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Abstract

In this work we propose an extension of Beta-binders with biological
transactions, called TBeta-binders, in order to model a sequence of elemen-
tary actions atomically. This extension is useful when we need to specify
multi-reactant multi-product reactions or when we use a sequence of actions
to represent a single biological interaction. Some properties of these trans-
actions are reported. Finally, some simple but explicative examples are de-
scribed to validate our extension.

1 Introduction

In the last years process algebras have been used to produce biological models
[23, 21, 10, 8]. These techniques have been originally defined in computer science
for the analysis of complex concurrent systems and they seem to be appropriate
to represent formally and to analyze biological systems as well. One example is
the π-calculus with its stochastic version [14, 18, 17]. Recently, there have been
some efforts to define specific calculi for biology [22, 20, 19]. Among them, Beta-
binders [20] are an extension of the π-calculus inspired to biological phenomena.
This calculus is based on the definition of bio-process, a box with some sites (beta-
binders) to express the interaction capabilities of the element, in which π-calculus-
like processes (pi-process) are encapsulated. Beta-binders enrich the standard π-
calculus with some interesting features, as the join between two bio-processes,
the split of one bio-process into two ones, the change of the bio-process interface
by hiding, unhiding and exposing a site. Moreover, it supports the promiscuity
of communication between two bio-processes, with the interaction compatibility
expressed by the types of the interaction sites.

A critical task in the translation of biological models into Beta-binders (and
generally into other process algebras) is the specification of multi-reactant multi-
product reactions. These reactions are rare in nature but they are quite frequent in
biological models as abstractions of complex situations whose details are unknown
or not of interest. Since actions in Beta-binders involve at most two processes,
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a possible translation of multiple-reactant multiple-product reactions is to decom-
pose them into a sequence of one-reactant or two-reactant reactions. This approach
has some drawbacks. Firstly, the system may block at intermediate steps leading
to a deadlock. Secondly, we have to select an order of elementary steps, among the
n!
2 available (where n is the number of reactants). Finally, there is the problem to
find appropriate rates for each step in which the reaction is decomposed.

In this paper we introduce transactions to model sequences of actions atomi-
cally and to overcome the drawbacks highlighted above. Transactions are mech-
anisms originally used in web services and databases to execute distributed com-
putations as they were a single atomic action. Recently there have been different
attempts to model web-service transactions by using process algebras [2, 5, 15, 16,
3, 6, 7]. In [2] πt-calculus is presented: it is an extended version of asynchronous
π-calculus to deal with long time transactions and offers failure handlers when in-
terruptions are met. Another extension of asynchronous π-calculus with long-time
transactions, called web-π, is introduced in [15]. In this case the main aspects are
the interruptible processes, the failure handlers and the concept of time. A web-π
transaction may terminate successfully or may fail, either as an error occurs or the
time deadline is reached. CSP is the process algebras adopted in [7] to model long-
running transactions with traces. The authors of [6] introduced a new calculus,
StAC (structural Activity Compensation), inspired to both CCS and CSP in order
to model Long-running Business Transactions. It gives a precise interpretation of
compensation, including the combination of compensation with parallel execution,
hierarchy and exceptions. Finally, in [5] a formal study of the serializability of
transactions in JavaSpaces is proposed. At this purpose the authors abstract from
away from the concrete language and embed the primitives in a process calculus.

The π-calculus has been enriched with biological transactions to model com-
plex reactions [9]. Biological transactions are simple transactions that have to sat-
isfy some basic properties suitable for modeling biology. These properties are for-
malized by using the concepts of atomicity and serialisability (isolation). Atomic-
ity is summarized as ”all or nothing”: either a transaction is executed and finally
commits or it does nothing. Serializability expresses the fact that different activities
have the same effect whether they are executed in sequence or in parallel.

In this work we focus on Beta-binders [20] and we enrich the standard version
of the calculus with biological transactions. We call it TBeta-binders. Differently
from other calculi enriched with transactions, we do not consider neither compen-
sation and rollback mechanisms nor nested transactions nor time. Indeed these
features are not necessary to describe biological reactions. The approach followed
in similar to [9], but in this case transactions are extended to bio-processes too.

The paper is organized in the following way. In section 2 an introduction to
Beta-binders and to the stochastic version is reported. The section 3 presents the
problems related to complex reactions. In section 4 the extended calculus is de-
scribed in detail. Some properties are introduced in the following section. In
section 6 the stochastic version of TBeta-binders is presented. Some examples
are shown in section 7. Finally, the last section reports discussion and some final
remarks.
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2 Beta-binders

This section presents the syntax and the semantics of Beta-binders, as reported
in [20]. The definition of Beta-binders is based on the concept of bio-processes.
A bio-process is a box with interacting capabilities through apposite sites (beta-
binders) and where inside π-calculus processes (pi-processes) are encapsulated.
The syntax of the π-calculus is enriched to manipulate boxes in the following way:

P ::= nil | π. P | P | P | νy P | ! π. P
π ::= x(y) | x〈z〉 | expose(x, Γ) | hide(x) | unhide(x)

where we assume a countable infinite set of names N(ranged over lower-case let-
ters). The processes generated by the grammar above differ from the π-calculus
processes in expose, hide, and unhide prefixes. These are intended for changing
the external interfaces of boxes by adding a new site, hiding a site, and unhidding
a site which has been previously hidden, respectively. All other processes have the
same meaning as in the π-calculus.

The π-calculus definitions of name substitution and of free and bound names
(denoted by fn(-) and bn(-), respectively) are extended to the processes generated
by the above syntax in the obvious way, assuming expose(x, Γ) as a binder for x.

An elementary beta binder has either the form β(x : Γ) or the form βh(x : Γ).
The name x is the subject of the beta binder, and Γ is the type of x, a non-empty set
of names such that x < Γ. Composite beta binders are generated by the following
grammar:

B ::= β(x : Γ) | βh(x : Γ) | β(x : Γ) B | βh(x : Γ) B

A composite beta binder is said to be well-formed when the subjects of its elemen-
tary components are all distinct. We let well-formed beta binders be ranged over
by B,B1,B2, . . . ,B′, . . .. The set of the subjects of all the elementary beta binders
in B is denoted by sub(B). Finally, the metavariables B∗,B∗1,B

∗
2, . . . stay for either

a well-formed beta binder or the empty string.
Formally, Bio-processes (ranged over by B, B1, . . . , B′, . . .) are generated by the

following grammar:

B ::= Nil | B[P] | B ‖ B

The system may be either empty (Nil) or composed by parallel composition of bio-
processes, written B ‖ B.

Bio-processes are given an operational reduction semantics that makes use of
both a structural congruence over bio-processes and a structural congruence over
pi-processes. We overload the same symbol ≡, to denote both congruences, and
let the context disambiguate the intended relation. The structural congruence is the
smallest relation satisfying the rules in Table 1. The reduction transition system
is TS R(B,−→), where B is the set of states (equivalence classes of bio-processes
w.r.t. ≡) and the reduction relation −→ is the smallest relation over bio-processes
obtained by applying the axioms and rules in Table 2. The rule intra lifts to the
level of bio-processes the internal pi-processes interactions without changing the
interface. The rule inter models interactions between boxes through complemen-
tary actions (input/output) over complementary sites (sites with non-disjoint types).
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P1 ≡ P2 if P1 and P2 are α-equivalent B[P1] ≡ B[P2] if P1 ≡ P2
(P/≡, |, nil) is a commutative monoid (B/≡, ‖,Nil) is a commutative monoid
νz νw P ≡ νw νz P B1B2[P] ≡ B2B1[P]
νz nil ≡ nil B∗β̂(x : Γ)[P] ≡ B∗β̂(y : Γ)[P{y/x}]
νy (P1 | P2) ≡ P1 | νy P2 if y < fn(P1) if y fresh in P and y < sub(B∗)
! π. P ≡ π. (P | ! π. P)

Table 1: Laws for structural congruence for Beta-binders.

The rule expose causes the addition of an extra site with the declared type, while
the rules hide and unhide force the specified site to become hidden and unhidden,
respectively. The axiom join models the merge of boxes. It can model different
interactions depending on the definition of the function f join. In a similar way, the
axiom split is used to model a split of a bio-process into two bio-processes and it
is described by the function fsplit. The rules redex and struct are typical rules of
reduction semantics. They are meant, respectively, to interpret the reduction of a
subcomponent as a reduction of the global system, and to infer a reduction after a
proper structural shuffling of the process at hand.

2.1 Stochastic Beta-binders

An extension of Beta-binders has been defined to cope with quantitative descrip-
tion of biological data [11]. The main difference with respect to the original def-
inition of Beta-binders is the addition of information on the rates and number of
molecules. The reference simulation algorithm is Gillespie [12].

The only difference with respect to the terms described in the previous section
is that the prefix π.P is replaced by (π, r).P. The rate r is either a positive real num-
ber or∞. In the former case the rate corresponds to the parameter of an exponential
distribution that drives the stochastic behaviour of the action π. In this last case the
associated action is immediate. In order to define the semantics, we introduce the
following definitions.

• The transitions are enriched with a label θ ∈ Θ collecting the quantitative
information. The label θ is a 4-tuple (k; B; c; (n1, n2)), where k describes
the kind of the reaction, B collects the bio-processes involved, c stores the
reaction rates and finally the pair (n1, n2) records the number of reactants
involved. The values of k vary in the set:

L = L
′

∪ L
′′

L′ is {i, h, u, e, I, J, S }, where i stays for intra-communication, h for hide, u
for unhidden, e for expose, I and J are inter-communication and join between
two different (up to ≡) bio-processes, respectively and S is the split. The set
L
′′

= {Ih, Jh} contains the labels for the intercommunication and the join
between two equal (up to ≡) bio-processes. The label θ says that a reaction
of kind k involving the bio-process B is taking place in isolation with rate
c × n1 × n2. All these information together with the number of reactants that
can take part in it are necessary to calculate the actual rate of the reaction.
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(intra)
P ≡ νũ (x(w). P1 | x〈z〉. P2 | P3)

B[P] −→ B[νũ (P1{z/w} | P2 | P3)]

(inter)
P ≡ νũ (x(w). P1 | P2) Q ≡ νṽ (y〈z〉.Q1 | Q2)

β(x : Γ) B∗1[P] ‖ β(y : ∆) B∗2[Q] −→ β(x : Γ) B∗1[νũ (P1{z/w} | P2)] ‖ β(y : ∆) B∗2[νṽ (Q1 | Q2)]

provided Γ ∩ ∆ , ∅ and x, z < ũ and y, z < ṽ

(expose)
P ≡ νũ (expose(x, Γ) . P1 | P2)

B[P] −→ B β(y : Γ) [νũ (P1{y/x} | P2)]
provided y < ũ, y < sub(B) and y < Γ

(hide)
P ≡ νũ (hide(x) . P1 | P2)

β(x : Γ) B∗[P] −→ βh(x : Γ) B∗[νũ (P1 | P2)]
provided x < ũ

(unhide)
P ≡ νũ (unhide(x) . P1 | P2)

βh(x : Γ) B∗[P] −→ β(x : Γ) B∗[νũ (P1 | P2)]
provided x < ũ

(join) B1[P1] ‖ B2[P2] −→ B[P1σ1 | P2σ2]

provided that f join(B1,B2, P1, P2) = (B, σ1, σ2)

(split) B[P1 | P2] −→ B1[P1σ1] ‖ B2[P2σ2]

provided that fsplit(B, P1, P2) = (B1,B2, σ1, σ2)

(redex)
B −→ B′

B ‖ B′′ −→ B′ ‖ B′′
(struct)

B1 ≡ B′1 B′1 −→ B2

B1 −→ B2

Table 2: Axioms and rules for the reduction relation for Beta-binders.

5



Inx(nil) = 0 Inx(P1|P2) = Inx(P1) + Inx(P2) Inx(! π.P) = Inx(π.P)
Inx((π, r).P) = 1 if ch(π) = x, 0 otherwise Inx(νy.P) = Inx(P) if x , y, 0 otherwise
Outx(nil) = 0 Outx(P1|P2) = Outx(P1) + Outx(P2) Outx(! π.P) = Outx(π.P)
Outx((π, r).P) = 1 if ch(π) = x, 0 otherwise Outx(νy.P) = Outx(P) if x , y, 0 otherwise
Gx(nil) = 0 Gx(P1|P2) = Gx(P1) + Gx(P2) Gx(! π.P) = Gx(π.P)
Gx((π, r).P) = 1 if π = g(x), 0 otherwise Gx(νy.P) = Gx(P) if x , y, 0 otherwise
where (G, g) ∈ {(Hide, hide), (Unhide, unhide)}
Num(B[P],Nil) = 0
Num(B[P],B′[P′]||B) = 1 + Num(B[P]||B) if B[P] ≡ B′[P′]
Num(B[P],B′[P′]||B) = Num(B[P]||B) if B[P] . B′[P′]
Countt(B,B′) = case t in
{i, h, u, e, S } : (Num(B, B′), 0)
{J, I} : if B ≡ B1[P1]||B2[P2] then (Num(B1[P1], B′),Num(B2[P2], B′))
{Jh, Ih} : if B ≡ B[P]||B[P] then (Num(B[P], B′),Num(B[P], B′))

Table 3: Auxiliary functions used in the stochastic reduction relation.

• The labelled transition system for the stochastic extension of Beta-binders is
(B,Θ,−→s), where −→s ⊆ B ×Θ ×B is the transition relation defined in Tab.
4. It makes use of the auxiliary functions defined in 3. The symbol . stays
for not-congruent.

A brief description of each axiom/rule in Table 4 follows. The rule intra is
a reduction that changes the internal structure of the box, i.e. the pi-processes
inside. The label (i; B; rx × nI × nO; (1, 1)) says that an intra-communication is
happening inside B. The rate is given by the product of the basal rate rx for the nI ,
the number of firable inputs on x in P, and nO, the number of firable outputs on x in
P. The values nI and nO are expressed in terms of the functions Inx(P) and Outx(P)
defined in Table 3. The couple (1, 1) needs to calculate the possible combination
of reactants and the actual rate.

The rules hide, unhide, expose are similar to intra, but in this case there is the
change of the interface too. The function Hidex and Unhidex are defined in table 3
and are used to count the number of firable hide and unhide prefixes on the binder
x in P. In the case of the expose, the new binder has a new name and represents a
new reaction. So there is no function to count the possible expose of a binder. The
rules inter and interh. These two axioms represent a communication between two
boxes that are different (bimolecular reaction) or equal up to ≡ (homodimerization
reaction), respectively. The communication is possible over compatible sites, ex-
pressed on the affinity of the types of the sites involved. The function α(Γ,∆) maps
the two types into a real value expressing the strength of the interaction. The value
of c is computed considering the involved interaction sites. The side conditions
(C1) and (C2) are:

(C1) B1 = B∗1 β(x : Γ) and B2 = B∗2 β(y : ∆) and x, z < ũ and y, z < ṽ and
P′ ≡ νũ(P1{z/w}|P2) and Q′ ≡ νṽ(Q1|Q2) and
B1[P1] . B2[P2] and α(Γ,∆) > 0

(C2) α(Γ,∆) > 0 and (B = B∗ β(x : Γ) β(y : ∆)) and
Q1 ≡ νũ(P1{z/w}|(y〈z〉, ry).P2|P3) and Q2 ≡ νũ((x(w), rx).P1{z/w}|P2|P3)
and x, z < ũ and y, z < ṽ
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(intra)
P ≡ νũ ((x(w), rx). P1 | (x〈z〉, rx). P2 | P3)

B ≡ B[P] i;B;rx×nI×nO;(1,1)
−−−−−−−−−−−−−→sB[νũ (P1{z/w} | P2 | P3)]

where nI = 1 + Inx(P3) and n0 = 1 + Outx(P3)

(hide)
P ≡ νũ ((hide(x), rx). P1 | P2)

B ≡ β(x : Γ) B∗[P] h;B;rx×nH ;(1,1)
−−−−−−−−−−−→s β

h(x : Γ) B∗[νũ (P1 | P2)]

provided that x < ũ and nH = 1 + Hidex(P2)

(unhide)
P ≡ νũ ((unhide(x), rx). P1 | P2)

B ≡ βh(x : Γ) B∗[P] u;B;rx×nU ;(1,1)
−−−−−−−−−−−→s β(x : Γ) B∗[νũ (P1 | P2)]

provided x < ũ and nU = 1 + Unhidex(P2)

(expose)
P ≡ νũ ((expose(x, Γ), rx). P1 | P2)

B ≡ B[P] (e;B;rx;(1,1))
−−−−−−−−−→B β(y : Γ) [νũ (P1{y/x} | P2)]

provided that y < ũ, y < sub(B) and y < Γ and x < f n(P2)

(inter)
P ≡ νũ ((x(w)rx). P1 | P2) Q ≡ νṽ ((y〈z〉, ry).Q1 | Q2)

B ≡ B1[P] ‖ B2[Q] I;B;α(Γ,∆);(1,1)
−−−−−−−−−−−→sB1[P′] ‖ B2[Q′]

provided that C1 holds

(interh)
P ≡ νũ ((x(w), rx). P1 | (y(z), ry). P2 | P3)

B ≡ B[P] ‖ B[P] Ih;B;α(Γ,∆)/2;(2,1)
−−−−−−−−−−−−−→sB[Q1] ‖ B[Q2]

provided that C2 holds

(join) B ≡ B1[P1] ‖ B2[P2]
J;B;c j;(1,1)
−−−−−−−−→B[P1σ1 | P2σ2]

provided that f join(B1,B2, P1, P2) = (B, σ1, σ2, c j) and B1[P1] . B2[P2]

(joinh) B ≡ B[P] ‖ B[P]
Jh;B;c j/2;(2,1)
−−−−−−−−−−→sB[Pσ1 | Pσ2]

provided that f join(B1,B2, P1, P2) = (B, σ1, σ2, c j)

(split) B ≡ B[P1 | P2]
S ;B;cs;(1,1)
−−−−−−−−→sB1[P1σ1] ‖ B2[P2σ2]

provided that fsplit(B, P1, P2) = (B1,B2, σ1, σ2, cs)

(redex)
B1

t;B1;c;(n1,n2)
−−−−−−−−−→sB2

B1 ‖ B′
t;B1;c;(n1+n′1,n2+n′2)
−−−−−−−−−−−−−−→sB2 ‖ B′

(struct)
B1 ≡ B′1 B′1

θ
−→sB2

B1
θ
−→sB2

where (n′1, n
′
2) = Countt(B, B′)

Table 4: Axioms and rules for the reduction relation for stochastic Beta-binders.
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The join and joinh represent the merge of two bio-processes in the case of two dif-
ferent or two identical bio-processes (up to ≡). The rate c j is given in the definition
of the f join. The axiom split is for the splitting of the bo-process and the rate cs is
given in the definition of the associated split. Finally, the rule redex adds the con-
text B′ to the reduction specified by the label (t; B; r; (n1, n2) and updates the values
n1 and n2 searching in B′ if there are other bio-processes that could participate in
the reaction. This is made by means of the function Count defined in table 3. The
rule struct is as before.

3 The problem

A critical task in the translation of biological models into Beta-binders and gener-
ally into other process algebras is the specification of multi-reactant multi-product
reactions. These reactions, rare in nature, are quite frequent in biological mod-
els. Since actions in Beta-binders involve at most two processes, a possible way to
translate these reactions is to decompose them into a sequence of one-reactant or
two-reactant reactions.

Consider the following reaction:

R1 + R2 + R3
r
−→P

It has three reactants R1, R2, and R3 and one product P and is described by a
global rate r. If we have no biological information about the reaction we can try to
decompose it in the following two reactions with rates r1 and r2 respectively:

R1 + R2
r1
−→ complex(R1,R2)

complex(R1,R2) + R3
r2
−→ P

where complex(R1,R2) is the intermediate complex of the first two reactants. If
this approach is adopted, some problems arise, as described below.

• There are different ways to decompose a reaction, depending on the possible
ways to combine the reactants. We may consider one of the possibility or
all ones. In the case above we select one order, but other two are possible.
Generally, given n the number of reactants, there are n!

2 possible ways to
decompose a complex reaction.

• After starting, a reaction may block at intermediate steps leading to a dead-
lock. This may happen for instance if the reactant R3 misses or it is consumed
in a further reaction. If we put the first reaction reversible, it is possible to
come back to the original situation, but also in this case we may obtain un-
desired behaviours as a sequence of complexation and decomplexation.

• In the case of quantitative models, we have the problem to assign the two
rates r1 and r2 and see what is the relation between them and the rate r.

Generally, we cope with the same problems whenever one biological phenomenon
is modeled by using a sequence of elementary actions.
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4 Beta-binders with biological transactions

In this section the syntax and the semantics of the extension of Beta-binders with
biological transactions are reported. We call it TBeta-binders. We refer to the bio-
processes and the pi-processes defined in [20] as standard to distinguish them from
the extended ones defined here.

4.1 Biological transactions

Transactions are the basic mechanisms for modeling database transactions and for
composing web-services in orchestration and choreography languages. Different
properties and features must be considered according to the field of application. In
modeling biological phenomena, the transactions need to satisfy some simple prop-
erties. Transactions should not stop at intermediate steps (for the lack of opportune
processes) and they work as atomic actions (atomicity). Furthermore, reaction re-
sults should be visible only after transactions have ended (serializability). Finally,
neither compensation processes nor nested transactions nor timeout mechanisms
are used because not necessary to model biological reactions.

We refer to the transactions described here as ”biological transactions”, to
distinguish them from database and web service ones. These transactions are con-
sidered in [9], where both the π-calculus and the biochemical stochastic π-calculus
are enriched with biological transactions. Here we focus on Beta-binders [20] and
we work on to extend transactions to bio-processes.

4.2 General ideas

The transaction names t, t′, t′′, ... are introduced to identify transactions. These
names are added to the syntax of Beta-binders to indicate in which transactions
the bio-processes and the pi-processes are involved. Given a transaction t, a bio-
process can be blocked (it is part of) or unblocked (it is not part of) with respect to
t. The standard reduction relation for Beta-binders is extended in order to consider
these transaction names. Two new axioms start and end are added, both described
by suitable functions, called fstart and fend respectively. The former axiom de-
scribes the start of a transaction t and the consequent block of the bio-processes
involved in it. The axiom end describes the end of the transaction and the unblock
of the final bio-process.

The general idea about this extended calculus is that an action characterized by
a set of names T may be executed only if the respective bio-process is blocked by
t ∈ T . If a bio-process is unblocked, only the actions with T equal to the empty set
may be executed.

4.3 Syntax and Semantics

Syntax. The syntax of Beta-binders is extended in the following way. The defi-
nition of elementary beta binder and of beta binder are as usual.

The extended pi-processes (ranged over by P, P′, ..., Q, Q′, ...) are defined as:

P ::= nil | πT ∗ . P | P|P | νyP | ! P | T (P)
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T � nil = nil T � πT ′ . P = πT∪T ′ . (T � P)
T � P|Q = (T � P)|(T � Q) T � νy P = νy (T � P)
T � ! P = !(T � P) T � T ′(P) = (T ∪ T ′) � P

Table 5: The operator � .

π = x〈w〉 | x(z) | expose(x, Γ) | hide(x) | unhide(x)

where we assume a countable infinite set of names N (ranged over lower-case
letters x, y, z, ...) and a countable set of transaction names T (ranged over lower-
case letters t, t’, t”, ...), with N ∩ T = ∅. We use t∗ to denote a transaction name
in T or the null string (denoted by ε). Furthermore, T denotes a non-empty subset
composed of transaction names in T . The set T ∗ may be either T or the empty set.
If T ∗ = ∅ we can omit it and we have the usual actions. Note that the name t is
important and distinguishes one transaction from the other ones.

Compared to the standard definitions of Beta-binders, we have a new term
T (P) and the set T ∗ added to the prefixes. The process T (P) means that the process
P may be executed only in the transactions in T . The term T ∗ in the prefixes
represents the transactions in which the associated prefix/action may be involved.
The operator � is introduced to move from T (P) to the representation where P
has all the prefixes, with T added. The definition of the operator � is reported in
table 5. The symbol ∪ is the usual union of (name) sets.

The extended bio-processes (ranged over B, B1, B′, . . .) are generated by the
following grammar:

B ::= Nil | (B[P])t∗ | (B ‖ B)

The bio-processes defined above are the standard ones, except for the addition of a
name t∗ to the bio-process. If t∗ = ε, we have the usual bio-process (unblocked),
otherwise we have a bio-process blocked by t.

We use the following notation:

• (B1[P1] ‖ B2[P2]... ‖ Bn[Pn])t∗ stays for (B1[P1])t∗ ‖ (B2[P2])t∗ ... ‖ (Bn[Pn])t∗

• (B)t denotes a bio-process whose sub-terms are all blocked by t (and by no
other transactions).

Some observations about the choice of these new elements are necessary. First
of all the transactions are associated to the prefixes, not to the channel names.
As a consequence, a channel name could be used in different actions involved in
different transactions. In order to simplify the notation, a prefix may be involved
either in a set of transactions, or in no transactions at all. Finally, a set of transaction
names is added to the prefixes, instead of a single name. This allows us to use a
given action for more than one transaction.

Semantics. An operational reduction semantics that makes use of both a struc-
tural congruence and reduction relation is given. The structural congruence in
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P1 ≡ P2 if P1 and P2 are α-equivalent B[P1] ≡ B[P2] if P1 ≡ P2
(P/≡, |, nil) is a commutative monoid (B/≡, ‖,Nil) is a commutative monoid
νz νw P ≡ νw νz P B1B2[P] ≡ B2B1[P]
νz nil ≡ nil B∗β̂(x : Γ)[P] ≡ B∗β̂(y : Γ)[P{y/x}] if y fresh
νy (P1 | P2) ≡ P1 | νy P2 if y < fn(P1) in P and y < sub(B∗)
! P ≡ P | ! P (B)ε ≡ B
∅(P) ≡ P and π∅.P ≡ π.P (B1[P1])t ≡ (B2[P2])t provided that B1[P1] ≡ B2[P2]

Table 6: Laws for structural congruence.

beta-binders uses both structural congruence over pi-processes and structural con-
gruence over bio-processes. These are defined as the smallest relations satisfying
the laws in table 6, where we overload the symbol ≡ when unambiguous.

They are the standard laws for Beta-binders, except for the last two lines, which
contain the laws about transactions. The last laws reported on the left claims that
the pi-processes ∅(P) and π∅.P are congruent to the pi-processes P and π.P, respec-
tively. The law (B)ε ≡ B says what happens if the empty string is considered in the
bio-processes. The last law claims that two blocked bio-processes are congruent
if they are congruent when unblocked and the transaction that blocks them is the
same one.

We need to define the auxiliary functions Act and act in order to find the active
transactions in bio-processes and in pi-processes, respectively. The function Act is
described by the set of transaction name t that blocks a given bio-process B. Sim-
ilarly, the function act returns the set of transaction names that are in the prefixes
of the sub-terms of a given process P. The definition of both functions is reported
below (the symbol ∪ stays for the usual union of sets).

Definition 1. The function Act from bio-processes to 2T is defined as:

• Act(Nil) = ∅

• Act(B1 ‖ B2) = Act(B1) ∪ Act(B2)

• Act((B[P])t∗) = ∅ if t∗ = ε, {t∗} otherwise

The function act from pi-processes to 2T n tris defined by:

• act(nil) = ∅

• act((πT ∗ .P) = ∅ if T ∗ = ∅,T ∗ otherwise

• act(P1|P2) = act(P1) ∪ act(P2)

• act(νyP) = act(P)

• act(! P) = act(P)

11



(intra t)
P ≡ νũ (xT ∗1 (w). P1 | x

T ∗2 z. P2 | P3)

(B[P])t∗−→t(B[νũ (P1{z/w} | P2 | P3)])t∗

provided that t∗ ∈ T ∗1 ∩ T ∗2 or t∗ = ε and T ∗1 = T ∗2 = ∅

(inter t)
B1 ≡ (β(x : Γ) B∗1[νũ (xT ∗1 (w). P1 | P2)])t∗ B2 ≡ (β(y : Γ) B∗1[νṽ (yT ∗2 z.Q1 | Q2)])t∗

(B1)t∗ ‖ (B2)t∗−→t(β(x : Γ) B∗1[νũ (P1{z/w} | P2)])t∗ ‖ (β(y : ∆) B∗2[νṽ (Q1 | Q2)])t∗

provided t∗ ∈ T ∗1 ∩ T ∗2 or t∗ = ε and T ∗1 = T ∗2 = ∅, Γ ∩ ∆ , ∅ and x, z < ũ and y, z < ṽ

(expose t)
P ≡ νũ (exposeT ∗ (x, Γ) . P1 | P2)

(B[P])t∗−→t(B β(y : Γ) [νũ (P1{y/x} | P2)])t∗

provided that t∗ ∈ T ∗ or t∗ = ε and T = ∅, y < ũ, y < sub(B) and y < Γ, y < fn(P2)

(hide t)
P ≡ νũ hideT ∗ (x) . P1 | P2)

(β(x : Γ) B∗[P])t∗−→t(βh(x : Γ) B∗[νũ (P1 | P2)])t∗

provided that t∗ ∈ T ∗ or or t∗ = ε and T ∗ = ∅, x < ũ

(unhide t)
P ≡ νũ (unhideT ∗ (x) . P1 | P2)

(βh(x : Γ) B∗[P])t∗−→t(β(x : Γ) B∗[νũ (P1 | P2)])t∗

provided t∗ ∈ T or or t∗ = ε and T = ∅, x < ũ

(join t) (B1[P1])t∗ ‖ (B2[P2])t∗−→t(B[P1σ1 | P2σ2])t∗

provided that f join(B1,B2, P1, P2,T ∗) = (B, σ1, σ2,T ∗)

and t∗ ∈ T ∗ or t∗ = ε and T ∗ = ∅

(split t) (B[P1 | P2])t∗−→t(B1[P1σ1])t∗ ‖ (B2[P2σ2])t∗

provided that fsplit(B, P1, P2,T ∗) = (B1,B2, σ1, σ2,T ∗)

and t∗ ∈ T ∗ or t∗ = ε and T ∗ = ∅

Table 7: Axioms and rules for the reduction relation for TBeta-binders (part 1).
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(start t) B−→t(B)t

provided that Act(B) = ∅ and fstart(B, t) = (B)t

(end t) (B)t−→t(B) with fend((B)t) = (B)

(redex t)
B−→tB′

B ‖ B′′−→tB′ ‖ B′′
provided that Act(B′′) = ∅

(struct t)
B1 ≡ B′1 B′1−→tB2

B1−→tB2

Table 8: Axioms and rules for the reduction relation for TBeta-binders (part 2).

The reduction transition system is TS R = (B,−→t), where B is the set of states
(equivalence classes of bio-processes w.r.t. ≡) and the reduction relation −→t is the
smallest relation over bio-processes obtained by applying the axioms and rules in
Tables 7 and 8.

The main differences with the reduction rules of the standard beta-binders are
the addition of the names t, the name set T , the axioms start t and end t.

The rules intra t and inter t represent the communication inside a bio-process
or between two bio-processes. With respect to the standard rules, there is the con-
dition that a communication along a channel x is possible only if the respective
bio-process/bio-processes is/are blocked by t∗ ∈ T ∗1∩T ∗2 or t∗ = ε and T ∗1 = T ∗2 = ∅,
where T ∗1 and T ∗2 are the set of transaction names in which the input and the output
prefixes may be involved. In the latter case the standard rules are obtained. As
for the inter rule, a communication is possible only if the two bio-processes are
blocked by the same t. The following three rules are about the hide, unhide and the
expose of a site. The set T ∗ is associated to all the three prefixes and the actions
are possible if the respective bio-processes are blocked by a transaction t∗ ∈ T ∗ or
t∗ = ε and T ∗ = ∅.

The axiom join t models the merge of two bio-processes. It is described by
an extended f join, defined in (B1,B2, P1, P2,T ∗) and with result in (B, σ1, σ2,T ∗).
The function σ1, σ2 are the substitution functions to apply to the pi-process P1 and
P2 in the resulting bio-process and T ∗ is the set of transactions in which the join
may be used. The join may be applied only if both bio-processes are blocked by
the same t. The result bio-process is blocked by the same transaction. The axiom
split is used to model a split of one bio-process into two ones and is described
by a suitable function fsplit. Similarly to f join, it is possible to extend the fsplit

to a function from (B, P1, P2,T ∗) into (B1,B2, σ1, σ2,T ∗), where T ∗ has the same
meaning as above. If t∗ = ε and T ∗ = ∅ the standard axioms and the standard
functions are obtained.

The following two axioms/rules are about the start and the end of transactions.
The axiom start t describes the start of a transaction in terms of the bio-processes
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that it blocks. When the transaction t is selected the bio-processes involved in the
transaction are blocked. The start of the transaction is described by the function
fstart, defined in (B, t), where B is an unblocked bio-process or a parallel compo-
sition of unblocked bio-processes and t ∈ T is the name of the transaction. The
function returns (B)t, i.e. the bio-process B blocked by t. It is worth noting that this
function main contain some conditions on the bio-processes.

The axiom end t is used to define what happens when a transaction t ends
successfully: the bio-processes blocked by t are unblocked. This is described by
the function fend, defined in (B)t, where (B)t is a blocked bio-process or a parallel
composition of blocked bio-processes and t ∈ T is the transaction that blocks the
elements. The function returns the unblocked bio-process B.

The rule redex t interprets the reduction of a subcomponent as a reduction
of the global system. The condition Act(B′′) = ∅ is added. This means that a
reduction is possible only if the other bio-processes in the system are unblocked
and so there are no transactions to be completed. This guarantees that the actions
involving transactions have the precedence. Under this condition, the transaction
results atomic and serialized (see section 5).

Finally, the rule struct t infers a reduction after a proper structural shuffling of
the process at hand.

We focus on simple transactions and suppose that after starting they end with
success and errors never occur. This allows us to avoid the definition of abort ac-
tions and of an abort axiom, furthermore no compensation mechanisms are neces-
sary. The stop of a transaction at intermediate steps happens when it is not possible
to execute the actions that lead to the final bio-processes. As a consequence, the
associate fend cannot be applied. This may be due to the fact that either the bio-
processes or the pi-processes involved the transactions may not be reduced. We
use the term well-defined to indicate transactions that when they start, then they
end successfully. Well defined transactions are guaranteed by the following facts:

• the definition of fstart must take in account all the bio-processes necessary in
the transactions;

• the definition of the pi-processes and of the functions f join and fsplit use in
the translation must be appropriate.

In the following, we consider only well-defined transactions.
A concluding remark concerns the relation between standard Beta-binders and

TBeta-binders. Firstly, it is worth noting that if T ∗ = ∅ and t∗ = ε, TBeta-binders
reduce to the standard Beta-binders proposed in [20]. Indeed, concerning the syn-
tax, the Tbeta-binders bio-processes and pi-processes with T ∗ = ∅ and t∗ = ε are
structural congruent to standard bio-processes and pi-processes (this follows from
the structural congruence in TBeta-binders). With regards to the reduction relation,
any Tbeta-binders rule/axiom (with the exception of start t and end t not present
in Beta-binders) when T ∗ = ∅ and t∗ = ε, describes the same behaviour than the
respective rule/axiom in the standard calculus. In particular, the condition Act(B′′)
in the rule redex t may be neglected, as it is always satisfy. Finally, the axioms
start t and end t are not considered, as they are applied only when a transaction
t is introduced. As a consequence of this fact, Tbeta-binders without transactions
may be replaced by standard Beta-binders. This is generally false in the case in
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which a system is modeled by using Tbeta-binders with transactions. Indeed, if
we consider a transition sequence and we blocked it by using a transaction (Tbeta-
binders), we may obtain different results in terms of possible transitions from the
case we use the same sequence but unblocked (standard Beta-binders). If we use
transactions, the transitions following the start action are only internal and have
the precedence over all the other external actions. They are executed one after the
other and may not be interleaved with other actions. On the other hand, in the
case of standard Beta-binders, the transitions of the sequence may be interleaved
with other ones. As a result, it may happen that the sequence starts but does not
complete.

5 Properties

In this section we report some properties of TBeta-binders. In particular we focus
on the atomicity and serializability properties, as they are generally valid criteria
for proving the correctness of the transactions.

First we need to introduce some auxiliary definitions.

• We consider the following set of labels (ranged over by l̃1, l̃2, ...):

L̃ = L ∪ {t : start, t : end} ∪ {t : α|α ∈ L}

where L = L
′

∪ L
′′

, L′ is {i, h, u, e, I, J, S } and L
′′

= {Ih, Jh}. The label
t : β (where β is end, start or α) indicates that the transition of kind β regards
bio-processes blocked by t.

• We may distinguish two kinds of action with respect to a transaction t:

1. internal transitions w.r.t. t, whose labels are of the form t : α or t : end;

2. external transitions w.r.t. t, whose labels are t : start or α.

• A function ft defined over labels L̃, is introduced to return the transaction in
which a transition is involved. It is defined as:

ft(l̃) =

{t} if l̃ = t : β
∅ otherwise

• B0
γ
−→tBn denotes the transition sequence B0

l̃1
−→tB1

l̃2
−→tB2...

l̃n
−→tBn, with γ =

l̃1 l̃2, ...l̃n. In the particular case the transition sequence represents a transac-
tions, i.e. l̃1 = t : start, l̃n = t : end and ft(l̃i) = {t} for all i, we may use
the notation B0

t
−→tBn. In this notation we consider only the initial and the

final bio-process, all the internal states are not considered. The length of the
transition sequence characterized by γ is defined as:

length(γ) =

1 if γ = l̃
n if γ = l̃1 l̃2....l̃n

• The definitions of serialized and serializable transition sequences proposed
in [5] are modified in order to consider bio-processes:

15



Definition 2. The transition sequence B
γ
−→tB′, with Act(B) = Act(B′) = ∅, is

serialized iff l̃i = t : α or l̃i = (t : start) implies l̃i+1 = t : α or l̃i+1 = (t : end)
for i = 1, ...(n − 1).

The transition sequence B
γ
−→tB′ is serializable, if there exists a permutation

γ′ of γ such that B
γ′

−→tB′ is serialized.

• A final definition concerns the finite derivative of a bio-process.

Definition 3. Given a bio-process B, a finite derivative of B is either B itself
or any bio-process B′ obtained by a finite transition sequence B

γ
−→tB′.

Now some properties are reported. Firstly, two simple facts about transition se-
quences in TBeta-binders are described in the following lemma:

Proposition 1. Given the bio-process B with Act(B) = ∅, for any finite derivative
B′ of B,

(i) there is at most one transaction active in B′;

(ii) there are no nested transactions in B′.

Proof The proposition is proved in the two items below.

(i) We show that Act(B′) = ∅ or Act(B′) = {t} for a given t ∈ T (i.e. the
cardinality of Act(B′) is less than or equal to 1). From the hypotheses B′ is
a finite derivative of B and then by definition B′ = B or there exists γ s.t.
B
γ
−→tB′. If B′ = B by hypotheses we have Act(B′) = Act(B) = ∅. If B′ , B

we prove it by induction on the length of the derivative transition sequence.

Let γ be l̃1 l̃2, ...l̃n and B
l̃1
−→tB1...B(n−1)

l̃n
−→tB′. The length of the sequence is n.

Consider the two cases:

– n = 1. In this case B
l̃1
−→tB′ and l̃1 is either t : start, for a given t, or α.

In the former case Act(B′) = {t} and in the latter Act(B′) = ∅.

– n > 1. By inductive hypothesis on the sequence γ = l̃1 l̃2, ...l̃(n−1), we
have that Act(B(n−1)) = ∅ or Act(B(n−1)) = {t}. In the former case l̃(n)
may be either t : start or α, in the latter case l̃(n) may be either t : α or
t : end. In all the four cases we have that Act(B′) = ∅ or Act(B′) = {t}.

(ii) We show that there are not bio-processes that have sub-terms of the form (B)t

with Act(B) , ∅. In order to prove this it is sufficient to prove that it is not
possible to block an already blocked bio-process. This follows directly from
the axiom t start, that may be applied only if the bio-process is unblocked.

�

Other results useful for the proof of the following theorems are reported in the
Proposition 2.
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Proposition 2. The following facts hold.

(i) Consider B
l̃
−→t2B′ with Act(B) = {t}. If l̃ = t : end then Act(B′) = ∅ otherwise

if l̃ = t : α then Act(B′) = {t}.

(ii) If B
l̃
−→t2B′ with Act(B) = ∅ and l̃ = t : start then Act(B′) = {t}.

(iii) If B
l̃
−→t2B′ with Act(B) = ∅ and ft(l̃) = ∅ then Act(B′) = ∅.

(iv) Given a bio-process B such that Act(B) = ∅ and given the transaction se-

quence B
l̃1
−→tB1

l̃2
−→tB2...

ln
−→tBn with l̃1=t:start and l̃n=t:end then Actt(Bi) = {t}

for i = 1, ...(n − 1) and l̃i = t : α for i = 2, ...(n − 1) and Act(Bn) = ∅.

Proof The proof of each point follows.

(i) If l̃ = t : end the resulting bio-process is unblocked and therefore Act(B′) =

∅. In the case l̃ = t : α, the action is internal w.r.t. to t and Act(B′) = {l}.

(ii) If l̃ = t : start the resulting bio-process is blocked and therefore Act(B′) =

{t}.

(iii) In this case the action is external w.r.t. to each transaction and therefore
Act(B′) = ∅.

(iv) From the rule redex t, the actions involving transactions have the precedence
over the other ones. Therefore l̃i = t : α for i = 2, ...(n − 1). From the first
point, Actt(Bi) = {t} for i = 1, ...(n − 1) and Act(Bn) = ∅ follow.

�

The next two theorems concern the atomicity and the serializability of biolog-
ical transactions.

Theorem 1. (Atomicity) Consider the bio-process (B1)t, with t well-defined and
Act(B1) = ∅. Let Bn be the bio-process obtained by the finite transition sequence
(B1)t γ−→tBn with ft(l̃i) = {t} for each l̃i ∈ γ, and Act(Bn) = ∅. Then for each S with
Act(S ) = ∅ (B1)t ‖ S

γ
−→tBn ‖ S .

Proof Let consider (B1)t ‖ S . Since by hypothesis Act(S ) = ∅ and Act((B1)t) = {t}
then, from rule redex t, the actions involving (B1)t have the precedence over all the
other actions. In particular, as all the actions in γ are involved in the transaction t
and S is unblocked, the actions in γ have the precedence over the ones involving
S . As a consequence, from (B1)t γ−→tBn we have that (B1)t ‖ S

γ
−→tBn ‖ S . �

Theorem 2. (Serializability) Given B
γ
−→tB′ with Act(B) = Act(B′) = ∅, it is serial-

ized.

Proof The proof is by induction on the length of the transition sequence B
γ
−→tB′.

Let n be the length of the sequence, we have the following cases.
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1. If n = 1 then B
l̃
−→tB′ and the property vacuously satisfied.

2. If n > 1 then B
l̃1
−→tB1

l̃2
−→tB2...B(n−1)

l̃n
−→tB′. If ft(l̃i) = ∅ for i = 1, ..., n then the

condition is vacuously satisfied. Otherwise, let be k the first index for which
ft(l̃k) , ∅. If k > 1 then by inductive hypothesis, the transition sequence

B(k−1)
γ′

−→tB′, with γ′ = l̃k l̃(k+1)...l̃n, is serialized. Also the transition sequence

B
γ′′

−−→tB(k−1) with γ′′ = l̃1 l̃(2)...l̃(k−1) is serialized. Therefore B
γ
−→tB′ is serial-

ized. Finally, if k = 1 then l̃1 = t : start, l̃n = t : end and from the third
point of Proposition 2, l̃i = t : α for i = 2, ...(n − 1) and therefore B

γ
−→tB′ is

serialized.

�

Note that the condition Act(B′′) = ∅ in the rule redex t is a sufficient condition
to guarantee the properties above. If this condition is not considered, weaker prop-
erties are satisfied. In particular serializability is still valid, but atomicity is not still
guaranteed.

Specifically, consider the reduction relation −→t2 where the rule redex t in the
reduction relation −→t is replaced by the following rule:

(redex t2)
B−→t2B′

B ‖ B′′−→t2B′ ‖ B′′

The new reduction transition system is TS R2 = (B,−→t2).
In this case two transactions involving any two actions (not in the same trans-

action) are permutable:

Lemma 1. If B
l̃1
−→t2B′

l̃2
−→t2B′′, with ft(l̃1) = {t}, ft(l̃1) , ft(l̃2) and l̃1 , t : end then

there exists B′′′ such that B
l̃2
−→t2B′′′

l̃1
−→t2B′′.

Proof By hypothesis, l̃1 is either t : start or t : α. We consider the latter case,
the former is similar. As l̃1 = t : α, than there exists a sub-term (B1)t1 of B and a

sub-term (B′1)t1 of B′ s.t. (B1)t1
l̃1
−→ (B′1)t1 . Secondly, since ft(l̃1) , ft(l̃2) the label

l̃2 refers either to a transaction different from t1 or to a transition not involving
transactions. Furthermore, there exists a process B2, sub-term of B′, and a process

B′2, sub-term of B′′ such that B2
l̃2
−→ B′2.

From the previous observations, it is inferred that B ≡ (B1)t1 ‖ B2 ‖ B3, B′ ≡
(B′1)t1 ‖ B2 ‖ B3 and B′′ ≡ (B′1)t1 ‖ B′2 ‖ B3, for some bio-process B3. If the rule

(redex t2) is first applied considering B2
l̃2
−→ B′2, we obtain B ≡ B2 ‖ (B1)t∗ ‖

B3
l̃2
−→ B′2 ‖ (B1)t∗ ‖ B3 and finally we derive the following transition sequence:

B
l̃2
−→ B′2 ‖ (B1)t∗ ‖ B3

l̃1
−→ B′2 ‖ (B′1)t∗ ‖ B′2 ≡ B′′. The process B′2 ‖ (B1)t∗ ‖ B3 is

the process B′′′ which we are looking for. �

Now we can give the following result for the atomicity and the serializability.
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Theorem 3. Let B
γ1
−−→t2B′ a transition sequence such that Act(B) = ∅.

(i) If Act(B′) = ∅ then there exists a permutation γ2 of γ1 s.t. B
γ2
−−→t2B′ is serial-

ized.

(ii) If Act(B′) = {t} then there exist γ2 and γ3 s.t. for each l̃ ∈ γ3 then ft(l̃) = {t},
γ2γ3 is a permutation of γ1 and B

γ2
−−→t2B′′

γ3
−−→t2B′ where Act(B′′) = ∅.

(iv) Atomicity is not guaranteed.

Proof The proof of each item follows.

(i) Let be γ1 = l̃1 l̃2....l̃n with n ≥ 1 and B
l̃1
−→t2B1

l̃2
−→t2...

l̃n
−→t2B′. We have to show

that there exists a permutation γ2 = l̃′1 l̃′2 l̃′3....l̃
′
n of γ1 such that B

γ2
−−→t2B′ is

serialized. The proof is by induction on the length of the transition sequence.
Let n be the length of the transition sequence, we consider the two cases:

1. If n = 1, the only possibility is that γ1 = l̃1 and ft(l̃1) = ∅ and it is
obviously serialized.

2. If n > 1, we have two possibilities:

– If ft(l̃1) = ∅, from the third point in Proposition 2 we have that
Act(B1) = ∅. By applying the inductive hypothesis we obtain that

B1
γ′1
−−→t2B′ is serialized, with γ′1 a permutation of l̃2 l̃3...l̃n. Therefore

B1
l̃2
−→t2B2

l̃3
−→t2...

l̃n
−→t2B′ is serialized and γ2 = l̃1γ′1 is the permuta-

tion of γ1 we are looking for.
– If ft(l̃1) , ∅ we have two cases.
∗ The first possibility is ft(l̃i) , ∅ for each l̃i ∈ γ1. since by

hypothesis Act(B) = Act(B′) = ∅ we have that l̃1 = t : start,
l̃n = t : end and the other labels are l̃1 = t : α, for some α.
Therefore B

γ1
−−→t2B′ is serialized and γ2 = γ1.

∗ The second possibility is when there exists at least one label
not involved in a transaction. Let k be the first index for which
the condition ft(l̃k) = ∅ is satisfied. By applying Lemma 1
more times we may move the transition with label l̃k to the
first position and so we may apply the inductive hypothesis on
the rest of the transition sequence, as seen above.

(ii) This proposition is proved by induction on the length of the transition se-
quence. The complete proof is not reported as similar to the one of the
proposition above. It is worth noting that in the case n = 1 we have that
B′′′ = B and γ2 reduced to the empty sequence. This is also the case when
all the transitions are involved in a transaction. The general case is obtained
by applying Lemma 1 to move all the transitions not involved in transactions
to the first positions.

(iii) From the rule (redex t2) the actions involved in transactions have no prece-
dence over the other ones and they may interleave the standard ones. As a
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consequence, it may happen that a transaction starts but does not complete.
This is for instance the case in which there is a reversible reaction modeled
by a join (for the forward direction) and a split (for the inverse direction).
In this case a transaction can start, but after that we may have a (infinite)
sequence of join and split describing the reversible reaction.

�

6 Stochastic Beta-binders with biological transactions

In this section we present the stochastic extension of TBeta-binders. As in [11],
we consider Gillespie as reference algorithm, but other ones could be considered
as well. Since transactions represent reactions with more than two reactants, an
extended version of Gillespie approach is necessary [24].

With respect to TBeta-binders, the change in the syntax consists in the replace-
ment of the prefixes πT ∗ with (πT ∗ , r), where r is ∞ (i.e. the associated action
is immediate) or a positive real number that corresponds to the parameter of an
exponential distribution that drives the dynamic behaviour of the system. In the
semantics, we need to do some changes in the definition of labels, in the auxiliary
functions and in the axioms/rules proposed in [11] and add new elements. To better
represent the start axiom, a derived operator � is introduced. The multi bio-process
n � B, where n ∈ N is the multiplicity of the bio-process B, represents the parallel
composition of n bio-processes congruent to B. A definition of �-standard form

follows (hereafter, we write
n∏

i=1

Bi for the parallel composition of n bio-processes).

Definition 4. A bio-process B is in �-standard form if it is Nil or B ≡
n∏

i=1

ni � Bi,

with n ≥ 1 where

• Bi . B j ∀i , j

• Bi ≡ (Bi[Pi])t∗ and ni ≥ 1, ∀i = 1, ..., n.
n∏

i=1

Bi is the parallel composition of n bio-processes. We have the following

result:

Proposition 3. Every bio-process B is structural congruent to a �-standard form.

Proof The proof is by structural induction over bio-processes. Let’s consider the
three possible cases.

• Case B = Nil. B is in a �-standard form by definition.

• Case B = (B[P])t∗ . In this case B ≡ 1 � (B[P])t∗ , that is a �-standard form.

• Case B = B1 ‖ B2. By inductive hypothesis on B1 and B2 we have that

B1 ≡

n1∏
i=1

ki � B1i and B2 ≡

n2∏
j=1

l j � B2 j. In order to obtain a �-standard

form congruent to B we apply the following procedure:
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B1 . B2 ::=
(B[P])t∗ ‖ B1 . Nil = B1 . 1 � (B[P])t∗

(B[P])t∗ ‖ B1 . (
n∏

i=1

ni � Bi) =

B1 . (
n∏

i=1

n′i � Bi) with n′k = nk + 1, n′i = ni ∀i , k

if ∃k ∈ [1, ..., n] with (B[P])t∗ ≡ Bk

B1 . (
n+1∏
i=1

ni � Bi) with Bn+1 = (B[P])t∗ and nn+1 = 1 otherwise

Nil . B2 = B2

Table 9: The definition of the operator . .

– Let n′1 be the number of bio-processes B1i not structural congruent to
any B2 j. For each of these bio-processes, consider the term B12h =

ki � B1i, for appropriate i, h = 1, .., n′1.

– Similarly, let n′2 be the number of bio-processes B2 j not structural con-
gruent to any B1i. For each of these bio-processes consider the term
B12h = l j � B2 j, for appropriate j and h = (n′1 + 1), ..., (n′1 + n′2).

– Let n′3 be the number of bio-processes present in both the standard
forms such that B1i ≡ B2 j, for some i and j. For each bio-process of
this kind, define mh = ki + l j and consider the term B12h = mh � B1i

for appropriate i and h = (n′1 + n′2 + 1), ..., (n′1 + n′2 + +n′3)

Then we have that
n∏

i=1

B12h, with n = n′1 + n′2 + n′3, is in a �-standard form

and B ≡
n∏

i=1

B12h by construction. �

An operator . may be introduced to put a bio-process B into a �-standard form
B′ s.t. B ≡ B′. It is defined in Table 9. Starting from a bio-process B the operator
reduces it to a �-standard form. The final result is obtained when the process on
the left is Nil (there is nothing left to reduce).

The description of auxiliary definitions is reported below.

• The labels in TBeta-binders are replaced by φ = (k′; B; c; nl), with φ ∈ Φ. B
and c are as before. The first component denotes the kind of the reaction but
here more possibilities are given. Indeed k

′

belongs to the set

L̃ = L ∪ {t : start, t : end} ∪ {t : α|α ∈ L}

The element nl is a list, whose elements are couples (ni, κi). The component
κi collects the multiplicity of a given reactant (stoichiometry coefficient) in
a reaction and ni is the number of such reactants in the system. The label
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Inx,t∗ (nil) = 0 Inx,t∗ (P1|P2) = Inx,t∗ (P1) + Inx,t∗ (P2)
Inx,t∗ (!(πT ∗ , r).P) = Inx,t∗ ((πT ∗ , r).P) Inx,t∗ (νy.P) = Inx,t∗ (P) if x , y, 0 otherwise
Inx,t∗ ((πT ∗ , r).P) = 1 if ch(π) = x and (t∗ ∈ act((πT ∗ , r).P) or (T ∗ = ∅ and t∗ = ε)), 0 otherwise
Outxt∗(nil) = 0 Outxt∗(P1|P2) = Outxt∗(P1) + Outxt∗(P2)
Outxt∗(!(πT ∗ , r).P) = Outxt∗((πT ∗ , r).P) Outxt∗(νy.P) = Outxt∗(P) if x , y, 0 otherwise
Outxt∗((πT ∗ , r).P) = 1 if ch(π) = x and (t∗ ∈ act((πT ∗ , r).P) or (T ∗ = ∅ and t∗ = ε)), 0 otherwise

Gx,t∗ (nil) = 0 Gx,t∗ (P1|P2) = Gx,t∗ (P1) + Gx,t∗ (P2)
Gx,t∗ (!(πT ∗ , r).P) = Gx,t∗ ((πT ∗ , r).P) Gx(νy.P) = Gx(P) if x , y, 0 otherwise
Gx,t∗ ((πT ∗ , r).P) = 1 if π = g(x) and t∗ ∈ actT ((πT ∗ , r).P), 0 otherwise
where (G, g) ∈ {(Hide, hide), (Unhide, unhide)}

Table 10: Modified auxiliary functions (first part).

φ contains all the information to calculate the actual rate. Indeed, given nl,
the possible combinations of all the reactants are calculated by using the
function h(nl), from the list nl to N:

h(nl) =

n∏
i=1

(
ni

κi

)
where n ≥ 1 is the length of the list and

∏n
i=1 denotes the usual product (of

numbers). The actual rate ar is calculated as ar = c×h(nl). In addition to the
labels of kind φ we consider here the labels ψ ∈ Ψ. These labels are of the
form = (k′, ar) and contain the actual rate of the action, as calculated above.

• The functions Inx, Outx, Hidex and Unhidex must be modified to take into
account if the action is associated to a transaction or not. In the extended cal-
culus not all the actions are enabled, it depends in which transaction they are
involved or if they are enabled outside transactions. The new functions are
called Inx,t∗ , Outx,t∗ , Hidex,t∗ and Unhidex,t∗ in order to show the dependency
not only from x, but also from t∗. They are described in Tab. 10.

• With relation to the functions to count the bio-processes, the modified func-
tions are reported in Tab. 11.

The semantics is given in terms of structural congruence and reduction rela-
tion. The structural congruence is as defined previously, with the only difference
that in this case the prefixes are enriched with the rates and they must be equal to
have congruence over pi-processes. The reduction relation is the smallest relation
over processes satisfying the rules and axioms given in Tab. 13 and Tab. 14. The la-
beled transition system for the stochastic Beta-binders with transactions is defined
by LTST = (B,Ψ, 7−→) where the auxiliary transition relation −→ts ⊆ B × Φ × B is
used to define the transition relation 7−→ ⊆ B × Ψ × B.

In the following we give a brief description of each rule. Consider Table 12,
in which all the actions describing unimolecular reactions (i.e. only one reactants)
are considered. The rule intra describes the communication inside the box. The
two auxiliary functions Inx,t∗ and Outx,t∗ are used to count the number of firable
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Num((B[P])t∗ ,Nil) = 0
Num((B[P])t∗1 , (B′[P′])t∗2 ||B) = 1 + Num((B[P])t∗1 ||B) if (B[P])t∗1 ≡ (B′[P′])t∗2

Num((B[P])t∗1 , (B′[P′])t∗2 ||B) = Num((B[P])tr1 ||B) if (B[P])t∗1 . (B′[P′])t∗2

Countk(B, B′) = case k in
U : (Num(B, B′))
B : if B ≡ (B1[P1])t∗1 ||B2[P2]t∗2 then (Num((B1[P1])t∗1 , B′),Num((B2[P2])t∗2 , B′))
H : if B ≡ (B[P])t∗ ||(B[P])t∗ then (Num((B[P])t∗ , B′))

M : if B ≡
n∏

i=1

κi � (Bi[Pi]))t∗i then (Num((B1[P1])t∗1 , B′),Num((B2[P2])t∗2 , B′), ....,Num((Bn[Pn])t∗n , B′))

whereU = {i, h, u, e, S , t : i, t : h, t : u, t : e, t : S }
B = {J, I, t : J, t : I}
H = {Jh, Ih, t : Jh, t : Ih}

M = {t : start, t : end}

Table 11: Modified auxiliary functions (second part).

inputs and outputs on the channel x characterized by t∗. The rate rx is the same
for both input and output prefix as in the standard stochastic Beta-binders. The
rule expose, hide, unhide are as in the qualitative case. The functions Hidex,t∗ and
Unhidex,t∗ are used to count the number of hide and unhide binders on x involving
the transaction t∗. The rule split is as usual, with the rate added to the fsplit and
with the appropriate conditions on the transactions. In the Table 13 the actions
that describe bimolecular (two distinct reactants) and homodimeration (two iden-
tical reactants) reactions are reported. In the case of inter and interh the rates are
expressed by the affinity function between the types of the sites involved in the
communication. In the case of join and joinh the rate is associated to the relative
f join. Table 14 reports the axioms start ts, end ts and the rule redex ts, struct ts
and fin ts. The axiom start ts describes the start of a transaction t. The process
B is represented in the �-standard form. The parameter κi is the stoichiometry of
the reactant of kind i and the bio-process Bi[P] represents the process describing
that reactant. A transaction describes a reaction with N =

∑n
i κi reactants, among

which n are distinct. Concerning the quantitative information contained in the la-
bels, cs is the basal rate of the reaction and nl contains the number of processes of
a given kind. The actual rate may be calculated by using the label information as
cs×h(nl). The axiom tend ts describes the end of a transaction. The rate is reported
in the relative fend. In the rule redex ts Act(B′′) = ∅ is added to guarantee that the
actions inside the transaction have priority over the external ones. Four cases are
considered, according to the kind of the action k′. For each of them is said how
to update the list nl′ by considering the bio-processes in the system. The set U
is equal to {i, h, u, e, S , t : i, t : h, t : u, t : e, t : S }, all actions involving only one
bio-process. The sets B = {J, I, t : J, t : I} and H = {Jh, Ih, t : Jh, t : Ih} represent
the actions involving two bio-processes, different or equal (up to ≡), respectively.
Finally the set M = {t : start, t : end} contains the start and end actions, that
generally involve more elements. The rule struct ts is the standard rule with the
possibility to deal with transaction. The last rule fin ts describes how the system
finally reduces at each step. The premise collects the quantitative information in its
label φ = (l, rb, nl). The conclusion describes the same relation, but its label gives
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(intra ts)
P ≡ νũ ((xT ∗1 (w), rx). P1 | (xT ∗2 z, rx). P2 | P3)

B ≡ (B[P])t∗ k′;B;rx×nI×nO;[(1,1)]
−−−−−−−−−−−−−−−→ts(B[νũ (P1{z/w} | P2 | P3)])t∗

provided that nI = 1 + Inx,t∗ (P3), nO = 1 + Outx,t∗ (P3) and

either (t∗ = t ∈ T ∗1 ∩ T ∗2 and k′ = t : i) or (t∗ = ε and T ∗1 = T ∗2 = ∅ and k′ = i) holds

(expose ts)
P ≡ νũ ((exposeT ∗ (x, Γ), rx). P1 | P2)

B ≡ (B[P])t∗ k′;B;rx;[(1,1)]
−−−−−−−−−→ts(B β(y : Γ) [νũ (P1{y/x} | P2)])t∗

y < ũ, y < sub(B) and y < Γ and x < f n(P2) and

provided that either (t∗ = t ∈ T and k′ = t : e) or (t∗ = ε and T = ∅ and k′ = e)

(hide ts)
P ≡ νũ ((hideT ∗ (x), rx). P1 | P2)

B ≡ (β(x : Γ) B∗[P])t∗ k′;B;rx×nH ;[(1,1)]
−−−−−−−−−−−−→ts(βh(x : Γ) B∗[νũ (P1 | P2)])t∗

provided that either (t∗ = t ∈ T ∗ and k′ = t : h) or (t∗ = ε and T = ∅ and k′ = h) and

x < ũ and nH = 1 + Hidex,t∗ (P2)

(unhide ts)
P ≡ νũ ((unhideT ∗ (x), rx). P1 | P2)

B ≡ (βh(x : Γ) B∗[P])t∗ k′;B;rx×nU ;[(1,1)]
−−−−−−−−−−−−→ts(β(x : Γ) B∗[νũ (P1 | P2)])t∗

provided that either (t∗ = t ∈ T and k′ = t : u) or (t∗ = ε and T = ∅ and k′ = u) and

x < ũ and nU = 1 + Unhidex,t∗ (P2)

(split ts) B ≡ (B[P1 | P2])t∗ k′;B;cs;[(1,1)]
−−−−−−−−−→ts(B1[P1σ1] ‖ B2[P2σ2])t∗

provided that fsplit(B, P1, P2,T ∗) = (B1,B2, σ1, σ2,T ∗, cs)

and either(t∗ = t ∈ T ∗ and k′ = t : S ) or (t∗ = ε, T ∗ = ∅, k′ = S ) holds

Table 12: Stochastic TBeta-binders. Axioms and rules for the reduction relation
(part 1).
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(inter ts)
P = νũ ((xT ∗1 (w), rx). P1 | P2) Q = νṽ (yT ∗2 z, ry).Q1 | Q2)

B ≡ (B1[P] ‖ B2[Q])t∗ k′;B;α(Γ,∆);[(1,1),(1,1)]
−−−−−−−−−−−−−−−−→ts(B1[P′] ‖ B2[Q′])t∗

provided that C1 holds and

either (t∗ = t ∈ T1 ∩ T2 and k′ = t : I) or (t∗ = ε and T ∗1 = T ∗2 = ∅ and k′ = I)

(interh ts)
P = νũ ((xT ∗1 (w), rx). P1 | (yT ∗2 z, ry). P2 | P3)

B ≡ (B[P] ‖ B[P])t∗ k′;B;α(Γ,∆);[(2,2)]
−−−−−−−−−−−−−→ts(B[Q1] ‖ B[Q2])t∗

provided that C2 holds and

either (t∗ = t ∈ T1 ∩ T2 and k′ = t : Ih) or (t∗ = ε and T ∗1 = T ∗2 = ∅ and k′ = Ih)

(join ts) B ≡ (B1[P1] ‖ B2[P2])t∗
k′;B;c j;[(1,1),(1,1)]
−−−−−−−−−−−−−→ts(B[P1σ1 | P2σ2])t∗

provided that f join(B1,B2, P1, P2,T ∗) = (B, σ1, σ2,T ∗, c j) and B1[P1] . B2[P2] and

and either (t∗ = t ∈ T ∗ and k′ = t : J) or (t∗ = ε and T ∗ = ∅ and k′ = J)

(joinh ts) B ≡ (B[P] ‖ B[P])t∗
k′;B;c j;[(2,2)]
−−−−−−−−−→ts(B′[P1σ1 | P2σ2])t∗

provided that f join(B,B, P1, P2,T ∗) = (B′, σ1, σ2,T ∗, c j) and

and either (t∗ = t ∈ T ∗ and k′ = t : Jh) or (t∗ = ε and T ∗ = ∅ and k′ = Jh)

Table 13: Stochastic TBeta-binders. Axioms and rules for the reduction relation
(part 2).
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(start ts) B
t:start;B1;cs;[(κ1,κ1),(κ2,κ2),...(κn,κn)]
−−−−−−−−−−−−−−−−−−−−−−−−−→ts(B)t

provided that fstart(B, t) = ((B)t, cs)

and B ≡ B1 =

n∏
i=1

κi � Bi and Act(B) = ∅

(end ts) (B)t t:end;B;ce;[(κ1,κ1),(κ2,κ2),...]
−−−−−−−−−−−−−−−−−−−→ts(B)

with fend((B)t) = (B, ce)

and B ≡
n∏

i=1

κi � Bi

(redex ts)
B

k′;B1;c;nl
−−−−−−→tsB′

B ‖ B′′
k′;B1;c;nl′
−−−−−−−→tsB′ ‖ B′′

provided that Act(B′′) = ∅ and

Case k′ ∈ U : if nl = [(n1, 1)] and countk′ (B1, B′′) = (n′1) then nl′ = [(n1 + n′1, 1)]

Case k′ ∈ B : if nl = [(n1, 1), (n2, 1)] and countk′ (B1, B′′) = (n′1, n
′
2)

then nl′ = [(n1 + n′1, 1), (n1 + n′1, 1)]

Case k′ ∈ H : if nl = [(n1, 2)] and countk′ (B1, B′′) = (n′!) then nl′ = [(n1 + n′1, 2)]

Case k′ ∈ M : if nl = [(n1, κ1), (n1, κ2), ..., (nn, κn)] and countk′ (B1, B′′) = (n′1, n
′
2, ..., n

′
n) then

nl′ = [(n1 + n′1, κ1), (n2 + n′2, κ2), ..., (nn + n′n, κn)]

(struct ts)
B1 ≡ B′1 B′1

φ
−→tsB2

B1
φ
−→tsB2

(fin ts)
B1

(k′;B1;c;nl)
−−−−−−−−→tsB2

B1
(k′;c×h(nl))
7−−−−−−−−→B2

Table 14: Stochastic TBeta-binders. Axioms and rules for the reduction relation
(part 3).
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explicitly the speed of the transition. This is calculated by the information given in
the label of the premise.

6.1 Rates

A point that remains to investigate is how to associate the rates with each single
step that is used to model the reactions. Since in this work we refer to Gillespie,
the idea is to define the rates in such a way that the actual rate associated to the
start action represents the actual rate of the reaction. Therefore, the global rate of
the reaction is associated to the start prefix of the transaction and ∞ is assigned to
all the other prefixes in the processes related to the transaction. In this way the the
start action describes the start of the reactions and all the other actions follow as
immediate.

It is worth noting that the simulation algorithm for Beta-binders must be ex-
tended in order to consider transactions. Since internal actions happens in a defined
sequence (at least in the application we considered) and are immediate, it is possi-
ble to neglect them and simplify the algorithm. These aspects are not considered
here as out of the purposes of this work.

7 Examples

In this section some simple examples are reported to see how TBeta binders are
used to model reactions.

7.1 Translation of multiple-reactant multiple-product reactions

Consider a generic reaction R composed of nr reactants, np products and nm modi-
fiers, with nr + nm > 2 and/or np + nm > 2, described by a rate r:

A1 + ... + Anr + M1 + ... + Mnm

r
−→ B1 + ... + Bnp + M1 + ... + Mnm

The following approach must be followed.

• If there are further biological information on the reaction, we may decom-
pose the reactions into elementary steps as it happens in reality.

• If further information are not available and steps are unknown, we can trans-
late the reaction into TBeta-binders in the following way:

– 1 start action to block the bio-processes involved. It is described by a
fstart and the associated basal rate is c, obtained from r by some simple
relations.

– (nr + nm − 1) joins to merge the reactants and (np + nm − 1) splits in
order to get the products. Each of them is associated to a rate∞;

– 1 end action to unblock the product-bio-processes, with rate∞.

Globally we need (nr + 2nm + np) definitions of instance of functions.
It is worth noting that we may applied TBeta-binders also in the former case,

if we want the reaction does not stop at intermediate steps.
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As an example, let consider the case of the three-reactant one-product reaction
R1 + R2 + R3 → P. It may be modeled in TBeta-binders by two joins with the
addition of one start and one end for the transaction. The start and the end actions
are described by the functions fstart and fend:

fstart(B1 ‖ B2 ‖ B3, tR) = ((B1 ‖ B2 ‖ B3)tR)

fend((BP)tR) = (BP)

where B1 = β(x1 : Γ1) B1[P1], B2 = β(x2 : Γ2) B2[P2], B2 = β(x3 : Γ3) B2[P2]
and BP = BP[PP] are the bio-processes representing the three reactants and the
product. The elements β(xi : Γi) for i = 1, 2, 3 are the beta-binders of the three
reactants involved in the reaction. A possible definition of fstart is:

λB1B2B3tr. if (B1 = β(x1 : Γ1) B1[P1] and B2 = β(x2 : Γ2) B2[P2] and
B3 = β(x3 : Γ3) B3[P3])

then ((B1 ‖ B2 ‖ B3)tr )
else ⊥

The conditions are only on the beta-binders, as no pi-processes are involved in
the transaction. Two joins have to be defined to model the reaction and they
both refer to elements blocked by the transaction tR. The first join, described
by f join1, represents the formation of the element complex(R1,R2) composed of
the first two reactants R1 and R2. The complex is represented by the bio-process
Bcomplex(R1,R2)[P1σ1|P2σ2], where Bcomplex(R1,R2) = β(xcomplex(R1,R2) : Γcomplex(R1,R2)).
The second join, described by f join2, represents the merge between the the third re-
actant R3 and the complex(R1,R2). The result is the bio-process for the product of
the reaction. The two functions f join1 and f join2 are respectively:

f join1(BR1 ,BR2 , P1, P2, {tR}) = (Bcomplex(R1,R2), σ1, σ2, {tR});

f join2(Bcomplex(R1,R2),BR3 , P12, P3, {tR}) = (BP, σ3, σ4, {tR}).

The functionsσ1, σ2 σ3, σ4 are substitution functions, {tR} is the set of transactions
in which the join may applied, P12 = P1σ1|P2σ2.

A reduction of the system S = B1 ‖ B2 ‖ B3 ‖ S ′, with Act(S ′) = ∅, is:

B1 ‖ B2 ‖ B3 ‖ S ′
tR:start
−→ (B1 ‖ B2 ‖ B3)tR ‖ S ′

tR:J
−→ (complex(R1,R2) ‖ R3)tR ‖ S ′

tR:J
−→ (BP)tR ‖ S ′

tR:end
−→ BP ‖ S ′

The quantitative case is translated similarly, the only difference is the addition of
rates.

7.2 The citric acid cycle

This model is from KEGG (Kyoto Encyclopedia of Genes and Genomes) metabolic
pathway database [13, 1]. It regards the citric acid cycle, also known as the Krebs
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cycle or tricarboxylic acid cycle. This cycle is a fundamental metabolic pathway
involving enzymes essential for energy production through aerobic respiration and
is also an important source of biosynthetic building blocks used in other processes
as for instance the amino acid and the fatty acid biosyntheses. Only qualitative
data are given and eventual further quantitative information could be searched in
the literature or databases.

The model consists of a series of chemical reactions of central importance in all
living cells that involves a lot of proteins, molecules and enzymes. The citric acid
cycle takes place in mitochondria where it oxidizes acetyl-CoA, derived not only
from glycolysis but also from the oxidation of fatty acids. An acetyl-CoA molecule
enters the cycle interacting with oxaloacetate to create citrate, for which the sub-
sequent cycle of reactions is named. Acetyl-CoA is oxidized gradually by a chain
of reactions. Citrate serves as a substrate for a series of distinct enzyme-catalyzed
reactions that occur in sequence and proceed with the formation of intermediate
compounds, including Succinate, Fumarate, and (S)-Malate. Malate is converted
to Oxaloacetate, which in turn reacts with yet another molecule of acetyl-CoA, thus
producing citric acid and the cycle begins again.

As the cycle proceeds the intermediates are oxidized, transferring their en-
ergy to create high-energy electrons in the form of NADH (reduced nicotinamide
adenine dinucleotide) or FADH2 (reduced flavin adenine dinucleotide) and one
molecule of ribonucleotide GTP (guanosine triphosphate). The former ones are
coenzymes (molecules that enable or enhance enzymes) that store energy and are
passed to a membrane-bound electron-transport chain to produce H20, the latter
produces ATP. The oxidation of the metabolic intermediates of the pathway also
releases two carbon dioxide molecules for each acetyl-CoA that enters the cycle,
leaving the net carbons the same with each turn of the cycle. This carbon dioxide
is the one of the sources of CO2 released into the atmosphere when you breathe.

A schematic representation of the citric acid cycle is reported in figure 1. Here
only the main reactions and the main species involved are reported. The species
inside the square brackets are the enzymes involved in the reactions, the other ones
are the reactants and products of the reactions of the cycle.

7.2.1 The translation of the model into Beta-binders

Initial System. Each species is represented by the respective bio-process with one
beta-binders representing the interaction capabilities of the element. For in-
stance, the element citrate is represented by the following bio-process:

BCitrate = β(xCitrate : {rCitrate})[nil]

The only pi-process used is nil. Indeed the model gives a high level of ab-
straction and for representing the reactions of the model we use only joins
and splits. The other species are translated similarly. The initial system may
be given by the bio-processes representing the enzymes, Acetyl-CoA and
Oxaloacetate:

S = BOxaloacetate ‖ BAcetyl−Coa ‖ BCS ‖ BID ‖ BA ‖ BS D ‖ B2HD ‖ BS CS ‖ BF

The enzymes are denoted by the initial of the names in capital letter. So,
for instance, the bio-process BCS represents the enzyme Citrate Synthase.
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Figure 1: Schematic view of the citric acid cycle

The bio-processes BOxaloacetate and BAcetyl−Coa represent Oxaloacetate and
Acetyl-Coa, respectively. For simplicity we consider only an element for
each species.

Reactions. Each reaction is rendered by a set of suitable joins and splits. We
consider here biological transactions to represent each reaction atomically.
The translation of the main reactions follows.

• The first kind of reaction is the enzymatic reaction with one reactant,
one modifier and one product. It is translated by using a start action to
block the bio-process involved, followed by a join and a split. Finally,
an end action unblocks the bio-processes returning the final products.
All the reactions with the exception of two cases are of this kind. We
show how to translate one, the others are dealt in the same way. We
consider the reaction:

Fumerate + FH → (S ) − Malate + FH

where FH stays for Fumerate Hydratase. Fumarate undergoes a hy-
dration catalyzed by Fumarate Hydratase to produce S-Malate. Let be
BF , BFH and BS M the bio-processes representing Fumerate, Fumerate
Hydratase and S-Malate respectively. The start of the reaction blocks
the element BF and BFH and it is described by a function fstart(BF ‖

BFH , t1) = ((BF ‖ BFH)t1). The name t1 indicates the transaction.
One join is used to represent the formation of the intermediate ele-
ment complex( f umerate, f umerate hydratase) described by the bio-
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process Bc(F,FH). The respective f join is:

f join(BF ,BFH , nil, nil, {tF}) = (Bc(F,FH)id, id, {t1})

where BF = β(xF : {rF}), BFH = β(xFH : {rFH}) and Bc(F,FH) = βxc(F,FH) :
{rc(F,FH)} are the binders of the bio-processes involved and id represents
the identity function. A split is used to get the products and it is de-
scribed by:

fsplit(Bc(F,FH), nil, nil, {tF}) = (BS M,BFS , id, id, {t1})

where BS M = β(xS M : {rS M}) is the binder of the product ((S )−Malate)
Finally the fend to unblock the bio-process is defined as fend((BS M ‖

BFH)t) = (BS M ‖ BFH).

• The second kind of reaction is described by two reactants, two products
and one modifier and in the model it is represented by the reaction:

acetyl −CoA + Oxoloacitate + CS → CoA + Citrate + CS

where CS stays for Citrate Synthase. Acetyl-CoA interacts with Ox-
aloacetate to form Citrate and CoA. The reaction is translated by using
one start to block the bio-processes representing the reactants and the
modifier, two joins to form the intermediate complex, two splits to get
the products and one end to unblock the elements. The definitions of
the functions are not reported, as similar to the ones above.

• The last kind of reaction is represented by:

Oxolossucinate + ID→ 2 − Oxo − glutarate + CO2 + ID

where ID stays for Isocitrate Dehydrogenase. This enzyme catalyzes
the reaction from Oxalosuccinate to CO2 and 2-Oxo-glutarate. In this
case it is necessary to define a start, followed by a join and two splits
and finally one end. The definitions are not reported as similar to the
ones above.

In order to represent the whole model it is necessary to define 11 fstart, 11
fend, 12 f join and 13 fsplit. Moreover, we need to give the definition of the
initial system specifying the bio-processes presented initially.

8 Discussion and conclusion

In this paper an extension of Beta-binders with biological transactions is presented.
The aim of this work is to model a sequence of actions representing complex re-
actions, as it were atomic and therefore to represent complex reactions with more
than two reactants or more than two products in a suitable way with binary in-
teractions. Indeed some problems arise when we model these reactions by using
standard Beta-binders (see section 3). Specifically, the main difficulties are the de-
composition of the reaction into elementary reaction, the fact that a reaction can
stop at intermediate steps leading to a deadlock when a reactant misses and the
problem of how to associate the rates at each step. The extended version presented
here is useful to face these problems, as described below.

31



• Concerning the decomposition of the reaction, also in the case of TBeta-
binders the reaction is decomposed into elementary steps. In this case the
order is not important, as the interactions involving the elementary reactions
are internal to the transactions. The relevant actions are the start and the end
of the transactions, the other ones are only auxiliary.

• From the definition of biological transactions given in this work, it follows
that when the transaction starts it completes. Therefore it is not possible that
a reaction stops at the intermediate steps.

• In the case of rates, the global rate of the reaction is associated to the start
action. The other actions follow as immediate and it is not necessary to find
a rate for each elementary step. It is worth noting that the actual rate of the
reactions depends on all the reactants involved.

From the observations above it is clear that TBeta-binders are useful to deal
with complex reactions whose details are unknown. Some observations are due
in the case of quantitative models. First of all, in this work we use the Gillespie
method as the reference stochastic algorithm. We consider the extended version
that consider reactions with more than two reactants, widely used in the simulator
tools. Obviously other stochastic algorithms could be considered.

Last but not least, it is important to observe that the kinetic laws associated to
complex reaction may be different from mass action. Although the interpretation
of models with mass action kinetics for Gillespie algorithm is straightforward [12],
the application of Gillespie (and the use of stochastic versions of Beta-binders and
TBeta-binders) to reactions with kinetic laws different from mass action may give
wrong results [4]. The authors of [4] show that when Gillespie is applied to Hill
kinetics the magnitude of fluctuations is overstimated. In this case the application
of complex kinetic laws in the stochastic context has leaded to errors in noise levels.
In these cases the best solution is to decompose the reaction into the elementary
reactions as it happens in reality. The possible decomposition depends on the kind
of kinetic law.
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