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1 Summary 

 

The anterior-posterior axis of all bilaterian animals is subdivided into a posterior region 

marked by the expression of highly conserved Hox-cluster genes and an anterior region free 

of them. Some highly conserved genes that are expressed in the anterior head are involved in 

anterior patterning of both vertebrates and insects. This suggests that basic principles of head 

development are shared throughout bilateria. However, a comprehensive comparison of genes 

involved in anterior patterning of insects and vertebrates is missing so far.  

In order to identify more candidates of the highly conserved core of anterior bilaterian 

patterning genes, I systematically analyzed the expression and function of orthologs of 

vertebrate neural plate patterning genes in the red flour beetle Tribolium castaneum. Based on 

these results I hypothesized parts of an interaction network that might govern head 

development in Tribolium. Subsequently, I selected some of the proposed interactions and 

tested them directly, and could confirm most of them. Some of the interactions found in 

Tribolium were then tested in Xenopus laevis as a vertebrate model in order to gain insights 

into the conservation of the network. I find that the potential of six3 to activate pax6 and to 

repress wnt1 might be conserved. The comparison of the expression patterns in Tribolium 

vertebrates reveals that the ocular/preocular region of the embryonic insect head is highly 

similar to the fore-/midbrain region of vertebrates. Furthermore, this comparison suggests that 

the last common ancestor of vertebrates and insects possessed an important signalling center 

in the anterior region.  

The establishment of the anterior-posterior axis in vertebrates involves the action of canonical 

Wnt-signaling. Recent results from different arthropods suggest a conserved role of Wnt-

signaling in the formation of posterior structures among Bilaterians.  

To further substantiate the involvement of canonical Wnt-signaling in anterior-posterior axis 

formation of Tribolium I ectopically activated Wnt-signaling in the anterior head region by 

Tc-axin RNAi. These results show that ectopic early anterior Wnt-signaling leads to the 

posteriorization of the embryos, indicating that Wnt-signaling is indeed essential for proper 

anterior-posterior axis formation in Tribolium.  

Additionally, to date some aspects of insect head development like the contribution of the 

intercalary segment to the head capsule remained enigmatic. Therefore, I analyzed the 

function of the intercalary marker labial/Hox1 in Tribolium. The data show that loss of Tc-

labila/Hox1 leads to loss of the intercalary segment and that this segment gives rise to lateral 

parts of head cuticle. 
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2 Introduction 

 

2.1 Evo-Devo and the search for the genetic core of urbilterian development 

 

Most animals on earth belong to the group of Bilateria, which are characterized by a bilateral 

symmetric body plan. Bilateria show an incredibly large variety of forms. The bilateral 

symmetric animals are divided into two main groups: the Protostomes comprising Nematodes, 

Arthropods, Annelids and Mollusks and the Deuterostomes comprising Echinoderms, 

Hemichordates and Chordates (Adoutte et al., 2000; Aguinaldo et al., 1997; Peterson and 

Eernisse, 2001). Most obviously, the Bilateria possess an anterior-posterior axis with an 

anterior region that is clearly distinguishable from the rest of the body. It contains the mouth, 

the eyes and the brain and in some taxa it is separated from the trunk by a neck region. The 

anterior region is often referred to as head. Although this term does not describe strictly 

homologous parts, I want to use it synonymously for the anterior region for the sake of 

simplicity. The head region comprises the major command center of the animal, where 

sensory input is processed in order to allow appropriate response to the environment. In order 

to achieve this complex task, the ectodermally derived nervous system is especially 

centralized in an anteriorly located brain. The more posterior part of the body is involved in 

additional functions like locomotion and reproduction (Ax, 1999; Westheide and Rieger, 

1996). 

Although Bilateria possess highly diverse morphologies, scientists in the research field which 

combines Evolution and Development (Evo-Devo) showed in the last 20 years that both the 

complement and sequences of many developmental genes are highly conserved. These 

findings in distant taxa indicate that the last common ancestor of the Bilateria, the so called 

Urbilateria, already possessed a complex set of developmental genes (“toolkit”) similar to 

recent representatives (e.g. Carroll, 2005; Carroll et al., 2005; De Robertis, 2008; Gilbert et 

al., 1996). One main task for Evo-Devo research is to identify genes with conserved function 

in order to gain insights into the nature of the regulatory gene network of the Urbilateria and 

thereby understand how changes in this “toolkit” lead to the observed diversity. 
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2.2 Similarities of early establishment of the central nervous system in 

bilaterian animals 

 

The Evo-Devo approach revealed many similarities of early central nervous system 

development in bilaterian animals. Namely, the molecular basis for the distinction of neural 

and non-neural ectoderm is very similar among so far analyzed Bilaterians. Furthermore, the 

subdivision of the dorsal-ventral axis of the neural ectoderm is based on similar genes. 

Finally, conserved genes are involved in the establishment of neural identity within the neural 

ectoderm.   

 

2.2.1 Establishment of neural tissue - the dorsal-ventral axis of the embryo 

 

During early embryonic development of vertebrates and insects maternally provided factors 

are involved in the establishment of the dorsal-ventral axis of the embryo. As one 

consequence of these early events, the ectoderm becomes subdivided into a neurogenic and a 

non-neurogenic portion. The factors that are involved in this process are highly conserved 

from insects to vertebrates. The vertebrate Bone morphogenic protein 4 (BMP4) and its insect 

ortholog decapentaplegic (dpp) are required for non-neurogenic epidermal development of 

the ectoderm. Their function is antagonized by the action of chordin in vertebrates and short 

gastrulation (sog) in insects whose activity defines the neurogenic part of the ectoderm. 

However, due to an inversion of the dorsal-ventral axis in the chordate lineage, the neurogenic 

ectoderm of vertebrates is located on the dorsal side, whereas the central nervous system of 

non-chordates develops from the ventral region (for reviews see e.g. Arendt and Nubler-Jung, 

1999; De Robertis et al., 2000; Urbach and Technau, 2008). 

 

2.2.2 The conserved columnar genes further subdivide the dorsal-ventral axis of the 

neuroectoderm   

 

Through the action of the so called columnar genes, the neuroectoderm of insects and 

vertebrates becomes further subdivided into three parallel, longitudinal domains on each side 

of the midline. Hence, neural precursor cells are specified within one of these three columns.  
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The ventral or medial column is marked by ventral nerve cord defective (vnd)/nkx2.2. The 

intermediate column is marked by the expression of intermediate nerve cord defective 

(Richards et al.)/Gsh and in the lateral column, muscle segment homeodomain (msh)/Msx is 

expressed (Buescher and Chia, 1997; Chu et al., 1998; Isshiki et al., 1997; Skeath, 1999; 

Weiss et al., 1998). Additionally, these genes have been shown to be expressed in conserved 

longitudinal domains in the red flour beetle Tribolium castaneum (Wheeler et al., 2003). 

Although their early establishment is different from Drosophila, the vertebrate othologs of the 

columnar genes are similarly involved in the dorsal-ventral patterning of the neural plate and 

subsequently within the neural tube (Arendt and Nubler-Jung, 1999; Cornell and Ohlen, 2000; 

Urbach and Technau, 2008; Wilson and Maden, 2005). Interestingly, it has been shown in the 

annelid Platynereis dumerilii, a lophotrochozoan protostome, that the dorsal-ventral axis of its 

ventral nerve cord is similarly patterned as in vertebrates and insects. Additionally, it has been 

shown that conserved neuron types develop from comparable regions along the dorsal-ventral 

axis (Denes et al., 2007), confirming a highly conserved principle of dorsal-ventral patterning 

in the nervous system. 

 

2.2.3 The assignment of neural identity to cells in the neurogentic ectoderm is based on 

a similar molecular basis in Bilaterians   

 

Another task of early neural patterning is similarly based on conserved mechanisms: the final 

separation of neuroectoderm from epidermal ectoderm.  

The link between early dorsal-ventral axis specification, by which neural fate becomes 

determined, and the assignment of neural identity seems to be mediated by genes of the sox-

family in Drosophila and vertebrates (Buescher et al., 2002; Mizuseki et al., 1998a; Mizuseki 

et al., 1998b; Sasai, 2001a; Sasai, 2001b).  

In Drosophila the decision of what cell becomes a neuroblast is governed by the action of 

proneural basic-helix-loop-helix (bHLH) factors of the achaete-scute (as-c) complex that 

define a field of cells which have the potential to adopt a neural fate. By lateral inhibition by 

Delta/Notch signaling one cell is destined to become a neuroblast and to delaminate to 

undergo several asymmetric stem cell divisions (Campos-Ortega, 1995; Campos-Ortega, 

1998; Dambly-Chaudiere and Vervoort, 1998; Technau et al., 2006; Wodarz and Huttner, 

2003).  
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Similarly, vertebrate orthologs of as-c factors and components of the Delta/Notch pathway are 

expressed in the neural ectoderm. It has been shown that a well defined action of these factors 

is essential to regulate the balance between proliferation and differentiation (Ishibashi, 2004). 

 

In summary, the early distinction of neural and non-neural ectoderm in so far analyzed 

Bilaterians is based on conserved genes and their interactions during dorsal-ventral axis 

formation. The dorsal-ventral axis of the neuroectoderm is patterned by the conserved 

columnar genes. Finally, also the establishment of neural identity is based on similar factors 

in vertebrates and insects. These findings suggest a monophyletic origin of bilaterian central 

nervous systems. 

 

2.3 Patterning of the anterior-posterior axis in bilaterian animals 

 

The central nervous systems of bilaterian animals are established by highly conserved signals. 

Also the early establishment of the anterior-posterior axis and the subsequent regional 

specification of the neural ectoderm seem to be based on conserved factors among Bilaterians.  

  

2.3.1 Patterning of the vertebrate neural plate and its implication on cranial placode 

and neural crest development 

 

As described above, the vertebrate neuroectoderm, the neural plate, requires the action of 

BMP4 antagonists in the dorsal ectoderm. These antagonists are released from the dorsal 

blastopore lip (De Robertis et al., 2000). In addition to dorsal-ventral axis formation, the 

dorsal blastopore lip is also involved in the patterning of the anterior-posterior axis within the 

neural plate.  

This process is partly linked to the ingressing mesoderm during gastrulation. The first cells 

that pass the dorsal blastopore lip will later contribute to the so called pharyngeal 

mesendoderm or prechordal plate which underlies the anterior portion of the neural plate (e.g. 

Nieuwkoop, 1997; Ruiz i Altaba, 1993). One important gene that has been shown to promote 

these mesoderm movements is goosecoid (gsc). This gene is expressed in the early organizer 

and later marks the prechordal plate in so far analyzed vertebrates (Blum et al., 1992; Cho et 

al., 1991; Izpisua-Belmonte et al., 1993; Schulte-Merker et al., 1994; Stachel et al., 1993). 
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The prechordal plate secretes factors which inhibit Wnt-signals emitted from more posterior 

organizer derivates. This antagonizing action results in a posterior to anterior gradient of Wnt-

signals (Kiecker and Niehrs, 2001). The importance of posterior Wnt-signals has been shown 

by loss Wnt function, which results in posterior truncations (Galceran et al., 1999; Pinson et 

al., 2000; Takada et al., 1994). FGF factors were shown to provide the right condition for cells 

to respond to Wnt-signaling (Domingos et al., 2001). A retinoid acid (RA) gradient with 

highest concentration in the posterior region seems to be similarly involved in posterior 

specification of the neural plate (Cho and De Robertis, 1990; Dupe and Lumsden, 2001). 

Together, Wnt and RA signaling are required for pattern formation along the anterior-

posterior axis in a concentration dependent manner. Among other genes, the activation of 

Hox-cluster genes depends on RA signals (Daftary and Taylor, 2006; Kessel, 1992; Kessel 

and Gruss, 1991).  

However, the region anterior to the hindbrain lacks Hox-cluster gene expression (McGinnis 

and Krumlauf, 1992). The Wnt inhibitors from the prechordal plate provide a Wnt-signal-free 

surrounding in the anterior neural plate, which is further patterned by two important signaling 

centers, namely the zona limitans intrathalamica (zli) and the mid-/hindbrain boundary 

(MHB). This implies that patterning of the anterior region relies on different mechanisms and 

genes than posterior patterning.  

The Wnt-signal-free anterior surrounding is necessary for the activation of anterior marker 

genes like six3, otx2 and bf1/foxg1 (Braun et al., 2003; Houart et al., 2002; Kiecker and 

Niehrs, 2001; McGrew et al., 1995; Niehrs, 1999). Contrary, higher Wnt-levels promote the 

activation of posterior neural plate markers like irx3 (Braun et al., 2003). The interface 

between anterior six3 and posterior irx3 expression marks the boundary between the 

telencephalon (anterior forebrain) and the diencephalon (posterior forebrain). This boundary, 

the zona limitans intrathalamica, has been shown to possess signaling capabilities like the 

mid-/hindbrain boundary (see below) (Kiecker and Lumsden, 2004; Vieira et al., 2005).  

The anterior hindbrain and the midbrain are mainly patterned by the action of an organizer 

region called istmic organizer or mid-/hindbrain boundary. It has been shown by several 

authors that the MHB possesses organizing properties, since a misplaced or absent MHB 

leads to severe patterning defects in adjacent tissues of the midbrain as well as in the 

hindbrain (Hidalgo-Sanchez et al., 2005; Wurst and Bally-Cuif, 2001). The MHB is defined 

by mutual repression of otx2 and gbx1/2 genes shortly after gastrulation. Subsequently, genes 

become active either exclusively in the mid- or hindbrain (wnt1, fgf8) or in domains 

overlapping the otx2/gbx1/2 interface (en1/2, pax2/5/8 and SP-factors). Together, these genes 
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are involved in a regulatory network that governs the development of adjacent brain regions 

(Griesel et al., 2006; Rhinn et al., 2005; Tallafuss et al., 2001; Wurst and Bally-Cuif, 2001). 

Another important function of the signals involved in neuroectoderm formation is the 

patterning of the neural plate associated tissue, the cranial placodes and neural crest. At the 

interface between the neural plate and the ventral epidermal ectoderm where high epidermal 

levels of BMP signals meet posterior neural Wnt and FGF signals, a special rim region is 

specified (Fig. 2.1). Depending on the environment, this rim region gives rise to either the 

neural crest in the posterior or the cranial placodes in the anterior region (Fig. 2.1) (Baker and 

Bronner-Fraser, 1997; Brugmann and Moody, 2005; Schlosser, 2006; Schlosser, 2008; Streit, 

2007). The anterior rim ectoderm which gives rise to cranial placodes (the preplacodal 

ectoderm, PPE) is marked by genes of the eyes absent (eya) and sine oculis homeobox (six1 

and six4) family from early stages on (Schlosser and Ahrens, 2004). During further 

development the PPE becomes further subdivided and eventually the placodal cells 

delaminate from the ectoderm to form different cell types of sensory organs in the vertebrate 

head (Schlosser, 2006; Streit, 2004). 

 

  

 

In summary, the Wnt antagonists from the anterior non-neural regions are essential for the 

establishment of two signaling centers within the anterior neural ectoderm. These signaling 

centers themselves are involved in the anterior-posterior subdivision and subsequent 

specification of the anterior neural ectoderm. Also the specification of neural plate associated 

tissue, the cranial placodes and the neural crest, depends on the signals involved in dorsal-

ventral and anterior-posterior axis patterning. More specifically, the anterior cranial placodes 

which develop from ectoderm adjacent to the neural plate depend on the anterior Wnt-signal-

free surrounding.   

 

Fig. 2.1: Establishment of the preplacodal 

ectoderm (PPE). 

 

The interface between the neural (np) and the 

epidermal ectoderm (ee) gives rise to neural crest 

tissue (ncr) and the preplacodal ectoderm (ppe). While 

posterior Wnt-signals in combination with epidermal 
BMP-signals promote the formation of neural crest 

tissue, Wnt-antagonists and FGF factors from the 

anterior mesoderm (m) promote the formation of the 

preplacodal ectoderm (PPE). The PPE gives rise to 

cranial sensory placodes.            a-anterior, p-posterior 

(after Schlosser, 2008 and Streit, 2007) 
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2.3.2 Patterning of the anterior region of bilaterian animals is governed by some highly 

conserved genes 

 

Experiments in mouse and Drosophila show, that orthodenticle (otd/otx) and empty spiracles 

(ems/emx) are essential for proper head and brain formation in these highly diverse organisms. 

More strikingly, Drosophila otd is partly able to rescue mouse otx1 mutant phenotypes, 

indicating a deep conservation among Bilaterians (Fig. 2.2) (Acampora et al., 1998; Hirth and 

Reichert, 1999; Holland et al., 1992; Lichtneckert and Reichert, 2005). These findings suggest 

that the genes which are involved in early head patterning are similarly conserved as for 

example the Hox-genes in the posterior region (see below). This suggestion is substantiated 

by work on the Hemichordate Saccoglossus kowalevskii, a Deuterostome, in which the 

patterning of both the anterior-posterior and the dorsal-ventral axis is achieved by the same 

large set of genes as in higher Chordates, like fish, frogs, birds and mice. Moreover, these 

conserved genes are also expressed in comparable regions along the axes (Lowe, 2008; Lowe 

et al., 2006; Lowe et al., 2003). These data clearly indicate that the patterning of anterior 

structures is at least among Deuterostomes highly conserved. 

  

 

 

Moreover, a growing number of publications show that also Protostomes and Deuterostomes 

are very similar based on some anterior patterning genes (e.g. Arendt et al., 2004; Tessmar-

Raible et al., 2007; Urbach, 2007). However, a comprehensive comparison of genes involved 

in early anterior patterning is missing so far (see also chapter 2.5.1). 

 

Fig. 2.2: Conserved anterior-posterior regions in 

insects and vertebrates. 

 

The anterior to posterior expression of the Hox-cluster 

genes corresponds to their 3’ to 5’ organization within 

the chromosomal cluster. The genes of the Hox-cluster 

are expressed in specific regions along the anterior-

posterior axis where they specify regional identity. The 

anterior region of Drosophila and mouse is free of 

genes of the Hox-cluster. Here some highly conserved 
genes like otd/otx and ems/emx are involved in 

regionalization. 

Taken from (Carroll, 1995); otd/otx and ems/emx data 

extracted from (Holland et al., 1992) 
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2.3.3 The identity of tissue along the anterior-posterior axis is governed by the highly 

conserved Hox-genes in the posterior region  

 

The homeotic selector genes of the Hox-cluster (Hox-genes, Fig. 2.2) are present in all so far 

analyzed Bilaterians. They are involved in the specification of tissue identity along the 

anterior-posterior axis (Finnerty, 2003; Slack et al., 1993). Interestingly, the anterior-posterior 

order in which these genes are expressed is mimicked in the 3-prime to 5-prime order in 

which the genes are organized in a chromosomal cluster. This spatial collinearity is a common 

feature of Hox-genes in most Bilaterians (Favier and Dolle, 1997; Garcia-Fernandez, 2005; 

McGinnis and Krumlauf, 1992).  

The most 3-prime located Hox gene labial/Hox1 for example is also the most anterior 

expressed Hox gene in the fruit fly Drosophila melanogaster in which it is expressed in the 

intercalary segment (Diederich et al., 1989; Merrill et al., 1989). The same is true for other 

arthropods (Janssen and Damen, 2006). Also in vertebrates, Hox1 is initially the anterior most 

expressed Hox-gene. It is expressed in the region of the rhombomeres 3/4 in the hindbrain 

(McNulty et al., 2005; Murphy and Hill, 1991; Sundin et al., 1990). Due to successive 

duplications and subsequent divergence of the entire Hox-cluster, vertebrates possess more 

than one paralog of a respective Hox gene (Prince and Pickett, 2002). Therefore it is 

necessary to abolish the action of all paralogs in order to analyze the function of a specific 

Hox gene in vertebrates. The loss of function of all three Hox1/labial genes in the frog 

Xenopus laevis results in the reduction of hindbrain and the loss of hindbrain associated 

neural crest derivates (McNulty et al., 2005). The function of Drosophila labial/Hox1, 

however, is not that clear because loss of function results in head involution defects. Hence, it 

is difficult to distinguish between direct effects of loss of Dm-labial/Hox1 function and 

secondary defects due to defective head involution (Diederich et al., 1989; Merrill et al., 

1989). 

 

2.3.4 The involvement of Wnt-signaling in anterior-posterior axis formation seems to 

be conserved among Bilaterians  

 

Recent findings in a variety of protostomes started to shed light on the conservation of the 

role of Wnt-signaling in anterior-posterior axis formation. In the red flour beetle Tribolium 

castaneum and the spider Achaearanea tepidariorum it has been shown that loss of Wnt-

signals results in posterior truncations (Bolognesi et al., 2008b; McGregor et al., 2008). 
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Furthermore, it has been shown in the cricket Gryllus bimaculatus that the expression of the 

posterior maker caudal depends on Wnt-signaling (Shinmyo et al., 2005). In planarians 

(Platyhelminthes), the regeneration of posterior structures depends on Wnt-signaling (Adell et 

al., 2009). These loss of function results indicate a conserved role of Wnt-signaling in 

posterior patterning (Martin and Kimelman, 2009). However, the effect of ectopic Wnt-

signals in the anterior region of protostomes remains to be analyzed in different protostomes.  

 

In conclusion, although the function of labial/Hox1 in insects is still enigmatic, much is 

known about posterior patterning and the specification of tissue by the highly conserved Hox-

genes. But so far no comprehensive comparison of genes involved in anterior patterning is 

available. Furthermore, loss of function experiments indicate that the involvement of Wnt-

signaling in the formation of posterior structures could be conserved among Bilaterians. 

However, the effects of ectopic Wnt-signals in the anterior region of protostomes, have not 

been analysed. 

 

2.4 The internalization of the central nervous system differs in vertebrates and 

insects  

 

Although many early events in central nervous system development seem to be conserved 

among Bilaterians, the process of internalization of the neural ectoderm to form the ventral 

nerve cord in insects and the neural tube in vertebrates differs significantly. 

The vertebrate neural plate is composed of a coherent sheet of neuroectodermal cells. Drastic 

morphological changes after gastrulation lead to the inward folding of the entire neural plate 

(neurulation). This process results in a neural tube which is covered by epidermal ectoderm 

and underlined by mesodermal derivates of the organizer, the notochord (Schoenwolf and 

Smith, 1990). 

In contrast, in insects the future neural and epidermal cells are located in one initially 

undistinguishable ectodermal cell layer. By the above described action of achaete-scute (as-c) 

factors and Delta/Notch signaling individual neural stem cells, the neuroblasts, are 

determined. The neuroblasts delaminate from the surface ectoderm to ingress into the embryo. 

Once the neuroblasts moved inside, they undergo several asymmetric cell divisions, by which 

they produce ganglion mother cells (GMC). The GMCs then divide once more to generate 

neurons and glia cells (Campos-Ortega, 1995; Technau et al., 2006; Wodarz and Huttner, 
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2003). Importantly, the former neighbors of the neuroblasts remain in the epithelium and later 

contribute to the epidermis that secretes the cuticle.  

Hence, the vertebrate central nervous system develops from a coherent sheet of cells, whereas 

in insects, individual cells ingress to form the nervous system. This difference offers a great 

advantage for the analysis of conserved neural patterning genes. Therefore, the analysis of 

orthologs of vertebrate neural plate patterning genes in insects offers the opportunity to 

analyze neural and epidermal ectodermal patterning simultaneously, i.e. the easy to score 

cuticle defects will in many cases correlate to less accessible brain defects. 

As an example, the anterior marker genes otd/otx and ems/emx are highly conserved with 

regard to their expression and function in vertebrates and insects. In vertebrates these two 

genes are expressed in the neural plate and solely involved in neural patterning. In Drosophila 

and Tribolium, both genes are expressed in the anterior embryonic head region, which is 

composed of both potential neural and epidermal ectodermal cells. Indeed, they affect both 

central nervous system and epidermal patterning (Acampora et al., 1998; Hirth and Reichert, 

1999; Holland et al., 1992; Lichtneckert and Reichert, 2005; Schinko et al., 2008).  

Since a comprehensive comparison of anterior patterning among Bilaterians is still missing, 

the analysis of vertebrate anterior patterning genes in an insect model will provide new 

insights into the degree of conservation of anterior patterning in bilaterian animals. 

Additionally, this approach can reveal new genes involved in anterior patterning in insects, 

which is actually an important task, because no comprehensive list of genes involved in head 

development of insects exists (see below). 

 

2.5 Head development in insects 

 

2.5.1 Head patterning in the fruit fly Drosophila melanogaster 

 

The insect head is built by two major parts, each of which is formed by tissue derived from at 

least three embryonic segments. The posterior gnathal region (gnathocephalon) comprises 

three segments that bear the mouthparts, namely the labial (lb), maxillary (mx) and 

mandibular (md) segments (Fig. 2.3). The ganglia of these three segments are fused to form 

the suboesophageal ganglion of the brain (Dettner and Peters, 2003). The anterior pregnathal 

region (procephalon) is composed of the appendage-free intercalary segment (ic), the antennal 

(ant), the ocular segments (oc) and additional preantennal tissue (Fig. 2.3) (Rogers and 
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Kaufman, 1996; Rogers and Kaufman, 1997; Snodgrass, 1935). The intercalary ganglion 

represents the tritocerebrum, the antennal segment provides the deutocerebrum part and the 

neural cells of the preantennal region form the protocerebrum. Together these ganglia form 

the supraoesophageal ganglion of the brain (Dettner and Peters, 2003). 

 

  

 

In Drosophila, the patterning of the maxillary and labial segments occurs through the same 

segmentation cascade as in the trunk involving maternal morphogens, gap-, pair-rule and 

segment polarity genes (Ingham, 1988; Pankratz and Jackle, 1990; St Johnston and Nusslein-

Volhard, 1992). The segment identity is specified by the action of homeotic selector genes of 

the Hox-cluster (Lawrence and Morata, 1994; Lewis, 1978; McGinnis and Krumlauf, 1992). 

In contrast, the pregnathal region is patterned in a different way, for instance without pair-rule 

function. In Drosophila, a set of so called head gap genes is required for proper pregnathal 

segment polarity gene expression (Cohen and Jurgens, 1990; Crozatier et al., 1999; 

Grossniklaus et al., 1994; Wimmer et al., 1997; Wimmer et al., 1993). The identity of these 

segments is specified largely independently from Hox-genes as the intercalary segment is the 

anterior most segment expressing a Hox-cluster gene, namely the Hox1 ortholog labial 

(Diederich et al., 1989; Merrill et al., 1989; Nie et al., 2001). The mandibular segment 

represents the hinge region between the posterior and the anterior patterning system because 

this segment is patterned by both the posterior pair-rule genes and the anterior head gap genes 

(Vincent et al., 1997). Although some genes and interactions are known, a comprehensive list 

of genes involved in early patterning of the insect head does not exist so far. 

 

 

 

Fig. 2.3: Segmental organization of the embryonic insect head. 

 

The embryonic insect head is composed of several segments. The 

gnathocephalon consists of three segments: the labial, the maxillary 

and the mandibular segment. The procephalon consists of two 
segments: the intercalary, the antennal segment. Anterior to the 

antennal segment an ocular/preantennal region exists. The median 

clypeolabral region comprises the insect upper lip (labrum) and the 

stomodeum.  

(Taken from Posnien and Bucher, submitted)  
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2.5.2 Some unsolved problems concerning insect head development   

 

One unsolved problem in insect head patterning concerns the formation of the insect head 

capsule. During early embryonic development, the gnathal segments and their appendages are 

formed in a row very similar to the more posterior trunk segments (Fig. 2.3). Later in 

development extensive morphogenetic movements occur that lead to the migration of 

mouthparts towards anterior where they end up surrounding the mouth opening. Both these 

ventral morphogenetic movements and the formation of the dorsal head capsule of the first 

larval instar have remained enigmatic. Although the segmental and parasegmental boundaries 

of arthropods (except for the disputed labral segment) are clearly defined in the embryo by 

adjacent expression of engrailed and wingless, it remains unclear where these borders are 

located in the fully developed head. Hence, it remains unclear what tissues exactly form 

dorsal or lateral portions of the head capsule in a typical insect head.  

Especially the contribution of the intercalary segment to the larval cuticle is difficult to 

analyze since it has no landmarks like appendages that could be followed throughout 

development. Also the function of the intercalary marker labial/Hox1 is difficult to analyze 

because in Drosophila labial mutants, head involution is defective which leads to several 

secondary defects which blur the direct effects (Diederich et al., 1989; Merrill et al., 1989). It 

has been suggested that the intercalary segment contributes to lateral and ventral regions of 

the larval pharynx (Rogers and Kaufman, 1997). Also the embryonic hypopharyngeal lobes 

have been assigned to the intercalary segment but also a mandibular origin has been proposed 

(Economou and Telford, 2009; Mohler et al., 1995). 

Unfortunately, Drosophila is less well suited for studies on the development of the insect head 

for two main reasons. First, during late embryonic development the main head structures 

become internalized into the thorax by a process called head involution. Consequentially, the 

head becomes highly reduced, which hampers the analysis of the impact of head phenotypes 

significantly (Akam, 1989; Bucher and Wimmer, 2005; Jürgens et al., 1986; VanHook and 

Letsou, 2008; Younossi-Hartenstein et al., 1993). More specifically, the reduced head is poor 

in morphological markers which could be analyzed in order to detect head patterning defects. 

Many mutations lead to head involution defects. Hence, the cuticle phenotype is a mix of 

direct defects and secondary defects based on disturbed head involution. Second, Drosophila 

and other higher dipterans utilize a specific and derived system to establish the anterior 

portion of the embryo. This system is based on the maternally provided factor bicoid whose 

translation product forms an anterior to posterior gradient. The gradient provides positional 
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information along the anterior portion of the anterior-posterior axis. (Driever and Nusslein-

Volhard, 1988a; Driever and Nusslein-Volhard, 1988b). However, so far it has been 

impossible to find bicoid orthologs in other insects than higher dipterans, suggesting that the 

original mechanism of anterior patterning was based on other genes (Brown et al., 2001; 

Stauber et al., 2002). 

 

In conclusion, although from work in Drosophila much is known about anterior head 

patterning in insects, a comprehensive list of involved markers and their conservation among 

Bilaterians is still missing. Furthermore, specific questions like the contribution of head 

segments to the lateral and dorsal head capsule are difficult to answer by using Drosophila as 

model for head development.   

 

2.6 The red flour beetle Tribolium castaneum as insect model for head 

development 

 

For developmental studies the fruit fly Drosophila melanogaster is the most powerful insect 

model organism. For Evo-Devo approaches, however, Drosophila is not always the first 

choice, since several features are considered to be a highly derived adaption to a very short 

life cycle. One example for this is the long germband mode of embryogenesis, where 

segments become specified simultaneously in early blastodermal stages. In contrast, the red 

flour beetle Tribolium castaneum develops in a more insect typical short germband mode, in 

which posterior segments are added progressively from a posterior growth zone (Lynch and 

Desplan, 2003a; Lynch and Desplan, 2003b; McGregor, 2006; Peel et al., 2005). Hence, 

Tribolium possesses a more ancestral mode of early development and is therefore well suited 

to serve as model for Evo-Devo questions.   

On the other hand, for studies on the development of the insect head, Drosophila is a rather 

poor model because head involution and lack of larval appendages, including mouthparts, 

hampers the analysis of early head development. In contrast, Tribolium possesses a fully 

developed larval head with well formed external mouthparts. Effects of manipulations of early 

embryonic patterning processes on head development are easily scored in larval stages 

(Bucher and Wimmer, 2005). Beside the more insect typical development and head formation, 

a robust reverse genetic method to knock down gene function is available (RNA interference, 

RNAi). The fact that the RNAi response is even transmitted systemically allows the 
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application of this method in every stage of development. Specifically, double stranded RNA 

(dsRNA) can be injected into pupal or adult stages and the RNAi effect is transmitted to the 

offspring, which can be obtained and analyzed in large numbers. And robust systemic RNAi 

in combination with the accessible genome is a powerful tool for candidate gene approaches 

and functional genome wide screens (Bucher et al., 2002; Bucher and Wimmer, 2005; 

Richards et al., 2008). 

Alongside these benefits, more general features qualify Tribolium as an insect model 

organism. First, the beetles are easy to keep because they can be reared on normal flour 

without an additional water source. Second, one life cycle lasts around four weeks at 30°C. At 

this temperature the embryonic development is completed within 3-4 days. Hence, effects of 

applied RNAi can be analyzed in very short time. Third, the long lifespan of approximately 

three years simplifies the stock keeping procedure. Fourth, a comprehensive piggyBac based 

mutagenesis screen provided mutants affecting genes that are so far unknown developmental 

genes (Trauner et al., in preparation). And finally, various transgenic techniques are available, 

like heat-shock mediated misexpression and the recently established UAS/GAL4 system 

(Schinko and Bucher, personal communication). In conclusion, Tribolium castaneum is 

perfectly suited to study head development.  

In recent years some progress in understanding head development in Tribolium has been 

made. Like in Drosophila, the formation of gnathal segments and the specification of their 

identity appear to rely in principle on the same mechanisms as in the trunk (Beeman et al., 

1993; Brown et al., 2002; Choe and Brown, 2007; Choe et al., 2006; Maderspacher et al., 

1998; Tomoyasu et al., 2005). For the patterning of the pregnathal region it has been shown 

that the head gap genes as known from Drosophila possess diverged functions in Tribolium. 

In contrast to its function in Drosophila, Tc-orthodenticle1 (Tc-otd1) knock down affects all 

blastodermally established segments, indicating an early regionalization function. The later 

patterning function of Tc-otd1 in the anterior head is similar to its Drosophila ortholog 

(Schinko et al., 2008; Schroder, 2003). Tc-empty spiracles (Tc-ems) function is restricted to 

the posterior ocular and anterior antennal region. And although expressed in the early 

mandibular segment, the knock down of Tc-buttonhead (Tc-btd) does not affect head 

development. In contrast to the findings in Drosophila, both Tc-ems and Tc-btd seem to be 

less important for early anterior head patterning (Schinko et al., 2008). Also in contrast to 

Drosophila, the gap gene Tc-knirps is essential for the development of the mandible and 

antennae in Tribolium (Cerny et al., 2008). Additionally, Tc-labial/Hox1 has been shown to 

specifically mark the intercalary segment in Tribolium (Nie et al., 2001). This observation and 
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the comparison of other intercalary and mandibular marker genes (cap’n’collar, cnc; knot, kn  

and crocodile, croc) in Tribolium and Drosophila already helped to clarify the affinity of a 

Drosophila head specific structure (hypopharyngeal lobes) to the mandibular segment 

(Economou and Telford, 2009). Beside these findings, not much is known about the 

patterning of the head in Tribolium. More specifically, like in Drosophila a comprehensive 

list of genes involved in early head patterning is still missing.  

 

2.7 Aims 

 

Encouraged by the high degree of conservation of the anterior patterning genes otd/otx and 

ems/emx in vertebrates and insects, I aimed to identify more candidates of the highly 

conserved core of anterior bilaterian patterning genes. Therefore, I analyzed the expression 

and function of Tribolium orthologs of vertebrate neural plate patterning genes. If these genes 

are involved in the formation of comparable regions in insects and vertebrate, there is a high 

chance that they already belonged to the repertoire of anterior patterning genes of the 

urbilateria. If the orthologs of vertebrate neural plate genes are expressed in the embryonic 

head of Tribolium, they are very likely involved in the patterning of the epidermal as well as 

the neural ectoderm (see chapter 2.4). Hence, this candidate gene screen provides several new 

genes involved in anterior patterning in insects. 

Based on the expression and function of the candidate genes, I formulated hypotheses on the 

hierarchy within the interaction network which governs head formation in Tribolium. In 

addition I hypothesized selected interactions, which I subsequently tested experimentally. 

Finally, I compared the Tribolium data to the corresponding vertebrate situation in order to 

gain insight into the conservation of the candidate genes among Bilaterians. 

Since canonical Wnt-signaling seems to be involved in posterior patterning of insects and 

vertebrates, I aimed to test the effects of ectopic Wnt-signals in the anterior region of 

Tribolium. 

Finally, I analyzed the function of labial/Hox1 in Tribolium in order to reveal the contribution 

of the intercalary segment to the head capsule.  
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3 Materials and Methods 

 

3.1 Animals 

 

For the experiments the wild type Tribolium castaneum strain San Bernardino (Richards et 

al.) was used. The beetles were reared under standard conditions on full grain flour (Sokoloff, 

1974). 

 

3.2 Identification and cloning of candidate genes in Tribolium 

 

Mouse protein sequences of the candidate genes (see Table S1) were obtained from the NCBI 

database (http://www.ncbi.nlm.nih.gov/). The search for potential Tribolium orthologs was 

performed using the Blast server of the Baylor College of Medicine 

(http://www.hgsc.bcm.tmc.edu/blast/blast.cgi?organism=tcastaneum).  

mRNA of 0-48h staged embryos was isolated using the MicroPoly(A)Purist Kit (Ambion) and 

cDNA was synthesized by using the SMART PCR cDNA Synthesis Kit (ClonTech). 

Subsequently, based on the Blast analysis sequence specific primers were designed and gene 

fragments were isolated from cDNA by standard PCR. Cloning of the obtained fragments into 

plasmids was performed by using the TA Cloning Dual Promotor Kit (pCRII) (Invitrogen 

GmbH, Karlsruhe). The cloned fragments were sequenced by Macrogen (Korea) by using 

standard T7 (TAATACGACTCACTATAGG), SP6 (GATTTAGGTGACACTATAGA), M13 

(GTAAAACGACGGCCAGTG) or M13R (GGAAACAGCTATGACCAT) primers. 

In order to link the Tribolium orthologs to the corresponding vertebrate gene, the analyzed 

genes are always indicated with the Tribolium ortholog followed by the name of the 

vertebrate ortholog, in case this name is different (e.g. Tc-otd1/otx).  

 

3.3 Phylogenetic analysis 

 

In order to reveal the orthology of the cloned genes, the obtained sequences were analyzed by 

calculating phylogenetic trees. The sequences of the cloned genes were blasted against the 

entire available nucleotide collection using the tblastn algorithm of the NCBI database 
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(Altschul et al., 1997). Sequences of different search results from insects, vertebrate and if 

available from other groups were used for later tree calculation. Furthermore, the sequences of 

the cloned genes were blasted against the Tribolium nucleotide collection using the tblastn 

algorithm of the NCBI database. Each of the first three hits that were not identical to the 

initial sequence was used for tree calculation and was again blasted against the entire 

available nucleotide collection using the tblastn algorithm of the NCBI database. The first 

three hits of each these searches were used for the tree calculation. 

All sequences obtained with the help this approach were aligned using the ClustalW algorithm 

of Mega 4 (Kumar et al., 2008; Tamura et al., 2007). The alignment was used as basis for the 

phylogenetic tree calculation in Mega 4 using the Neighbor-Joining method (Saitou and Nei, 

1987). Specificities of the phylogenetic analysis were the following: The bootstrap consensus 

tree inferred from 10.000 replicates is taken to represent the evolutionary history of the 

analyzed genes (Felsenstein, 1985). Evolutionary distances were computed using the Poisson 

correction method (Zuckerkandl and Pauling, 1965). All positions containing gaps and 

missing data were eliminated from the dataset (Complete deletion option). See Supplementary 

Figures for all phylogenetic trees. The phylogenetic relationship for the following genes are 

already published: Tc-wnt11 and Tc-wg/wnt1 (Bolognesi et al., 2008a), Tc-otd1/otx and Tc-

ems/emx (Schinko et al., 2008), Tc-ey/pax6 and Tc-toy/pax6 (Yang et al., 2009a), Tc-eya 

(Yang et al., 2009b). 

   

3.4 Fixation of embryos  

 

Wild type and RNAi treated embryos were fixed between 0-48 h of development by using 

standard procedure (Marques-Souza et al., 2008). In contrast to the quoted reference, embryos 

were dechorionized in bleach solution two times for three minutes and the remaining embryos 

were passed through a 0.8 needle. 

 

3.5 Whole mount in situ hybridization 

 

Single (NBT/BCIP) and double in situ stainings (NBT/BCIP & FastRed or INT/BCIP) were 

performed for wild type and RNAi embryos as described (Wohlfrom et al., 2006). Staging of 

the embryos is based on Tc-wg expression. Tc-wg stripes were counted starting with the 

mandibular one, thus excluding the ocular and antennal Tc-wg domains.  
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3.6 Knock down of gene function by RNA interference (RNAi) 

 

Templates for in vitro transcription were amplified from plasmids by PCR reaction using 

primers that contain the promoter for the T7 RNA polymerase. The dsRNA was produced by 

in vitro transcription using Megascript T7 kit (Ambion). 

Parental and embryonic RNAi was performed as published previously by injecting female 

pupae and fertilized eggs at the early blastoderm stage (Bucher et al., 2002; Schinko et al., 

2008). Because pupal injection of dsRNA of some genes leads to sterility, adult females were 

injected. They were cooled on ice and squeezed using entomology tweezers until they 

protruded their genitalia and were injected laterally. Lengths of gene fragments used for 

dsRNA synthesis are listed in Table 3.1 and 3.2. For the analysis of Tc-labial/Hox1 a 1080bp 

fragment was used to synthesize dsRNA which was injected into pupae. The following 

concentrations were used for the RNAi experiments: pupal RNAi and adult RNAi: 2-4µg/µl; 

embryonic RNAi: 1-2µg/µl.  

 

Table 3.1: Overview of the genes isolated in this work.  

 

The used primer pairs are listed as well as the RNAi approach used for knocking down the respective gene.  

fw-forward, rev-reverse, eRNAi-embryonic RNAi, pRNAi-pupal RNAi, aRNAi-adult RNAi 

 

 

 

Gene Size fw primer (5' - 3') rev primer (5' - 3') eRNAi pRNAi aRNAi

Tc-ase 737bp CGTCAGTGTGGTATCCCCTC GCTGTTCCCACCACTGCAT

Tc-axin1 1070bp TCGACGAGGCCCAAGCAC CTTCGGGAGGCGTTCGG X

Tc-BarH 731bp CGTTTCGCTCCTTTTAACC CAGGCACAAAGTCGTATCC

Tc-chx 787bp GACAACTAGACAATTCCAAAGACTTCTC CTAGTCTCTGCATTGACCACCTCC

Tc-ci 1351bp GGATTTTCAAGCCGCTATGTCTGC TGTAGCGCTTCGTGCAACCG X

Tc-dbx 489bp ATGAGGAGCGGCGAAGGAAG TTCTCCACTTCATTCGGCGG X

Tc-Dll 948bp CACCATGTCGGGGGAGG GTAACTAATCACTTTCTTCAGTATT X

Tc-eya 1252bp TACCCCCAATCGTACTCAGC GAAAAACGCCTCCTAGACC X

Tc-fez 561bp CAAGCCCTCCATCGTGAC GAATCGGAGGCGGAAGTAC X

Tc-gsc 703bp GAAAACTGGCGGAAGTCAAA CTCCTGCAGACATCCTCCTC X

Tc-lim1 1009bp CGGTACAAAGTGCGGTGG GAACTGGCCTTGCTCGTTCG X

Tc-munster 827bp TGCTTGTTGAACATTTTCCGT GTCCTCGCTCCTGTTATGCC X

Tc-ptx 946bp ACACGCCGTCCCTCCAC GACAGCCCTGCCGAAGAC X

Tc-scro 837bp TTGAGTCCCAAGCATCATC GATTGTTGGGTGCGAGATG X

Tc-six3 839bp AACTTCCGCGAGCTGTACTC CGAGTGGAAAGCCCTTACTG X X

Tc-six4 966bp AAGTCGGCGCGAAAGAAC CTAAATTTATGGTACTTGATAATCCG X

Tc-slp 1142bp CCGCTTGTGAAAAATCTCATTGTG TCCATGTTGAAGCCTTGCTG

Tc-so 892bp CGGGAATGCTTGAAGTTTGCTC CTGTCACAAGGCCTGGTAGTCGT X

Tc-wnt11 961bp GCTTTTCGATTCGTTGGTTGTC CCGCAGCACAATTGACGACA
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Table 3.2: Overview of other genes used in this work.  

The RNAi approach used for knocking down the respective gene is listed.  

eRNAi-embryonic RNAi, pRNAi-pupal RNAi, aRNAi-adult RNAi 

 

 

 

3.6.1 Control experiments for RNAi procedure 

 

A comprehensive negative control for pupal RNAi was performed by either only sticking the 

needle into the pupae or injecting water, injection buffer or dsRNA for tGFP. All controls 

showed no significant effects on the development of the offspring.    

3.6.2 Off-Target effects in RNAi experiments 

 

RNAi acts through small interfering RNAs with 21 nucleotides (nt) length (Filipowicz, 2005). 

Potentially, long dsRNAs as used in the presented experiments may contain small stretches of 

sequence identical to other genes. The observed phenotype could then be a mixture of effects 

produced predominantly by the gene of interest but with a minor contribution of the off-target. 

In order to test if the performed RNAi experiments resulted in off-target effects, the respective 

sequences were blasted against the Tribolium genome (Blast server of http://beetlebase.org/). 

Most obtained off-target sequences were shorter than 21 nt. The exceptions are listed in 

Table. 3.3. The number of nucleotides of specific target sequences was correlated to the 

number of nucleotides of off-target sequences of 21 nt length or longer. The fact that the 

RNAi effects of these experiments are based on 17 to 72 times more specific 21 nucleotides 

indicates that the observed effects are specific. Additionally, the off-target sequences were 

assigned to the repective genes (Table 3.3). Of note, Tc-tll which was used for interaction 

analyses in addition to the cuticle screen possesses one off-target sequence which does not 

affect a predicted gene. Hence, it is very likely that the observed results for Tc-tll RNAi are 

specific for the function of this gene.  

Gene Size Source eRNAi pRNAi aRNAi

Tc-ems 888bp Johannes Schinko

Tc-ey 860bp Markus Friedrich X

Tc-hh 1148bp Evgenia Ntini

Tc-irx 350bp Fakrudin Bashasab X

Tc-otd1 1116bp Johannes Schinko

Tc-rx 395bp Fakrudin Bashasab X

Tc-tll 1600bp Reinhard Schröder X

Tc-toy 859bp Markus Friedrich X

Tc-wg 1700bp ?
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Table 3.3: Off-target effects for the performed RNAi experiments.  

 

The number of specific nucleotides (nt) corresponds to the length of the respective cDNA clone. The number of 

off-target nucleotides corresponds to the sum of nucleotides in stretches larger than 21 nt. The ratio of specific nt 

and off-target nt shows that the experiments are based on X times more specific 21 nucleotides. The off-target 

sequences are part of the listed genes.   

 

 

 

3.7 Cuticle preparations 

 

First instar wild type and RNAi larvae were dechorionized and incubated in lactic 

acid/Hoyer's medium (1:1) at 65 °C overnight (Bucher and Klingler, 2004). 

 

3.8 Documentation of cuticles and stained embryos 

 

Wild type and Tc-scro/nkx2.1 RNAi cuticles were documented using the Zeiss LSM 510 as 

described (Wohlfrom et al., 2006). All other cuticles were documented by recording 50-100 

planes using a Zeiss Axioplan 2 microscope. With the help of the ImageProPlus software 

(Version 6.2; MediaCybernetics) deconvolution was performed with the “No Neighbour” 

method followed by a “Z Projection” (“Max Intensity”) using ImageJ (version 1.40g). 

Embryos stained by in situ hybridization were prepared free from the yolk and documented 

with a Zeiss Axioplan 2 microscope and the ImageProPlus software (Version 6.2; 

MediaCybernetics).         

 

3.9 Interaction analysis in Xenopus laevis 

 

The full length cDNA for Xsix3 was isolated from a cDNA pool kindly provided by Frank 

Nieber by using the following primers: fwd: 5′- CGGAATTCATGGTGTTCAGGTCCCCTC 

-3′ (EcoRI); rev: 5’-CGCTCGAGTCATACGTCACATTCAGAGTCAC-3’ (XhoI). The 

Gene specific nt off-target nt specific nt/off-targets nt off-target genes

Tc-ci 1351 44 30,70 Tc-KRAB box and zinc finger, C2H2 type domain containing protein

Mm-PR domain containing 9 (Prdm9)

Tc-toy 859 23 37,35 Tc-pox meso

Tc-scro 837 48 17,44 Tc-gbx2

Tc-similar to AGAP000484-PA

Tc-rx 395 21 18,81 Tc-ptx

Tc-dbx 489 23 21,26 Tc-similar to AGAP000484-PA

Tc-munster 827 45 18,38 Dm-ladybird early

Tc-similar to protease S51 alpha-aspartyl dipeptidase

Tc-tll 1600 22 72,73 no gene prediction
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attached restriction sites allowed the directed cloning into the EcoRI/XhoI site of the pCS2+ 

expression vector. The vector was linearized by Acc65I digestion and subsequently mRNA 

was synthesized by using the mMESSAGE mMACHINE SP6 kit (Ambion, Austin). For 

knock down of Xsix3 a previously published and tested antisense morpholinos was ordered: 

5′-ACCTGAACACCATGGGATGGCCGG-3′ (Gene Tools) (Gestri et al., 2005). The 

Digoxigenin labeled probes for in situ hybridization were synthesized from plasmids kindly 

provided by the Department of Developmental Biochemistry (Prof. Tomas Pieler). The 

plasmids were linearized and in vitro transcription was performed by using the DIG-RNA-

labeling Kit (Roche, Mannheim) (see Table. 3.4). 

 

Table 3.4: Genes used for in situ hybridization in Xenopus laevis. 

  

Gene Enzyme for linearization RNA polymerase for in vitro transcription 

Xnkx2.1 NotI T7 

Xotx NotI T7 

Xpax6 NotI T7 

Xtll EcoRI T7 

Xwnt1 HindIII SP6 

 

Xenopus laevis embryos were obtained by HCG induced egg laying and in vitro fertilization. 

The embryos were dejellied in 2% cysteine (pH 8.0) and washed and cultured in 0.1X MBS 

until the two cell stage. One of the two blastomeres was injected either with the Xsix3 mRNA 

or the morpholino. As a lineage tracer 50 pg β-Gal mRNA was coinjected. The injected 

embryos were again cultured until the early neurula stage (Nieuwkoop and Faber, 1967) and 

then they were fixed in MEMFA. The spatial expression patterns were determined by whole 

mount in situ hybridization (Harland, 1991). The stained embryos were documented with the 

Leica Fluoreszenz Stereomikroskop MZ16FA and the ImageProPlus software (Version 6.2; 

MediaCybernetics).  
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4 Results 

 

4.1 Analysis of highly conserved anterior patterning genes 

 

4.1.1 Identification of the Tribolium orthologs 

 

In order to identify genes involved in head patterning, I performed a candidate gene screen 

based on situ hybridization and RNAi. 

I identified 27 candidate genes involved in vertebrate neural plate patterning from the 

literature (Table S1). The phylogenetic analysis revealed that three genes are not found in the 

genomes of Tribolium and Drosophila (Dmbx1/Atx, Vax1, Hesx1/Rpx). The remaining 24 of 

these candidates possess orthologs in Tribolium and Drosophila. This led to a set of 24 genes 

that I investigated in more detail. 

  

4.1.2 Expression of candidate genes in Tribolium castaneum 

 

Some of the candidates have been described before with respect to the segmentation process 

or eye patterning, but an exact analysis for the head has been missing so far. 

I analyzed the expression patterns of 24 candidate genes including counterstaining with Tc-

wg/wnt1 in order to identify the exact time and region of their activity. Of these, only Tc-

BarH, Tc-wnt11 and Tc-mun/arx are not expressed in the head anlagen throughout embryonic 

development (not shown). 21 genes are expressed in the embryonic head at some stage. They 

fall into roughly three groups based on spatial expression features. The first set of eight genes 

is almost exclusively expressed in the embryonic head (Tc-otd1/otx, Tc-optix/six3, Tc-tll/tlx, 

Tc-lim1/5, Tc-scro/nkx2.1, Tc-gsc, Tc-rx and Tc-fez). The nine genes of the second group 

show segmentally reiterated domains in addition to the head expression (Tc-hh/shh, Tc-

wg/wnt1, Tc-ci/gli3, Tc-mirr/irx, Tc-ems/emx, Tc-slp2/bf1, Tc-ey/pax6, Tc-dbx and Tc-

ptx/pitx). The transcripts of the third set of four genes mark the rim of the head lobes (Tc-eya, 

Tc-Dll/Dlx, Tc-so/six1 and Tc-six4). Some genes show mixed aspects that are mentioned in 

the corresponding paragraph.  
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A comprehensive list of all genes including the complete names and functional domains of the 

coded proteins is depicted in Table S1.   

 

4.1.2.1 Genes with exclusive expression in the head anlagen 

 

These genes show exclusive expression in the head. Some candidates also possess additional 

expression features in later stages (e.g. expression in the appendages). But these are clearly 

independent of the initial head expression domains.  

Tc-otd1/otx (Schinko et al., 2008; Schroder, 2003) is already provided maternally in a broad 

domain which gets rapidly restricted to the anterior head region (Fig. 4.1A). Throughout 

embryonic development Tc-otd1/otx positive cells are located mainly in the lateral head lobes 

(Fig. 4.1B-E). At the 5-8 wg-stripe stage a ventral midline domain of Tc-otd1/otx arises de 

novo (black arrowhead in Fig. 4.1C-E). 

Tc-optix/six3 has no maternal contribution. Expression starts at the anterior pole of the egg 

(not shown). Slightly later, the expression retracts from the pole and a ventral triangle shaped 

domain becomes visible (Fig. 4.1F). The anterior border of this domain corresponds to the 

anterior most embryonic tissue at blastodermal stage (Steinmetz, Posnien et al., unpublished). 

At early germ band stages Tc-optix/six3 is expressed anterior to and separated from the ocular 

Tc-wg/wnt1 domain (Fig. 4.1G). At the 5-8 wg-stripe stage the expression resolves into three 

distinct regions. A median domain marks the prospective labral/stomodeal region (black 

arrowhead in Fig. 4.1H), whereas two lateral domains are located in the anterior most head 

lobes (arrow in Fig. 4.1H). At later stages expression in the larval eye anlagen (open 

arrowhead in Fig. 4.1I,J) and in three 2-3 cell-clusters in the mandibular segment is detectable 

(stars in Fig. 4.1J). 

Tc-tll/tlx (Schroder et al., 2000) expression starts at the posterior pole at early blastodermal 

stages (arrow in Fig. 4.1K). Expression in the head is first detectable at blastodermal/germ 

band transition anterior to the ocular Tc-wg/wnt1 domain (Fig. 4.1L). At the same time the 

posterior domain disappears (Schroder et al., 2000). During germ band elongation the Tc-

tll/tlx expression expands in accompany with the formation of the head lobes and finally 

covers large parts of them (Fig. 4.1M-O). 

Tc-lim1/5 is first detectable at an early germ band stage covering the ocular Tc-wg/wnt1 stripe 

and 2-4 cell rows posterior to it (Fig. 4.1P). At the 5-8 wg-stripe stage expression is restricted 

to the anterior part of the antennal parasegment, framed by the antennal and ocular Tc-

wg/wnt1 domains (Fig. 4.1Q). At later stages this antennal expression condenses and finally 
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marks a few cells between the ventral part of the ocular Tc-wg/wnt1 domain and the antennae 

(open arrowhead in Fig. 4.1R,S). Furthermore, de novo expression domains in the proximal 

part of the developing appendages (arrow in Fig. 4.1R,S) and in specific ventral cells arise at 

the elongated germ band stage (black arrowhead Fig. 4.1S). 

 

 

Fig. 4.1: Expression of early genes with exclusive domains in the embryonic head. 

 

The respective candidate gene is stained in blue. Tc-wg/wnt is stained in red. The blastodermal stages (A, F, K) 

are oriented with anterior to the left. The heads of germ band stages are oriented with anterior to the top. The 

stage to which the heads belong is schematically depicted on the left side. 

Expression of Tc-otd1/otx (A-E). At late blastodermal stages Tc-otd1/otx transcripts are located in the anterior 
portion of the embryonic tissue (A; the open arrowhead marks the anterior border of the embryonic tissue). At 
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the 1-3 wg-stripe stage Tc-otd1/otx is co-expressed with the ocular Tc-wg/wnt1 domain (B). During germ band 

elongation a de novo expression in the ventral midline is detectable (arrowhead in C-E). Expression of Tc-

optix/six3 (F-J). In blastoderms Tc-optix/six3 transcripts are visible in a triangle shaped domain in the anterior 

embryonic region (F). At the 1-3 wg-stripe stage Tc-optix/six3 transcripts cover large parts of the head anterior to 

the ocular Tc-wg/wnt1 domain (G). During germband elongation the expression in the head becomes more 

complex (H-J): Expression is detectable in a median stomodeal/labral domain (arrowhead in H,I), a lateral 

domain (arrow in H,I) and in a latero-ventral domain (open arrowhead in I,J). At retraction stages additional 

expression in the mandibular segment arises (stars in J). Expression of Tc-tll/tlx (K-O). At late blastodermal 

stages Tc-tll/tlx transcripts are located at the posterior pole (arrow in K). From early germ band stage on Tc-tll/tlx 
expression covers the entire anterior head lobes (L-O). Expression of Tc-lim1/5 (P-S). At the 1-3 wg-stripe stage 

Tc-lim1/5 is expressed in the region of the ocular Tc-wg/wnt1 domain and in some cells more posterior of it (P). 

At the 5-8 wg-stripe stage transcripts are located between the ocular (oc in Q) and the antennal (ant in Q) Tc-

wg/wnt1 domains. At later stages Tc-lim1/5 is expressed in a small patch of cells between the antennae and the 

ocular region (open arrowheads in R,S) and in the proximal parts of developing appendages (arrows in R,S). At 

retraction stages de novo expression arises in the ventral region (arrowhead in S). 

A is taken from Schinko et al., 2008. 

 

The first Tc-scro/nkx2.1 transcripts are visible at a 2-3 wg-stripe stage in a faint small patch of 

cells adjacent to the gastrulating mesoderm (arrow in Fig. 4.2A and Handel et al., 2005 for 

mesoderm location). These spot like domains broaden first posteriorly and subsequently 

laterally to end up as two triangle shaped domains that are connected in the stomodeal region 

(Fig. 4.2B). During germ band elongation the anterior part of the Tc-scro/nkx2.1 positive 

region fuses to form a contiguous domain which covers the stomodeal and clypeolabral part 

of the median head (Fig. 4.2C). Outside of this median part, expression arises in some lateral 

cells (black arrowhead in Fig. 4.2C). Additionally, some cells in the lateral ocular region start 

to express Tc-scro/nkx2.1 (open arrowhead in Fig. 4.2C). In retracting embryos Tc-

scro/nkx2.1 is expressed in the distal labrum (arrow in Fig. 4.2D), the stomodeum, an anterior 

median domain in the head lobes (black arrowhead in Fig. 4.2D) and in the optic lobe anlagen 

(open arrowhead in Fig. 4.2D) (see Fig. 3 in Yang et al., 2009b for location of the optic lobe 

anlagen). 

Tc-gsc expression starts in early germ bands posterior to the ocular Tc-wg/wnt1 stripe (open 

arrowhead in Fig. 4.2E). This domain laterally broadens to become a wedge shaped domain 

overlapping the ocular Tc-wg/wnt1 domain extending 2-3 cell rows posteriorly (Fig. 4.2F). At 

the elongated germ band stage the Tc-gsc expression dissolves into a bean like domain 

covering the tissue between the ventral part of the ocular Tc-wg/wnt1 and the outgrowing 

antennae (black arrowhead in Fig. 4.2G). In addition, some stomodeal cells start to express 

Tc-gsc de novo (arrow in Fig. 4.2G). At late stages transcripts are located in lateral parts of 

the head lobes (black arrowheads in Fig. 4.2H) and in the stomodeum (arrow in Fig. 4.2H). 

Tc-rx expression is first detectable at a 5 wg-stripe stage. The transcripts are located in a patch 

of anterior cells (Fig. 4.2I). This initial domain then resolves into two domains, one anterior 

(black arrowhead in Fig. 4.2J) and a smaller one more posterior (open arrowhead in Fig. 4.2J). 
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These cells continuously express Tc-rx and can be found in the anterior head lobes during 

germ band retraction (black and open arrowheads in Fig. 4.2K). Shortly before the germ band 

is fully elongated an additional expression is observed in the labrum (arrow in Fig. 4.2K). 

The onset of Tc-fez expression is observed at the 5-6 wg-stripe stage. Initially, some cells 

adjacent to the ocular Tc-wg/wnt1 domain are Tc-fez positive (open arrowhead in Fig. 4.2L). 

This domain elongates laterally (not shown). The lateral part of the Tc-fez expression further 

expands and finally covers the whole posterior region of the head lobes (black arrowhead in 

Fig. 4.2M,N). In contrast, the median domain seems to stay located in its position, finally 

ending up in the anterior median part of the head lobes (arrow in Fig. 4.2M,N). 

 

 

Fig. 4.2: Expression of genes with exclusive domains in the embryonic head. 

 

The respective candidate gene is stained in blue. Tc-wg/wnt is stained in red. In I-K Tc-optix/six3 is stained in 

red. The heads of germ band stages are oriented with anterior to the top. The stage to which the heads belong is 

schematically depicted on the left side. 

Expression of Tc-scro/nkx2.1 (A-D). Expression starts at the 1-3 wg-stripe stage in a small domain anterior to the 

ocular Tc-wg/wnt1 domain (arrow in A). During germ band elongation Tc-scro/nkx2.1 transcripts are active in 
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the median stomodeal/labral region (B-D). In elongated germ bands and during retraction additional domains are 

visible: a small patch of cells anterior to the median region (arrowheads in C,D), a domain in the ventral ocular 

region (open arrowhead in C,D) and expression in the labrum (bulky arrow in D). Expression of Tc-gsc (E-H). 

At the 1-3 wg-stripe stage Tc-gsc transcripts are visible posterior to the ocular Tc-wg/wnt1 domain (open 

arrowhead in E). At the 5-8 wg-stripe stage expression covers the ocular region (F). During germ band 

elongation the expression is detectable in a bean like domain between the antennae and the ocular region 

(arrowhead in G). This domain becomes separated at retraction stages (arrowheads in H). De novo expression of 

Tc-gsc arises in the stomodeum (arrows in G,H). Expression of Tc-rx (I-K). At the 5-8 wg-stripe stage Tc-rx 

transcripts are located in the anterior head lobes (I). This domain becomes distinguishable in an anterior part 
(arrowheads in J,K) and a posterior part (open arrowheads in J,K) during elongation. At retraction stages de novo 

expression arises in the labrum (arrow in K). Expression of Tc-fez (L-N). At the 5-8 wg-stripe stage Tc-fez is 

expressed in the region median to the ocular Tc-wg/wnt1 domain (open arrowhead in L). During later stages two 

domains are distinguishable: one anterior median domain (arrows in M,N) and one lateral coular domain 

(arrowhead in M,N).  

 

4.1.2.2 Genes with additional segmental expression - segment polarity genes 

 

Tc-hh/shh (Farzana and Brown, 2008) starts to be expressed at late blastodermal stages as a 

stripe in the anterior region of the embryonic portion of the blastoderm (open arrowhead in 

Fig. 4.3A). In addition, the posterior most region is also Tc-hh/shh positive (Fig. 4.3A). At 

early germ band stages Tc-hh/shh is expressed in the ocular region posterior to the ocular Tc-

wg/wnt1 stripe (Fig. 4.3B). Ventrally, this stripe bends and extends anteriorly (black 

arrowhead in Fig. 4.3B). This median domain becomes associated with the stomodeum from 

germ band elongation onwards (Farzana and Brown, 2008) (black arrowhead in Fig. 4.3C-E). 

In the ocular region, Tc-hh/shh expressed is retained until late retraction stages (arrow in Fig. 

4.3C-E).  

Tc-wg/wnt1 (Nagy and Carroll, 1994) shows initial head expression at late blastodermal 

stages when the embryonic tissue is clearly distinguishable from the extra-embryonic tissue 

(not shown). The first stripes arise in the ocular region (open arrowhead in Fig. 4.3G) and 

later in the mandibular segment (black arrowhead in Fig. 4.3G). During elongation expression 

arises in the ventral stomodeum (star in Fig. 4.3I) and in the dorsal labrum (Posnien et al., 

accpeted for publication) (black arrow in Fig. 4.3I,J). The expression in the antennal and 

intercalary stripes is delayed compared to the more posterior expression (antennal stripe is 

marked by white arrowhead in Fig. 4.3H,I and chapter 4.3.1). With ongoing germ band 

elongation, the ocular domain expands giving rise to a triangle shaped expression (open 

arrowhead in Fig. 4.3H) that gets subsequently separated in the elongated germ band stage 

(open arrowheads in Fig. 4.3I). The posterior part of this domain segregates with the optic 

lobe anlage (open arrowhead “ola” in Fig. 4.3J) whereas the anterior part marks anterior eye 

lobe tissue (open arrowhead “elo” in Fig. 4.3J) and a more median region of the head lobe 
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(open arrowhead “m” in Fig. 4.3J) (assignment of the ocular domains based on Liu and 

Friedrich, 2004). 

The first Tc-ci/gli3 (Farzana and Brown, 2008) transcripts are detectable at early germ band 

stages in the complete anterior part of the future head lobes posteriorly covering the ocular 

Tc-wg/wnt1 domain (open arrow in Fig. 4.3K). The ventrally located prospective mesoderm 

(arrow in Fig. 4.3K) is free of Tc-ci/gli3 expression. During germ band elongation, the 

anterior head domain gives rise to a wedge shaped expression which covers the ocular Tc-

wg/wnt1 region and additional anterior tissue (open arrowhead in Fig. 4.3L). The broad 

posterior domains are located in the posterior compartment of each parasegment (stars in Fig. 

4.3L). In the course of development, this ocular domain undergoes numerous changes leading 

to a complex pattern of Tc-ci/gli3 expression in the region of the labrum (black arrowhead in 

Fig. 4.3M), the anterior median head lobe and the lateral eye lobe tissue (open arrowheads in 

Fig. 4.3M). In retracting embryos transcripts are detectable in a wedge shaped domain in the 

lateral head (open arrowhead in Fig. 4.3N). Further, there are Tc-ci/gli3 positive cells in the 

labrum (black arrowhead in Fig. 4.3N).  

In Drosophila Dm-mirror is considered to be a segment polarity gene (McNeill et al., 1997; 

Urbach and Technau, 2003). In Tribolium Tc-mirr/irx transcripts are located in the anterior 

portion of each segment, suggesting a similar function (Fig. 4.3O-R). Tc-mirr/irx expression 

starts at around the 2-3 wg-stripe stage in the anterior-median part of the embryo (arrow in 

Fig. 4.3O) and in 1-2 segmental stripes (stars in Fig. 4.3O). The anterior most domain remains 

in contact with the stomodeal region during germ band elongation (arrow in Fig. 4.3P). In 

elongated embryos and at subsequent stages, Tc-mirr/irx expression is still visible in the 

stomodeum (arrow in Fig. 4.3Q,R). Additional cells in the ventral portion of the head lobes 

are Tc-mirr/irx positive (open arrowhead in Fig. 4.3Q,R). 
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Fig. 4.3: Expression of segment polarity genes in the embryonic head. 

 

The respective candidate gene is stained in blue. Tc-wg/wnt is stained in red. The blastodermal stages (A, F) are 

oriented with anterior to the left. The heads of germ band stages are oriented with anterior to the top. The stage 

to which the heads belong is schematically depicted on the left side. 

Expression of Tc-hh/shh (A-E). At late blastodermal stages Tc-hh/shh transcripts are located in the anterior 

portion of the embryonic tissue (open arrowhead in A). At the 1-3 wg-stripe stage Tc-hh/shh is expressed 

posterior to the ocular Tc-wg/wnt1 domain and in some ventral cells (arrowhead B). This ventral expression is 

later connected to the stomodeum region (arrowheads in C-E) (Farzana and Brown, 2008). The ocular Tc-hh/shh 
domain stays active posterior to the ocular Tc-wg/wnt1 domain (arrows in C-E). Expression of Tc-wg/wnt1 (F-J). 

In blastoderms Tc-wg/wnt1 transcripts are visible at posterior pole (F). At the 1-3 wg-stripe stage Tc-wg/wnt1 

transcripts are visible in an ocular (open arrowhead in G) and in a mandibular stripe (arrowhead in G). At the 5-8 

wg-stripe stage the ocular domain becomes triangle shaped (open arrowhead in H) and expression in an antennal 

stripe arises (white arrowhead in H). During germ band elongation the ocular domain splits up (open arrowheads 

in I) until three domains are visible: a median domain (“m” in J), an eye lobe domain (“elo” in J) and a ventral 

optic lobe expression (“ola” in J). In elongated germ bands expression in the labrum (arrow in I,J) and in the 

stomodeum (star in I) arises. Expression of Tc-ci/gli3 (K-N). At the 1-3 wg-stripe stage Tc-ci/gli3 transcripts are 
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visible in the anterior-lateral head region (open arrowhead in K) while the median part of the embryo stays free 

of expression (arrow in K). During germ band elongation and during retraction Tc-ci/gli3 stays active in the 

ocular lateral head lobes (open arrowheads in L-M). The expression in the trunk marks the posterior part of each 

parasegment (stars in L). Additionally, expression becomes visible in the labrum (arrowhead in M,N). 

Expression of Tc-mirr/irx (O-R). At the 1-3 wg-stripe stage Tc-mirr/irx is expressed in the anterior-median 

region (arrow in O) and in a posterior stripe (star in O). The initial anterior-median domain stays connected to 

the stomodeal region throughout embryonic development (arrows in P-R). Additionally, some cells in the ventral 

head lobes express Tc-mirr/irx (open arrowhead in Q and arrowhead in R). 

 

4.1.2.3 Other genes with additional segmental expression 

 

In addition to the segment polarity genes I analyzed some candidate genes that are expressed 

in the head and show additional segmental domains in different stages and processes of 

development. 

The pair-rule and segment polarity gene Tc-slp/bf1 is involved in segmentation in Tribolium 

(Choe and Brown, 2007; Choe and Brown, 2009; Choe et al., 2006). First expression is visible 

very early in the anterior part of the prospective embryonic tissue of a blastodermal staged 

embryo (star in Fig. 4.4A). At the 1-3 wg-stripe stage the initial expression covers the ocular 

Tc-wg/wnt1 domain and some more posteriorly located cell rows (star in Fig. 4.4B). During 

germ band elongation this stripe splits into domains in the antennal segment (bulky arrow in 

Fig. 4.4C-E) and in the ocular region (open arrowhead in Fig. 4.4C). Additionally, some more 

anterior cells median to the ocular region become also Tc-slp/bf1 positive (arrow in Fig. 

4.4C), suggesting that the initial stripe splits into an antennal and an ocular part. Whereas the 

antennal part of this expression is retained, the ocular portion undergoes several changes. 

Namely, this domain splits into an anterior (arrow in Fig. 4.4C) and a posterior band 

comprising 2-3 cell rows (open arrowhead in Fig. 4.4C). The posterior band expands into the 

ocular region and finally undergoes the same anterior-posterior splitting as the Tc-wg/wnt1 

domain (open arrowheads in Fig. 4.4D,E). In the meantime the anterior band gets separated 

ending up in some anterior-median cells lateral to the labrum (arrows in Fig. 4.4D,E). During 

germ band retraction, several cells in the anterior head lobes and the antennal segment express 

Tc-slp/bf1 (Fig. 4.4E). In addition, with the first morphological sign of outgrowth the labrum 

starts to express Tc-slp/bf1 de novo (black arrowheads in Fig.4.4D,E). 

Tc-ems/emx (Schinko et al., 2008) starts to be expressed in the late blastoderm as a stripe 

(open arrowhead in Fig. 4.4F). This stripe is located posterior to the ocular Tc-wg/wnt1 

expression at early germ band stages (open arrowhead in Fig. 4.4G). This domain remains 

active in the posterior ocular segment and the anterior antennal segment throughout 

embryonic development (open arrowhead in Fig. 4.4H,I). Additionally, a small patch of cells 
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median to the antennal, starts to express Tc-ems/emx de novo in elongated germ bands (black 

arrowhead in Fig. 4.4I). In retracting embryos a band of 1-2 cells in width reaches from the 

proximal antennae towards anterior (black arrowhead in Fig. 4.4J). It is not clear if this 

expression can be ascribed to the de novo domain mentioned above. In addition to the head 

expression, Tc-ems/emx becomes visible in successive segmental patches of lateral cells with 

ongoing elongation (arrow in Fig. 4.4I,J). 

In Tribolium two orthologs of pax6 exist, Tc-ey and Tc-toy (Yang et al., 2009a). Here I show 

the expression of Tc-ey/pax6 (Fig. 4.4K-O) and mention some features of Tc-toy/pax6 

expression (Yang et al., 2009a and not shown). Tc-ey/pax6 is first expressed at late 

blastodermal stages in the anterior portion of the embryonic tissue (star in Fig. 4.4K). In early 

elongating germ bands the transcripts are visible in an ocular stripe (star in Fig. 4.4L). This 

stripe broadens posteriorly leading to a wedge shaped lateral expression domain (star in Fig. 

4.4M). Until this stage both pax6 orthologs show similar expression, although Tc-toy/pax6 

seems to be expressed more anterior (not shown). With progressing germ band elongation, the 

wedge shaped Tc-ey/pax6 domain gets increasingly complex, finally covering the whole 

lateral eye lobe tissue (star in Fig. 4.4N) and some cells in the anterior-median and median 

region of head lobes (arrowheads in Fig. 4.4N). The same is true for Tc-toy/pax6 expression 

(Yang et al., 2009a and not shown). From the 8 wg-stripe stage onwards Tc-ey/pax6 positive 

cells are visible anterior to the ocular Tc-wg/wnt1 domain. These cells belong to the segmental 

pattern (Fig. 4.4N,O). This segmental expression includes domains in the antennal segment 

(open arrowhead in Fig. 4.4N,O) and median to the eye lobe tissue (black arrowhead in Fig. 

4.4N,O). In contrast, the segmental expression of Tc-toy/pax6 is restricted to more posterior 

segments (not shown). In retracting germ bands, both pax6 orthologs are expressed in several 

spots in the anterior head lobes and in the larval eye primordium (arrow in Fig. 4.4O) (Yang 

et al., 2009a). 
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Fig. 4.4: Expression of other genes with segmental contribution. 

 

The respective candidate gene is stained in blue. Tc-wg/wnt is stained in red. The blastodermal stages (A, F, K) 

are oriented with anterior to the left. The heads of germ band stages are oriented with anterior to the top. The 

stage to which the heads belong is schematically depicted on the left side. 

Expression of Tc-slp/bf1 (A-E). At late blastodermal stages Tc-slp/bf1 transcripts are located in the anterior 

portion of the embryonic tissue (star in A). This expression is located in the region of the ocular Tc-wg/wnt1 

domain and posterior to it at the 1-3 wg-stripe stage (star in B). This initial stripes splits into an anterior-median 

portion (arrows in C-E), a lateral ocular domain (open arrowheads in C-E) and an antennal domain (bulky arrow 

in C-E). From elongated germ band stages on, expression in the labrum is detectable (arrowheads in D,E). 

Expression of Tc-ems/emx (F-J). In blastoderms Tc-ems/emx transcripts are visible in a broad stripe (open 

arrowhead in F). At the 1-3 wg-stripe stage Tc-ems/emx transcripts are detectable posterior to the ocular Tc-

wg/wnt1 domain (open arrowhead in G). During germband elongation the expression in the head stays active 
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between the ocular and the antennal Tc-wg/wnt1 domains (open arrowheads in H,I). At later stages an additional 

expression in the ventral posterior head lobes is visible (arrowheads in I,J). Lateral segmental expression 

domains are visible at later stages (arrow in J). Expression of Tc-ey/pax6 (K-O). At late blastodermal stages Tc-

ey/pax6 transcripts are located in the anterior portion of the embryonic tissue (star in K). This initial expression 

stays active in the ocular region throughout embryonic development (stars in L-O). De novo expression domains 

arise in the ventral region of each segment during germ band elongation (N). The anterior domains of this 

segmental expression correspond to an anterior-median domain (arrowheads in N,O) and an antennal domain 

(open arrowhead in N,O). In retracting embryos the anterior-median domains becomes more complex 

(arrowhead in O). The ventral part of the ocular expression becomes more dominant during retraction (arrow in 
O). 

F is taken from Schinko et al., 2008. 

 

Tc-dbx expression starts at late elongation stages in single cells near the ventral midline 

(arrows in Fig. 4.5A) and in a patch of cells which are located medially between the anterior 

and posterior ocular Tc-wg/wnt1 domain (black arrowhead in Fig. 4.5A). At retracting germ 

band stages Tc-dbx positive cells are detectable in three spots in the head lobes (open 

arrowheads in Fig. 4.5B) and in spots along the ventral nervous system (arrows in Fig. 4.5B). 

First Tc-ptx/pitx transcripts are detectable at late elongation stages in single segmental cells 

along the anterior posterior axis (arrows in Fig. 4.5C,D). One small spot is found in the 

antennal segment (open arrowhead in Fig. 4.5C,D) and one in the anterior head lobe (black 

arrowhead in Fig. 4.5C,D).This expression does not change until embryonic-larval transition 

(see Fig. 4.5D for retraction stage). 

 

                       

Fig. 4.5: Expression of genes that are active only late during embryonic development.  
 

The respective candidate gene is stained in blue. Tc-wg/wnt is stained in red. The heads of germ band stages are 

oriented with anterior to the top. The stage to which the heads belong is schematically depicted on the left side. 

Expression of Tc-dbx (A,B). At elongated germ band stages Tc-dbx is expressed in a bean like domain between 

the antennae and the ocular region (arrowhead in A) and in segmental ventral domains (arrows in A). During 

retraction three small domains are visible in the head lobes (open arrowheads in B). The ventral segmental 

pattern seems to become more complex during retraction (arrows in B). Expression of Tc-ptx/pitx (C,D). Tc-
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ptx/pitx transcripts are detectable in an anterior (arrowheads in C,D) and a posterior (open arrowhead in C,D) 

spot in the head lobes. Additionally, segmental cell clusters on both sides of the ventral midline are Tc-ptx/pitx 

positive. 

 

4.1.2.4 Genes involved in vertebrate cranial placode development 

 

Tc-eya is first expressed at blastodermal stages (Yang et al., 2009b). In early germ bands the 

lateral rim of the future head lobes (arrow in Fig. 4.6A) and median cells of the future 

stomodeum express Tc-eya (star in Fig. 4.6A). Throughout embryonic development, Tc-eya 

expression is retained in the stomodeum (star in Fig. 4.6B-D). The expression at the rim of the 

head lobes becomes more prominent during early elongation (arrow in Fig. 4.6B). At fully 

elongated germ band stages the rim-domain is separated in two distinguishable domains, one 

anterior-median lateral to the labrum (black arrowhead in Fig. 4.6C) and a more posterior one 

in the lateral eye lobe tissue (open arrowhead in Fig. 4.6C). This distinction is more obvious 

in retracting embryos, when the posterior domain clearly marks the larval eye anlagen (open 

arrowhead in Fig. 4.6D) and the anterior domain is still located in the anterior-median head 

lobe (black arrowhead in Fig. 4.6D). In addition to the head domains, Tc-eya possesses 

complex segmental expression features (Fig. 4.6B-D). 

Tc-Dll/Dlx (Beermann et al., 2001) is first expressed at early germ band stages at the lateral 

rim of the future head lobes like Tc-eya and Tc-so/six1 (black arrowhead in Fig. 4.6E). As 

elongation proceeds, this initial domain expands to cover the lateral rim of the eye lobe tissue 

(black arrowhead in Fig. 4.6F). Around the same time, de novo expression in the budding 

antennae becomes evident (open arrowhead in Fig. 4.6F). Subsequently, Tc-Dll/Dlx is 

expressed in all developing appendages (arrows in Fig. 4.6G), except the mandibles (arrow 

“m” in Fig. 4.6G). At elongated germ band stages Tc-Dll/Dlx is still active in the eye lobe 

tissue (black arrowheads in Fig. 4.6G), but possesses an additional domain in the anterior 

head lobe (bulky arrow in Fig. 4.6G). During retraction, expression in the head lobes is not 

detectable anymore (Fig. 4.6H). However, the expression data of Beermann et al., 2001 still 

shows transcripts in the lateral head lobes at late stages.  

Tc-so/six1 (Yang et al., 2009b) is expressed highly similar to Tc-eya. Therefore, I only 

describe the differences here. First, the onset of Tc-so/six1 expression is slightly later (Fig. 

4.6I). Second, at elongated germ band stages, the anterior domain fades and finally disappears 

(black arrowhead in Fig. 4.6J), whereas the expression in the lateral eye lobe tissue is retained 

(open arrowhead in Fig. 4.6J). Third, in retracting embryos less cells of the anterior head 

lobes are Tc-so/six1 positive (Fig. 4.6K). 
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Tc-six4 expression starts at the 5-8 wg-stripe stage in two small anterior cell clusters (Fig. 

4.6L). During further elongation this domain expands, finally covering the anterior-median 

rim of the head lobes (Fig. 4.6M). This expression remains detectable throughout embryonic 

development (Fig. 4.6N). Note that this Tc-six4 domain marks the same tissue as the anterior 

portion of Tc-eya expression (compare black arrowheads in Fig. 4.6C and Fig. 4.6M). 

Furthermore, Tc-six4 positive cells are the ones which switch off Tc-so/six1 at elongated germ 

band stages (compare black arrowheads in Fig. 4.6J and Fig. 4.6M). 

The segmental expression in addition to the head domains of Tc-eya and Tc-so/six1 would 

also allows integrating these genes into the group of genes with additional segmental 

expression. Accordingly, Tc-Dll/Dlx and Tc-six4 could be grouped with the genes with 

exclusive expression in the head. But in all four cases the unique expression at the rim of the 

head lobes and their involvement in vertebrate placode formation clearly justifies the 

introduction of an own group. 
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Fig. 4.6: Expression of genes involved in vertebrate cranial placode development 

 

The respective candidate gene is stained in blue. Tc-wg/wnt is stained in red. The heads of germ band stages are 

oriented with anterior to the top. The stage to which the heads belong is schematically depicted on the left side. 

Expression of Tc-eya (A-D). At the 1-3 wg-stripe stage expression of Tc-eya covers the lateral rim of the future 

head (arrow in A) and in a median domain (star in A). The median domain is later located in the median 

stomodeal region (stars in B-D). The expression of Tc-eya in the lateral rim region expands to cover the entire 

rim of the head lobes at the 5-8 wg-stripe stage (arrow in B). At later stages the rim expression is subdivided into 

an anterior part (arrowhead in C,D) and a posterior ocular domain (open arrowhead in C,D). Expression of Tc-
Dll/Dlx (E-H). Tc-Dll/Dlx transcripts are detectable in the lateral region of the head lobes (arrowheads in E,F). 

From germ band elongation on Tc-Dll/Dlx marks the distal portions of the developing appendages (open 

arrowhead in F marks the antennal expression; arrows in G mark the maxillary expression). Note that the 

mandibles are free of Tc-Dll/Dlx expression (“m”-arrow in G). In the anterior head Tc-Dll/Dlx is expressed in an 

anterior-median domain (bulky arrow in G) and in the lateral ocular region (arrowheads in G). Expression of Tc-

so/six1 (I-K). The expression of Tc-so/six1 is very similar to the one of Tc-eya. One major difference is the loss 

of expression in the anterior rim region (arrowhead in J), while the lateral ocular domain (open arrowhead in J) 

stays active. Expression of Tc- six4 (L-N). Tc-six4 is expressed in the anterior rim region of the head lobes 

throughout embryonic development (e.g. arrowhead in M). 

 

4.1.3 A virtual expression map for early head patterning 

 

The double staining of the before described genes with Tc-wg/wnt1 allows to create a virtual 

expression map for different stages of development. To that end, similar aged embryos were 

“morphed” to standard embryos based on both expression of Tc-wg/wnt1 and morphology of 

the head lobes. This has been done for different stages. Then the analyzed expression patterns 

of the respective stages were documented with respect to the standard embryos. This allows to 

map the relative position of all combinations of expression patterns in multiple “virtual 

staining” (Fig. 5.3 and Fig. 5.4). This map can either be used to formulate hypotheses on 

interactions of the analyzed genes (see chapter 4.1.5) or to comprehensively compare the 

Tribolium expression data to the corresponding vertebrate situation (see chapter 5.1.4). 

 

4.1.4 Function of the candidate genes in epidermal development 

 

Based on the fact that neural and epidermal ectoderm arises from the same epithelium, several 

genes have been shown to be required for Drosophila epidermal and neural head formation 

and for vertebrate neural plate patterning (see chapter 2.4) (Dalton et al., 1989; Finkelstein 

and Boncinelli, 1994; Finkelstein and Perrimon, 1990; Reichert and Simeone, 2001; 

Wieschaus et al., 1984; Yu et al., 1994). Hence, it is likely that the candidate genes of my 

screen are involved in epidermal ectoderm patterning. 

In order to figure out if the candidate genes are indeed involved in the patterning and 

formation of the epidermal ectoderm, I performed RNAi knock down experiments for the 
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candidate genes. Subsequently I analyzed the heads of first instar larvae for cuticle defects, 

since epidermal cells of the ectoderm secrete the cuticle (Dettner and Peters, 2003). In 

Tribolium a large set of markers exists to identify head phenotypes. Ventral defects are visible 

through abnormally formed gnathal appendages. Dorsal defects can be identified by analyzing 

a set of dorsal bristles and setae (Schinko et al., 2008). Interestingly, I find defects of 

essentially two main groups. Several genes result in severe defects after RNAi, leading to 

different levels of malformations of the whole head capsule (Tc-ci/gli3, Tc-slp/bf1, Tc-eya, 

Tc-optix/six3, Tc-ey/pax6/Tc-toy/pax6 double knock down, Tc-lim1/5, Tc-scro/nkx2.1, Tc-rx 

and Tc-six4). The phenotypes of Tc-otd1/otx and Tc-ems/emx also belong to this group, but 

they are already described elsewhere (Schinko et al., 2008). The knock down of another set of 

genes leads only to mild defects with an affected dorsal bristle pattern without overall defects 

in the head capsule (Tc-ey/pax6 and Tc-toy/pax6 single knock down, Tc-so/six1, Tc-dbx, Tc-

ptx/pitx, Tc-mirr/irx, Tc-mun/arx, Tc-fez, Tc-gsc, Tc-tll/tlx and Tc-Dll/dlx). First I focus on 

genes that result in severe head phenotypes upon RNAi because they are very likely crucial 

for early head patterning. Subsequently, I will mention some specific aspects of the weak 

defects. 

 

4.1.4.1 Genes whose knock down leads to severe head patterning defects 

 

Tc-ci/gli3 RNAi interferes with segmentation of the entire embryo (Farzana and Brown, 

2008). The head phenotypes range from the total loss of the head (9,1%, n=11) to the loss and 

malformation of gnathal segments (90,9%; Fig. 4.7C). Note that the labrum is only affected in 

18,2% of analyzed larvae. Hence, the gnathal segments are more sensitive to Tc-ci/gli3 RNAi 

than the labrum. If accessible, the dorsal bristle pattern was analyzed. This shows mainly the 

disruption of the vertex setae (Fig. 4.7C’ and Table S2).   

Knock down of Tc-slp/bf1 typically leads to the loss of gnathal segments and even-numbered 

trunk segments (Choe and Brown, 2007) (70%, n=10; Fig. 4.7D). Although the antennae are 

present, they are shorter and buckled compared to the wild type (Fig. 4.7D). I also observed 

weaker phenotypes with two pairs of legs and gnathal appendages which show features of 

maxillary or labial palps (30% and not shown). In addition to the observed ventral defects, the 

median part of the vertex, the bell row and the maxilla escort bristles are affected after Tc-

slp/bf1 RNAi (Fig. 4.7D’ and Table S2). 

In Yang et al., 2009b a broad role of Tc-eya in head patterning has been mentioned, but not 

shown. RNAi against Tc-eya leads to the loss of the complete dorsal head capsule, including 
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the labrum and the antennae, in 46,2% of the analyzed cuticles (n=13) (Fig. 4.7E). The ventral 

part of the head, represented by the gnathal appendages, seems unaffected (Fig. 4.7E). 

However, in some of these larvae the mouthparts are highly reduced (not shown). These could 

be secondary effects due to the loss of large portions of dorsal head tissue. In weaker 

phenotypes, where the dorsal head is still present, the analysis of the bristle pattern reveals 

that the lateral portion of the head capsule is most sensitive to the RNAi effect (Fig. 4.7E’ and 

Table S2). 

Tc-optix/six3 knock down leads to the loss of the labrum and clypeolabral parts of the anterior 

head capsule (Posnien et al., accpeted for publication) (100%, n=16; Fig. 4.7F). In line with 

the loss of anterior median cuticle, the anterior vertex seta and the anterior vertex bristle are 

missing (Fig. 4.7F’ and Table S2). In addition, the median part of the dorsal head cuticle 

displays an undefined pattern of additional bristles and setae (Fig. 4.7F’ and Table S2).  

The single knock down experiments for Tc-ey/pax6 and Tc-toy/pax6 only revealed bristle 

pattern defects (see below and Fig. 4.8B and Fig. 4.8G). In eye development both genes act 

synergistically (Yang et al., 2009a). Therefore I performed double knock down experiments. 

In double RNAi cuticles the whole head capsule is reduced in size. Especially the junction 

between the posterior head and the thorax is affected (Fig. 4.7G). All dorsal and lateral 

bristles, except the anterior vertex and the labrum quartet, are affected after double RNAi 

(Fig. 4.7G’ and Table S2). The comparison to single RNAi experiments reveals a 1,4 to 6 fold 

increase of the penetrance of bristle pattern defects using the same concentration of dsRNA 

(Table S3). This implies that the two Tribolium pax6 orthologs act synergistically in head 

patterning. 

The most obvious phenotype of Tc-lim1/5 RNAi larvae is a compacted and shortened head 

(16,7%, n=12; Fig. 4.7H). Despite their presence, the head appendages are mostly malformed. 

For example, the mandibles appear more roundish and the tips of the antennae are missing 

(41,7%; Fig. 4.7H). The labrum seems to be unaffected (not shown). Corresponding to the 

defects in appendages, the anterior and median maxilla escort bristles fail to form (Fig. 4.7H’ 

and Table S2). In 20,8% (n=12 times two halve sides) of the larvae no bell row is observed 

(Fig. 4.7H’ and Table S2), suggesting that the shortened heads may be a consequence of 

missing tissue in this posterior region of the head capsule. 

Tc-scro/nkx2.1 RNAi results in an obvious labrum phenotype (73%, n=15) (Fig. 4.7I). In 60% 

of the analyzed larvae the labrum fails to fuse (Fig. 4.7I). Some weaker phenotypes show 

proximally fused labral limbs, whereas the distal portion is unfused (13,3%; not shown). The 

bristle pattern remains more or less unaltered after RNAi. Only the anterior vertex bristle, 



Results 

49 

which probably belongs to the clypeolabral region, is lost in some larvae (Fig. 4.7I’ and Table 

S2). Interestingly, the labrum quartet bristles are unaltered, although the labrum remains 

unfused (Fig. 4.7I’ and Table S2).  

In Tc-rx knock down larvae the labrum is narrower than in wild type larvae, which leads to a 

widened space between the labrum and the antennae (25%, n=8; Fig. 4.7J). In accordance 

with this observation, the clypeus bristles of the labrum quartet is lost in more than halve of 

the analyzed RNAi larvae (Fig. 4.7J’ and Table S2). Additionally, the antenna basis bristle 

and the median maxilla escort seta is sensitive to Tc-rx knock down (Fig. 4.7J’ and Table S2). 

Tc-six4 RNAi leads to minor defects in the clypeolabral region between the labrum and the 

antennae (100%, n=8; Fig. 4.7K). On the level of the dorsal bristle pattern, the posterior 

vertex bristle and antenna basis bristle of the vertex are affected after Tc-rx knock down (Fig. 

4.7K’ and Table S2). 
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Fig. 4.7: Genes whose knock down results in severe defects in larval cuticles. 

 

Larval head cuticles (C-K) and schematic representations of bristle pattern defects are depicted (C’-K’). All 

larval heads are oriented with the anterior to the left. The bristle pattern defects are described in the text. See Fig. 

4.8 for a legend of the bristle pattern analysis.  

Lateral view of a wild type larval head cuticle (A). Ventral view of a wild type larval head cuticle (B). 

Phenotype of Tc-ci/gli3 RNAi (C) with affected antennae, remnants of a gnathal appendage (arrow in C) and a 
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normal labrum. In Tc-slp/bf1 RNAi cuticles (D) only T1, affected antennae and a reduced labrum are visible. 

Even numbered segments and the the gnathal segements are missing. Tc-eya RNAi results in the loss of dorsal 

tissue (E). Remaining structures are mandible like (arrowhead) and maxilla like (arrow) appendages and 

remnants of the dorsal cuticle (bulky arrow). In Tc-optix/six3 RNAi larvae anterior median tissue including the 

labrum is missing (F). After Tc-ey/pax6 and Tc-toy/pax6 double knock down the entire posterior head region is 

free of bristles (G). Further, the posterior transition between head and thorax is affected (arrows in G). Tc-lim1/5 

RNAi results in shortened head capsules and malformed appendages (H, the arrow marks the interface between 

head and thorax). In Tc-scro/nkx2.1 RNAi larvae the labrum remains unfused (I, the arrowheads mark the two 

individual labrum parts). Tc-rx knock down results in an enlarged distance between the labrum and the antennae 
(arrow in J). This could be due to a narrower labrum (J). After Tc-six4 RNAi the region between the labrum and 

the antennae is affected (the arrows point to folds in this region, K). 

ant-antenna, lb-labium, lr-labrum, md-mandible, mx-maxilla, T1-first thoracic segment, T2-second thoracic 

segment, T3-third thoracic segment  

 

4.1.4.2 Genes whose knock down leads to minor defects in the dorsal bristle pattern 

 

Phenotypes that are restricted to defects in the dorsal bristle pattern are shown in Fig. 4.8 and 

Table S2. Some genes only show lateral bristle pattern defects (gena triplet and maxilla 

escort) upon RNAi (Tc-dbx, Tc-ey/pax6 and Tc-gsc; Fig. 4.8A,B,C). Knock down of some 

candidates only leads to dorsal bristle pattern defects (bell row and vertex) (Tc-ptx/pitx, Tc-

mirr/irx and Tc-Dll/Dlx; Fig. 4.8D,E,F). Some genes are responsible for more global bristle 

pattern defects (Tc-toy/pax6, Tc-so/six1, Tc-fez and Tc-tll/tlx; Fig. 4.8G,H,J,K).  

For Tc-mun/arx I was not able to observe expression during early development (two 

independent probes were used for in situ hybridization). But I cloned this gene from 

embryonic cDNA (0-48h), showing that it is indeed expressed at these stages. Therefore I 

injected Tc-mun/arx dsRNA. Interestingly, the knock down results in a significant loss of 

bristles (Fig. 4.8I). This suggests that the expression might start very late in stages which were 

not analyzed. Another explanation could be that the endogenous expression level of Tc-

mun/arx is below the detection sensibility. 
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Fig. 4.8: Genes whose knock down results in minor defects in larval cuticles. 

 

Schematic representations of bristle pattern defects are depicted. All larval heads are oriented with the anterior to 

the left. Assumed that not only the bristles itself are affected after RNAi, but also the tissue surrounding them, 

one can predict a potential region of defects (grey fields). 

The knock down of Tc-dbx (A), Tc-ey/pax6 (B) or Tc-gsc (C) affects the formation of lateral bristles. RNAi 

against Tc-ptx/pitx (D), Tc-mirr/irx (E) or Tc-Dll/Dlx (F) mainly affects dorsal bristles. And the knock down of 

Tc-toy/pax6 (G), Tc-so/six1 (H), Tc-mun/arx (I), Tc-fez (J) and Tc-tll/tlx (K) results in more global bristle pattern 

defects. 

The legend for the wild type bristle pattern is taken from Schinko et al., 2008. 

 

4.1.5 Regulatory network of head patterning 

 

The comprehensive expression and RNAi analysis provides the possibility to identify those 

genes that most likely play important roles in the early patterning network of the head. In 

Legend 
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order to find these genes I formulated hypotheses on potential interactions, which are based 

on the expression data, the virtual expression map and the RNAi results. 

  

4.1.5.1 Tc-optix/six3 represses the expression of Tc-wg/wnt1, Tc-otd1/otx and Tc-ey/pax6 

 

Based on expression and function, Tc-optix/six3 appears to be an upstream regulator of 

median head tissue. First, Tc-optix/six3 marks the anterior pole of the embryo from very early 

stages on, suggesting an important role in early specification of anterior tissue. Second, Tc-

optix/six3 expression is restricted to the anterior most region of the developing embryo and 

shows no segmental contribution, indicating a specific role in head patterning (see Fig. 4.1F-J 

for expression). Third, the knock down of Tc-optix/six3 affects only a very specific portion of 

the larval head (see Fig. 4.7F,F’ for RNAi phenotype), suggesting a function in the formation 

of a specific region rather than global involvement as seen for Tc-otd1/otx (Schinko et al., 

2008) and Tc-axin (see chapter 4.2). And finally, a role of optix/six3 in head patterning in 

Drosophila has not been described.  

I hypothesized that Tc-optix/six3 could repress the expression of Tc-wg/wnt1, Tc-otd1/otx, Tc-

ey/pax6 and Tc-rx because these genes are expressed in non overlapping domains lateral and 

posterior to Tc-optix/six3 (compare expression domains in Fig. 5.3). Tc-scro/nkx2.1 and Tc-

tll/tlx become active in the Tc-optix/six3 positive region when its expression is already 

established (compare expression domains in Fig. 5.3). Hence, Tc-optix/six3 could be an 

activator for these genes. In the future visual system Tc-optix/six3 and Tc-ey/pax6 are co-

expressed, suggesting that Tc-optix/six3 might be involved in Tc-ey/pax6 regulation there. I 

performed pRNAi for Tc-optix/six3 and subsequently detected the expression of the above 

mentioned genes.  

The expression of Tc-wg/wnt1 is massively expanded in Tc-optix/six3 RNAi embryos (Fig. 

4.9A,A’,B,B’). This expansion is already obvious at early germ band stages when Tc-wg/wnt1 

transcripts are detectable in the median parts of the embryo (compare Fig. 4.9A to A’). In 

fully elongated germ bands this expansion becomes more prominent because the whole 

median region of the embryo is Tc-wg/wnt1 positive after Tc-optix/six3 RNAi (compare Fig. 

4.9B to B’).  

Also the expression of Tc-otd1/otx is altered after Tc-optix/six3 knock down (Fig. 

4.9C,C’,D,D’). Instead of only the ocular region, the whole early head lobes express Tc-

otd1/otx after Tc-optix/six3 knock down (compare Fig. 4.9C to C’). At elongated germ band 
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stages the wild type domain appears with strongest expression whereas the median ectopic 

region of expression is weaker (compare Fig. 4.9D to D’). 

The expression patterns of Tc-rx, Tc-tll/tlx and Tc-scro/nkx2.1 are unchanged after Tc-

optix/six3 knock down (not shown; Fig. 4.9E).  

 

 

 

Fig. 4.9: Effects of Tc-optix/six3 RNAi on Tc-

wg/wnt1 and Tc-otd1/otx expression. 

 

Tc-wg/wnt1 and Tc-otd1/otx are stained in blue. 

The Tc-otd1/otx marked embryos are double 

stained with Tc-wg/wnt in red. The heads are 

oriented with anterior to the top.  

Expression of Tc-wg/wnt1 in wild type embryos 

(A,B) and in Tc-optix/six3 RNAi embryos (A’,B’). 
At early stages the knock down of Tc-optix/six3 

results in a median expansion of the ocular Tc-

wg/wnt1 stripe (arrowheads in A’ mark the ectopic 

expression). This expansion is also clearly 

detectable in later stages (B’; open arrowheads 

mark the same lateral domains in B and B’). 

Expression of Tc-otd1/otx in wild type embryos 

(C,D) and in Tc-optix/six3 RNAi embryos (C’,D’). 

The early expression domain of Tc-otd1/otx is 

massively expanded after Tc-optix/six3 RNAi (C’). 

At later stages it is possible to distinguish between 

the original expression of Tc-otd1/otx (open 
arrowhead in D and D’) and the ectopic median 

expression (arrowhead in D’) after Tc-optix/six3 

RNAi. The results are summarized in E. 
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The effect of Tc-optix/six3 RNAi on Tc-ey/pax6 varies depending on the domain (Fig. 4.10). 

At early germ band elongation stages the Tc-ey/pax6 domain is heavily expanded towards the 

midline (compare Fig. 4.10A to A’; the arrow marks ectopic expression in Fig. 4.10A’). But 

the domains in the anterior-median head lobes are missing or indistinguishable from the 

expanded ocular domain (compare Fig. 4.10A to A’; the bulky arrow marks anterior-median 

domain in Fig. 4.10A). At slightly later stages, when the Tc-ey/pax6 expression is more 

complex, it is obvious that Tc-optix/six3 RNAi leads to ectopic expression in the median 

region (compare Fig. 4.10B to B’). Based on the relative location of the counterstained gene 

Tc-dachshund (Tc-dac) to Tc-ey/pax6 the anterior-median domain of Tc-ey/pax6 is missing 

after Tc-optix/six3 RNAi (compare Fig. 4.10B to B’; bulky arrow marks anterior-median 

domain in Fig. 4.10B). Additionally, the lateral portion of the ventral ocular domain shows 

reduced Tc-ey/pax6 expression in RNAi embryos (compare arrowheads in Fig. 4.10B to B’). 

Note that Tc-optix/six3 is expressed in this region (open arrowhead in Fig. 4.1I,J). A similar 

expression pattern of Tc-ey/pax6 is also evident at later stages (compare Fig. 4.10C to C’). 

Again, ectopic expression in the median region is observed (compare Fig. 4.10C to C’; the 

arrow marks ectopic expression in Fig. 4.10C’). As described above, the anterior-median 

domain is lost and the ventro-lateral ocular domain is reduced after Tc-optix/six3 RNAi 

(compare arrowheads in Fig. 4.10C and C’). 
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Fig. 4.9: Effects of Tc-optix/six3 RNAi on Tc-ey/pax6 expression. 

 

Tc-ey/pax6 is stained in blue. The embryos are double stained with Tc-dachshund in red. The heads are oriented 

with anterior to the top.  

Expression of Tc-ey/pax6 in wild type embryos (A,B,C) and in Tc-optix/six3 RNAi embryos (A’,B’,C’). At early 

stages the knock down of Tc-optix/six3 results in a median expansion of the ocular Tc-ey/pax6 domain (arrow in 

A’). This ectopic median expression is also clearly detectable in later stages (arrows in B’,C’). The anterior-

median domain of Tc-ey/pax6 (marked by the bulky arrow in A-C) is not detectable anymore after Tc-optix/six3 

(A’-C’) RNAi. The ventral ocular Tc-ey/pax6 expression is highly reduced after Tc-optix/six3 RNAi (arrowheads 

in B and B’ demarcate the ocular region; arrowheads in C and C’ mark the ventral ocular region of older stages). 

The open arrowheads in B,B’,C and C’ mark the anterior border of the Tc-dachshund counterstaining.The results 

are summarized in D. (Taken from Hein, 2007, Diploma thesis). 

 

D 
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In summary, I show extensive expansions towards the anterior midline after Tc-optix/six3 

pRNAi for Tc-wg/wnt1 and Tc-otd1/otx. This implies that Tc-optix/six3 is involved in the 

negative regulation of these genes (Fig. 4.9E). Similarly, Tc-optix/six3 is needed to repress 

Tc-ey/pax6 in the median region. In the development of the visual system however, Tc-

optix/six3 seems to be involved in the activation of Tc-ey/pax6 expression. Importantly, Tc-

optix/six3 is essential for the establishment of Tc-ey/pax6 positive cells in the anterior-median 

(Fig. 4.10D).  

 

4.1.5.2 Tc-tll/tlx is necessary for the establishment of specific cells in the anterior head 

lobes 

 

The expression screen shows that many candidates mark specific sub-regions in the anterior 

head. Tc-tll/tlx expression covers the entire anterior head anlagen from early stage on (Fig. 

4.1L-O), indicating that it might be a general activator of anterior genes. As candidates to test 

this hypothesis I chose Tc-optix/six3 and Tc-rx. Tc-rx expression is lying within the Tc-tll/tlx 

domain and becomes activated after Tc-tll/tlx expression is already detectable, suggesting an 

activating function. Tc-optix/six3 is active long before Tc-tll/tlx. But the first observable Tc-

optix/six3 domain is the median stomodeal/labral one. The lateral domains in the head lobes 

arise after the expression of Tc-tll/tlx. Therefore I hypothesized that these lateral Tc-optix/six3 

domains depend on Tc-tll/tlx activity. In order to test these two hypotheses, I performed 

pRNAi for Tc-tll/tlx and subsequently analyzed the expression of Tc-rx and Tc-optix/six3.  

Upon Tc-tll/tlx pRNAi Tc-rx expression is reduced (Fig. 4.11A,A’,B,B’). More specifically, at 

early elongation stages the part of expression which reaches median into the head lobes in 

wild type embryos is not detectable anymore (compare Fig. 4.11A to A’). At later stages only 

one part of the expression domain remains active (Fig. 4.11B’). Although it is unclear which 

part is missing, residual expression on the right side of the knock down embryo suggests that 

the anterior domain of Tc-rx expression is more sensitive to Tc-tll/tlx pRNAi (compare black 

arrowhead in Fig. 4.11B to B’).  

Tc-optix/six3 expression is similarly reduced after Tc-tll/tlx knock down (Fig. 

.4.11C,C’,D,D’). Whereas the median labral and stomodeal domain is unchanged, the lateral 

domain of early embryos is massively reduced (Fig. 4.11C and C’). In late embryos, large 

parts of the lateral Tc-optix/six3 domains, including a few separated posterior cells, are 

missing after Tc-tll/tlx pRNAi (Fig. 4.11D and D’).  
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In all analyzed embryos some cells maintain their respective expression. It is not possible to 

fully exclude that the remaining expression domains are due to incomplete knock down. 

Control experiments are required to show the complete knock down. In any case, the results 

indicate that Tc-tll/tlx is involved in the activation of Tc-rx and Tc-optix/six3 (Fig. 4.11E).  

Tc-tll/tlx RNAi only results in mild defects in epidermal development (Fig. 4.8K). It could 

therefore be involved in neural patterning rather than epidermal patterning. In Drosophila it 

has been shown that Dm-tll is essential for the formation of specific neuroblasts in the future 

anterior protocerebrum (Younossi-Hartenstein et al., 1997). Therefore I checked if Tc-rx and 

Tc-optix/six3 are indeed expressed in a region, in which neuroblasts are formed. The double 

labeling of Tc-optix/six3 and the neural precursor marker Tc-asense (Tc-ase) shows a clear 

overlap of the expression (Fig. 4.11F). Considered that Tc-rx directly abuts Tc-optix/six3 

expression posteriorly (Fig. 4.11G), I conclude by comparing Tc-ase and Tc-rx expression 

that neuroblasts also arise from Tc-rx positive tissue (compare Fig. 4.11F and G). The co-

expression of Tc-ase with Tc-optix/six3 and most likely with Tc-rx in the region which is also 

affected after Tc-tll/tlx RNAi suggests, that Tc-tll/tlx might be essential for the activation of 

neural precursor cells in this region.  

In summary, I show that Tc-tll/tlx is necessary for the establishment or maintenance of Tc-

optix/six3 and Tc-rx positive cells which could contribute to anterior protocerebral 

neuroblasts. 
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Fig. 4.11: Effects of Tc-tll/tlx RNAi on Tc-rx and 

Tc-optix/six3 expression. 

 

Tc-rx and Tc-optix/six3 are stained in blue (A-D, 

A’-D’). The embryos in A and B are double stained 
with Tc-optix/six3 in red. The embryos in A’-D’ 

and C,D are double stained with Tc-wg/wnt1. The 

embryo in F is stained for Tc-asense (blue) and Tc-

optix/six3 (Richards et al.). The embryo in G is 

stained for Tc-rx (Younossi-Hartenstein et al.) and 

Tc-optix/six3 (Richards et al.). The heads are 

oriented with anterior to the top.  

Expression of Tc-rx in wild type embryos (A,B) 

and in Tc-optix/six3 RNAi embryos (A’,B’). At 

early stages the knock down of Tc-optix/six3 

results in reduced expression of Tc-rx (A’). 

Affected cells are most likely located in a more 
median region of the Tc-rx domain (arrow in A). 

The arrowheads in B and B’ mark the same 

domains. Expression of Tc-optix/six3 in wild type 

embryos (C,D) and in Tc-tll/tlx RNAi embryos 

(C’,D’). After Tc-tll/tlx RNAi median located Tc-

optix/six3 positive cells (arrows in C,D) are lost 

(C’D’). The RNAi results are summarized in E. Tc-

optix/six3 positive cells coexpress the neural 

precursor marker Tc-asense (stars in F). Tc-rx 

expression posteriorly abuts Tc-optix/six3 

expression (G). 
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4.1.5.3 Tc-eya, Tc-so/six1 and Tc-six4 form a regulatory network to establish the anterior 

most rim of the developing embryo 

 

The vertebrate eya/six1/six4 genes are involved in patterning cranial placodes at the anterior 

rim of the neural plate (Schlosser, 2006; Schlosser and Ahrens, 2004). In Tribolium Tc-eya, 

Tc-so/six1 and Tc-six4 show a similar expression at the rim of the embryonic head lobes (see 

Fig. 4.6). Whereas Tc-six4 exclusively marks the anterior most rim region, the other two 

genes are expressed additionally in the lateral eye lobe tissue and in the stomodeal region. A 

function of Tc-eya and Tc-so/six1 in visual system development has been shown for Tribolium 

(Yang et al., 2009b). However, the relationship of these genes within the anterior portion of 

the head lobes has not been studied. The dynamic expression profile in combination with 

large overlapping domains of the three mentioned genes in the anterior region suggests that 

they regulate each other during early development. Based on the expression profiles I 

hypothesize that Tc-eya is involved in the activation of Tc-six4 and Tc-so/six1, whereas the 

latter two repress each other (see also Fig. 5.3D).   

Tc-eya is expressed from early stages on (see Fig. 4.6A-D). Tc-so/six1 expression follows the 

one of Tc-eya in largely overlapping domains (see Fig. 4.6I-J). This suggests a function of Tc-

eya in establishing Tc-so/six1. Indeed, the knock down of Tc-eya via aRNAi leads to strong 

reduction of Tc-so/six1 (compare Fig. 4.12A to C and B to D). In strongly affected embryos, 

the expression of Tc-so/six1 is completely absent (not shown). Hence, Tc-eya is essential for 

the establishment of Tc-so/six1 expression. 

At late elongating germ band stages the expression of Tc-so/six1 starts to disappear in the 

anterior rim region (Fig. 4.6J). Slightly earlier, the expression of Tc-six4 starts in this region 

(Fig. 4.6L,M). This relationship suggests that Tc-six4 represses Tc-so/six1 activity in the 

anterior head. Indeed, Tc-six4 knock down leads to ectopic anterior Tc-so/six1 expression at 

late embryonic stages (compare black arrowheads in Fig. 4.12E,F to B). The embryo in Fig. 

4.12E corresponds to the one shown as wild type control (Fig. 4.12B). The embryo in Fig. 

4.12F represents a later stage. In the wild type situation, I never observed anterior Tc-so/six1 

expression in embryos older than the one shown in Fig. 4.12B. My results show that Tc-

so/six1 in the anterior rim region is repressed by Tc-six4 activity. 

Finally, I wanted to know how Tc-six4 expression is established. Tc-so/six1 is expressed prior 

to Tc-six4 in the anterior rim region. Therefore I analyzed Tc-six4 expression in Tc-so/six1 

aRNAi embryos. Tc-six4 expression is reduced after Tc-so/six1 knock down (compare Fig. 

4.12G’ to G and H’ to H). The remaining expression could be due to incomplete knock down. 
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Another hypothesis would be that Tc-so/six1 alone is not sufficient to activate Tc-six4 

expression. Since Tc-eya and Tc-so/six1 are expressed simultaneously in the anterior rim 

region prior to Tc-six4 onset, it is rather possible that both genes have a redundant function 

activating Tc-six4. 

My data shows that Tc-eya, Tc-so/six1 and Tc-six4 act together in a hierarchical regulatory 

network to establish the anterior rim of the head lobes (Fig. 4.12I). 
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Fig. 4.12: Regulatory interactions of Tc-eya, Tc-

so/six1 and Tc-six4. 

 

Tc-so/six1 and Tc-six4 are stained in blue. The 

embryos are double stained with Tc-wg/wnt1 in red. 

The heads are oriented with anterior to the top.  

Wild type expression of Tc-so/six1 in an early 

elongating germ band and in a retracting germ band 

(A,B). The anterior-median region is free of Tc-

so/six1 expression at retraction stages (arrow in B). 

After Tc-eya RNAi the expression of Tc-so/six1 is 
reduced (C,D). The knock down of Tc-six4 results 

in ectopic anterior-median expression of Tc-so/six1 

(arrowheads in E,F). Wild type staings of Tc-six4 

(G,H). The knock down of Tc-so/six1 results in 

reduced expression of Tc-six4 (G’ and H’ for two 

different stages). The results are summarized in I.  
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4.1.6 Analysis of six3 interactions in Xenopus laevis 

 

The candidates for my screen were chosen because of their involvement in vertebrate neural 

plate patterning and their expression is conserved to a large degree (see discussion and Fig. 

5.3). Therefore, I also wanted to test if the interactions I found in Tribolium might be 

conserved. In order to gain first insights into the conservation of specific interactions, I 

decided to analyze the six3 interaction which I observed in Tribolium in Xenopus laevis as 

vertebrate model. I cloned the complete ORF of the Xenopus laevis Xsix3 gene and 

synthesized mRNA for overexpression studies (Gestri et al., 2005). Furthermore, I used 

antisense morpholinos to analyze loss of function effects (Gestri et al., 2005, Gene Tools). I 

injected one blastomere of 2-cell stages and subsequently observed expression of the Xenopus 

genes Xotx2, Xpax6, Xwnt1, Xtlx and Xnkx2.1.  

The expression patterns of Xotx2, Xtlx and Xnkx2.1 remained unchanged after the above 

mentioned manipulations (not shown).  

The overexpression of Xsix3 leads to the expansion of Xpax6 expression in the injected halve 

side (Fig. 4.13A-C). Contrary, the knock down of Xsix3 results in reduced Xpax6 expression 

domains in the injected halves (Fig. 4.13D-F). Hence, Xsix3 is involved in the activation of 

Xpax6 in the anterior region of the neural plate. This relationship of both genes is similar to 

the one observed for the anterior-median and ventro-lateral ocular Tc-ey/pax6 domain. 

However, no repressive effect of Xsix3 on Xpax6 like in early Tribolium embryos was 

detectable in the stages I analyzed.  

Similarly, the loss of Xsix3 function leads to a significant reduction of Xwnt1 expression (Fig. 

4.13H). The overexpression of Xsix3 leads to contradicting results, namely the same 

percentage of Xwnt1 expansion and reduction (Fig. 4.13G shows an embryo with expanded 

expression). These preliminary results suggest that Xsix3 is involved in Xwnt1 regulation.  

In Fig. 4.13I the results for Xpax6 and Xwnt1 are quantified and summarized. 
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Fig. 4.13: six3 interactions in Xenopus laevis. 

 

Frontal views of Xenopus laevis embryos between stage 11 and 13.5 (Nieuwkop and Faber, 1967). Dorsal is 

oriented to the top. Embryos were stained for Xpax6 (Garcia-Fernandez) and Xwnt1 (G,H). The turquoise color 

in the embryos represents the insected site (is). The white bars in A-F indicate the midline. The percentage of 

embryos showing the respective phenotype is given in the lower right corner with the number of scored embryos 

in brackets. 

The overexpression of Xsix3 results in an expansion of Xpax6 expression (A-C, compare red bars in C). 
Contrary, the knock down of Xsix3 results in reduced expression of Xpax6 (D-F, compare red bars in E). The 

overexpression of Xsix3 results in the same number of embryos with expanded and reduced Xwnt1 expression 

(I). The embryo shown in G is one with expanded expression of Xwnt1 in the injected side after Xsix3 

overexpression. The knock down of Xsix3 results in a reduction of Xwnt1 expression (H). A quantification of the 

results is depicted in I. 

is-injected site, nis-non injected site, Over-overexpression, Morph-knock down via morpholino  
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4.2 Wnt-signaling in anterior patterning of Tribolium castaneum 

 

In vertebrates, canonical Wnt-signaling is involved in the patterning of the anterior-posterior 

axis within the neural plate. High levels of Wnt-signals in the posterior region are needed to 

activate posterior markers genes like the Hox-genes. Contrary, in order to establish anterior 

brain structures, canonical Wnt-signaling has to be blocked by Wnt-antagonists (Kiecker and 

Niehrs, 2001). Recent results from Tribolium and from the spider Achaearanea tepidariorum 

indicate that Wnt-signaling is similarly involved in the formation of posterior regions in 

arthropods (Bolognesi et al., 2008b; McGregor et al., 2008). However, the question remains if 

the requirement of a Wnt-free region for an anterior fate is similarly conserved in arthropods. 

Therefore, I aimed to analyze the effects of ectopically activated Wnt-target genes in the 

anterior region of Tribolium embryos. 

  

4.2.1 Tc-axin is involved in anterior-posterior axis formation 

 

In order to test if canonical Wnt-signaling is involved in the anterior-posterior axis formation 

I knocked down Tc-axin. Within the canonical Wnt-pathway, Axin is incorporated in the β-

catenin destruction complex, which degrades β-catenin in the absence of Wnt-signals. When 

extracellular Wnt-signals are present, the destruction complex becomes inhibited. Hence, β-

catenin is not degraded and is able to activate the transcription of target genes (Logan and 

Nusse, 2004). The knock down of Tc-axin therefore leads to a β-catenin accumulation due to 

a functionless destruction complex. As a consequence, Wnt-target genes are ectopically 

activated, mimicking an ectopic expression of Wnt-signals.  

I knocked down Tc-axin via aRNAi and analyzed cuticles of first instar larvae. I injected 

1,5µg/µl and 4,0µg/µl of the dsRNA and observed the same phenotypes in both independent 

experiments. The results shown here are based on the results of the 4,0µg/µl injection. 

Consecutive egg collections showed that the RNAi effect decreases over time. In the first 

three collections I only observed empty egg shells after clearing (E in Fig. 4.15A), indicating 

that in the most strongly affected phenotypes the embryos die before secreting a cuticle. The 

fourth to sixth collections were done 6.5, 7.5 and 19.5 days after injection. In these collections 

I observed severely affected larval cuticles (C in Fig. 4.15A) and increasingly also wild type 

larvae (WT in Fig. 4.15A). The affected larvae were analyzed in more detail and were 

assigned to three groups based on the severity of the effect, although I observed all 
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intermediate phenotypes from strong to weak. The strongest phenotypes only possess 2-4 

posterior abdominal segments with remnants of the hind gut sticking out (P in Fig. 4.15B and 

Fig. 4.14B). In the next group, cuticles possess all abdominal segments and one to all three 

thoracic segments (T in Fig. 4.15B and Fig. 4.14C). The weakest phenotypes show head 

structures in addition to abdomen and thorax (H in Fig. 4.15B and Fig. 4.14D). According to 

the fact that the RNAi effect becomes weaker over time, I observed more weak phenotypes 

after 19.5 days post injection than after 6.5 days post injection (Fig. 4.14B). These results 

indicate that anterior structures are more sensitive to Tc-axin RNAi than posterior ones.  

I also analyzed the heads of the weakly affected larvae to substantiate this notion (Fig. 4.15C). 

Indeed I found that the labrum, as the anterior most located appendage, is more often absent 

after Tc-axin RNAi than the posterior most mouthpart, the labium (Fig. 4.15C). Finally, I 

examined the bristle pattern of the larvae which possess all mouthparts and a relatively 

normal head capsule. I found that all dorsal (bell row and vertex) and labrum-associated 

bristles are affected after Tc-axin RNAi (Fig. 4.14E and Table S4). The lateral bristles seem to 

be less sensitive to the knock down, since the gena triplet setae are, if at all, only weakly 

affected. Furthermore, two of the three maxilla escord setae are frequently lost or misplaced 

after RNAi.  

Based on the “bend and zipper” model (Posnien and Bucher, submitted), the anterior most 

embryonic tissue participates in the formation of the dorsal head capsule. Hence, the severely 

affected dorsal bristle pattern suggests that even in very weak phenotypes, the anterior most 

tissue is most sensitive to Tc-axin knock down. 

 

In summary, my data shows that the knock down of Tc-axin, and thereby the up-regulation of 

Wnt-targets, leads to dose-dependent loss of anterior structures like in vertebrates. 
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Fig. 4.14: Tc-axin RNAi results in anterior truncation of first instar larvae. 

 

First instar larval cuticles (A-D) and a schematic representation of bristle pattern defects are depicted (E). All 

larvae are oriented with the anterior to the left. The bristle pattern defects are described in the text. See Fig. 4.8 

for a legend of the bristle pattern analysis.  

Lateral view of a wild type larval cuticle (A). The hindgut is marked by the arrowhead in A. The urogomphi are 

marked by the arrow in A. The strongest cuticle phenotypes after Tc-axin RNAi only consist of posterior cuticle 

structures (the arrow in B marks the urogomphi) and the hindgut sticking out of it (arrowhead in B). Intermediate 

phenotypes develop nearly a full abdomen (C, the arrow marks the urogomphi). Weakly affected larvae possess 

thoracic segments and highly reduced head structures (open arrowhead in D). Even weaker phenotypes develop a 

head. In these heads nearly all lateral and dorsal bristle are missing, after Tc-axin RNAi (E).  

A- abdominal segments, T- thoracic segments 
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Fig. 4.15: Quantification of the anterior truncations after Tc-axin RNAi. 
 

In the first 3.5 days after injection of adult beetles with Tc-axin dsRNA only empty egg shells were observed (E 

in A). 6.5, 7.5 and 19.5 days after injection severely affected larval cuticles were observed (C in A). Also some 

wild type larvae were scored (WT in A). Some of the affected larvae (6.5, 7.5 and 19.5 days after injection) only 
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possess 2-4 posterior abdominal segments with remnants of the hind gut sticking out (P in B). Some cuticles 

possess all abdominal segments and one to all three thoracic segments (T in B). The weakest phenotypes show 

head structures in addition to abdomen and thorax (H in B). In the weakly affected larvae with head structures 

the anterior head regions like the labral region are more sensitive to Tc-axin RNAi than the more posterior ones 

(C). 

Ant-antenna, Lb-labium, Lr-labrum, Md-mandible, Mx-maxilla 

 

4.2.2 The knock down of Tc-axin results in posteriorized embryos 

 

In order to further characterize the observed Tc-axin RNAi phenotypes, I analyzed embryos of 

different stages after knock down. Since Wnt-signaling promotes posterior fate in Tribolium 

and vertebrates (Bolognesi et al., 2008b; Niehrs, 1999), I investigated the expression of the 

posterior marker Tc-caudal (Tc-cad) in RNAi embryos (Copf et al., 2004; Schulz et al., 1998). 

The comparison of RNAi embryos to wild types clearly shows that Tc-cad, which is normally 

restricted to the posterior growth zone, is ectopically expressed throughout the embryo (Fig. 

4.16C’,D’). This expansion is already observable at early blastoderm stages (compare Fig. 

4.16A,B to A’,B’). Beside this altered expression pattern, I observed severe morphological 

changes of the embryo. For example, no signs of segmentation and no appendages are 

detectable (Fig. 4.16D’). In some embryos it is even impossible to distinguish between 

anterior and posterior, since no head lobes are visible (Fig. 4.16D’). In some cases with 

probably weak RNAi effects I still observe head lobes, which interestingly remain free of Tc-

cad expression (arrow in Fig. 4.16C’).  

In the above mentioned embryos I detected Tc-wg/wnt1 transcripts in addition to Tc-cad, by 

applying double in situ hybridization. Interestingly, the Tc-wg/wnt1 expression remains active 

after RNAi in the most anterior and posterior parts of the embryos (Fig. 4.16C’,D’). In 

contrast, all other Tc-wg/wnt1 stripes are not detectable anymore, which is in accordance to 

the loss of segmental features (see above).  

This work was performed in collaboration with Renata Bolognesi and Sue Brown. Their 

results confirm my findings by including Tc-deformed/Hox4, Tc-AbdA/Hox8 and Tc-wnt8 as 

posterior marker genes in RNAi embryos (see chapter 5.2.1). 

In summary, the ectopic expression of Tc-cad after Tc-axin RNAi shows that ectopic Wnt-

signaling results in posteriorized embryos like in vertebrates. 
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Fig. 4.16: Tc-axin RNAi results in posteriorized embryos. 
 

Tc-cad is stained in blue. The embryos are double stained with Tc-wg/wnt1 in red. The embryos are oriented 

with anterior to the left. 

Tc-cad staining in wild type embryos (A-D) and in Tc-axin aRNAi embryos (A’-D’). B and B’ are inverted 

DAPI pictures of the embryos as in A and A’. The darker anterior region corresponds to the Tc-cad free part of 

the egg where the fluorescent signal is not quenched. At blastoderm stages an anterior expansion of Tc-cad is 

detectable after Tc-axin RNAi (compare black bars which mark the Tc-cad free region in A,B and A’B’). Tc-cad 

is restricted to the posterior growth zone in wild type germ band embryos (C,D). After Tc-axin RNAi massive 

expansions of Tc-cad are visible (compare C,D and C’,D’). While the head lobes in the early germ band are free 

of Tc-cad expression (arrows in C and C’ mark the head lobes) the entire embryo in D’ is Tc-cad positive. It is 

not possible to stage the embryo in D’ because no segmental markers are visible. It is also not possible to clearly 

distinguish between anterior and posterior in this embryo (D’). 

 

4.3 Development of the intercalary segment 

 

In order to properly interpret defects in head cuticles after RNAi it is necessary to determine 

what parts of the head are formed by which segments. Specifically, it has remained unclear to 
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what parts of the larval head cuticle the intercalary segment contributes to. The anterior most 

Hox-gene labial/Hox1 (lab/Hox1) is specifically expressed in the intercalary segment 

(Diederich et al., 1989; Merrill et al., 1989; Nie et al., 2001). So far, the function of labial 

remained unclear because loss of function in Drosophila leads to head involution defects and 

therefore results in several secondary defects (Diederich et al., 1989; Merrill et al., 1989). 

Since analysis of head development in Tribolium is not hampered by morphological 

constraints, I used RNAi knock down of Tc-lab to investigate its function and to reveal the 

contribution of the intercalary segment to the head cuticle.   

 

4.3.1 Delayed specification of the intercalary parasegment boundary 

 

I first searched for segmentally expressed genes which mark different parts of the intercalary 

segment. I analyzed the expression of Tc-slp1, Tc-wg, Tc-hh and Tc-mirror/irx and the late 

marker Tc-ey/pax6 (Choe and Brown, 2007; Choe et al., 2006; Farzana and Brown, 2008; 

McNeill et al., 1997; Nagy and Carroll, 1994). In all segments, the posterior boundary is 

marked by the expression of Tc-hh (Fig. 4.17C-C’’and Fig. 4.18H) (Farzana and Brown, 

2008). Anteriorly adjacent, Tc-wg is expressed, although this domain is narrower than the Tc-

hh expression (Fig. 4.17C’-C’’) (Nagy and Carroll, 1994). Tc-slp1 expression covers the Tc-

wg domain but extends both anteriorly and to some extent also posteriorly, overlapping the 

anterior most Tc-hh expressing cells (Fig. 4.17D-D’’ and Fig. 4.18G) (Choe et al., 2006). Also 

anterior to Tc-wg, but overlapping only slightly, I found Tc-ey/pax6 expression in the region 

of the ventral neuroectoderm (Fig. 4.17F-F’’ and Fig. 4.18F). And finally, I found Tc-

mirror/irx expression at the anterior boundary of each segment (Fig. 4.17B-B’’ and Fig. 

4.18E) as also shown for Drosophila (McNeill et al., 1997). In contrast to other segments, 

intercalary Tc-mirror/irx additionally marks median cells, reaching posteriorly to the 

mandibular segment boundary (white arrowhead in Fig. 4.18E). Note the unique morphology 

of the intercalary segment: whereas the posterior border marked by Tc-hh and Tc-wg is 

perpendicular to the body axis, the anterior border marked by Tc-mirror/irx is parallel to the 

antennal parasegment boundary which is turned outwards with respect to the posterior trunk 

segments. 

 

A detailed temporal analysis of the expression of these marker genes shows that formation of 

the intercalary parasegment boundary is strongly delayed compared to the adjacent antennal 

and mandibular parasegment boundaries (see Tc-wg, Tc-hh and Tc-slp1 in Fig. 4.17G). The 
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Tc-engrailed stripe appears approximately at the same stage as Tc-hh (Brown et al., 1994). 

However, the intercalary/mandibular boundary is prefigured pretty early by adjacent 

expression of Tc-cnc and Tc-lab and marked by Tc-col/knot expression which suggests a 

crucial role of these genes in intercalary segment formation also in Tribolium (Economou and 

Telford, 2009; Mohler et al., 1995; Seecoomar et al., 2000). Interestingly, the delay also 

affects the anterior portion of the mandibular segment as shown by Tc-mirror/irx expression. 

 

 

Fig. 4.17: Temporal analysis of marker gene expression in the intercalary segment. 

  

Marker gene expression (blue staining in all pictures) in embryonic heads is shown at three different time points 

of development (3-4 wg-stripe stage, 7-8 wg-stripe stage and 8-9 wg-stripe stage). Anterior is oriented to the top. 

The counterstaining in red or brown represents Tc-wg transcripts (except A-A’’ and E-E’’). A) The first 

indication for the intercalary segment becomes evident by the first Tc-lab expressing cells at a 3-4 wg-stripe 

stage (black arrow). A’-A’’) Tc-lab stays expressed in the intercalary segment until germ band elongation (black 

arrows). B) At the 3-4 wg-stripe stage the only segmental Tc-mirror/irx expression is found in the maxilla (open 
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arrow). B’) At the 5-6 wg-stripe stage the first sign of intercalary Tc-mirror/irx expression becomes visible 

(black arrow) parallel to the antennal Tc-wg stripe (open arrowhead). B’’) Only late at the 9 wg-stripe stage the 

mandibular Tc-mirror/irx expression arises (black arrowhead). C) In early germ band stages Tc-hh is expressed 

in an ocular-antennal stripe (open arrowhead; see also Farzana and Brown, 2008). Slightly later mandibular 

expression becomes evident (not shown). C’-C’’) From the 6-7 wg-stripe stage on Tc-hh transcripts can be 

detected in the intercalary segment (black arrow) and the adjacent antennal (open arrowhead) and mandibular 

segment (black arrowhead). D) Tc-slp1 is first expressed in a broad mandibular stripe (black arrowhead; see also 

Choe and Brown, 2007). D’) At a 7-8 wg-stripe stage weak Tc-slp1 expression becomes visible in the intercalary 

segment (black arrow). In the antennal (open arrowhead) and the mandibular segment (black arrowhead) Tc-slp1 
is strongly expressed. D’’) Slightly later the intercalary Tc-slp1 domain becomes clearly visible (black arrow). E) 

Tc-wg expression is already established in the mandibular (black arrowhead) and the maxillary segment (open 

arrow). E’) At the 5-6 wg-stripe stage Tc-wg expression starts in the antennal segment (open arrowhead). E’’) 

Only late at a 8-9 wg-stripe stage first signs of intercalary Tc-wg expression (black arrow) become evident 

between the antennal (open arrowhead) and the mandibular domain (black arrowhead). F-F’) Throughout early 

germ band stages no segmental Tc-ey/pax6 expression can be detected. F’’) At the 8 wg-stripe stage segmental 

Tc-ey/pax6 expression is observed in the antennal (open arrowhead), mandibular (black arrowhead) and 

subsequent segments. The intercalary Tc-ey/pax6 expression (black arrow) is only slightly delayed. G) 

Schematic representation of temporal aspects of marker gene expression in the antennal, intercalary, mandibular 

and maxillary segments. Note that width and position of the bars reflect their location in the embryonic 

segments. Intercalary Tc-engrailed is not shown but appears at a similar stage as Tc-hh (7 wg-stripe stage; 
Brown et al. 1994). Tc-cnc and Tc-col are based on Economou and Telford, 2009. 

 

4.3.2 Tc-labial function is required for the formation of lateral parts of the head cuticle 

 

Tc-labial is the anteriormost gene of the Hox-cluster and marks the entire intercalary segment 

in Tribolium (Fig. 4.18A-D), other insects and the corresponding second antenna in 

crustaceans (Abzhanov and Kaufman, 1999). I extended the previously described pattern (Nie 

et al., 2001) to embryos undergoing retraction and surprisingly found expression domains of 

Tc-lab in the roof of the stomodeum (white arrowhead in Fig. 4.18D) and the roof of the 

proctodeum (the latter has also been found in Drosophila, not shown). The intercalary domain 

elongates during retraction and eventually becomes split into a median domain and a domain 

located in the lateral head lobes (black arrow in Fig. 4.18D). These domains appear to be 

separated by the mandible which is moving anterior with respect to the stomodeum. In the 

latest stainable embryonic stages the median Tc-lab domain becomes undetectable.  

In order to reveal the contribution of the intercalary segment to the larval head cuticle, I 

knocked down the Tribolium Hox1 ortholog Tc-lab. I examined the head bristle pattern of 

both halve sides of 10 larvae (for a description of the wild type pattern see Schinko et al., 

2008). In none of these 20 independently analyzed halve sides could I observe any indication 

for a homeotic transformation. Rather, a set of bristles is missing: the posterior gena triplet 

bristle (80%), the dorsal gena triplet bristle (20%), the median maxilla escort bristle (70%) 

and the posterior maxilla escort bristle (100%) (Fig. 4.18I’ and Table S5). Assuming that not 

only the bristles themselves are missing, but also surrounding tissue, a large portion of the 

lateral head is lost after Tc-lab RNAi. 
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4.3.3 Knock down of Tc-lab leads to loss of the intercalary segment 

 

In order to understand the genesis of the cuticle phenotype, I examined the set of marker 

genes in the RNAi background. I concentrated on late elongation stages (between 10 and 14 

wg-stripes) for the spatial analysis since at this stage the intercalary segment is well 

established. After knock down of Tc-lab I found a complete loss of intercalary Tc-hh, Tc-wg, 

Tc-slp1 and Tc-ey/pax6 expressions (compare black arrows in Fig. 4.18F-H to F’-H’). The 

anterior marker Tc-mirror/irx is only partly deleted. The Tc-mirror/irx expression that runs 

parallel to the antennal Tc-wg stripes (see white arrow in Fig. 4.18E) probably corresponds to 

the expression in the other segments and marks the corresponding anterior region of the 

intercalary segment. This domain is reduced in extension and intensity (compare white arrows 

in Fig. 4.18E to E’). The median domain, in contrast, appears unaffected (white arrowheads in 

Fig. 4.18E and E’). In compliance with the loss of marker gene expression, the mandibular 

Tc-mirror/irx domain is shifted anteriorly after RNAi and touches the median domain (black 

arrowheads in Fig. 4.18E and E’). The antennal and mandibular parasegment boundaries 

appear not to be affected by Tc-lab knock down. In conclusion, my data show that the knock 

down of Tc-lab leads to the loss of most of the intercalary segment and parts of the lateral 

head cuticle, rather than to a transformation (summarized in Fig. 4.18J). This finding 

contradicts the classical view that all gnathal segments contribute to the dorsal head cuticle 

like trunk segments to the dorsal trunk (Snodgrass, 1935; Weber, 1966). 
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Fig. 4.18: Effects of Tc-lab RNAi on the intercalary segment. 
 

A-C) Expression of Tc-lab marks the intercalary segment throughout embryonic development. D) At late stages, 

this domain elongates and splits into median triangle shaped stripes and a lateral expression domain (black 

arrow). The forward moving mandible is located where the domain splits. In addition, Tc-lab expression arises 

de novo in the stomodeum roof (white arrowhead). E-H) Wild type expression patterns of Tc-mirror/irx (E), Tc-

ey/pax6 (F), Tc-slp1 (G) and Tc-hh (H). The white arrow in E and the black arrows in F-H indicate the respective 

intercalary expression. The anterior (left) black arrow in H marks the expression domain of Tc-wg. E’-H’) 

Expression patterns of Tc-mirror/irx (E’), Tc-ey/pax6 (F’), Tc-slp1 (G’) and Tc-hh (H’) in Tc-lab RNAi 

embryos. The black arrows in F’-H’ indicate the loss of the respective intercalary expression domain. The 

anterior (left) black arrow in H’ marks the loss of the Tc-wg intercalary domain. E’) The white arrow indicates 

the reduced expression domain of intercalary Tc-mirror/irx. Note that the median Tc-mirror/irx domain (white 

arrowheads) appears to be unaffected after Tc-lab RNAi. Additionally, the mandibular Tc-mirror/irx domain is 
shifted anteriorly after Tc-lab RNAi (compare black arrowheads in E and E’). I) A wild type head cuticle in a 

lateral view with the bristle pattern marked by coloured lines according to Schinko et al. 2008. At each angle, 

one seta is located. The lines and triangles help to identify the setae but do not reflect morphological or 

developmental units. purple: “vertex triplet”; green: “gena triplet”; pink “maxilla escort”; blue: “labrum quartet”. 
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I’) The Tc-lab RNAi cuticles lack several bristles that mark the lateral portion of the head. Of the three “maxilla 

escort bristles” only one is left after RNAi (pink arrow). The same is true for the “gena triplet” (the green arrow 

points to the remaining bristle). J) Schematic representation of the Tc-lab RNAi results. The region which is lost 

after Tc-lab RNAi is marked in brown colour in the wild type.  

oc: ocular region, ant: antennal, ic: intercalary, md-mandibular, mx: maxillary parasegment boundaries, 

respectively.  
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5 Discussion 

 

5.1 Analysis of highly conserved anterior patterning genes 

 

So far no comprehensive search for genes involved in the development of the Hox-free 

pregnathal head in protostomes has been performed. Therefore I aimed to identify important 

genes of head development by focusing on candidates that are active in vertebrates and 

insects. This approach identified a highly conserved core of anterior patterning genes. Below I 

will discuss the following aspects of the candidate gene screen. 

First, the comprehensive expression analysis of the candidate genes presented in this work 

enables me to formulate hypotheses on the subdivision of the embryonic head. Additionally, it 

enables to identify developmental units of the head (chapter 5.1.1). 

Second, hypotheses on the regulatory network that underlies the formation of the insect head 

can be formulated. More specifically, based on temporal expression aspects and the RNAi 

data it is possible to identify genes that are likely upstream in the hierarchy of this network 

(early expression, strong effects in RNAi). Accordingly, genes involved in more downstream 

processes can be identified (late expression, weak effects after RNAi) (chapter 5.1.2.1). 

Furthermore, spatial expression aspects enable me to hypothesize specific genetic interactions 

within the network (chapter 5.1.3). 

And third, I gained first insights into the degree of conservation of anterior patterning by 

comparing the Tribolium data to the corresponding vertebrate situation (chapter 5.1.4).   

 

5.1.1 Subdivision of the anterior head and developmental units 

 

5.1.1.1 Early subdivision of the anterior head 

 

The presented extensive expression analysis provides a large set of marker genes for different 

parts of the embryonic head. This data allows me to conclude that the Hox-free pregnathal 

head of Tribolium is subdivided into essentially three regions. 

The antennal segment is specifically marked by the expression of Tc-ems/emx and Tc-lim1/5 

from early stages on (Fig. 5.1). The ocular region is distinguishable from the other head 

regions by specific expression of Tc-otd1/otx, Tc-gsc, Tc-ey/pax6 and Tc-fez (Fig. 5.1). The 
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head lobes anterior to the ocular region are marked by activity of Tc-optix/six3 and Tc-rx (Fig. 

5.1). In addition to these region specific genes, the observed subdivision is in part confirmed 

by the activity of segmentally expressed genes. Namely, the genes essential for proper 

segmentation of the embryo (segment polarity: Tc-wg/wnt1, Tc-hh/shh, Tc-ci/gli3, Tc-en, Tc-

mirr/irx; segment polarity/pair-rule: Tc-slp/bf1) (see Brown et al., 1994 for Tc-en data) are 

expressed in domains in the antennal and ocular region as in all posterior segments. 

It is worth to note, that in addition to the above mentioned subdivision along the anterior-

posterior axis, the median stomodeal/labral region is specifically marked by the expression of 

Tc-scro/nkx2.1 from early stages on. Other genes like Tc-optix/six3, Tc-eya, Tc-so/six1 and 

Tc-mirr/irx also possess large expression domains in this region in addition to their lateral 

domains. And Tc-cap ‘n’ collar (Tc-cnc) and Tc-crocodile (Tc-croc) also mark the 

stomodeal/labral region from early stages on (Economou and Telford, 2009). These 

expression profiles indicate that the median tissue might be a separate subunit of the 

developing head. 

 

                                

Fig. 5.1: Subdivision oft the anterior head in Tribolium castaneum. 

 

The mandibular and the intercalary segment are marked by genes of the Hox-cluster. The region anterior to the 

intercalary segment is free of genes of the Hox-cluster. The subdivision of this region is based on the expression 
of genes which mark specific regions (right side) and genes which are expressed segmentally (left side). en and 

mirr/irx are depicted in grey because they are only late or not expressed in the ocular region. 

md-mandibular segment, ic-intercalary segment, ant-antennal segment, oc-ocular region, poc-preocular region, 

st-lr-stomodeal/labral region 

 

During stages later than the 5-8 wg-stripe stage, most of the expression profiles become more 

complex with additional domains (e.g. Tc-otd1/otx, Tc-optix/six3, Tc-ey/pax6 and Tc-slp/bf1) 

or they become restricted to small patches of cells (e.g. Tc-lim1/5 and Tc-gsc). This 

observation suggests that the subdivision of the anterior head is already established by the end 

of the 5-8 wg-stripe stage. 

In summary, based on the expression of the analyzed candidate genes it is possible to 

subdivide the pregnathal region of the embryonic Tribolium head into three regions: the 
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antennal segment as the posterior most, the ocular region and the anterior most preocular 

region. 

  

5.1.1.2 Identification of a signaling center in the Tribolium head 

 

The expression data indicates that the ocular parasegment boundary possesses signaling center 

capabilities in the anterior Tribolium head. 

At the 0-3 wg-stripe stage, the ocular parasegment boundary is already established in terms of 

adjacent expression of the morphogens Tc-wg/wnt1 and Tc-hh/shh (Fig. 4.3B and Fig. 5.2). 

The ocular parasegment boundary is the first and anterior most one to be established. The 

analysis of head genes with respect to this boundary reveals that many genes have clear 

borders in this region at this early stage. Whereas Tc-ci/gli3, Tc-tll/tlx, Tc-otd1/otx and Tc-

ey/pax6 possess large posteriorly abutting domains (Fig. 5.2), Tc-slp/bf1, Tc-gsc, Tc-lim1/5 

and Tc-ems/emx are expressed posterior to or within the ocular region (Fig. 5.2). While the 

expression patterns mature (e.g. 5-8 wg-stripe stage) many genes still have their expression 

boundaries in this region (see Fig. 5.3). The posterior borders of anteriorly expressed genes 

like Tc-otd1/otx and Tc-tll/tlx coincide with the posterior part of the ocular region. On the 

other hand the expression domains of more posteriorly expressed genes like Tc-ems/emx and 

Tc-lim1/5 abut this region from posterior. Some genes are specifically expressed within the 

ocular region (Tc-gsc and Tc-ey/pax6). 

 

         

Fig. 5.2: The ocular parasegment boundary possesses signaling capabilities. 

 

Adjacent Tc-wg/wnt1 (Richards et al.) and Tc-hh/shh (blue) expression are the first indication of the ocular 

parasegment boundary (left side). Other early expressed genes possess either their posterior or their anterior 

border in this region (right side). The question marks indicate unclear posterior borders. The scheme on the right 

side is based on the respective gene expressions at the 1-3 wg-stripe stage.  
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Furthermore, it has been shown that the initially widespread blastodermal expression domains 

of Tc-otd1/otx retract from the anterior and/or posterior pole to finally end up in the region of 

the forming ocular parasegment boundary (Schinko et al., 2008). Moreover, this signaling 

center corresponds in position to the mid-/hindbrain boundary (MHB) in vertebrates (see 

chapter 5.1.4.3).  

In summary, adjacent ocular expression of Tc-wg/wnt1 and Tc-hh/shh appears to mark a 

region with an essential early role in anterior head patterning. Therefore, I call this region 

insect head boundary (IHB). 

 

5.1.1.3 Genes involved in vertebrate cranial placode development pattern the anterior rim 

region of the Tribolium head 

 

The spatial expression profile of the Tribolium eya/six1/six4 genes shows that the rim region 

of the head lobes is subdivided into an anterior-median domain and a more posterior-lateral 

one. 

Tc-eya and Tc-so/six1 mark the rim of the head lobes from early stages on (Fig. 4.6 and Fig. 

5.3D). Tc-six4 is only active in the anterior-median portion of this rim region, while Tc-

Dll/Dlx is restricted to more posterior portion of the lateral rim throughout early development 

(Fig. 4.6 and Fig. 5.3D). The posterior portion of the rim region is involved in visual 

development (Yang et al., 2009b). However, the anterior-median Tc-six4 positive part has not 

been described so far.  

Since some of the above mentioned genes are expressed in mutually exclusive domains 

around the head lobes, I propose that the rim region is subdivided into two individual 

developmental units: the anterior-median Tc-six4 positive region and the more posterior-

lateral ocular portion of the rim marked by Tc-so/six1 and Tc-Dll/Dlx.  

Vertebrate eya and six1/4 genes mark the preplacodal ectoderm from early stages on. Based 

on their similar expression in Tribolium, the Tc-six4 positive anterior-median rim region is 

likely to be homologous and will be called potential placodal region in the following chapters 

(see chapter 5.1.4.5 for further discussion).  
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5.1.2 The regulatory network that governs the patterning of the Tribolium head  

 

Here I will discuss how the expression data and the RNAi results of my work can be used to 

shed first light on the regulatory network that governs head patterning in Tribolium. First, I 

will formulate hypotheses on the hierarchy of the analyzed genes within this network. Second, 

I will discuss specific interactions which I analyzed in order to test some predicted 

interactions. 

 

5.1.2.1 The hierarchy within the regulatory network 

 

Temporal expression aspects and the results of the RNAi screen provide a large dataset to 

formulate hypotheses on the hierarchy of the analyzed genes. I propose that there exist 

essentially four levels (Table 5.1).  

Assumed that early expressed genes with strong effects in the RNAi analysis possess early 

functions in the formation of the Tribolium head, I hypothesize that Tc-otd1/otx and Tc-

optix/six3 are upstream to all the other analyzed genes in the network, because both genes are 

already active at very early blastodermal stages (“early regionalization” in Table 5.1). The 

next level is composed of genes whose expression starts when embryonic and extra-

embryonic tissue is already distinguishable. These genes are most likely still involved in the 

subdivision of the head into broad domains (“regionalization” in Table 5.1). The further 

subdivision into smaller developmental units is then governed by genes whose expression in 

the head starts during early germ band elongation (“further subdivision” in Table 5.1). 

Finally, some genes start to be expressed only late during germ band elongation. These 

candidates are more likely involved in the specification of specific cell types within a given 

developmental subunit rather than regionalization (“specification of specific cells” in Table 

5.1). Since all analyzed genes are expressed until the end of embryonic development, it is 

very likely that early involved genes possess also functions in more advanced stages and 

processes.  
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Table 5.1: The hierarchy of the analyzed gene during head development. 

 

The hierarchy is based on the respective gene expression and the strength of the RNAi defects (see text for 

a detailed discussion). 

 

Tc-otd1/otx and Tc-ems/emx based on RNAi data from Schinko et al., 2008 and expression in this work 

Tc-wg/wnt1 based on RNAi data from Posnien et al., accepted for publication and expression in this work 

Tc-hh/shh based on RNAi data from Farzana and Brown, 2008 and Posnien et al., accepted for publication and expression in this work 

Tc-fgf8 based on late expression in the head from Beermann and Schröder, 2008 

Tc-en based on late expression in the ocular region from Brown et al., 1994 

Tc-arx based on RNAi from this work, no expression data available 

 

Based on this hierarchy one would assume that top level candidates that are early involved in 

the establishment of broad domains result in severe phenotypes upon loss of function. 

Accordingly, genes that start to be expressed later during development in more restricted 

regions most likely lead to milder defects after knock down of the respective gene. Hence, it 

is possible to test the hypotheses on the hierarchy by analyzing RNAi phenotypes.  

Indeed, I found this prediction largely fulfilled: severely affected cuticles show malformed 

head capsules and head appendages, whereas weaker phenotypes are characterized by an 

abnormal dorsal and lateral bristle pattern. But does the phenotype of a given gene reflect its 

position within the network?  

Tc-optix/six3 and Tc-otd1/otx as the two most upstream genes result in severely affected head 

after RNAi (Fig. 4.7F,F’ and Schinko et al., 2008; Schroder, 2003 for Tc-otd1/otx). The 

early regionalization regionalization further subdivision specification of specific cells
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knock down of genes of the next level within the network also results in severe head 

phenotypes. For example RNAi against the segmentation genes Tc-ci/gli3 and Tc-slp/f1 leads 

to the loss of whole head segments (Fig. 4.7C) (Choe and Brown, 2007; Farzana and Brown, 

2008). Similarly, entire head segments are missing after Tc-wg/wnt1 and Tc-hh/shh RNAi 

(Posnien et al., accpeted for publication). Tc-eya that is widely expressed in the embryonic 

head, leads to the loss of the complete dorsal head (Fig. 4.7E). Tc-ey/pax6 and Tc-toy/pax6 

together are expressed in large portions of the embryonic head. This matches the globally 

affected larval heads after double knock down (Fig. 4.7G,G’). The labrum and median tissue 

associated phenotype of Tc-scro/nkx2.1 is consistent with the expression of this gene in the 

labral/stomodeal region (Fig. 4.7I). Similarly, the affected gnathal appendages in Tc-lim1/5 

RNAi larvae can be explained by the expression of this gene in the proximal part of the 

growing limb buds (Fig. 4.7H). Tc-ems/emx RNAi results in malformed antennae (Schinko et 

al., 2008). These observations clearly place these genes on the top of the regulatory network.  

However, the knock down of some genes only results in relatively mild defects, although 

more severe defects could be assumed based on large and early expression domains in the 

developing head (e.g. Tc-ey/pax6, Tc-toy/pax6, Tc-so/six1 and Tc-tll/tlx). In the case of Tc-

ey/pax6 and Tc-toy/pax6 this could be explained by redundant functions, since both genes are 

expressed in largely overlapping domains. This idea is supported by the fact that the double 

knock down of these two genes results in an enhanced strength of the phenotype, suggesting 

synergistic action (Table S3). A similar redundancy or synergy of the Tribolium pax6 genes 

has been shown for their role in eye development (Yang et al., 2009a). Redundancy could also 

be envisaged for Tc-so/six1, which is co-expressed with Tc-eya in the head. The relatively 

mild cuticle phenotype of Tc-tll/tlx (Fig. 4.8K) could either be due to an incomplete knock 

down or alternatively, that its main role is restricted to nervous system development like in 

Drosophila (Younossi-Hartenstein et al., 1997). Control experiments have to show whether 

Tc-tll/tlx knock down is efficient. 

The knock down of genes like Tc-mirr/irx, Tc-fez, Tc-ptx/pitx and Tc-dbx also result in mild 

defects (Fig. 4.8), which is in line with their downstream location within the proposed 

regulatory network. I also observed bristle pattern defects for Tc-mun/arx RNAi although no 

transcripts have been detectable so far (Fig. 4.8I). The main affected region is located lateral 

in the head capsule. These defects could be related to a function of this gene in larval eye 

development, since the Drosophila gene Dm-mun/Pph13 is expressed in the Bolwig organs 

(the larval eyes) (Goriely et al., 1999). Because this expression in Drosophila starts late 

during germ band retraction (Goriely et al., 1999) it is very likely that I could not detect the 
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expression in Tribolium because late stages have not been included. Therefore, based on the 

potential late expression and the mild defects after RNAi, this gene most likely belongs to 

tissue or cell specific factors.  

In summary, the expression data and the RNAi results provide a comprehensive basis to 

formulate hypotheses on the hierarchy within the regulatory network that patterns the early 

Tribolium head. 

 

5.1.3 Testing hypotheses of regulatory interactions 

 

5.1.3.1 Tc-optix/six3 establishes anterior-median tissue by repression of laterally 

expressed genes 

 

Of the early acting genes, Tc-optix/six3 specifically marks the anterior region of the 

developing head. This expression suggests an important function of this gene in the anterior-

median head. 

I showed that upon Tc-optix/six3 RNAi the expression domains of Tc-wg/wnt1, Tc-otd1/otx 

and Tc-ey/pax6 are heavily expanded (Fig. 4.9 and Fig. 4.10). These findings imply that Tc-

optix/six3 governs the patterning of the anterior-median region of the Tribolium embryo by 

the repression of more posteriorly and laterally expressed genes. By this Tc-optix/six3 

probably prevents anterior-median tissue from adopting a posterior fate. The early onset of 

expression at the anterior pole of the embryo and the complete loss of anterior-median tissue 

in RNAi larvae further argue for such an important role of Tc-optix/six3. 

On the other hand, Tc-optix/six3 is also essential for the activation of the anterior-median and 

the ocular Tc-ey/pax6 domains, indicating that Tc-optix/six3 also governs the expression of 

genes within the anterior region. Since the anterior-median and the ocular domain of Tc-

ey/pax6 are established relatively late, it is possible that the early establishment of the 

anterior-median region by Tc-optix/six3 provides the proper surrounding for its later 

activation function.  

How can such a dual role be explained? One key to this double life are very likely co-factors 

of six3. The repressive effects were shown to be due to physical interaction with 

transcriptional repressors of the groucho family (Kobayashi et al., 2001; Lopez-Rios et al., 

2003; Zhu et al., 2002). Therefore, it would be interesting to analyze groucho orthologs in 
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Tribolium to test if the repression capabilities of Tc-optix/six3 are based on interaction with 

these co-factors. 

In summary, I could show that Tc-optix/six3 very likely orchestrates the formation of the 

anterior-median head by repressing posterior genes. After this region is established, Tc-

optix/six3 also functions as activator of late Tc-ey/pax6 domains. Some aspects of six3 

function seem to be conserved in vertebrates (see chapter 5.1.3.4 for discussion).  

 

5.1.3.2 Involvement of Tc-tll/tlx in the activation of Tc-rx and Tc-optix/six3 

 

The expression of Tc-tll/tlx in the entire head lobes suggests a general activation role of Tc-

tll/tlx in the anterior head. I tested this hypothesis and found reduced expression domains of 

Tc-rx and Tc-optix/six3 after Tc-tll/tlx RNAi (Fig. 4.11). Compared to the large expression 

domain that covers the whole head lobes, this relatively minor defect is unexpected. There are 

hints that Tc-tll/tlx is difficult to knock out completely (Sebastian Kittelmann, personal 

communication). In line with Drosophila where tll is involved in posterior patterning (Pignoni 

et al., 1990; Strecker et al., 1988), I also found posterior truncations. I only analyzed embryos 

which showed posterior patterning defects in addition to altered expression of Tc-optix/six3 

and Tc-rx. This implies that the phenotypes that I describe have been knocked down 

successfully, but may represent hypomorphic phenotypes.  

In conclusion, Tc-tll/tlx is required for the establishment of Tc-optix/six3 and Tc-rx positive 

cells in the anterior head lobes. 

 

5.1.3.3 The potential placodal region is patterned by a regulatory network comprising Tc-

eya, Tc-so/six1 and Tc-six4 

 

The data on Tc-eya, Tc-so/six1 and Tc-six4 interactions represents first insight in how the 

potential placodal region in Tribolium is patterned during embryonic development (Fig. 4.12). 

Based on my results Tc-eya would be on top of this cascade activating Tc-so/six1 and 

probably Tc-six4 (Fig. 4.12I). However, it is quite unlikely that Tc-eya alone is sufficient to 

activate Tc-so/six1, since EYA factors lack DNA-binding domains. It has been shown that 

they physically interact with SO/SIX1 and DAC (dachshund) factors (Chen et al., 1997; 

Pignoni et al., 1997). Furthermore, a specific interaction of EYA2 and SIX4 has been shown 

(Ohto et al., 1999). The co-expression with these factors suggests a similar situation in 
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Tribolium development. In mouse eya1 knock-out mutants no six1 transcripts are detectable in 

some placodal regions, suggesting a similar function of eya1 in mouse development (Xu et al., 

1999; Zheng et al., 2003). The combined action of Tc-eya and Tc-so/six1 (in this work shown 

for Tc-so/six1) in Tc-six4 activation is very likely since both genes are co-expressed prior Tc-

six4 expression. In turn Tc-eya and Tc-six4 could cooperate in repressing Tc-so/six1 

expression in the anterior rim region. Whether this repression is direct or achieved by 

activation of other repressors remains unclear. Together, these observations show that the 

anterior rim region is patterned by combined action of eya/six genes in Tribolium. 

To further expand this network the involvement of Dll/Dlx, dac and sox2/3 genes should be 

investigated. Tc-dac is transiently expressed in the anterior-lateral head lobes where it 

probably functions in demarcating the posterior border of the potential placodal region (Yang 

et al., 2009b). Tc-Dll/Dlx is expressed in the rim of the head lobes (Fig. 4.6E-H) and in 

vertebrate placode development Dlx5 has been shown to upregulate six4 in the preplacodal 

region (McLarren et al., 2003). Finally, sox2 and sox3 are capable of activating eya1 

expression and are involved in later specification events of placodal development (Koster et 

al., 2000; Schlosser et al., 2008). The Drosophila gene soxN (soxNeuro) is expressed in the 

central nervous system from early stages on (Cremazy et al., 2000; Overton et al., 2002). 

Preliminary data from Tribolium shows that Tc-soxN is similarly expressed in the nervous 

system, and more specifically also in the anterior rim region (Franck Simonnet, personal 

communication). 

 

5.1.3.4 Are the observed six3 interactions conserved in vertebrates? 

 

Since the candidate genes for the screen were chosen because of their involvement in 

vertebrate neural plate patterning, I also aimed to compare the interactions of six3 from 

Tribolium to vertebrates. 

In vertebrates, six3 is also a crucial factor in patterning the anterior most region of the neural 

plate, since forebrain and craniofacial development is severely affected in mutants (Conte et 

al., 2005; Jean et al., 1999; Lagutin et al., 2003; Lopez-Rios et al., 1999; Zuber et al., 1999). 

One key function of six3 in early forebrain development is the anterior repression of Wnt-

signals from posterior parts of the brain. For example, without the repression of wnt1, anterior 

brain regions become posteriorized (Lagutin et al., 2003; Lavado et al., 2008). My 

manipulation of Xenopus laevis Xsix3 results at least in part in opposing effects on Xwnt1 

(Fig. 4.13). The low number of analyzed embryos and the contradictory results for the 
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overexpression show that more data is required to draw a final conclusion. However, the 

similar situation in mice, sea urchin (Lagutin et al., 2003; Lavado et al., 2008; Wei et al., 

2009) and Tribolium, suggests that the repression of Wnt-signaling in the anterior region is a 

conserved role of six3 in Bilaterians.  

Interactions of six3 with pax6 have extensively been analyzed in optic development of 

different vertebrates. In this process six3 acts as an activator (Bernier et al., 2000; Carl et al., 

2002; Liu et al., 2006; Loosli et al., 1999; Zuber et al., 2003). I showed that this is also the 

case in anterior neural plate patterning in my Xenopus interaction experiments (Fig. 4.13). 

However, the Xenopus data contradicts data from mouse, where pax6 expression expands into 

anterior brain regions in slightly older six3 mutants (Lagutin et al., 2003). These findings 

suggest different roles of vertebrate six3 genes in different processes. In Tribolium the early 

Tc-ey/pax6 expression is repressed by Tc-optix/six3, whereas the later anterior-median domain 

depends on expression of Tc-optix/six3. Since the early domain is not comparable to 

vertebrate pax6 expression (see chapter 5.1.4.2.1), this represents a novel interaction with 

respect to an expression that is unique to Tribolium or insects. However, the requirement of 

Tc-optix/six3 for the establishment of the anterior-median Tc-ey/pax6 domain could be a 

conserved function of six3, because this domain shows similarities to the anterior pax6 

expression in vertebrates (see chapter 5.1.4.2.1 for further discussion). Hence, six3 might be 

involved in the activation of anterior pax6 expression among Bilaterians.  

An anterior expansion of otx expression has been shown in mouse six3 mutants (Lagutin et 

al., 2003). Conversely, upon Xsix3 overexpression an unaltered Xotx2 expression has been 

reported within the eye field transcription factors (Zuber et al., 2003). This is supported by my 

Xenopus experiments where neither overexpression nor knock down of Xsix3 results in altered 

Xotx2 expression. In Tribolium Tc-otd1/otx expression is clearly expanded after Tc-optix/six3 

RNAi, arguing for repressive effect of Tc-optix/six3 on Tc-otd1/otx. This is in line with the 

mouse data. The impact of six3 on otx in Xenopus has to be re-examined in order to allow a 

statement on the conservation of their relationship. But at least based on the comparison of 

Tribolium and mouse, six3 seems to be involved in the repression of otd/otx from the anterior 

region of the head.  

My results show that six3 is an ancient factor capable of establishing the anterior most tissue 

by functioning as an activator of pax6 genes and as a repressor of wnt1 and otx genes. 

However, more vertebrate models have to be analyzed in order to draw conclusions on the 

conservation of the entire network. 
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In summary, the candidate gene screen allows me to formulate hypotheses on interactions 

within the regulatory network of Tribolium head development. The first tests of these 

hypotheses are encouraging because many of the assumed interactions were confirmed. A 

judgment on the conservation of these genes with vertebrates is not possible at that stage 

because the vertebrate data are in some cases not identical. Some interactions like the 

activating effect of six3 on pax6 however, seem to be conserved. This encourages to further 

pursue this approach. 

 

5.1.4 Conservation of anterior patterning in bilaterian animals 

 

Since the initial selection of the candidate genes is based on expression in the vertebrate 

neural plate, I want to compare the Tribolium expression profiles to the corresponding 

vertebrate situation. This comparison shows that a large set of genes is involved in the 

formation of similar anterior regions in insects and vertebrates, indicating that the anterior 

most region of bilaterian animals was similarly patterned in the bilaterian ancestor (Fig. 5.3). 

As a representative of the vertebrate neural plate I chose an early 4-6 somite stage mouse 

neural plate (Rubenstein and Shimamura, 1997). However, the respective expression patterns 

are extracted from different vertebrate models (see Table S6 for a comprehensive reference 

list). In order to reduce inaccuracies based on temporal expression changes I focused on the 

following stages for the respective expression profiles: embryonic day 7-8.5 (mouse), 8-12 

hours post fertilization (zebrafish), stage 11-14 (Xenopus laevis, stages after Nieuwkoop and 

Faber, 1967) and HH4-7.5 (chick, stages after Hamburger and Hamilton, 1992). All these 

stages span late gastrulation and early neurulation events. For Tribolium I depict three stages 

of development. The 5-8 wg-stripe stage marks the onset of neural precursor gene expression 

(Nikolaus Koniszewski, personal communication). Hence, in this stage the first distinction 

between epidermal and neural cell fate becomes obvious by the expression of Tc-ase. 

Furthermore, I show the elongated germ band stage since the segregation of neural from 

epidermal tissue should be finished by the end of this stage (Hartenstein et al., 1987). Finally, 

I depict candidate gene expression in retraction stages to show tissue specific expression 

features in a differentiating surrounding. 
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Fig. 5.3: Comparison of the candidate gene expression in Tribolium and vertebrates. 

 

Comprehensive schematic representation of the candidate gene expression patterns in Tribolium (I-III in A-F) 

and in vertebrates (IV in A-F). See text for a detailed description of the depicted Tribolium stages and 

discussion. The expression patterns for the vertebrate genes are extracted from different vertebrate models (see 

Table S6 for a comprehensive reference list) and depicted in a mouse neural plate at a 4-6 somite stage. Dashed 

expression borders indicate unclear domains. The gray dashed lines in the Tribolium head indicate the 

approximate border between the ocular region (future protocerebrum) and the antennal segment (future 
deutocerebrum) (based on posterior border of Tc-hh/shh expression). Therefore, the gray dashed line roughly 

marks the location of the IHB. The Tribolium fgf8 expression is based on Beermann and Schröder, 2008. The 

Triboilum en expression is based on Brown et al., 1994. The Tribolium Dll expression at late stages (D III) is 

based on Beermann et al., 2001. 

p1/2-prosomeres 1 and 2 of the forebrain, p3/4-prosomeres 3 and 4 of the forebrain, p5/6-prosomeres 5 and 6 of 

the forebrain, M-midbrain, r1-rhombomere 1 of the hindbrain, open arrowhead in C I-ocular Tc-slp/bf1 domain, 

arrow in C I - C III-anterior-median Tc-slp/bf1 domain, arrowhead in C II and C III-anterior-median Tc-ey/pax6 

domain  
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5.1.4.1 The insect ocular/preocular region corresponds to the fore-and midbrain region of 

the vertebrate neural plate 

 

First I summarize the expression of eight genes, which are active in the anterior head of 

Tribolium in similar patterns as in the vertebrate neural plate (Fig. 5.4; Fig. 5.3A-B). 

 

5.1.4.1.1 six3 and otd/otx genes subdivide the anterior region that is defined by the 

expression of tll/tlx genes in vertebrates and insects 

 

The expression of Tc-optix/six3 and Tc-otd1/otx starts very early and together these two genes 

mark most of the head lobes (Fig. 5.4A and Fig. 5.3A). Tc-optix/six3 is expressed anterior to 

Tc-otd1/otx. The early onset of expression implies an early function in anterior head 

regionalization. The mouse otd orthologs otx1 and otx2 are expressed in the fore- and 

midbrain region of the neural plate. The anterior most part of the neural plate is free of otx1/2 

expression. otx2 knock out in mice leads to the loss of the whole rostral neuroectoderm, 

including the fore-, mid- and anterior hindbrain  (Acampora et al., 1995; Rubenstein and 

Shimamura, 1997; Simeone et al., 1992a). Mouse six3 is expressed from early stages on in the 

anterior most parts of the developing nervous system. In neural plate stages, expression covers 

the future forebrain (tel- and diencephalon) (Oliver et al., 1995). six6 is a six3 paralog in 

vertebrates. six3 and six6 expression is largely overlapping in early neural plate stages of 

different vertebrate models. six3 knock-out mice lack the anterior forebrain (Conte et al., 

2005; Jean et al., 1999; Lagutin et al., 2003; Lopez-Rios et al., 1999; Zuber et al., 1999). 

Hence, in Tribolium as well as in the vertebrate neural plate, both genes are expressed in a 

conserved non-overlapping anterior to posterior order in the anterior region of the neural 

ectoderm (Fig. 5.4A). Furthermore, both genes are involved in early regionalization of the 

anterior ectoderm. 

Expression of Tc-tll/tlx is detectable in the entire anterior region only slightly after Tc-

otd1/otx and Tc-optix/six3 and overlaps both genes (Fig. 5.3A and Fig. 5.4A). Also the tll 

ortholog tlx is expressed in the anterior most part of the neural plate covering most of the six3 

and otx expression. Later during development, expression is found in the future fore-and 

midbrain region (Hollemann et al., 1998; Kitambi and Hauptmann, 2007; Monaghan et al., 

1995; Yu et al., 1994). Hence, tll/tlx genes show conserved expression in the anterior part of 

the ectoderm overlapping six3 and otd/otx in Tribolium and vertebrates. Beside this early 
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expression, tll/tlx genes are probably involved in the formation of similar brain regions. The 

loss of vertebrate tlx genes does not result in large brain defects. But a rather small part of the 

brain, the limbic system, that is involved learning and memory, is affected in mutant mice 

(Monaghan et al., 1997; Roy et al., 2002; Stenman et al., 2003; Zhang et al., 2008). In 

Drosophila the development of the mushroom bodies as part of the brain depends on Dm-tll 

function (Kurusu et al., 2009). Interestingly, it has been proposed that the hippocampus as 

part of the mammalian limbic system shares functional features with the insect mushroom 

bodies (Farris, 2008; Mizunami et al., 1998). Hence, it would be interesting to figure out if 

Tc-tll/tlx is also involved in mushroom body development in Tribolium. 

 

5.1.4.1.2 fez, scro/nkx2.1 and rx genes also mark comparable anterior regions in Tribolium 

and in vertebrates 

 

The onset of Tc-fez, Tc-scro/nkx2.1 and Tc-rx expression clearly starts later than the before 

mentioned genes. In addition, these three genes are specifically expressed in more restricted 

patterns within the head lobes. Tc-fez and Tc-rx mark small patches of cells in the anterior-

dorsal head lobes. Their expression domains partly overlap in later stages of development. Tc-

scro/nkx2.1 transcripts are mainly detectable in ventral part of the head lobes (Fig. 5.4B). 

fezf1 and fezf2, the mouse orthologs of fez, are early markers of the forebrain and the olfactory 

system (Hashimoto et al., 2000; Hirata et al., 2006; Hirata et al., 2004; Jeong et al., 2007; 

Matsuo-Takasaki et al., 2000; Shimizu and Hibi, 2009). The vertebrate rx genes rx1, rx2 and 

rx3 are expressed in parts of the anterior neural plate which gives rise to the forebrain and the 

retina (Chuang et al., 1999; Mathers et al., 1997). Both genes cover overlapping regions in the 

neural plate like in Tribolium. The mouse gene nkx2.1 is expressed in the anterior-median part 

of the neural plate (Shimamura et al., 1995), which corresponds to the expression found in 

Tribolium. 

 

5.1.4.1.3 The wg/wnt1 and ci/gli3 genes have conserved expression in the heads of insects 

and vertebrates 

 

Tc-wg/wnt1 expression in the head is restricted to the ocular region of the head lobes (Fig. 

5.4A). Tc-ci/gli3 head expression similarly covers the ocular region, but additionally marks 

more anterior cells (Fig. 5.4B). The vertebrate wg ortholog wnt1 is expressed in the early 
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midbrain region. Loss of function experiments show that midbrain development is severely 

affected upon loss of wnt1 expression (McMahon et al., 1992; Rowitch and McMahon, 1995). 

The ci ortholog gli3 is expressed in the dorsal part of the anterior brain regions. In absence of 

gli3 expression dorsal parts of the telencephalon fail to develop properly (Aoto et al., 2002; 

Hebert and Fishell, 2008; Theil et al., 1999; Tole et al., 2000). Tc-ci/gli3 and Tc-wg/wnt1 are 

expressed in comparable patterns in the anterior region of insects and vertebrates. In addition, 

both genes possess additional segmental expression and functions in other processes than 

head patterning (Fig. 5.4B) (Bolognesi et al., 2008b; Farzana and Brown, 2008; Ober and 

Jockusch, 2006; Oppenheimer et al., 1999). The same was described for their vertebrate 

orthologs. The vertebrate wnt1 gene is also posteriorly active in the spinal cord in later stages 

of development. But the expression is restricted to the central nervous system (Echelard et al., 

1994; McMahon et al., 1992). Since ci/gli genes are involved in mediating hedgehog 

signaling, the vertebrate gli3 plays also crucial roles in other developmental processes like 

skeletal development, somitogenesis and neural tube patterning (Borycki et al., 2000; Lebel et 

al., 2007; Mo et al., 1997; Walterhouse et al., 1993). Hence, both genes possess additional 

functions in more posterior tissue in Tribolium and during vertebrate development. However, 

it is very unlikely that these posterior expression domains are homologous. In summary, the 

anterior expression domains of wg/wnt1 and ci/gli3 might be a conserved feature in 

vertebrates and insects, while the posterior domains very likely evolved independently.  

 

In conclusion, these eight genes show expression patterns with similar locations and relative 

positions in Tribolium and vertebrates (Fig. 5.4). Strikingly, most of these eight genes are 

exclusively expressed in the head of Tribolium. This implies an ancient head specific function 

of these genes in patterning the anterior ectoderm. More specifically, it suggests that the 

ocular/preocular region of insects and the vertebrate fore-/midbrain evolved from the same 

structure in the last common ancestor. 
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Fig. 5.4: Comparison of the ocular and preocular region in Tribolium to the fore-/midbrain region in 

vertebrates. 

 

Comprehensive schematic representation of the candidate gene expression patterns in Tribolium (I-III in A-F) 

and in vertebrates (IV in A-F). For Tribolium a 5-8 wg-stripe stage is depicted. The expression patterns for the 

vertebrate genes are extracted from different vertebrate models (see Table S6 for a comprehensive reference list) 

and depicted in a mouse neural plate at a 4-6 somite stage. Dashed expression borders indicate unclear domains. 
The gray dashed lines in the Tribolium head indicate the approximate border between the ocular region (future 

protocerebrum) and the antennal segment (future deutocerebrum) (based on posterior border of Tc-hh/shh 

expression). Therefore, the gray dashed line roughly marks the location of the IHB. See text for a detailed and 

discussion. 

p1/2-prosomeres 1 and 2 of the forebrain, p3/4-prosomeres 3 and 4 of the forebrain, p5/6-prosomeres 5 and 6 of 

the forebrain, M-midbrain, r1-rhombomere 1 of the hindbrain  

 

5.1.4.2 Some late expression domains of Tribolium genes possess correlates in vertebrates  

 

Here I discuss four genes whose late expression aspects can be compared to the corresponding 

vertebrate situation. 
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5.1.4.2.1 Late aspects of Tc-ey/pax6 and Tc-slp/bf1 may be conserved, while the early 

expression in the ocular region has no vertebrate correlate 

 

Tc-ey/pax6 is expressed in the dorsal-posterior part of the head lobes at early elongation 

stages, largely overlapping with Tc-wg/wnt1. This early expression is connected to the 

formation of the optic system. Later, anterior-median located domains arise that are located 

anterior to the ocular Tc-wg/wnt1 domain (arrowheads in Fig. 5.3C). In vertebrates, pax6 is 

expressed in the dorsal forebrain region of the neural plate anterior to the wnt1 domain 

(compare Fig. 5.3A IV to Fig. 5.3C IV). The loss of pax6 function leads to severe patterning 

defects of the forebrain (Schmahl et al., 1993; Shimamura and Rubenstein, 1997; Stoykova et 

al., 1996; Warren and Price, 1997). Apparently, the expression of Tc-ey/pax6 in the eye 

anlagen cannot be homologized to the vertebrate expression. The anterior-median expression, 

however, is similarly arranged with respect to Tc-slp/bf1, Tc-optix/six3 and Tc-rx as pax6 in 

vertebrates. Hence, pax6 is expressed in the anterior ectoderm in Tribolium and in vertebrates. 

The segmental Tc-ey/pax6 expression of later stages implies a function in the formation of 

specific cells in the ventral nerve cord. A later function in more posterior parts of the central 

nervous system has also been shown for vertebrates. Here pax6 controls the establishment and 

the identity of specific motor neurons and ventral interneurons of the spinal cord (Ericson et 

al., 1997; Goulding et al., 1993). However, it is questionable if the posterior expression 

domains of vertebrates and insects can be homologized. 

Early Tc-slp/bf1 expression covers the posterior portion of the ocular region. This domain has 

no correlate in vertebrates (open arrowhead in Fig. 5.3C). During germ band elongation and 

finally in retraction, additional anterior cells become Tc-slp/bf1 positive (arrow in Fig. 5.3C). 

This anterior expression in Tribolium is consistent with mouse and rat bf1 expression in the 

whole early telencephalon anlagen (Shimamura et al., 1995; Tao and Lai, 1992).  

 

5.1.4.2.2 Tc-en and Tc-fgf8 also possess late expression aspects that are consistent with the 

corresponding vertebrate expression 

 

Tc-en is not expressed in the anterior head region at early stages of development (Fig. 5.3C). 

However, during germ band elongation expression is observed in a small domain of the 

posterior ocular region, the so called head spot (Brown et al., 1994). This restricted expression 

in insects appears to be a derived state, because in onychophorans, the respective ocular stripe 
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is fully developed (Eriksson et al., 2009 and Eriksson, personal communication). The mouse 

orthologs en1 and en2 are expressed in the region of the mid-/hindbrain boundary during early 

neural plate stages. The importance for the mid-/hindbrain boundary establishment of en1 has 

been shown by its early deletion in en1 mutant mice. In accordance with the Tribolium 

expression in more posterior tissue, mouse en1 is also expressed along the hindbrain and 

spinal cord, in somites and in ventral ectoderm of the limb buds (Davidson et al., 1988; Davis 

et al., 1991; Davis and Joyner, 1988; McMahon et al., 1992; Wurst et al., 1994). Again, it is 

highly unlikely that these posterior expression domains are homolog. The ocular expression 

domain in insects, however, is probably comparable to the vertebrate MHB expression. 

Tc-fgf8 is expressed in the stomodeal region of the early elongating embryo. Slightly later, 

expression arises within the lateral head lobes in a broad stripe (Fig. 5.3C) (Beermann and 

Schroder, 2008). This stripe is located posterior to the ocular Tc-wg/wnt1 domain not abutting 

it (not shown). In mouse and zebrafish the fgf8 gene is expressed in the region of the mid-

/hindbrain boundary, anteriorly abutting wnt1 (Crossley and Martin, 1995; Hidalgo-Sanchez 

et al., 1999; Reifers et al., 1998; Wurst and Bally-Cuif, 2001). Hence, in both vertebrates and 

insects, fgf8 is expressed posterior to the anterior wnt1 domain, although the direct abutting to 

wnt1 is not conserved in Tribolium.  

The four discussed genes possess late expression domains in the ocular/preocular region in 

Tribolium which have correlates in the vertebrate fore-/midbrain region. However, the late 

establishment of these domains in Tribolium argues against an involvement in early patterning 

in contrast to the corresponding vertebrate orthologs. 

 

5.1.4.3 The insect head boundary (IHB) and the vertebrate mid-/hindbrain boundary 

(MHB) probably evolved from an anterior signaling center of the ancestor of 

Bilaterians  

 

As discussed before, the embryonic ocular/preocular region of Tribolium is highly similar to 

the fore-/midbrain region of the vertebrate neural plate (see above). I also showed that the 

posterior portion of the ocular region (IHB) possesses signaling capabilities (see chapter 

5.1.1.2). Interestingly, an important developmental boundary has been shown to separate the 

midbrain from the hindbrain in vertebrates. This so called mid-/hindbrain boundary (MHB) or 

isthmic organizer is already established in early neural plate stages (Martinez, 2001; Wurst 

and Bally-Cuif, 2001).  
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The first sign of the MHB becomes evident shortly after gastrulation by adjacent otx2 and 

gbx1/2 expression. The positioning of the anterior otx2 and the posterior gbx1/2 expression is 

at least in part mediated by Wnt-signaling (Rhinn et al., 2005; Wurst and Bally-Cuif, 2001). 

Subsequently, wnt1 expression becomes restricted to the future midbrain, while fgf8 

expression is active in the hindbrain. At the same time en1/2, pax2/5/8 and SP-factors (sp8 in 

mouse, bts1 in zebrafish) are active in a region overlapping the otx2/gbx1/2 interface. 

Involved in a regulatory network, all these genes orchestrate the maintenance of the MHB and 

the formation of the adjacent mid- and hindbrain regions (Griesel et al., 2006; Tallafuss et al., 

2001; Wurst and Bally-Cuif, 2001). 

Based on the co-expression of Tc-wg/wnt1, Tc-otd1/otx and Tc-tll/tlx in the early Tribolium 

embryonic head, the region anterior to the IHB resembles the midbrain part of the MHB in 

vertebrates. The early onset of Tc-wg/wnt1 expression suggests the involvement of Wnt-

signaling in the positioning of the IHB, like in the MHB. Also other genes with expression in 

the vertebrate MHB region are expressed in similar regions in vicinity to the IHB. The 

transient Tc-en (Brown et al., 1994) and Tc-fgf8 expression (Beermann and Schroder, 2008) in 

the IHB region suggests similar roles of these genes in IHB and MHB patterning. Also the Sp-

factor, Tc-buttonhead is transiently expressed in the antennal region and in the lateral head 

lobes, most likely posterior and anterior to the IHB (Schinko et al., 2008). However, the 

expression of Tc-unplugged (gbx ortholog) and Tc-pax2 and Tc-pox-neuro (pax2/5/8 related 

genes) remains to be analyzed. Furthermore, preliminary functional experiments in Tribolium 

suggest that the core genetic interactions that establish the MHB are not conserved (Franck 

Simonnet, personal communication). It is worth to note that even within the chordates these 

features seem not to be strictly conserved (Holland and Holland, 1999; Wada and Satoh, 

2001). 

Support for the similarities of the IHB and the MHB comes from Drosophila, where later 

stages of embryonic development (stage 10/11) have been analyzed with respect to MHB-

specific marker genes in early neuroblasts (Urbach, 2007). Based on the location of 

Drosophila Otd and Dm-unplugged/gbx, Urbach placed the “MHB” into the region of the 

future anterior deutocerebrum. Whereas the ventral portion of this “MHB” coincides with the 

proto-/deutocerebrum boundary, the dorsal part is shifted posteriorly into the deutocerebrum. 

However, this dorsal posterior shift is only based on two Dm-unplugged/gbx positive 

neuroblasts (Urbach, 2007). Hence, the late expression of Dm-unplugged/gbx seems not as 

important in the “MHB” region as the vertebrate ortholog in the MHB. Therefore, based on 

the activity of Drosophila Otd in the posterior most part of the ocular region at late embryonic 
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stages the proposed “MHB” region in Drosophila resembles the early IHB in Tribolium. 

However, more marker genes have to be analyzed in Tribolium (unplugged/gbx, pax2/5/8) in 

later embryonic stages. 

It is worth to note that an alternative MHB-like region has been proposed in Drosophila based 

on late expression of Dm-otd/otx, Dm-unpg/gbx and Dm-pax2/5/8 genes (in stage 13/14). This 

boundary has been placed between the deutocerebrum and the tritocerebrum (Hirth et al., 

2003; Reichert, 2005). However, the Tribolium IHB data supports the location of a signaling 

center between the proto-/deutocerebral region.  

One characteristic of the vertebrate MHB is the mitogenic effect of wnt1 expression on 

midbrain cells. It has been observed that the wnt1 positive dorsal-posterior midbrain region 

undergoes prolonged proliferation. Furthermore, the MHB shows very high proliferation 

potential. Instead of a growing MHB region, the new cells seem to get incorporated into either 

the midbrain or the hindbrain (Martinez, 2001). In Tribolium I observed that after the 

establishment of the IHB at early germ band stages, the head lobes start to form. Connected to 

this, the ocular Tc-wg/wnt1 expression expands from a stripe to a triangle shaped domain. It is 

noteworthy that the dorsal part of this domain comprises significantly more cells than the 

ventral part (Fig. 4.3H) (Nagy and Carroll, 1994). It is possible that the head lobes, at least in 

part, form by unsymmetrical growth of the dorsal Tc-wg/wnt1 positive ocular region. By 

applying BrdU labeling, Phospho-Histon H3 staining or in vivo imaging it would be possible 

to elucidate if this growth is due to extensive cell proliferation or alternatively to cell 

movements. Both the IHB and the MHB seem to induce growth of adjacent tissue, with 

involvement of wnt1. 

In conclusion, the expression profile of the Tribolium IHB region in early embryonic stages is 

similar to the expression profile of the corresponding orthologs in the vertebrate MHB. Both 

regions are located posterior to an anterior region that seems to be similarly conserved: the 

ocular/preocular region of Tribolium and the vertebrate fore-/midbrain region, respectively. In 

the vicinity of both regions, extensive growth of tissue occurs, indicating that both are 

involved in promoting cell proliferation. 

 

In summary, I showed that based on shared expression features, embryonic location and 

developmental aspects the Tribolium IHB and the vertebrate MHB are very likely 

homologous brain boundaries. This implies that the last common ancestor of all bilaterian 

animals already possessed a signaling center in a comparable region. The observed 
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differences, like hh/shh expression in the IHB region and the potentially minor importance of 

unplugged/gbx in insects, may reflect different adaption in both lines.  

 

5.1.4.4 The Tribolium orthologs of some important neural plate patterning genes are not 

involved in the patterning of comparable regions in the beetle 

 

Some of the important vertebrate neural plate patterning genes are not conserved in their early 

function in Tribolium. 

Vertebrate emx genes are essential for proper forebrain development. According to this 

function, they are expressed in the dorsal telencephalon anlage in early neural plate stages 

(Fig. 5.3F) (Qiu et al., 1996; Simeone et al., 1992b; Yoshida et al., 1997). Vertebrate emx 

genes are also expressed and functionally involved in the olfactory system (Bishop et al., 

2003; Cecchi and Boncinelli, 2000; Mallamaci et al., 1998; Shinozaki et al., 2002; Simeone et 

al., 1992a; Simeone et al., 1992b). The expression of Tc-ems/emx in the antennal segment is 

not compatible with an early patterning function in the anterior brain. In Drosophila it has 

been shown that many sense organs, including those for olfactory sensing arise from the 

antennal segment. Consistent with this data, Dm-ems is involved in postembryonic 

development of the olfactory system (Lichtneckert et al., 2008). These observations suggest 

that Tc-ems/emx is similarly involved in the formation of the olfactory system. Hence, the 

involvement in the olfactory system development, but not in early neural plate patterning, 

seems to be a conserved feature of ems/emx expression and function.  

Vertebrate shh is active in the dorsal foregut and serves as a signal that governs the patterning 

of the ventral forebrain (Fig. 5.3F) (Echelard et al., 1993; Ericson et al., 1995). The segmental 

staining of Tc-hh/shh has no counterpart in vertebrates, including its domain in the IHB. 

However, it is in addition expressed in two ventral domains that develop into the stomodeum 

from early stages on (Farzana and Brown, 2008). Potentially, this early Tc-hh/shh domain 

could provide ventral signals similar to vertebrates. However, this potential signal does not 

work along the entire body axis in contrast to vertebrates. Therefore, the important function of 

shh in patterning the ventral neural ectoderm is not highly conserved in Tribolium but could 

be present in the anterior region.  

Vertebrate irx genes are involved in various patterning processes of the neural plate (Fig. 

5.3F). In early development they establish the neural plate by Wnt-mediated Bmp4 repression 

(irx1 and irx2) and activation of proneural genes (Cavodeassi et al., 2001; Gomez-Skarmeta et 

al., 2001). Later, irx genes are involved in the dorso-ventral and anterior-posterior subdivision 
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of the neuroectoderm. In the anterior-posterior axis irx genes are posteriorly expressed, with a 

different anterior border for each representative. The anterior border of irx2 lies at the mid-

/hindbrain boundary (MHB), irx1 has its anterior most expression at the fore/midbrain border 

and irx3 reaches into the forebrain (Glavic et al., 2002). Tc-mirr/irx has its anterior most 

expression in the ventral IHB region (Fig. 5.3F). Based on the high similarities of the IHB and 

the MHB (see chapter 5.1.4.3), the Tc-mirr/irx expression would resemble the one of 

vertebrate irx2.  And indeed, a recent phylogenetic analysis shows that the insect mirror genes 

belong to irx2/5/6/4 group of vertebrate genes (Kerner et al., 2009). In dorsal-ventral axis 

patterning irx genes are essential for the specification of interneurons in the ventral spinal 

cord (Briscoe et al., 2000). Since Tc-mirr/irx remains active in small ventral clusters of the 

nerve cord, a similar function is possible. However, it is obvious that the wide-ranging early 

patterning functions of vertebrate irx genes are not conserved in Tribolium.   

Lim1/5 (lhx1/5) genes are essential for fore- and midbrain development in vertebrates, as 

shown in loss-of-function studies. Correspondingly, the expression has been described to be 

located in large portions of the fore- and midbrain region (Fig. 5.3F) (Peng and Westerfield, 

2006; Shawlot and Behringer, 1995; Sheng et al., 1997; Toyama et al., 1995). The expression 

of Tc-lim1/5 in the antennal region in Tribolium argues against a similar function in patterning 

the anterior part of the brain. It has to be determined by functional analyses if the early 

expression in the IHB region might influence anterior brain formation. In retraction stages Tc-

lim1/5 gets activated in a segmental pattern close to the ventral midline, suggesting an 

involvement in specifying cells in the nerve cord. Involvement of the Drosophila lim1 gene in 

motor- and interneuron formation substantiates this suggestion (Lilly et al., 1999). This late 

function would be a conserved feature since vertebrate lim1/5 genes are also active in distinct 

sets of motor- and interneurons in the spinal cord (Pillai et al., 2007; Tsuchida et al., 1994). 

In summary, the vertebrate orthologs of Tc-ems/emx, Tc-hh/shh, Tc-mirr/irx and Tc-lim1/5 are 

essential for proper neural development. In Tribolium these genes possess no early function in 

corresponding neural regions comparable to vertebrates. However, some late and tissue 

specific aspects may be conserved. 

 

5.1.4.5 Comparison of neural plate associated genes 

 

The high conservation of genes involved in vertebrate neural plate patterning implies that 

neural plate associated genes might be similarly conserved. Therefore, I will discuss the 
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comparison of vertebrate genes expressed developing cranial placodes (eya, so/six1, six4, 

Dll/Dlx) to their Tribolium orthologs. 

 

5.1.4.5.1 The potential placodal region is patterned like the vertebrate preplacodal ectoderm 

(PPE) 

 

The vertebrate orthologs of Tc-eya, Tc-so/six1, Tc-six4 and Tc-Dll/Dlx are crucial key factors 

in the development of cranial placodes. Cranial placodes develop from the preplacodal 

ectoderm (PPE), a tissue that is located at the interface between the neural ectoderm of the 

neural plate and the epidermal ectoderm. According to this, the above mentioned genes are 

expressed in ectodermal cells surrounding the anterior neural plate (Fig. 5.3D) (reviewed in 

Baker and Bronner-Fraser, 1997; Brugmann and Moody, 2005; Schlosser, 2006). Dlx genes 

are essential for the positioning of the PPE and its demarcation from adjacent neural and 

epidermal ectoderm (Bhattacharyya et al., 2004; Esterberg and Fritz, 2009; McLarren et al., 

2003; Solomon and Fritz, 2002; Woda et al., 2003). Vertebrate six1, six4 and eya genes are 

known as panplacodal markers because they are expressed in nearly all PPE and placodal 

cells throughout development (Schlosser and Ahrens, 2004). six1 and eya were shown to 

regulate the switch between neural progenitor proliferation and neural differentiation in a 

dose-dependent manner. This switch is achieved by soxB1 (sox2/3) regulation (Schlosser et 

al., 2008). Corresponding to this, it has been shown that medaka sox3 is similarly expressed in 

the neuroectoderm and in all placodes prior to placode formation (Koster et al., 2000). Tc-eya 

and Tc-so/six1 are expressed at the rim of the head lobes from early stages on. Tc-Dll/Dlx 

shows early transient expression in this region, while Tc-six4 gets activated in the anterior rim 

region during germ band elongation (Fig. 5.3D). Since the lateral part of the rim expression 

segregates with the optic anlagen (Yang et al., 2009b), I will concentrate on the anterior rim 

region for the comparison. Note that the Tribolium soxB1 ortholog Tc-soxNeuro is expressed 

in the anterior head anlagen from early blastodermal stages on (Franck Simonnet, personal 

communication). 

Since I found co-expression of six/eya/Dll genes as well as sox2/3 genes in the anterior rim 

region of Tribolium and in the vertebrate PPE, the possibility arises that Tribolium might 

possess placodal-like structures. This potential placodal region is marked by the expression of 

Tc-six4 at the anterior rim of the head lobes.  
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5.1.4.5.2 The potential placodal region in Tribolium possesses features of the hypophyseal 

placode in vertebrates 

 

The vertebrate PPE gives rise to a variety of sensory organs and cell types. Whereas the PPE 

is marked by the expression of only few genes, the specific cranial placodes possess a rather 

unique gene expression profile (Baker and Bronner-Fraser, 1997; Brugmann and Moody, 

2005; Schlosser, 2006). Thus, the question arises to which type of vertebrate cranial placode 

the potential placodal region in Tribolium corresponds. Since the Tc-six4 positive region 

marks the anterior most portion of the Tribolium head, the anterior most located hypophyseal 

placode and the olfactory placode are good candidates (Baker and Bronner-Fraser, 1997; 

Brugmann and Moody, 2005; Schlosser, 2006). The hypophyseal placode gives rise to parts 

of the neuroendocrine system. In most vertebrates the hypophyseal placode gets integrated 

into the stomodeum roof to form an evagination, the so called Rathke’s Pouch, that fuses with 

a similar evagination of the diencephalon floor. Rathke’s Pouch (hypophyseal placode) gives 

rise to the non neural part of the pituitary (adenohypophysis) and the diencephalon floor 

contributes to its neural part (neurohypophysis) (Baker and Bronner-Fraser, 1997; Kardong, 

1998). The olfactory placode contributes to the formation of the olfactory system (Baker and 

Bronner-Fraser, 1997; Schlosser, 2006). Both placodes share a large set of transcription 

factors (six1, six4, eya, Dlx, pax6, six3/6, otx2, pitx, sox2/3, bf1). During embryonic 

development the expression code of each placode becomes distinguishable by the specific 

expression of pitx and lhx3 in the hypophyseal placode and sox9 and emx2 in the olfactory 

placode (Baker and Bronner-Fraser, 1997; Schlosser, 2006). In Tribolium embryos, I found 

expression of all shared genes in the Tc-six4 positive region at some stage (only at early germ 

band stages: Tc-so/six1 and Tc-Dll/Dlx; at late retraction stages: Tc-six4, Tc-eya, Tc-ey/pax6, 

Tc-optix/six3, Tc-otd1/otx, Tc-ptx/pitx, Tc-soxNeuro/soxB1 and Tc-slp/bf1) (Fig. 5.3A-E, Tc-

soxNeuro, Frank Simonnet, personal communication). Tc-ems/emx is never active in the 

potential placodal region (Fig. 4.4F-J). The sox9 ortholog in Drosophila (Dm-sox100B, Dm-

soxE) is involved in testis, gut and malpighi tubule formation, but has never been shown to be 

expressed in the head anlagen (DeFalco et al., 2003; Hui Yong Loh and Russell, 2000). This 

implies that none of the specific olfactory placode markers is expressed in the potential 

placodal region in insects. On the other hand, I showed Tc-ptx/pitx expression in the late Tc-

six4 region (Fig. 5.3D III). The vertebrate pitx genes are important for the formation of the 

pituitary as part of the vertebrate neuroendocrine system (Lamonerie et al., 1996; Lanctot et 

al., 1997; Pommereit et al., 2001; Szeto et al., 1999; Tremblay et al., 1998).  Additionally, in 
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Drosophila it has been shown that the lhx3 ortholog Dm-lim3 is expressed in a cluster of 

anterior brain cells adjacent to the pharynx at the end of retraction (De Velasco et al., 2004; 

Thor et al., 1999). However, the actual Tc-lim3/lhx3 expression remains to be confirmed. 

Together, based on the expression profile of the Tc-six4 positive region, I conclude that the 

potential placodal region in Tribolium possesses features of the hypophyseal placode.  

 

5.1.4.5.3 The potential placodal region in Tribolium might be involved in the development of 

the neuroendocrine system 

 

Similar to the vertebrate hypophyseal placode, the Tc-six4 positive region appears to 

contribute to neuroendocrine system development: I found that Tc-chx is expressed in the Tc-

six4 positive region (not shown) that is an early marker for the developing Pars Intercerebralis 

(PI) in Drosophila. This is an important neurosecretory brain center that innervates a 

neurosecretory gland, the corpus cardiacum (cc) (de Velasco et al., 2007; Hartenstein, 2006). 

Several authors already pointed out that the PI/cc of insects and the hypothalamus/pituitary of 

vertebrates share developmental, structural and functional features (Nassel, 2002; Veelaert et 

al., 1998). In line with this, a high degree of conservation of bilaterian neurosecretory systems 

has been discussed (Hartenstein, 2006; Tessmar-Raible, 2007; Tessmar-Raible et al., 2007).  

Also the relative location of the involved tissue during development substantiates an 

involvement of the Tc-six4 positve region in the development of the neuroendocrine system. 

For example, in Drosophila the cc develops from a region between the median protocerebrum 

and the future foregut, suggesting that PI and cc develop from adjacent tissue (De Velasco et 

al., 2004). Similarly, the vertebrate hypophyseal placode arises directly adjacent to the future 

hypothalamus (Couly and Le Douarin, 1990; Eagleson and Harris, 1990). In Tribolium the 

median Tc-six4 positive region with its potential to contribute to neuroendocrine development 

and the developing stomodeum are in direct vicinity over a long period of embryonic 

development. This implies that the precursors of the neuroendocrine system in Tribolium are 

mainly located in the anterior-median region of the developing head. However, it remains 

unclear which specific part of the neuroendcrine system arises from the Tc-six4 positive 

region. Cell tracking systems will be needed to address these important open questions. 
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5.1.4.5.4 Development of parts of the neuroendocrine system from a placodal like region 

could be ancestral to bilaterian animals  

 

In 1983 Northcutt and Gans published their “New Head” theory that essentially proposes that 

the derived features of the vertebrate body plan are based on the appearance of cranial 

placodes and the neural crest tissue in the vertebrate stem group (Northcutt and Gans, 1983). 

Hence, cranial placodes were long considered to be vertebrate specific structures (Shimeld 

and Holland, 2000). In recent years, however, molecular data from tunicates, which are non-

vertebrate chordates, suggest that parts of the neuroendocrine system of those animals 

develops from a region that is marked by six1/4 and eya genes (Boorman and Shimeld, 2002; 

Christiaen et al., 2002; Mazet et al., 2005). My data from a protostome model indicate that the 

Tc-six4 positive potential placodal region in Tribolium could give rise to parts of the 

neuroendocrine system. Hence, in insects, tunicates and in vertebrates, parts of the 

neuroendocrine system develop from a region that is patterned by eya, six1 and six4 genes. 

This suggests that the formation of parts of neuroendocrine system from a region with a 

genetic code similar to vertebrate cranial placodes is a common bilaterian feature (Fig. 5.5). 
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Fig. 5.5: Evolution of cranial placode 

development. 

 

Cranial placodes were long thought to be 
vertebrate specific structures. But placodal like 

structures have also been found in urochordates 

(tunicates) and in cephalochordates (Mazet et al., 

2005; Schlosser, 2005). My data indicates that the 

Tc-six4 positive anterior region of the head 

possesses features of the hypophyseal placode of 

vertebrates. This suggests that neuroendocrine 

tissue arose from a region patterned like cranial 

placodes (“ur-placode”) in the last common 

ancestor of chordates and insects. See text for a 

detailed discussion. 
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5.1.4.6 Genes which are expressed in the prechordal plate of vertebrates are not conserved 

in their early function 

 

All neural plate associated genes mentioned above are expressed at the rim of the neural plate. 

Another important tissue for neural plate patterning is the prechordal plate, that underlies the 

anterior neural ectoderm (Nieuwkoop, 1999). The vertebrate genes gsc and dbx are expressed 

in this tissue. A comparison to the corresponding Tribolium orthologs shows that the early 

patterning functions of these genes are not conserved. However, some late and tissue specific 

aspects are probably conserved (Fig. 5.3E).  

At neural plate stages gsc is a marker for the prechordal plate. This tissue is an 

endomesodermal derivate of the gastrulation organizer (Spemann’s organizer) that is located 

in the foregut roof underlying the anterior neural plate. The prechordal plate organizer is an 

important signaling center for forebrain patterning (Artinger et al., 1997; Belo et al., 1998; 

Gritsman et al., 2000; Pera and Kessel, 1997; Schneider and Mercola, 1999; Schulte-Merker 

et al., 1994; Steinbeisser and De Robertis, 1993). Similar to vertebrate gsc, the insect gsc 

genes seem to become active in cells of the foregut. These cells start to invaginate to form the 

stomatogastric nervous system (Hahn and Jackle, 1996). In Tribolium we also found a 

foregut-related expression of Tc-gsc (Fig. 4.2G,H). This expression is most likely connected 

to the formation of the stomatogastric nervous system. The expression of Tc-gsc in the early 

head lobes has no correlate in vertebrates. This early anterior expression might be a unique 

function of gsc in insects, since Drosophila also possesses Dm-gsc positive cells in the 

anterior head region (Hahn and Jackle, 1996). It has been suggested that gsc genes might be 

involved in the induction of cell fate changes or adhesion processes rather than the 

specification of cell fates (Goriely et al., 1996). In accordance with this it has been shown in 

vertebrates that gsc is essential to promote gastrulation movements (Blum et al., 1992; Cho et 

al., 1991; Izpisua-Belmonte et al., 1993; Schulte-Merker et al., 1994; Stachel et al., 1993). 

Interestingly, the head lobes are prone to drastic morphogenetic movements during head 

capsule formation (Posnien and Bucher, submitted). Thus, Tc-gsc could function there to 

promote the cellular changes underlying these movements. A conserved role in nervous 

system patterning is not found. 

The early expression of vertebrate dbx orthologs is diverse. The zebrafish and frog dbx genes 

are expressed in an early anterior domain in the region of the forebrain and in a posterior 

domain along the spinal cord (Fjose et al., 1994; Gershon et al., 2000). In zebrafish the 

forebrain expression seems to be located in the prechordal plate underlying the neural plate 
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rather than in neural tissue (Fjose et al., 1994). The anterior domain in Xenopus is only 

transiently active (Gershon et al., 2000). The mouse dbx ortholog possesses no early domain. 

Expression in the fore-midbrain region arises late during development in mouse. But the 

spinal cord expression seems to be conserved among vertebrates (Lu et al., 1992; Shoji et al., 

1996). In the spinal cord, dbx genes are involved in the shh-dependent formation of specific 

interneuron types (Gribble et al., 2007; Pierani et al., 1999). The late onset of Tc-dbx 

expression shows that no early function of this gene is evident in Tribolium. This is consistent 

with the data from mouse dbx. But the segmental expression of Tc-dbx suggests a role in the 

formation of specific cells in the ventral nerve cord. This is substantiated by the fact that dbx 

is expressed in specific neurons in another protostome, the annelid Platynereis dumerilii 

(Denes et al., 2007). 

In summary, my data show that genes which possess early functions in neural plate associated 

regions only share late and specific aspects with the corresponding Tribolium orthologs. 

 

5.2 Wnt-signaling in anterior patterning of Tribolium castaneum 

 

5.2.1 Canonical Wnt-signaling is involved in an ancient mode of anterior-posterior 

patterning  

 

I showed that Tc-axin is essential for proper embryonic anterior-posterior axis formation. 

Apparently, Wnt target genes have to be down-regulated in order to establish anterior 

structures. Additionally, embryos with ectopic Wnt-targets are posteriorized as shown by the 

anterior expansion of the posterior marker Tc-cad and the observation that in some cases both 

terminal regions exhibit posterior like characteristics (e.g. no head lobes). Additional support 

for the posteriorization comes from other experiments on Tc-axin. For example Tc-wnt8 that 

is expressed in two cells clusters in the posterior growth zone in wild type embryos 

(Bolognesi et al., 2008a), becomes activated in two to four cell clusters in the prospective 

anterior region after Tc-axin RNAi (Renata Bolognesi, personal communication). 

Furthermore, the anterior gnathal segment specific Hox-gene Tc-deformed/Hox4 (Brown et 

al., 1999) is absent in Tc-axin RNAi embryos (Renata Bolognesi, personal communication). 

In line with this, the posterior abdomen-specific Hox-gene Tc-abdominal-A/Hox8 is expressed 

throughout the embryo after Tc-axin knock down (Renata Bolognesi, personal 

communication). These results strongly support a posteriorization of anterior tissue upon Tc-
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axin RNAi. It is worth to note that the loss of axin function in zebrafish leads to the loss of the 

anterior telencephalon due to expansion of posterior diencephalon derivates (Heisenberg et 

al., 2001). 

Since the embryos are posteriorized, the question arises why I only found truncated larval 

cuticles rather than larvae with two posterior endings. The answer to this question probably 

lies in the severity of the phenotypes I observed. The fact that I found all intermediate 

phenotypes indicates that the RNAi effect is dose dependent. In the first three days after 

injection no cuticles were formed, indicating that the most severe phenotypes are not even 

capable of producing a proper cuticle. However, these egg collections were also used for in 

situ hybridization to analyze the strongest defects on embryonic level. The larvae that secreted 

a cuticle and which I analyzed might already represent weaker phenotypes with some residual 

Tc-axin activity. This would lead to some degree of Wnt-signaling repression, which probably 

results in incomplete transformation of the anterior region towards a posterior fate. This 

intermediate tissue might have degraded subsequently, whereas the correctly patterned 

posterior portion remained intact. Hence, the strong potentially bi-caudal phenotypes do not 

secrete a cuticle and the weaker phenotypes result in cuticles with degraded anterior tissue. 

How is Wnt-signaling capable of directing an anterior fate? Based on the data presented so far 

and preliminary results regarding the effect of Tc-axin RNAi on Tc-otd1 (see below) I 

propose the following working model (Fig. 5.6): Wnt-signals (Wnt1, Wnt8 and WntA) which 

are expressed at the posterior pole from early stages on (Bolognesi et al., 2008a) form a 

posterior to anterior gradient. In the posterior region of the Tribolium embryo this Wnt-signal 

activates Tc-cad and thereby a posterior fate is established. This is shown by the 

overexpression of Tc-cad after Tc-axin RNAi. In line with this assumption, Tc-cad expression 

is highly down-regulated if Wnt-signals are abolished (Tc-porcupine (involved in the 

secretion of Wnt-ligands) or Tc-arrow (LRP co-receptor ortholog) RNAi; not shown and 

Renata Bolognesi, personal communication). The Cad Protein might directly or indirectly 

restrict Tc-otd1 to the anterior region. Tc-otd1 in turn could be involved in the repression of 

Tc-cad. This is supported by data from the wasp Nasonia vitripennis where cad is derepressed 

after otd RNAi (Olesnicky et al., 2006). Tc-zen1 represses Tc-otd1 in the anterior extra 

embryonic region (van der Zee et al., 2005). Since Tc-otd1 expression is reduced in some of 

the analyzed Tc-axin RNAi embryos (not shown), I propose that a Wnt-signaling/Tc-cad free 

surrounding is required for zygotic Tc-otd1 expression (Fig. 5.6) (McGregor, 2006; Schroder, 

2003).  
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This model suggests that Tc-axin is crucial for the establishment of an anterior Wnt-target/Tc-

cad free region, which in turn provides the basis for anterior Tc-otd1 expression.  

 

 

  

Interestingly, the loss of Dm-axin function (maternal and zygotic) does not result in severe 

anterior-posterior patterning defects in Drosophila. The phenotypes rather lack segmental 

denticle belts, resulting in naked larval cuticles (Hamada et al., 1999; Willert et al., 1999). 

These observations suggest that Wnt-signaling is not involved in the initial patterning of the 

anterior-posterior axis in Drosophila. Higher dipterans rather possess a very specialized and 

unique system composed of maternally provided and gradient-forming factors, namely Dm-

bicoid (anterior) that regulates Dm-caudal translation (posterior) (Rivera-Pomar et al., 1996). 

This system initially patterns the anterior-posterior axis. However, the anterior specifying 

gene bicoid is not present in other insects (Brown et al., 2001; Stauber et al., 2002). 

Interestingly, several studies show that otd has the potential to be the ancient anterior master 

regulator for two main reasons. First, otd is provided maternally in insects other than 

Drosophila, indicating an early function (Lynch et al., 2006; Schetelig et al., 2008; Schinko et 

al., 2008; Schroder, 2003). And second, the knock down of otd in Tribolium and the wasp 

Nasonia vitripennis leads to the loss of large anterior regions, indicating a similar role to 

bicoid in Drosophila (Lynch et al., 2006; Schinko et al., 2008; Schroder, 2003).  

The results on Tc-axin presented here suggest an additionally involved mechanism, namely 

the prerequisite of a Wnt-target free anterior region, that might act upstream of Tc-otd1 to 

activate and restrict its expression in the head anlagen. Furthermore, these results show that 

the involvement of Wnt-signaling in anterior-posterior axis formation in Tribolium is highly 

similar to the vertebrate situation. The derived mode of Drosophila development has probably 

Fig. 5.6: Summary and working model for 

the analysis of Wnt-signaling in Tribolium. 

 

The Tc-axin RNAi results show that an 

anterior Wnt-signal-free region is essential 

for proper development of anterior 
structures. The gray dashed lines indicate 

that Tc-axin function is needed in order to 

provided the anterior Wnt-signal-free region. 

In this region Tc-otd1 becomes (zygotically) 

activated. Tc-zen1 from extra-embryonic 

tissue restricts Tc-otd1 to the future 

embryonic region. Wnt-signals in the 

posterior region are involved in the 

activation of Tc-caudal and therefore 

promote posterior fate. Tc-caudal and Tc-

otd1 migh act through mutual repression. 

See text for a detailed discussion. 
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hampered the identification of vertebrate-like involvement of Wnt-signaling in early axis 

formation.  

It would be interesting to analyze the function and expression of axin in other insects in order 

to confirm the proposed ancient role of Wnt-signaling in anterior-posterior axis formation. 

 

5.3 Development of the intercalary segment 

 

5.3.1 Tc-labial knock-down leads to loss of the intercalary segment rather than a 

transformation 

 

I showed that major parts of the embryonic intercalary segment fail to develop upon knock 

down of Tc-lab function as indicated by the loss of Tc-hh, Tc-wg, Tc-slp1 and Tc-ey/pax6 

expression. The lack of intercalary tissue is confirmed by the mandibular Tc-mirror/irx 

domain which is shifted anteriorly in Tc-lab RNAi embryos. Also expression of the anterior 

marker Tc-mirror/irx is reduced at the lateral parts of the intercalary segment. However, some 

anterior median Tc-mirror/irx remains expressed. Interestingly, also Tc-lab expression does 

not cover median tissues at this stage (Fig. 4.18B,C) which might render them insensitive to 

Tc-lab RNAi. An alternative explanation is that this aspect of Tc-mirror/irx expression 

depends on signals that emanate from the adjacent stomodeum that is unaltered in its 

expression of the morphogens Tc-wg and Tc-hh. In this scenario, this aspect of Tc-mirror/irx 

expression would be independent from intercalary signals.  

labial belongs to the group of homeotic selector genes (Hox) which specify the identity of 

specific body regions in all animals, including the insects Drosophila (Lawrence and Morata, 

1994; Lewis, 1978; McGinnis and Krumlauf, 1992) and Tribolium (Beeman et al., 1993; 

Brown et al., 2002; Tomoyasu et al., 2005). Typically, members of the highly conserved Hox-

gene cluster show different levels of segmental transformations upon loss of function or gain 

of function in a wide array of arthropods (Akam, 1998; Angelini et al., 2005; Copf et al., 

2006; Hughes and Kaufman, 2000). However, the observed transformations are based on the 

expansion of anteriorly expressed Hox-genes, rather than specific effects of the lost Hox-

gene. This is based on a phenomenon called “posterior prevalence” that describes the fact that 

posterior Hox genes repress the expression of more anterior ones (Hafen et al., 1984; Lufkin 

et al., 1991; McGinnis and Krumlauf, 1992; Struhl and White, 1985). Given the fact that 

labial/Hox1 is the anterior most expressed Hox-gene it is not surprising that labial/Hox1 



Discussion 

109 

mutants in Drosophila do not show transformations because no anterior Hox-gene can 

substitute for its expression. Mutations in Dm-labial result in head involution defects which 

make interpretations difficult (Akam, 1989; Jürgens et al., 1986; Merrill et al., 1989). The loss 

of several cuticular structures in the larval head was thought to arise mostly secondarily as 

consequence of defective head involution. Two defects, however, correlate with embryonic 

labial expression in Drosophila: First, the fusion of the mandibular/maxillary lobe with the 

procephalic lobe does not occur. Second, labial expressing cells in the procephalic lobe fail to 

assimilate into the dorsal pouch (Merrill et al., 1989).  In the light of my findings the former 

phenotype could be due to a loss of intercalary tissue between the mandibular/maxillary and 

the procephalic lobes. This would lead to the lack of fusion and the observed enlarged 

distance of these lobes (see Fig. 3B in Merrill et al., 1989). The similarity in both insects 

suggests that the establishment and/or maintenance of the intercalary segment might be a 

conserved function of labial within insects. 

 

5.3.2 Different patterning mechanism in the intercalary segment 

 

labial is the only Hox-gene expressed in the pregnathal head region that is patterned 

differently from the trunk (Cohen and Jurgens, 1990; Crozatier et al., 1999) and the segment 

polarity genes show different interactions in each of the pregnathal segments (Gallitano-

Mendel and Finkelstein, 1997). My temporal expression analysis in Tribolium embryos shows 

that the intercalary parasegment boundary is established only late during germ band 

elongation (Fig. 4.17) which is in accordance with data in other insects (Rogers and Kaufman, 

1996). This analysis also shows that Tc-lab is expressed in early germ band stages (3-4 wg-

stripe stage) long before the first segmental marker becomes evident at a 6-7 wg-stripe stage 

(Tc-mirror/irx, Fig. 4.17B’,G). The expression of other segmental markers is even more 

delayed (Fig. 4.17G). This implies that Tc-lab already operates in a tissue that is still 

unspecified in terms of parasegmental organization. Interestingly, not only the intercalary 

parasegment boundary but also the adjacent portions of the mandibular parasegment lag 

behind. Mandibular Tc-mirror/irx expression is first observed in a 9-10 wg-stripe stage 

whereas the posterior compartment of this segment is established much earlier – actually, it is 

the first trunk parasegment boundary to be specified (Fig. 4.17C,D). Apparently, the 

establishment of the intercalary parasegment boundary is required for patterning the anterior 

mandibular segment.  
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5.3.3 The intercalary segment is required for lateral parts of the head 

 

I showed that the intercalary segment is required for the embryonic formation of lateral head 

cuticle (gena). This is in line with the analysis of temperature sensitive alleles in adult flies 

which has revealed defects in the postgena of adult flies (Merrill et al., 1989). The unexpected 

lateral location can probably be explained in the light of the drastic morphogenetic 

movements during head formation: In early embryonic development the gnathal mouthparts 

are specified well posterior to the mouth opening but later migrate anteriorly to end up in a 

circle around the mouth (Rogers and Kaufman, 1997; Snodgrass, 1935; Weber, 1966). The 

intercalary segment initially separates gnathal appendages from the mouth opening and is 

somehow split by the anterior movement of the mouthparts. My results indicate that the 

appendages split the intercalary segment and push parts of it laterally. This is supported by the 

expression of Tc-lab in late embryos: The Tc-lab domains become split where the mandible is 

located, indicating that the forward movement of the mandible is causative (Fig. 4.18D). This 

conclusion is based on the assumption that the expression of Tc-labial does not migrate over 

tissues, i.e. the observed split of Tc-labial expression reflects the split of intercalary tissue and 

that the cuticular defects are not due to secondary effects. The contribution of the median 

domain of the split Tc-labial expression to the head epidermis remains unclear. It could be 

involved in tritocerebrum formation as in Drosophila (Hirth et al., 2001). 

 

5.4 Outlook  

 

I identified a large set of genes whose expression indicates an involvement in processes 

reaching from anterior patterning to tissue and cell specific functions. Based on the expression 

and epidermal function of these genes I hypothesized interactions which I subsequently tested. 

The fact that most of these proposed interactions were confirmed shows that this is an 

adequate approach to reveal the network underlying anterior head patterning. Hence, more 

interactions should be tested. Additionally, a comprehensive comparison of interactions in 

insects and vertebrates will uncover the core interactions of the anterior bilaterian patterning 

network. Potential differences within this network might probably help to explain the 

diversity among Bilaterians. 

In addition to this candidate gene approach, an unbiased search for new genes involved in 

anterior patterning of insects is needed. This could be achieved through mutagenesis screens 
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and genome wide RNAi screens. Both approaches are currently running or planned in 

Tribolium. The genes identified by these approaches should then be integrated into the 

network. Furthermore, these genes could be analyzed in vertebrates in order to expand the list 

of potentially conserved genes.  

The analysis of the gene functions shown in this work is restricted on epidermal ectoderm 

patterning. Since early head pattering genes in insects are also potentially involved in neural 

development, the importance of the so far identified genes for neural development should be 

analyzed. In order to gain insight into the development of the Tribolium brain a variety of 

transgenic lines is needed, in which different parts of the larval brain are specifically marked. 

The genes identified in this work provide first candidates for such an approach. Once these 

lines are established, the effects of loss of function of early patterning genes on larval brain 

development can be scored. In line with this approach, it would be interesting to show 

whether the potential placodal region of Tribolium is really involved in the formation of the 

neuroendocrine system.   

The data presented in this work indicates that an important signaling center (IHB) is involved 

in early head patterning. A comprehensive analysis of the IHB is needed to substantiate its 

importance for head development.  

And finally, this work further substantiates the importance of canonical Wnt-signaling in the 

establishment of the anterior-posterior axis in Tribolium. It would be interesting to figure out 

how early Wnt-signaling is connected to other processes in anterior-posterior patterning. 
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7 Appendix 

7.1 Supplementary Tables 

 
Table S1 (part1): Vertebrate candidate genes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vertebrate gene synonyms

                                                           expressed in the head of Tribolium

1 orthodenticle homolog / otx

2 sine oculis-related homeobox 3/6 homolog / six3/6

3 Tlx nuclear receptor subfamily 2, group E, member 1 (Nr2e1)

4 LIM homeobox protein 1/5 / lhx1/5 Lim1/5

5 NK2 homeobox 1 /nkx2.1 Nkx2-1, T/EBP, thyroid transcription factor-1, tinman, Titf1, Ttf-1

6 goosecoid / gsc

7 retinal homeobox / rx retina and anterior neural fold homeobox (rax), 

8 Fez family zinc finger / fezf forebrain embryonic zinc-finger

9 sonic hedgehog / shh Hhg1, Hx, Hxl3

10 wingless-related MMTV integration site 1 / wnt1 int-1

11 GLI-Kruppel family member / gli brachyphalangy (bph)

12 Iroquois related homeobox / irx

13 empty spiracles homolog /emx

14 forkhead box G1 / foxg1 brain factor 1 (bf1, bf-1)

15 paired box gene 6 / pax6 Dey, small eye

16 developing brain homeobox 1 / dbx1 Mmox C

17 paired-like homeodomain transcription factor / pitx pituitary homeobox

18 distal-less homeobox / Dlx

19 eyes absent homolog / eya

20 sine oculis-related homeobox 1 homolog /six1

21 sine oculis-related homeobox 4 homolog /six4 AREC3, TrexBF

                                                            not expressed in the head of Tribolium

22 aristaless related homeobox / arx

23 wingless related MMTV integration site11 / wnt11

24 BarH like homeobox / Barx

                                                              not in the Tribolium  genome

25 Hesx1 HES-1, Rpx, ANF

26 ventral anterior homeobox containing gene 1 / Vax1

27 diencephalon/mesencephalon homeobox 1 / Dmbx1 Atx, Cdmx, Mbx, Otx3
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Table S1 (part2): Tribolium castaneum orthologs and protein domains.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tribolium ortholog synonyms Protein domains

                                                                          expressed in the head of Tribolium

1 orthodenticle / otd1 ocelliless (oc) homeobox

2 six3 optix homeobox, SIX-domain

3 tailless / tll VitaminD receptor, Zinc finger nuclear hormone receptor-type, Steroid hormone receptor

4 Lim1/5 LIM type zinc-finger, homeobox

5 scarecrow / scro homeobox

6 goosecoid / gsc PvuII-PstI homology 25 (Pph25) homeobox

7 retinal homeobox / rx bk50, wombat (wom) homeobox, paired-like homeodomain

8 fez zinc-finger, Engrailed homology 1 (Eh1) repressor motif

9 hedgehog / hh Peptidase C46, Hedgehog/intein hint domain, Hedgehog amino-terminal signaling region, Intein splicing site

10 wingless / wg wnt1, int1 Secreted growth factor Wnt protein

11 cunitus interruptus / ci zinc-finger

12 mirror /mirr homeobox, Iroquois-class homeodomain

13 empty spiracles / ems antenna (ant) homeobox, Helix-turn-helix motif

14 sloppy paired / slp foxg, FD6, FD7 fork head box, Winged helix repressor DNA-binding domain

15 eyeless / ey & twin of eyeless / toy homeobox, paired-like homeodomain, Winged helix repressor DNA-binding domain

16 dbx homeobox, Helix-turn-helix motif

17 ptx homeobox, paired-like homeodomain

18 Distalless / Dll homeobox, Helix-turn-helix motif

19 eyes absent / eya clift (cli) Haloacid dehalogenase-like hydrolase

20 sine oculis / so homeobox, SIX-domain

21 six4 myotonix homeobox, SIX-domain

                                                                                not expressed in the head of Tribolium

22 munster / mun PvuII-PstI homology 13 (Pph13) homeobox, Paired-like homeodomain

23 wnt11 Secreted growth factor Wnt protein

24 BarH B-H homeobox, Helix-turn-helix motif

                                                                                      not in the Tribolium  genome

25 homeobox

26 homeobox, Helix-turn-helix motif

27 homeobox, Paired-like homeodomain
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Table S2: Quantification of bristle pattern defects of the RNAi screen.  

 

 

 

 

 

 

 

 

 

 

 

 

Gene Beetles

x2

bells bristle post vent ant triplet ant bas median ant clypeus labrum post dors ant bristle ant med post

six4 detailed 16 0 2 2 1 1 1 + 2 7 0 2 0 0 0 0 1 3 0 0 0

six4 16 0 2 2 1 1 3 7 0 2 0 0 0 0 1 3 0 0 0

% 0 12,5 12,5 6,25 6,25 18,75 43,75 0 12,5 0 0 0 0 6,25 18,75 0 0 0

eya detailed 12 1 4 + 4 1 2 + 1 1 0 10 1 0 0 0 2 + 7 12 2 + 7 11 0 4 4

eya eRNAi 12 1 8 1 3 1 0 10 1 0 0 0 9 12 9 11 0 4 4

% 8,33 66,7 8,333 25 8,333 0 83,33 8,333 0 0 0 75 100 75 91,667 0 33,33 33,33

so detailed 20 1 1 + 3 0 1 0 2 17 0 2 0 0 1 + 1 16 + 2 14 + 2 16 + 1 0 1 0

so aRNAi 20 1 4 0 1 0 2 17 0 2 0 0 2 18 16 17 0 1 0

% 5 20 0 5 0 10 85 0 10 0 0 10 90 80 85 0 5 0

toy detailed 12 10 12 4 5 0 12 11 3 0 0 0 1 1 + 1 1 10 0 10 0

toy 12 10 12 4 5 0 12 11 3 0 0 0 1 2 1 10 0 10 0

% 83,3 100 33,33 41,67 0 100 91,67 25 0 0 0 8,333 16,67 8,3333 83,333 0 83,33 0

ey 10 2 1 0 1 0 0 0 1 0 0 0 0 2 0 4 1 2 2

% 20 10 0 10 0 0 0 10 0 0 0 0 20 0 40 10 20 20

toy/ey detailed 6 6 6 2 + 2 6 0 6 6 3 0 0 0 2 4 3 5 2 6 5

toy/ey 6 6 6 4 6 0 6 6 3 0 0 0 2 4 3 5 2 6 5

% 100 100 66,67 100 0 100 100 50 0 0 0 33,33 66,67 50 83,333 33,33 100 83,33

gsc 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0

% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 25 0

fez detailed 26 0 7 1 1 1 + 4 1 2 1 + 1 1 0 0 0 0 0 15 0 6 0

fez 26 0 7 1 1 5 1 2 2 1 0 0 0 0 0 15 0 6 0

% 0 26,9 3,846 3,846 19,23 3,846 7,692 7,692 3,85 0 0 0 0 0 57,692 0 23,08 0

tll detailed 20 2 4 0 0 0 0 1 0 0 0 0 3 3 2 2 + 3 2 2 + 2 2

tll 20 2 4 0 0 0 0 1 0 0 0 0 3 3 2 5 2 4 2

% 10 20 0 0 0 0 5 0 0 0 0 15 15 10 25 10 20 10

dbx detailed 22 0 0 0 1 0 0 2 0 0 0 0 7 7 7 6 + 7 + 1 0 3 0

dbx 22 0 0 0 1 0 0 2 0 0 0 0 7 7 7 14 0 3 0

% 0 0 0 4,545 0 0 9,091 0 0 0 0 31,82 31,82 31,818 63,636 0 13,64 0

lim1 detailed 24 0 5 1 1 0 1 2 1 + 1 2 0 0 2 2 2 16 6 + 1 9 0

lim1 24 0 5 1 1 0 1 2 2 2 0 0 2 2 2 16 7 9 0

% 0 20,8 4,167 4,167 0 4,167 8,333 8,333 8,33 0 0 8,333 8,333 8,3333 66,667 29,17 37,5 0

scro detailed 28 0 0 0 0 1 2 0 0 6 0 0 2 2 2 2 0 0 0

scro 28 0 0 0 0 1 2 0 0 6 0 0 2 2 2 2 0 0 0

% 0 0 0 0 3,571 7,143 0 0 21,4 0 0 7,143 7,143 7,1429 7,1429 0 0 0

rx 16 0 0 0 0 0 0 5 0 0 10 0 0 0 0 5 2 4 0

% 0 0 0 0 0 0 31,25 0 0 62,5 0 0 0 0 31,25 12,5 25 0

ci detailed 20 0 1 0 12 0 7 + 5 2 + 6 4 + 2 2 + 1 1 0 2 2 2 7 0 0 4

ci 20 0 1 0 12 0 12 8 6 3 1 0 2 2 2 7 0 0 4

% 0 5 0 60 0 60 40 30 15 5 0 10 10 10 35 0 0 20

slp2 detailed 20 0 4 16 0 8 16 2 13 8 8 0 0 0 0 1 + 8 2 + 10 2 + 10 6 + 7

slp2 20 0 4 16 0 8 16 2 13 8 8 0 0 0 0 9 12 12 13

% 0 20 80 0 40 80 10 65 40 40 0 0 0 0 45 60 60 65

ptx detailed 20 6 9 3 + 2 0 0 1 2 2 1 0 0 0 0 0 4 0 0 0

ptx 20 6 9 5 0 0 1 2 2 1 0 0 0 0 0 4 0 0 0

% 30 45 25 0 0 5 10 10 5 0 0 0 0 0 20 0 0 0

arx detailed 22 1 11 0 2 0 2 1 + 1 1 0 0 0 1 + 1 1 + 1 5 + 1 + 2 1 + 8 2 1 + 6 1 + 4

arx 22 1 11 0 2 0 2 2 1 0 0 0 2 2 8 9 2 7 5

% 4,55 50 0 9,091 0 9,091 9,091 4,545 0 0 0 9,091 9,091 36,364 40,909 9,091 31,82 22,73

irx aRNAi 18 14 15 6 0 0 6 1 1 1 0 0 0 1 0 2 0 1 0

% 77,8 83,3 33,33 0 0 33,33 5,556 5,556 5,56 0 0 0 5,556 0 11,111 0 5,556 0

vertex setae vertex bristles

bell row vertex triplet labrum quartet gena triplet maxilla escort

Dll detailed 24 1 0 0 4 0 0 0 0 0 0 0 2 2 2 0 0 0 0

Dll 24 1 0 0 4 0 0 0 0 0 0 0 2 2 2 0 0 0 0

% 4,17 0 0 16,67 0 0 0 0 0 0 0 8,333 8,333 8,3333 0 0 0 0

six3 detailed 16 2 2 11 + 2 8 + 1 2 + 11 7 + 2 7 4 + 1 14 16 16 0 1 0 5 0 5 0

six3 16 2 2 13 9 13 9 7 5 14 16 16 0 1 0 5 0 5 0

% 12,5 12,5 81,25 56,25 81,25 56,25 43,75 31,25 87,5 100 100 0 6,25 0 31,25 0 31,25 0

loss of bristle 0%-14%      = no phenotype

additional bristles 15% - 24%  = very likely a phenotype

misplaced bristles >25%          = significant phenotype



Appendix 

134 

Table S3: Quantification of synergy of Tc-ey/pax6 and Tc-toy/pax6.  

 

 

 

Table S4: Quantification of bristle pattern defects of Tc-axin RNAi.  

 

 

 

Table S5: Quantification of bristle pattern defects of Tc-lab/Hox1 RNAi.  

 

 

 

Table S6: Reference list for vertebrate gene expression patterns. 

 
Gene References 

Otx1/2 (Boncinelli et al., 1993; Rubenstein et al., 1998; Rubenstein and Shimamura, 1997) 

Nkx 2.1 (Rubenstein et al., 1998; Rubenstein and Shimamura, 1997) 

Emx1/2 (Boncinelli et al., 1993; Rubenstein et al., 1998; Rubenstein and Shimamura, 1997) 

BF1 (Hebert and Fishell, 2008; Rubenstein et al., 1998; Rubenstein and Shimamura, 1997) 

Pax6 (Rubenstein and Shimamura, 1997; Scholpp et al., 2003; Shimamura and Rubenstein, 1997) 

gsc (Camus et al., 2000; Lemaire et al., 1997) 

FGF8 (Rubenstein et al., 1998) 

Shh (Rubenstein et al., 1998) 

Wnt1 (McMahon et al., 1992; Rubenstein et al., 1998) 

Gli3 (Aoto et al., 2002; Hebert and Fishell, 2008) 

Six1 (Schlosser, 2006; Schlosser and Ahrens, 2004) 

Six4 (Schlosser, 2006; Schlosser and Ahrens, 2004) 

Eya (Schlosser, 2006; Schlosser and Ahrens, 2004) 

Dbx1/2 (Fjose et al., 1994 for hlx-1/dbx1a, prechordal plate, mesoderm) (Gershon et al., 2000 for Xdbx, diencephalon)  

(Lu et al., 1992; Lu et al., 1994; Shoji et al., 1996 for late expression in the spinal chord) 

En2/3 (Rowitch and McMahon, 1995; Scholpp et al., 2003) 

Rx1/2/3 (Chuang et al., 1999; Mathers et al., 1997; Meijlink et al., 1999) (Deschet et al., 1999 late in diencephalon) 

Tlx (Arendt and Nubler-Jung, 1996; Hollemann et al., 1998; Kitambi and Hauptmann, 2007; Monaghan et al., 1995; Yu et 

al., 1994) 

gene n

bells bristle post vent ant triplet ant bas median ant (post) clypeus labrum post dors ant bristle ant med post

toy 12 10 12 4 5 0 12 11 3 0 8 0 0 1 2 1 10 0 10 0

% 83,3 100,0 33,3 41,7 0,0 100,0 91,7 25,0 0,0 66,7 0,0 0,0 8,3 16,7 8,3 83,3 0,0 83,3 0,0

ey 10 2 1 0 1 0 0 0 1 0 0 0 0 0 2 0 4 1 2 2

% 20,0 10,0 0,0 10,0 0,0 0,0 0,0 10,0 0,0 0,0 0,0 0,0 0,0 20,0 0,0 40,0 10,0 20,0 20,0

toy+ey 6 6 6 4 6 0 6 6 3 0 6 0 0 2 4 3 5 2 6 5

% 100,0 100,0 66,7 100,0 0,0 100,0 100,0 50,0 0,0 100,0 0,0 0,0 33,3 66,7 50,0 83,3 33,3 100,0 83,3

synergy* 2,0 1,9 1,4 1,5 4,0 1,8 6,0 3,3 4,2

* effect of double knockdown exceeds additive effect x-fold

bell row vertex triplet lr. quart. gena triplet maxilla escort

vertex setae vertex bristles

Gene Beetles

x2

bells bristle post vent ant triplet ant bas median ant clypeus labrum post dors ant bristle ant med post

axin detailed 16

axin 16 5 13 5 6 6 7 9 5 8 6 9 1 2 1 10 2 10 9

% 31,25 81,25 31,25 37,5 37,5 43,75 56,25 31,25 50 37,5 56,25 6,25 12,5 6,25 62,5 12,5 62,5 56,25

gena triplet maxilla escort

vertex setae vertex bristles

bell row vertex triplet labrum quartet

Gene Beetles

x2

bells bristle post vent ant triplet ant bas median ant clypeus labrum post dors ant bristle ant med post

lab 20 0 0 0 0 0 0 0 0 0 0 0 16 4 0 0 0 14 20

% 0 0 0 0 0 0 0 0 0 0 0 80 20 0 0 0 70 100

bell row vertex triplet labrum quartet gena triplet maxilla escort

vertex setae vertex bristles
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Six3 (Loosli et al., 1998; Oliver et al., 1995; Takahashi and Osumi, 2008) 

Dlx  (Panganiban and Rubenstein, 2002) 

(Luo et al., 2001 for Dlx3, Dlx5, Dlx6) 

(Yang et al., 1998 for Dlx5) 

Irx2/3 (Cavodeassi et al., 2001; Glavic et al., 2002; Gomez-Skarmeta et al., 1998; Takahashi and Osumi, 2008) 

Fez (Hashimoto et al., 2000; Hirata et al., 2006; Hirata et al., 2004; Jeong et al., 2007; Matsuo-Takasaki et al., 2000) 

Pitx (Dickinson and Sive, 2007; Dutta et al., 2005; Meijlink et al., 1999; Schweickert et al., 2001; Zilinski et al., 2005) 

Arx (Colombo et al., 2004; El-Hodiri et al., 2003; Friocourt et al., 2006; Seufert et al., 2005) 

Lhx5 (Sheng et al., 1997) 
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7.2 Supplementary Figures (phylogenetic trees). 
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7.3 Abbreviations 

general: 

 

aRNAi   adult RNAi 

cDNA   complementary DNA 

dsRNAi  double-stranded RNA 

eRNAi   embryonic RNAi 

mRNA   messenger RNA 

pRNAi   pupal RNAi  

RNAi   RNA interference 

tGFP   turbo green fluorescent protein 

WT   wild type 

 

organisms: 

 

Aa   Aedes aegypti 

Ag   Anopheles gambiae 

Am   Apis mellifera 

Bm   Bombyx mori 

Ci   Ciona intestinalis 

Dm   Drosophila melanogaster 

Dr   Danio rerio 

Gg   Gallus gallus 

Hs   Homo sapiens 

Mm   Mus musculus 

Ns   Nasonia vitripennis 

Pd   Platynereis dumerilii 

Ph   Parhyale hawaiensis 

Rn   Rattus norvegicus 

Sk   Saccoglossus kowalevskii 

Tc   Tribolium castaneum 

Xl   Xenopus laevis 

Xt   Xenopus tropicalis 
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