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We demonstrate that it is possible, in principle, to perform a Ramsey-type interference experiment to exhibit
a coherent superposition of a single atom and a diatomic molecule. This gedanken experiment, based on the
techniques of Aharonov and Susskind �Phys. Rev. 155, 1428 �1967��, explicitly violates the commonly ac-
cepted superselection rule that forbids coherent superpositions of eigenstates of differing atom number. A
Bose-Einstein condensate plays the role of a reference frame that allows for coherent operations analogous to
Ramsey pulses. We also investigate an analogous gedanken experiment to exhibit a coherent superposition of
a single boson and a fermion, violating the commonly accepted superselection rule forbidding coherent super-
positions of states of differing particle statistics. In this case, the reference frame is realized by a multimode
state of many fermions. This latter case reproduces all of the relevant features of Ramsey interferometry,
including Ramsey fringes over many repetitions of the experiment. However, the apparent inability of this
proposed experiment to produce well-defined relative phases between two distinct systems each described by
a coherent superposition of a boson and a fermion demonstrates that there are additional, outstanding require-
ments to fully “lift� the univalence superselection rule.
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I. INTRODUCTION

Part of the dogma of orthodox quantum mechanics is the
presumed existence of superselection rules �1,2� for certain
quantities. For instance, it is often stated that one cannot
create or observe quantum coherence between eigenstates of
differing charge, or of differing mass, or of number eigen-
states of particles with differing statistics �e.g., a superposi-
tion of a boson and a fermion�.1 Originally, superselection
rules were introduced to enforce additional constraints to
quantum theory beyond the well-studied constraints of selec-
tion rules �conservation laws�. In a classic paper, Aharonov
and Susskind �4� challenged the necessity of such superse-
lection rules, and outlined a gedanken experiment for exhib-
iting a coherent superposition of charge eigenstates as an
example of how superselection rules can be obviated in
practice.

The gedanken experiment of Aharonov and Susskind, and
subsequent investigations �5–9�, highlighted the requirement
of an appropriate reference frame in order to exhibit coher-
ence between eigenstates of superselected quantities. For ex-
ample, while a reference frame for spatial orientation is re-
quired to exhibit coherence between states of differing
angular momentum �in some direction�, a more exotic form

of reference frame is required to exhibit coherence between
states of differing charge. Arguably, it is the ubiquity of ref-
erence frames for some quantities �such as spatial orientation
or phase� and not for others �such as the type of frame
needed to exhibit superpositions of charge eigenstates� that
has led to the proposed superselection rules for some quan-
tities and not others.

While this gedanken experiment served to illustrate a con-
cept, recent advances in the preparation and manipulation of
exotic quantum states of matter may offer the opportunity to
demonstrate these concepts in experiment. In this paper, we
discuss the principles of an experiment that may be per-
formed with ultracold atoms and molecules where the super-
selection rule in question is for atom number, or equivalently,
baryon number. �The existence of such a superselection rule
is commonly assumed; cf. �1,10–15�.� The experiment we
present aims to exhibit quantum coherence between states
corresponding to a single atom and a diatomic molecule; the
reference frame in this case is a Bose-Einstein condensate
�BEC�.

We advance this concept further by outlining a gedanken
experiment to exhibit coherence between a boson and a fer-
mion. We demonstrate that, using a reference frame consist-
ing of many fermions in many modes, the essential features
in this experiment are similar to those of the fully bosonic
one, and that the commonly accepted superselection rule dis-
allowing superpositions of a boson and a fermion �the uni-
valence superselection rule �16�� can be violated in principle.

Aharonov and Susskind used an operational approach to
identify coherence between eigenstates of some superse-
lected quantity: the observation of Ramsey-type fringes in an
interference experiment. The reference frame allows for the
implementation of Ramsey pulses to create and subsequently
measure the superposition states. We follow this approach

*Electronic address: dowling@physics.uq.edu.au
1In Lorentz-invariant quantum field theories, it has been argued

that some superselection rules can be derived within the theory �3�.
However, such arguments do not apply to nonrelativistic quantum
theory, and in particular do not apply when classical references
frames �i.e., measurement apparatuses� are employed within the
theory.
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here, and extend their results by identifying several salient
features of the reference frame that allow for high-visibility
Ramsey fringes for many repetitions of the experiment. We
demonstrate that such a reference frame can be treated as
either a classical or a quantum system, with both descriptions
leading to equivalent predictions. In addition, we identify
where in the mathematical formalism the coherent superpo-
sitions arise: if the reference frame is treated as a quantum
system, this coherence arises in the relational degrees of free-
dom.

Finally, our gedanken experiment to exhibit a coherent
superposition of a boson and a fermion suggests that there
must be an additional requirement beyond the ability to re-
peatedly observe high-visibility interference fringes for one
to say that a superselection rule has been “lifted.” We show
that this gedanken experiment, despite possessing all of the
salient features of a Ramsey interferometry experiment, can-
not induce a well-defined relative phase between two distinct
systems each described by a coherent superposition of a bo-
son and a fermion. We therefore demonstrate that the ability
to repeatedly violate a superselection rule is not equivalent to
lifting it.

II. EXHIBITING QUANTUM COHERENCE
WITH INTERFEROMETRY

Consider a two-level atom, defined by two energy eigen-
states �g� and �e�. How would one demonstrate coherence
between these two states? That is, how does one discriminate
the coherent superposition 1

�2
��g�+ �e�� from the incoherent

mixture 1
2 ��g��g�+ �e��e��? A direct method would be to mea-

sure many identically prepared atoms in the basis �± �
= 1

�2
��g�± �e�� and observe the statistics. However, in practice,

preparations and measurements are restricted to the basis
	�g� , �e�
. The standard method, then, is to perform an inter-
ference experiment, in the form of a Ramsey interferometer,
which we now outline.

Between the preparation and the measurement, the inter-
ference experiment makes use of two types of evolutions.
The first evolution is described by a Hamiltonian of the form

ĤRam =
��

2
��g��e� + �e��g�� , �1�

where � is a real number. This evolution is implemented by
a laser tuned to the energy difference of these two levels, and
this description is adequate if the laser pulse can be treated as
an external potential �i.e., with a well-defined amplitude and
phase�. Application of this Hamiltonian for some finite time
is called a Ramsey pulse, and if this Hamiltonian is applied
for a time t=� / �2��, the resulting unitary operation is called
a � /2 pulse. The second type of evolution is governed by the
free Hamiltonian

Ĥfree = ��e��e� , �2�

with � the detuning between the energy splitting between �e�
and �g� and the laser frequency when the laser is tuned off
resonance.

The interference experiment proceeds as follows. The sys-
tem is prepared in the initial state �g�, and then subjected to a
� /2 pulse. The relative phase shift � is then applied using
the second type of evolution for a time �=� /�, followed by
another � /2 pulse. At the time of the preparation, and sub-
sequent to each of the three interactions, the state of the atom
is, respectively,

��0� = �g� , �3�

��1� =
1
�2

��g� − i�e�� , �4�

��2� =
1
�2

��g� − ie−i��e�� , �5�

��3� = sin��/2��g� − cos��/2��e� . �6�

Finally, the atom is measured in the 	�g� , �e�
 basis. By con-
trolling the magnitude of the phase shift � between the
pulses over many runs of the experiment, one observes so-
called Ramsey fringes—oscillations in the probability of
measuring the outcome corresponding to �g� �or �e�� as a
function of �. Such Ramsey fringes are the signature of co-
herent operation, i.e., that the description of the system for
the time period between the two � /2 pulses is given by a
coherent superposition of �g� and �e�. If instead the system
was described at this intermediate time by an incoherent su-
perposition, then the resulting statistics would be indepen-
dent of �, i.e., no fringes would be observed. See the experi-
mental paper of Bertet et al. �17� for a presentation of a
Ramsey interferometry experiment that takes a similar per-
spective to the one adopted in this paper.

The basic structure of this Ramsey interference experi-
ment has analogies in many other quantum systems. An ex-
periment using a single photon and a Mach-Zender interfer-
ometer is formally equivalent, with beam splitters acting in
the role of the Ramsey pulses; see Fig. 1. Other analogous
experiments are commonplace in atomic, molecular, and
nuclear systems, and have more recently been demonstrated
in artificial structures such as semiconductor quantum dots
�18� and superconducting qubits �19�. Because the same ab-
stract structure can be realized in a wide variety of physical
systems, the identification between these different realiza-
tions of the same basic interference experiment has been
called the “quantum Rosetta stone” �20�. We seek to add
another realization to this list.

III. COHERENT SUPERPOSITIONS OF AN ATOM
AND A MOLECULE

We now consider an analog of the Ramsey experiment
that aims to exhibit coherence between a single atom and a
molecule. Consider a bosonic atom; we denote the species of
this atom as type 1. Also, consider a diatomic bosonic mol-
ecule, denoted M, which consists of one atom of type 1 and
one other bosonic atom of another type, 2. We now define a
two-level system, which will serve as the analog in our ex-
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periment of the two-level atom in the Ramsey experiment.
This two-level system is spanned by the following basis
states:

�A� = �0�M�1�A, �M� = �1�M�0�A, �7�

where �i�A is a Fock state for an atomic mode of type 1 and
�i�M is a Fock state for a diatomic molecule mode. One may
consider the single-atom state �A� as the analog of the ground
state of the two-level atom in the Ramsey experiment, and
the molecule state �M� as the analog of the excited state of
this two-level atom. The aim is to demonstrate coherence in
this two-level system, i.e., coherence between �A� and �M�.
Such a demonstration of coherence violates a superselection
rule for atom number.2

We will use a Bose-Einstein condensate of atoms of type
2 to serve as our reference frame, i.e., as the analog of the
electromagnetic field that constitutes the Ramsey pulse. �The
use of a BEC as a phase reference has been discussed in
�24�.� The analog of the Ramsey pulse in our experiment is
given by an interaction of the two-level system with the ref-
erence frame �the BEC�. The relative phase shift will be
implemented by free evolution of the system. Using these
two basic evolutions we will describe an experiment that is
formally equivalent to Ramsey interferometry.

A. Using a quantum reference frame

In the Ramsey interference experiment presented in Sec.
II, the laser pulse which served as a reference frame was
treated as a external potential. However, another description
of the same experiment could be presented wherein the laser
pulse was treated as a dynamical quantum system. In gen-
eral, different descriptions of the same interference experi-
ment are possible depending on whether the reference frame
is treated as a nondynamical macroscopic apparatus or as a
dynamical quantum system. In the language of �25� to treat
the reference frame as part of the apparatus is to use it as an
external reference frame, while to treat it as a dynamical
quantum object is to use it as an internal reference frame.

We begin by treating the reference frame—in this case,
the BEC—as a fully dynamical quantum system. At the end
of Sec. III B, we will demonstrate that this experiment is
equivalent to the Ramsey interference experiment described
in the previous section when the reference frame �the BEC�
is treated externally.

1. Quantum state of the BEC

For simplicity, we adopt a single-mode description of the
BEC. The single mode corresponds to the Gross-Pitaevskii
ground state, which has had great success in describing BEC
dynamics �13,26�. Following the terminology of �4� we refer
to the three modes—the mode of atom type 1, the molecular
mode, and the BEC mode—together as the laboratory.3

States of the laboratory are most generally defined on the
Fock space FM � FA � F2 spanned by the basis of Fock
states �nM�M�nA�A�n2�2, where nM, nA, and n2 are occupation
numbers for the modes. In our experiment, n̂M + n̂A will be a
constant of the motion. Initially, it has eigenvalue 1, as we
consider an initial state consisting of precisely one atom of
type 1 and zero molecules. Thus, we can restrict our attention
to the two-dimensional subspace of FM � FA spanned by the
two states �A� and �M� of Eq. �7�. We refer to this two-level
system as the system, and the Hilbert space associated with it
�spanned by �A� and �M�� is denoted HS. The reference frame
is the remaining mode describing the BEC of atomic species
2, with infinite-dimensional Hilbert space HR=F2. States of
the laboratory �system+reference frame� are thus defined on
HS � HR. We will use the modified Dirac notation �·
 for the
state of the reference frame, to emphasize the special role it
plays.

The BEC consists of atoms of type 2 in a single mode �the
Gross-Pitaevskii ground state mentioned above�. In simplis-
tic treatments, it is common to treat the condensate as a
coherent state, i.e., to assign a state ��
, defined in the num-
ber basis as ��
=�n=0

	 cn�n
 with cn=exp�−���2 /2��n /�n!, as
the quantum state of the BEC. However, as argued in �25�,
the coherence properties of a state assigned to a bosonic
mode are defined relative to a classical reference frame for a

2We note that such an experiment is distinct from ones that aim to
exhibit coherence between two atoms and a diatomic molecule, or
between a BEC of N atoms and a BEC of N /2 diatomic molecules,
as considered in �21–23�.

3We will describe our proposed experiment in terms of the dynam-
ics of these three modes. There are, of course, many details that are
not captured by this simple model, for example the many vibra-
tional modes of the molecule, which would need to be taken into
consideration in an experiment.
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FIG. 1. �Color online� Schematic of the demonstration of quan-
tum coherence in different physical systems: �a� Mach-Zender in-
terferometer, �b� Ramsey interferometry, and �c� the ultracold atom-
molecule system considered in this paper.
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phase that is held in the background. If the phase of the BEC
is uncorrelated with any classical phase reference in the
background, as we will assume in our experiment, then it is
instead appropriate to assign it a quantum state that is inco-
herently averaged over all possible orientations with respect
to the background phase reference. Such a state is given by


0
rf = �

0

2� d�

2�
e−in̂2���
	��ein̂2�. �8�

It is straightforward to show that this state is equal to a
Poissonian mixture of number states


0
rf = �

n=0

	

pn�n̄��n
	n� , �9�

where pn�n̄�=e−n̄n̄n /n! is a Poisson distribution with n̄= ���2.
It is this state, 
0

rf, that we choose to describe the BEC.4 The
treatment of the BEC as an incoherent state is consistent with
the arguments of Refs. �10,11,28�.

Equation �8� is particularly useful as a pedagogical tool
for understanding interference experiments such as the one
described here: the state 
0

rf can be intuitively viewed as a
coherent state ��
, the phase of which �arg �� is uncorrelated
with any classical phase reference used to describe the ex-
periment.

If the BEC mode is initially described by this mixed state

0

rf, and the system starts in the state �A�, then the initial state
of the laboratory may be expressed as

W0L = �A��A� � 
0
rf = �

0

2� d�

2�
e−iN̂tot���0�L��0�eiN̂tot�,

�10�

where

��0�L  �A���
 , �11�

and where the total atom number operator N̂tot is defined as

N̂tot  2n̂M + n̂A + n̂2. �12�

We define the twirling operator acting on density operators
on the laboratory as

T�
L� = �
0

2� d�

2�
e−iN̂tot�
LeiN̂tot�. �13�

Then W0L=T���0�L��0��. It will be illustrative to follow the
evolution of the �=0 element ��0�L of the ensemble in Eq.
�10� through the experiment, bearing in mind that the global
phase � is not physically significant, and the quantum state of

the laboratory is obtained by averaging over this phase
�implemented by the twirling operation T�.

2. Interactions with the quantum reference frame

We now outline the Hamiltonians that will be used to
induce the required evolutions in our gedanken experiment.
The first is an interaction between the system and the quan-
tum reference frame. At a Feshbach resonance, which occurs
when an external magnetic field is tuned so that the energy of
two free atoms is equal to that of a bound molecular state,
coherent tunneling occurs between pairs of atoms and mol-
ecules. A simple model Hamiltonian for this phenomenon,
where the two atoms are of different species, is �cf. �32��

Ĥint =
��

2
�b̂M

† b̂Ab̂2 + b̂Mb̂A
† b̂2

†� , �14�

where b̂M is the annihilation operator for the bound molecu-

lar state, and b̂A and b̂2 are annihilation operators for the
modes containing the two distinct atomic species. This
Hamiltonian can be reexpressed in terms of an operator on
the Hilbert space HS � HR of the laboratory as

Ĥint� =
��

2
��M��A� � b̂2 + �A��M� � b̂2

†� . �15�

We will also make use of a Hamiltonian that induces a
relative phase shift on the system. Such a Hamiltonian is
provided by moving off of the Feshbach resonance and al-
lowing free evolution under the Hamiltonian

Ĥfree = �Mn̂M + �An̂A + �2n̂2, �16�

where �i, i=M ,A ,2, are the internal energies of the two
atomic species and the molecule away from the Feshbach
resonance. There will be some internal energy difference be-
tween the bound molecular state and the sum of the two free
atomic states when off resonance, given by

�int  M − A − 2. �17�

We note that both N̂tot and n̂M + n̂A are constants of the mo-
tion, and thus we can move to an interaction picture in which
the free-evolution Hamiltonian on HS is simply

Ĥfree� = ��int�M��M� , �18�

up to addition of a constant.

3. The interference experiment

We initiate the experiment with the laboratory in the state
W0L of Eq. �10�. The system and reference frame first interact
for a time t=� / �2��n̄� at the Feshbach resonance according
to �15�. This interaction plays the role of a Ramsey pulse. As
a result of this interaction, the state of the laboratory evolves
�in the Schrödinger picture� to W1L=T���1�L��1��, with

��1�L = �A���A
1
 + �M���M

1 
 , �19�

where we have defined unnormalized states

4The intuition that motivates using a coherent state for the BEC is
the belief that coherence is required to explain interference experi-
ments involving BECs such as �27�. However, coherent states are
not required for such an explanation; it has been demonstrated that
number states, or incoherent mixtures of number states such as Eq.
�9�, can also interfere �28�. See �29–31� for further discussion of
this fact.
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��A
1
  �

n=0

	

cn cos��n

n̄

�

4
��n
 , �20�

��M
1 
  − i�

n=0

	

cn sin��n

n̄

�

4
��n − 1
 . �21�

We can interpret these states as �unnormalized� coherent
states that have undergone a disturbance due to the interac-
tion with the system.

Next, we allow the laboratory to freely evolve for time �
away from the Feshbach resonance according to �18�. This
free evolution induces a relative phase between the atom and
molecule terms. The result is a state W2L=T���2�L��2��, with

��2�L = �A���A
1
 + e−i��M���M

1 
 , �22�

and where we have defined

�  �int� �23�

as the net relative phase shift between the atom and molecule
terms acquired during this stage.

Finally we implement the analog of the second Ramsey
pulse by allowing the system and reference frame to interact
again at the Feshbach resonance for time t=� / �2��n̄�, giv-
ing the final state W3L=T���3�L��3��, with

��3�L = �A���A
3
 + �M���M

3 
 , �24�

where we have defined unnormalized states

��A
3
  sin��/2���
 − i cos��/2��

n=0

	

cncos��n

n̄

�

2
��n
 ,

�25�

��M
3 
  − cos��/2��

n=0

	

cn sin��n

n̄

�

2
��n − 1
 , �26�

and where we have ignored the global phase �ie−i�int�/2� in the
final states. Finally, the system is measured in the 	�A� , �M�

basis.

4. A large-amplitude limit of the BEC

We now examine the limit n̄→	. The Poisson distribu-
tion of the state �9� has two key properties that will be useful
for our purposes. First, in this limit, the atom number distri-
bution pn�n̄� of the BEC becomes highly peaked about the
mean atom number in the sense that the standard deviation in
atom number, �n=�n̄, goes to zero relative to the mean. This
property ensures that the interaction of the system with the
BEC yields precisely a � /2 Ramsey pulse in this limit.5 The
second property is that, in absolute terms, the standard de-

viation grows unbounded and so intuitively we might think
that the state of the BEC is negligibly disturbed by the loss
of a single atom in this limit. Formally, the states of the
reference frame after the first and second interactions ap-
proach the following limits6 as n̄→	:

��A
1
 →

1
�2

��
, ��A
3
 → sin��/2���
 , �27�

��M
1 
 → −

iei arg �

�2
��
, ��M

3 
 → − ei arg � cos��/2���
 .

�28�

Therefore, in the limit n̄→	, the evolution of the �=0 term
of Eq. �10�, that is, the evolution of ��0�L given by Eqs. �11�,
�19�, �22�, and �24�, reduces to

��0�L = �A���
 , �29�

��1�L →
1
�2

��A� − iei arg ��M����
 , �30�

��2�L →
1
�2

��A� − iei�arg �−���M����
 , �31�

��3�L → �sin��/2��A� − ei arg � cos��/2��M����
 . �32�

We see that the �=0 term �in fact, any term� remains a prod-
uct on HS � HR for the entire experiment. Moreover, apply-
ing the twirling operator T to such a product yields a sepa-
rable state, which involves classical correlations between the
system and the reference frame but no entanglement. In ad-
dition, we note that in this limit the reduced density operator
of the reference frame remains 
0

rf of Eq. �8� at each stage;
i.e., the reference frame is left undisturbed throughout the
experiment.

The probabilities for detecting an atom or molecule at the
end display Ramsey oscillations

pA = sin2��/2�, pM = cos2��/2� . �33�

This interference pattern has perfect visibility.

5. Interpreting the results

We see therefore that the probabilities for detecting an
atom or molecule exhibit the familiar Ramsey oscillations,
identified in Sec. II as the operational signature of coherence.
So it would seem that we can safely conclude that this ex-
periment demonstrates the possibility of a coherent superpo-
sition of an atom and a molecule.

However, the careful reader might have noted the follow-
ing peculiar fact. From Eqs. �30� and �31�, we find that the
reduced density operators on HS of ��2�L or ��3�L are5Each Fock state �n
 component of the reference-frame state in-

duces a Rabi oscillation between �A� and �M� at frequency ��n+1.
In the limit n̄→	, the fact that the uncertainty in n goes to zero
relative to the mean ensures that all relevant oscillations occur at
the same frequency.

6These limits follow from the fact that the inner products of the
BEC states with the appropriate coherent states approach unity in
the limit n̄→	.
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1
�2

��A� − iei arg ��M�� , �34�

1
�2

��A� − iei�arg �−���M�� , �35�

respectively. The reduced density operators on HS of W2L
and W3L are obtained from these by averaging over arg �
through the use of the twirling operator T. In both cases, this
state is found to be the completely mixed state 1

2 ��A��A�
+ �M��M��, i.e., an incoherent mixture of an atom and a mol-
ecule. Thus, we have a puzzle: we have clearly predicted the
standard operational signature of coherence, namely,
Ramsey-type fringes, but the coherence is not present in our
mathematical description of the system.

Before suggesting the resolution of this puzzle, we shall
demonstrate that it is not unique to the atom-molecule ex-
ample we are considering. We find precisely the same pecu-
liarity in the context of the original Ramsey experiment, as
follows.

Within the analysis of the Ramsey experiment presented
in Sec. II, the electromagnetic �EM� field constituting the
Ramsey pulses was treated as an external potential. As is
well known, this description is perfectly adequate if the
fields have large amplitude. But note that one could have
also chosen to treat this EM field within the quantum formal-
ism, as a dynamical system interacting with the atom. We
emphasize that whether the reference frame �the EM field� is
treated internally or externally is merely a choice of the
physicist. As long as the field has large amplitude, either
description is adequate to the task of making accurate pre-
dictions about what will be observed by the experimenter.

Treating the reference frame internally, we can take the
state of the field to be a coherent state of a single bosonic
mode associated with a bosonic annihilation operator â. The
phase is unimportant �i.e., the demonstration of Ramsey os-
cillations does not depend on the phase of the coherent state�,
so one obtains the same experimental predictions if this state
is averaged over all phases �29,30�, i.e., if one uses a quan-
tum state for the EM field of the same form as the BEC state
of Eq. �8�.

The relevant Hamiltonian for interacting the two-level
atom with the EM field in this internalized description is the
Jaynes-Cummings Hamiltonian

ĤJC = ����g��e� � â + �e��g� � â†� . �36�

Starting with the coherent state averaged over all phases for
the EM field and the Jaynes-Cummings interaction Hamil-
tonian, one is led to a description of the original Ramsey
experiment that is precisely equivalent to the one we have
just provided for the atom-molecule system.

Along with being formally equivalent to our atom-
molecule experiment, this description of the Ramsey experi-
ment with an internalized reference frame is operationally
equivalent to the one presented in Sec. II, and necessarily
makes the same predictions. In particular, it agrees with the
model of Sec. II in predicting the presence of Ramsey
fringes. Given that such a model is formally equivalent to the

atom-molecule experiment presented in the previous section,
we see that that the latter necessarily predicted the presence
of such fringes.

We now turn to the resolution of this puzzle, which ap-
plies to both our proposed atom-molecule experiment as well
as the Ramsey experiment. We denote the system by S and
the reference frame by R. In the case of the Ramsey experi-
ment, S is the atom and R is the EM field constituting the
Ramsey pulse, while in the case of the atom-molecule inter-
ference experiment, S is the mode pair of atom mode and
molecule mode and R is the BEC constituting the analog of
the Ramsey pulse.

In such an experiment, if the reference frame is treated
externally, the total Hilbert space is denoted HS and the
quantum state on this Hilbert space describes the relation
between S and R. As demonstrated in Sec. II, the observation
of fringes in this experiment implies coherence between
states �g� and �e� of this particular relational degree of free-
dom. Alternately, if the reference frame is treated internally,
the total Hilbert space is denoted by HS � HR; however, in
this description the quantum state on HS describes the rela-
tion between S and a background reference frame, distinct
from R. Thus although it is standard practice to use a com-
mon notation, the Hilbert space we denote by HS when R is
treated externally and the Hilbert space we denote by HS
when R is treated internally describe distinct degrees of free-
dom.

Thus, it is a mistake to think that a coherent superposition
of states �g� and �e� on HS when R is treated externally nec-
essarily implies a coherent superposition of states �g� and �e�
on HS when R is treated internally. Specifically, if one inves-
tigates only the reduced density matrix on HS when R is
treated internally, no coherence will be found because the
reference frame R relative to which these coherences are
defined has been discarded in taking the partial trace. To find
the relation between S and R when the latter is treated inter-
nally, one should not look to the reduced density operator on
HS but rather to the reduced density operator on a different
Hilbert space: one for which its degrees of freedom are the
relation between S and R. In the following section, we iden-
tify this relational Hilbert space and demonstrate that when
Ramsey fringes are observed, states in this Hilbert space are
indeed coherent.

B. A relational description

We now provide the details of the relational description.
This description could be viewed as an example of quantum
coherence in the presence of unobservable quantities, in this
case the overall phase, discussed in �33�. The averaging over
all phases, given by the twirling operator T, ensures that the
density matrix of the laboratory is, at all times in this experi-
ment, block diagonal in the eigenspaces of total type-2 atom

number N̂2= n̂2+ n̂M. �Note that this total number operator
also counts atoms of type 2 that are bound in molecules.�
Thus, we can express the state of the laboratory at each stage
as

WiL = �
N=0

	

pN�n̄���i
�N��L��i

�N��, i = 0,1,2,3, �37�

where
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��i
�N��L = �N��i�L, �38�

with �N the projector onto the eigenspace of N̂2 with eigen-
value N, spanned by �A��N
 and �M��N−1
.

In the limit n̄→	, the states WiL have most of their sup-
port on the subspaces for which n̄−�n̄�N� n̄+�n̄, and us-
ing the same approximations as in Sec. III A 4 we have, for
N in this range,

��0
�N��L → �A��N
 , �39�

��1
�N��L →

1
�2

��A��N
 − i�M��N − 1
� , �40�

��2
�N��L →

1
�2

��A��N
 − ie−i��M��N − 1
� , �41�

��3
�N��L → sin��/2��A��N
 − cos��/2��M��N − 1
 . �42�

The fact that the coefficients in these superpositions are in-
dependent of N suggests that, in this limit, we can express
these states on an alternate Hilbert space, as we now demon-
strate.

We define a new two-dimensional Hilbert space Hrel with
an orthonormal basis denoted by �A�rel and �M�rel, corre-
sponding respectively to nM =0 �no molecules� and nM =1
�one molecule�. We call this the relational Hilbert space. We
also define a new Hilbert space Hgl which has an orthonor-
mal basis labeled by N and defined for N�1. We call this the
global Hilbert space. Define the subspace HL� of HL as the
orthogonal complement to the vector �A��0
. We can define a
linear map from the subspace HL� of HS � HR to this new
tensor product Hilbert space Hrel � Hgl by its action on basis
vectors as

�A��N
 � �A�rel�N�gl, �43�

�M��N − 1
 � �M�rel�N�gl, �44�

for all N�1.
It is illustrative to construct this alternate Hilbert space

and the associated map �43� and �44� by simultaneously di-
agonalizing two commuting operators. Note that the states
�A��N
 and �M��N
 on HS � HR are simultaneous eigenstates
of the operators n̂M �or equivalently, n̂1� and n̂2; the former
labels states on HS, and the latter labels states on HR. Spe-
cifically,

�A��N
 = �nM = 0,n2 = N� , �45�

�M��N
 = �nM = 1,n2 = N� . �46�

We can instead choose a different set of commuting op-
erators to achieve an alternate tensor product structure for the
laboratory Hilbert space. We choose the commuting opera-

tors n̂M and N̂2= n̂2+ n̂M, the latter being the total number
operator for atoms of type 2. We note that the states �A��N

and �M��N
 are also joint eigenstates of n̂M and N̂2, so that we
may write

�A��N
 = �nM = 0,N2 = N� , �47�

�M��N
 = �nM = 1,N2 = N + 1� . �48�

We note that in the limit n̄→	, the states we consider
have no support on the vector �A��0
= �nM =0,N2=0� and
thus we can focus our attention on the subspace HL� of HL
that is orthogonal to this vector. The states on HL� are of the
form �nM ,N2� with N2�1.

Because the spectra of n̂M and N̂2 are independent, we can
introduce a new tensor product structure Hrel � Hgl on HL�
which is made by identifying

�A�rel�N�gl  �nM = 0,N2 = N� , �49�

�M�rel�N�gl  �nM = 1,N2 = N� , �50�

for all N�1. We then have a vector space isomorphism

HL� � Hrel � Hgl. �51�

This identification recovers the map of Eqs. �43� and �44�.
Note that, under the map of Eqs. �43� and �44�, we have

��A��N
 + ��M��N − 1
 � ���A�rel + ��M�rel��N�gl, �52�

so that while the reduced density operator for this state on
the system HS is an incoherent mixture of �A� and �M�, the
reduced density operator on the new subsystem Hrel is a
coherent superposition of �A�rel and �M�rel.

This fact implies that the states WiL of the laboratory �in
the limit n̄→	� map to product states

WiL = ��i�rel��i� � 
gl, �53�

where

��0�rel = �A�rel, �54�

��1�rel =
1
�2

��A�rel − i�M�rel� , �55�

��2�rel =
1
�2

��A�rel − ie−i��M�rel� , �56�

��3�rel = sin��/2��A�rel − cos��/2��M�rel, �57�

and


gl = �
N=1

	

pN�n̄��N�gl�N� . �58�

This new tensor product structure demonstrates explicitly
how we resolve the puzzle posed in the previous section.
Both the states of HS and the states of Hrel are labeled by the
number of molecules, and consequently describe whether the
system is an atom or a molecule. Thus, the question “can one
have a coherent superposition of an atom and a molecule?” is
seen to be ambiguous as stated. Does it refer to a coherent
superposition of �A� and �M� on HS or to a coherent super-
position of �A�rel and �M�rel on Hrel? To resolve the ambigu-
ity, we take an operational stance. By arguing in analogy
with the Ramsey interference experiment, we have proposed
that an operational signature of coherence is the appearance
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of Ramsey fringes, and we have shown that this coincides
with having a coherent superposition of �A�rel and �M�rel on
Hrel.

We finish our analysis by considering the dynamics on the
laboratory in terms of the new tensor product structure. Us-
ing the map of Eq. �43�, we find that the free Hamiltonian for
the evolution between Ramsey pulses, defined by Eq. �18�,
becomes simply

Ĥfree� = ��int�M�rel�M� , �59�

and the Hamiltonian governing the interaction between the
system and the reference frame, Eq. �15�, becomes

Ĥint� =
��

2
��M�rel�A� + �A�rel�M�� � �N̂gl. �60�

The effective map for the interaction with the BEC is
determined as follows. Noting that the interaction occurs for
a time t=� /2��n̄ and that the initial state on Hgl is 
gl of Eq.
�58�, the effective evolution on Hrel is represented by a com-
pletely positive trace-preserving map E of the form

E�
rel� = Trgl„Uint�
rel � 
gl�Uint
†
…

= �
N

pN�n̄�gl�N�Uint
relUint
† �N�gl

= �
N

pN�n̄�eiĤint
�N�t
rele

−iĤint
�N�t, �61�

where Ĥint
�N�= gl�N�Ĥint� �N�gl. But given that in the limit of large

n̄ the distribution pN�n̄� is only significant in the range n̄
−�n̄�N� n̄+�n̄ and given that limn̄→	��n̄±�n̄�t / n̄t�=1, we
have that in this limit

E�
rel� = eiĤRamt
rele
−iĤRamt, �62�

where

ĤRam =
���n̄

2
��M�rel�A� + �A�rel�M�� . �63�

This has a natural interpretation as the analog of a Ramsey
pulse where the pulse is implemented by a BEC that is
treated as a classical external field.

We can now make a complete comparison of our rela-
tional description of the atom-molecule interference experi-
ment with the original description of the Ramsey experiment
in Sec. II �where the fields corresponding to the Ramsey
pulses were treated as external potentials�. The Hamiltonians

Ĥfree� of Eq. �59� and ĤRam of Eq. �63� governing the rela-
tional degree of freedom are precisely analogous to the
Hamiltonians of Eq. �2� and Eq. �1� governing the internal
state of the atom in the Ramsey experiment, and the states on
Hrel at the four stages of the experiment, given by Eqs.
�54�–�57�, are precisely analogous to the states for Eqs.
�3�–�6� for the internal states of the atom in the Ramsey
experiment. We conclude that Hrel can be understood as de-
scribing either �i� the relation between the system �atom and
molecule modes� and the reference frame formed by the
BEC when the latter is treated internally, or �ii� the system

�atom and molecule modes� when the reference frame
formed by the BEC is treated as an external potential.

IV. COHERENT SUPERPOSITIONS OF A BOSON
AND A FERMION

We now repeat this analysis for the case when the atoms
are fermions, and demonstrate that it is possible in principle
to exhibit coherence between a fermion �a single atom� and a
boson �a molecule�. This result is quite surprising; it is com-
monly accepted that there exists a superselection rule pre-
venting a coherent superposition of a boson and a fermion.
We emphasize that we are considering a superposition of a
single fermionic atom with a single bosonic molecule, not a
superposition of two fermionic atoms and a composite
bosonic molecule as considered in �34,35�.

Consider our laboratory to consist of two types of atomic
species, type 1 and type 2, which are fermions, along with a
bosonic diatomic molecule consisting of one of each type of
fermion. As with the previous discussion, we will consider
creating a superposition of an atom of type 1 and a molecule,
using atoms of type 2 as a reference frame.

As we are using fermions, the natural Hilbert space for
states of the laboratory will be a Fock space. However, we
will want to make use of a tensor-product structure of the
laboratory Hilbert space which divides it into a system and a
reference frame �and, subsequently, into a relational and a
global Hilbert space�. To do this, we will make use of the
natural mapping between the Fock space FN of N fermionic
modes and the tensor-product Hilbert space �C2��N of N qu-
bits, given by Bravyi and Kitaev �36� in the Fock basis as

�n1,n2, . . . ,nN� � �n1� � �n2� � ¯ � �nN� �64�

for ni� 	0,1
. This identification implies a nontrivial relation
between operations on FN and operations on �C2��N, as a
result of phases acquired by commuting operations through
occupied modes. Fortunately, due to the highly incoherent
nature of the states that we will make use of, and by working
with mixed rather than pure states, we will find that this
nontrivial identification does not add much additional com-
plication.

Again, we use the notation

�A� = �0�M�1�A, �M� = �1�M�0�A, �65�

where the first mode � · �M is bosonic �the molecule�, and the
second mode � · �A is fermionic �atom type 1�. We define a
system Hilbert space HS spanned by these two states �A� and
�M�.

A. Using a quantum reference frame consisting of fermions

1. Generalizing the previous experiment

In order to construct an interference experiment that ex-
hibits coherence between a boson and a fermion, we must
identify an appropriate reference frame consisting of fermi-
ons. This is nontrivial, given the difficulties of defining a
fermionic coherent state that has analogous properties to the
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standard �bosonic� coherent state �37–39�. Again, we meet
these challenges by being operational.

We first examine some of the properties of the state of the
BEC in the experiment discussed in Sec. III A which allowed
it to serve as a good reference frame. To obtain good visibil-
ity in the experiment, we required that all relevant Rabi os-
cillations corresponding to different Fock state components
�n� in the state of the reference frame occur at the same
frequency, which is obtained by requiring the variance in n to
be small compared to the mean, n̄. This requirement could be
satisfied by a state with a modest value of n̄, and we could
still have predicted good fringe visibility. For example, a
single Fock state �n� with n�1 satisfies this requirement.

In addition, though, we noted that the reduced density
operators for the reference frame at each state of the experi-
ment were undisturbed in the limit n̄→	, which would al-
low for the experiment to be repeated many times using the
same reference frame. For this additional condition to be
satisfied, a large absolute variance in total atom number is
required �thus implying a large mean total atom number�.

We now consider an analogous situation in the fermion
case. First, consider a reference frame of fermionic atoms
that consists of a single mode. Due to the Pauli exclusion
principle, the mean atom number of this reference frame can
be at most one. Consider using a Hamiltonian of the form

Ĥ =
��

2
�b̂M

† f̂2 f̂A + f̂A
† f̂2

†b̂M� , �66�

where b̂M is the boson annihilation operator for the molecu-

lar mode, f̂A is the fermion annihilation operator for the

mode of atom type 1, and f̂2 is the annihilation operator for
the reference-frame mode of atom type 2. It is clear that if
the initial state of the system is �A� and of the reference
frame is �1
, then it is possible to perform an interference
experiment yielding maximum visibility.

However, in this experiment, the state of the reference
frame is highly disturbed. One might �rightly� argue that it is
essentially just a Rabi oscillation. We now consider what
conditions on the state of the reference frame must be satis-
fied in order for it to be undisturbed throughout the experi-
ment, thereby making it analogous to the bosonic case in this
regard as well. First, we require that the mean number of
fermions in the reference frame must be large. To achieve
this, because of the Pauli exclusion principle, the reference
frame must be multimode. Second, we cannot allow every
new system to interact with the same mode of the reference
frame. The reason for the latter is that a single mode can
have at most one fermion, and if we happen to find a mol-
ecule at the end of the Ramsey experiment �and we should
assume the worst and say that we do find a molecule� then
this fermion has been depleted from that mode. The next
system that interacts with this mode will therefore only in-
teract with the vacuum.

We now define a multimode reference frame with a large
mean number of atoms, and an associated multimode inter-
action between the system and the reference frame. The ex-
periment we describe yields high visibility and also leaves
the state of the reference frame undisturbed.

2. The quantum state of the reference frame

Consider a K-mode fermionic reference frame of atoms of
type 2, using the tensor product structure of Eq. �64�, initially
prepared in the state


0
rf = ��K, �67�

where � is given by

� = ��0
	0� + �1 − ���1
	1� . �68�

The distribution of total atom number in the state 
0
rf is given

by the binomial distribution cn
K�1−��, where we define the

binomial coefficient cn
K�p� of n successes in K trials where

the probability of success is p as

cn
K�p� = �K

n
�pn�1 − p�K−n. �69�

As we will argue below, in the limit K→	 this atom number
distribution has the property that the loss of a single particle
leaves the distribution indistinguishable from the original.

3. The interference experiment

We initiate the experiment with the system prepared in the
state �A� and the reference frame in the state 
0

rf of Eq. �67�.
The initial state of the laboratory is thus

W0L = �A��A� � 
0
rf. �70�

To perform the operation that is analogous to a Ramsey � /2
pulse in this experiment, we use the Hamiltonian

Ĥ�j� =
��

2
�b̂M

† f̂2
�j� f̂A + f̂A

† f̂2
�j�†b̂M� , �71�

where b̂M is the boson annihilation operator for the molecu-

lar mode, f̂A is the fermion annihilation operator for the

mode of atom type 1, and f̂2
�j� is the annihilation operator for

the jth mode �j=1,2 , . . . ,K� of the reference frame for atom
type 2. Again, this Hamiltonian describes the evolution at a
Feshbach resonance, at which the energy of two free fermi-
ons �one each of types 1 and 2� is equal to the energy of a
bound molecular state.

One might naturally consider implementing the � /2
pulses by using the unitary operation generated by

Ĥcoh = �
j

Ĥ�j�. �72�

The problem with such a Hamiltonian is that it only couples
the system with a single reference-frame mode, specifically,
the mode associated with the fermionic annihilation operator

F̂=
1

�M
� j f̂ k. As discussed above, such a coupling is unsatis-

factory.
Consider instead the following evolution: the system in-

teracts with a random mode j of the reference frame via the

interaction Ĥ�j�. We can formalize such an evolution by using
the language of quantum operations �40�. Let U�/2

�j� be the
unitary operation that describes � /2 pulse obtained by cou-
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pling the system and the jth reference-frame mode via the

Hamiltonion Ĥ�j� for a time t=� / �2�� 7. Let U� be the uni-
tary operation that applies a phase shift �=�int� to the �M�
component of the system, i.e., evolution for time � according

to the Hamiltonian Ĥint=�int �M��M�.
If the laboratory is initially in the state W0L, and if the

system interacts with a known reference-frame mode j, the
state at each stage of the experiment is given by

W1L
�j� = U�/2

�j� W0L�U�/2
�j� �−1, �73�

W2L
�j� = U�U�/2

�j� W0L�U�U�/2
�j� �−1, �74�

W3L
�j� = U�/2

�j� U�U�/2
�j� W0L�U�/2

�j� U�U�/2
�j� �−1, �75�

where the unitaries U�j� are taken to act as the identity on all
modes other than the jth mode.

To describe an evolution where, with probability 1 /K, the
system interacts with the jth reference-frame mode, we make
use of generalized quantum operations, which have the form
of completely positive trace-preserving maps given, in this
instance, by convex combinations of unitary transformations.
We describe the evolution that takes the laboratory from the
initial state W0L to a state WiL for steps i=1,2 ,3 as

W1L = E1�W0L� =
1

K
�
j=1

K

U�/2
�j� W0L�U�/2

�j� �−1, �76�

W2L = E2�W0L� =
1

K
�
j=1

K

U�U�/2
�j� W0L�U�U�/2

�j� �−1, �77�

W3L = E3�W0L� =
1

K
�
j=1

K

U�/2
�j� U�U�/2

�j� W0L�U�/2
�j� U�U�/2

�j� �−1.

�78�

As noted above, there is a nontrivial relation between a uni-
tary U�/2

�j� coupling two modes together in the tensor-product
Hilbert space, and the same coupling on the Fock space, due
to the phases acquired by commuting through modes j� for
j�� j; in general, this mapping can be determined using the
techniques of �36�. However, this mapping does not exhibit
any nontrivial consequences for the interaction presented
here, for the following simple reason. Note that each se-
quence of unitary operations �either U�/2

�j� , U�U�/2
�j� , or

U�/2
�j� U�U�/2

�j� � only couples the system with a single
reference-frame mode j; such coupling will thus lead to a
nontrivial phase due to the modes j�� j. However, the ex-
pressions above sum incoherently over the different possi-
bilities j, and thus the phases acquired for each term in this
sum do not interfere.

For clarity, it will be useful to follow the evolution asso-
ciated with the j=1 element of the above operation, remem-
bering at each step that the state of the laboratory is de-
scribed by interacting the system with a random mode. To do
this, we define the shuffling operation S, which is the inco-
herent symmetrizer acting on states of the reference frame as

S�
rf� =
1

K!�� S�
rfS�
† , �79�

where the sum is over all permutations � of K indices and S�

is the unitary representation of the symmetric group on K
fermion modes. We determine the evolution for the system
interacting with the j=1 mode of the reference frame at each
step, and then apply the shuffling operator to the state of the
reference frame to obtain the state corresponding to an inter-
action with a random mode as in Eqs. �76�–�78�.

We first apply a � /2 pulse by evolving with the Hamil-

tonian Ĥ�j=1� for time t=� / �2�� �step 1�, then freely evolving
off resonance for time � �step 2�, followed by another � /2
pulse �step 3�, yielding at each step i=0,1 ,2 ,3

���A��A� � �0
	0� + �1 − ����i�L��i�� � ��K−1, �80�

where

��0�L = �A��1
 , �81�

��1�L =
1
�2

��A��1
 − i�M��0
� , �82�

��2�L =
1
�2

��A��1
 − ie−i��M��0
� , �83�

��3�L = cos��/2��A��1
 − sin��/2��M��0
 . �84�

Because the mode with which the system interacts is un-
known, the state of the laboratory at any particular stage i of
the experiment may be written

WiL = S����A��A� � �0
	0� + �1 − ����i�L��i�� � ��K−1� ,

�85�

where, in a slight abuse of notation, it is understood that S
acts only on the K reference-frame modes and as identity on
the system. It is straightforward to show that these states are
equivalent to those presented in Eqs. �76�–�78�.

The probabilities for measuring an atom or a molecule
after the final step are, respectively,

pA = Tr�W3L�A��A�� = � + �1 − ��cos2��/2� , �86�

pM = Tr�W3L�M��M�� = �1 − ��sin2��/2� , �87�

yielding a visibility of V= �1−��. Thus, for small �, we can
achieve high visibility for the Ramsey fringes.

Along with achieving a high visibility in the limit �→0,
this result possesses another analogy with the bosonic ex-
periment of Sec. III: in the limit K→	, the state of the
reference frame is left undisturbed throughout the experi-
ment. Specifically, the reduced density operator of the refer-

7Note that the interaction times do not scale inversely with the
square root of the mean atom number as only one reference-frame
mode containing at most one fermion interacts. Essentially, the sys-
tem undergoes a type of Rabi oscillation with a single mode of the
reference frame.
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ence frame remains 
0
rf of Eq. �67� after the experiment, re-

gardless of what measurement outcome �atom or molecule�
is obtained. We provide a proof of this fact in the Appendix.

4. Interpreting the results

In the limit discussed above, the state of the reference
frame described above is undisturbed throughout the interfer-
ence experiment. Specifically, if the system is prepared in the
state �A� and the measurement result �M� is obtained, the
state of the reference frame is undisturbed even though a
fermionic atom has been removed from the reference frame.
This property is shared with the single-mode bosonic atom
state of Eq. �8�.

It is illustrative to compare the single-mode bosonic atom
state of Eq. �8� and the multimode fermionic atom state of
Eq. �67�, and to address possible concerns of a skeptic who
questions whether the latter is a good generalization of the
former for the purposes of a Ramsey experiment.

Bosons admit coherent states that are eigenstates of the
annihilation operator; such coherent states yield good visibil-
ity in an interference experiment, and are also undisturbed by
the interactions. Thus, one way to explain the fact that the
state �8� is undisturbed by the interference experiment is to
note that every coherent state would be undisturbed, so the
convex sum of them will also be undisturbed. One might
naively expect that these properties cannot be generalized to
fermionic states, because it is not possible to define pure
states of �single -or multimode� fermionic systems that are
eigenstates of an annihilation operator.

However, no convex decomposition should be preferred
over others. We can also view the mixed bosonic state of Eq.
�8� as a Poissonian distribution of number states, as in Eq.
�9�. In that case, it is the large uncertainty in total number
that explains why the mixed state is undisturbed. One can
appeal to this same sort of explanation in the fermionic case.
A skeptic might still claim that there is a difference, namely,
that “really” the bosonic system is in a coherent state, and it
is the nondisturbance to this real state that is significant.
However, to make this statement is to commit the partition
ensemble fallacy �41�.

Another possible distinction between these two states that
a skeptic might claim to be important is that, in the fermionic
case, there is classical information �the integer j� indicating
the mode of the reference frame with which the system in-
teracted. If one considers the state of this mode, then it is
highly disturbed by the interaction. However, the classical
uncertainty about which mode was the mode of interaction
ensures that the reference frame, as a whole, is undisturbed.
This classical uncertainty ensures that, if the experiment was
repeated many times, there is only a vanishing probability
that the system will interact with the same mode more than
once; thus, visibility is maintained for many runs of the ex-
periment.

There are indeed significant differences between the
bosonic and fermionic states described here, in terms of how
they can be used as reference frames. We discuss one such
difference in Sec. V B. However, we emphasize that, if one
takes an operational view of these Ramsey-type interference
experiments, then the bosonic and fermionic examples are

completely equivalent in that they produce high-visibility
fringes for potentially many repetitions of the experiments.

B. A relational description

This experiment exhibits high-visibility Ramsey fringes,
demonstrating coherence between a fermionic atom and a
bosonic molecule. However, as with the experiment illus-
trated in Sec. III A, the reduced density operator for the sys-
tem at all times during the experiment is diagonal in the
�A� , �M� basis. To observe the coherence, one must instead
look to a relational description, which we now develop in
analogy to that presented in Sec. III B.

First, we introduce some simplifying notation. Let n� be
a vector in �Z2��K, i.e., a K-dimensional vector where
each element n�i� is either zero or one. Then �n�

= �n�1� ,n�2� , . . . ,n�K�� is a Fock state of K fermionic modes.

Now, note that the states WiL of Eq. �85� are block diag-
onal in the eigenspaces of total number of atoms of type 2
�counting any atoms of type 2 which are bound into mol-
ecules as well�. Defining a total type-2 atom number operator

N̂2 = n̂M + �
j=1

K

n̂2
�j�, �88�

where n̂M = b̂M
† b̂M and n̂2

�j�= f̂2
�j�† f̂2

�j�, we can express

WiL = �
N=0

K

cN
�K��1 − ��WiL

�N�, �89�

where cN
K�p� is defined in Eq. �68� and where the states WiL

�N�

are eigenstates of N̂2 with eigenvalue N. In the limit K→	,
�→0 with K� fixed, this expression becomes

lim WiL = �
N=0

	

pN�n̄�WiL
�N�, �90�

with n̄=K�1−��, with the states WiL
�N� given by

WiL
�N� = S���i�L��i� � �n�N−1
	n�N−1�� , �91�

where n�N−1 is the vector �1,1 , . . . ,1 ,0 , . . . ,0� with N−1 ones
and K−N zeros, S is the shuffling operator of Eq. �79�, and
the states ��i�L are given by Eqs. �81�–�84�. The fact that the
states ��i�L are independent of N suggests an alternate parti-
tioning of the Hilbert space, as follows.

First note that our current tensor product structure for the
Hilbert space, in terms of modes, is associated with the ei-
genvalues of the number operators

n̂M, n̂2
�1�, n̂2

�2�, . . . , n̂2
�K�. �92�

We choose the following different set of commuting opera-
tors:

n̂M, N̂2, r̂2
�i�  n̂2

�i� − n̂2
�i−1�, i = 2, . . . ,K . �93�

We note that the states �A��n�
 and �M��n�
 are also eigenstates
of this new set of operators, specifically,

n̂M�A��n�
 = 0, �94�
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n̂M�M��n�
 = �M��n�
 , �95�

N̂2�A��n�
 = ��
i

n�i���A��n�
 , �96�

N̂2�M��n�
 = �1 + �
i

n�i���M��n�
 , �97�

r̂2
�i��A��n�
 = �n�i� − n�i−1���A��n�
 , �98�

r̂2
�i��M��n�
 = �n�i� − n�i−1���M��n�
 . �99�

We note that in the limit �→0, the states we consider
have no support on the vector �A��0,0 , . . . ,0
 and thus we
can focus our attention on the subspace HL� of HL that is
orthogonal to this vector.

We introduce a new tensor-product structure on HL� as
follows. We define a two-dimensional Hilbert space Hrel with
an orthonormal basis denoted by �A�rel and �M�rel, corre-
sponding respectively to nM =0 �no molecules� and nM =1
�one molecule�. We call this the relational Hilbert space. We
also define a Hilbert space Hgl which has an orthonormal
basis labeled by �N2 ,r�2�, where r�2 is the vector consisting of
the eigenvalues of the operators r̂2

�i� for i=2,3 , . . . ,K. These
labels are defined for N2�1, and r�2 consistent with this total
type-2 atom number N2. We call this the global Hilbert
space. Then, because the spectra of n̂M and that of the opera-

tors N̂2 and r̂2
�i� are independent, we have a virtual tensor-

product structure

HL� � Hrel � Hgl, �100�

which is defined in terms of a linear map from HS � HR to
Hrel � Hgl in terms of their respective basis states as

�A��n�
 � �A�rel�N2 = ��
i

n2
�i��,r�2�

gl

, �101�

�M��n�
 � �M�rel�N2 = �1 + �
i

n2
�i��,r�2�

gl

, �102�

where r2
�i�=n2

�i�−n2
�i−1�.

The states WiL of Eq. �90� are expressed in terms of this
new tensor-product structure as

WiL = ��i�rel��i� � 
gl, �103�

where the states on the relational Hilbert space are pure,
given by

��0�rel = �A�rel, �104�

��1�rel =
1
�2

��A�rel − i�M�rel� , �105�

��2�rel =
1
�2

��A�rel − ie−i��M�rel� , �106�

��3�rel = cos��/2��A�rel − sin��/2��M�rel. �107�

The state 
gl on Hgl is identified via the following observa-
tions about the shuffling operation S. First, if a state 
 has

support entirely within an eigenspace of the operators N̂2 and
n̂M with eigenvalues N and nm, respectively, then S�
� also
has support entirely within this same eigenspace; intuitively,
this is because symmetrization does not alter the total type-2
atom number, or whether a type-2 atom is bound into a mol-
ecule or not. �Recall that the shuffling operation acts only on
the state of the reference frame.� Second, the shuffling op-
eration completely randomizes the eigenvalues of the opera-
tors r̂�i�, i.e., if 
 on HL� has support entirely within an eigens-

pace of the operators N̂2 and n̂M with eigenvalues N and nM,
respectively, then S�
� is a uniform mixture of all states on

HL� that are eigenstates N̂2 and n̂M with the same eigenvalues.
Thus, the state 
gl is given by


gl = �
N=0

	

pN�n̄��N, �108�

where �N is the completely mixed state on the eigenspace of

N̂2 in Hgl with eigenvalue N.
Thus we see that having fermionic atoms does not present

any new difficulties compared to the case of bosonic atoms,
so that one may interpret the fermionic version of this inter-
ference experiment in precisely the same way that we inter-
preted the bosonic version, as described in Secs. III A 5 and
III B.

V. DISCUSSION

A. Experimental considerations

The above descriptions of our proposed experiments are
clearly idealized and intended to illustrate the essential phys-
ics. We now address some of the issues that may arise in
attempting to perform our proposed experiments in real sys-
tems of ultracold bosonic or fermionic atoms and molecules.

Both the bosonic and fermionic versions of our proposed
experiment require creation of mixtures of degenerate atoms
of two different species. Such mixtures have now been cre-
ated with a number of different atomic species via the pro-
cess of sympathetic cooling �42–46�. In �42� a mixture of
two BECs of different bosonic species 41K and 87Rb was
created. Furthermore the location of Feshbach resonances in
these two atomic species was estimated in �47�. We therefore
consider these two species as good candidates for imple-
menting the bosonic version of our experiment described in
Sec. III. For the fermionic version of the experiment de-
scribed in Sec. IV we require a mixture of two different
fermionic species. While mixtures of bosonic and fermionic
species are common �43–46�, to our knowledge simultaneous
degeneracy of two different fermionic atom species has not
yet been achieved experimentally. However, a degenerate
mixture of two different spin states of the same fermionic
atom has been created �48�, which would suffice as the two
distinguishable fermionic species for our purposes.

Clearly one of the issues in performing the experiment,
once appropriate atomic species have been chosen, is detec-
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tion. We seem to require the ability to perform a projective
measurement of a single atom or molecule in order to ob-
serve the interference pattern, Eq. �33�. The issue of detect-
ing single atoms also arises in the context of quantum-
information processing �QIP� with neutral atoms in optical
lattices and magnetic microtraps �see �49� for a review of
experimental progress, and references therein�. It may be
possible to perform the projective measurement of atom or
molecule using the fiber-based Fabry-Pérot resonators de-
scribed in �49�.

Alternatively, one may attempt to perform many copies of
the experiment simultaneously by beginning with an optical
lattice containing atoms of the first species in the Mott-
insulator regime at unit filling, so that atoms in different
lattice sites are essentially noninteracting. Again, the creation
of optical lattices containing precisely one atom per site has
been considered in the context of QIP with neutral atoms
�49�. We would then seem to require a separate BEC of the
second atomic species at each site to create distinct copies of
the same experiment. However, this could be challenging
experimentally and given that we are working in the classical
limit it may suffice to use a single BEC with a spatial profile
that overlaps the entire lattice.8 The interactions could be
implemented by tuning an external magnetic field �uniform
over the lattice� onto the Feshbach resonance. Free evolution
could be implemented by switching off the external magnetic
field for the desired period of time. At the end of the experi-
ment standard techniques should suffice to detect the number
of atoms of the first species present in the lattice �molecules
being typically much more difficult to detect�, and we would
expect to see an interference pattern in this number as a
function of the free-evolution time.

Next, from a theoretical perspective, one may question
whether the single-mode description used in Sec. III is ad-
equate for the BEC. For small BECs there is some “quantum
depletion” whereby some atoms do not occupy the conden-
sate, even at zero temperature, due to interactions between
the atoms �26�. However this effect is small �a few percent or
less� in most current experiments, and in any case we are
concerned with the limit of a large BEC—precisely the limit
in which the mean-field dynamics given by the Gross-
Pitaevskii equation become exact.

For the experiment involving fermions described in Sec.
IV both preparation of the initial state and implementation of
the interaction are likely to be far more difficult. We do not
have any concrete suggestions for how this experiment might
be performed, however we note that the initial state Eq. �67�
may be well approximated by fermions near the Fermi level
at a small but nonzero temperature, i.e., the different fermion
modes are the momentum modes close to the Fermi momen-
tum. Alternatively, it may be more convenient to use spa-
tially isolated modes, such as the lattice sites in an optical
lattice, as the multimode fermionic reference state. Fermi-
onic atoms were confined to a three dimensional optical lat-
tice in �48�, so the reference state �67� could perhaps be

created by trapping slightly fewer atoms than the number of
lattice sites, so that the vacant sites are randomly distributed.
One must also address the issue of implementing the nonuni-
tary coupling described by Eqs. �76�–�78�. It may be possible
to implement such a coupling using the Hamiltonian of Eq.
�72� if the reference frame is kept in thermodynamic equilib-
rium with a particle heat bath that can replenish an exhausted
fermionic mode.

Finally, another question that must be addressed concerns
the time scales and mechanisms for decoherence. One might
expect interactions with background atoms and molecules
and with uncondensed thermal atoms to cause the superpo-
sitions to decohere, but whether or not this would occur on a
time scale shorter than is necessary to observe the interfer-
ence fringes has not been studied, to our knowledge.

Thus there are clearly many experimental challenges to be
overcome. However many of the required elements have
been demonstrated individually. With the rapid pace of
progress in the field of ultracold atomic physics, where mo-
lecular condensates, degenerate Fermi gases, and Bose-Fermi
mixtures are all topics of much current interest, it is plausible
that experiments of this type may be performed in the near
future. This would open up the possibility of experimentally
investigating the role of superselection rules in these sys-
tems.

B. Lifting superselection rules

If a superselection rule is completely lifted by the exis-
tence of an appropriate reference frame, meaning that one
can in principle perform any quantum operation as if the
superselection rule did not exist, then one would expect to be
able to perform an experiment on two systems that exhibits a
relative phase between these systems, independent of the ref-
erence frame. Specifically, one could generalize the methods
we presented here to define a two-system relational Hilbert
space for the composite; states on this relational Hilbert
space would describe the two systems relative to the single
reference frame. One would expect that some degrees of
freedom in this relational Hilbert space describe the relation
between the two systems themselves, independent of the ref-
erence frame. For example, one could perform measurements
of observables defined on the relational Hilbert space that
provide information about the relative phase of the two sys-
tems.

Consider the following experiment. Two two-level sys-
tems such as those described in this paper are initially pre-
pared as single atoms. A � /2 pulse is performed on the first
system followed by a � /2 pulse on the second system �both
pulses being implemented by interaction with the reference
frame�, and then a phase shift � is applied to the second
system. One would expect, then, that a measurement of the
relative phase on the relational Hilbert space could yield in-
formation about �. �One such measurement would be the
two-outcome projection onto the symmetric and antisymmet-
ric subspaces of the relational Hilbert space. If the two sys-
tems are in phase, the symmetric outcome is obtained with
certainty.� For the bosonic reference frames explored in Sec.
III, it is straightforward to show that this is indeed the case.

8The variation in phase over the profile of the BEC is unlikely to
be relevant because, as we discussed above, the absolute phase of
the BEC is irrelevant to the interference pattern.
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However, for the fermion reference frame introduced in Sec.
IV, such an experiment would be completely insensitive to �.
The reason for this insensitivity is that, for the interactions
describing the � /2 pulses, each of the two systems would
interact with a different random mode of the reference frame.
As the individual reference-frame modes are uncorrelated in
phase, the two systems would also be uncorrelated.

Thus, although our second example of a Ramsey interfer-
ence experiment exhibits a coherent superposition of a single
fermionic atom and a bosonic molecule, we do not currently
foresee how such an experiment can be directly generalized
to create arbitrary superposition states of multiple systems.
The form of reference frame used in Sec. IV does not lift the
superselection rule, but provides only a demonstration of a
violation of this rule in a single system.

VI. CONCLUSIONS

We conclude by responding to some anticipated objec-
tions by a skeptic who questions that our gedanken experi-
ments would exhibit a coherent superposition of a single
atom and a molecule. Suppose a skeptic asserted that the
only adequate description of the atom-molecule interference
experiments is the one wherein the BEC is internalized, that
is, treated quantum mechanically. She could appeal to the
fact that there is no coherence between the states �A� and �M�
on HS in this description to argue that a coherent superposi-
tion of atom and molecule had actually not been generated.
We would of course disagree with the assessment that inter-
nalizing the reference frame is the only way to obtain an
adequate description of the experiment, but leaving this
aside, one can respond to such a skeptic by noting that this
argument would also apply to the Ramsey experiment out-
lined in Sec. II. The reason is that when the EM field in the
Ramsey experiment is treated quantum mechanically, then
the reduced density operator on the Hilbert space of the atom
has no coherence between the internal states �A� and �B�.

Thus, a skeptic could deny that we have demonstrated the
possibility of having a coherent superposition of atom and
molecule, but then she would also have to deny that the
Ramsey interference experiment demonstrates coherence be-
tween two internal states of an atom. In fact, the sort of
argument the skeptic is presenting can be applied to essen-
tially any degree of freedom that requires a reference frame
for its definition.

For instance, suppose one internalized the reference frame
for spatial orientation or for the spatial position of a system.
Then by exactly analogous arguments to those presented
here, the reduced density operator on the Hilbert space of the
system would be found to be an incoherent sum of angular
momentum or linear momentum eigenstates. Thus, a dog-
matic insistence on the necessity of internalizing reference
frames would lead one in this context to conclude that it is
impossible to prepare coherent superpositions of angular mo-
mentum or linear momentum eigenstates. But although the

latter quantities are conserved, no one feels that it is fruitful
to insist on a superselection rule for them.9

The only real difference we can see between reference
frames for spatial orientation, position, or the phase of the
internal state of an atom, on the one hand, and for the phase
conjugate to charge, atom number, or univalence on the
other, is that reference frames of the first sort are ubiquitous
while those of the latter sort are difficult to prepare. Any
rigid object can act as a reference frame for spatial position,
whereas a reference for the phase conjugate to atom number
presumably requires one to have succeeded in the experi-
mentally challenging task of achieving and maintaining
Bose-Einstein condensation for that atomic species.

Along these lines, we note that the recent demonstrations
of Ramsey fringes in so-called superconducting qubits in a
single-Cooper-pair box configuration �19� is analogous in
many ways to the experiments we propose here �see �50� for
related theory�. This experiment demonstrates coherence be-
tween states of differing charge, i.e., of states of a supercon-
ducting island which differ by charge 2e �the charge of a
single Cooper pair�. The reference frame for this system,
which is used to implement the Ramsey pulses, is a nearby
superconductor, the state of which—a BCS ground state—
has an accurate and successful description as a classical field.
This superconducting qubit experiment can be interpreted as
violating a superselection rule for charge �4,51�, in direct
analogy with the way that the interference experiments pro-
posed here can be interpreted as violating a superselection
rule for atom number.
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APPENDIX: PROOF THAT THE STATE
OF THE FERMIONIC REFERENCE FRAME

IS UNDISTURBED

The state of the laboratory after the second � /2 pulse is
given by Eq. �85� using Eq. �84� as

W3L = S����A��A� � �0
	0� + �1 − ����3�L��3�� � ��K−1� ,

�A1�

with

9An exception is found in some approaches to quantum gravity.
The argument for why such superselection rules should be in force
for descriptions of the quantum state of the universe is precisely
because there are no external reference frames in such a description.
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��3�L = cos��/2��A��1
 − sin��/2��M��0
 . �A2�

Consider the postselected states of the reference frame con-
ditioned on measuring an atom or a molecule, given by


A
rf =

�A�W3L�A�
pA

, 
M
rf =

�M�W3L�M�
pM

, �A3�

which occur with probabilities given by Eqs. �87� and �86�.
These postselected states are diagonal in the fermion-number
basis and can be expressed as


A
rf =

1

pA
�
n=0

K−1

cn
K−1�1 − ����S��1
�n�0
K−n�

+ �1 − ��cos2��/2�S��1
�n+1�0
K−n−1�� , �A4�


M
rf = �

n=0

K−1

cn
K−1�1 − ��S��1
�n�0
K−n� . �A5�

The postselected state conditioned on an atom, 
A
rf, can be

written as a sum of two terms,


A
rf =

1

pA
��
M

rf + �1 − ��cos2��/2�
̃A
rf� , �A6�

where we define


̃A
rf = �

n=1

K

cn−1
K−1�1 − ��S��1
�n�0
K−n� . �A7�

We now show that the postselected states 
A
rf and 
M

rf are
indistinguishable from each other, and from the initial state

0

rf, in the limit of K→	 for a fixed ��0. The intuition for
expecting this result is that the total number of fermions in
the reference frame is indeterminate �a binomial distribution�
so that in the limit of large number of fermions, distributed in
an even larger number of modes, we will not be able to tell if
one of the modes has interacted with the system and possibly
lost one fermion. The random coupling of the map EU en-
sures that we do not know which fermion mode to look at.

From �A6� it is clear that the nontrivial step is to show
that 
̃A

rf and 
M
rf are indistinguishable in the limit. We will use

the fidelity, defined as �40�

F�
,�� = Tr��
1/2�
1/2� , �A8�

as our measure of the indistinguishability of two states 
 and
�, where F=1 implies that the states are completely indis-
tinguishable. For states 
=�iri�i��i� and �=�isi�i��i� diagonal
in the same basis the fidelity reduces to

F�
,�� = �
i

�risi. �A9�

Therefore the fidelity of these two states is

F�
̃A
rf,
M

rf � = �
n=1

K−1

�cn−1
K−1cn

K−1 �A10�

=1 −
c0

K−1

2
−

cK−1
K−1

2
−

1

2 �
n=1

K−1

��cn−1
K−1 − �cn

K−1�2 �A11�

�1 −
c0

K−1

2
−

cK−1
K−1

2
−

1

2 �
n=1

K−1

��cn−1
K−1 − �cn

K−1� �A12�

=1 − c0
K−1 − cK−1

K−1 − cmax
K−1 �A13�

→1, �A14�

where cmax
K−1=maxncn

K−1 is the probability of the most likely
number of fermions �the floor or ceiling of the mean� and we
have not written explicitly the dependence on �1−�� of the
binomial probabilities.

Therefore from �A6� it is clear that the fidelity F�
̃A
rf ,
M

rf �
between the two postselected states also approaches 1 in the
limit K→	. Similar calculations show the same result for
the postselected states of the reference frame at either of the
intermediate times in the experiment, Eq. �82� or �83� sub-
stituted into Eq. �85�. Furthermore either of the postselected
states of the reference frame at any time during the experi-
ment can be shown to have fidelity approaching 1 with the
initial state 
0

rf in the same limit. Therefore we have the result
we claimed—the reference frame is undisturbed by the inter-
action in the limit of a large number of modes.
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