediction rule under no relation between
outcomes and predictors, the no-information value (γ̂ − err) gives an estimate of
the maximum possible amount of overfitting of the prediction rule.

The relative overfitting rate R̂ is then defined as the amount of overfitting with
respect to the no-information value.

R̂ =
Êrr

B0
− err

γ̂ − err
. (4.6)

The R̂ values are in the range [0,1]. R̂ = 0 if Êrr
B0

= err, that means no overfitting

rule. R̂ = 1 if the amount of overfitting (Êrr
B0

− err) equals the no-information
value (γ̂ − err), that indicates highly overfitting rule.
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The weight ŵ is then formulated as

ŵ =
0.632

1− 0.368 R̂
, ŵ ∈ [0.632, 1], (4.7)

and the 0.632+ estimator is

Êrr.632+ = (1− ŵ) err + ŵ Êrr
B0

. (4.8)

For larger amount of overfitting (i.e. when R̂ approximates 1), ŵ tends to 1. That

means, under highly overfitting rules the bootstrap cross-validation estimator Êrr
B0

has weights larger than 0.632.

For reduced amount of overfitting (i.e. when R̂ approximates 0), ŵ tends to 0.632.
That means, under no overfitting rules the bootstrap cross-validation estimator has
weights 0.632. The latter means that under no overfitting rules Êrr.632+ = Êrr.632.

In some instances R̂ may fall out of the range [0,1]. That happens when γ̂ ≤ err or

err < γ̂ ≤ Êrr
B0

. To avoid these situations Êrr
B0

and R̂ are redefined:

Êrr
′

B0
= min (Êrr

B0
, γ̂ ), (4.9)

R̂
′

=





Êrr
′

B0
− err

γ̂ − err
if γ̂, Êrr

′

B0
> err

0 otherwise.

(4.10)

For the computation of Êrr.632+ , R̂
′

and Êrr
′

B0
are then plugged into equations (4.7)

and (4.8), respectively. Note that if err < γ̂ ≤ Êrr
B0

, then R̂
′

= 1 and Êrr.632+ = γ̂.

4.3 The 0.632 and 0.632+ estimators based on

survival probabilities

Gerds and Schumacher (2007) extended the methodology of the 0.632+ estimator
to the application on right-censored survival data. They used the criterion of the
Brier score (Brier 1950) to estimate the prediction errors. Hence, the prediction
errors were computed as the squared difference between the true survival status of
an individual and the predicted survival probability based on the Cox regression
model.
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The basis of the Brier score as applied on survival data was described in section 3.5.2,
page 33. In this section we describe and formulate the use of the Brier score to
estimate prediction errors, and consider the Cox regression model as the prediction
rule.

The expected prediction error of a prediction rule in survival data is formulated as
a time dependent prediction error

Err(t) = E { Y0(t)− r (t|X0) }
2, (4.11)

where Y0(t) is the survival status at time t, and X0 is the vector of predictors of a
random individual drawn from the study population. Hence,

Y0(t) = S(t) =

{
1 if individual 0 got no event until time t (t0 > t)

0 otherwise.
(4.12)

The prediction rule r is the survival probability as a function of the parameters of
the Cox regression model (see equation (3.29)). r(t|X0) is the predicted survival
probability at time t given the predictor X0. Hence, r(t|X0) = Ŝ(t|X0), which
is estimated from the survival probability in equation (3.29) evaluated on X0, i.e.
given X0.

It can be realized that the prediction error in (4.11) considers the survival status
S(t) as a binary variable with values 1/0, whereas the predicted survival Ŝ(t) is a
continuous variable in the range [1,0].

By following the expression of Êrr in equation (4.2), the estimate Êrr(t) can be
obtained as the average of the prediction errors over all individuals in a validation
set. Let nV0 the size of a validation set, then

Êrr(t) =
1

nV0

nV0∑

i=1

{ Yi(t)− r (t|Xi) }
2 WC ( t, Ĝ,Xi ). (4.13)

However, because of the special characteristics of survival data, two new features can
be observed in this estimator of prediction error (equation (4.13)), these are: i) the
time dependent estimate of the prediction errors, that accounts for the time frame
t to survival, and ii) the adjustment of the prediction errors by a weight function
WC( t, Ĝ,Xi ) that is the reverse Kaplan-Meier function (see page 34).

Some reminds first, the weight function WC( t, Ĝ,Xi ) is independent of the Cox
model that in this case is the prediction rule r. Ĝ is a survival function of the
censoring variable conditional on the covariates Xi, so that Ĝ = Ĝ(t |Xi). These
weights were introduced to reduce the bias due to censoring from the estimates of
prediction errors.
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Since the Êrr(t) is a time dependent estimator, it allows generating prediction error
curves against time (Gerds and Schumacher 2007, Schumacher et al. 2007).

In the absence of a validation set the different estimators described in sections 4.2.1
to 4.2.4 can be applied to estimate Err(t). In the following we present these esti-
mators as adapted by Gerds and Schumacher (2007).

The apparent error estimator

Given the available data set Q of size n, the apparent error is computed by consid-
ering Q as both the training sample and validation set:

err (t) =
1

n

n∑

i=1

{ Yi(t)− r (t|Xi) }
2 WC( t, Ĝ,Xi ), (4.14)

where (Yi(t),Xi) are the survival status at time t (Si(t)) and the predictor values,
respectively, of the ith individual in Q. The Yi(t) take values 1 or 0 as defined in
equation (4.12).

r is the prediction rule, the Cox regression model fitted with the training sample
Q. r(t|Xi) is the predicted survival probability Ŝ(t|Xi) according to the fitted Cox
regression model and tested at a predictor value Xi. The weights WC( t, Ĝ,Xi ) are
based on the reverse KM survival function from the data set Q.

It can be noticed that the apparent error estimator is the same as the estimator of the
sum of squared deviation SSR br(t|X) in equation (3.36). As it has been indicated,
residuals are obtained to evaluate the goodness of fit of a model to the data at
hand. That means, to fit and evaluate the Cox model, which here is the prediction
rule, using the same data. The estimator SSR br(t|X) estimate residuals using the
survival probabilities of the individuals. Hence, the apparent error estimator is
equivalent to the estimator of goodness of fit SSR br(t|X).

The bootstrap cross-validation estimator

Given the available data set Q of size n, let Q∗
b and Q0

b be the training sample
and the validation set, respectively, drawn from Q (as described on page 47) for
b = 1, . . . , B. Then, the bootstrap cross-validation estimator is

Êrr
B0

(t) =
1

B

B∑

b=1

1

nb0

∑

i∈Q0
b

{ Yi(t)− r∗b (t|Xi) }
2 WC( t, Ĝ,Xi ), (4.15)

where (Yi(t),Xi) are the survival status at time t and the predictor values, re-
spectively, of the individual i in the validation set Q0

b . r∗b (t|Xi) is the predicted
survival probability given the predictor Xi based on the Cox regression model fitted
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with the bootstrap sample Q∗
b . The weights WC ( t, Ĝ,Xi ) are based on the reverse

Kaplan-Meier function from the data set Q.

The 0.632 estimator

By following the definition in section 4.2.3, the 0.632 estimator is the linear com-
bination of the apparent error and bootstrap cross-validation with weight 0.632.
Here, the 0.632 estimator keeps the time dependent feature of the two component
estimators (equations (4.14) and (4.15)),

Êrr.632 (t) = (1− 0.632) err (t) + 0.632 Êrr
B0

(t). (4.16)

The 0.632+ estimator

By following the definition in section 4.2.4, the 0.632+ estimator is the linear com-
bination of the apparent error and bootstrap cross-validation with weight ŵ (see
equation (4.7)). Here, given the time dependent feature of the bootstrap cross-
validation (equation (4.15)), the combination involves the use of a time dependent
weight ŵ(t). The weight ŵ(t) is an estimate that depends on the relative overfitting
of the prediction rule at a specific time t.

ŵ(t) requires the adaptation of the no-information error rate γ̂ (see equation (4.5)) to
a time dependent estimator γ̂(t). The no-information error rate tests the prediction
rule on data where the survival status Yi is independent from the predictors Xi.
Hence,

γ̂(t) =
1

n2

n∑

i=1

n∑

j=1

{ Yi(t)− r (t|Xj) }
2 WC( t, Ĝ,Xi ).

Then, the relative overfitting rate as defined in equation (4.6) is

R̂(t) =
Êrr

B0
(t)− err (t)

γ̂(t)− err (t)
.

The estimate of the time dependent weight ŵ(t) is

ŵ(t) =
0.632

1− 0.368 R̂(t)
, ŵ(t) ∈ [0.632, 1], (4.17)

and the 0.632+ estimator is

Êrr.632+ (t) = (1− ŵ(t)) err (t) + ŵ(t) Êrr
B0

(t). (4.18)
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If γ̂(t) ≤ err (t) or err (t) < γ̂(t) ≤ Êrr
B0

(t), the relative overfit R̂(t) falls out of

the range [0,1]. To avoid these particular situations the estimators Êrr
B0

(t) and

R̂(t) are redefined,

Êrr
′

B0
(t) = min (Êrr

B0
(t), γ̂(t) ),

R̂
′

(t) =





Êrr
′

B0
(t)− err (t)

γ̂(t)− err (t)
if γ̂(t), Êrr

′

B0
(t) > err (t)

0 otherwise.

Then, R̂
′

(t) and Êrr
′

B0
(t) are plugged in equations (4.17) and (4.18), respectively,

to estimate Êrr.632+ (t).

Further details on this estimator are in section 4.2.4.

4.4 The 0.632 and 0.632+ estimators based on

Schoenfeld residuals

In this section we propose and describe our approach of estimating prediction errors
of prediction rules from survival data. We propose the use of the criterion of the
Schoenfeld residuals to estimate the prediction errors. This approach was motivated
by the study of Müller et al. (2008) whereby they showed the criterion of the Schoen-
feld residuals was the most appropriate for evaluation of goodness of fit of genetic
survival Cox models (see section 3.5.4). Here, we show the use of the Schoenfeld
residuals as measures of prediction errors to estimate the prediction performance of
a Cox regression model.

Some specific notations used to describe prediction errors in this section are:

D set of uncensored individuals in the available data Q
DV0 set of uncensored individuals in a validation set
D0

b set of uncensored individuals in the subset Q0
b

Rti set of individuals at risk at time ti in the available data Q
R∗

b,ti
set of individuals at risk at time ti in the bootstrap sample Q∗

b

β̂ vector of estimated parameters from the Cox model fitted with the avail-
able data Q

β̂∗
b vector of estimated parameters from the Cox model fitted with the boot-

strap sample Q∗
b .
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4.4.1 Schoenfeld residuals as measure of prediction errors

The basis of the computation of the Schoenfeld residuals (section 3.5.3) is the differ-
ence between the true value of a covariate and its expectation under the fitted Cox
regression model. Hence, the Schoenfeld residuals accomplishes the computational
form of prediction errors as defined in equation (4.2).

For this adaptation, we formulate the prediction errors by taking the definition
of sum of squared Schoenfeld residuals with multiple factors (SSRsch|β̂ in equa-

tion (3.43)). It is based on the prognostic index, has the adjustment for censoring
data, and it is also applicable for a single factor.

In this context, the error rate measure to be formulated with the Schoenfeld residuals
(Err) is not the same measure previously formulated with the Brier score (Err(t),
see section 4.3). Both approaches evaluate the prediction capability of the model
through definitions of prediction errors. However, the former evaluates the model
in terms of error at identifying the true category of the covariate(s), given the time
to event for an individual; and the latter evaluates the model in terms of error
at identifying the true survival status, given the covariates and some specific time
during the follow up period. In both cases, this identification by the model is on the
continuous scale.

Given the characteristics of the Schoenfeld residuals, the estimates of prediction
errors are obtained only from uncensored individuals, i.e. individuals whose events
were observed during the follow up period (see equation (3.43)).

The error rate Err is expressed as

Err = E
{
β̂ ′

(
X0 − E(X0|Rt0 , β̂)

)}2
,

where X0 = (X01, . . . , X0K) is the vector of K covariates of a random individual
drawn from the study population. t0 is the observed time to event of that individ-
ual. E(X0|Rt0 , β̂) = (E(X01|Rt0 , β̂), . . . , E(X0K |Rt0 , β̂)) is the vector of expected

values of the covariates as a function of the estimated regression coefficients β̂ of
the Cox model, given the set of individuals at risk Rt0 at time t0.

As seen in equation (4.2), an estimator Êrr can be computed by averaging the
prediction errors over individuals i in a validation set. In this case, given that the
Schoenfeld residuals are obtained only for uncensored individuals, Err is estimated
only with individuals i∈DV0 , the set of uncensored individuals in the validation set.

By following the formula of squared Schoenfeld residuals in equation (3.43), the
average can be rather computed as a weighted average of prediction errors over all
individuals i∈DV0. The weights WKM(ti) were introduced to correct for censoring,
and we keep it here. The weights are the length of the steps of the Kaplan-Meier
survival curve from the training sample (see page 37).
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The estimator Êrr is then

Êrr =

∑

i∈DV0

WKM (ti)
{
β̂ ′

(
Xi −E(Xi|Rti , β̂)

)}2

∑

i∈DV0

WKM(ti)
. (4.19)

Each element of the vector E(Xi|Rti , β̂) = (E(Xi1|Rti , β̂), . . . , E(XiK |Rti , β̂)) is
obtained as in equation (3.40).

For the case of having biallelic gene predictors, and depending on the modelled effect
assumed for the gene covariate (dominant, recessive or additive), the computation
of Err uses either the values of {0, 1} or {0, 1, 2} for Xi. Naturally, the expected
values of the covariate are continuous values.

4.4.2 Estimators of prediction errors based on the Schoen-

feld residuals

In the absence of a validation set, the techniques described in sections 4.2.1 to 4.2.4
can be used to get Êrr. We now give the corresponding formulae.

The apparent error estimator

Let D be the subset of uncensored individuals from the available data Q. The appar-
ent error is computed by considering Q as both the training sample and validation
set, then

err =

∑

i∈D

WKM(ti)
{
β̂ ′

(
Xi − E(Xi|Rti , β̂)

)}2

∑

i∈D

WKM (ti)
, (4.20)

where Xi is the vector of covariates for the ith individual in D. ti is the observed
time to event for that ith individual, i.e. event time for i ∈ Q | δi = 1. β̂ is the vector
of parameter estimates for the K covariates in the Cox regression model fitted with
the training sample Q.

E(Xi|Rti , β̂) gives a vector of expected values of the covariates, given the fitted
Cox model, at an event time ti. WKM(ti) is the length of the step at time ti of the
Kaplan-Meier survival curve derived from the training sample Q.

It can be noticed that this formulation of apparent error resembles the formulation
of sum of squares SSR sch|β̂ in equation (3.43), although in that case it was expressed
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as a weighted sum of the residuals, and here it is expressed as a weighted mean. As
it has been indicated, residuals are obtained to evaluate the goodness of fit of a
model to the data at hand. Since the formulation of apparent error uses the same
data at hand to fit and evaluate the model, the apparent error of the Schoenfeld
residuals is also a measure for goodness of fit of a model.

The Bootstrap cross-validation estimator

Let Q∗
b be a bootstrap sample of size n from the available data Q, and Q0

b the
respective validation set as defined on page 47, for b = 1, . . . , B. Let D0

b be the
subset of uncensored individuals of Q0

b , i.e. i ∈ Q0
b | δi = 1 .

The bootstrap cross-validation is computed by considering Q∗
b and Q0

b as the training
sample and validation set, respectively. Then,

Êrr
B0

=
1

B

B∑

b=1

∑

i∈D0
b

WKM(ti)
{
β̂∗

b
′
(
Xi −E(Xi|R

∗
b,ti

, β̂∗

b )
)}2

∑

i∈D0
b

WKM (ti)
, (4.21)

where Xi is the vector of covariate for the ith individual in D0
b . ti is the time to

event for that ith individual. β̂∗

b is the vector of K parameter estimates for the
covariates in the fitted Cox model with the training sample Q∗

b . R∗
b,ti

is the set of
individual at risk in the training sample at time to event ti.

E(Xi|R
∗
b,ti

, β̂∗

b ) gives a vector of expected values of the covariates, given the fitted
Cox model from the training sample Q∗

b , and given the individuals at risk R∗
b,ti

.

For each bootstrap sample b the weighted average of the Schoenfeld residuals is
computed with weights WKM (ti). These weights are obtained from the Kaplan-Meier
survival curve derived from the available data Q.

Since the validation set Q0
b is obtained by collecting the remaining individuals from

Q not included in the bootstrap sample Q∗
b , and considering that bootstrap samples

are drawn independently from each other, different validation sets will be obtained
for new bootstrap samples b. Therefore, different sets of times ti are obtained for
newly drawn bootstrap samples b. Thus, the weights WKM (ti) are also quantities
that vary with each new bootstrap sample.

Also, the Kaplan-Meier survival curve, used here to derive WKM(ti), is the same as in
the apparent error estimator (equation (4.20)). However, as said above, the observed
event times ti vary with different samples, and therefore, the weights are not the
same as in the apparent error estimator.
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The 0.632 estimator

The 0.632 estimator is the linear combination of the apparent error and bootstrap
cross-validation estimators from equations (4.20) and (4.21)

Êrr.632 = (1− 0.632) err + 0.632 Êrr
B0

. (4.22)

The details on the background of this estimator are described in section 4.2.3.

The 0.632+ estimator

The 0.632+ estimator is the linear combination of the apparent error and bootstrap
cross-validation (equations (4.20) and (4.21)) with weight ŵ that depend on the rate
of overfitting of the Cox regression model (see section 4.2.4).

ŵ also requires the computation of the no-information error rate γ̂ that tests the
prediction rule on data where the covariates Xi are independent from the event
times ti. The estimator γ̂ is obtained as

γ̂ =
1

nD

∑

i∈D

WKM(tj)

∑

j∈D

∑

i∈D

WKM(tj)
{
β̂ ′

(
Xi − E(Xi|Rtj , β̂)

)}2
,

where nD is the number of individuals in the subset D, i.e. the number of individuals
with observed event time in the available data Q (i ∈ Q | δi = 1).

Then, the rate of overfitting is

R̂ =
Êrr

B0
− err

γ̂ − err
.

The rate R̂ is then used in the computation of weights ŵ,

ŵ =
0.632

1− 0.368 R̂
, ŵ ∈ [0.632, 1],

and the 0.632+ estimator is,

Êrr.632+ = (1− ŵ) err + ŵ Êrr
B0

. (4.23)

Sometimes R̂ may fall out of the range [0,1], then some corrections as shown in
equations (4.9) and (4.10) should be applied to avoid these situations.

Further details and description of the 0.632+ estimator are in section 4.2.4.
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Table 4.1: Summary table of differences between criteria to estimate pre-
diction errors of Cox regression models

Characteristics
Criteria

Schoenfeld residuals Brier scorea

Main variable covariate survival status

Given variable time to event covariate

Individuals with observed events all available

Time dependent estimates no (see equation 4.19) yes (see equation 4.13)

a Approach adapted by Gerds and Schumacher (2007).

4.5 Schoenfeld residuals and Brier score as crite-

ria to estimate prediction errors

In section 4.3 we have presented the approach to estimate prediction errors via
the criterion of the Brier score adapted by Gerds and Schumacher (2007). In the
present section we want to highlight some differences with the approach that we
propose above in section 4.4, the estimate of prediction errors via the criterion of
the Schoenfeld residuals. Table 4.1 summarizes these differences.

First, in the approach with the Schoenfeld residuals, the main variable to measure
the prediction error rate of the model is the covariate, whereas in the approach with
the Brier score it is the survival status.

Second, in the approach with the Schoenfeld residuals, the predicted value is a
function of the time to event, whereas in the approach with the Brier score the
predicted value is a function of the covariate(s).

Third, the approach with the Schoenfeld residuals uses only uncensored individuals
of the validation set, i.e. individuals with observed time to event, while the approach
with the Brier score uses all individuals regardless of their censoring status. Hence,
the Schoenfeld residuals approach uses only part of the data used with the Brier
score. The former approach makes the calculations less heavy, especially when small
percentages of events are observed, since less data will be involved in the calculations.
Moreover, even if this approach uses less data, it uses all data involved with the main
variable of study, the time to event. We have mentioned in the paragraph above
that the approach with the Schoenfeld residuals evaluate prediction as a function of
the time to events.

Last, the approach with the Schoenfeld residuals summarizes the individual predic-
tion errors into a single estimator (Êrr), while the approach with the Brier score

gives estimators per time (Êrr(t)), which can also be later summarized into a sin-
gle estimator (see page 62). Computing estimators per time makes the Brier score



60 Prediction error estimators

approach heavy, since it has to be run many times, although the advantage is that
it allows constructing the course of estimated prediction errors over time.

Thus, using the criterion of the Brier score to estimate prediction errors seems to be
more informative because it allows examining the rate of errors over time, but it can
be costly in terms of time and complexity of the approach. Using the criterion of the
Schoenfeld residuals can be simpler because less data are used and the computation
is performed only once, but it does not provide a time course of errors. However,
this approach does use and compute errors over time, these are the times at observed
events, which are the most interesting variable in survival analysis.

4.6 Measure for the gain in prediction in survival

models: R2
Pred

In clinical studies it is of interest to find appropriate models for the development
of an outcome, e.g. disease or death, which could be affected by either a single or
multiple factors. When the model is intended to be used for predictions it should
be validated. A model for prediction is used for example to prevent the occurrence
of disease or to decide on the most appropriate treatment for an individual.

In the previous sections of this chapter, we have defined and formulated estimators
of prediction errors to evaluate models for prediction. In this section, we formulate
the R2 measure for the gain in prediction due to consideration of predictors in the
Cox regression model. We denote this measure as R2

Pred , where the subscript Pred

denotes prediction.

An estimate of gain in prediction due to predictors in the model can be measured
by comparing the relative difference of prediction error rate (Êrr) of the Cox model,
with respect to the null model (model without predictors). An estimate of gain in
prediction due to a particular subset of predictors in the model can be measured by
using the rate not predicted by the model (i.e. the complement gain in prediction)
with respect to that of a reference model (model without the particular subset of
predictors). In that case we compute a partial gain in prediction, partial R2

Pred .

The R2
Pred can also be used in practice to evaluate and compare candidate models

for prediction of survival outcomes.

We can obtain estimators of the R2
Pred measure by using the different estimators

of prediction errors described in the previous sections 4.3 and 4.4, for estimates
using the criterion of the Brier score and the Schoenfeld residuals, respectively. The
R2

Pred measure is expected to correct overestimation that results from R2 measures
of goodness of fit.

Regarding the predicted values of the outcomes or covariates under null models, we
remark that if we use the criterion of the Brier score, the Kaplan-Meier estimator
(equation (3.11)) can be used as a prediction rule to predict the survival probabilities.
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If we use the criterion of the Schoenfeld residuals, the equation (3.41) can be used
as prediction rule to predict the covariate values.

4.6.1 The R2
Pred

measure

The R2
Pred measure is defined as the relative difference of the prediction error rate

of a Cox model with predictors, with respect to the null model (model without
predictors). This measure gives the fraction of contribution of the predictors to the
improvement in prediction of the survival outcome. The R2

Pred measure is

R2
Pred = 1−

Err

Err null
,

where Err is the expected prediction error of a Cox model with the predictors, and
Errnull is the expected prediction error of the null model.

An estimate of R2
Pred can be obtained by using the estimates of prediction error,

Êrr,

R̂2
Pred = 1−

Êrr

Êrr
null

. (4.24)

As seen in the previous sections, Êrr uses an independent validation set to test
the performance of the Cox model to the prediction of the survival outcome (see

equations (4.13) and (4.19)). When there is no available data set to estimate Êrr,
they can alternatively be estimated by the techniques and estimators described in
sections 4.2.1 to 4.2.4. For Cox regression models the estimators are specifically
formulated in sections 4.3 and 4.4, for estimates using the criteria of the Brier score
and the Schoenfeld residuals, respectively. In the following sections we remark some
important issues on these estimators.

4.6.2 R̂2
Pred

based on apparent errors

The estimator of prediction based on estimates of the apparent error is,

R̂2
Pred,app = 1−

err

err null
,

where err and err null are the apparent error estimates of prediction of the predictor
model and the null model, respectively.

As described in section 4.2.1, the apparent error estimator err uses the same data
to estimate a prediction rule and to evaluate its performance for prediction, i.e. it
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uses the same data as both training sample and validation set. In the context of Cox
models, R̂2

Pred,app can be obtained either with the criterion of the Schoenfeld residuals
or with the Brier score, by using the respective apparent errors (equations (4.20)
or (4.14), respectively). The err also corresponds to the sum of squared residuals
used to estimate the R2 for the goodness of fit of a model. Hence, the R̂2

Pred,app

corresponds to the R2 estimate of the goodness of fit of a Cox regression model,
either evaluated with the Schoenfeld residuals (R̂2

sch, equation (3.43)) or with the
Brier score (R̂2

br, equation (3.37)).

4.6.3 R̂2
Pred based on 0.632 and 0.632+ estimators

It is known that measures based on the apparent error estimators underestimate the
expected error, measures based on the bootstrap cross-validationtechniques such as
the 0.632 and the 0.632+ estimators can be more appropriate.

The estimator of prediction based on estimates of the 0.632 estimator is,

R̂2
Pred,.632 = 1−

Êrr.632

Êrr
null

.632

,

where Êrr.632 and Êrr
null

.632 are the 0.632 estimators of prediction errors for a predictor
model and a reference model, respectively. The estimator of prediction based on
estimates of the 0.632+ estimator (R̂2

Pred,.632+ ) can be computed similarly.

The R2
Pred estimators, R̂2

Pred,.632 and R̂2
Pred,.632+ , should be the appropriate estimators

of the gain in prediction due to the predictors of interest in the Cox model. These
estimators are obtained using techniques that account for evaluation of prediction
rules on independent data, which should be more appropriate than techniques eval-
uating prediction on the same data used for fitting the model. In the next chapter,
we evaluate through simulation studies the performance of these estimators.

Specifications on R̂2
Pred with the criterion of the Brier score

As indicated in section 4.3, the prediction error estimator with the criterion of
the Brier score is a time dependent estimator. The respective R̂2

Pred can also be
formulated as a time dependent estimator, for example, with the 0.632 estimator we
have

R̂2
Pred,.632 (t) = 1−

Êrr.632(t)

Êrr
null

.632 (t)
. (4.25)

Otherwise, it can be computed as an overall R̂2
Pred,.632 estimator, by using the cu-

mulative prediction errors to the end time τ . For the interest of our study we will
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estimate prediction errors at times of observed events. It is of our own interest to
compare and treat both criteria, the Schoenfeld residuals and the Brier score, as
similar as possible, where the only difference between them is the main variable
taken to measure the prediction errors. Then, by following the expression given in
equation (3.38),

Êrr.632(τ) =
∑

t∈tD

Êrr.632 (t), (4.26)

where the weights WKM(ti) are the length of the step of the marginal Kaplan-Meier
survival curve at times ti.

Similarly, we can compute cum Êrr
null

.632 (τ). Then, the overall estimator R̂2
Pred with

the Brier score is

R̂2
Pred,.632 (τ) = 1−

Êrr.632 (τ)

Êrr
null

.632 (τ)
.

4.6.4 Partial gain in prediction, the partial R̂2
Pred

The partial gain in prediction is the rate of prediction attributed to a particular
subset of predictors in the model, with respect to a reference model (model excluding
the particular subset of predictors). It can be measured by the partial R̂2

Pred . It uses
the rate unpredicted by the model with the whole set of predictors (1− R̂2

Pred ), with
respect to that of the reference model (1− R̂2

Pred
ref ).

The partial gain in prediction can be estimated as

partial R̂2
Pred = 1−

1− R̂2
Pred

1− R̂2
Pred

ref
,

where R̂2
Pred and R̂2

Pred
ref are the estimates of gain in prediction with the predic-

tor model (containing the whole set of covariates) and with the reference model,
respectively. The partial R̂2

Pred can be estimated using R̂2
Pred with techniques pre-

viously described. Hence we can estimate partial R̂2
Pred,app , partial R̂2

Pred,.632 or

partial R̂2
Pred,.632+ .

Table 4.2 gives an overview of the estimators of prediction errors as well as the
different approaches and notations presented in this chapter.
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Table 4.2: Estimators of prediction error rates (Err) and of the gain in pre-
diction (R2

Pred ) for survival outcomes

Estimator of Err
Criteria to define Err

R2
Pred

b

Schoenfeld

residuals

Brier scorea

with a validation setc Êrr Êrr(t) R̂2
Pred

without a validation setd

apparent error err err(t) R̂2
Pred,app

bootstrap cross-validation Êrr
B0

Êrr
B0

(t) R̂2
Pred,B0

0.632 estimator Êrr.632 Êrr.632(t) R̂2
Pred,.632

0.632+ estimator Êrr.632+ Êrr.632+ (t) R̂2
Pred,.632+

a Approach adapted by Gerds and Schumacher (2007).
b Notation for time independent R2

Pred . Note that, although we are using a unique
notation for R2

Pred , different estimates will result depending on the criterion used to
define Err. Time dependent R2

Pred can be obtained with the criterion of the Brier
score (equation (4.25)). We can also estimate a partial R2

Pred (section 4.6.4), which is
not included in this Table.

c This provides original estimates of Err and R2

Pred , see equations (4.19) and (4.13).
d Techniques when no validation set is available, see sections 4.4 and 4.3.



Chapter 5

Simulation Study

In this chapter we want to evaluate the appropriateness of the estimators of R2
Pred

to measure the gain in prediction in survival models.

We have seen in section 4.6 that the estimator R̂2
Pred requires the estimates of predic-

tion error rates (Êrr) of two models. Under the unavailability of a true validation
set, i.e. a data set independent from the data set used for model fitting, the esti-
mates of Êrr cannot be directly computed. They can be obtained by alternative
techniques that solve the lack of a true validation set (see section 4.2 for a general
view of the techniques, and sections 4.4 and 4.3 for specific formulations on survival
data). Hence, we evaluate how well the alternative estimates of R̂2

Pred that result
from the techniques to estimate prediction error rates, compare to the original esti-
mate of R̂2

Pred that uses a true validation set to estimate the prediction error rates
of the models (see section 4.6).

We specially evaluate the techniques of the apparent error, the 0.632, and the 0.632+

estimators. We did not include the bootstrap cross-validation estimator because the
0.632 estimator is the technique solving the positive bias of that estimator, as well as
the negative bias of the apparent error estimator. However, we included the apparent
error estimator because it is the estimator commonly used as a first alternative for
evaluation of model validation, and it is our goal to show the benefit of using a more
appropriate estimator to validate models for prediction purposes.

Our simulation study evaluates the gain in prediction when we consider biallelic
SNPs in Cox regression models for survival outcomes. We simulated survival data
with single SNP factors under various frequencies of the minor allele and various
effect sizes of the SNP factor on the occurrence of event. Also, we evaluated the
R̂2

Pred under the assumption that the risk allele follows a true additive, dominant or
recessive genetic model.

In addition, since in real situations the true mode of inheritance of a disease is
unknown, i.e. the disease can be inherited as an additive, dominant, or recessive
mode, we evaluated whether an estimator R̂2

Pred would be useful to identify the true
mode of inheritance.

65
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In all the cases, the estimators R̂2
Pred have been computed by estimating prediction

errors under both criteria: the Schoenfeld residuals and the Brier score (see sec-
tions (4.4) and (4.3)). The former method is the new approach we introduced in this
thesis in the context of evaluating prediction for Cox models. The latter method has
recently been used in applications on survival data (Schumacher et al. 2007, Binder
and Schumacher 2008, Porzelius et al. 2010). Here we test both criteria particularly
for applications on survival data with SNP factors. Some similarities and differences
in the simulation results from both criteria are also highlighted.

5.1 Simulation settings

5.1.1 The Data

We simulated data sets in order to approach realistic scenarios of cohort studies for
association of a biallelic SNP, the predictor, with a survival outcome. We considered
biallelic SNPs with additive, dominant or recessive genetic model of the risk allele.

Data sets of n= 1, 000 unrelated individuals were simulated as for a medium size
cohort study. We generated the SNPs with different minor allele frequencies (MAF ):
10%, 25%, 35%, or 50%. We did not tryMAF smaller than 10% to avoid convergence
problems during the fitting of the Cox regression model. Even that, we experienced
convergence problems very often when the Cox model included a SNP with recessive
genetic model, then we simulated the recessive models with a minimumMAF of 15%.

We also simulated different effect sizes of the risk allele. In genetic association
studies, the effect sizes of the risk alleles do not tend to be high. Then, we simulated
risk alleles with moderate hazard ratios (HR) of 1.25, 1.5 or 2.0 with respect to the
wildtype allele.

The data sets were simulated with a total of 60% of censoring. This percentage
was meant to include the three forms of censoring occurring in a cohort study: the
losses to follow-up, the withdrawals from the study, and discontinued follow-up due
to the end of the study. It was assumed that censoring occurred completely at
random, i.e. censoring was independent of the predictor. The study of Müller et al.
(2008) showed that the percentage of censoring did not influence much on changes
in the estimates of R2, unless they are very high, e.g. >80%. Thus, here we did not
investigate effects of variation in censoring for small to moderate censoring.

To simulate each data set, we considered the minor allele as the risk allele. Then,
assuming the set of parameters listed above for MAF, HR, and censoring, we pro-
ceeded as follows:

We generated a genotype vector X of size n=1, 000, where X take on values {0, 1,
2} for the {wildtype, heterozygous, homozygous} genotype, respectively. The values
were assigned randomly to n unrelated individuals with genotype probabilities pj , for
j = 0, 1, 2. The probabilities pj were computed as expected under Hardy-Weinberg
equilibrium (see section 2.1.4):
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p0 = (1−MAF )2

p1 = 2×(1−MAF )×MAF

p2 = MAF 2 . (5.1)

Next, the vector of time to event T was generated using the derivation of Bender
et al. (2005), which is given in equation (5.2). In the next lines we show the reason-
ing for this derivation. Let F (T ) be the cumulative distribution function such that
F (T ) = 1− S(T ). Let U1 be a random variable which is uniformly distributed over
the interval [0,1], U1 ∼ Uniform[0,1]. By statistical theory (Mood et al. 1974) it holds
that F−1(U1) = T , and U1 = F (T ). In addition, it holds that if U1 ∼ Uniform[0,1],
then U = 1 − U1 has the same distribution. Then, U = 1 − F (T ) = S(T ) ∼ Uni-
form[0,1].

Thus, by taking the conditional survival function under the Cox regression model
(equation (3.10)) it follows that,

U = S(T |X) = exp
(
− Λ0 (T ) exp (β̂

′
X)

)
∼ Uniform[0, 1] ,

Deriving the cumulative hazard we have,

Λ0 (T ) = −
log(U)

exp (β̂
′
X)

.

if λ0(t) > 0, ∀ t, then

T = Λ−1
0

(
−

log(U)

exp (β̂
′
X)

)
. (5.2)

According to this equation, the simulation of survival time T requires the knowledge
of the cumulative baseline hazard function Λ0. For simplicity we assumed T was
exponentially distributed because it provides a constant baseline hazard function λ0

(Bender et al. 2005), and the cumulative baseline hazard function is Λ0(T )=λ0 T .
Hence, T = Λ−1

0 (λ0 T ), and from equation (5.2) we have

λ0 T = −
log(U)

exp (β̂
′
X)

,

and

T = −
log(U)

λ0 exp (β̂
′
X)

, (5.3)

where the denominator λ0 exp (β̂
′
X) is also a constant hazard that depends only
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on the genotypes, i.e. λ0 exp (β̂
′
X) = λ(X), ∀t.

Given that in our simulations we considered only a single gene predictor, i.e. K = 1,
we generated T such that

T = −
log(U)

λ0 HRXm
, (5.4)

where U was a random draw from the uniform distribution in the interval [0,1], HR
was the specific parameter of the effect size assumed for the association of the risk
allele with the event, and Xm was a recoded value of X according to the genetic
model we assumed for the risk allele, i.e. the mode of inheritance of the event. We
also made λ0 vary according to the assumed genetic model.

Hence, for an additive genetic model: Xm = X , and λ0 = 0.12;

for a dominant genetic model: Xm =

{
0 if X=0
1 if X=1,2

, and λ0 = 0.30;

for a recessive genetic model: Xm =

{
0 if X=0,1
1 if X=2

, and λ0 = 0.30.

The baseline hazards of λ0 = 0.12 and λ0 = 0.30 were chosen from the interval
[0,1], with the only condition of not exceeding the limit of 1 for any of the hazards
λ(t,X), which should fall in the interval [0,1] too. For instance, considering the
set of simulated parameters HR = {1.25, 1.5, 2.0} for the dominant and recessive
models, the maximum simulated hazard was of λ(t,X) = 0.30×2.0=0.60, whereas
for the additive model it was of λ(t,X) = 0.12 × 2.02 = 0.48. However, the values
of this parameter seem not to be influential in the results (data not shown).

Drawing t repeatedly for each Xm of the n individuals provided the time to event
vector T .

Next, the time to censoring vector C was generated as a totally random variable
from a uniform distribution on the interval [0, t.censor]. The upper limit t.censor was
assigned as to produce 60% of censoring. This is roughly the amount of censoring we
observed in our study data. The upper limit t.censor can be viewed as the end time
of the cohort study. The time t.censor was chosen through some pilot simulations, in
which we assigned to t.censor various values equal to various quantiles of the vector
T , and then generated the respective vector C. Then, we derived the indicator of
censoring δ = I(T ≤ C). We selected the value of t.censor that produced roughly
60% of censoring, i.e. 60% of 0’s in the vector δ. The quantile for the 66.5th
percentile of vector T (q 0.665 of T ) approximated the required 60% of censoring.

Then, we generated the time to censoring vector C from Uniform [0, t.censor], with
t.censor = (q 0.665 of T ). Finally, the observed survival time vector was obtained by
T ∗ = min(T ,C), and the censoring status vector by δ = I(T ≤ C).

The data sets were generated with 100 replications.
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5.1.2 Validation set

For each simulated data set of size n=1, 000, a second data set of nv=10, 000 in-
dividuals was also generated to serve as a validation set. Hence, the validation set
was independent from the first simulated data set, and it was large enough to ap-
proximate the true underlying model for the whole population. The validation set
was used to reproduce the estimated prediction errors under the availability of an
independent data set to test the performance of the Cox regression models for pre-
diction of the survival outcome. Subsequently, the gain in prediction (R̂2

Pred ) derived
from these prediction errors was estimated and served as the original estimate to
compare and evaluate the performance of the alternative estimators with techniques
under evaluation in this simulation study. In this case, given the large size of the
validation set, the original estimator R̂2

Pred can also be viewed as an approximation
to the true estimate R2

Pred .

5.2 Specification of the methods

prediction error estimators

The R̂2
Pred estimates (equation (4.24)) were obtained from the simulated data sets

based on three estimators of prediction error rates: the apparent error, the 0.632
and the 0.632+. These estimators have been described in section 4.3 for estimates
with the criterion of the Brier score (Gerds and Schumacher 2007), and in section 4.4
for estimates with the Schoenfeld residuals, which is our proposal for application in
genetic association studies.

In the case of the criterion of the Brier score, the overall Kaplan-Meier estimator of
survival (equation (3.11)) was used to predict survival probabilities under the null
model. In the case of the criterion of the Schoenfeld residuals, the expected value
of a covariate under a null model was estimated as in equation (3.41).

The time dependent prediction errors produced with the criterion of the Brier
score (equation (4.13)) were computed at times t when events were observed, i.e.
t = ti |i∈D. These times t were chosen such that we evaluated prediction errors at
the same time points as done with the Schoenfeld residuals.

On the other hand, since we simulated the censoring vector C as a totally ran-
dom variable, the reverse Kaplan-Meier estimator Ĝ of survival to censoring was
an estimator independent of the predictors Xi. Therefore, the weighting scheme
WC( t, Ĝ,Xi ) that adjusts for the presence of censoring in the estimates of predic-
tion errors (equation (4.13)), was also independent of the predictors. Then, the
weights were computed with an overall reverse Kaplan-Meier estimator Ĝ(t),

WC ( t, Ĝ ) =
I(ti ≤ t) δi

Ĝ(ti−)
+

I(ti > t)

Ĝ(t)
. (5.5)
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Bootstrap samples

The estimates of prediction error rates with the bootstrap cross-validation estimator
Êrr

B0
(equatios (4.15) and (4.21)) were computed with B =50 and 200 bootstrap

samples for the criteria of the Brier score and Schoenfeld residuals, respectively.
We also obtained some previous estimates with the Brier score on B=100 bootstrap
samples (data not shown), and no noticeable differences were observed in the results.
In addition, it has been shown that there is not much difference in estimating the
errors with small or large number of bootstrap samples (Efron and Tibshirani 1997).
Although this has not been specifically shown for survival data, B=100 is being used
(Schumacher et al. 2007, Binder and Schumacher 2008).

Hence, given the intensive computation with the Brier score, we decided to run the
complete set of simulations of this criterion on B = 50 bootstrap samples. On the
other hand, we decided to use larger number of bootstrap samples with the criterion
of the Schoenfeld residuals (B = 200) because it is less computationally intensive
and it is the first time we are testing this techniques for evaluation of prediction
errors in Cox models.

Mean and standard deviation of R̂2
Pred

To report the results of R̂2
Pred , we took the mean R̂2

Pred over the 100 replications
of each simulated scenario. Likewise, the respective standard deviations were also
estimated based on the 100 replications.

Identification of the correct mode of inheritance

To judge how good the different estimators can identify the correct genetic model
for the risk allele, we recoded the generated genotype vector X three times such
that each mode of inheritance (additive, dominant, and recessive) was assumed for
the predictor. That means, in this evaluation, we ignored the true simulated mode
of inheritance and we assumed it was unknown. Then, for each data set we recoded
the genotype vector X as:

i) a variable for an additive model of the risk allele: Xa = X ,

ii) a variable for a dominant model of the risk allele: Xd =

{
0 if X=0
1 if X=1,2 ,

iii) a variable for a recessive model of the risk allele: Xr =

{
0 if X=0,1
1 if X=2 .

Hence, three separated Cox regression models were fitted under the assumption
of an additive, a dominant, or a recessive mode, i.e. we fitted Cox models with
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the genetic variable Xa, Xd, or Xr, respectively. Then, we selected the mode of
inheritance that yield the highest R̂2

Pred from the three Cox models. Further, we
compared and obtained the percentage of selected modes over the 100 replications
that were identical to the true simulated mode of inheritance. We used this frequency
to judge the capability of an estimator to identify the true mode of inheritance.

All the procedures were implemented using R software v.2.12.0 (R Development Core
Team 2008), package survival (Therneau and Lumley 2008) for fitting Cox regression
models, and package pec (Gerds 2009) to estimate prediction errors based on the
Brier score.

5.3 Results

5.3.1 Gain in prediction with the original estimator R̂2
Pred

Figures 5.1 and 5.2 show the mean R̂2
Pred values obtained by using the validation sets

to estimate prediction errors with the criteria of the Schoenfeld residuals and Brier
score, respectively. The pattern of the R̂2

Pred values tended to increase with higher
MAF and higher HR in the additive and recessive genetic models. However, in the
dominant genetic model, the R̂2

Pred increased with higher HR, and with MAF up
to 35% with the criterion of the Schoenfeld residuals (Figure 5.1, dominant model),
and with MAF up to 25% with the Brier score (Figure 5.2, dominant model).

The latter pattern was also observed in the study of Müller et al. (2008), the authors
explained that there is a relation between the R̂2 values and the variances of the
genetic covariates. In our results we also observed that relation now for prediction,
the higher the variance of the predictor the higher the gain in prediction R̂2

Pred . We
show this relation in the next lines.

Let p = (p0, p1, p2)
′ be the vector of genotype frequencies as a function of the

MAF given by HWE (see expression (5.1)), and let c be the vector of genotype
codes according to the specific genetic model, i.e. c = (0, 1, 2)′, c = (0, 1, 1)′, or
c = (0, 0, 1)′, for the additive, dominant, or recessive genetic model, respectively.

The mean of the predictor can be expressed as

E(X) =
2∑

j=0

cj pj

= c′ p . (5.6)

Hence, the mean of the predictor is:
p1+2 p2=2MAF , p1 + p2=2MAF−MAF 2, and p2=MAF 2, for the additive,
dominant, and recessive genetic model, respectively.
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Figure 5.1: Criterion of the Schoenfeld residuals. Mean gain in prediction (R̂2
Pred )

using a validation set, for the additive, dominant and recessive genetic models; and
for different minor allele frequencies (MAF) and hazard ratios (HR)
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Figure 5.2: Criterion of the Brier score. Mean gain in prediction (R̂2
Pred ) using

a validation set, for the additive, dominant and recessive genetic models; and for
different minor allele frequencies (MAF) and hazard ratios (HR)
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Table 5.1: Frequency, mean, and variance (%) of the genotype predictor under
different minor allele frequencies (MAFs), and for three genetic models

MAF
genotype frequencya mean, variance of the genotypeb

p0 p1 p2 additive dominant recessive

10c 81.00 18.00 1.00 20, 18.00 19.00, 15.39 -

15c 72.25 25.50 2.25 - - 2.25, 2.20

25 56.25 37.50 6.25 50, 37.50 43.75, 24.61 6.25, 5.86

35 42.25 45.50 12.25 70, 45.50 57.75, 24.40 12.25, 10.75

50 25.00 50.00 25.00 100, 50.00 75.00, 18.75 25.00, 18.75

a genotype frequencies under Hardy-Weinburg equilibrium, see expression (5.1).
b mean and variance of the genotype, according to the assumed genetic model for the
risk allele: additive, dominant, and recessive; see expressions (5.6), and (5.7).

c a minimum MAF of 10% was simulated for additive and dominant models, whereas
a minimum MAF of 15% was simulated for recessive models.

The variance of the predictor can be expressed as

V ar(X) =
2∑

j=0

(
cj −E(X)

)2
pj

=
(
c− E(X)

)2 ′ p . (5.7)

Hence, the variance of the predictor is:
p1, (1− p0) p0, and p2 (1− p2), for the additive, dominant, and recessive genetic
model, respectively, where p0, p1, and p2 are the genotype frequencies depending on
MAF (see expression (5.1)).

Table 5.1 shows the theoretical frequencies and variances of the predictor under the
simulated MAFs and under the assumed genetic models in this study. The variance
of the predictor increased with higher MAF and the highest variance was obtained
at MAF=50% in the additive and recessive models. In the dominant model the
variance of the predictor increased until MAF=25%, this variance was only slightly
higher than the variance at 35%. A more detailed overview showed the highest
variance at MAF ≈ 29% (data not shown). The pattern of the R̂2

Pred values were
in agreement with these patterns of the variance of the predictor. In the case of the
dominant model, the highest R̂2

Pred value was obtained at MAF=35% and 25% with
the approach of the Schoenfeld residuals and Brier score, respectively. The latter
were in agreement with the theoretical highest variance at MAF=29%.

On the other hand, the R̂2
Pred values decreased depending on the genetic model. The

R̂2
Pred values from the recessive model were lower than from the dominant model,

which in turn were lower than from the additive model. These results are also related
to the variance of the SNP predictor. As seen in Table 5.1, under the same MAF,
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the predictor had higher variance if it is of an additive genetic model, followed by a
dominant, and then by a recessive genetic model. At MAF=50%, the dominant and
recessive models showed the same variance, which was also in agreement with the
pattern observed in our results for the R̂2

Pred values (Figures 5.1 and 5.2). The latter
is natural since the genotype distribution in both genetic models is 75% for one
genotype group and 25% for the second group. Additionally, the gain in prediction
R̂2

Pred also increased with higher effect sizes HR of the predictor.

The main difference between the R̂2
Pred estimates obtained with the two approaches,

the Schoenfeld residuals and Brier score, was that, with higher MAF and higher
HR, the R̂2

Pred estimates from the Schoenfeld residuals increased faster than from
the Brier score. That makes the R̂2

Pred estimates from the Schoenfeld residuals to
appear higher than from the Brier score and be more noticeable at higher HR and
MAF.

The maximum gains of prediction (expressed in percentages, R̂2
Pred × 100) with the

criterion of the Schoenfeld residuals were 18.4%, 11.3% and 6.3%, respectively, from
an additive, dominant and recessive genetic model; while the maximum gain with
the criterion of the Brier score were 6.5%, 3.5%, and 3.0%, respectively.

Thus, the gain in prediction due to the genetic predictor was more noticeable when
they were estimated with the Schoenfeld residuals. We have also seen that both
criteria produced the same information pattern of R̂2

Pred for varying HR and MAF
of the SNPs. Then, by considering that in genetic association studies the effect sizes
of genes are usually small or moderate, the use of the Schoenfeld residuals can be
more advantageous to evaluate prediction of the Cox model. The gain in prediction
with the approach of the Schoenfeld residuals will be differentiated better than with
the approach of the Brier score. However, the latter does not disqualify the Brier
score as a useful alternative for evaluation of prediction.

The criterion of the Schoenfeld residuals evaluates error in prediction of the covariate
values of a failing individual. This can be an advantage if we wish to build a predictor
to classify patients according to their risk of failure. The criterion of the Schoenfeld
residuals focuses the study on this predictor and determines how well the data
support it as a predictor of failures in the data.

5.3.2 Gain in prediction with alternative R̂2
Pred estimators

We evaluated how well the gain in prediction could be estimated by the estimators
obtained with techniques when no validation set is available. These techniques are
the apparent error (R̂2

Pred,app), the 0.632 (R̂2
Pred,.632 ), and the 0.632+ (R̂2

Pred,.632+ )
estimators.

We compared the mean gain in prediction from each estimator with the mean gain
in prediction from the original estimator (R̂2

Pred ), whose results were discussed in the
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previous section 5.3.1. The results of the comparisons are presented for the three
simulated genetic models: additive, dominant, and recessive; and for both criteria:
the Schoenfeld residuals and the Brier score.

Estimators with the criterion of the Schoenfeld residuals

With the criterion of the Schoenfeld residuals, all the estimators (R̂2
Pred,app , R̂

2
Pred,.632 ,

and R̂2
Pred,.632+ ) approximated well the original estimator R̂2

Pred . However, the R̂
2
Pred,.632

seemed to be the best, this holds for the additive, dominant, and recessive genetic
models (Figures 5.3, 5.4, and 5.5).

The R̂2
Pred,app estimator tended to overestimate R̂2

Pred for all effect sizes. This is
consistent with the theory that the capability of a model for prediction is overesti-
mated when it is evaluated on the same data used for model fitting (Schemper and
Stare 1996).

The R̂2
Pred,.632+ estimator also overestimated the R̂2

Predestimator. In addition, this es-

timator behaved similarly to the R̂2
Pred,app estimator. This can be explained because

the no-information error rate (γ̂) from the predictor model was mostly smaller than
the bootstrap cross-validation error and approximated the apparent error estimates,
i.e. err < γ̂ ≤ Êrr

B0
and γ̂ ≈ err. Hence, we had to apply the corrections as shown

in equations (4.9) and (4.10). That led to estimates of Êrr.632+ = γ̂ ≈ err, which
in turn led to estimates of R̂2

Pred,.632+≈ R̂2
Pred,app . As deduced from our result of

the no-information error rate, the γ̂ estimator used data that still kept the existing
relation between predictors and time to events in the data. Even if these are results
with a single predictor, we assume that it will not be better in the case of multi-
ple predictors. Thus, a different concept of estimator of no-information error rate
might be needed for this criterion. However, an alternative estimator may not be
better than the 0.632 estimator, which performed quite well in the context of our
simulations.

The original purpose of the 0.632+ estimator was to account for overfitting of the
model and, therefore, to correct the possible overoptimism of the 0.632 estimator (see
section 4.2.4). In that sense, under our simulated scenarios with only one predictor,
we expected only small overfitting, and the 0.632+ estimates should approximate the
0.632 estimates, i.e. R̂2

Pred,.632+≈ R̂2
Pred,.632 . However, our results did not support

this approximation. Thus, even if the 0.632+ estimator gave an acceptable mean
estimate R̂2

Pred,.632+ , it behave different as expected, and was not better than the
0.632 estimator.

Therefore, the estimators of R̂2
Pred obtained from the criterion of the Schoenfeld

residuals worked generally well in the context and scenarios considered in our sim-
ulation settings. However, the 0.632 estimator showed to be the best because it
gave better approximations to the original estimates R̂2

Pred than the 0.632+ and the
apparent error estimators.
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Figure 5.3: Criterion of the Schoenfeld residuals. Comparison of mean estimates
of gain in prediction (R̂2

Pred ) using a validation set and estimators of prediction errors.
The 0.632 (R̂2

Pred,.632 ), the 0.632+ (R̂2
Pred,.632+ ), and the apparent error (R̂2

Pred,app)
estimators. Estimates of gain in prediction are plotted for different minor allele
frequencies (MAF) and hazard ratios (HR)
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Dominant model
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Figure 5.4: Criterion of the Schoenfeld residuals. Comparison of mean estimates
of gain in prediction (R̂2

Pred ) using a validation set and estimators of prediction errors.
The 0.632 (R̂2

Pred,.632 ), the 0.632+ (R̂2
Pred,.632+ ), and the apparent error (R̂2

Pred,app)
estimators. Estimates of gain in prediction are plotted for different minor allele
frequencies (MAF) and hazard ratios (HR)
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Recessive model
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Figure 5.5: Criterion of the Schoenfeld residuals. Comparison of mean estimates
of gain in prediction (R̂2

Pred ) using a validation set and estimators of prediction errors.
The 0.632 (R̂2

Pred,.632 ), the 0.632+ (R̂2
Pred,.632+ ), and the apparent error (R̂2

Pred,app)
estimators. Estimates of gain in prediction are plotted for different minor allele
frequencies (MAF) and hazard ratios (HR)
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Estimators with the criterion of the Brier score

With the criterion of the Brier score, all the estimators (R̂2
Pred,app , R̂

2
Pred,.632 , and

R̂2
Pred,.632+ ) approximated well the original estimator R̂2

Pred . The differences between
them were minor. This holds for the additive, dominant, and recessive genetic mod-
els (Figures 5.6, 5.7, and 5.8).

Our findings are in line with the findings of Gerds and Schumacher (2007) from
an empirical study to estimate prediction errors with the Brier score. They found
that the apparent error estimates were almost identical to bootstrap-based esti-
mates (bootstrap cross-validation and 0.632+ estimates), and they concluded that
the apparent error could reproduce well the true prediction errors, in that case they
assumed the bootstrap-based estimates were a reference of true prediction errors.
Although they focused their study on the estimators of prediction errors, and not
on the gain in prediction, their conclusion agrees with ours, since the estimators for
the gain in prediction, that we studied, are derived from the estimators of prediction
errors. Indeed, we found that the estimators R̂2

Pred,app , R̂
2
Pred,.632 , and R̂2

Pred,.632+ are
all numerically similar.

However, by comparing these estimators to the original R̂2
Pred estimator, a very

close inspection led us to realize that the R̂2
Pred,.632 estimator was more exact than

the others. The R̂2
Pred,app estimator tended to slightly overestimate R̂2

Pred , while

the R̂2
Pred,.632+ estimator tended to slightly underestimate R̂2

Pred . Hence, since

R̂2
Pred,.632+< R̂2

Pred,.632 , the 0.632+ estimator accomplished the purpose of correcting
the possible overoptimism of the 0.632 estimator. But, in our study we considered
only one predictor, then no obvious overoptimism was expected, and indeed the
R̂2

Pred,.632+ estimates were only slightly smaller than the R̂2
Pred,.632 estimates.

Therefore, the estimators of R̂2
Pred obtained from the criterion of the Brier score

worked well under our simulated scenarios. Even if only minor differences were
observed between the estimators, the 0.632 estimator was particularly the best ap-
proximation to the original estimator R̂2

Pred .

Test for the difference of the mean R̂2
Pred between estimators

After visual inspection of boxplots across the 100 repetitions, we found that the
R̂2

Pred from the different estimators generally followed a normal distribution. This
held for estimates from the original and the alternative estimators, and for both
criteria of estimation.

We performed Z-tests with a significance level of 0.05 for the difference in the mean
gain in prediction among the different estimators within each criterion. The results
confirmed our findings described above. We found no evidence of significant differ-
ences between the mean R̂2

Pred and R̂2
Pred,.632 in most of the scenarios. Moreover, we
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Figure 5.6: Criterion of the Brier score. Comparison of mean estimates of gain in
prediction (R̂2

Pred ) using a validation set and estimators of prediction errors. The
0.632 (R̂2

Pred,.632 ), the 0.632+ (R̂2
Pred,.632+ ), and the apparent error (R̂2

Pred,app) estima-
tors. Estimates of gain in prediction are plotted for different minor allele frequencies
(MAF) and hazard ratios (HR)
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Dominant model
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Figure 5.7: Criterion of the Brier score. Comparison of mean estimates of gain in
prediction (R̂2

Pred ) using a validation set and estimators of prediction errors. The
0.632 (R̂2

Pred,.632 ), the 0.632+ (R̂2
Pred,.632+ ), and the apparent error (R̂2

Pred,app) estima-
tors. Estimates of gain in prediction are plotted for different minor allele frequencies
(MAF) and hazard ratios (HR)
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Figure 5.8: Criterion of the Brier score. Comparison of mean estimates of gain in
prediction (R̂2

Pred ) using a validation set and estimators of prediction errors. The
0.632 (R̂2

Pred,.632 ), the 0.632+ (R̂2
Pred,.632+ ), and the apparent error (R̂2

Pred,app) estima-
tors. Estimates of gain in prediction are plotted for different minor allele frequencies
(MAF) and hazard ratios (HR)
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found evidence of significant differences between the mean R̂2
Pred estimator and the

R̂2
Pred,app and the R̂2

Pred,.632+ estimators in various of the scenarios.

Furthermore, there was also evidence of significant differences in the mean gain of
prediction between pairs of estimators: R̂2

Pred,.632 , R̂
2
Pred,.632+ , and R̂2

Pred,app , in various
of the scenarios. An exception to the latter was, no evidence of significance in the
means between the R̂2

Pred,app and the R̂2
Pred,.632+ estimators with the criterion of the

Schoenfeld residuals. This also confirms our description of findings with estimators
with Schoenfeld residuals described above.

Standard errors of the estimators

Regarding the standard errors, they generally increased slightly with higher HR and
higher MAF.

The standard error of estimators from the Schoenfeld residuals were higher than from
the Brier score. The difference can be explained by the fewer observations used in
the estimates with the criterion of the Schoenfeld residuals. Usually, computations
of an estimator using less data make it more variable compared to computations
with more data. But also, higher estimate values produce higher standard errors.
Hence, since the estimators with the Schoenfeld residuals produced higher estimates
it tended to produce higher standard errors as well.

Among the estimators with the Schoenfeld residuals, the standard errors for the
R̂2

Pred,.632 and for the R̂2
Pred,.632+ estimators were similar, while for R̂2

Pred,app it was

always slightly higher. The latter can be explained since the R̂2
Pred,app is estimated

with a specific sample at each replication, while the R̂2
Pred,.632 and R̂2

Pred,.632+ are
estimated with bootstrap techniques whose mean estimates make these estimations
be more representative for any data set. The highest standard error (expressed
in percentages, for example, using R̂2

Pred,.632×100) was ≈ 5% for the additive and
dominant models, and ≈ 3% for the recessive model.

Among the estimators with the Brier score, the standard errors for the three es-
timators (R̂2

Pred,.632 , R̂
2
Pred,.632+ , and R̂2

Pred,app) were similar. Also, there were not
much differences in standard errors between the three genetic models. The highest
standard errors were ≈ 2% for all the genetic models.

For small MAFs and very small HRs, some of the individual R̂2
Pred estimates among

the 100 replications were negative. For example, for MAF = 0.10 and HR = 1.25,
27%, 66%, and 8% gave negative R̂2

Pred values with the Brier score, while they were
36%, 8%, and 16% for the Schoenfeld residuals. Hence, the Schoenfeld residuals
performed slightly better than the Brier score. The negative values occurred when
the predictor model did not improve the prediction of the null model, but it rather
performed worse than the null model, i.e. the prediction error of the predictor model
was higher than the prediction error of the null model. This occasional behaviour
was also observed in the work by Müller et al. (2008). In theory the R̂2

Pred should fall
in the range [0,1], where R̂2

Pred=0 means the predictor and null models performed
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equally in terms of prediction, and R̂2
Pred=1 means the predictor model improved

the prediction of the null model. If we assume the covariate model cannot perform
worse than the null model, then a negative value can be considered as 0.

In our study, we did not evaluate the individual values but the mean values. Then,
we kept and considered all the estimates as they were, both negative and positive,
to estimate the mean R̂2

Pred . We observed that some of those mean estimates in the
recessive model were slightly negative. That indicates that models that include SNP
predictors with recessive genetic models, small effect sizes, and small frequencies of
the risk allele will hardly show an improvement on the prediction of the survival
outcome.

The facts discussed in the two previous paragraphs held not only for the R̂2
Pred

estimator but also for the R̂2
Pred,app , R̂

2
Pred,.632 , and R̂2

Pred,.632+ estimators.

If we modify the individual negative values to 0, it would produce increased mean
estimates, and we did not apply it here. However, in practice when we work with
only one data set, a negative estimate of the gain in prediction can be assumed to
be 0, i.e. the prediction model performs as good as the null/reference model.

In conclusion, the 0.632 estimator showed overall to be more appropriate than the
0.632+ and the apparent error estimators to approximate the original R̂2

Pred estimate
for the gain in prediction with a SNP predictor in Cox regression models. Moreover,
from the two approaches to estimate the gain in prediction R̂2

Pred , the Schoenfeld
residuals is preferred since it yields higher estimates and allows us to differentiate
better the improvement in prediction of the models in comparison to the Brier score.
The higher estimates with the criterion of the Schoenfeld residuals come from the
fact that it accomplishes better the limits on the range [0,1] of the R2 as a measure
of explained variation (Müller et al. 2008).

Hence, for clinical applications when the interest is to predict outcomes on individual
genetic basis the evaluation of prediction capability of a model is important. We
have found that the Schoenfeld residuals with the 0.632 estimator can be used as a
tool for evaluation of prediction in that context. Moreover, this estimator aids to
distinguish better the effect of a predictor on the outcome. This is an advantage in
genetic studies where the effects of SNPs are usually small.

5.3.3 Capability of R̂2
Pred

to identify the correct genetic model

In genetic studies it is important to identify the genetic variants contributing the
most to the development of a trait. However, for the case of biallelic SNPs it is
also important to identify the most appropriate genetic model of the risk allele for
the development of the trait. In this section we illustrated how good selection of a
particular genetic model was, based on R̂2

Pred estimators.

From each data set we computed three estimators of R̂2
Pred , each from a Cox model

including the SNP predictor in the form of an additive, a dominant or a recessive
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genetic model. Since we simulated data based on a specific genetic model, we had
knowledge of the true genetic model, and a Cox model including the true one was
fitted there. Then, we fitted one correct and two misspecified models, in terms of
the genetic model assumed for the predictor.

For instance, if a data set was simulated with a SNP with an additive effect on the
survival trait, we fitted the correct Cox regression model with such genetic model
of the SNP (i.e. Xa = X=0, 1, 2, according to the number of risk alleles of the
genotype), and in addition we fitted the two misspecified Cox regression models:
one with the dominant model of the SNP (i.e. Xd=1 if X=1 or 2, and Xd=0,
otherwise), and one with the recessive model of the SNP (i.e. Xr=1 if X=2, and
Xr=0, otherwise).

As often done in practice, the highest R̂2
Pred produced from the three fitted models

was selected, and the corresponding genetic model was assumed to be the correct
one. The capability of the estimator R̂2

Pred to identify the correct genetic model
was computed as the frequency of the correct genetic model selected among the 100
replications.

Since the 0.632 estimator was shown to be the most appropriate estimator to ap-
proximate R̂2

Pred , we analysed the capability of the R̂2
Pred,.632 to identify the true

genetic model.

Identification of the correct genetic model with the R̂2
Pred,.632 estimator

We found that the R̂2
Pred,.632 estimator identified very often the correct genetic model.

The R̂2
Pred,.632 from the correct genetic model was frequently higher than R̂2

Pred,.632

from the misspecified models, and the frequency of correct identification increased
with higher hazard ratios. This holds for R̂2

Pred,.632 estimations using either the cri-
terion of the Schoenfeld residuals (Figure 5.9) or the criterion of the Brier score
(Figure 5.10).

The number of times to identify the correct additive genetic model with the crite-
rion of the Brier score were higher than with the Schoenfeld residuals, this could
be because of the higher variability seen with the Schoenfeld residuals than with
the Brier score. There were no obvious differences between the two criteria in the
identification of a correct dominant or recessive model.

In additional evaluations, we found that when a misspecified genetic model was
selected, the value of the correct estimate was almost kept, i.e. the excess in the es-
timated value produced by a misspecified model was minor. According to Figure 5.9,
from the criterion of the Schoenfeld residuals, a dominant model would be selected
many times instead of the correct additive model of the risk allele. That means that
in those cases, the R̂2

Pred,.632 of the dominant model (the wrong model here) was
higher than the additive model (the correct model here). However, the increased
gain in prediction given by the wrong dominant model was on average no larger than
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Figure 5.9: Criterion of the Schoenfeld residuals. Frequency of fitted genetic
models identified as correcta genetic models associated with the outcome. Frequen-
cies are plotted for different minor allele frequencies (MAF) and hazard ratios (HR)

a A genetic model was taken as correct if it provided the highest mean estimate of gain in prediction

(R̂2

Pred,.632 ) among the three fitted genetic models: additive, dominant and recessive. The

correct simulated genetic model is indicated on the left side of the plots.
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Figure 5.10: Criterion of the Brier score. Frequency of fitted genetic models
identified as correcta genetic models associated with the outcome. Frequencies are
plotted for different minor allele frequencies (MAF) and hazard ratios (HR)

a A genetic model was taken as correct if it provided the highest mean estimate of gain in prediction

(R̂2

Pred,.632 ) among the three fitted genetic models: additive, dominant and recessive. The

correct simulated genetic model is indicated on the left side of the plots.
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2%. In general, selecting a misspecified genetic model involved to estimate R̂2
Pred,.632

with a positive bias of 2% when we used the criterion of the Schoenfeld residuals,
and of 0.5% when we used the criterion of the Brier score (data not shown).

The slightly larger bias produced with the criterion of the Schoenfeld residuals in
comparison with the Brier score should not be interpreted as a disadvantage, it is
rather understandable since it also produces larger R̂2

Pred,.632 values.

Therefore, the wrong selection of the correct genetic model did not necessarily mean
big deviation from the correct contribution of the genetic variant, which is an im-
portant conclusion for purposes of application in real genetic data.

The latter does not mean that we can pick up either of the genetic models arbitrarily.
If we do so, we might be underestimating the prediction of the gene unnecessarily,
as it can be seen from Figures 5.11 and 5.12. By assuming a misspecified reces-
sive model when the correct genetic model is additive or dominant would cause
large losses in prediction capability of the gene, especially when, in both cases, the
recessive model has almost no chance to produce the highest R̂2

Pred,.632 (see Fig-
ures 5.9 and 5.10, additive and dominant models). By assuming a misspecified
dominant model when the correct genetic model is recessive would also cause large
losses than necessary, especially when we see that the dominant model is the one
with the least chance to produce the highest R̂2

Pred,.632 (see Figures 5.9 and 5.10,
recessive models).

If we wish to assume a particular genetic model without previous selection of the
highest R̂2

Pred,.632 , it would be safer to assume an additive genetic model, i.e. to keep
the original distribution by the number of alleles of the predictor. That would mean
to have the least losses in prediction capability of the gene, compared to any other
alternative. However, the drawback of using an additive model, arbitrarily, in Cox
regression models, is that convergence problems in the estimation of the parameters
(β) of the predictors might appear, especially for small samples or for samples with
sparse events.

In conclusion, using the R̂2
Pred,.632 estimator to identify the most appropriate genetic

model of a SNP is advantageous. The R̂2
Pred has big chances to collect the correct

genetic model by selecting the highest R̂2
Pred,.632 from the three possible genetic

models considered in this work.

In cases when a misspecified genetic model is collected, the deviation to the incre-
ment of the true prediction measure might only be minor. On the contrary, choosing
a genetic model arbitrarily might cause meaningful losses on the true prediction mea-
sure of a SNP. Moreover, both criteria, the Schoenfeld residuals and the Brier score,
proved to work well as tools to identify the correct genetic model, with a slight
advantage of the Brier score in the identification of an additive model.
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Figure 5.11: Criterion of the Schoenfeld residuals. Comparison of mean estimate
of gain in prediction (by using R̂2

Pred,.632 ) between true (indicated at the left side of
each Figure) and misspecified genetic models in the fit of the genetic Cox model.
Estimates of gain in prediction are plotted for different minor allele frequencies
(MAF) and hazard ratios (HR)



5.3 Results 91

HR=1.25 HR=1.5 HR=2.0

R
e
c
e
s
s
iv
e
m
o
d
e
l

D
o
m
in
a
n
t
m
o
d
e
l

A
d
d
it
iv
e
m
o
d
e
l

0.10 0.25 0.35 0.50

MAF

0.
00

0.
02

0.
04

0.
06

0.
08

m
ea

n 
 R̂

   
   

   
   

   
P

re
d,

.6
32

2
 fitted genetic model 

additive
dominant
recessive

0.10 0.25 0.35 0.50

MAF

0.10 0.25 0.35 0.50

MAF

0.10 0.25 0.35 0.50

MAF

0.
00

0.
02

0.
04

0.
06

0.
08

m
ea

n 
 R̂

   
   

   
   

   
P

re
d,

.6
32

2

 fitted genetic model 

additive
dominant
recessive

0.10 0.25 0.35 0.50

MAF

0.10 0.25 0.35 0.50

MAF

0.15 0.25 0.35 0.50

MAF

0.
00

0.
02

0.
04

0.
06

0.
08

m
ea

n 
 R̂

   
   

   
   

   
P

re
d,

.6
32

2

 fitted genetic model 

additive
dominant
recessive

0.15 0.25 0.35 0.50

MAF

0.15 0.25 0.35 0.50

MAF

Figure 5.12: Criterion of the Brier score. Comparison of mean estimate of gain in
prediction (by using R̂2

Pred,.632 ) between true (indicated at the left side of each Figure)
and misspecified genetic models in the fit of the genetic Cox model. Estimates of
gain in prediction are plotted for different minor allele frequencies (MAF) and hazard
ratios (HR)



Chapter 6

Prediction in Haematopoietic

Stem Cell Transplantation

In this chapter we presented a cohort study for the overall survival of patients
undergoing haematopoietic stem cell transplantation (HSCT). We investigated the
association between some candidate SNPs and the overall survival of the patients.
The associations were investigated by fitting Cox regression models to measure the
effect of single SNPs as well as the effect of multiple SNPs on overall survival. In
all cases the models were adjusted by the effect of clinical factors summarized into
clinical risk scores.

The goal of this study was to identify relevant SNPs that may contribute, together
with established clinical factors, to the prediction of overall survival of HSCT pa-
tients.

We also evaluated the gain in prediction of overall survival after incorporating genetic
factors in the Cox models, compared to using only the clinical risk scores. The gain
in prediction was estimated by using the R̂2

Pred,.632 estimator based on the criterion
of Schoenfeld residuals. We decided to apply this specific estimator because of
the results shown in our simulation study (chapter 5): first, the R̂2

Pred,.632 estimator

approximates the correct measure of gain in prediction (R̂2
Pred ) better than the other

competing estimators (the R̂2
Pred,app and the R̂2

Pred,.632+ ); and second, the estimators
based on the criterion of the Schoenfeld residuals tend to distinguish the gain of
prediction from a predictor model better than the estimators based on the competing
criterion (the Brier score).

In the first section of this chapter we present the background on the topic of HSCT
and on a translational project for study of HSCT. Then, we describe the data in the
second section, and describe the statistical methods used for analysis of the data in
the third section. Finally, we present the results and the respective discussion in the
last section.

92



6.1 Study on Haematopoietic Stem Cell Transplantation (HSCT) 93

6.1 Study on Haematopoietic Stem Cell Trans-

plantation (HSCT)

Medical treatment to cure cancer of the blood and immune system have been the
concern of medical scientists in this field. HSCT is an alternative that has gained in
importance as a treatment in recent years. However, it still needs more development
to be successful. Main problems derived from this treatment are post-transplant
complications, outcomes such as infection, or the so called graft-versus-host disease,
and subsequently mortality. The research community on HSCT has determined
and validated five clinical factors influencing the success of the transplants. Among
others, these clinical factors are the age of the patient, the relation between patient
and donor of the stem cells, and the stage of the disease. Clinical risk scores, derived
from the clinical factors, have been constructed to aid the prediction and prevention
of post-transplant complications in patients undergoing HSCT.

Based on previous studies, it is also believed that genetic factors play an important
role on the success of the transplants. So far, these studies have been performed
with single SNPs or for small groups of patients, and there is not yet a consensus
on the SNPs involved with the success of the transplants. Moreover, multiple effect
of SNPs on post-transplant complications has not been extensively studied either.

In the following, we give some definitions and background on haematopoietic stem
cell transplantation. Then, we introduce a translational HSCT project that intends
to deal, among other things, with the study of effect of multiple SNPs on HSCT.

6.1.1 Background on HSCT

Stem cells are precursor cells that can divide and differentiate into specialized cells
types in the body such as a muscle cell, a red blood cell, or a brain cell. They
can self-renew to produce more stem cells and to replenish others (Marieb 2004,
Stem Cell Basics: Introduction 2009). There are three types of human stem cells:
embryonic, embryonic germ, and adult. The embryonic and embryonic germ stem
cells develop at early stage of development, approximately five days and five to nine
weeks, respectively. Adult stem cells are found in developed tissue, for example the
haematopoietic stem cells (Marieb 2004).

Haematopoietic stem cells (HSCs) are a type of stem cells that form blood and
immune cells. They have the properties to replenish all blood cell types and to self-
renew (Müller-Sieburg et al. 2002, Hematopoietic Stem Cells 2001). HSCs are found
mainly in the bone marrow of adults, that is the spongy tissue in the interior of bones,
and also in peripheral, circulating blood. HSCs are nowadays used as a therapy. HSC
transplants are used as a therapy mainly in patients with haematological malignant
diseases, i.e. cancer of the blood and immune systems, such as leukaemia and
lymphoma, which result from the uncontrolled proliferation of white blood cells
(Hematopoietic Stem Cells 2001).
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Haematopoietic stem cell transplantation (HSCT) is a medical procedure to replace
the cells destroyed by radiotherapy or chemotherapy in patients with haematological
malignant diseases. Sources to collect HSCs are the bone marrow or peripheral
blood. The HSCs are collected from the same patient (autologous transplant) or
from a donor (allogeneic transplant). In the case of allogeneic transplant, a donor
can be related (usually a sibling) or unrelated to the patient (Hematopoietic Stem
Cells 2001, Copelan 2006). In this context, the transplanted HSCs are also called
allogeneic graft, and the patient undergoing the HSCs transplant is called host.

The donor tissue type has to be compatible with that of the patient, since severe
immune reactions may occur, the severity of which is dependent on the extent of
incompatibility. On this matter, matching of the human leukocyte antigen (HLA)
between patients and donors is crucial.

Antigen is a substance that is recognized as foreign and activates the immune sys-
tem (Marieb 2004). The HLA is the major histocompatibility complex (MHC) in
humans. The MHC helps the immune system protecting the body by recognizing
proteins from the own individual, and proteins from foreigners such as viruses and
bacteria. MHC consists of three classes genes located on chromosome 6, Class I
(the main genes are HLA-A, -B, and -C), Class II (the main genes are of the types
HLA-DP, -DQ, and -DR), and Class III (these genes encode components of the so
called complement system) (HLA gene family 2009).

Class I genes produce proteins that are found on almost all cell’s surface, these
proteins bind to peptides (fragments of proteins) from inside the cells and display
them to T cells. T cells are white blood cells known as lymphocytes. Cytotoxic
T cells (TC cells, a type of T cells) destroy cells whose peptides are recognized
as foreigners. Hence, under HLA mismatch between donor and patient, TC cells
from the patient recognize peptides of the donor cells as foreigners and cause graft
rejection. Likewise, TC cells from the donor recognize peptides of the patient cells as
foreigners and cause Graft-versus-Host Disease (GvHD) (Graft-versus-host disease
2011, HLA gene family 2009).

Class II genes produce proteins that are found on the cell’s surface of certain cells
of the immune system. These proteins bind to peptides from outside the cells and
display them to the T cells. Recognition of foreigner peptides stimulate production
of helper T cells (TH cells, a type of T cells), which in turn stimulate proliferation of
B cells. B cells produce antibodies to the foreigner peptides, the antigens. Antibod-
ies cannot destroy antigens, but they can inactivate and tag them for destruction
(Marieb 2004, HLA gene family 2009).

Two types of GvHD can appear: acute and chronic GvHD (aGvHD and cGvHD).
aGvHD is normally observed within few weeks (the first 100 days) after transplant.
It affects the liver, skin, and gastrointestinal tract (Graft-versus-host disease 2011).
cGvHD is normally observed after 100 days. Organs commonly affected include
the skin, mouth, liver, eyes, gastrointestinal tract, lung, and oesophagus (Lee and
Flowers 2008).

Typing of HLA locus to identify full HLA-matched donors has become a standard
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of care. However, it is usually difficult to find full HLA-matched unrelated donors.
HSC transplants are still a problem for the association with GvHD on that group
of patients, more than with sibling donors (Riddell and Appelbaum 2007).

Types of treatments are used to prepare a patient for stem cell transplantation, these
treatments are called conditioning regimens (conditioning regimen 2011), which in-
fluence the prevention of GvHD. Myeloablative regimens such as total-body irradi-
ation are designed to kill all residual cancer cells in the body of the patient. This
causes immunosuppression (reduction of the activity of the immune system), that
reduces chances of graft rejection, and favours engraftment in allogeneic transplan-
tation. The drawback of myeloablative regimens is that since it lowers activity of
the immune system, there is lower reaction against foreigners, such as viruses, which
increases the chance of fatal post-transplant infections, i.e. it increases transplant
related mortality (TRM).

Non-myeloablative regimens use doses of chemotherapy and radiation much lower
than those of myeloablative regimens. These regimens rely on a graft-versus-tumour
(GvT) effect to kill tumour cells with donor T cells. Reduced-intensity regimens
vary between myeloablative to non-myeloablative. The advantage of both reduced-
intensity and non-myeloablative regimens is the decreased toxicity as well as a lower
chance of infections and TRM. However, relapse (returning of the disease) increases
since remaining tumoural cells proliferate again, unless tumoural cells were elimi-
nated by the GvT effect (Conditioning Regimens 2011).

Another way of preventing GvHD has been focused on T cell removal from donor
stem cells. This is called T cell depletion. On one side, it helps reducing the
occurrence of GvHD, since there is no reaction of the graft to the host cells, but
it increases the possibility of graft rejection. On the other side, since there is no
activity of the immune system from donor stem cells, no GvT effect takes place,
which increases the chances of relapse (Riddell and Appelbaum 2007).

Even if conditioning regimens and T cell depletion can improve post-transplant
problems with GvHD, it has not been demonstrated that these ways of preventions
improve survival (Riddell and Appelbaum 2007). The overall survival of patients
after HSCT is not yet encouraging. The survival rate is about 40-60% at 5 years after
transplant. As described above, adverse clinical outcomes such as GvHD, infections
are further TRM are problems that diminish the success of the transplants.

6.1.2 The HSCT translational network project

The European community and the University of Newcastle-upon-Tyne (UK), agreed
in December, 2004, on the implementation of the project: Identification of ge-
nomic and biological markers as predictive/diagnostic/therapeutic tools for use in
allogeneic stem cell transplantation: Translational research towards individualized
patient medicine. From here onwards we referred this project as the HSCT TRANS-
NET project. The project was implemented for a period of 48 months.
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As a mean of overcoming the situation of low survival of the patients after HSCT,
as well as occurrences of GvHD, the HSCT TRANS-NET project aimed to identify
and verify over cohorts from different transplant centers, novel prediction indicators
and diagnostic markers for the assessment of patients and donors. The novel aspects
should lead to considerations of new concepts and clinical practices for individual
assessment of patients previous to the transplant. The latter should also implicate
improvement of therapies and clinical protocols (TRANS-NET 2008).

Participant institutions of the project were the University of Newcastle-upon-Tyne
(UK) as the leading institution, the Geneva University Hospital (Switzerland), the
Universitätsmedizin of the Georg-August-University Göttingen (Germany), Univer-
sity of Oslo (Norway), University of Glasgow (UK), Klinikum der Universität Re-
gensburg (Germany), Charles University, Prague (Czech Republic), Helmholtz Zen-
trum München (GmbH) (Germany), St James’s Hospital and Trinity College Dublin
(Ireland), INSERM U396, Paris (France), Medical University of Vienna (Austria),
and Universitätsklinikum Düsseldorf (Germany).

The HSCT TRANS-NET project was also in collaboration with the European Group
for Blood and Marrow Transplantation (EBMT). The EBMT Group is a non-profit
organization that aims to promote all aspects associated with the transplanta-
tion of haematopoietic stem cells (EBMT 2011). In previous studies, the Chronic
Leukaemia Working Party of the EBMT Group determined five clinical risk fac-
tors that influence, among other outcomes, the overall survival of HSCT patients
with chronic myeloid leukaemia (CML) (Gratwohl et al. 1998, 2006). These clin-
ical factors are: age of patient by the time of transplantation, patient/donor sex
combination, donor type, stage of disease, and time from diagnosis to transplan-
tation. From here on we shall refer to these clinical factors as the EBMT factors.
The EBMT factors have been further validated as clinical risk factors not only on
patients with CML disease but also on patients with other haematological diseases
such as acute leukaemia, myelodysplastic syndrome, or non-Hodgkin lymphoma,
(Gratwohl et al. 2009), and these clinical factors are considered well established in
the community.

Table 6.1 contains details on the categories and respective risk scores of the es-
tablished clinical EBMT factors. The risk of death of a patient undergoing HSCT
increases with the age, it is highest for the group of patients older than 40 years.
Male patients receiving stem cells from female donors have increased risk compared
to other patients, also patients with unrelated donors have higher risk of death than
patients with sibling donors. Moreover, the risk of death increases for patients with
worse clinical disease stage at the date of transplantation, and for those patients
with larger waiting time from the date of diagnosis to HSC transplant.

On the side of genetic studies, it is argued that SNPs in non-HLA genes can in-
fluence immune responses and can have an impact on individual patient outcomes
during HSCT (Mullally and Ritz 2007). Various studies for association of non-HLA
genes with HSCT outcomes have been conducted. Some of the studies were, how-
ever, performed on small and specific group of patients, e.g. only on patients with



6.2 Data description 97

Table 6.1: Risk scores per category from clinical EBMT factorsa

established for patients undergoing HSCT

EBMT factors Categories Risk score

Age of patient at
transplantation (years)

< 20 0
20 - 40 1
> 40 2

Patient/donor sex
combination

Male/Female 1
other 0

Donor type HLA-identical sibling 0
HLA-matched unrelated donor 1

Stage of disease at
transplantation

Early 0
Intermediate 1
Late 2

Time from diagnosis to
transplant

≤ 12 months 0
> 12 months 1

a Clinical factors and risk scores established by the EBMT Group
(Gratwohl et al. 1998, 2006, and 2009).

HLA-matched sibling donors, some reviews on these studies have been published
(Dickinson et al. 2004, 2008; Mullally and Ritz 2007). However, there is not yet a
confirmed conclusion about the influence of non-HLA genes on outcomes based on
larger studies and/or on a more extended group of HSCT patients.

As part of the HSCT TRANS-NET research, clinical data (including EBMT fac-
tors) and genetic data, specifically non-HLA genes, from patients and donors were
collected from the transplant centers participating in this project. The data were
compiled in the HSCT-EUROBANK database (EUROBANK 2008).

In our study we aim to evaluate genetic data from the HSCT TRANS-NET project to
identify non-HLA genes of potential relevance to prediction of survival after HSCT,
in addition to the established clinical EBMT factors. Hence, our study also intends
to provide risk groups, derived from the joint clinical and genetic factors, for the
identification of patients with high and low risk of death after haematopoietic stem
cell transplantation.

6.2 Data description

We accessed the EUROBANK database through our partners in Newcastle, who pre-
pared a database as for our study. We received this database on January 2010, with
data on 993 patients. Data on a patient also included data from his/her respective
donor. Since our study focused on the overall survival following HSCT of patients
with malignant haematological diseases, we only selected patients with malignant
haematological disease (n=930), and moreover patients with available survival status
and available survival times. Hence, data on 888 patients were available.
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Table 6.2: Post-transplant outcomes in HSCT patients

Outcomes Categories Frequency (%)

Acute Graft versus
Host Disease (aGvHD)

No aGvHD 252 (33)
Grade I 131 (17)
Grade II 213 (28)
Grade III 106 (14)
Grade IV 56 (7)
NAa 4 (1)

Chronic Graft versus
Host Disease (cGvHD)

No cGvHD 249 (33)
Limited 84 (11)
Extensive 118 (16)
Not determinedb 147 (19)
NAa 164 (21)

Relapse No relapse 545 (72)
Relapse 216 (28)
NAa 1 (0)

Transplant Related
Mortality (TRM)

Alive 363 (48)
No TRM 165 (22)
TRM 228 (30)
TRM not determined 2 (0)

Overall death Alive 363 (48)
Dead 399 (52)

Total 762 (100)

a Not available. b Extension of disease was not determined.

6.2.1 Clinical data

For the analysis of clinical data there were 762 patients whose EBMT factor data
were deemed to be complete. Table 6.2 summarizes the clinical post-transplant
outcomes of these patients. The observed outcomes included acute and chronic
GvHD, relapse, transplant related mortality and death. By the end of the study, a
total of 66% of patients had developed acute GvHD, 46% chronic GvHD, 28% had
suffered relapse, 30% with transplant related mortality, and 52% had died overall.

Table 6.3 contains the clinical characteristics of the patients. Even though the study
was focused on adult patients, we considered twelve patients younger than 18 years
old contained in the data since they followed the same protocol and treatment as
an adult patient. The youngest and oldest patient were 16 and 68 years of age,
respectively. The mean and median age of the patients was 40 years.

Twenty-two percent of the transplants were from a female donor to a male patient.
The type of donors was almost balanced between HLA-identical siblings (52%) and
HLA-matched unrelated donors (48%). Most of the patients had the diagnosis acute
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Table 6.3: Clinical characteristics of patients prior to HSCT

Factors Categories Frequency (%)

Age of patient at
transplantation (years)a

< 20 32 (4)
20 - 40 346 (46)
> 40 384 (50)

Age of donor (years) < 20 34 (4)
20 - 40 424 (56)
> 40 286 (38)
NAb 18 (2)

Patient/donor sex
combinationa

Other sex combinations 598 (78)
Male patient, female donor 164 (22)

Donor typea HLA-matched sibling 395 (52)
HLA-matched unrelated donor 367 (48)

Diagnosis of
haematological disease

Acute leukaemia (AL) 391 (51)
Chronic myeloid leukaemia (CML) 172 (23)
Lymphoma 112 (15)
other diagnosesc 87 (11)

Source of stem cells Bone Marrow 356 (47)
Peripheral blood 388 (51)
Bone Marrow/Peripheral blood 3 (0)
NAb 15 (2)

Cytomegalovirus status Positive, either patient or donor 511 (67)
Both negative 227 (30)
NAb 24 (3)

Stage of disease at
transplantationa

Early 328 (43)
Intermediate 196 (26)
Late 238 (31)

Time from diagnosis to
transplanta

≤ 12 months 439 (58)
> 12 months 323 (42)

T-cell depletion T-cell depletion 263 (35)
No T-cell depletion 499 (65)

Conditioning regimen Myeloablative 503 (66)
Reduced-intensity 259 (34)

Center of transplant Vienna/Pragued 225 (30)
Regensburg/Müniche 217 (28)
Newcastle 204 (27)
Rostock 73 (9)
Paris 43 (6)

Total 762 (100)

a Clinical EBMT factor (Gratwohl et al. 2009). b Not available.
c Other diagnoses included: plasma cell neoplasia, myelodysplasia syndrome, and chronic
myelomonocytic leukaemia. d 29% patients were treated in Vienna and 1% in Prague.

e 27.5% patients were treated in Regensburg and 0.5% in Münich.
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leukaemia (AL, 51%). Forty-three percent of the patients presented early stages of
the haematological disease, followed by late stage (31%), and intermediate stage of
disease (26%).

The transplant centers included: Vienna, (28%), Regensburg (28%), Newcastle
(27%), Rostock (10%), Paris (6%), and Prague (1%). The centers of Vienna and
Prague worked in close collaboration by exchanging the medical staff assessing
GvHD in order to ensure consistent evaluation of the disease (Ludajic et al. 2008).
Likewise, the centers of Regensburg and Münich worked in close collaboration to
each other.

6.2.2 Genotype data

Genotype data were typed by the respective transplant centers. A total of 743
patients had available genotype data (including that of their respective donors).
The genotype data included genotypes on 20 non-HLA genes from patients and
donors. The genes were typed on 1, 2, or 3 different candidate SNPs (Table 6.4).

We had a total of 31 biallelic SNPs, 1 multiallelic SNP, 2 haplotypes, and 1 mi-
crosatellite. Haplotype is obtained from the combination of alleles of a sequence of
adjacent SNPs; for example, the GCR haplotype (GCR HT) in the data is a com-
bination of alleles of 3 single SNPs of the GCR gene. Microsatellite is a repeated
sequence of nucleotides, for example, a microsatellite repeat sequence of n times CA,
(CA)n. In our data, the IFNG gene locus is a microsatellite of (CA)10 (allele 1) to
(CA)14 (allele 5) (Calvo et al. 2002).

Some of our candidate SNPs are involved in the alteration of cytokine production.
Cytokines are chemical mediators enhancing the immune response. SNPs from the
interleukin genes (IL1, IL6, and IL10), tumour necrosis factor (TNF), and interferon
γ (IFNG) belong to this group. SNPs from the estrogen receptor gene (ESR1), vita-
min D receptor (VDR), and nucleotide binding oligomerization domain containing
2 (NOD2) are involved in host defence and the immune system (Dickinson et al.
2004, 2008; Mullally and Ritz 2007). It may also happen that the heat shock pro-
tein gene (HSP70) has a direct role in GvH reactions (Novota et al. 2008), and it has
also been stated that HSP70 can produce powerful cytokines affecting the functional
capability of the immune cells (Jarvis et al. 2003).

Previous studies have shown that these SNPs were associated with at least one of
the HSCT outcomes, such as aGvHD, cGvHD, TRM, or overall survival. However,
the studies have been performed for specific subgroup of patients, or in small studies,
e.g. only on patients with HLA-matched sibling donors (Dickinson et al. 2004, 2008;
Mullally and Ritz 2007; Jarvis et al. 2003).

Thus, in our study, we intended to analyse the SNPs in association with overall
survival for the full cohort of patients. The analysis was performed to evaluate the
effect of the SNPs on overall survival, in addition to the effect of the predetermined
clinical EBMT factors.



6.2 Data description 101

Table 6.4: Non-HLA genes typed in patients and donors in the HSCT study

Full gene name Gene name Chr.a SNP
rs number

SNP labelb

Cluster of differentiation 14 CD14 5 rs2569190 CD14

Cluster of differentiation 91 CD91 12 rs1799986 CD91

Complement component 3 C3 19 rs2230199 C3

Estrogen receptor ESR1 6 rs2234693 ESR1.1
rs9340799 ESR1.2

Glucocorticoid receptor GCR 5 rs33389 GCR.1
rs33388 GCR.2
rs6198 GCR.3
haplotypec GCR HT

Heat shock protein HSP70-hom 6 rs2075800 HSP70-hom.1
rs2227956 HSP70-hom.2

Interferon gamma IFNG 12 microsat.d,e IFNG

Interleukin 1 receptor antagonist IL1RN 2 rs419598 IL1RN

Interleukin 4 IL4 5 rs2243250 IL4

Interleukin 6 IL6 7 rs1800797 IL6.1
rs1800796 IL6.2
rs1800795 IL6.3

Interleukin 10 IL10 1 rs1800896 IL10.1
rs1800872 IL10.2
haplotypef IL10 HT

Interleukin 12 IL12B 5 rs3212227 IL12B

Interleukin 13 IL13 5 rs1800925 IL13.1
rs20541 IL13.2
rs1881457 IL13.3

Low density lipoprotein receptor LOX1 12 rs11053646 LOX1

Myelin and lymphocyte protein MAL 11 rs8177374 MAL

Multi drug resistance receptor MDR1 7 rs1045642 MDR1.1
rs2032582d MDR1.2

Nucleotide binding
oligomerization domain
containing 2

NOD2 16 rs2066844 NOD2.1
rs2066845 NOD2.2
rs2066847 NOD2.3

Tumour necrosis factor TNF 6 rs1800629 TNF

Tumour necrosis factor receptor TNFRSF1B 1 rs1061622 TNFRSF1B

Vitamin D receptor VDR 12 rs731236 VDR.1
rs7975232 VDR.2

a Chromosome number. b SNP/haplotype labels used in Tables and Figures in this chapter.
c Haplotype GCR from SNPs: rs33389, rs33388, and rs6198. d Multiallelic.
e Microsatellite, where the alleles are defined by repeated CA sequences.
f Haplotype IL10 from SNPs: rs1800896, rs1800871 (not available in our data), and rs1800872.
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The main drawback for the analysis of these genetic data were many missing geno-
types. Not all the patients were typed for each of the SNPs. Percentage of missing
genotypes for each SNP varied from 9% to 44%, which reduced the data from 743
to between 678 and 417 patients (see Tables 6.5 and 6.6, column: Sample size).

SNPs with the highest percentages of missing data corresponded to genes HSP70-
hom, IL12B, and MDR1. Also, even if the single GCR SNPs did not have very high
percentage of missing data, the GCR haplotype did have because it accumulated
missing data from the three typed GCR SNPs. High percentage of patients and
donors from the center Regensburg had missing genotypes on these SNPs. The
patients and donors from the center Rostock were not typed on these SNPs, except
on the GCR haplotype. High percentages of missing genotype data causes loss of
a large part of the data if multiple SNPs are jointly evaluated during the survival
analysis with Cox regression models. That is because the Cox regression analysis
requires complete data in all the variables included in the model, otherwise the
data are deleted. In view of that, we excluded from the analysis the SNPs with
very high percentages of missing genotypes (these were all typed SNPs from genes:
HSP70-hom, IL12B, and MDR1; and the haplotype from gene GCR).

Moreover, chi-square tests performed to test Hardy-Weinberg equilibrium (HWE)
(section 2.2.3, page 12) indicated that, the genotype frequencies of SNPs labelled as
IL1RN and IL6.2 in patients and donors, VDR.2 in patients, and MAL in donors,
do not follow genotype distribution according to the HWE (p-value<0.05). These
SNPs should rather be excluded since their results might lead to spurious association.
Even so, we kept and evaluated them during the analysis. However, results from
these SNPs should be taken with care.

6.2.3 Follow-up and survival times

The 762 patients with complete data on the clinical EBMT factors, received stem
cell transplants in the period from November 1983 to December 2005, with follow-up
until November 2009. The follow-up time was between 7 months to 20 years, with
a median of 5-6 years. A total of 399 (52%) deaths were observed during the period
of study.

Figure 6.1 shows the overall survival of the patients over months after transplant.
The median survival time of the patients was 3 years (i.e. 50% survival probability
at 3 years after transplant), and moreover, they had 48.5% survival probability after
4 years of transplant. The events of death are rather infrequent after 4 years of
transplants, and the survival probability remains above 40% at later years.

We considered the survival times as number of days from date of transplant to death.
To estimate prediction errors with the Schoenfeld residuals we need continuous and
untied survival times. There were a few cases of tied survival times, which we untied
manually. To untie survival times, we added subsequently a fraction 0.01 to tied
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Table 6.5: Descriptives of the non-HLA biallelic SNPs genotyped on the
HSCT study (overall size of the genotype data, n=743)

SNP
labela

Allele
pairs

MAb MAF%c Missing%d Sample sizee

patient donor patient donor patient donor

CD14 G/A A 49 47 28 27 536 542

CD91 C/T T 15 16 31 25 514 560

C3 C/G G 22 22 30 26 523 550

ESR1.1 C/T C 46 44 13 15 646 635
ESR1.2 G/A G 40 37 13 13 646 644

GCR.1 C/T T 14 15 30 24 521 561
GCR.2 T/A T 44 46 29 24 527 562
GCR.3 G/A G 17 17 28 24 533 561

HSP70-hom.1f G/A A 35 32 42 44 433 417
HSP70-hom.2f T/C C 18 19 33 34 495 488

IL1RN T/C C 24 24 11 10 663 671

IL4 T/C T 15 16 17 17 617 618

IL6.1 G/A A 39 39 24 20 561 593
IL6.2 C/G C 7 6 22 17 582 618
IL6.3 G/C C 42 39 11 9 664 678

IL10.1 G/A G 47 46 18 17 609 619
IL10.2 A/C A 24 26 17 16 620 626

IL12Bf A/C C 21 20 41 37 440 471

IL13.1 C/T T 19 18 27 20 543 592
IL13.2 A/G A 21 22 22 20 577 596
IL13.3 C/A C 19 19 21 17 584 613

LOX1 G/C G 6 8 30 22 517 579

MAL T/C T 15 17 32 26 507 550

MDR1.1f C/T C 47 46 38 35 460 485

NOD2.1 C/Tg Tg 5 5 20 20 592 595
NOD2.2 C/Gg Gg 2 1 20 20 592 595
NOD2.3 - /Cg Ch 3 3 20 20 592 595

TNF G/A A 15 15 20 21 592 587

TNFRSF1B T/G G 24 23 17 14 618 637

VDR.1 T/C C 36 40 15 11 630 659
VDR.2 C/A Ci 49 47 13 9 649 676

a For genetic details regarding the label, see Table 6.4. b Minor allele.
c Minor allele frequency, based on the available sample size (two last columns).
d Percentages based on n=743. e Available sample size, it excludes missing genotypes.
f Excluded from the statistical analysis because of high missing%.
g Alleles of NOD2 SNPs were not specified in the data. The alleles were identified from
SNPedia (Cariaso and Lennon 2011). h Minor allele found by Heliö et al. (2003).

i Minor allele differs between patients (allele A) and donors (allele C).
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Table 6.6: Descriptives of the non-HLA multiallelic genes or haplotypes
genotyped on the HSCT study (overall size of the genotype data, n=743)

Labela Alleles or
haplotypes

MAb MAF%c Missing%d Sample sizee

patient donor patient donor patient donor

IFNG 1-5g 1,5,4j 0.3 0.2 12 11 655 662

MDR1.2f A,G,T A 1 1 39 35 456 483

GCR HTf .h GCTk 9 8 36 29 474 529

IL10 HT .i ATA 24 25 20 20 591 598

a For genetic details regarding the label, see Table 6.4. b Minor or rare allele/haplotype.
c Minor allele/haplotype frequency, based on the available sample size (two last columns).
d Percentages based on n=743. e Available sample size, it excludes missing genotypes.
f Excluded from the statistical analysis because of high missing%.
g Alleles 1 to 5. Allele 1 corresponds to the microsatellite repeat sequence of 10 times
CA, and alleles 2-5 to 11-14 times CA, respectively, (Calvo et al. 2002).

h haplotypes: ACA, ATA, ACT, GCA, GCT. i haplotypes: ACC, ATA, GCC.
j Rare alleles in patients were allele 1 (0.3%), 5 (2.1%), and 4 (4%); the frequent alleles
were allele 2 (47.5%) and 3 (46%). The frequencies were similar for donors.

k Minor haplotypes in patients were GCT and GCA, both with frequencies 9%.
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Figure 6.1: Overall Kaplan-Meier survival curve after HSCT
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survival times. There were 76 cases of two patients with tied survival times, 19
cases of three patients, 5 cases of four patients, and 1 case of six patients with tied
survival times (this latter was at 36 days after transplant).

6.3 Statistical analysis: Cox models with clinical

and genetic factors for overall survival

We investigated the association of SNPs with overall survival by simple Cox regres-
sion models (with single SNPs), and by multiple Cox regression models (with joint
effects of multiple SNPs). In both cases we estimated the effects of the SNPs in
addition to the effect of the clinical EBMT-score.

Association of EBMT factors with overall survival

The clinical EBMT factors were included in the Cox models as a discrete variable
of the clinical risk score of death for a patient undergoing HSCT. A clinical risk
score was obtained as a sum of the single risk scores of the clinical EBMT factors
of a patient, hence we call the clinical risk score the clinical EBMT-score. The
single scores per category of factors are shown in Table 6.1. These scores have been
established after studies by the EBMT Group (Gratwohl et al. 1998, 2006, 2009).

The distribution of the clinical EBMT-scores of patients in our data are shown in
Table 6.7. The scores varied from 0 to 7 risk points. Most of the patients (25%) had
a score 4 for the risk to death, followed by patients with scores 3 (19%), 2 (18%),
and 5 (16%). Overall, the frequency of deaths increased with higher EBMT-scores
of the patients.

We tested the effect of the clinical EBMT-scores on overall survival of the patients by
using the Cox regression model with this single variable. The score entered the model
either as a categorical or as a discrete variable. In case of a categorical variable, we
considered 6 categories, where the two first scores 0-1 were combined to use it as
a reference group with acceptable sample size (91 patients). With this categorical
variable we could evaluate the agreement of higher risk scores with higher hazard
ratios to death. In case of a discrete variable of the EBMT-score, this resulted in a
single estimate that was the hazard ratio by a unit increment on the risk score of a
patient. The discrete EBMT-score was later used in the analysis of a joint model
with genetic factors.

Further, we evaluated the gain in prediction of overall survival with the clinical
EBMT-score with respect to no predictors. The gain in prediction was measured
with the R̂2

Pred,.632 estimator (see section 4.6.3).
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Table 6.7: Distribution of EBMT-score and death status of HSCT
patients

EBMT-score alive (%a ) dead (%a ) Total (%a ) (%b)

0 4 (57) 3 (43) 7 (100) (1)
1 48 (57) 36 (43) 84 (100) (11)
2 73 (54) 63 (46) 136 (100) (18)
3 79 (54) 68 (46) 147 (100) (19)
4 85 (46) 101 (54) 186 (100) (25)
5 45 (37) 77 (63) 122 (100) (16)
6 28 (40) 43 (61) 71 (100) (9)
7 1 (11) 8 (89) 9 (100) (1)

Total 363 (48) 399 (52) 762 (100) (100)
a Percentage of alive/dead status within score.
b Overall percentage of EBMT-scores.

Association of single SNPs with overall survival

The SNPs considered in this analysis are listed in Table 6.5. We investigated the
association of the SNPs with the overall survival of the patients by modelling the
effects of the single SNPs, in addition to the effects of the clinical EBMT-score on
overall survival.

We fitted Cox regression models with the two factors, where the clinical EBMT-score
was included as a discrete variable with values [0-7], and the SNP was included
as a factor assuming a specific genetic model: additive, dominant, or recessive.
The effects of the SNPs were evaluated by estimating hazard ratios from the Cox
regression models. The significance of the effects of the SNPs on overall survival was
judged with the log-likelihood ratio test (LRT) at a 0.05 level. We used the LRT of
comparing the covariate model, that contained the EBMT-score and the SNP, with
respect to a reference model with only the EBMT-score factor.

We also evaluated the gain in prediction on overall survival provided by the SNPs.
We used the partial R̂2

Pred,.632 estimator (see section 4.6.4) to estimate the partial
gain in prediction with a model including a single SNP, with respect to a model with
only the clinical EBMT-score (the reference model).

We also investigated which of the three assumed genetic models for each SNP con-
tributed the most to the gain in prediction of overall survival. We compared and
selected the genetic model producing the highest partial R̂2

Pred,.632 estimates among
the three estimates.

The associations of microsatellites or haplotypes with the overall survival of the
patients were studied in a similar fashion as with the SNPs. The IL10 haplotype was
recoded into binary variables coding for the presence/absence of specific haplotypes,
e.g. to define patients with IL10 haplotype ACC, we created a binary variable coding
for the absence/presence of haplotype ACC in patients (i.e. the presence of at least
one haplotype ACC was coded as 1, and 0 otherwise), and also, another binary
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variable coding for the absence/presence of haplotypes ACC/ACC in patients (i.e.
the presence of the haplotype pair ACC/ACC was coded as 1, and 0 otherwise).

The analyses were performed by taking the respective non-missing genotype data
available in each case. The respective sample sizes are shown in the column sample
size of Table 6.5.

Association of multiple SNPs with overall survival

In addition to finding relevant single SNPs for overall survival, we aim to identify
a set of SNPs that might jointly affect the overall survival of the patients following
HSCT, in addition to the established clinical EBMT scores. For this analysis we
considered the SNPs listed in Tables 6.5 and 6.6.

We used a stepwise procedure to build a multiple Cox regression model for the
association of SNPs on overall survival. We used the Wald statistic test for variable
removal (p-value=0.1), and the score statistic for variable entry (p-value=0.05).
The chosen tests and p-values are in line with the statistical procedures for model
building recommended by the EBMT organization as a mean to unify statistical
analyses in the context of the EBMT studies (Labopin and Iacobelli 2003).

The stepwise procedure was set with an initial model containing the clinical EBMT-
score as a discrete variable with values [0-7]. The SNPs listed in Tables 6.5 and 6.6
(SNPs, microsatellites, and haplotypes) were treated as candidate variables to enter
the model, except the SNPs with the highest missing genotypes. Each biallelic SNP
was recoded into three different variables, each variable represented a particular
genetic model: additive, dominant, or recessive. The three genetic models of a SNP
were candidate variables to enter into the model, but only one of them entered the
model. Hence, a SNP entered the model with its most significant genetic model.

Candidate SNPs with less than 5 death events in any of the genotype groups were
excluded to avoid estimation problems in the Cox model.

The fitting and estimation procedure of the Cox regression method implemented in
statistical software packages, such as SAS and R, do consider only complete data
on all the candidate variables considered to enter the Cox model. Given that in our
data there are missing genotypes for different SNPs and in different set of patients,
running the automatic stepwise procedure would drastically reduce the data from
the beginning of the procedure. In an attempt to do this, we ended up with only
10% of the data to perform the analysis. That would be useless to get any reliable
result.

To avoid the loss of data due to missing genotypes, we implemented a strategy for
the selection procedure. At each step of the procedure, we used complete data (i.e.
non-missing data) from the set of variables in the model at that step. That impli-
cated to perform stepwise Cox model by using non-missing data from a set of fewer
variables, and therefore larger data were available than from considering the whole
set of candidate variables. The data were still reduced, but it occurred gradually at
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subsequent steps as new variables entered the model. Hence, we profited of building
the model with larger data from the beginning of the procedure in comparison to
the automatic stepwise procedure.

It is important to remark that the strategy above assumes random missing data. If
missingness occurred at random, the information contained in the reduced data will
be similar to the information from the original data. By running our implemented
strategy we assumed that the information obtained at one step of the procedure was
preserved at the subsequent steps.

To get a final model we stopped the stepwise procedure when either no more SNPs
could accomplish the entering and removal criteria, or when the inclusion of an
additional SNP reduced the size of the data to less than 50% of the initial size.

Finally, the gain in prediction of overall survival with the final model was evaluated
by the R̂2

Pred,.632 and partial R̂2
Pred,.632 estimators.

6.4 Results

6.4.1 Effect of clinical EBMT factors on overall survival

Table 6.8 shows the Cox regression model with the effect of the categorical clinical
EBMT-score on overall survival. The survival probabilities of groups of patients
per EBMT-score are shown with the Kaplan-Meier curves in Figure 6.2. In general,
patients with increasing EBMT risk scores showed an increase of the hazards of
overall survival. Patients with scores 2 and 3 performed pretty similar with a hazard
ratio of approximately 1.2 with respect to the reference group 0-1. Patients with
score 5 performed slightly worse than patients with score 6, the Kaplan-Meier curves
showed that this occurred mainly during the first two years after transplantation,
at later times they have similar performance. The estimated gain in prediction of
overall survival with respect to a null model was R̂2

Pred,.632=3.1%.

On the other hand, the hazard ratio of the effect of a discrete EBMT-score on
overall survival indicated that the hazard increased on average a fraction 0.16 for
each unit increment on the EBMT risk score of a patient. This effect was significant
according to theWald-test (HR=1.16, 95%CI=1.09-1.24, p-value<0.001). Moreover,
the estimated gain in prediction of overall survival with this EBMT-score, with
respect to a null model, was R̂2

Pred,.632=5.1%.

6.4.2 Association of single SNPs with overall survival

We measured the association of single SNPs and haplotypes with overall survival
by estimating the hazard ratio and significance from the respective Cox regression
models. We found that the presence of IL10 haplotype ACC/ACC in donors had
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Table 6.8: Cox regression model for overall survival with the EBMT-
scorea (n=762)

EBMT-score Coefficient SE
(coef)b

p-valuec Hazard
ratio

Confidence
interval (95%)

As categorical variabled

2 0.17 0.20 0.407 1.18 0.79 - 1.77
3 0.18 0.20 0.375 1.20 0.81 - 1.77
4 0.38 0.19 0.044 1.46 1.01 - 2.12
5 0.68 0.20 <0.001 1.97 1.34 - 2.90
6 0.62 0.22 0.005 1.85 1.20 - 2.87
7 1.19 0.39 0.002 3.27 1.53 - 7.01

As discrete variable

EBMT-score 0.15 0.03 <0.001 1.16 1.09 - 1.24

a Gain in prediction of overall survival: R̂2

Pred,.632= 3.1% and 5.1% for the cate-

gorical and discrete variable, respectively. b Standard error of coefficient.
c P-value of the Wald-test, significance of the hazard ratio of a score group of
patients with respect to the reference group. d Reference group: 0-1.
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Figure 6.2: Kaplan-Meier survival curves by EBMT-score of patients after HSCT
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Table 6.9: The top ten SNPs/haplotypes associated to overall survival (ordered
from the lowest to the highest p-value)

Gene
namesa

SNP
rs numberb

p-valuec Hazard
ratio

Confidence
interval (95%)

R̂2

Pred,.632
d

partial, full

D-IL10 haplotype(ACC/ACC) 0.002 0.48 0.29 - 0.80 2.5, 7.6
P-MAL rs8177374(T) a 0.021 1.33 1.05 - 1.68 1.0, 9.8
D-IL6 rs1800795(C) a 0.021 1.19 1.03 - 1.38 0.7, 4.7
P-ESR1 rs2234693(C) d 0.027 1.31 1.03 - 1.67 1.4, 6.3
D-IL13 rs1800925(T) r 0.032 0.46 0.20 - 1.03 3.3, 8.6
P-GCR rs33388(T) a 0.035 0.83 0.70 - 0.99 0.3, 7.0
D-IL4 rs2243250(T) r 0.052 0.49 0.22 - 1.10 0.0, 4.4
D-IL6 rs1800797(A) a 0.056 1.18 1.00 - 1.39 0.1, 5.8
P-IL10 rs1800872(A) r 0.057 0.63 0.38 - 1.05 1.0, 6.2
D-IL10 rs1800896(G) a 0.063 1.16 0.99 - 1.35 0.0, 4.8
a The prefixes P-/D- before the gene names denote the genes in Patients/Donors.
b In parentheses is the minor allele of the respective SNP. The extensions a, d, or r
denote the additive, dominant or recessive genetic model, respectively.

c p-value for the log-likelihood ratio test that compares a model with the additional gene
factor with respect to a model with only the EBMT-score factor.

d Partial gain in prediction with a SNP/haplotype, with respect to the EBMT-score, and
full gain in prediction due to the joint model of both predictors (SNP/haplotype and
EBMT-score).

the highest association to overall survival of the patients after HSCT. The presence
of IL10 haplotype ACC/ACC in donors tended to be protective for the patients
(HR=0.48, 95%CI=0.29-0.80, p-value=0.002). The consideration of this haplotype
improved the prediction of overall survival, partial R̂2

Pred,.632= 2.5%. Haplotype for
IL10 in donors has also been previously identified as risk factor for overall survival in
patients with CML, in addition to the EBMT-score (Dickinson et al. 2010), although
that study reported the ATA/ACC as the protective haplotype. In other studies,
the presence of IL10 haplotype ACC in patients was associated with severe acute
GvHD III-IV (Dickinson et al. 2004).

Table 6.9 contains the top ten SNPs or haplotypes with the highest association
according to the p-values of the LRT, with reference to the EBMT-score. These
SNPs had p-values smaller than 0.063. The Table also contains the respective partial
gain in prediction (partial R̂2

Pred,.632 ) of a SNP, with respect to the EBMT-score, as
well as the full gain due to both types of predictors (EBMT-scoreand the SNPs). Our
interpretation will be focused on the partial R̂2

Pred,.632 since it reflects the additional
gain in prediction due to the new added predictors for overall survival.

We can observe that lower p-values of association did not necessarily yield higher
prediction, as indicated by the partial R̂2

Pred,.632 values. The positive values of the

partial R̂2
Pred,.632 indicate that these SNPs/haplotypes added to the prediction of

overall survival in addition to the EBMT-score. The zero and negative values in-
dicate that the SNP did not add to the gain in prediction of overall survival. The
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Table 6.10: The top ten SNPs/haplotypes contributing to gain in prediction of
overall survival (ordered from highest to lowest partial R̂2

Pred,.632)

Gene
namesa

SNP
rs numberb

R̂2

Pred,.632
d p-valuec Hazard

ratio
Confidence
interval (95%)

partial, full

D-IL13 rs1800925(T) r 3.3, 8.6 0.032 0.46 0.20 - 1.03
D-IL10 haplotype(ACC/ACC) 2.5, 7.6 0.002 0.48 0.29 - 0.80
D-IL13 rs1881457(C) r 1.4, 6.0 0.147 0.62 0.31 - 1.25
P-ESR1 rs2234693(C) d 1.4, 6.3 0.027 1.31 1.03 - 1.67
P-MAL rs8177374(T) a 1.0, 9.8 0.021 1.33 1.05 - 1.68
P-IL10 rs1800872(A) r 1.0, 6.2 0.057 0.63 0.38 - 1.05
D-IL6 rs1800795(C) a 0.7, 4.7 0.021 1.19 1.03 - 1.38
P-IFNG genotype (3/3) 0.6, 7.4 0.260 0.86 0.67 - 1.12
P-IL10 haplotype(ATA/ACC) 0.5, 5.9 0.277 1.19 0.88 - 1.61
D-GCR rs33388(T) a 0.5, 6.7 0.415 1.07 0.91 - 1.26
a The prefixes P-/D- before the gene names denote the genes in Patients/Donors.
b In parentheses is the minor allele of the respective SNP. The extensions a, d, or r denote
the additive, dominant or recessive genetic model, respectively.

c p-value for the log-likelihood ratio test that compares a model with the additional gene
factor with respect to a model with only the EBMT-score factor.

d Partial gain in prediction with a SNP/haplotype, with respect to the EBMT-score, and
full gain in prediction due to the joint model of both predictors (SNP/haplotype and
EBMT-score).

SNPs listed in Table 6.9 added to the prediction of overall survival, except the
IL4 rs2243250(T) in donors.

As a different viewpoint we also listed the top ten SNPs/haplotypes with the highest
gain of prediction according to the partial R̂2

Pred,.632 (Table 6.10). The SNP with the
highest gain in prediction of overall survival was the rs1800925(T) from the IL13
gene in donors (partial R̂2

Pred,.632=3.3%). This SNP also appeared in Table 6.9 as one
of the top ten SNPs with the highest associations with overall survival (HR=0.46,
95%CI=0.20-1.03, p-value=0.032) .

Other SNPs/haplotypes with both high association (p-value) and high prediction
(partial R̂2

Pred,.632 ) to overall survival were: IL10 haplotype(ACC/ACC) in donors,
ESR1 rs2234693(C) in patients, MAL rs8177374(T) in patients, IL10 rs1800872(A)
in patients, and IL6 rs1800795(C) in donors.

We should take note that, for studies where pre-selection of SNPs are performed, the
decision concerning which measure to use for evaluation should be based on the aim
of the study. For prediction purposes, it can also be helpful to consider a measure
of prediction such as the R̂2

Pred,.632 and partial R̂2
Pred,.632 estimators in the selection

of the SNPs.

Figure 6.3 compares the partial gain in prediction (partial R̂2
Pred,.632 ) attributed to

each biallelic SNP under three possible genetic models: additive, dominant, and
recessive, with respect to the EBMT-score. We can see that only a few SNPs added
to the gain in prediction of overall survival in addition to the EBMT-score.
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Figure 6.3: Estimate of the partial R̂2
Pred,.632 of single biallelic SNPsa under an

additive, dominant or recessive genetic modelb

a For details of the respective SNPs, see Table 6.4.
b Genetic model(s) for some SNPs could not be fitted because of small number of patients in at

least one of the genotype groups.
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We also observe that in most cases, the partial R̂2
Pred,.632 under the three genetic

models of a SNP were similar, and in addition, most of these SNPs showed lit-
tle or did not show improvement to the prediction, i.e. partial R̂2

Pred,.632 ≈ 0,
e.g. the SNP rs33388(T) in patients (label GCR.2) showed an improvement of
partial R̂2

Pred,.632 ≈ 0.3%. However, even if the SNP had improved the prediction of
overall survival, the particular selection of a genetic model is irrelevant in terms
of prediction, since the three models performed similarly. There can be differ-
ences in terms of the effect on the outcome. For example, the SNP rs33388(T)
in patients showed a significant evidence effect only under the additive genetic
model (additive: HR=0.83, 95%CI=0.70-0.98, p-value=0.035; dominant: HR=0.80,
95%CI=0.62-1.02, p-value=0.073; recessive: HR=0.77, 95% CI=0.56-1.06, p-
value=0.77).

By considering SNPs whose minimum gain in prediction was 0.5%, we identified 7
SNPs, which are also listed in Table 6.10. Three of the SNPs showed the highest
gain in prediction under the additive model (SNP rs8177374(T) in MAL gene in pa-
tients, SNP rs33388(T) in GCR gene in donors, and SNP rs1800795(C) in IL6 gene
in donors), one under the dominant model (SNP rs2234693(C) in ESR1 gene in pa-
tients), and three under the recessive model (SNPs rs1800925(T) and rs1881457(C)
in IL13 gene in donors, and SNP rs1800872(A) in IL10 gene in patients.

From those contributing SNPs, the most relevant ones (partial R̂2
Pred,.632>1%) are the

SNP rs8177374(T) in MAL gene, and SNP rs2234693(C) in ESR1 gene in patients,
as well as the SNPs rs1800925(T) and rs1881457(C) in IL13 gene in donors.

The single IL10 SNPs in donors, rs1800896(G) and rs1800872(A), added very little
or did not add to the prediction of overall survival (partial R̂2

Pred,.632 was 0.4% and
<0%, respectively). However, the IL10 haplotype (ACC/ACC) in the same donors
did improve the prediction to overall survival (partial R̂2

Pred,.632=2.5%).

In some cases, a SNP from patients provided higher gain in prediction in comparison
to the same SNP from donors. Within this list are the SNPs from ESR1, IL4, and
MAL gene. In other cases, a SNP from donors provided higher gain in prediction in
comparison to the same SNP from patients, these are the SNP rs1800795(C) in IL6
gene, SNPs rs1800925(T) and rs1881457(C) in IL13 gene.

From all these views, we conclude that specification of an appropriate genetic model
is important to evaluate the gain in prediction with some SNPs, while it may not be
relevant with some others. The consideration of SNPs from both patients and donors
seems to be important -besides the clinical EBMT factors- since they contributed
differently to the prediction of overall survival of the patients.

From the point of view of both the impact of the effect of the SNP and the gain in
prediction of overall survival, the SNP rs1800925 in IL13 gene, and the haplotype
(ACC/ACC) in IL10 from donors, as well as the SNP rs2234693(C) in ESR1 gene,
and the SNP rs8177374 in MAL gene from patients, showed to be relevant single
SNPs, in addition to the EBMT-score.
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Table 6.11: Cox regression model for overall survival, with multiple SNPs in
addition to the clinical EBMT-score (n=419)

Factorsa Coefficient SE
(coef)b

p-value Hazard
ratio

Confidence
interval (95%)

EBMT-score 0.20 0.04 <0.001 1.22 1.12 - 1.33
D-IL10 haplotype(ACC/ACC) -0.72 0.31 0.020 0.49 0.26 - 0.89
P-MAL rs8177374(T) a 0.29 0.13 0.026 1.34 1.04 - 1.74
P-ESR1 rs9340799(G) d 0.42 0.14 0.003 1.52 1.15 - 2.01
D-IL6 rs1800795(C) a 0.25 0.09 0.007 1.29 1.07 - 1.55

a The prefixes P-/D- before the gene names denote the genes in Patients/Donors.
b Standard error of coefficient.

6.4.3 Association of multiple SNPs with overall survival

We fitted a Cox regression model with multiple SNPs associated to overall survival,
in addition to the EBMT-score. The model was built by performing a stepwise
procedure with a set of candidate SNPs (see Tables 6.5 and 6.6). The model was
obtained based on 56% of the data (n=419). Table 6.11 shows the SNPs that entered
the Cox model, and their respective estimates of the hazard ratio.

In addition to the EBMT-score, the model included SNPs from four genes: IL10
and IL6 from donors, MAL and ESR1 from patients.

The presence of haplotype ACC/ACC of gene IL10 in donors was protective for death
following HSCT (HR=0.49, 95%CI=0.26-0.89, p-value=0.020). A similar finding
was reported in a multiple SNP study in CML patients (Dickinson et al. 2010),
although they reported the ATA/ACC haplotype pair as protective for death. In
other studies, the simple presence of haplotype ACC in gene IL10 in patients was
associated with severe acute GvHD III-IV (Dickinson et al. 2004).

Also, the risk of death increased by the presence of each additional allele T car-
ried by the patient in SNP rs8177374 of gene MAL (HR=1.34, 95%CI=1.04-1.74,
p-value=0.026). The presence of allele G in SNP rs9340799 of gene ESR1 in pa-
tients increased the risk of death of the patients (HR=1.52, 95%CI=1.15-2.01, p-
value=0.003). This SNP has previously been reported in association with survival
and aGvHD in patients with HLA-matched siblings (Middleton et al. 2003). In our
analysis of single SNPs, this SNP was ranked at the 11 and 17 position according
to the ordering of p-values (0.077) and prediction with the partial R̂2

Pred,.632 (0.3%),
respectively.

Moreover, the risk of death increased by the presence of each additional allele C
carried by the donor in the SNP rs1800795 of gene IL6 (HR=1.29, 95%CI=1.07-
1.55, p-value=0.007). The complement allele G of this SNP has been associated
with an increment in the risk of acute and chronic GvHD in patients with HLA-
matched siblings (Cavet et al. 2001), which means that the presence of allele C
would be protective for GvHD. In our results we found that it can also represent an
increased risk for post-transplant mortality in overall HSCT patients.
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Figure 6.4: Boxplots of distribution of estimated gain in predictiond provided by
three models for overall survival
a The reference model is the clinical model containing only the EBMT-score.
b The study model is the joint multiple model of SNPs/haplotype and EBMT-score (model in

Table 6.11).
c The partial model refers to the Study model with respect to the Reference model (i.e. partial

model of SNPs/haplotype with respect to the EBMT-score).
d Mean gain in prediction was R̂2

Pred,.632= 6.8% (Reference model), 11.6% (Study model), and

partial R̂2

Pred,.632= 5.1% (gain due to SNPs/haplotype, Partial model). All the estimates were

obtained from B=1000 repeated bootstrap samples drawn from available data of n=419 patients.

The R̂2
Pred,.632 estimator indicated that the gain in prediction of overall survival with

this multiple model (EBMT-score and SNPs), with respect to a null model, was on
average 11.6%. This estimate points out an improvement in prediction due to the
SNPs in the model, in comparison to a model with only clinical EBMT-score, which
in turn provided on average 6.8% of gain in prediction. The partial R̂2

Pred,.632 of the
SNPs with respect to the EBMT-scorewas 5.1%, which reveals the additional gain
in prediction due to the SNPs. Figure 6.4 shows the distribution of the R̂2

Pred,.632

estimates. All the estimates were computed based on n=419 available patients used
in the identification of the multiple model.

Thus, the results showed that, single or multiple SNPs contributed to the improve-
ment of prediction of overall survival, in addition to the EBMT-score alone, although
the improvement became more important when multiple SNPs were modelled in as-
sociation with overall survival.

Therefore, besides the clinical EBMT-score, the consideration of genetic factors
previous to the transplant seems to be worth to evaluate and prevent the risk of
death of a patient after haematopoietic stem cell transplantation.
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Table 6.12: Risk scores per category from the joint clinical and
genetic model for overall survival

Factors Categories Risk score

EBMT-score [0− 7]a

D-IL10 haplotype ACC/ACC 0
other than ACC/ACC 4

D-IL6 rs1800795 GG 0
GC 1
CC 2

P-ESR1 rs9340799 AA 0
GA or GG 2

P-MAL rs8177374 CC 0
TC 1
TT 2

a It is the clinical EBMT risk score, which is a discrete variable obtained
from clinical scores, see Table 6.1.

6.4.4 Joint risk score based on clinical and genetic variables

for overall survival

We constructed risk scores with the joint influence of clinical and genetic variables
on overall survival (Table 6.12). The score of each variable was obtained from the
coefficient of the Cox regression model, multiplied by an integer 5, and then rounding
them to the closest integer. The integer 5 was chosen to keep the original scoring
[0-7] for the clinical EBMT-score, as originally established by its authors (Table 6.1).

The scores were always assigned as positive values. The reference score value was
always assigned as 0. Table 6.12 contains the risk score per category of genotype of
SNPs/haplotype identified for a joint model.

The IL10 haplotype had the highest score among all the factors. The presence of a
haplotype different from ACC/ACC in donors contributed with score 4 to the joint
risk score of each patient.

A joint risk score for overall survival of each patient was obtained by summing up
each individual risk score for the categories to which a patient pertained. This
joint risk score ranged from 0 to 15 (Table 6.13). These scores were grouped into
five distinguished categories (Table 6.14) according to the natural grouping by the
Kaplan-Meier survival curves (Figure 6.5). These score categories can be viewed as
a classification of patients into different risk levels of death, from low risk (scores
1-6) to high risk (scores 13-15).

We fitted a Cox model with the joint score factor with five categories (Table 6.15).
We found that the score categories were significantly different, with increasing hazard
ratios for higher risk score levels.
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Table 6.13: Frequency of death per risk score from the joint clinical
and genetic model

Joint
risk scorea

alive (%b) dead (%b) Total (%b) (%c)

1 1 (100) 0 (0) 1 (100) (0)
3 2 (100) 0 (0) 2 (100) (0)
4 6 (67) 3 (33) 9 (100) (2)
5 5 (71) 2 (29) 7 (100) (2)
6 17 (81) 4 (19) 21 (100) (5)
7 27 (59) 19 (41) 46 (100) (11)
8 24 (52) 22 (48) 46 (100) (11)
9 32 (55) 26 (45) 58 (100) (14)
10 33 (42) 45 (58) 78 (100) (19)
11 23 (32) 48 (68) 71 (100) (17)
12 15 (35) 28 (65) 43 (100) (10)
13 3 (13) 20 (87) 23 (100) (6)
14 4 (31) 9 (69) 13 (100) (3)
15 0 (0) 1 (100) 1 (100) (0)

Total 192 (46) 227 (54) 419 (100) (100)
a The joint clinical and genetic risk score according to Table 6.12.
b Percentage of alive/dead status within score.
c Overall percentage of joint risk scores.

Table 6.14: Frequency of death per group of risk scores from the
joint clinical and genetic model

Joint
risk scorea

alive (%b) dead (%b) Total (%b) (%c)

1-6 31 (78) 9 (22) 40 (100) (9)
7-9 83 (55) 67 (45) 150 (100) (36)
10 33 (42) 45 (58) 78 (100) (19)
11-12 38 (33) 76 (67) 114 (100) (27)
13-15 7 (19) 30 (81) 37 (100) (9)

Total 192 (46) 227 (54) 419 (100) (100)
a The joint clinical and genetic risk score according to Table 6.12.
b Percentage of alive/dead status within score.
c Overall percentage of joint risk scores.
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Figure 6.5: Kaplan-Meier survival curves by joint clinical and genetic scores of
patients undergoing HSCT

The Kaplan-Meier survival curves (Figure 6.6) show well separated curves of these
categories. The median survival time was 4 months for patients with joint risk score
13-15 (the highest risk group), 11 months for patients with joint risk score 11-12,
and 2.5 years for patients with joint risk score 10. Patients with joint risk score
7-9 survived for a long period, the median survival time of this group was 14 years.
More than 50% of patients with joint risk score 1-6 (the lowest risk group) were alive
by the end of the study (Figure 6.6).

The estimated gain in prediction with the new scoring with five categories was 16.9%,
which is higher than with the original factors (11.6%). This higher prediction can be
explained by the fewer number of parameters needed to predict survival. Moreover,

Table 6.15: Cox regression model for overall survival, with risk score
groups from the joint clinical and genetic modela (n=419)

Joint
risk scoreb

Coefficient SE
(coef)c

p-value Hazard
ratio

Confidence
interval (95%)

7-9 0.90 0.36 0.011 2.46 1.23 - 4.93
10 1.29 0.37 <0.001 3.62 1.77 - 7.42
11-12 1.54 0.35 <0.001 4.67 2.33 - 9.33
13-15 2.02 0.38 <0.001 7.57 3.58 - 16.00

a Estimated gain in prediction of overall survival: R̂2

Pred,.632=16.9%.
b Reference group: risk score 1-6. c Standard error of coefficient.
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Figure 6.6: Kaplan-Meier survival curves combined into five groups of the joint
clinical and genetic scores of patients undergoing HSCT

by assuming the new score as a discrete variable, only one parameter would be
involved in the prediction of overall survival. The gain in prediction with the latter
variable was estimated in 15.3% (Figure 6.7).

Moreover, we evaluated the new score on subgroup of patients in our data. Sub-
groups of patients were taken according to disease diagnosis, donor type, T-cell
depletion, and conditioning regimen (details of the specific groups are in Table 6.3).
The new score improved the prediction of overall survival in all the subgroups
(data not shown), except on acute leukaemia patients, whose prediction was slightly
smaller in comparison to the clinical EBMT-score.

We believe that the consideration of a risk score scheme including both clinical
and genetic variables can contribute to the identification of risk group of patients
undergoing HSCT. Our findings indicate that genes IL10, MAL, ESR1 and IL6
are involved in the reduced survival of HSCT patients, in addition to the clinical
EBMT-score.

Classifying patients into few risk levels, here five, according to their clinical and
genetic profiles might aid the prevention of failures in patients with high risk of death.
Clinicians can consider these risk scores to identify and evaluate the chances of an
individual patient to respond successfully to the transplantation. Hence, patients
with high risk of failures (risk scores > 11) might have the possibility to receive
medical treatment, other than HSCT, to improve their chances of survival.
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Figure 6.7: Boxplots of distribution of estimated gain in predictione with a new
score model for overall survival
a The reference model is the clinical model containing the EBMT-score.
b The new score model is the clinical-genetic model summarized with a joint risk score with five
groups.

c The risk score modelled as a categorical variable (model in Table 6.15).
d The risk score modelled as a discrete variable taking on values [1-5] (1=lowest, 5=highest risk

score group).
e Mean gain in prediction was R̂2

Pred,.632= 6.8% (Reference model), 16.9% (New score model,

categorical), and 15.3% (New score model, discrete). All the estimates were obtained from

B=1000 repeated bootstrap samples drawn from available data of n=419 patients.



Chapter 7

Summary and discussion

In the last years, genetic studies have been focused on the identification of genetic
variants, specially SNPs, that can be associated with the development of disease.
Fitting statistical models based on a set of data aid answering these research ques-
tions. However, recently the objective of some studies is not only to find models
for the association of SNPs with the outcome, but also to make prediction of the
outcome based on the fitted model. In clinical studies, attempts are done to build
genetic risk scores to predict occurrence of disease. One way to measure the predic-
tion capability of the model is through the coefficient of determination, R2, which
is obtained with the mean squared residuals of the model with respect to that of a
null or reference model.

When we evaluate the goodness of fit of the model, we measure the residuals, i.e.
the differences between the observed outcome in the data and its estimate given the
model. When we evaluate the capability of prediction of the model, we measure the
prediction errors, which are based on the differences between the observed outcome
in a validation set and its estimate given the model. A common problem in genetic
studies is the unavailability of a validation set, either because the trait is not common
and collecting new data will take long time or because of the expenses to collect
new data. Hence, there are techniques such as the 0.632 estimator that facilitate
the evaluation of a model for prediction without requiring new data.

In this thesis we made use of the 0.632 and the 0.632+ estimator in combination with
the criterion of the Schoenfeld residuals to provide a new approach for the evaluation
of prediction capability of survival models. The Schoenfeld residuals measure the
difference between the observed value of a covariate in the data, which is a predictor,
and its expectation under the model. In our approach we adapted the Schoenfeld
residuals to the concept of prediction errors. Hence, we measured the difference
between the observed value of a covariate in a validation set and its expectation
under the model.

The 0.632 estimator is a linear combination of the apparent error and the bootstrap
cross-validation, using weight 0.632 for the bootstrap cross-validation. The apparent
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error is the measure of prediction error to evaluate the goodness of fit of the model,
while the bootstrap cross-validation estimator measures the prediction error to eval-
uate prediction of the model, which is done by repeatedly splitting the available
data into training sample and validation set. A particular feature of our approach
is that the prediction errors can be estimated only at times of observed events, and
therefore, they are estimated only for individuals with observed events. The latter is
the main difference of our approach with the approach based on the criterion of the
Brier score (Gerds and Schumacher 2007), which estimates prediction errors based
on the difference of survival status and estimated survival probability, under the
model, for all available individuals.

We formulated an estimator of R2 for prediction based on estimates of prediction
errors. We denoted it by R2

Pred ,. The R2
Pred gives the gain in prediction due to

predictors considered in the model. Hence, we compared through simulation studies
the performance of the R2

Pred estimators with two criteria, one using the Schoenfeld
residuals (our approach) and the second using the Brier score. We carried out the
comparisons by estimating the prediction capability of single SNPs. We simulated
SNPs with different frequencies and effect sizes for the risk allele, that should be in
accordance with real scenarios of genetic studies.

The results revealed that the R2
Pred estimates with the criterion of the Schoenfeld

residuals is higher than estimates with the criterion of the Brier score. This is in
agreement with the findings of Müller et al. (2008), who found that the R2 estimator
with the Schoenfeld residuals for goodness of fit gives higher estimates than the
Brier score. If the effect size of the predictor is large, the ratio of prediction error
given by the model in comparison to the null model is smaller when the errors are
measured with the criterion of the Schoenfeld residuals than with the Brier score.
This advantage of the Schoenfeld residuals can be explained by the fact that, if the
predictor is correctly identified, failing individuals in a validation set will be more
prone to belong to the risk category(ies) of the predictor. In addition, if the model
contains the correct predictor, the estimate of the covariate value will tend to the risk
category value of the predictor. Hence, the prediction error of the covariate value
will tend to decrease as the effect size of the predictor increases, and consequently,
R2

Pred increases as effect size increases.

On the other hand, since the survival status of every individual in the validation set
is known, the estimator of prediction error with the Brier score averages the errors
of failing and not failing individuals. Hence, if we consider only the risk group, the
prediction error from the failing individuals might be leveled out by the errors from
the not failing individuals, and therefore the overall mean prediction error does not
get much differentiated from the null model, unless the effect of the predictor is very
high.

Even if there are differences in the R2
Pred estimates between both criteria, they

describe the same desired behaviour pattern. That is, the R2
Pred estimates increase

with higher effect size (higher hazard ratio) and higher MAF. Hence, we can say
that both criteria provide similar information about the gain in prediction but the
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Schoenfeld residuals allow us to differentiate more clearly the contribution of the
predictors to the outcome.

Another observation is that the R̂2
Pred,app , which is used for evaluating the goodness

of fit of the model, underestimates the original estimate of prediction, R̂2
Pred . This

was expected since it is known that evaluation of a model on the same data used
for model fitting gives an overoptimistic view of the real predictive performance of
a model. The R̂2

Pred,.632 estimator shows the best performance as estimator of the

original R̂2
Pred estimate. The R̂2

Pred,.632 closely estimates the R̂2
Pred values in all the

simulated scenarios. The R̂2
Pred,.632+ estimates well the R̂2

Pred values in the scenarios
with moderate effect sizes but not for small effects in the case of the criterion of the
Schoenfeld residuals, and it underestimates the R̂2

Pred values in all the scenarios in
the case of the criterion of the Brier score. Hence, we conclude that R̂2

Pred,.632 is the
best estimator to use for evaluation of gain in prediction, and moreover, estimating
it with the criterion of the Schoenfeld residuals will give us a better view of the effect
of the predictor on the outcome.

We should remark, however, that our conclusions hold under the conditions of our
simulations. We have simulated times to event with an exponential distribution, that
assumes a constant rate of occurrence of events over time. Thus, our results might
change if we vary the condition to a distribution with changing rate of events. In
addition, motivated by our application study on HSCT, we carried out the simulation
study for 60% of censoring. Only minor changes were observed when we performed
the study for 40% of censoring (data not shown). Our final results and conclusions
about the patterns by effect sizes and MAFs, as well as the comparison between
criteria and estimators of R̂2

Pred remained similar as with a 60% of censoring.

We did not evaluate the approaches under varying sample sizes. We used a sample
size of n=1000 that can be accessible for a moderate clinical study. However, this
issue may need further investigation.

As mentioned above, one important issue we deduce from our study is that the
0.632 estimator performs very well in estimating the original R̂2

Pred . Thus, it can be
used for the study of prediction capability of a Cox model without going for a more
complex estimator as the 0.632+ estimator. This fact is important especially for
researchers from the medical community or other users of statistical methods, who
require straight forward methodologies for application in their practical research.

The Schoenfeld residuals use the relation between time to event and covariate values
of failing individuals to estimate the prediction capability of a model. This feature
of the Schoenfeld residuals is an important advantage for studies where the main
interest is the construction of a new categorical variable explaining the outcome.
The new variable will be directly evaluated based on observed time to event. This
is the case, for example, when we construct genetic risk scores classifying patients
according to different risk levels for the outcome. By evaluating the genetic risk
score, the criterion of the Schoenfeld residuals determines how well the proposed
risk score represents the occurrence of events over time. This is done by taking
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into account the size effect of the risk groups, so that the more differentiated the
groups the most relevant the risk score. The latter goes in favour of the estimator
with the Schoenfeld residuals against the C-index (Harrell et al. 1996), that is a
measure commonly used in clinical practice to evaluate risk scores, among other
similar measures (Ripatti et al. 2010, Paynter et al. 2010). The C-index evaluates
the concordance between times of events and the rank of the covariate values, it does
not consider the distance between the covariate values, i.e. it does not consider the
effect size of the predictor. Hence, the introduction of the 0.632 estimator with the
Schoenfeld residuals should be a good alternative to measure more appropriately
the gain in prediction with a predictor variable in the Cox model.

Our proposed estimator should be further evaluated on other conditions and sce-
narios not covered in our simulation study. One further aspect is, for example, to
evaluate prediction under competing risk outcomes, when two or more outcomes can
occur during the follow-up period of a patient, where the occurrence of one outcome
can mask the occurrence of its competitors.

We used our proposed estimator of prediction in a practical clinical application to
judge the use of a clinical-genetic risk score to predict survival of patients under-
going haematopoietic stem cell transplantation (HSCT). The results revealed that
the EBMT-score, i.e. the clinical risk score regarded as established in the HSCT
community, only poorly predict survival of HSCT patients. Consideration of a joint
clinical-genetic risk score clearly improved the prediction, although it is still so low
that it is very far from practical use. This study demonstrated that investigations
for HSCT and also in other contexts should not be limited to model fitting but
it should be evaluated in terms of prediction. Clearly, further investigations are
needed to find a more satisfactory model to predict survival after HSCT. Having a
good model for prediction based on a few risk categories can aid clinicians to decide
on the best clinical-genetic profiles a patient should accomplish to be successfully
treated with HSCT.
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