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In this paper we study a system of stochastic differential equations with dissipative non-
linearity which arise in certain neurobiology models. Besides proving existence, unique-
ness and continuous dependence on the initial datum, we shall be mainly concerned
with the asymptotic behaviour of the solution. We prove the existence of an invariant
ergodic measure ν associated with the transition semigroup Pt; further, we identify its
infinitesimal generator in the space L2(H; ν).

Keywords: Stochastic FitzHugh-Nagumo system; Invariant measures; Wiener pro-
cess; Transition semigroup; Kolmogorov operator

1991 MSC : 35K57; 60H15; 37L40

1 Introduction

Since the fundamental work of Hodgkin and Huxley [6], several equations were
proposed to model the behavior of the signal propagation in a neural cell. The
original model was formed by a system of four equations, the first one modeling
how the electric impulses propagate along a long tube (the axon) that we model as
a (normalized) segment (0, 1), while the remaining were concerned with various ions
concentrations in the cell. Later, a more analytically tractable model were proposed
by FitzHugh [5] and Nagumo [10]. In this paper we focus the interest on a stochastic
version of the FitzHugh-Nagumo model. It consists of two variables, the first one,
u, represents the voltage variable and the second one, w, is the recovery variable,
associated with the concentration of potassium ions in the axon. For a thorough
introduction to the biological motivations of this model we refer to Murray [8] or
Keener and Sneyd [7].

Let us consider the equation

∂tu(t, ξ) = ∂ξ (c(ξ)∂ξu(t, ξ)) − p(ξ)u(t, ξ) + f(u(t, ξ)) − w(t, ξ)

+ ∂tβ1(t, ξ), t ≥ 0, ξ ∈ [0, 1],

∂tw(t, ξ) = −αw(t, ξ) + γu(t, ξ) + ∂tβ2(t, ξ),

t ≥ 0, ξ ∈ [0, 1],

(1.1)

where u represents the electrical potential and w is the recovery variable; α, γ, c(ξ)
and p(ξ) are given phenomenological coefficients satisfying the conditions stated
below; β1,β2 are independent Brownian motions; f is a nonrandom real-valued
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function with suitable smoothness properties: in the reduced FitzHugh-Nagumo
system f is a polynomial of odd degree, precisely f(u) = −u(u − 1)(u − ξ1), where
0 < ξ1 < 1 represents the voltage threshold. Problem (1.1) shall be endowed with
boundary and initial conditions. The first one are necessary only for the potential
u(t, ξ) and we assume they are of Neumann type: ∂ξu(t, 0) = ∂ξu(t, 1) = 0; the
initial condition are given, for simplicity, by continuous functions

u(0, ξ) = u0(ξ), v(0, ξ) = v0(ξ)

with u0, v0 ∈ C([0, 1]).
We shall introduce the main assumptions on the coefficients of problem (1.1) that

will be used without stating in the following. For this, it is necessary to introduce
the operator A0 on the space L2(0, 1), defined on D(A0) = {u ∈ H2(0, 1) | ∂ξu(ζ) =
0, ζ = 0, 1} by

A0u(ξ) = ∂ξ (c(ξ)∂ξu(ξ)) , ξ ∈ [0, 1], u ∈ D(A0).

Hypothesis 1.1. The constants α and γ are strictly positive real numbers; the
functions c(ξ) and p(ξ) belong to C1([0, 1]), c = min

[0,1]
c(ξ) > 0 and p = min

[0,1]
p(ξ) > 0.

Further, for ξ1 from the definition of the FitzHugh-Nagumo nonlinearity, it holds

3p − (ξ21 − ξ1 + 1) ≥ 0. (1.2)

There exists a complete orthonormal basis {ek} of L2(0, 1) made of eigenvectors
of A0, such that the {ek} satisfy a uniform bound in the sup-norm, i.e., for some
M > 0 it holds

|ek(ξ)| ≤ M, ξ ∈ [0, 1], k ∈ N. (1.3)

Let β1, β2 be independent Wiener processes on a filtered probability space (Ω, F, Ft, P)
with continuous trajectories on [0, T ] for any T > 0; this means that

βi ∈ C([0, T ]; L2(Ω, L2(0, 1)))

with L(βi(t, ·)) ∼= N(0, t
√

Qi) for suitable linear operators Qi, i = 1, 2 on L2(0, 1).
With no loss of generality we can assume that the operators Qi, i = 1, 2 diago-

nalize on the same basis {ek}. Therefore, there exist sequences λi
k, i = 1, 2, k ∈ N,

of positive real numbers such that

Qiek = λi
kek, i = 1, 2, k = 1, 2, . . . .

Furthermore, we assume that

2
∑

i=1

∞
∑

k=1

λi
k < ∞;

hence TrQi < ∞.
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It is convenient to write (1.1) in an abstract form. To this end we set H =
L2(0, 1) × L2(0, 1) endowed with the inner product

〈(u1, w1), (u2, w2)〉H = γ 〈u1, u2〉L2 + 〈w1, w2〉L2

where 〈·, ·〉L2 is the usual scalar product in L2(0, 1) and γ is the constant from
(1.1). The corresponding norm is denoted by |·|H . We also introduce the space
V = H1(0, 1) × L2(0, 1) with the norm

‖x‖2
V = γ |x1|2H1 + |x2|2L2 .

On the space H we introduce the following operators:

A : D(A) ⊂ H → H, D(A) = D(A0) × L2(0, 1)

A
( u

w

)

=

(

A0u −w
γu −αw

)

(1.4)

and
F : D(F ) := L6(0, 1) × L2(0, 1) → H

F
( u

w

)

=

(

−u(u − ξ1)(u − 1)
0

)

.
(1.5)

In the following, setting X =
( u

w

)

, we rewrite equation (1.1) as

dX(t) = (AX(t) + F (X(t))) dt +
√

QdW (t)

X(0) = x ∈ H
(1.6)

where W (t) = (w1(t), w2(t)) is a cylindrical Wiener process on H and Q is the
operator matrix

Q =

(

Q1 0
0 Q2

)

.

Our first result is an existence and uniqueness theorem for the solution of equa-
tion (1.6).
Theorem 1.1. Let x ∈ D(F ) (resp. x ∈ H). Then, under the assumptions in
Hypothesis 1.1, there exists a unique mild (resp. generalized) solution

X ∈ L2
W (Ω; C([0, T ]; H)) ∩ L2

W (Ω; L2([0, T ]; V ))

to equation (1.6) which depends continuously on the initial condition.
The proof will be given in Section 3. Starting from this result, we can introduce

the transition semigroup Pt : Cb(H) → Cb(H) associated to the flow X(t, ·) defined
in equation (1.6), that is

Ptφ(x) = Eφ(X(t, x)), φ ∈ Cb(H), t ≥ 0, x ∈ H. (1.7)

In Theorem 4.1 we shall prove the existence of an invariant measure for Pt. After
that, we shall prove that the associated Kolmogorov operator N0 is dissipative in
the space Lp(H ; µ) and that its closure is m-dissipative.
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2 Preliminary results

Before we proceed with the analysis of the abstract stochastic equation (1.6) it is
necessary to study the properties of the operators A and F .
Lemma 2.1. Set η = 1

3 (ξ21 − ξ1 + 1); then

Fη
( u

w

)

=

(

f(u) − ηu

0

)

is m-dissipative, that is, it is dissipative and I − Fη maps D(F ) onto H, i.e.,
Rg(I − Fη) = H.

Proof. Let x =
(

u
w

)

, y =
(

v
z

)

∈ H . By definition,

〈F (x) − F (y) − η(x − y), x − y〉H

= γ 〈f(u) − f(v) − η(u − v), u − v〉L2 ≤ γ

(

sup
r∈R

f ′(r) − η

)

|u − v|2L2 .

We note that sup
r∈R

f ′(r) = 1
3 (ξ21−ξ1+1); thus the last term in the previous inequality

vanishes and Fη is dissipative.
Let us show that I − Fη is surjective. In fact, observe that its first component

−f(u) + (η + 1)u a polynomial of degree 3 with positive derivative. Hence it is
invertible. Its second component is the identity and, obviously, invertible. This
concludes the proof.

Remark 2.1. We denote fη the first component of Fη. Setting ξ0 = (1 + ξ1)/3,
fη(u) = f(u) − ηu can be rewritten as

fη(u) = −(u − ξ0)
3 − ξ30 .

Let us introduce the notation Aη = A + η
(

I
0

)

and Fη as above; then we may

rewrite equation (1.6) as

dX(t) = (AηX(t) + Fη(X(t))) dt +
√

QdW (t)

X(0) = x ∈ H
(2.1)

Lemma 2.2. Aη is m-dissipative and in particular, there exist ω1,ω2 > 0 such that

〈Aηx, x〉 ≤ −ω1|x|2H (2.2)

〈Aηx, x〉 ≤ −ω2‖x‖2
V . (2.3)

Proof. First of all, we observe that the operator A0 satisfies the inequality:

〈∂ξ(c ∂ξu), u〉L2 ≤ 0.
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In fact, with c = min[0,1] c(ξ), we have:

∫ 1

0
∂ξ(c(ξ) ∂ξu(ξ))u(ξ) dξ

= c(ξ)u(ξ)∂ξu(ξ)
∣

∣

∣

1

0
−

∫ 1

0
c(ξ)(∂ξu(ξ))2 dξ ≤ −c |Du|2L2 ≤ 0.

Now set p = min
[0,1]

p(ξ) > 0 and ω1 = min {p − η,α}. For x =
(

u
v

)

we have

〈Ax, x〉 ≤ γ〈∂ξ(c ∂ξu), u〉L2 − γ(p − η) |u|2L2 − γ〈u, v〉 + γ〈u, v〉 − α|v|2L2

≤ −γ(p − η)|u|2L2 − α|v|2L2 ≤ −ω1 |x|2H .

This proves (2.2).
As (2.3) is concerned, we have

〈Ax, x〉 ≤ −cγ |Du|2L2 − γ(p − η) |u|2L2 − α |v|2L2 ≤ −ω2(γ |u|H1 + |v|2) = −ω2 ‖x‖2
V

for ω2 = min {c, p − η,α}.
Now let us show the m-dissipativity.We need to prove that I −Aη is surjective.

Fix x0 = (u0, v0) ∈ H and let we consider the following equation
{

u − A0u + v = u0

v − γu + αv = v0.

Note that the second equality can be rewritten as

v =
1

1 + α
v0 +

γ

1 + α
u; (2.4)

then, substituting v with the right member of (2.4) we obtain
[(

1 −
γ

1 + γ

)

I − A0

]

u = u0 −
1

1 + α
v0.

Using the m-dissipativity of A0 and (see for instance [11]) we obtain that previous
equation admits a solution u ∈ L2(0, 1). We can then compute v by means of (2.4).
It follows that for every x0 there exists x = (u, v) such that (I −Aη)x = x0, that is
Aη is m-dissipative.

From the above result it follows that Aη is the infinitesimal generator of a C0

semigroup of contractions. Further, the following holds.
Proposition 2.3. Aη generates an analytic C0-semigroup of contractions etAη on
H and it is of negative type.

Proof. Note that A0 and −αI generate analytic semigroups on L2(0, 1) while γI
is a bounded linear operator on the same space. Thus, the proof easily follows by
applying the results in [9, Section 4]. Moreover, the dissipativity condition (1.2)
implies that

∥

∥etAη
∥

∥ ≤ e−ωt, that is, Aη is of negative type.
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For the moment, we notice that from the above lemmata we obtain the dissipa-
tivity of the sum Aη + Fη.
Lemma 2.4. Recall assumption (1.2), that we can write as

p − η ≥ 0 (2.5)

where p = min
[0,1)

|p(ξ)|. Then Aη + Fη = A + F is dissipative.

Proof. Observe that

〈(A + F )x, x〉 = 〈(Aη + Fη)x, x〉H ≤ −γp|u|2L2 − α|v|2L2 + γη|u|2L2

≤ −min {p − η,α} |x|2H ;

thus the dissipativity condition is satisfied if p ≥ η.

Setting ω = min {p − η,α}, the statement of Lemma 2.4 can be rewritten as

〈(A + F )x, x〉H ≤ −ω|x|2H .

2.1 An approximating problem

In this section we show an existence and uniqueness result for a family of approxi-
mating problems of system (2.1) with a Lipschitz continuous nonlinearity. Consider,
for any ε > 0, the following approximation of Fη, Fη,ε, given as

Fη,ε

(u

v

)

=

(

fη,ε(u)

0

)

, fη,ε(u) =
f(u) − ηu

1 + ε(1 − ξ0(u − ξ0) + (u − ξ0)2)
.

It is easily seen that Fη,ε is Lipschitz continuous and

|Fη,ε(x) − Fη(x)|H → 0, x ∈ L6(0, 1) × L2(0, 1)

when ε→ 0. Moreover it easy to see that

|Fη(x)|H ≤ C(1 + |x|3H), x ∈ D(F ), (2.6)

for suitable C > 0.
Hence, for ε > 0, we are concerned with the family of equations

dX(t) = (AηX(t) + Fη,ε(X(t))) dt +
√

Q dW (t)

X(0) = x ∈ H
(2.7)

which can be seen as an approximating problem of (1.6).
There exists a well established theory on stochastic evolution equations in Hilbert

spaces, see Da Prato and Zabcyck [2], that we shall apply in order to show that for
any ε > 0 Equation (2.7) admits a unique solution Xε(t). Let us recall from Propo-
sition 2.3 that Aη is the infinitesimal generator of a strongly continuous semigroup
etAη , t ≥ 0, on H ; we also claim that the following inequality hold:

∫ t

0
Tr[esAηQesA∗

η ] ds < ∞, ∀t ≥ 0. (2.8)
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(see below). If these properties are satisfied, then the so-called stochastic convolu-
tion process

WAη
(t) =

∫ t

0
e(t−s)Aη

√

Q dW (t)

is a well-defined mean square continuous, Ft-adapted Gaussian process (see [2, The-
orem 5.2]) and we can give the following
Definition 2.5. Given a Ft-adapted cylindrical Wiener process on probability space
(Ω, F, {Ft} , P) a process X(t), t ≥ 0, is a mild solution of (2.7) if it satisfies P-a.s.
the following integral equation

X(t) = etAηx +

∫ t

0
e(t−s)AηFη,ε(X(s)) ds +

∫ t

0
e(t−s)Aη

√

Q dW (t). (2.9)

Let us check that in our assumptions, condition (2.8) holds.
Proposition 2.6. Aη and Q satisfy the following inequality:

sup
t≥0

∫ t

0
Tr[esAηQesA∗

η ] ds < ∞.

Proof. Recall that if S, T are linear operators defined on an Hilbert space H such
that S ∈ L(H) and T is of trace class, then

Tr(ST ) = Tr(TS) ≤ ‖S‖
L(H) Tr(T ). (2.10)

Taking into account the self-adjointness of Aη and the above remark we obtain

Tr[etAηQetA∗

η ] ≤ Tr(Q)
∥

∥etAη
∥

∥

2

L(H)
≤ Tr(Q)e−2ωt,

hence
∫ ∞

0
Tr[esAηQesA∗

η ] ds ≤
∫ ∞

0
Tr(Q) e−2ωs ds < ∞.

Proposition 2.7. The stochastic convolution is P-almost surely continuous on
[0,∞) and it verifies the following estimate

E sup
t≥0

∣

∣WAη
(t)

∣

∣

2m

H
≤ C (2.11)

for some positive constant C.

Proof. Note that for any α ∈ (0, 1) it holds
∫ ∞

0
s−αTr[esAηQesA∗

η ] ds < ∞.

In fact,
∫ ∞

0
s−αTr[esAηQesA∗

η ] ds ≤ Tr(Q)

∫ ∞

0
s−α

∥

∥esAη
∥

∥

2

L(H)
ds

≤ Tr(Q)

∫ ∞

0
s−αe−2ω1s ds < ∞.

Now the thesis follows by ([3, Theorem 5.2.6].
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Definition 2.8. Let L2
W (Ω; C([0, T ]; H)) denote the Banach space of all Ft-measurable,

pathwise continuous processes, taking values in H, endowed with the norm

‖X‖L2
W (Ω;C([0,T ];H)) =

(

E sup
t∈[0,T ]

|X(t)|2H

)1/2

while L2
W (Ω; L2([0, T ]; V )) denotes the Banach space of all mappings X : [0, T ] → V

such that X(t) is Ft-measurable, endowed with the norm

‖X‖L2
W

(Ω;L2([0,T ];V )) =

(

E

∫ T

0
‖X(t)‖2

V dt

)1/2

.

With the above notation, Proposition 2.7 implies that WA(t) ∈ L2(Ω; C([0, T ]; H))
for arbitrary T > 0. Also, from Propositions 2.3 and 2.6 it follows that for ε > 0
the approximating problems admit a unique solution.
Proposition 2.9. Let x ∈ H. Then, for any ε > 0 there exist a unique mild
solution Xε(t, x) to equation (2.7) such that

Xε ∈ L2
W (Ω; C([0, T ]; H)) ∩ L2

W (Ω; L2([0, T ]; V )).

Proof. From [2, Theorem 7.4] we have that for any x ∈ H problem (2.7) has a
unique mild solution Xε(t, x) such that

E sup
t∈[0,T ]

|Xε(t, x)|pH < C(1 + |x|p), p > 2,

which further admits a continuous modification; this proves that Xε ∈ L2
W (Ω; C([0, T ]; H)).

Now, we apply Ito’s formula to the function φ(x) = |x|2 (although this is only for-
mal, the following computations can be justified via a truncation argument) and we
find that

|Xε(t, x)|2 = |x|2 + 2

∫ t

0
〈AηXε(s, x) + Fη,ε(X(s, x)), Xε(s, x)〉 ds

+ 2

∫ t

0

〈

Xε(s, x),
√

QdW (s)
〉

+ Tr(Q) t, (2.12)

where
∫ t

0
〈Xε(s, x),

√

Q dW (s)〉

is a square integrable martingale such that, by [2, Theorems 3.14 and 4.12],

E sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0

〈

Xε(s, x),
√

QdW (s)
〉

∣

∣

∣

∣

≤ 3Tr(Q) E

(

∫ T

0
|Xε(s, x)|2H ds

)

.

Moreover we have
∫ t

0
〈AηXε(s, x), X(s, x)〉ds ≤ −ω2

∫ t

0
‖Xε(s, x)‖2

V ds
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and
∫ t

0
〈Fη,ε(Xε(s, x)), Xη(s, x)〉ds ≤ 0.

Hence, taking the expectation of both members in (2.12) we obtain

E sup
t∈[0,T ]

|X(t, x)|2+ω2E

∫ T

0
‖Xε(s, x)‖2

V ds ≤ |x|2+(6+η)

∫ T

0
E sup

s∈[0,t]
|Xε(s, x)|2H dt.

By Gronwall’s lemma this yields

E sup
t∈[0,T ]

|Xε(t, x)|2H + ω2E

∫ T

0
‖Xε(s, x)‖2

V ds ≤ C(|x|2 + 1). (2.13)

We conclude that Xε ∈ L2(Ω; L2([0, T ]; V )).

3 Existence and uniqueness result

Here we make use of the results given in the last section to show that problem (2.1)
admits a unique solution. Our main result can be stated as follows.
Theorem 3.1. For every x ∈ D(F ) (resp. x ∈ H), there exists a unique mild (resp.
generalized) solution X ∈ L2

W (Ω; C([0, T ]; H)) ∩ L2
W (Ω; L2([0, T ]; V )) to equation

(1.6) which satisfies

E |X(t, x) − X(t, x̄)|2H ≤ C |x − x̄|2H . (3.1)

Proof. As shown in the proof of Proposition 2.9, {Xε}ε≥0 satisfies

E sup
t∈[0,T ]

|Xε(t, x)|2H + ω1E

∫ t

0
‖Xε(s, x)‖2

V ds ≤ C(|x|2 + 1), t ≥ 0.

therefore it is bounded in L2
W (Ω; C([0, T ]; H)) ∩ L2

W (Ω; L2([0, T ]; V )).
We are going to show the following estimates

E

∫ T

0
|fη,ε(Xε(t, x))|2H dt ≤ C, (3.2)

E sup
t∈[0,T ]

|Xε(t, x) − Xλ(t, x)|2H ≤ C(λ+ ε), (3.3)

where we use the same symbol C to denote several positive constants independent
of ε. Using the above results, we conclude that {Xε}ε is a Cauchy sequence on

L2(Ω; C([0, T ]; H)) ∩ L2(Ω; L2([0, T ]; V ))

and, consequently, it converges uniformly on [0, T ] to a process X(t, x).
Step 1. We begin with the continuous dependence on the initial condition. Let

us consider the difference Xε(t, x) − Xε(t, x̄), for x, x̄ ∈ H .
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Note that

dXε(t, x) − dXε(t, x̄)

= Aη [Xε(t, x) − Xε(t, x̄)] dt + [Fη,ε(Xε(t, x)) − Fη,ε(Xε(t, x̄))] dt

hence

|Xε(t, x) − Xε(t, x̄)|2H

= |x − x̄|2 + 2

∫ t

0
〈Aη(Xε(s, x) − Xε(s, x̄)), Xε(s, x) − Xε(s, x̄)〉 ds

+ 2

∫ t

0
〈Fη,ε(Xε(s, x)) − Fη,ε(Xε(s, x̄)), Xε(s, x) − Xε(s, x̄)〉 ds

and therefore

E |Xε(t, x) − Xε(t, x̄)|2H ≤ E |x − x̄|2H − 2ω

∫ t

0
E |Xε(s, x) − Xε(s, x̄)|2H ds.

Applying Gronwall’s lemma we obtain

E |Xε(t, x) − Xε(t, x̄)|2H ≤ e−2ωt |x − x̄|2H . (3.4)

The continuity condition (3.1) easily implies uniqueness of the mild solution on
D(F ) and of the generalized solution on H . Consequently, it only remains to prove
existence.

Step 2. Next, let us consider estimate (3.2). We shall apply Ito’s formula to the
function

φ(x) =

∫ 1

0
gε(u(ξ)) dξ, x = (u(ξ), v(ξ)) ∈ H,

where

gε(r) = −
∫ r

0
fη,ε(s) ds, r ∈ R

+, ε > 0.

It is not difficult to show that, for any x ∈ D(F ),

Dφ(x) =

(

−fη,ε(u)
0

)

and D2φ(x) =

(

−f ′
η,ε(u) 0
0 0

)

,

thus

〈AηXε + Fη,ε(Xε), Dφ(Xε)〉 = −γ 〈∂ξ(c(·)∂ξUε), fη,ε(Uε)〉

+ γ 〈(p(ξ) − η)Uε, fη,ε(Uε)〉 + γ 〈Vε, fη,ε(Uε)〉 − γ |fη,ε(Uε)|2 .

We claim that

f ′
η,ε(u) = −ε

(−1 + 2 (u − ξ0))
(

−(u − ξ0)
3 − ξ0

3
)

(

1 + ε
(

1 − u + (u − ξ0)
2 + ξ0

))2

−
3 (u − ξ0)

2

1 + ε
(

1 − u + (u − ξ0)
2 + ξ0

) (3.5)
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is always negative; then it follows that

−
∫ 1

0
(∂ξc(ξ)∂ξu)fη,ε(u) dξ = −c(ξ)∂ξu(ξ)

∣

∣

∣

1

0
−

∫ 1

0
c(ξ)(∂ξu(ξ))2f ′

ε(u(ξ)) dξ ≤ 0

and, for any σ > 0

〈v, fη,ε(u)〉 ≤ σ |v|2 +
1

σ
|fη,ε(u)|2 .

From the above inequalities it follows that for σ sufficiently large

〈AηXε + Fη,ε(Xε), Dφ(Xε)〉

≤ γσ
(

η + ‖p‖2
L∞([0,1])

)

|Uε|2 + γσ |Vε|2 + γ

(

2

σ
− 1

)

|fη,ε(Uε)|2

≤ −C |fη,ε(Uε)|2 + K |Xε|2

(3.6)

for suitable constants C, K. Further,

Tr(QD2φ(Xε)) = −
∞
∑

k=1

〈

Q1f
′
η,ε(Uε)ek, ek

〉

= −
∞
∑

k=1

λk

∫ 1

0
f ′
η,ε(Uε(ξ))e

2
k(ξ) dξ.

Now we observe that
∣

∣−3(u − ξ0)2 − ε(−ξ0 + 2(u − ξ0))(−(u − ξ0)3 − ξ30)
∣

∣

1 + ε− ξ0ε(u − ξ0) + ε(u − ξ0)2
≤ 4

(

|u − ξ0|2 + ε
)

,

so that for ε sufficiently small, taking into account (3.5) and the uniform bound
condition on the ek stated in assumption (1.3), we have

∣

∣f ′
ε(u(ξ))e2

k

∣

∣ ≤ 4
(

|u(ξ) − ξ0|2 + ε
)

∣

∣e2
k(ξ)

∣

∣

1 + ε− ξ0ε(u(ξ) − ξ0) + ε(u(ξ) − ξ0)2

≤ C
(

|u(ξ) − ξ0|2 + ε
)

≤ C
(

|u(ξ)|2 + 1
)

,

therefore

E

∫ t

0

∣

∣Tr
[

QD2φ(Xε(s))
]
∣

∣ ds ≤ E

∫ t

0
ds

(

∫ 1

0

∞
∑

k=1

λk

∣

∣f ′
η,ε(Uε(s)(ξ))e

2
k(ξ)

∣

∣ dξ

)

≤ C

(

1 + E

∫ t

0
|Xε(s)|2H ds

)

. (3.7)

Estimates (3.6) and (3.7) yield

Eφ(Xε(t, x)) + E

∫ t

0
|fη,ε(Xε(s, x))|2 ds

≤ φ(x) + C

(

1 + E

∫ t

0
|Xε(s, x)|2 ds

)

≤ C,
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and therefore

E

∫ T

0
|fη,ε(Xε(t, x))|2 dt ≤ C,

so that inequality (3.2) is proved.
Step 3. We proceed to estimate (3.3). We observe that

d(Xλ(t, x)−Xε(t, x)) = [Aη(Xλ(t, x) − Xε(t, x)) + Fη,λ(Xλ(t, x)) − Fη,ε(Xε(s, x))] dt.

Hence, using Ito’s formula as before we get

E sup
[0,T ]

|Xλ(t, x) − Xε(t, x)|2

=E

∫ T

0
〈Aη(Xλ(s, x) − Xε(s, x)), Xλ(s, x) − Xε(s, x)〉 ds

+ E

∫ T

0
〈Fη,λ(Xλ(s, x) − Fη,ε(Xε(s, x)), Xλ(s, x) − Xε(s, x)〉 ds

≤− ω2E

∫ T

0
‖Xλ(s, x) − Xε(s, x)‖2 ds

+ E

∫ T

0
〈fη,λ(Uλ(s, x)) − fη,ε(Uε(s, x)), Uλ(s, x) − Uε(s, x)〉 ds.

Now set

hε(u) =
fη,ε(u)

1 + ε− εξ0(u − ξ0) + ε(u − ξ0)2
+

ξ30
1 + ε(1 − ξ0(u − ξ0) + (u − ξ0)2)

=
−(u − ξ0)3

1 + ε(1 − ξ0(u − ξ0) + (u − ξ0)2)
.

We note that, for any u, v,

(hλ(u) − hε(v))(u − v) ≤ (hλ(u) − hε(v))((u + h1/3
λ (u)) − (v + h1/3

ε (v))). (3.8)

In fact,

(hλ(u) − hε(v))(u − v) − (hλ(u) − hε(v))((u + h1/3
λ (u)) − (v + h1/3

ε (v)))

= −(h1/3
λ (u) − h1/3

ε (v))2(h2/3
λ (u) + h1/3

ε (u)h1/3
λ (u) + h2/3

λ (u)) ≤ 0.

Moreover one can compute
∣

∣

∣
u − ξ0 + h1/3

ε (u)
∣

∣

∣
≤ ε |hε(u)| ,

therefore

(hε(u) − hλ(v))(u − v) ≤ (|hε(u)| + |hλ(v)|) (ε |hε(u)| + λ |hλ(v)|)

≤ C(ε+ λ)(|hε(u)|2 + |hλ(v)|2). (3.9)
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Furthermore, we observe that

ξ30

(

−
1

1 + ε− εξ0(u − ξ0) + ε(u − ξ0)2
+

1

1 + ε− εξ0(v − ξ0) + ε(v − ξ0)2

)

(u − v)

= ξ30
−ε(u − ξ0)2 + λ(v − ξ0)2

(1 + ε− εξ0(u − ξ0) + ε(u − ξ0)2)(1 + ε− εξ0(v − ξ0) + ε(v − ξ0)2)
(u − v)

≤ ξ30(ε+ λ)
[

|u − v| + |u − ξ0|2 + |v − ξ0|2 + |u − ξ0|3 + |v − ξ0|3
]

(3.10)

Combining (3.9) and (3.10) we get

(fη,ε(u) − fη,λ(v))(u − v) ≤

C(ε+λ)
(

|hε(u)|2 + |hλ(v)|2 + |u − v| + |u − ξ0|2 + |v − ξ0|2 + |u − ξ0|3 + |v − ξ0|3
)

and, consequently,

E sup
[0,T ]

|Xλ(t, x) − Xε(t, x)|2

≤ E

∫ T

0

∫ 1

0
(fη,λ(Xλ) − fη,ε(Xε))(Xλ − Xλ) dξ dt ≤ C(ε+ λ)

We conclude that there exists the limit X = lim
ε→0

Xε in L2(Ω; C([0, T ]; H)) and,

by (2.13), also that X ∈ L2(Ω; L2([0, T ]; V )). Moreover, estimate (3.4) implies
inequality (3.1).

We conclude the section with another estimate which turns out to be useful
when we will deal with the asymptotic behaviour of the solution.
Lemma 3.2. The following estimate holds

E |X(t, x)|2m ≤ Cm

(

1 + e−mω1t |x|2m
)

, x ∈ H, t ≥ 0.

Proof. Let Y (t) = X(t, x) − WAη
(t). Then

d
dtY (t) = AηY (t) + Fη(Y (t) + WAη

(t)), Y (0) = x.

Observe that

1
2m

d
dt |Y (t)|2m = |Y (t)|2m−2 d

dt |Y (t)|2

≤ −ω1 |Y (t)|2m +
〈

Fη(Y (t) + WAη
(t)), Y (t)

〉

|Y (t)|2m−2

≤ −ω1 |Y (t)|2m +
〈

Fη(WAη
(t)), Y (t)

〉

|Y (t)|2m−2

≤ −ω1 +
∣

∣Fη(WAη
(t))

∣

∣ |Y (t)|2m−1

Hence we conclude that

1
2m

d
dt |Y (t)|2m ≤ −ω1 |Y (t)|2m + C

∣

∣Fη(WAη
(t))

∣

∣

2m
.
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for some C > 0. By Gronwall’s lemma it follows that

|Y (t)|2m ≤ e−mω1t |x|2m + 2mC

∫ t

0
e−mω1(t−s)

∣

∣Fη(WAη
(s))

∣

∣

2m
ds,

so that for some C > 0 (possibly different from the above):

|X(t, x)|2m

≤ C

(

e−mω1t |x|2m +

∫ t

0
e−mω1(t−s)

∣

∣Fη(WAη
(s))

∣

∣

2m
ds +

∣

∣WAη
(t)

∣

∣

2m
)

. (3.11)

Now recall that Fη has polynomial growth (see (2.6)); in particular we have that

∣

∣Fη(WAη
(t))

∣

∣

2m ≤ C
(

1 +
∣

∣WAη
(t)

∣

∣

3
)2m

≤ C(1 +
∣

∣WAη
(t)

∣

∣

6m
).

Moreover, by (2.11), sup
t≥0

E
∣

∣WAη
(t)

∣

∣

2m
< Cm, then

∫ t

0
e−mω1(t−s)

∣

∣Fη(WAη
(t))

∣

∣

2m
ds ≤ C

∫ t

0
e−mω1(t−s)

(

1 +
∣

∣WAη
(s)

∣

∣

6m
)

ds

≤ C

∫ t

0
e−mω1(t−s)

(

1 + C3
m

)

ds ≤ C′
m.

Using the last estimate in (3.11) we conclude the proof.

4 Asymptotic behaviour of solutions

Let Pt : Cb(H) → Cb(H) be the transition semigroup associated to the flow X(t, ·)
defined in equation (1.6), that is

Ptφ(x) = Eφ(X(t, x)), φ ∈ Cb(H), t ≥ 0, x ∈ H. (4.1)

We are ready to prove the main result of the paper.
Theorem 4.1. Under hypothesis 1.1 there exists a unique invariant measure µ for
Pt.

Proof. To discuss the existence of the invariant measure, it will be convenient to
consider equation (1.6) on the whole real line. Therefore we extend the process W (t)
for t < 0 by choosing a process W̃ (t) with the same law as W (t) but independent
of it and setting

W (t) = W̃ (−t), t ≤ 0.

Now, for any λ > 0, denote by Xλ(t, x), t ≥ −λ, the unique solution of

dX = [AηX + Fη(X)] dt +
√

QdW (t)

X(−λ) = x ∈ H.
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Then Xλ satisfies the following integral equation:

Xλ(t, x) = x +

∫ t

−λ
AηXλ(s, x) + F (Xλ(s, x)) ds +

∫ t

−λ

√

Q dW (s).

We note that

X(λ, x) = x +

∫ λ

0
AηXλ(s, x) + F (Xλ(s, x)) ds +

∫ λ

0

√

QdW (s)

= x +

∫ 0

−λ
AηXλ(s, x) + F (Xλ(s, x)) ds +

∫ 0

−λ

√

Q dW (s)

= Xλ(0, x).

Thus, the theorem will be proved once we establish that

lim
λ→∞

L(Xλ(0, x)) = µ

weakly, for some µ ∈ M+
1 (H) and all x ∈ H . As in [2, Theorem 11.21] we will not

prove only this, but we will show that there exists a random variable Y ∈ L2(Ω; F, P)
such that

lim
λ→∞

E |Xλ(t, x) − Y |2 = 0, x ∈ H, (4.2)

and the law of Y is the required stationary distribution.
We first prove that (4.2) is true when x = 0. We put Xλ(t, 0) = Xλ(t). Pro-

ceeding as in Theorem 3.1 we obtain

E |Xλ(t)|2 ≤ −2ωE

∫ t

−λ
|Xλ(s)|2H ds + 2Tr[Q]t

Using Gronwall’s lemma, we have

E |Xλ(t)|2 ≤ (2Tr[Q](t + λ) + |x|2)e−2ω(t+λ) ≤ C, ∀λ > 0, ∀t ∈ [−λ,∞]. (4.3)

We can now prove (4.2). Let γ < λ; then

Xλ(t, 0) = Xγ(t, Xλ(−γ, 0)), t ≥ −γ

and, proceeding as in Theorem 3.1 we obtain an estimate similar to that in (3.4)

E |Xλ(t, 0) − Xγ(t, 0)|2 = E |Xγ(t, Xλ(−γ, 0)) − Xγ(t, 0)|2

≤ e−ω1(t+γ)
E |Xλ(−γ)|2H ≤ Ce−ω1(t+γ). (4.4)

Estimates (4.3) and (4.4) imply that {Xλ(0)}λ≥0 is a bounded Cauchy sequence in

L2
W (Ω; H). Then there exists a random variable Y such that E |Xλ(0) − Y |2H → 0,

as λ→ ∞. Proceeding similarly we show that

lim
λ→∞

E |Xλ(0, x) − Xλ(0)|2 = 0, ∀x ∈ H.

This ends the proof.
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Lemma 4.2. For any φ ∈ Cb(H) and x ∈ H there exists the limit

lim
t→∞

Ptφ =

∫

H
φ(y)µ(dy).

Proof. Set Y = lim
s→−∞

X(0,−s, x) ∈ L2(Ω; H), which exists in virtue of Theorem

4.1. Then
Ptφ(x) = E [φ(X(t, 0, x))] = E [φ(X(0,−t, x))] .

By the dominated convergence theorem it follows that

lim
t→∞

Ptφ(x) = E [φ(Y )] =

∫

H
φ(y)µ(dy).

5 The infinitesimal generator of Pt

Lemma 5.1. For any p ≥ 1 Pt has a unique extension to a strongly continuous
semigroup of contraction in Lp(H, µ) which we still denote by Pt.

Proof. Let φ ∈ Cb(H) and µt be the law of X(t, x). By Holder inequality we have
that

|Ptφ(x)|p ≤ Pt |φ(x)|p .

Integrating this identity with respect to µ over H and taking into account the
invariance of µ, we obtain

∫

H
|Ptφ(x)|p µ(dx) ≤

∫

H
Pt |φ|p (x)µ(dx) =

∫

H
|φ(x)|p µ(dx).

Since Cb(H) is dense in Lp(H, µ), Pt can be uniquely extended to a contraction
semigroup in Lp(H, µ). The strong continuity of Pt follows from the dominated
convergence theorem.

Taking into account the Hille-Yosida’s theorem, from the previous lemma we
deduce that the infinitesimal generator of Pt on Lp(H, µ) (which we denote by N)
is closed, densely defined and it satisfies

|λR(λ, A)| ≤ 1.

We want to show that N is the closure of the differential operator N0 defined by

N0φ =
1

2
Tr[QD2φ(x)] + 〈x, ADφ(x)〉 + 〈F (x), Dφ(x)〉

on EA(H) = linear span
{

φ = e〈x,h〉 | h ∈ D(A)
}

.
We recall that the operator

Lφ =
1

2
Tr[QD2φ(x)] + 〈x, ADφ(x)〉
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is the Ornstein-Uhlenbeck operator and it verifies

|Lφ(x)| ≤ a + b |x| , x ∈ H. (5.1)

(see [1, Section 2.6]).
Then, in order to show that N0 is well-defined as an operator with values in

Lp(H, µ) we need that F (x) ∈ Lp(H, µ). This is provided by the following result.
Lemma 5.2. Under Hypothesis 1.1, there exists cm depending only on Aη and Fη
such that

∫

H
|x|2m

H µ(dx) ≤ cm. (5.2)

Proof. Denote by µt,x the law of X(t, x). Then by lemma 3.2 we have that for any
β > 0

∫

H

|y|2m

1 + β |y|2m µt,x(dy) ≤
∫

H
|y|2m µt,x(dy)

= E |X(t, x)|2m ≤ Cm(1 + e−mω1t |x|2m), x ∈ H.

Consequently, letting t → ∞ we find, taking into account Lemma 4.2,

∫

H

|y|2m

1 + β |y|2m µ(dy) = lim
t→∞

Ptφ(x) = lim
t→∞

∫

H

|y|2m

1 + β |y|2m µt,x(dy)

≤ lim
t→∞

Cm(1 + e−mω1t |x|2m),

which yields (5.2).

Applying formula (2.6) we immediately obtain the following
Corollary 5.3. We have

∫

H
|Fη(x)|2m µ(dx) < ∞. (5.3)

The corollary implies that N0φ ∈ Lp(H, µ) for all φ ∈ EA(H) as required. We
can now show that N0φ = Nφ for all φ ∈ EA(H).
Lemma 5.4. For any φ ∈ EA(H) we have

E [φ(X(t, x))] = φ(x) + E

[
∫ t

0
N0φ(X(s, x)) ds

]

, t ≥ 0, x ∈ H. (5.4)

Moreover φ ∈ D(N) and N0φ = Nφ.

Proof. Equality (5.4) follows easily by applying Itô’s formula. It remains to prove
that EA(H) ⊂ D(N) and N0φ = Nφ. Since it holds that

lim
h→∞

1

h
(Ptφ(x) − φ(x)) = N0φ(x)
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pointwise, it is enough to show that

1

h
(Phφ− φ), h ∈ (0, 1],

is equibounded in Lp(H, µ).
We note that, in view of (5.1) and (5.4), for any x ∈ H we have

|Phφ(x) − φ(x)| ≤
∫ h

0
E [a + b |X(s, x)| + |φ|0 |F (X(s, x))|] ds.

By Hölder’s inequality we find that

|Phφ(x) − φ(x)|p ≤ hp−1

∫ h

0
E [a + b |X(s, x)| + |φ|0 |F (X(s, x))|]p ds

≤ cph
p−1

∫ h

0
E [a + b |X(s, x)|]p ds + cph

p |φ|p0
∫ h

0
E |F (X(s, x))|p ds

= cph
p−1

∫ h

0
Ps (a + b |·|)p ds + cph

p−1 |φ|p0
∫ h

0
Ps |F (·)|p ds.

Integrating with respect to µ over H and taking into account the invariance of µ,
the above formula yields

|Phφ− φ|pLp(H,µ) ≤ hp

∫

H
[(a + b |x|p) + |φ|p |F (x)|p] µ(dx) < ∞,

thanks to Corollary 5.3. Consequently 1/h(Phφ−φ) is equibounded in Lp(H, µ) as
claimed.

Theorem 5.5. Assume that Hypothesis 1.1 holds. Then N is the closure of N0 in
Lp(H, µ).

Proof. By Lemma 5.4, N extends N0. Since N is dissipative (it is the infinitesimal
generator of a C0 contraction semigroup), so it is N0. Consequently N0 is closable.
Let us denote by N̄0 its closure. We have to show that N̄0 = N .

Let λ > 0 and f ∈ EAη
(H). Consider the approximating equation

λφε − Lφε − 〈Fη,ε, Dφε〉 = f, ε > 0 (5.5)

By [1, Theorem 3.21] we have that Equation (5.5) has a unique solution φε ∈ C1
b (H)

given by

φε(x) = E

∫ 1

0
e−λtf(Xε(t, x)) dt, ∀x ∈ H.

Moreover, for all h ∈ H we have

〈Dφε(x), h〉 =

∫ ∞

0
e−λt

E [〈Df(Xε(t, x)), DXε(t, x)[h]〉] dt.
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and by [4, Proposition 11.2.13] we have

‖DXε(t, x)‖
L(H) ≤ eωt;

consequently we obtain

|Dφε(x)|H ≤
1

λ− ω
‖Df‖0 .

Arguing as in [4, Theorem 11.2.14] we can write (5.5) as

λφε − N̄0φε = f + 〈Fη,ε − F, Dφε〉 .

We claim that

lim
ε→0

〈Fη,ε − F, Dφε〉 = 0 in Lp(H, µ).

In fact, we have
∫

H
|〈Fη,ε(x) − F (x), Dφε〉|p µ(dx) ≤

1

λ− ω
‖Df‖p

0

∫

H
|Fη,ε(x) − F (x)|p µ(dx).

Clearly,

lim
ε→0

|Fη,ε(x) − F (x)|p = 0, µ − a.e.

Moreover
|Fη,ε(x) − F (x)|p ≤ 2 |F (x)|p , x ∈ H.

Therefore, the claim follows from the dominated convergence theorem, since
∫

H
|F (x)|p µ(dx) < ∞

in virtue of Corollary 5.3. In conclusion we have proved that the closure of the
range of λ − N̄0 includes EA(H) which is dense in in Lp(H, µ). Now the theorem
follows from Lumer-Phillips theorem.
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