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Hydraulics of skimming flows on stepped chutes: The effects of inflow conditions?

L’hydraulique des écoulements écumants sur des chutes en marches d’escalier: les
effets des conditions d’alimentation?
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ABSTRACT
Modern stepped spillways are typically designed for large discharge capacities corresponding to a skimming flow regime for which flow resistance
is predominantly form drag. The writer demonstrates that the inflow conditions have some effect on the skimming flow properties. Boundary layer
calculations show that the flow properties at inception of free-surface aeration are substantially different with pressurized intake. The re-analysis of
experimental results highlights that the equivalent Darcy friction factor isf ∼ 0.2 in average on uncontrolled stepped chute andf ∼ 0.1 on stepped
chute with pressurized intake. A simple design chart is presented to estimate the residual flow velocity, and the agreement of the calculations with
experimental results is deemed satisfactory for preliminary design.

RÉSUMÉ
Les déversoirs en marches d’escalier modernes sont typiquement conçus pour de grandes capacités de débits correspondant à un régime d’écoulement
écumant dont la résistance à écoulement est principalement de traînée. L’auteur montre que les conditions d’alimentation ont un certain effet sur les
propriétés de l’écoulement. Les calculs de couche de limite montrent que les propriétés d’écoulement au commencement de l’aération de la surface
libre sont considérablement différentes avec une alimentation en charge. La re-analyse des résultats expérimentaux fait ressortir que le facteur de
frottement équivalent de Darcy estf ∼ 0.2 en moyenne sur les chutes sans contrôle etf ∼ 0.1 avec une alimentation en charge. Un diagramme simple
de conception est présenté pour estimer la vitesse résiduelle d’écoulement, et l’accord des calculs avec des résultats expérimentaux est considéré
comme satisfaisant pour une conception préliminaire.
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1 Introduction

Research and development into stepped spillway hydraulics
has been very active for the past two decades with 73 journal
publications (Web of ScienceTM 1985–2003), some specialized
workshops (Ohtsu and Yasuda, 1998; Minor and Hager, 2000;
Mossaet al., 2004) and two books (Chanson, 1995, 2001).
Modern stepped spillways are typically designed for large dis-
charge capacities corresponding to a skimming flow regime as
illustrated in Fig. 1. Flow resistance is predominantly form
drag. The flow is non-aerated at the upstream end. Free-surface
instabilities are however observed and strong air–water mixing
occurs downstream of the inception point of free-surface aeration.
Detailed air–water flow measurements highlighted large amounts
of entrained air further downstream and very-strong interactions
between main stream turbulence, step cavity recirculation zones
and free-surface (e.g. Chanson and Toombes, 2003; Yasuda and
Chanson, 2003).

Previous studies were conducted with a wide range of inflow
conditions (Table 1, Fig. 1), although there are basic differences.
With an uncontrolled ogee profile, the pressure distribution is
quasi atmospheric in the entire flow at design flow conditions by
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definition of the ogee development (Henderson, 1966; Chanson,
2004), A further subdivision may be made between an entire
smooth ogee profile and an ogee development with small first
steps in the profile. With an uncontrolled broad-crest, the pressure
distribution is hydrostatic at the crest. For a pressurized intake,
the inflow pressure distribution is greater than hydrostatic. The
inflow conditions may affect the entire flow field as this is known
in flows behind bluff body (e.g. Silberman and Song, 1961; Laali
and Michel, 1984; Michel, 1984; Verron and Michel, 1984).

In this note, the writer argues that differences in inflow con-
ditions have some effect on the skimming flow properties. A
careful analysis of boundary layer equations demonstrates that
the inflow conditions affect the flow properties at inception of
free-surface aeration. A re-analysis of large-size experimental
results suggests lower flow resistance in experimental facilities
with pressurized intake.

2 Developing flow region

In skimming flows down stepped chutes, the flow is non-aerated
at the upstream end and the free-surface is relatively smooth and



52 Chanson

Un-controlled broad-crest
NihonUniv. (OHTSU &YASUDA)
Univ. of Qld (CHANSON & TOOMBES)

developing
boundary layer

dc

hydrostatic
pressure

distribution

Un-controlled (smooth) ogeecrest
CHAMANI & RAJARATNAM

developing
boundary layer

ogee
profile

Un-controlled ogee crest
with firststepsin ogee development
BaCaRa, MATOS
SHVAINSHTEIN

developing
boundary layer

ogee
profile

first
smaller
steps

Pressurised intake
TOOMBES & CHANSON
BOES, ANDREetal.

developing
boundary layer

pressurised
intake

Figure 1 Sketch of skimming flows on stepped chutes for different inflow conditions.

Table 1 Re-analysed experimental data of flow resistance

Reference Flow conditions Remarks

Andréet al. (2003) θ = 30◦, h = 0.06 m,W = 0.5 m. Air–water flow measurements
Pressurized intake inflow

BaCaRa (1991) θ = 53.1◦, h = 0.06 m,W = 1.5 m Clear-water (non-aerated) flow
θ = 53.1◦, h = 0.024 m Uncontrolled ogee inflow
θ = 59◦, h = 0.024 m with small steps in ogee development
θ = 63.4◦, h = 0.024 m

Boes (2000) θ = 30◦, h = 0.046, 0.092 m,W = 0.5 m Air–water flow measurements
θ = 50◦, h = 0.031, 0.093 m,W = 0.5 m Pressurized intake inflow(3 ≤ Fr1 ≤ 10)

Chamani and Rajarathnam (1999) θ = 51.3◦, h = 0.313, 0.125 m,W = 0.3 m Air–water flow measurements
θ = 59◦, h = 0.313 to 0.125 m,W = 0.3 m Uncontrolled smooth ogee crest inflow

Chanson and Toombes (2002a) θ = 21.8◦, h = 0.10 m,W = 1 m Air–water flow measurements
Uncontrolled broad-crested weir inflow

Gonzalez and Chanson (2004) θ = 15.9◦, h = 0.05, 0.10 m,W = 1 m Air–water flow measurements
Uncontrolled broad-crested weir inflow

Matos (2000) θ = 53.1◦, h = 0.08 m,W = 1.0 m Air–water flow measurements
Uncontrolled ogee inflow with small
steps in ogee development

Shvajnshtejn (1999) θ = 38.7◦, h = 0.05 m,W = 0.48 m Clear-water (non-aerated) flow
θ = 51.3◦, h = 0.0625 m,W = 0.48 m Uncontrolled ogee inflow with

small steps in ogee development

Toombes and Chanson (2000) θ = 3.4◦, h = 0.143 m,W = 0.25, 0.5 m Air–water flow measurements
Pressurized intake inflow (2.5 ≤ Fr1 ≤ 10)

Chanson and Toombes (2002b) θ = 3.4◦, h = 0.0715 m,W = 0.5 m Air–water flow measurements
Pressurized intake inflow (2.5 ≤ Fr1 ≤ 10)

Ohtsuet al. (2000) θ = 55◦, h = 0.025 m,W = 0.4 m. Air–water flow measurements
Uncontrolled smoothWES ogee crest inflow

Yasuda and Ohtsu (1999) θ = 5.7◦, h = 0.006–0.10 m,W = 0.4 m Measurements in downstream stilling basin
θ = 11.3◦, h = 0.006–0.10 m,W = 0.4 m Uncontrolled broad-crested weir inflow
θ = 19◦, h = 0.002–0.08 m,W = 0.4 m

θ = 30◦, h = 0.004–0.07 m,W = 0.4 m Measurements in downstream stilling basin
θ = 55◦, h = 0.003–0.064 m,W = 0.4 m Uncontrolled smooth Waterways

Experimental Station ogee crest inflow

Notes: θ, bed slope; Fr1, inflow Froude number;h, step height;W , channel width.
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Figure 2 Sketch of developing flow region above stepped chute. (a) Uncontrolled inflow conditions; (b) Pressurized intake inflow conditions.

glassy. Turbulence is generated however at the invert and a bottom
boundary layer develops (Fig. 2). When the outer edge of the
boundary layer is close to the free-surface, interactions between
the boundary layer turbulence and the free-surface induce signif-
icant free-surface aeration. That location is called the inception
point of air entrainment. Its position is defined as the distancexI

from the start of the growth of the boundary layer, and the water
depth at inception isdI .

Simple calculations of boundary layer growth may be devel-
oped (e.g. Chanson, 1995). A summary is given in Appendix 1
for steady flows in rectangular prismatic channels with flat hor-
izontal steps. For uncontrolled stepped chutes, Chanson (1995)
compared successfully these with a large number of experimental
data obtained in laboratory models and prototype. (In that study,
the location of inception point was defined as the first apparition
of “white waters” at the free-surface.) A statistical analysis of the
data indicated that the inception point location and the flow depth
at inception were best correlated by:

(
(xI)uc

h cosθ

)1.4

= 24.14(sinθ)0.111F∗ (1)

(dI)uc

h cosθ
= 0.4034

(sinθ)0.04
(F∗)0.592 (2)

where the subscript “uc” refers to uncontrolled inflow conditions
(Fig. 2a),h is the vertical step height,θ is the angle between
the pseudo-bottom formed by the step edges and the horizon-
tal, F∗ = qw/

√
g sinθ(h cosθ)3, qw is the discharge per unit

width andg is the gravity acceleration. A comparison between
Eqs (1) and (2), and experimental data, is presented in Fig. (3a, b),
respectively.

With a pressurized intake, the outflow is thinner and faster than
with an uncontrolled crest. In turn the outer edge of the boundary
layer may be expected to reach the free-surface more rapidly than
on an uncontrolled chute for an identical flow rate and stepped
geometry. Analytical calculations (Appendix 1) demonstrate

that:(
(xI)pi

h cosθ

)1.4

=
(

(xI)uc

h cosθ

)1.4

× 1√
1 + F

2/3∗
(xI )pi sinθ1/3

h cosθ

(
Fr−2/3

1 + 1
2Fr4/3

1

) (3)

(
(dI)pi

h cosθ

)1.57

=
(

(dI)uc

h cosθ

)1.57

× 1√
1 + F

2/3∗
(xI )pi sinθ1/3

h cosθ

(
Fr−2/3

1 + 1
2Fr4/3

1

) (4)

where the subscript “pi” refers to pressurized intake conditions
and Fr1 is the intake flow Froude number. In Eqs (3) and (4), right-
hand side, the last term is a correction factor taking into account
the intake flow conditions. Note that the correction factor is a
function of the flow rate, invert slope, step height and inflow
Froude number

Equations (3) and (4) are presented in Fig. 3. They are com-
pared with experimental data obtained with pressurized intake.
Figure 3 shows a good agreement between Eqs (3) and (4), and
Boes’ (2000) data. The latter were obtained with inflow Froude
numbers ranging from 3 to 10. The results (Fig. 3) demonstrate
that the inception point is located significantly more upstream
with pressurized intake inflows than with uncontrolled chutes,
while the flow depth at inception is smaller with pressured intake.
According to Eqs (3) and (4), the differences must increase with
increasing inflow Froude number Fr1; the data of Boes tend to
agree with the trend, but the number of data is too limited to be
statistically meaningful.

2.1 Discussion

Chanson and Toombes (2002a) presented in addition experimen-
tal observations of inception obtained in transition and skimming
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Uncontrolled intake (prototype data) Sanchez-Bribiesca and Gonzalez-Villareal (1996)

Pressurized intake (model data) Boes (2000)

(b) Inflow conditions References

Uncontrolled intake (model data) BaCara (1991), Bindoet al. (1993), Frizell (1992), Haddad (1998),
Horner (1969), Sorensen (1985), Tozzi (1992), Zhou (1996),
Warheit-Lensing (1996)

Pressurized intake (model data) Boes (2000)
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Figure 3 Flow conditions at the inception point of free-surface aeration. (a) Dimensionless location of the inception point of free-surface aera-
tion—comparison between experimental data and Eqs (1) and (3) forθ = 50◦. (b) Dimensionless flow depth at the inception point of free-surface
aeration—comparison between experimental data and Eqs (2) and (4) forθ = 50◦.
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flow regimes for 16◦ and 22◦ slopes with uncontrolled broad-crest
inflow. For F∗ < 4, their data did not follow Eq. (1) and were
best correlated by:

xI

h cosθ
= 12.34

(sin θ)0.0796
F0.465

∗ , F∗ < 4 (5)

Equation (5) is shown in Fig. 3(a) for completeness.

3 Flow resistance in skimming flows

Skimming flows are characterized by significant form losses with
formation of recirculating vortices between the main flow and
the step corners. A comprehensive re-analysis of flow resistance
included more than 38 model and four prototype studies with
channel slopes ranging from 5.7◦ to 55◦ (Chansonet al., 2002).
The equivalent Darcy friction coefficientf was typically between
0.1 and 0.35. Different research facilities yielded different results
however and researchers continue to disagree on the reasons for
these differences (Chanson, 2000).

Flow resistance data for large-size model data (h > 0.020 m,
Re > 1E+ 5) are presented in Fig. 4(a) in terms of the equiva-
lent Darcy friction factorf as function of the dimensionless step
roughness height, where Re is the flow Reynolds number defined
in terms of the hydraulic diameterDH. Details of experiments are
summarized in Table 1. For steep chutes (θ > 15◦), the friction
factor data presented no obvious correlation with the relative step
roughness heighth cosθ/DH, Reynolds, Froude nor Weber num-
bers (Chansonet al., 2002). They compared however favourably
with a simplified analytical model of the pseudo-boundary shear
stress which may be expressed, in dimensionless form, as:

fd = 2√
π

· 1

K
(6)

wherefd is an equivalent Darcy friction factor estimate of the
form drag, 1/K is the dimensionless expansion rate of the shear
layer. The coefficient 1/K is assumed to be constant in a Prandtl
mixing length model (Rajaratnam, 1976; Schlichting, 1979).
Equation (6) predictsfd ≈ 0.2 forK = 6 that is close to observed
friction factors (Fig. 4a). Skimming flow resistance data appeared
to be distributed around three dominant values:f ≈ 0.105, 0.17
and 0.30 as shown in Fig. 4(b). Figure 4(b) presents the prob-
ability distribution function of Darcy friction factor where the
histogram columns represent the number of data with friction
factors within the interval: e.g., the probability of friction factors
from 0.18 to 0.20 is represented by the column labelled 0.18. The
intervals were selected with a constant logarithmic increment.
The first and last columns indicate the number of data with friction
factors less than 0.08 and greater than 1.0, respectively.

The writer proposes that flow resistance in skimming flows is
not an unique function of flow rate and stepped chute geometry.
It is hypothesized that the form drag process may present several
modes of excitation that are functions of the inflow conditions.
At each step edge, shear instabilities may generate different cav-
ity wake regimes, associated with different drag coefficients. In
Fig. 4(b), the dominant valuesf ≈ 0.105, 0.17 and 0.30 would

correspond to three dominant modes (or regimes) of excitation
induced by different inflow conditions sketched in Fig. 1.

Figure 4(b) shows that experiments with pressurized intake
yielded lower flow resistance than for uncontrolled inflow con-
ditions. For example, the re-analysis of data from Boes (2000)
and Andréet al. (2003) givesf ∼ 0.10 that is about three times
smaller than the third dominant value (f = 0.30, Fig. 4b). Sim-
ilarly, skimming flow experiments by Chanson and Toombes
(2002b) down a flat slope (θ = 3.4◦, h = 0.07 m) with pres-
surized intake yielded friction factors three times smaller than
data of Yasuda and Ohtsu (1999) on a 5.7◦ stepped slope with
uncontrolled broad-crest. Larger flow resistance was observed
on stepped chutes with uncontrolled inflow conditions with
f ∼ 0.21 in average for uncontrolled ogee crest andf ∼ 0.15
in average for uncontrolled broad-crest inflow conditions (for all
data in Fig. 4).

4 Application

On steep chutes (θ > 15◦), the flow acceleration and bound-
ary layer development affect the flow properties. Complete flow
calculations are tedious. Calculations of developing flow and uni-
form equilibrium flow may be combined to provide a general
trend which may be used for a preliminary design (Chanson,
2004). The ideal fluid flow velocity at the downstream end of the
chute is:

Vmax = √
2g(Hmax − d cosθ) (7)

whereHmax is the upstream total head andd is the downstream
depth of the ideal flow (Fig. 5 top). The downstream flow velocity
Uw is smaller than the theoretical velocityVmaxbecause of energy
losses. Results are summarized in Fig. 5 in terms ofUw/Vmax as
a function ofHmax/dc wheredc is the critical depth. Developing
flow and uniform equilibrium flow calculations are shown for
smooth chutes, uncontrolled stepped chutes and stepped chutes
with pressurized intake forθ = 50◦. (The latter case was analysed
using the results presented above.) Prototype smooth chute data
(Aviemore dam) and laboratory stepped chute data are shown
and compared with the simplified method. Despite some scatter,
Fig. 5 provides a simple practical tool to estimate the residual
flow velocityUw as a function of the flow rate and upstream total
head. The results may be easily extended for other slopes.

Figure 5 demonstrates consistently the greater residual veloc-
ity and kinetic energy at the end of a stepped chute with
pressurized intake. For example, considering a stepped spillway
with an upstream total head above spillway toeHmax = 60 m,
flow rate qw = 20 m2/s, step heighth = 0.6 m, and slope
θ = 50◦. Figure 5 predicts that the residual velocityUw equals
24 and 31 m/s for a stepped chute with uncontrolled crest and
pressurized intake flow conditions (Fr1 = 10), respectively. That
is, the residual kinetic energy is 60% greater with a gated intake
operating for Fr1 = 10.
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Figure 4 Darcy friction factor of skimming flows on stepped chute [179 data]. (a) Friction factor as function of the relative step roughness height.
(b) Probability distribution function of stepped chute friction factor.

5 Conclusion

Skimming flow properties on stepped chutes are affected by the
inflow conditions. Boundary layer calculations demonstrate that
the location and flow depth at inception of free-surface aera-
tion are substantially smaller than with an uncontrolled inflow
chute, all other parameters being equal. The re-analysis of large-
size experimental results shows that the equivalent Darcy friction

factor isf ∼ 0.2 in average on uncontrolled stepped chute and
f ∼ 0.1 on stepped chute with pressurized intake. A simple
design chart (Fig. 5) is presented to estimate the residual flow
energy, and the agreement of the calculations with experimental
results is considered acceptable for preliminary design.

While this study demonstrate quantitative effects of inflow
conditions on stepped chute flows, the basic mechanisms are
not clearly understood. Overall the hydraulics of skimming
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Figure 5 Residual flow velocity at the downstream end of the chute—comparison between smooth chute, stepped chute with pressurized intake and
stepped chute with uncontrolled flow conditions

flows is significantly more complicated than traditional smooth
chute hydraulic calculations. For example, some researchers
(e.g. Matos, 2000; Chanson and Tombes, 2002a; Yasuda and
Chanson, 2003; Gonzalez and Chanson, 2004) presented exper-
imental results suggesting longitudinal oscillations of basic flow
properties (velocity, depth, mean void fraction). Yasuda and
Chanson (2003) proposed that these resulted from strong inter-
ference between vortex shedding in the shear layers behind each
step edge and the free-surface.
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Appendix 1 Developing flow region calculations

At the upstream end of a stepped chute, a bottom turbu-
lent boundary layer develops (Fig. 2). Its growth may be

estimated as:

δ

x
= a

(
x

ks

)−b

(A1)

whereδ is the boundary layer thickness,x is the streamwise
distance from the start of the growth of the boundary layer,
ks is the roughness height, anda andb are constants (e.g. Bauer,
1954; Cain andWood, 1981). For a stepped profile, the roughness
height isks = h cosθ. The velocity distribution is of the form:

V

Vmax
=

(
y

δ

)1/N

(A2)

whereVmax is the free-stream velocity in the ideal-fluid flow
region (i.e. δ < y < d) and y is the distance normal to the
pseudo-bottom formed by the step edges. The Laser Doppler
Anemometer (LDA) velocity data of Ohtsu and Yasuda (1997)
showed thatN ∼ 5 in the developing boundary layer above a
steep stepped chute. For an uncontrolled crest, the free-stream
velocity is about:

Vmax = √
2gx sin θ (Uncontrolled crest) (A3)
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For a pressurized intake, the free-stream velocity equals:

Vmax =
√

2gx sinθ

(
1 + E1

x sinθ

)
(Pressurized intake) (A4)

whereE1 is the specific energy at the intake:

E1

dc
= Fr−2/3

1 cosθ + 1

2
Fr4/3

1 (A5)

wheredc is the critical depth and Fr1 is the intake flow Froude
number: Fr1 = V1/

√
gd1.

At the inception point (x = xI ), the combination of continuity
and Bernoulli principles gives:

qw

Vmaxδ
= N

N + 1
(A6)

whereqw is the flow rate per unit width. Combining Eq. (A6)
with Eqs (A1)–(A4), it yields:

(
xI

ks

)3/2−b

= N + 1

Na
√

2

qw√
g sin θ k3

s

(Uncontrolled crest)

(A7)

(
xI

ks

)3/2−b

= N + 1

Na
√

2

qw√
g sin θ k3

s

× 1√
1 + (E1/xI sin θ)

(Pressurized intake)

(A8)

The boundary layer thickness equals the water depth dI at
inception. The continuity equation yields:

(
dI

ks

)(3−2b)/(2−2b)

= (N + 1)a1/(2−2b)

N
√

2

× qw√
g sin θ k3

s

(Uncontrolled crest)

(A9)(
dI

ks

)(3−2b)/(2−2b)

= (N + 1)a1/(2−2b)

N
√

2

qw√
g sin θ k3

s

× 1√
1 + (E1/xI sin θ)

× (Pressurized intake) (A10)

Basically Eqs (A6)–(A9) which may be rewritten as:

(
(xI)pi

h cosθ

)3/2−b

=
(

(xI)uc

h cosθ

)3/2−b 1√
1 + F

2/3∗
((xI )pi sinθ1/3/h cosθ)

(
Fr−2/3

1 + 1
2Fr4/3

1

)
(A11)

(
(dI)pi

h cosθ

)(3−2b)/(2−2b)

=
(

(dI)uc

h cosθ

)(3−2b)/(2−2b)

× 1√
1 + F

2/3∗
((xI )pi sinθ1/3/h cosθ)

(
Fr−2/3

1 + 1
2Fr4/3

1

) (A12)

where the subscripts “uc” and “pi” refer to uncontrolled inflow
conditions and pressurized intake conditions, respectively,F∗ =
qw/

√
g sin θ (h cosθ)3 and Fr1 is the intake flow Froude number.

For uncontrolled stepped chutes, Chanson (1995) compared
successfully Eqs (A7) and (A9) with a large number of model
and prototype data. If the data are compared with Eqs (A7) and
(A9), the results of the statistical analysis yieldb = 0.1.

Notation

a = Dimensionless constant
b = Dimensionless constant

DH = Hydraulic diameter (m)
d = Flow depth (m) measured normal to the channel slope

at the edge of a step
dI = Flow depth (m) at the inception point of air

entrainment
d1 = Flow depth (m) immediately downstream of the

channel intake
E = Specific energy (m)

E1 = Specific energy (m) at intake:E1 = d1 cosθ + V 2
1 /2g

Fr = Froude number defined as: Fr= V/
√

gd

Fr1 = Inflow Froude number: Fr1 = V1/
√

gd1

F∗ = Dimensionless discharge:
F∗ = qw/

√
g sin θ (h cosθ)3

f = 1— Darcy–Weisbach friction factor; 2— equivalent
Darcy friction factor estimate of stepped chute form
drag

fd = (equivalent) Darcy friction factor estimate of form
drag

g = Acceleration due to gravity (m/s2)
H = Total head (m)

Hmax = Maximum total head (m) measured above the chute
toe

h = Height of steps (m) (measured vertically)
K = Inverse of the spreading rate of a turbulent shear layer;
ks = Step dimension (m) measured normal to the flow

direction:ks = h cosθ

N = Inverse of the velocity distribution exponent
q = Discharge per unit width (m2/s)

Re = Reynolds number defined as: Re= VDH/νw;
Uw = Residual flow velocity (m/s)
V = Velocity (m/s)

Vmax = Free-stream velocity (m/s)
V1 = Intake flow velocity (m/s)
W = Channel width (m)
x = Longitudinal distance (m) measured in the crest
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xI = Longitudinal distance (m) measured in the crest
where free-surface aeration takes place

Greek symbols

δ = Boundary layer thickness (m)
ν = Kinematic viscosity (m2/s)
θ = Channel slope

Subscripts

I = Inception point flow conditions
pi = Pressurized intake
uc = Uncontrolled inflow conditions
w = Water flow
1 = Inflow conditions
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