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RESUMO 

OLIVEIRA, Roberson Assis de. Caracterização e novas aplicações do efeito acusto-óptico em 

redes a fibra. 180 f. Tese de Doutorado – Programa de Pós-Graduação em Engenharia Elétrica 

e Informática Industrial, Universidade Tecnológica Federal do Paraná. Curitiba, 2011. 

 

 

Neste trabalho, os fundamentos da modulação acusto-óptica em redes de difração são 

apresentados. Através de uma análise detalhada dos modos de excitação mecânicos, mostrou-

se que dois tipos predominantes de excitação acústica podem ser encontrados na fibra óptica 

dependendo da frequência acústica aplicada. Através da caracterização do modulador acusto-

óptico, foi possível desenvolver novas aplicações, dentre as quais pode-se citar um dispositivo 

de inserção e retirada de canais em links ópticos cuja velocidade de chaveamento é uma das 

maiores apresentadas até agora na literatura, um compensador de dispersão sintonizável de 

banda estreita, um filtro óptico baseado na modulação acusto-óptica de uma rede de Bragg 

com uma diferença de fase, um novo método para controlar a escrita de redes de Bragg 

durante o processo de gravação utilizando-se da técnica da máscara de fase e um sensor de 

viscosidade, cuja aplicação pode ser considerada a mais promissora. 

 

 

Palavras-chave: Modulação acusto-óptica. Redes de Bragg em fibra. Redes de período 

longo. Dispositivos sintonizáveis a fibra óptica. Sensor de viscosidade. 

 





 

ABSTRACT 

OLIVEIRA, Roberson Assis de. Characterization and new applications of the acousto-optic 

effect in fiber gratings. 180 f. PhD Thesis - Graduate School of Electrical Engineering and 

Applied Computer Science, Federal University of Technology – Parana, Curitiba, 2011. 

 

 

In this work, the fundamentals of the acousto-optic modulation in diffraction gratings are 

presented. By means of a detailed analysis of the mechanical excitation modes applied to the 

modulator set, it was noticed that two predominant modes of acoustic excitation can be found 

in the optical fiber depending on the applied acoustic frequency. Through this 

characterization, it was possible to develop new applications, such as a fast acousto-optic add-

drop multiplexing for optical channels, which produces one of the fastest switching device 

presented in the literature, a narrow tunable single channel dispersion compensator, a tunable 

optical filter based on the acousto-optic modulation of a phase-shifted fiber Bragg grating, a 

new method to control the spectrum of Bragg gratings during the writing process and a 

viscosity sensor, whose application can be considered the most promising. 

 

 

Keywords: Acousto-optic modulation. Fiber Bragg gratings. Long period grating. Tunable 

all-fiber devices. Viscosity sensor. 
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1 INTRODUCTION 

One of the most challenging issues for scientists is to understand the nature, and 

through numerical methods, reproduce and/or predict physical phenomena. Hopefully, with 

the development of computational capabilities, in the near future, it will be possible to study 

complex systems quite accurately without any expensive experimental setup. Additionally, 

the ability of using proven technology to construct new devices is also a challenge. Thus, the 

interaction between simulation and experimentation approaches together with the 

development of new ideas emerges as the most promising field of science. 

1.1 MOTIVATION 

The development of the optical fiber technology allowed scientists to develop long 

haul telecommunications links as well as construct various all-fiber devices, such as filters, 

switches, modulators, among others. These devices were built particularly for data transfer 

applications, using the technology of the wavelength division multiplexing (WDM). 

However, the range of optical fiber application is not restricted only to telecommunications, 

but also to a vast area of photonics, including lasers, sensing and medical sciences. 

The possibility of writing diffraction gratings in optical fiber opens up a vast field of 

research. It has been considered by many scientists as one of the most active fields in optics. 

In the same way, the study of the interaction between sound and light arises as an alternative 

for increasing the range of optical fiber technology applications. This interaction, known as 

acousto-optic interaction, is the key to construct several all-fiber photonic devices. In this 

thesis, experimental and simulated results of the modulation of diffraction gratings using the 

acousto-optic effect in fiber are presented. Applications of this effect in the communications 

and sensing fields are also described. 

1.2 OBJECTIVES 

The main objectives of this work is to study the acousto-optic interaction in 

diffraction gratings, specifically in Bragg and long period gratings, and demonstrate how 

different effects are achieved depending on the acoustic excitation. Once the phenomenon is 

understood, applications in telecommunications and sensing can be introduced. 
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1.3 THESIS HISTORY AND OUTLINE 

This PhD thesis is a progression of a master dissertation which explores the 

simulation of the acousto-optic effect in fiber Bragg grating using a numerical approach based 

on the finite element and transfer matrix methods (OLIVEIRA et al, 2008a; OLIVEIRA 

2008b). Based on the results of the numerical simulations, new applications not reported 

before in literature could be proposed. The first step was to assemble the experimental setup 

according to the simulation parameters and generate an acoustic wave within a fiber using a 

piezoelectric ceramic and a silica horn. The silica horn was the critical part of the assembly 

because there were no manufacturers in the world that could fabricate a small number of 

pieces at a reasonable price. Consequently, the need for cooperation with other research 

groups arose. The first collaboration started with the research visit of Prof. Dr. Alexandre A. 

P. Pohl to the group of Prof. Dr. John Canning at The University of Sydney – Australia in 

2007. With the help of Mr. Peter Henry, at the time an employee of the Optical Fiber 

Technology Center (OFTC), the first silica horn for the experiments was constructed. 

Although some good experiments with this silica horn were carried out, it was not adequate in 

yielding a considerable acoustic effect in the gratings. Another cooperation started in 2009 

with the Instituto de Telecomunicações of the University of Aveiro – Portugal, where a more 

efficient silica horn was fabricated. It was made by Mr. Pedro Miguel Roque Alves, from the 

chemistry department of the University of Aveiro. Following the production of the silica horn, 

a proper piezoelectric ceramic had to be acquired. Initially the chosen piezoelectric ceramic 

was purchased from Physick Instrumente (www.physikinstrumente.com), and later on, from 

Piezomechanik (www.piezomechanik.com), both companies from Germany. The chosen disc 

dimensions were based on the resonance frequency necessary for producing the acoustic 

effects predicted by the numerical simulations. 

Following the assembly of the modulator, some experiments were performed and the 

results concerning the control of the grating properties, called the attention regarding their 

potential for new applications. Using the developed modulator, it was noticed that two 

different kinds of acoustic waves could be excited in the fiber (flexural and longitudinal) 

depending on the acoustic resonance of the piezo disc. The result was reported for the first 

time in literature and published in Optics Communications in 2010 (Oliveira et al, 2010a). 

Following the first development, an add-drop was built (OLIVEIRA et al, 2009a) in 

collaboration with the Instituto de Telecomunicações. At the same time a chromatic dispersion 

http://www.physikinstrumente.com/
http://www.piezomechanik.com/
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compensator (OLIVEIRA et al, 2010b) and phase-shifted controllers (MARQUES et al, 

2011) were also developed. 

During the one year research time spent at the Interdisciplinary Photonics 

Laboratories (iPL) of The University of Sydney in 2009/2010, the characterization of the 

acousto-optic device was completed and two important developments in the field of acousto-

optic modulation were achieved. The first was a method for controlling the grating properties 

during the writing process using the acousto-optic effect while sweeping the UV laser beam 

through the phase mask. This work, published in Applied Physics Letters (OLIVEIRA et al, 

2010d), describes the successful attempt of writing a fiber Bragg grating in an acoustically 

excited fiber. The second development was a viscosity sensor, whose conception and 

innovation was awarded the best student paper prize in the 2
nd

 Asia-Pacific Optical Sensors 

Conference (APOS 2010) held in Guangzhou – China (OLIVEIRA et al, 2010f). 

This thesis is outlined in several topics as follows: 

2. State of the Art – The chapter addresses optical fiber diffraction gratings (in 

special fiber Bragg gratings and long period gratings) and their acousto-optic modulation. A 

topic about the viscosity sensing is also presented. 

3. Methodology – The methods used to simulate the mechanical structure and the 

experimental assembly are presented in this chapter. 

4. Characterization of the Modulator – In this chapter, the experimental 

characterization of the modulator is presented. Numerical simulations and experimental 

evidences are used to verify the way acoustic waves modulates the diffraction grating spectra. 

5. Applications – Applications are described and their respective experimental 

assemblies detailed. The devices performance are also presented and discussed in this chapter. 

6. Conclusions – General conclusions regarding the development and theoretical 

modeling of the modulator along with specific conclusions concerning the performance of the 

devices are addressed in this chapter. 
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2 STATE OF THE ART 

2.1 OPTICAL FIBER DIFFRACTION GRATINGS 

Fiber diffraction gratings are basically layered gratings, which can be understood as a 

periodic pile of thin films in the core of the fiber with a modulated refractive index (LI, 1996). 

The discovery of the photosensitivity in optical fiber happened in 1978 at the 

Communications Research Center Canada (CRC), during experiments of non-linear effects. 

At the time a photoinduced permanent change was observed in the refractive index of the 

fiber core through an intense exposure to core-launched visible light from an argon ion laser 

(HILL et al, 1978). Since then, the study of fiber gratings started to call the attention of the 

scientific community. Fiber devices such as optical filters (KAWASAKI et al, 1978), optical 

sensors (BHATIA and VENGSARKAR, 1996), distributed Bragg reflector fiber lasers (DBR) 

(KRINGLEBOTN et al, 1994) were fabricated, making this technology a crucial solution for 

all-fiber communication and sensing devices. 

In 1988 Meltz et al reported the fabrication of a fiber diffraction grating by exposing 

the fiber core externally to an intense UV interference pattern (MELTZ et al, 1989). This was 

an important advance in the fiber grating fabrication technology (HILL et al, 1993a). As the 

research in the field evolved, two kinds of fiber gratings were developed: one based on the 

reflection of the light, with short-period modulation, similar to those written by Hill et al 

(1978, 1993a), the so called fiber Bragg grating (FBG), and the other formed by long periods 

of modulation, known as long period fiber grating (LPG) (VENGSARKAR, 1996). 

2.1.1 Fiber Bragg grating 

When Hill et al (1978) launched an intense Argon-ion laser radiation at 488 nm into 

a Germania-doped fiber they observed a reflected light, whose power grew until almost all the 

light incident was reflected back from the fiber. After spectral measurements, they confirmed 

that a very narrowband Bragg grating filter had been formed over the entire length of the fiber 

(around 1 m). This grating was found to be tunable with temperature and strain, which 

enlarged the possibility of application of that technology. This grating was subsequently 

called Hill grating, and it sparked a vigorous research on the photosensitivity of germanium 

doped silica fibers (KAWASAKI, 1978). Advanced studies done by Lam and Garside (1981) 

showed that the grating strength increases as the square of the light intensity, suggesting a 
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two-photon process as the mechanism. However, a single photon process proved to be more 

efficient (LAM and GARSIDE, 1981, MELTZ, et al, 1989). Hosono et al (1992) and Nishii et 

al (1995) showed that the absorption band of the Germane-silicate glass is centered in the 

240 nm wavelength. Therefore, irradiation with a wavelength coincident with this band shows 

to result in bleaching and the creation of other absorption bands, leading to a refractive index 

change that was described through the Kramers-Kronig relation (RUSSELL et al, 1991; 

OTHONOS and KALLI, 1999). It was then discovered that photosensitivity could be 

improved by up two orders of magnitude through hydrogenation of the optical fiber core 

before grating inscription, and in some cases without variation of the 240 nm absorption band 

(LEMAIRE et al, 1993). It has been suggested from the photoinduced index growth obtained 

in high- and low-germanium content fiber that photosensitivity at 193 nm obeys one-photon 

dynamics in high-germanium content fiber, and two-photon dynamics in low-germanium 

content fiber. The current consensus explains photosensitivity as being initiated though the 

formation of color-centers (HAND and RUSSELL, 1990) that gives way to compaction of the 

UV-irradiated glass (LIMBERGER et al, 1996; POUMELLEC, et al, 1996; OTHONOS and 

KALLI, 1999; CANNING, 2008). 

In the work by Meltz et al (1989), they introduced a methodology to write FBGs, 

irradiating the core of the fiber from the side with two coherent ultraviolet light beams at 

244 nm. The two light beams interfere, producing a periodic interference pattern that induces 

a periodic change in the refractive index of the fiber core. The technique is called the 

transverse holographic technique. It works because the fiber cladding is transparent to the UV 

light whereas the fiber core is highly absorbing instead. This makes it possible to write Bragg 

gratings in the core without removing the glass cladding. Furthermore, by using the technique, 

the angle between the two interfering beams can be varied causing the period of the generated 

grating to be changed, which leads to gratings that work at much longer wavelengths in a 

spectral region of interest for devices in fiber optic communications and optical sensors 

(HILL and MELTZ, 1997). Alternatively, one of the most effective methods for inscription of 

Bragg gratings in photosensitive fiber is the phase-mask technique, introduced by Hill et al 

(1993b) and Anderson et al (1993), where a diffractive optical element is employed to 

spatially modulate the UV writing beam. 

The effect of permanently inducing changes in the refractive index (δn) of the fiber 

depends on several different factors such as the irradiation conditions (wavelength, intensity, 

beam fluency, etc.), the composition of the fiber core (dopants) and any processing of the 

fiber prior to irradiation, such as the hydrogenation of the fiber to enhance the 
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photosensitivity, called the hydrogen-loading technique (OTHONOS and KALLI, 1999; 

LEMAIRE et al, 1993; KASHYAP, 1999). According to Canning (2008), although 

mainstream grating writing using single photon excitation of germane-silicate based defects 

with UV light at 244 nm light remains the key technology for complex devices, it is now 

being complemented by a whole set of processes which can enhance and tailor the properties 

of both conventional and not-so-conventional fiber Bragg gratings. Canning presents an up to 

date review on photosensitivity, fiber gratings and devices for sensor and lasers (CANNING, 

2008). 

The FBG is characterized by three main parameters: reflectivity, period and length. 

These parameters can be controlled in order to, depending on the proper set of these 

characteristics, obtain gratings for a variety of special applications. The length of a uniform 

grating is limited by the dimension of the writing system (even though, demonstration of 

gratings longer than lg = 1 m was already achieved), which normally is used to be in the order 

of millimeters or few centimeters. On the same way, the spectral bandwidth is conditioned by 

its length, as the reflection band of a uniform grating depends on its distance end to end. The 

chirped Bragg grating, one of the most interesting Bragg grating structures, is characterized 

by having a monotonically varying period, i.e. a non-periodic index modulation profile. This 

characteristic enhances the spectral bandwidth of the conventional FBG, allowing the FBG to 

achieve broadband reflectors (SUGDEN et al, 1997). 

2.1.1.1 Writing process 

Historically, FBGs were firstly recorded using internal writing (HILL et al, 1978) 

and the transversal holographic technique (MELTZ, et al, 1989). Both these methods have 

been superseded by the phase mask technique, which is schematically described in the 

diagram of figure 2.1. The phase mask is placed in contact or near contact with the fiber, and 

the UV beam impinges normally to the fiber axis. The beam passes through the mask and is 

spatially diffracted to form an interference pattern with pitch Λ along the fiber axis (HILL et 

al, 1993b). Since the period of the phase mask (Λpm) and the effective index of the fiber are 

known, the wavelength reflected by the grating can be estimated according to the Bragg 

condition for the zeroth order  

 2B eff pm effn n     , (2.1) 

where λB is the Bragg wavelength and neff is the effective mode index at the grating. 
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Figure 2.1 - Bragg grating fabrication apparatus based on the phase mask technique. 

2.1.1.2 Fundamental properties of fiber Bragg gratings 

The index modulation in the core represents a periodic structure that acts as a stop 

band filter. A narrow band of the incident optical field in the fiber is reflected successively 

and coherently by the planes that represent the index variations. For a simple case, the 

strongest interaction of energy between the co-propagating and counter-propagating modes 

occurs at the Bragg wavelength. This condition is also called the “phase match” condition. 

The grating is a device which changes the spectrum of an incident signal by coupling energy 

to other fiber modes. It can also be considered an intrinsic sensor because any change in fiber 

properties, such as strain, temperature or polarization which varies the modal index or grating 

pitch, will change the Bragg wavelength. The reflected band is constructed because each 

reflection from a crest in the index perturbation is in phase with the next one at λB, as shown 

in figure 2.2. 
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Figure 2.2 - Schematic diagram of the incident light in a FBG and its reflected and transmitted spectrum. 

The grating characteristics can be understood and modeled by several approaches, 

such as the ones proposed by Kogelnick (1976), Weller-Brophy and Hall (1985) and Yamada 

and Sakoda (1987). However, the coupled-mode theory is often the foundation for many of 

these models (HILL and MELTZ, 1997). The resultant change in the refractive index, δn, due 

to the photo-induction is written as 

 
   0

2
1 cosn z n v z z


  

  
    

  
, (2.2) 

where δn0 is the “dc” index change spatially averaged over a grating period, v is the contrast, 

determined by the visibility of the UV pattern, Λ is the nominal grating period and ϕ(z) 

describes the grating chirp. Figure 2.3 shows the observed index modulation in the core of a 

fiber showing the grating written by Malo et al (1993). One can see the index perturbation 

through optical microscope photography. In this case, the Bragg wavelength is λB = 1535 nm, 

considering the second-order reflection (mλresonance = 3070 nm, m = 1, 2, 3, …), and 

correspond to the sharp dip in the transmission spectrum of the grating (MALO et al, 1993). 
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Figure 2.3 - Photoinduced perturbations (dark parallel fringes) as seen through an optical microscope. 

Spacing between lines in image corresponds to the 1060-nm period of the phase grating (MALO et al, 

1993). 

The most useful property of the FBGs is the possibility of making its Bragg 

wavelength tunable, which enables the application in a wide range of devices in 

communications and sensing. Any change in the gratings parameters, such as the effective 

refractive index and/or period will modify the reflected wavelength. The sensitivity of the 

FBGs to changes in these parameters is governed by the strain-optic and thermo-optic 

properties (KASHYAP, 1999; IOCCO et al, 1997; NEVES JR, 2008). The Bragg wavelength 

dependence with the effective index and the pitch of the grating is given as 

  effB n2 . (2.3) 

The shift of the Bragg wavelength due to changes in the temperature and longitudinal 

deformation is derived as 
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where Δε is the applied longitudinal strain of the grating and ΔΘ is the change in temperature. 

effn    represents the longitudinal stress optic coefficient (strain-optic property) and 

effn   the temperature coefficient of the refractive index (thermo-optic property). Since 

the Bragg wavelength is a function of neff and Λ, the simplest method of altering the transfer 

characteristics of a FBG is to impose a temperature and/or strain profile along the length of 

the grating (KASHYAP, 1999). 

The term    corresponds to a change in the grating period and the strain-optic 

coefficient induced change in the refractive index. The strain effect term can be also 

expressed as (MELTZ and MOREY, 1991; HILL and MELTZ, 1997) 

   zeBB p   1 , (2.5) 
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where 

 
  121112

2

2
ppp

n
p

eff

e    (2.6) 

is the effective strain-optic constant. In this equation, p11 and p12 are the components of the 

strain optic tensor, and ζ is the Poisson’s ratio (OTHONOS and KALLI, 1999). Table 2.1 

shows the values for some of these coefficients, depending on the wavelength and effective 

refractive index. 

Table 2.1 - Values for p11, p12 and σ of silica-based materials found in literature. 

Reference λ (nm) neff p11 p12 σ Material 

YARIV and YEH, 1984 630 1,46 0,121 0,27 0,21 Fused silica 

PRIMAK and POST, 1959 589,2 1,458 0,121 0,27 0,164 Silica glass 

BERTHOLDS and DÄNDLIKER, 1988 633 1,458 0,113 0,252 0,16 Optical fiber 

BORELLI and MILLER, 1968 632,8 1,457 0,126 0,26 0,168 Fused silica 

XU et al, 1993 1533,3 1,465 0,121 0,17 0,17 Optical fiber 

HOCKER, 1979 633 1,456 0,121 0,17 0,17 Optical fiber 

 

In the same way, the term that represents the effect of temperature can be written as 

  
effB B n       , (2.7) 

where 

 








1
  (2.8) 

is the thermal expansion coefficient for the fiber and the quantity 
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n

n

neff

1
  (2.9) 

represents the thermo-optic coefficient. 

Finally, considering only longitudinal strain and temperature variation, (2.4) can be 

rewritten as 

    2 1
effB B e z np    

      
 

. (2.10) 

Therefore, any external perturbation of the grating, either by longitudinal strain or by 

temperature, will change the reflection wavelength making sensing applications potentially 
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and practically interesting. However, only one perturbation at a time is of interest, so, the 

deconvolution of strain and temperature becomes necessary (XU et al, 1994; XU et al, 1995; 

JAMES et al, 1996). The range of applications of the tunability property of FBG is very wide, 

and goes from broadband tunable optical filters (MOKHTAR et al, 2003) to fiber lasers 

(BALL and GLENN, 1992). 

Gratings that have a nonuniform period along their length are known as chirped. 

Chirped gratings, which present the term ϕ(z) in (2.2) different from zero, are useful for many 

applications and can be generated in a number of ways, including the application of varying 

strain after fabrication (BYRON et al, 1993; KRUG et al, 1995), writing using a multi-step 

technique (KASHYAP et al, 1994) or using a continuously chirped phase mask. More details 

on continuous chirped gratings can be found in Kashyap (1999). 

FBGs can be used for correcting chromatic dispersion, exploring the capability of 

pulse compressing in optical links (TREACY, 1969; NAKATSUKA et al, 1981). Figure 2.4 

shows the reflection spectrum and group delay behavior of a uniform FBG written directly 

using phase mask (UV light @ 248 nm) with lg = 25 mm length. The green circle represents 

the useful range for application in chromatic dispersion. This grating in particular presents a 

quadratic behavior for the dispersion compensation, and the group delay dispersion parameter 

has the value d ~ 3312 ps/nm, over Δλ = 0,078 nm bandwidth. 
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Figure 2.4 - Reflection spectrum and group delay characteristics of a uniform FBG. The green circle 

represents the useful range for chromatic dispersion. 
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2.1.2 Long period gratings 

A long period grating (LPG) is a special optical fiber diffraction grating first reported 

by Vengsarkar et al in 1995 (VENGSARKAR et al, 1996). The LPG refractive index 

modulation, in contrast to the FBG, is in order of hundreds of micrometers, and is chosen to 

couple light from the guided fundamental mode of the fiber into the forward propagating 

cladding modes. The wavelength-dependent phase-matching condition in LPGs is governed 

by the relationship 

   m

cleffm nn , (2.11) 

where λm is the dip wavelength of the mth attenuation band, neff and m
cln  represent the effective 

indices of the fundamental guided mode and the mth LP0m cladding mode, respectively, and Λ 

is the grating period. Around λm, the energy of the propagating cladding modes is lost due to 

absorption and scattering in the surrounding environment, creating a rejection band in the 

transmission spectrum, strongly dependent of the external medium (temperature, refractive 

index, pressure and so on). The high sensitivity of LPGs to the refractive index of the 

surrounding material shows great potential in applications such as chemical detectors 

(FALATE et al, 2005) and humidity sensor (TAN et al, 2005). 

The minimum transmission at λm is given by the expression 

  
gm

m lT 2sin1 , (2.12) 

where lg is the length of the LPG and κm is the coupling coefficient for the mth cladding mode, 

which is determined by the overlap integral of the core and respective cladding mode and by 

the amplitude of the periodic modulation of the mode propagation constants (JAMES and 

TATAM, 2003). 

2.1.2.1 Writing process 

The most used inscription techniques of LPGs are based on induced changes in the 

refractive index of the fiber core through electric discharge (REGO et al, 2005), exposure to 

193 nm UV light (GUAN et al, 2000) or 10,6 μm (CO2) laser radiation (WANG et al, 2009). 

Another technique uses the formation of microbends in the fiber through transversal pressure 

of the fiber axis (BLAKE et al, 1986). The desired grating can easily be fabricated by use of 

inexpensive amplitude masks of different periods (BHATIA and VENGSARKAR, 1996). 
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2.1.2.2 Properties of LPG 

Long period gratings present the advantage of, depending on the order of cladding 

mode to which coupling takes place (BHATIA, 1999), and on the refractive index of the 

optical fiber (SHIMA et al, 1997), a range of responses to a particular measurand. For 

example, an LPG may have one attenuation band that has a positive sensitivity, another that 

presents a negative sensitivity and even one band that is insensitive (JAMES and TATAM, 

2003). LPG transmission spectrum, which presents five attenuation bands, is shown in figure 

2.5 (BHATIA et al, 1997). Each one of these bands can be used to measure a specific 

measurand. 

 

Figure 2.5 - Transmission spectrum of an LPG written in a SMF-28 fiber with period 320 µm,  

by Bhatia et al (1997). 

The sensitivity of long period gratings to temperature and strain can be understood in 

the same way as the FBGs. From (2.11), the sensitivity to temperature and strain is written as 
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where 
m m

eff eff cln n n   . In this equation, the first term on the right is the material contribution, 

and is related to changes in the differential refractive index of the core and the cladding 

arising from the thermo-optic and strain optic effects. This contribution is dependent upon the 

composition of the fiber (SHIMA et al, 1997) and is strongly dependent upon the order m of 

the cladding mode. The second term on the right is related with the waveguide effect 

contribution as it results from changes in the period of the LPG. Different effects are achieved 

if considering different gratings. For example, for coupling to low order cladding modes 

(achieved with longer periods, Λ > 100 µm), the material effects dominates, while for 

coupling to higher-order cladding modes (achieved using shorter periods, Λ < 100 µm), the 

material effect can be negligible (BHATIA, 1997). Appropriate choice of grating period and 

fiber composition will thus allow the generation of attenuation bands with positive, negative 

or zero sensitivity to strain or temperature. This property presents several advantages if 

comparing with fiber Bragg gratings. 

By differentiating (2.11), (2.13) can be simplified as 
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where 
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is the thermal-expansion coefficient, 
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is the thermal-optic coefficient, and 
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is the strain-optic coefficient. The thermal-expansion coefficient αΛ has its value around  

5 × 10
-5

 / °C, while ο, which is variable and related to the grating period and the coupled 

cladding mode order, generally varies from 2 to 4 × 10
-5

 / °C for the gratings written in 

standard SMF-28 fiber. Consequently, as ο >> αΛ, the temperature term (αΛ + ο) of LPGs 

mostly depends on the thermal-optic coefficient ο. The strain coefficient (1 + p) is negative 
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and varies slightly (from -0,5 to -0,7) with the grating period and the coupled cladding mode 

order. 

In the case of the sensitivity to external refractive index, the analytical expression 

derived by Chiang et al (2000), which describe the dip wavelength shift (δλ0) when the 

external refractive index changes from nex0 to nex is written as 

 2 3

0
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1 1

8 cl cl ex cl ex

u

n a n n n n







 
  
   

, (2.18) 

where u∞ is the mth root of the Bessel function J0 and a is the cladding radius. From (2.18) 

one notes that the refractive index sensitivity presents a nonlinear behavior that is more 

pronounced when the external refractive index is close to the cladding refractive index. 

Differentiating (2.18) with respect to nex, an expression for the LPG sensitivities s to the 

external media refractive indices can be written as (KAMIKAWASHI, 2007) 
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2.2 ACOUSTO-OPTIC MODULATION IN DIFFRACTION GRATINGS 

In 1922, León N. Brillouin proved that when a liquid, excited by a mechanical wave 

with short wavelength, is irradiated with visible light, a diffraction pattern is generated, 

similar to that obtained with a diffraction grating (BORN and WOLF, 1980). The first 

experimental work on the interaction between mechanical waves and electromagnetic 

radiation was done by Brillouin, who studied the x-rays diffraction in a homogeneous 

transparent solid excited by thermic vibration, which generates elastic waves. In 1932, 

experiments carried out by Lucas and Biquard in France and Debye and Sears in the United 

States studied the optical properties of solids excited by ultra-sound waves and demonstrated 

the scattering of light by them. Both experiments demonstrated that the dielectric properties of 

a medium are modified by acoustic waves causing variation in the propagating electric field. 

The acousto-optic effect can be understood as a phenomenon of diffraction of electromagnetic 

radiation firstly observed in liquids and later on solid materials. This effect, for example, was 

used to measure the speed and attenuation of mechanical waves in transparent media. In 1978, 

Thurston presented the theory of propagation of mechanical waves in homogeneous 

cylindrical waveguides formed by cladding and core (clad rods), which was consequently 

used to model optical fibers. Thurston showed a complete description of the mechanical 
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resonant modes in these waveguides, and also pointed out the limitations of each case, i.e. 

considering guides without cladding, thin cladding, infinite cladding, etc. (THURSTON, 

1978). 

After the invention of the laser and high frequency piezoelectric transducers (in the 

range of hundreds of MHz), the acousto-optic interaction attracted attention, and a new and 

interesting research topic raised up as a promising area for telecommunications and sensing. 

Roy et al (1987) showed that, through the use of elastic waves, it is possible to rapidly change 

some properties of light, such as intensity and frequency (MACLENNAN et al, 2007). The 

interaction between laser beams and bulk elastic waves gave rise to new components, such as 

modulators (ROY et al, 1987; PALDUS et al, 1997), optical deflectors (WARNER et al, 

1972; GOTTLIEB et al, 1983), optical spectrum analyzers (GOTTLIEB et al, 1992), tunable 

optical filters (GIRUTS and KOPYLOV, 1991), among others. On the other hand, the same 

effect can be used to sense properties of a specific solid or used in acoustic emission sensors 

(PEREZ et al, 2001; BETZ et al, 2003). 

2.2.1 The effect 

The basic structure of the fiber acousto-optic modulator is based on the device 

patented by Zemon and Dakss (1978) in the United States (US6068191). Such modulator is 

able to modulate the intensity of light through the application of an acoustic wave. Figure 2.6 

shows the schematic diagram of the device: 

 

Figure 2.6 - Acousto-optic modulator, patent number 6.068.191 (1978) – The United States  

(ZEMON and DAKSS, 1978). 

In 1986, Russell showed that the planes of a fiber Bragg grating can be modulated 

with the use of acoustic waves. He called this effect acousto-optic superlattice modulation 

(AOSLM), which is based on the Bragg-type Floquet-Bloch waves (RUSSELL, 1986a). The 

Floquet-Bloch waves are the simplest complete solutions of Maxwell’s equations that exist in 
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a periodically stratified medium such as, for example, a single-mode fiber with a diffraction 

grating written in it (RUSSELL, 1986b). In AOSLM the counter-propagating optical modes 

are generated by the fine pitch Bragg grating and the coarse-pitch, generated by the acoustic 

wave, which forms the superlattice. Coupling is maximum when the inter-Bloch-wave beat 

period matches the acoustic wavelength (LIU et al, 1997). 

Even though various mechanical modes can be generated in fibers (for example, 

radial, torsional, longitudinal or flexural), effects in gratings are achieved manly through 

longitudinal and flexural excitation. Therefore, in this work two kinds of acoustic excitation 

are considered, one due to the propagation of longitudinal acoustic wave and the other due to 

the flexural vibration of the fiber. 

2.2.1.1 Longitudinal acoustic waves 

When longitudinally launched along the fiber, which contains the fiber Bragg 

grating, the acoustic wave causes a periodic compression and rarefaction strain field, causing 

a change in the effective refractive index of the fiber, through the photo-elastic constant, pe 

(see equation 2.6), while moving the modulation planes of the grating. An analytical approach 

by Russell and Liu (2000) defined the resulting strain field in the form: 
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where  tzkp ss   is the propagation phase, 2s sk    is the acoustic wave vector, λs is 

the acoustic wavelength, and υs is the angular frequency. For an acoustic beam of area A, 

carrying power Ps in a medium with Young’s modulus E and acoustic group velocity ςgs, the 

peak strain has the value 
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The periodic strain field perturbs the grating in two ways. Firstly, the effective refractive 

index (neff) increases according to the elasto-optic effect, causing changes in the optical path 

length. Thus, the effective refractive index variation proportional to the elasto-optic changes 

can be expressed as 

    pneff  1 , (2.22) 

where σ is the stress-optical coefficient of the fiber. Secondly, the grating pitch is periodically 

modulated, causing a spatial-frequency modulation. The resulting effective refractive change 

then given as 
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where C is the modulation depth of the effective refractive index n0 in the unperturbed FBG, 

2K    is the grating vector (RUSSELL and LIU, 2000). 

Replacing (2.20) in (2.23), one shows that the pitch modulation produces a sequence 

of sidebands in spatial frequency whose amplitudes are given by a standard Bessel function 

expansion as 
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where 
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Note that m changes sign with the direction of the acoustic wave. It is clear that a sequence of 

ghosts of the original fiber grating form at spatial frequencies given by successive spatial 

sidebands of K. The amplitudes of these sidebands are given for small argument ( 1m  ), as 
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One can illustrate this formulation with the help of figure 2.7, which shows the forward (0) 

and backward (1) Bloch waves. Figure 2.7(a) shows the behavior of the Bloch waves for an 

unperturbed FBG, while figure 2.7(b) shows a longitudinal wave exciting the fiber, whose 

effect causes additional reflections band to appear in the FBG spectrum. 
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Figure 2.7 - Forward (0) and backward (1) Bloch waves of (a) unperturbed FBG and (b) longitudinally 

excited with acoustic wave of wavelength λs. A forward Bloch wave incident from the left-hand side is 

gradually converted into a backward Bloch wave traveling from the right-hand side. 

The disadvantage of this analytical method is the absence of information about the 

strain field generated in the fiber by, for example, a modulator based on the silica horn 

technique using a piezoelectric transducer. This issue can be solved by means of numerical 

approaches, considering the real dimensions of the device and practical boundary conditions. 

Oliveira et al (2008a) showed the numerical simulation of the longitudinal acousto-optic 

effect in FBG using the finite element method (FEM) together with the transfer matrix 

method (TMM). The FEM approach allows the strain field caused by the acoustic wave to be 

completely characterized along the structure while the TMM is used to obtain the resulting 

spectrum generated by the corresponding deformed grating. Simulation results showed the 

formation of lateral lobules in the FBG reflection spectrum, caused by the displacement of the 

modulation planes of the FBG and a change of the effective refractive index, through the 

elasto-optic effect. Figure 2.8 shows the reflection spectrum obtained by numerical simulation 

of an FBG excited by a longitudinal acoustic wave with frequency fs = 1 MHz and load 

P0 = 1 N applied on the base of the silica horn (OLIVEIRA et al, 2008a). 
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Figure 2.8 - Reflection spectrum of an FBG when excited by an acoustic wave at  

fs = 1 MHz and load P0 = 1 N (OLIVEIRA et al, 2008a). 

Figure 2.9 shows the schematic diagram of the acousto-optic modulator used in the 

numerical simulations, which is the base of the acousto-optic modulator used to carry out the 

experiments in this work. The Bragg grating acousto-optic modulator (BG-AOM) consists of 

a piezoelectric transducer (PZT), responsible for the generation of the acoustic wave, the 

silica horn, responsible for coupling the acoustic wave to the optical fiber, where the FBG is 

inscribed. At the end, a holder is used in order to allow the formation of a standing wave. In 

this model a tapered region is used in order to enhance the acousto-optic effect. However, 

along the work, Oliveira et al (2008a) showed that the presence of the taper can be neglected, 

and the same strain field can be obtained by changing the dimensions of the silica horn. 
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Figure 2.9 - Acousto-optic modulator used by Oliveira et al (2008a) to simulate the behavior of the FBG 

under acousto-optic modulation. 

Oliveira et al (2010a) reported on the analysis and measurement of the acoustic 

vibration modes of an experimental assembly made of a silica horn with a length of silica 

fiber, in which the grating is inscribed (similar to the one showed in figure 2.9, except by the 

absence of the taper), and demonstrated, by controlling the excitation of a particular resonance 

mode, that either flexural or longitudinal acoustic waves are generated. Regarding the 

longitudinal case, figure 2.10 shows how acoustic wave with low and high frequency 

(comparing the acoustic wavelength with the grating length) changes the modulation planes of 

the grating. Figure 2.10(a) shows the behavior of the planes when no acoustic wave is 

applied, figure 2.10(b) the case for the excitation of an acoustic wave at low frequency and 

figure 2.10(c) the case for the excitation at high frequency. When the longitudinal acoustic 

wavelength is longer than the FBG length (low frequency regime), a compression and 

rarefaction strain field corresponding to less than one period extends over the entire grating 

and whose net result causes a small shift in the Bragg wavelength. Figure 2.10(b) exemplifies 

the case where the net result of the strain field is red shifting the Bragg wavelength. On the 

other hand, in the high frequency regime, the longitudinal acoustic wavelength is much 

shorter than the grating length and the resulting compression and rarefaction strain field acts 

on modulating the grating planes. This causes the side lobules to exist. However, in this case, 

no displacement of the wavelength occurs. This situation is depicted in figure 2.10(c). 



55 

 

 

Figure 2.10 - Effect of the longitudinal acoustic wave in the FBG modulation planes when (a) no acoustic 

wave, (b) low frequency and (c) high frequency is applied in the fiber, respectively. The very right scheme 

shows the corresponding spectrum behavior. 

Figure 2.11 shows the comparison of experimental and numerical simulation results 

under the excitation of a longitudinal wave at fs = 1,089 MHz and VPZT = 30 V, which 

correspond to a load P0 = 3 N (Oliveira et al, 2010a). The FBG length is lg = 50 mm, while 

the acoustic wavelength is λacoustic = 5,27 mm. 

 

Figure 2.11 - Experimental and simulation of an FBG under excitation of a longitudinal acoustic wave at 

f = 1,089 MHz. Applying VPZT = 30 V at the PZT corresponds to a load of P0 = 3 N on the basis of the silica 

horn (OLIVEIRA et al, 2010a). 
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Regarding the applications of the longitudinal excitation of the FBG, Liu et al (1998) 

constructed a narrow band acousto-optic tunable reflector. The lateral lobules are assumed as 

correspondent to a weak version of permanent FBGs, also called previously as “ghost” 

gratings. These unique properties lead to important applications in Q-switching of lasers 

(DELGADO-PINAR et al, 2006), wavelength shifting (Liu et al, 2000), among others. 

Minardo et al (2005) reports the use of the acousto-optic effect in FBG as an 

ultrasonic sensor, showing the response of the FBG subjected to the longitudinal acoustical 

field theoretically and numerically. Tsuda (2005), on the other hand, shows the practical 

application of such sensor for ultrasonic and damage detection in carbon fiber-reinforced 

polymer (CFRP). 

2.2.1.2 Flexural acoustic waves 

In the same way that longitudinal acoustic waves affects diffraction gratings in 

fibers, flexural acoustic waves can change the grating spectra. Flexural waves are basically 

bending fields that propagate along the fiber. Since the early 80’s, bending effects in optical 

fibers have been studied. Taylor (1984) studied the bending effects in optical fibers, which 

cause power propagation in guided modes to be lost by coupling to radiation modes. These 

bends were caused by wrapping the fiber around mandrels or deploying it in flexible cables. 

Taylor also proposes the generation of microbendings in fiber using mechanical transducers to 

produce a periodic perturbation in the direction of the fiber’s axis. However, in his 

experiments, Taylor used an apparatus illustrated in figure 2.12, where it is assumed that the 

fiber path is constrained by the mechanical comb only at the points of contact separated by a 

distance Λ/2 in the z direction. This device, according to Taylor, can be used as an efficient 

LP01 ↔ LP11 mode converter. 

 

Figure 2.12 - Optical fiber subjected to spatially periodic bends (TAYLOR, 1984). 



57 

 

Dimmick et al (2000) designed a flexural acoustic wave generator in fiber, using a 

tapered optical fiber with lg = 4 cm and df = 6,8 µm (See figure 2.13). When driven with a 

high frequency RF signal (fs ≈ 30 MHz), a coaxial shear mode PZT transducer produces an 

acoustic vibration that is coupled to the optical fiber by a glass horn. The acoustic wave 

propagates as a flexural wave along the fiber. The flexural wave achieves its maximum 

amplitude at the tapered region. Light entering the tapered region of the fiber spreads out of 

the fiber core exciting the fundamental (LP01) mode of the taper waist. In the absence of an 

acoustic wave this light travels through the taper region undisturbed and is coupled back to 

the fiber core as it propagates up the taper transition. When a flexural acoustic wave exists, 

periodic microbends in the taper region couple light from the LP01 mode to one or more 

higher order modes, which are not captured by the fiber core after the taper (DIMMICK et al, 

2000). 

 

Figure 2.13 - Schematic diagram of tapered fiber acousto-optic tunable filter (DIMMICK et al, 2000). 

Engan et al (1986) used the property of mode conversion through flexural acoustic 

wave to develop an optical frequency shifting in two-mode optical fibers, which basically 

converts one propagating mode to another, however, the flexural acoustic wave is generated 

positioning the glass horn transversally to the fiber axis, as shown in figure 2.14. 
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Figure 2.14 - Basic setup for generation of flexural acoustic waves. Using this particular device,  

Engan et al (1986) developed a frequency shifting in a two-mode fiber. 

Considering the coupling between two optical modes, and denoting mode 1 as the 

fundamental mode, which contains all the energy before the acousto-optic interaction, and 

mode 2 as the one that carries a portion of the optical power after the interaction, the fraction 

of light coupled from mode 1 to mode 2 after the interaction length (Li), can be written as 
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where κ is the acousto-optic coupling coefficient and Δβ is the phase difference, defined as 
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where λs is the flexural wavelength, Lb is the intermodal beat length, defined as the necessary 

length for mode 1 to acquire a phase shift of Δθ = 2π when compared with mode 2. From 

equation (2.27) one notices that, if Δβ is much larger than |κ|, no light is coupled from mode 1 

to mode 2, while if Δβ = 0 all light is coupled to mode 2. Using these boundary conditions, 

the intermodal beat length can be calculated as  
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From (2.28), when Δβ = 0 the phase match condition is satisfied and can be expressed by 
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As Lb varies with λ, it can be assumed as a factor that determines the bandwidth of the 

acoustic coupling, for a given acoustic wavelength, i.e. (BLAKE et al, 1987) 
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Calculations done by Blake et al (1987) have shown that flexural waves will couple 

light from one mode to the other with 100% efficiency over a length Li given by 
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where ac is the fiber core radius and uf is the transverse acoustic wave amplitude (ENGAN et 

al, 1988). 

Most applications of flexural acoustic wave that causes changes in properties of 

optical fiber are based on the combination of the tapered optical fiber and the transverse 

excitation of a fiber. Birks et al (1994) introduced a low power acousto-optic device based on 

a tapered single-mode fiber. Unlike earlier designs, Birks et al (1994) optimized the device 

and the overlap between the acoustic and optical waves was complete, so very little acoustic 

power was required. The resonance condition for an optimum coupling can be written with 

the help of Blake et al (1988) formulation as 
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where a is the fiber radius, jlm is the mth zero of the Bessel function Jlm(z) corresponding to 

the lmth mode of the fiber and cext = 5740 m/s is the speed of extensional waves in silica. The 

acousto-optic coupling coefficient can then be calculated as 
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where σ = -0,22. As a practical example let us consider a taper carrying light from an HeNe 

laser at λ = 633 nm. For resonance at fs = 2 MHz, the required tapered diameter is a = 3 μm. If 

lg = 50 mm, the acoustic amplitude required for 100% coupling is uf = 8 nm. The expected 

FWHM optical bandwidth is Δλ = 1,64 nm. Figure 2.15 shows the schematic diagram of the 

acousto-optic device, showing the fundamental (LP01) mode spreading from the core to match 

the cladding (LP11) mode after the interaction length. 
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Figure 2.15 - Acousto-optic coupling in a single-mode fiber taper, when the acoustic amplitude is adjusted 

to give 100% efficient coupling from LP01 to LP11 modes (BIRKS et al, 1994). 

The frequency fs of a flexural acoustic wave is given by the RF signal driving the 

PZT transducer. However, the flexural acoustic wavelength λs is given by the dispersion 

relation for flexural waves on a cylindrical rod which, in the low frequency regime, is 
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where ks is the acoustic wave number. 

The use of flexural acoustic wave together with diffraction gratings has called the 

attention of scientists and a large number of effects were studied and devices developed, 

however, only applications in FBG are found in literature. Huang et al (2000) acoustically 

generated transversal vibration of a fiber Bragg grating to control its reflectivity level and Liu 

et al (2000) demonstrated the switching of the reflection band of a fiber Bragg grating through 

the application of a flexural acoustic wave to the fiber. In their work the acoustic wave is 

generated by positioning a silica-horn PZT set transversally to the fiber axis, causing 

microbends in the fiber (f = 1,3 MHz). The microbending served as a long period grating for 

coupling the core and cladding modes and switching the reflection band between the Bragg 

wavelength and the cladding mode wavelength. Such switching function can be applied to 

wavelength-division multiplexed add-drop operations in fiber communications. The 

phenomenon is illustrated in figure 2.16, in which couplings between the forward and back-

propagating core and cladding modes with their phase-matching mechanisms are shown. The 

forward propagating core mode is coupled with the backward propagating core mode through 

grating phase matching, generating the optical band with center wavelength λB. When the 

acoustic wave is applied, the forward-propagating (backward-propagating) core mode is 
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coupled with forward-propagating (backward-propagating) cladding mode through the 

microbending phase matching mechanism (figure 2.16(a)). Although part of the signal power 

can be coupled back to the core modes after it is coupled into the cladding modes, most of it 

radiates through the propagation of cladding modes. Such a coupling process in either 

propagation direction leads to the reduction of reflectivity at this wavelength. On the other 

hand, for the signal at λBS, grating phase matching results in coupling between forward-

propagating core mode and backward-propagating cladding mode. When microbending is 

generated, the coupling between backward-propagating cladding mode and backward-

propagating core mode is phase matched and the outcoupled power at this wavelength is 

coupled back into the core mode and reflectivity is observed. This reflectivity increases with 

increasing of the microbending strength (ERDOGAN, 1997). 

 

Figure 2.16 - (a) Schematic diagram showing the phase-matching mechanism for cladding to core modes 

coupling. (b) Bragg wavelength (λB) and λBS (LIU et al,2000). 

Using tilted FBG, Chen and Fu (2004) experimentally demonstrated that the 

induced-wavelength reflection peak can be shifted by adjusting the frequency of the flexural 

acoustic wave launched into the fiber. Moreover, the acoustic wave can be used to switch the 

induced-wavelength peak with a wavelength-tuning rate of approximately 1 nm/MHz. Figure 

2.17 shows the schematic diagram of the acousto-optic modulation in a tilted FBG. 
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Figure 2.17 - Schematic diagram of the acousto-optic modulation in a tilted FBG: (a) without acoustic 

wave and (b) with acoustic wave. 

Abrishamian et al (2005) presented a simple mathematical formulation to calculate 

the transmission and reflection spectra of propagating core and cladding modes through the 

acoustically induced FBG by solving multimode coupling equations. The formulation is based 

on the transfer matrix method (TMM), which splits the grating into short sectioned pieces so 

making the process of calculation the fastest for solving two coupled-mode equations 

(YAMADA and SAKUDA, 1987). The equation to calculate the switched wavelength 

generated by the acoustic wave in the FBG reflection spectrum (λBS) is written as 
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s

m n m


  
     

   
. (2.36) 

Other examples of the combined flexural waves and fiber diffraction gratings and/or 

acoustically generated gratings can be found in Haakestad and Egan (2006) and in Yeom et al 

(2007), where photonic crystal fibers were explored under acousto-optic interaction using 

flexural acoustic waves. 
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3 METHODOLOGY 

Numerical simulations were performed to compare results obtained from 

experiments, to demonstrate the suitability of some numerical methods and develop a tool for 

design of acousto-optic modulators. Oliveira et al (2008a) showed the combination of the 

finite element (FEM) and transfer matrix (TMM) methods to calculate the acousto-optic 

modulation of fiber Bragg gratings. The simulation results were compared with literature data 

and found to be in good agreement. Neves Jr. (2008) introduced the combination of the TMM 

and the assumed modes method (AMM), which gives information for the transient and 

steady-state regime. In this work, these methods were used and experimental and practical 

results valued the combination of the employed numerical methods. Simulations using a 

commercial software package based on the FEM with a graphical interface were also 

performed in order to calculate the excited vibration modes of the silica horn-optical fiber set. 

Both FEM and AMM are methods used to calculate the strain field experienced by 

the fiber when it is acoustically excited. However, there are some differences between the 

methods that should be clarified. FEM is a general method, used for a variety of problems 

such as static, dynamic, linear, nonlinear and so on. Its formulation is based on the 

construction of numerical matrices for each element, which causes the requirement of elevate 

computational performance. On the other hand, AMM is only applicable for dynamics 

problems where an orthonormal basis that satisfies all boundary conditions is known. This 

basis is composed by the natural vibration modes of the system, which are valid to the whole 

domain, in contrast with the interpolation equations used in FEM. As a consequence, in the 

AMM, the dimension of the generated matrices is smaller, because each variable is associated 

to a basis function, making the computational costs lower and the results achieved more 

accurate. 

3.1 NUMERICAL MODELING 

The dimensions of the structure employed in the calculation are shown in figure 3.1, 

which correspond to the ones of the assembled device. The length of the silica horn is lsh = 46 

mm, with a base diameter of dsh = 8 mm and tip diameter of dsht = 0,8 mm. The length of the 

fiber is taken as the FBG length, usually lg = 50 mm. 
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Figure 3.1 - Silica horn and FBG dimensions used in the numerical simulations. 

3.1.1 Finite element method 

The FEM was introduced in the late 1950s and presents several advantages, such as a 

widespread acceptance in the scientific and industrial community, the capability of modeling 

complex geometries, the consistent treatment of differential-type boundary conditions, and the 

possibility to be programmed in a flexible and general purpose format (HUGHES, 1987). 

Standard finite element approximations are based upon the Galerkin formulation of the 

weighted residuals method (ZIENKIEWICZ and TAYLOR, 2000). 

The differential equation of motion that represents the acoustic wave propagation in 

the structure is given by 
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where E is the Young´s modulus, u is the axial displacement, which is dependent on the 

position z and time t, 
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 is the longitudinal strain and π is the density. The term A(z) 

represents the variable size of the structure along the z-axis. In the current analysis, the 

damping of the acoustical wave in the structure is neglected. 

The initial and boundary conditions are given by 
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where P(t) is the external excitation, composed by the harmonic load frequency υ and 

amplitude P0 generated by the PZT transducer. lt represents the total length of the device. 

A classical linear basis approach for the finite elements is used in this work. After the 

one-dimensional discretization, the final matrix form of the problem is given by 

 
 Mu Ku P . (3.3) 

In this expression, M and K are the mass and stiffness matrices of the structure, obtained by 

the superposition of the mass and stiffness matrix of each element, which are given by 
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respectively. The superscript e represents an element with particular properties. Furthermore, 

u and u  in (3.3) represent the nodal displacement and acceleration vectors, respectively. The 

vector P  is the nodal generalized force and has a null value, except for the first component, 

associated with the node at z = 0. Considering the excitation in the form of  0 exp j tP P  

and assuming that the system behaves linearly, the solution of the problem can be found 

solving the equation: 

  0 exp j t Mu Ku P . (3.6) 

Since the time dependent load generated by the piezoelectric is harmonic, the solution has the 

form  0 exp j tu u . This way, (3.6) is reduced to 

  2

0 0  M K u P . (3.7) 

Note that 
0u , the displacement vector solution, is highly dependent on the amplitude 

0P  and 

frequency υ of the acoustic excitation. 

Once the displacement field is obtained, the strain field in each one of the finite 

elements can be found by differentiation, as 
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e u u u
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In this case, as the properties of the finite element are linear, 1eu  and eu  are the displacements 

in the local nodes e+1 and e, respectively. 
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3.1.2 Assumed modes method 

The AMM is based on the discretization of a system consisting of n elements and n 

degrees of freedom in order to find approximated solutions through numerical series (NEVES 

JR., 2008). For a particular case, where movement is only observed in one direction (for 

example, movements originated by pulling the fiber longitudinally), one can assume that the 

solution of a problem with known boundary conditions will be found through a product 

between a conveniently chosen spatial function and a temporal function. For a length of fiber 

treated as a thin cylindrical, linear, homogeneous bar, if one wishes to find the space-time 

dependent displacement behavior, the displacement function u(z,t), and consequently the 

strain (ε), is obtained considering the solution for 
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where j (z) is called the trial or assumed modes function, which is chosen in order to satisfy 

all boundary conditions of the problem and must be differentiable at least for half of the 

system order (MEIROVITCH, 1986). Thus, for a system described as a bar of length lt with 

non-uniform transversal section, similar to the structure of the acousto-optic modulator 

showed in figure 2.9, an appropriate trial function could be 
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In equation (3.9),  jq t  is the generalized coordinates vector of a system of differential 

equations described by 

         q t q t f t M K , (3.11) 

where M and K are the n × n-order mass and stiffness matrixes respectively, and   f t  is 

the generalized excitation vector. From equation (3.9), one can see that the solution is found 

as a linear combination of a base in the n-dimensional space. A solution for equation (3.11) 

can be found considering    sinf t t  either for transient or steady state regimes (NEVES 

JR., 2008). The strain field (z,t), necessary for calculating the grating spectrum with the 

TMM, is simply found differentiating (3.9) with respect to z. 

More details on the method formulation can be found in Appendix A, Neves, Jr. 

(2008) and Neves Jr. et al (2008). 
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3.1.3 Transfer matrix method 

3.1.3.1 Reflection grating – The FBG case 

Once the strain field for the steady-state regime is known along the fiber and, 

particularly, along the grating, one can calculate the optical response following the schematic 

diagram showed in figure 3.2. Note that the grating properties have to be adjusted to fit the 

simulated spectrum with the experimental one, in order to calculate the properties of the 

experimental grating. 

As mentioned in section 2.1.1.2, for a uniform grating, the effective refractive index 

perturbation in the core is described by equation 2.2, and repeated here for convenience 

 
     0

2
1 coseffn z n z z z


   

  
    

  
. (3.12) 

As the grating imposes a dielectric perturbation to the waveguide core, it forces coupling 

between the propagating modes. The formulation of the coupled-mode equations due to the 

index perturbation are found with the help of the “synchronous approximation” described by 

Kogelnick (1990), Hill and Meltz (1997) and Kashyap (1999). This approximation is 

represented by a set of coupled first-order differential equations written as 

 
   ˆ

dR
i R z i S z

dz
    (3.13) 

 
   *ˆ

dS
i S z i R z

dz
    , (3.14) 

where R(z) and S(z) represent the propagating and counter-propagating modes, respectively, 

which are given by 
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  , 

(3.16) 

where A(z) and B(z) represents the amplitudes of the co-propagating and counter-propagating 

modes, respectively. In these equations ̂  represents the general “dc” self-coupling 

coefficient, which is defined as 

 ̂    , (3.17) 

where τ is the “dc” coupling coefficient, defined by 
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 , (3.18) 

and ϑ is the “ac” coupling coefficient given by 

 

2


  . (3.19) 

The term ξ, called detuning (ERDOGAN, 1997) is defined as 

 1 1
2 eff

D

n 
 

 
  

 
, (3.20) 

where 2D effn    is the “design wavelength” for a Bragg scattering within an infinitesimal 

variation of the effective index  0effn  , i.e., a grating that is infinitely weak 

(ERDOGAN, 1997). 

The amplitude and power reflection coefficients 
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and 

 2
̂  , (3.22) 

can be shown to be 
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, (3.24) 

respectively. From (3.24), the maximum reflectivity 
max̂  for a Bragg grating is 

  2

max
ˆ tanh gl  , (3.25) 

and it occurs when ˆ 0  , or at the wavelength 

 
01 D
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, (3.26) 
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Figure 3.2 – Schematic diagram for the calculation of the resultant grating spectra. 

This description represents the situation for a uniform grating, where the average 

refraction index change is constant. However, the onset of the acoustical wave causes a 

broadening in the grating, making its pitch non-uniform and changing the optical path. 

Considering the non-uniformity of the grating, the reflection and transmission spectra from 

the two-mode coupling can be calculated by considering a piecewise approach, whereby the 

grating is divided into discrete uniform sections that are individually represented by a matrix. 

The solution is found by multiplying the matrices associated with each one of the sections. 

The characteristic equation is solved by making the matrix determinant equal to zero and the 

resulting polynomial enables the eigenvalues to be found. 

The FBG of length lg can be treated as a quadrupole, as show in figure 3.3, where R 

and S represent the co-propagating and counter-propagating modes, respectively. For 

convenience, the amplitude R(0) of the incident wave is normalized, in such a way that the 

maximum value is equal to unit at the origin (z = 0). 
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Figure 3.3 - Bragg grating schematic as a quadrupole. R and S represent the co-propagating and counter-

propagating modes, respectively. 

Splitting the grating in M uniform sections and defining Rj and Sm as amplitudes of 

the fields across the section j, the propagation through the section is described by the equation 
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j jB
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j j
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F , (3.27) 

where B

jF  is a 2 2  matrix given by (ERDOGAN, 1997) 
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where z  is the length of the j-th uniform section and 

 2 2ˆ
B    . (3.29) 

The coefficients ̂  and ϑ have local values at the j-th section. 

Since the matrices for each section are known, the application of the boundary 

conditions,  0 1R   for z ≤ 0 and   0gS l   for z ≥ lg, allows the final equation to be 

described as 
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F F , (3.30) 

where 
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Writing B

jF  in the form of 
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 (3.32) 

and substituting it in (3.30), the result is 
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From (3.33) one concludes that   111gR l f . Therefore, the reflected amplitude for each 

wavelength can be found as 
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and the reflected power will be given by    
2

̂    . 

Similarly, the transmitted amplitude will be given by 
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     , (3.35) 

and the transmitted power by    
2

̂    . 

In addition, the group delay and dispersion of the reflected light is determined from 

the phase, θ ≡ phase (ζ), of the amplitude reflection coefficient ζ. Moreover, since the first 

derivative d d   is directly proportional to the optical frequency ϖ, it can be identified as 

the time delay tdelay (in ps). In this way, the dispersion coefficient D (in ps/nm) is defined as 

the rate of change of time delay with wavelength and is given by 

 2

2 2

2delaydt c d
D

d d

 

  
   , (3.36) 

where c is the speed of light in vacuum. The dispersion slope, Ds (ps/nm
2
), is given by 

 
s

dD
D

d
 . (3.37) 

3.1.3.2 Transmission grating – The LPG case 

The TMM formulation applied for transmission gratings is similar to the one 

presented for reflection grating. The change is that, instead of considering the energy coupled 

to a counter-propagating mode, the light is coupled to a co-propagating mode, for instance 

light propagating in mode “1” being coupled to a co-propagating mode “2”. Figure 3.4 shows 
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the quadrupole characteristics of the LPG (figure 3.3 modified), where now R represents the 

amplitude of the forward propagating mode and S the amplitude of the co-propagating field to 

which the entering forward mode is coupled to, given by 
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(3.39) 

In these equations, the “dc” coupling coefficients are defined by 
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   , (3.40) 

where 
kte  represents the transverse mode fields (ERDOGAN, 1997). The general “dc” self-

coupling coefficient ̂  is defined as 

  11 22 1
ˆ

2 2

d

dz

  
 


   , (3.41) 

and the detuning coefficient, which is assumed to be constant along z, is 

 1 1
eff

D

n 
 

 
  

 
. (3.42) 

where 
D effn    is the design wavelength for an infinitesimally weak grating. As for Bragg 

gratings, ξ = 0 corresponds to the grating condition predicted by the qualitative picture of 

grating diffraction, or 
effn    (ERDOGAN, 1997). 

 

Figure 3.4 - LPG represented as a quadrupole in the TMM. 
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For a uniform long period grating ̂  and ϑ are constants, however, ϑ cannot be 

written simply as in (3.19). For coupling between two different modes the overlap integral 

(3.40) must be evaluated numerically. Like the analogous Bragg-grating equations, (3.13) and 

(3.14) are coupled first-order ordinary differential equations with constant coefficients. Thus, 

closed-form solutions can be found when appropriate initial conditions are specified. The 

transmission can be found by assuming only one mode is incident from z    (i.e. R(0) = 1 

and S(0) = 0). The respective power bar and cross transmission 
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can be shown to be (YARIV, 1973) 
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respectively. The maximum cross transmission (which occurs when ˆ 0  ) is found to be 

  2

,max sin gt l  , (3.47) 

and it occurs at the wavelength 
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(3.48) 

For coupling between a core mode and a cladding mode with an induced index change in the 

core only, 11   from (3.40), 22 11  . Therefore, (3.48) can be approximated as 
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where 
0 effn n  . 
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The matrix formulation for the transmission grating case is similar to the one 

presented in section 3.1.3.1, differing only for some coefficients. For transmission gratings 

the matrix c

jF  is written as 
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F , (3.50) 

where 

 2 2ˆ
c    . (3.51) 

3.1.4 The combination of the mechanical and optical methods 

The combination of the numerical approaches, mechanical and optical, is made 

through the wavelength shift in every single segment of the fiber (element) submitted to the 

strain field ε, as written in equation (2.5) for the Bragg grating case and in equation (2.14) for 

the LPG case (QIN et al, 2000). These relations are found to be 

    0 1 1B B e zz p         (3.52) 

and 

    1 1m z m zp          (3.53) 

for the FBG and LPG case, respectively. Equations (3.52) and (3.53) accounts for both the 

effect of the period variation and the change in the effective refractive indices due to the strain 

field in each point inside the grating through the strain-optic effect. However, in the FBG 

case, the predominant effect is the displacement of the modulation planes, while for the LPG, 

changes in the effective index and optical path are the main effects. These methods simulate 

the excitation of longitudinal and flexural modes in the fiber through the projection of the 

displacement field in the one dimensional space. A thorough description of how the numerical 

methods and TMM are used together is found in Oliveira et al (2008a), Oliveira (2008b) and 

in Neves Jr. (2008). 

3.1.5 3-D finite element simulation 

The numerical approaches AMM, FEM and TMM help to calculate the optical 

spectra, but do not give information on the way the acoustic wave affects the fiber, i.e. which 

mechanical modes are generated. For this purpose a commercial finite element software 
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package with graphical interface is used in order to calculate and visualize the excited 

vibration modes of the silica horn / optical fiber set used in the experiments. The model was 

constructed based on the device real dimensions, similar to the one shown in figure 3.1. By 

means of this software, it is possible to access the natural vibration modes being excited in the 

fiber (flexural, longitudinal, torsional, or hybrid, i.e. a combination of them), depending on 

the acoustic frequency applied to the base of the silica horn (OLIVEIRA et al, 2010a; 

OLIVEIRA et al, 2009b). 

3.2 EXPERIMENTAL SET-UP 

This section describes the device and the experimental setup, which are the basis of 

all results obtained employing the acousto-optic modulation effect. 

3.2.1 The Acousto-optic modulator 

Each one of the components of the modulator presents its particular characteristics. 

The main portion of the modulator is shown in figure 3.5. The device consists of a 

piezoelectric (PZT) disc, a silica horn and a fiber, which contains the grating, so built that it 

allows the transmission and reflection spectra to be measured. 

 

Figure 3.5 - The acousto-optic modulator. 

Each part of the modulator is presented separately, and the whole experimental 

assembly is discussed at the end. This helps to understand the function of each one of the 

components. 
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3.2.1.1 The piezoelectric disc 

In order to create an acoustic perturbation in the fiber it is essential to use an acoustic 

transducer or even an ultrasound transducer. The most common acoustic wave generator is the 

piezoelectric transducer (PZT), which is based on the piezoelectric effect, first reported by 

Pierre and Jacques Curie in 1880 (LIPPMAN, 1881; JAFFE, 1958). They described changes 

of the physical dimensions of specific materials when an electric field is applied on them. 

Additionally, the effect was found to be reversible (works the other way around), i.e. the 

application of strain to a piece of material generates an electrical field. 

Usually, PZTs are made of a ceramic material, and it is shaped for specific 

applications. For example, the PZT used in this work is a ceramic disc with dPZT = 25 mm 

diameter, and tPZT = 2 mm thick, in order to achieve resonance frequencies around f = 1 MHz. 

A hole of diameter dh = 1 mm was drilled in order to allow the fiber pass through the disc. 

Some of the discs were fabricated by Physik Instrumente (PI, 2010). The chosen element was 

the PIC 151, which is a part of the so called “soft” PZTs, composed by zirconate and titanate 

materials with high permittivity, so high coupling factor and high piezoelectric charge 

constant. This material is the standard composition of most actuators and employed in low-

power ultrasonic transducers and low-frequency sound transducers (PI, 2010). 

The resonance frequencies of one of the ceramics were measured with an impedance 

analyzer. The used instrument was an Agilent 4294A Precision Impedance Analyzer. Figure 

3.6 shows graphs of impedance and phase over frequency for the PZT used in the work. 

Figure 3.6(a) shows the behavior considering the frequency range from 0 to 1,2 MHz, while 

figure 3.6(b) shows a zoom in low frequencies (50 to 100 kHz). Several resonances are 

observed, however, the most evident one is around f = 1 MHz (the condition of resonance is 

straightforward and it is characterized by minimum impedance and zero phase). 

http://www.physicinstrumente.com/
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Figure 3.6 - Frequency characterization of the PZT ceramic used in the experiments in the range from 

 (a) 0 to 1,2 MHz and (b) a zoom in the low frequency range, from 50 to 100 kHz. 

A Fabry-Perot fiber interferometer for measuring vibration amplitude and resonances 

was also built in order to verify the amplitudes of the PZT displacement and check the 

measurement performed with the impedance analyzer. The first resonance peak was analyzed 

and compared with the value obtained via the impedance and phase measurement. Figure 3.7 

shows the first resonance of the PZT, around f ≈ 90 kHz (also shown in figure 3.6(a)). Figure 

3.7(a) shows the characterization using the extrinsic Fabry-Perot interferometer (EFPI), while 

figure 3.7(b) shows the electronic characterization through the measure of the impedance and 
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phase of the electrical signal. One sees that the measurement performed with the EFPI is 

consistent with that of the impedance analyzer. The maximum longitudinal displacement 

measured using the EFPI (considering VPZT = 10 V voltage) was uPZT = 8,4 nm (SILVA et al, 

2011), a parameter that cannot be measured with the impedance analyzer. 

Along this work, different elements were used, which present different resonance 

characteristics. However, all of them present the same dimensions, which results in a similar 

behavior, differing only on the composite material. 

3.2.1.2 The Silica horn 

The silica horn is used to couple the acoustic energy into the optical fiber, which 

contains the grating. Liu et al (1997) reported the importance of such device to acousto-optic 

applications. In Liu’s device, the silica horn is attached longitudinally to the PZT, allowing 

the generation of longitudinal waves in the grating. The horn diameter is reduced over its 

lsh = 70 mm length from dsh = 3 mm (base diameter) to dsht = 125 μm (tip diameter), and then 

fused to the grating. 

Oliveira et al (2008) reported the effect on the acoustic coupling when the 

dimensions of the horn vary. It was noticed that, as the diameter of the horn base increases, 

keeping the density of energy applied to the base constant, the strain effect increases, while 

variation in its length does not affect the final strain field experienced by the grating. The 

silica horn used in this work was made at the chemistry department of the University of 

Aveiro, Portugal. The initial horn design was built to follow the specification: larger base 

diameter and small length, according to the PZT dimensions. The necessity of having a hole 

to allow the fiber passes though the silica horn, made the choice of a proper capillary tube 

crucial. Figure 3.8 shows the original capillary tube and the obtained silica horn after the 

process of pulling. The final dimensions of the silica horn were: base diameter dsh = 8 mm, tip 

diameter dsht = 0,8 mm and length lsh = 46 mm, as shown in figure 3.1. Figure 3.9 shows a 

photography of some of the horns and the optimized one (highlighted). 
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Figure 3.7 - First resonance of the PZT measured by (a) the EFPI and (b) the impedance analyzer. 
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Figure 3.8 - Original capillary tube and the obtained silica horn after the process of pulling. 

 

Figure 3.9 - Photography of the fabricated horns. Highlighted, the horn that presented the best 

performance. 

The gratings used in the experiments were written using different lasers in different 

laboratories. Gratings were written in Brazil, at the LASER laboratory of UTFPR, in Portugal 
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at the Instituto de Telecomunicações of University of Aveiro, and in Australia at the 

Interdisciplinary Photonics Laboratories (iPL). Usually, the gratings length was chosen to be 

the longest possible, so to enhance the acousto-optic interaction. However, the available phase 

masks presented a physical limitation. For example, the longest grating fabricated was an 

FBG written at iPL by means of a phase mask with lpm = 50 mm and an LPG using an 

amplitude mask with lam = 50 mm. 

3.2.1.3 The Fixing stages 

The fixing stages here are considered as the set formed by the PZT, the silica horn, 

the fiber with the grating, the holders and the translational stages. The holders are in charge to 

embrace the set and allow the generation of a stationary wave, i.e. the resonance conditions 

are given by the holders. The holder set is composed by two aluminum parts, one for the PZT 

and the other for the optical fiber. Figure 3.10 shows the diagram of the main part of the set, 

together with its dimensions. The space between the holders, lying between the silica horn 

and the piece of fiber length is called interaction length, and during the experiments this 

distance was set to lb = 96 mm. 

 

Figure 3.10 - Dimensions of the fixing stages of the acousto-optic modulator. 

When assembled, the resonance conditions of the PZT slightly change. This can be 

noticed measuring again the impedance and phase of the PZT. Figure 3.11 shows the 

comparison before and after the modulator assembly was put in place. One observes that the 

resonance conditions changed and some resonances were weakened, however, the frequency 

of each resonance did not change. Figure 3.12 shows the modulator assembled on top of 



82 

 

translational stages. The translational stages, however, have springs that damp the acoustic 

wave. This way, the translation stages have to be avoided for dynamic characterization. 

 

Figure 3.11 - Electrical phase measurement of the PZT before (dotted lines) and after (solid line) the 

assembling in the holders. 

 

Figure 3.12 - The set PZT-silica horn-fiber assembled on top of translational stages. 
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3.2.1.4 The acousto-optic modulator 

The acousto-optic modulator consists of the fixing stages connected to an arbitrary 

RF signal generator for excitation of the PZT disc, an optical source for the interrogation of 

the grating, a polarization controller, an optical spectrum analyzer (OSA) and/or a 

photodetector for measuring the grating parameters, as shown in figure 3.13. The applications 

proposed in this work are based on this setup. 

 

Figure 3.13 - Experimental assembly of the acousto-optic modulator. 
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4 CHARACTERIZATION OF THE MODULATOR 

As different mechanical modes can be excited using the silica horn – fiber set, the 

modulator has to be characterized in order to give information about the way it affects the 

grating spectrum. A 3-D simulation based on finite elements method was performed in order 

to show the mechanical modes excited in the fiber. 

4.1 RESONANCE MODES OF THE SILICA HORN – FIBER SET 

Using the commercial software ANSYS
®
, simulations demonstrated that different 

modes can be excited in the fiber, depending on the frequency applied to the PZT, considering 

the longitudinal excitation of the base of the silica horn. A modal analysis was first performed 

and showed that flexural modes are predominant in the low frequency regime, due to the 

buckling load that acts in the fiber, generating bends. The resultant flexural acoustic 

wavelength can be calculated using the equation 

 
ext

s

ac

f


   (4.1) 

where a is the fiber radius, cext is the extensional acoustic velocity in the material and f is the 

acoustic frequency applied on the base of the silica horn (see figure 4.2), whose value fits well 

with the mechanical simulation. For example, considering a longitudinal frequency f = 38,508 

kHz on the basis of the silica horn which corresponds to the 49
th

 resonance mode of the silica 

horn – fiber set, the calculated acoustic wavelength is λs = 5,2 mm, which is comparable to the 

result obtained in the simulation, as shown in figure 4.1. 
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Figure 4.1 - Flexural vibration of the 49th vibration mode in the fiber at f = 38,508 kHz. 

To perform the simulation, 24.323 finite elements containing 51.818 nodes were 

used as shown in figure 4.2. The boundary conditions were chosen as follows: 

 Fixed supports were added to the base and the fiber end; 

 The movement of the silica horn base was restricted only to the longitudinal axis. 

The first 1.000 modes were calculated using the modal analysis without pre-tension 

on the fiber. However, as the PZT supports frequencies up to ~1,2 MHz (see figure 3.5), only 

the first 450 modes were considered. A variety of mode shapes were observed, considering 

the proposed dimensions of the modulator. Examples of mode shapes are shown in figure 4.3. 

Such modes are classified as flexural (presence of bends), longitudinal (absence of bends) or 

radial (radial expansion), whose frequencies are also listed in table 4.1. The classification is 

done simply by observation of the resulting excitation. 

 

 

 

 

 

 

 

 

 



87 

 

Table 4.1 - Mode and correspondent frequency and shape. 

Mode Frequency (kHz) Mode shape 

11 3,012 Flexural 

43 31,133 Radial 

51 41,692 Flexural 

57 50,305 Longitudinal 

86 99,290 Longitudinal 

112 154,730 Longitudinal 

113 155,690 Radial 

117 161,350 Flexural 

192 373,650 Radial 

 

 

 

Figure 4.2 - Finite elements used on the mechanical simulations. 
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Figure 4.3 - Different mode shapes observed in the excited fiber: flexural, longitudinal and radial. The 

term n represents the mode number. 

In order to characterize the modulator cell, the frequency applied to the PZT was 

swept from f = 0 to 1,2 MHz. Spectral changes on the gratings were observed using an optical 

spectrum analyzer. However, even though the characterization of the PZT and the silica horn - 

fiber set were presented alone, the frequencies where the effects on the gratings were 

observed are a combination of the resonance of the PZT and the set, thus, different values 

than the presented were achieved. 

4.2 THE FLEXURAL VIBRATION OF THE FIBER 

4.2.1 Fiber Bragg grating – The reflectivity modulation 

When the fiber containing the grating is excited by flexural waves, the effects 

described in section 2.2.1.2 are achieved. Using FBGs, the main effect is the decrease of the 

grating reflectivity due to changes in the optical path and coupling of light to higher order 

modes. This decrease is observed both on reflection and transmission spectra. 

Figure 4.4 shows the reflectivity and transmissivity behavior of a FBG, when excited 

with a flexural wave at f = 54 kHz. When the PZT load is varied from VPZT = 0 to 10 V, the 

reflectivity decays 60%, following a non-linear behavior, and the transmissivity increases 

18 dB. More evident results are achieved by enhancing the PZT load. 
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Figure 4.4 - Reflectivity and transmissivity behavior of a FBG. Inset: The reflectivity behavior depending 

on the PZT load. 

Figure 4.5 shows the spectrum behavior of the FBG when a flexural wave excites the 

fiber at f = 115 kHz. In this case, the reflectivity decay (7 dB) of the grating does not present 

the same attenuation observed in the example of figure 4.4, where the transmission 

enhancement is 18 dB. It means that the flexural acousto-optic effect is changing the 

reflectivity by changing the optical path and effective refractive index and the transmissivity 

by coupling light into cladding and radiation modes. 

1530,6 1531,2 1531,8 1532,4

-64

-56

-48

-40

 AW off

 

T
ra

n
s
m

is
s
iv

it
y
 (

d
B

)

Wavelength (nm)

 @ 54 kHz

18 dB

0 2 4 6 8 10

40

60

80

100

R
e

fl
e

c
ti
v
it
y
 (

%
)

PZT Load (V)



90 

 

 

Figure 4.5 - Reflection spectrum of a FBG when excited by flexural acoustic waves at f = 115 kHz. 

4.2.2 Long period grating 

Using LPGs, the effect of bends on the spectrum is more evident when resonance 

frequencies are chosen. The periodic bend induced by the acoustic wave changes the optical 

path, modifies the difference between the effective refractive indices of the core and cladding 

modes and modulates the intermodal overlap integral, consequently reducing the coupling 

coefficient between them. Figure 4.6 shows the behavior of the LPG spectrum when the 

acoustic frequency is swept from f = 52 to 74 kHz. Particularly, the more evident effects in 

the LPG spectrum appears at f = 53,3 kHz and f = 60,6 kHz (two first peaks of figure 3.5(b)). 

Figure 4.7 shows the minimum transmissivity and dip wavelength behavior of the LPG 

spectrum (projection of figure 4.6) depending on the excited frequency. It can be used in order 

to identify the resonance frequencies of the set. 
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Figure 4.6 - LPG spectrum behavior when the excitation frequency is swept from f = 52 to 74 kHz, 

considering a PZT load at VPZT = 10 V (note that the y-axis (transmissivity) is upside down). 

 

Figure 4.7 - Resonance spectrum of the modulator, measured by means of acousto-optic effect in LPG. 
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at other resonances, however, the magnitude of the effect is lower than that achieved at f = 

60,6 and 53,3 kHz, which are the strongest observed with the silica horn – fiber set used in the 

experiments. 

 

Figure 4.8 - LPG spectrum behavior when the PZT load varies from 0 to 10 V at f = 60,6 kHz. 

Simulations were performed using the numerical approach presented in section 3.1, 

through the combination of the transfer matrix and assumed modes methods. Figure 4.9 

shows the experimental and simulated (using TMM) transmission spectrum of the LPG when 

no acoustic wave is applied to the fiber (fiber at rest). The TM method provides an excellent 

match of the wavelength dip for the transmission band, but delivers a slightly different 

behavior concerning the device bandwidth. 
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Figure 4.9 - Simulated and experimental spectrum of the LPG. 

Figure 4.10 shows the minimum transmissivity of the LPG over the load range from 

VPZT = 0 to 10 V, also related with the force applied to the horn base, at the excitation 

frequency of f = 60,6 kHz. At VPZT = 10 V the force delivered by the PZT corresponds to 

P0 = 0,042 N (verified by comparison with numerical results). Over the PZT load range, 

~ 15 dB decrease of the attenuation peak is achieved, however, this relationship, between the 

amplitude of acoustic wave and the wavelength shift, is quasi-linear up to VPZT = 6 V, and 

then it levels up and keeps stationary. Figure 4.11 shows the shift of the dip wavelength 

(Δλ = 31,6 nm) over the same voltage range. At VPZT = 6 V there is a transition region, where 

the main peak is completely suppressed and secondary peaks appear in the spectrum. In this 

case, the initial conditions of the overlap integral is changed, presenting two distinct solution, 

so generating two attenuation bands in the transmission spectrum. 
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Figure 4.10 - Experimental and simulation results for the behavior of the minimum transmissivity at the 

peak wavelength versus the PZT load and the force. 

 

Figure 4.11 - Experimental and simulation results for the behavior of peak wavelength when the acoustic 

wave at f = 60,6 kHz excites the grating. 
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shown in figure 4.12. At this frequency for VPZT = 10 V, the formation of two attenuation 

peaks (blue and red peaks) can be clearly seen, which are separated Δλ = 34,2 nm apart. 
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Besides the change in the optical path, changes in the difference between the effective 

refractive indices of core and cladding modes, as well as the break of degeneracy of the 

circular cladding modes, lead to the modification of the LPG spectrum (BLOCK et al, 2006; 

ALLSOP et al, 2004). Furthermore, experiments showed that no significant polarization 

dependence exists (BLOCK et al, 2006; CHEN et al, 1999). The experimental behavior is 

verified by the simulation (considering F = 0,06 N due now to a different mechanical 

resonance), whose result fits well the experimental curve, particularly at the long wavelengths 

(red peak). A total shift of Δλ = 20,6 nm is achieved by driving the PZT from VPZT = 0 to 10 V 

in relation to the peak at rest (no acoustic wave). 

 

Figure 4.12 - LPG spectrum behavior for PZT load at VPZT = 10 V (P0 = 0,06 N) at f = 53,3 kHz. 

During the experiments, it was noticed that for higher frequencies (in the f ~ 1 MHz 

range), where the predominant vibration mode is longitudinal (OLIVEIRA et al, 2010a) no 

such effect takes place in the LPG spectrum. The explanation for this absence of grating 

modulation is that the induced changes in the refractive indices are negligible and the 

longitudinal displacement of the grating planes does not affect the LPG spectrum. However, 

at this point, it is interesting to compare with the FBG case, for which the period is much 

smaller. In FBGs small changes in the grating modulation planes do change the spectrum, 

resulting is the modulation of the grating at higher frequencies (OLIVEIRA et al, 2008a; 

OLIVEIRA et al, 2010a). 
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4.3 THE LONGITUDINAL VIBRATION OF THE FIBER 

In the high frequency regime (frequencies higher than f ~ 500 kHz) the predominant 

vibration modes in the fiber are longitudinal. However, even though the predominant resonant 

modes when low frequencies are applied are flexural, particular frequencies can generate 

longitudinal vibration modes in the fiber as well. In fact, different resonant modes have been 

excited in the fiber depending on the applied frequencies. From simulation results obtained 

with ANSYS and from the behavior of grating spectra, one can see which mode (flexural or 

longitudinal) is predominant at a particular frequency. 

For frequencies around 200 kHz, a flexural effect was expected in the grating 

spectrum, however, for some particular frequencies a side lobe generation was obtained. For 

example, figure 4.13 shows the reflection spectrum of the FBG when f = 223,3 kHz excites 

longitudinally the grating with PZT load at VPZT = 5 and 10 V.  

 

Figure 4.13 - FBG reflection spectrum of the FBG when excited by f = 223,3 kHz longitudinal acoustic 

wave. 

Sweeping the frequency from 0 to f = 1 MHz, other longitudinal modes can be found, 

and the behavior of the side lobes can be tracked (considering the first and second 

symmetrical lobes from the center peak – called primary and secondary lobules) as shown in 

figure 4.14. The behavior follows the theoretical curve calculated using the numerical 

approach presented in section 3.1 (OLIVEIRA et al, 2008a). Figure 4.15 shows a comparison 
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of the experimental and theoretical FBG spectrum considering an acoustic excitation at 

f = 1,021 MHz with VPZT = 10 V, which correspond to P0 = 1 N applied to the base of the 

silica horn, considering the silica horn –fiber set presented in section 4.1. The theoretical 

curve fits well the experimental one in wavelength and reflectivity. As for the 

characterization, different experimental assemblies (silica horn, fiber tension, FBG length, 

holders, etc.) were used to perform the experiments and, moreover, under different physical 

conditions (temperature, humidity, etc.), slightly divergent results are presented along the 

thesis. 

 

Figure 4.14 - Linear behavior of the primary and secondary lobes of the FBG spectrum, depending on the 

applied frequency. 
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Figure 4.15 - Experimental and simulated results for f = 1,021 MHz acoustic wave excitation. 

The capability of generating side lobes in the FBG spectrum opens up the possibility 

of having a tunable sampled grating, where the period of the side lobes is dependent on the 

applied acoustical frequency and the intensity of the PZT load. Figure 4.16 shows a 3-D graph 

that shows the behavior of the side lobes reflectivity, when the applied load varies from  

VPZT = 1 to 10 V. This behavior is founded to be nonlinear and is characterized by an increase 

of the side lobes reflectivity while central wavelength peak decreases, as shown in figure 4.17. 
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Figure 4.16 - Growing of side lobes as the PZT load increases. 

 

Figure 4.17 - Side lobes growing and peak wavelength decreasing behavior. 
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temperature and fiber tension. However, every assembled modulator presents a particular 

behavior depending on the excited frequency. For example, pure longitudinal modes usually 

take the time correspondent to the acoustic wave to travel at cext = 5740 m/s, which 

corresponds to the speed of sound in the silica optical fiber, calculated using the equation: 

 72,9 GPa

2200 kg/m³
ext

E
c


  . (4.2) 

However, when the excited mode is flexural, the propagating time is higher, which 

correspond to a lower speed of sound. For a given frequency, the speed of flexural wave can 

be measured using the follow relation: 

 
f extv ac f , (4.3) 

where f is the frequency applied to the PZT. Even though in these equations the external and 

mechanical conditions are not included, the speed of sound is strongly dependent on them. 

Another factor is the damping of the acoustic wave, which makes the measured time differ 

from the theoretical value. However, this damping characteristic can be used further to 

construct a sensor. 

The modulator showed in figure 3.13, when operating in reflection for side lobes 

generation (high frequency regime), can be used to be a measure of the switching time. A 

photodetector is used to interrogate the reflection of an optical channel positioned on the same 

wavelength of a primary side lobe of a FBG, considering a longitudinal excitation at 

f = 617 kHz. When the acoustic wave is turned on, the acoustic excitation takes approximately 

tst = 44 μs to change the FBG reflectivity. This time represents the period taken to allow the 

optical channel to be reflected by the primary side lobe and to be detected by the 

photodetector. Figure 4.18 shows this time, measured when the acoustic wave is “on” and 

taken at the point where the reflectivity response grows and remains constant. Indeed, the 

time that can be considered for practical applications, in this case, is ts = 22 μs, which 

corresponds to the time the standing acoustic wave takes to be generated in the region 

between the tip of the horn and the fiber holder (which corresponds to the grating length). The 

delay observed between the RF and optical signal is related to the time the acoustic wave 

takes to propagate along the interaction length (silica horn + fiber) and the inertia of the 

system. Optimizing the experiment through the suppression of the mechanical damping that 

acts on the modulator, for instance, removing the device from any positioning stage (which 

always have a damping spring), faster switching time can be achieved. For example, by fixing 

the modulator in a rigid table, the time measured was ts = 17 μs (MARQUES et al, 2011). 
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Using this time and taking the interaction length as lt = 95 mm, the measured acoustic speed 

in the fiber is cext = 5588 m/s, which is comparable with values found in the literature 

(ELMORE and HEALD, 1985). This fast behavior is achieved basically due to a good 

coupling of the acoustic wave between the horn and the fiber, which reduces the mechanical 

damping. This configuration can be applied in a series of devices where fast dynamic control 

is required. 

 

Figure 4.18 - The time response of the modulator when driven by f = 617 kHz longitudinal acoustic wave. 

In the case of excitation of flexural waves, the time taken to change the spectrum 

characteristics is larger, as seen in figure 4.19. A tunable laser has its center wavelength tuned 

to the dip wavelength of a LPG and, when excited by f = 58,8 kHz acoustic wave, the 

transmission at that wavelength is enhanced, and an increase on the photodetector signal is 

experienced. The acoustic wave takes approximately tst = 596 μs to change the spectrum. 

Furthermore, the switching time for practical applications is around ts = 211 μs. The time tst 

can be understood as the time taking to the standing acoustic wave takes place. 
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Figure 4.19 - Switching time of the modulator when driven by f = 58,8 kHz flexural acoustic wave. 
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5 APPLICATIONS 

In this section, applications of the modulator are proposed and their performance 

verified through experiments. Such applications are based on the assembled silica-horn 

structure and consist of a fast add-drop (OLIVEIRA et al, 2009a), a tunable dispersion 

compensator for WDM channels (POHL et al, 2010; OLIVEIRA et al, 2010b), a new method 

for writing complex FBG profiles (OLIVEIRA et al, 2010c; 2010d; 2010e) and a compact 

dip-style viscosity sensor (OLIVEIRA et al, 2010f; 2010g). The design of these devices is 

presented and the main results summarized. 

5.1 FAST ACOUSTO-OPTIC ADD-DROP MULTIPLEXER 

5.1.1 Experimental assembly 

The modulator itself works as an acousto-optic add-drop multiplexer (AO-ADM), as 

one can see from the schematic diagram shown in figure 5.1. The AO-ADM is based on the 

use of acoustical waves to decrease the FBG reflectivity (using both flexural and longitudinal 

modes - see figures 4.5 and 4.13), by changing the optical path and coupling coefficients. A 

uniform FBG (lg = 25 mm) was written using the direct writing technique through the use of a 

phase mask and a 248 nm UV laser. 

 

Figure 5.1 - AO-ADM schematic diagram. 
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For testing the device, a WDM channel source (tunable laser) to generate the optical 

channel, an arbitrary function generator to control the excitation of the acoustical wave and an 

OSA were used. A 3-port optical circulator was employed as the input and output of the AO-

ADM (left hand side of the modulator in figure 5.1). The modulator is attached to port 

number 2. When the acoustic wave is off, the channel λB, inserted through port 1 and whose 

bandwidth is much narrower than the grating bandwidth, is reflected by the grating and exits 

port 3. In this configuration the grating acts as a passive element that reflects the optical 

channel to the output of the ADM, dropping the channel λB. When the acoustic wave is turned 

on, the resonance condition of the grating weakened and no coupling between the counter-and 

co-propagating modes takes place. This makes the grating reflectivity decreases allowing the 

addition of a channel (λB) in the optical link. 

5.1.2 Results 

The performance of the fast acousto-optic add-drop multiplexer was tested using the 

property of suppressing the reflectivity of the FBG through longitudinal waves (for a slower 

device, flexural waves can be used as well). In the “off” state the ADM works dropping the 

channel in port 3. In this case, figure 5.2 shows the FBG reflection spectrum and the 

Pc = 0 dBm reflected optical channel λB exiting port 3. On the other hand, figure 5.3 shows the 

transmission spectrum of the FBG and the Pc = -20 dBm transmitted signal. Indeed, the 

grating acts as a passive element that reflects the optical channel to the output of the ADM 

(port 3). 
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Figure 5.2 - Reflected spectrum and 0 dBm reflected optical channel (AW off). 

 

Figure 5.3 - Transmission spectrum of the FBG and the -20 dBm transmitted optical channel (AW off). 

When the acoustic wave is “on” the grating spectrum is modulated and its reflectivity 

suppressed. When longitudinal modes are excited, the effect is the superlattice modulation of 

the grating, as discussed in topic 2.2.1.1. When excited by flexural waves, the optical path 

changes due to the flexural vibration of the fiber, and the guided fundamental mode is first 
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coupled to an asymmetric cladding mode, whose field overlaps weakly with the core. As most 

of the field is in the cladding, there is a low overlap with the grating written in the core. The 

condition for coupling the energy back to the fundamental mode is given by the product of the 

coupling coefficient between the modes and the interaction length. For this to occur, this 

product must be equal to π (DIEZ et al, 2003), a condition that can be easily controlled with 

the voltage applied to the PZT. Figure 5.4 shows the corresponding decrease of the FBG 

reflectivity together with the undesired Pc = -4 dBm channel, as the suppression of the 

reflectivity is not 100 %. Figure 5.5 shows the modulated transmission spectrum and the 

Pc = -6 dBm optical channel that passes through the grating and exits the ADM on the optical 

link (ADD function). The frequency used to control the reflectivity was set at f = 227,3 kHz, 

which allows the excitation of a longitudinal vibration mode in the fiber. 

 

Figure 5.4 - The acousto-optic modulated reflected spectrum of the FBG and the undesired -4 dBm 

channel reflected by the grating and exited through the DROP port. 
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Figure 5.5 - Resultant transmission spectrum and the optical channel added to the optical link. 

5.1.3 Response time 

The response time was measured using a fast photodetector with the help of an 

EDFA to enhance the power of the optical channel. The photodetector is positioned at the 

transmission end of the grating. The acousto-optic effect took approximately ts = 61 μs to 

change the FBG reflectivity, having the on-set of the RF frequency as the initial time 

reference, as shown in figure 5.6. This result is comparable to the fastest result achieved using 

this modulator (see figure 4.18 in section 4.4). The fast switching time is due to an optimal 

coupling of the acoustical wave between the horn and the fiber by placing both parallel to 

each other. The FBG reflectivity decay is strongly dependent on the PZT applied load, i.e. 

increasing the voltage the reflectivity is decreased from 0 to -26 dBm over 50 V, as shown in 

figure 5.7. The curves represent an extrapolation of experimental data, as measured points 

were taken for voltages up to 10 V. 
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Figure 5.6 - Switching time of the ADD-DROP multiplexing. 

 

Figure 5.7 - FBG reflectivity behavior as a function of the PZT applied load. 
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case. Because of this, a dispersion compensator with reconfigurable parameters is necessary. 

It was noticed that, by using the acousto-optic effect, this goal can be achieved. 

5.2.1 Experimental Assembly 

The experimental assembly is based on the same configuration used for AO-ADM, 

however, instead of the OSA, an optical network analyzer (ONA) was employed. The 

dispersion compensation coefficient and the group delay ripple (GDR) were measured and the 

performance verified. 

5.2.2 Results 

The adjustment of frequency changes the group delay profile as well as the 

bandwidth, as one can see from the previous results. Figure 5.8 shows the reflection and 

group delay behavior when different acoustic frequencies excite the FBG (lg = 25 cm) at 

f = 58, 117 and 220 kHz, respectively. The resultant group delay is measured and the 

dispersion coefficient is estimated. When the acoustic frequency is set at f = 58 kHz, the 

dispersion is measured as D = -1353,87 ps/nm, while for an acoustic excitation at f = 117 and 

220 kHz, the measured dispersion is D = -287,38 and -856,50 ps/nm respectively, considering 

VPZT = 10 V. 

On the other hand, by adjusting the amplitude of the acoustic wave, changes in the 

group delay profile as well as the bandwidth are achieved. Figure 5.9 shows a comparison of 

simulated (using the FEM and TMM combination) and experimental results when no acoustic 

wave excites the FBG and when f = 117 kHz acoustic frequency is applied to the PZT, 

considering different voltages, (VPZT = 5, 8 and 10 V). Results show a good agreement 

between simulation and experimental data. It is clear that the dispersion can be tuned by 

adjusting the applied PZT voltage. Moreover, the useful bandwidth, over which the slope 

presents a linear behavior (from VPZT = 6 to 10 V) is Δλ ~ 0,21 nm. 

Since the group delay at f = 117 kHz presents the most linear behavior (see figure 

5.8) for the range between λ = 1544,25 and 1544,46 nm, this frequency was selected for more 

detailed analysis, as the linearity can be controlled by varying the PZT load. The dispersion 

can be controlled from -546,32 ps/nm (at VPZT = 6V) to -132,06 ps/nm (VPZT = 10V), as shown 

in figure 5.9. For PZT loads below VPZT = 6 V, the behavior is polynomial and it is not 

considered for dispersion measurements (when the acoustic wave is off, the dispersion is 

D = -2391,49 ps/nm). In summary, figure 5.10 shows the isolated result for the dispersion 
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behavior when the grating is at rest and when f = 117 kHz acoustic frequency excites the 

fiber, considering the mentioned wavelength range. 

 

Figure 5.8 - FBG spectrum and group delay behavior when the acoustic wave is set at  

f = 58, 117 and 220 kHz respectively (from the top). 

 
Figure 5.9 - Group delay simulation and experimental behavior when no acoustic wave excites the FBG 

and when the acoustic wave is set at f = 117 kHz, driven by VPZT = 5, 8 and 10 V PZT loads, respectively. 

Inset: GDR spectrum when the PZT load is set at VPZT = 10V. 
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Figure 5.10 - Group delay behavior when the grating is at rest and when the acoustic wave is set on at 

f = 117 KHz. 

The length of standard single mode fiber (SSMF) the device can compensate was 

estimated and shown in table 5.1. This length varies from 7 km (10 V) to 32 km (6 V), 

opening up the possibility to use this device in dynamic optical links, with variable length. 

The group delay ripple (GDR) coefficient (tGDR) is caused by weak reflections occurring at the 

edges and along the grating and it is a critical parameter in a communication link. The GDR 

coefficient is measured as the peak-to-peak time variation of the group delay dispersion (in 

this case, the values were obtained at f = 117 kHz, for loads varying from VPZT = 6 to 10 V. 

Results show values from tGDR = ±10,06 to ±5,55 ps (table 5.1). The inset graph of figure 5.9 

shows in details how the GDR is estimated (for VPZT = 10 V). The acoustically induced strain 

wave reduces the GDR, which can be explained as a “dc” apodisation of the grating, similar 

to that reported for “dc” apodisation with a tailored UV writing profile (ASHTON and 

CANNING, 2002; ASHTON et al, 2004). Acceptable values for commercial applications 

vary from tGDR = ±2 to ±10 ps, however, the average of GDR founded in datasheet of 

commercial equipment is tGDR = ±5 ps. 
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Table 5.1 - Dispersion and GDR values and length of SSMF that can be compensated (length of SSMF) 

when the grating is acoustically excited at f = 117 kHz. 

VPZT (V) D (ps/nm) tGDR (ps) Length of SSMF (km) 

AW off - 5 V -2391,49 (nonlinear) ±37,15 -- 

6V -546,32 ±10,06 32,14 

7V -437,92 ±7,94 25,76 

8V -320,54 ±5,99 18,86 

9V -236,30 ±5,71 13,90 

9,5V -180,26 ±7,60 10,60 

10 V -132,06 ±5,55 7,77 

 

Figure 5.11 shows a comparison of simulated results, obtained through the 

combination of FEM and TMM, and experimental results for the dispersion compensation as 

a function of the PZT load, at f = 117 kHz. It is noticed that by adjusting the load, it is 

possible to dynamically control the dispersion using a low power consumption acousto-optic 

device. 

 

Figure 5.11 - Simulation and experimental dispersion behavior as a function of PZT load. 
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5.3 PHASE-SHIFT FBG CONTROLLER 

5.3.1 Experimental assembly 

The lg = 50 mm long θ = π phase-shifted FBG (PS-FBG) used was inscribed in 

standard single mode photosensitive fiber with the phase mask technique, using a 248 nm KrF 

laser. 

The same experimental setup shown in figure 5.1 is used to characterize the phase-

shifted grating. However, an ONA was used. The acoustic frequency was swept over the 

range from 1 kHz to 1.3 MHz in order to investigate the effects on the phase-shift. 

5.3.2 Results 

Figure 5.12 shows a comparison of simulated (using the combined FEM and TMM 

methods) and experimental results when an acoustic excitation at f = 621 kHz is applied to the 

grating creating side lobes on the phase-shifted FBG (PS-FBG) spectrum. The inset figure in 

figure 5.12 shows the spectrum of the PS-FBG at rest. This is an example of the excitation 

with a longitudinal mode. However, when a flexural acoustic mode acts on the fiber, the 

effect is a reduction of the reflectivity of the grating, and, consequently, the reduction of the 

phase-shift strength. 

 

Figure 5.12 - f = 621 kHz acoustic excitation of the PS-FBG. Inset: PS-FBG spectrum when the fiber is at 

rest (AW off). 
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Figures 5.13 and 5.14 show, respectively, the reflection and transmission spectra of 

the PS-FBG when the PZT load varies for an acoustic excitation at f = 113 kHz. Figure 5.13 

shows that the acoustic excitation leads to a broadening of the phase-shift, which can be 

controlled by changing the load. At VPZT = 5V the notch is totally suppressed, thus values 

above that are not considered. Therefore, as the load is increased the notch depth decreases as 

shown in figure 5.13. In the same way, figure 5.14 shows transmission spectra considering the 

same excitation frequency. The left and right rejection bands depth decrease when the PZT 

load increases. The flexural acoustic wave leads to the destruction of the grating phase 

matching condition, turning the grating weaker. In summary, this device acts as a tunable 

rejection band as well as a narrow notch filter, when used in transmission and reflection, 

respectively. 

 

Figure 5.13 - Behavior of the PS-FBG reflection spectrum for several PZT loads at an acoustic excitation 

f = 113 kHz. 

By adjusting the applied load, it is also possible to control the 3-dB bandwidth of the 

left and right peaks. As the load is increased the side band bandwidth increases. This 

particular behavior is depicted in figure 5.15. The results show that the effect is symmetrically 

observed on both bands. 
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Figure 5.14 - Transmission behavior of the PS-FBG under influence of different PZT loads at f = 113 kHz 

acoustic (flexural) excitation. 

 

Figure 5.15 - 3-dB PS-FBG bandwidth behavior over the PZT load for the left and right transmission and 

reflection peaks at f = 113 kHz. 
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figure 5.16. A comparison of the simulated and experimental data shows a good agreement 
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increasing the PZT load the notch depth can be adjusted from 14 to 0 dB, while the rejection 

band depth varies from 3,4 to 0,3 dB. For higher loads (above VPZT = 5 V), the notch is 

completely suppressed, leading to devices that can be implemented using very low voltage 

sources. 

 

Figure 5.16 - Notch depth (reflection) and rejection band depth (transmission) simulation and 

experimental behavior as a function of the PZT load up to 5V (point at which the rejection band is totally 

suppressed). 

5.4 ACOUSTO-OPTIC METHOD TO SHAPE THE GRATING SPECTRUM DURING 

INSCRIPTION 

5.4.1 Experimental assembly 

For inscription of acoustic induced gratings, the writing technique through the phase 

mask was modified by placing the acousto-optic modulator in positioning rigs and aligning it 

within the interferometer setup. Figure 5.17 shows a diagram of the setup containing the 

acousto-optic modulator. 
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Figure 5.17 - FBG writing setup showing the modulator positioned in the assembly. 

Depending on the nature of the acoustic wave (longitudinal or flexural) different 

properties can be adjusted. Longitudinal waves generate a periodic strain in the fiber, which 

gives rise to the creation of side bands in the grating spectrum (called sampled gratings (HILL 

et al, 1994; EGGLETON et al, 1994)), due to its non-periodic grating planes profile. The 

period of the generated side bands is strongly dependent on the acoustic frequency applied to 

the PZT, and its amplitude, on the load (PZT voltage) of the RF signal. On the other hand, 

flexural waves can be used to create resonant cavities, for instance, in distributed feedback 

lasers (DFB), due to the insertion of a phase-shift in the FBG spectrum (KRINGLEBOTN et 

al, 1994; JIANG et al, 2004), and in Fabry-Perot interferometers based on Bragg mirrors 

(WAN and TAYLOR, 2002). Flexural waves can be used to switch the grating imprinting 

course while the laser beam is swept over the fiber. In this case, the light from the UV source 

is scattered and no light reaches the core of the fiber, avoiding the necessity of using an 

optical switch or a beam modulator. 

In summary, this new technique leads to fabrication of special gratings, known as 

sampled gratings, leading to profiles that form spectral combs, phase-shifted gratings and 

resonant cavities. 
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5.4.2 Results 

5.4.2.1 Sampled FBG 

A permanent change of the refractive index as the period of the grating is modulated 

under a periodic acoustic excitation during UV writing leads to sampling of the structure and 

the production of spectral combs. A permanently imprinted sampled grating structure, similar 

to those first produced by lithography in semiconductors (JAYARAMAN et al, 1993) and in 

an optical fiber as first proposed by Sceats (1994) is useful for creating complex filter devices 

suitable for signal multiplexing and demultiplexing or for serving as multiple narrowband 

transmission filters in photonic applications (HUBNER et al, 1998). The first sampled fiber 

gratings were written by sampling the period using a hair comb (HILL et al, 1994) and shortly 

after by introducing the sampling period through modulation of the UV beam over the length 

of the phase mask during the exposure (HILL et al, 1994; EGGLETON et al, 1994).Another 

method that leads to the same result uses the superposition of many gratings spectra until the 

summation superstructure has a similar sampling period (OTHONOS et al, 1994). 

Figure 5.18 shows a schematic diagram that helps to explain the resultant modulated 

periodic index modulation of the grating planes. As one can see, the period of the sampled 

gratings is strongly dependent on the longitudinal acoustic wavelength (Λs). After the 

inscription, the resultant FBG modulation planes profile is not uniform, indeed, is modulated 

by the acoustic wave, as shown in figure 5.18. 

 

Figure 5.18 - Schematic distribution of the grating planes, which gives rise to the side bands that appear in 

the FBG spectrum. 

Based on previous knowledge and experience, acoustic waves with frequencies at 

f = 1,021 MHz and f = 919 kHz were used (which correspond to two of the resonance 
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frequencies of the PZT). Figure 5.19 shows the resultant FBG spectrum when the acoustic 

wave is switched-off after the writing process at f = 1,021 kHz. The graph shows the 

formation of two side bands due to the modulation of the grating period, creating a sampled 

grating with 3 distinct peaks. The transmitted spectrum is also shown in figure 5.19. The 

separation between the generated side bands is Δλ = 0,56 nm, while the separation between 

the sampled peaks is P = 0,28 nm. Moreover, when the grating is excited after writing is 

concluded by an acoustic wave at the same frequency used during the writing process 

(f = 1,021 MHz @ VPZT = 10 V), a sampling of the sampled grating is achieved – each 

sideband is now sampled to generate other symmetric side bands, one between the central 

wavelength and the primary bands and one after that, as shown in figure 5.20. The separation 

of the bands are approximately the same when the acoustic wave is applied, i.e. P = 0,145 nm. 

This behavior follows the prediction for longitudinal acousto-optic effect, showing the ratio of 

P ~ 0,14 nm/MHz. 

 

Figure 5.19 - FBG reflection and transmitted spectra after the writing process under acousto-optic 

modulation of the fiber at f = 1,021 MHz. 
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Figure 5.20 - Post-writing excitation of the sampled grating at f = 1,021 MHz. This effect allows the 

possibility of sampling sampled gratings. 

Figure 5.21 shows another recording of a sampled grating. In this case, four side 

bands were formed due to the modulation of the grating period creating a sampled grating 

with 5 distinct peaks, considering the acoustic excitation at f = 919 kHz. The separation 

between the generated side bands is Δλ = 0,48 nm for the primary lobes and Δλ = 0,88 nm for 

the secondary ones (while for f = 1,021 MHz, the separation between the primary lobes is 

Δλ = 0,56 nm with no formation of the secondary ones, due, perhaps, to misalignment of the 

fiber during writing). Figure 5.22 shows the comparison between the FBG spectrum at rest 

after the writing process and the simulation result, achieved through the numerical approach 

that employs the FEM associated with the TMM. The case when no acoustic wave excites the 

fiber during the writing process is also shown in figure 5.21. 
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Figure 5.21 - Comparison between the achieved FBG spectrum when no acoustic wave excites the fiber 

during the writing process and when an f = 919 kHz acoustic wave excites the fiber. 

 

Figure 5.22 - Experimental and theoretical comparison of the FBG inscription in acoustically excited 

optical fiber. 
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5.4.2.2 Phase-shifted fiber Bragg grating and Fabry-Perot cavities 

The possibility of modulating the fiber during the writing process leads to other 

special gratings, depending on the nature of the acoustic excitation. In section 5.4.2.1, the 

discussion about the excitation of longitudinal waves, giving rise to the generation of 

permanent sampled gratings, showed the feasibility of the technique. In the same way, by 

means of controlling the flexural excitation, it is possible to write special types of gratings. 

Basically, the idea is to use the acoustic wave to switch the writing process, whose 

mechanism is based on the scattering of the light and misalignment of the fiber core. The 

diagram shown in figure 5.23 exemplifies the expected effect. When the fiber is at rest, the 

UV light induces a refractive index change in the core (figure 5.23(a)), whereas when the 

fiber is flexurally excited (figure 5.23(b)), there is no photoinduced changes because the 

dither of the core in relation to the interferometric pattern makes the light scatter, avoiding the 

UV light to reach the fiber core. This effect can be used to create interferometric cavities, 

formed by a comb of gratings (Bragg grating mirrors), intrinsic fiber Fabry-Perot (F-P) 

interferometers and phase-shifted FBGs. 

 

Figure 5.23 - Diagram of the photoinduced refractive index change through the phase mask technique  

(a) when the fiber is at rest and (b) when a flexural acoustic wave excites the fiber. 
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Figure 5.26 shows the FBG spectrum written using the same setup of figure 5.17, 

considering the excitation of a flexural wave during the sweep of the UV beam over the fiber. 

In this case, the acoustic wave is not constantly on, but periodically turned on and off for an 

certain period of time, tb (using the burst function of the RF signal generator). Considering a 

RF signal with 100 cycles, for different frequencies, the burst mode of the RF generator 

creates a signal that switches the acoustic excitation, for a certain period of time, on and off. 

The graph that represents the RF excitation time is shown in figure 5.24, where the tb 

corresponds to the interval between bursts of 100 cycles, since the RF frequency at  

f = 40,9 kHz is considered. 

 

Figure 5.24 - Burst mode excitation of the PZT. The burst time, tb, corresponds to the time between bursts 

of 100 cycles. 

In summary, when the acoustic wave is on, no grating is written in the fiber. By 

using the frequency generator in the burst mode, it is possible to set the distance between the 

gratings, which can be controlled over the acoustic frequency and the burst time. 100 cycles 

was first chosen randomly, but it represents the correspondent length of the grating. The 

sweep time of the UV beam over the phase mask is also critical. Therefore, a good control of 

these parameters allows the generation of special fiber gratings. Figure 5.25 shows a 

schematic of the technique adopted for writing Fabry Perot interferometers using Bragg 

gratings mirrors. 
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Figure 5.25 - Schematic diagram of the Fabry Perot interferometers writing process under excitation of 

flexural acoustic waves. 

Figure 5.26 shows the fabricated F-P interferometer considering different frequencies 

applied on the modulator. The solid curve represents a standard F-P interferometer formed by 

six gratings of approximately lg ≈ 4,5 mm uniformly separated, obtained by sweeping the 

modulated UV beam over the phase mask length (lpm = 50 mm). The sweep time (tsw) was set 

at tsw = 10 mm/min. Depending on the acoustic frequency, the length of each segment of FBG 

can be set. When f = 306 kHz, the achieved grating corresponds to the approximately four 

gratings written in the 5 cm long piece of fiber, which means that a four planes F-P 

interferometer is generated, whereas for f = 75 kHz, the structure corresponds to the 

generation of two planes, i.e. two series of cascade Bragg gratings. This proves that the 

technique can be used to write customized F-P interferometers directly. 

 

Figure 5.26 - F-P interferometers written using a direct UV beam modulation methodology (solid curve) 

and by means of acoustic waves. 
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obtained. For example, the number of planes and length of the Bragg mirrors is related to the 

period of the modulation. Figure 5.27 shows the resultant FBG spectrum when f = 113 kHz 

acoustic frequency excites the PZT using the burst function, setting the modulation period at 

tb = 0,5 s, 1 s, 2 s and 4 s. Increasing the period, the side lobes period decreases. Moreover, 

for the case when the modulation is continuous, the period tends to zero, and a sync-sampled 

fiber grating (IBSEN et al, 1998) with a phase-shifted spectrum (similar to a phase-shifted 

Moiré grating (REID et al, 1990)) is generated, as shown in figure 5.28. The inset scheme of 

figure 5.28 shows the resultant effective index modulation of the fibre core shaped by the 

flexural acoustic wave. 

 

Figure 5.27 - Permanent resonant cavities achieved through the acousto-optic modulated FBG writing 

process methodology. 
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Figure 5.28 - Phase-shifted FBG spectrum. Inset: Resultant index modulation shaped by the acoustic 

wave. 

5.5 VISCOSITY SENSOR 

5.5.1 Viscosity sensing 

The viscosity is characterized by the resistance of a material to flow. It is one of the 

main physical properties used to predict a number of other physical, chemical and biological 

parameters of a fluid (SRIVASTAVA et al, 2005). Density, stability, chemical content, 

molecular weight and color are examples of such properties that can be determined through 

the accurate measurement of viscosity (SRIVASTAVA et al, 2005; HENSON et al, 1953). 

The precise and real-time measurement of this parameter potentially allows monitoring of 

chemical reactions. For example, in manufacturing industries, viscosity can help control new 

material quality and homogeneity (DAVIS, 2007; FERRARIS, 1999). Another example is the 

production of paints and varnishes where such a measurement could help control thicknesses 

and texture (HENSON et al, 1953; BIDLACK and FASIG, 1951). In the field of food 

engineering, the application of viscosity measurements allows the control of the quantity, 

behavior and functionality of proteins in a given food system (DAVIS, 2007; CULLEN et al, 

2000; CHERRY, 1981; BOURNE, 2002). Usually, the measurement of viscosity involves 

dynamic interrogation of the material under test and it can be based on vibrational and 
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rotational elements (sometimes called cone and plate viscometers, respectively) (BARBER et 

al, 1955; SUSUKI et al, 1990). 

A viscometer, also called viscosimeter, consists of an instrument used to measure the 

viscosity of a fluid. Examples of commercial viscometers are the capillary (IRANY, 1944; 

UBBELOHDE, 1936; PAYNE, 1937; STARK et al, 1975), falling sphere (SUTTERBY, 

1973; WRIGHT, 1986; BRYAN and BRYAN, 1993), vibrational (PORTMAN JR. and 

MARGRAF, 1989; FARONE et al, 2002), rotational (DAVID and CAMPBELL, 1960; 

PALMER, 1977; DAO et al, 2009), among others. 

The capillary viscometer, also known as Ostwald viscometer is formed by a capillary 

glass tube (U-shaped) and bulbs containing default liquids, as shown in figure 5.29. When in 

use, a liquid is drawn into the upper bulb (right hand arm), then allowed to flow down through 

the capillary into the lowest bulb. Two marks (one above and one below the upper bulb) 

indicate a known volume. The time taken for the level of the liquid to pass between these 

marks is proportional to the viscosity. This device presents an ideal solution for small volume 

of measurand, however, the measurement time can be long, preventing a faster assessment of 

the parameter (real-time monitoring). 

 

Figure 5.29 - Capillary viscometer scheme. 

The falling sphere viscometer gives the viscosity through the measurement of the 

falling velocity of a sphere inside the fluid. This viscometer is based on the Stokes’ law, 

where such configuration consists of a sphere of known size and density, which is allowed to 
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descend through the liquid. Its terminal velocity, which can be measured by the time it takes 

to pass two marks on the tube, is used to calculate the viscosity of the fluid according to the 

Stokes law. A series of steel ball bearings of different diameters are normally used in the 

classic experiment to improve the accuracy of the calculation. However, this viscometer 

presents the disadvantage of been massive, time consuming and does not present an efficient 

measurement. 

Commercially, the most common viscometers founded are based on the rotational 

and vibrational technique. Rotational viscometers use the idea that the torque required to turn 

an object in a fluid is a function of the viscosity of that fluid. They measure the torque 

required to rotate an object in a fluid at a known speed. Vibrational viscometers operate by 

measuring the damping of an oscillating resonator immersed in a fluid. The resonator 

generally oscillates in torsion or transversely. The higher the viscosity, the larger the damping 

imposed on the resonator. Figure 5.30 shows an example of a commercial rotational 

viscometer. This viscometer is suitable for investigating the mixing, stirring, and pumping 

behavior of coatings, emulsions, and dispersions, as well as for performing conventional flow 

and viscosity profile experiments. However, as most of the viscometer founded in the market, 

it is robust, not portable and do not allow in situ measurements. In addition its main parts are 

made of external interference susceptible materials. 

This work introduces an alternative compact dip-style viscometer based on the 

acoustic excitation of a fiber long period grating and an all-optical interrogation technique. 

This is the first optical fiber sensor able to measure the viscosity by adding a dynamic 

component to the fiber. 
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Figure 5.30 - Vibrational viscometer distributed by MERLIN 

(http://www.atsrheosystems.com/products/merlin.html). 

5.5.2 Sensor design 

As discussed in section 2.1.2, about long period gratings, changes in the external 

refractive index manifest itself as a change in the grating dip wavelength and minimum 

transmissivity. However, to obtain the measurement of more challenging external parameters, 

such as viscosity, a temporal element has to be added to the LPG response. This is achieved 

by using the acousto-optic modulator to excite a flexural acoustic wave, forming bends in the 

fiber along its length. This effect modifies the coupling coefficients of the LPG, shifting the 

peak wavelength and changing the maximum attenuation coefficient, depending on the 

acoustic frequency and intensity (OLIVEIRA et al, 2011). The viscosity measurement is 

obtained by recording the optical response that depends critically on the damping of the 

acoustic wave by the surrounding medium. Figure 5.31 shows the schematic diagram showing 

how the viscosity damps the acoustic wave. Figure 5.31(a) shows the silica-horn fiber at rest, 

and figure 5.31(b) shows the formation of a flexural wave, and how the acoustic wave damps, 

considering an increasing of the surrounding viscosity (η) where the fiber is immersed. The 

higher the viscosity, the lower the amplitude of the acoustic wave. 

http://www.atsrheosystems.com/products/merlin.html
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Figure 5.31 - Acoustic behavior of the silica-horn - fiber set when (a) at rest and (b) acoustically excited, 

considering an increase in the external viscosity. 

This application demonstrates how a LPG can be used to sense, among all the well-

known parameters that are sensitive to, such as temperature, pressure, strain and so on, the 

viscosity. Moreover, this sensor allows viscosity to be measured in situ with a compact dip-

style sensor head by examining the frequency response to the applied modulation. Combined 

with dynamic analysis offered by an acoustic wave, the LPG sensor can provide real-time 

measurements. The damped frequency response is a direct measure of the relaxation time 

associated with viscous flow – the more viscous the flow the slower the relaxation after the 

impulse signal is applied. Considering practical implementation issues, a novel design for a 

viscosity sensor is presented, including the possibility of a disposable sensor head. 

The sensor head is composed of a fiber connector, a holder, a PZT, a silica horn and 

a fiber containing the LPG. At the end of the fiber a silver mirror is deposited in order to 

allow the transmission spectrum to be recorded in reflection – for potential multiplexing of a 

distributed set of viscometers, which may be of interest in larger industrial processes, the 

device can equally operate in transmission. However, operation in reflection avoids the 

necessity of tight bending of the fiber and reduces the device length, making the device more 

robust. A glass capsule can be used to protect the fiber and isolate the silica horn, as shown in 

figure 5.32. The final length of the device (considering practical dimensions) is lvs = 98,4 mm, 

which is compact and portable relative to most commercial instruments. 
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Figure 5.32 - The sensor head. The glass capsule is used to protect the silica horn and the grating. 

Interrogation techniques, such as that based on derivative spectroscopy (ALLSOP et 

al, 2004), fiber-loop ring-down spectroscopy - FLRDS (BROWN et al, 2000) and arrayed 

waveguide gratings - AWG (SANO and YOSHINO, 2003) can be coupled to the sensor head 

to perform the required measurements. These techniques may be combined with other systems 

such as those using FBG references, for example. Figure 5.33 shows the block diagram of the 

sensor with the setup consisting of the LPG acousto-optic modulator, an acoustic excitation 

driver, interrogation stage and results display. Besides viscosity, the sensor measures all the 

well-known parameters which are often assessed by an LPG (e.g. temperature, refractive 

index, density and hydrostatic pressure). 



132 

 

 

Figure 5.33 - Block diagram of the designed multiparameter sensor. 

5.5.3 Laboratory version of the viscosity sensor 

For demonstration purposes, a bench-top laboratory version of the proposed design 

was assembled, as shown in figure 5.34. The LPG (lg = 40 mm) was inscribed in a standard 

boron co-doped germanosilicate fiber (cutoff ~ 1300 nm) using a 193 nm ArF laser with a 

central wavelength of λm = 1556 nm. The setup is composed by an arbitrary function 

generator, responsible for the excitation of the PZT, an optical source (amplified spontaneous 

emission (ASE) light source) to verify the grating spectrum using the optical spectrum 

analyzer (OSA), a tunable laser for the dynamic measurement using the photodetector and an 

oscilloscope synchronized with the arbitrary function generator to display the transient and 

damping values. The optical switch is used to set whether a tunable laser or an ASE is 

employed. Figure 5.35 shows a photography of the experimental assembly. 
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Figure 5.34 - Block diagram of the experimental setup. 

 

Figure 5.35 - Photography of the experimental assembly of the laboratory prototype of the sensor. 

The solution used to calibrate the system was an anhydrous D(+)-glucose (C6H12O6) 

in de-ionized and distilled water. This is a solution with a well-known refractive index and 

viscosity as a function of concentration and is often used to characterize and calibrate 
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commercial devices (LIDE, 2008). The density, π, and the refractive index, n, of the solution 

varies linearly from π = 1 (pure water) to 1,2793 g/cm
3
 and from n = 1,334 to 1,4394 at a 

concentration [C6H12O6] = 8,326 mol/L respectively. These literature values for refractive 

index were corroborated using an LED refractometer at 1550 nm. The viscosity, η, on the 

other hand, varies from η = 1,021 to 37,445 mPa.s (LIDE, 2008). 

When the solute is added to the stock solution into which the sensor head is dipped, 

the density and the refractive index change, modifying the peak wavelength and the minimum 

transmissivity of the LPG. Figure 5.36 shows the dependence of the refractive index and the 

LPG peak wavelength shift (Δλ) in agreement with that measured using an optical 

refractometer. In the same way, the density (π) has a linear dependence with the refractive 

index (n), whilst the peak wavelength shift, from which the change in refractive index can be 

extracted, has a quadratic dependence, since the configuration involves a cylindrical 

waveguide. This quadratic dependence can be used to predict the value of the density in a 

multi-parameter sensor, in a passive way (with no acoustic wave). 

 

Figure 5.36 - Refractive index, n, versus peak wavelength shift, Δλ. The refractive index is also related to 

the density, ρ, of a solution (as calculated). 

5.5.4 The acousto-optic characterization of the sensor 

Figure 5.37 shows the transmission spectrum of the LPG when the fiber is at rest and 

when an acoustic wave excites the fiber at f = 39,9 kHz, which is immersed in solutions with 
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[C6H12O6] = 0,056 and 4,724 mol/L respectively. The acoustic wave induces a blue-shift and 

an increase in peak attenuation as well as narrowing of the rejection band with increasing 

concentration. Whilst the acoustic modulation shifts the LPG spectrum to longer wavelengths, 

the impact of the acousto-optic modulation is reduced when the C6H12O6 concentration 

increases, in part due to a change in refractive index and phase detuning but also as a result of 

damping of the acoustic wave with increasing viscosity. For example, the peak wavelength 

shift, for [C6H12O6] = 0,056 and 4,724 mol/L is Δλ = 6,89 and 1,25 nm, respectively, while 

the increase in transmittance, ΔT, is ΔT ~ 15,67 and ~ 1,70 dB, respectively. Figure 5.38 

shows the 3-D variation of the LPG attenuation peak when the C6H12O6 concentration 

increases and the fiber is excited at f = 39,9 kHz. The response is complex and both 

wavelength and transmittance are non-linear with increasing concentration under the same 

applied acoustic frequency (f = 39,9 kHz). 

 

Figure 5.37 - LPG transmission spectra when immersed in [C6H12O6] = 0,056 and 4,724 mol/L  

D(+)-Glucose solution at rest and when f = 39,9 kHz acoustic wave excites the fiber. The red curves 

represents the LPG spectrum when the fiber is at rest. 
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Figure 5.38 - Transmittance spectra versus increasing of C6H12O6 concentration. 

Figure 5.39 shows the induced wavelength change (Δλ) as a function of C6H12O6 

concentration. At low concentrations, there appears to be a quadratic dependence of Δλ for 

solute concentrations up to [C6H12O6] ~ 1,75 mol/L. Between [C6H12O6] ~ 1,5 and 3 mol/L 

there is a reverse change leading to an increase in the wavelength shift. Figure 5.40 shows a 

similar response for the peak transmittance, Δ plotted against concentration. For 

concentrations up to ~ 1,75 mol/L, which correspond to a viscosity of η ~ 2,42 mPa.s a 

quadratic relationship of ΔT and concentration is observed. At higher concentrations, the 

behavior is similar to the previous analysis (Δλ × [C6H12O6]), which makes the use of these 

average parameters impracticable for sensing when there is an applied acoustic frequency. 

However, if measurements are taken rapidly in time an initial red-shift of the spectrum will be 

accompanied by a small blue-shift as a result of the initial excitation followed by the 

establishment of the damped standing wave – the non-linear profile likely reflects a complex 

contribution from a finite spectrum collection time using an OSA relative to the mechanical 

relaxation time (after a “threshold” viscosity around η = 2,42 mPa.s). 
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Figure 5.39 - Peak wavelength shift at the acoustic resonance (f = 39,9 kHz). A quadratic fit is shown for 

glucose concentrations up to [C6H12O6] ~ 1,75 mol/L (inset graph). 

 

Figure 5.40 - Transmittance shift at the transmission peak when the acoustic wave excites the fibre at  

f = 39,9 kHz. 
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5.5.5 Dynamic analysis 

Figure 5.41 shows the time characterization of the sensor. When the acoustic wave is 

switched on, the LPG spectrum is shifted, and a maximum signal level in the photodetector is 

reached quickly. This time is the transition time (ηr), which corresponds to the first excitation 

of the fiber. However, a relaxation following this one, corresponding to the damping of the 

fiber bends by the viscous solution, is expected. This effect corresponds to a small signal 

reduction in the photodetector. As this measurement is time dependent, there is a finite time 

(ηs’) before the fiber relaxes for a full relaxation at ηs, point when a standing wave is 

established. For comparison purposes, if the wavelength is fixed at the wavelength 

corresponding to the peak wavelength when the acoustic wave is off in figure 5.37, when 

interrogating with a narrow linewidth laser, a small shift in the transmittance and peak 

wavelength will not represent a measurable change in the photodetector for lower 

concentration ([C6H12O6] = 0,0056 mol/L), while for higher concentration ([C6H12O6] = 4,724 

mol/L), it will be detected (see figure 5.42). 

 

Figure 5.41 - Time parameters considering a solution with [C6H12O6] = 4,023 mol/L. 

A means of separating out the excitation and relaxation time by measuring ηr or  

ηs
´
 = (ηs - ηr) to obtain a linear relationship between [C6H12O6] and time (and therefore η) was 

developed. This behavior occurs only for viscosity values higher than 2,24 mPa.s, due to the 

weaker acoustic efficiency, which emphasizes the changes in optical power. This viscosity 
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value is consistent with the threshold value in figures 5.39 and 5.40. For the sake of 

consistency with rise time measurements, time is measured as the 5-95 % confidence level of 

the rise. The measurement time is controlled by controlling the number of cycles used to 

excite the grating. In this case, 100 cycles were used, representing a total measured time 

t = ~ 4 ms, or a sample frequency of fm ~ 250 Hz, which can be increased up to fm ~ 700 Hz. 

The time at which the photodetector signal reaches a constant value is labeled the constant 

level time, ηc, and is related to the inertia of the fiber after the solution causes the relaxation 

around it (corresponds to the generation of a standing wave). When the acoustic wave is 

switched off, the LPG relaxes and experiences a fall time (ηf) back to the rest state. Figure 

5.41 shows the defined time constants and the dynamic behavior of the LPG when immersed 

in a solution with [C6H12O6] = 4,023 mol/L for 100 cycles acoustic excitation at f = 39,9 kHz, 

while figure 5.42 shows the time characterization for various glucose concentration. 

 

Figure 5.42 - Time behavior of the sensor for various solution concentrations. 

5.5.6 The viscosity measurement 

Figure 5.43 shows the behavior of the viscosity and rise time depending on the 

glucose concentration. The viscosity is directly related to [C6H12O6] through a quadratic 

dependence (LIDE, 2008), and given that the rise time and concentration both have a 

quadratic dependency as well, this means that the viscosity has a linear dependence with rise 

time (figure 5.44). 
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Figure 5.43 - Quadratic relationship between glucose concentration and rise time and viscosity. 

Figure 5.44 shows the linear dependence for both the rise time and the total 

relaxation time, ηs, with the viscosity. Both increase when η increases, consistent with the 

damping of the acoustic wave by the solution. These linear relations therefore make viscosity 

measurements straightforward: 

  31,80 67,76* 0,76r     mPa.s (5.1) 

and 

  0,10 4,61* 0,15s    mPa.s. (5.2) 

By confining the measurements to ηr, a substantially larger viscosity range becomes possible 

although with lower resolution. Further, the need to consider a threshold is removed and the 

process is entirely linear. If the sensitivity parameter, Sη, is redefined as the slope of the 

curves, Sη = 67,76 mPa.s/ms for the initial excitation and Sη = 4,61 mPa.s/ms for the total 

relaxation time are achieved. Given that both cases are linear, the observed complex response 

of the average spectral parameters seems most likely to arise from time mismatch between 

OSA spectrum collection and the two contributions to relaxation. The total relaxation time 

presents a higher resolution and, therefore, greater sensitivity for viscosity measurements 

higher than η = 2,24 mPa.s. 
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Figure 5.44 - The viscosity versus time behavior. 
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6 CONCLUSIONS 

6.1 GENERAL CONCLUSIONS 

The Acousto optic effect has been explored regarding the excitation of different 

resonant modes in the silica horn – fiber set. Numerical approaches based on the combination 

of the finite elements, assumed modes and transfer matrix methods were used in order to 

model the devices, simulate the effect and calculate some grating properties. It was achieved 

that flexural and longitudinal excitation modes can be excited using a single acousto-optic 

modulator device, which opens up a large range of applications. 

By using fiber Bragg gratings (FBG) and long period gratings (LPG), the acousto-

optic effect was employed in several situations. In the low frequency regime, when flexural 

modes predominate, the effect experienced by FBGs is a reflectivity decay, due to a mismatch 

between the co-propagating and counter propagating modes as a consequence of bends 

generated in the fiber. In the LPG case, the increase of the flexural acoustic wave intensity 

reduces the dip transmissivity of the LPG attenuation band and induces a shift of the spectrum 

to longer wavelengths. By changing the optical path and the difference between the effective 

refractive indices of the core and cladding modes and the overlap between them, the acoustic 

wave causes a reduction of the coupling coefficient and, consequently, a reduction of the dip 

transmissivity. 

In the high frequency regime, where the excitation of compression and rarefaction 

strain fields in the fiber predominates, the acousto-optic effect is noticeable only when applied 

to FBGs, because its refractive index modulation period has the same order of magnitude of 

the induced longitudinal displacement of the planes. It leads to the superlattice modulation of 

the grating. In LPG, due to its larger modulation period, the longitudinal modulation does not 

change significantly the grating spectrum. However, the effect of induced bends in the fiber 

(flexural waves) is more evident in LPGs. 

The complete characterization in the low and at high frequency regime made it 

possible to apply the modulator in different devices, by controlling the effect that is most 

suitable for the particular application. In this work, several devices were proposed, 

demonstrated and characterized, such as: a fast acousto-optic add-drop multiplexer, a tunable 

chromatic dispersion compensator, a phase-shifted FBG controller, a method to control the 

grating spectrum during the writing process and a viscosity sensor. 
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6.2 SPECIFIC CONCLUSIONS 

6.2.1 Fast add-drop multiplexer 

An add-drop multiplexer (ADM) with fast switching times has been presented. The 

response time of such device is limited by the speed of the acoustical wave through the entire 

modulator. Considering an interaction length of Li = 10 cm and the speed of cext = 5740 m/s in 

silica, a switching time of ts = 17 μs was measured. This can still be improved, if the 

interaction length and the acoustical frequency are optimized. Yet, this switching time is one 

of the smallest found in literature, which makes the device very promising for practical 

applications. 

6.2.2 Chromatic dispersion compensator 

It has been demonstrated that both the amplitude and frequency of an acoustic wave 

can be used to tune the dispersion slope and group delay ripple of a uniform FBG. By 

ensuring the induced strain profile is positioned properly over the grating length, an effective 

“dc apodisation” is achieved. If the broadening of the bandwidth over which the device works 

is equal or less than the channels bandwidth itself then this technique opens up an opportunity 

for the dispersion compensation of individual channels. In very complex systems where 

different channels travel different lengths and experience differing group delay and 

dispersion, this unique form of active channel control turns up to be an important solution. 

The achieved results can be improved by tailoring the uniform grating profile (including 

partial apodisation) to help reduce the GDR and to flatten the dispersion slope further. 

Additionally, this technique can be applied to tune much broader band devices, including 

existing chirped FBG compensators to enhance their tunability and performance. 

6.2.3 New method to control the grating properties during the writing process 

It has been demonstrated the capability of the acousto-optic device to modulate the 

FBG by acoustically exciting the fiber during the sweep of the UV beam in the writing 

process. Sampling of uniform Bragg grating in the presence of a longitudinal acoustic 

excitation gives rise to a permanent sampled grating. This arises from the modulation of the 

refractive index period through the normal UV interaction with photosensitive centers and 

through the stress-optic contribution to the glass relaxation after UV exposition. Various FBG 

spectra are achieved by adjusting the excitation frequency of the piezo-electric transducer 
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used to generate the acoustic wave in the optical fiber. Fabry-Perot interferometers and 

resonant cavities, including distributed feedback (DFB) lasers can also be accomplished, 

through the generation of phase-shifted gratings. The method of controlling the FBG writing 

process using acoustic waves has great potential in various applications where precise and fast 

control of the grating parameters is desired. 

6.2.4 Viscosity measurement 

By adding a dynamic temporal component to an LPG response, its sensitivity to 

external medium is enhanced, turning the LPG sensitive to more challenging parameters such 

as the viscosity. Nevertheless, a threshold seems to limit the accuracy for viscosity 

measurements. However, using frequency based measurements the onset of the threshold can 

be avoided to provide a strong linear response over a very wide viscosity range. On the other 

hand, greater resolution and sensitivity is possible for viscosities above this threshold if the 

full relaxation time is measured. The proposed sensor is compact and based on a simple 

source/detector optical interrogation with a highly linear response; a full system can be readily 

integrated into a small unit. This technique is much cheaper and simpler than the technique 

based on the analysis of spectral measurements where temporal synchronization issues need 

to be considered. The compact dip-style sensor reported in this thesis has the potential for 

real-time monitoring of chemical reactions and more complex processes, such as 

measurements of blood properties and food engineering applications. The time analysis shows 

that the sensor has two linear regimes of possible operation – the regime of the initial 

excitation rise time and the regime that follows the mechanical relaxation when the standing 

wave is established. Both can be calibrated to provide a direct measure of the viscosity. 

Further, a simple optical power interrogation technique as a function of time permits a cheap 

and ready implementation of the sensor in contrast to many current applications using LPGs. 

Finally, the viscometer design also allows a number of sensors to be potentially multiplexed 

to provide distributed viscosity measurements that may be of use in a number of industrial 

processes where rapid and simultaneous assessment of the viscosity distribution profile is 

important. 

6.3 FINAL CONSIDERATIONS AND FUTURE WORK 

This thesis has shown the design, development and performance of a variety of all 

fiber devices, where the main principle of functionality is based upon the acousto-optic effect 
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applied to diffraction gratings. Even though the basic principle was proved to be efficient for 

practical applications, more detailed characterization, using new multiphysics modeling 

computer software and alternative techniques have to be performed, and prototypes for 

commercial applications have to be technologically advanced. 

Regarding the add-drop multiplexer and the chromatic dispersion compensator, 

where FBGs were used, different gratings should be tested in order to achieve the most 

suitable for WDM applications. Likewise, the viscosity sensor can be further developed, 

though prototype optimization and miniaturization using micro and nano fibers for biological 

sensing. 

The novel method designed for controlling the grating properties during the writing 

process can be further developed to systems where no masks are used, i.e. the acoustic wave 

can be used to change the photo induced index modulation of the grating. 
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APPENDIX A – The method of assumed modes 

A.1 THE LAGRANGE’S EQUATIONS 

The method of assumed modes is a technique developed for studying the behavior of 

geometrically complex mechanical systems submitted to dynamic conditions. It has been 

mainly applied in the analysis of vibrations in structural engineering (BEARDS, 1996). A 

length of optical fiber at rest can be considered as a thin cylindrical, linear, homogeneous bar. 

However, when it is longitudinally pulled or compressed by means of external forces, its 

dimensions will vary. Yet, the application of such forces is usually accomplished by attaching 

other elements to the fiber, such as hinges or horns, aggregating more masses and viscous 

forces to the system, turning its analysis more complex and demanding. 

Generally, the modeling of dynamic and complex systems using Newton’s vector 

approach is difficult and lengthy. Alternatively, approximated solutions can be achieved using 

numerical methods based on Lagrange’s equations through scalar formulations. The 

Lagrange’s equations approach has, as advantage, the neglecting of system internal forces and 

is based on the scalar relationships between the kinetic energy, the potential energy and the 

work done by non-conservative external forces. 

The Lagrangean operator is defined as 

 VTL  , (A.1) 

where T and V are the kinetic and the potential energy, respectively. 

The transition between the Newtonian vector method and the scalar-energy 

Lagrangean method is developed through the virtual work principle, the D’Alembert’s 

principle and the Hamilton’s principle (MEIROVITCH, 1986). With these three principles 

one can write the Lagrange’s equations as a function of generalized coordinates, q, that allow 

the movement equations of the system to be found 
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, (A.2) 

where Qj are the generalized forces applied to the system and tqq jj  / . 

Assuming that the system does not suffer gyroscopic effects and does not present 

centrifuge forces, i.e. non rotational system, the potential energy of the system, V, is 

simplified to the dynamic potential energy U only. 
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One can write the movement equations in generalized coordinates in matricial form 

representing the generalized non-conservative forces (external and dissipative) through the 

contact forces Qj as well as the reaction forces due to the Rayleigh viscous damping: 
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where cij generates the elements of the damping matrix. 

This way, assuming L = T – U, the Lagrange’s equations are written as 
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Equation (A.4) leads to a system of differential equations in the following matrix form: 

            tftqtqtq  KCM  , (A.5) 

where 

 M = [mij] is the n x n-order mass matrix; 

 C = [cij] is the n x n-order viscous damping matrix; 

 K = [kij] is the n x n-order stiffness matrix; 

   tf  is the generalized excitation vector; 

   tq   is the generalized coordinates vector. 

The matrices M, C e K are symmetric, have real elements and play an important role 

on the assumed modes method. 

A.2 THE METHOD OF ASSUMED MODES 

The method of assumed modes is based on the discretization of a system consisting 

of N elements and n degrees of freedom in order to find approximated solutions through 

numerical series. For a particular case, where movement is only observed in one direction (for 

example, movements originated by pulling the fiber longitudinally), one can assume that the 

real solution of a problem with known boundary conditions will be found through a product 

between a conveniently chosen spatial function and a temporal function (described through 

the generalized coordinate). For the case of a fiber length treated as a linear bar, if one wishes 

to find the space-time dependent displacement behavior, the displacement function u(x,t) is 

obtained considering the solution as 
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jj tqxtxu
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,  , (A.6) 

where j (x) is called the trial or assumed modes function. 
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Equation (A.6) shows that the solution is found as a linear combination of a base in 

n-dimensional space. The one-dimensional strain field (x,t), which is related to the Bragg 

wavelength shift, is simply found differentiating u(x,t) with respect to x. 

The choice of the trial function is not arbitrary. For a system of n degrees of freedom 

it must satisfy all boundary conditions of the problem and must be differentiable at least for 

half of the system order (MEIROVITCH, 1986). For example, for a system described as a bar 

of length l with non-uniform transversal section, fixed in one extreme and loose in the other 

one, an appropriated trial function could be  
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 , with j = 1 to n. After 

choosing the trial function, the next step requires the mass, damping and stiffness matrices, as 

well as the generalized excitation vector, to be obtained. In order to solve (5) it is first 

necessary to know the density function (x), the area function S(x) and the mass function m(x) 

= (x)S(x) along the bar. 

Assuming the piece of fiber as a homogenous bar with length l, with known area and 

mass function, the kinetic energy T is given by 
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where mij are the elements of the mass matrix and are found through the following expression 
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On the other hand, the dynamic potential energy is given by 
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where kij are the elements of the stiffness matrix and are given by 
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with E as the Young’s modulus. Assuming that the system is impaired by non-proportional 

damping, which is distributed uniformly along the bar, the elements of the damping matrix are 

given by 

 
   

l

jiij dxxxc
0

 , (A.11) 

where  is the viscous damping constant. 
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A.3 SOLUTION FOR NON-PROPORTIONAL DAMPING 

The technique for finding solutions of the real problem consists of variable 

transforms through some spaces or domains and reduction of the order applied in (A.5). 

Further, applying inverse transforms, one can obtain the solution for the real system. 

System mechanics considers two basic models for the viscous damping: the 

proportional damping and the non-proportional damping. For the case of proportional 

damping, the damping matrix is assumed as a linear combination of the mass and/or stiffness 

matrices, i.e. KMC   , where  and  are real constants. It is very difficult to measure 

experimentally the coefficients  e , as well as to estimate them. However, the numerical 

process to find solutions for the system is highly simplified since it is not necessary to work 

on the state space. On the other hand, in the non-proportional damping model there is only 

one damping coefficient to estimate and the elements of the damping matrix can be easily 

calculated according to (A.11). Given this condition, the non-proportional damping model is 

adopted for the calculations that follow. 

Solutions of the problem can be found by working on the configuration, state, modal 

and frequency domains, as will be described next. An overview of the corresponding 

transformations is seen in figure 1. 

A.3.1 Matricial Equation in the Configuration Space 

Starting with the problem in the real domain, solutions in the configuration space are 

given by (A.6). It is important to note that u is a real function and represents the longitudinal 

displacement at point x and at the time instant t. 

In the configuration space, assuming that the mass, damping and stiffness matrices 

are known, (A.5) is repeated here for convenience 

            tftqtqtq  KCM  , (A.13) 

The system response of (A.6) can be separated into the transient and the steady state 

responses. In order to find the transient response, the homogenous solution of the matricial 

equation (A.13) is found by setting f(t)=0. Knowing the transient response along with a 

particular solution (the steady state response), and after applying the initial conditions, the 

complete solution of (A.13) is found. 

The reduction of order in (A.13) is done as follows. 
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Figure A.1 - Transformation spaces used to find solutions of the displacement function in the non-

proportional damping model 

A.3.2 Matricial Equation in the State Space 

In the configuration space the state variable is defined as 
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(A.14) 

where the vector q(t) represents the first n elements of the vector y and  tq  represents the 

elements from n+1 to 2n. 

Writing (A.14) as 

             
1122122       nnnnnnn tftyty 0KMC  , (A.15) 

a system with n equations and 2n unknowns is obtained, where   nn 2  MC   represents a matrix 

formed by the concatenation of the damping and mass matrices and   nn 2  0K   represents a 

matrix formed by the concatenation of the stiffness matrix K and a matrix with dimensions 

nn  formed by zeros, represented by 0 in (A.15). 

Transforming (A.15) into a system of 2n equations and 2n unknowns requires the 

following tautology to be used 

             1122122 0      nnnnnnn tyty M00M  . (A.16) 

Equation (A.16) is true because 
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In other words, the first n elements of  ty  are equal to the last n elements of y(t). 

This way, concatenating (A.17) with (A.16) results in the matricial equation given in 

the state space 
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(A.18) 

which can be written as 
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A.3.3 Matricial Equation in the Modal Space 

Setting {f(t)} = 0, one can assume the solution of the homogeneous equation as 

     st

n ety 12   . (A.20) 

The first n elements of   12 n  form the eigenvector   in the state space and the 

remaining rows, from n+1 to 2n, form the vector s , which are expressed as 
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(A.21) 

Thus, (A.20) can be written as 

 
        jjjnns  ABBA   1212 0 , (A.22) 

where    T

njjj s
21

    


   , with  j = 1, 2,..., 2n, and 

 
jj s . (A.23) 

Note that (A.22) represents an eigenvalue problem whose solution results in 2n 

eigenvalues called  , as well as a set of 2n eigenvectors  (with dimensions 2n x 1) that form 

the matrix nn 22 Θ called the modal matrix in the state space. Matrices A e B are symmetric and 

real. On the other hand, the matrix  is complex and non-symmetric. 

Using ortogonality properties the following relationship is satisfied 
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As well as with the eigenfunctions, the eigenvectors can be normalized through the diagonal 

matrix A
~

 forming an ortonormal set represented by the matrix Θ̂  whose elements are found 

through the expression 
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  , (A.25) 

where ̂ ,   and a~ are elements of matrices Θ̂ , Θ and A
~

, respectively , and  j, k = 1, 2,...,2n. 

The matrix Θ̂  is known as ortonormalized modal matrix and satisfies the following 

relationships 

 ΛΘBΘ ˆˆ T , (A.26) 

 IΘAΘ ˆˆ T . (A.27) 

The matrix I is the identity matrix, with dimensions 2n x 2n, and  is denominated the 

Spectral Matrix in the state space, having the form 
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(A.28) 

where 
*

j  is the complex conjugate of .j  

From (A.23), assuming  jjjj is    and using ortogonality relationships 

(EWINS, 2000), it is possible to demonstrate that j  are the damping natural frequencies of 

each mode of vibration. Furthermore, the natural frequencies j  of the damped system are 

given by the absolute values of j , i.e. 

 22

jjj   , (A.29) 

and the relationship between the modal damping, j , and each mode is given by 
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Once matrix Θ̂  is known, one can work in the modal space using the following 

transformation 
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Since y(t) is real and Θ̂  is a complex matrix, p also must be a complex vector, which is called 

the Main Generalized Coordinate. 

Substituting (A.31) in (A.19) results 
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Multiplying both sides of this equation by T
Θ̂ and applying the ortogonality 

relationship (A.26) and (A.27) one reaches the modal space where (A.32) is reduced to 
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(A.33) 

Note that (A.33) is a first order differential equation in matrix form where  is the 

spectral matrix and T
Θ̂  is the transposed modal matrix. 

A.3.4 Matricial Equation in the Frequency Domain 

Often, in order to find the steady state solution, the transformation of the following 

equation system into the frequency domain is convenient 
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Since the system described by (A.34) is decoupled, one can represent the total system 

by n discrete elements with only one freedom degree (with mass, stiffness and damping 

characteristics), where each element is excited by the respective frequency . 

This way, transforming (A.34) into the frequency domain gives 

         GPi T
ΘΛI ˆ . (A.36) 

Since     tpty Θ̂ , the response in the frequency domain is 

       GY T
ΘDΘ ˆˆ 1 , (A.37) 

where ΛID  i . 

Eventually matrix D can become singular (e. g. when the damping is very small); in 

this case, it is possible to find  Y  by calculating the pseudo-inverse of D. 

From (A.14) the vector  Y  can be written as 
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Matrices Θ̂ , D , and T
Θ̂ can be partitioned generating four submatrices allowing 

(A.37) to be described as 
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(A.39) 

If one wishes to find only the vector   
1


n

Q , the final solution is given by reducing 

(A.39) to 

         FQ TT

2121211111
ˆˆˆˆ ΘDΘΘDΘ . (A.40) 

Finally, the solution in the real domain is obtained through the inverse Fourier 

transform in order to find the vector   
1n

tq , which is then applied in (A.6) to give the system 

displacement as a function of time. 

Figure 1 shows the steps over the spaces to find q(t), departing from (A.6). 

Note that the methodology used to find the q(t) involves transformations to 

intermediary spaces that have no physical meaning (for example, state space and modal 

space). 

A.4 GENERAL RESPONSE FOR AN HARMONIC SOURCE OF EXCITATION 

In order to find the transient response of the system it is first necessary to obtain the 

solution of the homogenous equation (A.35) assuming   0tf . Knowing the transient and the 

steady state responses the solution is complete. 

For instance, let us assume that the system is described as a bar of length l with non-

uniform transversal section, fixed in one extreme and loose in the other one, and excited at its 

free end by an harmonic source dependent of time. The mathematical model of this source is 

represented by complex exponential functions of the form 

       titi
eFeFtf 00 *

0


 , (A.41) 

where F() and F
*
()  are the complex and complex conjugated amplitudes, respectively, 

and 0 is the angular frequency of the signal. 

A possible trial function for this system is  
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12
sin


 , from which one can 

find the generalized force 
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(A.42) 

where j is used to define the excitation point of the harmonic function. 

Assuming the complex amplitude in the form of 

  
2

00 iFF
F


 , (A.43) 

and substituting (A.43) in (A.41) one obtains: 

if      
2

cos 0
00

F
FtFtf  , (A.44) 

and if      
2

sin 0
00

F
iFtFtf  . (A.45) 

Assuming a sinusoidal source, the steady state solution in the state space is given by 

  

 

 

 

 

 
ti

n

ti

nn

p

p

e
Qi

Q
e

Qi

Q

tq

tq
00

12

*

00

*

0

1200

0

12

      


















































, 

(A.46) 

where the complex amplitude vector is given by 
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(A.47) 

with ΛID  0i . 

Therefore, the displacement function in the steady state is given by 
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 , (A.48) 

where  tq p

j
 are the elements of the generalized coordinates vector 

          ti

n
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nn

p eQeQtq 00

1
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0101







  . (A.49) 

The transient time solution is obtained solving the system 

 0 jjj pp     ,   j = 1, 2,..., 2n. (A.50) 

The solutions of each equation of the system follow the expression 

 ts

j

t

jj
jj ebebp 


, (A.51) 

where s =   and bj are the elements of the vector b related to the initial conditions. 

Since 
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Θ , substituting (A.51) in (A.31) gives the solution 

of the homogenous equation in the state space and is expressed as 
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(A.52) 

Thus, the displacement is achieved according to 
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where  tqh

j
 are the elements of the vector 
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It is now necessary to apply the initial conditions in order to find the elements of the 

vector b in order to completely define the displacement function.  Assuming that the 

displacement is null along the bar at the time instant t = 0, one obtains 1
0.0 

i
e . The 

displacement function can be written as 
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. (A.55) 

This way, from (A.55) we have 

           
1

*

010122
ˆ

 
nnnnn QQb . (A.56) 

Expanding (A.56) in the state space, the right side can be replaced by (A.52) 

regardless of the temporal matrix. Analogously, the right side can be replaced by (A.46), 

which, in turn, can be simplified and results in 

 
 

  

  

 
  

  
1200

01

12

1200

0

12

2

2
ˆ

2

2
ˆ






































n

n

n

n

Q

Q
b

Q

Q
b

Θ

Θ

, 

(A.57) 

Using the property given in (A.27), it is possible to show that AΘΘ
Tˆˆ 1  , which is 

applied in (A.57) and results in 
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defining the displacement function completely. 
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APPENDIX B – Parameters used in the simulations 

Table B.1 shows the value for the constants and coefficients used during the 

numerical simulations. Some of the terms had to be adjusted in order to match the grating 

spectrum achieved experimentally, once the simulations can be used also for calculations of 

some experimental parameters. For instance, a term that had to be adjusted is the fiber core 

UV-induced index modulation, which varies from δneff = (1 to 5) × 10
-4

 depending on the 

laser and fiber conditions. 

Simulation parameters such as number of matrices (if one considers the TMM) and 

number of elements (FEM) or even degrees of freedom (AMM) were set in order to provide 

an accurate result, taking account the computational limitations. 

Table B.1 - Values for the coefficients and constants used in the numerical simulations 

 Parameter Description Value 

Constant 

neff Effective index 1,45610764539747 

p11 

Strain-tensor coefficients 
0,121 

p12 0,17 

ζ Poisson’s ratio 0,17 

ν FBG fringe visibility 1 

pe FBG strain-optic coefficient -0,22 nm/με 

E Young’s modulus of silica 72,9 GPa 

π Silica density 2.200 g/m³ 

cext Extensional velocity in silica 5.740 m/s 

α LPG thermal expansion coefficient 5 × 10
-5

 /°C 

Variable 

P0 Load applied on the base of silica horn 0 – 10 N 

δneff UV-induced index modulation 1 – 5 ×10
-4 

lg Grating length 25 – 50 mm 

ο LPG thermal-optic coefficient 2 – 4 × 10
-5

 /°C 

p LPG strain-optic coefficient -0,5 – -0,7 nm/με 

M Number of matrices for TMM 200 – 800 

κacl AC coupling coefficient × grating length 3 – 8 
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Figure B.1 shows the comparison between experimental and simulation spectrum 

considering an acoustic excitation at f = 1,021 MHz. The PZT was driven by VPZT = 10 V, 

and, the value of the correspondent load applied on the basis of the horn was found to be 

P0 = 1 N, which matches the experimental spectrum. Additionally, the index modulation also 

had to be adjusted through the product κac lg, in order to match the amplitude and bandwidth 

of the spectrum. In this case, δneff = 1 × 10
-4

, which corresponds to κac lg = 6. For comparison 

purposes, if the index modulation is varied from κac lg = 2 to 10, for instance, the spectrum is 

strongly modified, as one can see in figure B.2. 

 

Figure B.1 - Experimental and simulated results for f = 1,021 MHz acoustic wave excitation. 
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Figure B.2 - Behavior of the simulated FBG spectrum when the index modulation is varied through the 

product κac  lg. 

Another example of how the simulation parameters were adjusted to fit the 

experimental spectrum is given by the load applied on the base of the silica horn. Once the 

maximum strain achieved within the fiber varies depending on the RF frequency, different 

values for the load at each resonance are found. Figures B.3 (figure 4.10) and B.4 (figure 

4.12) exemplifies this assertion. The maximum load achieved when the PZT is driven by 

VPZT = 10 V and f = 60,6 kHz is P0 = 0,042 N. When f = 53,3 kHz, the corresponding load is 

P0 = 0,06 N. 
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Figure B.3 - Considering f = 60,6 kHz, the corresponding maximum load achieved through numerical 

simulation was P0 = 0,042 N. 

 

Figure B.4 - When f = 53,3 kHz and VPZT = 10 V, P0 = 0,06 N. 
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