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Summary

Imidazole glycerole phosphate (IGP) synthase (E.C.2.4.2.14 & E.C.4.3.2.4) catalyzes the

fifth and the sixth reaction step of the histidine biosynthesis. The byproduct of the

reactions, AICAR, is also an intermediate compound of the de novo biosynthesis of

purines. Metabolic flux in this biosynthesis generates the so-called purine salvage

pathway. In the yeast Saccharomyces cerevisiae the transcription of the IGP synthase

encoding gene, HIS7, is regulated upon amino acid and purine availability. Therefore the

metabolic link of both biosynthetic pathways is also reflected on the level of regulation

of the gene at the crossways.

In this thesis, the regulation of the homologous gene of a filamentous fungus was shown

to respond to amino acid and purine availability as in yeast. Overexpression of this

Aspergillus nidulans hisHF gene results in a block of formation of sexual fruiting bodies

at an early step of development. The appropriate regulation of hisHF expression is

therefore linked to the complex developmental program of cleistothecia formation.

All eukaryotic genes are part of chromatin that per se acts repressive on gene expression.

Therefore chromatin-modifying activities are required for accurate gene expression by

overcoming this repression. The transcriptional activation of the yeast HIS7 gene upon

amino acid starvation requires the chromatin remodeling complex Swi/Snf. Together

with the transcription factors Gcn4p and Abf1p this complex changes the nucleosomal

promoter structure. In comparison, the activation of HIS7 transcription upon purine

limitation by the transcription factor Bas1p/Bas2p requires a chromatin modifying

activity that acetylates nucleosomes in a GCN5-dependent manner.

A nucleosome located immediately upstream of the HIS7 promoter seems to represent

the border to the proceeding ARO4 gene. Possibly this nucleosome prevents

transcriptional interference between the tandemly orientated genes and permits such a

short intergenic region as it is typical for this eukaryotic microorganism.
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Zusammenfassung

Das Enzym Imidazol-glyzerol-phosphat (IGP) Synthase (E.C.2.4.2.14 & E.C.4.3.2.4)

katalysiert den fünften und sechsten Reaktionsschritt der Histidinbiosynthese. Das bei

diesen Reaktionen entstehende Nebenprodukt AICAR ist gleichzeitig ein Intermediat der

de novo Biosynthese von Purinen und fließt in diese mit ein. Diese metabolische

Verknüpfung beider Biosynthesen spiegelt sich in der Hefe Saccharomyces cerevisiae

auch auf der Ebene der Regulation des für die IGP-Synthase codierenden HIS7-Gens

durch Aminosäure- und Purinverfügbarkeit wider.

In der vorliegenden Arbeit wurde zunächst das homologe Gen eines filamentösen Pilzes

isoliert und seine Regulation durch Aminosäure- und Purinverfügbarkeit nachgewiesen.

Eine starke Überexpression dieses hisHF-Gens aus Aspergillus nidulans führt zu einer

Blockierung der sexuellen Fruchtkörperbildung in einem frühen Stadium der

Entwicklung. Eine genaue Regulation der hisHF-Expression ist daher Voraussetzung für

das Durchlaufen des komplexen Entwicklungsprogrammes der Cleistothecien-Bildung.

Eukaryotische Gene liegen im Chromatinverbund, vor welches per se repressiv auf die

Genexpression wirkt. Die Zelle benötigt chromatinmodifizierende Aktivitäten, die diese

Repression überwinden können. Die transkriptionelle Aktivierung des HIS7-Gens durch

Aminosäuremangel benötigt dafür die Anwesenheit des Swi/Snf-Komplexes und der

Transkriptionsaktivatoren Gcn4p und Abf1p, die gemeinsam eine Veränderung der

Nukleosomenverteilung an dem HIS7-Promotor bewirken. Im Vergleich dazu benötigt

die HIS7-Aktivierung bei Purinmangel durch den Transkriptionsaktivator Bas1p/Bas2p

eine chromatinmodifizierende Aktivität, die Nukleosomen GCN5-abhängig azetyliert.

Darüberhinaus stellt ein Nukleosom, das sich direkt stromaufwärts des HIS7-Promotors

befindet, eine Grenze zum vorhergehenden ARO4-Gen dar. Möglicherweise dient es dem

Schutz vor transkriptioneller Interferenz zwischen beiden gleichgerichteten Genen, die

nur durch eine kurze intergenische Region getrennt sind.



3

Chapter 1

Introduction

Recent genome sequencing projects have shown that a living cell, whichever organism is

taken into account, can synthesize different proteins in a range of 35.000 (man) to 12.000

(nematodes as Caenorhabiditis elegans) to 6.000 (yeasts as Saccharomyces cerevisiae) to

4.000 (bacteria as Escherichia coli). Some of these proteins have to be frequently

synthesized whereas others rather scarcely. In principle each protein consists of 20

different amino acids, and sometimes of additional modified amino acids formed by extra

mechanisms (e.g. selenocysteine; Böck, 2000).

Therefore the cell has to cope with the logistical problem to provide all different protein

biosyntheses with sufficient amounts of the required amino acids. Since amino acids like

e.g. tryptophan are incorporated only infrequently into proteins, for others there is a great

demand like e.g. glycine or the translational starter amino acid methionine. The logistical

problem gets even more complicated by the fact that for economical reasons the cell must

discriminate two different nutritional states. In one state the cell can fill its internal amino

acid(s) pool by the uptake of amino acid(s) present in the growth medium. In the other

state the required amino acid(s) is/are not present in the environment driving the cell into

its own amino acid biosyntheses. However, not each organism is capable of synthesizing

all required amino acids by itself but depend on the uptake of one or several amino acids

from the environment to maintain the internal pool(s). Such amino acids therefore are

termed ‘essential amino acids’ for the concerned organism, as for e.g. the amino acids

histidine and methionin and eight further amino acids are essential for man.

In consideration of the costs for amino acid biosyntheses measured as turnover of the

energy unit ATP, it is obvious that the expenses for biosyntheses of different amino acids

heavily vary. The biosyntheses of several amino acids are organized in families with the

first reaction steps in common. Such families are e.g. the oxalacetate family, the α-

ketoglutarate family, or the very expensive family of aromatic amino acids. The amino
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acid histidine is also rather expensive but its biosynthesis is not organized in a family.

Histidine biosynthesis is connected to the de novo biosynthesis of purines.

The ‘logistical masterstroke of in-time biosynthesis/uptake’ of amino acids requires a

complex network of genetically and enzymatic organized transport and regulation

mechanisms. Histidine biosynthesis serves as example for studying the link between the

involved biosynthetic genes and enzymes of the unicellular fungus Saccharomyces

cerevisiae and that of the filamentous fungus Aspergillus nidulans.

1. The biosynthesis of histidine is metabolically linked to the de novo biosynthesis
of purines

1.1 Reactions and enzymes in histidine biosynthesis

The biosynthesis of the amino acid histidine in bacteria, fungi and plants is an

unbranched pathway formed by ten complex biochemical reactions catalyzed by eight

distinct enzymes (Fig. 1) (Alifano et al., 1996). In contrast to the biosyntheses of many

other amino acids, evolution has probably developed the biosynthetic pathway leading to

histidine only once. The first reaction is the condensation of ATP and 5-phosphoribosyl-

1-pyrophosphate (PRPP) to form N´-5´-phosphoribosyl-ATP (PRATP). This reaction is

catalyzed by PRATP transferase that itself is feedback controlled by the pathway

endproduct histidine together with the product of the reaction PRATP, and moreover by

AMP (Klungsoyr et al., 1968; Ohta et al., 2000). Thermodynamic calculations revealed

that the synthesis of one molecule histidine requires 41 ATP molecules (Brenner and

Ames, 1971).

The following two reaction steps are the irreversible hydrolysis of PRATP to PRAMP

and the opening of the purine ring leading to the production of the imidazole intermediate

N´-((5´-phosphoribosyl)-formimino)-5-aminoimidazole-4 carboxyamide-ribonulceotide

(5´-ProFAR, or BBM II). The first of these reactions is catalyzed by the carboxy-terminal

domain whereas the second one by the amino-terminal domain of one bifunctional

enzyme (Smith and Ames, 1965). The fourth step of the pathway is an internal redox
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reaction involving the isomerization of the aminoaldose 5´-ProFAR to the aminoketose

N´-((5´-phosphoribulosyl)-formimino)-5-aminoimidazole-4 carboxamide-ribonucleotide

(5´-PRFAR, or BBM III) (Margolies and Goldberger, 1966).

The fifth reaction of the pathway is the transformation of 5´-PRFAR to imidazole-

glycerole-phosphate (IGP) catalyzed by the bifunctional IGP synthase. This enzyme

fulfills a glutamine amidotransferase activity providing the emerging IGP with the amide

nitrogen, and a cyclase activity for the formation of the imidazole ring (Rieder et al.,

1994). Beside IGP the compound 5´-phosphoribosyl-4-carboxamide-5-aminoimidazole

(AICAR) is formed as a byproduct. AICAR (also ZMP) itself is also an intermediate

compound of the de novo biosynthesis of purines and thus flows into this pathway

leading to the recycling of the initially invested ATP (Klem and Davisson, 1993) (see

chapter 1.2).

The enzymatically dehydrated IGP results in an enol that is further ketonized

nonenzymatically to imidazole-acetol-phosphate (IAP) (Brenner and Ames, 1971). The

seventh step consists of a reversible transamination involving IAP and a nitrogen atom

from glutamate, leading to α -ketoglutarate and L-histidinol-phosphate (HOL-P),

catalyzed by a pyridoxal-P-dependent aminotransferase. HOL-P is then converted to L-

histidinol (HOL) by the phosphatase activity of a bifunctional enzyme (Brenner and

Ames, 1971). During the last two steps of histidine biosynthesis, HOL is oxidized to the

corresponding amino acid L-histidine (His).
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Figure 1. Metabolic pathway of histidine biosynthesis. Order of the reactions and the
intermediates in the pathway. PRPP: ribosyl triphosphate; PR: ribosyl phosphate; PRPP: 5-
phosphoribosyl-1-pyrophosphate; PRATP: N´-5´-phosphoribosyl-ATP; PRAMP, N´-5´-
phosphoribosyl-AMP; BBM-II (5´-ProFAR): N ´-((5´-phosphoribosyl)-formimino)-5-
aminoimidazole-4-carboxamide-ribonucleotide; BBM-III (5´-PRFAR): N ´ - ( (5´-
phosphoribulosyl)-formimino)-5-aminoimidazole-4-carboxamide-ribonucleotide; IGP: imidazole
glycerol-phosphate; AICAR (ZMP): 5´-phosphoribosyl-4-carboxamide-5-aminoimidazole; IAP:
imidazole acetol-phosphate; HOL-P: L-histidinol-phosphate; HOL, L-histidinol; HAL: L-
histidinal (not found as free intermediate).

1.2 The AICAR cycle metabolically links the histidine and purine biosynthetic
pathways

AICAR, the by-product of the reaction catalyzed by the IGP synthase, is also an
intermediate of the de novo purine biosynthesis. As such an intermediate it directly
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boosts the purine biosynthesis to synthesize more imidazole monophosphate (IMP) that

is further metabolized to AMP or GMP (Fig. 2 A).

Mutant strains of different organisms bearing nonfunctional enzymatic activities in the

early steps of histidine biosynthesis have been shown to be auxotroph not only for

histidine but also for purines (Johnston and Roth, 1979). Since the biosynthesis of

histidine requires a carbon and a nitrogen equivalent from the purine ring of ATP, the

metabolic link represented by the production of AICAR is an important aspect of the

following purine salvage pathway, originated during a central step of the histidine

pathway (Fig. 2 A)(Guetsova et al., 1997). The conversion of AICAR to IMP solely

involves a folic acid-mediated one-carbon (C1) transfer (Neuhard and Nygaard, 1987).

However, under folate starvation conditions also the formation of the unusual nucleotide

5-aminoimidazole-4-carboxamide-riboside-5´-triphosphate (ZTP) has been reported (Fig.

2 B)(Bochner and Ames, 1982). It was proposed that ZTP acts as an alarmone signaling

C-1-folate deficiency and mediating a physiologically beneficial response to folate stress.

This hypothesis is supported by several findings concerning ZTP synthesis. In contrast to

other triphosphate ribotides, whose synthesis involves a two-step process controlled by

specific monophosphate kinases and a nonspecific diphosphate kinase, ZTP is made by

pyrophosphate transfer onto ZMP in a single enzymatic reaction catalyzed by PRPP

synthase (Fig. 2) (Sabina et al., 1984).
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Figure 2. A. Scheme of the purine salvage pathway. Indicated and written in italic are the HIS
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respectively. AICAR (ZMP): 5´-phosphoribosyl-4-carboxamide-5-aminoimidazole; ZTP: 5´-
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pyrophosphate; IMP: imidazole monophosphate; AM/D/TP: adenosine mono/di/tri-phosphate;

GMP: guanosine monophosphate. B. Reactions from AICAR to either IMP or ZTP.
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Interesting effects on gene expression have been observed in folate-deficient S.

typhimurium cells. The availability of 10-formyl-tetrahydrofolate influences the mode of

derepression – sequential or simultaneous – of the genes clustered in the his operon,

possibly by affecting the mechanism of translation coupling at the intercistronic barriers

(Petersen et al., 1976a; Petersen et al., 1976b). Addition of inhibitors of folate

metabolism induces polarity and affects the rate of decay or processing of several

polycistronic mRNAs (Alifano et al., 1994). Other bacteria as Bacillus subtilis respond to

folate shortage by initiating sporulation (Freese et al., 1979). The involvement of AICAR

as a metabolic regulator in different aspects of bacterial life is also suggested by the fact

that 5-aminoimidazole-4-carboxamide-riboside or, more likely, its phosphorylated form,

AICAR, is required throughout development during the process of nodule formation by

many Rhizobium species (Newman et al., 1994). However, the involvement of ZTP in

these processes is speculative, and the evidence for a folate stress regulon controlled by

ZTP remains elusive.

2. Genes encoding IGP synthase, the enzyme at the juncture

2.1 In prokaryotes two structural genes of the his-operon encode the bifunctional IGP-
synthase

The IGP synthase is a bi-enzyme complex and comprises two enzymatic activities

namely a glutamine amidotransferase and a cyclase activity (Beismann-Driemeyer and

Sterner, 2001). Both subunits reside stoichiometrically in the holoenzyme (Lang et al.,

2000). In bacteria the genes encoding both enzymes are typically structural genes of the

his operons (Alifano et al., 1996). hisH is the structural gene encoding the glutamine

amidotransferase activity which is identified for the gram-negative bacteria Escherichia

coli, Salmonella typhimurium, Pseudomonas aeruginosa, Haemophilus influenzae,

Azospirillium brasilense, and the cyanobacterium Synechocystis PCC6803 as well as for

the gram-positive bacteria Lactococcus lactis and Streptomyces coelicolor (Tab. 1).

Recently the hisH gene from the low GC content Thermoanaerobacter ethanolicus and
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the hyperthermophilic Thermotoga maritima were isolated and characterized (Beismann-

Driemeyer and Sterner, 2001; Erbeznik et al., 2000). The lengths of the respective coding

regions of the hisH genes from these organisms range from 557 base pairs (bp) to 666 bp

and the predicted amino acid sequences are highly conserved among them (Fani et al.,

1998).

The gene encoding the cyclase activity is named hisF. It was identified for the bacteria as

listed in Table 1. The coding regions consist of 732 bp to 786 bp in the different bacteria

and the deduced amino acid sequences again share high similarities (Fani et al., 1998).

The only archaeon for which the hisH and hisF genes have so far been identified is

Methanococcus jannaschii (Bult et al., 1996).

In the bacteria E. coli, S. typhimurium, K. pneumoniae, H. influenzae the hisH and hisF

genes are clustered in single compact his operons. On the other hand in P. aeruginosa

both genes are separated from the other his sequences. Also for Streptomyces coelicolor

the his genes are partially scattered on the chromosome (Limauro et al., 1992).

Interestingly the nine histidine biosynthetic genes of the archaebacterium Methanococcus

jannaschii are scattered throughout the chromosome and are transcribed from both

strands (Bult et al., 1996). Moreover, their relative order is not at all reminiscent of the

operon organization among bacteria.
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Organism

(b: bacteria
 a: archaea
 e: eukarya)

ORF encoding

glutamine

amidotransferase

activity (length/bp)

Gene encoding

cyclase activity

(length/bp) Reference

E. coli               (b) hisH (588) hisF (774) Carlomagno et al., 1988

S. typhimurium (b) hisH (582) hisF (774) Carlomagno et al., 1988

P. aeruginosa    (b) hisH (558) hisF (755) Burrows et al., 1996

C. glutanicum   (b) hisH (nd) hisF (771) Jung et al., 1998

A. brasilense     (b) hisH (576) hisF (786) Fani et al., 1993

L. lactis             (b) hisH (606) hisF (732) Delorme et al., 1992

S. coelicolo       (b) hisH (666) - Limauro et al., 1990

T. ethanolicus   (b) hisH (nd) hisF (762) Erbeznik et al., 2000

T. maritima       (b) hisH (nd) hisF (nd) Thoma et al., 1998

K. pneumoniae (b) hisH (nd) hisF (776) Rieder et al., 1994

M. jannaschii    (a) hisH (nd) hisF (nd) Bult et al., 1996

S. cerevisiae      (e) HIS7 (1656) Kuenzler et al., 1993

A. thaliana         (e) hisHF (1774) Fujimori and Ohta, 1998

Table 1. Identified and characterized genes of various organisms encoding glutamine
amidotransferase and cyclase subunits of IGP synthase. All his genes of bacteria identified so

far are structural genes of either a histidine or another operon. Both activities of the IGP synthase

are encoded by individual structural genes and are transcribed from a single promoter that

regulates the respective operon. In contrast in the eukaryotes S. cerevisiae and A. thaliana single

his genes with their own promoters encode both activities of the IGP synthase. nd written in

brackets behind the gene name means that they have not yet been described in further detail in

literature.
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2.2 In eukaryotes both activities of the IGP synthase are encoded by one single gene

The budding yeast Saccharomyces cerevisiae is the only eukaryotic organism whose

entire histidine biosynthetic genes have been isolated and characterized. In contrast to

most of the bacterial his genes, the yeast HIS genes are scattered throughout the genome

distributed over six chromosomes. The two enzymatic activities of the IGP synthase are

encoded in S. cerevisiae from the single HIS7 gene on chromosome II (Kuenzler et al.,

1993). The coding sequence of the gene consists of 1656 bp and is not interrupted by any

introns. This is little more than the additive lengths of the bacterial hisH and hisF genes.

Alignments of its deduced amino acid sequence with the bacterial gene products of hisH

and hisF revealed a linear composition of both enzymes in His7p and its encoding gene

in yeast, separated only by a linker region of 21 amino acids in length. This linker region

shares homology with neither bacterial hisHp/hisFp, nor with any other yeast proteins

(Kuenzler et al., 1993).

Arabidopsis thaliana is the only further eukaryotic organism for which a homologous

gene, encoding a protein with the same function as the yeast HIS7p, has been so far

identified (Fujimori and Ohta, 1998). In dependence on the notation of the bacterial hisH

and hisF genes the A. thaliana gene has been named hisHF. The deduced amino acid

sequence of hisHF is highly similar to that of yeast HIS7. The A. thaliana hisHF cDNA

complements a histidine auxotrophic his7∆ mutant strain (Fujimori and Ohta, 1998).

3. Regulation of IGP-synthase encoding genes in prokaryotes and eukaryotes

3.1 The majority of the his genes of prokaryotes are clustered and organized in operons
simultaneously regulated upon histidine availability

The considerable metabolic cost of the histidine biosynthesis accounts for the evolution

of multiple and complex strategies to finely tune the rate of synthesis of this amino acid

in different organisms to the changeable environment. In S. typhimurium and E. coli, the

biosynthetic pathway is under the control of distinct regulatory mechanisms that operate

at different levels.
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As mentioned in chapter 1.1. the metabolic flux through the histidine biosynthesis is

mainly regulated by the first enzyme of the biosynthetic pathway, the N´-5´-

phosphoribosyl-ATP transferase. The abundant presence of the end product of the

catalyzed reaction PRATP together with the end product of the pathway histidine

strongly feedback inhibits the enzyme. Moreover, high levels of AMP indicate a

disadvantageous economical starting point for the histidine biosynthesis and therefore

inhibit the transferase activity.

Besides the strong regulation of the first enzyme of the pathway, the variegated

transcriptional regulation of the his operon and the subsequent mRNA turnover are of

significant importance for the controlled biosynthesis of histidine. The his operons of S.

typhimurium and E. coli are transcribed into a polycistronic mRNA extending from the

primary Eσ70 promoter, hisp1, to the bi-directional terminator located at the end of the

gene cluster (Carlomagno et al., 1988; Frunzio et al., 1981). The transcription of the

operon is strongly regulated by the availability of histidine. This transcriptional control

works by an attenuation mechanism at the level of the leader region preceding the first

structural gene and depends on the availability of charged histidyl-tRNAs (Artz and

Broach, 1975; Barnes, 1978; Kolter and Yanofsky, 1982). A his-specific translational

control of transcription termination is the essence of attenuation control. It is mainly

achieved by a short coding region in the mRNA leader that includes numerous tandem

codons specifying histidine (7 histidine codons in a row of 16) and overlapping regions

of dyad symmetry that may fold the mRNA into alternative secondary structures, one of

which includes a rho-independent terminator. In the termination configuration a stable

stem-loop structure constitutes a strong intrinsic terminator whereas in the

antitermination configuration this constitution is prevented. The equilibrium between

these alternative configurations is determined by the ribosome occupancy of the leader

region, which in turn depends on the availability of charged histidyl-tRNA. High levels

of charged histidyl-tRNA cause the termination configuration leading to the loss of
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ribosomes that in consequence results in premature transcription termination (Yanofsky,

2000).

A positive transcriptional control of this operon in S. typhimurium upon amino acid

starvation in the presence of sufficient histidine has been reported (Venetianer, 1969).

They found that guanosine 5´-diphosphate 3´-diphosphate (ppGpp), which is the effector

of the stringent response (Cashel and Rudd, 1987), positively regulates the his operon

expression by stimulating its transcription initiation under conditions of moderate amino

acid starvation and in cells growing in minimal medium.

A further regulation of the his operon takes place at the level of mRNA processing and

decay. The unstable primary 7.300-nucleotide-long transcript has a half-life of about 3

minutes. The 5´-to-3´directed decay process generates three major processed species,

6.300, 5.000, and 3.900 nucleotides in length that encompass the last seven, six, and five

cistrons, respectively, and have increasing half-lives (5, 6, and 15 min. respectively). As

the shortest species spans the distal cistrons that are not only involved in the histidine but

also in the purine biosynthesis this uncommon stability suggests a functional link of both

biosyntheses to the mRNA turnover (Alifano et al., 1994).

3.2 In eukaryotes the metabolic link between the histidine and the purine biosynthesis is
reflected by the regulation of the gene at the juncture

S. cerevisiae is the only eukaryotic organism whose histidine biosynthesis and the

regulation of its genes has been investigated in detail. The organisation and regulation of

these genes in yeast seem to be generally different to that of bacteria. As described in

chapter 2.2 the histidine biosynthetic genes in S. cerevisiae are scattered throughout the

genome with each gene possessing its own promoter. Moreover, in contrast to bacteria

the processes of transcription and translation are temporally and spatially separated in

eukaryotes due to the compartmentation of the cell with a nucleus distinguished from the

cytoplasm.



                                                                                                                            Chapter 1

15

In S. cerevisiae starvation for only one of most of the amino acids leads to the coordinate

derepression of more than 50 biosynthetic genes in 11 different biosynthetic pathways,

mainly resulting in increased biosynthesis of amino acids. Such a regulatory network has

also been described for other several fungi, e.g. for the filamentous fungus Aspergillus

nidulans that is by reason of its cell differentiation and development a model organism of

great interest (Adams et al., 1998; Yager, 1992). The expression of the gene encoding the

IGP synthase in yeast, HIS7, is moreover activated upon starvation for purines. This

various transcriptional regulation of the HIS7 gene reflects the position of its enzyme at

the juncture of two biosynthetic pathways.

3.2.1 The transcriptional activation of the HIS7 gene upon amino acid starvation – the
‘general control system’ of S. cerevisiae

The ‘general control system’ of S. cerevisiae up-regulates the expression of amino acid

biosynthetic genes during amino acid starvation conditions in order to counteract the

shortage by increasing the own amino acid production. The key player of this regulatory

network is the transcriptional activator Gcn4p whose expression is elevated during

starvation conditions, and that activates the transcription of biosynthetic target genes

through binding to their promoters.

Uncharged tRNAs in the cytoplasm as consequence of shortcoming for any or several

amino acid(s) are detected by a sensor protein, Gcn2p, that in turn phosphorylates the

translation elongation initiation factor eIF-2 (Dong et al., 2000; Qiu et al., 2001). eIF-2 is

a trimeric protein complex formed by three different subunits, α, β, and γ. Together with

GTP that binds to the γ-subunit, and an initiator tRNA charged with methionine it forms

a ternary complex (Fig. 3 A). This complex associates with a small ribosomal subunit to

form a 43 S preinitiation complex, which binds to mRNAs near its capped 5´-end and

migrates downstream to the AUG start codon. Following AUG recognition, the GTP

bound to eIF-2 is hydrolysed to GDP and eIF-2 is released as an eIF-2-GDP binary

complex. To re-form the ternary complex for further translational initiation events, the
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GDP bound to eIF-2 must be replaced by GTP, and this nucleotide exchange reaction is

catalysed by a factor known as eIF-2B (Fig. 3 A) (Merrick, 1992).

Phosphorylation of the α -subunit of eIF-2 by the sensor kinase Gcn2p inhibits the

guanine nucleotide exchange on eIF-2 that in turn diminishes the formation of new

ternary complexes (Fig. 3 B). This in turn lowers the translation of most mRNAs at the

ribosomes, and in accordance with the harsh nutritional conditions during amino acid

starvation the result is reduction of protein syntheses. Because of its specific 5´

untranslated sequence (UTR) upstream of the actual coding sequence for the protein, the

mRNA of the transcription factor Gcn4p behaves quite converse to most of the other

mRNAs. Under those circumstances the GCN4 mRNA becomes much more efficiently

translated and therefore appears in greater abundance in the cell (Hinnebusch, 1994; Qiu

et al., 2000).

Following the migration into the nucleus of the cell, Gcn4p binds to the promoters of

more than 50 target genes from different biosynthetic pathways and thereby activates

their transcription. The promoter of the HIS7 gene possesses two Gcn4p recognition

elements (GCREs) and gene transcription is activated through the transcription factor via

both cis-elements during amino acid starvation (Springer et al., 1996). Besides the HIS7

gene also the transcription of HIS1, 3, 4, and 5 increases upon amino acid starvation

conditions (see also Fig. 2) (Arndt et al., 1987; Hill et al., 1986; Hinnebusch and Fink,

1983; Nishiwaki et al., 1987). Altogether the derepression of the histidine biosynthetic

genes increases the flux through the pathway finally leading to increased amounts of

histidine in the cell.
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Figure 3. Model for inhibition of the guanine nucleotide exchange activity of eIF-2B by
phosphorylated eIF-2. The heterotrimeric eIF-2 complex is shown shaded with a binding site for

GDP or GTP on the γ–subunit. The five subunits of the eIF-2B complex are labeled by their gene

designations in yeast. A  The exchange of GDP for GTP on eIF-2 catalysed by eIF-2B and the

subsequent formation of the ternary complex, finally leading to the 43S preinitiation complex. B
The α-subunit has been phosphorylated on Ser52 by Gcn2p. This leads to a stronger interaction

between eIF-2α and the Gcn3p, Gcd7p and Gcd2p subunits of eIF-2B; it also leads to a structural

change in the Gcd6p and Gcd1p subunits that prevents GDP-GTP exchange on eIF-2. Therefore

eIF-2B cannot catalyse nucleotide exchange on phosphorylated eIF-2. The greater affinity of eIF-

2B for phosphorylated versus unphosphorylated eIF-2 prevents the nucleotide exchange. As

result only small amounts of ternary complex and sequentially 43S preinitiation complex turn

out. Scheme adapted from (Hinnebusch, 1994).
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3.2.2 ‘Cross-pathway control’ and amino acid biosynthesis of the filamentous fungus
Aspergillus nidulans

Only some amino acid biosynthetic genes have been identified in other fungi besides

yeast so far. The first his gene encoding IGP synthase of filamentous fungi has been

described during the course of this work (Valerius et al., 2001). Work with e.g.

Neurospora crassa, Aspergillus niger, Cryphonectria parasitica and Aspergillus nidulans

has demonstrated that a similar regulatory response upon amino acid starvation

conditions exists as described for S. cerevisiae in the preceding chapter (Eckert et al.,

2000; Nishiwaki et al., 1987; Wang et al., 1998; Wanke et al., 1997). In filamentous

fungi this regulatory network is called ‘cross-pathway control’. In A. nidulans the

transcription of the histidine and tryptophan biosynthetic genes hisB and trpB,

respectively, has recently been demonstrated to be activated upon starvation conditions

(Busch et al., 2001; Eckert et al., 2000).

Whereas the expression of the yeast GCN4 gene is mainly translationally regulated and

only weakly on the transcriptional level (Albrecht et al., 1998), the corresponding gene

encoding the similar and exchangeable transcription factor in A. nidulans, cpcA, is

significantly regulated on both levels (Hoffmann et al., 2001).

3.2.3 Purine limitation activates the HIS7 expression in the yeast S. cerevisiae

The HIS7 gene encodes the enzyme at the juncture of the histidine and the de novo

biosynthesis of purines. The metabolic linkage between both pathways described before

is genetically represented by the transcriptional regulation of this gene upon the

availability of exogenous purines. The access to plenty amounts of purines represses the

most portion of the basal HIS7 transcription that exists in the absence of amino acid

starvation (Springer et al., 1996). This transcriptional regulation is mediated through the

joint action of the two proteins Bas1p and Bas2p (= Pho2p = Grf10p). Bas1p contains a

region that is related to the DNA-binding motif of the myb oncoproteins and has been

shown to have a similar DNA-binding specificity as Gcn4p. The homeodomain protein
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Bas2p has been implicated in phosphate regulation of diverse genes such as TRP4 (Braus

et al., 1989), and PHO5 (Vogel et al., 1989), and is apparently involved in the regulation

of yeast mating type switching (Brazas and Stillman, 1993). The basal HIS7 transcription

during purine limitation conditions is driven by the heterodimeric complex formed by

Bas1p and Bas2p that also recognizes the HIS7 promoter at one of the two Gcn4p

recognition elements. Recent work has strengthen the assumption of former studies that

in the presence of adenine the complex formation of the heterodimeric Bas1p/Bas2p is

prevented and therefore HIS7 activation impaired (Pinson et al., 2000; Zhang et al.,

1997).

Primarily Bas1p and Bas2p regulate the transcription of all genes required for the ten

enzymatic reaction steps of the de novo biosynthesis of purines (see also Fig. 2).

Dependent on Bas1p and Bas2p, adenine limitation increases the expression of these

ADE genes finally leading to the increased flux through the purine biosynthetic pathway

(Denis et al., 1998). Not only the HIS7 gene at the branch-point to the purine pathway

itself but also two of three genes encoding the preceding enzymes of the histidine

pathway, HIS1 and HIS4, are co-regulated with the purine biosynthetic genes (see also

Fig. 2). The substantial availability of these preceding activities thereby provides the IGP

synthase with sufficient substrates finally leading to increased amounts of AICAR which

then feed the purine biosynthetic pathway. In accordance with this assumption the HIS

genes encoding the activities succeeding that of the IGP synthase are not derepressed by

adenine limitation (Denis et al., 1998). In contrast to the general control system that

regulates HIS7 expression during amino acid starvation, the control system for the basal

expression of purine or histidine biosynthetic genes during purine limitation has neither

been described for fungi nor for other eukaryotic organisms yet.
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4. Modulation of the chromatin structure is an essential step for the regulation of
gene expression in eukaryotes

4.1 The transcriptional regulation of gene expression strongly depends on the local
chromatin structure

The transcriptional regulation of gene expression is not confined to activators (as

described above for CPCA; Gcn4p; Bas1p/Bas2p) but also depends on repressors and

antirepressors of transcription. The ubiquitous repressors in eukaryotic organisms are

nucleosomes. DNA of eukaryotes is tightly associated with and thoroughly packaged by

protein complexes together forming the so-called chromatin. This chromatin is organized

in a hierarchy of structures, from the basic repeat unit called nucleosome to the complex

appearance of metaphase chromosomes (Fig. 4 A) (Wolffe, 1995). The nucleosomes

consist of an octameric protein complex surrounded by about 120 to 200 base pairs of

DNA that wraps around the protein core in 1.65 left-handed turns of a superhelix (Fig. 4

B left) (Luger et al., 1997). The octameric complex consists of two of each histone

proteins H2A, H2B, H3, and H4, and is also called histone octamer (Fig. 4 B right). The

nucleosomes are connected with each other by the linker DNA and thereby form

structures like beads on a chain resulting in the 100 Å (10nm) chromatin fiber. On a

higher order level these nucleosome chains form densely packed 300 Å (30 nm)

chromatin fibers that themselves are highly ordered to the tightly condensed chromatin of

the nucleus (Fig. 4).

Each level of chromatin organization contributes to the dense packaging of DNA,

effectively repressing gene expression. However, all nuclear processes, including

transcription, require that enzymes gain access to the DNA template despite the fact that

it is associated with histone and also non-histone proteins. The presence of nucleosomes

on DNA generally restricts the access of proteins to the DNA, thereby suppressing gene

expression. Nucleosomes inhibit both the binding of RNA polymerase II to initiation

sites and transcriptional elongation (Kornberg and Lorch, 1999).
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Figure 4. Chromatin and nucleosome structure. A Different levels of chromatin packing. A

model (top left) of nucleosome with associated proteins (black ball). In the middle a model of the

‘beads-on-a-string’ form of chromatin. At right folding intermediates from ‘beads-on-a-string’ to

the 30-nm fiber. B Left: Structural model for the interaction of the core histones with DNA in the

nucleosome. The view is one turn of DNA. For clarity only one molecule of H2A, H2B and H4 is

shown. Right: Scheme of the interactions between heterodimers of H2A, H2B and H3-H4. The

sites of primary interaction of the histone fold domains with DNA are indicated (the paired ends

of helices and bridge motifs). Adopted from (Perez-Martin, 1999).
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Mapping of chromatin structure using a variety of nucleases has shown that the 5´

regulatory regions of active genes often appear to be nucleosome-free. Such regions are

referred to as ‘hypersensitive sites’ (Elgin, 1988). In some cases hypersensitive

promoters of inducible genes maintain in this configuration even during the repressed

state. Such genes are referred to as ‘pre-set’, as no change in the nucleosome array at the

promoter is required for activation. It has been suggested that housekeeping genes might

fall into this group, although relatively few studies have been performed on such genes.

In other cases, 5´ regulatory regions, including the promoter, are packaged into a

nucleosome array when the gene is in an inactive state. In this case remodeling of the

chromatin structure is an integral part of the process of specific gene activation (Wallrath

et al., 1994).

Besides the repressive role of nucleosomes in the primary chromatin fiber, higher-order

packaging is of critical importance. While higher-order structures are not well defined,

the genome is subdivided by boundaries that limit the regulatory effects of positive and

negative elements such as enhancers or repressors (Bell and Felsenfeld, 1999). Further,

one can identify large domains that are either permissive or restrictive for gene

expression. This level of gene regulation apparently depends on DNA packaging in

scaffold/matrix-attached regions, so called S/MAR elements (Bode et al., 2000; Gasser et

al., 1998).

4.2 Chromatin modifying activities diversify the chromatin structure and enable
regulated gene expression

Recent advances highlight two important chromatin remodeling systems involved in the

transcriptional process. One system includes several members of the evolutionary

conserved SW2=SNF2 family found in distinct multiprotein complexes with ATP-

dependent nucleosome destabilizing activity. The other is the enzymatic system that

governs histone acetylation and deacetylation. Identification of the catalytic subunits of
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these opposing histone-modifying activities reveal conserved proteins defined genetically

as transcriptional regulators.

Further regulation systems of gene expression that work by modifying histones are

phosphorylation and methylation. Phosphorylation and dephosphorylation of the Ser10

residue of histone H3 might regulate chromosome condensation and the associated

changes of gene expression during entry into mitosis. The enzymes regulating these

modifications, the kinases as well as the phosphatases, have been identified in yeast and

have been shown to have homologs in higher cells. Methylation of the Lys9 residue of

histone H3, which was shown to interfere with phosphorylation of H3 Ser10, is another

histone modification with consequences on gene expression, however poorly understood

at present time.

4.2.1 Swi/Snf mediated ATP-dependent nucleosome remodeling

Swi/Snf is a protein complex that activates expression of several genes in yeast. The

description of the Swi/Snf complex was the result of a convergence of genetic and

biochemical studies. The SWI genes (SWI = switch in mating type) were identified as

being important for transcription of the HO gene that encodes an endonuclease required

for mating type switching (Stern et al., 1984). On the other hand, SNF (SNF = sucrose

non-fermentable) genes were identified to be required for transcription of the SUC2 gene

that encodes invertase, the enzyme required by S. cerevisiae to catabolize sucrose

(Neigeborn and Carlson, 1984).

The first indication of the function of SWI and SNF genes outside the transcription of HO

and SUC2 was that mutant strains defective in some of these genes exhibit slow growth

and other phenotypes like inositol auxotrophy or inability to use galactose as carbon

source (Peterson and Herskowitz, 1992). It was found that SWI2 was identical to SNF2,

and hence, the gene is referred to as SWI2/SNF2. Further experiments revealed a

functional interdependence among some of the Swi and Snf proteins which indicated that

they may act together as a complex (Laurent et al., 1991). Biochemical studies of
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Swi/Snf proteins led to the purification of a 2-MDa protein complex, which is known as

the Swi/Snf complex (Cairns et al., 1994). This complex is composed of the Swi

Proteins. Swi2p/Snf2p, Swi3p, Snf5p and Snf6p and five additional polypeptides:

Swp82p, Swp73p, Swp61p, Swp59p, and Swp29p (Swp = protein of the Swi/Snf

complex).

The connection between the function of the Swi/Snf complex and chromatin was first

established through genetic studies. The chromatin structure surrounding the SUC2

promoter changes in response to the induction of transcription of this gene. Mutations in

either SWI2/SNF2 or SNF5 result in a decrease in transcription and in a chromatin

structure more resistant to digestion by micrococcal nuclease, even in induced conditions

(Matallana et al., 1992). This result was an indication of a failure of the mutant cells to

antagonize nucleosomal organization at the promoter region.

The biochemical characterization of the purified yeast Swi/Snf complex provides direct

evidence that the complex might function by disrupting nucleosome structure. Binding of

Gal4p derivatives to a reconstituted mono-nucleosome carrying a single Gal4p binding

site is substantially facilitated by purified Swi/Snf complex in a reaction that requires

ATP hydrolysis and is independent of the presence or absence of activation domains in

various Gal4p derivatives (Cote et al., 1994). Purified Swi/Snf complex is also able to

disrupt an array of pre-assembled nucleosomes reconstituted with purified histones in an

ATP-dependent manner (Owen-Hughes et al., 1996).

The mechanisms by which the Swi/Snf complex facilitates the accessibility to

nucleosomal DNA is not known. It is clear that the activity of the complex requires

continuous ATP hydrolysis. The SWI2 gene encodes a protein that contains motifs

similar to those found in DNA-stimulated helicases. In fact, the Swi2 protein has a DNA-

dependent ATPase activity (Laurent et al., 1993). A model suggests that these factors

may function as ATP-driven motors that translocate along DNA and destabilize DNA-

protein interactions. A DNA translocation protein might use the energy derived from

ATP hydrolysis to transverse a nucleosome in a wave-like manner that results in only
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partial disruption of the nucleosome at any particular point. The transcription factors use

this transitory disruption to reach its DNA target. This model is similar to the ‘spooling

mechanism’ that has been suggested for the procession of polymerases through

nucleosomes (Studitsky et al., 1995). However, this model of Swi/Snf action does not

explain the observation that the action of this complex on nucleosomes results in a stable

remodeled form of nucleosomes (Schnitzler et al., 1998). An alternative model proposes

that the Swi/Snf complex interacts with nucleosomal DNA and uses the energy of ATP

hydrolysis to alter DNA-histone interaction. In its original conception it was supposed

that the action of the complex promotes the loss of one or both H2A-H2B dimers from

the nucleosome core (Peterson and Tamkun, 1995), but recent data about in vitro

Swi/Snf-altered nucleosomes indicate that there is no loss of histones (Burns and

Peterson, 1997).

The question of how the Swi/Snf complex is targeted to the correct chromosomal

position is also poorly understood. Since the complex with approximately 100 copies per

cell is not abundant, the possibility that it is a general chromatin component is ruled out.

One possibility is that the Swi/Snf complex associates with activator proteins

subsequently targeting them to specific genes. However, recent results suggest that it is

rather the chromosomal context of the binding site of the activator that determines the

Swi/Snf dependence of transcription (Burns and Peterson, 1997). Another possibility

would be that the complex is recruited to promoters along with the transcriptional

machinery (Wilson et al., 1996). However, a strong or stable association with the RNA

polymerase holoenzyme has been questioned (Cairns et al., 1996). Still another

alternative would be to assume that one of the Swi/Snf subunits has sequence-specific

DNA binding affinity that provides promoter specifity (Quinn et al., 1996). An

interesting clue is the interaction of the Swi/Snf complex with the SAGA complex, which

is recruited by specific activators.

Several candidates for functional homologs of SWI2/SNF2 have been identified as part of

large multiprotein complexes in higher eukaryotes. Therefore complexes that belong to
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the Swi/Snf family have been suggested for Drosophila melanogaster (named brahma,

brm) or human cells (hbrm) (Dingwall et al., 1995; Tamkun et al., 1992).

4.2.2 The SAGA complex (Spt/Ada/Gcn5 Acetyltransferase)

Histone acetylation plays an important role in chromatin assembly and transcription.

Acetylation occurs in vivo only at specific lysines in the amino-terminal tail of histones.

Although these tails are not required to maintain the structural integrity of the

nucleosome, they are implicated in arranging nucleosomes into higher order chromatin

structures. Acetylation of the histone tails may introduce allosteric changes in

nucleosome conformation and inhibit the higher order folding of nucleosome arrays that

are repressive to transcription (Bauer et al., 1994).

Two major histone acetyltransferase (HAT) activities have been described in eukaryotic

cells. The first is a cytoplasmic enzyme complex, called HAT-B, involved in the

deposition-related acetylation of H4 onto replicated DNA.

The second type of acetyltransferase activity, HAT-A, has been associated with the

nucleus and is responsible for transcription-associated acetylation. The HAT-A activity is

encoded by the GCN5 gene and was initially identified in a genetic screen designed to

isolate mutants unable to grow under conditions of amino acid limitation (Brownell et

al., 1996; Georgakopoulos and Thireos, 1992). gcn-mutations result in strains unable to

induce the general control system (general control non-derepressable). A second screen

selecting for mutants that reversed the toxicity (squelching) caused by overproduction of

the strong activator Gal4-VP16 also gave this gene and in addition the two genes ADA2

and ADA3 (Pina et al., 1993). Their three gene products are required for the function of

several activators. Genetic and biochemical studies revealed that Gcn5p, Ada2p and

Ada3p form a complex, called the ADA complex (ADA for adaptor) (Marcus et al.,

1994). Purified Gcn5 protein shows histone acetyltransferase activity and is able to

acetylate free histones at specific lysine positions (K14 in H3; K8, K16 in H4) (Kuo et

al., 1996). However, purified Gcn5 protein is unable to acetylate in vitro histones already
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assembled in nucleosomes, suggesting the possibility that other proteins are required to

direct Gcn5p in the acetylation of nucleosomes. A biochemical search for native

complexes able to acetylate in vitro nucleosomes yielded the isolation of two high

molecular mass complexes, 0.8 and 1.8 MDa (Grant et al., 1997). Both complexes

contain Gcn5p, Ada2p and Ada3p. The larger of these two complexes turned out to

contain Spt proteins (Spt20p, Spt3p, Spt8p and Spt7p) and is called SAGA

(Spt/Ada/Gcn5 acetyltransferase). Spt proteins have originally been isolated as

suppressors of transcriptional initiation defects caused by promoter insertions of the

transposon Ty and are supposed to play a role in TATA-binding protein (TBP) function

(Winston and Sudarsanam, 1998). The relationship between ADA and SAGA is not yet

clear. One possibility is that ADA is a subcomplex of the larger SAGA complex. An

alternative possibility is that each complex might represent quite distinct nucleosomal

HAT activities with unique functions in the cell.

Overexpression of GCN5 leads to increased acetylation of core histones. Moreover,

Gcn5p increases histone acetylation at promoter regions in a manner that is correlated

with Gcn5p-dependent transcriptional activation and histone acetylase activity in vitro.

The way in which the histone acetylase complex selectively affects gene expression is

poorly understood. Gcn5p might be selectively recruited to promoters as it has been

shown to interact directly or indirectly through Ada2p with a number of transactivators,

for example VP16 (= virus protein 16), Gcn4p, and Adr1p (Chiang et al., 1996; Drysdale

et al., 1998; Silverman et al., 1994). In addition to the ability of acidic activators to

physically interact with purified native SAGA complex, it has been shown that a Gal4-

VP16 fusion targets acetylation and transcriptional enhancement by SAGA (Utley et al.,

1998).

An additional link between histone acetylation, activators and the basal transcription

machinery is the recent characterization of several TBP-related proteins as components

of the SAGA complex. The first group of these components comprises all members of

the TBP-related set of Spt proteins (Spt3p, Spt7p, Spt8p and Spt20p), with the exception



                                                                                                                            Chapter 1

28

of TBP itself (Grant et al., 1998b). The second group is composed of several TAFII

(TATA binding protein-associated factors) (Grant et al., 1998a). This association of

multiple transcriptional regulatory proteins may confer upon SAGA the ability to

respond to a range of stimuli and to interact with numerous activators, with the potential

to regulate a broad range of promoters.

5. Transcriptional interference of tandemly transcribed eukaryotic genes

5.1 Adjacent yeast genes in close vicinity are susceptible to transcriptional interference

In compact genomes as e.g. of S. cerevisiae, genes often are located in close proximity

adjacent to each other (Kruglyak and Tang, 2000). Accordingly, small intergenic regions

separate the open reading frames. The average size in-between tandemly transcribed

open reading frames of yeast genes which are transcribed into the same direction is 517

base pairs (Dujon, 1996). These intergenic regions contain most of the regulatory

elements required for efficient mRNA 3´ end processing and transcription termination

(terminator, calculated average length: 163 bp), but also for the controlled initiation of

transcription (promoter, calculated average length: 309). As these DNA elements are

parts of the respective genes one sometimes can hardly define any intergenic regions

(Springer et al., 1997).

For the downstream promoter activity of tandemly repeated genes it is essential that

efficient termination of transcription of the adjacent upstream gene has taken place.

Incomplete termination of transcription, characterized by RNA polymerase II-

transcription complexes still bound to the DNA template and scanning downstream,

interferes with the process of assembly of the transcriptional initiation complex at the

downstream initiator element. This phenomenon is called ‘transcriptional interference’

and transcription complexes that read far beyond the 3´ end of the initial gene have

indirectly demonstrated by Northern hybridisations detecting long read-through

transcripts. Transcription ‘run-on’ experiments have directly stated the exact position
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where the RNA pol II leaves its template. The prevention of initiation of transcription at

the promoter as consequence of transcriptional interference has also been termed

‘promoter occlusion’.

5.2 Natural barriers to transcriptional interference in eukaryotes

During environmental circumstances, i.e. when the upstream one of two adjacent genes is

strongly transcriptionally activated it could become a severe disadvantage for the cell if it

failed to prevent transcriptional interference. Thus, promoter occlusion might abolish the

expression of a possibly essential function of a downstream located gene. Natural

barriers and mechanisms that signalize the transcribing RNA polymerase II complex the

completion of the original gene in order to terminate and finally release the DNA

template are poorly understood.

DNA binding proteins that act as transcription termination factors and therefore as

transcriptional barriers were found for RNA polymerase I genes encoding rRNAs. In

yeast, mouse and mammals the efficient transcription of downstream rDNA units by

RNA polymerase I has been shown to depend on binding of the homologous termination

factors Reb1p (yeast) or TTF-I (mouse, man) to the preceding terminator element that

belongs to the upstream rDNA transcription unit (Längst et al., 1997; Mason et al.,

1997). These termination factors primarily block the transcribing polymerase complex

and function thus by pausing the transcription complex on its template. As binding of

TTF-I to its terminator element is strictly required to maintain a positioned nucleosome

at this locus, a link between transcription termination and chromatin structure for RNA

polymerase I genes was suggested (Längst et al., 1997). It remains elusive whether this

positioned nucleosome itself or rather TTF-I is the actual barrier for the transcribing

complex. The release of the nascent transcript from the ternary complex and the final

release of the polymerase from the DNA requires a further protein, the transcription

release factor PTRF (Jansa and Grummt, 1999). This protein has been found and isolated

from mouse and is also able to liberate the pre-rRNA and the Reb1p-paused transcription
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complex from ternary transcription complexes isolated from yeast (Jansa and Grummt,

1999).

For termination of RNA polymerase III transcription cis-elements have been described

(Hamada et al., 2000). The enzyme terminates transcription at a run of four or more

thymidine (T) residues. As some pol III genes contain runs of T residues that are not

recognized as termination signals, the adjacent sequence context also seems to be of

importance (Gunnery et al., 1999). The pols III of different organisms including S.

cerevisiae, S. pombe, or human exhibit quite distinctive properties. Termination occurs in

S. pombe in a manner that is functionally more similar to human than it is in S.

cerevisiae. DNA binding transcription termination factors for pol III genes or the

requirement of certain chromatin structures at the terminator elements have not yet been

described.

The sites where transcription termination of RNA polymerase II takes place and the

enzyme leaves the DNA template are e.g. pause sites for RNA pol II. Functional poly(A)

signals in the 3´ end of the respective gene were suggested to be required for the

termination process, thus coupling it with mRNA processing that is transcript cleavage

and subsequent polyadenylation (Hamada et al., 2000). Recent work has demonstrated

that the poly(A) signals themselves rather than the mRNA processing are required for

termination activity. mRNA processing itself consists of pre-mRNA cleavage at the

poly(A) site and subsequent polyadenylation of the mRNA. Both steps were previously

demonstrated to be separable processes (Egli and Braus, 1994). The observation that the

phenomena of termination and cotranscriptional RNA cleavage can be uncoupled

supports the assumption, that there are template-specific elongation and/or RNA

processing factors associated with the transcribing pol II, which are altered upon passage

through a poly(A) signal, resulting in termination somewhere downstream, more or less

close to the poly(A) site (Osheim et al., 1999). Also DNA regions that pause the

transcribing pol II complex can also be involved in termination of transcription by

facilitating the release of the complex (Birse et al., 1997). Although there is quite a lot of
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knowledge about the relation between initiation/elongation of transcription and the

impact on chromatin structure at pol II genes, there are no reports that link the process of

termination of pol II transcription to the chromatin structure at the respective terminator.

6. Metabolism and differentiation in fungi

The regulation of biosyntheses within cells and the availability of nutrients from the

growth medium have a great impact on the life cycles of fungi. On rich medium, in the

presence of sufficiently well utilizable carbon and nitrogen sources, as e.g. glucose and

ammonium sulfate, diploid cells of S. cerevisiae propagate by budding (Fig. 5). Shifting

the cells to minimal medium of poor carbon source, e.g. very low amounts of glucose,

leads to meiosis and the formation of asci termed tetrades (tetrade = 4) that carry four

meiotic spores inside, two of each mating type. On rich medium each of these spores can

proceed in haploid budding cycles or, if bringing cells of opposite mating type together,

conjugate to form a diploid zygote that again can proceed propagating by budding. Low

amounts of fermentable nitrogen compounds but rich carbon sources drive the diploid

cells into another growth form that is called pseudohyphal growth. Under these

conditions cells are long shaped and bud unidirectional to form long filaments

comparable to hyphe of filamentous fungi (Taheri et al., 2000). Upon such growth

conditions the general control system of amino acid biosynthesis is inactivated and the

expression of the transcription factor Gcn4p strongly diminished (Grundmann et al.,

2001). This points to a close relationship between regulation of amino acid biosyntheses

and developmental programs of the yeast life cycle. When diploid cells are starved for

nitrogen and carbon they enter the stationary phase.

The life cycle of A. nidulans can be subdivided into three stages, an asexual, a

parasexual, and a sexual cycle. In respect of cell differentiation mainly the asexual and

sexual life cycles are of major interest. The conidiophores, outcome of the asexual

reproduction cycle, are multi-cellular structures that finally produce the conidiospores or

conidia (Fig. 6). During asexual development the fungus growths radially with long
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filaments that form a networked entity called mycelium. Out of these filaments vesicles

differentiate that afterwards themselves produce a further individual cell type on their

tips, the so-called metulae. Afterwards the phialides differentiate out of the tip of the

metulae. These phialides finally produce long rows of conidiospores on their tops.

a/α

a/αa/α

a
α

a
α

α

a

a/α

a/α
a/α

α

α

a
a a

α

a/α

haploid

haploid

conjugation

zygote

diploid

meiose &
sporulation

ascus

pseudohyphal
growth

Figure 5. Scheme of the life cycle of S. cerevisiae. Presented are the different states through

which yeast cells can pass during the life cycle. Cells of the two mating types are indicated with a
and α. A poor nitrogen source and a rich carbon source drives the diploid cells into pseudohyphal

growth, whereas a poor carbon source drives it into meiosis and sporulation. Haploid cells of

opposite mating type deriving from the ascus can either propagate by budding or conjugate to

form a diploid zygote.

Results of the sexual life cycle are the ascospore containing cleistothecia (Fig. 6). This

cycle is initiated by the cytoplasmic fusion of two individual hyphal cells of either

identical strain (selfing) or of two different strains with unequal genotypes (crossing).
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This specialized dicaryotic fusion cell with the nuclei of both starting cells in close

proximity, divide profusely (up to 10.000 divisions), and form numerous dikaryotic cells

in which afterwards fusion of nuclei occur (Hoffmann et al., 2001). After meiosis and

following mitosis eight nuclei lay site by site inside of a bi-layered membrane, later on

individually packaged as meiospores. These eight meiospores together form one so-

called ascus, with about 80.000 of them filling one sexual fruiting body (cleistothecium).

The first visible structure that the fungus develops after the fusion of hyphal cells is the

so-called nest or primordium, a densely packaged aerial mycelium together with specific

globular Hülle cells that are thought to be required for nutrient supply during the

development of the fruiting body. The mycelium around the dikaryotic hyphal cells

condenses further and finally forms a tight wall around the maturing asci.

Connections between amino acid syntheses and cell differentiation during sexual

development of A. nidulans have already been shown. Amino acid limitation as well as

heterologous overexpression of GCN4 in A. nidulans has been demonstrated to generally

impair the development of fertile cleistothecia. Furthermore the deletion of the cpcB gene

that encodes a repressor of the cross-pathway control also impairs fruiting body

formation (Hoffmann et al., 2000). Moreover tryptophan auxotrophic mutant strains

require very high exogenous amounts of tryptophan to partially restore the formation of

fertile fruiting bodies (Eckert et al., 2000). The genetic and enzymatic requirements for

those regulated developmental processes are poorly understood so far and the correlation

between the regulatory network for amino acid biosynthesis and cell differentiation is of

special interest.
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Figure 6. Scheme of the life cycle of A. nidulans. On the top the sexual life cycle of the fungus

with the final formation of the sexual fruiting body (cleistothecium) is drawn. The arrows

indicate the time course. From germination of a spore to the completion of a fertile

cleistothecium it takes approximately 200 hours. The bottom sketches the asexual life cycle from

a germing spore to the complete conidiophore that carries long rows of conidiospores. The

development from the germination of an ascospore to a mature conidiophore takes about 20

hours. The parasexual cycle is only suggested in light grey (Adams et al., 1998).
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Aim of the work

In this work, the regulation of expression of the gene encoding IGP synthase, an enzyme

involved in the biosyntheses of the amino acid histidine and of purines, was investigated.

The studies were performed with the genes of two model organisms, HIS7 of the

unicellular fungus S. cerevisiae and its homologue hisHF of the filamentous fungus A.

nidulans. The hisHF gene from A. nidulans should be isolated and its regulation should

be investigated with respect to those environmental conditions that are known to regulate

the expression of the homologous yeast gene HIS7. Since the progression of A. nidulans

through its developmental life cycle depends on the state of a genetic regulatory network

that controls the biosyntheses of amino acids, the impact of HIS7 expression on the

development of the fungus should be analyzed. With the yeast HIS7 gene as an example

for a housekeeping gene, the chromatin structure of its promoter for different

environmental conditions that influence its expression should be studied. We were

interested in mechanisms that regulate HIS7 transcription on the level of chromatin.

Furthermore, we addressed the question, how an eukaryotic cell avoids transcriptional

interference of two genes that are located in close proximity and transcribed into the

same direction. Therefore we analyzed to which extend the HIS7 expression is influenced

by the transcription of its upstream gene ARO4, and what elements within the ARO4-

HIS7 region prevent interference.
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Chapter 2

Regulation of hisHF Transcription of Aspergillus nidulans by
Adenine and Amino Acid Limitation

Abstract

The hisHF gene of Aspergillus nidulans encodes imidazole-glycerole-phosphate (IGP)

synthase consisting of a glutamine amidotransferase and a cyclase domain. The enzyme

catalyzes the fifth and sixth step of histidine biosynthesis which results in an intermediate

of the amino acid and an additional intermediate of purine biosynthesis. An A. nidulans

hisHF cDNA complemented a Saccharomyces cerevisiae his7- strain as well as

Escherichia coli hisH and hisF mutant strains. The genomic DNA encoding the hisHF

gene was cloned and its sequence revealed two introns within the 1659 bp long open

reading frame. The transcription of the hisHF gene of A. nidulans is activated upon

amino acid starvation suggesting that hisHF is a target gene of cross pathway control.

Adenine but not histidine, both end products of the biosynthetic pathways connected by

the IGP-synthase, represses hisHF transcription. In contrast to other organisms HISHF

overproduction did not result in any developmental phenotype of the fungus in hyphal

growth or the asexual life cycle. hisHF overexpression caused a significantly reduced

osmotic tolerance and the inability to undergo the sexual life cycle leading to

acleistothecial colonies.
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Introduction

The filamentous fungus Aspergillus nidulans has become an eukaryotic model organism

for metabolic diversity and the genetic regulation of cell differentiation during asexual

and sexual development (Adler et al., 1996). A. nidulans is able to synthesize histidine as

well as all other amino acids de novo. Studies with several prokaryotic microorganisms

gave insight to the biosynthesis of histidine in general (Alifano, et al., 1996). Within the

eleven reactions, starting with phosphoribosylpyrophosphate (PRPP) and ATP, leading to

histidine, a connection to the de novo biosynthesis of purines exists, but none to other

amino acids. The histidine and purine biosynthetic pathways are connected by the

compound 5-aminoimidazole-4-carboxamide ribotide (AICAR), a byproduct of histidine

synthesis and an intermediate of purine biosynthesis. During histidine biosynthesis the

intermediate compound imidazole-glycerole-phosphate (IGP) and its byproduct AICAR

are formed by two reactions catalyzed by the heterodimeric IGP-synthase.

This IGP synthase comprises a glutamine amidotransferase activity (EC 2.4.2.14) and a

cyclase activity (EC 4.3.2.4). In the eubacteria Escherichia coli and Salmonella

typhimurium they are encoded by the structural genes hisH and hisF, respectively, both

part of histidine operons (Beckwith, 1987; Brener, 1971). Regulation studies with these

organisms have shown that histidine in the growth medium completely shuts down the

expression of the his operon. Starvation for histidine results in a strong transcriptional

and translational induction, leading to an increased internal histidine pool (Alifano et al.,

1996; Verde et al., 1981). However, enhanced overexpression of the his operon in S.

typhimurium causes growth inhibition at 42°C, a changed cell morphology leading to

long filaments, and growth inhibition on increased salt concentrations (Gibert and

Casadesus, 1990; Murray and Hartman, 1972; Roth et al., 1966). In E. coli a similar

response was observed (Frandsen and D'Ari, 1993). This pleiotropic response is due to

the surplus of hisHp and hisFp that possibly causes a defect in septum formation leading

to cell division inhibition and to cell filamentation (Cano et al., 1998).
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The identified HIS genes of eukaryotes are scattered throughout the respective genomes.

For Saccharomyces cerevisiae or Arabidopsis thaliana the heterodimeric IGP-synthases

are encoded from the single bifunctional genes HIS7 and hisHF, respectively (Fujimori

and Ohta, 1998; Kuenzler et al., 1993). Even with plenty of external histidine the yeast

HIS7 gene is transcribed at a significant basal level. Starvation for any amino acid

activates in yeast the general control system of amino acid biosynthesis resulting in the

transcriptional activation of many target genes from different biosynthetic pathways

(Hinnebusch, 1986). The transcription factor that triggers this control system is Gcn4p,

whose mRNA is more efficiently translated under those conditions (Mueller and

Hinnebusch, 1986). The yeast HIS7 promoter contains two Gcn4p binding sites, which

were shown to be targets for this transcription factor. One of these cis-elements is also

the binding site for the heterodimeric transcription factor Bas1p/Bas2p that activates the

HIS7 gene and several genes of purine biosynthesis upon adenine or guanine limitation

and thereby reflects biosynthetic connection of both pathways (Springer et al., 1996).

For filamentous fungi a regulatory network similar to the general control of yeast has

been described as cross pathway control (Piotrowska, 1980). The GCN4 homologous

genes of Neurospora crassa, Aspergillus niger and Cryphoectria parasitica, cpcA, cpc1

and CpCPC1, respectively, were cloned and characterized (Paluh et al., 1988; Wang et

al., 1998; Wanke et al., 1997). The corresponding transcription factor of A. nidulans has

not yet been described. Homologous proteins to the yeast Bas1 and Bas2 proteins are

also not known for this fungus.

In this work we describe the isolation and characterization of the bifunctional hisHF gene

of A. nidulans. We investigated its transcriptional regulation upon amino acid starvation

and purine limitation. Furthermore we studied the consequences of hisHF overexpression

by fusing the gene to the inducible alcA promoter. Overproduction of HISHF led to a

reduced salt tolerance of the fungus. Furthermore the hisHF overexpression impaired the

formation of sexual fruiting bodies at an early stage of sexual development.
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Strains, Media and General Techniques.

The S. cerevisiae strain RH1616 (MATα aro3-2, ura3-52, his7∆::his7P-lacZ, gcn4-101)

(Kuenzler et al., 1993) was used as recipient for a his7- complementing cDNA of a

galactose inducible A. nidulans expression library. The E. coli strains HfrG6 (λ-,

hisA323) (Matney et al., 1964), SB3931 (λ-, hisF860) and UTH1767 (λ -, hisH1767)

(Goldschmidt et al., 1970) with stable mutations in hisA, hisF and hisH, respectively,

were obtained from the E. coli Genetic Stock Center (Yale University, New Haven, CT)

and served as recipients for the cDNA found by the yeast complementation experiment.

The A. nidulans strain GR5 (wA3, pyrG89, pyroA4, veA1) from G. May (Houston, USA)

was recipient for the plasmids pME1565 and pME1608. A. nidulans strain AGB121

corresponds to GR5 with an ectopic integrated empty overexpression vector pME1565.

Transformants with the hisHF overexpression plasmid pME1608 were called AGB122

and AGB123, carrying one and two further ectopic hisHF alleles, respectively.

E. coli strain DH5α (Hanahan, 1983) was used for the propagation of plasmid DNA.

Enzymatic manipulations and cloning of DNA were performed as described in

(Sambrook, 1989). Yeast strains were cultivated in YEPD complete medium (Rose,

1989) or MV minimal medium (Miozzari et al., 1978), and A. nidulans strains in minimal

medium according to (Bennett, 1991). Transformation of A. nidulans was carried out

according to Punt and van den Hondel (Punt and van den Hondel, 1992). Yeast

transformation was performed as described in (Elble, 1992). DNA isolation from yeast

(Braus et al., 1985), A. nidulans (Kolar et al., 1988), and Southern analysis (Southern,

1975) were previously described.

Race tube growth tests for A. nidulans.

In order to compare growth rates of different A. nidulans strains, 25 ml pipettes were

sealed at one end, filled with a layer of the respective medium, and inoculated at the open
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end with about 2 µl from a conidia suspension of about 1x109 conidia/ml. In a time

course of 40 days the distance from the inoculation spot to the growth front was

followed.

cDNA Library and hisHF Overexpression Plasmid.

The cDNA library was constructed after mRNA isolation from A. nidulans strain FGSC

A234 (yA2, pabaA1, veA1) using the SuperscriptTM cDNA Synthesis Kit from Life

Technologies, Inc. (Gaithersburg, MD) as described (Hoffmann et al., 2000). cDNAs

were ligated as SalI/NotI fragments in the shuttle vector pRS316-GAL1 (Liu et al., 1992)

and propagated in Escherichia coli.

The hisHF SalI /NotI cDNA fragment was inserted into the SmaI linearized

overexpression vector pME1565 (AmpR, pyr4, alcAP pBluescript-MCS his2BT) between

the inducible alcA promoter and the his2B terminator by blunt end ligation leading to

plasmid pME1608. The orientation of the integrated cDNA fragment was tested by

restriction analysis.

Sequencing, Sequence Alignment and Homology Modeling Studies.

DNA sequencing was performed using an ABI PRISMTM 310 Genetic Analyzer from

Perkin Elmer (Foster City, CA) via primer walking. DNA sequences were analyzed using

the LASERGENE Biocomputing software from DNAstar (Madison, WC). Alignments

were created as cluster as described (Higgins and Sharp, 1989).

RNA Preparation and Analysis.

Total RNAs were prepared from vegetatively growing A. nidulans cultures using

TRIzolTM reagent from Life Technologies, Inc. following the supplier`s instructions. For

Northern hybridization analysis 20 µg of total RNA were separated on a formaldehyd

agarose gel, transferred to a positively charged nylon membrane (Biodyne B, PALL) by

electroblotting and hybridized with the respective 32P-labeled DNA fragments. The DNA

fragments were randomly radiolabeled using the HexaLabel DNA Labelling Kit from
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MBI Fermentas. Transcript levels were visualized by autoradiography and quantified by

using a Bio-Imaging Analyzer from Fuji Photo Film C. Ltd. (Tokyo, Japan). Transcript

length was determined using the 0.16-1.77 kb1 RNA ladder from Life Technologies, Inc.

Microscopic Technics.

A. nidulans strains were grown on solid medium at 30°C. The growth of colonies was

followed by using a Zeiss Stemi 2000-C binocular with an eightfold enlargement and

cleistohecia were investigated with a Zeiss Axiolab microscope (Jena, Germany) with a

40-fold enlargement. Cryoscanning electron microscopy was performed as previously

described (Adler et al., 1996).

Nucleotide Sequence Accession Number.

The DNA sequence of the 4.3 kb EcoRV genomic fragment containing the complete

hisHF gene and its cDNA sequence has been submitted to the GenBank sequence

database (Accession Number: AF159463).
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Results

Isolation and Characterization of the hisHF  Gene of A. nidulans Encoding a

Bifunctional Histidine Biosynthetic Enzyme.

The hisHF gene encoding a bifunctional glutamine amidotransferase and cyclase (EC

2.4.2.14 and EC 4.3.2.4) of A. nidulans was isolated by functional complementation of

the histidine auxotrophic S. cerevisiae his7- strain RH1616 (Kuenzler et al., 1993). This

strain RH1616 (his7∆::his7p-lacZ, ura3-52) was transformed with an A. nidulans cDNA

library expressed from the GAL1 promoter (Hoffmann et al., 2000) and transformants

were selected by growth on minimal medium lacking histidine and containing 2%

galactose as sole carbon source. The plasmid DNA pME1611 from one of the

transformants was retransformed into RH1616 to verify its ability to complement the

histidine auxotrophy. Plasmid pME1611 was further analyzed by transforming it into the

histidine auxotrophic E. coli strains HfrG6 (Matney et al., 1964), UTH1767 and SB3931

(Goldschmidt et al., 1970) containing mutations in the hisA, hisH and hisF genes,

respectively. Although no functional E. coli promoter was present on the plasmid, the

transformed DNA was able to complement the mutations in hisH and hisF, encoding a

glutamine amidotransferase and a cyclase, respectively, but not in hisA, encoding

imidazole-carboxamide isomerase.

The length of the cDNA fragment of plasmid pME1611 was determined as 1849 bp

without the poly(A) tail. The 5` untranslated region consisted of 64 bp, the 3`

untranslated region of 126 bp. The open reading frame was 1659 bp in length

corresponding to 553 codons. Cluster alignments (Higgins and Sharp, 1989) of the

deduced amino acid sequence showed strong similarities to bifunctional IGP-synthases

from S. cerevisiae (59% identity (i) and additional 24% similarity (s)) and A. thaliana (i:

42% and s: 27%) as well as to the respective prokaryotic monofunctional enzymes from

E. coli (i: 30% and s: 29%), L. lactis (i: 32% and s: 28%) or S. typhimurium (i: 29% and
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s: 27%). In analogy to the nomenclature of the homologous genes in these organisms we

named the gene of A. nidulans hisHF.

CGGAGGTGAA TTCAGTGCGA ATGGTCAGTT GTAATCACGT GACTGTACGA GCTCTACCTA AGCTCGAAAA GGAAATCCCT
CCATTAGCCG GTGGTATACT TAATTCTGCT GTAATACATT TGCGGCCAAG ATTGTATTTG TGAAAGACAT TGTGTTTGTC
CGGAGCTTTC TGCTAGTATG ACAAAGCACC GTTGTCTAGT GGTTAATGAT ATCTTTTCCG TTGAGCACAT GATAGCTCTC
GACTGTAGGA TCGATACACT CAAAAAAAAA AAAAACTTGT ATGAGTCAGC CCCTCCGTTC CTCTGGTGGG GTGGCGTGGA

AAGATACGAT GGTATTGAGT AGTCAAAACT TGGGTCTACG AAGCCATTGA GCTTTTCTAT CAAACCTAAT TTCTGTTACT
ACGCATCTCA AACGTAGTAG GAGCCAGCTA TTATCACTAT GCCCACTGTT CATCTGCTTG ATTATGTCGC TGGAAATGTG

CGTTCCTTGG TGAATGCCAT CAACAAGGTT GGATATGAAG TTGAGTGGGT GAGATCGCCC AGCGATTTGA AAGATGTCGA

GgtaagGAAA TTATCGTCGT CACCATTGTG CCTTGTGCCT CATTATGTAT CTGTTTCCGG AAATTCAGGC TAACGTGGGG

GCTAtagAAG CTCATACTTC CAGGAGTCGG CCACTTCGGC CATTGCCTTT CTCAGCTTTC AAGCGGTGGC TATTTGCAGC

CGATAAGAGA GCATATTGCT TCCGGGAAAC CGTTTATGGG AATATGTGTT GGTTTACAAT CCCTTTTCGA GAGTTCCGAG

GAGGATCCCA ACATTCCTGG TTTGGGTACA ATCCCAGCGC GGTTGCGCAA ATTTGACGCA AAAACGAAGA GCGTACCTCA

TATCGGTTGG AACTCGGCAA CAGATACCCG CATTGACTCG ACTGGAGGCC AGACCTTCTA TGGATTGAGC CCAAGCAGCA

AGTACTACTA CGTACACTCA TACGCCGCGC CATATGAGCC GGGAATTCTT GAGAAAGATG GTTGGTTGGT CGCACGGCGA

GTTTATGGGG AGGAGAAATT CATCGGCGCG ATAGCACGAG ATAACATCTT TGCGACACAA TTCCATCCCG AGAAGAGCGG

CCAAGGCAGG CCTACGCACC CTTCGCGCTT TCTTGGACGG AGCTCAGCTC CATTCTGTCA CATTAGAGAC TCGATTTTGA

CAGGAGAGAA AAACGGTCTT ACCCGTAGGA TCATCGCCTG TCTTGATGTT CGTACGAATG ATGTCGGCGA TCTCGTTGTG

ACTAAGGGCG ATCAATATGA TGTTCGCGAG AAGGATGGTG CGGATGCTGG AGGGCAAGTG AGGAACCTGG GAAAGCCGGT

TGATATGGCT AAGAAATATT ACGAACAGGG GGCAGATGAG GTGACGTTTT TAAACATCAC CTCTTTCAGA AACTGTCCGT

TAGCCGACCT CCCTATGCTC GAGATTCTCC GAAGAACGTC GGAGACCGTC TTCGTACCTT TGACTATTGG TGGCGGCATT

AGGGACACTG TGGATACAGA CGGTACTCAC ATCCCAGCTC TAGACGTGGC ATCGATGTAC TTCAAATCTG GGGCTGACAA

AGTCAGCATT GGTTCGGATG CCGTTGTTGC TGCGGAAGAT TATTACGCAG CTGGCAAAGT TCTGTCTGGC AAAACTGCCA

TTGAAACTAT TTCTAAGGCG TATGGAAACC AGGCTGTCGT TGTAAGCGTT GACCCGAAGC GCGTTTATGT CAGCCAACCA

GAAGACACGA AACACCGTAC GATAGAAACG AAATTTCCTA ACGCCGCCGG GCAAAATTTC TGTTGGTACC AGTGTACTAT

AAAGGGTGGC AGAGAGACCA GAGACTTAGA TGTCTGCCAG CTGGTGCAAG CCGTCGAGGC AATGGGTGCT GGGGAGATTC

TGCTGAATTG CATTGATAAA GACGGGAGCA ACAGTGGTTC GATCTTGACT GATCAACCAC CGTCAAAGCG TGCAGTAAAA

ATACCCGTGA TTGCCTCTAG CGGAGCTGGT ATGCCGAAGC ATTTTGAGGA AGTTTTTGAT CAAACGACGA CAGATGCTGC

TCTGGGTGCT GGGATGgtat gtATATATGT GTACCTTTTC CTGTTTCTGT CTACTACAGC AATACTAATT GAGGTAcagT

TCCATCGTGG TGAGTATACT GTTGGTGAAG TCAAGCAATA CCTTGAGGAT AGAGGTTTCC TTGTTCGACG ATTCGAGCCT

GATGTCTGAG TGGGTTATGC GTCAAATTCC GCTGCTGGTC CCCAGGTTTA GTTTGTCAGA TTCAGATATA GATTTTAGAG

GCAGAATTAT ATCGTTTTGT TGAGCTCGTT GCCAACGGTG CCTTCACTGA GACAATCCTC TAACCCTATC ATATTCCCGA
GGTAAAACTC TTGCCTGAAA GCTGTGAAAC CACAAAGAAA ATGCAATTCT CGCTTAGCTC TCCCTCCTAT GTGAGGTATT

M   P  T  V   H  L  L  D   Y  V  A   G  N  V  

R  S  L  V   N  A  I   N  K  V   G  Y  E  V   E  W  V   R  S  P   S  D  L  K   D  V  E 

 ---------------------------------INTRON-----------------------------------------------

-------K   L  I  L  P   G  V  G   H  F  G   H  C  L  S   Q  L  S   S  G  G   Y  L  Q  P

  I  R  E   H  I  A   S  G  K  P   F  M  G   I  C  V   G  L  Q  S   L  F  E   S  S  E  

E  D  P  N   I  P  G   L  G  T   I  P  A  R   L  R  K   F  D  A   K  T  K  S   V  P  H 

 I  G  W   N  S  A  T   D  T  R   I  D  S   T  G  G  Q   T  F  Y   G  L  S   P  S  S  K

  Y  Y  Y   V  H  S   Y  A  A  P   Y  E  P   G  I  L   E  K  D  G   W  L  V   A  R  R  

V  Y  G  E   E  K  F   I  G  A   I  A  R  D   N  I  F   A  T  Q   F  H  P  E   K  S  G 

 Q  G  R   P  T  H  P   S  R  F   L  G  R   S  S  A  P   F  C  H   I  R  D   S  I  L  T

  G  E  K   N  G  L   T  R  R  I   I  A  C   L  D  V   R  T  N  D   V  G  D   L  V  V  
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Figure 7. DNA and deduced amino acid sequences of the hisHF  gene of A. nidulans.
Sequence analysis of the genomic EcoRV and the cDNA fragment revealed a promoter with two

elements similar to the consensus cis-sequence for Gcn4p (underlined), the transcriptional

activator of the general control system in S. cerevisiae, a putative transcriptional initiation site

(first solid triangle), two introns (dashed lines), a poly(A) site (second solid triangle) and the

deduced amino acid sequence. The region between the glutamine amidotransferase and the

cyclase (underlined) did not show any similarity to sequences of other proteins, neither of A.

nidulans nor of other organisms and was called linker. 5’ and 3’ splice motifs are shown in small

underlined letters.

Southern hybridisation experiments with the cDNA fragment of plasmid pM1611 as

probe and genomic A. nidulans DNA, digested with different restriction enzymes,

suggested, that the hisHF gene exists as a single copy in the A. nidulans genome (Fig. 9
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A, lane 1 for EcoRV). A genomic clone including hisHF was isolated by colony

hybridisation as a 4.3 kb EcoRV fragment from an A. nidulans genomic sublibrary with

EcoRV fragments of 3.5-4.5 kb in size. The isolated plasmid pME1633 was subjected to

DNA sequence analysis. Two introns interrupted the coding region, intron I from

postions 124 to 209 and intron II from 1759 to 1822 relative to the translational start

codon (Fig. 7). Both introns showed the conserved internal 5`splicing and 3`splicing

motifs described for A. nidulans (May et al., 1987). The open reading frame of the

genomic fragment was flanked by a 519-bp 5`-region and a 1.9-kb 3`-region. In the

putative promoter region upstream of the cDNA 5`end, two elements similar to the motif

5`-TGACTC-3` were present at positions –157 and –399 relative to the AUG

translational start codon (underlined in Fig. 7). This regulatory cis-element has been

described in yeast as Gcn4p recognition element (GCRE), the binding site for the

transcriptional activator of the amino acid biosynthetic network, Gcn4p. In filamentous

fungi this network was called cross pathway control and the GCN4 homologous genes of

A. niger and N. crassa, cpc1 and cpcA respectively, were identified (Paluh et al., 1988;

Wanke et al., 1997). Therefore the binding site was named CPRE for cross pathway

recognition element (Fig. 8 B).

Activation of hisHF Transcription by Amino Acid Starvation.

Northern hybridisation analysis of the hisHF transcripts revealed a length of

approximately 1.8 kb (not shown). In yeast the homologous gene HIS7 is regulated by

the general control of amino acid biosynthesis and its transcription is activated by the

transcription factor Gcn4p upon amino acid starvation (Kuenzler et al., 1993). As the

hisHF promoter contains two putative binding sites resembling the yeast Gcn4p binding

site, we investigated hisHF transcription during conditions of amino acid starvation. The

A. nidulans strain strain GR5 (wA3, pyrG89, pyroA4, veA1) was cultivated in liquid

medium for 20 h and mycelia were transferred to fresh medium containing 20 mM 3-

amino-1,2,4-triazole (3AT). 3AT acts as a feedback-inhibitor signal of histidine
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biosynthesis and therefore depletes the histidine pool of the cells leading to the amino

acid starvation (Hilton et al., 1965). Mycelia were harvested at three time points and total

RNAs were isolated. hisHF transcript levels were determined by hybridizing with the

radioactively labeled cDNA probe. A specific probe for gpdA transcripts was used as an

internal control. Transcription of gpdA encoding glyceraldehyde-3-phosphate

dehyrdogenase (EC 1.2.1.12) (Punt et al., 1988) was not affected upon addition of 3AT.

Quantification of the northern signals by Phospho Imager analysis revealed up to a 3.0

fold increase in the level of hisHF in cells incubated with 3AT (Fig. 8 A). We confirmed

this result by inducing amino acid starvation with 5-methyltryptophan, a tryptophan

analogue acting as false feedback inhibitor of this amino acid (not shown). Therefore our

results strongly suggests that the transcription of the hisHF gene is regulated by the

cross-pathway-control system in A. nidulans.
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Figure 8. Expression of the hisHF gene of A. nidulans under amino acid starvation, adenine
and histidine supplementation conditions. A Each autoradiography is an example of at least

four independent Northern hybridization experiments with total RNA of mycelia of strain GR5

and the hisHF cDNA as probe. The addition of 3AT led to an increased level of hisHF
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transcripts. Supplementation with adenine reduced hisHF mRNA levels and external histidine

had no effect. The gpdA mRNA was used as internal standard. Quantification by Phospho Imager

revealed a 3.0 fold increased hisHF transcript level after 4 hours of growth with 3AT. It did not

significantly increase during the next 4 hours of cultivation. Growth in medium supplemented

with 1.0 mM adenine reduces the hisHF transcript level to approximately 75 % and with 10.0

mM adenine to 50 %. Supplementation with histidine displays no effect on hisHF transcript

levels. The standard deviation did not exceed 15 %. B shows a scheme of the putative CPREs and

their sequences within the promoter region of the hisHF gene. Small letters printed in bold are

mismatches of the postulated consensus sequence for the respective Gcn4p binding sites in yeast.

Repression of hisHF Transcription by Adenine but not Histidine.

The byproduct AICAR of the reaction catalyzed by the IGP-synthase is a common

intermediate of histidine and purine biosyntheses and thereby connects both pathways.

We investigated whether end products of either pathways, histidine or adenine/guanine,

influenced the expression of the hisHF gene. The hisHF mRNA levels in A. nidulans

strain GR5 grown in the presence of different amounts of histidine and adenine were

determined. Mycelia from liquid cultures containing up to 15.0 mM histidine were

harvested and total RNAs were isolated. The same hisHF mRNA levels were found for

these cultures as for a culture without histidine supplementation. The autoradiography

shown in Fig. 8 A illustrates the situation for 1.0 or 15.0 mM histidine supplementation.

In contrast, supplementation with adenine to final concentrations of 1.0 mM or 10.0 mM

reduced the hisHF mRNA levels to 75% and nearly 50%, respectively (Fig. 8 A), in

comparison to mycelia from cultures without adenine. Higher concentrations did not

increase this effect. Thus hisHF transcription of A. nidulans is repressed in the presence

of external adenine but not by histidine.

Reduction of Salt Tolerance and Inhibition of Sexual Development by high hisHF

Transcription

Strong overproduction of the IGP-synthase in the eubacteria S. typhimurium or E. coli

resulted in growth deficiencies and morphological changes (Casadesus and Roth, 1989;

Flores et al., 1993; Gibert and Casadesus, 1990; Murray and Hartman, 1972). Here we



                                                                                                                            Chapter 2

57

investigated the consequences of hisHF overexpression for growth and development of

A. nidulans. We cloned the hisHF cDNA between the inducible alcA promoter and the

his2B terminator of vector pME1565 leading to pME1608. The alcA gene of A. nidulans

is highly expressed and codes for alcohol dehydrogenase I (EC 1.1.1.1). Transcription of

alcA is extensively repressed during growth in medium containing glucose but strongly

induced in medium containing ethanol as sole carbon source (Waring et al., 1989). The

overexpression plasmid pME1608 and the vector pME1565 without the hisHF gene, both

carrying the pyrG marker gene, were transformed into A. nidulans strain GR5.

Transformants were selected by growth on uridine deficient medium. Ectopic integration

events and the number of hisHF copies in the genome were analyzed by Southern

hybridization analysis (Fig. 9 A). Transformation with the empty vector resulted in strain

AGB121 with only the wild type hisHF allele. Strains AGB122 and AGB123 were

transformants with pME1608 and carry one or two alcA-hisHF alleles, respectively.

hisHF transcription levels of the strains AGB122 and AGB123 were compared with that

of strain AGB121. Northern hybridization experiments with total RNA from mycelia

grown in glucose or ethanol containing medium were performed. Glucose repressed and

ethanol activated the hisHF transcription from the alcA promoter of the transformants as

shown in Fig. 9 B. In medium containing ethanol as sole carbon source hisHF

transcription of AGB122 increased five-fold and of strain AGB123 eleven-fold (Fig. 10

B).

On glucose the growth rate of strain AGB123 (2x alcA-hisHF + wt-hisHF) and that of

AGB121 (wt-hisHF) was similar as measured with race tubes in a time course of 40

days. Induction of hisHF overexpression by cultivating strain AGB123 on ethanol led to

a growth rate of 70 % relative to that of AGB121 on ethanol. On glucose medium

increasing concentrations of NaCl impaired colony growth of AGB123 to the same

extent as of the wild-type strain AGB121 (Fig. 10, rows 1,2). High salt concentrations

combined with hisHF overexpression, induced by growth on ethanol, drastically

diminished colony growth of strain AGB123 (Fig. 10, row 4). As measured in race tubes
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with ethanol medium containing 0.9 M NaCl, the growth rate dropped to 30 % of the

wild type at this conditions, and even to 10 % on 1.5 M NaCl. On 1.8 M NaCl hardly any

growth was observed after several days of incubation. As shown for bacteria earlier,

overexpression of hisHF also impaired salt tolerance of A. nidulans.
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Figure 9. Overexpression of the hisHF gene in A. nidulans. The autoradiography A  shows a

Southern hybridisation experiment with EcoRV digested genomic DNA probed with the

radioactive labeled hisHF cDNA. The strain AGB121 had the wild type hisHF allele (lane 1),

transformant AGB122 had one and transformant AGB123 two ectopic alcA-hisHF (lanes 2,3).

The number of copies was confirmed by Southern analysis with NheI digested DNA (not shown).

B The respective hisHF mRNA levels of these strains were determined by Northern hybridisation

experiments and are illustrated in the autoradiography and quantified by Phospho Imager

analysis. All quantifications are the average of four different RNA isolations and the standard

deviation did not exceed 15%. AGB122 exhibited a five-fold and AGB123 an eleven-fold

increased hisHF mRNA level if cultivated on medium with ethanol as carbon source. nsdD

mRNA levels did not change upon hisHF overexpression.
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HISHF overproduction in A. nidulans, in contrast to that in S. typhimurium, did not

reduce growth at elevated temperatures. Moreover the colony morphology of A. nidulans

did not change upon hisHF overexpression as it was observed in bacteria (Fig. 10).

Electron microscopical studies revealed that the cell morphology of the distinct cell types

of the asexual formed conidiophores did not change upon the hisHF overexpression (Fig.

11 A+B top). Cultivation of both hisHF wild type or an overexpressing strain on solid

glucose medium under oxygen limitation conditions led to mature sexual fruiting bodies

after 10 days of growth. On ethanol medium this sexual development took 13-15 days for

the wild type (Fig. 11 A bottom) leading to more than 100 mature cleistothecia on a

square centimeter. The hisHF overexpression strain AGB123 did not form any sexual

fruiting bodies on ethanol and the number of nests was reduced and showed

accumulations of globular hulle cells (Fig. 11 B bottom). Even after 30 days of growth

these nests were found. Eleven-fold overexpression of the hisHF gene therefore

prevented the sexual life cycle in A. nidulans. Shifting these alcA-hisHF cultures to

repressing glucose medium resulted in the completion of the sexual life cycle and the

formation of cleistothecia after another four to five days (not shown). This suggested that

the ectopic integration of the construct did not result in a secondary mutation. In contrast

to the eleven-fold hisHF overexpression of AGB123, the five-fold overexpression of

AGB122 did not impair the formation of cleistothecia.
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Figure 10. Salt sensitivity of the hisHF overexpressing A. nidulans strain AGB123. Colonies

of the A. nidulans strain AGB121 with the hisHF wild type allele and strain AGB123 with its two

alcA-hisHF copies were grown on raising NaCl concentrations. Growth at salt concentrations up
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to 1.8 M is shown for repressing glucose medium and inducing ethanol medium. Whereas both

strains grew similar on glucose (rows 1,2), on ethanol the hisHF overexpression strain AGB123

displayed an increase in sensitivity for raising salt concentrations resulting in much smaller

colonies (row 4) compared to AGB121 (row 3). These results were confirmed on media with

similar concentrations of sorbitol (not shown).

Figure 11. Sexual development is prevented by hisHF overexpression. Scanning electron

microscopy of AGB121 (wt-hisHF) and AGB123 (2x alcA-hisHF + wt-hisHF). A  Conidiophores

of both strains for growth on ethanol medium. The individual cell types are vesicle (V), metulae

(M), phialide (P) and conidium (C). hisHF overexpression did not change the morphology of the

individual cell types. B Cultivation of wt-hisHF strain under oxygen limitation led to the

formation of sexual fruiting bodies. The photograph on the left side shows a cleistothecium as

they were visible after about 300 hours of growth on ethanol medium. 11-fold overexpression of

the hisHF gene only led to nests with accumulations of hulle cells, as shown on the right

photograph. Even further 200 hours of growth did not led to cleistothecia. Only the shift to

repressing glucose medium raised the block of the developmental process and led to mature

cleistothecia (not shown).

hisHF Overexpression did not Activate the Cross Pathway Control.

One reason for a block in the formation of cleistothecia could be the activation of the

cross pathway control system (Eckert et al., 1999; Hoffmann et al., 2000). We
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investigated whether the strong overexpression of the hisHF gene in AGB123 led to an

activation of this regulatory network, i.e. by causing a severe imbalance of the internal

pool of histidine in relation to the other amino acids. In Northern hybridisation

experiments we determined the transcript levels of the biosynthetic genes hisB and argB

of AGB123, both known target genes of cross pathway control (Busch et al., 2000; Goc

and Weglenski, 1988) (Fig. 12). Although the transcription of hisHF in strain AGB123 is

strongly activated if cultivated in medium with ethanol as carbon source (EtOH-lanes in

Fig. 12), the argB and hisB mRNA levels did not increase. We conclude that the

acleistothecial phenotype caused by the strong hisHF overexpression was not linked to

an activated cross pathway control.
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Figure 12. hisHF overexpression did not induce the cross pathway control. The

autoradiography in A shows an example of three independent Northern hybridisation experiments

with total RNA of mycelia of strains AGB121 (wt-hisHF) and AGB123 (2x alcA-hisHF + wt-

hisHF). Both strains were cultivated in glucose, 3AT supplemented or ethanol medium. The blots

were probed against argB and hisB, and RNA amounts equalized in relation to gpdA mRNA

levels. The quantification B confirmed the transcriptional activation of the known target genes of

the cross pathway control argB (Goc and Weglenski, 1988) and hisB (Busch et al., 2000) upon

3AT addition. However, the overexpression of hisHF in AGB123 on ethanol medium did not
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give rise to higher mRNA levels for argB and hisB and therefore did not activated this regulatory

network.

As the expression of the nsdD gene is essential for the formation of cleistothecia but not

for asexual development (Chae, 1995) we analyzed its transcript levels during basal and

ethanol-induced hisHF expression. The amount of nsdD transcripts in AGB123 did not

change upon hisHF overexpression and therefore it was not involved in the

acleistothecial phenotype (Fig. 9 B).
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Discussion

Metabolic enzymes are among the best-studied examples of protein function and

structure. In this work we report the structure and regulation of the hisHF gene of the

filamentous fungus A. nidulans as the first gene identified encoding an IGP-synthase in

filamentous fungi. These proteins were proposed to be the result of a twofold gene

dublication and gene fusion. The proteins are ß/α barrels and their ancestor might have

been a half barrel enzyme  (Lang, et al., 2000). The transcription of the fungal gene is

regulated upon amino acid as well as adenine limitation. Eleven-fold overexpression of

the hisHF gene resulted in increased osmosensitivity. In addition, cleistothecia formation

was impaired in this strain, although we could not find any amino acid stress, which is

normally reflected by the induction of the cross pathway network.

The deduced amino acid sequence of the A. nidulans HISHF displayed high similarities

to homologous bifunctional gene products of other eukaryotes including S. cerevisiae or

A. thaliana, and slightly reduced similarities to homologous proteins coded from separate

genes in prokaryotes including E. coli, S. typhimurium or L. lactis. These data further

support the idea that all genes encoding enzymes for this reaction of histidine

biosynthesis are the descendants of a common ancestor gene. Accordingly, the fungal

cDNA was able to complement  a HIS7 deletion of S. cerevisiae as well as hisH or hisF

mutations in E. coli. The linker region between both catalytic subunits did not display

any similarity to either hisHp or hisFp and was 21 amino acids in length. In comparison

the A. thaliana linker comprised 17 amino acids (Fujimori and Ohta, 1998) and the S.

cerevisiae linker 23 (Kuenzler et al., 1993). Therefore it seems that the function of the

linker is primarily to guarantee appropriate spacing between the different domains.

Amino acid starvation in A. nidulans led to a threefold activation of the hisHF

transcription. Although the final transcription factor of a regulatory network for the

biosynthesis of amino acids has not been described for A. nidulans yet, a cross pathway

control system similar to the general control system of yeast was described (Piotrowska,
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1980). Also for Aspergillus niger a similar cross pathway regulation with its transcription

factor cpcAp was described (Wanke et al., 1997). We assume that A. nidulans possesses

a homologous transcription factor to A. niger cpcAp and yeast general control factor

Gcn4p, both recognizing the DNA consensus sequence 5’-TGACTC-3’. The hisHF

promoter has two putative binding sites for this kind of regulation. One of these cross

pathway recognition elements (CPRE1) was at position –399 relative to the translational

AUG start codon and CPRE2 at position –157. Both CPREs are separated by 242 bp.

Within the yeast HIS7 promoter the two functional Gcn4p recognition elements (GCREs)

at the positions –231 and –145 were only 86 bp apart from each other. Moreover GCRE2

mediated the activation of HIS7 transcription by binding of the heterodimeric

transcription factor Bas1p/Bas2p. Bas1p/Bas2p act as transcription activators upon

purine limitation (Springer et al., 1996). For A. nidulans Bas1p/Bas2p homologous

factors are not yet identified. Since transcription of hisHF raised upon purine limitation,

it remains to be shown whether CPRE1 or CPRE2 as putative promoter sites are also

involved.

Overexpression of the hisHF gene driven from the inducible alcA promoter led to an

increased sensitivity to high osmolarity of the fungus. Raising concentration of NaCl or

sorbitol resulted in reduced growth rates and smaller colonies in comparison to wild type

hisHF expression. A similar osmotic phenotype was previously observed for S.

typhimurium and E. coli as part of a pleiotropic response caused by hisHp and hisFp

overproduction (Flores and Casadesus, 1995). Further overexpression phenotypes in the

eubacteria were a reduction in growth at elevated temperatures and a changed cell

morphology that manifested in long filaments instead of small rods. In contrast hisHF

overexpression in A. nidulans did not affect growth at elevated temperatures or the

morphology of hyphae or conidiophores. However, cleistothecia were no longer formed

during strong hisHF overexpression. The molecular reasons for the osmotic and

developmental phenotypes of A. nidulans remain to be shown. It will be interesting to
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compare them on the molecular level with those of the pleiotropic response observed in

S. thyphimurium and E. coli upon overproduction of hisHp and hisFp.
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Chapter 3

Different Transcriptional Activators Regulate HIS7 Expression by
Different Nucleosome-mediated Activation Mechanisms

Abstract

ARO4 and HIS7 are two tandemly orientated genes of Saccharomyces cerevisiae which

are transcribed into the same direction. The ARO4 terminator and the HIS7 promoter

regions are hypersensitive to Micrococcus nuclease (Mnase) and separated by a

positioned nucleosome. The HIS7 promoter is target for the transcription factors Gcn4p

and Bas1p/Bas2p that activate its transcription upon amino acid starvation and purine

limitation, respectively. Activation of the HIS7 gene by Gcn4p but not Bas1p/Bas2p

releases the defined nucleosomal distribution to yield increased Mnase sensitivity

throughout the entire intergenic region. This change in chromatin structure requires the

intact HIS7 promoter with both Gcn4p recognition elements and the binding site for an

additional protein, Abf1p. The remodeling is SNF2-dependent but GCN5-independent.

Accordingly SNF2 is necessary for the Gcn4p-mediated transcriptional activation of the

HIS7 gene. GCN5 is required for activation upon adenine limitation by Bas1p/Bas2p and

to maintain the resulting basal Gcn4p-independent HIS7 expression. Our data suggest

that activation of HIS7 transcription by Gcn4p and Bas1p/Bas2p is supported by two

distinct mechanisms acting on the nucleosomes. Whereas Gcn4p activation causes

Swi/Snf-mediated remodeling of the nucleosomal architecture at the HIS7 promoter,

theBas1/Bas2p complex activates via the Gcn5p acetyltransferase without changing the

chromatin structure.
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Introduction

Regulation of transcription involves specific transcription factors and multiple complexes

that act directly or indirectly by changing the nucleosomal order of the chromatin

(Armstrong and Emerson, 1998). In average, 147 base pairs (bps) of DNA coil around a

histone octamer and jointly form the nucleosome. Inclusion of promoters and/or

upstream activation sequences (UAS) into fixed nucleosomes represses gene

transcription and result in silent or basal transcribed genes (Cavalli and Thoma, 1993;

Moreira and Holmberg, 1998b; Svaren and Horz, 1995). The process of destabilizing this

chromatin structure in order to facilitate access of the general transcription machinery

requires not only sequence specific transcription factors, but also cooperation with

histones and with cofactors that help to remodel or displace nucleosomes. Genetic studies

and subsequent biochemical analyses have identified a number of factors required for

transcriptional regulation in relation to chromatin. The multitude of these proteins

function as part of large complexes, such as the Swi/Snf complex and the RSC (from

remodeling the structure of chromatin), Ada and SAGA complexes and the

Srb/mediator/holoenzyme complex (reviewed in Perez-Martin, 1999).

Swi/Snf was purified as a 2-MDa protein complex that is composed of the Swi1,

Swi2/Snf2, Swi3, Snf5 and Snf6 proteins plus five additional polypeptides (Cairns et al.,

1994). Swi/Snf can bind to nucleosomes and DNA either and thereby creates loops in

nucleosomal arrays or naked DNA, respectively, bringing distant sites into close

proximity (Bazett-Jones et al., 1999). In an ATP-dependent fashion it can reposition

nucleosomes in cis on the same DNA molecule (Whitehouse et al., 1999) and the

SWI2/SNF2 gene itself encodes the DNA-dependent ATPase activity (Richmond and

Peterson, 1996). Recent transcriptome analyses with a swi2/snf2 mutant strain have

estimated that Swi/Snf controls transcription of only 6% of all S. cerevisiae genes and

that the control is exerted at the level of individual promoters rather than over

chromosomal domains (Sudarsanam et al., 2000). Swi/Snf thereby both activates and



                                                                                                                            Chapter 3

72

represses transcription of different target genes. Recruitment of Swi/Snf to specific

promoters by DNA-binding regulatory proteins as well as targeting of the complex by the

general transcription machinery has been suggested (Yudkovsky et al., 1999).

Two high molecular mass Ada-Gcn5 complexes (0.8 and 1.8 MDa) have been

biochemically isolated from S. cerevisiae and shown to be able to acetylate nucleosomes

in vitro as well as in vivo at specific lysine residues of histones H3 and H4 (Grant et al.,

1997). Both complexes share Gcn5p, Ada2p and Ada3p, whereas the larger one

additionally contains Spt proteins (Spt20p, Spt3, Spt8 and Spt7) and is called SAGA

(Spt/Ada/Gcn5 acetyltransferase). Gcn5p comprises the histone acetyltransferase (HAT)

activity to acetylate histones in promoter regions in a manner that is correlated with

Gcn5p-dependent transcriptional activation and HAT activity in vitro (Kuo et al., 1998).

SAGA interacts with both TATA-binding protein (TBP) and acidic transcriptional

activators such as the herpes virus VP16 activation domain and yeast Gcn4p, suggesting

that the complex also might have a transcriptional adaptor function for some promoters

(Grant et al., 1998).

HIS7 is a typical house keeping gene of yeast and its gene product is necessary for the

biosynthesis of the amino acid histidine as well as purines (Künzler et al., 1993). Its

expression has previously shown to be activated by two major stimuli, that are lack of

amino acid availability and limitation of external purines, respectively (Springer et al.,

1996). Starvation for amino acids triggers increased expression of Gcn4 protein that in

turn activates transcription of amino acid biosynthetic genes (general control of amino

acid biosynthesis, reviewed in Braus, 1991; Hinnebusch, 1997). Upon starvation, two

Gcn4p-recognition elements (GCREs) within the HIS7 promoter are targeted by the

transcription factor thereby mediating an eight-fold increase of HIS7 expression (Fig.

13). Purine limitation causes a two-fold increase in HIS7 expression and is mediated by

the heterodimeric transcription factor Bas1/Bas2p that shares a common binding site with

Gcn4p, the TATA-proximal GCRE. Nevertheless, both activation pathways act

independently of each other and, moreover, are additive upon simultaneous amino acid
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and purine limitation (Springer et al., 1996). In-between the two GCREs another cis-

element is occupied by the ubiquitous transcription factor Abf1p that contributes to the

basal HIS7 expression in the absence of starvation conditions (Springer et al., 1997).

Gcn4p

HIS7
Abf1p

ATG (+1)

TA
GCRE2GCRE1

+1-87-138-191-231bp

144

ARO4

-416

185

-416
TAG

ABS

Bas1/2p

FIGURE 13. Scheme of the yeast HIS7 promoter. Two binding sites for Gcn4p (GCRE1+2)

with a binding site for Abf1p (ABS) in-between are functional parts of the promoter. GCRE2

additionally functions as recognition element for the heterodimeric transcription factor

Bas1p/Bas2p. TA at position (-120) reflects the putative TATA element. The arrow at (–87)

indicates the initiator element of the major transcriptional start site. Positions are relative to the

translational start codon ATG which is shown as +1.

Up to now there is only little knowledge about how different chromatin modifying

complexes like Swi/Snf or HATs act together in regulating one gene that is regulated by

different activation systems. Whether different activators demand for different possibly

independently acting chromatin modifying activities, or whether they claim for their

simultaneous presence is poorly understood.

In this work we show that two different transcription factors though sharing a common

binding site use different chromatin modifying activities to achieve their goal of

transcriptional gene activation. Transcriptional HIS7 activation by Gcn4p requires the

Swi/Snf-dependent rearrangement of otherwise positioned nucleosomes whereas

Bas1/Bas2p mediated HIS7 transcription demands for the presence of the HAT activity
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of Gcn5p. Both activation processes and moreover their accompanying effects on

chromatin seem to be independent of each other.
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Experimental Procedures

Yeast strains and growth conditions

Yeast strains and their genotypes used in this work are listed in table 2. For  high GCN4

expression, strains were transformed with plasmid p238, harboring a constitutively high

expressed GCN4 allele (Müller and Hinnebusch, 1986). To enable starving strains

FY1553 and 1360 for histidine with its analog 3-AT, histidine auxotrophy was initially

regained by transforming them with plasmid pRS303 (HIS3) (Sikorski and Hieter, 1989)

yielding strains RH2561 and RH2563. Strains RH2569 and RH2570 with deleted GCN5

and translational Phis7-lacZ-fusions were obtained by transforming RH1615 and RH1616

with the deletion cassette of plasmid pME1236. The inserted kannx marker gene was

afterwards removed with the Cre-LoxP recombination system as described by (Güldener

et al., 1996).

Strains were cultivated in minimal vitamins (MV) medium (Miozzari et al.,

1978). Adenine repression was achieved by supplementation with 0.3 mM adenine

(Springer et al., 1996).

Plasmids

Plasmids used in this work are listed in table 2. Plasmid pME1236 carrying the

gcn5::kannx  deletion cassette was created by replacement of the GCN5 coding sequence

for the kannx kanamycin resistance cassette using a PCR-based three step cloning

strategy, with plasmids pME1234 and pME1235 as intermediates. Other plasmids used

here have been described previously.
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Genomic chromatin preparation and nuclease digestions

These methods have been described previously (Thoma, 1996). Biodyne B nylon

membranes (Pall, Dreieich, Germany) were used for Southern transfer. Probes were

labeled by the random primer method (Feinberg and Vogelstein, 1983).

Indirect end-labeling

Chromosomal DNA from the nuclease digestion was digested with XbaI and MluI and

fractionated on 1.2% agarose gels. The fractionated DNA was blotted on a Hybond-N

nylon membrane by the alkaline blotting method and hybridized with a radioactively

labeled 250 bp PCR-amplicon, generated with the oligonucleotides HIS7-CHR1

(5´gagattaaagaaattgtcaga3´) and HIS7-CHR2 (5´caagtattgaggagaaatggta3´), annealing

just downstream of the XbaI site. A DNA ladder consisting of multiples of 256 bp was

used for calibration (Thoma et al., 1984).

Primer extension

Oligonucleotides CHR-PE1 (5´gccaattcggtattatttaattgtgtttagcgc3´ for top strand) and

CHR-PE2 (5´cctaaactggatactgctacttcaatagctgcc3´ for bottom strand) were purchased by

Gibco BRL and radioactively 5´ end labeled by Hartmann Analytik GmbH

(Braunschweig, Germany). The Mnase-digested DNA was cut with XbaI/MluI to reduce

viscosity. Conditions for primer extension on Mnase digests were according to Zhu and

Thiele (1996). DNA was electrophoretically separated on a 6% polyacrylamide-urea gel.

For sequencing analysis a cycle-sequencing kit (Amersham) was used.

RNA analysis

Total RNAs from S. cerevisiae were isolated according to Cross and Tinkelenberg

(1991). For Northern hybridization analysis 20 µg of total RNAs were separated on a

formaldehyde agarose gel and transferred to a positively charged nylon membrane

(Biodyne B, PALL) by capillary blotting. Hybridization with specific DNA probes was
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performed after 32P-labeling of the respective DNA fragments with the Prime It II DNA

Labelling Kit from Stratagene. The HIS7 probe was generated with the oligonucleotides

HIS-OL1 (5´gtggtaacctacagtcactaacc3´) and HIS-OL2 (5´ccgatcgatactttatcagcacc3´), and

the ACT probe with the oligonucleotides ACT-OL1 (5´gctgctttggttattgataacgg3´) and

ACT-OL2 (5´cacttgtggtgaacgatagatgg3´). Band intensities were visualized by

autoradiography and quantified using a BAS-1500 Phospho-imaging scanner (Fuji).

ß-galactosidase assay

ß-galactosidase activities were determined by using permeabilized yeast cells and the

fluorogenic substrate 4-methylumbelliferyl-ß-D-galactoside (MUF) as described

(Künzler et al., 1993).
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Table 2 Yeast strains and plasmids used in this study

Strain Genotype Reference

FY1353 MATα, his3∆200, ura3-52, leu2∆1, lys2-173R2 Sudarsanam et al., 2000

RH2561 as FY1353 but with plasmid pRS303 (HIS3) this work

FY1354 MATα, his3∆200, ura3-52, leu2∆1, lys2-173R2, 

gcn5∆::HIS3 Sudarsanam et al., 2000

FY1360 MATa, his3∆200, ura3-52, leu2∆1, lys2-173R2,

snf2∆::LEU2 Sudarsanam et al., 2000

RH2563 as FY1360 but with plasmid pRS303 (HIS3) this work

FY1352 MATa, his3∆200, ura3-52, leu2∆1, lys2-173R2,

gcn5∆::HIS3, snf2∆::LEU2 Sudarsanam et al., 2000

RH1615 MATa, ura3-52, aro3-2, his7-lacZ Springer et al., 1996

RH1616 MATa, ura3-52, aro3-2, his7-lacZ, gcn4-101 Springer et al., 1996

RH2569 MATa, ura3-52, aro3-2, his7-lacZ, gcn5∆::loxP this work

RH2570 MATa, ura3-52, aro3-2, his7-lacZ, gcn4-101, gcn5∆::loxP this work

RH1619 MATa, ura3-52, aro3-2, his7(mut GCRE1)-lacZ, gcn4-101Springer et al., 1996

RH1622 MATa, ura3-52, aro3-2, his7(mut GCRE2)-lacZ, gcn4-101Springer et al., 1996

RH1830 MATa, ura3-52, aro3-2, his7(mut ABS)-lacZ, gcn4-101 Springer et al., 1997

Plasmid Description Reference

pBluescript

II SK (+) commercial cloning vector with polylinker, lacZ STRATAGENE, CA

pUG6 loxP-kanMX-loxP module with kanR marker flanked 

by TEF2 promoter and terminator, AmpR Güldener et al., 1996

pME1768 loxP-kanMX-loxP module from pUG6 in 
pBluescript  II SK (+) this work

pME2034 774 bp GCN5 3`-fragment in pBluescript  II SK (+) this work

pME2035 862 bp GCN5 5`-fragment in pBluescript  II SK (+) this work

pME2036 1.6 kb kanMX fragment from pME1768 in-between

GCN5 5`- and 3`-fragment this work

pSH47 cre recombinase expression vector Güldener et al., 1996

pRS303 yeast integrative vector, lacZ, HIS3 Sikorski & Hieter, 1989

p238 YCp50 carrying a GCN4 allele with mutated uORFs Mueller & Hinnebusch,

1986      



                                                                                                                            Chapter 3

79

Results

The yeast HIS7 promoter is covered by a defined nucleosome structure in the

absence of Gcn4p activation

The chromatin structure of the basal yeast HIS7 promoter was investigated by

Micrococcus nuclease (Mnase) protection experiments. Crude nuclear extracts from

over-night cultures which were grown in the absence of amino acid limitation and

expressing low amounts of the transcription factor Gcn4p, were partially digested with

Mnase and further treated as previously described (Thoma, 1996). The HIS7 promoter

region carries binding sites for Gcn4p, Bas1/2p and Abf1p which are all hypersensitive to

the nuclease (Fig. 14 A, lanes 2+3). In the case of low Gcn4p levels this extended

sensitive region is flanked on both sites by protected DNA stretches that correspond in

length to positioned nucleosomes. The ARO4 gene is located upstream of HIS7 and is

transcribed into the same direction (Künzler et al., 1993). One nucleosome separates the

ARO4 3`-end region and the HIS7 promoter. The 3`-end region of the ARO4 gene

upstream of the protected region separating the two genes is again hypersensitive (Fig. 14

A lanes 2+3).

Primer extensions with DNA of this Mnase experiment as template revealed the exact

borders of the sensitive promoter region with respect to the positions of the flanking

nucleosomes. The TATA-element (TA) located 130 base pairs upstream of the

translational start codon is part of the unprotected promoter region (Fig. 14 B, lanes 3-5

and 12-13). The transcriptional initiator elements at positions –87, –88 or –95 relative to

the start codon (Künzler et al., 1993) lie within the protected region apparently covered

by a nucleosome. The upstream border of the hypersensitive region is located only 10

base pairs upstream of GCRE1, one of the two binding sites for the transcriptional

activator Gcn4p.
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FIGURE 14. Mnase protection experiments of the nucleosome structure of the ARO4-HIS7
intergenic region. A) Low resolution experiments with chromatin of S. cerevisiae strain FY1353

are indicated as wt-GCN4 expressing low amounts of Gcn4p. A derivative strain expressing high

amounts of Gcn4p is FY1353[p238]. Lanes 8-10 show Mnase control digests of the same DNA

without nucleosomes. Lanes 1 and 11 display a 256 bp DNA ladder and lanes 4 and 5 are

Southern hybridisations that exactly locate GCRE2 (XbaI/TaqI) and ABS (Sau3A) positions. The

scheme on the left displays the exact positions of cis-elements (small boxes) and relevant

restriction sites, respectively. Black ovals represent protected DNA stretches of wt-GCN4 (lanes

2+3) which correspond in their size imposed positioned nucleosomes. High Gcn4p expression in

strain FY1353[p238] removes the positioned nucleosomes. B) Enlargement of the hypersensitive

promoter region and its borders of FY1353 expressing low amounts of Gcn4p by high resolution
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primer extension experiments. Radioactive oligonucleotides annealing at top and bottom strand,

respectively, were used to prime DNA extension in both directions. cis-elements (for details see

Figure 1) and adjacent protected DNA presumably corresponding to positioned nucleosomes are

indicated.

Gcn4p-activation releases a defined chromatin structure at the HIS7 promoter

The HIS7 promoter is expressed at a basal level in the absence of amino acid starvation.

This basal HIS7 expression takes place when exogenous purines are not available from

the growth medium, and the cell has to synthesize purines de novo. Supplementation of

the purine adenine to the medium represses the basal HIS7 transcription. For the basal

expression the activity of the adenine-dependent transcription factor Bas1p/Bas2p is

required. During amino acid starvation Gcn4p activates the HIS7 expression eight-fold,

whereas high concentration of adenine in the growth medium reduces the expression of

the basal promoter to half the value (Springer et al., 1996). We addressed the following

questions: (I) How does the binding of transcription factors affect the chromatin structure

under basal expression conditions (Bas1p/Bas2p present, low levels of Gcn4p)? (II) What

happens to the chromatin structure if the general control system is inactivated (absence of

Gcn4p)? (III) Does repression of the basal HIS7 expression by adenine supplementation

alter the chromatin structure? (IV) What happens upon amino acid starvation conditions

when GCN4 expression is strongly increased?

(I) To answer the first question we determined the promoter chromatin structure of the

HIS7 gene in several promoter mutant strains carrying single nucleotide exchanges

within the activator binding sites. The strains were cultivated in the absence of amino

acid starvation and exogenous adenine, therefore expressing low amounts of Gcn4p but

retaining the basal HIS7 expression by Bas1p/Bas2p. Neither a defective binding site for

Bas1/Bas2p (gcre2), previously reported to prevent activator binding and basal HIS7

expression, nor a simultaneous mutation of GCRE1 and GCRE2, which together mediate

the Gcn4p-response (Springer et al., 1996), has changed the chromatin structure of the

basal HIS7 promoter described above (data not shown). This suggests that Gcn4p is not
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required for a hypersensitive HIS7 promoter. A functional binding site for the ubiquitous

transcription factor Abf1p (ABS) in-between GCRE1 and GCRE2 supports the basal

HIS7 expression (Springer et al., 1997). Two specific single nucleotide exchanges within

this cis-element drastically reduce binding of Abf1p (Dorsman et al., 1990), but neither

this mutation alone nor in combination with mutation of GCRE1 or/and GCRE2 had any

influence on the promoter chromatin structure (data not shown).

(II) A strain with a gcn4∆ background that cannot produce any functional Gcn4 protein

displays basal HIS7 expression in medium without adenine supplementation (Springer et

al., 1996). The HIS7 promoter chromatin structure under these circumstances is the same

as found for low Gcn4p levels (Fig. 15 B). We therefore conclude that Gcn4p is

irrelevant for the basal nucleosomal structure.

FIGURE 15. Mnase protection experiments of various yeast HIS7 promoter alleles driving
lacZ reporter hybrid genes. A Effect of high amounts of Gcn4p within the cell. Yeast strains are
wt: RH1616 (HIS7 wild-type promoter), gcre1: RH1619 (HIS7 promoter mutant in GCRE1),
gcre2: RH1622 (HIS7 promoter mutant in GCRE2), and abs: RH1830 (HIS7 promoter mutant in
ABS). B Effect caused by 0.3 mM adenine on the HIS7 wild-type promoter (RH1616). his7-lacZ
expression was quantified as specific ß-galactosidase activities measured as nmol/(h ml OD546)
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and graphs are averages of three individual enzyme essays performed with four independent

cultures.

(III) Supplementation of the culture medium with adenine suppresses basal HIS7

expression to a quite low remaining level (Springer et al., 1996). Mnase protection

experiments with cells without functional Gcn4p grown in adenine-supplemented

medium did not detect any changes of the promoter chromatin structure upon the

repressed basal HIS7 expression (Fig. 15 B). This supports the result from (I) where

mutation of the binding site for Bas1p/Bas2p (GCRE2) has not led to changes during

basal expression.

(IV) To analyze whether increased Gcn4p levels change the HIS7 promoter chromatin we

performed Mnase protection experiments with cells encoding a constitutively high

expressed GCN4 allele (Müller and Hinnebusch, 1986). In fact, the chromatin structure

severely changed upon high levels of the transcriptional activator. The well-defined

structure described for the basal expressed gene is replaced by a less ordered nucleosome

distribution with hypersensitive sites throughout the entire ARO4-HIS7 intergenic region

(Fig. 14 A, lanes 6+7).

Taken the results from (I) to (III) together, the chromatin of the promoter of the typical

house keeping gene HIS7 has a ‘pre-set’ configuration. Its open and hypersensitive

structure is independent from promoter-bound transcription factors Bas1p/Bas2p, Abf1p

or low amounts of Gcn4p during basal expression. However, considering the result of

(IV), high amounts of Gcn4p present in the cell alter the defined nucleosome distribution

severely at that locus.

Both GCREs and the Abf1p-binding site are necessary for chromatin changes at the

HIS7 promoter

As described above, the binding sites for Bas1p/Bas2p (GCRE2), Abf1p (ABS) and

Gcn4p (GCRE1+2) of the HIS7 promoter are not required per se for the chromatin

structure of the basal transcribed gene. We next analyzed whether the activator binding
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sites for Gcn4p (GCREs) are required for the GCN4-dependent transition in chromatin

structure. Both intact GCREs are prerequisites for the nucleosomal change at the

promoter. Mutation of either GCRE1 or GCRE2 fixes the structure to that of the basal

expressed gene (Fig. 15 A). Their essential role for the chromatin release correlates with

the resulting Gcn4p-driven HIS7 expression they mediate. Mutation of GCRE1 reduces it

to about 25% and mutation of GCRE2 to about 50% relative to the wild-type promoter

(Fig. 15 A).

In comparison to the GCRE1 or GCRE2 mutations, a defective ABS-site has a less

pronounced effect on Gcn4p-mediated his7-lacZ expression. The remaining ß-

galactosidase activity of the abs mutant is about 70% of the wild-type promoter (Fig. 15

A). However, this binding site is also essential for the release of the basal chromatin

structure. Taken these results together the binding of Gcn4p in concert with Abf1p as

auxiliary factor has the potential to change the chromatin structure of the HIS7 promoter

resulting in increased gene expression. In contrast, Bas1p/Bas2p activation by binding to

GCRE2 seems to act independently of a nucleosome rearrangement.

Remodeling of the yeast HIS7 promoter chromatin structure is SNF2-dependent

Chromatin remodeling upon transcriptional repression or activation of various genes

requires a functional Swi/Snf complex. The chromatin structure of the HIS7 promoter

changes upon high Gcn4p expression but not upon Bas1p/Bas2p-mediated transcription.

A role of Swi/Snf on HIS7 chromatin is therefore more likely for the Gcn4p-mediated

chromatin change. By performing Mnase protection experiments we investigated the

HIS7 promoter chromatin of a mutant strain deleted in the SNF2 gene. We analyzed

whether the chromatin structure of the basal transcribed HIS7 promoter or the Gcn4p-

dependent chromatin release is Swi/Snf-dependent.
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FIGURE 16. Mnase protection experiments of the nucleosome structure of the ARO4/HIS7
intergenic region of strains defective in nucleosome remodeling and modification.
S.cerevisiae strains FY1360  (snf2∆), FY1354  (gcn5∆) or FY1352  (snf2∆/gcn5∆) were

analyzed. A  Experiments performed with strains expressing either low or B high amounts of

Gcn4p from wt-GCN4 or the additional CGCN4 allele of p238, respectively. Locations of GCRE2

and ABS are shown by Southern hybridisations of chromosomal DNA digested with either

XbaI/TaqI (GCRE2) or Sau3A (ABS).

Mnase experiments with a snf2∆ mutant strain show a HIS7 promoter chromatin structure

comparable to the wild-type strain grown under basal gene expression conditions (Fig. 16

A). The positions of hypersensitive as well as protected regions within the intergenic

region are similar for the snf2 mutant and wild-type strain. Also the suppression of basal

expression by adenine supplementation did not change the chromatin pattern (data not
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shown). This suggests that the Swi/Snf complex is not an essential component in

arranging and maintaining the defined HIS7 promoter chromatin structure during its

Bas1p/Bas2p-dependent transcription. However, even the basal HIS7 promoter does not

seem to be completely independent of the Swi/Snf complex, because in comparison to

the wild-type strain the deletion of SNF2 increases the basal HIS7 transcription twofold

(Fig. 17 lanes 1, 5). The mechanism by which the Swi/Snf complex might affect HIS7

expression without affecting the chromatin structure remains to be elucidated.
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nucleosome assembly expressing either low or high amount of Gcn4 protein. Low Gcn4p

amounts are expressed from the wild-type GCN4 gene indicated with (-), whereas high Gcn4p

amounts are expressed from plasmid p238 indicated with (+) for strains FY1353 (wt), FY1360

(snf2∆), FY1354 (gcn5∆) and FY1352 (snf2∆/gcn5∆) . Four independent RNA isolations were

hybridized twice in Northern experiments and equalized to ACT1 mRNA levels, resulting in the

average values given in the graph.
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The chromatin transition of the HIS7 promoter during high Gcn4p expression is,

however, prevented in a snf2∆-background and chromatin restrained to its defined

structure of the basal transcribed promoter (Fig. 16 B). Therefore the Swi/Snf complex is

essential for the organization of the nucleosomal change upon Gcn4p-activation.

Consistently with this influence on chromatin, Gcn4p-dependent activation of HIS7

transcription mainly fails in the snf2∆ background (Fig. 17 lane 6).

Gcn4p-dependent HIS7 transcriptional activation functions in the absence of a

Gcn5p containing HAT complex

Nucleosomes can be remodeled by e.g. Swi/Snf, but they are also chemical modifiable.

Since the HIS7 promoter is transcribed in a Bas1p/Bas2p-dependent manner at the basal

level without remodeling of nucleosomes, we investigated whether such a modification is

involved. GCN5 encodes the histone acetyl transferase activity essential for the function

of the HAT complexes SAGA and Ada of S. cerevisiae. Acetylation of specific residues

of histones within nucleosomes is strongly associated with transcriptional gene

activation. In Northern experiments we investigated whether GCN5 is involved in either

activated Gcn4p-dependent HIS7 transcription or in its basal expression in absence of

amino acid starvation with cells synthesize their own adenine. By analyzing the HIS7

promoter chromatin of a GCN5 deletion mutant we further addressed the question

whether Gcn5p influences the Mnase sensitivity at the promoter-DNA.

In a gcn5∆ mutant strain the HIS7 transcription, measured by Northern hybridisation, can

be activated by Gcn4p similarly to the wild-type strain that carries an intact GCN5 gene

(Fig. 17 lane 4). Therefore the Gcn4p-dependent HIS7 transcription does not require

Gcn5p-containing HAT complexes. Accordingly, the gcn5∆ mutant strain is still able to

release the chromatin structure in the presence of sufficient amounts of Gcn4p (Fig. 16

B).

Whereas Gcn4p-dependent HIS7 nucleosome structure and gene expression do not

require a Gcn5p containing HAT complex, the Bas1p/Bas2p-dependent basal HIS7
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expression is significantly affected by a gcn5 mutation. The basal HIS7 mRNA level is

diminished to about half the level when GCN5 is deleted (Fig. 17 lane 3). The

distribution of nucleosomes and hypersensitive sites of the basal transcribed gene is

independent from functional Gcn5p (Fig. 16 A). However the hypersensitive region that

covers the activator binding sites seems to be less sensitive to Mnase in a gcn5∆

background than in the wild-type strain. Taken together, Gcn5p contributes to the basal

HIS7 expression during purine limitation conditions but not to the Gcn4p-dependent

transcription during amino acid starvation conditions.

Gcn5p is required for the Gcn4p-independent activation of the HIS7 promoter by

adenine limitation

Low amounts of Gcn4p expressed in the cell even under conditions of basal expression.

It is known that these low amounts are responsible for various promoters to maintain

basal expression levels. To confirm that the Gcn5p-dependency of basal HIS7 expression

is caused by effects on Bas1p/Bas2p-mediated transcription and not on Gcn4p-mediated

transcription, we also investigated the role of Gcn5p on HIS7 expression in the absence

of Gcn4p. ß-galactosidase activities of gcn4∆ mutant strains with translational his7-lacZ

fusions instead of the wild-type HIS7 gene revealed a severe drop in expression from the

HIS7 promoter upon GCN5 deletion. In the presence of adenine when HIS7 expression is

rather low, deletion of GCN5 further reduces it to about 30% of that value (Fig. 18 lanes

1, 3). Furthermore any activation of his7-lacZ expression upon adenine limitation is

prevented in a gcn5∆ background (Fig. 18 lane 4). This means that Bas1p/Bas2p requires

the histone acetyl transferase activity encoded from GCN5 to enable increased HIS7

expression upon adenine limitation.

In summary, the Gcn4p-mediated response on HIS7 transcription caused by amino acid

starvation requires a functional Swi/Snf complex and is also accompanied by changes of

the promoter chromatin structure. This response does not depend on functional Gcn5p-

containing HAT complexes. In contrast the Bas1p/Bas2p-mediated HIS7 expression
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during purine limitation conditions, that does not cause chromatin remodeling at the

promoter, requires the functional GCN5 gene product but no functional Swi/Snf

complex.
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FIGURE 18. HIS7 promoter expression driving a lacZ reporter in yeast cells defective in
GCN4 as well as with defects in chromatin assembly. Effects of external adenine on his7-lacZ

expression for strains RH1616 (GCN5) and RH2570 (gcn5∆) measured as specific ß-

galactosidase activity. The graphs give average values of three individual enzyme assays

performed with crude extracts from four independent cultures. Strains were cultivated either in

adenine-deficient medium (- Ade) or in medium containing 0.3 mM adenine (+ Ade). Specific ß-

galactosidase units (U) correspond to as nmol/(h ml OD546)
-1.
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Discussion

In this work we show that two eukaryotic transcriptional activators that share one cis-

element in the promoter of their common target gene respond to different stimuli by

using two different nucleosome-associated protein complexes. One of them, the jun-like

transcription factor Gcn4p acts together with the multi-protein complex Swi/Snf,

corporately remodeling the promoter chromatin structure. The other one, the

heterodimeric transcription factor Bas1p/Bas2p, acts together with Gcn5p/HAT

complexes without remodeling the nucleosomal distribution (Fig. 19).

HIS7ARO4 DNA
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HIS7ARO4 DNA

HIS7 mRNA
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Gcn5p HAT
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FIGURE 19. Model of the alternative mechanisms of nucleosome-dependent transcriptional
activation of yeast HIS7 initiated by two different transcription factors. + ade / + aa: Growth

under conditions with sufficient amounts of adenine (ade) and amino acids (aa), that is without

adenine or amino acid starvation. - ade / + aa: Growth without exogenous adenine but in the

presence of amino acids (that is with purine starvation). + ade / - aa: Growth without exogenous

amino acids but in presence of adenine, that is with amino acid starvation. Dark circles represent

positioned nucleosomes whereas light circles represent moving nucleosomes.
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Activation by Gcn4p but not Bas1p/Bas2p alters a defined chromatin structure at

the HIS7 promoter

The HIS7 gene is an example for a yeast housekeeping gene that is regulated by to

different and independent activation pathways. As consequence of amino acid starvation

the transcription factor Gcn4p activates the transcription. In the absence of amino acid

starvation, when yeast cells are not supplemented with purines and have to synthesize

them de novo, the heterodimeric transcription factor Bas1p/Bas2p activates HIS7

expression to a level which has been termed basal expression (Arndt et al., 1987).

Supplementation with adenine represses this basal expression to a lower level which

corresponds to the HIS7 expression of a bas1 or bas2 mutant strain (Springer et al.,

1996).

Changes in the chromatin structure at promoters during gene activation is a common

phenomenon previously reported for numerous genes as e.g. PHO5, PHO8, SUC2,

CHA1, HIS4, Gal10, CUP1 (Almer et al., 1986; Cavalli and Thoma, 1993; Devlin et al.,

1991; Gavin and Simpson, 1997; Gregory et al., 1999; Moreira and Holmberg, 1998a;

Shen et al., 2001). Activators that specifically increase gene expression comprise

transcription factors of different DNA binding motif classes including the basic-helix-

loop-helix activator Pho4p, the acidic-Cys6-Zn cluster activators Gal4p or Cha4p, and the

basic-leucine-zipper Gcn4p.

The yeast HIS7 gene is an example with a promoter chromatin structure that changes

upon the activation by one but not the other physiological operating activator (Fig. 19).

Increased Gcn4p levels releases a positioned nucleosome within the ARO4-HIS7

intergenic region and subsequently increase HIS7 transcription. Both Gcn4p binding

sites, GCRE1 and GCRE2 of the HIS7 promoter contribute to the change in chromatin

structure suggesting that at least two Gcn4p dimer molecules have to bind for this effect.

This also supports the previously described synergistic nature of HIS7 transcription by

binding of Gcn4p to two binding sites (Springer et al., 1996). In addition, Abf1p which

binds in between the two Gcn4p dimers functions as auxiliary factor, and accordingly an
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abolishment of the Abf1p binding site in the HIS7 promoter fixes the chromatin structure

to the basal ordered structure. We assume that the simultaneous presence of the

transcription factors causes chromatin remodeling and subsequently HIS7 activation.

Abf1p has been reported to affect the chromatin structure of e.g. QCR8 (De Winde et al.,

1993), the ARS1 replication site (Tanaka et al., 1994; Venditti et al., 1994), or recently

RPS28A (Lascaris et al., 2000), by a yet undetermined mechanism.

The HIS7 gene is furthermore activated by another transcription factor, Bas1p/Bas2p,

apparently by another mechanism as nucleosome remodeling was not detectable. This

activation depends on the presence or absence of adenine, but the chromatin structure is

the same for both conditions (Fig. 19). These findings were confirmed by the

complementary cis-experiment with a destroyed Bas1p/Bas2p binding site. This binding

site largely overlaps with the TATA proximal binding site of Gcn4p, GCRE2. Again, the

chromatin structure remains unchanged regardless whether Bas1p/Bas2p can bind the

promoter or not.

Gcn4p-dependent HIS7 chromatin rearrangement demands a functional Swi/Snf

complex

Genome-wide expression analysis revealed that about 6% of all yeast genes are affected

twofold or more by the inactivation of Swi/Snf. The affected genes are subdivided into

two groups, one with reduced amounts of transcript and the other with increased

transcript level (Holstege et al., 1998; Sudarsanam et al., 2000). Since Swi/Snf remodels

nucleosomes that by themselves repress promoters to which they are bound, remodeling

can have two consequences. One is that repressive nucleosomes are removed from the

promoter region thereby enforcing gene activity. The other is that nucleosomes are

positioned to promoter elements thereby repressing gene activity.

An active role of the Swi/Snf complex in Gcn4p-mediated activation of the yeast HIS3

gene was previously described (Natarajan et al., 1999). However, a preferential

accessibility for Mnase to the HIS3 promoter was shown to be a general property of the
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DNA sequence and not mediated by the Gcn4p-binding site (Mai et al., 2000). Besides,

studies have already stated direct interactions between transcription factors and Swi/Snf

arguing for recruitment of the remodeling activity to the promoter by binding the DNA-

bound activator (Neely et al., 1999; Wallberg et al., 2000; Yudkovsky et al., 1999).

The default nucleosomal structure of the HIS7 promoter is apparently a ‘pre-set’

accessible one, so that a total repression of promoter activity by positioned nucleosomes

does not occur (Fig. 19). This pre-set structure is obviously compatible with the

Bas1p/Bas2p-mediated HIS7 activation during adenine limitation that does not require

further remodeling. Yet this pre-set configuration does not seem to be suitable for high

HIS7 expression during amino acid starvation. For high Gcn4p-mediated HIS7

expression nucleosomes within the ARO4-HIS7 intergenic region have to be reorganized.

This happens only when Gcn4p appears in greater abundance, and when Abf1p is

apparent as an additional factor. For the purpose of the remodeling of nucleosomes a

functional Swi/Snf complex is required. Probably as pattern of events the transcription is

activated, meaning the increased formation of transcriptional pre-initiation complexes.

The Bas1p/Bas2p-dependent adenine response depends on a functional SAGA/Ada

(Gcn5p) complex without changes of the nucleosomal distribution of the HIS7

promoter

The histone acetyl transferase activity of the SAGA or Ada complexes is encoded by

GCN5 and is necessary for the transcriptional activation of several genes (reviewed in

(Berger, 1999)). They include Gcn4p-regulated as well as Gcn4p-independent genes.

Previous studies stated Gcn5p-dependence for the Gcn4p-activation of an artificial PHO5

promoter that also harbors a binding site for Gcn4p, therefore inducible by amino acid

starvation. Besides, the same PHO5 promoter is activated upon phosphate limitation by

the transcription factor Pho4p, yet independently of Gcn5p (Syntichaki et al., 2000).

Further genes that require a functional GCN5 gene for the Gcn4p-dependent

transcriptional activation are HIS3, TRP3 and ILV1 (Georgakopoulos and Thireos, 1992).
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In contrast, the Gcn4p-dependent activation of the HIS4 and ARG4 genes have been

shown to be strictly GCN5-independent (Georgakopoulos and Thireos, 1992). In

common with these latter genes the Gcn4p-response of the HIS7 promoter does not

require GCN5. The Gcn4p-binding sites of the HIS4, ARG4 and HIS7 promoters nearly

perfectly match the consensus sequence 5`-TGACTC-3` whereas the HIS3, TRP3 and

ILV1 promoters possess weak Gcn4p-binding sites (Holmberg and Petersen, 1988;

Struhl, 1982). Possibly the requirement for Gcn4p increases with decreasing strength of

the respective Gcn4p recognition element.

However, since GCN5 is required for the basal Bas1p/Bas2p dependent HIS7

transcription, the situation is more complex for this promoter, enabling individual

responses to different stimuli by using different mechanisms. Future experiments with

antibodies against acetylated histones will show whether the adenine-dependent HIS7

expression correlates with the promoter-acetylation pattern.

Altogether we demonstrated that the transcriptional regulation of the HIS7 gene by two

independent activation pathways strictly use different chromatin modifying machineries.

Gcn4p, together with Abf1p as auxiliary factor, changes the nucleosomal distribution at

the HIS7 promoter upon amino acid starvation. This process requires a functional

Swi/Snf complex but no functional SAGA/Ada (Gcn5p) complex. Bas1p/Bas2p-

dependent HIS7 activation, in contrast, requires a functional SAGA/Ada (Gcn5p)

complex but is not associated with chromatin remodeling. Astonishingly this is possible

although both activators use the same cis-element of the HIS7 promoter.
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Chapter 4

A Positioned Nucleosome Prevents Transcriptional Interference
Between the Adjacent ARO4 and HIS7 Genes of Yeast

Abstract

The two open reading frames (ORFs) of the ARO4 and HIS7 genes of Saccharomyces

cerevisiae are transcribed into the same direction and are separated by 417 base pairs.

Replacement of the ARO4 promoter by the stronger ACT1 promoter increases ARO4

transcription and simultaneously reduces the basal transcription of the downstream HIS7

gene. This phenomenon is called transcriptional interference. Deletion analyses of the

region between the two ORFs revealed that transcriptional interference increases upon

the removal of both ARO4 3`end and HIS7 promoter sequences. Even single nucleotide

exchanges within a functional Abf1p-binding site of the HIS7 promoter are sufficient to

significantly increase transcriptional interference. The DNA immediately downstream of

the ARO4 ORF is required for efficient mRNA 3’ end formation and is hypersensitive to

Micrococcus nuclease. In the adjacent region 3’ of ARO4 a positioned nucleosome

protects the DNA against the nuclease and separates the ARO4 terminator from the HIS7

promoter. Increased ARO4 transcription driven from the ACT promoter causes an

additional hypersensitive site within this nucleosomal region presumably due to

weakened DNA-histone octamer interactions. Therefore this nucleosome acts as a natural

block against reading-through RNA pol II and seems to be adjusted to the normal ARO4

transcription. Artificially increased ARO4 transcription presumably causes transcriptional

interference by overcoming this nucleosome barrier.
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Introduction

Tandemly orientated genes transcribed into the same direction by RNA polymerase II

(pol II) are described for different eukaryotic organisms. This arrangement of genes can

jeopardize regulated transcription of a cell by a phenomenon called transcriptional

interference. As consequence of elevated transcription of the upstream gene,

transcription of the adjacently following downstream gene might be diminished or

ultimately even abolished. Transcriptional interference is favoured by close proximity of

genes which are only separated by short intergenic regions between the corresponding

open reading frames (ORFs). Whereas transcription in prokaryotes by the RNA

polymerase is particularly susceptible to interference because of their densely packed

genome (Adhya and Gottesman, 1982; Hausler and Somerville, 1979), the phenomenon

is less frequently described in eukaryotes. In HeLa cells two closely spaced α-globin

genes in an artificial gene construct were shown to interfere with each other (Proudfoot,

1986). The cryptic promoter within the intron of the ACT1 gene of Saccharomyces

cerevisiae is occluded by transcription from the actual ACT1 promoter at the 5`end of the

gene (Irniger et al., 1991). Yeast HIS7 transcription is reduced when the upstream

located ARO4 gene is transcribed from the strong ACT1 promoter instead of its natural

promoter (Springer et al., 1997b).

Eukaryotic transcriptional interference is presumably the result of pol II complexes that

initiate transcription at the promoter of the upstream gene and subsequently read through

the promoter of the downstream gene. Therefore the assembly of functional transcription

complexes at the downstream promoter is disturbed resulting in promoter occlusion. The

extent of the transcriptional interference by reading-through pol II complexes could be

increased when the efficiency of transcription termination of the upstream gene was

reduced (Greger and Proudfoot, 1998; Springer et al., 1997b). Deletions of GAL10

poly(A) signals abolish any activity of the downstream GAL7 gene even when the GAL7

promoter is intact resulting in a bicistronic read-through transcript. Therefore the GAL7
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promoter is completely occluded. Polymerase profiles raised in transcription-run-on

(TRO) experiments for a strain with a mutated poly(A) site confirmed the accumulation

of non-terminated pol II complexes within the GAL7 promoter (Greger and Proudfoot,

1998). As a consequence of transcriptional interference it was shown that various

transcription factors were not any more able to bind to their promoter sites. This was e.g.

demonstrated for the tandem HIV-1 promoters integrated into the genome of HeLa cells

where promoter occlusion of the downstream promoter correlated with reduced binding

of the transcription factor Sp1 (Greger et al., 1998). The Gal4p activator binding to the

GAL7 promoter is also reduced when this promoter is weakened by read-through

transcription initiated at the upstream GAL10 promoter (Greger et al., 2000).

A further aspect to be considered for transcriptional interference is the fact that

eukaryotic DNA is packed into histone octamers. The resulting nucleosomes can be

positioned stably or more or less moveable due to only weak DNA-histone interactions.

For Drosophila melanogaster it was shown that reconstituted chromatin with rDNA

templates resulted in a positioned upstream nucleosome that is recruited by termination

factor TTF-I. This nucleosome can act as barrier to transcriptional interference of the

downstream located rRNA genes which are transcribed by the RNA polymerase I

complex (Längst et al., 1997).

Up to now there is hardly any knowledge whether there is also a connection between

transcriptional interference caused by insufficient termination and chromatin structure for

genes. To address this question we constructed various ARO4-HIS7 alleles of S .

cerevisiae and analyzed them at the authentic chromosomal locus. Both genes encode

amino acid biosynthetic enzymes required for the formation of aromatic amino acids and

histidine, respectively. ARO4 and HIS7 are transcribed into the same direction and have

an intergenic region between the two ORFs consisting of 416 base pairs (bps). We had

previously shown that increased ARO4 transcription as consequence of fusing its ORF to

the strong ACT1 promoter causes significantly reduced expression of the downstream
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HIS7 gene (Springer et al., 1997b). Here we show for the first time the role of

nucleosomes in preventing transcriptional interference of pol II genes.

Experimental Procedures

Yeast strains, growth conditions and plasmids

Yeast strains and their genotypes used in this work are listed in the table 3. For all

experiments described here strains were cultivated in minimal vitamin (MV) medium

(Miozzari et al., 1978) supplemented with the required amino acids according to (Rose et

al., 1990). To generate functional fusions of the ACT promoter with the ARO4 open

reading frame (ORF) at the original ARO4 locus, a SalI/BstEII 3.1 kb fragment from

plasmid pME1429 (Springer et al., 1997b) was transformed in the respective strains. The

cassette consists of the ACT promoter fused to the first half of the ARO4 ORF, preceded

by the divergently orientated URA3 auxotrophic marker gene that again is preceded by

the ARO4 5`untranslated region. Transformants that had replaced the wild-type ARO4

locus by this cassette by homologous recombination were selected by uracil prototrophy

and confirmed in Northern hybridisations by increased ARO4 mRNA levels and by PCR.

RNA analysis

Total RNA from S. cerevisiae was isolated according to Cross and Tinkelenberg (1991).

For Northern hybridization analysis 20 µg of total RNAs were separated on a

formaldehyde agarose gel, transferred to a positively charged nylon membrane (Biodyne

B, PALL) by capilar blotting. Hybridization with specific DNA probes was performed

after 32P-labelling of the respectice DNA fragments with the Prime It II DNA Labelling

Kit from Stratagene. One kb PCR fragments generated with the oligonucleotides ARO-

OLV19 (5´taccggatccagacgacagagttcttg3´) and ARO-OLV11 (5´cctcaagacgtcttcagtagtttcc

caacc3´), or with oligonucleotides HIS-OL1 (5´gtggtaacctacagtcactaacc3´) and HIS-OL2

(5´ccgatcgatactttatcagcacc3´), or with ACT-OL1 (5´gctgctttggttattgataacgg3´) and ACT-
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OL2 (5´cacttgtggtgaacgatagatgg3´) served as probes for the ARO4, HIS7 and ACT gene,

respectively. Band intensities were visualized by autoradiography and quantified using a

BAS-1500 Phospho-imaging scanner (Fuji).

Genomic chromatin preparation and nuclease digestions

These methods have been described previously (Thoma, 1996). Biodyne B nylon

membranes (Pall, Dreieich, Germany) were used for Southern transfer. Probes were

labeled by the random primer method (Feinberg and Vogelstein, 1983).

Indirect end-labeling

Chromosomal DNAs from the nuclease digestion were digested with XbaI and MluI and

fractionated on 1.2% agarose gels. The fractionated DNA was blotted on a Hybond-N

nylon membrane by the alkaline blotting method and hybridized with a radioactively

labelled 250 bp PCR-amplificate, generated with the oligonucleotides HIS7-CHR1

(5´gagattaaagaaattgtcaga3´) and HIS7-CHR2 (5´caagtattgaggagaaatggta3´), annealing

just downstream of the XbaI site. A DNA ladder consisting of multiples of 256 bp was

used for calibration (Thoma et al., 1984).

ß-galactosidase assay

ß-galactosidase activities were determined by using permeabilized yeast cells and the

fluorogenic substrate 4-methylumbelliferyl-ß-D-galactoside as described previously

(Kuenzler et al., 1993). The presented values are the means of at least four independent

cultures each of them measured three times.
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Table 3 Yeast strains used in this study

Strain Genotype Reference

RH1381 MATα aro3-2 gcn4-101 ura3-52 Paravicini et al., 1988

RH1833 MATa aro3-2 gcn4-101 ura3-52 ∆HIS7(-391/-341) Springer et al., 1997b

RH1834 MATa aro3-2 gcn4-101 ura3-52 ∆HIS7(-336/-310) Springer et al., 1997b

RH1836 MATa aro3-2 gcn4-101 ura3-52 ∆HIS7(-299/-281) Springer et al., 1997b

RH1781 MATa aro3-2 gcn4-101 ura3-52 ∆HIS7(-220/-189) Springer et al., 1997b

RH2642 MATα aro3-2 gcn4-101 ura3-52 ARO4::URA3-PACT-ARO4 this work

RH2643 MATa aro3-2 gcn4-101 ura3-52 ∆HIS7(-391/-341) 

ARO4::URA3-PACT1-ARO4 this work

RH2644 MATa aro3-2 gcn4-101 ura3-52 ∆HIS7(-336/-310) 

ARO4::URA3-PACT1-ARO4 this work

RH2645 MATa aro3-2 gcn4-101 ura3-52 ∆HIS7(-299/-281) 

ARO4::URA3-PACT1-ARO4 this work

RH2646 MATa aro3-2 gcn4-101 ura3-52 ∆HIS7(-220/-189) 

ARO4::URA3-PACT1-ARO4 this work

RH1616 MATa aro3-2 gcn4-101 ura3-52 HIS7::Phis7-lacZ Künzler et al., 1993

RH1815 MATa aro3-2 gcn4-101 ura3-52 HIS7::Phis7(-391/-341)-lacZ Springer et al., 1997b

RH1816 MATa aro3-2 gcn4-101 ura3-52 HIS7::Phis7(-336/-310)-lacZ Springer et al., 1997b

RH1818 MATa aro3-2 gcn4-101 ura3-52 HIS7::Phis7(-299/-281)-lacZ Springer et al., 1997b

RH1819 MATa aro3-2 gcn4-101 ura3-52 HIS7::Phis7(-285/-245)-lacZ Springer et al., 1997b

RH1822 MATa aro3-2 gcn4-101 ura3-52 HIS7::Phis7(-241/-212)-lacZ Springer et al., 1997b

RH1824 MATa aro3-2 gcn4-101 ura3-52 HIS7::Phis7(-220/-189)-lacZ Springer et al., 1997b

RH1825 MATa aro3-2 gcn4-101 ura3-52 HIS7::Phis7(-190/-171)-lacZ Springer et al., 1997b

RH1826 MATa aro3-2 gcn4-101 ura3-52 HIS7::Phis7(-171/-139)-lacZ Springer et al., 1997b

RH2174 MATa aro3-2 gcn4-101 ura3-52 HIS7::Phis7-lacZ 

ARO4::URA3-PACT1-ARO4 this work
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Strain Genotype Reference

RH2632 MATa aro3-2 gcn4-101 ura3-52 HIS7::Phis7(-391/-341)-lacZ 

ARO4::URA3-PACT1-ARO4 this work

RH2633 MATa aro3-2 gcn4-101 ura3-52 HIS7::Phis7(-336/-310)-lacZ

ARO4::URA3-PACT1-ARO4 this work

RH2634 MATa aro3-2 gcn4-101 ura3-52 HIS7::Phis7(-299/-281)-lacZ 

ARO4::URA3-PACT1-ARO4 this work

RH2635 MATa aro3-2 gcn4-101 ura3-52 HIS7::Phis7(-285/-245)-lacZ 

ARO4::URA3-PACT1-ARO4 this work

RH2636 MATa aro3-2 gcn4-101 ura3-52 HIS7::Phis7(-241/-212)-lacZ 

ARO4::URA3-PACT1-ARO4 this work

RH2637 MATa aro3-2 gcn4-101 ura3-52 HIS7::Phis7(-220/-189)-lacZ 

ARO4::URA3-PACT1-ARO4 this work

RH2638 MATa aro3-2 gcn4-101 ura3-52 HIS7::Phis7(-190/-171)-lacZ 

ARO4::URA3-PACT1-ARO4 this work

RH2639 MATa aro3-2 gcn4-101 ura3-52 HIS7::Phis7(-171/-139)-lacZ 

ARO4::URA3-PACT1-ARO4 this work

RH1830 MATa aro3-2 gcn4-101 ura3-52 HIS7::Phis7(mut-ABS)-lacZ Springer et al., 1997a

RH2640 MATa aro3-2 gcn4-101 ura3-52 HIS7::Phis7(mut-ABS)-lacZ 

ARO4::URA3-PACT1-ARO4 this work
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Results

PACT-driven ARO4 transcription creates a Mnase sensitive site within a

nucleosomal DNA that separates the ARO4 terminator from the  HIS7 promoter

ARO4 and HIS7 are two adjacent genes transcribed into the same direction. The

replacement of the natural promoter of the ARO4 gene by the stronger ACT promoter was

previously shown to cause transcriptional interference with the downstream HIS7 gene

(Springer et al., 1997b). This transcriptional interference reduces the HIS7 expression to

about 60 % in comparison to the strain with the wild-type ARO4 promoter. Since

eukaryotic gene expression and its tight regulation in terms of transcriptional initiation

and termination processes must take place in the presence of highly ordered chromatin

structures, we wanted to know whether the transcriptional interference between the

ARO4 and HIS7 gene is accompanied by chromatin changes. Therefore we analyzed the

chromatin structure of the ARO4-HIS7 intergenic region in absence and presence of

transcriptional interference.

The chromatin structure was investigated by Micrococcus nuclease (Mnase) protection

experiments. Crude nuclear extracts from over-night cultures grown in minimal vitamin

medium (MV) from strains with the wild-type ARO4 promoter (RH1381) or the PACT-

ARO4 fusion (RH2642), respectively, were partially digested with Mnase and further

treated as previously described (Thoma, 1996). In wild-type cells the ARO4 3´end region

immediately downstream of the ORF is hypersensitive to Mnase (Fig. 20). This short

hypersensitive region is followed by a strongly protected region that in length

corresponds to a positioned nucleosome. The HIS7 promoter further downstream is again

hypersensitive to Mnase. Although the mutant strain with the PACT-ARO4 fusion gene

shows a largely similar chromatin pattern, an additional band within the protected region

between the ARO4 3´end region and the HIS7 promoter becomes obvious (Fig. 20, arrow
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1). Even if the band is rather weak, this sensitive site is absent in the ARO4 wild-type

strain.
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FIGURE 20. Mnase protection experiments of the nucleosome structure of the ARO4-HIS7
intergenic region. Strain RH1381 possesses the ARO4 gene with its natural promoter (ARO4)

whereas strain RH2642 has the ARO4 promoter replaced by the more efficient ACT1 promoter

(PACT1-ARO4)) instead. Chromatin of both strains and naked control DNA was digested with

increasing amounts of Mnase (black ramps). On the left and right outer lanes a size marker of 156

bp-repeats is shown (M). The arrows indicate differences in chromatin structure between both

strains. Black ovals in the scheme on the left reflect protected regions, suggested in representing

positioned nucleosomes. ABS represents the binding site for the transcription factor Abf1p that

was previously shown to bind the HIS7 promoter thereby supporting basal HIS7 expression

(Springer et al., 1997a).

As consequence of high ARO4 transcription the transcribing RNA pol II complex

therefore presumably weakens the DNA histone interaction at the respective nucleosome

thereby creating the hypersensitive site. In addition, a hypersensitive site at the end of the

ARO4 ORF nearly vanishes for the strain with the PACT-ARO4 fusion gene (Fig. 20,

arrow 2). Apparently the chromatin structure of the very 3’end of the ARO4 ORF is also

subjected to changes upon strong ARO4 transcription. These changes of chromatin

structures are possibly directly related to termination efficiency and transcriptional

interference.
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Deletions within the ARO4 3`UTR or the HIS7 promoter increase interference

between ARO4 or HIS7 transcription

The DNA in-between the two open reading frames of ARO4 and HIS7 was shown to

possess elements required for efficient 3´ end formation of the ARO4 mRNA, and others

that promote efficient HIS7 transcription (Springer et al., 1997b). Here we have defined

DNA regions between these open reading frames which protect the HIS7 promoter

against transcriptional interference caused by high ARO4 transcription. We established a

test-system with the HIS7 gene replaced by the quantifiable chimeric Phis7-lacZ gene,

preceded from the ARO4 gene driven either from its natural promoter (Fig. 21, test

system I) or from the ACT1 promoter (same figure, test system II). To determine

important regions in-between both open reading frames that prevent transcriptional

interference, specific ß-galactosidase activities for intergenic regions carrying various

small deletions were measured. DNA elements that diminish transcriptional interference

have been identified by comparison of the ß-galactosidase activities of both test-systems

with each deletion construct (Fig. 22). In order to maintain the original chromosomal

context the respective test system was established at the authentic ARO4-HIS7 locus.

Deletions were chosen to cover several specific DNA-motifs with different functions

including the Zaret/Sherman element (Z/S) required for ARO4 mRNA 3` end formation,

three poly(A) sites (p(A)) defining the actual poly(A) addition sites, C+T and A+T rich

regions, the Abf1p-protein binding site (ABS), and both Gcn4p-recognition elements

(GCREs) (Fig. 22).

Deletions that cover the Zaret/Sherman element and the first poly(A) site which are

elements of ARO4 mRNA 3´ end formation, and the Abf1p-binding site located within

the HIS7 promoter cause a significant reduction in specific ß-galactosidase activity when

measured in test-system II. The 52-base pair deletion within the ARO4 3`UTR that

eliminates the Zaret/Sherman element does not affect the Phis7-lacZ expression when the

ARO4 gene is transcribed from its own promoter in test-system I (strain RH1815 in Fig.

22). The ACT promoter of test-system II (strain RH2632), however, causes a severe
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reduction of ß-galactosidase activity for this deletion to about 28 % of test-system I. Also

the 28-base pair deletion that removes the first polyadenylation site (p(A)) strongly

reduces Phis7-lacZ expression if present in test-system II (strain RH2633). Only about 22

% activity is left in comparison to test-system I with this deletion (strain RH1816).

Deletions of the second and third poly(A) site (I: RH1818; II: RH2634), or C+T rich (I:

RH1819; II: RH2635) and A+T rich (I: RH1835; II: RH2638) stretches, or the binding

sites for Gcn4p (GCREs; I: RH1822/RH1826; II: RH2636/RH2639) do not increase

transcriptional interference. However, the test-system II combined with a deletion of the

Abf1p-binding site (ABS) displays a significant loss of specific ß-galactosidase activity,

yet keeping in mind that this deletion itself strongly diminishes expression in test-system

I.

ARO4 PHIS7 HIS7PARO4 wt

ARO4 PHIS7 lacZPARO4
test-

system IHIS7

?

?

ARO4 PHIS7 lacZPACT1
test-

system IIHIS7

?

?

FIGURE 21. Scheme of the test-systems used to determine DNA regions within the ARO4-
HIS7 intergenic region that antagonize transcriptional interference. The top lane shows the

wild-type ARO4-HIS7 locus without any changes. The lane in the middle represents ‘test-system

I’ in which the open reading frame of the HIS7 gene is replaced by the reporter gene lacZ. The

‘test-system II’ in the lane on the bottom has not only the lacZ reporter gene but also an ARO4

allele in which the natural ARO4 promoter is replaced by the more efficient ACT1 promoter. To

find out elements that prevent transcriptional interference, both test-systems have been driven

with various deletion constructs of the intergenic region, and specific ß-galactosidase activities

have been compared with each other (see figure 22).
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In summary, the data obtained from this test-system suggest that the Zaret/Sherman

element and the first poly(A) site, together responsible for efficient ARO4 3´ end

formation, are essential elements which inhibit transcriptional interference. In addition,

the Abf1p-binding site within the HIS7 promoter counteracts promoter occlusion. No

region has been detected which enhances transcriptional interference since no deletion

has resulted in higher ß-galactosidase activities in test-system II when compared with

test-system I.
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FIGURE 22. Effects of deletions of the ARO4-HIS7 intergenic region on his7-lacZ
activity.  The strains carry either the ARO4 gene possessing its natural wild-type promoter (test-

system I) or the more efficient ACT1 promoter (test-system II). ß-galactosidase activities in U

measured as nmolMUF/(h ml OD546)-1 are indicated in the chart on the right side for strains with

various deletions throughout the intergenic region. The scheme on the left side visualizes the

exact locations of the deletions according to the translational start side (+1) and the DNA motifs

at these positions. Z/S stands for Zaret/Sherman motif necessary for correct ARO4 3´ end

formation, p(A) for the sites where the pol(A) tail is added to the ARO4 mRNA 3´ end, CT for a

C+T rich element. In the HIS7 promoter GCRE stands for Gcn4p-recognition element, ABS for

Abf1p-binding site, and AT for an A+T-rich sequence. Figures on the outer right headlined as

rest activity display the percentage of ß-galactosidase activity that is left in PACT1-ARO4 fusion

strains relative to its parental strain possessing wild-type ARO4.
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Transcriptional interference causes histidine auxotrophy for a HIS7 promoter

mutant without Abf1p-binding site by prevention of its transcription

The data of the test-systems that derived from a lacZ-reporter gene have suggested that

elements required for efficient ARO4 mRNA 3´ end formation and a HIS7 promoter

element with the Abf1p-binding site are important to prevent transcriptional interference.

We investigated whether the increased transcriptional interference of these deletion

mutants gives rise to malfunctions in cells that harbor the wild-type HIS7 gene and

synthesize their own histidine. Therefore growth of these wild-type strains was tested on

medium without histidine, where cells have to synthesize this amino acid themselves.

When the ARO4 gene was driven from its own promoter the growth was neither

abolished for strains with deletions in the ARO4 3´ end region nor for strains with HIS7

promoter deletions (data not shown). When the ARO4 gene was driven from the ACT-

promoter in this HIS7 background, the strains with deletions in the ARO4 3´ end region

(∆Z/S, ∆1st p(A), or ∆2nd/3rd p(A)) grew well without histidine supplementation (growth

test in Fig. 23 shows: ∆1st p(A) with the ARO4 wild-type promoter in strain RH1834, and

ACT1 promoter fused to ARO4 in strain RH1644). Also the strain RH1781 with the HIS7

promoter deletion that covers the Abf1p-binding site (∆ABS) and the ARO4 gene driven

from its natural promoter is viable without exogenous histidine. But the same promoter

deletion in combination with an ARO4 gene driven from the ACT1 promoter causes

histidine auxotrophy in strain RH2646 (Fig. 23).
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(RH2646)(RH1781)
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∆1stp(A) (∆-336/-310)
wt-
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ARO4

FIGURE 23. Transcriptional interference causes histidine auxotrophy for a HIS7 promoter
deletion that eliminates the Abf1p-binding site. The growth of yeast strains was tested on

histidine deficient MV medium. Strains RH1781 and RH1834 possess the ARO4 gene with its

natural promoter and have deletions in either the HIS7 promoter (∆ABS) or the ARO4 3’end

region (∆1ST p(A)). Strains RH2646 and RH2644 have the natural promoter of the ARO4 gene

replaced by the ACT1 promoter and carry either the HIS7 promoter deletion ∆ABS or the ARO4

3´ end deletion ∆1ST p(A).

We compared the effects of the transcriptional interference as obtained by the his7-lacZ

chimeric genes and the growth tests, with the quantified HIS7 transcript levels

determined by Northern hybridisations (Fig. 24). The fusion of the ACT1 promoter to the

ARO4 gene increases ARO4 mRNA levels approximately four-fold (Fig. 24). High ARO4

transcription derived from the ACT1 promoter in the background of the wild-type HIS7

gene and a wild-type ARO4-HIS7 intergenic region in strain RH2642 has decreased HIS7

mRNA levels to about 60 % compared to the ARO4 gene with its natural promoter in

strain RH1381. In strain RH2643 the ARO4 3`end region with the Zaret/Sherman

element as 3´ end formation signal is deleted and the ARO4 gene driven from the ACT1

promoter. HIS7 mRNA levels in this strain were decreased to approximately 40% of

strain RH1833 that possesses the natural ARO4 promoter. The reduction of HIS7

transcript levels is even more pronounced in strain RH2644 with an intergenic deletion

that covers the first site where the poly(A) tail is added to the ARO4 transcript to about

30% of strain RH1834 with the natural ARO4 promoter. In contrast the deletion covering

the second and third poly(A) addition site does not show any obvious differences in HIS7

transcripts if compared with the wild-type intergenic region.



                                                                                                                            Chapter 4

113

ACT1

ARO4
HIS7

P ACT1

P wt

wt Z/S 1st p(A) 2/3rd
p(A)

ABS

P ACT1

P wt

P ACT1

P wt

P ACT1

P wt

P ACT1

P wt

1.0

0.8

0.6

0.4

0.2

re
la

tiv
e 

H
IS

7 
m

R
N

A
 a

m
ou

nt
s

RH13
81

RH26
42

RH18
33

RH26
43

RH18
34

RH26
44

RH18
36

RH26
45

RH17
81

RH26
46

FIGURE 24. Effects of deletions of the ARO4-HIS7 intergenic region on HIS7 transcript
levels. Northern hybridisations of selected yeast strains with deletions in either the ARO4 3`-

untranslated region (Z/S, p(A)) or the HIS7 promoter covering the Abf1p-binding site (ABS).

Quantifications were performed by phosphopimager analyses and are presented as averages of at

least two hybridisations with total RNAs from three independent cultures. Quantifications of the

ARO4 mRNA amounts revealed a fourfold increase in average if the gene is transcribed from the

ACT1 promoter.

Yeast strain RH1781 with the wild-type ARO4 gene and a HIS7 promoter deletion that

covers the Abf1p-binding site already displays rather low HIS7 mRNA levels of less than

20 % if compared with the wild-type promoter. However, in combination with high

ARO4 transcription from the ACT1 promoter in strain RH2646 no HIS7 transcripts were

detectable any longer. This result confirmed the transcriptional interference as detected

before in both the test-system with the his7-lacZ reporter gene, and the growth defect on

histidine deficient medium.
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Taken together, these results imply that ARO4 3´ end formation signals as well as HIS7

promoter elements are required to prevent transcriptional interference. By name these are

(I) the ARO4 mRNA 3´ processing motif that was originally described by Zaret and

Sherman for CYC1 (Zaret and Sherman, 1984), (II) the major site where the ARO4

mRNA transcript is finally cleaved and the poly(A) tail added, and (III) an element of the

HIS7 promoter that binds the transcription factor Abf1p.

Single nucleotide exchanges within the Abf1p-binding site increase transcriptional

interference

The results obtained so far with the deletion constructs suggest that the Abf1p-binding

site plays an important role in preventing transcriptional interference at the wild-type

ARO4-HIS7 locus. We investigated whether it has been the broader context of the deleted

promoter region or solely the abolished binding of Abf1p itself that antagonizes

transcriptional interference. Therefore we investigated the Phis7-lacZ expression of a

mutant strain with two single nucleotide exchanges within the Abf1p binding site that

were previously shown to abolish binding of Abf1p (Dorsman et al., 1990).

In comparison to the strain with the HIS7 wild-type promoter (RH1616), single

nucleotide exchanges within the Abf1p-binding site in strain RH2640 reduce Phis7-lacZ

expression to about 30 %, both strains expressing wild-type ARO4. Transcriptional

interference for the binding site mutant strain, induced by the replacement of the ARO4

promoter against the ACT1 promoter leading to strain RH2641, is in fact increased in

comparison to the wild-type intergenic region. High ARO4 transcription in combination

with the wild-type intergenic region decreases the his7-lacZ expression to about 60 % in

comparison to strain RH1616 with the natural ARO4 promoter. Single nucleotide

exchanges within the Abf1p-binding site combined with high ARO4 expression (strain

RH2641) cause a reduction to 30 % in comparison to strain RH2640 with low ARO4

transcription (Fig. 25). This result has demonstrated that it is the binding of Abf1p to its

binding site within the HIS7 promoter, and not a broader promoter context that
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antagonizes transcriptional interference at the ARO4-HIS7 locus. Probably binding of

Abf1p to its cis-element competes with the transcription of a non-terminated pol II

complex, and therefore at least partially blocks transcriptional interference.
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FIGURE 25. Relative ß-galactosidase activities of Phis7-lacZ fusion strains with the ARO4
gene driven either from its own promoter (ARO4) or from the more efficient ACT1
promoter (PACT1-ARO4). Each of both ARO4 alleles has either been combined with the wild-

type HIS7 promoter (HIS7) or with a HIS7 promoter that had two single nucleotide-exchanges in

the Ab1p-binding site (his7). This has led to the combinations (I) (ARO4)-HIS7, (II) (PACT1-

ARO4)-HIS7, (III) (ARO4)-his7, and (IV) (PACT1-ARO4)-his7. The figures displayed for all

strains are averages of total ß-galactosidase activities in U measured as nmolMUF/(h ml OD546)-

1 of at least four individual cultures.

We have also investigated whether the single nucleotide exchanges within the Abf1p-

binding site change the chromatin structure of the intergenic region. However, no

changes in comparison to the wild-type intergenic region have been detected (not

shown). Therefore we suggest that it is rather the DNA-binding of the protein itself
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thereby somehow blocking the transcribing pol II complex, than a reorganization of the

nucleosomal structure by Abf1p that subsequently prevents transcriptional interference.
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Discussion

All living cells must have developed mechanisms that enable individually regulated

expression of adjacent genes that are located in close proximity without disturbing each

other. This mainly implies that high expression of one gene as a consequence of e.g. the

response to activating environmental stimuli must not interfere with the expression of its

neighboring gene that might be lowly expressed under these circumstances. To make

individual regulation of two tandemly orientated genes possible, the cell has to cope with

numerous mechanistic obstacles.

The transcription of the gene that is transcribed firstly has to be efficiently completed. In

eukaryotic cells this process is characterized by the combination of events that generate

the mRNA 3` end followed by its polyadenylation, and the actual termination of

transcription that is the release of the elongation complex from the intergenic DNA. The

efficiency of these processes must be adjusted to the respective expression levels that in

turn depend on activating or repressing stimuli regulating the transcription of this gene.

For transcription of the second gene an efficient recruitment of the transcriptional pre-

initiation complex at the initiation site of its promoter is required. In addition to this

recruitment, regulated gene expression requires efficient binding of gene specific

transcriptional activators to the promoter upstream of the transcription initiation site. The

efficiency of both the 3´ end formation/termination and the initiation of transcription

must be adjusted to the ‘strength’ of the two adjacent genes for different levels of their

regulated expression. Otherwise transcriptional interference reduces or even abolishes the

expression of the second gene by promoter occlusion. Since eukaryotic DNA is closely

associated with histone proteins providing a highly ordered chromatin structure, these

processes must take place against the background of nucleosomes that counteract not

only the access of DNA binding proteins but also the transcription process itself.

Here we used a test-system for the detection of elements located in-between the ORFs of

two closely located genes that antagonizes transcriptional interference. We provided the

first gene with a stronger promoter to highly increase its transcription and fused the
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second one to a reporter gene. The test-system was integrated at the natural locus of the

two genes in the authentic chromosomal context. The chromatin structure at this locus is

characterized by a distinct nucleosome that separates two Mnase hypersensitive regions.

One of these hypersensitive regions is required for efficient mRNA 3´ end formation of

the upstream ARO4 gene and the other for transcriptional activation of the downstream

HIS7 gene. The defined positioning of the nucleosome between terminator and promoter

suggests that it antagonizes transcriptional interference between the two genes. Hence,

transcriptional interference generated by high expression of the first gene of the test-

system coincides with a diminished DNA-histone octamer interaction at this separating

nucleosome. Since there is also an alteration of the nucleosomal structure at the 3´ end of

the ORF of the first gene, efficient termination of transcription possibly requires a

defined chromatin structure at the very end of an open reading frame. A link between the

positioning of an upstream nucleosome, transcriptional initiation at downstream

promoters and transcriptional interference was previously reported for genes encoding

ribosomal RNA (rDNA) (Längst et al., 1997). In that work it was shown that the

positioning of a nucleosome at an upstream terminator element is required to enable

transcription from the downstream promoter. To position this nucleosome the DNA-

binding termination factor TTF-I, homologous to the yeast Reb1p, was shown to be

necessary.

The quantification of reporter gene expression for various ‘intergenic’ deletions within

our test-system revealed that there are further elements beside the positioned nucleosome

that define the border of two adjacent genes. mRNA 3´ end formation signals like the

Zaret/Sherman element as well as the site were the nascent transcript is cleaved and the

poly(A) tail added represent borders that belong to the preceding ARO4 gene. Removing

of these elements significantly increase transcriptional interference at that locus.

Termination of transcribing RNA pol II and its release from the DNA template was

previously shown to be linked to mRNA 3’ processing (Proudfoot, 1989). Destruction of

poly(A) signals results in reduced termination events leading to increased transcription
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beyond the poly(A) site of a gene and thereby impairing the activity of downstream

promoters (Proudfoot, 1989; Springer et al., 1997b).

Another border marked by the downstream HIS7 gene is the presence of the ubiquitous

DNA-binding factor Abf1p at its promoter. Besides its role as activator of HIS7

transcription it obviously has an additional function in forming a protective barrier

against transcription of the upstream ARO4 gene. Recent publications have reported a

molecular explanation for such a link between prevented termination and promoter

activity, e.g. for the GAL10-GAL7 locus in yeast or the tandem HIV-1 promoters

integrated in HeLa cells (Greger et al., 2000; Greger et al., 1998). By in vivo footprinting

it was demonstrated that reduced 3’ processing activity of the GAL10 gene directly

weakens binding of the transcription factor Gal4p to the adjacent downstream GAL7 gene

and thereby reducing its transcription. Likewise binding of the transcription factor Sp1 to

the downstream promoter of tandemly localized HIV-1 promoters is significantly

increased by insertion of an efficient transcriptional termination element upstream of the

occluded promoter. A recent report stated that efficient termination enabled by the

murine transcript release factor PTRF augments downstream ribosomal gene

transcription by enhancing reinitiation at the rDNA promoters (Jansa et al., 2001).

Our data demonstrate a novel function for a positioned nucleosome and Abf1p have

because they are not only involved in initiation of HIS7 transcription but also form a

border between the two genes ARO4 and HIS7. They prevent the downstream HIS7 gene

against transcriptional interference and separate the processes of ARO4 3´ end formation

and initiation of HIS7 transcription. We suggest that a similar intergenic barrier prevents

also transcriptional interference between other tandemly transcribed eukaryotic genes.
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