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Abstract

We analyze an iteration-by-subdomains algorithm of Dirichlet/Dirichlet type for the isentropic Euler
equation, focusing on subsonic flows, which are the ones showing the most interesting features in a domain
decomposition framework. The main attention is paid to the spatial decomposition, and the problem is
advanced in time by means of a semi-implicit Euler scheme. We enforce the continuity on the interface of
the inviscid flux, and, in the one-dimensional case, we prove convergence of the algorithm in characteristic
variables for both the semi-discrete problem and the fully discrete one, where the equation is discretized
in space via Streamline Diffusion Finite Elements. In both cases, the interface mapping is showed to be a
contraction: in the semi-discrete case, for any choice of the time step ∆t, with constant of order e−C/∆t

(C > 0), in the fully discrete case, provided the entries of the stabilizing matrix are sufficiently small.
Finally, some error estimates of energy type are given.

Keywords: Compressible Gas Dynamics, Domain decomposition, Streamline Diffusion Finite Element
Methods

1 Introduction

The motion of an inviscid compressible gas is governed by the Euler equations, which express the conser-
vation of mass, momentum and energy of the fluid. In several situations of practical interest, for instance
when considering adiabatic flows, or when dealing with small time scales, or when the fluid is confined in
a bounded region, the variations of entropy of the system can be neglected and the fluid can be assumed
to be isentropic. In thermodynamics, an isentropic fluid is characterized by the existence of a function w
called ”enthalpy” (the heat function per unit mass) such that

∇w =
1
ρ
∇p,

p and ρ being the pressure and the density of the fluid, respectively. The other basic thermodynamical
quantities, each of them a function of space x and time t depending on the given flow, are the temperature
ϑ, and the internal energy per unit mass ε = w − p/ρ.
When dealing with ideal gas dynamics, a fluid is isentropic when the pressure is a function of the sole
density, and this assumption reads

p = Kργ ,
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where K > 0 and γ ≥ 1 are a suitable constant and the ratio of specific heats, respectively. The enthalpy
w and the internal energy ε are thus given by (see [CM93])

w =
γKργ−1

γ − 1
, ε =

Kργ−1

γ − 1
,

and the Euler equations for isentropic flows, in a given domain Ω, are
∂ρ

∂t
+ div (ρu) = 0

ρ
∂u
∂t

+ (u · ∇)u = −∇w + ρb,

with suitable boundary conditions on ∂Ω, and where b(x, t) is a given body force per unit mass. In
general, these equations lead to a well-posed initial value problem only if p′(ρ) > 0: this agrees with the
common experience that the increase of the surrounding pressure on a volume of fluid causes a decrease
in the occupied volume and thus an increase in density.
In the recent years, several scientists faced the numerical approximation of the Euler equation in a do-
main decomposition framework, proposing and implemented algorithms for both sonic and transonic
flows (among them, we recall the works by X.-C. Cai and his colleagues [CP99, CPS99]), but no con-
vergence analysis for such algorithm has been provided. To our knowledge, only the work by V. Dolean
et al. [DLN00] provides a theoretical convergence analysis in both two and three dimensions for a non-
overlapping Schwarz algorithm: the main tool for the analysis in there are the Fourier transform, and a
frozen coefficients technique, which consists in a linearization of the flux in the neighborhood of a con-
stant state. In the following sections, we carry out a convergence analysis for an iteration-by-subdomains
algorithm for one-dimensional flows, without freezeing the coefficients: the system is advanced in time
by a semi-implicit method, which induces at each time step a linearization in the neighborhood of the
previous state.
The paper is organized as follows. In Section 2, the characteristic formulation of the isentropic one di-
mensional Euler equation is derived. In Section 3 an iteration-by-subdomains algorithm in characteristic
form is proposed, where the matching condition at the interface is the continuity of the characteristic
variables. Focusing mainly on the spatial decomposition, the semi-discrete iterative algorithm is proved
to converge. In Section 4, the problem is discretized in space by Streamline Diffusion Finite Elements, and
some inflow-outflow type estimates for the single domain problem are given. In Section 5, we introduce a
fully discrete version of the iterative algorithm, and we prove that the interface mapping is a contraction,
provided the entries of the stabilizing matrix are sufficiently small, but independentely of h. In this sense,
the result is optimal. Finally, in Section 6, coming back to the single domain problem, we firstly give
some standard error estimates for the Streamline Diffusion Method, then we give some energy-type error
estimates for the approximate solution in characteristic form.

2 The 1-D Isentropic Euler Equation

We consider here an inviscid isentropic compressible fluid in one space dimension: the vector of conserved
variables is W = (ρ, ρu), the flux vector F is given by F(W) =

(
ρu, ρu2 + p

)
, and the conservative form

of the equation reads

∂W
∂t

+
∂F(W)
∂x

= 0, in QT := Ω× (0, T ) (2.1)

where Ω = (a, b) ⊂ R is an interval.
In a region of smooth flow, using the Jacobian of the flux F(W), system (2.1) can be written in form of
quasi-linear hyperbolic system
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∂U
∂t

+A(U)
∂U
∂x

= 0 in QT := Ω× (0, T ). (2.2)

Here U = (ρ, u) is the vector of physical unknowns, also called “primitive variables”, and

A(U) :=

 u ρ

c2/ρ u

 ,

where c =
√
∂p/∂ρ =

√
Kγργ−1 is the speed of sound, K and γ being defined in the previous section.

The quasi-linear system 2.2 is strictly hyperbolic, as the matrix A is diagonalizable with distinct real
eigenvalues, namely A = LΛL−1, where Λ = diag(λ1, λ2), with

λ1 = u+ c, λ2 = u− c,

while L is the matrix of left eigenvectors, given by

L :=

 c/ρ 1

−c/ρ 1

 .

From a mathematical point of view, equation (2.2) has to be considered together with an initial condition
U0(x) = U(x, 0) and with suitable boundary conditions in order to have a well-posed initial-boundary
value problem. Without entering the details of well-posedeness, we simply recall that it is not admissible
to assign values on the outgoing components, since they could contradict the effect of the initial condition
making it impossible for a solution to exist (for an extensive discussion on boundary conditions for
hyperbolic problems, see for instance [Kre70] and [OS78]). Among the various set of boundary conditions
that render this problem well posed, we consider the following ones ρ(a, t) = g1(t) t ∈ (0, T )

ρ(b, t) = g2(t) t ∈ (0, T ),
(2.3)

namely, we assign the value of the density, or, equivalently, the value of the speed of sound. The same
result we are going to present in the following could be obtained also with different choices of boundary
conditions, for instance assigning the velocity on the left endpoint of the interval, u(a, t) = b1(t), and the
density on the right end one ρ(b, t) = b2(t).
We require the initial value U0(x) to be a continuous vector function, with first component attaining the
values g1(0) and g2(0) at the endpoints of the interval, hence the solution of our problem is continuous
for the whole time of smooth flow. In that order, we recall that the Euler system develops shocks in a
finite time. So far, equation (2.2) fails, and one must use a weak formulation based on the conservative
form of the equation (2.1). Moreover, we assume the solution U(x, t) to be bounded for the whole time
of smooth flow.
With an iteration by subdomain approach in sight, we finally assume that the flow is subsonic, and directed
from the left to the right, i.e. 0 < u < c, so that λ1 > 0 and λ2 < 0 for each (x, t) ∈ QT , which amounts to
have information traveling from each subdomain to the other one. In the domain deomposition framework,
this is the most interesting case: in fact, if the flow is supersonic, both eigenvalues are positive, the whole
information is a traveling wave from Ω1 to Ω2, and the domain decomposition approach is trivially reduced
to the sequential solution firstly in Ω1 and then in Ω2.
The nonlinearity of the problem does not allow to define directly the characteristic variables V: we
therefore introduce them by means of the following differential form (see [Hir90], as well as [QV99])

dV := LdU =
( c
ρ
dρ+ du,− c

ρ
+ du

)
. (2.4)
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Hence, a direct integration provides

V1 = u+
∫

c

ρ
dρ = u+

∫ √
Kγργ/2−3/2 dρ

= u+
2

γ − 1
c+ const,

and similarly for V2. We thus have

V =
(
u+

2
γ − 1

c, u− 2
γ − 1

c

)
, (2.5)

where the functions V1 and V2 (often denoted with R− and R+, respectively) are called the Riemann
invariants of equation 2.2 and are constant along the characteristic lines C± = {(x(t), t) | x′(t) = u± c}.
Problem (2.2) can therefore be decoupled into its characteristic formulation

∂V
∂t

+ Λ(V)
∂V
∂x

= 0 in QT := Ω× (0, T )

V1(a, t)−V2(a, t) = φ1(t) t ∈ (0, T )

V1(b, t)−V2(b, t) = φ2(t) t ∈ (0, T )

(2.6)

where we have set

φ1(t) =
4

γ − 1

√
K (g1(t))γ and φ2(t) =

4
γ − 1

√
K (g2(t))γ .

Moreover, we can observe from (2.5) that the eigenvalues λ1 and λ2 can be expressed as linear combinations
of the characteristic variables  λ1

λ2

 =
1
4

 1 + γ 3− γ

3− γ 1 + γ

  V1

V2

 . (2.7)

Denoting with P the matrix in (2.7), system (2.6) can therefore be rewritten as

 V1

V2


t

+


2∑
j=1

P1jVj 0

0
2∑
j=1

P2jVj


 V1

V2


x

=

 0

0

 . (2.8)

Remark 2.1 From (2.7), we observe that, differently from the case of constant coefficients, system (2.8)
is not constituted of two independent scalar equations coupled only through the boundary conditions,
and this is a consequence of the nonlinearity of the original problem.

3 Domain Decomposition

Let α ∈ (a, b) and consider the decomposition of the domain Ω in the two non-overlapping subdomains
Ω1 := (a, α), and Ω2 := (α, b), with interface Γ = {α}. Let us denote with W1 and W2 the restrictions of
the solution in Ω to the subdomains Ω1 and Ω2, respectively. Then, W1 and W2 must satisfy the Euler
equations in Ω1 and Ω2 separately, where they inherit the boundary and initial conditions prescribed for
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W on ∂Ω and at t = 0, and they have to be matched on Γ by means of suitable interface conditions. As
a direct consequence of the fact that the variable W is a distributional solution of (2.1) in Ω, the natural
requirement for a multidomain formulation of system 2.1 is the continuity on the interface of the inviscid
flux, F(W1) = F(W2), which splits in two conditions of Dirichlet type

ρ1u1 = ρ2u2

ρ1u
2
1 + p1 = ρ2u

2
2 + p2n.

(3.1)

In order to have a well-posed problem in each subdomain, we have to enforce on the interface as many
boundary condition as the number of characteristic lines entering the subdomain. Thus, for subsonic
flows, we have to enforce on the interface one boundary condition for each subdomain.

Remark 3.1 Since the velocity field is continuous across the interface, condition (3.1)1 is equivalent to
the requirement ρ1 = ρ2 for any (α, t) ∈ Γ × (0, T ) such that u(α, t) 6= 0, which is in agreement with
the physics of compressible fluid flows, allowing two kind of discontinuities: shock waves and contact
discontinuities. We won’t enter here the details of this topic, but we refer the interested reader to [GR94],
[Jef76], [Smo83] or [CM93] for an exhaustive treatment of this subject. We only recall that in case of
contact discontinuities the normal velocity is zero, the pressure is continuous, but density, tangential
velocity and temperature may have non-zero jumps.

In the region of smooth flow, since the Riemann invariants are constant along the characteristics, we can
enforce on the interface the continuity of the characteristic variables. Notice that the continuity of these
latter variables guarantees the continuity of the physical ones. So far, we can consider the decomposed
problem 

∂Ui

∂t
+A(Ui)

∂Ui

∂x
= 0 in Ωi × (0, T ), i = 1, 2,

V1
1(α, t) = V2

1(α, t) ∀t ∈ (0, T ),

V1
2(α, t) = V2

2(α, t) ∀t ∈ (0, T )

(3.2)

with the boundary conditions (2.3).

Remark 3.2 When considering discretisation, at the interface point α one has to enforce two additional
conditions (besides the other two related to V), in order to recover all the four interface variables, and
this can be accomplished by imposing to the variables U to satisfy equation (2.2) at the interface point
α for any outgoing component. If the flow is subsonic, we have to impose one additional conditions for
both Ω1 and Ω2. An opportunity is to multiply equation (2.2) on the left by the matrix L and consider
the components corresponding to the outgoing eigenvectors. For sake of simplicity, we can enforce the
equations [

wr ·
(
∂U1

∂t
+ λr

∂U1

∂x

)]
(α, t) = 0 for r = 1, 2 (3.3)

with w1 := (c/ρ, 1), and w2 := (−c/ρ, 1). Notice that, in the case of an hyperbolic system with constant
coefficients, equations (3.3) above correspond to the natural choice of imposing the equation for the
outgoing characteristic variable to be satisfied at the interface point α. Equations (3.3) can therefore be
seen as a direct generalization of the constant coefficients case and are sometimes called the compatibility
equations.
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Problem 3.2 can be decoupled, owing to (2.4), into its characteristic form,

∂Vi

∂t
+ Λ(Vi)

∂Vi

∂x
= 0 in Ωi × (0, T ), i = 1, 2,

V1
1(α, t) = V2

1(α, t) ∀t ∈ (0, T ),

V1
2(α, t) = V2

2(α, t) ∀t ∈ (0, T )

(3.4)

with boundary conditions as in (2.6).
We are mainly interested in a spatial decomposition, thus, owing to (2.8), we advance in time the decom-
posed problem (3.4) by means of a semi-implicit method: at each time step, we linearize system (2.8)
in the neighborhood of the previous one, leading to the following two systems of ordinary differential
equations

In Ω1 : In Ω2 :
βV1,n+1 + Λ(V1,n)

d

dx
V1,n+1 = βV1,n

V1,n+1
1 (a)−V1,n+1

2 (a) = φ1(tn+1)


βV2,n+1 + Λ(V2,n)

d

dx
V2,n+1 = βV2,n

V2,n+1
1 (b)−V2,n+1

2 (b) = φ2(tn+1)

where β = 1/∆t is the inverse of the time step, which are coupled only through the interface conditions

V2,n+1
1 (α) = V1,n+1

1 (α) and V2,n+1
2 (α) = V1,n+1

2 (α).

3.1 An Iteration-by-subdomain algorithm for the time-discretized problem

At each time step an iterative procedure can be introduced to solve the coupled system. From now
on, since we are not dealing with time, we drop any index referring to time discretisation, and we set
f (1) := βV1,n, f (2) := βV2,n, φ1 := φ1(tn+1), φ2 := φ2(tn+1), as well as

Λ :=

 Λ(V1,n) in Ω1

Λ(V2,n) in Ω2

The iteration-by-subdomain procedure can therefore be written, for k ≥ 0, as

In Ω1 : In Ω2 :

βV1,k+1 + Λ
d

dx
V1,k+1 = f (1)

V1,k+1
1 (a)−V1,k+1

2 (a) = φ1

V1,k+1
2 (α) = V2,k

2 (α)



βV2,k+1 + Λ
d

dx
V2,k+1 = f (2)

V2,k+1
1 (α) = V1,k

1 (α)

V2,k+1
1 (b)−V2,k+1

2 (b) = φ2,

(3.5)

having chosen any initial guess V1,0
1 (α) ∈ R and V2,0

2 (α) ∈ R.
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3.1.1 Convergence Analysis

In order to prove the convergence of the iterative algorithm, following what is done by A. Quarteroni in
[Qua90] for a spectral collocation method and by L. Gastaldi in [Gas92], both in the case of constant
coefficients, we define, for each subdomain, the error vector (in characteristic form) as

Ei,k+1
1 := Vi,k+1

1 −Vi
1, Ei,k+1

2 := Vi,k+1
2 −Vi

2,

for i = 1, 2.
It can be easily viewed that the vector functions Ei,k+1 := (Ei,k+1

1 ,Ei,k+1
2 ), i = 1, 2 satisfy the following

error equations

In Ω1 : In Ω2 :

a)



βE1,k+1
1 + λ1

d

dx
E1,k+1

1 = 0

βE1,k+1
2 + λ2

d

dx
E1,k+1

2 = 0

E1,k+1
1 (a) = E1,k+1

2 (a)

E1,k+1
2 (α) = E2,k

2 (α),

b)



βE2,k+1
1 + λ1

d

dx
E2,k+1

1 = 0

βE2,k+1
2 + λ2

d

dx
E2,k+1

2 = 0

E2,k+1
1 (α) = E1,k

1 (α)

E2,k+1
2 (b) = E2,k+1

1 (b).

(3.6)

We introduce the following sequence of interface errors:

Ek
α :=

[
E2,k

1 (α)
]2 +

[
E1,k

2 (α)
]2 for k ≥ 1, (3.7)

and we can prove the following results.

Lemma 3.1 Assume that 1
λ1
∈ L1(Ω) and 1

λ2
∈ L1(Ω). Then, there exists a constant σ < 1 such that

the interface error defined in (3.7) reduces at each iteration k ≥ 1 according to the law

Ek+1
α ≤ σEk

α. (3.8)

Proof. Since systems (3.6) are completely decoupled, we can have an explicit representation for the
solutions of the error equations. Solving (3.6.a), firstly for E1,k+1

2 and then for E1,k+1
1 , and proceeding in

a similar way in (3.6.b), we get

E1,k+1
1 (α) = exp

{
− β

(
Φ1 + Ψ1

)}
E2,k

2 (α),

E2,k+1
2 (α) = exp

{
− β

(
Φ2 + Ψ2

)}
E1,k

1 (α),

with
Φi :=

∫
Ωi

dy

λ1(y)
, Ψi := −

∫
Ωi

dy

λ2(y)
, i = 1, 2.

The subsonic assumption (0 < u < c) entails Φi > 0 and Ψi > 0, and the thesis follows with

σ := exp
(
− β min{Φ1 + Ψ1, Φ2 + Ψ2}

)
�

Theorem 3.1 Under the assumptions of Lemma 3.1, the iteration-by-subdomain strategy in (3.5) con-
verges as k →∞, uniformly with respect to the time step ∆t.
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Proof. From the previous lemma we have limk→∞Ek
α = 0, and, in order to complete the proof, we

have to show that the convergence does not depend on the time step, and to prove that the error Ek(x)
can be controlled, for each x ∈ Ω, by the error on the interface Ek

α. It is not difficult to see that we have,[
E1,k+1(x)

]2
< 2

[
E1,k

2 (α)
]2

and
[
E2,k+1(x)

]2
< 2

[
E2,k

1 (α)
]2
,

for any x in Ω1 or Ω2, respectively. Thus, for i = 1, 2,[
Ei,k+1(x)

]2
< 2

[
Ek
α

]2
,

and this concludes the proof. �

Each step in the iterative procedure (3.6) can be interpreted as an iterative mapping on the interface
M : R2 → R2, which is defined, for each ξ = (ξ1, ξ2) ∈ R2, as

M :

 ξ1

ξ2

 7−→
 V1,k+1

1 (α)

V2,k+1
2 (α)

 (3.9)

where V1,k+1
1 (α) and V2,k+1

2 (α) are the solutions of systems (3.5) with incoming values on α given by
V1,k+1

2 (α) = ξ2 and V2,k+1
1 (α) = ξ1. It is then immediate to prove the following result.

Lemma 3.2 For any choice of the time step β = 1/∆t, the mapping M defined in (3.9) is a contraction.
Moreover, there exists C > 0 such that the reduction factor K is given by

K = e−
C
∆t .

Proof. Since all the problems involved are linear, it is enough to prove contractivity for the mapping
M0, which is obtained from M when f = φ1 = φ2 = 0. Namely, it is enough to prove that there exists a
constant K < 1 such that, for each ξ ∈ R2, ∣∣M0ξ

∣∣2 ≤ K |ξ|2 (3.10)

A direct application of Lemma 3.1 concludes the proof with C = min{Φ1 + Ψ1, Φ2 + Ψ2}. �

3.2 An Equivalent Algorithm

As a matter of fact, the procedure in (3.5) could be advanced (at least in principle) in parallel, but this
is somehow redundant. In fact, the iteration by subdomain algorithm can be efficiently exploited in the
following sequential way:

STEP 1. Given ξ0
1 ∈ R, solve in Ω1, for each k ≥ 0:

βV1,k+1
2 + λ2

d

dx
V1,k+1

2 = f
(1)
2

V1,k+1
2 (α) = ξk1 ,

then


βV1,k+1

1 + λ1
d

dx
V1,k+1

1 = f
(1)
1

V1,k+1
1 (a) = V1,k+1

2 (a) + φ1.

STEP 2. Set ξk+1
2 = V1,k+1

1 (α) and solve in Ω2
βV2,k+1

1 + λ1
d

dx
V2,k+1

1 = f
(2)
1

V2,k+1
1 (α) = ξk+1

2 ,

then


βV2,k+1

2 + λ2
d

dx
V2,k+1

2 = f
(2)
2

V2,k+1
2 (b) = V2,k+1

1 (b)− φ2.

STEP 3. Set ξk+1
1 = V2,k+1

2 (α), go to STEP 1 and iterate.
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Remark 3.3 Notice that the values of V1,k+1
1 (a) in STEP 1 and V2,k+1

2 (b) in STEP 2 are completely
determined by the physical boundary conditions and by the values of V1,k+1

2 (a) and V2,k+1
1 (b), respec-

tively.

Owing to Lemma 3.1 and Theorem 3.1, we can prove convergence for the above algorithm.

Theorem 3.2 The iteration by subdomain in STEP 1 - STEP 3 is equivalent to (3.5), and it converges
as k →∞, independently of the choice of the time step ∆t.

Proof. Straightforward by observing that the sequences
{
ξk1
}
k

and
{
ξk2
}
k

are subsequences of{
V2,k

1 (α)
}
k

and
{

V1,k
2 (α)

}
k
, respectively, which stem from the iterative procedure in (3.5), and are

convergent. �

4 Fully discrete finite element approximation for the single do-
main problem

In this section, following what is done in [Gas92] for linear hyperbolic systems with constant coefficients,
we focus our attention on the finite dimensional approximation for the system stemming from a semi-
implicit time discretisation of system (3.4).

4.1 The scalar case and its finite element approximation via the Streamline
Diffusion Method

Since system (3.4) consists of two scalar transport equations coupled only through the boundary condi-
tions, let us consider the following problem

β

λ(x)
u+ u′ = f(x) in Ω = (a, b)

u(a) = ξ

(4.1)

where β > 0, λ(x) ≥ λ∗ > 0 ∀x ∈ Ω and we have denoted with u′ the space derivative of u with respect
to x, i.e. u′ := du

dx .
Problem (4.1) is well known to have a unique solution, which is given, for x ∈ Ω, by

u(x) = exp
(
−β

∫ x

a

dy

λ(y)

)
×
[
ξ +

∫ x

a

f(t) exp
(
β

∫ t

a

dy

λ(y)

)
dt

]
. (4.2)

In order to approximate the solution of problem (4.1) with finite elements, let Th be a subdivision of the
interval Ω into a finite number of subintervals [xj−1, xj ] such that |xj −xj−1| ≤ h for j = 1, . . . , N , where

a = x0 < x1 < . . . < xN = b.

We introduce the following finite element spaces:

V h(Ω) :=
{
v ∈ C0(Ω)

∣∣ v|K ∈ Pk, ∀K ∈ Th} k ≥ 1, (4.3)

V ha (Ω) :=
{
v ∈ V h(Ω)

∣∣ v(a) = 0
}
, (4.4)

and the Streamline Diffusion approximation of problem (4.1) reads as follows:
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Find uh ∈ V h : uh(a) = ξh and ah(uh, vh) = Lh(vh), ∀vh ∈ V ha (4.5)

where

ah(w, v) =
∫

Ω

[
β

λh(x)
wv + w′v

]
+
∑
K∈T

δh

∫
K

[
β

λh(x)
w + w′

]
v′

=
∫

Ω

[
β

λh(x)
w + w′

] [
v + δhv′

]
and

Lh(v) =
∫

Ω

fhv +
∑
K∈T

δh

∫
K

fhv
′ =

∫
Ω

fh

(
v + δhv′

)
,

and, moreover, λh, fh and ξh are suitable approximations of the data λ, f and ξ.
In order to have well-posedness for problem (4.5) we assume the bilinear form ah(., .) to be positive,
namely

µ∗ := inf
x∈Ω

(
β

λh(x)
+

1
2
βδhλ′h(x)
λ2
h(x)

)
> 0, (4.6)

which is fulfilled for each δ such that

0 < δ < δ0 := 2
minΩ λh(x)

max{−minΩ λ′h(x), 0}
h−1 (4.7)

The above condition has to be interpreted in the following way: if minΩ λ
′
h(x) > 0, then no upper bound

is needed for δ. Implicitely, we have also assumed that minΩ λ
′
h > −∞.

4.1.1 The finite element approximation of the vector case

In this section we go back to the complete system (3.4) and we introduce the finite element spaces

V hb (Ω) :=
{
v ∈ V h(Ω)

∣∣ v(b) = 0
}

(4.8)

and
Wh(Ω) :=

[
V h(Ω)

]2
, Wh

0 (Ω) := V ha (Ω)× V hb (Ω). (4.9)

At each time step n, neglecting any index referring to the time step, the stabilized fully discrete formulation
for system (2.6) reads:

Find Vh ∈ Wh(Ω) such that

∫
Ω

(
βΛ−1

h Vh +
dVh

dx
− fh, ϕ+ hD

dϕ

dx

)
dx = 0 ∀ ϕ ∈ Wh

0 (Ω)

V1(a)−V2(a) = φ1

V1(b)−V2(b) = φ2

(4.10)

where clearly Λh = Λ(Vn−1
h ) and fh = βΛ−1

h Vn−1
h , while D = diag(δ1, δ2) is a suitable diagonal matrix:

δ1 and δ2 must satisfy (4.7), with λh replaced by λ1(Vh) and −λ2(Vh), respectively.
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4.2 Inflow-outflow estimates for the finite element approximation

In this section, adapting to our problem the approach of [GG93] and [Gas92], we give some estimates of
inflow-outflow type for the scalar problem (4.5) which will be used in the sequel. In that order, let us
consider the following problems:

(P1) Find uh ∈ V h(Ω) such that∫
Ω

{
β

λh(x)
uh + u′h − fh

}
· (v + δhv′) = 0 ∀v ∈ V ha (Ω)

uh(a) = χ

(4.11)

and
(P2) Find umh ∈ V h(Ω) such that∫

Ω

{
β

λh(x)
umh + (umh )′ − fh

}
· (v + δhv′) = 0 ∀v ∈ V ha (Ω)

umh (a) = χm

(4.12)

We are in the position to prove the following result.

Lemma 4.1 Assume λh(x) ≥M1 > 0 for all x ∈ Ω, λ′h ∈ L∞(Ω) and that (4.7) is satisfied. Let uh and
umh be the solutions to problems (4.11) and (4.12) above. Then there exists a constant HΩ < 1 such that

(uh − umh )2 (b) ≤ HΩ (χ− χm)2
, (4.13)

provided δ is sufficiently small.

Proof. The difference em := uh − umh satisfies the following error equation∫
Ω

{
β

λh(x)
em + e′m

}
· (v + δhv′) = 0

em(a) = χ− χm

(4.14)

If λh(b) < λh(a), we take in (4.14) v = em and we get

0 =
∫

Ω

β

λh
e2
m +

∫
Ω

eme
′
m + δh

∫
Ω

β

λh
eme

′
m + δh

∫
Ω

(e′m)2

=
∫

Ω

(
β

λh
+
βδhλ′h

2λ2
h

)
e2
m +

1
2

[(
1 +

βδh

λh

)
e2
m

]b
a

+ δh

∫
Ω

(e′m)2.

(4.15)

The third term on the right hand side is positive, while assumption (4.6) provides positivity also for the
first one, so that we have (

1 +
βδh

λh(b)

)
e2
m(b) ≤

(
1 +

βδh

λh(a)

)
e2
m(a).

Inequality (4.13) follows with

HΩ :=
1 + βδh

λh(a)

1 + βδh
λh(b)

< 1.
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If λh(b) ≥ λh(a), let ϕ ∈W 1,∞(Ω) be the linear function such that ϕ(a) = 0 and ϕ(b) = 1, i.e. ϕ(x) = x−a
b−a .

We take v = (1 + ηϕ) em in (4.14), with η > 0, and we get

0 =
∫

Ω

{
β

λh
em + e′m

}
·
{

(1 + ηϕ)em + δh [(1 + ηϕ)em]′
}

=
∫

Ω

β

λh
e2
m(1 + ηϕ) +

∫
Ω

(1 + ηϕ)eme′m︸ ︷︷ ︸
(1)

+ δh

∫
Ω

β

λh
(1 + ηϕ)eme′m︸ ︷︷ ︸

(2)

+δh
∫

Ω

β

λh
ηϕ′e2

m

+δh
∫

Ω

(1 + ηϕ)(e′m)2 + δh

∫
Ω

ηϕ′eme
′
m︸ ︷︷ ︸

(3)

(4.16)

Since ϕ is linear,

(1) =
1
2
[
(1 + ηϕ)e2

m

]b
a
− 1

2

∫
Ω

ηϕ′e2
m

(2) =
δh

2

[
β

λh
(1 + ηϕ)e2

m

]b
a

+
1
2

∫
Ω

βδhλ′h
λ2
h

(1 + ηϕ)e2
m −

1
2

∫
Ω

βδh

λh
ηϕ′e2

m

(3) =
δh

2
[
ηϕ′e2

m

]b
a
− δh

2

∫
Ω

ηϕ′′e2
m =

δh

2
[
ηϕ′e2

m

]b
a
,

and this entails

0 =
∫

Ω

{(
β

λh
+
βδhλ′h

2λ2
h

)
(1 + ηϕ) +

1
2

(
βδh

λh
− 1
)
ηϕ′

}
e2
m

+
1
2

[{(
1 +

βδh

λh

)
(1 + ηϕ) + δhηϕ′

}
e2
m

]b
a

+ δh

∫
Ω

(1 + ηϕ)(e′m)2

(4.17)

The third term of the sum is positive independently of η. Concerning the first one we have two opportuni-
ties: if βδh−λh > 0 in Ω, this term is positive without any further restriction on η, while if βδh−λh < 0
for some x ∈ Ω, taking into account the definition of ϕ, its positivity is guaranteed if, for instance

η ≤ η∗ := 2 (b− a)µ∗. (4.18)

where µ∗ is the one defined in (4.6). We obtain from (4.17)[
δηh

b− a
+
(

1 +
βδh

λh(b)

)
(1 + η)

]
e2
m(b) ≤

[
δηh

b− a
+
(

1 +
βδh

λh(a)

)]
e2
m(a). (4.19)

Let

δ0 := sup
{
δ > 0

∣∣∣ η∗ := βδh
λh(b)− λh(a)

λh(a) [λh(b) + βδh]
< η∗

}
(4.20)

and define
δ∗ := min

{
δ0 , δ0

}
, (4.21)
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where δ0 is the one introduced in (4.7). Thus, for any η ∈]η∗, η∗], inequality (4.13) follows with

HΩ :=
δηh
b−a +

(
1 + βδh

λh(a)

)
δηh
b−a +

(
1 + βδh

λh(b)

)
(1 + η)

< 1, (4.22)

provided 0 < δ < δ∗. �

5 Fully Discrete Multidomain Formulation and the Iterative Al-
gorithm

In this section we go back to the multidomain formulation of Section 3 and we prove convergence for an
iteration-by-subdomains procedure in the fully discrete case.
To this aim, for sake of simplicity, we assume that the interface α coincides with a node of the mesh, and
consider the finite element spaces which are the restrictions to Ω1 = (a, α) and Ω2 = (α, b) of the spaces
Wh(Ω) and Wh

0 (Ω), namely
Wh(Ωj) :=

[
V h(Ωj)

]2
, j = 1, 2, (5.1)

and
Wh

0 (Ω1) := V ha (Ω1)× V hα (Ω1) and Wh
0 (Ω2) := V hα (Ω2)× V hb (Ω2), (5.2)

and consider the discretized version of the multidomain formulation (3.4), where, as usual, superindeces
denote subdomains, whereas subindeces denote components,∫

Ωi

(
βΛ−1

h Vi
h +

d

dx
Vi
h − f (i)

h , ϕ+ hD
dϕ

dx

)
dx = 0 ∀ ϕ ∈ Wh

0 (Ωi), i = 1, 2 (5.3)

V1
h,1(a) = V1

h,2(a) + φ1 (5.4)

V2
h,2(b) = V2

h,1(b)− φ2 (5.5)

V1
h,2(α) = V2

h,2(α) (5.6)

V2
h,1(α) = V1

h,1(α) (5.7)

where, as usual, f (i) denotes the restriction of f to Ωi, (i = 1, 2).
We introduce, as in the continuous case, an iterative procedure to solve system (5.3)-(5.7) above. At the
(m+ 1)-th iteration, it reads as follows∫

Ω1

(
βΛ−1

h V1,m+1
h +

d

dx
V1,m+1
h − f (1)

h , ϕ+ hD
dϕ

dx

)
dx = 0 ∀ ϕ ∈ Wh

0 (Ω1) (5.8)

∫
Ω2

(
βΛ−1

h V2,m+1
h +

d

dx
V2,m+1
h − f (2)

h , ψ + hD
dψ

dx

)
dx = 0 ∀ ψ ∈ Wh

0 (Ω2) (5.9)

V1,m+1
h,1 (a) = V1,m+1

h,2 (a) + φ1 (5.10)

V2,m+1
h,2 (b) = V2,m+1

h,1 (b)− φ2 (5.11)

V1,m+1
h,2 (α) = V2,m

h,2 (α) (5.12)

V2,m+1
h,1 (α) = V1,m

h,1 (α) (5.13)
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5.1 Convergence Analysis

Procedure (5.8)-(5.13) above can be interpreted as a discrete iterative mapping Mh : R2 → R2, acting
in the following way:

Mh :

(
V1,m
h,1 (α)

V2,m
h,2 (α)

)
7−→

(
V1,m+1
h,1 (α)

V2,m+1
h,2 (α)

)
(5.14)

where V1,m+1
h,1 (α) and V2,m+1

h,2 (α) are the restriction to the interface α of the solution of systems (5.8)-
(5.10)-(5.12) and (5.9)-(5.11)-(5.13), respectively. The convergence properties of the mapping Mh are
given in the following theorem.

Theorem 5.1 Assume there exists a constant M > 0 such that the eigenvalues λ1,h and λ2,h of Λh satisfy
λ1,h(x) ≥ M and −λ2,h(x) ≥ M , for any x ∈ Ω, respectively. Assume moreover that λ′i,h ∈ L∞(Ω) (for
i = 1, 2). Then, the discrete mapping Mh is a contraction on the interface, provided the entries of the
diagonal matrix D are sufficiently small.

Proof. The mapping Mh is linear, so it is enough to prove that it is contractive on the error, and
to this aim it is immediate to see that the difference Ei,m := Vi

h −Vi,m
h (i = 1, 2) satisfies the following

error equations (as usual, subindices denote components)∫
Ω1

(
βΛ−1

h E1,m+1
h +

d

dx
E1,m+1
h , ϕ+ hD

dϕ

dx

)
dx = 0 ∀ ϕ ∈ Wh

0 (Ω1) (5.15)∫
Ω2

(
βΛ−1

h E2,m+1
h +

d

dx
E2,m+1
h , ψ + hD

dψ

dx

)
dx = 0 ∀ ψ ∈ Wh

0 (Ω2) (5.16)

E1,m+1
h,1 (a) = E1,m+1

h,2 (a) (5.17)

E2,m+1
h,2 (b) = E2,m+1

h,1 (b) (5.18)

E1,m+1
h,2 (α) = E2,m

h,2 (α) (5.19)

E2,m+1
h,1 (α) = E1,m

h,1 (α) (5.20)

Equations (5.15) and (5.16) consist of two scalar equations coupled only through the boundary conditions.
If the entries of D are small enough, we can apply Lemma (4.1) to both components of the error in Ω1

and Ω2.
Let us focus on Ω1: from Lemma (4.1) there exists a constant KΩ1 < 1 such that[

E1,m+1
h,2

]2
(a) ≤ KΩ1

[
E1,m+1
h,2

]2
(α),

and, owing to (5.17), there exists a constant HΩ1 < 1 such that[
E1,m+1
h,1

]2
(α) ≤ HΩ1

[
E1,m+1
h,2

]2
(a) ≤ HΩ1 KΩ1

[
E1,m+1
h,2

]2
(α). (5.21)

From a similar argument within Ω2 there exist constants HΩ2 < 1 and KΩ2 < 1 such that[
E2,m+1
h,2

]2
(α) ≤ HΩ2 ·KΩ2

[
E2,m+1
h,1

]2
(α) (5.22)

Gathering together (5.19), (5.20), (5.21) and (5.22) we have

|MhEm
h |

2 ≤ K |Em
h |

2
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where

K := min {HΩ1 KΩ1 , HΩ2 KΩ2} < 1,

and this concludes the proof. �

Remark 5.1 In our framework, the boundedness assumption on ρ and u entails boundedness also for the
discrete solution and its derivative at each time step. Infact, since Λh = Λ(Vn−1

h ), where Vn−1
h (globally

continuous and piecewise polynomial) is the discrete solution computed at the previous time step, we have
Vn
h ∈ W 1,∞(Ωj), and λj,h ∈ W 1,∞(Ωj) (for j = 1, 2). Finally, on one hand the hypotesis −λ2,h(x) ≥ M

is coherent with the assumption on the flow to be subsonic (u < c), whereas the hypotesis λ1,h(x) ≥ M
agrees with the assumption on the flow to be directed rightwards (u > 0).

6 Error estimates

In this section we go back to the single domain case and we study the approximation error we get
from the characteristic approach to the Euler system. For that purpose, we firstly derive some standard
approximation errors for the Streamline Diffusion Method.

6.1 Error Estimates for the Streamline Diffusion Method

We give here some standard error estimates for the Streamline Diffusion finite element discretisation of a
transport problem.
In that order, we consider again problems 4.1 and 4.5: for f(x) ∈ L2(Ω), and 1/λ(x) ∈ L∞(Ω), the
solution u of problem 4.1 belongs to H1(Ω) and satisfies the following a priori estimate

‖u‖H1 ≤ C (‖f‖0 + |ξ|) . (6.1)

Under the coerciveness assumption (4.6), it is not difficult, by means of standard arguments, to prove the
following error estimates.

Lemma 6.1 Let u be the solution of problems (4.1) and let uh be the solution of problem (4.5) with
boundary condition uh(a) = ξ, respectively. Assume that (4.6) is satisfied, that f , fh ∈ L2(Ω), λ,
λh ∈ L∞(Ω) and λ(x), λh(x) ≥ λ∗ > 0 for all x ∈ Ω. Then, the following error estimate holds

µ∗‖u− uh‖20 + δh‖u′ − u′h‖20 ≤ (6.2)

≤ Ch
(
‖fh‖0 + ξ2

)
+ C

(
‖f − fh‖20 + ‖λ− λh‖20

)
where µ∗ is the constant in the coerciveness assumption (4.6), and C is a constant depending on β, Ω,
λ∗, δ and k, but independent of h.

Proof. Let us consider the following auxiliary problem
β

λh(x)
û+ û′ = fh(x) in Ω = (a, b)

û(a) = ξ

(6.3)

whose exact solution is given by

û(x) = exp
(
−β

∫ x

a

dy

λh(y)

)
·
[
ξ +

∫ x

a

fh(t) exp
(
β

∫ t

a

dy

λh(y)

)
dt

]
, (6.4)
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and, if fh ∈ L2(Ω), it satisfies an a priori estimate analogous to (6.1). We have

µ∗‖u− uh‖20 + δh‖u′ − u′h‖20 ≤

≤ 2

(
µ∗‖u− û‖20 + δh‖u′ − û′‖20 + µ∗‖û− uh‖20 + δh‖û′ − u′h‖20

)
.

where û is the solution of problem (6.3). Let us focus on the first term: by standard manipulation and
the use of Hölder and Jensen’s inequalities, we get, up to a constant

‖u− û‖20 ≤ |Ω|2e
2β|Ω|
λ∗

(
‖f − fh‖20 + ‖λ− λh‖20

)
(6.5)

(for more details see [Ger02]). Using then the fact that u and û are solutions of equations (4.1) and (6.3),
we have for the second term, up to a multiplicative factor,

‖u′ − û′‖20 ≤ ‖f − fh‖20 +
β2

λ4
∗

(
‖û‖20 ‖λ− λh‖20 + ‖λh‖20 ‖u− û‖20

)
, (6.6)

where the L2 boundedness of fh entails L2 boundedness also for û.
Finally, let us focus on the last two terms in (6.5). The difference (û−uh) satisfies the following equation

∫
Ω

[
β

λh(x)
(û− uh) + (û− uh)′

]
[ϕ+ δhϕ′] = 0 ∀ϕ ∈ V h0 (Ω)

(û− uh)(a) = 0

(6.7)

Let Πk
hû be the interpolant of û in V h(Ω) (notice that, since Ω ⊂ R, H1(Ω) ⊂ C0(Ω), and the interpolant

is well-defined for any k ≥ 1); if we choose ϕ = (Πk
hû− uh), which belongs to V h0 (Ω), we have∫

Ω

{
β

λh(x)
(Πk

hû− uh)2 + δh
[
(Πk

hû− uh)′
]2

+
(

1 +
βδh

λh(x)

)
(Πk

hû− uh)(Πk
hû− uh)′

}
(6.8)

=
∫

Ω

[ β

λh(x)
(Πk

hû− û) + (Πk
hû− û)′

][
(Πk

hû− uh) + δh(Πk
hû− uh)′

]
.

Let us focus on the left hand side in (6.8): an integration by parts of the third term, together with the
fact that (Πk

hû− uh)(a) = 0, provides:

∫
Ω

{
β

λh(x)
(Πk

hû− uh)2 + δh
[
(Πk

hû− uh)′
]2

+
(

1 +
βδh

λh(x)

)
(Πk

hû− uh)(Πk
hû− uh)′

}
≥ µ∗‖Πk

hû− uh‖20 + δh‖(Πk
hû− uh)′‖20 +

1
2

(Πk
hû− uh)2(b).

(6.9)

where the inequality stems from the coerciveness assumption (4.6) and the positiveness of β, δ, h, and
λh. Now, let us consider the right hand side in (6.8): we have by standard arguments

∫
Ω

[ β

λh(x)
(Πk

hû− û) + (Πk
hû− û)′

][
(Πk

hû− uh) + δh(Πk
hû− uh)′

]
≤

≤ Ch−1‖Πk
hû− û‖20 + Cδh‖(Πk

hû− û)′‖20 +
µ∗

2
‖Πk

hû− uh‖20 +
δh

2
‖(Πk

hû− uh)′‖20,
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(again, for details see [Ger02]), and we thus have

µ∗

2
‖Πk

hû− uh‖20 +
δh

2
‖(Πk

hû− uh)′‖20 +
1
2

(Πk
hû− uh)2(b) ≤

≤ Ch−1‖Πk
hû− û‖20 + Cδh‖(Πk

hû− û)′‖20 ≤ Ch‖û‖2H1(Ω),

where the last inequality follows from standard interpolation estimates for finite elements. Finally, using
the fact that Πk

hû(b) = û(b), we can conclude

µ∗‖û− uh‖20 + δh‖(û− uh)′‖20 + (û− uh)2(b) ≤

≤ 2
(
µ∗ + Ch−1

)
‖û−Πk

hû‖20 + 2Cδh‖(Πk
hû− û)′‖20 (6.10)

≤ Ch‖û‖2H1(Ω) ≤ Ch
(
‖fh‖20 + |ξ|2

)
,

Gathering together estimates, (6.5), (6.5), (6.6), and (6.10), the thesis follows. �

6.2 Error estimates for the primitive variables

In this section we derive an energy estimate for the FEM approximation through the characteristic ap-
proach. Since our main attention focused on the spatial domain decomposition, we give in this section
an estimate of the difference between the exact solution at time tn, U(tn, x), and the approximate one
stemming from the characteristic approach. Since V1 = u+ 2

γ−1 c and V2 = u− 2
γ−1 c, the inverse change

of variable is

U(t, x) =


ρ(t, x) = F1(V(t, x)) =

{
1
Kγ

[
γ − 1

4
(V1 −V2)(t, x)

]2
}1/γ−1

u(t, x) = F2(V(t, x)) =
1
2

(V1 + V2)(t, x).

(6.11)

Due to the nonlinearity of the change of variables, when we map the discretized (either in time or in both
time and space) characteristic variables back to the primitive ones, we do not obtain the solution of a
discretized version of the original problem in the primitive variables. However, we expect these resulting
functions to be a good approximation of the primitive variables. Under these considerations, we denote
with Vn the solution, at time step n, of the single domain problem discretized in time as in Section 3,

βVn + Λn−1Vn
x = βVn−1, (6.12)

where Λn−1 = diag(λn−1
1 , λn−1

2 ), as defined therein, and we define, with a little abuse of notation,

Un(x) :=

 ρn(x) = F1(Vn(x))

un(x) = F2(Vn(x))
Un
h(x) :=

 ρnh(x) = F1(Vn
h(x))

unh(x) = F2(Vn
h(x))

(6.13)

where Vn
h(x) is the fully discrete approximation of V(tn, x) via the Streamline Diffusion FEM. We are in

position to prove the following result.

Lemma 6.2 Let U(tn, x) and V(tn, x) be the solutions of problems (2.2) and (2.6) respectively, at time
t = tn, and Vn

h(x) be the solution of problem (4.10) at time step n. Assume that, U(tn, x), V(tn, x) ∈
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L2(Ω), and that Vn−1(x) ∈ L∞(Ω). Assume moreover that λ∗ ≥ |λn−1
j (x)|, |λn−1

hj (x)| ≥ λ∗ > 0 (j = 1, 2),
for all x ∈ Ω, that γ < 3, and that (4.6) is satisfied. Then, at time step n, the following error estimate
holds ∥∥∥U(tn, x)−Un

h(x)
∥∥∥2

0
≤ C

∥∥∥V(tn, x)−Vn(x)
∥∥∥2

0

+C
∥∥∥Vn−1(x)−Vn−1

h (x)
∥∥∥2

0
+ Ch

(∥∥∥Vn−1
h (x)

∥∥∥2

0
+ |g1(tn)|2 + |g2(tn)|2

)
,

where g1(tn) and g2(tn) are the boundary conditions in (2.3) for t = tn, and where the constant C may
depend on β, δ, Ω, and λ∗, but is independent of h.

Remark 6.1 A few comments on the assumptions of Lemma 6.2 are in order. The assumption that the
exact solution belongs to L2(Ω), at time t = tn, in both primitive (U) and characteristic form (V), is not
restrictive in the region of smooth flow. The bounds on the modulus of the time discrete λn−1

j , and fully
discrete λn−1

h,j , j = 1, 2, approximations of the eigenvalues u+ c and u− c are justified by the assumption
we made on the flow to be subsonic. Finally, since for ideal gases the ratio γ ∼ 5/3, the assumption on γ
is not restrictive either.

Proof. First of all, notice that, under our assumptions, the function Vn, solution of problem (6.12),
belongs to L2(Ω). Then, since∥∥∥U(tn, x)−Un

h(x)
∥∥∥2

0
=
∥∥∥U1(tn, x)−Un

h,1(x)
∥∥∥2

0
+
∥∥∥U2(tn, x)−Un

h,2(x)
∥∥∥2

0
,

we have to analyze both terms in the above summation. Concerning the first one, we observe that, since
γ < 3, the function F1(.) is Lipschitz continuous, with Lipschitz constant that we indicate with L1. We
set, for simplicity of notations, C :=

[
(γ − 1)2/(16Kγ)

]1/γ−1, and we obtain∫
Ω

∣∣∣U1(tn, x)−Un
h,1(x)

∣∣∣2 = C2

∫
Ω

∣∣∣ [V1(tn, x)−V2(tn, x)]
2

γ−1 −
[
Vn
h,1(x)−Vn

h,2(x)
] 2
γ−1

∣∣∣2
≤ C2L2

1

∫
Ω

∣∣∣[V1(tn, x)−V2(tn, x)]− [Vn
h,1(x)−Vn

h,2(x)]
∣∣∣2

≤ 4 C2L2
1

(∥∥∥V1(tn, x)−Vn
1 (x)

∥∥∥2

0
+
∥∥∥Vn

1 (x)−Vn
h,1(x)

∥∥∥2

0
+
∥∥∥V2(tn, x)−Vn

2 (x)
∥∥∥2

0

+
∥∥∥Vn

2 (x)−Vn
h,2(x)

∥∥∥2

0

)
,

The linearity of F2(.) allows a simpler treatment of the second term:

∫
Ω

∣∣∣U2(tn, x)−Un
h,2(x)

∣∣∣2 ≤ 1
2

(∥∥∥V1(tn, x)−Vn
1 (x)

∥∥∥2

0
+
∥∥∥Vn

1 (x)−Vn
h,1(x)

∥∥∥2

0

+
∥∥∥V2(tn, x)−Vn

2 (x)
∥∥∥2

0
+
∥∥∥Vn

2 (x)−Vn
h,2(x)

∥∥∥2

0

)
.

Therefore, there exists a constant K = max{1/2, 4C2L2} such that∥∥∥U(tn, x)−Un
h(x)

∥∥∥2

0
≤ K

(∥∥∥V(tn, x)−Vn(x)
∥∥∥2

0
+
∥∥∥Vn(x)−Vn

h(x)
∥∥∥2

0

)
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Under our assumptions, we are in the position to use the estimates of the previous section, with f =
βΛ−1Vn−1, and fh as in (4.10), and we get from Lemma 6.1∥∥∥U(tn, x)−Un

h(x)
∥∥∥2

0
≤ C

∥∥∥V(tn, x)−Vn(x)
∥∥∥2

0

+Ch
(∥∥∥fh∥∥∥2

0
+ |g1(tn)|2 + |g2(tn)|2

)
+ C

(∥∥∥f − fh
∥∥∥2

0
+
∥∥∥ln−1 − ln−1

h

∥∥∥2

0

)
where we have set ln−1 = (λn−1

1 , λn−1
2 ), ln−1

h = (λn−1
h1 , λn−1

h2 ). We easily have

‖fh‖20 ≤ C
∥∥Vn−1

∥∥2

0
,

and, owing to 2.7, ∥∥∥ln−1 − ln−1
h

∥∥∥2

0
≤ ‖P‖2∗

∥∥∥Vn−1(x)−Vn−1
h (x)

∥∥∥2

0
,

P and ‖.‖∗ being the matrix in 2.7, and any compatible matrix norm, respectively.
Finally, the boundedness assumption on ln−1 and Vn−1 entails (for details, again, see [Ger02])∥∥∥f − fh

∥∥∥2

0
≤ C

∥∥Vn−1 −Vn−1
h

∥∥2

0
,

which concludes the proof. �

Remark 6.2 From the above error estimate, we can easily conclude that, if Vn−1
h (x) converges in the

L2-norm to Vn−1(x) uniformly in h, then the approximation error between U(tn, x) and Un
h(x) depends,

as h → 0, only on the approximation error in the time marching scheme for the characteristic variables,
i.e.

lim
h→0

∥∥∥U(tn, x)−Un
h(x)

∥∥∥2

0
≤ C

∥∥∥V(tn, x)−Vn(x)
∥∥∥2

0
.

Remark 6.3 The above results are valid at time step n, and our attention was mainly paid to the
convergence of the iteration-by-subdomain procedure. Further work needs however to be done in order
to link the approximation error at the n-th time step to the initial condition U0(x).

7 Conclusions

We proposed an iteration-by-subdomain algorithm with interface matching conditions of Dirichlet/Dirichlet
type, and we proved its convergence, for both the time discrete and the fully discrete problem, in the case
of one dimensional isentropic flows. Convergence is achieved for any choice of the time step ∆t in the
time marching scheme, and independently of the mesh parameter h. Anyway, a few more comments are
in order.
Firstly, we considered isentropic flows, which is not such a retrictive assumption, since this is a good
approximation of several phenomena occurring in nature. Then, the result has been obtained for the
quasi-linear form of Euler system, thus the convergence of the iterative algorithm is ensured only in the
region of smooth flow. Since it is well known that the Euler system develops shocks in a finite time, further
work needs to be done to extend this result also in the presence of shocks or rarefaction waves. Finally,
a convergence result for the quasi-linear system in higher dimensions without freezing the coefficients is
not yet available, and it appears rather complicated.
In conclusion, the result obtained is clearly not optimal, nevertheless it is an attempt to give a theoret-
ical convergence analysis for a domain decomposition approach to the Euler system, a task that, to our
knowledge, hasn’t been faced yet.
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