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For each quantum superalgebra Uq[osp(m|n)] with m>2, an infinite family of
Casimir invariants is constructed. This is achieved by using an explicit form for the
Lax operator. The eigenvalue of each Casimir invariant on an arbitrary irreducible
highest weight module is also calculated. © 2005 American Institute of Physics.
[DOLI: 10.1063/1.2137712]

I. INTRODUCTION

Representations of quantum superalgebras are known to provide solutions to the Yang-Baxter
equation and represent the symmetries that underly supersymmetric exactly solvable (or inte-
grable) models. Many such examples have arisen in the context of modelling systems of strongly
correlated electrons.' More recently, the properties of solvability and supersymmetry have been
applied to other areas, such as the solution of the Kondo model,’ integrable superconformal field
the:ory7 and disordered systems.8 Developing the representation theory of the quantum superalge-
bras is a useful step towards the complete understanding of such models. However, in many
respects the representation theory of quantum superalgebras is not a straightforward generalization
of the quantum algebra case, principally because not all representations of quantum superalgebras
are unitary.9 This leads, for example, to the existence of indecomposable representations not
arising in the quantum algebra case, which generally make the analysis of supersymmetric models
problematic (e.g., see Ref. 8).

In this paper we construct the Casimir invariants (central elements) of quantized orthosym-
plectic superalgebras. Our method of construction follows from the general results of Ref. 10 and
the explicit form of the Lax operator obtained in Ref. 11. A fundamental problem is to determine
the eigenvalues of the Casimir invariants when acting on an arbitrary finite-dimensional irreduc-
ible module. To date, the eigenvalues have only been calculated for the type I quantum
superalgebras,'*'* while the results for U ,Losp(1]n)] follow from an isomorphism derived in Ref.
14. In this paper we perform the calculations for the remaining nonexceptional quantum superal-
gebras, namely Uq[osp(m|n)] for m>2. The procedure we use for calculating the eigenvalues of
the Casimir invariants when acting on any irreducible module is based on the early work by
Perelomov and Popovls’16 and Nwachuku and Rashid.'” In doing so we follow the method used in
Refs. 18 and 19 for the classical general and orthosymplectic superalgebras, respectively, which
was adapted in Ref. 13 to cover U,[gl(m|n)]. Although the concepts are much the same as in those
cases, the combination of the g-deformation and the more complex root system of U, [osp(m|n)]
makes the calculations in this paper more technically challenging.

In the following section we introduce our notation for U [osp(m |n)] and state the Lax opera-
tor. In Sec. III we develop the formulas for the Casimir invariants of Uq[osp(m|n)]. The bulk of
the calculations are in Sec. IV where the eigenvalues of the Casimir invariants are derived in
detail.

“Electronic mail: dancer@maths.uq.edu.au
YElectronic mail: mdg @maths.uq.edu.au
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IIl. THE QUANTIZED ORTHOSYMPLECTIC SUPERALGEBRA U osp(m|n)]

The quantum superalgebra U q[osp(m|n)] is a g-deformation of the classical orthosymplectic
superalgebra. A brief explanation of U q[osp(m|n)] is given below, with a more thorough intro-
duction to osp(m|n) and the g-deformation to be found in Ref. 11.

First we need to define the notation. The grading of a is denoted by [a], where

0, a=i, 1<is=m,
[a]={ (1)

1, a=p, Ilspu<n.

Throughout this paper we use greek letters u, v, etc., to denote odd indices and italic letters i, j,
etc., for even indices. If the grading is unknown, the usual a,b,c, etc., are used. Which convention
applies will be clear from the context. Throughout the paper we also use the symbols @ and &,
which are given by

_ |m+1-a, [a]=0,
a=
n+l—-a, [a]=1,

and

_ 1, [a]=0,
f“‘{(—l)“, [a]=1.

As a weight system for Uq[osp(m|n)] we take the set {e;, | <i<m}U{d,,1<u<n}, where
gi=—¢; and 6;=-5,. Conveniently, when m=2/+1 this implies &;,;=—&;,;=0. Acting on these
weights, we have the invariant bilinear form defined by

(8i78j)=5;’ (5/.”511):_8(;3 (Siag,u,):()a 1 $l,JSlal <,u,,v<k

When describing an object with unknown grading indexed by a the weight will be described
generically as g,. This should not be assumed to be an even weight.

The even positive roots of Uq[osp(m|n)] are composed entirely of the usual positive roots of
o(m) together with those of sp(n), namely,

6,6, lsp<vsk.

The root system also contains a set of odd positive roots, which are

Sute, lsusk Isism

Throughout this paper we choose to use the following set of simple roots:

Q=& — &1, 1$l<l,

e +ery, m=2[,
a;= _
€, m—2l+1,
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a,=08,~ 8, 1<p<k,

g = 5]( —&5.
Note this choice is only valid for m>2.
In U,[osp(m|n)] the graded commutator is realized by
[A,B]=AB - (- 1)*18lp

and tensor product multiplication is given by

(A® B)(C® D)= (- NEIYAC © BD).

Using these conventions, we have the following:
Definition 2.1: The quantum superalgebra Uq[osp(m|n)] is generated by simple generators
e,>farh, subject to the relations

[ha’eb] = (awab)eb’
[ha’fb] == (aw a’b)fh’

[ha’ hb] = 0’

(¢"~q™")
[ewfs] = %ﬁ,

[ea’ea] = [fmfa] = O for (a(l’ aﬂ) = O’

We remark that Uq[osp(m|n)] has the structure of a quasitriangular Hopf superalgebra. In par-
ticular; there is a linear mapping known as the coproduct, A:U [osp(m|n)]— U, Josp(m|n)]*?,
which is defined on the simple generators by

Ale,) =g @ e, +e,® g,
A(.fa) = q1/2ha ® fa +fa ® q_1/2ha’

A(gE"ha) = g=12ha @ =1/ 2ha,

and extends to arbitrary elements according to the homomorphism property, namely,

A(AB) =A(A)A(B).

There are further defining relations such as the g-Serre relations, but they are not needed in this
paper.

The quasitriangular property guarantees the existence of a universal R-matrix, which provides
a solution to the Yang-Baxter equation. Before elaborating, we need to introduce the graded twist
map.

The graded twist map T:UJosp(m|n)]®*— U [osp(m|n)]®? is given by

T(a ® b) = (- Db @ a).

For convenience, T°A, the twist map composed with the coproduct, is denoted A”. Then a uni-
versal R-matrix, R, is an even, nonsingular element of U, [osp(m|n)]®? satisfying the following
properties:
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TABLE I. The action of the vector representation 7 on the simple genera-
tors of U, [osp(m|n)].

aa W(ea) W(fu) W(hu)
1= i il it n X - X J—
a, I<i<l En-E E -Ey E~E~E[j+Eq
-1 1 i — J— -
m=21 = —F— L _gl-T -1, ol _ =1 _ ol
ar, E[ El—l E1_1 E[ El—1+El_Em_E]
= 1 _ gt I+l 7
a;,m=2l+1 E~E; EF-El Ef—EI’
o 1 1 P ptl ot i
. lsu<k ER +Ef E +E B —Ema-EL+EL

=k kpi=1 i=1 kpp=k X - o
a, B+ DBy ~Ept CUES _poleE -+ B

RA(a)=A"(a)R, Va e Ufosp(mln)],
(ld ® A)R = R13R12,

(A ®id)R =R 3R0s. ()

Here R, represents a copy of R acting on the a and b components, respectively, of U;® U,
® Us, where each U is a copy of the quantum superalgebra U [osp(m|n)]. When a>b the usual
grading term from the twist map is included, so, for example, R,,;=[R"],,, where RT=T(R) is the
opposite universal R-matrix.

The R-matrix is significant because it is a solution to the Yang-Baxter equation, which is
prominent in the study of integrable systems,20

R12R13R23 = 7?'237?'13721}

A superalgebra may contain many different universal R-matrices, but there is always a unique one
belonging to U, osp(m|n)]”® U, osp(m|n)]*, with its opposite R-matrix in U,/osp(m|n)]*
@ U,losp(m|n)]". Here U [osp(m|n)]™ is the Hopf subsuperalgebra generated by the lowering
generators {f,} and Cartan elements {#,}, while U, [osp(m|n)]* is generated by the raising genera-
tors {e,} and the Cartan elements. These particular R-matrices arise out of the Z,-graded version of
Drinfeld’s double construction.?' In this paper we consider the universal R-matrix belonging to
U, Losp(m|n)}-® U [osp(m|n)]"

We also need to define the vector representation for U q[osp(m |n)]. Let End V be the space of
endomorphisms of V, an (m+n)-dimensional vector space. Then the irreducible vector represen-
tation : U [osp(m|n)]—End V acts on the U [osp(m|n)] generators as given in Table I, where Ej,
is the elementary matrix with a 1 in the (a,b) position and zeroes elsewhere.

One quantity that repeatedly arises in calculations for both classical and quantum Lie super-
algebras is p, the graded half-sum of positive roots. In the case of U [osp(m|n)] it is given by

! k
1
p=52(m—2i)s,-+ 2(n—m+2—2,u)5ﬂ.

i=1 u=1

1
2
This satisfies the property (p,a):%(a,a) for all simple roots a.

The Lax operator for U,[osp(m|n)]: Let R be the universal R-matrix of U, [osp(m|n)] and 7
the vector representation. The Lax operator associated with R is given by

R=(m®id)R e (End V) ® U[osp(m|n)].

It has been shown in Ref. 11 that the Lax operator is given by
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h, -1 b h, A
R=DE® ¢+ (qg—q") 2 (- DVE; ® g5y,
a £,<¢y
where the simple operators &, are given by

A 12 12k .
Oii1=—0rs1i=q eq 7, 1<i<lI,

SRS V- SR V) _
Oriy=—07-—1=9 "¢q ", m=2l,
6'”_20, m=21,

A 1A - 1128
O =—q “Opg=eq ", m=2l+1,

A _ A _ 12 1/2h
O-p,;/,+1_0,u+1ﬁ_q e,ﬂ , 1$M<k»

. _ koA __ 12, 102k,
O pekiz1 = (= 1)°q0 ik = q “esq ™",

and the remaining operators can be calculated using the following:
(1) the g-commutation relations,
q(afc,sb)é_baecq1/2hC _ (_ 1)([a]+[b])[c]q—(ac,sa)etq1/2hc&ba =0, g,> €,

where neither e,— . nor g,+ e, equals any ¢,; and
(ii)  the induction relations

&ba = q_(sb’sa)&bc&ca - q—(sc,ac)(_ ])([b]+[6])([a]+[6])&Ca&bc» €p > Ec > €as
where ¢ # b or a.

To define the opposite Lax operator R’=(7®id)R we require the graded conjugation action
+, which is defined on the simple generators by (see Ref. 11)

ej;:fa’ f;=(_ 1)[a]ea’ h2=ha‘

It is consistent with the coproduct and extends naturally to all remaining elements of
U,losp(m|n)], satisfying the following properties:

(6,)" = (= DiellakBD g,
(ab)t = (= DBt 4t
(a®b)=d" ® b,
A(a)’ = A(a').

Then the opposite R-matrix is given by

RI=DE@q%+(q-q") > (- DIE ® 6,4,
a

5b>5a
where

b= (= DINEHDIGT o s
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lil. CASIMIR INVARIANTS OF U fosp(m|n)]

We now use the Lax operator to construct a family of Casimir invariants and then to calculate
their eigenvalues when acting on an irreducible highest weight module. Before constructing the
Casimir invariants, however, we need to define a new object. Let hp be the unique element of the
Cartan subalgebra H satisfying

ah,)=(p,a;), Ve H'.
Then from Ref. 10 we have the following theorem.
Theorem 3.1: Let V be the representation space of 7, an arbitrary finite-dimensional repre-
sentation of Uq[osp(m|n)]. IfT'e(EndV)® Uq[osp(m|n)] satisfies
Ha)l' =Tda), VY ae Ulosp(m|n)], (3)
where d=(m®id)A, then

C=(str®id)(7(¢*"») @ T,

belongs to the center of Uq[osp(m|n)]. Above str denotes the supertrace.
Now choose 7to be the vector representation 7. Recalling that the universal R-matrix satisfies

RA(@)=AT(@)R, Vae Uq[osp(m|n)],

it is clear that

da)R'R=R'Ri(a), Y a e UjJosp(m|n)].
Hence if we set A € (End V) ® Uq[osp(m|n)] to be
_(R'R-1®1)
(g=g7"

bl

the operators A’ will satisfy condition (3) for all non-negative integers I. Thus the operators C,
defined as

C, = (str ® id)(m(¢g*"») @ DA!, 1€ 7",

form a family of Casimir invariants. Here A coincides with the matrix of Jarvis and Green” in the
classical limit ¢ — 1, as do the invariants C;.
Now write the Lax operator R and its opposite R” in the form

R=I1®1+(q-q") 2 Ej@X),

=
Ep=¢€,

RT=I®I+(qg-q") X EioX’.

ep=g,
In terms of the operators G,,, this implies
h
sg—1
1 I a=>b,
q9-9

Xb=
a (— 1)[b]qhga&ba’ &, < Eps

(_ 1)[b]6'baqh8h9 €4 €p.

Writing A as
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b
A= El® AL,
a,b
we obtain

Ab=(1+ 5Z)Xb +(g-q™" E (- 1)([a]+[c‘])([b]+[c])Xch__
£.SE,,8)
This produces a family of Casimir invariants
C = E (- 1)[a]q(2p’8“)A(1)Z,
a

where the operators A(I)S are recursively defined as
A(DZ = (= 1)ladtleDbl+Le] A(l—l)s AL, (4)
c

Note that A corresponds to the matrix A given for the nongraded case in Ref. 23. Following a
line of reasoning similar to that in Ref. 24 it can be shown that when acting on an irreducible
module V(A), A satisfies the following polynomial identity:

ITA-am)n=0,
a=1
where

q(sa,sa+2/\+2p)—C(A0) -1

aa(A) = 1
q9—4

and C(Ay)=(6;,8,+2p)=m—n—1. In the limit ¢— 1 this reduces to the identity given in Ref. 24.

IV. EIGENVALUES OF THE CASIMIR INVARIANTS

Now that we have found a family of Casimir invariants, we wish to calculate their eigenvalues
on a general irreducible finite-dimensional module. Let V(A) be an arbitrary irreducible finite-
dimensional module with highest weight A and highest weight state |A). Define til) to be the
eigenvalue of A(Z)Z on this state, so

AD9AY = DA,

Once we have calculated t(al) we will use this result to find the eigenvalues of the Casimir invari-
ants C,.

To evaluate "

. » note that if &,>¢g, then Al
from Eq. (4) we deduce

b

a

is a raising operator, implying A(])3| A)=0. Thus

tgl)|A) = fél"')fg”IA) : E (- 1)[a]+[b]A(1—1)gAZ|A>

£,<¢gy

=i A+ 2 DIPAEIXG + (g - g HXXIA)
g,<¢gp

- t;l—l)tgl)|A> + E (- 1)[a]+[b]q(A’8”)A(I_I)II;XZ|A>.
£,<¢gp

Now we know that
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Ala(x9) = a(XA'. (5)
This can be used to calculate A(I)Z “|A) for e,<e,. First we need an expression for A(X7). The
R-matrix properties give
(A®DR=R 3R,y = (I ® A)RT=RL,RY.
In terms of Xj, this implies

19101+(qg—q™") > EX® A(XY)

=
E,4¢€p

=<1®1®1+(q—q—‘) > E§®Xg®1)<1®1®1+(q—q—l) > E2®1®Xz)

= =
£,5¢p Ea=8p

=I®I®I+(g-q¢") > EEo(Xi0I+I® X))

=
E,=¢€p

+(g-q")? > (- 1)([a]+[c])([b]+[c])Ela7 ® X5 ® X7,

e =
E4SE,=¢€)

Hence for all ¢,<g,

AXD=Xe@I+10Xi+(qg—q") > (= 1)l ye g xa,

g =
E4E,=¢E)

We also need an expression for m(X}) for e,<¢,;. In Ref. 11 we found the generators for R”
in the vector representation are given by

Gapg"ea=Ejp— (- 1)[a]([a]+[b])faqu(p’ga_sb)Eg, €4 < &p.

From this we deduce that

7(X3) = (- DIES - (- 1)llPlg g g el g, <,

Also, we know

m(X8) = (g-q ) mlg"— D) =(q— g7 (gt EED - 1),

Applying these, we find that if e,<g, then

X9 = (m® DAXY) = (X)) ® [+ (q— g )XY + I+ (g - g m(X}) ® X}
+(g-q ") X (= 1)HDORD 7(x¢) @ X

£,<e.<¢gp

= (= DB - (- D, gy etV ED) @ gl /o HE) o X

E (- 1)([a]+[6])([b]+[6])

£,<e.<¢gp

+(g—-q™"

X (= DIIE; = (= DPEg £ g o ED) @ X

Substituting this expression into Eq. (5) and equating the (a,b) entries, we find
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(- 1)[“]A(I)th€a _ é%(_ 1)[a][b]gagbq(Pgsa—sb)A(I)th,;a + q(sb’sb)A“)ﬁXZ

+g-q) X ((=DEAVxe - (- 1)Plelg g glrecer gD xe)

£,<e.<¢gp

= (= DlelgheA® _ &= 1)lellg g gPeaen)ghe /0D 1 (= 1)laHPlgleasn) xga D

~(g-'8 X (DM q XA,

£,<e.<¢gp

Simplifying gives

(_ 1)[a]+[b]q(€“’8h>XZA(l)Z _ q(&‘hysh)A(l)ZXz
=((- 1)[a] _ é*:_q(p,sa—eb))qhea(A(l)Z _A(Z)II;)

+g-q) 2 (=)= Gglreee)alexa

£,<€e.<¢gp

+(g-g N X (- DPldg g gloecenxia O,

£,<e.<¢gp

Remembering that ,<g,, we apply this to the highest weight state |A) to obtain

_ q(sb’sh)Aa)';XﬂA) — q(A,ea)((_ 1)[a] _ (5‘5612(9,%))(;21) _ t(bl))|A)

+(g-g") X (=D g alexa|py, (6)

£,€.<¢g

The next step is to calculate A(I)I;XZM) for e,<eg,. It is first convenient to order the indices
according to b>c &g, <eg. With this ordering we say an element a >0 if £,<0, a=0 if &,=0,
and a <0 if g,>0. Using this convention, it is apparent the solution to (6) will be of the form

AV = gAed(= 1)) 3 af (10 - D)|A), )

a>c=b

where a7 is a function of a, b, and c. Now from Eq. (6) we have

(g-q") X (= DaexA)

a>c>b

=—gerAV XNy + (g -g7") X S Heax9|A)

a>c>b
s 1)[‘1]61(/\’50)(1 _ gbi(_ 1)[a]q2(p,sa))([£ll) - tg))|A>
e g Oy Ay

+(g-q") X &g e A Vx| )

a>c>b+1
—(- 1)[a]q(!\,sa)(1 _ 5{?1(_ 1)[a]q2(p,sa))(tfll) _ t(bla)-l)|A>

+(g =g ") (= DrIADE I IAY.

Substituting in the form of the solution given in Eq. (7) produces
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g 2 g (1) = 1)A)

a>d=b

= (gleprrone) — (g — g~ (= 1)[P*1) > af(zbmd(tgl) _ tfll))|A>

a>d=b+1

= (1= 8= DEIZ02) (0 = [ A) + (1 = G- D2 (60 = ) )|A)

+g-q") X &g X ag (1) - 1)|A)

a>c>b a>d=c
— 1 —
~(g-q") 2 &gee) B a1V - DAY (8)
a>c>b+1 a>d=c

Set

@y = Apy(1 = 63(— lelg?pedy.

Then from Eq. (8) we obtain

@y =—q ")

and

@ppery = PL(g o000 = (g = g™ (= DNy i) + 1+ (g = ) Sp1q 2P0 @]
— q—(sb,sb)—(sbﬂ,sbﬂ)(q _ q—l)((_ 1)[b+1] _ Slgb . lq—Z(p,sb))_
To simplify this expression note that g>(-o+1780) = g=(#p2p)~(epr1.2041) in all cases except for [h]=0,
b=1, m=2I, in which case g>#*+17%) = g?¢~(#2p)~(Eb+12+)  However [b]=0, b=I, m=2[ if and
only if 52+—1= 1, and in that case we find @j,;)=0. Hence for all values of b we can write
Ap(pe1) = (g~ q_l)q_Z(p’sb)((_ 1)[b+l]q2(p’€b+l) - 657 1)-
Now that we have found @y, and @), they can be used to calculate the remaining @p,.

From Eq. (8) we observe that if d>b+1 then

@pq= 0 (g o) — (g = ) (= DN+ (g - g7 g0 X g0y,

d=c>b
~(g-g Hger X &g g, 9)
d=c>b+1
Now define 6,, by
1, x<y,
Ory = 0, x=y.
Then Eq. (9) can be rewritten as
pg = g~ e (o) — (g — g7 (= 1)[b+1])c_“(b+1)d
+(g- q_l)f]_(sb’s”)q2(p’€")(abcac(dﬂ)ég = Opr1)e 06(d+1)5?+1)acd’ d>a+1. (10)

Consider a,, for any b>1. Both 6, and 6,.1)p+1) Will equal 0, so
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Qpy = q_(abvsb)(q(sbﬂ’abﬂ) —(q- q—l)(_ 1)[h+1]) a’?bﬂ)d
=q (ep, Sb)q—(€h+1 b+1)a(b Da=q (P»8b+1—€b)5[(b+l)d_
Since
Ag-1)a= (= (g - g HgHPeaea),
we obtain
@ye= (- DM(g - g g Pere), d>b>1.
Substituting this together with our expression for @, into Eq. (10), we find
pq = g~ 0o (g~ Eprro01) — 5%(6] - q_l))a’(bﬂ)d
+(q— ¢ g v (= DG (0,050 = Opery 5 05 T)0)
—(q-q " )g g Cacdeed(sh— &) d>b+1.
But for d>b+1,

Ons 050 = O 1)+ 1) 0+ 1) = 55791}1 - 539131
=q01-8)-801-8)=5-4,
Also, —[(—1)[d](q—q‘1)+q‘(5d’8d)]5§:—q(£d'8d)6§, so Eq. (11) reduces to

@y = (PG = g7 (g = ) B g+ S (g~ g7V D00
— &g - g )P + 87 (g = g gy
= (P25 - g™ g = )@ g+ §g7 (g - g DI

+(g-g g2 FTT- ), d>b+1.

Recall that for »>1 we have
py= (- DNg - g g? e, d>b.
Then when b=I we find
g = (2P0 2057 - g7 (g — g (= 1D — g )g2peaenn)
+q7 (g =g ) (= DMg?Ped — (g — g7 g 2P 8
= (- DMg - g PG - (g - +(g-q7")
+ &g +q (a-q7") 1-(g—q g5,
= (g =g g (= g eed - &)
for all d>b+1. Comparing this with our earlier results for d=b+1 and b >, we have
= (q-q g P (- )P0 - &), Vb=l d>b.

But for <! we know

(1
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Bpg= P g+ (g — g NG HP(ST = 8), d>b+1.

Hence for all b we obtain

d-1 d-2
ap,= (g - q—l)q—Z(p,sb)((_ 1)[d]q2(p,gd) _ E 6f;+ E (SZJ' 1)
c=b c=b

= (g - g g 2P (= Dgeed — ) > p.
Thus for all a>b

AVXGA) =g B el (1) - 1)), (12)

a>c=b

where . is given by

—g (1 - 5‘5(_ )lelg?eea) c=b,

a

ay.= ‘ _
(q—g g PP (= DINGHPed — £)(1 - 8= DIg?P=d), e >b.

A. Constructing the Perelomov-Popov matrix equation

The expression (12) can now be substituted into the equation

tfll)|A> — til_l)tfll)|A> + E (- 1)[a]+[b]q(A,sa)A(1—1)5 Z|A>
£,<¢y
I
Popov matrix introduced in Refs. 15 and [1l6, which was used to calculate the eigenvalues of the
Casimir invariants of various classical Lie algebras.
First recall that

to find a matrix equation for the various #". The matrix factor is an analogue of the Perelomov-

AL =1+ 8)X0+(g—q7") D (= 1)[aHeD@IeDyexd

c=ab
where
" —_{’ e,
X; = q[;]qh .
(= Dq"Gp, 84 < &5,
(= DP16y,q", £4> .
Then

AGAY =2XGA) + (g = ¢ IXEXGIA) = (g = g7 )7 (2(g" — 1) + (¢~ 1D)[A)

o _ -1
(0

q-q"

Hence we obtain
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(qZ(A,sa) _ 1)
0= - A 43 (= 1)lakz] q(A,sa)( ghEC D S e (1D - IEH))>
(C] -q ) b<a b=c<a
2(Ae,) _ 1
— %tfll—l) _ qz(A’S“)E (- 1)[b]q_(£b’sb)(1 _ gé(_ 1)[a]q2(Pssa))(tEll—1) _ t;jl—l))
(g=q7) b<a
Hg=g PN D (= )G (1 = (- D)

c<b<a
X ((- 1)[b]q2(p,8h) _ 51_7_)(t(1—1) _ tg_l)).
Now consider the function 7, defined by
Vo= (= DPlg e — (g — g7 2 (= DINg2Ped((— 1)Plgeer) — &)
c<b
We evaluate this for all b, remembering that C(Ay)=(6;, 8,+2p)=m—-n—1 and
1 k

1 1
p==2(m=2e;+- 2, (n—m+2-2u)d,.
250 2,50

We find
Yy = (_ l)[b]qz(P,Sb)q—C(Ao)

for all values of b. We also consider the function

B.=1=(g=—qg "> v,(1- 8= Dlelg?ped),

b<a

so that

(qZ(A,aa),Ba -1 . . ~
—tle Ut qz(A’ ”)E Yl = é%(— 1)[(1]612(‘0’ “))tg Y

() _
=
¢ (g-q7") b=a

Again, by considering the various cases individually we find

ﬁa — q(sa,2p+sa)—C(AO)

(13)

for any a, regardless of whether m is even or odd. Substituting this result together with that for vy,

into Eq. (13) gives

(£4:2A+2p+e,)-C(Ag) _ 1)

t(z) _ (q
¢ (q - C]_l) b<a

This can be written in the matrix form
l(l) = Ml(l_l),

where M is a lower triangular matrix with entries

0, a<b,
M, =4 (g=g") 7 (gFa? e~ Ch 1) q=p,
q(ZA,sa)—C(AO)((_ 1)[b]q(2p»sb) _ bag), a>b.

Then we have

tfll—1> + q(ZA,su)—C(AO)E (- 1)[b]q(2p,ab)(1 _ 52(_ 1)[a]q(2p,sa))tgl—l)_
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=M1, with V=1 Va,

where M is an analogue of the Perelomov-Popov matrix.

B. Solving the matrix equation

This matrix equation for tg) can now be used to calculate the eigenvalues of C,. Loosely

speaking, the problem reduces to diagonalizing the matrix M. Recall
C,= E (- 1)[”]61(2"’8“)A(1)Z.
Denote the eigenvalue of C; on V(A) as x(C);). Then we have
XA(C) = 2 (= DlelgCreddl = 3 (- Dlelgred(p?) .
a ab

To calculate this we wish to diagonalize M. We assume the eigenvalues of M,

N (q(sa,2A+2p+sa)—C(A()) _ 1)

a

k)

(@=q7"
are distinct. Then we need a matrix N satisfying
(N"'MN) g, = ety
which implies
Xa(C) = 2 (= DG (@) Ny (N )y (14)
a,b,c

Now

(MN)ab = a;}Nah'
Substituting in the values for M, gives
Ay Ny, + ¢ X (= 1DIg0) — SN, = ay Ny (15)
c<a

Since the eigenvalues aﬁ are distinct, this implies
Nah = 0, V a<< b
Set

Py= 2 (= D)lglredn,, (16)

c=a

Then Eq. (15) becomes

A_ A - -
2(a = )Ny, = P CIP ) — Gy,g PN o= CRoING,

= (ap — a)) (= Dllg2red(p,, — Pty

CAe)-Chop (CAe)-CAN_

=q b~ B0agq

which simplifies to
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(af = o + (= 1)[alg2A+pe=ClA) Bp,(— 1)l A+p20=C(Ao)
Py = (a-1)b —

Nﬁb'

A A A A
(ab _aa) (ab _aa)

Set

W= aft =+ (- Dm0

so this becomes

o B, (— 1) lg2Aepe0=CR)

=~ A lw-1p—
(aﬁ—aﬁ) @1 (af}—af})

Py Nap. (17)

Without loss of generality we can choose N,,=1Va, so P,,=(—=1)[P1g%Pe) Then in the cases 0
=a>Db and a>b=0 the last term in Eq. (17) vanishes, giving

P, = (- 1)tl2een T] _
c=b+1 (a'é} - aé\)

Similarly, for a>b>0 we obtain
a l/lb
Pu=Py Il ——+ % (18)

A
- a —
c=b+1 ( b ¢

It remains to find P, for b=a>0. In this case, the last term in Eq. (17) contributes, giving

“ Wc) (= 1)lalg2(M4pel=C(Ag)
Py, = (= DPgee) TT - N,
c=b+1 (a'é\ - aé\) (af} — a'é\)
a! (= 1)ldlg2A+peg-C(Ag) a o
- db — . (19)
d=1 (afy\ - afi\) c=d+1 (af,\ - af)
Recall that if b<<a<<0, then
g@Med=CAy
Nab= (—aA_ a/A) P(a—l)b
b a
(- 1)[b]q2(A,sa)+2(p,sb)—C(A0) a-1 'ﬂ;
T @-a) (-
Substituting this into Eq. (19), we find
b
_ 1)\[b] —2(A+p,e)-C(Ag)
Py, = (= D)Plgeen T Awlcj — - (=D A” 0
b1 (@ = a;) (af - a;)
R Rt R Y S IR

A A A A AV’
il (af,\ - afi\)(a]b\ - a[j) cebi1 (@ — ) 2w (@ — )

which can also be simplified to
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b () - b \ldl 2peg2C(hg) N A A
ry 11 (@ —a;) = (= DR - (= 1) CgPea 0 (ay —a)
b W 1 b b o
c=b+1 c i 'r//d l//& ] A

(20)

From this point we will consider the case m=2/+1. This is marginally more complicated than
the case with even m. Define CDZ to be

d-1

(= ) (- )
@i=11— wﬁ?wﬁ—?b

e=l

_ (ap— ay )y — az—7)

= (Db (Dé -1
b d-1° .
Wit !
Then Pj;, can be written as
’ p b [d] 2(p.e )~2C(Ag)
v vh (= Dllg2ezg-2C0
P;b = (— 1)[b]q2(l)s8b) H < c < _ 2 - q)s
c=b+1 (ab - a’c) ap — ag il 'szl//(j
c#0 =
Note that for ¢ #0,
q—C(AO)
= —(q - q_]) (q(sb,2p+2A+sb) _ q(sc,2p+2A+s(.) +(g- q—l)(_ 1)[C]q(£(.,2p+2/\))
— A ~,
_ q C( 0)%
(g-q7""
where
,Z? — q(sb,2p+2A+sb) _ q(sc,2p+2A—£c)'
So
b (- Dldlg2pei-2Cho) 1 b (- D g - g PP
2 b Dh=(g-¢H> — P
d=1 lpfil//(} d=l (/ldlrljg
b 2eqed) _ 1) g2 Pea~(Epea)
=(g-qH2 (4 ~)Z, o’ (21)
d=I A
and
b (@ — ay)(ay, - ap) b
Dy = b d
A
~ (q(s,,,sb+2p+2A) _ q(sd,8d+2p+2A))(q(sb,eh+2p+2A) _ q(sd,sd—Zp—2A)) o
= —4 b
i

for d=1. Now
(q(sb,sb+2p+2A) _ q(sd,sd+2p+2A))(q(ab,ab+2p+2A) _ q(sd,sd—Zp—ZA))

Z(Sd,sd)(q(sb,sb+2p+2A) (sd,—sd+2p+2A)) (q(sb,£b+2p+2A) _ q—(sd,sd+2p+2A))

=9 -4
+q2(sb,sb+2p+2/\)(1 _q2(sd,sd)) +q2(sd,sd) -1
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— qz(sd’sd)lZZl’I/S— (qZ(sb,sb+2p+2A) _ 1)(q2(sd,sd) _ 1) )

Then, for d=1,

¥y [ g @emaen] o)
( qZ(sb,sb+2p+2A) ~1) ( qZ(Eb,ab+2p+2A) —1) szJff; d-
Now for d =l;,
(20 _ 1) Ped-aed) (g2even) _ 1) g2 Pei-(eper)
JZ‘?’S = (qer20¥20+en) _ (e 20420%ep)) (o204 20) (g (enes) _ g~(onen)

q2(p,8;§)+(eb,eb)

2(ep.ep+2p+2A) _ 1) ’

(g
which can be written as
(qZ(sd,sd) _ 1)q2(p,sd)—(8d,sd) q2(P,81§_1)—(81§-|v85—1)

~ ~b = 2(ep.ept2p+2A) _
i (q 1)

when b <I. Hence Eq. (22) can be used to pairwise cancel the terms in the sum in Eq. (21). Adding
the first two terms (d=b,b—1), we find

b
(OF 2(gj_1-8p-1)
q2(p,8;1)—(81§,1,8571) b N (q Ep—1-€p-1) ]) [1
(q2(£h,sh+2p+2A) _ 1) IZIZ (ZZ 1 b1
b-17b+
2(ep_1-8p-1)
T S AT B .Y
(q2(sb,sb+2p+2A) _ 1) b—1
qZ(P,E};-z)-(EE—z,E};-z) »
= (q2(sb,sb+2p+2A) _ 1) q)g—l :
Continuing to apply Eq. (22) in this manner gives
b (Peasd - DYPoed-Gacd - p2eepree)
‘ lzblzé (I)d = (qZ(ab,sh+p+A) _ 1)(1)[—
d=1 d¥q
2l+1-m
q
= (qz(sb,sb+2p+2/\) _ 1) . (23)

Hence in the case m=2[+1,

U (g-q7") } ﬁ A

Pe = (= 1)Plg20es) _
bb ( ) q a, - a (qZ(sb,sb+2p+2A) _ 1)

A A
b1 (@ — ;)
c#0

By substituting in the formulas for Jc’ and «), and simplifying we obtain

(ep.8p+2p+2A) b ( (ep:2p+2A+ep) _ (e.,2p+2A~¢.)
- _ b] 2(p. -1 q q q )
Pj,= (- 1)[ ]q (p ab)[l +(g—q )( ey ept2pt2A) _ 1)}
q c=b+

X (q(ab,2p+2A+sh) _ q(ac,2p+2A+aC)) ’

and thus for a=5b> 0,
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q(sc,2p+2A—ec))
(sc,2p+2A+sc)) .

q(sb,sb+2p+2A) 4 (q(sb,2p+2A+sb) _
(g4,2p+2A+gp)

_ b] 2(p, ~1
P, =(- 1)[ ]CI (p 8b)|:1 +(g—q )(qZ(sh,sb+2p+2A) -1)

c=p1 (@ -q

Similarly, we find from Egs. (18), (20), (21), and (23) that when m is even then

_ 1 a (ep.2p+2A+ey) _ (e.2p+2A~¢,)
Pab — (_ 1)[b]q2(p,eb)|: 1— Q(q q ) :| (61 q )
c=

(qZ(sb,sb+2p+2A) _ 1) il (q(sh,2p+2A+s,,) _ q(sf,2p+2A+ec))

for a=b>0. Hence we have found expressions for P, for all a,b satisfying a=b>0. At the end
of the paper these, together with the earlier results for P, will be used to calculate x,(C)).
Now we return to the diagonalization of the matrix N. We know

(N"'M) g = ag (N .
Substituting in the values for M, gives

) (N + (= DIPlgRren=CA0 S g@A2I(] — (= 1)lPlg2ee)(N ), = a (V)

c>b
(24)
Set
Qab = 2 qz(A’EC)(N_l)aC'
c=b

We then solve for Qab, with the calculations being very similar to those for P . For 0<b<a and
b<a=0 we find

a-1
A 2(A,sa)H l’bg

Ow=9 .
‘ o= (@ —a)
For m=2/+1 we obtain
_ q(ec,2p+2A—sc))
_ 61(

glEaeat2pr20) ]a—l (gEa20¥204e)

A — 2(Ney) -1
Qab =q (Asg, |:1 + (l] q )(q2(aa,aa+2p+2A) _ ]) (e4:2p+2A+e,) ar,2p+2A+sE))

c=b (C]

for b=<a<0. Similarly, for even m we find

(e4.2p+2A+e,) _ (sc,2p+2A—eC))

q
q

0. qz(A’sa){l __ alg-g) }‘ﬁ (g

(q2(sa,sa+2p+2A) _ 1) it (q(sa,2p+2A+sa) _

(sc,2p+2A+sc)) .

for b=<a<0.
To use these results to calculate x,(C;) we introduce a new function Q,;, defined by

Qab = E (N_l)ac‘

c=b

Then from Eqgs. (14) and (16) we deduce

XA(CZ) = E (a;\)lP(;L=I)uQa(V=l)' (25)

However we know
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2(Az,) _
o _ -1

a k)

q-q"

and

2 (N_l)abtl(yl) = 2 (N_l)abectE-O)
b b.c

(q2(A,sb) _ 1)
(g-¢7")
(£4.2A+2p+e,)-C(Ag) _ 1)

= 2 (N_l)ab E (N_IM)ab
b b

= 2 ail\(N_l)ah = E (N_l)ab(q —1
b b (g-q97)

Thus

Qa(v: = qC(AO)_(Sa’2p+2A+Sa)Qa(V= 1)

C. Explicit formulas for the eigenvalues
Substituting our formulas for P(,_1), and Q=) into Eq. (25), noting that for a # 0 exactly

one of a<<0 or a>0 is true, we find the eigenvalues of the Casimir invariants C; are given by

(q(811’29+2A+8a)_C(A0) _ 1) l
(g-q7"

2p+2A-¢ h))

Xa(C) = 2 (= DllgCho-teacdf(a)

(q(aa,2p+2A+sa) _ q(sh,

x 11

e (q(aa,2p+2A+sa) _ q(sh,2p+2A+ah)) ’
where
g
1 q _
1- (q -9 )(qZ(ea,ea+2p+2A) _ 1) , m= 21,
fla) = < . q(Su,8u+2p+2A) )
l1+(g-¢q )(qz(sa,sﬂmm) ¢ #0, m=2l+1,
L1 a=0, m=20+1.

Throughout we assumed the eigenvalues were distinct. If they are not, the calculations are more
complicated but the result is the same. Thus we have found the following.

Theorem 4.1: The quantum superalgebra Uq[osp(m|n)], for m>2, has an infinite family of
Casimir invariants of the form,

C, = (str @ D)(m(g*™) @ DA!, 1eZ*,

where

_(R'R-1®1)

4 (g-q7"

The eigenvalues of the invariants when acting on an arbitrary irreducible finite-dimensional
module with highest weight A are given by
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(q(sa,sa+2p+2A)—C(A0) _ 1) l

XA(C) = 2 (= DitlgCho-ead f(g) —
a (q -q )

(e4:2p+2A+e,) _ q(sh,2p+2A—sh))

XH(q

b (q(aa,2p+2A+sa) _ q(sh,2p+2A+ah)) ’
a

where

p
-1 q _
1= (q -4 )(qZ(sa,sa+2p+2A) _ 1) , m=2l,
fla) =9 B q(sa’sa+2p+2A) B
l+(g—g¢ )(qz(swsﬂwm ¢ #0, m=2l+1,
\1» a=0,m=2[+1.

This completes the calculation of the eigenvalues of an infinite family of Casimir invariants of
U,losp(m|n)] when acting on an arbitrary irreducible highest weight module, provided m>2.
This had already been done for Uq[osp(2|n)], using a different method, in Ref. 12. Also every
finite-dimensional representation of Uq[osp(l |n)] is isomorphic to a finite-dimensional represen-
tation of U_,[o(n+ 1)],"* whose central elements are well understood. Hence the eigenvalues of a
family of Casimir invariants, when acting on an arbitrary irreducible finite-dimensional highest
weight module have now been calculated for all quantized orthosymplectic superalgebras. To-
gether with the results for Uq[gl(m|n)],13 this covers all nonexceptional quantized superalgebras.
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