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Eigenvalues of Casimir invariants for Uq†osp„m �n…‡
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For each quantum superalgebra Uq�osp�m �n�� with m�2, an infinite family of
Casimir invariants is constructed. This is achieved by using an explicit form for the
Lax operator. The eigenvalue of each Casimir invariant on an arbitrary irreducible
highest weight module is also calculated. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2137712�

I. INTRODUCTION

Representations of quantum superalgebras are known to provide solutions to the Yang-Baxter
equation and represent the symmetries that underly supersymmetric exactly solvable �or inte-
grable� models. Many such examples have arisen in the context of modelling systems of strongly
correlated electrons.1–5 More recently, the properties of solvability and supersymmetry have been
applied to other areas, such as the solution of the Kondo model,6 integrable superconformal field
theory7 and disordered systems.8 Developing the representation theory of the quantum superalge-
bras is a useful step towards the complete understanding of such models. However, in many
respects the representation theory of quantum superalgebras is not a straightforward generalization
of the quantum algebra case, principally because not all representations of quantum superalgebras
are unitary.9 This leads, for example, to the existence of indecomposable representations not
arising in the quantum algebra case, which generally make the analysis of supersymmetric models
problematic �e.g., see Ref. 8�.

In this paper we construct the Casimir invariants �central elements� of quantized orthosym-
plectic superalgebras. Our method of construction follows from the general results of Ref. 10 and
the explicit form of the Lax operator obtained in Ref. 11. A fundamental problem is to determine
the eigenvalues of the Casimir invariants when acting on an arbitrary finite-dimensional irreduc-
ible module. To date, the eigenvalues have only been calculated for the type I quantum
superalgebras,12,13 while the results for Uq�osp�1 �n�� follow from an isomorphism derived in Ref.
14. In this paper we perform the calculations for the remaining nonexceptional quantum superal-
gebras, namely Uq�osp�m �n�� for m�2. The procedure we use for calculating the eigenvalues of
the Casimir invariants when acting on any irreducible module is based on the early work by
Perelomov and Popov15,16 and Nwachuku and Rashid.17 In doing so we follow the method used in
Refs. 18 and 19 for the classical general and orthosymplectic superalgebras, respectively, which
was adapted in Ref. 13 to cover Uq�gl�m �n��. Although the concepts are much the same as in those
cases, the combination of the q-deformation and the more complex root system of Uq�osp�m �n��
makes the calculations in this paper more technically challenging.

In the following section we introduce our notation for Uq�osp�m �n�� and state the Lax opera-
tor. In Sec. III we develop the formulas for the Casimir invariants of Uq�osp�m �n��. The bulk of
the calculations are in Sec. IV where the eigenvalues of the Casimir invariants are derived in
detail.
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II. THE QUANTIZED ORTHOSYMPLECTIC SUPERALGEBRA Uq†osp„m �n…‡

The quantum superalgebra Uq�osp�m �n�� is a q-deformation of the classical orthosymplectic
superalgebra. A brief explanation of Uq�osp�m �n�� is given below, with a more thorough intro-
duction to osp�m �n� and the q-deformation to be found in Ref. 11.

First we need to define the notation. The grading of a is denoted by �a�, where

�a� = �0, a = i , 1 � i � m ,

1, a = � , 1 � � � n .
� �1�

Throughout this paper we use greek letters � ,�, etc., to denote odd indices and italic letters i , j,
etc., for even indices. If the grading is unknown, the usual a ,b ,c, etc., are used. Which convention
applies will be clear from the context. Throughout the paper we also use the symbols ā and �a,
which are given by

ā = �m + 1 − a , �a� = 0,

n + 1 − a , �a� = 1,
�

and

�a = �1, �a� = 0,

�− 1�a, �a� = 1.
�

As a weight system for Uq�osp�m �n�� we take the set 	�i ,1� i�m
� 	�� ,1���n
, where
�ī=−�i and ��̄=−��. Conveniently, when m=2l+1 this implies �l+1=−�l+1=0. Acting on these
weights, we have the invariant bilinear form defined by

��i,� j� = � j
i, ���,��� = − ��

�, ��i,��� = 0, 1 � i, j � l,1 � �,� � k .

When describing an object with unknown grading indexed by a the weight will be described
generically as �a. This should not be assumed to be an even weight.

The even positive roots of Uq�osp�m �n�� are composed entirely of the usual positive roots of
o�m� together with those of sp�n�, namely,

�i ± � j, 1 � i � j � l ,

�i, 1 � i � l when m = 2l + 1,

�� + ��, 1 � �,� � k ,

�� − ��, 1 � � � � � k .

The root system also contains a set of odd positive roots, which are

�� + �i, 1 � � � k, 1 � i � m .

Throughout this paper we choose to use the following set of simple roots:

	i = �i − �i+1, 1 � i � l ,

	l = ��l + �l−1, m = 2l ,

�l, m = 2l + 1,
�
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	� = �� − ��+1, 1 � � � k ,

	s = �k − �1.

Note this choice is only valid for m�2.
In Uq�osp�m �n�� the graded commutator is realized by

�A,B� = AB − �− 1��A��B�BA

and tensor product multiplication is given by

�A � B��C � D� = �− 1��B��C��AC � BD� .

Using these conventions, we have the following:
Definition 2.1: The quantum superalgebra Uq�osp�m �n�� is generated by simple generators

ea , fa ,ha subject to the relations

�ha,eb� = �	a,	b�eb,

�ha, fb� = − �	a,	b�fb,

�ha,hb� = 0,

�ea, fb� = �b
a �qha − q−ha�

�q − q−1�
,

�ea,ea� = �fa, fa� = 0 for �	a,	a� = 0,

We remark that Uq�osp�m �n�� has the structure of a quasitriangular Hopf superalgebra. In par-
ticular, there is a linear mapping known as the coproduct, 
 :Uq�osp�m �n��→Uq�osp�m �n���2,
which is defined on the simple generators by


�ea� = q1/2ha � ea + ea � q−1/2ha,


�fa� = q1/2ha � fa + fa � q−1/2ha,


�q±1/2ha� = q±1/2ha � q±1/2ha,

and extends to arbitrary elements according to the homomorphism property, namely,


�AB� = 
�A�
�B� .

There are further defining relations such as the q-Serre relations, but they are not needed in this
paper.

The quasitriangular property guarantees the existence of a universal R-matrix, which provides
a solution to the Yang-Baxter equation. Before elaborating, we need to introduce the graded twist
map.

The graded twist map T :Uq�osp�m �n���2→Uq�osp�m �n���2 is given by

T�a � b� = �− 1��a��b��b � a� .

For convenience, T �
, the twist map composed with the coproduct, is denoted 
T. Then a uni-
versal R-matrix, R, is an even, nonsingular element of Uq�osp�m �n���2 satisfying the following
properties:

123501-3 Eigenvalues of Casimir invariants J. Math. Phys. 46, 123501 �2005�

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.82.2 On: Tue, 18 Oct 2016

05:22:27



R
�a� = 
T�a�R, ∀ a � Uq�osp�m�n�� ,

�id � 
�R = R13R12,

�
 � id�R = R13R23. �2�

Here Rab represents a copy of R acting on the a and b components, respectively, of U1 � U2

� U3, where each U is a copy of the quantum superalgebra Uq�osp�m �n��. When a�b the usual
grading term from the twist map is included, so, for example, R21= �RT�12, where RT=T�R� is the
opposite universal R-matrix.

The R-matrix is significant because it is a solution to the Yang-Baxter equation, which is
prominent in the study of integrable systems,20

R12R13R23 = R23R13R12.

A superalgebra may contain many different universal R-matrices, but there is always a unique one
belonging to Uq�osp�m �n��− � Uq�osp�m �n��+, with its opposite R-matrix in Uq�osp�m �n��+

� Uq�osp�m �n��−. Here Uq�osp�m �n��− is the Hopf subsuperalgebra generated by the lowering
generators 	fa
 and Cartan elements 	ha
, while Uq�osp�m �n��+ is generated by the raising genera-
tors 	ea
 and the Cartan elements. These particular R-matrices arise out of the Z2-graded version of
Drinfeld’s double construction.21 In this paper we consider the universal R-matrix belonging to
Uq�osp�m �n��− � Uq�osp�m �n��+.

We also need to define the vector representation for Uq�osp�m �n��. Let End V be the space of
endomorphisms of V, an �m+n�-dimensional vector space. Then the irreducible vector represen-
tation � :Uq�osp�m �n��→End V acts on the Uq�osp�m �n�� generators as given in Table I, where Eb

a

is the elementary matrix with a 1 in the �a ,b� position and zeroes elsewhere.
One quantity that repeatedly arises in calculations for both classical and quantum Lie super-

algebras is �, the graded half-sum of positive roots. In the case of Uq�osp�m �n�� it is given by

� =
1

2�
i=1

l

�m − 2i��i +
1

2 �
�=1

k

�n − m + 2 − 2����.

This satisfies the property �� ,	�= 1
2 �	 ,	� for all simple roots 	.

The Lax operator for Uq�osp�m �n��: Let R be the universal R-matrix of Uq�osp�m �n�� and �
the vector representation. The Lax operator associated with R is given by

R = �� � id�R � �End V� � Uq�osp�m�n�� .

It has been shown in Ref. 11 that the Lax operator is given by

TABLE I. The action of the vector representation � on the simple genera-
tors of Uq�osp�m �n��.

	a ��ea� ��fa� ��ha�

	i ,1� i� l Ei+1
i −E

ī

i + 1
Ei

i+1−Ei + 1
ī

Ei
i−E

ī

ī
−Ei+1

i+1+Ei + 1
i + 1

	l ,m=2l E
l̄

l−1
−El − 1

l
El−1

l̄ −El
l − 1

El−1
l−1+El

l−El − 1
l − 1−E

l̄

l̄

	l ,m=2l+1 El+1
l −E

l̄

l+1
El

l+1−El+1
l̄

El
l−E

l̄

l̄

	� ,1���k E�+1
� +E�̄

� + 1 E�
�+1+E� + 1

�̄ E�+1
�+1−E� + 1

� + 1−E�
�+E�̄

�̄

	s Ei=1
�=k+ �−1�kE� = k

i = 1 −E�=k
i=1 + �−1�kEi = 1

� = k
−Ei=1

i=1+E
ī=1̄

ī=1̄
−E�=k

�=k+E
�̄=k̄

�̄=k̄
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R = �
a

Ea
a

� qh�a + �q − q−1� �
�a��b

�− 1��b�Eb
a

� qh�âba,

where the simple operators ̂ba are given by

̂ii+1 = − ̂i + 1ī = q1/2eiq
1/2hi, 1 � i � l ,

̂l−1l̄ = − ̂ll − 1 = q1/2elq
1/2hl, m = 2l ,

̂ll̄ = 0, m = 2l ,

̂ll+1 = − q−1/2̂l+1l̄ = elq
1/2hl, m = 2l + 1,

̂��+1 = ̂� + 1�̄ = q−1/2e�q1/2h�, 1 � � � k ,

̂�=ki=1 = �− 1�kq̂i=1̄�̄=k̄ = q1/2esq
1/2hs;

and the remaining operators can be calculated using the following:

�i� the q-commutation relations,

q�	c,�b�̂baecq
1/2hc − �− 1���a�+�b���c�q−�	c,�a�ecq

1/2hĉba = 0, �b � �a,

where neither �a−	c nor �b+	c equals any �x; and
�ii� the induction relations

̂ba = q−��b,�a�̂bĉca − q−��c,�c��− 1���b�+�c����a�+�c��̂câbc, �b � �c � �a,

where c� b̄ or ā.

To define the opposite Lax operator RT= �� � id�R we require the graded conjugation action
†, which is defined on the simple generators by �see Ref. 11�

ea
† = fa, fa

† = �− 1��a�ea, ha
† = ha.

It is consistent with the coproduct and extends naturally to all remaining elements of
Uq�osp�m �n��, satisfying the following properties:

�̂ab�† = �− 1��a���a�+�b��̂ba,

�ab�† = �− 1��a��b�b†a†,

�a � b�† = a†
� b†,


�a�† = 
�a†� .

Then the opposite R-matrix is given by

RT = �
a

Ea
a

� qh�a + �q − q−1� �
�b��a

�− 1��a�Ea
b

� ̂abqh�a,

where

̂ab = �− 1��b���a�+�b��̂ba
† , �b � �a.
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III. CASIMIR INVARIANTS OF Uq†osp„m �n…‡

We now use the Lax operator to construct a family of Casimir invariants and then to calculate
their eigenvalues when acting on an irreducible highest weight module. Before constructing the
Casimir invariants, however, we need to define a new object. Let h� be the unique element of the
Cartan subalgebra H satisfying

	i�h�� = ��,	i�, ∀ 	i � H*.

Then from Ref. 10 we have the following theorem.
Theorem 3.1: Let V be the representation space of �, an arbitrary finite-dimensional repre-

sentation of Uq�osp�m �n��. If �� �End V� � Uq�osp�m �n�� satisfies

��a�� = ���a�, ∀ a � Uq�osp�m�n�� , �3�

where ���� � id�
, then

C = �str � id��� �q2h�� � I�� ,

belongs to the center of Uq�osp�m �n��. Above str denotes the supertrace.
Now choose � to be the vector representation �. Recalling that the universal R-matrix satisfies

R
�a� = 
T�a�R, ∀ a � Uq�osp�m�n�� ,

it is clear that

��a�RTR = RTR��a�, ∀ a � Uq�osp�m�n�� .

Hence if we set A� �End V� � Uq�osp�m �n�� to be

A =
�RTR − I � I�

�q − q−1�
,

the operators Al will satisfy condition �3� for all non-negative integers l. Thus the operators Cl

defined as

Cl = �str � id����q2hp� � I�Al, l � Z+,

form a family of Casimir invariants. Here A coincides with the matrix of Jarvis and Green22 in the
classical limit q→1, as do the invariants Cl.

Now write the Lax operator R and its opposite RT in the form

R = I � I + �q − q−1� �
�b��a

Eb
a

� Xa
b,

RT = I � I + �q − q−1� �
�b��a

Eb
a

� Xa
b.

In terms of the operators ̂ba, this implies

Xa
b = 

qh�a − I

q − q−1 , a = b ,

�− 1��b�qh�âba, �a � �b,

�− 1��b�̂baqh�b, �a � �b.
�

Writing A as

123501-6 Dancer, Gould, and Links J. Math. Phys. 46, 123501 �2005�
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A = �
a,b

Eb
a

� Aa
b,

we obtain

Aa
b = �1 + �b

a�Xa
b + �q − q−1� �

�c��a,�b

�− 1���a�+�c����b�+�c��Xa
cXc

b.

This produces a family of Casimir invariants

Cl = �
a

�− 1��a�q�2�,�a�A a
�l�a,

where the operators A a
�l�b are recursively defined as

A a
�l�b = �

c

�− 1���a�+�c����b�+�c��A a
�l−1�cAc

b. �4�

Note that A corresponds to the matrix A given for the nongraded case in Ref. 23. Following a
line of reasoning similar to that in Ref. 24 it can be shown that when acting on an irreducible
module V���, A satisfies the following polynomial identity:

�
a=1

m+n

�A − 	a���I� = 0,

where

	a��� =
q��a,�a+2�+2��−C��0� − 1

q − q−1

and C��0�= ��1 ,�1+2��=m−n−1. In the limit q→1 this reduces to the identity given in Ref. 24.

IV. EIGENVALUES OF THE CASIMIR INVARIANTS

Now that we have found a family of Casimir invariants, we wish to calculate their eigenvalues
on a general irreducible finite-dimensional module. Let V��� be an arbitrary irreducible finite-
dimensional module with highest weight � and highest weight state ���. Define ta

�l� to be the
eigenvalue of A a

�l�a on this state, so

A a
�l�a��� = ta

�l���� .

Once we have calculated ta
�l� we will use this result to find the eigenvalues of the Casimir invari-

ants Cl.
To evaluate ta

�l�, note that if �b��a then A a
�l�b is a raising operator, implying A a

�l�b���=0. Thus
from Eq. �4� we deduce

ta
�l���� = ta

�l−1�ta
�1���� + �

�a��b

�− 1��a�+�b�A a
�l−1�bAb

a���

= ta
�l−1�ta

�1���� + �
�a��b

�− 1��a�+�b�A a
�l−1�b�Xb

a + �q − q−1�Xb
aXa

a����

= ta
�l−1�ta

�1���� + �
�a��b

�− 1��a�+�b�q��,�a�A a
�l−1�bXb

a��� .

Now we know that

123501-7 Eigenvalues of Casimir invariants J. Math. Phys. 46, 123501 �2005�
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Al��Xb
a� = ��Xb

a�Al. �5�

This can be used to calculate A a
�l�bXb

a��� for �a��b. First we need an expression for 
�Xb
a�. The

R-matrix properties give

�
 � I�R = R13R23 ⇒ �I � 
�RT = R12
T R13

T .

In terms of Xb
a, this implies

I � I � I + �q − q−1� �
�a��b

Ea
b

� 
�Xb
a�

= �I � I � I + �q − q−1� �
�a��b

Ea
b

� Xb
a

� I��I � I � I + �q − q−1� �
�a��b

Ea
b

� I � Xb
a�

= I � I � I + �q − q−1� �
�a��b

Ea
b

� �Xb
a

� I + I � Xb
a�

+ �q − q−1�2 �
�a��c��b

�− 1���a�+�c����b�+�c��Ea
b

� Xb
c

� Xc
a.

Hence for all �a��b,


�Xb
a� = Xb

a
� I + I � Xb

a + �q − q−1� �
�a��c��b

�− 1���a�+�c����b�+�c��Xb
c

� Xc
a.

We also need an expression for ��Xb
a� for �a��b. In Ref. 11 we found the generators for RT

in the vector representation are given by

̂abqh�a = Eb
a − �− 1��a���a�+�b���a�bq��,�a−�b�Eā

b̄, �a � �b.

From this we deduce that

��Xb
a� = �− 1��a�Eb

a − �− 1��a��b��a�bq��,�a−�b�Eā
b̄, �a � �b.

Also, we know

��Xa
a� = �q − q−1�−1��qh�a − I� = �q − q−1�−1�q��a,�a��Ea

a−Eā
ā� − I� .

Applying these, we find that if �a��b then

��Xb
a� = �� � I�
�Xb

a� = ��Xb
a� � �I + �q − q−1�Xa

a� + �I + �q − q−1���Xb
b�� � Xb

a

+ �q − q−1� �
�a��c��b

�− 1���a�+�c����b�+�c����Xb
c� � Xc

a

= ��− 1��a�Eb
a − �− 1��a��b��a�bq��,�a−�b�Eā

b̄� � qh�a + q��b,�b��Eb
b−E

b̄

b̄
�

� Xb
a

+ �q − q−1� �
�a��c��b

�− 1���a�+�c����b�+�c��

� ��− 1��c�Eb
c − �− 1��b��c��b�cq

��,�c−�b�Ec̄
b̄� � Xc

a.

Substituting this expression into Eq. �5� and equating the �a ,b� entries, we find
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�− 1��a�A a
�l�aqh�a − �

b̄

a�− 1��a��b��a�bq��,�a−�b�A a
�l�aqh�a + q��b,�b�A a

�l�bXb
a

+ �q − q−1� �
�a��c��b

��− 1��c�A a
�l�cXc

a − �c̄
b�− 1��b��c��b�cq

��,�c−�b�A a
�l�b̄Xc

a�

= �− 1��a�qh�aA b
�l�b − �

b̄

a�− 1��a��b��a�bq��,�a−�b�qh�aA b
�l�b + �− 1��a�+�b�q��a,�b�Xb

aA a
�l�b

− �q − q�−1�
b̄

a �
�a��c��b

�− 1��b��c��b�cq
��,�c−�b�Xc

aA c̄
�l�b.

Simplifying gives

�− 1��a�+�b�q��a,�b�Xb
aA a

�l�b − q��b,�b�A a
�l�bXb

a

= ��− 1��a� − �
b̄

a
q��,�a−�b��qh�a�A a

�l�a − A b
�l�b�

+ �q − q−1� �
�a��c��b

��− 1��c� − �c̄
bq��,�c−�b��A a

�l�cXc
a

+ �q − q−1��
b̄

a �
�a��c��b

�− 1��b��c��b�cq
��,�c−�b�Xc

aA c̄
�l�ā.

Remembering that �a��b, we apply this to the highest weight state ��� to obtain

− q��b,�b�A a
�l�bXb

a��� = q��,�a���− 1��a� − �
b̄

a
q2��,�a���ta

�l� − tb
�l�����

+ �q − q−1� �
�a��c��b

��− 1��c� − �c̄
bq2��,�c��A a

�l�cXc
a��� . �6�

The next step is to calculate A a
�l�bXb

a��� for �a��b. It is first convenient to order the indices
according to b�c⇔�b��c. With this ordering we say an element a�0 if �a�0, a=0 if �a=0,
and a�0 if �a�0. Using this convention, it is apparent the solution to �6� will be of the form

A a
�l�bXb

a��� = q��,�a��− 1��a� �
a�c�b

	bc
a �ta

�l� − tc
�l����� , �7�

where 	bc
a is a function of a, b, and c. Now from Eq. �6� we have

�q − q−1� �
a�c�b

�− 1��c�A a
�l�cXc

a���

= − q��b,�b�A a
�l�bXb

a��� + �q − q−1� �
a�c�b

�c̄
bq−2��,�b�A a

�l�cXc
a���

− �− 1��a�q��,�a��1 − �
b̄

a�− 1��a�q2��,�a���ta
�l� − tb

�l�����

= − q��b+1,�b+1�A a
�l�b+1Xb+1

a ���

+ �q − q−1� �
a�c�b+1

�c̄
b+1q−2��,�b+1�A a

�l�cXc
a���

− �− 1��a�q��,�a��1 − �ā
b+1�− 1��a�q2��,�a���ta

�l� − tb+1
�l� ����

+ �q − q−1��− 1��b+1�A a
�l�b+1Xb+1

a ��� .

Substituting in the form of the solution given in Eq. �7� produces
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q��b,�b� �
a�d�b

	bd
a �ta

�l� − td
�l�����

= �q��b+1,�b+1� − �q − q−1��− 1��b+1�� �
a�d�b+1

	�b+1�d
a �ta

�l� − td
�l�����

− �1 − �
b̄

a�− 1��a�q2��,�a���ta
�l� − tb

�l����� + �1 − �b + 1
a �− 1��a�q2��,�a���ta

�l� − tb+1
�l� ����

+ �q − q−1� �
a�c�b

�c̄
bq−2��,�b� �

a�d�c

	
b̄d

a �ta
�l� − td

�l�����

− �q − q−1� �
a�c�b+1

�c̄
b+1q−2��,�b+1� �

a�d�c

	�b + 1�d
a �ta

�l� − td
�l����� . �8�

Set

	bd
a = 	̄bd�1 − �

d̄

a�− 1��a�q2��,�a�� .

Then from Eq. �8� we obtain

	̄bb = − q−��b,�b�

and

	̄b�b+1� = q−��b,�b���q��b+1,�b+1� − �q − q−1��− 1��b+1��	̄�b+1��b+1� + 1 + �q − q−1��b + 1
b q−2��,�b�	̄b̄�b+1��

= q−��b,�b�−��b+1,�b+1��q − q−1���− 1��b+1� − �b + 1
b q−2��,�b�� .

To simplify this expression note that q2��,�b+1−�b�=q−��b,�b�−��b+1,�b+1� in all cases except for �b�=0,
b= l, m=2l, in which case q2��,�b+1−�b�=q2q−��b,�b�−��b+1,�b+1�. However �b�=0, b= l, m=2l if and
only if �b + 1

b =1, and in that case we find 	̄b�b+1�=0. Hence for all values of b we can write

	̄b�b+1� = �q − q−1�q−2��,�b���− 1��b+1�q2��,�b+1� − �b + 1
b � .

Now that we have found 	̄bb and 	̄b�b+1�, they can be used to calculate the remaining 	̄bd.
From Eq. �8� we observe that if d�b+1 then

	̄bd = q−��b,�b��q��b+1,�b+1� − �q − q−1��− 1��b+1��	̄�b+1�d + �q − q−1�q−��b,�b� �
d�c�b

�c̄
bq−2��,�b�	̄b̄d

− �q − q−1�q−��b,�b� �
d�c�b+1

�c̄
b+1q−2��,�b+1�	̄�b + 1�d. �9�

Now define �xy by

�xy = �1, x � y ,

0, x � y .
�

Then Eq. �9� can be rewritten as

	̄bd = q−��b,�b��q��b+1,�b+1� − �q − q−1��− 1��b+1��	̄�b+1�d

+ �q − q−1�q−��b,�b�q2��,�c���bc�c�d+1��c̄
b − ��b+1�c�c�d+1��c̄

b+1�	̄cd, d � a + 1. �10�

Consider 	̄bd for any b� l. Both �bb̄ and ��b+1��b + 1� will equal 0, so
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	̄bd = q−��b,�b��q��b+1,�b+1� − �q − q−1��− 1��b+1��	̄�b+1�d
a

= q−��b,�b�q−��b+1,�b+1�	̄�b+1�d = q2��,�b+1−�b�	̄�b+1�d.

Since

	̄�d−1�d = �− 1��d��q − q−1�q2��,�d−�d−1�,

we obtain

	̄bd = �− 1��d��q − q−1�q2��,�d−�b�, d � b � l .

Substituting this together with our expression for 	̄bb into Eq. �10�, we find

	̄bd = q−��b,�b��q−��b+1,�b+1� − �b + 1
b+1 �q − q−1��	̄�b+1�d

+ �q − q−1�2q−��b,�b��− 1��d�q2��,�d���bb̄�b̄d − ��b+1��b + 1���b + 1�d�

− �q − q−1�q−��b,�b�q−��d,�d�q2��,�d���d
b̄ − �d

b + 1�, d � b + 1. �11�

But for d�b+1,

�bb̄�b̄d − ��b+1��b + 1���b + 1�d = �l
b�l̄d − �d

b̄�bl

= �l
b�1 − �

l̄

d� − �d
b̄�1 − �l

b� = �l
b − �d

b̄.

Also, −��−1��d��q−q−1�+q−��d,�d���d
b̄=−q��d,�d��d

b̄, so Eq. �11� reduces to

	̄bd = �q2��,�b+1−�b�q−2�b + 1
b

− �b + 1
b+1 q−1�q − q−1��	̄�b+1�d + �l

bq−1�q − q−1�2�− 1��d�q2��,�d�

− �d
b̄�q − q−1�q2��,�d� + �d

b + 1�q − q−1�q2��,�b+1−�b�q−2�b + 1
b

q2��,�d�

= �q2��,�b+1−�b�q−2�b + 1
b

− �b + 1
b+1 q−1�q − q−1��	̄�b+1�d + �l

bq−1�q − q−1�2�− 1��d�q2��,�d�

+ �q − q−1�q−2��,�b���d
b + 1 − �d

b̄�, d � b + 1.

Recall that for b� l we have

	̄bd = �− 1��d��q − q−1�q2��,�d−�b�, d � b .

Then when b= l we find

	̄bd = �q2��,�b+1−�b�q−2�b + 1
b

− �b + 1
b+1 q−1�q − q−1���− 1��d��q − q−1�q2��,�d−�b+1�

+ q−1�q − q−1�2�− 1��d�q2��,�d� − �q − q−1�q−2��,�b��d
l̄

= �− 1��d��q − q−1�q2��,�d−�b���b + 1
b+1 �1 − �q − q−1� + �q − q−1��

+ �b + 1
b �q−2 + q−1�q − q−1��� − �q − q−1�q−2��,�b��d

l̄

= �q − q−1�q−2��,�b���− 1��d�q2��,�d� − �
d̄

b�

for all d�b+1. Comparing this with our earlier results for d=b+1 and b� l, we have

	̄bd = �q − q−1�q−2��,�b���− 1��d�q2��,�d� − �
d̄

b�, ∀ b � l, d � b .

But for b� l we know
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	̄bd = q2��,�b+1−�b�	̄�b+1�d + �q − q−1�q−2��,�b���d
b + 1 − �d

b̄�, d � b + 1.

Hence for all b we obtain

	̄bd = �q − q−1�q−2��,�b���− 1��d�q2��,�d� − �
c=b

d−1

�d
c̄ + �

c=b

d−2

�d
c + 1�

= �q − q−1�q−2��,�b���− 1��d�q2��,�d� − �d
b̄�, d � b .

Thus for all a�b

A a
�l�bXb

a��� = q��,�a��− 1��a� �
a�c�b

	bc
a �ta

�l� − tc
�l����� , �12�

where 	bc
a is given by

	bc
a =�− q−��b,�b��1 − �

b̄

a�− 1��a�q2��,�a�� , c = b ,

�q − q−1�q−2��,�b���− 1��c�q2��,�c� − �c
b̄��1 − �c̄

a�− 1��a�q2��,�a�� , c � b .
�

A. Constructing the Perelomov-Popov matrix equation

The expression �12� can now be substituted into the equation

ta
�l���� = ta

�l−1�ta
�1���� + �

�a��b

�− 1��a�+�b�q��,�a�A a
�l−1�bXb

a���

to find a matrix equation for the various ta
�l�. The matrix factor is an analogue of the Perelomov-

Popov matrix introduced in Refs. 15 and 16, which was used to calculate the eigenvalues of the
Casimir invariants of various classical Lie algebras.

First recall that

Aa
b = �1 + �b

a�Xa
b + �q − q−1� �

c�a,b
�− 1���a�+�c����b�+�c��Xa

cXc
b,

where

Xa
b = 

qh�a − I

q − q−1 , a = b ,

�− 1��b�qh�âba, �a � �b,

�− 1��b�̂baqh�b, �a � �b.
�

Then

Aa
a��� = 2Xa

a��� + �q − q−1�Xa
aXa

a��� = �q − q−1�−1�2�qh�a − 1� + �qh�a − 1�2����

ta
�1� =

q2��,�a� − 1

q − q−1 .

Hence we obtain

123501-12 Dancer, Gould, and Links J. Math. Phys. 46, 123501 �2005�

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.82.2 On: Tue, 18 Oct 2016

05:22:27



ta
�l� =

�q2��,�a� − 1�
�q − q−1�

ta
�l−1� + �

b�a

�− 1��a�+�b�q��,�a��q��,�a��− 1��a� �
b�c�a

	bc
a �ta

�l−1� − tc
�l−1���

=
�q2��,�a� − 1�

�q − q−1�
ta
�l−1� − q2��,�a� �

b�a

�− 1��b�q−��b,�b��1 − �
b̄

a�− 1��a�q2��,�a���ta
�l−1� − tb

�l−1��

+ �q − q−1�q2��,�a� �
c�b�a

�− 1��c�q−2��,�c��1 − �
b̄

a�− 1��a�q2��,�a��

� ��− 1��b�q2��,�b� − �c̄
b��ta

�l−1� − tb
�l−1�� .

Now consider the function �b defined by

�b = �− 1��b�q−��b,�b� − �q − q−1��
c�b

�− 1��c�q−2��,�c���− 1��b�q2��,�b� − ��c̄
b�� .

We evaluate this for all b, remembering that C��0�= ��1 ,�1+2��=m−n−1 and

� =
1

2�
i=1

l

�m − 2i��i +
1

2 �
�=1

k

�n − m + 2 − 2����.

We find

�b = �− 1��b�q2��,�b�q−C��0�

for all values of b. We also consider the function

�a = 1 − �q − q−1��
b�a

�b�1 − �
b̄

a�− 1��a�q2��,�a�� ,

so that

ta
�l� =

�q2��,�a��a − 1�
�q − q−1�

ta
�l−1� + q2��,�a� �

b�a

�b�1 − �
b̄

a�− 1��a�q2��,�a��tb
�l−1�. �13�

Again, by considering the various cases individually we find

�a = q��a,2�+�a�−C��0�

for any a, regardless of whether m is even or odd. Substituting this result together with that for �b

into Eq. �13� gives

ta
�l� =

�q��a,2�+2�+�a�−C��0� − 1�
�q − q−1�

ta
�l−1� + q�2�,�a�−C��0� �

b�a

�− 1��b�q�2�,�b��1 − �
b̄

a�− 1��a�q�2�,�a��tb
�l−1�.

This can be written in the matrix form

t��l� = Mt��l−1�,

where M is a lower triangular matrix with entries

Mab = 0, a � b ,

�q − q−1�−1�q��a,2�+2�+�a�−C��0� − 1� , a = b ,

q�2�,�a�−C��0���− 1��b�q�2�,�b� − �
b̄

a� , a � b .�
Then we have
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t��l� = Mlt��0�, with ta
�0� = 1 ∀ a ,

where M is an analogue of the Perelomov-Popov matrix.

B. Solving the matrix equation

This matrix equation for ta
�l� can now be used to calculate the eigenvalues of Cl. Loosely

speaking, the problem reduces to diagonalizing the matrix M. Recall

Cl = �
a

�− 1��a�q�2�,�a�A a
�l�a.

Denote the eigenvalue of Cl on V��� as ���Cl�. Then we have

���Cl� = �
a

�− 1��a�q�2�,�a�ta
�l� = �

a,b
�− 1��a�q�2�,�a��Ml�ab.

To calculate this we wish to diagonalize M. We assume the eigenvalues of M,

	a
� =

�q��a,2�+2�+�a�−C��0� − 1�
�q − q−1�

,

are distinct. Then we need a matrix N satisfying

�N−1MN�ab = �b
a	a

�,

which implies

���Cl� = �
a,b,c

�− 1��a�q�2�,�a��	b
��lNab�N−1�bc. �14�

Now

�MN�ab = 	b
�Nab.

Substituting in the values for Mab gives

	a
�Nab + q�2�,�a�−C��0��

c�a

��− 1��c�q�2�,�c� − �c̄
a�Ncb = 	b

�Nab. �15�

Since the eigenvalues 	a
� are distinct, this implies

Nab = 0, ∀ a � b .

Set

Pab = �
c�a

�− 1��c�q�2�,�c�Ncb. �16�

Then Eq. �15� becomes

2�	b
� − 	a

��Nab = q�2�,�a�−C��0�P�a−1�b − �0aq�2�,�a�−C��0�Nāb

⇒ �	b
� − 	a

���− 1��a�q�−2�,�a��Pab − P�a−1�b�

= q�2�,�a�−C��0�Pa−1b − �0aq�2�,�a�−C��0�Nāb,

which simplifies to
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Pab =
�	b

� − 	a
� + �− 1��a�q2��+�,�a�−C��0��

�	b
� − 	a

��
P�a−1�b −

�0a�− 1��a�q2��+�,�a�−C��0�

�	b
� − 	a

��
Nāb.

Set

�a
b = 	b

� − 	a
� + �− 1��a�q2��+�,�a�−C��0�,

so this becomes

Pab =
�a

b

�	b
� − 	a

��
P�a−1�b −

�0a�− 1��a�q2��+�,�a�−C��0�

�	b
� − 	a

��
Nāb. �17�

Without loss of generality we can choose Naa=1∀a, so Pbb= �−1��b�q2��,�b�. Then in the cases 0
�a�b and a�b�0 the last term in Eq. �17� vanishes, giving

Pab = �− 1��b�q2��,�b� �
c=b+1

a
�c

b

�	b
� − 	c

��
.

Similarly, for a� b̄�0 we obtain

Pab = Pb̄b �
c=b̄+1

a
�c

b

�	b
� − 	c

��
. �18�

It remains to find Pab for b̄�a�0. In this case, the last term in Eq. �17� contributes, giving

Pab = �− 1��b�q2��,�b� �
c=b+1

a
�c

b

�	b
� − 	c

��
−

�− 1��a�q2��+�,�a�−C��0�

�	b
� − 	a

��
Nāb

− �
d=l̄

a−1
�− 1��d�q2��+�,�d�−C��0�

�	b
� − 	d

��
Nd̄b �

c=d+1

a
�c

b

�	b
� − 	c

��
. �19�

Recall that if b�a�0, then

Nab =
q�2�,�a�−C��0�

�	b
� − 	a

��
P�a−1�b

=
�− 1��b�q2��,�a�+2��,�b�−C��0�

�	b
� − 	a

�� �
c=b+1

a−1
�c

b

�	b
� − 	c

��
.

Substituting this into Eq. �19�, we find

Pb̄b = �− 1��b�q2��,�b� �
c=b+1

b̄
�c

b

�	b
� − 	c

��
−

�− 1��b�q−2��+�,�b�−C��0�

�	b
� − 	

b̄

��

− �
d=l̄

b̄−1
�− 1��d�+�b�q2��,�d+�b�−2C��0�

�	b
� − 	d

���	b
� − 	

d̄

��
�

c=b+1

d̄−1
�c

b

�	b
� − 	c

�� �
c=d+1

b̄
�c

b

�	b
� − 	c

��
,

which can also be simplified to
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Pb̄b �
c=b+1

b̄
�	b

� − 	c
��

�c
b = �− 1��b�q2��,�b��1 − �

d=l̄

b̄
�− 1��d�q2��,�d�−2C��0�

�d
b�

d̄

b �
c=d̄+1

d−1
�	b

� − 	c
��

�c
b � . �20�

From this point we will consider the case m=2l+1. This is marginally more complicated than
the case with even m. Define �d

b to be

�d
b = �

c=l̄

d−1 �	b − 	c��	b − 	c̄�

�c
b�c̄

b

=
�	b − 	d−1��	b − 	d − 1�

�d−1
b �d − 1

b �d−1
b , �

l̄

b
= 1.

Then Pb̄b can be written as

Pb̄b = �− 1��b�q2��,�b� �
c=b+1
c�0

b̄
�c

b

�	b
� − 	c

��� �0
b

	b − 	0
− �

d=l̄

b̄
�− 1��d�q2��,�d�−2C��0�

�d
b�

d̄

b �d
b� .

Note that for c�0,

�c
b =

q−C��0�

�q − q−1�
�q��b,2�+2�+�b� − q��c,2�+2�+�c� + �q − q−1��− 1��c�q��c,2�+2���

=
q−C��0��̃c

b

�q − q−1�
,

where

�̃c
b = q��b,2�+2�+�b� − q��c,2�+2�−�c�.

So

�
d=l̄

b̄
�− 1��d�q2��,�d�−2C��0�

�d
b�

d̄

b �d
b = �q − q−1��

d=l̄

b̄
�− 1��d��q − q−1�q2��,�d�

�̃d
b�̃

d̄

b
�d

b

= �q − q−1��
d=l̄

b̄
�q2��d,�d� − 1�q2��,�d�−��d,�d�

�̃d
b�̃

d̄

b
�d

b �21�

and

�d+1
b =

�	b − 	d��	b − 	d̄�

�d
b�

d̄

b �d
b

=
�q��b,�b+2�+2�� − q��d,�d+2�+2����q��b,�b+2�+2�� − q��d,�d−2�−2���

�̃d
b�̃

d̄

b
�d

b

for d� l̄. Now

�q��b,�b+2�+2�� − q��d,�d+2�+2����q��b,�b+2�+2�� − q��d,�d−2�−2���

= q2��d,�d��q��b,�b+2�+2�� − q��d,−�d+2�+2����q��b,�b+2�+2�� − q−��d,�d+2�+2���

+ q2��b,�b+2�+2���1 − q2��d,�d�� + q2��d,�d� − 1
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= q2��d,�d��̃d
b�̃

d̄

b
− �q2��b,�b+2�+2�� − 1��q2��d,�d� − 1� .

Then, for d� l̄,

�d+1
b

�q2��b,�b+2�+2�� − 1�
= � q2��d,�d�

�q2��b,�b+2�+2�� − 1�
−

�q2��d,�d� − 1�

�̃d
b�̃

d̄

b ��d
b. �22�

Now for d= b̄,

�q2��d,�d� − 1�q2��,�d�−��d,�d�

�̃d
b�̃

d̄

b
=

�q2��b,�b� − 1�q2��,�b̄�−��b,�b�

�q��b,2�+2�+�b� − q−��b,2�+2�+�b��q��b,2�+2���q��b,�b� − q−��b,�b��

=
q2��,�b̄�+��b,�b�

�q2��b,�b+2�+2�� − 1�
,

which can be written as

�q2��d,�d� − 1�q2��,�d�−��d,�d�

�̃d
b�̃

d̄

b
=

q2��,�b̄−1�−��b̄−1,�b̄−1�

�q2��b,�b+2�+2�� − 1�

when b� l. Hence Eq. �22� can be used to pairwise cancel the terms in the sum in Eq. �21�. Adding

the first two terms �d= b̄ , b̄−1�, we find

q2��,�b̄−1�−��b̄−1,�b̄−1�� �
b̄

b

�q2��b,�b+2�+2�� − 1�
+

�q2��b̄−1,�b̄−1� − 1�

�̃
b̄−1

b
�̃b+1

b
�

b̄−1

b �
= q2��,�b̄−1�−��b̄−1,�b̄−1� q2��b̄−1,�b̄−1�

�q2��b,�b+2�+2�� − 1�
�

b̄−1

b

=
q2��,�b̄−2�−��b̄−2,�b̄−2�

�q2��b,�b+2�+2�� − 1�
�

b̄−1

b
.

Continuing to apply Eq. �22� in this manner gives

�
d=l̄

b̄
�q2��d,�d� − 1�q2��,�d�−��d,�d�

�̃d
b�̃

d̄

b
�d

b =
q2��,�l̄�+��l,�l�

�q2��b,�b+�+�� − 1�
�

l̄

b

=
q2l+1−m

�q2��b,�b+2�+2�� − 1�
. �23�

Hence in the case m=2l+1,

Pb̄b = �− 1��b�q2��,�b�� �0
b

	b − 	0
−

�q − q−1�
�q2��b,�b+2�+2�� − 1�� �

c=b+1
c�0

b̄
�c

b

�	b
� − 	c

��
.

By substituting in the formulas for �c
b and 	b and simplifying we obtain

Pb̄b = �− 1��b�q2��,�b��1 + �q − q−1�
q��b,�b+2�+2��

�q2��b,�b+2�+2�� − 1�� �
c=b+1

b̄
�q��b,2�+2�+�b� − q��c,2�+2�−�c��
�q��b,2�+2�+�b� − q��c,2�+2�+�c��

,

and thus for a� b̄�0,
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Pab = �− 1��b�q2��,�b��1 + �q − q−1�
q��b,�b+2�+2��

�q2��b,�b+2�+2�� − 1�� �
c=b+1

a
�q��b,2�+2�+�b� − q��c,2�+2�−�c��
�q��b,2�+2�+�b� − q��c,2�+2�+�c��

.

Similarly, we find from Eqs. �18�, �20�, �21�, and �23� that when m is even then

Pab = �− 1��b�q2��,�b��1 −
q�q − q−1�

�q2��b,�b+2�+2�� − 1�� �
c=b+1

a
�q��b,2�+2�+�b� − q��c,2�+2�−�c��
�q��b,2�+2�+�b� − q��c,2�+2�+�c��

for a� b̄�0. Hence we have found expressions for Pab for all a ,b satisfying a� b̄�0. At the end
of the paper these, together with the earlier results for Pab, will be used to calculate ���Cl�.

Now we return to the diagonalization of the matrix N. We know

�N−1M�ab = 	a
��N−1�ab.

Substituting in the values for Mab gives

	b
��N−1�ab + �− 1��b�q�2�,�b�−C��0��

c�b

q�2�,�c��1 − �
b̄

c�− 1��b�q−2��,�b���N−1�ac = 	a
��N−1�ab.

�24�

Set

Q̂ab = �
c�b

q2��,�c��N−1�ac.

We then solve for Q̂ab, with the calculations being very similar to those for Pab. For 0�b�a and
b�a�0 we find

Q̂ab = q2��,�a��
c=b

a−1
�c

a

�	a
� − 	c

��
.

For m=2l+1 we obtain

Q̂ab = q2��,�a��1 + �q − q−1�
q��a,�a+2�+2��

�q2��a,�a+2�+2�� − 1���c=b

a−1
�q��a,2�+2�+�a� − q��c,2�+2�−�c��
�q��a,2�+2�+�a� − q��c,2�+2�+�c��

for b� ā�0. Similarly, for even m we find

Q̂ab = q2��,�a��1 −
q�q − q−1�

�q2��a,�a+2�+2�� − 1���c=b

a−1
�q��a,2�+2�+�a� − q��c,2�+2�−�c��
�q��a,2�+2�+�a� − q��c,2�+2�+�c��

.

for b� ā�0.
To use these results to calculate ���Cl� we introduce a new function Qab, defined by

Qab = �
c�b

�N−1�ac.

Then from Eqs. �14� and �16� we deduce

���Cl� = �
a

�	a
��lP��=1̄�aQa��=1�. �25�

However we know
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ta
�l� =

q2��,�a� − 1

q − q−1 ,

and

�
b

�N−1�abtb
�1� = �

b,c
�N−1�abMbctc

�0�

⇒ �
b

�N−1�ab
�q2��,�b� − 1�

�q − q−1�
= �

b

�N−1M�ab

= �
b

	a
��N−1�ab = �

b

�N−1�ab
�q��a,2�+2�+�a�−C��0� − 1�

�q − q−1�
.

Thus

Qa��=1� = qC��0�−��a,2�+2�+�a�Q̂a��=1�.

C. Explicit formulas for the eigenvalues

Substituting our formulas for P��=1̄�a and Qa��=1� into Eq. �25�, noting that for a�0 exactly
one of a�0 or a�0 is true, we find the eigenvalues of the Casimir invariants Cl are given by

���Cl� = �
a

�− 1��a�qC��0�−��a,�a�f�a�� �q��a,2�+2�+�a�−C��0� − 1�
�q − q−1� �l

� �
b�a

�q��a,2�+2�+�a� − q��b,2�+2�−�b��
�q��a,2�+2�+�a� − q��b,2�+2�+�b��

,

where

f�a� =1 − �q − q−1�
q

�q2��a,�a+2�+2�� − 1�
, m = 2l ,

1 + �q − q−1�
q��a,�a+2�+2��

�q2��a,�a+2�+2�� − 1�
, a � 0, m = 2l + 1,

1, a = 0, m = 2l + 1.
�

Throughout we assumed the eigenvalues were distinct. If they are not, the calculations are more
complicated but the result is the same. Thus we have found the following.

Theorem 4.1: The quantum superalgebra Uq�osp�m �n��, for m�2, has an infinite family of
Casimir invariants of the form,

Cl = �str � I����q2hp� � I�Al, l � Z+,

where

A =
�RTR − I � I�

�q − q−1�
.

The eigenvalues of the invariants when acting on an arbitrary irreducible finite-dimensional
module with highest weight � are given by
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���Cl� = �
a

�− 1��a�qC��0�−��a,�a�f�a�� �q��a,�a+2�+2��−C��0� − 1�
�q − q−1� �l

� �
b�a

�q��a,2�+2�+�a� − q��b,2�+2�−�b��
�q��a,2�+2�+�a� − q��b,2�+2�+�b��

,

where

f�a� =1 − �q − q−1�
q

�q2��a,�a+2�+2�� − 1�
, m = 2l ,

1 + �q − q−1�
q��a,�a+2�+2��

�q2��a,�a+2�+2�� − 1�
, a � 0, m = 2l + 1,

1, a = 0, m = 2l + 1.
�

This completes the calculation of the eigenvalues of an infinite family of Casimir invariants of
Uq�osp�m �n�� when acting on an arbitrary irreducible highest weight module, provided m�2.
This had already been done for Uq�osp�2 �n��, using a different method, in Ref. 12. Also every
finite-dimensional representation of Uq�osp�1 �n�� is isomorphic to a finite-dimensional represen-
tation of U−q�o�n+1��,14 whose central elements are well understood. Hence the eigenvalues of a
family of Casimir invariants, when acting on an arbitrary irreducible finite-dimensional highest
weight module have now been calculated for all quantized orthosymplectic superalgebras. To-
gether with the results for Uq�gl�m �n��,13 this covers all nonexceptional quantized superalgebras.
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