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Abstract Human perception is finely tuned to extract structure
about the 4D world of time and space as well as properties such
as color and texture. Developing intuitions about spatial structure
beyond 4D requires exploiting other perceptual and cognitive abilities.
One of the most natural ways to explore complex spaces is for a user
to actively navigate through them, using local explorations and global
summaries to develop intuitions about structure, and then testing
the developing ideas by further exploration. This article provides a
brief overview of a technique for visualizing surfaces defined over
moderate-dimensional binary spaces, by recursively unfolding them
onto a 2D hypergraph. We briefly summarize the uses of a freely
available Web-based visualization tool, Hyperspace Graph Paper
(HSGP), for exploring fitness landscapes and search algorithms
in evolutionary computation. HSGP provides a way for a user to
actively explore a landscape, from simple tasks such as mapping the
neighborhood structure of different points, to seeing global properties
such as the size and distribution of basins of attraction or how
different search algorithms interact with landscape structure. It has
been most useful for exploring recursive and repetitive landscapes,
and its strength is that it allows intuitions to be developed through
active navigation by the user, and exploits the visual system’s ability
to detect pattern and texture. The technique is most effective when
applied to continuous functions over Boolean variables using 4 to
16 dimensions.
1 Navigating Hyperspace
Hyperspace Graph Paper (HSGP) is a technique for visualizing surfaces defined over moderate-
dimensional binary spaces [1].1 The key to this technique is in unfolding a hypercube using recursive
steps so that the topology of a high-dimensional space is reflected in a recursive structure in a two-
dimensional unfolding (called a hypergraph; see Figure 1). In this article, we describe a case study of
this layout technique and its application to understanding the interaction between search algorithms
and landscape structures.

Human perception can be viewed as a collection of computational primitives that exploit features
such as spatial proximity or optic flow to provide immediate insight into low-dimensional spatial
data (one to three dimensions). Orthographic projections are a common technique for exploring
higher-dimensional spaces, but can be of limited use even for estimating distances and mapping
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Figure 1. Hyperspace Graph Paper (HSGP) is based on unfolding all corners of a cube using a recursive translation
operator. A cube has eight corners, so the corresponding unfolded graph has eight cells. Each additional dimension
doubles the size of the hypergraph. For a hypercube in n dimensions, the corresponding unfolded hypergraph has 2n cells.
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local neighborhoods. The question arises whether humans can gain immediate insight into higher-
dimensional spatial structures if suitable representations are provided. The recursive layout of the
hypergraph was developed as a candidate representation for developing such a tool.

The hypergraph was originally designed as a layout technique to assist users in gaining a working
knowledge of multidimensional concepts, not necessarily in search tasks or evolutionary computa-
tion. It uses hierarchical concepts familiar to many disciplines, such as Karnaugh maps in logic
design [2, 3], recursive decomposition in algorithm design [4], and quadtrees in image processing [5].
These early applications were frequently used to simplify multidimensional spaces in order to focus
on one part of a complex structure at a time. By contrast, in evolutionary computation, an
understanding is sought for global properties of search spaces, and insights are frequently based on
spatial metaphors. The landscape analogy for evolutionary search dates to Sewell Wright’s work on
population genetics in the 1930s, and is a generic metaphor in evolutionary computation. Many
studies have used software tools for visualizing high-dimensional data; see for example [6, 7]. The
use of hypergraphs in visualizing landscapes is novel in the way we tested the human ability to infer
the structure of high-dimensional spaces by navigating maps constructed using recursive layout
algorithms.

2 Evaluating Hypergraphs

Hypergraphs require familiarization to be an effective technique for visualizing high-dimensional
landscapes. The recursive layout technique was empirically tested on computer science and
mathematics graduate students using a variety of navigation tasks [8]. A one-hour training program
was developed to familiarize participants with the layout of six- and eight-dimensional hypercubes,
and a simple navigation task was designed (see Figure 2). Surprisingly, even among this group of
highly sophisticated users, performance varied markedly, with half the participants quickly grasping
the recursive layout structure and the other half not above chance in navigation accuracy after the
training period. The majority of the successful participants showed a clear linear relationship between
time taken and number of dimensions separating points on a path. This result was a natural
consequence of the navigation heuristics suggested to the users and hence consistent with ex-
pectations. Interestingly, one unusual participant not only gave perfect performance on the tasks,
with the fastest response rates of all participants, but also showed no increase in the time to estimate
distances for pairs of points that were farther apart.

The study showed that the hyperspace graph paper was useful as a high dimensional visualization
for some but not all participants. The accuracy of each participant was a clear indication of whether
the visualization was a usable tool for that individual. The clear differences in performance showed
that some participants understood and could competently use the layout representation after one
hour of training, and others were unable to use it effectively at all. This difference reflects the
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Figure 2. Neighbors and paths through hypercubes are located using translational symmetry in the hypergraph. (a) In a six-
dimensional space, each point has six one-bit neighbors translated by 1, 2, and 4 cells horizontally and vertically. (b) A
minimum path between two points at opposite ends of the hypercube has six steps; each step is one unit of Hamming
distance closer to the target (many other equivalent paths of six steps also exist ). Note that not every step that is 2k cells
horizontally or vertically translated will correspond to a one-bit neighbor—only those in the same recursive
substructure.
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authors’ experiences with hypergraphs, that once users ‘‘get’’ the layout, they can use it effectively.
Prior to that point (which can take some time), the layout seems to have no benefit at all. The
linear relationship between distance and response rates for the majority of successful users supports
the idea that a heuristic for navigation can be iteratively applied. The one outstanding participant
shows that for some people, the tool allows an even more effective insight into higher-dimensional
spaces.
3 Hypercube Geography

Following the visualization tests, a series of tools were developed, HSGP being the latest and most
sophisticated. It allows exploration of fitness landscapes used in evolutionary computation, including
a variety of schema-based and multimodal functions [1]. Each cell in a hypergraph is colored with the
fitness value of its corresponding point in the fitness landscape. Repeated structures in the landscape
are clearly visible as repeated patterns in medium-dimensional (8–16-dimensional) hypergraphs, and
as textures in higher-dimensional ones.
4 Strengths and Limitations in Practice

Using HSGP to visualize surfaces allows the user to bridge the gap between the limits of the human
visual system (three spatial dimensions) and the properties of higher-dimensional surfaces, which
often cannot be effectively reasoned about with low-dimensional metaphors. Because fitness
landscapes scale exponentially, there are practical limitations for any visualization technique that
attempts to show an entire space. HSGP has an effective limitation of around 16 dimensions that can
be usefully displayed with real-valued fitness functions, due to the constraints of screen sizes. The
recursive layout can be extended to higher-dimensional spaces for coarser fitness functions, for
example to gain insight into extremely sparse spaces in which the majority of fitness values are zero
and single pixels suffice to represent nonzero cells. In practice, however, the insights from 16
dimensions were sufficient to generalize to most other higher-dimensional spaces. The recursive
layout is appropriate for real-valued functions defined over Boolean variables. In theory the recursive
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layout could also be applied to discrete variables with more than two values, but in practice the
efficacy of inferring global structure from the navigation technique does diminish.
5 Applications

Understanding the properties of high-dimensional search spaces provides insight into the types of
strategies that optimization algorithms could utilize. HSGP displays a variety of properties of
interest, including the ruggedness of a surface, number and distribution of local and global optima,
size and shape of basins of attraction, length of adaptive walks, and neutral layers [1, 8, 9].

HSGP can be used to visualize a variety of fitness landscapes, and the software includes a range
of functions from the evolutionary computation literature. The simplest landscape is the Royal Road
[10], which is useful for fine-tuning the user’s intuitions about the hypergraph layout. More complex
functions have been used to define recursive hierarchies which have been used extensively for testing
genetic algorithms, such as the hierarchical if-and-only-if (HIFF; see Figure 3) [11], hierarchically
defined functions (HDFs) [12], and hyperplane defined functions (hdfs) [13]. The size of the basins
of attraction affects the efficacy of different evolutionary algorithms, and HSGP shows how the
basin sizes of HIFF, HDF, and hdf scale with the height of local optima. Another class of functions
used to develop intuition about combinatorial interactions [14] includes the tunably rugged
landscapes of Kauffman’s NK. Comparing landscapes with increasing ruggedness shows the
corresponding increase in the number of basins of attraction and increase in search difficulties.
The software also demonstrates a variety of ways of adding neutrality to landscapes, including the
NKp and NKq variants of NK landscapes [15, 16]. Comparing neutral variants shows the
differences between definitions of neutrality such as NKp, which projects multiple values to a
Figure 3. HIFF, the hierarchical-if-and-only-if function, shown over an eight-dimensional space. HIFF is a recursively
defined function whose schemata comprise strings of either all zeros or all ones. Thus HIFF has multiple local optima,
which in HSGP lie along the top left to bottom right diagonal. In the software tool, the local optima are highlighted in
green and lie along the diagonal, clearly showing that there are 2n/2 of them. The global optima are at the points 0000
0000 and 1111 1111 and are at opposite corners of the space. The basins of attraction for all local optima show a similar
recursive structure, and all are of size 3n/2. Such a pattern indicates that search algorithms based on hillclimbers will find
low peaks just as frequently as high ones, indicating that it would not be an appropriate search strategy (in fact, HIFF was
designed precisely to thwart hillclimbers, and HSGP provides a visual method to develop the intuitions that complement
analytic techniques).

Artificial Life Volume 12, Number 2214



Figure 4 . Performance of a search algorithm, showing PBIL’s progress in optimizing HIFF. PBIL estimates the probability
density function of the landscape as a linear combination of all dimensions. It iteratively adjusts its estimate towards the
best in a sample of solutions. Each hypergraph shows the probability distribution function (pdf ) as constructed by PBIL.
(a) The initial uniform distribution. (b, c) As the algorithm progresses, structure begins to emerge, so that by the final
hypergraph, one of the two global optima (0000 0000) is clearly the most likely solution predicted by PBIL. Note,
however, that as the algorithm progresses, the substructure of HIFF is not reflected in the structure of the pdf. (d) An
alternative run of PBIL over HIFF shows it converging on a suboptimal solution (1111 1100). As in (c), the substructure of
the fitness function is not modeled by the pdf.
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valley floor, and NKq, which discretizes a continuous space, and the visualizations show how
increasing levels of neutrality affect each model of neutrality.

HSGP has also been used to study the interaction of particular search algorithms with landscape
structure. The simplest search techniques to visualize are hill-climbing algorithms. Using HSGP to
visualize an entire space shows more complex interactions. For example, the probability-density-
based function PBIL [8, 17] is shown estimating the function for HIFF in Figure 4. Although HIFF
has recursive substructure, any particular run of the PBIL algorithm only estimates one peak. All
search algorithms have an inherent search bias, which can be explored through visualization even
without a detailed understanding of the algorithm. This use of visualization allows algorithm
designers to tune their intuitions about which algorithm to choose for a given application and why.
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