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Power System Sensitivity Analysis for Probabilistic Small Sighal
Stability Assessment in a Deregulated Environment

Zhao Yang Dong, Chee Khiang Pang, and Pei Zhang

Abstract: Deregulations and market practices in power industry have brought great challenges
to the system planning area. In particular, they introduce a variety of uncertainties 1o system
planning. New techpiques are required to cope with such uncertaintics. As a promising
approach, probabilistic methods are attracting more and more atientions by system planners. In
small signal stability analysis, gcneration control parameters play an important role in
determining the stability margin. The objective of this paper is to investigate power system
state matrix sensitivity characteristics with respect to system parameter uncertainties with
analytical and numerical approaches and to identify those parameters have great impact on
system eigenvalues, therefore, the system stability propertics. Those identified parameter
varialions need to be investigaied with priority. The results can be used to help Regional
Transmission Organizations (RTOs) and Independent System Operators (ISOs) perform
planning studies under the open access environment.
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power system modeling, eigenvalue analysis, open access and electricity market.

1. INTRODUCTION

Power sysicms are experiencing more and more
uncertainties  especially under a  dercgulated
environment, The system uncertainty may come from
various sources but the main contribution is from
uncertainlics in system parameters and forecasted
loads. Because of deregulation, in many cases the 1SO
or ITO planners have ne access to Independem Power
Producer (IPP) facilities, and ihcrefore can not
perform filed test in order to measure the real system
parameters. Consequently uncertainties are inevitably
introduced into the 1SO or ITO’ planning process.
Thiys has resulted in chatlenges for system planners in
an open assess electricity market. In order to have a
comprehensive picture of the system stability in
planming, probabilistic stability assessment is
attracting more and more attention over the traditional
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deterministic approach. Sensitivity analysis is the first
step for probabilistic small signal stability studies.
Sensitivity analysis has been investigated in various
aspects in [1-7] as will be detailed in Section L
However, these previous work did not investigate the
computational efficiency of analytical and numerical
approaches in sensitivity computation as will be
discussed in this paper.

Afler comparing the results of both approaches, the
paper proposes guidelines of selecting the parameter
perturbation sizes in sensitivity analysis. The puper
also identifies the parameters that have great impact
on system stability. Ut implies that, according to
sensitivity analysis results, the planners need to model
those puarameters as random variasbles when
performing small signal siability analysis. Given the
fact that a power system is a nonlinear, complex and
interactive large scale system, the parametric
sensitivily to the system state matrix is very complex.
Sensitivity of some of the parameters that have direct
entry to the system state matrix can be computed
analytically by studying their contribution in the state
matrix; bowever, for those parameters which do nol
have direct entry to the state matrix, ¢.g. active power
components of load, sensitivity computation can be
very complex.

This paper presents the technigues of computing the
sensitivity matrix of the critical system cigenvalues to
non-deterministic random variables of the system.
Both analytical and numerical methods are
investigated and compared. The paper is organized as
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follows: we first introduce the eigenvalue sensitivity
to non-deterministic parameters; then present the
techniques of caleulating such sensitivities for
parameters such as exciter gains; Case studies based
on New England system is presented to further justify
the techniques.

2. SYSTEM STABILITY AND SENSITIVITY
ANALYSIS-

Small signal stability is the ability of the power
sysicm to maintain synchronism under disturbances.
To investigate the small signal stability of a power
system, we need to model the dynamic components
(e.g. generators) and their control systems (such as
excitation control sysitem, and speed governor
systerus) in detail. The accuracy of power system
stability analysis depends on the accuracy of the
models used. Using of more accurste models could
resudt in increases of overall power system transfer
capability and associated economic benefits. Under
open access environment, the planners may not be able
10 obtain this information accurately as Lhey used to be.
It is therefore impostant 1o attempl mathematically
modeling and analyzing thesc parameters probabilistic-
cally; therefore, the planner can gain a better
understanding of the system stability margin,

A complex pattern of oscillations can result
proceeding system disturbances; and lipear, time-
invariant state-space models are widely accepted ([1-
9)) as a useful means of studying perturbations of the
system stale variable from the nominal values-at a
specific operating point [2]. Sensitivity analysis is
then typically undertaken by examining the change in
the system state matrix, or the eigenvalve sensitivity,
for & variation in the systern parameter in question |3].
With the sensitivity analysis results, further
probabilistic stability properties of the power system
can be obtained to assist in system planning.

Probabilistic eigenvaluc analysis of power system
dynamics is oflen applied with the advantage of
determining the probabilistic distributions of critical
eigenvalues, and hence providing an overall
probability of system dynamic instability {4,5]. The
probabilistic approach to dynamic power system
analysis first occurred in 1978, A 2-machine test
system at a particular load level was used 10 determine
the eigenvalue probabilities stemming from the
known statistical attributes of vanations of sysiem
parameters [S]. Since then, several papers have taken
a probabilistic approach to power system siability
analysis, using larger, multimachine systems [S]. [4]
proposes & hybrid utilization of central moments and
cumulants, in order to ensure the consideration of both
the dependence among the input random variables and
the correction for probabilistic densities of
cigenvalucs,

Probabilistic methods of dynamic power system
analysis have also been extended to the application of
PSS design [5], though this is nol the intention of thig
paper. In [6], the uncenainty of load level is stressed
as a major arca of concern. As such, the system
instability probability calculations are based on 1he
probabilistic nature of load demand and circuy
breaker operating time. However, this method is only
applied 1o a onc-machine infinite-bus system.

We use the following process for sensitivity and
stability analysis. The first step is to model the power
system properly, [8]. A power system can be modeled
by differential and algebraic equations (DAEs) as
following,

X =F(X,Y.u),
0=G(X.Y.u),

.
where X is a vector of the state variables, Y is the
vector of algebraic variables and system parumeters,
and u is the control input. The DAEs can be linearized
and rearranged at operating points as shown below,

AX = AAX. ¥)]

The dynamics of the system can be described by the
lincurized differential equation. The stability of the
sysiem is therefore determined by the eigenvalues of
the state matrix A. Based on the small signal stability
theorem and system dynamics, critical eigenvalues af
the system can be identified based on their mode of
oscillations. With these critical eigenvalues of a power
system, the small signal stability properties can be
obtained at the particular equilibrium only. In order o
assess the system small signal stability over a range of
operating points, repeated computation is required so
that the system stute matrix and corresponding critical
eigenvalues can be computed at each operating point
to obtain an overall picture of the system small signal
stability property. Given the complexity of a power
system, the total number of possible parameter
variations can be huge, and makes this approach of
computing critical eigenvalues computationally
inefficient and even impractical in some cases. This
leads to the invcstigation of probabilistic small signal
stability study.

If the system parameter veriations can be described
by probabilistic density functions, the probabilistic
approach can betused to find the probability of the
sysitem eigenvalues remain in the lefl half complex
plane, In order 10 do so, it is necessary to compute the
sensitivity of the eigenvalue to the system parameters
which are subject to variation following certain
probabilistic density functions {1,7].

When a power system is subject to small signal
disturbances and perturbations, the state matrix A
contains functions of non-deterministic variables. As
such, these random variables will cause eigenvalues of
A to be non-deterministic. After identifying the

{n
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critical ¢igenvalues the sensitivities of the eigenvalues

to system parameiers forms the sensitivity matrix, [1-7].

3. ANALYTICAL METHOD

In this section, the eigenvalues® sensitivities to non-
deterministic system parameters will be derived from
the left eigenvector w; and right cigenvector v, of the
same cigenvalue A; of the state matrix A, We have

Av,=L v, 3
Wi A=hw'. )

The right eigenvectors v; arc also known as the
mode shapes of the system and the ]cﬁ eigenvectors
are actually the right eigenvectors of A" [9). For large
scale power systems, the eigenvalues A; are distinct.
Taking partial derivative of equation (3) with respect
to non-deterministic system parameter K

- OA A o _ A ov; N 0

+ .
K, Tk, Tk T

(5)

Now taking dot product of each 1erm with the left
eigenvector W

" ax WTAax
(6)
= TA, 'WT a;'l —Lv,
I axj
Since wTAaK BK —LwlA wehave:
J J
r DA
o, ek, -
aKJ- w?cv'

or in matrix form

AA=SAT, (8)
where AT" = [AK}], AA = [AL] and S is the eigenvalue
semsitivity matrix.

In order to evaluaie the sensitivity matrix of the
system with respect to its non-deterministic
parameters, the partial derivative of the matrix JA/9K;
will have to be calculated first. The basc values of K;
are obtained from conventional Newlon- Raphson load
flow solutions.

If the non-deterministic system parameters are
states of the slate matrix A, then the matrix 3A/CK;
can be obfained from an analytical or a direct
approximation method as shown in the scquel. This
approach is made possible as the matrix A can be
expressed explicitly in terms of the state variables,
hence the required system parameters.

However, if the non-deterministic parameters are
not states of the sysiem, an analytical solution though
possible is proven to be computational intensive. As
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such, a partial finite difference

approach s
recommended and used.

3.1, Analytical method for control parameter K
It the required perturbed parameters appear
explicitly in state matrix A (e.g. IEEE type 1 exciler -
sec Fig. | - voltage regulator gain K,), CA/0K, can be
obtained by direct differentiation of elements in A, ie. :
oA 8
0K, 0K,
where a;; are entries in A. The sensitivity of the state

matrix to the exciter voltage regulator gain K, is
obtained by (10) - (11}.
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Fig. 1. Block diagram of the IEEE type 1 exciter,
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Fig. 2. Block diagram of speed governor system.
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3.2. Analytical method for speed governor system
gain KTC.

Nommally speed governor systems have slow
responses and do not significantly affect local modes
with frequencies greaicr than 1 Hz. However, they
may have negative damping effects on interarea mode
oscillations in an interconnccted power system. A
simple govermnor model is used in this paper for
scnsitivity enalysis {8,10] ~ see Fig. 2. The dynamic
equations of a typical speed governor system installed
at the i-th generator are given in (12),

=i
TrGa 0 0
Ky =| 862 L A
AXy Trés  Tros 0 [AXy
0 Xy =1
Tree  Trus 12)
_KTGI_1 (
0 o TrGA !

+0 0]AVe+| 0 |Aw,

00 OJ

where let AX=[AV,; AV,; AVg]l’ and AV =
[AV, Al{,.]T. The interactions between the synchronous
machines and the governor system have to be
considered as in (13).

Ax.sg(i)= 00 (l_KTGZ(i) {I—Kmx,-’ Ax'g(l.)“3)
2Hy, 2H J

Similar to that of the ¢xcitation system parametess,
the speed governor system gains Krgy, K and
Kygs’s individual contribution to the state matrix
sensitivity are given in (14)—(18).

[ 0 0 o
54 =lz- 0 0 : (14)
aty, |
0 0 0
3 FO 0 0
ax::’ =lo o o (15)
TGh e
Lo Tras 0.
[ =1,
TGy
—a:.-,—= 0 (16)
oK1 0
u [ ]
LI " (17
K12 _0 0 i, 0 1
aA et
= =1 {18)
OKrgyiy _0 00 2H,,-,]

For a governor system, the time constants Trg; muay
have some deviation from their rated values over the
time as well. Because these time constants are oftep
denominators in the state matrix, they may have more
impact than the system gains Kyg.. Their contribution
to the partial derivative of the state matrix can be
obtaincd similar io that of Kr¢;:.

So far the analytical approach only applies o
parameters which have direct entry into the system
state matrix such that an analytical form of the
sensitivity can be accurately computed. However,
there are parameters such as the rotor angles and Joad
powers which do nat have a direct eatry into the state
matrix but do have impact on the system state matrix,
To find out the analytical form of sensitivity with
respect to such parameters —~ e.8. JA/EP; is a very
complex task. For a large scale system it may even
becomes impractical to find out an analytical form. A
numerical approach is more appropriate in view of
computational cfficiency and practicality. We next
introduce the numerical approach to computing
sensitivity. -

4. NUMERICAL METHOD

The relationship of the system parameters to the
systcm state matrix is very complex, Even though the
impact from system parameters such as load does not
directly appear in the system stale matrix, however,
the impact does exist indirectly. Tt is well known that
when the load changes, the system voltages and
valtage angles will also change o meet the power
flow couditions.

A numerical approach is generally more desirable
duc to its simplicity in implementation and ability to
meet the requirement of complex large scale systems,
Based on our studies, we find that 1% perturbation
is 4 good choice in most cases as parameter changes
thai are too large violate local linearity assumptions
and parameter changes that are too small cause high
round-off errors efler division.

From the definition of partial derivative:

==}

= lim

. (19
J
where A(KA+AK)) anﬁ A(K;) are the eigenvalue of the
system matrix A after and before the parameter
perturbation. Normally, only the critical eigenvalues
need (o be evaluated subject to small perrbations.
We have
oA _A(K1-+AKJ-)—A(K,-)
oK, AK;

, (20)

if AK; is small when compared to ihe entries in A.
The numerical approach applies to computing the
sensitivity of eigenvalues with respect to the
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excitation system gains, governor system gains and
time constants, which have been evaluated
analytically in previous sections.

It is evident that analytical approach may become 1o
complex for some parameters such as system loads.
However, the numerical approach provides a
convenicnt  way {0 approximate the analytical
sensitivity results. The amount of perturbation to
perform the numerical approach, however, needs 1o be
chosen carefully in order 10 ensure the robustness of
the scnsitivity computation. If it is 1oo small, the
system may not be sble to respond to such
perturbation numerically; if it is too arge the system
may not be able 10 maintain smooth change of states.
In cither case the final results will not be true
approximation to the actual sensitivitics. Subsequent

case study of the New England test system will -

indicate a suitable choice of perturbations  as
acceptable level.

5. CASE STUDY

The New England system — see Fig. 3 - is used to
test the derived algorithms in computing the
eigenvalue sensitivities. Both the numerical and
analytical approaches are applied to compute the
eigenvalue sensitivity factor with respect to the
selected power system parameters.

5.1. Numerical approach v.s. analytical approach

First the analytical approach of cigenvalue
sengitivity computation with respect 1o K4 variations
is performed as shown in Table . Both analytical and
numerical approaches have been applied 10 study the
cigenvalue sensitivity based on the New England
system for different perturbation levels as given in
Tables 1-5, which show that a 1% perturbation in
numerical method can produce reasonably good
results compared with the analytical methods. This is
very important for large scale system analysis and for
sensitivity computations with respect to other
parameters not directly appear in the statc matrix.

o ©.
ke 2 —_—r 2
" . =

Tl e SN

N I "_.;_\ H .

9 @ —=- ., o
——— [ | E——— .

A M =
" 06
Fig. 3. The new england test system.

Table 1. Sensitivity factor of critical eigenvalue to
exciter gain KA of generator at bus 30 using

the analytical approach.
No | Oscillation Mode | Sensitivity Factor {(x10™)
1 -0.3678 + j8.7547 0.00078162184764
2 -0.4031 = ;8.6747 0.01106642351696
3 -0.3139+R.4773 -0.00063404657501
4 «0.2745 2 j7.4595 {.00022037834264
: 5 0.0013 £+ j6.9647 -0.00957289052384
i 6 -0.2493 * j6.9965 -0.00513654645813
7 -0.2507 x j6.357 1 -0.00071777018732
8 -0.2600 £ §5.9958 -0.00214383955583
9 -0.2798 + j3.8493 -0.06791209198673

Table 2. Sensitivity factor of critical eigenvalue to
___ exciter gain K, of generator at bus 30 using
the numerical approach.

No | Oscillation Mode | Sensitivity Factor (x107) }
1 | -0.3678%j8.7547 0.00078163731043
2 | -0.4031 % j8.6747 0.01106188979083
3 | -03139+j84773 -0.00063335882650
4 | -0.2745%j7.4595 0.00022046 186654
5 | 0.0013=j6.9647 -0.00959517106325
6 | -0.2493 +76.9965 -0.00513931605273
7 | 02507 £ j6.3571 -0.00071194674489
8 | -0.2600=j5.9958 -0,00208513232680
9 | 02798 +j3.8493 -0.06636688800743

Table 3. Sensitivity analysis errors for different exciter

gain K, perturbation levels,
Error (%) K4 | Error (%) Ka Error (%) Ka
No from 5.0 10 from 5.0 to from 5.0 to
6.0 5.1 5.01

| 0.608 0.003 0.0004

2 -0.98 -0.09 -0.009
K -2.10 -0.2 -0.020

4 0.46 0.04 0.004

5 15.4) 1.52 0.152

[ 0.80 0.08 0.008

7 19.74 1.95 0.194

8 -14.88 -1.45 -0.145

9 -121.60 -11.92 -1.190

Table 4. Comparison of analytical to numerical
approaches in computing the eigenvalue -
sensitivitics (spced governor §ain Krg; at

bus 30, sensitivity values x 107).
Mod. # Numerical Analytical Error
1 -0.000272155 | -0.000272677 | 0.191684%
2 0.016839917 | 0.016877105 { 0.22D0346%
3 -0.00044598 | -0.000441561 [ 1.000776%
4 0.000301912 | 0.000303428 | 0.499824%
5 0.498817537 | 0.49885901S | 0.008315%
& 001390707 | -0.013915327 | 0.059333%
7 0.00113737 0.001136542 | 0.072868%
8 0.070758053 | 0.070710436 | 0.0637340%
9 0.043422405 | 0.043419504 | 0.006681% |
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‘fable 5. Percentage errors for eigenvalue sensitivity
computation between numerical vs analytical
methods at bus 30 (numerical method uscs
1% perturbation).

Knis | Knaa
0.1917(1.0752

0.2203| 1.356

T

Z
)

Ka
0.002
0.041

Kyeis
0.6984
0.007

Ty
0.5102
1.0787

TJ(-’&

0.9319
1.4562

Tois
1.6292
0.997

0.1085[1.0008} 1.205 |0.0087]1.4968/0,9993|1.0484

0.0379]0.4998)2.3475]0.0166]0.80381.0065[1.4636

0.2327(0,0083]0.0371(0.0042:0.7114/0.9841] 1.082

0.053910.0593{1.0034(0,017410.2743;0.9695]1.1047

0.8113]0.0729{0.5967]0.1796/0.1166]0.7947(0.9689

2.7384/0.067310.595410.1815|0.064910.7923/0.967 4

wlolwla|w|n|uwln]—-

2.2753}0.0067]0.1604/0.04410.3598{0.9286/0.9419

Tables 6-7 show the complete sensitivity values
with respect to governor time constant 776 and gain
Kqz for all generators and all critical modes.

It can be seen that even though the analytical
approach does provide accurate sensitivity factor, but
it carries with very complex numerical analysis and
different unalysis has to be done for different system
parameters or even for different systems. Numerical
approach is computationatly simple and has been
praven to be accurate enough as comparing with the
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analytical approach. Generally a 1% perturbation is
able to pencrate acceptable results comparable to that
of the analytical analysis resulis but saves
significantly analytical time and possibility of errors,
Because of the simplicity of the numerical approach,
it will be used in sensitivity analysis for other
parameters as well with a 1% perturbation.

5.2. The most sensitive parameters and machines

Rascd on the analytical and more imporiantly
numerical methods discussed in previous sections, the
eigenvalue sensitivity analysis is performed to all the
system excitation system gains X, govemor gains
Ky and governor time constant Ty, to find out the
parameters which have the most impact on system
eigenvalue variations, i.e. these parameters with
which the system cigenvalue sensitivities are the
highest. Tables 5-6 are selected complete eigenvalue
sensitivities for ali 9 synchronous generators. ‘l'ables
7-14 summarize the findings and identify the most
sensitive  paramelers, critical eigenvalues and
corresponding  generators. By  identifying  such
parameters and associated machines, the system
operator is able to pay more attention to these
identified sensitive parameters and machines 1o
manage the system stability more efficiently awl
effectively.

Table. 6. Eigenvalue sensitivity analysis of the governor time constant Trgs.

Trge at
Machine 30

Trie 8t
Machine 31

Tgs at
Machinc 32

Tyae bt
Machine 33

Tree at
Machine 34

Trcs ot
Machinc 38

Trge at
Machine 36

Trge Bt
Machine 17

Trgs at
Machine 38

-1 11S51E06

-3.558C-11

-4, 788E-11

6.6291F-08

JRI224E-08

»}.93559E-07

-0.600139367

5.07058E-08

-2 ¥4963L-0R

6.46359E-05

~4.0387C-09

-LIBI6TE-0Y

-3.71654F-06

-3.09263C-07

4.77072C-09

9.64761£-07

-3.36758C-07

-1.10567E-05

~1.9576 1F-06

~2.57155E-09

3.1638E-11

4.90016377

-3.R86G3CDS

1.02878E-07

-1.45484-038

| 1.47502E-07

~1.57724F06

1.76353F-06

-2.59354C-06

-5.21521E-08

-1.858722F-08

-2.07263L-08

-1.72079E-08

-2 QURO4E-06

+3.818C-11

234882608

$.0034140945

1.IR2ZHE-07

4.4259E-00

-3.76821E-08

10941 RE-05

-1.76852C-07

-4 33723E-00

6.69378E-07

-0.0001501

--B.958961-05

-8.1947C-07

1.08412E-08

-2.99485E-07

 -0.000156474

4.64143E-07

-.000130285

<2.653580-08,

~§.22308E-05

8.38656E-06

~359R98E-D6

2.06921E-08

-1 86785506

-SA4971C-05

3.64671E-09

- 5.08404E-08

1.65754C09

-0.0003 16083

0.006572916

-1.26273C-07

3.49368E-08

~2.40172F-05

-0.000387368

~7.J0243E-08

-6.30737E-06

-1.02286C-07

-4.000482093

i ioe|~N R Wn|AJWIN]=—-

0.000838442

~1.08889C-06

-3.6804-08

9.65502F-05

-0.600242267

-3.66778E-07

-0.0001 18408

-5.26866C07

-0.000349147

Table 7. Cigenvalue sensitivity of the governor pain Kye,.

-

Kyc2 at
Machine 30

K'r(u at
Machine 31

Kiaa at
Machine 32

Krgz 8t
Machine 33

Kyg: at
Machine 34

Kigat
Machin¢ 35

Kryg: 8t
Machine 36

Ky at
Machine 37

Kraaat
Machine 18

-0.000219504

2.06935L-06

4.53992E07

0.001545566;

~-3.82499C-05

0.002097239

0.170009471

NOODIBSTTT

S3425F-06F

0.006788523

0.000101 14t

1.36527E-05

0.00075358)

0.000157563

~4.18803L:-05

-0.001559526

0001113672

0.00353742

-0.001191229

225112608

~1.39018%:-07

$.181296538

0.069240347

-0.001011621

0.022957771

+0.000533284

0000290418

0.000103514

0.026501 (%1

0.000309328

2.01391C-05

S.19781E-08

0.c0011 7183

0.003536287,

1.79402£-07

4.75415E-06

0.336134994

+0.001874333

-1.24984F-05

3.271926E-03

0.010366876)

| 0.001057575

0.00768202

-0.001788257

0 NAISO1701

-0.009386866

0.013020627,

-6.905F-05

3. 4168E-05

0.208 190867

0.00H351%1

0.11422629]

6.4296E-08

0.617539022

0.000899972

0.050480814

-0.00018078)

0.001762589

0.056927192

-4 .R71307F-D3

=0.46254L-05

9. 722781-06,

0.034078409t

0.055932818

00010687897

-D.00017022

0.017075462

0.404146387

0.000330395

0.005577833

0.00010949

0.067435278

Wim{iN{AR{Aw]L[WiN| e~

0.00323578

0.007897174

X.5T848E-05

0.037064593

0.138868907

0,000628933

0.04387833%4

0.000250131

0.041316363
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[t is shown in Tables 6 and 7 that Ty at bus 30 is
the most sensitive one among all Tyges at critical
mode 5 {0.003414985); and K76, at bus 34 is the most
sensitive onc at critical mode 8 (0.404146387).
Similar analysis is performed 10 all othcr paramclers
at all machines. The results are given in Tables 8-12.

Table 8. Tdentify the most sensitive eigenvalue to
exciter goin K4 at each generator.

Y Ky

{ Machinc No dUdk,0") | Critical Mode No

: 30 0.06791209198673 g
3 0.34809738436733 7
EF] 0.32487814171438 9
33 20.:41 68737887021 3
34 0.43863205050830 ]
3s 0.26266275761013 ]
3%  0.203535855003 14 9
37 0.25569157054522 2
38 0.3486R971 208412 0]

Maximum 0.43863295050830 (34.8)

Table 9. Identify the most sensitive eigenvalue to speed
vernor gain K1g; at each generator.

N Ko

Machine No K ,o(*107) | Conical Mode No
30 0.49R8590152995] 5
30 0.0946991 1 688998 4
32 -0.0000534910129 7
3 021556520763527 3
gy -0,19964981762726 9
35 -0.00002071650747 3
36 0.49600058177804 1
37 -0.00002595289485 5
38 0.090357736/5973 7

Maximam 0.49885901 52095) 30.5)

Table 10. ldentify the most sensitive eigenvalue to speed
governor gain Xyq; at each genemator.

: K

Machine No DIKd=1] | Critical Mode No
30 L.000987104676 14 hJ
3 0.0216935440 1310 a
1 20.00021799073044 4
33 0.11739670906906 3
3 0.075 13066243194 5
35 20.00048 159751110 6
76 0.11193931004559 |
37 D.00144809134764 3
38 0015122152392 5

Maximum 0.1 1734670906906 {33, 3)

Table 11. ldentify the most sensitive eigenvalue to
speed govemor time constant Trqq at each

generator.

. T(m
Machine No VAT d <) | Critical Mode No

30 -0.58393197169450 5

31 -0.00992954680167 2

32 ~0.00000012095101 3

33 20.02916175607370 3

34 8.79715080800131 R

35 0.0K0ONDORAZIRTIG 9

36 0.078602698 14019 9

37 0.000000879%2417 5

x U.03049729669530 CH
Maximum 0.7971908060013) 134.8)

Table 12. Tdentify the most sensitive eigenvalue to
speed governor time constant Tygs at each

generator.
Machine No LITCI—
AR AT s(x1) Critical Mode No
30 -0.00029901735056 5
31 009996306255 147 7
32 -{.000000052 15206 4
33 0.02636963298285 9
34 0.65079925596713 R
35 0.000000464 14332 [
‘36 (0.0835%576995736 9
7 0.00000087982427 5
kL] DASIR4A4751 79912 R
Maximum 0.65079925596713 (34.8)

From Tables 6-12, we can conclude that (i)
Machine 34 is most sensitive to parameter
uncertainties subject to small signal stability; {ii) the
governor system paramcters are most sensitive for
machine 34 to the 8" critical mode of oscillation; (iii)
the governor time constants have the most impact on
eigenvalue sensmwty as compared with other control
system gains in 2 scale of 10% thercfore more
atiention should be paid to these time constants than
gains; {iv) excitation system gain K4 has about 10?
times less impact on eigenvalue sensitivity to all buses
as compared with governor time constants; (v)
machines 30 and 33 are also sensitive to parameter
uncertainties, however less than that of machine 34 ;
(vi) the govemor system gains have much more
impact on eigenvalue sensitivity than excitation
system gains in an approximately 10° times more.
These observations indicate that the governor gains
and time constants have more impact on eigenvalue
sensitivity than excitation system gains, and therefore
needs more attention to prevent small signal
instability. It also indicates that machine 34 may need
snore attention in dispaich and maintenance to avoid
possible small signal instability.

6. CONCLUSIONS

Sensitivity of the system eigenvalues to system
parameters indicates the impact ol such parameter to
the system stability. It is preferable to have analytical
approach to compute the eigenvalue sensitivity;
however, the analytical form of sensitivity may be too
complex for realistic computation for some system
parameters and for large scale systems. With case
study and mathematical analysis, the paper concludes:
that by proper perturbation level, the numerical
approach, which is simple in algorithm, is able to
produce accurate rosults as compared with the
accurate analytical approach when computing the
sensitivity factors. In addition, our research also finds
out that the numerical approach can compute all of the
scnsitivity factors within one-time run, while the
analytical method has to compute the sensitivity factor
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by each parameter. These findings can reduce the
computational cost significantly for large scale
systems and parameters whose relationship with the
stale matrix is complex.

In this paper, the critical eigenvalues’ sensitivity
matrix for non-deterministic power system parametets
including excitation system pgains is derived using
analytical and numerical methods. Based on the case
study with the New England system, we find out that
less than 1% perturbation is reasonable for numerical
approach to compute sensitivity factors. Larger
perturbation value may cause significant errors.

The paper also indicates that the eigenvalues are
mos! sensitive to the changes of governor gains and
time constants, It again proves thal the small signal
stability analysis should model govermor system.
Since those parameters have significant impact on the
stability margin, the variation of governor parameters
nceds to be modeled ns random varisbles in
probabilistic smal] signa} stability analysis.
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