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We investigate the critical behavior of the spectral weight of a single quasiparticle, one of the key observ-
ables in experiment, for the particular case of the transverse Ising model. Series expansions are calculated for
the linear chain and the square and simple cubic lattices. For the chain model, a conjectured exact result is
discovered. For the square and simple cubic lattices, series analyses are used to estimate the critical exponents.
The results agree with the general predictions of Sachdev �Quantum Phase Transitions �Cambridge University
Press, Cambridge, England, 1999��.
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INTRODUCTION

There is currently much interest in quantum phase transi-
tions in strongly correlated magnetic and/or electronic sys-
tems in condensed matter physics. The physics in the vicinity
of such quantum critical points can be described via general
scaling theories, independent of any particular microscopic
model. Sachdev1 has developed a scaling theory for the spec-
tral weight �defined below�, a quantity which can be mea-
sured experimentally, and thus provides a bridge between
model calculations and real materials. Our goal here is to
verify Sachdev’s predictions for a particular quantum spin
model, the Ising model in a transverse field. To the best of
our knowledge, this is the first such microscopic verification
of the scaling form.

A fundamental quantity to describe the dynamical proper-
ties of quantum magnets is the dynamical structure factor2

S���k,�� =
1
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�
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where the notation is standard, and the angular bracket de-
notes a thermal average or, at zero temperature, a ground
state expectation value. As is well known, S�k ,�� can be
related directly to the inelastic neutron scattering intensity,
allowing a comparison between experiments on real materi-
als and theoretical model calculations.

Integrating Eq. �1� over energy, we obtain the integrated
or static structure factor,

S���k� =
1

N
�
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which is just the Fourier transform of the spin-spin correla-
tion function.

At low temperatures the major contribution to S�k ,�� will
often come from low energy quasiparticle excitations. It is
then useful to write Eq. �1� in the “spectral form” �valid for
a discrete spectrum�

S���k,�� = �
�

��� + E0 − E��S�
���k� , �3�

where the sum is over all eigenstates with energies E�, and
the “spectral weights” S�

���k� are given by
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We consider only the zero temperature case.
Henceforth we consider only the “one-particle” spectral

weights S1p�k�, referring to a state of a single quasiparticle
with momentum k. Near a quantum phase transition1 these
quantities are expected to show universal scaling properties,
which can be derived from a field theoretic approach, inde-
pendently of the details of a particular model. The spectral
weight can be written, up to constant factors, as

S1p�k� =
A�k�
E�k�

�6�

where A�k� is the “quasiparticle residue,” i.e., the residue of
the Green’s function at the quasiparticle pole, and E�k� is the
quasiparticle energy at momentum k. Near the critical point,
these functions are expected to scale as

A�k� � �gc − g���,

E�kc� � �gc − g��, �7�

where g is a coupling or tuning parameter, kc is the critical
momentum at which the energy gap vanishes, and � ,� are
the standard critical exponents. Then S1p is expected to scale
as

S1p�k� � �gc − g���, k � kc;

S1p�kc� � �gc − g���−1��. �8�

Our aim is to confirm and demonstrate this scaling behavior
for the transverse field Ising model

H = �
i

�1 − i
z� − ��

�ij�
i

x j
x, �9�

where i
�=2Si

� are Pauli operators and the second sum is
over nearest-neighbor pairs. This model has a quantum phase
transition at �=1 in one dimension, and at some specific �c
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for each higher-dimensional lattice. Our approach is to de-
rive series expansions in � for various one-particle spectral
weights in the “disordered” phase ���c, via the linked-
cluster techniques described by Oitmaa et al.,3 and to analyze
the series by standard methods to obtain the critical behavior.

LINEAR CHAIN

The transverse Ising chain model is exactly solvable, and
expressions for the energy spectrum, magnetization, etc.
have been given by Pfeuty.4 We have computed series for the
one-particle matrix elements 	1p

± �k� for this model up to or-
der �22. The leading terms for 	1p

− �k� are given in Ref. 3; we
can supply further coefficients on request.

While analyzing these series for their critical behavior, we
realized that they could be represented exactly, up to the
order calculated, by the closed form expressions,

	1p
± �k� =

1

2
�1 − �2�1/8 �1 � ��k��

��k�1/2 , �10�

where ��k� is just half the one-particle energy E�k�:

��k� = E�k�/2 = �1 + �2 − 2� cos�k��1/2. �11�

It is natural to conjecture that this result is exact to all orders.
One can now write down any desired spectral weight

S1p
���k�, e.g.,

S1p
+−�k� =

1

4
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��k�
, �12�
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S1p
++�k� = S1p

−−�k� =
1

4
�1 − �2�1/4 �1 − �2�k��

��k�
. �14�

These formulas give a very clear demonstration of the criti-
cal behavior expected theoretically. The quasiparticle resi-
dues for S−+, S+− are, respectively,

A�k� =
1

2
�1 − �2�1/4�1 � ��k��2, �15�

which vanish at the critical point �=1 with exponent 1 /4
=��, as expected for the transverse Ising chain where �
=1/4, �=1. At the critical momentum k=0, the energy gap is
2�1−��, and vanishes with exponent �=1.

The behavior of S1p
+−�k� and S1p

−+�k� for several � is shown
in Figs. 1 and 2. We can see that both spectral weights slowly
decrease towards zero as �→1, except at the point k=0
where they both diverge, just as we should expect. Note that
S1p

−+�k� vanishes at �=2 cos�k�.
The integrated one-particle structure factors are

�1 =
1

�
�

0

�

S1p
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= �1 − �2�1/4��1 + ��E�m� + �1 + ��−1K�m� + ��/�2�� ,
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�

S1p
−+dk

= �1 − �2�1/4��1 + ��E�m� + �1 + ��−1K�m� − ��/�2�� ,

�17�

where m=4� / �1+��2, and K�m� and E�m� are the complete
elliptic integrals of the first and second kinds, respectively.5

FIG. 1. �Color online� The one-particle spectral weight S1p
+−�k�

for the linear chain model graphed against momentum k /�, for
various couplings �.

FIG. 2. �Color online� As Fig. 1, for the one-particle spectral
weight S1p

−+�k�.
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Their behavior is shown in Fig. 3, where we can see that �2
has its maximum value at �=0.985 12, and when �=1, both
�1 and �2 vanish, despite the fact that S1p diverges at k=0.

From Eq. �10�, one can also show

S1p
xx�k� =

�1 − �2�1/4

4��k�
,

S1p
yy�k� = 1

4 �1 − �2�1/4��k� . �18�

Note that whereas S1p
xx �k� diverges as ��→1,k=0, S1p

yy�k�
does not.

By Fourier transforming, we obtain the one-particle con-
tributions to the correlation functions �using Eq. �2��,

C1p
xx��� = �1 − �2�1/4 1

8�
�

0

2�

dk
cos�k��

��k�
,

C1p
yy��� = �1 − �2�1/4 1

8�
�

0

2�

dk cos�k����k� . �19�

Now exact expressions for the one-particle contributions
to the correlation functions in the two-dimensional �2D� clas-
sical Ising model have been obtained long ago by Wu, Mc-
Coy, Tracy, and Barouch.6,7 Taking the anisotropic “Hamil-
tonian limit”8,9 in which the classical Ising model reduces to
the quantum Ising model �1�, one can show that the expres-
sions of Wu et al. reduce to Eq. �19� �details will be given
elsewhere�. This confirms that the results we have given are
in fact exact.

SQUARE LATTICE

The transverse Ising model in �2+1� dimensions lies in
the universality class of the 3D classical Ising model, and so
its critical exponents are expected to be �=0.0364�5�,
�=0.6301�4�, from various estimates.10

The square lattice is bipartite, and hence one finds that the
Hamiltonian is symmetric under a spin rotation by � about
the z axis on the B sublattice, followed by a coupling inver-
sion �→−�. Correspondingly, there are symmetrical critical
points at couplings �= ±�c, where �c has been estimated
from series expansions11 at 0.328 51�8�, and from a finite-
size scaling analysis12 at 0.328 41�2�.

We have computed series for the one-particle spectral
weight S1p

xx�k� and the quasiparticle energy E�k� to order �14.
The calculation involved a list of 4 654 284 clusters, consist-
ing of up to 15 sites. The leading terms are

TABLE I. Pole and residue of N /M Dlog Padé approximants to S1p
xx for the square lattice. Defective

approximants are marked with an asterisk.

N−2/N N−1/N N /N N+1/N N+2/N

k= �0,0�
N=1 0.4000�−0.8000� 0.2703�−0.3652� 0.3874�−1.0759� 0.2847�−0.3138�
N=2 0.2953�−0.4682� 0.3263�−0.5900� 0.3285�−0.6022� 0.3281�−0.5988� 0.3276�−0.5942�
N=3 0.3286�−0.6028� 0.3281�−0.5996� 0.3319�−0.5789�* 0.3278�−0.5969� 0.3282�−0.6017�
N=4 0.3238�−0.5113�* 0.3279�−0.5978� 0.3280�−0.5985� 0.3288�−0.6122� 0.3284�−0.6037�
N=5 0.3280�−0.5985� 0.3279�−0.5974�* 0.3282�−0.6016� 0.3283�−0.6035� 0.3284�−0.6036�
N=6 0.3283�−0.6019� 0.3284�−0.6059� 0.3284�−0.6053� 0.3284�−0.6050�
N=7 0.3284�−0.6053� 0.3284�−0.6045�

k= �� /2 ,� /2�
N=2 0.6030�0.5455� 0.6030�0.5455� 0.3428�0.0570� 0.3428�0.0570�
N=3 0.6030�0.5455� 0.6030�0.5455� 0.3428�0.0570� 0.3428�0.0570� 0.3586�0.0747�
N=4 0.4231�0.1781� 0.3579�0.0735� 0.3579�0.0735� 0.3521�0.0654� 0.3521�0.0654�
N=5 0.3579�0.0735� 0.3579�0.0735� 0.3521�0.0654� 0.3521�0.0654� 0.3425�0.0495�
N=6 0.3473�0.0576� 0.3407�0.0459� 0.3407�0.0459� 0.3390�0.0424�
N=7 0.3407�0.0459� 0.3407�0.0459�
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FIG. 3. The integrated one-particle structure factors �1 and �2

�corresponding to S1p
+−, S1p

−+, respectively� graphed as functions of
coupling �.
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E�k� = 2 − 2��cos kx + cos ky� + �2�2 − �cos kx + cos ky�2�

+ �3�cos kx + cos ky��5 − 2�cos kx + cos ky�2�/2 + �4�6

+ 14�cos kx + cos ky�2 − 5�cos kx + cos ky�4�/4 + O��5� ,

�20�

S1p
xx �k� = 1/4 + ��cos kx + cos ky�/4 + �2�12 cos�kx�cos�ky�

+ 3�cos�2kx� + cos�2ky��/16 +
�3

32
�15�cos kx

+ cos ky� + 30�cos�2kx�cos ky + cos kx cos�2ky��

+ 5�cos�3kx� + cos�3ky�� + O��4� �21�

�further terms can be supplied on request�. Note that because
the lattice is bipartite, both quantities are symmetric under
the simultaneous transformations �k→�−k, �→−�.

The results of a standard Dlog Padé analysis for S1p
xx�k� at

k= �0,0� and k= �� /2 ,� /2� are shown in Table I. At
k= �0,0�, where the energy gap vanishes, Table I allows es-
timates �c=0.3284�4� with exponent −0.605�5�, compared to
the expected exponent ���−1�=−0.607. At momentum
k= �� /2 ,� /2�, where the energy gap remains finite, we find
�c=0.34�3� with exponent 0.04�2� compared to the expected
value ��= +0.0229. In the latter case, the exponent does not
agree particularly well with the expected value, but this in-
accuracy might easily be attributed to the weakness of this
singularity. Complementary results follow for the antiferro-
magnetic singularity at �=−0.3284, with exponent ���−1�
at k= �� ,��, and �� at k= �� /2 ,� /2�.

SIMPLE CUBIC LATTICE

The transverse Ising model in �3+1� dimensions lies in
the universality class of the 4D classical Ising model, where
we expect the mean field exponents �=0, �=1/2, modulo
logarithmic corrections.1

We have computed series for the one-particle structure
factor S1p

xx�k� and the quasiparticle energy E�k� to orders �10.
The critical point has been obtained previously13 as
�c=0.19406�6�. A Dlog Padé analysis of S1p

xx�k� at k
= �0,0 ,0�, where the energy gap vanishes, gives �c

=0.19406�8� with exponent −0.54�1�, while for another mo-
mentum, where the energy gap remains finite, we find �c
=0.22�3� with exponent 0.03�2�. Allowing for logarithmic
corrections, these agree reasonably well with the expected
values.

CONCLUSION

In summary, then, we have shown that the one-particle
spectral weights of the transverse Ising model satisfy the
scaling behavior at a quantum phase transition as predicted
by theory.1 For the linear chain we obtain exact results; for
the square and simple cubic lattices numerical estimates are
obtained from series expansions. Further details will be pub-
lished in a full length paper.
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