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We theoretically study thermal transport in an electronic interferometer comprising a parallel circuit of two
quantum dots, each of which has a tunable single electronic state which are connected to two leads at different
temperature. As a result of quantum interference, the heat current through one of the dots is in the opposite
direction to the temperature gradient. An excess heat current flows through the other dot. Although locally, heat
flows from cold to hot, globally the second law of thermodynamics is not violated because the entropy current
associated with heat transfer through the whole device is still positive. The temperature gradient also induces
a circulating electrical current, which makes the interferometer magnetically polarized.
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I. INTRODUCTION

Manipulation of quantum coherence and interference in a
controllable manner is of special interest in nanoscale elec-
tron devices.1 The coherence of resonant electron tunneling
through a quantum dotsQDd has been demonstrated by using
Aharonov-Bohm interference.2 Moreover, such interference
effects have enabled the realization of a phase sensitive
probe of the anomalous transmission phase,3 dephasing
effects,4 and many-body correlation effects5 in quantum co-
herent transport through a QD. Very recently, a quantum in-
terferometer based on two QDs has been fabricated and con-
trol of coherent electron transport by varying gate voltages of
each dot6 has been demonstrated. In such a double dot inter-
ferometer, theoretical studies have focused on the subjects of
resonant tunneling,7 co-tunneling,8 many-body correlation
effect,9 magnetic polarization current,10 and two-electron en-
tanglement in the context of quantum communication.11

Also, there has been considerable interest in thermal trans-
port through nanoscale devices12–21 and possible “violation”
of the second law of thermodynamics for small colloidal
systems over short time scales,22 small quantum systems,23

and nanoscale electric circuits.24

In this paper, we consider the thermal transport induced
by a temperature gradient across a double dot interferometer
ssee Fig. 1d. The thermal transport could be manipulated in a

controlled manner such as varying gate potentials. In the
interferometer, electric current conservation does not require
that the total current,I, through the interferometer should be
greater than the local current through each electron path. The
quantum interference of tunneling electrons results in a cir-
culating electric current which can make the magnetic states
of the device be up-, non-, or down-polarized. It was recently
shown that the magnetic polarization current exists at a finite
bias between the leads.10

To understand the circulating electric current in the inter-
ferometer, one may suppose that there is a pair of classical
resistors in parallel as a naive classical analoge of the quan-
tum interferometer. When the two resistors are denoted by
the resistances ofR1 andR2, the local currents areI1=V/R1
andI2=V/R2 at a finite biasV in the parallel classical circuit
such thatI = I1+ I2. Then the classical local currents should
not be greater than the total current and should not flow
against the voltage bias. If one wants to define a circulating
current asIM =sI1− I2d /2, even in the classical resistors in
parallel one may find the existence of circulating current for
I1Þ I2sR1ÞR2d without any quantum interference. Then one
needs to identify a circulating current carefully in a quantum
system. In our double dot interferometer with quantum inter-
ference effects, when one calculates the local currents
I1s«1,«2d and I2s«1,«2d in a function of energy level posi-
tions of the dots without a temperature gradient, there exist
two distinct possibilities as follows:sid For Is«1,«2d
. I1s«1,«2d and Is«1,«2d. I2s«1,«2d, the local currents
through two dotsI1 andI2 are individually less than the total
current I, such thatI = I1+ I2. In such a situation both local
currents through two dots flow in the direction of applied
bias. In this case, one does not assign any circulating current
on the closed path through the dots and the leads.sii d For
Is«1,«2d, I1s«1,«2d or Is«1,«2d, I2s«1,«2d, as discussed in
Ref. 10, it turns out that a local current through one dot is
larger than the total currentI. This implies that to conserve
the total currentI at the junctions, the local current through
the other dot should flow against the applied bias given by
the difference in the chemical potentials of the leads. This
local current is calleda negative current. In such a situation
one can make the interpretation that the negative current flow
through one dot continues to flow through the closed path as

FIG. 1. sColor onlined A quantum interferometer based on two
quantum dots. Both dots are tunnel-coupled to the left and right
leads. The tunneling amplitudes between the dots and the leads are
denoted byG1 and G2. Each lead is described by an equilibrium
Fermi-Dirac distribution with temperatureTL and TR and electro-
chemical potentialmL andmR. The energy level position in each dot
is measured as«1 and«2 relative to the Fermi energy in the leads.
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a magnetic polarization current. Thus the magnitude of the
magnetic polarization current is the same as that of the nega-
tive current. Therefore, the circulating current in the quantum
interferometer is purely a quantum interference phenomena.

In this study, the temperature difference between the leads
can give rise to a circulating electric current without an ap-
plied bias. Furthermore, it is found that due to quantum in-
terference the heat current flows in the opposite direction to
the temperature drop through one dot while the excess heat
current flows through the other dot. The behaviors of the
local heat currents show the existence of a circulating heat
current. We discuss the second law of thermodynamics asso-
ciated with the two unique thermal transport processes in the
interferometer.

II. MODEL

We start with a general model Hamiltonian

H = o
a

Hahcks
† ;cksj + o

a,j
Ha,j

T + o
j

Hj
Dhdjs

† ;djsj, s1d

where as=L ,Rd and js=1,2d are the indices of leads and
dots. The HamiltoniansHa ,Hj

D, and

Ha,j
T = o

ksPa; j
fVk,j

a cks
† djs + h . c.g ,

respectively represent the leads, the interferometer, and tun-
neling between the leads and the dots.cks and djs are the
annihilation operators with spins for electrons in the leads
and the dots.

The energysnumber of electronsd flowing into the inter-
ferometer is defined as the rate of change in the energy
snumber of electronsd in the leada:25 Ia

E=−dkHal /dt=si /"d
3kfHa ,Hgl and Ia=−dkNal /dt=si /qdkfNa ,Hgl, where Ha

=oksPa«kcks
† cks and Na=oksPacks

† cks. The heat current
flowing into the interferometer from the leada is defined by

Ia
Q = Ia

E − maIa, s2d

wherema is the electrochemical potential in the leada. Us-
ing the Keldysh Green function Gks,js

, st− t8d
; ikdjs

† st8dcksstdl which involves electron operators for the
leads and for each dot, one writes the heat currents as

Ia
Q = − o

ksPa
E d«

2p"
s«k − madfVk,1Gks,1s

, s«d + h . c.g

− o
ksPa

E d«

2p"
s«k − madfVk,2Gks,2s

, s«d + h . c.g . s3d

The firstssecondd line of Eq.s3d describes heat transfer from
the left lead to QD 1sQD 2d or vice versa. Then each heat
transfer can be defined as a local heat current through each
dot, Ia,j

Q . Thus the total heat current is the sum of the local
heat currents through each dot,Ia

Q= Ia,1
Q + Ia,2

Q . The heat cur-
rent is written in terms of the electron Green functions,G,.
The G, Green’s functions contain all contributions of pos-
sible Feynman electron paths in the entire interferometer.
The current is the total sum of all contributions of possible

Feynman electron paths going through each dot that start at
one lead and end at the other lead. The heat transfer from the
lead to one of the dots is then accompanied by electron dy-
namics including a complex trajectory through the entire in-
terferometer, as well as a direct tunneling to the dot. A simi-
lar identification of local electric currents was made
previously.10,26,27

The Green functions,G,, can be expressed in terms of the
dot Green functions defined byGjj 8,s

r st− t8d=−iust− t8d
3khdj8sstd ,djs

† st8djl and Gjj 8,s
, st− t8d= ikdj8sstd ,djs

† st8dl.28 As
a consequence, a general expression of the heat current
through a nanoscale electron interferometer is given by

Ia
Q = i o

j j 8s

E d«

2p"
s« − madG j j 8,as«dfGjj 8,s

, s«d + fas«dsGjj 8,s
r s«d

− Gjj 8,s
a s«ddg , s4d

where the tunnel couplings between the leads and the dots
are denoted byG j j 8,a=2pNVj

aVj8
a* with the density of states

of the leadN. The Fermi-Dirac distribution functions of the
leads arefas«d= fs«−mad, where the chemical potentials are
mL=−mR=eV/2 with applied biasV between the two leads.
For i Þ j , the terms of the current describe the interference
between the electron waves through two dots. In the absence
of one dot, i.e.,Vk,1=0 or Vk,2=0, only the current through
the other dot exists and any interference resulting from the
existence of the one dot disappears. Therefore, the expres-
sion of the heat current is reduced to the heat current formula
in a single dot electronic device.

Our interferometer has the two electron pathways which
are allowed for electron transport from one lead to the other
via two dots not being coupled to each other directly. Elec-
tron tunneling through the dots are manipulated by varying
the gate voltages. The dots makes it possible to control a
coherent electron passing through the two electron pathways
in the interferometer where it is required to satisfy current
conservation at the leads. The current conservation gives rise
to a circulating current on a closed path through the dots and
the leads.10 To clarify the origin of the circulating electric/
heat currents in the interferometer the intradot electron-
electron interaction is not taken into account in this study.
Then the level spacing in each dot is larger than the applied
bias and temperature because electron transport through a
single level in the dots. Although intradot Coulomb interac-
tions are considered in the Coulomb blockade regime, the
resonant transport could be well explained in the Hartree-
Fock mean-field level where the energy level of the dots can
be described by a simple shift of the interaction parameter. In
fact, we focus on studying the interference effects that are
present for near resonant transport and employ the resonant
level model to describe the dots;Hj

D=o js« jdjs
† djs, where«1

and«2 are the level energy in each dot, measured, relative to
the Fermi energy of the leads.

With the Keldysh technique for nonlinear current through
the system, the local heat currents through each dot at the
leada are given by28,29
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Ia,j
Q = o

s
E d«

2p"
s« − madsfas«d − fa8s«ddT js«d, s5d

and similarly the local electric currents are obtained as

Ia,j = eo
s
E d«

2p"
sfas«d − fa8s«ddT js«d, s6d

where the local transmission spectral functions are defined
by T js«d=hGLGs

r s«dGRGs
as«dj j j which is the j th diagonal

component of the matrix transmission spectral function.
Gs

r s«d is the matrix dot Green function defined in time space
asGjj 8,s

r st− t8d=−iust− t8dkhdj8sstd ,djs
† st8djl. The matrix cou-

pling to the leads is described by

GL = GR=S G1 ÎG1G2

ÎG1G2 G2
D .

The symmetric tunnel-coupling between the dots and the
leads will be assumed to be independent of energy. The ma-
trix Green function of the dots is

Gs
r s«d = S« − «1 + iG1 iÎG1G2

iÎG1G2 « − «2 + iG2
D−1

. s7d

From the relation,Gs
as«d=fGs

r s«dg†, the advanced Green
function can be obtained. Accordingly, the local transmission
spectral functions in terms of the total transmission function
are given by

T1s«d =
G1s« − «2d

G2s« − «1d + G1s« − «2d
Ts«d, s8d

T2s«d =
G2s« − «1d

G2s« − «1d + G1s« − «2d
Ts«d. s9d

The total current is the sum of current through each dot,IQ

= I1
Q+ I2

Q, which is just the current conservation. This leads to
the total transmission spectral function asTs«d=T1s«d
+T2s«d,

Ts«d =
fG2s« − «1d + G1s« − «2dg2

s« − «1d2s« − «2d2 + fG2s« − «1d + G1s« − «2dg2 .

s10d

In the linear response regime, the transport electric/heat
currents are expanded up to the linear terms ofDT=TL−TR
andDV=VL−VR. The electric currents and the heat currents
are related to the chemical potential difference,DV, and the
temperature difference,DT, by the thermoelectric coeffi-
cientsLmm8,

S I

IQD = SL11 L12

L21 L22
DSDV

DT
D . s11d

Similarly, with the local thermoelectric coefficientsL
mm8
s jd the

local electric/heat currents in the linear response regime can
be written as

S I j

I j
QD = SL11

s jd L12
s jd

L21
s jd L22

s jd DSDV

DT
D . s12d

The thermoelectric coefficients associated with the local cur-
rent through each dot are expressed asL11

s jd=e2L0
s jd ,L21

s jd

=TL12
s jd=−eL1

s jd, andL22
s jd=L2

s jd /T, where the integrals are de-
fined asLn

s jdsTd=s2/hded«s−s]f /]«dd«nT js«d. According to
the current conservations, the thermoelectric coefficients
have the relations:Lmm8=L

mm8
s1d +L

mm8
s2d .

III. THERMOPOWER

The thermopower of the interferometer can be found by
measuring the induced voltage drop across the interferometer
when the temperature difference between two leads is ap-
plied. For zero electric transport current,I =0, the ther-
mopower is defined by the relation

S= − lim
DT→0

UDV

DT
U

I=0
=

L12

L11
. s13d

In terms of the defined integrals, one can rewrite the ther-
mopower, S=−skB/edsL0/kBTL1d with the constantkB/e
.86.17mV/K. In Fig. 2, the characteristics of the ther-
mopower are shown to be dependent on the energy level
positions of the dots. The sign of the thermopower can indi-
cate the main channel in transporting charge and heat. When
more transmission spectral weight lies in the electron chan-
nel then in the hole channel, the charge and heat are carried
by mainly electron channels. In this case the sign of the
thermopower is negative. In the opposite case, since charge
and heat transport through the hole channels is predominant,
the thermopower is positive. If the same amount of electron
and heat are carried by each electron and hole channel, the

FIG. 2. Thermopower of the interferometer as a function of
temperature for different level positions of the dotss«1/G ,«2/Gd.
The tunneling amplitudes are taken asG=G1=G2. For both energy
levels of dots being abovesbelowd the Fermi energy, the sign of the
thermopower is negativespositived. The charge and heat are carried
mainly through the electronsholed channels. When the energy level
of one dot is lying below the Fermi energy and that of the other is
lying above the Fermi energy, the sign of the thermopower is
changed as the temperature varies. Therefore, the main propagating
channels for charge and heat determine the sign of the ther-
mopower. The magnitude of the thermopower is of the order of
kB/e=86.17mV/K.
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sign of the electric/heat current is the same/opposite for elec-
tron and hole channel. This results in the thermopower being
zero. As shown in Fig. 2, when the energy level of one dot is
lying below the Fermi energy and that of the other dot is
lying above the Fermi energy, the sign of the thermopower is
changed as temperature increases.

IV. LOCAL ELECTRIC CURRENTS AND MAGNETIC
POLARIZATION CURRENTS

The requirement, that the electric transport current is zero,
for the thermopower implies that the local electric currents
are required to ensureI1=−I2. If these local currents exist for
I =0, the local electric currents should circulate on the closed
path through the leads and the dots. Then the interferometer
can be magnetized by the circulating electric currents. One
can define the circulating current as a magnetic polarization
current,10 IM ; I1=−I2 for I =0. From Eq.s11d, the magnetic
polarization current is then expressed as

IM = KDT, s14d

whereK=−SL11
s1d+L12

s1d=SL11
s2d−L12

s2d. This shows that the mag-
netic polarization current exists even when the electric trans-
port current is zero because this magnetic polarization cur-
rent is induced by the temperature gradient between the leads
due to the quantum interference. Figure 3sad shows that the
total sum of the local currents is always zero because the
local electric currents are flowing along the opposite direc-
tion to each other, which implies the existence of the mag-
netic polarization current. It should be noted that the direc-
tion of the magnetic polarization current is reversed as the
temperature increases. If one can define the local ther-
mopower asSj =L12

s jd /L11
s jd, the magnetic polarization current

vanishes at a specific temperature,T0, satisfying SsT0d=
−SjsT0d. It is also shown in Fig. 4sbd that, by manipulating
the gate voltages of each dot, the magnetic polarization cur-
rent can be controlled. This implies that changing the energy
level positions of each dot, one can magnetize the interfer-
ometer by the magnetic polarization current induced by the
temperature gradient as up-, non-, and down-polarized. In
contrast to the measurement of the thermopower by means of
electron transport, to observe the magnetic polarization cur-
rent, one can measure a magnetic field produced by the mag-
netic polarization current by using a superconducting quan-
tum interference devicesSQUIDd. Recent measurements of a
persistent current by using a SQUIDsRef. 30d show that
magnitudes of the magnetic polarization current of the order
of nA should be experimentally observable for a temperature
gradient of order 0.1,1 K. Suppose that the closed path
taken by the circulating current is a circle whose area isA
=2.52310−13 m2 from an experiment of a double dot
interferometer,6 the corresponding magnetic moment of our
interferometer to the magnetic polarization current is in the
order of the Bohr magneton,mB. At T,1 K, the electron
coherence length reachesLw,1 mm in a two-dimensional
electron gass2DEGd of a GaAs/AlGaAs heterostructure.
Then to observe the magnetic polarization current, the whole

FIG. 3. sad Local electric currents induced by a temperature
gradient as a function of temperature. The dot energy levels are
taken ass«1/G ,«2/Gd=s−0.9,0.3d for the tunneling amplitudes,G
=G1=G2. In contrast to the thermopowerscompare Fig. 2d, the level
positions taken in this plot do not affect the physics of the local
currents but only change its amplitude and sign. Even when the
total electric transport current is zerosI =0d, the nonvanishing local
electric currents indicates the existence of the circulating electric
current which makes the interferometer magnetically polarized. The
magnetic polarization current is then defined as the local current:
IM ; I1=−I2 for I =0. sbd The ratio of the magnetic polarization
currents to the temperature gradient,DT, as a function of tempera-
ture. The magnitude of the magnetic polarization currents is of the
order ofnA for a temperature gradient of order 1 K.

FIG. 4. sColor onlined The ratio of the magnetic polarization
current IM ; I1=−I2 to the temperature gradientDT for I =0 as a
function of the energy level positions of each dots«1/G ,«2/Gd for
kBT=5.0310−2G. The tunneling amplitudes are taken asG=G1

=G2. Note that by varying the energy level of each dot the interfer-
ometer has a different magnetic state according to the direction of
the magnetic polarization current.
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scale of the interferometer fabricated from GaAs/AlGaAs
2DEG should not be in excess of the electron coherence
length.

V. HEAT CURRENTS

The condition of an open circuitsI =0d to find the ther-
mopower can apply for a circulating heat current in the in-
terferometer. Under the condition,I =0, the local heat cur-
rents are rewritten as

I j
Q = k jDT, s15d

wherek j =−SL21
s jd+L22

s jd. Due to the quantum interference, the
local heat currents can be greater than the total heat current
through the interferometer at a given energy level positions
of the dots. If I1

Q. IQ, there exists an excess heat current
through QD 1. One can define the excess current asIexe

Q

= I1
Q− IQ. From the relationIQ= I1

Q+ I2
Q, the local heat current

through the QD 2 should beI2
Q=−Iexe

Q . The negative sign of
the local heat current through the QD 2 implies that the heat
current conservation requires a heat current flowing through
the QD 2 against the temperature gradient. According to the
second law of the thermodynamics, the entropy current de-
fined by IS; IQ/T.0 should be greater than zero during
thermoelectric process.14 If one can define a local entropy
current asI j

S; I j
Q/T, the local heat current flowing against

the temperature gradient means thatI2
S,0. However, for heat

transfer through the entire interferometer, the heat current
conservation should make the second law of the thermody-
namics preserved in heat transport through the entire inter-
ferometer. As a result, the excess heat transport through the
QD 1 is compensated with the local heat current flowing
against the temperature gradient through the QD 2. Like the
magnetic polarization current, those thermoelectric processes
imply that there appears a circulating heat current on the
closed path between the dots and the leads in order to satisfy
the second law of the thermodynamics. Therefore, forI1

Q

. IQ, the excess current can be defined as a circulating heat
current,IM

Q ; Iexe
Q =−I2

Q. Similarly, for IQ, I2
Q, the circulating

heat current is determined. In Fig. 5, we display the circulat-
ing heat current as a function of the energy level positions of
each dot from the numerical calculation. It is shown that the
interference between the electron and hole channels produces
the circulating heat current.

VI. SUMMARY

We have investigated thermal transport in nanoscale inter-
ferometers. The expression of the heat current for the inter-
ferometer has been derived based on the nonequilibrium
Green’s function technique. Controllable electronic states in
two dots make it possible to manipulate the quantum inter-
ference which causes a heat current in the opposite direction
to the temperature drop through one dot and an excess heat
current through the other dot. The circulating electric current
induced by a temperature gradient across the entire interfer-
ometer is sufficiently large that it should be experimentally
observable.

Note added in proof:After completion of this work, we
become aware of some related work by Moskalets concern-
ing a temperature-induced circulating electric current in a
one-dimensional ballistic ring.31
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