
Optimal photons for quantum-information processing

Peter P. Rohde* and Timothy C. Ralph
Department of Physics, Centre for Quantum Computer Technology, University of Queensland, Brisbane QLD 4072, Australia

Michael A. Nielsen
Department of Physics, University of Queensland, Brisbane QLD 4072, Australia

�Received 19 May 2005; published 28 November 2005�

Photonic quantum-information processing schemes, such as linear optics quantum computing, and other
experiments relying on single-photon interference, inherently require complete photon indistinguishability to
enable the desired photonic interactions to take place. Mode-mismatch is the dominant cause of photon
distinguishability in optical circuits. Here we study the effects of photon wave-packet shape on tolerance
against the effects of mode mismatch in linear optical circuits, and show that Gaussian distributed photons with
large bandwidth are optimal. The result is general and holds for arbitrary linear optical circuits, including ones
which allow for postselection and classical feed forward. Our findings indicate that some single photon
sources, frequently cited for their potential application to quantum-information processing, may in fact be
suboptimal for such applications.
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I. INTRODUCTION

The interference of single photons plays a central role in
linear optics quantum computing �1� and many other quan-
tum optics experiments. One of the major obstacles facing
experimentalists is mode mismatch, whereby photon indis-
tinguishability is compromised within a circuit, resulting in
the loss of quantum gate fidelity. The effects of input distin-
guishability, and, more generally, mode mismatch, in linear
optical circuits has been studied in a number of situations
�2–5�.

The tolerance of optical circuits against the effects of
mode mismatch is highly dependent upon the shape of the
interacting photons’ wave-packets. In this paper we study
this effect and derive conditions which maximize the toler-
ance of optical circuits against the effects of mode mismatch.
We begin by considering the most trivial case of two photons
interacting on a beam splitter. We then generalize our find-
ings and show that for arbitrary linear optical circuits, in-
cluding ones which incorporate postselection and classical
feed forward, tolerance against the effects of mode mismatch
is maximized when utilizing Gaussian shaped photons,
which are as broad as possible in the degrees of freedom in
which mode mismatch is introduced.

Understanding the influence the wave-packet shape has
on the effects of mode mismatch is important from a practi-
cal perspective, where experimentalists must choose the
most appropriate photon engineering techniques. We provide
a discussion of such techniques, in the context of our find-
ings, in Sec. IV. Our results indicate that some single photon
sources which are frequently cited as potential candidates for
quantum-information processing applications �4,6–9� may in
fact be suboptimal on the basis of their intolerance against
the effects of mode mismatch.

II. PROOF THAT GAUSSIAN IS OPTIMAL FOR TWO
PHOTONS INTERACTING ON A BEAM SPLITTER

We begin by considering the most basic linear optics net-
work: two photon interference on a beam splitter. A beam
splitter with reflectivity � is described by the Heisenberg
equations of motion

âout = ��â + �1 − �b̂ ,

b̂out = ��b̂ − �1 − �â , �1�

where we assume the phase-asymmetric beam splitter con-

vention. â and b̂ are the usual photon annihilation operators
for the two spatial modes.

If we consider an �=0.5 beam splitter with a single pho-
ton incident at each input �i.e., ��in�= �1�a�1�b�, the output
state it given by

��out� =
1
�2

��2�a�0�b − �0�a�2�b� . �2�

Thus we see complete suppression of single photon terms as
a result of quantum interference.

Next we consider the nonideal case, where mode mis-
match is present. We model mode mismatch in the same
manner described in Ref. �5�. First we associate a wave func-
tion ��x�, with input photons, where x is some photonic de-
gree of freedom. Note that modeling mode mismatch in a
single degree of freedom is sufficient to characterize arbi-
trary mode-matching effects due to the inherent indistin-
guishability of the effects of mode mismatch in different de-
grees of freedom. Thus, photons are represented as*Electronic address: rohde@physics.uq.edu.au
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��photon� = �
−�

�

��x�â†�x�dx�0� , �3�

where â†�x� is the photonic creation operator at the infinitesi-
mal point x. Mode mismatch between photons of this form is
represented by displacing the photons’ wave functions. This
has the effect of transforming the wave function according to
��x�→��x−��, where � is the displacement parameter.

If we input a photon into each input of an �=0.5 beam
splitter, where there is a relative displacement between the
photons, we no longer observe complete suppression of the
single photon terms as before. Instead the probability of
measuring a coincidence between the outputs �i.e., a single
photon at each output� is given by

	N̂aN̂b� =
1

2
−

1

2
�−�

�

��x�*��x − ��dt
2

. �4�

For a derivation see Ref. �2�. This expression has the prop-

erty that 0� 	N̂aN̂b��0.5, with 	N̂aN̂b�=0 if and only if �
=0. This is completely equivalent to the effect observed by
Hong, Ou, and Mandel �HOM� �10�. The vanishing of

	N̂aN̂b� at �=0 is widely referred to as the “HOM dip.”

The behavior of 	N̂aN̂b� for nonzero � is highly dependent
on the form of ��x�. We are therefore motivated to ask what

form of ��x� minimizes the effect of � on 	N̂aN̂b�, i.e., which
maximizes the system’s tolerance against the effects of mode
mismatch.

We assume that mode mismatch is some unknown small
deviation from the ideal case. This assumption is justified,
since if the displacement parameter were known and large it
could be corrected for.

We ask what form of ��x� minimizes the curvature of the

function 	N̂aN̂b� against �? Thus we aim to minimize the
function

S = 
 �2

��2

�=0

	N̂aN̂b� � − �
−�

�

��x�*���x�dx �5�

subject to the normalization constraint

�
−�

�

���x��2dx = 1. �6�

This optimization has a trivial solution. Namely, if we
choose any form for ��x� and let its width approach infinity,
the function S will exhibit no dependence on �. Thus we can
immediately establish the following criteria for optimal pho-
ton engineering: photon wave functions should be as broad
as possible in the degree of freedom in which mode mis-
match is introduced. For example, in the presence of tempo-
ral mode mismatch we should make photons as temporally
broad as possible. We note that this leads to a trade-off be-
tween temporal mode mismatch and clock-speed, the longer
photons are, the slower a circuit can be operated. Similarly,
there are limitations in how broad photons can be in other
degrees of freedom, for example spatially. This result is very
intuitive, since we expect that the closer a wave function is

to being invariant under translations �i.e., broader�, the more
stable circuit operation will be against such translations.

Next we impose the additional constraint that ��x� must
have a fixed variance,

�
−�

�

x2���x��2dx = �x2. �7�

We have assumed the mean, �−�
� x���x��2, vanishes. This is

allowed because our analysis is invariant under global trans-
lations in the x coordinate. Fixing the variance allows us to
avoid the trivial solution, and also gives us a means by which
to compare different functions. Thus, the optimizing function
��x� corresponds to the function, which, for a given band-
width, maximizes tolerance against the effects of mode mis-
match.

Figure 1 illustrates the behavior of 	N̂aN̂b� against � for
Lorentzian, double-sided Lorentzian, and Gaussian
wave-functions,1 where �x2=1. It is immediately obvious
from Fig. 1 that the wave-packet shape plays a critical role in
tolerance against the effects of mode mismatch. Most nota-
bly, for Lorentzian distributed photons, which are character-
ized by a discontinuity, the coincidence rate increases far
more rapidly than either the Gaussian or double-sided
Lorentzian cases, both of which are smooth functions.

We can reformulate the optimization problem in a more
familiar quantum mechanical description as

S � 	��p̂2��� �8�

subject to the constraints

	���� = 1 �9�

and

1Lorenzian: ��x�=�42 /	2�1/ �1+�2ix��; double-sided Lorentzian:
��x�=�42 /4	2�2/ �1+2x2��; Gaussian: ��x�=�42 /	e−x2

.

FIG. 1. Hong-Ou-Mandel dip for Gaussian �solid�, Lorentzian
�long dash�, and double-sided Lorentzian �short dash� wave func-
tions, where �x2=1.

ROHDE, RALPH, AND NIELSEN PHYSICAL REVIEW A 72, 052332 �2005�

052332-2



	��x̂2��� = �x2, �10�

where x̂ and p̂ can be considered the usual position and mo-
mentum operators �but could equally correspond to any Fou-
rier pair�. The position-momentum Heisenberg uncertainty
relation is given by

	�x̂2�	�p̂2� 

�2

4
. �11�

Upon applying the constraint 	�x̂2�= 	x̂2�=�x2, this reduces
to

	�p̂2� 

�2

4�x2 . �12�

It is known that we obtain equality for Gaussian ��x�, i.e.,
a Gaussian state is a minimum uncertainty state �11�. How-
ever, 	�p̂2�= 	p̂2��S. Thus, for Gaussian ��x�, S is mini-
mized, as required.

III. GENERAL PROOF FOR AN ARBITRARY LINEAR
OPTICS NETWORK

We now consider an arbitrary linear optics network of the
form shown in Fig. 2. The input state, according to this
model, is of the form

��in� = �
−�

�

��x�â1
†�x�dx�

−�

�

��x�â2
†�x�dx ¯

� �
−�

�

��x�ân
†�x�dx�0�

= �
j=1

n �
−�

�

��x�â j
†�x�dx�0� , �13�

where âi
†�x� are the photonic creation operators of the ith

input. Circuits where inputs contain higher photon number
terms are allowed for in this model by assuming a suitable
beam splitter network to be inside the box, followed by ap-
propriate postselection.

If we allow Û to be an arbitrary beam splitter network
acting on the input state, the output state will be of the form

��out� = 

i1,i2,. . .,in=1

n+m


i1,i2,. . .,in�
j=1

n �
−�

�

��x�âij

†�x�dx�0� �14�

which is simply a sum of paths of all possible routes the
input photons �j� could take to reach all possible output con-
figurations �i1 , i2 , . . . , ij�. The complex coefficients 
 are the
amplitudes of particular paths through the circuit. These pa-
rameters are a function of the circuit and completely charac-
terize the output state. The 
 are obtained by tracing along
the paths from inputs to outputs. Upon reflection from or
transmission through a beam splitter, the respective param-
eter gains a factor equal to the beam splitter’s reflectivity or
transmissivity, respectively. Upon a phase change the param-
eter gains a complex rotation factor.

Postselection is accommodated for through suitable ad-
justment of the 
 parameters and discarding the degrees of
freedom associated with the measured modes. Classical feed
forward is accommodated for by recognizing that a circuit
with feed forward can be broken down into multiple blocks
of the form shown in Fig. 2, where the 
 parameters in later
blocks are determined by measurement outcomes from ear-
lier blocks.

We model mode mismatch by introducing displacements
into photon wave packets as they travel between different
inputs and outputs. We introduce the parameters �k,l, which
represent the cumulative displacement introduced between
the kth input and lth output, shown in Fig. 3. Thus, when a
photon travels from the kth input to the lth output, its wave
function undergoes the transformation ��x�→��x−�k,l�. We
have assumed that input photons are all initially indistin-
guishable. There is no loss of generality in making this as-
sumption since we can take the displacement parameters de-
scribing input distinguishability to be implicitly incorporated
into the box.

The general form of the output state in the presence of
mode mismatch is given by

��out� � = 

i1,i2,. . .,in=1

n+m


i1,i2,. . .,in�
j=1

n �
−�

�

��x − � j,ij
�âij

†�x�dx�0� .

�15�

We define the fidelity as the overlap between the ideal and
nonideal output states,

FIG. 2. An arbitrary linear optics network consisting of n single
photon inputs, all characterized by the wave function ��x�, and m
vacuum inputs. The detectors following some of the outputs facili-
tate postselection.

FIG. 3. �k,l represents the displacement introduced into the pho-
ton wave packet when it travels from the kth input to the lth output.
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F = �	�out��out� ��2

= 
	0�� 

i1,i2,. . .,in=1

n+m


i1,i2,. . .,in
* �

j=1

n �
−�

�

��x�*âij
�x�dx�

�� 

i1,i2,. . .,in=1

n+m


i1,i2,. . .,in�
j=1

n �
−�

�

��x − � j,ij
�âij

†�x�dx��0�
2

= 
 

i1,i2,. . .,in=1

n+m



i1�,i2�,. . .,in�=1

n+m

�i1,i2,. . .,in
* �i1�,i2�,. . .,in��

j=1

n �
−�

�

��x�*��x

− �ij,ij�
�dx
2

, �16�

where the parameters � have been introduced to allow for
the different combinations in which terms from the left-hand
product can act on terms from the right-hand product.

We apply the same criteria as for the HOM case, and
attempt to find the form of ��x� such that the curvature of the
fidelity function is minimized, subject to the same normal-
ization and variance constraints as before. Thus, we wish to
minimize ��2F /��m,n

2 ��m,n=0 for any given �m ,n�. The result is
of the form


 �2F

��m,n
2 


�m,n=0

� �
−�

�

��x�*���x�dx �17�

which is the same minimization as previously stated. The
proportionality factor is circuit dependent. Therefore, for an
arbitrary linear optics network, the fidelity of the output state
will be most resilient against the effects of mode mismatch
when input photons have a Gaussian profile in the degree of
freedom in which the mode mismatch is introduced.

IV. DISCUSSION

We now discuss the potential of various photon sources
for quantum-information processing in light of our results.
For the most part we assume cavity-based sources producing
beams with Gaussian spatial profiles and so concentrate on
their temporal profiles, although we note that this is not nec-
essarily the case for all experimental examples cited.

A. Intracavity spontaneous photon emission

When a “fast” single photon emitter is placed in a “slow”
optical cavity we observe photons with an approximately
Lorentzian frequency wave function,

���� =
�

	

1

� + i�
, �18�

where � is frequency and � is the cavity bandwidth. Here we
are assuming that ���, where � is the spontaneous emission
lifetime of the emitter. Examples of such sources include
quantum dot �6,7� and fluorescence �8,9� based sources.
Typically such sources exhibit some inhomogenous broaden-
ing of the photon emission process, referred to as time jitter.
This results in a mixing effect whereby photons are charac-

terized by a mixture of temporally displaced Lorentzian
wave functions. To minimize this effect the time uncertainty
of photon emission must be kept small compared to the de-
cay time of the cavity. In the presence of time jitter the state
can be expressed in the form

�̂ = �
−�

�

f����
−�

� �
−�

�

ei��−���������*�������	���d�d��d� ,

�19�

where f��� is determined by the time-jitter and characterizes
the mixture.

The effect of time-jitter on the Knill controlled-sign gate
�12� has been examined by Kiraz et al. �4�. It was found that
to achieve gate fidelity of 99%, time-jitter must be kept be-
low 0.3% of the inverse bandwidth. This is in stark contrast
to an analysis of the simplified Knill, Laflamme, and Milburn
controlled NOT �KLM CNOT� gate �13� indicating that, for
Gaussian photons, gate fidelity of 99% requires temporal
synchronization to within 10% of the inverse bandwidth �2�.
This relative intolerance against time jitter can be attributed
to the temporal discontinuity inherent in the Lorenztian func-
tion, and is the same reason we observe rapid falloff in the
HOM dip for the Lorentzian case in Fig. 1.

We expect that photon sources based on spontaneous
emission, and other sources which produce Lorentzian pho-
tons, will not be well suited to quantum-information process-
ing applications, unless suitable filtering or other shaping
techniques are first applied. Most importantly, such tech-
niques would have to eliminate the temporal discontinuity
inherent in the Lorentzian, which is the primary culprit in the
loss of gate fidelity in the presence of temporal mode mis-
match. In their favor, however, such sources allow produc-
tion of single photons on demand, which is very desirable for
quantum-information processing applications.

B. Cavity nondegenerate parametric down-conversion

Nondegenerate parametric down-conversion is widely
used in quantum optics experiments for the production of
heralded single photons. The down-conversion process
probabilistically produces entangled photon pairs in distinct
spatial modes. The output from a down-converter in an op-
tical cavity can be expressed in the form

��out� = �0�a�0�b + �
−�

� 2��

�2 + �2 ��0�1−��a�1�0−��b

+ �1�0−��a�0�1−��b�d� , �20�

where a and b denote the spatial modes, � is related to the
conversion efficiency of the down-conversion process, and �
to the bandwidth. It has been assumed that conversion effi-
ciency is very weak, such that ���, which justifies neglect-
ing higher-order photon number terms. The vacuum terms
indicate that the down-conversion process does not always
produce photon pairs. In fact, down-conversion fails the vast
majority of the time.

If conditioning upon detection of a photon in one of the
modes is performed, then upon success of the conditioning
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process there is high probability that a single photon is
present in the other mode. The wave packets of photons pro-
duced through conditioned down-conversion in a cavity are
characterized by a double-sided Lorentzian wave function,

���� =� �

2	�2

2��

�2 + �2 , �21�

where it has been assumed that the intrinsic response time of
the conditioning detector �det, obeys 1/�det��. The spectral
distribution of down-conversion sources �3,14–17� and cav-
ity down-conversion sources �18,19� has been extensively
studied.

By applying filtering to the conditioned mode, one can
perform nonlocal pulse shaping �20,21�. An example of such
a scheme is shown in Fig. 4. It has been shown by Ou �15�
and Aichele et al. �20� that to obtain high purity of the post-
selected state, narrow band filtering must be applied to the
conditioned mode. Nonlocal pulse shaping is not limited to
the temporal domain. In principle, shaping can be performed
in any degree of freedom in which the photon pair are en-
tangled.

On the one hand, nondegenerate parametric down-
conversion is quite suitable for quantum-information pro-
cessing applications due to its “raw” symmetric profile and
the ability for nonlocal pulse shaping techniques to allow for
approximately Gaussian �i.e., optimal� photons to be engi-
neered. These properties have made spontaneous down-

conversion the system of choice for in-principle demonstra-
tions in which efficiency is not an issue. However, although
photons are heralded, scalability would require good quan-
tum optical memories. While in-principle demonstrations
have been performed �22�, efficiencies are currently too low
to be practical.

C. Cavity QED pump pulse manipulation

Perhaps the best solution is to combine a coherent excita-
tion with single emitter technology. This can be achieved by
using a Raman process to pump a single emitter in a high-Q
cavity.

Keller et al. �23� demonstrated that, through manipulation
of the pump pulse, the temporal wave function of photons
emitted from Raman pumped single ions trapped in a cavity
can be readily manipulated. Experimental results using a
single trapped 40Ca+ ion, demonstrated the production of
Gaussian, rectangular, and double-peaked pulse formations.

V. CONCLUSION

We considered the influence of the photon wave-packet
shape on the effects of mode mismatch in linear optical cir-
cuits, from which we established two criteria which optimize
circuit tolerance against such effects. Firstly, photons should
be as broad as possible in the degrees of freedom in which
mode mismatch is likely to be introduced. Secondly, for a
given bandwidth, photons with a Gaussian profile are opti-
mal. Our findings are completely general and hold for arbi-
trary linear optics circuits �i.e., beam splitter networks�. This
includes ones which incorporate postselection and classical
feed forward, making the findings applicable to linear optics
quantum computing circuits.

We considered various photon production techniques, dis-
cussing their advantages and limitations in producing pho-
tons suitable for quantum-information processing applica-
tions. Of these, some are inherently more suitable than
others, within the context of our established criteria.
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