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The sentence on page 4550 ‘Following Berg and Purcell (Berg and Purcell, 1977), threshold detection of the gradient occurs when:

biðtÞ ¼
X

j

bðtÞe� fi�fjð Þ2=2s2
s :

where δbin is the uncertainty in the concentration measurement for one bin.’

should instead have read:

‘Following Berg and Purcell (Berg and Purcell, 1977), threshold detection of the gradient occurs when:

ðn� kÞm ¼
ffiffiffi
2

p
dbinffiffiffi
k

p ;

where δbin is the uncertainty in the concentration measurement for one bin.’
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Introduction
Axons use many types of navigational cues to find appropriate
targets in the developing nervous system (Dickson, 2002;
Huber et al., 2003; Guan and Rao, 2003). A particularly
important class of guidance signal directing axonal growth is
molecular gradients (e.g. Tessier-Lavigne and Placzek, 1991;
Baier and Bonhoeffer, 1992; Tessier-Lavigne and Goodman,
1996; Song and Poo, 1999). The response to such gradients is
primarily mediated by the growth cone, the motile structure at
the tip of developing axons (Gordon-Weeks, 2000). The growth
cone turns in response to an external ligand gradient,
presumably as a result of asymmetric intracellular signaling
that arises from the difference in receptor occupancy across its
spatial extent. Some progress has recently been made in
uncovering the molecules involved in the signal transduction
networks underlying gradient detection in growth cones (Song
and Poo, 2001; Guan and Rao, 2003). However, the overall
gradient detection algorithm these transduction networks
implement is unknown.

A key aspect of the chemotropic response of many types of
cells is adaptation, which has been defined as the continual
adjustment of the baseline against which further increases in
concentration are compared (Bray, 2001). This has been
particularly well studied in the context of bacteria (e.g. Macnab
and Koshland, 1972; Koshland et al., 1982; Barkai and Leibler,
1997). It is thus a reasonable hypothesis that growth cones
might also implement adaptation to gradients, which would

mean that they display a similar sensitivity to small
concentration differences of an external ligand over a wide
range of background concentrations of the ligand. This would
allow growth cones to be guided over a greater distance by a
single gradient (Goodhill, 1998; Goodhill and Urbach, 1999)
than growth cones that do not adapt. Perhaps the most explicit
proposal of this hypothesis has been made by Ming et al. (Ming
et al., 2002). Using gradients established by a pipette, they
tested the change in responsiveness of Xenopus spinal growth
cones to a steep gradient when a sudden change in background
concentration was introduced. In each case, the concentration
of ligand at the growth cone was about 0.1 nM, the change in
concentration across 10 microns was about 10% (Zheng et al.,
1994), and the sudden changes in background concentration
were about 0.1 nM (for ease of comparison we have converted
the ng/ml units originally quoted to molar units). There was
thus at most an approximate twofold increase in the absolute
concentration of ligand at the growth cone. Under these
conditions a rapid initial desensitization was observed whereby
the growth cone could no longer respond to the 10% gradient,
which was followed by a more prolonged period of
resensitization (Ming et al., 2002). The timecourse of
desensitization and resensitization has recently been
investigated in more detail by Piper et al. (Piper et al., 2005).

However, the experiments of Ming et al. (Ming et al., 2002)
examined only the relatively short-term temporal dynamics of
the response of growth cones to small step changes in

It has been suggested that growth cones navigating through
the developing nervous system might display adaptation, so
that their response to gradient signals is conserved over
wide variations in ligand concentration. Recently however,
a new chemotaxis assay that allows the effect of gradient
parameters on axonal trajectories to be finely varied has
revealed a decline in gradient sensitivity on either side of
an optimal concentration. We show that this behavior can
be quantitatively reproduced with a computational model
of axonal chemotaxis that does not employ explicit
adaptation. Two crucial components of this model required
to reproduce the observed sensitivity are spatial and

temporal averaging. These can be interpreted as
corresponding, respectively, to the spatial spread of
signaling effects downstream from receptor binding, and to
the finite time over which these signaling effects decay. For
spatial averaging, the model predicts that an effective range
of roughly one-third of the extent of the growth cone is
optimal for detecting small gradient signals. For temporal
decay, a timescale of about 3 minutes is required for the
model to reproduce the experimentally observed sensitivity.
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concentration. They did not explicitly test the hypothesis that
growth cones display a similar sensitivity to small
concentration differences across a wide range of background
concentrations. A recent experiment has addressed this more
directly by examining the long-term response of axons in a
three-dimensional collagen gel environment to gradients of
precisely controlled steepness and shape (Rosoff et al., 2004).
Explants of rat dorsal root ganglia (DRGs) were grown for 2
days in gradients of nerve growth factor (NGF) of a steepness
of 0.2% per 10 microns at background concentrations varying
from 0.0001 nM to 100 nM, and the degree of asymmetry in
the outgrowth was quantified. A simple interpretation of the
adaptation hypothesis would predict that the guidance response
should be roughly constant over this range, as the stimulus
(fractional change in concentration across the growth cone) is
the same in each case. However, this is not what was observed:
instead the guidance response peaked in the range 1-10 nM,
and declined at both higher and lower concentrations, falling
to zero at the two ends of the concentration scale.

We decided to rigorously test whether this result is indeed
consistent with a non-adapting gradient detection mechanism
by constructing a computational model of growth-cone sensing
and movement. Using the data of Rosoff et al. (Rosoff et al.,
2004) to constrain the parameters of the model, we show that
it is possible to produce a close quantitative match between
model and data without invoking explicit adaptational
mechanisms. In addition, we find that both spatial and temporal
averaging of the stochastic receptor-binding signal are required
to produce the exquisite level of sensitivity observed
experimentally. Spatial and temporal averaging can be
interpreted as corresponding, respectively, to the spatial spread
of signaling effects downstream from receptor binding, and to
the finite time over which these signaling effects decay. For
spatial averaging the model predicts than an effective range of
roughly one-third of the extent of the growth cone is optimal,
whereas for temporal averaging a timescale of about 3 minutes
is required for the model to reproduce the experimentally
observed sensitivity.

Materials and methods
Mathematical model
The model consists of a two-dimensional, semi-circular growth cone,
the one-dimensional edge of which is covered in receptors for the
diffusible ligand. The receptors are redistributed according to a
uniform random distribution at every time step. Here, we present a
more intuitive description of the model; a more mathematical
description is given below under the heading ‘Equations of the
model’. 

Model description
At each time step in the model, the probability pi for receptor i to
be bound is given by pi=Ci/(Ci+KD), where Ci is the external ligand
concentration at the position of receptor i and KD is the dissociation
constant for the receptor-ligand complex. This gives a highly noisy
measurement of differences in concentration around the growth cone
that arise from the presence of an external gradient. The
experimental data of Rosoff et al. (Rosoff et al., 2004) suggests that
growth cones must be averaging concentration measurements to
achieve their exquisite sensitivity to gradients, as the noise present
in an instantaneous measurement of the local concentration is much
larger than the gradient signal itself. In the model, we include both
spatial and temporal averaging before each movement event is

initiated (see below). In temporal averaging, the recent history of the
binding state of the receptor is pooled according to a decaying
function of time, which we assume to be a half-gaussian of variance
�t. For small �t, only the immediate binding state of each receptor
is considered; for large �t, a long history of binding is averaged. �t
trades off noise in concentration measurements against temporal
locality: a large �t increases the accuracy of the concentration
measurement but decreases its temporal resolution so that it cannot
respond to rapidly changing signals, whether due to changes in the
concentration field itself or to movement of the growth cone within
a fixed concentration field. In spatial averaging, the binding of a
spatially distributed set of receptors is pooled to determine a binding
density at each point. This is achieved in the model by convolving
the receptor-binding density (from either a single or temporally
averaged measurement) with a gaussian function of variance �s. For
small �s, just a few neighboring receptors are averaged; for large �s,
a significant proportion of all of the receptors on the growth cone
are included in the average. �s trades off noise in concentration
measurements against spatial locality: a large �s increases the
accuracy of the concentration measurement, but decreases the spatial
precision in a concentration measurement, which is key to
measuring a gradient. For very large �s, all spatial locality is lost,
and the binding at each point equals the average concentration across
the entire growth cone.

Once a receptor-binding density as a function of angle around the
growth cone has been calculated, the growth cone picks the direction
in which this is maximum. We do not model how this occurs, but there
are several possibilities for performing this type of amplification
(e.g. Parent and Devreotes, 1999; Meinhardt, 1999; Iglesias and
Levchenko, 2002) (see also Discussion). Because axons tend to grow
in straight lines (Bray, 1979; Katz, 1985), we allowed the axon to
change direction only slightly in response to this gradient signal: the
new angle of growth is (1–�) times the old direction plus � times the
new direction, where � is close to zero. The growth cone then takes
a small, constant, step forward. We refer to � as ‘momentum’. Note
that there is no explicit adaptation to external ligand levels in this
model, as in for instance Barkai and Leibler (Barkai and Liebler,
1997).

Equations of the model
The concentration of ligand C(r) at position r=xî+yĵ in the gradient,
where î and ĵ are unit vectors perpendicular and parallel, respectively,
to the direction of the gradient, is given by:

C(r) = C0egy ,

where g is the gradient steepness and C0 is a reference concentration.
The binding bi(t) of receptor i at position ri at time t is then set to 1
with probability pi and 0 with probability (1–pi), where:

The temporally averaged binding at each binding site, 
=
bi, is given by:

The spatially averaged binding at each site, b
–
i(t), is given by:

where �i is the angular position on the growth cone of receptor i. We
do not explicitly normalize the results of spatial and temporal
averaging, as we are only interested in the position of maximum
binding. The angle of maximum binding �max is set to the angle �i of

b
–
i(t) = b(t)e–(�i–�j)2/2�2

s .�
j

bi(t) = bi(�)e–(t–�)2/2�2
t .�

t

�=0

C(ri)

C(ri) + KD

pi = .
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4547Response of axons to molecular gradients

the receptor with maximum 
=
bi. The overall direction �(t) of the growth

cone is updated according to 

�(t) = (1–�)�(t–1) + ��max(t) .

The growth cone then takes a small step forwards in this new
direction. The only random component in the model is the receptor
binding at each step, which is intrinsically stochastic, and no
additional noise is added to this.

Comparison with experimental data
Examples of the explant data generated by Rosoff et al. (Rosoff et al.,
2004) are shown in Fig. 1A,B. Rosoff et al. (Rosoff et al., 2004)
quantified the response of axons to gradients by the ‘guidance ratio’:
the number of pixels representing neurites on the up-gradient side of
the explant U was compared with that on the down-gradient side D,
with the guidance ratio defined as (U–D)/(U+D). This was calculated
for digital images of the explants at 640 by 480 resolution.

In order to match our computational simulations to these
experimental results, we generated digital images of simulated
explants at the same resolution. Simulation parameters were chosen
to match the mean experimental values for average neurite number
and length, explant radius (all simulated explants were circles), and
growth cone diameter. The starting point for each axonal trajectory
was a random position within the explant, and the initial direction was
random. To represent the likelihood that not all neurites in the
experimental condition are actually responsive to NGF, i.e. that some
neurites do not express TrkA (Gallo et al., 1997), we assumed that
only a proportion of simulated neurites per explant were actually
responsive to the gradient. Non-responsive growth cones in the
simulations grew simply according to random fluctuations in receptor
binding with no gradient. Simulated explants were grown in identical
gradients to those used experimentally, i.e. exponential with a
fractional change 0.1, 0.2 or 0.4% over 10 microns, at an absolute

concentration ranging from 0.0001 nM to 100 nM. Images of neurite
trajectories were generated using the Matlab ‘plot’ command with the
‘linewidth’ parameter chosen to match the width of neurites observed
experimentally. The guidance ratio was then calculated as for the
experimental explants. We also investigated a more controlled method
of generating pixels to represent the trajectories, based on an optics-
based model for how images were generated experimentally by Rosoff
et al. (Rosoff et al., 2004). However, this produced guidance ratios
that were not significantly different from those produced by the ‘plot’
method.

Parameter values
Parameter values used are shown in Table 1. The upper block of values
were determined directly from experimental measurements (Rosoff et
al., 2004). Note that in the model there is no ‘absolute concentration’
of ligand, rather all concentrations are expressed relative to KD. The
proportion of responsive neurites is consistent with experimental
estimates of the proportion of TrkA-positive neurons in early postnatal
rat DRGs (Mu et al., 1993; Phillips and Armanini, 1996; Bennett et
al., 1996; Molliver and Snider, 1997). The number of receptors is in
the middle of the range of estimates of the number of neurotrophin
receptors on embryonic sensory neurons (Meakin and Shooter, 1992).

The timestep �t is the basic unit of time in the model: the time over
which a concentration measurement is made and over which a small
movement occurs. We assume that, at successive timesteps, the growth
cone makes a statistically independent measurement of the binding of
each receptor. This provides a lower bound on the size of the timestep;
for diffusion-limited receptor-binding kinetics the minimum time
between statistically independent binding events can be estimated as
the radius of the sensing device squared, divided by the diffusion
constant (Berg and Purcell, 1977). For diffusion constants in the range
10–6 to 10–7 cm2/second, this time is between 1 and 10 seconds [Rosoff
et al. (Rosoff et al., 2004) measured a value of 8�10–7 cm2/second
for the diffusion of NGF in collagen]. An upper bound is provided by
the fact that measurable changes in growth cone morphology in
response to external cues can be seen on a timescale of 1 minute or
less (e.g. Zheng et al., 1996); 30 seconds was chosen as an
intermediate between these limits.

An appropriate value for the momentum � is constrained by the
maximum rate at which growth cones can turn. In the model, this is
set by the timestep �t, as well as by �. A strong gradient (sufficient
to dominate binding noise) perpendicular to the direction of travel of
the axon will produce a signal at 	/2. In a single timestep, the change
in the angle of the axon will be �	/2. The growth cone will turn 45
degrees towards the direction of the gradient after approximately
(	/4)/�	/2=1/(2�) steps. Thus, the fastest observable turning time,

Fig. 1. Typical dorsal root ganglia (DRG) explants generated
experimentally by Rosoff et al. (Rosoff et al., 2004) (A,B), and by
the computational model (C,D). In A,C, there is no nerve growth
factor (NGF) gradient; in B,D, an exponential NGF gradient is
present increasing upwards in the figure with a fractional change of
0.2% over 10 
m. All images are 480�480 pixels and presented at
the same scale. The diameter of the explants in the simulated cases is
700 
m.

Table 1. Parameters used in the model
Parameter Value* 

Exponential gradient steepness 0/0.1%/0.2%/0.4% per 10 
m
Ligand concentration at explants 0.001-100 � KD

Total outgrowth time 40 hours
Explant radius 350 
m
Number of neurites per explant 200
Length per neurite 1100 
m
Growth cone diameter 10 
m

Explants averaged per condition 20
Number of receptors on growth cone 3000
Proportion of responsive neurites 60%
Timestep 30 seconds
Momentum, � 0.03
Scale of temporal averaging, �t 2 timesteps (60 seconds) 
Scale of spatial averaging, �s 5% of growth cone circumference 

*Values in the upper block were taken directly from the experimental
results of Rosoff et al. (Rosoff et al., 2004). For further explanation see
Materials and methods.
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Tmin, is equal to �t/(2�) seconds. Changes in the timestep must
therefore be accompanied by proportional changes in � to keep a
constant response time. Experimentally Tmin is in the order of 10
minutes, so �=30/1200�0.03 for �t=30 seconds.

The momentum is also constrained by the degree to which axonal
trajectories meander. In the absence of a gradient, the growth cone
executes a random walk in angle space. Each timestep, the orientation
of the growth cone changes by some amount �� uniformly distributed
in [–�	/2,�	/2]. Consider first the case with no temporal averaging.
By the central limit theorem, after N statistically independent steps a
collection of axons will display a distribution of changes in orientation
with a spread given by ��rms~��N ������=��N�	/2�–

3. Experimentally,
even after 36 hours (approximately 2000 minutes), most of the axons
have not changed direction by more than 	/2. Thus,
��20�00�·6�0/��t�	/4<	/2, or �<2���t/�1.�2��1�05=0.03. To keep the
trajectory meandering constant, � must change proportional to the
square root of the timestep. When temporal averaging is used, the
chosen orientation in successive timesteps is not statistically
independent. The longer the temporal averaging time, the more likely
it is that the position of maximum binding stays in approximately the
same position. Roughly, the number of statistically independent steps
is reduced from N to N/�t, and the average step size is increased from
�	/4 to �t�	/4. From the arguments above, ��rms~��N/��t�t�	/4.
Thus, the meandering increases with the square root of the temporal
averaging time.

For spatial averaging, we found there was a specific width �s that
maximized the sensitivity of the growth cone (see Results), and it was
this optimal value that we used in subsequent simulations. The
duration of temporal averaging, �t, was determined as described in
the Results. Simulations were coded in Matlab, and each explant took
approximately 10 hours to run on a 3GHz Pentium 4 PC running
Linux. The simulations shown here thus represent a total of
approximately 2 years of CPU time.

Results
The computational model we consider is very simple: binding
of ligand to receptors on the growth cone is averaged both
temporally and spatially, and the growth cone then makes
a small turn in the direction of maximum averaged binding
(see Materials and methods). Typical results for the model
using the parameters in Table 1 are shown in Fig. 1C,D,
which can be compared with the experimentally generated
explants.

Before matching the model to biological data it is important
to understand the individual effect of some of the key
parameters in the model. Fig. 2 shows how growth cone
sensitivity, as measured by the guidance ratio (see Materials
and methods), varies with the proportion of non-responsive
neurites (Fig. 2A), the width of spatial averaging (Fig. 2B), and
the duration of temporal averaging (Fig. 2C). In Fig. 2B, the
width of spatial averaging, �s, is expressed as a percentage of
the circumference of the semicircular growth cone. As �s
increases the average is taken over more receptors and thus the
noise in the local concentration measurements is reduced.
Conversely, increasing �s implies less specificity in exactly
where the concentration is measured, making the detection of
a gradient more difficult. It can be seen that these two effects
trade off to produce a peak in sensitivity at about �s=5%.
Because the total effective width of averaging is roughly 6�s
(3�s either side of the central point), this corresponds to a total
width of about one-third of the distance around the growth
cone. As was expected, in Fig. 2C, the longer the temporal
averaging (the higher �t) the greater the sensitivity. We found

that a value of �t=2 was required to match the sensitivity of
real axons (see below). This corresponds to looking back in
time a total of about 3�t=6 timesteps or 3 minutes. Beyond this
the axon trajectories become more convoluted than those seen
experimentally (data not shown), because a chance bias in
binding on one side of the growth cone persists for many
minutes.

We next proceeded to match the data in figure 3A,C of
Rosoff et al. (Rosoff et al., 2004), by measuring how the
response in the model varies as a function of gradient steepness
(Fig. 3A) and absolute concentration (Fig. 3B). Explants were
simulated in each case using the parameters in Table 1. (All
simulated explants grew for 40 hours, whereas experimentally
there was a range from 36-40 hours. We tested the effect of
reducing the simulated time to 36 hours, and found no

Development 132 (20) Research article
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4549Response of axons to molecular gradients

significant change in the guidance ratio.) In terms of the
absolute value of the guidance ratio, there is a fairly good
match for each steepness of gradient. In the model, response
varies close to linearly with gradient steepness, and this
remains robustly true as the basic parameters are varied: these
simply change the slope of the line (data not shown). The
model curve shown therefore represents roughly the best linear
approximation to the experimental data. Fig. 3B used exactly
the same model parameters and shows a good match in the
overall shape of the curve, particularly in the width of the peak,
for guidance as a function of concentration for a fixed gradient
steepness. [In the experimental data, the average guidance
ratios for the 0.2% gradient/1 nM condition were slightly
different between the steepness and concentration curves, as
the two series of experiments were done at different times. Fig.
3A,B plot both the data as originally presented in Rosoff et al.
(Rosoff et al., 2004), and the data obtained if all of the explants
from the 0.2% gradient/1 nM condition in the two series of
experiments are averaged together.] Note that perfect
adaptation to the gradient signal would imply that this curve
be flat, rather than peaked at an optimal concentration. The
equations of the model are expressed relative to KD, and thus

to plot model results on an absolute concentration scale
requires a specific value for KD to be chosen. This choice shifts
the model curve in Fig. 3B to the left or the right, relative to
the absolute concentration scale, without changing its shape.
We found that assuming KD=3 nM gave the best match with
the experimental curve, which offered further support for the
claim in Rosoff et al. (Rosoff et al., 2004) that the KD
underlying guidance in that system is in the range 1-10 nM.
The fact that the falloff in sensitivity away from KD is
accurately described by the computational model is a strong
indication that the limitation on gradient sensing in real growth
cones is due to stochastic receptor binding.

The computational model allows two particular issues to be
addressed regarding the experimental data. First, the guidance
ratio does not take into account overlap pixels, i.e. pixels in the
image where two neurites cross, which should in principle be
counted twice. It is impossible to reliably identify these in the
experimental data. However, in the simulations the actual
trajectory of each neurite is precisely known, allowing overlap
pixels to be double-counted if desired. We recalculated the
guidance ratio with double counting, and found a small
increase of about 20% that was consistent across gradient
conditions (data not shown), owing to the fact that most
double-pixels will be on the up-gradient side of the explant
where there are more neurites. We thus conclude that, although
this effect probably slightly reduces the guidance ratio values
observed experimentally, it does not have an important impact
on the overall shape of the response curves. None of the other
results we report in this paper used double counting.

Secondly, the model can shed light on the relative
importance of trophic versus tropic effects on explant
asymmetry in NGF gradients. Could it be that the higher
concentration of NGF on the up-gradient side of the explant
simply promotes more growth on that side, causing a positive
guidance ratio without actual guidance? Although this was
discussed in Rosoff et al. (Rosoff et al., 2004), the model
allows this question to be addressed more quantitatively.
Explants were simulated with neurite growth cones that
responded to the average concentration, as determined from the
receptor binding, but were insensitive to variations in binding
across their spatial extent. Neurite growth rate was now
assumed to vary linearly with absolute concentration. We used
the largest rate of change of outgrowth with concentration
measured experimentally by Rosoff et al. (Rosoff et al., 2004),
which occurred in the range 1 nM-3 nM. To maximize the
possibility of seeing an effect, we simulated the steepest
gradients investigated experimentally (0.4% per 10 
m),
allowed 100% of simulated neurites to be responsive to the
gradient, and took the absolute concentration to be KD for
maximum sensitivity. We found a guidance ratio of
–0.00097±0.0133, showing that no significant guidance effect
was induced by differential growth. The general point is that
total outgrowth does not vary with concentration fast enough
in the data of Rosoff et al. (Rosoff et al., 2004) to produce the
observed asymmetry in the explants, given that the total change
in concentration across an explant in these experiments is
small.

In general, the response depends on both gradient steepness
and absolute concentration. The experimental data of Rosoff et
al. (Rosoff et al., 2004) presents only two one-dimensional cuts
through a two-dimensional surface of growth cone response,
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one along the steepness axis and one along the concentration
axis. Having tuned the parameters of our model to match the
data along these cuts as above, we then simulated the shape of
the entire two-dimensional surface (Fig. 4). The most notable
prediction is that the peak of response becomes broader as
the gradient steepness is increased. When quantitative
measurements of the actual concentration profiles of putative
guidance molecules in vivo are available, the response surface
represented in Fig. 4 can act as a guide to the feasibility of
these gradients for actually guiding axons during development.
This surface can also be used to predict the gradients required
to promote the guided regrowth of axons in regeneration
experiments.

Discussion
We have presented a computational model of gradient
detection by growth cones that can reproduce the quantitative
properties of the long-term response of real axons to
gradients, as recently characterized by Rosoff et al. (Rosoff
et al., 2004). The model shows that the bell-shaped response
curve as a function of absolute concentration is consistent
with the noise inevitably introduced by the stochastic nature
of receptor binding. The gradient detection mechanism of the
model does not include adaptation, at least at the level of the
immediate effects of receptor binding, which is in contrast to
models of bacterial chemotaxis, such as those of Barkai and
Leibler (Barkai and Leibler, 1997) and Bray et al. (Bray et
al., 1998).

It is clear from results using the pipette assay (e.g. Ming et
al., 2002) that desensitization and resensitization of growth
cones does occur. Although the results we have presented here
and in Rosoff et al. (Rosoff et al., 2004) do not directly address
these desensitization/resensitization processes, they provide
evidence that such processes may not be implementing
adaptation in the sense of a continual adjustment of the
baseline against which further increases in concentration
are compared (Bray, 2001). Desensitization/resensitization
probably occur on a more rapid timescale than that over which
growth cones experience significant concentration changes due
to gradients in vivo (Piper et al., 2005), and growth cones

probably do not often experience sudden changes in
concentration over their entire surface in vivo. Another study
sometimes cited in support of growth cone adaptation is
Rosentreter et al. (Rosentreter et al., 1998). This examined the
response of retinal ganglion cells to gradients of tectal cell
membrane density, and the authors argue that temporal retinal
axons grew up a fixed increment of concentration, independent
of both gradient steepness and starting concentration. The latter
result suggests that retinal growth cones may ‘adapt’ in the
sense of terminating their growth once they encounter a certain
increase in ligand concentration relative to the concentration at
which they first encountered the ligand. However, this is
adaptation in a different sense to that discussed in this paper.
Rosentreter et al. (Rosentreter et al., 1998) did not address
changes in the ability of growth cones to detect gradients as a
function of concentration, as we have done here.

We find that response to a gradient is maximized when
receptor binding statistics are pooled spatially over a distance
of about one-third of the extent of the growth cone, and that
temporal averaging of binding statistics on a timescale of the
order of 3 minutes is required to match the sensitivity observed
experimentally. The notion of there being an optimal �s is one
that should apply in any system performing chemotaxis by
comparing concentrations across its spatial extent. However, as
far as we are aware this is the first time attention has been
brought to this phenomenon. A rough calculation gives insight
into the optimal value for �s as follows:

Consider a one-dimensional sensing device that is a line split
up into n equal compartments, each containing about the same
number of receptors. Imagine this device is attempting to sense
a gradient with steepness m per compartment, i.e. a total
concentration change across the device of nm. Assume receptor
binding is pooled over k compartments in from each end of the
sensing device. The total concentration change between the
midpoints of these two pools is now only (n–k)m. Conversely,
the error in a concentration measurement within each of these
pools has now been reduced by a factor of 1/�–

k (Berg and
Purcell, 1977). What is the optimal number of compartments
over which to average to minimize the steepness of the gradient
that can be sensed? Following Berg and Purcell (Berg and
Purcell, 1977), threshold detection of the gradient occurs when:

where �bin is the uncertainty in the concentration measurement
for one bin. This can be rewritten as:

To make m as small as possible with respect to k, we
differentiate, which gives k=n/3.

The intuitive idea is that pooling binding statistics over a
spatial region increases the signal-to-noise ratio for the
concentration measurement, but decreases the spatial
specificity of the measurement. These two competing effects
trade off to give the optimal pooling range of one-third of the
extent of the sensing device. Although this argument is rough,

m =
(n–k)

.
k�

2�bin�

=
bi(t) = b(t)e–(�i–�j)2/2�2

s .�
j
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Fig. 4. The complete two-dimensional sensitivity surface for the
model. Note that the peak along the concentration axis becomes
higher and broader at the higher values of gradient steepness.
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it illustrates analytically the plausibility of an optimal spatial
scale for the pooling of receptor statistics.

A number of theoretical models have attempted to address
the principles involved in growth cone movement (reviewed by
Goodhill and Urbach, 2003). For the case of no external ligand
gradient, careful quantitative analyses have been performed of
axonal trajectories (e.g. Katz et al., 1984; Katz, 1985) and
cytoskeletal dynamics including filopodia (Buettner, 1995;
Odde and Buettner, 1998), and models have been proposed to
capture these general properties (Katz and Lasek, 1985; Li et
al., 1994; Hely and Willshaw, 1998). Although models of the
behavior of axons in the presence of external gradients exist
(Gierer, 1987; Robert and Sweeney, 1997; Hentschel and Van
Ooyen, 1999; Goodhill and Urbach, 1999; Goodhill et al.,
2004), it has been hard, until now, to compare these
quantitatively with experimental data, because suitably
controlled measurements have not been available. In particular,
the two principal methods used until recently for establishing
diffusible gradients in vitro (reviewed by Guan and Rao, 2003)
are limited in this regard. In the pipette assay (e.g. Zheng et al.,
1994; Nishiyama et al., 2003) a defined gradient exists, but the
response measured is only whether the growth cone turns over
a short period of time, rather than a complete trajectory. In the
3D collagen-gel assay (e.g. Lumsden and Davies, 1983;
Charron et al., 2003), the gradient present is not known, and is
probably not stable over time (Goodhill, 1997; Goodhill, 1998).
The assay introduced by Rosoff et al. (Rosoff et al., 2004) has
alleviated this problem, and allows the precise quantitative
comparisons with theoretical results of the present paper. The
model presented here is related to the model of axonal gradient
sensing proposed by Goodhill et al. (Goodhill et al., 2004). In
that model, growth cone filopodia were explicitly represented,
and guidance was achieved by the preferential generation of
filopodia on the up-gradient side (determined as here by noisy
receptor-binding measurements) of the growth cone. The
growth cone then turned towards the average direction of the
filopodia. A comparison of the predictions of that model with
the data of Rosoff et al. (Rosoff et al., 2004) reveals an
insufficient sensitivity to small gradients (data not shown). In
addition to a lack of spatial and temporal averaging, the
unavoidably probabilistic nature of filopodia generation in the
model contributes a source of noise that acts as a fundamental
limitation on sensitivity. The present model is somewhat more
abstract, as it does not represent filopodia explicitly.

How might spatial and temporal averaging be implemented
biologically? A simple interpretation of spatial pooling of
receptor binding statistics is that each receptor-binding event
initiates a small release of a downstream signaling molecule,
which then spreads out by diffusion so that its effects are
combined with release from nearby receptor binding. However,
in our model this would require the signaling molecules to
diffuse a distance of 3�s�0.15�	�5 
m�2 
m in about
3�t�3 minutes, which gives a diffusion constant of the order
10–10 cm2/second. This seems too small for a freely diffusing
molecule in the cytosol, but is plausible for diffusion of
molecules in the membrane (Goodhill, 1998; Goodhill and
Urbach, 1999). An alternative explanation is therefore that the
spatial spread of the effects of receptor binding are mediated
through a chain of intermediate signaling components, some
of which may be bound to the membrane or cytoskeletal
components so that they move and react with each other

relatively slowly. This fits with the picture emerging from
experimental data on signal transduction inside growth cones
(reviewed by Song and Poo, 2001; Guan and Rao, 2003). A
simple interpretation of the duration of temporal averaging is
that it corresponds with the decay time of one component of
the transduction pathway. However, as for spatial averaging, a
more likely possibility is that it is the net effect of several
different components that provide inertia to the system.

The present computational results show that adaptation
mechanisms are not required to reproduce the most quantitative
data currently available on long-term axon guidance by
gradients. If growth cones do not adapt, why might they be
different from, for instance, bacteria in this regard? One
possibility is that they simply do not require adaptation.
Current data suggest that single gradients only guide axons for
a maximum of about 1 mm in the case of diffusible factors, or
about 1 cm in case of substrate bound factors (such as ephrins
in the tectum). These distances are consistent with a response
over only about 2 to 3 orders of magnitude of absolute
concentration (Goodhill and Baier, 1998; Goodhill, 1998;
Goodhill and Urbach, 1999), which as we have shown here can
be achieved without adaptation. Axonal trajectories tend to be
broken up into numerous short segments involving
intermediate targets (Tessier-Lavigne and Goodman, 1996). In
the highly complex environment of the developing nervous
system this may be a more robust strategy than relying on
single gradients extended over long distances, and might
also provide more combinatorial possibilities for sorting
subpopulations of axons (Goodhill, 2003). Although adaptive
mechanisms are common in biology, they may have only
evolved in cells undergoing chemotaxis when there was a
pressing need for guidance over long distances by single
gradients.
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